

MySQL ®

Fourth Edition

informit.com/devlibrary

Developer’s
Library

ESSENTIAL REFERENCES FOR PROGRAMMING PROFESSIONALS

Developer’s Library books are designed to provide practicing programmers with
unique, high-quality references and tutorials on the programming languages and
technologies they use in their daily work.

All books in the Developer’s Library are written by expert technology practitioners
who are especially skilled at organizing and presenting information in a way that’s
useful for other programmers.

Key titles include some of the best, most widely acclaimed books within their
topic areas:

PHP & MySQL Web Development
Luke Welling & Laura Thomson
ISBN 978-0-672-32916-6

MySQL
Paul DuBois
ISBN-13: 978-0-672-32938-8

Linux Kernel Development
Robert Love
ISBN-13: 978-0-672-32946-3

Python Essential Reference
David Beazley
ISBN-13: 978-0-672-32862-6

Programming in Objective-C
Stephen G. Kochan
ISBN-13: 978-0-321-56615-7

PostgreSQL
Korry Douglas
ISBN-13: 978-0-672-33015-5

Developer’s Library books are available at most retail and online bookstores, as well
as by subscription from Safari Books Online at safari.informit.com.

Developer’s Library

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

MySQL ®

Fourth Edition

Paul DuBois

MySQL®

Fourth Edition
Copyright © 2009 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent liability is assumed with respect to
the use of the information contained herein. Although every precaution has been taken in
the preparation of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of the informa-
tion contained herein.

ISBN-13: 978-0-672-32938-8
ISBN-10: 0-672-32938-7

Library of Congress Cataloging-in-Publication Data

DuBois, Paul, 1956-

MySQL / Paul DuBois. — 4th ed.

p. cm.

Includes index.

ISBN 978-0-672-32938-8 (pbk.)

1. SQL (Computer program language) 2. MySQL (Electronic resource) 3. Database man-
agement. I. Title.

QA76.73.S67D588 2009

005.13’3—dc22

2008030855

Printed in the United States of America

First Printing August 2008

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Pearson cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any trademark
or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis. The
author and the publisher shall have neither liability nor responsibility to any person or entity
with respect to any loss or damages arising from the information contained in this book.

Bulk Sales
Pearson offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearson.com

Acquisitions Editor
Mark Taber

Development Editor
Michael Thurston

Managing Editor
Kristy Hart

Project Editor
Jovana
San Nicolas-Shirley

Indexer
Cheryl Lenser

Proofreaders
Leslie Joseph
Water Crest
Publishing

Technical Editors
Stephen Frein
Tim Boronczyk

Publishing
Coordinator
Vanessa Evans

Cover Designer
Gary Adair

Compositor
Jake McFarland

Contents at a Glance
Introduction . 1

I: General MySQL Use

1 Getting Started with MySQL . 13

2 Using SQL to Manage Data. 101

3 Data Types. 201

4 Stored Programs . 289

5 Query Optimization . 303

II: Using MySQL Programming Interfaces

6 Introduction to MySQL Programming . 341

7 Writing MySQL Programs Using C . 359

8 Writing MySQL Programs Using Perl DBI. 435

9 Writing MySQL Programs Using PHP . 527

III: MySQL Administration

10 Introduction to MySQL Administration . 579

11 The MySQL Data Directory . 585

12 General MySQL Administration . 609

13 Access Control and Security . 699

14 Database Maintenance, Backups, and Replication 737

IV: Appendixes

A Obtaining and Installing Software . 777

B Data Type Reference . 797

C Operator and Function Reference . 813

D System, Status, and User Variable Reference. 889

E SQL Syntax Reference . 937

F MySQL Program Reference . 1037

Note: Appendixes G, H, and I are located online and are accessible either by registering this
book at informit.com/register or by visiting www.kitebird.com/mysql-book.

G C API Reference . 1121

H Perl DBI API Reference . 1177

I PHP API Reference . 1207

Index. 1225

www.kitebird.com/mysql-book

Table of Contents

Introduction . 1
Why Choose MySQL? . 2

Already Running Another RDBMS?. 4

Tools Provided with MySQL . 5

What You Can Expect from This Book . 5

Road Map to This Book . 6

Part I: General MySQL Use . 6

Part II: Using MySQL Programming Interfaces . 6

Part III: MySQL Administration . 7

Part IV: Appendixes . 7

How to Read This Book . 8

Versions of Software Covered in This Book . 9

Conventions Used in This Book. 10

Additional Resources . 11

I: General MySQL Use

1 Getting Started with MySQL . 13
1.1 How MySQL Can Help You . 13

1.2 A Sample Database . 17

1.2.1 The U.S. Historical League . 17

1.2.2 The Grade-Keeping Project. 20

1.2.3 How the Sample Database Applies to You . 20

1.3 Basic Database Terminology . 21

1.3.1 Structural Terminology. 21

1.3.2 Query Language Terminology . 22

1.3.3 MySQL Architectural Terminology . 24

1.4 A MySQL Tutorial . 25

1.4.1 Obtaining the Sample Database Distribution 26

1.4.2 Preliminary Requirements . 27

1.4.3 Establishing and Terminating Connections to the MySQL Server 28

1.4.4 Executing SQL Statements . 30

1.4.5 Creating a Database . 33

1.4.6 Creating Tables. 34

viiContents

1.4.7 Adding New Rows . 53

1.4.8 Resetting the sampdb Database to a Known State 57

1.4.9 Retrieving Information . 58

1.4.10 Deleting or Updating Existing Rows . 91

1.5 Tips for Interacting with mysql . 93

1.5.1 Simplifying the Connection Process . 93

1.5.2 Issuing Statements with Less Typing . 95

1.6 Where to Now? . 100

2 Using SQL to Manage Data . 101
2.1 The Server SQL Mode . 102

2.2 MySQL Identifier Syntax and Naming Rules . 103

2.3 Case Sensitivity in SQL Statements . 106

2.4 Character Set Support . 107

2.4.1 Specifying Character Sets . 108

2.4.2 Determining Character Set Availability and Current Settings. 109

2.4.3 Unicode Support. 111

2.5 Selecting, Creating, Dropping, and Altering Databases 112

2.5.1 Selecting Databases. 112

2.5.2 Creating Databases . 113

2.5.3 Dropping Databases . 114

2.5.4 Altering Databases . 114

2.6 Creating, Dropping, Indexing, and Altering Tables 114

2.6.1 Storage Engine Characteristics . 114

2.6.2 Creating Tables. 122

2.6.3 Dropping Tables . 135

2.6.4 Indexing Tables. 136

2.6.5 Altering Table Structure . 141

2.7 Obtaining Database Metadata. 144

2.7.1 Obtaining Metadata with SHOW . 145

2.7.2 Obtaining Metadata with INFORMATION_SCHEMA 147

2.7.3 Obtaining Metadata from the Command Line 149

2.8 Performing Multiple-Table Retrievals with Joins . 150

2.8.1 The Inner Join . 152

2.8.2 Qualifying References to Columns from Joined Tables 153

2.8.3 Left and Right (Outer) Joins. 154

viii Contents

2.9 Performing Multiple-Table Retrievals with Subqueries 158

2.9.1 Subqueries with Relative Comparison Operators 159

2.9.2 IN and NOT IN Subqueries. 160

2.9.3 ALL, ANY, and SOME Subqueries . 161

2.9.4 EXISTS and NOT EXISTS Subqueries . 162

2.9.5 Correlated Subqueries . 163

2.9.6 Subqueries in the FROM Clause . 163

2.9.7 Rewriting Subqueries as Joins . 164

2.10 Performing Multiple-Table Retrievals with UNION 165

2.11 Using Views. 169

2.12 Multiple-Table Deletes and Updates. 173

2.13 Performing Transactions . 174

2.13.1 Using Transactions to Ensure Safe Statement Execution 176

2.13.2 Using Transaction Savepoints . 180

2.13.3 Transaction Isolation. 180

2.13.4 Non-Transactional Approaches to Transactional Problems 182

2.14 Foreign Keys and Referential Integrity . 185

2.14.1 Creating and Using Foreign Keys . 187

2.14.2 Living Without Foreign Keys . 192

2.15 Using FULLTEXT Searches . 194

2.15.1 Natural Language FULLTEXT Searches. 196

2.15.2 Boolean Mode FULLTEXT Searches . 197

2.15.3 Query Expansion FULLTEXT Searches . 199

2.15.4 Configuring the FULLTEXT Search Engine 200

3 Data Types . 201
3.1 Data Value Categories . 203

3.1.1 Numeric Values . 203

3.1.2 String Values . 204

3.1.3 Date and Time (Temporal) Values. 213

3.1.4 Spatial Values . 213

3.1.5 Boolean Values . 213

3.1.6 The NULL Value . 214

3.2 MySQL Data Types . 214

3.2.1 Overview of Data Types . 215

3.2.2 Specifying Column Types in Table Definitions 217

3.2.3 Specifying Column Default Values . 218

ixContents

3.2.4 Numeric Data Types . 219

3.2.5 String Data Types . 226

3.2.6 Date and Time Data Types . 242

3.2.7 Spatial Data Types . 250

3.3 How MySQL Handles Invalid Data Values . 252

3.4 Working with Sequences. 254

3.4.1 General AUTO_INCREMENT Properties . 254

3.4.2 Storage Engine-Specific AUTO_INCREMENT Properties 256

3.4.3 Issues to Consider with AUTO_INCREMENT Columns 259

3.4.4 Tips for Working with AUTO_INCREMENT Columns 260

3.4.5 Generating Sequences Without AUTO_INCREMENT 262

3.5 Expression Evaluation and Type Conversion . 264

3.5.1 Writing Expressions . 265

3.5.2 Type Conversion . 272

3.6 Choosing Data Types . 280

3.6.1 What Kind of Values Will the Column Hold? 282

3.6.2 Do Your Values Lie Within Some Particular Range? 285

3.6.3 Inter-Relatedness of Data Type Choice Issues 286

4 Stored Programs . 289
4.1 Compound Statements and Statement Delimiters 290

4.2 Stored Functions and Procedures . 292

4.2.1 Privileges for Stored Functions and Procedures. 294

4.2.2 Stored Procedure Parameter Types. 295

4.3 Triggers . 296

4.4 Events. 298

4.5 Security for Stored Programs and Views . 300

5 Query Optimization . 303
5.1 Using Indexing . 304

5.1.1 Benefits of Indexing . 304

5.1.2 Costs of Indexing . 307

5.1.3 Choosing Indexes . 308

5.2 The MySQL Query Optimizer . 311

5.2.1 How the Optimizer Works . 312

5.2.2 Using EXPLAIN to Check Optimizer Operation 316

5.3 Choosing Data Types for Efficient Queries . 322

x Contents

5.4 Loading Data Efficiently . 326

5.5 Scheduling and Locking Issues . 329

5.5.1 Changing Statement Scheduling Priorities 331

5.5.2 Using Delayed Inserts . 331

5.5.3 Using Concurrent Inserts. 332

5.5.4 Locking Levels and Concurrency . 333

5.6 Administrative-Level Optimizations. 334

5.6.1 Using MyISAM Key Caches . 336

5.6.2 Using the Query Cache . 337

5.6.3 Hardware Optimizations. 339

II: Using MySQL Programming Interfaces

6 Introduction to MySQL Programming . 341
6.1 Why Write Your Own MySQL Programs? . 341

6.2 APIs Available for MySQL . 345

6.2.1 The C API . 347

6.2.2 The Perl DBI API . 347

6.2.3 The PHP API . 349

6.3 Choosing an API. 350

6.3.1 Execution Environment . 351

6.3.2 Performance. 352

6.3.3 Development Time . 354

6.3.4 Portability. 357

7 Writing MySQL Programs Using C . 359
7.1 Compiling and Linking Client Programs . 360

7.2 Connecting to the Server . 363

7.3 Handling Errors and Processing Command Options 367

7.3.1 Checking for Errors . 367

7.3.2 Getting Connection Parameters at Runtime 371

7.3.3 Incorporating Option-Processing into a MySQL Client Program 384

7.4 Processing SQL Statements . 389

7.4.1 Handling Statements That Modify Rows . 390

7.4.2 Handling Statements That Return a Result Set. 391

7.4.3 A General-Purpose Statement Handler . 394

7.4.4 Alternative Approaches to Statement Processing 396

7.4.5 mysql_store_result() Versus mysql_use_result(). . . . 398

xiContents

7.4.6 Using Result Set Metadata . 400

7.4.7 Encoding Special Characters and Binary Data 405

7.5 An Interactive Statement-Execution Program . 409

7.6 Writing Clients That Include SSL Support. 410

7.7 Using the Embedded Server Library. 416

7.7.1 Writing an Embedded Server Application . 416

7.7.2 Producing the Application Executable Binary 419

7.8 Using Multiple-Statement Execution. 420

7.9 Using Server-Side Prepared Statements . 422

8 Writing MySQL Programs Using Perl DBI . 435
8.1 Perl Script Characteristics. 436

8.2 Perl DBI Overview. 437

8.2.1 DBI Data Types. 437

8.2.2 A Simple DBI Script . 437

8.2.3 Handling Errors. 443

8.2.4 Handling Statements That Modify Rows . 446

8.2.5 Handling Statements That Return a Result Set. 447

8.2.6 Quoting Special Characters in Statement Strings 457

8.2.7 Placeholders and Prepared Statements . 460

8.2.8 Binding Query Results to Script Variables. 463

8.2.9 Specifying Connection Parameters . 464

8.2.10 Debugging . 468

8.2.11 Using Result Set Metadata . 471

8.2.12 Performing Transactions . 475

8.3 Putting DBI to Work . 477

8.3.1 Generating the Historical League Directory 478

8.3.2 Sending Membership Renewal Notices. 484

8.3.3 Historical League Member Entry Editing . 490

8.3.4 Finding Historical League Members with Common Interests 496

8.3.5 Putting the Historical League Directory Online 497

8.4 Using DBI in Web Applications . 500

8.4.1 Setting Up Apache for CGI Scripts . 502

8.4.2 A Brief CGI.pm Primer . 503

8.4.3 Connecting to the MySQL Server from Web Scripts 510

8.4.4 A Web-Based Database Browser . 513

8.4.5 A Grade-Keeping Project Score Browser . 517

xii Contents

8.4.6 Historical League Common-Interest Searching 521

9 Writing MySQL Programs Using PHP . 527
9.1 PHP Overview . 529

9.1.1 A Simple PHP Script . 531

9.1.2 Using PHP Library Files for Code Encapsulation 534

9.1.3 A Simple Data-Retrieval Page. 539

9.1.4 Processing Statement Results. 543

9.1.5 Testing for NULL Values in Query Results 547

9.1.6 Using Prepared Statements. 547

9.1.7 Using Placeholders to Handle Data Quoting Issues. 548

9.1.8 Handling Errors. 550

9.2 Putting PHP to Work . 552

9.2.1 An Online Score-Entry Application . 552

9.2.2 Creating an Interactive Online Quiz . 565

9.2.3 Historical League Online Member Entry Editing 570

III: MySQL Administration

10 Introduction to MySQL Administration . 579
10.1 MySQL Components . 580

10.2 General MySQL Administration . 581

10.3 Access Control and Security . 582

10.4 Database Maintenance, Backups, and Replication 582

11 The MySQL Data Directory . 585
11.1 Location of the Data Directory . 586

11.2 Structure of the Data Directory . 587

11.2.1 How the MySQL Server Provides Access to Data. 588

11.2.2 Representation of Databases in the Filesystem 590

11.2.3 Representation of Tables in the Filesystem 590

11.2.4 Representation of Views and Triggers in the Filesystem 592

11.2.5 How SQL Statements Map onto Table File Operations 592

11.2.6 Operating System Constraints on Database Object Names 593

11.2.7 Factors That Affect Maximum Table Size. 596

11.2.8 Implications of Data Directory Structure for System Performance. . 597

11.2.9 MySQL Status and Log Files . 599

11.3 Relocating Data Directory Contents . 602

xiiiContents

11.3.1 Relocation Methods . 602

11.3.2 Relocation Precautions . 603

11.3.3 Assessing the Effect of Relocation. 603

11.3.4 Relocating the Entire Data Directory. 604

11.3.5 Relocating Individual Databases . 604

11.3.6 Relocating Individual Tables. 606

11.3.7 Relocating the InnoDB Shared Tablespace 606

11.3.8 Relocating Status and Log Files. 607

12 General MySQL Administration . 609
12.1 Securing a New MySQL Installation . 610

12.1.1 Establishing Passwords for the Initial MySQL Accounts 610

12.1.2 Setting Up Passwords for a Second Server. 615

12.2 Arranging for MySQL Server Startup and Shutdown 616

12.2.1 Running the MySQL Server On Unix . 616

12.2.2 Running the MySQL Server On Windows. 621

12.2.3 Specifying Server Startup Options . 624

12.2.4 Stopping the Server . 626

12.2.5 Regaining Control of the Server When You Cannot Connect to It . . 626

12.3 Controlling How the Server Listens for Connections 629

12.4 Managing MySQL User Accounts . 630

12.4.1 High-Level MySQL Account Management 631

12.4.2 Granting Privileges . 634

12.4.3 Displaying Account Privileges. 643

12.4.4 Revoking Privileges and Removing Users 643

12.4.5 Changing Passwords or Resetting Lost Passwords 644

12.5 Maintaining Logs . 645

12.5.1 The Error Log . 648

12.5.2 The General Query Log . 649

12.5.3 The Slow-Query Log . 649

12.5.4 The Binary Log and the Binary Log Index File 650

12.5.5 The Relay Log and the Relay Log Index File 652

12.5.6 Using Log Tables . 652

12.5.7 Log Management . 653

12.6 Tuning the Server . 660

12.6.1 Checking and Setting System Variable Values. 661

12.6.2 General-Purpose System Variables. 665

12.6.3 Checking Status Variable Values . 667

xiv Contents

12.7 Storage Engine Configuration . 669

12.7.1 Selecting Which Storage Engines a Server Supports 669

12.7.2 Configuring the MyISAM Storage Engine . 671

12.7.3 Configuring the InnoDB Storage Engine . 674

12.7.4 Configuring the Falcon Storage Engine . 680

12.8 Enabling or Disabling LOCAL Capability for LOAD DATA 681

12.9 Internationalization and Localization Issues . 681

12.9.1 Configuring Time Zone Support . 682

12.9.2 Selecting the Language for Error Messages 684

12.9.3 Configuring Character Set Support . 684

12.10 Running Multiple Servers . 685

12.10.1 General Multiple Server Issues . 686

12.10.2 Configuring and Compiling Different Servers 688

12.10.3 Strategies for Specifying Startup Options 690

12.10.4 Using mysqld_multi for Server Management. 691

12.10.5 Running Multiple Servers on Windows . 693

12.11 Updating MySQL . 695

13 Access Control and Security . 699
13.1 Internal Security: Preventing Unauthorized Filesystem Access 700

13.1.1 How to Steal Data . 701

13.1.2 Securing Your MySQL Installation. 702

13.2 External Security: Preventing Unauthorized Network Access 709

13.2.1 Structure and Contents of the MySQL Grant Tables. 709

13.2.2 How the Server Controls Client Access . 719

13.2.3 A Privilege Puzzle . 724

13.2.4 Grant Table Risks to Avoid. 728

13.3 Setting Up Secure Connections. 731

14 Database Maintenance, Backups, and Replication 737
14.1 Principles of Preventive Maintenance. 737

14.2 Performing Database Maintenance with the Server Running 739

14.2.1 Locking Individual Tables for Read-Only or Read/Write Access 740

14.2.2 Locking All Databases for Read-Only Access. 743

14.3 General Preventative Maintenance . 743

14.3.1 Using the Server’s Auto-Recovery Capabilities. 744

14.3.2 Scheduling Preventive Maintenance . 745

14.4 Making Database Backups . 746

xvContents

14.4.1 Making Text Backups with mysqldump . 748

14.4.2 Making Binary Database Backups . 751

14.4.3 Backing Up InnoDB or Falcon Tables . 754

14.5 Copying Databases to Another Server . 755

14.5.1 Copying Databases Using a Backup File. 755

14.5.2 Copying Databases from One Server to Another 756

14.6 Checking and Repairing Database Tables. 757

14.6.1 Using the Server to Check and Repair Tables 758

14.6.2 Using mysqlcheck to Check and Repair Tables 759

14.6.3 Using myisamchk to Check and Repair Tables 760

14.7 Using Backups for Data Recovery . 763

14.7.1 Recovering Entire Databases. 764

14.7.2 Recovering Individual Tables . 764

14.7.3 Re-Executing Statements in Binary Log Files 765

14.7.4 Coping with InnoDB Auto-Recovery Problems 767

14.8 Setting Up Replication Servers . 768

14.8.1 How Replication Works . 769

14.8.2 Establishing a Master-Slave Replication Relationship 770

14.8.3 Binary Logging Formats. 773

14.8.4 Using a Replication Slave for Making Backups 774

IV: Appendixes

A Obtaining and Installing Software . 777
A.1 Obtaining the sampdb Sample Database Distribution 777

A.2 Obtaining MySQL and Related Software . 778

A.3 Choosing a Version of MySQL . 780

A.4 Installing MySQL on Unix . 780

A.4.1 Creating a Login Account for the MySQL User 782

A.4.2 Obtaining and Installing a MySQL Distribution on Unix. 782

A.4.3 Post-Installation Steps . 786

A.4.4 Installing Perl DBI Support on Unix . 789

A.4.5 Installing Apache and PHP on Unix. 790

A.5 Installing MySQL on Windows . 792

A.5.1 Installing Perl DBI Support on Windows . 796

A.5.2 Installing Apache and PHP on Windows . 796

xvi Contents

B Data Type Reference . 797
B.1 Numeric Types . 799

B.1.1 Integer Types . 799

B.1.2 Fixed-Point Types . 801

B.1.3 Floating-Point Types . 801

B.1.4 BIT Type . 803

B.2 String Types. 803

B.2.1 Binary String Types . 805

B.2.2 Non-Binary String Types. 807

B.2.3 ENUM and SET Types . 809

B.3 Date and Time Types . 809

B.4 Spatial Types . 811

C Operator and Function Reference. 813
C.1 Operators . 814

C.1.1 Operator Precedence . 814

C.1.2 Grouping Operators. 815

C.1.3 Arithmetic Operators. 816

C.1.4 Comparison Operators . 817

C.1.5 Bit Operators . 823

C.1.6 Logical Operators . 824

C.1.7 Cast Operators. 825

C.1.8 Pattern-Matching Operators . 826

C.2 Functions . 830

C.2.1 Comparison Functions . 831

C.2.2 Cast Functions . 833

C.2.3 Numeric Functions . 834

C.2.4 String Functions . 840

C.2.5 Date and Time Functions . 852

C.2.6 Summary Functions . 868

C.2.7 Security and Compression Functions . 871

C.2.8 Advisory Locking Functions . 875

C.2.9 Spatial Functions . 877

C.2.10 XML Functions . 883

C.2.11 Miscellaneous Functions. 883

xviiContents

D System, Status, and User Variable Reference . 889
D.1 System Variables . 889

D.2 Session-Only System Variables . 921

D.3 Status Variables . 924

D.3.1 InnoDB Status Variables . 930

D.3.2 Query Cache Status Variables . 933

D.3.3 SSL Status Variables . 934

D.4 User-Defined Variables . 935

E SQL Syntax Reference. 937
E.1 SQL Statement Syntax (Non-Compound Statements) 938

E.2 Compound Statement Syntax . 1028

E.2.1 Control Structure Statements . 1029

E.2.2 Declaration Statements. 1031

E.2.3 Cursor Statements . 1033

E.3 Comment Syntax . 1033

F MySQL Program Reference . 1037
F.1 Displaying a Program’s Help Message . 1038

F.2 Specifying Program Options . 1039

F.2.1 Standard MySQL Program Options . 1041

F.2.2 Option Files . 1045

F.2.3 Environment Variables . 1049

F.3 myisamchk . 1051

F.3.1 Standard Options Supported by myisamchk 1052

F.3.2 Options Specific to myisamchk . 1053

F.3.3 Variables for myisamchk . 1056

F.4 myisampack . 1058

F.4.1 Standard Options Supported by myisampack 1058

F.4.2 Options Specific to myisampack . 1058

F.5 mysql. 1059

F.5.1 Standard Options Supported by mysql . 1060

F.5.2 Options Specific to mysql . 1061

F.5.3 Variables for mysql . 1065

F.5.4 mysql Commands . 1066

F.5.5 mysql Prompt Definition Sequences . 1068

xviii Contents

F.6 mysql.server . 1070

F.6.1 Options Supported by mysql.server . 1070

F.7 mysql_config . 1071

F.7.1 Options Specific to mysql_config . 1071

F.8 mysql_install_db . 1071

F.8.1 Standard Options Supported by mysql_install_db 1072

F.8.2 Options Specific to mysql_install_db 1072

F.9 mysqladmin . 1072

F.9.1 Standard Options Supported by mysqladmin 1073

F.9.2 Options Specific to mysqladmin . 1073

F.9.3 Variables for mysqladmin . 1074

F.9.4 mysqladmin Commands . 1074

F.10 mysqlbinlog . 1076

F.10.1 Standard Options Supported by mysqlbinlog 1076

F.10.2 Options Specific to mysqlbinlog . 1077

F.10.3 Variables for mysqlbinlog . 1079

F.11 mysqlcheck . 1079

F.11.1 Standard Options Supported by mysqlcheck 1079

F.11.2 Options Specific to mysqlcheck . 1080

F.12 mysqld. 1083

F.12.1 Standard Options Supported by mysqld 1083

F.12.2 Options Specific to mysqld . 1084

F.12.3 Variables for mysqld . 1100

F.13 mysqld_multi . 1101

F.13.1 Standard Options Supported by mysqld_multi 1101

F.13.2 Options Specific to mysqld_multi . 1101

F.14 mysqld_safe . 1102

F.14.1 Standard Options Supported by mysqld_safe 1102

F.14.2 Options Specific to mysqld_safe . 1102

F.15 mysqldump . 1104

F.15.1 Standard Options Supported by mysqldump 1105

F.15.2 Options Specific to mysqldump . 1105

F.15.3 Data Format Options for mysqldump . 1112

F.15.4 Variables for mysqldump . 1112

F.16 mysqlhotcopy . 1113

F.16.1 Standard Options Supported by mysqlhotcopy 1114

F.16.2 Options Specific to mysqlhotcopy . 1114

xixContents

F.17 mysqlimport . 1116

F.17.1 Standard Options Supported by mysqlimport 1117

F.17.2 Options Specific to mysqlimport . 1117

F.17.3 Data Format Options for mysqlimport 1118

F.18 mysqlshow . 1119

F.18.1 Standard Options Supported by mysqlshow 1119

F.18.2 Options Specific to mysqlshow . 1119

F.19 perror. 1120

F.19.1 Standard Options Supported by perror 1120

Note: Appendixes G, H, and I are located online and are accessible either by registering this
book at informit.com/register or by visiting www.kitebird.com/mysql-book.

G C API Reference . 1121
G.1 Compiling and Linking . 1122

G.2 C API Data Types . 1123

G.2.1 Scalar Data Types. 1123

G.2.2 Non-Scalar Data Types . 1124

G.2.3 Accessor Macros . 1135

G.3 C API Functions . 1136

G.3.1 Client Library Initialization and Termination Routines. 1136

G.3.2 Connection Management Routines . 1137

G.3.3 Error-Reporting Routines . 1149

G.3.4 Statement Construction and Execution Routines 1150

G.3.5 Result Set Processing Routines. 1152

G.3.6 Information Routines . 1161

G.3.7 Transaction Control Routines. 1164

G.3.8 Multiple Result Set Routines. 1164

G.3.9 Prepared Statement Routines . 1165

G.3.10 Administrative Routines . 1173

G.3.11 Threaded Client Routines . 1175

G.3.12 Debugging Routines . 1175

H Perl DBI API Reference . 1177
H.1 Writing Scripts . 1178

H.2 DBI Methods . 1178

H.2.1 DBI Class Methods. 1180

H.2.2 Database-Handle Methods . 1185

www.kitebird.com/mysql-book

xx Contents

H.2.3 Statement-Handle Methods. 1191

H.2.4 General Handle Methods . 1195

H.2.5 MySQL-Specific Administrative Methods . 1196

H.3 DBI Utility Functions. 1197

H.4 DBI Attributes . 1198

H.4.1 Database-Handle Attributes. 1198

H.4.2 General Handle Attributes . 1199

H.4.3 MySQL-Specific Database-Handle Attributes 1200

H.4.4 Statement-Handle Attributes . 1201

H.4.5 MySQL-Specific Statement-Handle Attributes 1203

H.4.6 Dynamic Attributes . 1205

H.5 DBI Environment Variables . 1205

I PHP API Reference . 1207
I.1 Writing PHP Scripts . 1207

I.2 PDO Classes. 1208

I.3 PDO Methods . 1208

I.3.1 PDO Class Methods. 1209

I.3.2 PDOStatement Object Methods. 1215

I.3.3 PDOException Object Methods. 1222

I.3.4 PDO Constants . 1223

Index . 1225

About the Author
Paul DuBois is a writer, database administrator, and leader in the open source and
MySQL communities. He has contributed to the online documentation for MySQL and
is the author of MySQL and Perl for the Web (New Riders), MySQL Cookbook, Using csh
and tcsh, and Software Portability with imake (O’Reilly). He is currently a technical writer
with the MySQL documentation team at Sun Microsystems.

Acknowledgments
Acknowledgments are presented here by edition.

Fourth Edition
My technical reviewers, Stephen Frein and Tim Boronczyk, identified many points that
needed correction or clarification. Ulf Wendel and Johannes Schlüter made comments
and corrections on the PHP material. My thanks to each of them.

The staff at Pearson responsible for this edition were Mark Taber,Acquisitions Editor;
Michael Thurston, Development Editor; Jovana San Nicolas-Shirley, Project Editor; Jake
McFarland, Compositor; Cheryl Lenser, Indexer; and Gary Adair, Cover Designer.

To my wife Karen, my continued thanks and gratitude for her encouragement and
support throughout this effort.

Third Edition
The third edition enjoyed careful technical review by Zak Greant and Chris Newman.
Their efforts improved the manuscript at many points. Monty and the developers at
MySQL AB also provided insight in response to my questions.

The people at Pearson responsible for this edition were Shelley Johnston,Acquisitions
Editor; Damon Jordan, Development Editor; and Andy Beaster, Project Editor.

I am happy to recognize that my wife Karen again deserves special credit for her sup-
port during yet more revision and rewriting.

Second Edition
For the second edition, the technical reviewers once again played a crucial role in find-
ing errors and making corrections and clarifications. Hang Lau and Shane Kirk served as
reviewers. I’d also like to thank Monty Widenius,Alexander Barkov, Jani Tolonen, and
the other MySQL developers for patiently enduring my many questions and supplying
answers that made their way into these pages.

The New Riders staff that brought this edition to life were Stephanie Wall,Associate
Publisher; Chris Zahn, Development Editor; Lori Lyons, Senior Project Editor; Pat
Kinyon, Copy Editor; Cheryl Lenser, Indexer; and Stacey Richwine-DeRome,
Compositor.

And, as always, my wife Karen provided the behind-the-scenes support that readers
do not see, but without which this book would be much poorer.

First Edition
This book benefited greatly from the comments, corrections, and criticisms provided by
the technical reviewers: David Axmark,Vijay Chaugule, Chad Cunningham, Bill Gerrard,
Jijo George John, Fred Read, Egon Schmid, and Jani Tolonen. Special thanks goes to
Michael “Monty”Widenius, the principal MySQL developer, who not only reviewed the
manuscript, but also fielded hundreds of questions that I sent his way during the course
of writing the book. Naturally, any errors that remain are my own. I’d also like to thank
Tomas Karlsson, Colin McKinnon, Sasha Pachev, Eric Savage, Derick H. Siddoway, and
Bob Worthy, who reviewed the initial proposal and helped shape the book into its pres-
ent form.

The staff at New Riders are responsible first for conceiving this book and then for
turning my scribblings into the finished work you hold in your hands. Laurie Petrycki
acted as Executive Editor. Katie Purdum,Acquisitions Editor, helped me get under way
and took the heat when I missed deadlines. Leah Williams did double duty not only as
Development Editor but as Copy Editor; she put in many, many late hours, especially in
the final stages of the project. Cheryl Lenser and Tim Wright produced the index. John
Rahm served as Project Editor. Debra Neel proofread the manuscript. Gina Rexrode and
Wil Cruz, Compositors, laid out the book in the form you see now. My thanks to each
of them.

Most of all, I want to express my appreciation to my wife, Karen, for putting up with
another book, and for her understanding and patience as I disappeared, sometimes for
days on end, into “the writing zone.” Her support made the task easier on many
occasions, and I am pleased to acknowledge her contribution; she helped me write
every page.

MH
Highlight

MH
Underline

MH
Cross-Out

MH
Comment on Text
wow큼냐

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator.We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

You can email or write me directly to let me know what you did or didn’t like about
this book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and
that due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your
name and phone or email address. I will carefully review your comments and share them
with the author and editors who worked on the book.

Email: feedback@developers-library.info
Mail: Mark Taber

Associate Publisher
Pearson Education
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at informit.com/register for convenient access to
any updates, downloads, or errata that might be available for this book.

This page intentionally left blank

Introduction

A relational database management system (RDBMS) is an essential tool in many envi-
ronments, from traditional uses in business, research, and educational contexts, to applica-
tions such as powering search engines on the Internet. However, despite the importance
of a good database system for managing and accessing information resources, many or-
ganizations have found them to be out of reach of their financial resources. Historically,
database systems have been an expensive proposition, with vendors charging healthy fees
both for software and for support.Also, because database engines often had substantial
hardware requirements to run with any reasonable performance, the cost was even
greater.

The situation is different now, on both the hardware and software sides of the picture.
Small desktop systems and servers are inexpensive but powerful, and there is a thriving
movement devoted to writing high-performance operating systems for them.These oper-
ating systems are available free over the Internet or at the cost of an inexpensive CD.They
include several BSD Unix derivatives (FreeBSD, NetBSD, OpenBSD) as well as various
distributions of Linux (Fedora, Debian, Gentoo, SuSE, to name a few).

Production of free operating systems has proceeded in concert with—and to a large
extent has been made possible by—the development of freely available tools like gcc, the
GNU C compiler.These efforts to make software available to anyone who wants it are
part of the Open Source movement. Open Source projects have produced many impor-
tant pieces of software. For example,Apache is the most widely used Web server on the
Internet. Perl, Python, and Ruby are well-established general-purpose scripting languages,
and PHP is a language that is popular due largely to the ease with which it enables dy-
namic Web pages to be written.These all stand in contrast to proprietary solutions that
lock you into high-priced products from vendors that don’t even provide source code.

Database software has become more accessible, too, and Open Source database systems
are freely available. One of these is MySQL, a SQL client/server relational database man-
agement system originating from Scandinavia. MySQL includes an SQL server, client
programs for accessing the server, administrative tools, and a programming interface for
writing your own programs.

MySQL’s roots begin in 1979, with the UNIREG database tool created by Michael
“Monty”Widenius for the Swedish company TcX. In 1994,TcX began searching for an
RDBMS with an SQL interface for use in developing Web applications.They tested some
commercial servers, but found all too slow for TcX’s large tables.They also took a look
at mSQL, but it lacked certain features that TcX required. Consequently, Monty began

2 Introduction

developing a new server.The programming interface was explicitly designed to be similar
to the one used by mSQL because several free tools were available for mSQL, and by us-
ing a similar interface, those same tools could be used for MySQL with a minimum of
porting effort.

In 1995, David Axmark of Detron HB began to push for TcX to release MySQL on
the Internet. David also worked on the documentation and on getting MySQL to build
with the GNU configure utility. MySQL 3.11.1 was unleashed on the world in 1996 in
the form of binary distributions for Linux and Solaris.Today, MySQL works on many
more platforms and is available in both binary and source form.The company MySQL
AB was formed to provide distributions of MySQL under both Open Source and com-
mercial licenses, and to offer technical support, monitoring services, and training. In
2008, Sun Microsystems acquired MySQL AB and the commitment to Open Source
remains strong (Sun was already moving in the direction of making many of its products
available under Open Source licensing).

Initially, MySQL became widely popular because of its speed and simplicity. But there
was criticism, too, because it lacked features such as transactions and foreign key support.
MySQL continued to develop, adding not only those features but others such as replica-
tion, subqueries, stored procedures, views, and triggers.These capabilities take MySQL
into the realm of enterprise applications.As a result, people who once would have consid-
ered only “big iron” database systems for their applications now give serious consideration
to MySQL.

MySQL is portable and runs on commercial operating systems (such as Mac OS X,
HP-UX, and Windows) and on hardware all the way up to enterprise servers. Further-
more, its performance rivals any database system you care to put up against it, and it can
handle large databases with billions of rows. In the business world, MySQL’s presence
continues to increase as companies discover it to be capable of handling their database
needs at a fraction of what they are used to paying for commercial licensing and support.

MySQL lies squarely within the picture that unfolds before us: freely available operat-
ing systems running on powerful but inexpensive hardware, putting substantial processing
power and capabilities in the hands of more individuals and businesses than ever before,
on a wider variety of systems than ever before.This lowering of the economic barriers to
computing puts powerful database solutions within reach of more people and organiza-
tions than at any time in the past. Organizations that once could only dream of putting
the power of a high-performance RDBMS to work for them now can do so for very
little cost.This is true for individuals as well. For example, I use MySQL with Perl, PHP,
and Apache on my Apple laptop running Mac OS X.This enables me to carry my work
with me anywhere.Total cost: the cost of the laptop.

Why Choose MySQL?
If you’re looking for a free or low-cost database management system, several are available
from which to choose, such as MySQL, PostgreSQL, or SQLite.When you compare
MySQL with other database systems, think about what’s most important to you.

3Why Choose MySQL?

Performance, support, features (such as SQL conformance or extensions), licensing condi-
tions and restrictions, and price all are factors to take into account. Given these considera-
tions, MySQL has many attractive features to offer:

n Speed. MySQL is fast. Its developers contend that MySQL is about the fastest
database system you can get.You can investigate this claim by visiting http://www.
mysql.com/why-mysql/benchmarks/, a performance-comparison page on the
MySQL Web site.

n Ease of use. MySQL is a high-performance but relatively simple database system
and is much less complex to set up and administer than larger systems.

n Query language support. MySQL understands SQL (Structured Query
Language), the standard language of choice for all modern database systems.

n Capability. The MySQL server is multi-threaded, so many clients can connect to
it at the same time. Each client can use multiple databases simultaneously.You can
access MySQL interactively using several interfaces that let you enter queries and
view the results: command-line clients,Web browsers, or GUI clients. In addition,
programming interfaces are available for many languages, such as C, Perl, Java, PHP,
Python, and Ruby.You can also access MySQL using applications that support
ODBC and .NET (protocols developed by Microsoft).This gives you the choice of
using prepackaged client software or writing your own for custom applications.

n Connectivity and security. MySQL is fully networked, and databases can be
accessed from anywhere on the Internet, so you can share your data with anyone,
anywhere. But MySQL has access control so that one person who shouldn’t see
another’s data cannot.To provide additional security, MySQL supports encrypted
connections using the Secure Sockets Layer (SSL) protocol.

n Portability. MySQL runs on many varieties of Unix and Linux, as well as on other
systems such as Windows and NetWare. MySQL runs on hardware from high-end
servers down to small personal computers (even palmtop devices).

n Small size. MySQL has a modest distribution size, especially compared to the
huge disk space footprint of certain other database systems.

n Availability and cost. MySQL is an Open Source project available under multi-
ple licensing terms. First, it is available under the terms of the GNU General Public
License (GPL).This means that MySQL is available without cost for most in-house
uses. Second, for organizations that prefer or require formal arrangements or that
do not want to be bound by the conditions of the GPL, commercial licenses are
available.

n Open distribution and source code. MySQL is easy to obtain; just use your
Web browser. If you don’t understand how something works, are curious about an
algorithm, or want to perform a security audit, you can get the source code and

http://www.mysql.com/why-mysql/benchmarks/
http://www.mysql.com/why-mysql/benchmarks/

4 Introduction

examine it. If you think you’ve found a bug, please report it; the developers want
to know.

What about support? Good question; a database system isn’t much use if you can’t get
help for it.This book is one form of assistance, and I like to think that it’s useful in that
regard. (The fact that the book has reached its fourth edition suggests that it accomplishes
that goal.) There are other resources open to you as well, and you’ll find that MySQL has
good support:

n The MySQL Reference Manual is included in MySQL distributions, and also is
available online and in printed form.The Reference Manual regularly receives good
marks in the MySQL user community.This is important, because the value of a
good product is diminished if no one can figure out how to use it.

n Technical support contracts, monitoring services, and training classes are available
from Sun.

n There are several active MySQL mailing lists to which anyone may subscribe.These
lists have many helpful participants, including several MySQL developers.As a sup-
port resource, many people find these lists invaluable.

The MySQL community, developers and nondevelopers alike, is very responsive.
Answers to questions on the mailing lists often arrive within minutes.When bugs are
reported, the developers generally fix them quickly, and fixes become available daily
over the Internet. Contrast this with the often-frustrating experience of navigating the
Byzantine support channels of big vendors.You’ve been there? Me, too.

If you are in the database-selection process, MySQL is an ideal candidate for evalua-
tion.You can try MySQL with no risk or financial commitment. If you get stuck, you can
use the mailing lists to get help.An evaluation costs some of your time, but that’s true no
matter what database system you’re considering—and it’s a safe bet that your installation
and setup time for MySQL will be less than for many other systems.

Already Running Another RDBMS?
If you’re currently running another database system but feel constrained by it, you defi-
nitely should consider MySQL. Perhaps performance of your current system is a concern,
or it’s proprietary and you don’t like being locked into it. Perhaps you’d like to run on
hardware that’s not supported by your current system, or your software is provided in
binary-only format but you want to have the source available. Or maybe it just costs too
much! All of these are reasons to look into MySQL. Use this book to familiarize yourself
with MySQL’s capabilities, contact the MySQL sales crew, ask questions on the mailing
lists, and you’ll find the answers you need to make a decision.

One thing to keep in mind is that although all major database engines support SQL,
each supports a somewhat different dialect. Check the chapters in this book that deal
with MySQL’s SQL dialect and data types.You may decide that the version of SQL

5What You Can Expect from This Book

supported by your current RDBMS is too different and that porting your applications
would involve significant effort.

Part of your evaluation should be to try porting a few examples, of course.This will
give you valuable experience in making an assessment.There is an ongoing commitment
by the MySQL developers to an increasing conformance to standard SQL.That has the
practical consequence of eliminating porting roadblocks as time goes on, so your porting
effort may turn out to be easier than you expect.

Tools Provided with MySQL
MySQL distributions include the following tools:

n An SQL server. This is the engine that powers MySQL and provides access to
your databases.

n Client and utility programs. These include an interactive client program that
enables you to enter queries directly and view the results.Also available are several
administrative and utility programs that help you run your site: One allows you to
monitor and control the server; others let you import data, perform backups, check
tables for problems, and more.

n A client library for writing your own programs.You can write client pro-
grams in C because the library is in C, but the library also can be linked into other
language processors such as Perl, PHP, or Ruby to provide the basis for MySQL
interfaces in those languages.

In addition to the software provided with MySQL itself, MySQL is used by many
talented and capable people who like writing software to enhance their productivity and
who are willing to share that software.The result is that you have access to a variety of
third-party tools that make MySQL easier to use or that extend its reach into areas such
as Web site development.

What You Can Expect from This Book
By reading this book, you’ll learn how to use MySQL effectively so that you can get your
work done more productively.You’ll be able to figure out how to get your information
into a database, and you’ll learn how to get it back out by formulating queries that give
you the answers to the questions you want to ask of that data.

You don’t need to be a programmer to understand or use SQL.This book will show
you how it works. But there’s more to understanding how to use a database system prop-
erly than knowing SQL syntax.This book emphasizes MySQL’s unique capabilities and
shows how to use them.

You’ll also see how MySQL integrates with other tools.The book shows how to use
MySQL with Perl and PHP to generate dynamic Web pages created from the result of

6 Introduction

database queries.You’ll learn how to write your own programs that access MySQL data-
bases.All of these enhance MySQL’s capabilities to handle the requirements of your par-
ticular applications.

If you’ll be responsible for administering a MySQL installation, this book will tell you
what your duties are and how to carry them out.You’ll learn how to create user accounts,
perform database backups, set up replication, and make sure your site is secure.

Road Map to This Book
This book is organized into four parts.The first concentrates on general concepts of data-
base use.The second focuses on writing your own programs that use MySQL.The third is
aimed at those readers who have administrative duties.The fourth provides a set of refer-
ence appendixes.

Part I: General MySQL Use
n Chapter 1,“Getting Started with MySQL.” Discusses how MySQL can be useful to

you, provides a tutorial that introduces the interactive MySQL client program, cov-
ers the basics of SQL, and demonstrates MySQL’s general capabilities.

n Chapter 2,“Using SQL to Manage Data.” Every major RDBMS now available
understands SQL, but every database engine implements a slightly different SQL
dialect.This chapter discusses SQL with particular emphasis on those features that
make MySQL distinctive.

n Chapter 3,“Data Types.” Discusses the data types that MySQL provides for storing
your information, the properties and limitations of each type, when and how to
use them, how to choose between similar types, expression evaluation, and type
conversion.

n Chapter 4,“Stored Programs.” Discusses how to write and use SQL programs that
are stored on the server side.Types of programs available to you are stored functions
and procedures, triggers, and events.

n Chapter 5,“Query Optimization.” Discusses how to make your queries run more
efficiently.

Part II: Using MySQL Programming Interfaces
n Chapter 6,“Introduction to MySQL Programming.” Discusses some of the applica-

tion programming interfaces (APIs) available for MySQL and provides a general
comparison of the APIs that the book covers in detail.

n Chapter 7,“Writing MySQL Programs Using C.” Discusses how to write C
programs using the API provided by the MySQL C client library.

7Road Map to This Book

n Chapter 8,“Writing MySQL Programs Using Perl DBI.” Discusses how to write
Perl scripts using the DBI module. Covers standalone command-line scripts and
scripts for Web site programming.

n Chapter 9,“Writing MySQL Programs Using PHP.” Discusses how to use the PHP
scripting language and the PHP Data Objects (PDO) database-access extension to
write dynamic Web pages that access MySQL databases.

Part III: MySQL Administration
n Chapter 10,“Introduction to MySQL Administration.”An overview of the database

administrator’s duties and what you should know to run a MySQL site successfully.
n Chapter 11,“The MySQL Data Directory.”An in-depth look at the organization

and contents of the data directory, the area under which MySQL stores databases,
logs, and status files.

n Chapter 12,“General MySQL Administration.” Discusses how to make sure your
operating system starts and stops the MySQL server properly when your system
comes up and shuts down.Also includes instructions for setting up MySQL user
accounts, and discusses log maintenance, configuring storage engines, tuning the
server, and running multiple servers.

n Chapter 13,“Access Control and Security.” Discusses what you need to know to
make your MySQL installation safe from intrusion, both from other users on the
server host and from clients connecting over the network. Explains the structure of
the grant tables that control client access to the MySQL server. Describes how to
set up your server to support secure connections over SSL.

n Chapter 14,“Database Maintenance, Backups, and Replication.” Discusses how to
reduce the likelihood of disaster through preventive maintenance, how to back up
your databases, how to perform crash recovery if disaster strikes in spite of your
preventive measures, and how to set up replication servers.

Part IV: Appendixes
n Appendix A,“Obtaining and Installing Software.” Discusses where to get and how

to install the major tools and sample database files described in the book.
n Appendix B,“Data Type Reference.” Explores the characteristics of MySQL’s data

types.
n Appendix C,“Operator and Function Reference.”The operators and functions that

are used to write expressions in SQL statements are discussed.
n Appendix D,“System, Status, and UserVariable Reference.” Describes each variable

maintained by the MySQL server, and how to use your own variables in SQL
statements.

8 Introduction

n Appendix E,“SQL Syntax Reference.” Describes each SQL statement supported
by MySQL.

n Appendix F,“MySQL Program Reference.” Explores the programs provided in the
MySQL distribution.

Note
The following Appendices are located online. Go to www.informit.com/title/
9780672329388 to register your book and access these files. Or, please visit
www.kitebird.com/mysql-book to access these files.

n Appendix G,“C API Reference” (online). Explores the data types and functions in
the MySQL C client library.

n Appendix H,“Perl DBI API Reference” (online). Discusses the methods and attrib-
utes provided by the Perl DBI module.

n Appendix I,“PHP API Reference” (online). Discusses the methods provided for
MySQL support in PHP by the PDO extension.

How to Read This Book
Whichever part of the book you happen to be reading at any given time, it’s best to try
the examples as you go along.That means you should do two things:

n If MySQL isn’t installed on your system, you should install it or ask someone to do
so for you.

n You should get the files needed to set up the sampdb sample database to which
we’ll be referring throughout the book.

Appendix A indicates where you can obtain all the necessary components and has in-
structions for installing them.

If you’re a complete newcomer to MySQL or to SQL, begin with Chapter 1.This
provides you with a tutorial introduction that grounds you in basic MySQL and SQL
concepts and brings you up to speed for the rest of the book.Then proceed to Chapter 2,
Chapter 3, and Chapter 4 to find out how to describe and manipulate your own data so
that you can exploit MySQL’s capabilities for your own applications.

If you already know some SQL, you should still read Chapter 2 and Chapter 3. SQL
implementations vary, and you’ll want to find out what makes MySQL’s implementation
distinctive in comparison to others with which you may be familiar.

If you have experience with MySQL but need more background on the details of
performing particular tasks, use the book as a reference, looking up topics on a need-to-
know basis.You’ll find the appendixes especially useful for reference purposes.

www.informit.com/title/9780672329388
www.informit.com/title/9780672329388
www.kitebird.com/mysql-book

9Versions of Software Covered in This Book

If you’re interested in writing your own programs to access MySQL databases, read the
API chapters, beginning with Chapter 6. If you want to produce a Web-based front end
to your databases for easier access to them, or, conversely, to provide a database back end
for your Web site to enhance your site with dynamic content, check out Chapter 8 and
Chapter 9.

If you’re evaluating MySQL to find out how it compares to your current RDBMS,
several parts of the book will be useful. Read the SQL syntax and data type chapters in
Part I to compare MySQL to the version of SQL that you’re used to, the programming
chapters in Part II if you need to write custom applications, and the administrative chap-
ters in Part III to assess the level of administrative support a MySQL installation requires.
This information is also useful if you’re not currently using a database but are performing
a comparative analysis of MySQL along with other database systems for the purpose of
choosing one of them.

Versions of Software Covered in This Book
The first edition of this book covered MySQL 3.22 and the beginnings of MySQL 3.23.
The second edition expanded that range to include MySQL 4.0 and the first release
of MySQL 4.1.The third edition covered MySQL 4.1 and the initial releases of
MySQL 5.0.

For this fourth edition, the baseline for coverage is MySQL 5.0.That is, the book
covers MySQL 5.0 and 5.1, and the early releases of MySQL 6.0. Most of this book still
applies if you have a version older than 5.0, but differences specific to older versions
usually are not explicitly noted.

The MySQL 5.0 series has reached General Availability status, which means that it is
considered stable for use in production environments.There were a lot of changes in
earlier pre-production 5.0 releases, and I recommend that you use the most recent
version if possible.The current 5.0 version as I write is 5.0.64.The MySQL 5.1 series is
in Release Candidate development (currently at 5.1.25) and should reach General
Availability status soon.You’ll need MySQL 5.1 if you want to try features such as the
event scheduler or XML support.

If you’re using a version of MySQL older than 5.0, be aware that the following
features discussed in this book will not be available to you:

n MySQL 5.0 adds stored functions and procedures, views, triggers, strict input
handling, true VARCHAR, and INFORMATION_SCHEMA.

n MySQL 5.1 adds the event scheduler, partitioning, log tables, and XML support.

For information about older versions, check the MySQL Web site at http://dev.mysql.
com/doc/, where you can access the Reference Manual for each version.

I also draw your attention to some topics that are not covered in this book:

n The MySQL Connectors, which provide client access for Java, ODBC, and .NET
programs.

http://dev.mysql.com/doc/
http://dev.mysql.com/doc/

10 Introduction

Package Version

Perl DBI module 1.601

Perl DBD::mysql module 4.007

PHP 5.2.6

Apache 2.0.63/2.2.8

CGI.pm 3.29

All software discussed in this book is available on the Internet.Appendix A provides
instructions for getting support for MySQL, Perl DBI, PHP and PDO,Apache, and
CGI.pm onto your system.The appendix also contains instructions for obtaining the
sampdb sample database that is used in examples throughout the book and that contains
the programs that are developed in the programming chapters.

If you are using Windows, I assume that you have a relatively recent version such as
Windows 2000, XP, 2003, or Vista. Some features covered in this book such as named
pipes and Windows services are not available in older versions (Windows 95, 98, or Me).

Conventions Used in This Book
This book uses the following typographical conventions:

n Monospaced font indicates hostnames, filenames, directory names, commands,
options, and Web sites.

n Bold monospaced font is used in command examples to indicate input that
you type.

n Italic monospaced font is used in commands to indicate where you should
substitute a value of your own choosing.

n The NDB storage engine and MySQL Cluster, which provide in-memory storage,
high availability, and redundancy. See the MySQL Reference Manual for details.

n The graphical user interface (GUI) tools such as MySQL Administrator and
MySQL Query Browser.These tools help you use MySQL in a windowing
environment.

To download any of these products or see their documentation, visit http://www.
mysql.com/products/ or http://dev.mysql.com/doc/.

For the other major software packages discussed in the book, any recent versions
should be sufficient for the examples shown. (Note that the PDO database-access exten-
sion requires PHP 5; PHP 4 will not work.) The current versions are shown in the
following table.

http://www.mysql.com/products/
http://www.mysql.com/products/
http://dev.mysql.com/doc/

11Additional Resources

Package Primary Web Site

MySQL http://dev.mysql.com/doc/

Perl DBI http://dbi.perl.org/

PHP http://www.php.net/

Apache http://httpd.apache.org/

CGI.pm http://search.cpan.org/dist/CGI.pm/

For interactive examples, I assume that you enter commands by typing them into a
terminal window or console window.To provide context, the prompt in command exam-
ples indicate the program from which you run the command. For example, SQL state-
ments that are issued from within the mysql client program are shown preceded by
the mysql> prompt. For commands that you issue from your command interpreter, the
% prompt usually is used. In general, this prompt indicates commands that can be run
either on Unix or Windows, although the particular prompt you see will depend on your
command interpreter. (The command interpreter is your login shell on Unix, or cmd.exe
or command.com on Windows.) More specialized command-line prompts are #, which
indicates a command run on Unix as the root user via su or sudo, and C:\> to indicate a
command intended specifically for Windows.

The following example shows a command that should be entered from your command
interpreter.The % indicates the prompt, which you do not type.To issue the command,
you’d enter the boldface characters as shown, and substitute your own username for the
italic word:

% mysql --user=user_name sampdb

In SQL statements, SQL keywords and function names are written in uppercase. Data-
base, table, and column names appear in lowercase.

In syntax descriptions, square brackets ([]) indicate optional information. In lists of
alternatives, vertical bar (|) is used as a separator between items.A list enclosed within []
is optional and indicates that an item may be chosen from the list.A list enclosed within
{} is mandatory and indicates that an item must be chosen from the list.

Additional Resources
If you have a question that this book doesn’t answer, where should you turn? Useful docu-
mentation resources include the Web sites for the software you need help with, shown in
the following table.

http://dev.mysql.com/doc/
http://dbi.perl.org/
http://www.php.net/
http://httpd.apache.org/
http://search.cpan.org/dist/CGI.pm/

12 Introduction

Package Mailing List Instructions

MySQL http://lists.mysql.com/

Perl DBI http://dbi.perl.org/support/

PHP http://www.php.net/mailing-lists.php

Apache http://httpd.apache.org/lists.html

Those sites provide information such as reference manuals, frequently asked-question
(FAQ) lists, and mailing lists:

n Reference manuals.The primary documentation included with MySQL itself is
the Reference Manual. It’s available in several formats, including online and down-
loadable versions.

PHP’s manual comes in several forms, too.
n Manual pages. Documentation for the DBI module and its MySQL-specific

driver, DBD::mysql, can be read from the command line with the perldoc com-
mand.Try perldoc DBI and perldoc DBD::mysql.The DBI document provides
general concepts.The MySQL driver document discusses capabilities specific to
MySQL.

n FAQs. There are frequently asked-question lists for DBI, PHP, and Apache.
n Mailing lists. Several mailing lists centering around the software discussed in this

book are available. It’s a good idea to subscribe to the ones that deal with the tools
you want to use. It’s also a good idea to use the archives for those lists that have
them.When you’re new to a tool, you will have many of the same questions that
have been asked (and answered) many times, and there is no reason to ask again
when you can find the answer with a quick search of the archives.

Instructions for subscribing to the mailing lists vary.The following table indicates
where you can find the necessary information.

n Ancillary Web sites. Besides the official Web sites, some of the tools discussed
here have ancillary sites that provide more information, such as sample source code
or topical articles. Check for a “Links” area on the official site you’re visiting.

http://lists.mysql.com/
http://dbi.perl.org/support/
http://www.php.net/mailing-lists.php
http://httpd.apache.org/lists.html

1
Getting Started with MySQL

This chapter provides an introduction to the MySQL relational database management
system (RDBMS), and to the Structured Query Language (SQL) that MySQL under-
stands. It lays out basic terms and concepts you should understand, describes the sampdb
sample database that we’ll use for examples, and serves as a tutorial that shows you how to
use MySQL to create a database and interact with it.

Begin here if you are new to database systems and perhaps uncertain whether you
need one or can use one.You should also read the chapter if you don’t know anything
about MySQL or SQL and need an introductory guide to get started. Readers who have
experience with MySQL or other database systems might want to skim through the
material. However, everybody should read Section 1.2,“A Sample Database,” to become
familiar with the purpose and contents of the sampdb database that is used throughout
the book.

1.1 How MySQL Can Help You
This section describes situations in which the MySQL database system is useful.This will
give you an idea of the kinds of things MySQL can do and the ways in which it can help
you. If you don’t need to be convinced about the usefulness of a database system—
perhaps because you’ve already got a problem in mind and just want to find out how to
put MySQL to work helping you solve it—you can proceed to Section 1.2,“A Sample
Database.”

A database system is essentially a high-powered way to manage lists of information.
The information can come from a variety of sources. It might be research data, business
records, customer requests, sports statistics, sales reports, personal information, personnel
records, bug reports, or student grades. However, although database systems can deal with
a wide range of information, you don’t use such a system for its own sake. If a job is easy
to do already, there’s no reason to drag a database into it just to use one.A grocery list is a
good example:You write down the items to get, cross them off as you do your shopping,
and then throw the list away. It’s highly unlikely that you’d use a database for this. Even if

14 Chapter 1 Getting Started with MySQL

you have a palmtop computer, you’d probably keep track of a grocery list using its
notepad function rather than its database capabilities.

The power of a database system comes into play when the information you want to
organize and manage is so voluminous or complex that your records become more bur-
densome than you care to deal with by hand. Clearly this is the case for large corpora-
tions processing millions of transactions a day; a database is a necessity under such
circumstances. But even small-scale operations involving a single person maintaining in-
formation of personal interest might require a database. It’s not difficult to think of sce-
narios in which a database can be beneficial, because you needn’t have huge amounts of
information before that information becomes difficult to manage. Consider the following
situations:

n Your carpentry business has several employees.You need to maintain employee and
payroll records so that you know who you’ve paid and when, and you must sum-
marize those records so that you can report earnings statements to the government
for tax purposes.You also need to keep track of the jobs your company has been
hired to do and which employees you’ve scheduled to work on each job.

n You run a network of automobile parts warehouses and need to be able to tell which
ones have any given part in their inventory so that you can fill customer orders.

n That pile of research data you’ve been collecting over the course of many years
needs to be analyzed for publication.You want to boil down large amounts of raw
data to generate summary information, and to pull out selected subsets of observa-
tions for more detailed statistical analysis.

n You’re a teacher who needs to keep track of grades and attendance. Each time you
give a quiz or a test, you record every student’s grade. It’s easy enough to write
down scores in a gradebook, but using the scores later is a tedious chore.You’d
rather avoid sorting the scores for each test to determine the grading curve, and
you’d really rather not add up each student’s scores when you determine final
grades at the end of the grading period. Counting each student’s absences is no fun,
either.

n The organization for which you serve as the secretary maintains a directory of
members. (The organization could be anything—a professional society, a club, a
symphony orchestra, or an athletic booster club.) You generate a printed directory
each year for the members, based on a word processor document that you edit as
membership information changes.You’re tired of maintaining the directory that
way because it limits what you can do with it. It’s difficult to sort the entries in dif-
ferent ways, and you can’t easily select just certain parts of each entry (such as a list
consisting only of names and phone numbers). Nor can you easily find a subset of
members, such as those who need to renew their memberships soon—if you could,
it would eliminate the job of looking through the entries each month to find those
members who need to be sent renewal notices.You’ve heard about the “paperless
office” that’s supposed to result from electronic record-keeping, but you haven’t

151.1 How MySQL Can Help You

seen any benefit from it.The membership records are electronic, but, ironically,
aren’t in a form that can be used easily for anything except generating paper by
printing the directory!

These scenarios range from situations involving small amounts to large amounts of in-
formation.Their common characteristic is that they involve tasks that can be performed
manually but that could be performed more efficiently by a database system.

What specific benefits should you expect to see from using a database system such as
MySQL? It depends on your particular needs and requirements, and as illustrated by the
preceding examples, those can vary quite a bit. Let’s look at a type of situation that occurs
frequently and is fairly representative of database use. Database management systems are
often employed to handle tasks such as those for which people use filing cabinets. Indeed,
a database is like a big filing cabinet in some ways, but one with a sophisticated built-in
filing system.There are some important advantages of electronically maintained records
over records maintained by hand. For example, if you work in a dentist’s office setting in
which client records are maintained, here are some of the ways MySQL can help you in
its filing system capacity.

Reduced record filing time.You don’t have to look through drawers in cabinets to
figure out where to add a new record.You just hand it to the filing system and let it put
the record in the right place for you.

Reduced record retrieval time.When you’re looking for records, you don’t search
through each one yourself to find the ones containing the information you want. If you
want to send out reminders to all patients who haven’t been in for their checkup in a
while, you ask the filing system to find the appropriate records for you. Of course, you do
this differently than if you were talking to another person, with whom you’d say,“Please
determine which patients haven’t visited within the last six months.”With a database, you
invoke a strange incantation:

SELECT last_name, first_name, last_visit FROM patient

WHERE last_visit < DATE_SUB(CURDATE(), INTERVAL 6 MONTH);

That can be pretty intimidating if you’ve never seen anything like it before, but the
prospect of getting results in a second or two rather than spending an hour shuffling
through your records should be attractive. (In any case, you needn’t worry.That odd-
looking bit of gobbledygook won’t look strange for long. In fact, you’ll understand
exactly what it means by the time you’ve finished this chapter.)

Flexible retrieval order.You needn’t retrieve records according to the fixed order in
which you store them (by patient’s last name, for example).You can tell the filing system
to pull out records sorted in any order you like: by last name, insurance company name,
date of last visit, and so forth.

Flexible output format. After you’ve found the records in which you’re interested,
there’s no need to copy the information manually.The filing system can generate a list
for you. Sometimes you might just print the information. Other times you might want to
use it in another program. For example, after you generate the list of patients who are

16 Chapter 1 Getting Started with MySQL

overdue on their dental visits, you might feed this information into a word processor that
prints out notices that you can send to those patients. Or you might be interested only in
summary information, such as a count of the selected records.You don’t have to count
them yourself; the filing system can generate the summary for you.

Simultaneous multiple-user access to records.With paper records, if two people
want to look up a record at the same time, the second person must wait for the first one
to put the record back. MySQL gives you multiple-user capability so that both can access
the record simultaneously.

Remote access to and electronic transmission of records. Paper records require
you to be where the records are located, or for someone to make copies and send them to
you. Electronic records open up the potential for remote access to the records or elec-
tronic transmission of them. If your dental group has associates in branch offices, those
associates can access your records from their own locations.You don’t need to send copies
by courier. If someone who needs records doesn’t have the same kind of database software
you do but does have electronic mail, you can select the desired records and send their
contents electronically.

If you’ve used database management systems before, you already know about the bene-
fits just described, and you may be thinking about how to go beyond the usual “replace
the filing cabinet” applications.The manner in which many organizations use a database
in conjunction with a Web site is a good example. Suppose that your company has an in-
ventory database that is used by the service desk staff when customers call to find out
whether you have an item in stock and how much it costs.That’s a relatively traditional
use for a database. However, if your company puts up a Web site for customers to visit,
you can provide an additional service: a search page that enables customers to determine
item pricing and availability.This gives customers the information they want, and the way
you provide it is by searching the inventory information stored in your database for the
items in question—automatically.The customer gets the information immediately, with-
out being put on hold listening to annoying canned music or being limited by the hours
your service desk is open.And for every customer who uses your Web site, that’s one less
phone call that needs to be handled by a person on the service desk payroll. (Perhaps the
Web site can pay for itself this way?)

But you can put the database to even better use than that.Web-based inventory search
requests can provide information not only to your customers, but to your company as
well.The queries tell you what customers are looking for, and the query results tell you
whether you’re able to satisfy their requests.To the extent you don’t have what they
want, you’re probably losing business. So it makes sense to record information about in-
ventory searches: what customers were looking for, and whether you had it in stock.
Then you can use this information to adjust your inventory and provide better service to
your customers.

So how does MySQL work? The best way to find out is to try it for yourself, and for
that we’ll need a database to work with.

171.2 A Sample Database

1.2 A Sample Database
This section describes the sample database that we’ll use throughout the rest of this book.
It provides a source of examples for you to try as you learn to put MySQL to work.We’ll
draw examples primarily from two of the situations described earlier:

n The organizational secretary scenario. Our organization has these characteristics: It’s
composed of people drawn together through an affinity for United States history
(called, for lack of a better name, the U.S. Historical League).The members renew
their membership periodically on a dues-paying basis. Dues go toward League ex-
penses such as publication of a newsletter,“Chronicles of U.S. Past.”The League
also operates a small Web site; it hasn’t been developed very much, but you’d like to
change that.

n The grade-keeping scenario.You are a teacher who administers quizzes and tests
during the grading period, records scores, and assigns grades.Afterward, you deter-
mine final grades, which you turn in to the school office along with an attendance
summary.

Now let’s examine these situations more closely in terms of two requirements:

n You must decide what you want to get out of the database—that is, what goals you
want to accomplish.

n You must figure out what you’re going to put into the database—that is, what data
you will keep track of.

Perhaps it seems backward to think about what comes out of the database before con-
sidering what goes in.After all, you must enter your data before you can retrieve it. But
the way you use a database is driven by your goals, and those are more closely associated
with what you want to get from your database than with what you put into it. Presum-
ably you’re not going to waste time and effort putting information into a database unless
you plan to use it for something later.

1.2.1 The U.S. Historical League
The scenario here is that you as League secretary maintain the membership list using a
word processing document.That works reasonably well for generating a printed directory
but limits what else you can do with the information.You have these objectives in mind:

n You want to produce output from the directory in different formats, using informa-
tion appropriate to the application. One goal is to generate the printed directory
each year—a requirement the League has had in the past that you plan to continue
to carry out.You can think of other uses for the information in the directory, too—
for example, to provide the current-member list for the printed program distrib-
uted to attendees of the League’s annual meeting.These applications involve
different sets of information.The printed directory uses the entire contents of each

18 Chapter 1 Getting Started with MySQL

member’s entry. For the meeting program, you need to pull out only member
names (something that hasn’t been easy using a word processor).

n You want to search the directory for members who satisfy various criteria. For ex-
ample, you want to know which members must renew their memberships soon.
Another application that involves searching arises from the list of keywords you
maintain for each member.These keywords describe areas of U.S. history in which
each member is particularly interested (for example, the Civil War, the Depression,
civil rights, or the life of Thomas Jefferson). Members sometimes ask you for a list
of other members with interests similar to their own, and you’d like to be able to
satisfy these requests.

n You want to put the directory online at the League’s Web site.This would benefit
both the members and yourself. If you can convert the directory to Web pages by
some reasonably automated process, an online version of the directory would be al-
ways up to date, something not true of the printed version.And if the online direc-
tory can be made searchable, members could easily look for information
themselves. For example, a member who wants to know which other members are
interested in the Civil War could find that out without waiting for you to perform
the search, and you wouldn’t need to find the time to do it yourself.

I’m well aware that databases are not the most exciting things in the world, so I’m not
about to make any wild claims that using one stimulates creative thinking. Nevertheless,
when you stop thinking of information as something you must wrestle with (as you do
when using your word processing document) and begin thinking of it as something you
can manipulate relatively easily (as you hope to do with MySQL), it has a certain liberat-
ing effect on your ability to come up with new ways to use that information:

n If the information in the database can be moved to the Web site in the form of an
online directory, you might also be able to make information flow the other way.
Suppose that members could edit their own entries online to provide updates for
the database.Then you wouldn’t have to do all the editing yourself, and it would
make the information in the directory more accurate.You’d really like to avoid do-
ing all the directory editing yourself, but the society doesn’t have much of a budget,
and hiring someone is out of the question.

n If you store email addresses in the database, you could use them to send email to
members that haven’t updated their entries in a while.The messages could show
members the current contents of their entry, ask them to review it, and indicate
how to make any needed modifications using the facilities provided on the Web site.

n A database might help make the Web site more useful in ways not even related to
the membership list.The League’s newsletter,“Chronicles of U.S. Past,” has a chil-
dren’s section containing a history-based quiz in each issue. Some of the recent is-
sues have focused on biographical facts about U.S. presidents.The Web site could
have a children’s section, too, where the quizzes are put online. Perhaps this section

191.2 A Sample Database

could even be made interactive, by putting the information from which quizzes are
drawn in the database and having the Web server query the database for questions
to present to visitors.

Well! At this point the number of uses for the database that you’re coming up with
make you realize you might be getting a little carried away.After pausing to come back
down to earth, you start asking some practical questions:

n Isn’t this a little ambitious? Won’t it be a lot of work to set this up?

Anything’s easier when you’re just thinking about it and not doing it, of course, and
I won’t pretend that all of these ideas are trivial to implement. Nevertheless, by the
end of this book you’ll have done everything we’ve just outlined. Just keep one
thing in mind: It’s not necessary to do everything all at once.We’ll break the job
into pieces and tackle it a piece at a time.

n Can MySQL be used to accomplish all these goals?

No, it can’t, at least not by itself. For example, MySQL has no built-inWeb-
programming facilities. But you can combine MySQL with other tools that work
with it to complement and extend its capabilities.

We’ll use the Perl scripting language and the Perl DBI (database interface) module
to write scripts that access MySQL databases. Perl has excellent text-processing
capabilities, which allow for manipulation of query results in a highly flexible man-
ner to produce output in a variety of formats. For example, we can use Perl to
generate the directory in Rich Text Format (RTF), which can be read by all kinds
of word processors, and in HTML format for Web browsers.

We’ll also use PHP, another scripting language. PHP is particularly adapted to writ-
ing Web applications, and it interfaces easily with databases.This enables you to ini-
tiate MySQL queries from Web pages and to generate new pages that include the
results of database queries. PHP can be used with several Web servers (including
Apache, the most popular server in the world), making it easy to do things such as
presenting a search form and displaying the results of the search.

MySQL integrates well with these tools and gives you the flexibility to choose how
to combine them to achieve the ends you have in mind.You’re not locked into
some all-in-one suite’s components that have highly touted “integration” capabili-
ties but that actually work well only with each other.

n And, finally, the big question: How much will all this cost? The League has a limited
budget, after all.

This might surprise you, but it probably won’t cost anything. If you’re familiar with
the usual ken of database systems, you know that they’re generally pretty pricey. By
contrast, MySQL often can be used for free. Even in enterprise settings where you
need guaranteed support and maintenance arrangements, MySQL is relatively inex-
pensive as database systems go. (Visit www.mysql.com for details.) The other tools

www.mysql.com

20 Chapter 1 Getting Started with MySQL

we’ll use (Perl, DBI, PHP,Apache) are free, so, all things considered, you can put to-
gether a useful system quite inexpensively.

The choice of operating system for developing the database is up to you.Virtually all
the software we’ll discuss runs under both Unix (which I use as an umbrella term that in-
cludes BSD Unix, Linux, Mac OS X, and so forth) and Windows.The few exceptions
tend to be shell or batch scripts that are specific to either Unix or Windows.

1.2.2 The Grade-Keeping Project
Now let’s consider the other situation for which we’ll be using the sample database.The
scenario here is that as a teacher, you have grade-keeping responsibilities.You want to
convert the grading process from a manual operation using a gradebook to an electronic
representation using MySQL. In this case, the information you want to get from a data-
base is implicit in the way you already use your gradebook now:

n For each quiz or test, you record the scores. For tests, you put the scores in order so
that you can look at them and determine the cutoffs for each letter grade (A, B, C,
D, and F).

n At the end of the grading period, you calculate each student’s total score, and then
sort the totals and determine grades based on them.The totals might involve
weighted calculations because you probably want to count tests more heavily than
quizzes.

n You provide attendance information to the school office at the end of the grading
period.

The objectives are to avoid manually sorting and summarizing scores and attendance
records. In other words, you want MySQL to sort the scores and perform the calculations
necessary to compute each student’s total score and number of absences when the grading
period ends.To accomplish these goals, you’ll need the list of students in the class, the
scores for each quiz and test, and the dates on which students are absent.

1.2.3 How the Sample Database Applies to You
If you’re not particularly interested in the Historical League or in grade-keeping, you
might be wondering what either of these scenarios have to do with you.The answer is
that they aren’t an end in themselves.They simply provide a vehicle by which to illustrate
what you can do with MySQL and tools that are related to it.

With a little imagination, you’ll see how example database queries apply to the partic-
ular problems you want to solve. Suppose that you’re working in that dentist’s office I
mentioned earlier.You won’t see many dentistry-related queries in this book, but you will
see that many of the queries you find here apply to patient record maintenance, office
bookkeeping, and so forth. For example, determining which Historical League members
need to renew their memberships soon is similar to determining which patients haven’t

211.3 Basic Database Terminology

visited the dentist for a while. Both are date-based queries, so once you learn to write the
membership-renewal query, you can apply that skill to writing the delinquent-patient
query in which you have a more immediate interest.

1.3 Basic Database Terminology
You may have noticed that you’re already several pages into a database book and still
haven’t seen a whole bunch of jargon and technical terminology. In fact, I still haven’t said
anything at all about what “a database” actually looks like, even though we have a rough
specification of how our sample database will be used. However, we’re about to design
that database, and then we’ll begin implementing it, so we can’t avoid terminology any
longer.That’s what this section is about. It describes some terms that come up throughout
the book so that you’ll be familiar with them. Fortunately, many relational database con-
cepts are really quite simple. Much of the appeal of relational databases stems precisely
from the simplicity of their foundational concepts.

1.3.1 Structural Terminology
Within the database world, MySQL is classified as a relational database management sys-
tem (RDBMS).That phrase breaks down as follows:

n The database (the “DB” in RDBMS) is the repository for the information you
want to store, structured in a simple, regular fashion:

n The collection of data in a database is organized into tables.
n Each table is organized into rows and columns.
n Each row in a table is a record.
n Records can contain several pieces of information; each column in a table

corresponds to one of those pieces.

n The management system (the “MS”) is the software that lets you use your data by
enabling you to insert, retrieve, modify, or delete records.

n The word “relational” (the “R”) indicates a particular kind of DBMS, one that is
very good at relating (that is, matching up) information stored in one table to infor-
mation stored in another by looking for elements common to each of them.The
power of a relational DBMS lies in its capability to pull data from those tables con-
veniently and to join information from related tables to produce answers to ques-
tions that can’t be answered from individual tables alone. (Actually,“relational” has a
formal definition that differs from the way I am using it. However, with apologies
to purists, I find that my definition is more helpful for conveying the usefulness of
an RDBMS.)

Here’s an example that shows how a relational database organizes data into tables and
relates the information from one table to another. Suppose that you run a Web site that

22 Chapter 1 Getting Started with MySQL

includes a banner-advertisement service.You contract with companies that want their ads
displayed when people visit the pages on your site. Each time a visitor hits one of your
pages, you serve an ad embedded in the page that is sent to the visitor’s browser and assess
the company a small fee.This is an ad “hit.”To represent this information, you maintain
three tables (see Figure 1.1). One table, company, has columns for company name, num-
ber, address, and telephone number.Another table, ad, lists ad numbers, the number for
the company that “owns” the ad, and the amount you charge per hit.The third table, hit,
logs each ad hit by ad number and the date on which the ad was served.

Some questions can be answered using the information in a single table.To determine
the number of companies you have contracts with, you need count only the rows in the
company table. Similarly, to determine the number of hits during a given time period,
only the hit table need be examined. Other questions are more complex, and it’s neces-
sary to consult multiple tables to determine the answers. For example, to determine how
many times each of the ads for Pickles, Inc. was served on July 14, you’d use all three ta-
bles as follows:

1. Look up the company name (Pickles, Inc.) in the company table to find the com-
pany number (14).

2. Use the company number to find matching records in the ad table so that you can
determine the associated ad numbers.There are two such ads, 48 and 101.

3. For each of the matched records in the ad table, use the ad number in the record to
find matching records in the hit table that fall within the desired date range, and
then count the number of matches.There are three matches for ad 48 and two
matches for ad 101.

Sounds complicated! But that’s just the kind of thing at which relational database sys-
tems excel.The complexity actually is somewhat illusory because each of the steps just
described really amounts to little more than a simple matching operation:You relate one
table to another by matching values from one table’s rows to values in another table’s
rows.This same simple operation can be exploited in various ways to answer all kinds of
questions: How many different ads does each company have? Which company’s ads are
most popular? How much revenue does each ad generate? What is the total fee for each
company for the current billing period?

Now you know enough relational database theory to understand the rest of this book,
and we don’t have to go into Third Normal Form, Entity-Relationship Diagrams, and all
that kind of stuff. (If you want to read about such things, I suggest you begin with the
works of C.J. Date or E.F. Codd.)

1.3.2 Query Language Terminology
Communication with MySQL takes place via SQL (Structured Query Language). SQL is
today’s standard database language, and all major database systems understand it (although
each implementation has vendor-specific aspects). SQL supports many different kinds of

231.3 Basic Database Terminology

company table

ad table

hit table

company_name company_num address phone

Big deal, Ltd.
Pickles, Inc.
Real Roofing Co.
GigaFred & Son

13
14
17
23

14 Grand Blvd.
59 Cucumber Dr.
928 Shingles Rd.
2572 Family Ave.

875-2934
884-2472
882-4173
847-4738

company_num ad_num hit_fee

14
23
17
13
23
23
23
13
23
14
13
17

48
49
52
55
62
63
64
77
99
101
102
119

0.01
0.02
0.01
0.03
0.02
0.01
0.02
0.03
0.03
0.01
0.01
0.02

ad_num date

49
55
48
63
101
62
119
102
52
48
64
119
48
101
63
49
77
99

July 13
July 13
July 14
July 14
July 14
July 14
July 14
July 14
July 14
July 14
July 14
July 14
July 14
July 14
July 15
July 15
July 15
July 15

Figure 1.1 Banner advertisement tables.

statements, all designed to make it possible to interact with your database in interesting
and useful ways.

As with any language, SQL can seem strange while you’re first learning it. For exam-
ple, to create a table, you need to tell MySQL what the table’s structure should be.You

24 Chapter 1 Getting Started with MySQL

and I might think of the table in terms of a diagram or picture. MySQL doesn’t, so you
create the table by telling MySQL something like this:

CREATE TABLE company

(

company_name CHAR(30),

company_num INT,

address CHAR(30),

phone CHAR(12)

);

Statements like that can be somewhat imposing when you’re new to SQL, but you
need not be a programmer to learn how to use SQL effectively.As you gain familiarity
with the language, you’ll look at CREATE TABLE in a different light—as a powerful ally
that helps you describe your information, not as a weird bit of gibberish.

1.3.3 MySQL Architectural Terminology
When you use MySQL, you’re actually using at least two programs, because MySQL op-
erates using a client/server architecture.The first program is the MySQL server, mysqld.
The server runs on the machine where your databases are stored. It listens for client re-
quests coming in over the network and accesses database contents according to those
requests to provide clients with the information they ask for.The other programs are
client programs; they connect to the database server and issue queries to tell it what infor-
mation they want.

Most MySQL distributions include the database server and several client programs. (If
you use RPM packages on Linux, there are separate server and client RPM packages, so
you should install both.) You use the clients according to the purposes you want to
achieve.The one most commonly used is mysql, an interactive client that lets you issue
queries and see the results.Two administrative clients are mysqldump, a backup program
that dumps table contents into a file, and mysqladmin, which enables you to check on the
status of the server and performs other administrative tasks such as telling the server to
shut down. MySQL distributions include other clients as well. If you have application
requirements for which none of the standard clients is suited, MySQL also provides a
client-programming library so that you can write your own programs.The library is us-
able directly from C programs. If you prefer a language other than C, interfaces are avail-
able for several other languages—Perl, PHP, Python, Java, and Ruby, to name a few.

The client programs I discuss in this book all are used from the command line. If you’d
like to try tools that use a graphical user interface (GUI) and provide point-and-click
capabilities, visit http://www.mysql.com/products/tools/.

MySQL’s client/server architecture has certain benefits:

n The server provides concurrency control so that two users cannot modify the same
record at the same time.All client requests go through the server, so the server sorts
out who gets to do what, and when. If multiple clients want to access the same
table at the same time, they don’t all have to find and negotiate with each other.

http://www.mysql.com/products/tools/

251.4 A MySQL Tutorial

They just send their requests to the server and let it take care of determining the
order in which the requests are performed.

n You don’t have to be logged in on the machine where your database is located.
MySQL understands how to work in a networked environment, so you can run a
client program from wherever you happen to be, and the client can connect to the
server over the network. Distance isn’t a factor; you can access the server from any-
where in the world. If the server is located on a computer in Australia, you can take
your laptop computer on a trip to Iceland and still access your database. Does that
mean anyone can get at your data, just by connecting to the Internet? No. MySQL
includes a flexible security system, so you can allow access only to people who
should have it.And you can make sure that those people are able to do only what
they should. Perhaps Sally in the billing office should be able to read and update
(modify) records, but Phil at the service desk should be able only to look at them.
You can set each person’s privileges accordingly. If you do want to run a self-
contained system, set the access privileges so that clients can connect only from the
host on which the server is running.

In addition to the usual mysqld server that is used in a client/server setting, MySQL
makes the server available as a library, libmysqld, that you can link into programs to pro-
duce standalone MySQL-based applications.This is called the “embedded server library”
because it’s embedded into individual applications. Use of the embedded server contrasts
with the client/server approach in that no network is required.This makes it easier to
create and package applications that can be distributed on their own with fewer assump-
tions about their external operational environment. On the other hand, it should be used
only in situations where the embedded application is the only one that needs access to
the databases managed by the server.

The Difference Between “MySQL” and “mysql”
To avoid confusion, I should point out that “MySQL” refers to the entire MySQL RDBMS and
“mysql” is the name of a particular client program.They sound the same if you pronounce them, but
they’re distinguished here by capitalization and typeface differences.

Speaking of pronunciation, MySQL is pronounced “my-ess-queue-ell.”We know this because the
MySQL Reference Manual says so. On the other hand, depending on who you ask, SQL is pro-
nounced “ess-queue-ell” or “sequel.”This book assumes the pronunciation “ess-queue-ell,” which is
why it uses constructs such as “an SQL query” rather than “a SQL query.”

1.4 A MySQL Tutorial
You have all the background you need now. It’s time to put MySQL to work!

This section will help you familiarize yourself with MySQL by providing a tutorial for
you to try.As you work through it, you will create a sample database and some tables, and
then interact with the database by adding, retrieving, deleting, and modifying information

26 Chapter 1 Getting Started with MySQL

in the tables. During the process of working with the sample database, you will learn the
following things:

n The basics of the SQL language that MySQL understands. (If you already know
SQL from having used some other RDBMS, it is a good idea to skim through this
tutorial to see whether MySQL’s dialect of SQL differs from the version with
which you are familiar.)

n How to communicate with a MySQL server using a few of the standard MySQL
client programs.As noted in the previous section, MySQL operates using a
client/server architecture in which the server runs on the machine containing the
databases and clients connect to the server over a network.This tutorial is based
largely on the mysql client program, which reads SQL queries from you, sends
them to the server to be executed, and displays the results so that you can see what
happened. mysql runs on all platforms supported by MySQL and provides the most
direct means of interacting with the server, so it’s the logical client to begin with.
Some examples use mysqlimport or mysqlshow instead.

This book uses sampdb as the sample database name, but you might need to use a dif-
ferent name as you work through the material. For example, someone else on your system
already might be using the name sampdb for their own database, or your MySQL admin-
istrator might assign you a different database name. In either case, substitute the actual
name of your database for sampdb whenever you see the latter in examples.

Table names can be used exactly as shown in the examples, even if multiple users on
your system have their own sample databases. In MySQL, it doesn’t matter if other people
use the same table names, as long as each of you uses your own database. MySQL prevents
you from interfering with each other by keeping the tables in each database separate.

1.4.1 Obtaining the Sample Database Distribution
This tutorial refers at certain points to files from the “sample database distribution” (also
known as the sampdb distribution, after the name of the sampdb database).These files
contain queries and data that will help you set up the sample database. See Appendix A,
“Obtaining and Installing Software,” for instructions on getting the distribution.When
you unpack it, it creates a directory named sampdb containing the files you’ll need.
I recommend that you change location into that directory whenever you’re working
through examples pertaining to the sample database.

To make it easier to invoke MySQL programs no matter which directory is your cur-
rent location, you should add the MySQL bin directory that contains those programs to
your command interpreter’s search path.To do this, add the directory pathname to your
PATH environment variable setting using the instructions in Appendix A.

271.4 A MySQL Tutorial

1.4.2 Preliminary Requirements
To try the examples in this tutorial, a few preliminary requirements must be satisfied:

n You must have the MySQL software installed.
n You need a MySQL account so that you can connect to the server.
n You need a database to work with.

The required software includes the MySQL clients and a MySQL server.The client
programs must be located on the machine where you’ll be working.The server can be
located on your machine, although that is not required.As long as you have permission to
connect to it, the server can be located anywhere. If you need to get MySQL, see
Appendix A for instructions. If your network access comes through an Internet service
provider (ISP), find out whether the provider offers MySQL as a service. If not and your
ISP won’t install it, choose a different provider that does offer MySQL.

In addition to the MySQL software, you’ll need a MySQL account so that the server
will allow you to connect and create your sample database and its tables. (If you already
have a MySQL account with the server, you can use that, but you might want to set up a
separate account for use with the material in this book.)

At this point, we run into something of a chicken-and-egg problem: In order to set up
a MySQL account to use for connecting to the server, it’s necessary to connect to the
server.Typically, you do this by connecting as the MySQL root user on the host where
the server is running and issuing CREATE USER and GRANT statements to create a new
MySQL account and give it database privileges. If you’ve installed MySQL on your own
machine and the server is running, you can connect to it as root and set up a new sample
database administrator account with a username of sampadm and a password of secret as
follows (change the name and password to those you want to use, here and throughout
the book):

% mysql -p -u root

Enter password: ******

mysql> CREATE USER 'sampadm'@'localhost' IDENTIFIED BY 'secret';

Query OK, 0 rows affected (0.04 sec)

mysql> GRANT ALL ON sampdb.* TO 'sampadm'@'localhost';

Query OK, 0 rows affected (0.01 sec)

The mysql command includes a -p option to cause mysql to prompt for the root
user’s MySQL password. Enter the password where you see ****** in the example. I
assume that you have already set up a password for the MySQL root user and that you
know what it is. If you haven’t yet assigned a password, just press Enter at the Enter
password: prompt. However, having no root password is insecure and you should assign
one as soon as possible. More information on the CREATE USER and GRANT statements, set-
ting up MySQL user accounts, and changing passwords can be found in Chapter 12,
“General MySQL Administration.”

28 Chapter 1 Getting Started with MySQL

The statements just shown are appropriate if you’ll be connecting to MySQL from the
same machine where the server is running.They enable you to connect to the server
using the name sampadm and the password secret, and give you complete access to the
sampdb database. However, GRANT doesn’t create the database (you can grant privileges for
a database before it exists).We’ll get to database creation a bit later.

If you plan to connect to the MySQL server from a host different from the one where
the server is running, change localhost to the name of the machine where you’ll be
working. For example, if you will connect to the server from the host asp.snake.net,
the statements should look like this:

mysql> CREATE USER 'sampadm'@'asp.snake.net' IDENTIFIED BY 'secret';

mysql> GRANT ALL ON sampdb.* TO 'sampadm'@'asp.snake.net';

If you don’t have control over the server and cannot create an account, ask your
MySQL administrator to set up an account for you.Then substitute the MySQL user-
name, password, and database name that the administrator assigns you for sampadm,
secret, and sampdb throughout the examples in this book.

1.4.3 Establishing and Terminating Connections to the
MySQL Server
To connect to your server, invoke the mysql program from your command prompt (that
is, from your Unix shell prompt, or from a console window prompt under Windows).The
command looks like this:

% mysql options

I use % throughout this book to indicate the command prompt.That’s one of the stan-
dard Unix prompts; another is $. Under Windows, you will see a prompt that looks some-
thing like C:\>. (When you enter commands shown in examples, do not type the prompt
itself.)

The options part of the mysql command line might be empty, but more likely you’ll
have to issue a command that looks something like this:

% mysql -h host_name -p -u user_name

You might not need to supply all those options when you invoke mysql, but you’ll
probably have to specify at least a name and password. Here’s what the options mean:

n -h host_name (alternative form: --host=host_name)

The host where the MySQL server is running. If this is the same as the machine
where you are running mysql, this option typically can be omitted.

n -u user_name (alternative form: --user=user_name)

Your MySQL username. If you’re using Unix and your MySQL username is the
same as your login name, you can omit this option; mysql will use your login name
as your MySQL username.

Under Windows, the default username is ODBC, which is unlikely to be a useful
default for you. Either specify a -u option on the command line, or add a default to

291.4 A MySQL Tutorial

your environment by setting the USER variable. For example, you can use the fol-
lowing set command to specify a username of sampadm:

C:\> set USER=sampadm

If you set the USER environment variable by using the System item in the Control
Panel, it takes effect for each console window and you won’t have to issue it at the
prompt.

n -p (alternative form: --password)

This option tells mysql to ask you for your MySQL password by displaying an
Enter password: prompt. For example:

% mysql -h host_name -p -u user_name

Enter password:

When you see the Enter password: prompt, type in your password. (The pass-
word won’t be echoed to the screen, in case someone’s looking over your shoulder.)
Note that your MySQL password is not necessarily the same as the password that
you use to log in to Unix or Windows.

If you omit the -p option, mysql assumes that you don’t need one and doesn’t
prompt for it.

Another way to specify this option is to indicate the password value directly
on the command line by typing the option as -pyour_pass (alternative form:
--password=your_pass). However, for security reasons, it’s best not to do that.The
password becomes visible to others that way.

If you do decide to specify the password on the command line, note particularly
that there is no space between the -p option and the following password value.This
behavior of -p is a common point of confusion, because it differs from the -h and
-u options, which are associated with the word that follows them regardless of
whether there is a space between the option and the word.

Suppose that your MySQL username and password are sampadm and secret. If the
MySQL server is running on the same host where you are going to run mysql, you can
leave out the -h option and the mysql command to connect to the server. It looks like
this:

% mysql -p -u sampadm

Enter password: ******

After you enter the command, mysql prints Enter password: to prompt for your
password, and you type it in (the ****** indicates where you type secret).

If all goes well, mysql prints a greeting and a mysql> prompt indicating that it is wait-
ing for you to issue queries.The full startup sequence looks something like this:

% mysql -p -u sampadm

Enter password: ******

Welcome to the MySQL monitor. Commands end with ; or \g.

30 Chapter 1 Getting Started with MySQL

Your MySQL connection id is 13762

Server version: 5.0.60-log

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

To connect to a server running on some other machine, it’s necessary to specify the host-
name using an -h option. If that host is cobra.snake.net, the command looks like this:

% mysql -h cobra.snake.net -p -u sampadm

In most of the examples that follow that show a mysql command line, I’m going to
leave out the -h, -u, and -p options for brevity and assume that you’ll supply whatever
options are necessary.You’ll also need to use the same options when you run other
MySQL programs, such as mysqlshow.

After you’ve established a connection to the server, you can terminate your session any
time by typing quit:

mysql> quit

Bye

You can also quit by typing exit or \q. On Unix, Control-D also quits.
When you’re just starting to learn MySQL, you’ll probably consider its security system

to be an annoyance because it makes it harder to do what you want. (You must have per-
mission to create and access a database, and you must specify your name and password
whenever you connect to the server.) However, after you’ve moved beyond the sample
database used in this book to entering and using your own records, your perspective will
change radically.Then you’ll appreciate the way that MySQL keeps other people from
snooping through (or worse, destroying!) your information.

There are ways to set up your working environment so that you don’t have to specify
connection parameters on the command line each time you run mysql.These are dis-
cussed in Section 1.5,“Tips for Interacting with mysql.”The most common method for
simplifying the connection process is to store your connection parameters in an option
file.You might want to check that section right now to see how to set up such a file.

1.4.4 Executing SQL Statements
After you’re connected to the server, you’re ready to issue SQL statements for the server
to execute.This section describes some general principles about interacting with mysql
that you should know.

To enter a statement in mysql, just type it in.At the end of the statement, type a semi-
colon character (‘;’) and press Enter.The semicolon tells mysql that the statement is
complete.After you enter a statement, mysql sends it to the server to be executed.The
server processes it and sends the result back to mysql, which displays the result to you.

The following example shows a simple statement that asks for the current date and time:

mysql> SELECT NOW();

311.4 A MySQL Tutorial

+---------------------+

| NOW() |

+---------------------+

| 2008-03-21 10:51:23 |

+---------------------+

1 row in set (0.00 sec)

Another way to terminate a statement is to use \g (“go”) rather than a semicolon:

mysql> SELECT NOW()\g

+---------------------+

| NOW() |

+---------------------+

| 2008-03-21 10:51:28 |

+---------------------+

1 row in set (0.00 sec)

Or you can use \G, which displays the results in “vertical” format, one value per line:

mysql> SELECT NOW(), USER(), VERSION()\G

*************************** 1. row ***************************

NOW(): 2008-03-21 10:51:34

USER(): sampadm@localhost

VERSION(): 5.0.60-log

1 row in set (0.03 sec)

For a statement that generates short output lines, \G is not so useful, but if the lines
are so long that they wrap around on your screen, \G can make the output much easier
to read.

mysql displays the statement result and a line that shows the number of rows the result
consists of and the time elapsed during statement processing. In subsequent examples, I
usually will not show the row-count line.

Because mysql waits for the statement terminator, you need not enter a statement all
on a single line.You can spread it over several lines if you want:

mysql> SELECT NOW(),

-> USER(),

-> VERSION()

-> ;

+---------------------+-------------------+------------+

| NOW() | USER() | VERSION() |

+---------------------+-------------------+------------+

| 2008-03-21 10:51:37 | sampadm@localhost | 5.0.60-log |

+---------------------+-------------------+------------+

Observe how the prompt changes from mysql> to -> after you enter the first line of
the statement.That tells you that mysql thinks you’re still entering the statement, which is
important feedback: If you forget the semicolon at the end of a statement, the changed
prompt helps you realize that mysql is still waiting for something. Otherwise, you’ll be

32 Chapter 1 Getting Started with MySQL

waiting impatiently, wondering why it’s taking MySQL so long to execute your state-
ment, and mysql will be waiting patiently for you to finish entering your statement!
(mysql has several other prompts as well; they’re all discussed in Appendix F, “MySQL
Program Reference”).

If you’ve begun entering a multiple-line statement and decide that you don’t want to
execute it, type \c to clear (cancel) it:

mysql> SELECT NOW(),

-> VERSION(),

-> \c

mysql>

Notice how the prompt changes back to mysql> to indicate that mysql is ready for a
new statement.

The converse of entering a statement over several lines is to enter multiple statements
on a single line, separated by terminators:

mysql> SELECT NOW();SELECT USER();SELECT VERSION();

+---------------------+

| NOW() |

+---------------------+

| 2008-03-21 10:52:31 |

+---------------------+

+-------------------+

| USER() |

+-------------------+

| sampadm@localhost |

+-------------------+

+------------+

| VERSION() |

+------------+

| 5.0.60-log |

+------------+

For the most part, it doesn’t matter whether you enter statements using uppercase,
lowercase, or mixed case.These statements all retrieve the same information (although the
column headings displayed for the result will differ in lettercase):

SELECT USER();

select user();

SeLeCt UsEr();

The examples in this book use uppercase for SQL keywords and function names, and
lowercase for database, table, and column names.

When you invoke a function in a statement, it is best to have no space between the
function name and the following parenthesis. In some cases, a space can cause a syntax
error to occur.

331.4 A MySQL Tutorial

You can store statements in a file to create an SQL script and tell mysql to read state-
ments from the file rather than from the keyboard. Use your shell’s input redirection facil-
ities for this. For example, if I have statements stored in a file named myscript.sql, I can
execute its contents with this command (remember to specify any required connection
parameter options):

% mysql < myscript.sql

You can call the file whatever you want. I use the .sql suffix as a convention to indi-
cate that the file contains SQL statements.

Invoking mysql this way to execute statements in a file is something that comes up
again in Section 1.47,“Adding New Rows,” when we enter data into the sampdb data-
base. It’s a lot more convenient to load a table by having mysql read INSERT statements
from a file than to type in each statement manually.

The remainder of this tutorial shows many SQL statements that you can try for your-
self.These are indicated by the mysql> prompt before the statement, and such examples
are usually accompanied by the output of the statement.You should be able to type in
these statements as shown, and the resulting output should be the same. Statements that
are shown without a prompt are intended simply to illustrate a point, and you need not
execute them. (You can try them if you like. If you use mysql to do so, remember to in-
clude a terminator such as a semicolon at the end of each statement.)

1.4.5 Creating a Database
We’ll begin by creating the sampdb sample database and the tables within it, populating its
tables, and performing some simple queries on the data contained in those tables. Using a
database involves several steps:

1. Creating (initializing) the database

2. Creating the tables within the database

3. Manipulating the tables by inserting, retrieving, modifying, or deleting data

Retrieving existing data is easily the most common operation performed on a database.
The next most common operations are inserting new data and updating or deleting exist-
ing data. Less frequent are table creation operations, and least frequent of all is database cre-
ation. However, we’re beginning from scratch, so we must begin with database creation,
the least common thing, and work our way through table creation and insertion of our
initial data before we get to where we can do the really common thing—retrieving data.

To create a new database, connect to the server using mysql.Then issue a CREATE
DATABASE statement that specifies the database name:

mysql> CREATE DATABASE sampdb;

You’ll need to create the sampdb database before you can create any of the tables that
will go in it or do anything with the contents of those tables.

34 Chapter 1 Getting Started with MySQL

You might expect that creating the database would also make it the default (or cur-
rent) database, but it doesn’t.You can see this by executing the following statement to
check what the default database is:

mysql> SELECT DATABASE();

+------------+

| DATABASE() |

+------------+

| NULL |

+------------+

NULL means “no database is selected.”To select sampdb as the default database, issue a
USE statement:

mysql> USE sampdb;

mysql> SELECT DATABASE();

+------------+

| DATABASE() |

+------------+

| sampdb |

+------------+

Another way to select a default database is to name it on the command line when you
invoke mysql:

% mysql sampdb

That is, in fact, the usual way to select the database you want to use. If you need any
connection parameters, specify them on the command line. For example, the following
command enables the sampadm user to connect to the sampdb database on the local host
(the default when no host is named):

% mysql -p -u sampadm sampdb

If you need to connect to a MySQL server running on a remote host, specify that host
on the command line:

% mysql -h cobra.snake.net -p -u sampadm sampdb

Unless otherwise indicated, all following examples assume that when you invoke
mysql, you name the sampdb database on the command line to make it the default data-
base. If you invoke mysql but forget to name the database on the command line, just issue
a USE sampdb statement at the mysql> prompt.

1.4.6 Creating Tables
In this section, we’ll build the tables that are needed for the sampdb sample database. First,
we’ll consider the tables needed for the Historical League, and then those for the grade-
keeping project.This is the part where some database books start talking about Analysis
and Design, Entity-Relationship Diagrams, Normalization Procedures, and other such

351.4 A MySQL Tutorial

stuff.There’s a place for all that, but I prefer just to say we need to think a bit about what
our database will look like: what tables it should contain, what the contents of each table
should be, and some of the issues involved in deciding how to represent the data.

The choices made here about data representation are not absolute. In other situations,
you might well elect to represent similar data in a different way, depending on the re-
quirements of your applications and the uses to which you intend to put your data.

1.4.6.1 Tables for the U.S. Historical League
Table layout for the Historical League is pretty straightforward:

n A president table.This contains a descriptive record for each U.S. president.We’ll
need this for the online quiz on the League Web site (the interactive analog to the
printed quiz that appears in the children’s section of the League’s newsletter).

n A member table.This is used to maintain current information about each member of
the League. It’ll be used for creating printed and online versions of the member di-
rectory, sending automated membership renewal reminders, and so forth.

1.4.6.1.1 The president Table
The president table is simpler, so let’s discuss it first.This table will contain some basic
biographical information about each United States president:

n Name. Names can be represented in a table several ways. For example, we could
have a single column containing the entire name, or separate columns for the first
and last name. It’s certainly simpler to use a single column, but that limits you in
some ways:

n If you enter the names with the first name first, you can’t sort on last name.
n If you enter the names with the last name first, you can’t display them with

the first name first.
n It’s harder to search for names. For example, to search for a particular last

name, you must use a pattern and look for names that match the pattern.This
is less efficient and slower than looking for an exact last name.

To avoid these limitations, our president table will use separate columns for
the first and last names.

The first name column will also hold the middle name or initial.This
shouldn’t break any sorting we might do because it’s not likely we’ll want to
sort on middle name (or even first name). Name display should work prop-
erly, too, because the middle name immediately follows the first name regard-
less of whether a name is printed in “Bush, George W.” or in “George W.
Bush” format.

There is another slight complication. One president (Jimmy Carter) has a
“Jr.” at the end of his name.Where does that go? Depending on the format
in which names are printed, this president’s name is displayed as “James E.

36 Chapter 1 Getting Started with MySQL

Carter, Jr.,” or “Carter, James E., Jr.”The “Jr.” doesn’t associate with either
first or last name, so we’ll create another column to hold a name suffix.This
illustrates how even a single value can cause problems when you’re trying to
determine how to represent your data. It also shows why it’s a good idea to
know as much as possible about the data values you’ll be working with be-
fore you put them in a database. If you have incomplete knowledge of what
your values look like, you might have to change your table structure after
you’ve already begun to use it.That’s not necessarily a disaster, but in general
it’s something you want to avoid.

n Birthplace (city and state). Like the name, this too can be represented using a single
column or multiple columns. It’s simpler to use a single column, but as with the
name, separate columns enable you to do some things you can’t do easily otherwise.
For example, it’s easier to find rows for presidents born in a particular state if city
and state are listed separately.We’ll use separate columns for the two values.

n Birth date and death date.The only special problem here is that we can’t require the
death date to be filled in because some presidents are still living.The special value
NULL means “no value,” so we can use that in the death date column to signify “still
alive.”

1.4.6.1.2 The member Table
The member table for the Historical League membership list is similar to the president
table in the sense that each row contains basic descriptive information for a single person.
But each member row contains more columns:

n Name.We’ll use the same three-column representation as for the president table:
last name, first name, and suffix.

n ID number.This is a unique value assigned to each member when membership first
begins.The League hasn’t ever used ID numbers before, but now that the records
are being made more systematic, it’s a good time to start. (I am anticipating that
you’ll find MySQL beneficial and that you’ll think of other ways to apply it to the
League’s records.When that happens, it’ll be easier to associate rows in the member
table with other member-related tables that you create if you use numbers rather
than names.)

n Expiration date. Members must renew their memberships periodically to avoid hav-
ing them lapse. For some applications, you might store the start date of the most re-
cent renewal, but this is not suitable for the League’s purposes. Memberships can be
renewed for a variable number of years (typically one, two, three, or five years), and
a date for the most recent renewal wouldn’t tell you when the next renewal must
take place.Therefore, we will store the end date of the membership. In addition, the
League allows lifetime memberships.We could represent these with a date far in the
future, but NULL seems more appropriate because “no value” logically corresponds
to “never expires.”

371.4 A MySQL Tutorial

n Email address. Publishing email addresses will make it easier for those members that
have them to communicate with each other more easily. For your purposes as
League secretary, these addresses will enable you to send out membership renewal
notices electronically rather than by postal mail.This should be easier than going to
the post office, and less expensive as well.You’ll also be able to use email to send
members the current contents of their directory entries and ask them to update the
information as necessary.

n Postal address.This is needed for contacting members who don’t have email (or who
don’t respond to it).We’ll use columns for street address, city, state, and ZIP code.

I’m assuming that all League members live in the United States. For organizations
with a membership that is international in scope, that assumption is an oversimplifi-
cation. If you want to deal with addresses from multiple countries, you’ll run into
some sticky issues having to do with the different address formats used for different
countries. For example, ZIP code is not an international standard, and some coun-
tries have provinces rather than states.

n Phone number. Like the address columns, this is useful for contacting members.
n Special interest keywords. Every member is assumed to have a general interest in

U.S. history, but members probably also have some special areas of interest.This col-
umn records those interests. Members can use it to find other members with similar
interests. (Strictly speaking, it would be better to have a separate table for keywords
that has rows consisting of one keyword and the ID for the associated member. But
that is a complication I do not want to deal with here.)

1.4.6.1.3 Creating the Historical League Tables
Now we’re ready to create the Historical League tables. For this we use the CREATE
TABLE statement, which has the following general form:

CREATE TABLE tbl_name (column_specs);

tbl_name indicates the name you want to give the table. column_specs provides the
specifications for the columns in the table. It also includes definitions for indexes, if there
are any. Indexes make lookups faster; we’ll discuss them further in Chapter 5,“Query
Optimization.”

For the president table, write the CREATE TABLE statement as follows:

CREATE TABLE president

(

last_name VARCHAR(15) NOT NULL,

first_name VARCHAR(15) NOT NULL,

suffix VARCHAR(5) NULL,

city VARCHAR(20) NOT NULL,

state VARCHAR(2) NOT NULL,

birth DATE NOT NULL,

death DATE NULL

);

38 Chapter 1 Getting Started with MySQL

You can execute this statement a couple of ways. Either enter it manually by typing it
in, or use the prewritten statement that is contained in the create_president.sql file of
the sampdb distribution.

If you want to type in the statement yourself, invoke mysql, making sampdb the
default database:

% mysql sampdb

Then enter the CREATE TABLE statement as just shown, including the trailing semi-
colon so that mysql can tell where the statement ends. Indentation doesn’t matter, and
you need not put the line breaks in the same places. For example, you can enter the state-
ment as one long line if you want.

To create the president table using a prewritten description, use the
create_president.sql file from the sampdb distribution.This file is located in the
sampdb directory that is created when you unpack the distribution. Change location into
that directory, and then run the following command:

% mysql sampdb < create_president.sql

Whichever way you invoke mysql, specify any connection parameters you might need
(hostname, username, or password) on the command line after the command name.

Now let’s look more closely at the CREATE TABLE statement. Each column specifica-
tion in the statement consists of the column name, the data type (the kind of values the
column will hold), and possibly some column attributes.

The two data types used in the president table are VARCHAR and DATE. VARCHAR(n)
means the column contains variable-length character values, with a maximum length of n
characters each.That is, they contain strings that might vary in size, but with an upper
bound on their length.You choose the value of n according to how long you expect your
values to be. state is defined as VARCHAR(2); that’s all we need for entering states by their
two-character abbreviations.The other string-valued columns need to be wider to ac-
commodate longer values.

The other data type we’ve used is DATE.This type indicates, not surprisingly, that the
column holds date values. However, what might surprise you is the format in which dates
are represented. MySQL expects dates to be written in 'CCYY-MM-DD’ format, where CC,
YY, MM, and DD represent the century, year within the century, month, and day of the
month.This is the SQL standard for date representation (also known as “ISO 8601 for-
mat”). For example, to specify a date of “July 18, 2005” in MySQL, you use '2005-07-

18', not '07-18-2005' or '18-07-2005'.
The only attributes we’re using for the columns in the president table are NULL (val-

ues can be missing) and NOT NULL (values must be filled in). Most columns are NOT NULL,
because we’ll always require a value for them.The two columns that can have NULL values
are suffix (most names don’t have one), and death (for living presidents, there is no date
of death).

391.4 A MySQL Tutorial

For the member table, the CREATE TABLE statement looks like this:

CREATE TABLE member

(

member_id INT UNSIGNED NOT NULL AUTO_INCREMENT,

PRIMARY KEY (member_id),

last_name VARCHAR(20) NOT NULL,

first_name VARCHAR(20) NOT NULL,

suffix VARCHAR(5) NULL,

expiration DATE NULL,

email VARCHAR(100) NULL,

street VARCHAR(50) NULL,

city VARCHAR(50) NULL,

state VARCHAR(2) NULL,

zip VARCHAR(10) NULL,

phone VARCHAR(20) NULL,

interests VARCHAR(255) NULL

);

As before, you can either type that statement manually into mysql or you can use a
prewritten file.The file from the sampdb distribution that contains the CREATE TABLE
statement for the member table is create_member.sql.To use it, execute this command:

% mysql sampdb < create_member.sql

In terms of data types, most columns of the member table except two are not very in-
teresting because they are created as variable-length strings.The exceptions are member_id

and expiration, which exist to hold sequence numbers and dates, respectively.
The main consideration for the member_id membership number column is that each

of its values should be unique to avoid confusion between members.An AUTO_INCREMENT

column is useful here because then we can let MySQL generate unique numbers for us
automatically when we add new members. Even though it just contains numbers, the def-
inition for member_id has several parts:

n INT signifies that the column holds integers (numeric values with no fractional part).
n UNSIGNED disallows negative values.
n NOT NULL requires that the column value must be filled in.This prevents members

from being created without an ID number.
n AUTO_INCREMENT is a special attribute in MySQL. It indicates that the column holds

sequence numbers.The AUTO_INCREMENT mechanism works like this: If you provide
no value for the member_id column when you create a new member table row,
MySQL automatically generates the next sequence number and assigns it to the
column.This special behavior also occurs if you explicitly assign the value NULL to
the column.The AUTO_INCREMENT feature makes it easy to assign a unique ID to
each new member, because MySQL generates the values for us.

The PRIMARY KEY clause indicates that the member_id column is indexed to allow fast
lookups. It also sets up the constraint that each value in the column must be unique.The

40 Chapter 1 Getting Started with MySQL

latter property is desirable for member ID values, because it prevents us from using the
same ID twice by mistake. Besides, MySQL requires every AUTO_INCREMENT column to
have some kind of index, so the table definition would be illegal without one. (Any
PRIMARY KEY column must also be NOT NULL, so if we omitted NOT NULL from the
member_id definition, MySQL would add it automatically.)

If you don’t understand that stuff about AUTO_INCREMENT and PRIMARY KEY, just think
of them as giving us a magic way of generating indexed ID numbers. It doesn’t particu-
larly matter what the values are, as long as they’re unique for each member. (When you’re
ready to learn more about how to use AUTO_INCREMENT columns, Chapter 3,“Data
Types,” covers them in detail.)

The expiration column is a DATE. It allows NULL values, so it has a default value of
NULL as well. NULL which means no date has been entered.The reason for this is that, as
mentioned earlier, we’re using the convention that expiration can be NULL to indicate
which members have a lifetime membership.

Now that you’ve told MySQL to create a couple of tables, check to make sure that it
did so as you expect. In mysql, issue the following statement to see the structure of the
president table:

mysql> DESCRIBE president;

+------------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+------------+-------------+------+-----+---------+-------+

| last_name | varchar(15) | NO | | | |

| first_name | varchar(15) | NO | | | |

| suffix | varchar(5) | YES | | NULL | |

| city | varchar(20) | NO | | | |

| state | varchar(2) | NO | | | |

| birth | date | NO | | | |

| death | date | YES | | NULL | |

+------------+-------------+------+-----+---------+-------+

If you issue a DESCRIBE member statement, mysql will show you similar information
for the member table.

DESCRIBE is useful when you forget the name of a column in a table, or need to know
its data type or how wide it is, and so forth. It’s also useful for finding out the order in
which MySQL stores columns in table rows.That order is important when you issue
INSERT or LOAD DATA statements that expect column values to be listed in the default
column order.

The information produced by DESCRIBE can be obtained in different ways. It may be
abbreviated as DESC, or written as an EXPLAIN or SHOW statement.The following statements
all are synonymous:

DESCRIBE president;

DESC president;

EXPLAIN president;

SHOW COLUMNS FROM president;

SHOW FIELDS FROM president;

411.4 A MySQL Tutorial

These statements also enable you to restrict the output to particular columns. For ex-
ample, you can add a LIKE clause at the end of a SHOW statement to display information
only for column names that match a given pattern:

mysql> SHOW COLUMNS FROM president LIKE '%name';

+------------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+------------+-------------+------+-----+---------+-------+

| last_name | varchar(15) | NO | | | |

| first_name | varchar(15) | NO | | | |

+------------+-------------+------+-----+---------+-------+

DESCRIBE president '%name' is equivalent.The ‘%’ character used here is a special
wildcard character that is described later in Section 1.4.9.7,“Pattern Matching.”

SHOW FULL COLUMNS is like SHOW COLUMNS but displays additional column information.
Try it now and see.

The SHOW statement has other forms that are useful for obtaining different types of in-
formation from MySQL. SHOW TABLES lists the tables in the default database, so with the
two tables we’ve created so far in the sampdb database, the output looks like this:

mysql> SHOW TABLES;

+------------------+

| Tables_in_sampdb |

+------------------+

| member |

| president |

+------------------+

SHOW DATABASES lists the databases that are managed by the server to which you’re
connected:

mysql> SHOW DATABASES;

+--------------------+

| Database |

+--------------------+

| information_schema |

| menagerie |

| mysql |

| sampdb |

| test |

+--------------------+

The list of databases varies from server to server, but you should see at least
information_schema and sampdb. information_schema is a special database that always
exists, and you created sampdb yourself.You’ll likely also see a database named test,
which is created during the MySQL installation procedure. Depending on your access
rights, you might see the database named mysql, which holds the grant tables that control
who can do what.

42 Chapter 1 Getting Started with MySQL

The mysqlshow client program provides a command-line interface to the same kinds
of information that the SHOW statement displays. Remember that when you run
mysqlshow, you might need to provide appropriate command-line options for username,
password, and hostname.These options are the same as when you run mysql.

With no arguments, mysqlshow displays a list of databases:

% mysqlshow

+--------------------+

| Databases |

+--------------------+

| information_schema |

| menagerie |

| mysql |

| sampdb |

| test |

+--------------------+

With a database name, mysqlshow displays the tables in the given database:

% mysqlshow sampdb

Database: sampdb

+-----------+

| Tables |

+-----------+

| member |

| president |

+-----------+

With a database and table name, mysqlshow displays information about the columns in
the table, much like the SHOW FULL COLUMNS statement.

1.4.6.2 Tables for the Grade-Keeping Project
To determine what tables are required for the grade-keeping project, let’s consider how
you might write down scores when you use a paper-based gradebook. Figure 1.2 shows a
page from your gradebook.The main body of this page is a matrix for recording scores.
There is also other information needed for making sense of the scores. Student names and
ID numbers are listed down the side of the matrix. (For simplicity, only four students are
shown.) Along the top of the matrix, you put down the dates when you give quizzes and
tests.The figure shows that you’ve given quizzes on September 3, 6, 16, and 23, and tests
on September 9 and October 1.

To keep track of this kind of information using a database, we need a score table.
What should rows in this table contain? That’s easy. For each row, we need the student
name, the date of the quiz or test, and the score. Figure 1.3 shows how some of the scores
from the gradebook look when represented in a table like this. (Dates are written the way
MySQL represents them, in 'CCYY-MM-DD’ format.)

431.4 A MySQL Tutorial

students scores

ID name
Q

9/3
Q

9/6
T

9/9
Q

9/16
Q

9/23
T

10/1 . . .

1
2
3
4

. . .

14
17
15
14
. . .

10
10
10
13
. . .

73
68
78
85
. . .

14
17
12
13
. . .

15
14
17
19
. . .

67
73
82
79
. . .

. . .

. . .

. . .

. . .

. . .

Billy
Missy
Johnny
Jenny

. . .

Figure 1.2 Example gradebook.

score table

name date score

Billy
Missy
Johnny
Jenny
Billy
Missy
Johnny
Jenny

15
14
17
19
67
73
82
79

2008-09-23
2008-09-23
2008-09-23
2008-09-23
2008-10-01
2008-10-01
2008-10-01
2008-10-01

Figure 1.3 Initial score table layout.

Unfortunately, there is a problem with setting up the table in this way, because it leaves
out some information. For example, looking at the rows in Figure 1.3, we can’t tell
whether scores are for a quiz or a test. It could be important to know score categories
when determining final grades if quizzes and tests are weighted differently.We might try
to infer the category from the range of scores on a given date (quizzes usually are worth
fewer points than a test), but that’s problematic because it relies on inference and not
something explicit in the data.

It’s possible to distinguish scores by recording the category in each row by adding a
column to the score table that contains ‘T’ or ‘Q’ for each row to indicate “test” or “quiz,”
as in Figure 1.4.This has the advantage of making the score category explicit in the data.
The disadvantage is redundancy. Observe that for all rows with a given date, the score cat-
egory column always has the same value.The scores for September 23 all have a category
of ‘Q’, and those for October 1 all have a category of ‘T’.This is unappealing. If we record
a set of scores for a quiz or test this way, not only will we be putting in the same date for
each new record in the set, we’ll be putting in the same score category over and over
again. Ugh.Who wants to enter all that redundant information?

Let’s try an alternative representation. Instead of recording score categories in the
score table, we’ll figure them out from the dates.We can keep a list of dates and use it to
keep track of what kind of “grade event” (quiz or test) occurred on each date.Then we
can determine whether any given score was from a quiz or a test by combining it with
the information in our event list: Match the date in the score table row with the date in
the grade_event table to get the event category. Figure 1.5 shows this table layout
and demonstrates how the association works for a score table row with a date of

44 Chapter 1 Getting Started with MySQL

score table

name date score

Billy
Missy
Johnny
Jenny
Billy
Missy
Johnny
Jenny

15
14
17
19
67
73
82
79

category

Q
Q
Q
Q
T
T
T
T

2008-09-23
2008-09-23
2008-09-23
2008-09-23
2008-10-01
2008-10-01
2008-10-01
2008-10-01

Figure 1.4 score table layout, revised to include score type.

September 23. By matching the row with the corresponding row in the grade_event
table, we see that the score is from a quiz.

This is much better than trying to infer the score category based on some guess. In-
stead, we’re deriving the category directly from data recorded explicitly in the database.
It’s also preferable to recording score categories in the score table; now we need record
each category only one time, rather than once per score row.

However, now we’re combining information from multiple tables. If you’re like me,
when you first hear about this kind of thing, you think,“Yeah, that’s a cute idea, but isn’t
it a lot of work to do all that looking up all the time; doesn’t it just make things more
complicated?”

In a way, that’s correct; it is more work. Keeping two lists of records is more compli-
cated than keeping one list. But take another look at your gradebook (see Figure 1.2).
Aren’t you already keeping two sets of records? Consider these facts:

n You keep track of scores using the cells in the score matrix, where each cell is in-
dexed by student name and date (down the side and along the top of the matrix).
This represents one set of records; it’s analogous to the contents of the score table.

n How do you know what kind of event each date represents? You’ve written a little
‘T’ or ‘Q’ above the date! Thus, you’re also keeping track of the association between

score table

name date score

Billy
Missy
Johnny
Jenny
Billy
Missy
Johnny
Jenny

15
14
17
19
67
73
82
79

2008-09-23
2008-09-23
2008-09-23
2008-09-23
2008-10-01
2008-10-01
2008-10-01
2008-10-01

grade_event table

date category

Q
Q
T
Q
Q
T

2008-09-03
2008-09-06
2008-09-09
2008-09-16
2008-09-23
2008-10-01

Figure 1.5 score and grade_event tables, linked on date.

451.4 A MySQL Tutorial

date and score category along the top of the matrix.This represents a second set of
records; it’s analogous to the grade_event table contents.

In other words, even though you may not think about it as such, you’re really not
doing anything with the gradebook different from what I’m proposing to do by keeping
information in two tables.The only real difference is that the two kinds of information
aren’t so explicitly separated in the paper-based gradebook.

The page in the gradebook illustrates something about the way we think of informa-
tion, and also something about the difficulty of figuring out how to put information in a
database: Our minds tend to integrate different kinds of information and interpret them
as a whole. Databases don’t work like that, which is one reason they sometimes seem arti-
ficial and unnatural. Our natural tendency to unify information makes it quite difficult
sometimes even to realize when we have multiple types of data instead of just one. Be-
cause of this, it can be a challenge to “think as a database system thinks” about how best
to represent your data.

One requirement imposed on the grade_event table by the layout shown in Figure
1.5 is that the dates must be unique because each date is used to link together rows from
the score and grade_event tables. In other words, you cannot give two quizzes on the
same day, or a quiz and a test. If you do, you’ll have two sets of records in the score table
and two records in the grade_event table, all with the same date, and you won’t be able
to tell how to match score rows with grade_event rows.

That problem will never come up if there is never more than one grade event per day.
But is it valid to assume that will never happen? It might seem so; after all, you don’t con-
sider yourself sadistic enough to give a quiz and a test on the same day. But I hope you’ll
pardon me if I’m skeptical. I’ve often heard people claim about their data,“That odd case
will never occur.”Then it turns out the odd case does occur on occasion, and usually you
have to redesign your tables to fix problems that the odd case causes.

It’s better to think about the possible problems in advance and anticipate how to han-
dle them. So, let’s suppose that you might need to record two sets of scores for the same
day sometimes. How can we handle that? As it turns out, this problem isn’t so difficult to
solve.With a minor change to the way we lay out our data, multiple events on a given
date won’t cause trouble:

1. Add a column to the grade_event table and use it to assign a unique number to
each row in the table. In effect, this gives each event its own ID number, so we’ll
call this the event_id column. (If this seems like an odd thing to do, consider that
your gradebook in Figure 1.2 already has this property implicitly:The event ID is
just like the column number in your gradebook score matrix.The number might
not be written down explicitly there and labeled “event ID,” but that’s what it is.)

2. When you put scores in the score table, record the event ID rather than the date.

The result of these changes is shown in Figure 1.6. Now you link together the score
and grade_event tables using the event ID rather than the date, and you use the

grade_event table to determine not just the category of each score, but also the date on
which it occurred.Also, it’s no longer the date that must be unique in the grade_event
table, it’s the event ID.This means you can have a dozen tests and quizzes on the same
day, and you’ll be able to keep them straight in your records. (No doubt your students will
be thrilled to hear this.)

46 Chapter 1 Getting Started with MySQL

Unfortunately, from a human standpoint, the table layout in Figure 1.6 seems less satis-
factory than the previous ones.The score table is more abstract because it contains fewer
columns that have a readily apparent meaning.The table layout shown earlier in Figure
1.4 was easy to look at and understand because the score table had columns for both
dates and score categories.The current score table shown in Figure 1.6 has columns for
neither.This seems highly removed from anything we can think about easily.Who wants
to look at a score table that has “event IDs” in it? That just doesn’t mean much to us.

At this point you reach a crossroads.You’re intrigued by the possibility of being able to
perform grade-keeping electronically and not having to do all kinds of tedious manual
calculations when assigning grades. But after considering how you actually would repre-
sent score information in a database, you’re put off by how abstract and disconnected the
representation seems to make that information.

This leads naturally to a question:“Would it be better not to use a database at all?
Maybe MySQL isn’t for me.”As you might guess, I will answer that question in the nega-
tive, because otherwise this book will come to a quick end. But when you’re thinking
about how to do a job, it’s not a bad idea to consider various alternatives and to ask
whether you’re better off using a database system such as MySQL, or something else such
as a spreadsheet program:

n The gradebook has rows and columns, and so does a spreadsheet.This makes the
gradebook and a spreadsheet conceptually and visually very similar.

n A spreadsheet program can perform calculations, so you could total up each stu-
dent’s scores using a calculation field. It might be a little tricky to weight quizzes
and tests differently, but you could do it.

On the other hand, if you want to look at just part of your data (quizzes only or tests
only, for example), perform comparisons such as boys versus girls, or display summary

score table

name event_id score

Billy
Missy
Johnny
Jenny
Billy
Missy
Johnny
Jenny

15
14
17
19
67
73
82
79

5
5
5
5
6
6
6
6

grade_event table

date category

Q
Q
T
Q
Q
T

2008-09-03
2008-09-06
2008-09-09
2008-09-16
2008-09-23
2008-10-01

event_id

1
2
3
4
5
6

Figure 1.6 score and grade_event tables, linked on event ID.

471.4 A MySQL Tutorial

information in a flexible way, it’s a different story.A spreadsheet doesn’t work so well,
whereas relational database systems perform those operations easily.

Another point to consider is that the abstract and disconnected nature of your data as
represented in a relational database is not really a big deal, anyway. It’s necessary to think
about that representation when setting up the database so that you don’t lay out your data
in a way that doesn’t make sense for what you want to do with it. However, after you de-
termine the representation, you’re going to rely on the database engine to pull together
and present your data in a way that is meaningful to you.You’re not going to look at it as
a bunch of disconnected pieces.

For example, when you retrieve scores from the score table, you don’t want to see
event IDs; you want to see dates.That’s not a problem.The database can look up dates
from the grade_event table based on the event ID and show them to you.You may also
want to see whether the scores are for tests or quizzes.That’s not a problem, either.The
database can look up score categories the same way—using event ID. Remember, that’s
what a database system like MySQL is good at: relating one thing to another to pull out
information from multiple sources to present you with what you really want to see. In the
case of our grade-keeping data, MySQL does the thinking about pulling information
together using event IDs so that you don’t have to.

Now, just to provide a little advance preview of how you’d tell MySQL to do this re-
lating of one thing to another, suppose that you want to see the scores for September 23,
2008.The query to pull out scores for an event given on a particular date looks like this:

SELECT score.name, grade_event.date, score.score, grade_event.category

FROM score INNER JOIN grade_event

ON score.event_id = grade_event.event_id

WHERE grade_event.date = '2008-09-23';

Pretty scary, huh? This query retrieves the student name, the date, score, and the score
category by joining (relating) score table rows to grade_event table rows.The result
looks like this:

+--------+------------+-------+----------+

| name | date | score | category |

+--------+----------- +-------+----------+

| Billy | 2008-09-23 | 15 | Q |

| Missy | 2008-09-23 | 14 | Q |

| Johnny | 2008-09-23 | 17 | Q |

| Jenny | 2008-09-23 | 19 | Q |

+--------+------------+-------+----------+

Notice anything familiar about the format of that information? You should; it’s the
same as the table layout shown in Figure 1.4! And you don’t need to know the event ID
to get this result.You specify the date you’re interested in and let MySQL figure out
which score rows go with that date. So, if you’ve been wondering whether all the abstrac-
tion and disconnectedness loses us anything when it comes to getting information out of
the database in a form that’s meaningful to us, it doesn’t.

48 Chapter 1 Getting Started with MySQL

Of course, after looking at that query, you might be wondering something else, too.
Namely, it looks long and complicated; isn’t writing something like that a lot of work to
go to just to find the scores for a given date? Yes, it is. However, there are ways to avoid
typing several lines of SQL each time you want to issue a query. Generally, you figure out
once how to perform a query such as that one and then you store it so that you can re-
peat it easily as necessary.We’ll see how to do this in Section 1.5,“Tips for Interacting
with mysql.”

I’ve actually jumped the gun a little bit in showing you that query. It is, believe it or
not, a little simpler than the one we’re ultimately going to use to pull out scores.The rea-
son for this is that we need to make one more change to our table layout. Instead of
recording student name in the score table, we’ll use a unique student ID. (That is, we’ll
use the value from the “ID” column of your gradebook rather than from the “Name” col-
umn.) Then we create another table called student that contains name and student_id
columns (Figure 1.7).

Why make this modification? For one thing, there might be two students with the
same name. Using a unique student ID number helps you tell their scores apart. (This is
exactly analogous to the way you can tell scores apart for a test and quiz given on the
same day by using a unique event ID rather than the date.) After making this change to
the table layout, the query we’ll use to retrieve scores for a given date becomes a little
more complex:

SELECT student.name, grade_event.date, score.score, grade_event.category

FROM grade_event INNER JOIN score INNER JOIN student

ON grade_event.event_id = score.event_id

AND score.student_id = student.student_id

WHERE grade_event.date = '2008-09-23';

If you’re concerned because you don’t find the meaning of that query immediately
obvious, don’t be. Most people wouldn’t.We’ll see the query again after we get further
along into this tutorial, but the difference between now and later is that later it will make
perfect sense to you. No, I’m not kidding.

score table

student_id event_id score

1
2
3
4
1
2
3
4

15
14
17
19
67
73
82
79

5
5
5
5
6
6
6
6

student table

student_idsexname

1
2
3
4

Billy
Missy
Johnny
Jenny

M
F
M
F

grade_event table

date category

Q
Q
T
Q
Q
T

2008-09-03
2008-09-06
2008-09-09
2008-09-16
2008-09-23
2008-10-01

event_id

1
2
3
4
5
6

Figure 1.7 score, student, and grade_event tables, linked on
student ID and event ID.

491.4 A MySQL Tutorial

You’ll note from Figure 1.7 that I added something to the student table that wasn’t in
your gradebook: It contains a column for recording sex.This will allow for simple things
such as counting the number of boys and girls in the class or more complex things like
comparing scores for boys and girls.

We’re almost done designing the tables for the grade-keeping project.We need just
one more table to record absences for attendance purposes. Its contents are relatively
straightforward: a student ID number and a date (see Figure 1.8). Each row in the table
indicates that the given student was absent on the given date.At the end of the grading
period, we’ll call on MySQL’s counting abilities to summarize the table’s contents to tell
us how many days each student was absent.

1.4.6.2.1 The student Table
Now that we know what our grade-keeping tables should look like, we’re ready to create
them.The CREATE TABLE statement for the student table looks like this:

CREATE TABLE student

(

name VARCHAR(20) NOT NULL,

sex ENUM('F','M') NOT NULL,

student_id INT UNSIGNED NOT NULL AUTO_INCREMENT,

PRIMARY KEY (student_id)

) ENGINE = InnoDB;

Observe that I’ve added something new to the CREATE TABLE statement (the ENGINE
clause at the end). I’ll explain its purpose shortly.

Type the CREATE TABLE statement into mysql or execute the following command:

% mysql sampdb < create_student.sql

The CREATE TABLE statement creates a table named student with three columns:
name, sex, and student_id.

name is a variable-length string column that can hold up to 20 characters.This name
representation is simpler than the one used for the Historical League tables; it uses a single
column rather than separate first name and last name columns.That’s because I know in
advance that no grade-keeping query examples will need to do anything that would
work better with separate columns. (Yes, that’s cheating. I admit it. In practice, you would
use multiple columns.)

absence table

date

2008-09-02
2008-09-15
2008-09-20

student_id

2
4
2

Figure 1.8 absence table.

50 Chapter 1 Getting Started with MySQL

sex indicates whether a student is a boy or a girl. It’s an ENUM (enumeration) column,
which means it can take only one of the values listed in the column specification: 'F' for
female or 'M' for male. ENUM is useful when you have a restricted set of values that a col-
umn can hold.We could have used CHAR(1) instead, but ENUM makes it more explicit
what the column values can be. If you forget what the possible values are, issue a
DESCRIBE statement. For an ENUM column, MySQL displays the list of legal enumeration
values:

mysql> DESCRIBE student 'sex';

+-------+---------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------+---------------+------+-----+---------+-------+

| sex | enum('F','M') | NO | | | |

+-------+---------------+------+-----+---------+-------+

Values in an ENUM column need not be just a single character.The sex column could
have been defined as something like ENUM('female','male') instead.

student_id is an integer column that will contain unique student ID numbers. Nor-
mally, you’d probably get ID numbers for your students from a central source, such as the
school office.We’ll just make them up, using an AUTO_INCREMENT column that is defined
in much the same way as the member_id column that is part of the member table created
earlier.

If you really were going to get student ID numbers from the office rather than gener-
ating them automatically, you would define the student_id column without the
AUTO_INCREMENT attribute, but leave in the PRIMARY KEY clause, to disallow duplicate or
NULL ID values.

Now, what about the ENGINE clause at the end of the CREATE TABLE statement? This
clause, if present, names the storage engine that MySQL should use for creating the table.
A “storage engine” is a handler that manages a certain kind of table. MySQL has several
storage engines, each with its own properties, as discussed in Section 2.6.1,“Storage
Engine Characteristics.”

If you omit the ENGINE clause, MySQL picks a default engine, which usually is
MyISAM.“ISAM” stands for “indexed sequential access method,” and the MyISAM en-
gine is based on that access method with some MySQL-specific stuff added. Earlier, we
provided no ENGINE clause when creating the Historical League tables (president and
member), so they’ll be MyISAM tables (unless you have reconfigured your server to use a
different default engine). For the grade-keeping project, we’re explicitly using the
InnoDB storage engine instead. InnoDB offers something called “referential integrity”
through the use of foreign keys.That means we can use MySQL to enforce certain con-
straints on the interrelationships between tables, something that is important for the grade-
keeping project tables:

n Score rows are tied to grade events and to students:We don’t want to allow entry of
rows into the score table unless the student ID and grade event ID are known in
the student and grade_event tables.

511.4 A MySQL Tutorial

n Similarly, absence rows are tied to students:We don’t want to allow entry of rows
into the absence table unless the student ID is known in the student table.

To enforce these constraints, we’ll set up foreign key relationships.“Foreign” means “in
another table,” and “foreign key” indicates a key value that must match a key value in that
other table.These concepts will become clearer as we create the rest of the grade-keeping
project tables.

1.4.6.2.2 The grade_event Table
The grade_event table has this definition:

CREATE TABLE grade_event

(

date DATE NOT NULL,

category ENUM('T','Q') NOT NULL,

event_id INT UNSIGNED NOT NULL AUTO_INCREMENT,

PRIMARY KEY (event_id)

) ENGINE = InnoDB;

To create the grade_event table, type that CREATE TABLE statement into mysql or ex-
ecute the following command:

% mysql sampdb < create_grade_event.sql

The date column holds a standard MySQL DATE value, in 'CCYY-MM-DD’ (year-first)
format.

category represents score category. Like sex in the student table, category is an
enumeration column.The allowable values are 'T' and 'Q', representing “test” and
“quiz.”

event_id is an AUTO_INCREMENT column that is defined as a PRIMARY KEY, similar to
student_id in the student table. Using AUTO_INCREMENT enables us to generate unique
event ID values easily.As with the student_id column in the student table, the particu-
lar values are less important than that they be unique.

All the columns are defined as NOT NULL because none of them can be missing.

1.4.6.2.3 The score Table
The score table looks like this:

CREATE TABLE score

(

student_id INT UNSIGNED NOT NULL,

event_id INT UNSIGNED NOT NULL,

score INT NOT NULL,

PRIMARY KEY (event_id, student_id),

INDEX (student_id),

FOREIGN KEY (event_id) REFERENCES grade_event (event_id),

FOREIGN KEY (student_id) REFERENCES student (student_id)

) ENGINE = InnoDB;

52 Chapter 1 Getting Started with MySQL

Here again the table definition contains something new: the FOREIGN KEY construct.
We’ll get to this in just a bit.

Create the table by typing the statement into mysql or by executing the following
command:

% mysql sampdb < create_score.sql

The score column is an INT to hold integer score values. If you wanted to allow
scores such as 58.5 that have a fractional part, you’d use one of the data types that can
represent them, such as DECIMAL or FLOAT.

The student_id and event_id columns are integer columns that indicate the student
and event to which each score applies. By using them to link to the corresponding ID
value columns in the student and grade_event tables, we’ll be able to look up the stu-
dent name and event date.There are a couple important points to note about the
student_id and event_id columns:

n We’ve made the combination of the two columns a PRIMARY KEY.This ensures that
we won’t have duplicate scores for a student for a given quiz or test. Note that it’s
the combination of event_id and student_id that is unique. In the score table,
neither value is unique by itself.There will be multiple score rows for each
event_id value (one per student), and multiple rows for each student_id value
(one for each quiz and test) taken by the student.

n For each ID column, a FOREIGN KEY clause defines a constraint.The REFERENCES
part of the clause indicates which table and column the score column refers to.
The constraint on event_id is that each value in the column must match some
event_id value in the grade_event table. Similarly, each student_id value in the
score table must match some student_id value in the student table.

The PRIMARY KEY definition ensures that we won’t create duplicate score rows.The
FOREIGN KEY definitions ensure that we won’t have rows with bogus ID values that don’t
exist in the grade_event or student tables.

Why is there an index on student_id? The reason is that, for any columns in a
FOREIGN KEY definition, there should be an index on them, or they should be the
columns that are listed first in a multiple-column index. For the FOREIGN KEY on
event_id, that column is listed first in the PRIMARY KEY. For the FOREIGN KEY on
student_id, the PRIMARY KEY cannot be used because student_id is not listed first. So,
instead, we create a separate index on student_id.

InnoDB actually will create an index on columns in a foreign key definition, but it
might not use the same index definition you would (as discussed further in Section 2.14.1,
“Creating and Using Foreign Keys”). Defining the index explicitly avoids this issue.

1.4.6.2.4 The absence Table
The absence table for recording lapses in attendance looks like this:

CREATE TABLE absence

(

531.4 A MySQL Tutorial

student_id INT UNSIGNED NOT NULL,

date DATE NOT NULL,

PRIMARY KEY (student_id, date),

FOREIGN KEY (student_id) REFERENCES student (student_id)

) ENGINE = InnoDB;

Type that statement into mysql or execute the following command:

% mysql sampdb < create_absence.sql

The student_id and date columns both are defined as NOT NULL to disallow missing
values.We make the combination of the two columns a primary key so that we don’t ac-
cidentally create duplicate rows. It wouldn’t be fair to count a student absent twice on the
same day, would it?

The absence table also includes a foreign key relationship, defined to ensure that each
student_id value matches a student_id value in the student table.

The inclusion of foreign key relationships in the grade-keeping tables is meant to en-
act constraints at data entry time:We want to insert only those rows that contain legal
grade event and student ID values. However, the foreign key relationships have another
effect as well.They set up dependencies that constrain the order in which you create and
drop tables:

n The score table refers to the grade_event and student tables, so they must be
created first before you can create the score table. Similarly, absence refers to
student, so student must exist before you can create absence.

n If you drop (remove) tables, the reverse is true.You cannot drop the grade_event
table if you have not dropped the score table first, and student cannot be dropped
unless you have first dropped score and absence.

Note
If for some reason your MySQL server does not include InnoDB support, you can create the
grade-keeping project tables as MyISAM tables instead. Substitute MyISAM for InnoDB in
each CREATE TABLE statement or just omit the ENGINE clause. However, if you use MyISAM
tables, the examples later in this book that use these tables to show the operation of for-
eign keys will not work.

1.4.7 Adding New Rows
At this point, our database and its tables have been created. Now we need to put some
rows into the tables. However, it’s useful to know how to check what’s in a table after you
put something into it, so although retrieval is not covered in any detail until later in Sec-
tion 1.4.9,“Retrieving Information,” you should know at least that the following state-
ment will show you the complete contents of any table tbl_name:

SELECT * FROM tbl_name;

54 Chapter 1 Getting Started with MySQL

Example:

mysql> SELECT * FROM student;

Empty set (0.00 sec)

Right now, mysql indicates that the table is empty, but you’ll see a different result after
trying the examples in this section.

There are several ways to add data to a database.You can insert rows into a table manu-
ally by issuing INSERT statements.You can also add rows by reading them from a file, either
in the form of prewritten INSERT statements that you feed to mysql, or as raw data values
that you load using the LOAD DATA statement or the mysqlimport client program.

This section demonstrates each method of inserting rows into your tables.What you
should do is play with all of them to familiarize yourself with them and to see how they
work. After you’ve tried each of the methods, go to Section 1.4.8,“Resetting the sampdb
Database to a Known State,” and run the commands you find there.Those commands
drop the tables, re-create them, and load them with a known set of data. By executing
them, you’ll make sure that the tables contain the same rows that I worked with while
writing the sections that follow, and you’ll get the same results shown in those sections.
(If you already know how to insert rows and just want to populate the tables, you might
want to skip directly to that section.)

1.4.7.1 Adding Rows with INSERT
Let’s start adding rows by using INSERT, an SQL statement for which you specify the table
into which you want to insert a row of data and the values to put in the row.The INSERT
statement has several forms.

You can specify values for all the columns.The syntax looks like this:

INSERT INTO tbl_name VALUES(value1,value2,...);

Example:

mysql> INSERT INTO student VALUES('Kyle','M',NULL);

mysql> INSERT INTO grade_event VALUES('2008-09-03','Q',NULL);

With this syntax, the VALUES list must contain a value for each column in the table, in
the order that the columns are stored in the table. (Normally, this is the order in which the
columns are specified in the table’s CREATE TABLE statement.) If you’re not sure what the
column order is, issue a DESCRIBE tbl_name statement to find out.

You can quote string and date values in MySQL using either single or double quotes,
but single quotes are more standard.The NULL values are for the AUTO_INCREMENT columns
in the student and grade_event tables. Inserting a “missing value” into an
AUTO_INCREMENT column causes MySQL to generate the next sequence number for the
column.

MySQL enables you to insert several rows into a table with a single INSERT statement
by specifying multiple value lists:

INSERT INTO tbl_name VALUES(...),(...),... ;

551.4 A MySQL Tutorial

Example:

mysql> INSERT INTO student VALUES('Avery','F',NULL),('Nathan','M',NULL);

This involves less typing than multiple INSERT statements, and also is more efficient for
the server to execute. Note that parentheses enclose the set of column values for each row.
The following statement is illegal because it does not contain the correct number of
values within parentheses:

mysql> INSERT INTO student VALUES('Avery','F',NULL,'Nathan','M',NULL);

ERROR 1136 (21S01): Column count doesn't match value count at row 1

You can name the columns to which you want to assign values, and then list the
values.This is useful when you want to create a record for which only a few columns
need to be set up initially.

INSERT INTO tbl_name (col_name1,col_name2,...) VALUES(value1,value2,...);

Example:

mysql> INSERT INTO member (last_name,first_name) VALUES('Stein','Waldo');

This form of INSERT allows multiple value lists, too:

mysql> INSERT INTO student (name,sex) VALUES('Abby','F'),('Joseph','M');

For any column not named in the column list, MySQL assigns its default value. For ex-
ample, the preceding statements contain no values for the member_id or student_id
columns, so MySQL assigns the default value of NULL. member_id and student_id are
AUTO_INCREMENT columns, so the net effect in each case is to generate and assign the next
sequence number, just as if you had assigned NULL explicitly.

You can provide a list of column/value assignments. This syntax uses a SET clause
containing col_name=value assignments rather than a VALUES() list:

INSERT INTO tbl_name SET col_name1=value1, col_name2=value2, ... ;

Example:

mysql> INSERT INTO member SET last_name='Stein',first_name='Waldo';

For any column not named in the SET clause, MySQL assigns its default value.This
form of INSERT cannot be used to insert multiple rows with a single statement.

Now that you know how INSERT works, you can use it to see whether the foreign key
relationships we set up really prevent entry of bad rows in the score and absence tables.
Try inserting rows that contain ID values that are not present in the grade_event or
student tables:

mysql> INSERT INTO score (event_id,student_id,score) VALUES(9999,9999,0);

ERROR 1452 (23000): Cannot add or update a child row: a foreign key

constraint fails (`sampdb`.`score`, CONSTRAINT `score_ibfk_1` FOREIGN

KEY (`event_id`) REFERENCES `grade_event` (`event_id`))

mysql> INSERT INTO absence SET student_id=9999, date='2008-09-16';

ERROR 1452 (23000): Cannot add or update a child row: a foreign key

56 Chapter 1 Getting Started with MySQL

constraint fails (`sampdb`.`absence`, CONSTRAINT `absence_ibfk_1`

FOREIGN KEY (`student_id`) REFERENCES `student` (`student_id`))

The error messages show that the constraints are working.

1.4.7.2 Adding New Rows from a File
Another method for loading rows into a table is to read them directly from a file.The file
can contain INSERT statements or it can contain raw data. For example, the sampdb distri-
bution contains a file named insert_president.sql that contains INSERT statements for
adding new rows to the president table.Assuming that you are in the same directory
where that file is located, you can execute those statements like this:

% mysql sampdb < insert_president.sql

If you’re already running mysql, you can use a source command to read the file:

mysql> source insert_president.sql;

If you have the rows stored in a file as raw data values rather than as INSERT statements,
you can load them with the LOAD DATA statement or with the mysqlimport client pro-
gram.

The LOAD DATA statement acts as a bulk loader that reads data from a file. Use it from
within mysql:

mysql> LOAD DATA LOCAL INFILE 'member.txt' INTO TABLE member;

Assuming that the member.txt data file is located in your current directory on the
client host, this statement reads it and sends its contents to the server to be loaded into the
member table. (The member.txt file can be found in the sampdb distribution.)

By default, the LOAD DATA statement assumes that column values are separated by tabs
and that lines end with newlines (also known as “linefeeds”). It also assumes that the val-
ues are present in the order that columns are stored in the table. It’s possible to read files in
other formats or to specify a different column order. See the entry for LOAD DATA in
Appendix E,“SQL Syntax Reference,” for details.

The keyword LOCAL in the LOAD DATA statement causes the data file to be read by the
client program (in this case mysql) and sent to the server to be loaded. It is possible to
omit LOCAL, but then the file must be located on the server host and you need the FILE
server access privilege, which most MySQL users don’t have.You should also specify the
full pathname to the file so that the server can find it.

If you get the following error with LOAD DATA LOCAL, the LOCAL capability might be
disabled by default:

ERROR 1148 (42000): The used command is not allowed with this MySQL version

Try again after invoking mysql with the --local-infile option. For example:

% mysql --local-infile sampdb

mysql> LOAD DATA LOCAL INFILE 'member.txt' INTO TABLE member;

If that doesn’t work, either, the server also needs to be told to allow LOCAL. See
Chapter 12 for information on how to do this.

571.4 A MySQL Tutorial

Another way to load a data file is to use the mysqlimport client program.You invoke
mysqlimport from the command prompt, and it generates a LOAD DATA statement for you:

% mysqlimport --local sampdb member.txt

As with the mysql program, if you need to specify connection parameters, indicate
them on the command line preceding the database name.

For the command just shown, mysqlimport generates a LOAD DATA statement to load
member.txt into the member table.That’s because mysqlimport determines the table name
from the name of the data file, using everything up to the first period of the filename as
the table name. For example, mysqlimport would load files named member.txt and
president.txt into the member and president tables.This means you should choose
your filenames carefully or mysqlimport won’t use the correct table name. If you wanted
to load files named member1.txt and member2.txt, mysqlimport would think it should
load them into tables named member1 and member2. If what you really want is to load
both files into the member table, you could use names like member.1.txt and
member.2.txt, or member.txt1 and member.txt2.

1.4.8 Resetting the sampdb Database to a Known State
After you have tried the row-adding methods just described in the preceding discussion,
you should re-create and load the sampdb database tables to reset the database so that its
contents are the same as what the next sections assume. Using the mysql program in the
directory containing the sampdb distribution files, issue these statements:

% mysql sampdb

mysql> source create_member.sql;

mysql> source create_president.sql;

mysql> source insert_member.sql;

mysql> source insert_president.sql;

mysql> DROP TABLE IF EXISTS absence, score, grade_event, student;

mysql> source create_student.sql;

mysql> source create_grade_event.sql;

mysql> source create_score.sql;

mysql> source create_absence.sql;

mysql> source insert_student.sql;

mysql> source insert_grade_event.sql;

mysql> source insert_score.sql;

mysql> source insert_absence.sql;

If you don’t want to type those statements individually (which is likely), try this com-
mand on Unix:

% sh init_all_tables.sh sampdb

On Windows, use this command instead:

C:\> init_all_tables.bat sampdb

58 Chapter 1 Getting Started with MySQL

Whichever command you use, if you need to specify connection parameters, list them
on the command line after the command name.

1.4.9 Retrieving Information
Our tables have been created and loaded with data now, so let’s see what we can do with
that data.To retrieve and display information from your tables, use the SELECT statement.
It enables you to retrieve information in as general or specific a manner as you like.You
can display the entire contents of a table:

SELECT * FROM president;

Or you can select as little as a single column of a single row:

SELECT birth FROM president WHERE last_name = 'Eisenhower';

The SELECT statement has several clauses that you combine as necessary to retrieve the
information in which you’re interested. Each of these clauses can be simple or complex, so
SELECT statements as a whole can be simple or complex. However, rest assured that you
won’t find any page-long queries that take an hour to figure out in this book. (When I see
arm-length queries in something that I’m reading, I generally skip right over them, and
I’m guessing that you do the same.)

A simplified syntax of the SELECT statement is:

SELECT what to retrieve

FROM table or tables

WHERE conditions that data must satisfy;

To write a SELECT statement, specify what you want to retrieve and then some
optional clauses.The clauses just shown (FROM and WHERE) are the most common ones,
although others can be specified as well, such as GROUP BY, ORDER BY, and LIMIT.
Remember that SQL is a free-format language, so when you write your own SELECT
statements, you need not put line breaks in the same places I do.

The FROM clause is usually present, but it need not be if you don’t need to name any
tables. For example, the following query simply displays the values of some expressions.
These can be calculated without referring to the contents of any table, so no FROM clause
is necessary:

mysql> SELECT 2+2, 'Hello, world', VERSION();

+-----+--------------+------------+

| 2+2 | Hello, world | VERSION() |

+-----+--------------+------------+

| 4 | Hello, world | 5.0.60-log |

+-----+--------------+------------+

When you do use a FROM clause to specify a table from which to retrieve data, you’ll
also indicate which columns you want to see.The most “generic” form of SELECT uses *
as a column specifier, which is shorthand for “all columns.”The following query retrieves
all columns from the student table and displays them:

591.4 A MySQL Tutorial

mysql> SELECT * FROM student;

+-----------+-----+------------+

| name | sex | student_id |

+-----------+-----+------------+

| Megan | F | 1 |

| Joseph | M | 2 |

| Kyle | M | 3 |

| Katie | F | 4 |

...

The columns are displayed in the order that MySQL stores them in the table.This is
the same order in which the columns are listed when you issue a DESCRIBE student
statement. (The “...” shown at the end of the example indicates that the query returns
more rows than are shown.)

You can explicitly name the column or columns you want to see.To select just student
names, do this:

mysql> SELECT name FROM student;

+-----------+

| name |

+-----------+

| Megan |

| Joseph |

| Kyle |

| Katie |

...

If you name more than one column, separate them by commas.The following state-
ment is equivalent to SELECT * FROM student, but names each column explicitly:

mysql> SELECT name, sex, student_id FROM student;

+-----------+-----+------------+

| name | sex | student_id |

+-----------+-----+------------+

| Megan | F | 1 |

| Joseph | M | 2 |

| Kyle | M | 3 |

| Katie | F | 4 |

...

You can name columns in any order:

SELECT name, student_id FROM student;

SELECT student_id, name FROM student;

You can even name a column more than once if you like, although generally that’s kind
of pointless.

It’s also possible to select columns from more than one table at a time.This is called a
“join” between tables.We’ll get to joins in Section 1.4.9.10,“Retrieving Information from
Multiple Tables.”

60 Chapter 1 Getting Started with MySQL

Column names are not case sensitive in MySQL, so the following queries all retrieve
the same information:

SELECT name, student_id FROM student;

SELECT NAME, STUDENT_ID FROM student;

SELECT nAmE, sTuDeNt_Id FROM student;

On the other hand, database and table names might be case sensitive. It depends on the
filesystem used on the server host and on how MySQL is configured.Windows filenames
are not case sensitive, so a server running on Windows does not treat database and table
names as case sensitive. On Unix systems, filenames generally are case sensitive, so a server
would treat database and table names as case sensitive.An exception to this occurs under
Mac OS X, which offers both HFS+ and UFS filesystems: HFS+ is the default, and it uses
case-insensitive filenames.

If you want to have MySQL treat database and table names as not case sensitive, you
can configure the server that way. See Section 11.2.5,“Operating System Constraints on
Database Object Names.”

1.4.9.1 Specifying Retrieval Criteria
To restrict the set of rows retrieved by the SELECT statement, use a WHERE clause that spec-
ifies criteria for selecting rows.You can select rows by looking for column values that sat-
isfy various criteria, and you can look for different types of values. For example, you can
search for certain numeric values:

mysql> SELECT * FROM score WHERE score > 95;

+------------+----------+-------+

| student_id | event_id | score |

+------------+----------+-------+

| 5 | 3 | 97 |

| 18 | 3 | 96 |

| 1 | 6 | 100 |

| 5 | 6 | 97 |

| 11 | 6 | 98 |

| 16 | 6 | 98 |

+------------+----------+-------+

You can look for string values containing character data. For the default character set
and collation (sort order), string comparisons are not case sensitive:

mysql> SELECT last_name, first_name FROM president

-> WHERE last_name='ROOSEVELT';

+-----------+-------------+

| last_name | first_name |

+-----------+-------------+

| Roosevelt | Theodore |

| Roosevelt | Franklin D. |

+-----------+-------------+

611.4 A MySQL Tutorial

mysql> SELECT last_name, first_name FROM president

-> WHERE last_name='roosevelt';

+-----------+-------------+

| last_name | first_name |

+-----------+-------------+

| Roosevelt | Theodore |

| Roosevelt | Franklin D. |

+-----------+-------------+

You can look for dates:

mysql> SELECT last_name, first_name, birth FROM president

-> WHERE birth < '1750-1-1';

+------------+------------+------------+

| last_name | first_name | birth |

+------------+------------+------------+

| Washington | George | 1732-02-22 |

| Adams | John | 1735-10-30 |

| Jefferson | Thomas | 1743-04-13 |

+------------+------------+------------+

It’s also possible to search for combinations of values:

mysql> SELECT last_name, first_name, birth, state FROM president

-> WHERE birth < '1750-1-1' AND (state='VA' OR state='MA');

+------------+------------+------------+-------+

| last_name | first_name | birth | state |

+------------+------------+------------+-------+

| Washington | George | 1732-02-22 | VA |

| Adams | John | 1735-10-30 | MA |

| Jefferson | Thomas | 1743-04-13 | VA |

+------------+------------+------------+-------+

Expressions in WHERE clauses can use arithmetic operators (Table 1.1), comparison op-
erators (Table 1.2), and logical operators (Table 1.3).You can also use parentheses to group
parts of an expression. Operations can be performed using constants, table columns, and
function calls.We will have occasion to use several of MySQL’s functions in statements
throughout this tutorial, but there are far too many to show here. See Appendix C,
“Operator and Function Reference,” for a complete list.

Table 1.1 Arithmetic Operators

Operator Meaning

+ Addition

- Subtraction

62 Chapter 1 Getting Started with MySQL

When you’re formulating a statement that requires logical operators, take care not to
confuse the meaning of the logical AND operator with the way we use “and” in everyday
speech. Suppose that you want to find “presidents born in Virginia and presidents born in
Massachusetts.”That condition is phrased using “and,” which seems to imply that you’d
write the statement as follows:

mysql> SELECT last_name, first_name, state FROM president

-> WHERE state='VA' AND state='MA';

Empty set (0.36 sec)

Table 1.2 Comparison Operators

Operator Meaning

< Less than

<= Less than or equal to

= Equal to

<=> Equal to (works even for NULL values)

<> or != Not equal to

>= Greater than or equal to

> Greater than

Table 1.3 Logical Operators

Operator Meaning

AND Logical AND

OR Logical OR

XOR Logical exclusive-OR

NOT Logical negation

Table 1.1 Arithmetic Operators

Operator Meaning

* Multiplication

/ Division

DIV Integer division

% Modulo (remainder after division)

631.4 A MySQL Tutorial

It’s clear from the empty result that the statement didn’t work.Why not? Because what
the statement really means is “Select presidents who were born both in Virginia and in
Massachusetts,” which makes no sense. In English, you might express the statement using
“and,” but in SQL, you connect the two conditions with OR:

mysql> SELECT last_name, first_name, state FROM president

-> WHERE state='VA' OR state='MA';

+------------+-------------+-------+

| last_name | first_name | state |

+------------+-------------+-------+

| Washington | George | VA |

| Adams | John | MA |

| Jefferson | Thomas | VA |

| Madison | James | VA |

| Monroe | James | VA |

| Adams | John Quincy | MA |

| Harrison | William H. | VA |

| Tyler | John | VA |

| Taylor | Zachary | VA |

| Wilson | Woodrow | VA |

| Kennedy | John F. | MA |

| Bush | George H.W. | MA |

+------------+-------------+-------+

This disjunction between natural language and SQL is something to be aware of, not
just when formulating your own queries, but also when you write queries for other peo-
ple. It’s best to listen carefully as they describe what they want to retrieve, but you don’t
necessarily want to transcribe their descriptions into SQL using the same logical opera-
tors. For the example just described, the proper English equivalent for the query is “Select
presidents who were born either in Virginia or in Massachusetts.”

You might find it easier to use the IN() operator when formulating queries like this,
where you’re looking for any of several values.The preceding query can be rewritten us-
ing IN() like this:

SELECT last_name, first_name, state FROM president

WHERE state IN('VA','MA');

IN() is especially convenient when you’re comparing a column to a large number of
values.

1.4.9.2 The NULL Value
The NULL value is special. It means “no value” or “unknown value,” so you can’t compare
it to known values the way you can compare two known values to each other. If you at-
tempt to use NULL with the usual arithmetic comparison operators, the result is undefined:

mysql> SELECT NULL < 0, NULL = 0, NULL <> 0, NULL > 0;

64 Chapter 1 Getting Started with MySQL

+----------+----------+-----------+----------+

| NULL < 0 | NULL = 0 | NULL <> 0 | NULL > 0 |

+----------+----------+-----------+----------+

| NULL | NULL | NULL | NULL |

+----------+----------+-----------+----------+

In fact, you can’t even compare NULL to itself because the result of comparing two un-
known values cannot be determined:

mysql> SELECT NULL = NULL, NULL <> NULL;

+-------------+--------------+

| NULL = NULL | NULL <> NULL |

+-------------+--------------+

| NULL | NULL |

+-------------+--------------+

To perform searches for NULL values, you must use a special syntax. Instead of using =,
<>, or != to test for equality or inequality, use IS NULL or IS NOT NULL. For example,
presidents who are still living have their death dates represented as NULL in the president
table.To find them, use the following query:

mysql> SELECT last_name, first_name FROM president WHERE death IS NULL;

+-----------+-------------+

| last_name | first_name |

+-----------+-------------+

| Carter | James E. |

| Bush | George H.W. |

| Clinton | William J. |

| Bush | George W. |

+-----------+-------------+

To find non-NULL values, use IS NOT NULL.This query finds names that have a suffix part:

mysql> SELECT last_name, first_name, suffix

-> FROM president WHERE suffix IS NOT NULL;

+-----------+------------+--------+

| last_name | first_name | suffix |

+-----------+------------+--------+

| Carter | James E. | Jr. |

+-----------+------------+--------+

The MySQL-specific <=> comparison operator is true even for NULL-to-NULL compar-
isons.The preceding two queries can be rewritten to use this operator as follows:

SELECT last_name, first_name FROM president WHERE death <=> NULL;

SELECT last_name, first_name, suffix

FROM president WHERE NOT (suffix <=> NULL);

651.4 A MySQL Tutorial

1.4.9.3 Sorting Query Results
Every MySQL user notices sooner or later that if you create a table, load some rows into
it, and then issue a SELECT * FROM tbl_name statement, the rows tend to be retrieved in
the same order in which they were inserted.That makes a certain intuitive sense, so it’s
natural to assume that rows are retrieved in insertion order by default. But that is not the
case. If you delete and insert rows after loading the table initially, those actions likely will
change the order in which the server returns the table’s rows. (Deleting rows puts “holes”
in the table, which MySQL tries to fill later when you insert new rows.)

What you should remember about row retrieval order is this:There is no guarantee
about the order in which the server returns rows, unless you specify that order yourself.To
do so, add an ORDER BY clause to the statement that defines the sort order you want.The
following query returns president names, sorted lexically (alphabetically) by last name:

mysql> SELECT last_name, first_name FROM president

-> ORDER BY last_name;

+------------+---------------+

| last_name | first_name |

+------------+---------------+

| Adams | John |

| Adams | John Quincy |

| Arthur | Chester A. |

| Buchanan | James |

...

Ascending order is the default sort order in an ORDER BY clause.You can specify explic-
itly whether to sort a column in ascending or descending order by using the ASC or DESC
keywords after column names in the ORDER BY clause. For example, to sort president
names in reverse (descending) name order, use DESC like this:

mysql> SELECT last_name, first_name FROM president

-> ORDER BY last_name DESC;

+------------+---------------+

| last_name | first_name |

+------------+---------------+

| Wilson | Woodrow |

| Washington | George |

| Van Buren | Martin |

| Tyler | John |

...

You can sort using multiple columns, and each column can be sorted independently in
ascending or descending order.The following query retrieves rows from the president
table, sorts them by reverse state of birth, and by ascending last name within each state:

mysql> SELECT last_name, first_name, state FROM president

-> ORDER BY state DESC, last_name ASC;

66 Chapter 1 Getting Started with MySQL

+------------+---------------+-------+

| last_name | first_name | state |

+------------+---------------+-------+

| Arthur | Chester A. | VT |

| Coolidge | Calvin | VT |

| Harrison | William H. | VA |

| Jefferson | Thomas | VA |

| Madison | James | VA |

| Monroe | James | VA |

| Taylor | Zachary | VA |

| Tyler | John | VA |

| Washington | George | VA |

| Wilson | Woodrow | VA |

| Eisenhower | Dwight D. | TX |

| Johnson | Lyndon B. | TX |

...

NULL values in a column sort at the beginning for ascending sorts and at the end for
descending sorts. If you want to ensure that NULL values will appear at a given end of the
sort order, add an extra sort column that distinguishes NULL from non-NULL values. For ex-
ample, if you sort presidents by reverse death date, living presidents (those with NULL death
dates) will appear at the end of the sort order.To put them at the beginning instead, use
this query:

mysql> SELECT last_name, first_name, death FROM president

-> ORDER BY IF(death IS NULL,0,1), death DESC;

+------------+---------------+------------+

| last_name | first_name | death |

+------------+---------------+------------+

| Clinton | William J. | NULL |

| Bush | George H.W. | NULL |

| Carter | James E. | NULL |

| Bush | George W. | NULL |

| Ford | Gerald R. | 2006-12-26 |

| Reagan | Ronald W. | 2004-06-05 |

| Nixon | Richard M. | 1994-04-22 |

| Johnson | Lyndon B. | 1973-01-22 |

...

| Jefferson | Thomas | 1826-07-04 |

| Adams | John | 1826-07-04 |

| Washington | George | 1799-12-14 |

+------------+---------------+------------+

The IF() function evaluates the expression given by its first argument and returns the
value of its second or third argument, depending on whether the expression is true or
false. For the query shown, IF() evaluates to 0 for NULL values and 1 for non-NULL values.
This places all NULL values ahead of all non-NULL values.

671.4 A MySQL Tutorial

1.4.9.4 Limiting Query Results
When a query returns many rows, but you want to see only a few of them, add a LIMIT
clause. LIMIT is especially useful in conjunction with ORDER BY. MySQL enables you to
limit the output of a query to the first n rows of the result that otherwise would be re-
turned.The following query selects the five presidents who were born first:

mysql> SELECT last_name, first_name, birth FROM president

-> ORDER BY birth LIMIT 5;

+------------+------------+------------+

| last_name | first_name | birth |

+------------+------------+------------+

| Washington | George | 1732-02-22 |

| Adams | John | 1735-10-30 |

| Jefferson | Thomas | 1743-04-13 |

| Madison | James | 1751-03-16 |

| Monroe | James | 1758-04-28 |

+------------+------------+------------+

If you sort in reverse order, using ORDER BY birth DESC, you get the five most re-
cently born presidents instead:

mysql> SELECT last_name, first_name, birth FROM president

-> ORDER BY birth DESC LIMIT 5;

+-----------+-------------+------------+

| last_name | first_name | birth |

+-----------+-------------+------------+

| Clinton | William J. | 1946-08-19 |

| Bush | George W. | 1946-07-06 |

| Carter | James E. | 1924-10-01 |

| Bush | George H.W. | 1924-06-12 |

| Kennedy | John F. | 1917-05-29 |

+-----------+-------------+------------+

LIMIT also enables you to pull a section of rows out of the middle of a result set.To do
this, you must specify two values.The first value is the number of rows to skip at the be-
ginning of the result set, and the second is the number of rows to return.The following
query is similar to the previous one but returns 5 rows after skipping the first 10:

mysql> SELECT last_name, first_name, birth FROM president

-> ORDER BY birth DESC LIMIT 10, 5;

+-----------+-------------+------------+

| last_name | first_name | birth |

+-----------+-------------+------------+

| Truman | Harry S | 1884-05-08 |

| Roosevelt | Franklin D. | 1882-01-30 |

| Hoover | Herbert C. | 1874-08-10 |

| Coolidge | Calvin | 1872-07-04 |

| Harding | Warren G. | 1865-11-02 |

+-----------+-------------+------------+

68 Chapter 1 Getting Started with MySQL

To pull a randomly selected row or set of rows from a table, use ORDER BY RAND() in
conjunction with LIMIT:

mysql> SELECT last_name, first_name FROM president

-> ORDER BY RAND() LIMIT 1;

+-----------+------------+

| last_name | first_name |

+-----------+------------+

| Johnson | Lyndon B. |

+-----------+------------+

mysql> SELECT last_name, first_name FROM president

-> ORDER BY RAND() LIMIT 3;

+-----------+-------------+

| last_name | first_name |

+-----------+-------------+

| Harding | Warren G. |

| Bush | George H.W. |

| Jefferson | Thomas |

+-----------+-------------+

1.4.9.5 Calculating and Naming Output Column Values
Most of the queries shown so far produce output by retrieving values from tables. MySQL
also enables you to calculate output values from the results of expressions, without refer-
ence to tables. Expressions can be simple or complex.The following query evaluates a
simple expression (a constant) and a more complex expression involving several arithmetic
operations and a couple of function calls that produce the square root of an expression
and format the result to three decimal places:

mysql> SELECT 17, FORMAT(SQRT(25+13),3);

+----+-----------------------+

| 17 | FORMAT(SQRT(25+13),3) |

+----+-----------------------+

| 17 | 6.164 |

+----+-----------------------+

Expressions can also refer to table columns:

mysql> SELECT CONCAT(first_name,' ',last_name),CONCAT(city,', ',state)

-> FROM president;

+----------------------------------+-------------------------+

| CONCAT(first_name,' ',last_name) | CONCAT(city,', ',state) |

+----------------------------------+-------------------------+

| George Washington | Wakefield, VA |

| John Adams | Braintree, MA |

| Thomas Jefferson | Albemarle County, VA |

| James Madison | Port Conway, VA |

...

691.4 A MySQL Tutorial

That query formats president names as a single string by concatenating first and last
names separated by a space. It also formats birthplaces as the birth cities and states sepa-
rated by a comma and a space.

When you use an expression to calculate a column value, the expression becomes the
column’s name and is used for its heading.That can lead to a very wide column if the ex-
pression is long, as the preceding query illustrates.To deal with this, you can assign the col-
umn a different name using the AS name construct. Such names are called “column
aliases.”The output from the previous query can be made more meaningful like this:

mysql> SELECT CONCAT(first_name,' ',last_name) AS Name,

-> CONCAT(city,', ',state) AS Birthplace

-> FROM president;

+-----------------------+-------------------------+

| Name | Birthplace |

+-----------------------+-------------------------+

| George Washington | Wakefield, VA |

| John Adams | Braintree, MA |

| Thomas Jefferson | Albemarle County, VA |

| James Madison | Port Conway, VA |

...

If the column alias contains spaces, put it in quotes:

mysql> SELECT CONCAT(first_name,' ',last_name) AS 'President Name',

-> CONCAT(city,', ',state) AS 'Place of Birth'

-> FROM president;

+-----------------------+-------------------------+

| President Name | Place of Birth |

+-----------------------+-------------------------+

| George Washington | Wakefield, VA |

| John Adams | Braintree, MA |

| Thomas Jefferson | Albemarle County, VA |

| James Madison | Port Conway, VA |

...

The keyword AS is optional when you provide a column alias:

mysql> SELECT 1, 2 AS two, 3 three;

+---+-----+-------+

| 1 | two | three |

+---+-----+-------+

| 1 | 2 | 3 |

+---+-----+-------+

I prefer to include the AS.Without it, it’s easier to inadvertently write a query that is
legal but does not produce the intended result. For example, you might write a query to

70 Chapter 1 Getting Started with MySQL

select president names like this, forgetting the comma between the first_name and
last_name columns:

mysql> SELECT first_name last_name FROM president;

+---------------+

| last_name |

+---------------+

| George |

| John |

| Thomas |

| James |

...

As a result, the query does not display two columns. Instead, it displays only the
first_name column and treats last_name as the column alias, which becomes its label. If
a query does not retrieve the number of columns you expect and uses column names
other than you expect, be on the lookout for a missing comma somewhere between
columns.

1.4.9.6 Working with Dates
The principal thing to keep in mind when using dates in MySQL is that it always expects
dates with the year first.To write July 27, 2008, use '2008-07-27'. Do not use '07-27-
2008' or '27-07-2008', as you might be more accustomed to writing.

You can perform many kinds of operations on dates:

n Sort by date. (We’ve seen this several times already.)
n Look for particular dates or a range of dates.
n Extract parts of a date value, such as the year, month, or day.
n Calculate the difference between dates.
n Compute a date by adding an interval to or subtracting an interval from another date.

Some examples of these operations follow.
To look for particular dates, either by exact value or in relation to another value, com-

pare a DATE column to the value in which you’re interested:

mysql> SELECT * FROM grade_event WHERE date = '2008-10-01';

+------------+----------+----------+

| date | category | event_id |

+------------+----------+----------+

| 2008-10-01 | T | 6 |

+------------+----------+----------+

mysql> SELECT last_name, first_name, death

-> FROM president

-> WHERE death >= '1970-01-01' AND death < '1980-01-01';

+-----------+------------+------------+

| last_name | first_name | death |

+-----------+------------+------------+

711.4 A MySQL Tutorial

| Truman | Harry S | 1972-12-26 |

| Johnson | Lyndon B. | 1973-01-22 |

+-----------+------------+------------+

To test or retrieve parts of dates, use functions such as YEAR(), MONTH(), or
DAYOFMONTH(). For example, to find presidents who were born in March, look for dates
with a month value of 3:

mysql> SELECT last_name, first_name, birth

-> FROM president WHERE MONTH(birth) = 3;

+-----------+------------+------------+

| last_name | first_name | birth |

+-----------+------------+------------+

| Madison | James | 1751-03-16 |

| Jackson | Andrew | 1767-03-15 |

| Tyler | John | 1790-03-29 |

| Cleveland | Grover | 1837-03-18 |

+-----------+------------+------------+

The query also can be written in terms of the month name:

mysql> SELECT last_name, first_name, birth

-> FROM president WHERE MONTHNAME(birth) = 'March';

+-----------+------------+------------+

| last_name | first_name | birth |

+-----------+------------+------------+

| Madison | James | 1751-03-16 |

| Jackson | Andrew | 1767-03-15 |

| Tyler | John | 1790-03-29 |

| Cleveland | Grover | 1837-03-18 |

+-----------+------------+------------+

To be more specific, you can combine tests for MONTH() and DAYOFMONTH() to find
presidents born on a particular day in March:

mysql> SELECT last_name, first_name, birth

-> FROM president WHERE MONTH(birth) = 3 AND DAYOFMONTH(birth) = 29;

+-----------+------------+------------+

| last_name | first_name | birth |

+-----------+------------+------------+

| Tyler | John | 1790-03-29 |

+-----------+------------+------------+

This is the kind of query you’d use for generating one of those list of “celebrities who
have birthdays today,” such as you see in the Entertainment section of your newspaper.
However, if you want to select rows that match month and day for “the current date,”
you don’t have to plug in literal values the way the previous query did.To check for pres-
idents born today, no matter what day of the year today is, compare their birthdays to the
month and day parts of CURDATE(), which always returns the current date:

72 Chapter 1 Getting Started with MySQL

SELECT last_name, first_name, birth

FROM president WHERE MONTH(birth) = MONTH(CURDATE())

AND DAYOFMONTH(birth) = DAYOFMONTH(CURDATE());

You can subtract one date from another, which enables you to find the interval be-
tween dates. For example, to determine which presidents lived the longest, compute age at
death by taking the difference from birth date.The TIMESTAMPDIFF() function is useful
here because it takes an argument for specifying the unit in which to express the result
(YEAR in this case):

mysql> SELECT last_name, first_name, birth, death,

-> TIMESTAMPDIFF(YEAR, birth, death) AS age

-> FROM president WHERE death IS NOT NULL

-> ORDER BY age DESC LIMIT 5;

+-----------+------------+------------+------------+------+

| last_name | first_name | birth | death | age |

+-----------+------------+------------+------------+------+

| Reagan | Ronald W. | 1911-02-06 | 2004-06-05 | 93 |

| Ford | Gerald R. | 1913-07-14 | 2006-12-26 | 93 |

| Adams | John | 1735-10-30 | 1826-07-04 | 90 |

| Hoover | Herbert C. | 1874-08-10 | 1964-10-20 | 90 |

| Truman | Harry S | 1884-05-08 | 1972-12-26 | 88 |

+-----------+------------+------------+------------+------+

Another way to compute a difference between dates, when you want the difference in
days, is to use the TO_DAYS() function that converts a date to days. Determining how far
dates are from some reference date is one application for this function. For example, you
can tell which Historical League members need to renew their memberships soon: Com-
pute the difference between each member’s expiration date and the current date, and if it’s
less than some threshold value, a renewal will soon be needed.The following query finds
memberships that have already expired or that will be due for renewal within 60 days:

SELECT last_name, first_name, expiration FROM member

WHERE (TO_DAYS(expiration) - TO_DAYS(CURDATE())) < 60;

The equivalent statement using TIMESTAMPDIFF() looks like this:

SELECT last_name, first_name, expiration FROM member

WHERE TIMESTAMPDIFF(DAY, CURDATE(), expiration) < 60;

To calculate one date from another, you can use DATE_ADD() or DATE_SUB().These
functions take a date and an interval and produce a new date. For example:

mysql> SELECT DATE_ADD('1970-1-1', INTERVAL 10 YEAR);

+--+

| DATE_ADD('1970-1-1', INTERVAL 10 YEAR) |

+--+

| 1980-01-01 |

+--+

mysql> SELECT DATE_SUB('1970-1-1', INTERVAL 10 YEAR);

+--+

731.4 A MySQL Tutorial

| DATE_SUB('1970-1-1', INTERVAL 10 YEAR) |

+--+

| 1960-01-01 |

+--+

A query shown earlier in this section selected presidents who died during the 1970s, us-
ing literal dates for the endpoints of the selection range.That query can be rewritten to use
a literal starting date and an ending date calculated from the starting date and an interval:

mysql> SELECT last_name, first_name, death

-> FROM president

-> WHERE death >= '1970-1-1'

-> AND death < DATE_ADD('1970-1-1', INTERVAL 10 YEAR);

+-----------+------------+------------+

| last_name | first_name | death |

+-----------+------------+------------+

| Truman | Harry S | 1972-12-26 |

| Johnson | Lyndon B. | 1973-01-22 |

+-----------+------------+------------+

The membership-renewal query can be written in terms of DATE_ADD():

SELECT last_name, first_name, expiration FROM member

WHERE expiration < DATE_ADD(CURDATE(), INTERVAL 60 DAY);

If the expiration column is indexed, this will be more efficient than the original
query, for reasons discussed in Chapter 5.

Near the beginning of this chapter, you saw the following query for determining
which of a dentist’s patients haven’t come in for their checkup in a while:

SELECT last_name, first_name, last_visit FROM patient

WHERE last_visit < DATE_SUB(CURDATE(), INTERVAL 6 MONTH);

That query may not have meant much to you then. Is it more meaningful now?

1.4.9.7 Pattern Matching
MySQL supports pattern matching operations that enable you to select rows without sup-
plying an exact comparison value.To perform a pattern match, you use special operators
(LIKE and NOT LIKE), and you specify a string containing wildcard characters.The charac-
ter ‘_’ matches any single character, and ‘%’ matches any sequence of characters (including
an empty sequence).

This pattern matches last names that begin with a ‘W’ or ‘w’ character:

mysql> SELECT last_name, first_name FROM president

-> WHERE last_name LIKE 'W%';

+------------+------------+

| last_name | first_name |

+------------+------------+

| Washington | George |

| Wilson | Woodrow |

+------------+------------+

74 Chapter 1 Getting Started with MySQL

The following query demonstrates a common error.The pattern match is erroneous
because it does not use LIKE, it uses a pattern with an arithmetic comparison operator:

mysql> SELECT last_name, first_name FROM president

-> WHERE last_name = 'W%';

Empty set (0.00 sec)

The only way for such a comparison to succeed is for the column to contain exactly
the string 'W%' or 'w%'.

This pattern matches last names that contain ‘W’ or ‘w’ anywhere in the name, not just at
the beginning:

mysql> SELECT last_name, first_name FROM president

-> WHERE last_name LIKE '%W%';

+------------+------------+

| last_name | first_name |

+------------+------------+

| Washington | George |

| Wilson | Woodrow |

| Eisenhower | Dwight D. |

+------------+------------+

This pattern matches last names that contain exactly four characters:

mysql> SELECT last_name, first_name FROM president

-> WHERE last_name LIKE '____';

+-----------+-------------+

| last_name | first_name |

+-----------+-------------+

| Polk | James K. |

| Taft | William H. |

| Ford | Gerald R. |

| Bush | George H.W. |

| Bush | George W. |

+-----------+-------------+

MySQL also provides another form of pattern matching based on regular expressions
and the REXEXP operator. LIKE and REGEXP are discussed further in Section 3.5.1.1,
“OperatorTypes,” and Appendix C.

1.4.9.8 Letting and Using User-Defined Variables
MySQL enables you to define your own variables.These can be set using query results,
which provides a convenient way to save values for use in later queries. Suppose that you
want to find out which presidents were born before Andrew Jackson.To determine that,
you can retrieve his birth date into a variable and then select other presidents with a birth
date earlier than the value of the variable:

751.4 A MySQL Tutorial

mysql> SELECT @birth := birth FROM president

-> WHERE last_name = 'Jackson' AND first_name = 'Andrew';

+-----------------+

| @birth := birth |

+-----------------+

| 1767-03-15 |

+-----------------+

mysql> SELECT last_name, first_name, birth FROM president

-> WHERE birth < @birth ORDER BY birth;

+------------+------------+------------+

| last_name | first_name | birth |

+------------+------------+------------+

| Washington | George | 1732-02-22 |

| Adams | John | 1735-10-30 |

| Jefferson | Thomas | 1743-04-13 |

| Madison | James | 1751-03-16 |

| Monroe | James | 1758-04-28 |

+------------+------------+------------+

User variables are named using @var_name syntax and assigned a value in a SELECT
statement using an expression of the form @var_name: = value. The first query there-
fore looks up the birth date for Andrew Jackson and assigns it to the @birth variable. (The
result of the SELECT still is displayed; assigning a query result to a variable doesn’t suppress
the query output.) The second query refers to the variable and uses its value to find other
president rows with a lesser birth value.

The preceding problem actually could be solved in a single query using a join or a sub-
query, but we’re not to the point of writing those yet. Besides, sometimes it’s just easier to
use a variable.

Variables also can be assigned using a SET statement. In this case, either = or := are al-
lowable as the assignment operator:

mysql> SET @today = CURDATE();

mysql> SET @one_week_ago := DATE_SUB(@today, INTERVAL 7 DAY);

mysql> SELECT @today, @one_week_ago;

+------------+---------------+

| @today | @one_week_ago |

+------------+---------------+

| 2008-03-21 | 2008-03-14 |

+------------+---------------+

1.4.9.9 Generating Summaries
One of the most useful things MySQL can do for you is to boil down lots of raw data
and summarize it. MySQL becomes a powerful ally when you learn to use it to generate
summaries because that is an especially tedious, time-consuming, error-prone activity
when done manually.

76 Chapter 1 Getting Started with MySQL

One simple form of summarizing is to determine which unique values are present in a
set of values. Use the DISTINCT keyword to remove duplicate rows from a result. For ex-
ample, the different states in which presidents have been born can be found like this:

mysql> SELECT DISTINCT state FROM president ORDER BY state;

+-------+

| state |

+-------+

| AR |

| CA |

| CT |

| GA |

| IA |

| IL |

| KY |

| MA |

| MO |

| NC |

| NE |

| NH |

| NJ |

| NY |

| OH |

| PA |

| SC |

| TX |

| VA |

| VT |

+-------+

Another form of summarizing involves counting, using the COUNT() function. If you
use COUNT(*), it tells you the number of rows selected by your query. If a query has no
WHERE clause, it selects all rows, so COUNT(*) tells you the number of rows in your table.
The following query shows how many membership rows the Historical League member
table contains:

mysql> SELECT COUNT(*) FROM member;

+----------+

| COUNT(*) |

+----------+

| 102 |

+----------+

If a query does have a WHERE clause, COUNT(*) tells you how many rows the clause
matches.This query shows how many quizzes you have given to your class so far:

mysql> SELECT COUNT(*) FROM grade_event WHERE category = 'Q';

+----------+

| COUNT(*) |

771.4 A MySQL Tutorial

+----------+

| 4 |

+----------+

COUNT(*) counts every row selected. By contrast, COUNT(col_name) counts only non-
NULL values.The following query demonstrates these differences:

mysql> SELECT COUNT(*), COUNT(email), COUNT(expiration) FROM member;

+----------+--------------+-------------------+

| COUNT(*) | COUNT(email) | COUNT(expiration) |

+----------+--------------+-------------------+

| 102 | 80 | 96 |

+----------+--------------+-------------------+

This shows that although the member table has 102 rows, only 80 of them have a value
in the email column. It also shows that six members have a lifetime membership. (A NULL
value in the expiration column indicates a lifetime membership, and since 96 out of 102
rows are not NULL, that leaves six.)

COUNT() combined with DISTINCT counts the number of distinct non-NULL values in a
result. For example, to count the number of different states in which presidents have been
born, do this:

mysql> SELECT COUNT(DISTINCT state) FROM president;

+-----------------------+

| COUNT(DISTINCT state) |

+-----------------------+

| 20 |

+-----------------------+

You can produce an overall count of values in a column, or break down the counts by
categories. For example, you may know the overall number of students in your class as a
result of running this query:

mysql> SELECT COUNT(*) FROM student;

+----------+

| COUNT(*) |

+----------+

| 31 |

+----------+

But how many students are boys and how many are girls? One way to find out is by
asking for a count for each sex separately:

mysql> SELECT COUNT(*) FROM student WHERE sex='f';

+----------+

| COUNT(*) |

+----------+

| 15 |

+----------+

mysql> SELECT COUNT(*) FROM student WHERE sex='m';

78 Chapter 1 Getting Started with MySQL

+----------+

| COUNT(*) |

+----------+

| 16 |

+----------+

However, although that approach works, it’s tedious and not really very well suited for
columns that might have several different values. Consider how you’d determine the num-
ber of presidents born in each state this way.You’d have to find out which states are repre-
sented so as not to miss any (SELECT DISTINCT state FROM president), and then run a
SELECT COUNT(*) query for each state.That is clearly something you don’t want to do.

Fortunately, it’s possible to use a single query to count how many times each distinct
value occurs in a column. For the student list, count boys and girls separately using a
GROUP BY clause:

mysql> SELECT sex, COUNT(*) FROM student GROUP BY sex;

+-----+----------+

| sex | COUNT(*) |

+-----+----------+

| F | 15 |

| M | 16 |

+-----+----------+

The same form of query tells us how many presidents were born in each state:

mysql> SELECT state, COUNT(*) FROM president GROUP BY state;

+-------+----------+

| state | COUNT(*) |

+-------+----------+

| AR | 1 |

| CA | 1 |

| CT | 1 |

| GA | 1 |

| IA | 1 |

| IL | 1 |

| KY | 1 |

| MA | 4 |

| MO | 1 |

| NC | 2 |

| NE | 1 |

| NH | 1 |

| NJ | 1 |

| NY | 4 |

| OH | 7 |

| PA | 1 |

| SC | 1 |

| TX | 2 |

| VA | 8 |

791.4 A MySQL Tutorial

| VT | 2 |

+-------+----------+

When you count values in groups this way, the GROUP BY clause is necessary; it tells
MySQL how to cluster values before counting them.You’ll just get an error if you omit it.

The use of COUNT(*) with GROUP BY to count values has a number of advantages over
counting occurrences of each distinct column value individually:

n You don’t have to know in advance what values are present in the column you’re
summarizing.

n You need only a single query, not several.
n You get all the results with a single query, so you can sort the output.

The first two advantages are important for expressing queries more easily.The third ad-
vantage is important because it affords more flexibility in displaying results. By default,
MySQL uses the columns named in the GROUP BY clause to sort the results, but you can
specify an ORDER BY clause to sort in a different order. For example, if you want number
of presidents grouped by state of birth, but sorted with the most well-represented states
first, you can use an ORDER BY clause as follows:

mysql> SELECT state, COUNT(*) AS count FROM president

-> GROUP BY state ORDER BY count DESC;

+-------+-------+

| state | count |

+-------+-------+

| VA | 8 |

| OH | 7 |

| MA | 4 |

| NY | 4 |

| NC | 2 |

| VT | 2 |

| TX | 2 |

| SC | 1 |

| NH | 1 |

| PA | 1 |

| KY | 1 |

| NJ | 1 |

| IA | 1 |

| MO | 1 |

| CA | 1 |

| NE | 1 |

| GA | 1 |

| IL | 1 |

| AR | 1 |

| CT | 1 |

+-------+-------+

80 Chapter 1 Getting Started with MySQL

When the column you want to use for sorting is produced by a summary function,
you cannot refer to the function directly in the ORDER BY clause. Instead, give the column
an alias and refer to it that way.The preceding query demonstrates this, where the
COUNT(*) column is aliased as count.Another way to refer to such a column in an ORDER

BY clause is by its position in the output.The previous query could have been written as
follows instead:

SELECT state, COUNT(*) FROM president

GROUP BY state ORDER BY 2 DESC;

Referring to columns by position is allowable in MySQL, but problematic:

n Use of column positions leads to less understandable queries because numbers are
less meaningful than names.

n If you add, remove, or reorder output columns, you must remember to check the
ORDER BY clause and fix the column number if it has changed.

n The syntax of referring to column positions in ORDER BY clauses is no longer part of
standard SQL and should be considered deprecated.

Aliases have none of those problems.
If you want to group results using GROUP BY with a calculated column, you can refer to

it using an alias or column position, just as with ORDER BY.The following query deter-
mines how many presidents were born in each month of the year:

mysql> SELECT MONTH(birth) AS Month, MONTHNAME(birth) AS Name,

-> COUNT(*) AS count

-> FROM president GROUP BY Name ORDER BY Month;

+-------+-----------+-------+

| Month | Name | count |

+-------+-----------+-------+

| 1 | January | 4 |

| 2 | February | 4 |

| 3 | March | 4 |

| 4 | April | 4 |

| 5 | May | 2 |

| 6 | June | 1 |

| 7 | July | 4 |

| 8 | August | 4 |

| 9 | September | 1 |

| 10 | October | 6 |

| 11 | November | 5 |

| 12 | December | 3 |

+-------+-----------+-------+

COUNT() can be combined with ORDER BY and LIMIT. For example, to find the four
most well-represented states in the president table, use this statement:

811.4 A MySQL Tutorial

mysql> SELECT state, COUNT(*) AS count FROM president

-> GROUP BY state ORDER BY count DESC LIMIT 4;

+-------+-------+

| state | count |

+-------+-------+

| VA | 8 |

| OH | 7 |

| MA | 4 |

| NY | 4 |

+-------+-------+

If you don’t want to limit query output with a LIMIT clause, but rather by looking for
particular values of COUNT(), use a HAVING clause. HAVING is similar to WHERE in that it
specifies conditions that must be satisfied by output rows. It differs from WHERE in that it
can refer to the results of summary functions like COUNT().The following query will tell
you which states are represented by two or more presidents:

mysql> SELECT state, COUNT(*) AS count FROM president

-> GROUP BY state HAVING count > 1 ORDER BY count DESC;

+-------+-------+

| state | count |

+-------+-------+

| VA | 8 |

| OH | 7 |

| MA | 4 |

| NY | 4 |

| NC | 2 |

| VT | 2 |

| TX | 2 |

+-------+-------+

More generally, this is the type of query to run when you want to find duplicated val-
ues in a column. Or, to find nonduplicated values, use HAVING count = 1.

There are several summary functions other than COUNT().The MIN(), MAX(), SUM(),
and AVG() functions are useful for determining the minimum, maximum, total, and aver-
age values in a column.You can even use them all at the same time.The following query
shows various numeric characteristics for each quiz and test you’ve given. It also shows
how many scores go into computing each of the values. (Some students may have been
absent and are not counted.)

mysql> SELECT

-> event_id,

-> MIN(score) AS minimum,

-> MAX(score) AS maximum,

-> MAX(score)-MIN(score)+1 AS span,

-> SUM(score) AS total,

-> AVG(score) AS average,

-> COUNT(score) AS count

-> FROM score

82 Chapter 1 Getting Started with MySQL

-> GROUP BY event_id;

+----------+---------+---------+------+-------+---------+-------+

| event_id | minimum | maximum | span | total | average | count |

+----------+---------+---------+------+-------+---------+-------+

| 1 | 9 | 20 | 12 | 439 | 15.1379 | 29 |

| 2 | 8 | 19 | 12 | 425 | 14.1667 | 30 |

| 3 | 60 | 97 | 38 | 2425 | 78.2258 | 31 |

| 4 | 7 | 20 | 14 | 379 | 14.0370 | 27 |

| 5 | 8 | 20 | 13 | 383 | 14.1852 | 27 |

| 6 | 62 | 100 | 39 | 2325 | 80.1724 | 29 |

+----------+---------+---------+------+-------+---------+-------+

This information might be more meaningful if it was clear whether the event_id val-
ues represented quizzes or tests, of course. However, to produce that information, we need
to consult the grade_event table as well; we’ll revisit this query in Section 1.4.9.10,
“Retrieving Information from Multiple Tables.”

If you want to produce extra output lines that give you a “summary of summaries,” add
a WITH ROLLUP clause.This tells MySQL to calculate “super-aggregate” values for the
grouped rows. Here’s a simple example based on an earlier statement that counts the num-
ber of students of each sex.The WITH ROLLUP clause produces another line that summa-
rizes the counts for both sexes:

mysql> SELECT sex, COUNT(*) FROM student GROUP BY sex WITH ROLLUP;

+-----+----------+

| sex | COUNT(*) |

+-----+----------+

| F | 15 |

| M | 16 |

| NULL| 31 |

+-----+----------+

The NULL in the grouped column indicates that corresponding count is the summary
value for the preceding groups.

WITH ROLLUP can be used with the other aggregate functions as well.The following
statement calculates grade summaries as just shown a few paragraphs earlier, but also pro-
duces an extra super-aggregate line:

mysql> SELECT

-> event_id,

-> MIN(score) AS minimum,

-> MAX(score) AS maximum,

-> MAX(score)-MIN(score)+1 AS span,

-> SUM(score) AS total,

-> AVG(score) AS average,

-> COUNT(score) AS count

-> FROM score

-> GROUP BY event_id

-> WITH ROLLUP;

831.4 A MySQL Tutorial

+----------+---------+---------+------+-------+---------+-------+

| event_id | minimum | maximum | span | total | average | count |

+----------+---------+---------+------+-------+---------+-------+

| 1 | 9 | 20 | 12 | 439 | 15.1379 | 29 |

| 2 | 8 | 19 | 12 | 425 | 14.1667 | 30 |

| 3 | 60 | 97 | 38 | 2425 | 78.2258 | 31 |

| 4 | 7 | 20 | 14 | 379 | 14.0370 | 27 |

| 5 | 8 | 20 | 13 | 383 | 14.1852 | 27 |

| 6 | 62 | 100 | 39 | 2325 | 80.1724 | 29 |

| NULL | 7 | 100 | 94 | 6376 | 36.8555 | 173 |

+----------+---------+---------+------+-------+---------+-------+

In this output, the final line displays aggregate values calculated based on all the pre-
ceding group summary values.

WITH ROLLUP is useful because it provides extra information that you otherwise would
have to obtain by running another query. Using a single query is more efficient because
the server need not examine the data twice. If the GROUP BY clause names more than one
column, WITH ROLLUP produces additional super-aggregate lines that contain higher-level
summary values.

Summary functions are fun to play with because they’re so powerful, but it’s easy to get
carried away with them. Consider this query:

mysql> SELECT

-> state AS State,

-> AVG(TIMESTAMPDIFF(YEAR, birth, death)) AS Age

-> FROM president WHERE death IS NOT NULL

-> GROUP BY state ORDER BY Age;

+-------+---------+

| State | Age |

+-------+---------+

| KY | 56.0000 |

| VT | 58.5000 |

| NC | 59.5000 |

| OH | 62.2857 |

| NH | 64.0000 |

| NY | 69.0000 |

| NJ | 71.0000 |

| TX | 71.0000 |

| MA | 72.0000 |

| VA | 72.3750 |

| PA | 77.0000 |

| SC | 78.0000 |

| CA | 81.0000 |

| MO | 88.0000 |

| IA | 90.0000 |

| NE | 93.0000 |

| IL | 93.0000 |

+-------+---------+

84 Chapter 1 Getting Started with MySQL

The query selects presidents who have died, groups them by state of birth, determines
their approximate age at time of death, computes the average age (per state), and then sorts
the results by average age. In other words, the query determines, for nonliving presidents,
the average age of death by state of birth.

And what does that demonstrate? It shows only that you can write the query. It cer-
tainly doesn’t show that the query is worth writing. Not all things you can do with a data-
base are equally meaningful. Nevertheless, people sometimes go query-happy when they
find out what they can do with their database.This may account for the rise of increas-
ingly esoteric and bizarre statistics on televised sporting events over the last few years.The
sports statisticians can use their databases to figure out everything you’d ever want to
know about a team, and also everything you’d never want to know. Do you really care
which third-string quarterback holds the record for most interceptions on third down
when his team is leading by more than 14 points with the ball inside the 15-yard line in
the last two minutes of the second quarter?

1.4.9.10 Retrieving Information from Multiple Tables
The statements that we’ve written so far have pulled data from a single table. But MySQL
is capable of working much harder for you. I’ve mentioned before that the power of a re-
lational DBMS lies in its capability to combine information from multiple tables to answer
questions that can’t be answered from individual tables alone.This section describes how
to write statements that do that.

One type of operation that selects information from multiple tables is called a “join”
because you’re producing a result by joining the information in one table to the informa-
tion in another table.This is done by matching up common values in the tables.Another
type of multiple-table operation uses one SELECT nested within another SELECT.The
nested SELECT is called a “subquery.”This section describes both types of operations.

Let’s work through a join example. Earlier, in Section 1.4.6.2,“Tables for the Grade-
Keeping Project,” a query to retrieve quiz or test scores for a given date was presented
without explanation. Now it’s time for the explanation.The query actually involves a
three-way join, so we’ll build up to it in two steps. In the first step, we construct a query
to select scores for a given date as follows:

mysql> SELECT student_id, date, score, category

-> FROM grade_event INNER JOIN score

-> ON grade_event.event_id = score.event_id

-> WHERE date = '2008-09-23';

+------------+------------+-------+----------+

| student_id | date | score | category |

+------------+------------+-------+----------+

| 1 | 2008-09-23 | 15 | Q |

| 2 | 2008-09-23 | 12 | Q |

| 3 | 2008-09-23 | 11 | Q |

| 5 | 2008-09-23 | 13 | Q |

| 6 | 2008-09-23 | 18 | Q |

...

851.4 A MySQL Tutorial

The query works by finding the grade_event row with the given date ('2008-09-
23'), and using the event ID in that row to locate scores that have the same event ID. For
each matching grade_event row and score row combination, it displays the student ID,
score, date, and event category.

The query differs from others we have written in two important respects:

n The FROM clause names more than one table because we’re retrieving data from
more than one table:

FROM grade_event INNER JOIN score

n The ON clause specifies that the grade_event and score tables are joined on the ba-
sis of matching up the event_id values in each table:

ON grade_event.event_id = score.event_id

Notice how we refer to the event_id columns as grade_event.event_id and
score.event_id using tbl_name.col_name syntax so that MySQL knows which tables
we’re referring to.This is because event_id occurs in both tables, so it’s ambiguous if used
without a table name to qualify it.The other columns in the query (date, score, and
category) can be used without a table qualifier because they appear in only one of the
tables and thus are unambiguous.

I generally prefer to qualify every column in a join to make it clearer (more explicit)
which table each column is part of, and that’s how I’ll write joins from now on. In fully
qualified form, the query looks like this:

SELECT score.student_id, grade_event.date, score.score, grade_event.category

FROM grade_event INNER JOIN score

ON grade_event.event_id = score.event_id

WHERE grade_event.date = '2008-09-23';

The first-stage query uses the grade_event table to map a date to an event ID, and
uses the ID to find the matching scores in the score table. Output from the query con-
tains student_id values, but names would be more meaningful. By using the student
table, we can map student IDs onto names, which is the second step.To accomplish name
display, use the fact that the score and student tables both have student_id columns
enabling the rows in them to be linked.The resulting query is as follows:

mysql> SELECT

-> student.name, grade_event.date, score.score, grade_event.category

-> FROM grade_event INNER JOIN score INNER JOIN student

-> ON grade_event.event_id = score.event_id

-> AND score.student_id = student.student_id

-> WHERE grade_event.date = '2008-09-23';

+-----------+------------+-------+----------+

| name | date | score | category |

+-----------+------------+-------+----------+

| Megan | 2008-09-23 | 15 | Q |

86 Chapter 1 Getting Started with MySQL

| Joseph | 2008-09-23 | 12 | Q |

| Kyle | 2008-09-23 | 11 | Q |

| Abby | 2008-09-23 | 13 | Q |

| Nathan | 2008-09-23 | 18 | Q |

...

This query has several differences from the previous one:

n The FROM clause now includes the student table because the statement uses it in
addition to the grade_event and score tables.

n The student_id column was unambiguous before, so it was possible to refer to it in
either unqualified (student_id) or qualified (score.student_id) form. Now it is
ambiguous because it is present in both the score and student tables.Therefore, it
must be qualified as score.student_id or student.student_id to make it clear
which table to use.

n The ON clause has an additional term specifying that score table rows are matched
against student table rows based on student ID:

ON ... score.student_id = student.student_id

n The query displays the student name rather than the student ID. (You could display
both if you wanted. Just add student.student_id to the list of output columns.)

With this query, you can plug in any date and get back the scores for that date, com-
plete with student names and the score category.You don’t have to know anything about
student IDs or event IDs. MySQL takes care of figuring out the relevant ID values and
using them to match up table rows.

Another task the grade-keeping project involves is summarizing student absences.
Absences are recorded by student ID and date in the absence table.To get student names
(not just IDs), we need to join the absence table to the student table, based on the
student_id value.The following query lists student ID number and name along with a
count of absences:

mysql> SELECT student.student_id, student.name,

-> COUNT(absence.date) AS absences

-> FROM student INNER JOIN absence

-> ON student.student_id = absence.student_id

-> GROUP BY student.student_id;

+------------+-------+----------+

| student_id | name | absences |

+------------+-------+----------+

| 3 | Kyle | 1 |

| 5 | Abby | 1 |

| 10 | Peter | 2 |

| 17 | Will | 1 |

| 20 | Avery | 1 |

+------------+-------+----------+

871.4 A MySQL Tutorial

Note
Although the GROUP BY column has a qualifier, it isn’t strictly necessary for this query.
GROUP BY refers to output columns, and there is only one such column named
student_id, so MySQL knows which one you mean.

The output produced by the query is fine if we want to know only which students had
absences. But if we turn in this list to the school office, they might say,“What about the
other students? We want a value for every student.”That’s a slightly different question. It
means we want to know the number of absences, even for students who had none. Be-
cause the question is different, the query that answers it is different as well.

To answer the question, we will use a LEFT JOIN rather than an inner join. LEFT JOIN
tells MySQL to produce a row of output for each row selected from the table named first
in the join (that is, the table named to the left of the LEFT JOIN keywords). By naming
the student table first, we’ll get output for every student, even those who are not repre-
sented in the absence table.To write this query, use LEFT JOIN between the tables named
in the FROM clause (rather than separating them by a comma), and an ON clause that says
how to match up rows in the two tables.The query looks like this:

mysql> SELECT student.student_id, student.name,

-> COUNT(absence.date) AS absences

-> FROM student LEFT JOIN absence

-> ON student.student_id = absence.student_id

-> GROUP BY student.student_id;

+------------+-----------+----------+

| student_id | name | absences |

+------------+-----------+----------+

| 1 | Megan | 0 |

| 2 | Joseph | 0 |

| 3 | Kyle | 1 |

| 4 | Katie | 0 |

| 5 | Abby | 1 |

| 6 | Nathan | 0 |

| 7 | Liesl | 0 |

...

Earlier, in Section 1.4.9.9,“Generating Summaries,” we ran a query that produced a
numeric characterization of the data in the score table. Output from that query listed
event ID but did not include event dates or categories, because we didn’t know then how
to join the score table to the grade_event table to map the IDs onto dates and cate-
gories. Now we do.The following query is similar to one run earlier, but shows the dates
and categories rather than simply the numeric event IDs:

mysql> SELECT

-> grade_event.date,grade_event.category,

-> MIN(score.score) AS minimum,

88 Chapter 1 Getting Started with MySQL

-> MAX(score.score) AS maximum,

-> MAX(score.score)-MIN(score.score)+1 AS span,

-> SUM(score.score) AS total,

-> AVG(score.score) AS average,

-> COUNT(score.score) AS count

-> FROM score INNER JOIN grade_event

-> ON score.event_id = grade_event.event_id

-> GROUP BY grade_event.date;

+------------+----------+---------+---------+------+-------+---------+-------+

| date | category | minimum | maximum | span | total | average | count |

+------------+----------+---------+---------+------+-------+---------+-------+

| 2008-09-03 | Q | 9 | 20 | 12 | 439 | 15.1379 | 29 |

| 2008-09-06 | Q | 8 | 19 | 12 | 425 | 14.1667 | 30 |

| 2008-09-09 | T | 60 | 97 | 38 | 2425 | 78.2258 | 31 |

| 2008-09-16 | Q | 7 | 20 | 14 | 379 | 14.0370 | 27 |

| 2008-09-23 | Q | 8 | 20 | 13 | 383 | 14.1852 | 27 |

| 2008-10-01 | T | 62 | 100 | 39 | 2325 | 80.1724 | 29 |

+------------+----------+---------+---------+------+-------+---------+-------+

You can use functions such as COUNT() and AVG() to produce a summary over multiple
columns, even if the columns come from different tables.The following query determines
the number of scores and the average score for each combination of event date and stu-
dent sex:

mysql> SELECT grade_event.date, student.sex,

-> COUNT(score.score) AS count, AVG(score.score) AS average

-> FROM grade_event INNER JOIN score INNER JOIN student

-> ON grade_event.event_id = score.event_id

-> AND score.student_id = student.student_id

-> GROUP BY grade_event.date, student.sex;

+------------+-----+-------+---------+

| date | sex | count | average |

+------------+-----+-------+---------+

| 2008-09-03 | F | 14 | 14.6429 |

| 2008-09-03 | M | 15 | 15.6000 |

| 2008-09-06 | F | 14 | 14.7143 |

| 2008-09-06 | M | 16 | 13.6875 |

| 2008-09-09 | F | 15 | 77.4000 |

| 2008-09-09 | M | 16 | 79.0000 |

| 2008-09-16 | F | 13 | 15.3077 |

| 2008-09-16 | M | 14 | 12.8571 |

| 2008-09-23 | F | 12 | 14.0833 |

| 2008-09-23 | M | 15 | 14.2667 |

| 2008-10-01 | F | 14 | 77.7857 |

| 2008-10-01 | M | 15 | 82.4000 |

+------------+-----+-------+---------+

891.4 A MySQL Tutorial

We can use a similar query to perform one of the grade-keeping project tasks: comput-
ing the total score per student at the end of the semester.The query is as follows:

SELECT student.student_id, student.name,

SUM(score.score) AS total, COUNT(score.score) AS n

FROM grade_event INNER JOIN score INNER JOIN student

ON grade_event.event_id = score.event_id

AND score.student_id = student.student_id

GROUP BY score.student_id

ORDER BY total;

There is no requirement that a join be performed between different tables. It might
seem odd at first, but you can join a table to itself. For example, you can determine
whether any presidents were born in the same city by checking each president’s birthplace
against every other president’s birthplace:

mysql> SELECT p1.last_name, p1.first_name, p1.city, p1.state

-> FROM president AS p1 INNER JOIN president AS p2

-> ON p1.city = p2.city AND p1.state = p2.state

-> WHERE (p1.last_name <> p2.last_name OR p1.first_name <> p2.first_name)

-> ORDER BY state, city, last_name;

+-----------+-------------+-----------+-------+

| last_name | first_name | city | state |

+-----------+-------------+-----------+-------+

| Adams | John Quincy | Braintree | MA |

| Adams | John | Braintree | MA |

+-----------+-------------+-----------+-------+

There are two tricky things about this query:

n It’s necessary to refer to two instances of the same table, so we create table aliases
(p1, p2) and use them to disambiguate references to the table’s columns.As with col-
umn aliases, the AS keyword is optional when naming table aliases.

n Each president’s row matches itself, but we don’t want to see that in the output.The
WHERE clause disallows matches of a row to itself by making sure that the rows being
compared are for different presidents.

A similar query finds presidents who were born on the same day. However, birth dates
cannot be compared directly because that would miss presidents who were born in differ-
ent years. Instead, use MONTH() and DAYOFMONTH() to compare month and day of the birth
date:

mysql> SELECT p1.last_name, p1.first_name, p1.birth

-> FROM president AS p1 INNER JOIN president AS p2

-> WHERE MONTH(p1.birth) = MONTH(p2.birth)

-> AND DAYOFMONTH(p1.birth) = DAYOFMONTH(p2.birth)

-> AND (p1.last_name <> p2.last_name OR p1.first_name <> p2.first_name)

-> ORDER BY p1.last_name;

+-----------+------------+------------+

90 Chapter 1 Getting Started with MySQL

| last_name | first_name | birth |

+-----------+------------+------------+

| Harding | Warren G. | 1865-11-02 |

| Polk | James K. | 1795-11-02 |

+-----------+------------+------------+

Using DAYOFYEAR() rather than the combination of MONTH() and DAYOFMONTH()

would result in a simpler query, but it would produce incorrect results when comparing
dates from leap years to dates from nonleap years.

Another kind of multiple-table retrieval uses a “subquery,” which is one SELECT nested
within another.There are several types of subqueries, which are discussed further in
Section 2.9,“Performing Multiple-Table Retrievals with Subqueries.” For now, a couple
of examples will do. Suppose that you want to identify those students who have perfect
attendance.This is equivalent to determining which students are not represented in the
absence table, which can be done like this:

mysql> SELECT * FROM student

-> WHERE student_id NOT IN (SELECT student_id FROM absence);

+-----------+-----+------------+

| name | sex | student_id |

+-----------+-----+------------+

| Megan | F | 1 |

| Joseph | M | 2 |

| Katie | F | 4 |

| Nathan | M | 6 |

| Liesl | F | 7 |

...

The nested SELECT determines the set of student_id values that are present in the
absence table, and the outer SELECT retrieves student rows that don’t match any of
those IDs.

A subquery also provides a single-statement solution to the question asked in Section
1.4.9.8,“Setting and Using User-Defined Variables,” about which presidents were born
before Andrew Jackson.The original solution used two statements and a user variable, but
it can be done with a subquery as follows:

mysql> SELECT last_name, first_name, birth FROM president

-> WHERE birth < (SELECT birth FROM president

-> WHERE last_name = 'Jackson' AND first_name = 'Andrew');

+------------+------------+------------+

| last_name | first_name | birth |

+------------+------------+------------+

| Washington | George | 1732-02-22 |

| Adams | John | 1735-10-30 |

| Jefferson | Thomas | 1743-04-13 |

| Madison | James | 1751-03-16 |

| Monroe | James | 1758-04-28 |

+------------+------------+------------+

911.4 A MySQL Tutorial

The inner SELECT determines Andrew Jackson’s birth date, and the outer SELECT
retrieves presidents with a birth date earlier than his.

1.4.10 Deleting or Updating Existing Rows
Sometimes you want to get rid of rows or change their contents.The DELETE and UPDATE

statements let you do this.This section discusses how to use them.
The DELETE statement has this form:

DELETE FROM tbl_name

WHERE which rows to delete;

The WHERE clause that specifies which rows should be deleted is optional, but if you
leave it out, all rows in the table are deleted. In other words, the simplest DELETE statement
is also the most dangerous:

DELETE FROM tbl_name;

That statement wipes out the table’s contents entirely, so be careful with it! To delete
specific rows, use the WHERE clause to identify the rows in which you’re interested.This is
similar to using a WHERE clause in a SELECT statement to avoid selecting the entire table.
For example, to specifically delete from the president table only those presidents born in
Ohio, use this statement:

mysql> DELETE FROM president WHERE state='OH';

Query OK, 7 rows affected (0.00 sec)

If you’re not really sure which rows a DELETE statement will remove, it’s often a good
idea to test the WHERE clause first by using it with a SELECT statement to find out which
rows it matches.This can help you ensure that you’ll actually delete the rows you intend,
and only those rows. Suppose that you want to delete the row for Teddy Roosevelt.Would
the following statement do the job?

DELETE FROM president WHERE last_name='Roosevelt';

Yes, in the sense that it would delete the row you have in mind. No, in the sense that it
also would delete the row for Franklin Roosevelt. It’s safer to check the WHERE clause with
a SELECT statement first, like this:

mysql> SELECT last_name, first_name FROM president

-> WHERE last_name='Roosevelt';

+-----------+-------------+

| last_name | first_name |

+-----------+-------------+

| Roosevelt | Theodore |

| Roosevelt | Franklin D. |

+-----------+-------------+

92 Chapter 1 Getting Started with MySQL

From that you can see the need to be more specific by adding a condition for the
first name:

mysql> SELECT last_name, first_name FROM president

-> WHERE last_name='Roosevelt' AND first_name='Theodore';

+-----------+------------+

| last_name | first_name |

+-----------+------------+

| Roosevelt | Theodore |

+-----------+------------+

Now you know the WHERE clause that properly identifies only the desired row, and the
DELETE statement can be constructed correctly:

mysql> DELETE FROM president

-> WHERE last_name='Roosevelt' AND first_name='Theodore';

If that seems like a lot of work to delete a row, remember this: Better safe than sorry!
But remember this, too: In some situations, you can minimize typing through the use of
copy and paste or input line-editing techniques. See Section 1.5,“Tips for Interacting
with mysql,” for more information.

To modify existing rows, use UPDATE, which has this form:

UPDATE tbl_name

SET which columns to change

WHERE which rows to update;

The WHERE clause is just as for DELETE. It’s optional, so if you don’t specify one, every
row in the table will be updated. For example, the following statement changes the name
of each student to “George”:

mysql> UPDATE student SET name='George';

Obviously, you must be careful with statements like that, so normally you add a WHERE
clause to be more specific about which rows to update. Suppose that you recently added a
new member to the Historical League but filled in only a few columns of his entry:

mysql> INSERT INTO member (last_name,first_name)

-> VALUES('York','Jerome');

Then you realize you forgot to set his membership expiration date.You can fix that
with an UPDATE statement that includes an appropriate WHERE clause to identify which row
to change:

mysql> UPDATE member

-> SET expiration='2009-7-20'

-> WHERE last_name='York' AND first_name='Jerome';

You can update multiple columns with a single statement.The following UPDATE modi-
fies Jerome’s email and postal addresses:

mysql> UPDATE member

931.5 Tips for Interacting with mysql

-> SET email='jeromey@aol.com', street='123 Elm St',

-> city='Anytown', state='NY', zip='01003'

-> WHERE last_name='York' AND first_name='Jerome';

You can also “unset” a column by setting its value to NULL (assuming that the column
allows NULL values). If at some point in the future Jerome later decides to pay the big
membership renewal fee that enables him to become a lifetime member, you can mark his
row as “never expires” by setting his expiration date to NULL:

mysql> UPDATE member

-> SET expiration=NULL

-> WHERE last_name='York' AND first_name='Jerome';

With UPDATE, just as for DELETE, it’s not a bad idea to test a WHERE clause using a SELECT
statement to make sure that you’re choosing the right rows to update. Otherwise, if your
selection criteria are too narrow or too broad, you’ll update too few or too many rows.

If you’ve tried the statements in this section, you’ll have deleted and modified rows in
the sampdb tables. Before proceeding to the next section, you should undo those changes.
Do that by reloading the tables using the instructions given earlier, in Section 1.4.8,
“Resetting the sampdb Database to a Known State.”

1.5 Tips for Interacting with mysql
This section discusses how to interact with the mysql client program more efficiently and
with less typing. It also describes how to connect to the server more easily and how to en-
ter statements without typing each one by hand.

1.5.1 Simplifying the Connection Process
When you invoke mysql, it’s likely that you need to specify connection parameters such as
hostname, username, or password.That’s a lot of typing just to run a program, and it gets
tiresome very quickly.There are several ways to minimize the amount of typing necessary
to establish a connection to the MySQL server:

n Store connection parameters in an option file.
n Repeat commands by taking advantage of your shell’s command history capabilities.
n Define a mysql command line shortcut using a shell alias or script.

1.5.1.1 Using an Option File
MySQL enables you to store connection parameters in an option file.Then you don’t
have to type the parameters each time you run mysql; they are used just as if you had en-
tered them on the command line.A big advantage of this technique is that the parameters
can also be used by other MySQL clients such as mysqlimport or mysqlshow. In other
words, an option file makes it easier to use not just mysql but many other programs as
well.This section briefly describes how to set up an option file for use by client programs.
Additional details can be found in Section F.2.2,“Option Files.”

94 Chapter 1 Getting Started with MySQL

Under Unix, you set up an option file by creating a file named ~/.my.cnf (that is, a
file named .my.cnf in your home directory). Under Windows, create an option file
named my.ini in your MySQL installation directory, or in the root directory of the C
drive (that is, C:\my.ini).An option file is a plain text file; you can create it using any text
editor.The file’s contents should look something like this:

[client]

host=server_host

user=your_name

password=your_pass

The [client] line signals the beginning of the client option group. MySQL pro-
grams read the lines following it to obtain option values, until the end of the file or until a
different option group begins. Replace server_host, your_name, and your_pass with
the hostname, username, and password that you specify when you connect to the server.
For example, if the server is running on the host cobra.snake.net and your MySQL
username and password are sampadm and secret, put these lines in the .my.cnf file:

[client]

host=cobra.snake.net

user=sampadm

password=secret

The [client] line is required, to define where the option group begins, but the lines
that define parameter values are optional; you can specify just the ones you need. For ex-
ample, if you’re using Unix and your MySQL username is the same as your Unix login
name, there is no need to include a user line.The default host is localhost, so if you
connect to a server running on the local host, no host line is necessary.

Under Unix, an additional precaution that you should take after creating the option
file is to set its access mode to a restrictive value to make sure that no one else can read or
modify it. Either of the following commands make the file accessible only to you:

% chmod 600 .my.cnf

% chmod u=rw,go-rwx .my.cnf

1.5.1.2 Using Your Shell’s Command History
Shells such as tcsh and bash remember your commands in a history list and enable you
to repeat commands from that list. If you use such a shell, your history list can help you
avoid typing entire commands. For example, if you’ve recently invoked mysql, you can
execute it again like this:

% !my

The ‘!’ character tells your shell to search through your command history to find the
most recent command that begins with “my” and reissue it as though you’d typed it again
yourself. Some shells also enable you to move up and down through your history list using
the Up arrow and Down arrow keys (or perhaps Control-P and Control-N).You can

951.5 Tips for Interacting with mysql

select the command you want this way and then press Enter to execute it. tcsh and bash

have this facility, and other shells may as well. Check the documentation for your shell to
find out more about using your history list.

1.5.1.3 Using Shell Aliases and Scripts
If your shell provides an alias facility, you can set up a short command name that maps to a
long command. For example, in csh or tcsh, you can use the alias command to set up
an alias named sampdb like this:

alias sampdb 'mysql -h cobra.snake.net -p -u sampadm sampdb'

The syntax for bash is slightly different:

alias sampdb='mysql -h cobra.snake.net -p -u sampadm sampdb'

Defining the alias makes the following two commands equivalent:

% sampdb

% mysql -h cobra.snake.net -p -u sampadm sampdb

Clearly, the first is easier to type than the second.To make the alias take effect each
time you log in, put the alias command in one of your shell’s startup files (for example,
.tcshrc for tcsh, or .bashrc or .bash_profile for bash).

On Windows, a similar technique is to create a shortcut that points to the mysql

program, and then edit the shortcut’s properties to include the appropriate connection
parameters.

Another way to invoke commands with less typing is to create a script that executes
mysql for you with the proper options. On Unix, a shell script that is equivalent to the
sampdb alias just shown looks like this:

#!/bin/sh

exec mysql -h cobra.snake.net -p -u sampadm sampdb

If you name the script sampdb and make it executable (with chmod +x sampdb), you can
type sampdb at the command prompt to run mysql and connect to the sampdb database.

On Windows, a batch file can be used to do the same thing. Name the file sampdb.bat
and put the following line in it:

mysql -h cobra.snake.net -p -u sampadm sampdb

This batch file can be run either by typing sampdb at the prompt in a console window
or by double-clicking its Windows icon.

If you need to access several databases or connect to several hosts, you can define mul-
tiple aliases, shortcuts, or scripts, each of which invokes mysql with different options.

1.5.2 Issuing Statements with Less Typing
mysql is an extremely useful program for interacting with your database, but its interface
is most suitable for short, single-line queries.Although mysql itself doesn’t care whether a
query spreads across multiple lines, long queries aren’t much fun to type.And it’s annoying

96 Chapter 1 Getting Started with MySQL

to enter a query, only to discover that you must retype it because it has a syntax error.You
can use several techniques to avoid needless retyping:

n Use mysql’s input line-editing facility.
n Use copy and paste.
n Run mysql in batch mode.

1.5.2.1 Using the mysql Input Line Editor
mysql has the GNU Readline library built in to enable input line editing.You can manip-
ulate the line you’re currently entering, or recall previous input lines and re-enter them,
either as is or after further modification.This is convenient when you’re entering a line
and spot a typo; you can back up within the line to correct the problem before pressing
Enter. If you enter a query that has a mistake in it, you can recall the query, edit it to fix
the problem, and then resubmit it. (This is easiest if you type the entire query on one
line.)

Some of the key sequences you will find useful are shown in Table 1.4, but there are
many input editing commands available in addition to those shown in the table.You can
read about them in the command editing chapter of the bash manual, available online
from the GNU Project Web site at http://www.gnu.org/manual/.

Table 1.4 mysql Input Editing Commands

Key Sequence Meaning

Up arrow or Control-P Recall previous line

Down arrow or Control-N Recall next line

Left arrow or Control-B Move cursor left (backward)

Right arrow or Control-F Move cursor right (forward)

Escape b Move backward one word

Escape f Move forward one word

Control-A Move cursor to beginning of line

Control-E Move cursor to end of line

Control-D Delete character under cursor

Delete Delete character to left of cursor

Escape D Delete word

Escape Backspace Delete word to left of cursor

Control-K Erase everything from cursor to end of line

http://www.gnu.org/manual/

971.5 Tips for Interacting with mysql

On Windows, the Readline editing capabilities are not available. However,Windows it-
self supports the commands shown in Table 1.5, so they become available to mysql.

The following example describes a simple use for input editing. Suppose that you’ve
entered this query while using mysql:

mysql> SHOW COLUMNS FROM persident;

Table 1.5 Windows Input Editing Commands

Key Sequence Meaning

Up arrow Recall previous line

Down arrow Recall next line

Left arrow Move cursor left (backward)

Right arrow Move cursor right (forward)

Control-Left Arrow Move backward one word

Control-Right Arrow Move forward one word

Home Move cursor to beginning of line

End Move cursor to end of line

Delete Delete character under cursor

Backspace Delete character to left of cursor

Esc Erase line

Page Up Recall first command entered

Page Down Recall last command entered

F3 Recall last command entered

F7 Display command pop-up; select with Up arrow/Down arrow

F9 Display command pop-up; select with command number

F8, F5 Cycle through command list

Table 1.4 mysql Input Editing Commands

Key Sequence Meaning

Control-_ Undo last change; can be repeated

98 Chapter 1 Getting Started with MySQL

If you notice that you’ve misspelled “president” as “persident” before pressing Enter,
you can fix the query like this:

1. Press Left arrow a few times to move the cursor left until it’s on the “s”.

2. To erase the “er”, press Delete or Backspace twice (whichever one erases the char-
acter to the left of the cursor on your system).

3. Type “re” to fix the error.

4. Press Enter to issue the query.

If you press Enter before you notice the misspelling, that’s not a problem.After mysql
displays its error message, press Up arrow to recall the line, and then edit it as just
described.

1.5.2.2 Using Copy and Paste to Issue Statements
If you work in a windowing environment, the text of statements that you find useful can
be saved in a file and recalled by copy and paste operations:

1. Invoke mysql in a terminal window.

2. Open the file containing your statements in a document window. (For example, I
use vi on Unix and gvim on Windows.)

3. To execute a statement stored in your file, select it in the document and copy it.
Then switch to your terminal window and paste the statement into mysql.

The procedure sounds cumbersome when written out like that, but when you’re actu-
ally carrying it out, it provides a way to enter statements quickly and with no typing.With
a little practice, it becomes second nature.

You can use copy and paste in the other direction, too (from your terminal window to
your statement file). On Unix, when you enter statements in mysql, they are saved in a file
named .mysql_history in your home directory. If you manually enter a statement that
you want to save for further reference, quit mysql, open .mysql_history in an editor, and
then copy and paste the statement from .mysql_history into your statement file.

1.5.2.3 Using mysql to Execute Script Files
It’s not necessary to run mysql interactively. mysql can read input from a file in noninter-
active (batch) mode.This is useful for statements that you run periodically because you
certainly don’t want to retype them every time you run them. It’s easier to put the state-
ments into a file once, and then have mysql execute the contents of the file as needed.

Suppose that you have a query to find Historical League members who have an inter-
est in a particular area of U.S. history by looking in the interests column of the member
table. For example, to find members with an interest in the Great Depression, you can
write the query like this:

991.5 Tips for Interacting with mysql

SELECT last_name, first_name, email, interests FROM member

WHERE interests LIKE '%depression%'

ORDER BY last_name, first_name;

Put the query in a file interests.sql, and then execute it by feeding it to mysql

like this:

% mysql sampdb < interests.sql

By default, mysql produces output in tab-delimited format when run in batch mode. If
you want the same kind of table-format output you get when you run mysql interactively,
use the -t option:

% mysql -t sampdb < interests.sql

If you want to save the output, redirect it to a file:

% mysql -t sampdb < interests.sql > interests.out

If you are already running mysql, execute the contents of the file by using a source
command:

mysql> source interests.sql

To use the query to find members with an interest in Thomas Jefferson, you could edit
the query file to change depression to Jefferson and then run mysql again.That works
okay as long as you don’t use the query very often. If you do, a better method is needed.
On Unix, one way to make the query more flexible is to put it in a shell script that takes
an argument from the script command line and uses it to change the text of the query.
That parameterizes the query so that you can specify the interests value when you run
the script.To see how this works, write a little shell script, interests.sh:

#!/bin/sh

interests.sh - find USHL members with particular interests

if [$# -ne 1]; then echo 'Please specify one keyword'; exit; fi

mysql -t sampdb <<QUERY_INPUT

SELECT last_name, first_name, email, interests FROM member

WHERE interests LIKE '%$1%'

ORDER BY last_name, first_name;

QUERY_INPUT

The third line makes sure that there is one argument on the command line; it prints a
short message and exits otherwise. Everything between <<QUERY_INPUT and the final
QUERY_INPUT line becomes the input to mysql.Within the text of the query, the shell re-
places the reference to $1 with the argument from the command line. (In shell scripts, $1,
$2, ... refer to the command arguments.) This causes the query to reflect whatever key-
word you specify on the command line when you run the script.

Before you can run the script, you must make it executable:

% chmod +x interests.sh

100 Chapter 1 Getting Started with MySQL

Now you don’t need to edit the script each time you run it. Just tell it what you’re
looking for on the command line:

% ./interests.sh depression

% ./interests.sh Jefferson

The interests.sh script is located in the misc directory of the sampdb distribution.
An equivalent Windows batch file, interests.bat, is provided there as well.

Note
I suggest that you not install scripts like these publicly because they do not perform any
safety checks on the arguments and thus are subject to SQL injection attacks. Suppose
someone invokes the script like this:

% ./interests.sh "Jefferson';DROP DATABASE sampdb;"

The effect of this is to “inject” a DROP DATABASE statement into the statement to the mysql

input in such a way that it actually executes.

1.6 Where to Now?
You know quite a bit about using MySQL now.You can set up a database and create
tables.You can put rows into those tables, retrieve them in various ways, change them, or
delete them. But the tutorial in this chapter only scratches the surface, and there’s still a
lot to know about MySQL.You can see this by considering the current state of our
sampdb database.We’ve created it and its tables and populated them with some initial data.
During the process we’ve seen how to write some of the queries needed for answering
questions about the information in the database. But much remains to be done. For ex-
ample, we have no convenient interactive way to enter new score rows for the grade-
keeping project or new member entries for the Historical League directory.We have no
convenient way to edit existing rows.And we still can’t generate the printed or online
forms of the League directory.These tasks and others are revisited in the upcoming chap-
ters, particularly in Chapter 8,“Writing MySQL Programs Using Perl DBI,” and Chapter
9,“Writing MySQL Programs Using PHP.”

Where you go next in this book depends on what you’re interested in. If you want to
see how to finish the job we’ve started with our Historical League and grade-keeping
projects, Part II covers how to write MySQL-based programs. If you’re going to serve as
the MySQL administrator for your site, Part III of this book deals with administrative
tasks. However, I recommend acquiring additional general background in using MySQL
first, by reading the remaining chapters in Part I.These chapters provide further informa-
tion on the syntax and use of SQL statements, discuss how MySQL handles data, and
show how to make your queries run faster.A good grounding in these topics will stand
you in good stead no matter the context in which you use MySQL—whether you’re
running mysql, writing your own programs, or acting as a database administrator.

2
Using SQL to Manage Data

Structured Query Language (SQL) is the language that the MySQL server understands
and is the means by which you tell the server how to perform data management opera-
tions.Therefore, fluency with SQL is necessary for effective communication with the
server.When you use a program such as the mysql client, it functions primarily as a way
for you to send SQL statements to the server to be executed. If you write programs in a
language that has a MySQL interface, such as the Perl DBI module or PHP PDO exten-
sion, these interfaces enable you to communicate with the server by issuing SQL
statements.

Chapter 1,“Getting Started with MySQL,” presents a tutorial introduction to many of
MySQL’s capabilities, including some basic use of SQL. Now we’ll build on that material
to go into more detail about several areas of SQL implemented by MySQL:

n Changing the SQL mode to affect server behavior
n Naming rules for referring to elements of databases
n Using multiple character sets
n Creating and destroying databases, tables, and indexes
n Obtaining information about databases and their contents
n Retrieving data using joins, subqueries, and unions
n Creating views that provide alternative ways of looking at data in tables
n Using multiple-table deletes and updates
n Performing transactions that enable statements to be grouped or canceled
n Setting up foreign key relationships
n Using the FULLTEXT search engine

The items just listed cover a broad range of topics of what you can do with SQL.
Other chapters provide additional SQL-related information:

n Chapter 4,“Stored Programs,” discusses how to create and use stored functions and
procedures, triggers, and events.

102 Chapter 2 Using SQL to Manage Data

n Chapter 12,“General MySQL Administration,” describes how administrative state-
ments such as GRANT and REVOKE are used for managing user accounts. It also dis-
cusses the privilege system that controls what operations accounts are allowed to
perform.

n Appendix E,“SQL Syntax Reference,” shows the syntax for SQL statements imple-
mented by MySQL. It also covers the syntax for using comments in your SQL
statements.

You can also consult the MySQL Reference Manual, which is especially useful for
changes made in the most recent versions of MySQL.

2.1 The Server SQL Mode
The MySQL server has a system variable named sql_mode that enables you to configure
the SQL mode, which affects several aspects of SQL statement execution.This variable
can be set globally and individual clients can change the mode to affect their own con-
nection to the server.This means that any client can change how the server behaves in re-
lation to itself without impact on other clients.

The SQL mode affects behaviors such as handling of invalid values during data entry
and identifier quoting.The following list describes a few of the possible mode values:

n STRICT_ALL_TABLES and STRICT_TRANS_TABLES enable “strict” mode. In strict
mode, the server is more restrictive about accepting bad data values. (Specifically, it
rejects bad values rather than changing them to the closest legal value.)

n TRADITIONAL is another composite mode. It is like strict mode, but enables other
modes that impose additional constraints for even stricter data checking.Traditional
mode causes the server to behave like more traditional SQL servers with regard to
how it handles bad data values.

n ANSI_QUOTES tells the server to recognize double quote as an identifier quoting
character.

n PIPES_AS_CONCAT causes || to be treated as the standard SQL string concatenation
operator rather than as a synonym for the OR operator.

n ANSI is a composite mode. It turns on ANSI_QUOTES, PIPES_AS_CONCAT, and several
other mode values that result in server behavior more like standard SQL than how
it operates by default.

Section 3.3,“How MySQL Handles Invalid Data Values,” discusses the SQL mode
values that affect handling of erroneous or missing values during data entry.Appendix D,
“System, Status, and User Variable Reference,” describes the full set of allowable mode
values for the sql_mode variable.

When you set the SQL mode, specify a value consisting of one or more mode values
separated by commas, or an empty string to clear the value. Mode values are not case
sensitive.

1032.2 MySQL Identifier Syntax and Naming Rules

To set the SQL mode when you start the server, use the --sql-mode option on the
mysqld command line or in an option file. On the command line, you might use a setting
like one of these:

--sql-mode="TRADITIONAL"

--sql-mode="ANSI_QUOTES,PIPES_AS_CONCAT"

To change the SQL mode at runtime, set the sql_mode system variable with a SET
statement.

Any client can set its own session-specific SQL mode:

SET sql_mode = 'TRADITIONAL';

To set the SQL mode globally, add the GLOBAL keyword:

SET GLOBAL sql_mode = 'TRADITIONAL';

Setting the global variable requires the SUPER administrative privilege.The value be-
comes the default SQL mode for clients that connect afterward.

To determine the current value of the session or global SQL mode, use these statements:

SELECT @@SESSION.sql_mode;

SELECT @@GLOBAL.sql_mode;

The value returned consists of a comma-separated list of enabled modes, or an empty
value if no modes are enabled.

For additional information on user privileges and setting or checking system variables,
see Chapter 12.

2.2 MySQL Identifier Syntax and Naming Rules
Almost every SQL statement uses identifiers in some way to refer to a database or its con-
stituent elements such as tables or views, columns, indexes, stored routines, triggers, or
events.When you refer to elements of databases, identifiers must conform to the follow-
ing rules.

Legal characters in identifiers. Unquoted identifiers may consist of alphanumeric
characters in the system character set (utf8), plus the characters ‘_’ and ‘$’. Identifiers can
start with any character that is legal in an identifier, including a digit. However, an un-
quoted identifier cannot consist entirely of digits because that would make it indistin-
guishable from a number. MySQL’s support for identifiers that begin with a number is
somewhat unusual among database systems. If you use such an identifier, be particularly
careful if it contains an ‘E’ or ‘e’ because those characters can lead to ambiguous expres-
sions. For example, the expression 23e + 14 (with spaces surrounding the ‘+’ sign) means
column 23e plus the number 14, but what about 23e+14? Does it mean the same thing,
or is it a number in scientific notation?

Identifiers can be quoted (delimited) within backtick characters (‘`’), which allows use
of any character except a byte with value 0 or 255:

CREATE TABLE `my table` (`my-int-column` INT);

104 Chapter 2 Using SQL to Manage Data

Quoting is useful when an identifier is an SQL reserved word or contains spaces or
other special characters. Quoting an identifier also enables it to be entirely numeric,
something that is not true of unquoted identifiers.To include an identifier quote charac-
ter within a quoted identifier, double it.

Prior to MySQL 5.1.6, there are two additional constraints for database and table
identifiers, even for those that are quoted. First, you cannot use the ‘.’ character, because it
is used as the separator character in qualified names such as db_name.tbl_name or
db_name.tbl_name.col_name. Second, you cannot use the Unix or Windows pathname
separator characters (‘/’ or ‘\’).The pathname separator is disallowed in database and table
identifiers because databases are represented on disk by directories, and tables are repre-
sented on disk by at least one file. Consequently, these types of identifiers must contain
only characters that are legal in directory names and filenames.The Unix pathname sepa-
rator is disallowed on Windows (and vice versa) to make it easier to transfer databases and
tables between servers running on different platforms. (Suppose that you were allowed to
use a slash in a table name on Windows.That would make it impossible to move the table
to Unix, because filenames on that platform cannot contain slashes.)

As of MySQL 5.1.6, the mapping of identifiers as used in SQL statements onto direc-
tory names and filenames has been modified to enable use of characters that are illegal in
earlier versions. In particular, the pathname characters (‘/’ or ‘\’), as well as ‘.’ are legal, as
long as the identifier is quoted.

Your operating system might impose additional constraints on database and table iden-
tifiers. See Section 11.2.6,“Operating System Constraints on Database Object Names.”

Aliases for column and table names can be fairly arbitrary.You should quote an alias
within identifier quoting characters if it is an SQL reserved word, is entirely numeric, or
contains spaces or other special characters. Column aliases also can be quoted with single
quotes or double quotes.

Server SQL mode. If the ANSI_QUOTES SQL mode is enabled, you can quote identi-
fiers with double quotes (although backticks still are allowable).

CREATE TABLE "my table" ("my-int-column" INT);

Note
Enabling ANSI_QUOTES has the additional effect that string literals must be written using
single quotes. If you use double quotes, the server will interpret the value as an identifier,
not as a string.

Names of built-in functions normally are not reserved and can be used as identifiers
without quotes. However, if the IGNORE_SPACE SQL mode is enabled, function names
become reserved and must be quoted if used as identifiers.

For instructions on setting the SQL mode, see Section 2.1,“The Server SQL Mode.”
Identifier length. Most identifiers have a maximum length of 64 characters.The maxi-

mum length for aliases is 256 characters.
Identifier qualifiers. Depending on context, an identifier might need to be qualified

to make clear what it refers to.To refer to a database, just specify its name:

1052.2 MySQL Identifier Syntax and Naming Rules

USE db_name;

SHOW TABLES FROM db_name;

To refer to a table, you have two choices:

n A fully qualified table name consists of a database identifier and a table identifier:

SHOW COLUMNS FROM db_name.tbl_name;

SELECT * FROM db_name.tbl_name;

n A table identifier by itself refers to a table in the default (current) database. If sampdb
is the default database, the following statements are equivalent:

SELECT * FROM member;

SELECT * FROM sampdb.member;

If no database has been selected, you cannot refer to a table without specifying a data-
base qualifier because it is unclear which database the table belongs to.

The same considerations about qualifying table names apply to names of views (which
are “virtual” tables) and stored programs.

To refer to a table column, there are three choices:

n A name written as db_name.tbl_name.col_name is fully qualified.
n A partially qualified name written as tbl_name.col_name refers to a column in the

named table in the default database.
n An unqualified name written simply as col_name refers to whatever table is indi-

cated by the surrounding context.The following two queries use the same column
names, but the context supplied by the FROM clause of each statement indicates the
table from which to select the columns:

SELECT last_name, first_name FROM president;

SELECT last_name, first_name FROM member;

It’s usually unnecessary to supply fully qualified names, although it’s always legal to do
so if you like. If you select a database with a USE statement, that database becomes the de-
fault database and is implicit in every unqualified table reference. If you’re using a SELECT
statement that refers to only one table, that table is implicit for every column reference in
the statement. It’s necessary to qualify identifiers only when a table or database cannot be
determined from context. For example, if a statement refers to tables from multiple data-
bases, any table not in the default database must be referenced using the
db_name.tbl_name form to let MySQL know which database contains the table. Simi-
larly, if a query uses multiple tables and refers to a column name that is used in more than
one table, it’s necessary to qualify the column identifier with a table identifier to make it
clear which column you mean.

If you use quotes when referring to a qualified name, quote individual identifiers
within the name separately. For example:

SELECT * FROM `sampdb`.`member` WHERE `sampdb`.`member`.`member_id` > 100;

106 Chapter 2 Using SQL to Manage Data

Do not quote the name as a whole.This statement is incorrect:

SELECT * FROM `sampdb.member` WHERE `sampdb.member.member_id` > 100;

The requirement that a reserved word be quoted if used as an identifier is waived if the
word follows a qualifier period because context then dictates that the reserved word is an
identifier.

2.3 Case Sensitivity in SQL Statements
Case sensitivity rules in SQL statements vary for different statement elements, and also de-
pend on what you are referring to and the operating system of the machine on which the
server is running.

SQL keywords and function names. Keywords and function names are not case sen-
sitive.They can be given in any lettercase.The following statements all retrieve the same
information (although the column headings displayed for the result will differ in
lettercase):

SELECT NOW();

select now();

sElEcT nOw();

Database, table, and view names. MySQL represents databases and tables using direc-
tories and files in the underlying filesystem on the server host.As a result, the default case
sensitivity of database and table names depends on the way the operating system on that
host treats filenames.Windows filenames are not case sensitive, so a MySQL server run-
ning on Windows does not treat database and table names as case sensitive. Servers run-
ning on Unix usually treat database and table names as case sensitive because Unix
filenames are case sensitive.An exception is that names in HFS+ filesystems under Mac
OS X are not case sensitive.

MySQL represents each view using a file, so the preceding remarks about tables also
apply to views.

Stored program names. Stored function and procedure names and event names are
not case sensitive.Trigger names are case sensitive, which differs from standard SQL.

Column and index names. Column and index names are not case sensitive in
MySQL.The following statements all retrieve the same information:

SELECT name FROM student;

SELECT NAME FROM student;

SELECT nAmE FROM student;

Alias names. By default, table aliases are case sensitive.You can specify an alias in any
lettercase (upper, lower, or mixed), but if you use it multiple times in a statement, you
must use the same lettercase each time. If the lower_case_table_names variable is non-
zero, table aliases are not case sensitive.

String values. Case sensitivity of a string value depends on whether it is a binary or
non-binary string, and, for a non-binary string, on the collation of its character set.This is

1072.4 Character Set Support

true for literal strings and the contents of string columns. For further information, see
Section 3.1.2,“String Values.”

You should consider lettercase issues when you create databases and tables on a ma-
chine with case sensitive filenames if it is possible that you will someday move them to a
machine where filenames are not case sensitive. Suppose that you create two tables named
abc and ABC on a Unix server where those names are treated differently.You would have
problems moving the tables to a Windows machine, where abc and ABC would not be dis-
tinguishable because names are not case sensitive.You would also have trouble replicating
the tables from a Unix master server to a Windows slave server.

One way to avoid having case sensitivity become an issue is to pick a given lettercase
and always create databases and tables using names in that lettercase.Then case of names
won’t be a problem if you move a database to a different server. I recommend using low-
ercase.This will help also if you are using InnoDB tables, because InnoDB stores database
and table names internally in lowercase.

To force creation of databases and tables with lowercase names even if not specified
that way in CREATE statements, configure the server by setting the
lower_case_table_names system variable. See Section 11.2.6,“Operating System
Constraints on Database Object Names,” for more information.

Regardless of whether a database or table name is case sensitive on your system, you
must refer to it using the same lettercase throughout a given query.That is not true for
SQL keywords, function names, or column and index names, all of which may be referred
to in varying lettercase style throughout a query. However, the query will be more read-
able if you use a consistent lettercase rather than mixed lettercase (SelECt NamE FrOm ...).

2.4 Character Set Support
MySQL supports multiple character sets, and character sets can be specified independently
at the server, database, table, column, or string constant level. For example, if you want a
table’s columns to use latin1 by default, but also to include a Hebrew column and a
Greek column, you can do that. In addition, you can explicitly specify collations (sorting
orders). It is possible to find out what character sets and collations are available, and to
convert data from one character set to another.

This section provides general background on using MySQL’s character set support.
Chapter 3,“Data Types,” provides more specific discussion of character sets, collations, bi-
nary versus non-binary strings, and how to define and work with character-based table
columns. Chapter 12, discusses how to configure which character sets the server makes
available.

MySQL character set support provides the following features:

n The server allows simultaneous use of multiple character sets.
n A given character set can have one or more collations.You can choose the collation

most appropriate for your applications.

108 Chapter 2 Using SQL to Manage Data

n Unicode support is provided by the utf8 and ucs2 character sets, with additional
sets available as of MySQL 6.0.4.

n You can specify character sets at the server, database, table, column, and string con-
stant level:

n The server has a default character set.
n CREATE DATABASE enables you to assign the database character set, and ALTER
DATABASE enables you to change it.

n CREATE TABLE and ALTER TABLE have clauses for table- and column-level
character set assignment. (Details are given in Chapter 3.)

n The character set for string constants is determined by context or can be
specified explicitly.

n Functions and operators are available for converting individual values from one
character set to another or for determining the character set of a value. Similarly, the
COLLATE operator can be used to alter the collation of a string and the COLLATION()
function returns the collation of a string.

n SHOW statements and INFORMATION_SCHEMA tables provide information about the
available character sets and collations.

n The server automatically reorders indexes when you change the collation of an in-
dexed character column.

You cannot mix character sets within a string, or use different character sets for differ-
ent rows of a given column. However, by using a Unicode character set (which represents
characters for many languages within a single encoding), you may be able to implement
multi-lingual support of the type you desire.

2.4.1 Specifying Character Sets
Character set and collation assignments can be made at several levels, from the default used
by the server to the character set used for individual strings.

The server’s default character set and collation are built in at compile time.You
can override them at server startup by using the --character-set-server and
--collation-server options or at runtime by setting the character_set_server and
collation_server system variables. If you specify only the character set, its default colla-
tion becomes the server’s default collation. If you specify a collation, it must be compatible
with the character set. (A collation is compatible with a character set if its name begins
with the character set name. For example, utf8_danish_ci is compatible with utf8 but
not with latin1.)

In SQL statements that create databases and tables, two clauses are used for specifying
database, table, and column character set and collation values:

CHARACTER SET charset

COLLATE collation

1092.4 Character Set Support

CHARSET can be used as a synonym for CHARACTER SET. charset is the name of a char-
acter set supported by the server, and collation is the name of one of that character set’s
collations.These clauses can be specified together or separately. If both are given, the colla-
tion name must be compatible with the character set. If only CHARACTER SET is given, its
default collation is used. If only COLLATE is given, the character set is implicit in the first
part of the character set name.These rules apply at several levels:

n To specify a default character set and collation for a database when you create it, use
this statement:

CREATE DATABASE db_name CHARACTER SET charset COLLATE collation;

If no character set or collation is given, the server defaults are used for the database.
n To specify a default character set and collation for a table, use CHARACTER SET and
COLLATE table options at table creation time:

CREATE TABLE tbl_name (...) CHARACTER SET charset COLLATE collation;

If no character set or collation is given, the database defaults are used for the table.
n Columns in a table can be assigned a character set and collation explicitly with
CHARACTER SET and COLLATE attributes. For example:

c CHAR(10) CHARACTER SET charset COLLATE collation

If no character set or collation is given, the table defaults are used for the column.
These attributes apply to the CHAR, VARCHAR, TEXT, ENUM, and SET data types.

It’s also possible to sort string values according to a specific collation by using the
COLLATE operator. For example, if c is a latin1 column that has a collation of
latin1_swedish_ci, but you want to order it using Spanish sorting rules, do this:

SELECT c FROM t ORDER BY c COLLATE latin1_spanish_ci;

2.4.2 Determining Character Set Availability and Current Settings
To find out which character sets and collations are available, use these statements:

SHOW CHARACTER SET;

SHOW COLLATION;

Each statement supports a LIKE clause that narrows the results to those character set or
collation names matching a pattern. For example, this statement lists the Latin-based char-
acter sets:

mysql> SHOW CHARACTER SET LIKE 'latin%';

+---------+-----------------------------+-------------------+--------+

| Charset | Description | Default collation | Maxlen |

+---------+-----------------------------+-------------------+--------+

| latin1 | cp1252 West European | latin1_swedish_ci | 1 |

| latin2 | ISO 8859-2 Central European | latin2_general_ci | 1 |

110 Chapter 2 Using SQL to Manage Data

| latin5 | ISO 8859-9 Turkish | latin5_turkish_ci | 1 |

| latin7 | ISO 8859-13 Baltic | latin7_general_ci | 1 |

+---------+-----------------------------+-------------------+--------+

This statement lists the collations available for the utf8 character set (collation names
always begin with the character set name):

mysql> SHOW COLLATION LIKE 'utf8%';

+--------------------+---------+-----+---------+----------+---------+

| Collation | Charset | Id | Default | Compiled | Sortlen |

+--------------------+---------+-----+---------+----------+---------+

| utf8_general_ci | utf8 | 33 | Yes | Yes | 1 |

| utf8_bin | utf8 | 83 | | Yes | 1 |

| utf8_unicode_ci | utf8 | 192 | | Yes | 8 |

| utf8_icelandic_ci | utf8 | 193 | | Yes | 8 |

| utf8_latvian_ci | utf8 | 194 | | Yes | 8 |

| utf8_romanian_ci | utf8 | 195 | | Yes | 8 |

| utf8_slovenian_ci | utf8 | 196 | | Yes | 8 |

...

As can be seen in the output from these statements, each character set has at least one
collation and one of them is its default collation.

Information about the available character sets and collations is also available in the
CHARACTER_SETS and COLLATIONS tables in the INFORMATION_SCHEMA database (see
Section 2.7,“Obtaining Database Metadata”).

To display the server’s current character set and collation settings, use SHOW VARIABLES:

mysql> SHOW VARIABLES LIKE 'character_set_%';

+--------------------------+--------+

| Variable_name | Value |

+--------------------------+--------+

| character_set_client | latin1 |

| character_set_connection | latin1 |

| character_set_database | latin1 |

| character_set_filesystem | binary |

| character_set_results | latin1 |

| character_set_server | latin1 |

| character_set_system | utf8 |

+--------------------------+--------+

mysql> SHOW VARIABLES LIKE 'collation_%';

+----------------------+-------------------+

| Variable_name | Value |

+----------------------+-------------------+

| collation_connection | latin1_swedish_ci |

| collation_database | latin1_swedish_ci |

| collation_server | latin1_swedish_ci |

+----------------------+-------------------+

1112.4 Character Set Support

Several of these system variables affect how a client communicates with the server after
establishing a connection. For details, refer to Section 3.1.2.2,“Character Set-Related
System Variables.”

2.4.3 Unicode Support
One of the reasons there are so many character sets is that different character encodings
have been developed for different languages.This presents several problems. For example, a
given character that is common to several languages might be represented by different nu-
meric values in different encodings.Also, different languages require different numbers of
bytes to represent characters.The latin1 character set is small enough that every character
fits in a single byte, but languages such as those used in Japan and China contain so many
characters that they require multiple bytes per character.

The goal of Unicode is to provide a unified character-encoding system within which
character sets for all languages can be represented in a consistent manner.

2.4.3.1 Unicode Support Prior to MySQL 6.0
Prior to MySQL 6.0.4, Unicode support includes only characters in the Basic Multilin-
gual Plane (BMP), which is limited to 65,536 characters.There is no support for supple-
mentary characters outside the BMP. Unicode capabilities are provided through two
character sets:

n The ucs2 character set corresponds to the Unicode UCS-2 encoding. It represents
each character using two bytes, most significant byte first.This character set does not
represent characters that require more than two bytes. UCS is an abbreviation for
Universal Character Set.

n The utf8 character set has a variable-length format in which characters are repre-
sented using from one to three bytes. It corresponds to the Unicode UTF-8 encod-
ing. UTF is an abbreviation for Unicode Transformation Format.

2.4.3.2 Unicode Support in MySQL 6.0 and Up
As of MySQL 6.0.4, Unicode support includes supplementary characters that lie outside
the Basic Multilingual Plane, which has the following implications:

n The ucs2 character set is not changed in MySQL 6.0. Each character still takes two
bytes. However, there are new utf16 and utf32 character sets that are like ucs2 but
with support for supplementary characters. For utf16, BMP characters take two
bytes (as for ucs2) and supplementary characters take four bytes. For utf32, all char-
acters take four bytes.

n Previously, utf8 characters required from one to three bytes each.With support for
supplementary characters, utf8 characters require from one to four bytes each.

n For databases and tables created before MySQL 6.0 that used the utf8 character set,
they will display as using the utf8mb3 character set in MySQL 6.0. (For example,

112 Chapter 2 Using SQL to Manage Data

you will see utf8mb3 if you use SHOW CREATE TABLE.) Except for the name,
utf8mb3 in MySQL 6.0 is exactly the same as utf8 before 6.0.

To convert tables from the old (three-byte) utf8 to the new (four-byte) utf8, dump
the tables with mysqldump before upgrading to MySQL 6.0 and reload the dump file after
upgrading. Be sure to also run mysql_upgrade after upgrading to make sure that any ad-
ditional required changes are made to the system tables in the mysql database.

2.5 Selecting, Creating, Dropping, and Altering
Databases
MySQL provides several database-level statements: USE for selecting a default database,
CREATE DATABASE for creating databases, DROP DATABASE for removing them, and ALTER
DATABASE for modifying global database characteristics.

The keyword SCHEMA is a synonym for DATABASE in any statement where the latter
occurs.

2.5.1 Selecting Databases
The USE statement selects a database to make it the default (current) database for a given
connection to the server:

USE db_name;

You must have some access privilege for the database or you cannot select it.
It is not strictly necessary to select a database explicitly. If you have access to a database,

you can use its tables without selecting it first if you use qualified names that identify both
the database and the table. For example, to retrieve the contents of the president table in
the sampdb database without selecting the database first, write the query like this:

SELECT * FROM sampdb.president;

However, it’s usually more convenient to refer to tables without having to specify a
database qualifier.

Selecting a database doesn’t mean that it must be the default for the duration of the
connection.You can issue USE statements as necessary to switch between databases. Nor
does selecting a database limit you to using tables only from that database.While one data-
base is the default, you can refer to tables in other databases by qualifying their names with
the appropriate database identifier.

When you disconnect from the server, any notion by the server of which database was
the default for the connection disappears. If you connect to the server again, it doesn’t re-
member what database you had selected previously.

1132.5 Selecting, Creating, Dropping, and Altering Databases

2.5.2 Creating Databases
To create a database, use a CREATE DATABASE statement:

CREATE DATABASE db_name;

The conditions on database creation are that the name must be a legal identifier, the
database must not already exist, and you must have sufficient privileges to create it.

When you create a database, the MySQL server creates a directory under its data direc-
tory that has the same name as the database.The new directory is called the database di-
rectory.The server also creates a db.opt file in the database directory for storing database
attributes.

CREATE DATABASE supports several optional clauses.The full syntax is as follows:

CREATE DATABASE [IF NOT EXISTS] db_name

[CHARACTER SET charset] [COLLATE collation];

Normally, an error occurs if you try to create a database that already exists.To suppress
this error and create a database only if it does not already exist, add an IF NOT EXISTS
clause:

CREATE DATABASE IF NOT EXISTS db_name;

By default, the server character set and collation become the database default character
set and collation.You can use the CHARACTER SET and COLLATE clauses to set these data-
base attributes explicitly. For example:

CREATE DATABASE mydb CHARACTER SET utf8 COLLATE utf8_icelandic_ci;

If CHARACTER SET is given without COLLATE, the default collation for the character set
is used. If COLLATE is given without CHARACTER SET, the first part of the collation name
determines the character set.

The character set must be one of those supported by the server, such as latin1 or
sjis.The collation should be a legal collation for the character set. For further discussion
of character sets and collations, see Chapter 3.

MySQL stores the database character set and collation attributes in the db.opt file.
When you create a new table, if the table definition does not specify its own default char-
acter set and collation, the database defaults become the table defaults.

To see the definition for an existing database, use a SHOW CREATE DATABASE statement:

mysql> SHOW CREATE DATABASE mydb\G

*************************** 1. row ***************************

Database: mydb

Create Database: CREATE DATABASE `mydb`

/*!40100 DEFAULT CHARACTER SET utf8

COLLATE utf8_icelandic_ci */

114 Chapter 2 Using SQL to Manage Data

2.5.3 Dropping Databases
Dropping a database is as easy as creating one, assuming that you have sufficient privileges:

DROP DATABASE db_name;

The DROP DATABASE statement is not something to use with wild abandon. It removes
the database and all its contents (tables, stored routines, and so forth), which are therefore
gone forever unless you have been making backups regularly.

A database is represented by a directory under the data directory, and the directory is
intended for storage of objects such as tables, views, and triggers. If a DROP DATABASE
statement fails, the reason most likely is that the database directory contains files not asso-
ciated with database objects. DROP DATABASE will not delete such files, and as a result will
not delete the directory, either.This means that the database directory continues to exist
and will show up if you issue a SHOW DATABASES statement.To really drop the database if
this occurs, manually remove any extraneous files and subdirectories from the database di-
rectory, and then issue the DROP DATABASE statement again.

2.5.4 Altering Databases
The ALTER DATABASE statement makes changes to a database’s global attributes. Currently,
the only such attributes are the default character set and collation:

ALTER DATABASE [db_name] [CHARACTER SET charset] [COLLATE collation];

The earlier discussion for CREATE DATABASE describes the effect of the CHARACTER SET
and COLLATE clauses, at least one of which must be given.

If you omit the database name, ALTER DATABASE applies to the default database.

2.6 Creating, Dropping, Indexing, and
Altering Tables
MySQL enables you to create tables, drop (remove) them, and change their structure with
the CREATE TABLE, DROP TABLE, and ALTER TABLE statements.The CREATE INDEX and
DROP INDEX statements enable you to add or remove indexes on existing tables.The fol-
lowing sections provide the details for these statements, but first it’s necessary to discuss
the storage engines that MySQL supports for managing different types of tables.

2.6.1 Storage Engine Characteristics
MySQL supports multiple storage engines (or “table handlers” as they used to be known).
Each storage engine implements tables that have a specific set of properties or characteris-
tics.Table 2.1 briefly describes the storage engines currently available in MySQL distribu-
tions, and later discussion provides more detail about individual engine features. In
MySQL 5.0 and up, all of the engines shown are available except Falcon, which requires
MySQL 6.0.

1152.6 Creating, Dropping, Indexing, and Altering Tables

Table 2.1 MySQL Storage Engines

Storage Engine Description

ARCHIVE Archival storage (no modification of rows after insertion)

BLACKHOLE Engine that discards writes and returns empty reads

CSV Storage in comma-separated values format

EXAMPLE Example (“stub”) storage engine

Falcon Transactional engine

FEDERATED Engine for accessing remote tables

InnoDB Transactional engine with foreign keys

MEMORY In-memory tables

MERGE Manages collections of MyISAM tables

MyISAM The default storage engine

NDB The engine for MySQL Cluster

Some of the engine names have synonyms. MRG_MyISAM and NDBCLUSTER are
synonyms for MERGE and NDB, respectively.The MEMORY and InnoDB storage en-
gines originally were known as HEAP and Innobase, respectively.The latter names are still
recognized but deprecated.

For MySQL 5.1 and up, the server is based on a “pluggable” architecture that provides
a standard interface and that enables engines to be loaded and unloaded at runtime. Con-
sequently, storage engines from third-party developers can be integrated easily into the
server.

2.6.1.1 Checking Which Storage Engines Are Available
The engines actually available to you for a given server depend on your version of
MySQL, how the server was configured at build time, and the options with which it was
started. For details on configuring and activating storage engines, see Section 12.7,“Stor-
age Engine Configuration.”

To see which storage engines the server knows about, use the SHOW ENGINES state-
ment. It provides information that helps you determine the answers to questions such as
which transactional storage engines are available.The output shown here uses the format
from MySQL 5.0:

mysql> SHOW ENGINES\G

*************************** 1. row ***************************

Engine: MyISAM

Support: DEFAULT

Comment: Default engine as of MySQL 3.23 with great performance

*************************** 2. row ***************************

Engine: MEMORY

Support: YES

Comment: Hash based, stored in memory, useful for temporary tables

*************************** 3. row ***************************

Engine: InnoDB

Support: YES

Comment: Supports transactions, row-level locking, and foreign keys

...

The value in the Support column is YES or NO to indicate that the engine is or is not
available, DISABLED if the engine is present but turned off, or DEFAULT for the storage en-
gine that the server uses by default.The engine designated as DEFAULT should be consid-
ered available.

SHOW ENGINES as of MySQL 5.1 displays the 5.0 columns plus columns related to
transaction support:

mysql> SHOW ENGINES\G

*************************** 1. row ***************************

Engine: InnoDB

Support: YES

Comment: Supports transactions, row-level locking, and foreign keys

Transactions: YES

XA: YES

Savepoints: YES

...

*************************** 8. row ***************************

Engine: MyISAM

Support: DEFAULT

Comment: Default engine as of MySQL 3.23 with great performance

Transactions: NO

XA: NO

Savepoints: NO

...

The Transactions column indicates whether an engine supports transactions. XA and
Savepoints indicate whether an engine supports distributed transactions (not covered in
this book) and partial transaction rollback.

MySQL 5.1 and up has an INFORMATION_SCHEMA table named ENGINES that provides
the same information as SHOW ENGINES.You can use this table as follows to check for
available engines that support transactions (the output shown is from MySQL 6.0, which
includes the Falcon storage engine):

mysql> SELECT ENGINE FROM INFORMATION_SCHEMA.ENGINES

-> WHERE TRANSACTIONS = 'YES';

+--------+

| ENGINE |

+--------+

116 Chapter 2 Using SQL to Manage Data

Table 2.2 Table Files Created by Storage Engines

Storage Engine Files on Disk

MyISAM .MYD (data), .MYI (indexes)

MERGE .MRG (list of constituent MyISAM table names)

InnoDB .ibd (data and indexes)

ARCHIVE .ARZ (data), .ARM (metadata)

CSV .CSV (data), .CSM (metadata)

1172.6 Creating, Dropping, Indexing, and Altering Tables

| Falcon |

| InnoDB |

+--------+

2.6.1.2 Table Representation on Disk
Each time you create a table, MySQL creates a disk file that contains the table’s format
(that is, its definition).The format file has a basename that is the same as the table name
and an .frm extension.That is, for a table named t, the format file is named t.frm.The
server creates the file in the database directory for the database that the table belongs to.
The .frm file is an invariant because there is one for every table, no matter which storage
engine manages the table.The name of a table as used in SQL statements might differ
from the table-name part of the associated .frm file if the name contains characters that
are problematic in filenames. See Section 11.2.6,“Operating System Constraints on Data-
base Object Names,” for a description of the rules for mapping from SQL names to
filenames.

Individual storage engines may also create other files that are unique to the table, to be
used for storing the table’s content. For a given table, any files specific to it are located in
the database directory for the database that contains the table.Table 2.2 shows the file-
name extensions for the table-specific files that some storage engines create.

For some storage engines, the format file is the only file specifically associated with a
particular table. Other engines may store table content elsewhere than on disk, or may use
one or more tablespaces (storage areas shared by multiple tables):

n MEMORY table contents are stored in memory, not on disk.
n By default, InnoDB stores table data and indexes in its shared tablespace.That is, all

InnoDB table contents are managed within a shared storage area, not within files
specific to a particular table. InnoDB creates .ibd files only if you configure it to
use individual per-table tablespaces.

n Falcon stores table data and indexes in tablespace files.There is a default Falcon ta-
blespace, and you can create others on demand.Any of them can store the contents
of multiple tables.

118 Chapter 2 Using SQL to Manage Data

n The BLACKHOLE and EXAMPLE storage engines don’t actually store any data, so
they need not create any files.

n The FEDERATED engine provides access to tables located at remote MySQL
servers. It doesn’t create any data files itself.

The following sections characterize the features and behavior of selected MySQL stor-
age engines. For additional information about how engines represent tables physically, see
Section 11.2.3,“Representation of Tables in the Filesystem.”

2.6.1.3 The MyISAM Storage Engine
The MyISAM storage engine is the default engine in MySQL, unless you have configured
your server otherwise.The following list describes some of its features:

n MyISAM provides key compression. It uses compression when storing runs of suc-
cessive similar string index values. MyISAM also can compress runs of similar nu-
meric index values because numeric values are stored with the high byte first.
(Index values tend to vary faster in the low-order bytes, so high-order bytes are
more subject to compression.) To enable numeric compression, use the
PACK_KEYS=1 option when creating a MyISAM table.

n MyISAM provides more features for AUTO_INCREMENT columns than do other stor-
age engines. For more information, see Section 3.4,“Working with Sequences.”

n Each MyISAM table has a flag that is set when the table is checked by the server or
by the myisamchk program. MyISAM tables also have a flag indicating whether a
table was closed properly when last used. If the server shuts down abnormally or the
machine crashes, the flags can be used to detect tables that need to be checked.To
do this automatically, start the server with the --myisam-recover option.This
causes the server to check the table flags whenever it opens a MyISAM table and
perform a table repair if necessary.

n MyISAM supports full-text searching through the use of FULLTEXT indexes.
n MyISAM supports spatial data types and SPATIAL indexes.

2.6.1.4 The MERGE Storage Engine
MERGE tables provide a means for grouping a set of MyISAM tables into a single logical
unit. Querying a MERGE table in effect queries all the constituent tables. One advantage
of this is that you can exceed the maximum table size allowed by the filesystem for indi-
vidual MyISAM tables.

The tables that make up a MERGE table must all have the same structure.This means
the columns in each table must be defined with the same names and types in the same or-
der, and the indexes must be defined in the same way and in the same order. It is allowable
to mix compressed and uncompressed tables. (To produce compressed tables, use
myisampack; see Appendix F, “MySQL Program Reference.”)

1192.6 Creating, Dropping, Indexing, and Altering Tables

For an example, see Section 2.6.2.5,“Using MERGE Tables.” Partitioned tables provide
an alternative to the use of MERGE tables, and are not limited to MyISAM tables. See
Section 2.6.2.6,“Using Partitioned Tables.”

2.6.1.5 The MEMORY Storage Engine
The MEMORY storage engine uses tables that are stored in memory and that have fixed-
length rows, two properties that make them very fast.

MEMORY tables are temporary in the sense that their contents disappear when the
server terminates.That is, a MEMORY table still exists when the server restarts, but will
be empty. However, in contrast to temporary tables created with CREATE TEMPORARY
TABLE, MEMORY tables are visible to other clients.

MEMORY tables have characteristics that enable them to be handled more simply, and
thus more quickly:

n By default, MEMORY tables use hashed indexes, which are very fast for equality
comparisons but slow for range comparisons. Consequently, hashed indexes are used
only for comparisons performed with the = and <=> equality operators, but not for
comparison operators such as < or >. Hashed indexes also are not used in ORDER BY
clauses for this reason.

n Rows are stored in MEMORY tables using fixed-length format for easier process-
ing.A consequence is that you cannot use the BLOB and TEXT variable-length data
types. VARCHAR is a variable-length type, but is allowed because it is treated internally
as CHAR, a fixed-length type.

If you want to use a MEMORY table for comparisons that look for a range of values
using operators such as <, >, or BETWEEN, you can use BTREE indexes instead. (See Section
2.6.4.2,“Creating Indexes.”)

2.6.1.6 The InnoDB Storage Engine
The InnoDB storage engine was originally developed by Innobase Oy, which subse-
quently was acquired by Oracle. InnoDB offers these features:

n Transaction-safe tables with commit and rollback. Savepoints can be created to
enable partial rollback.

n Automatic recovery after a crash.
n Foreign key and referential integrity support, including cascaded delete and update.
n Row-level locking and multi-versioning for good concurrency performance under

query mix conditions that include both retrievals and updates.
n By default, InnoDB manages tables within a single shared tablespace, rather than by

using table-specific files like most other storage engines.The tablespace can consist
of multiple files and can include raw partitions.The InnoDB storage engine, in

120 Chapter 2 Using SQL to Manage Data

effect, treats the tablespace as a virtual filesystem within which it manages the con-
tents of all InnoDB tables.Tables thus can exceed the size allowed by the filesystem
for individual files.You can also configure InnoDB to use individual tablespaces, one
per table. In this case, each table has an .ibd file in its database directory.

2.6.1.7 The Falcon Storage Engine
The Falcon storage engine is available as of MySQL 6.0. Falcon offers these features:

n Transaction-safe tables with commit and rollback. Savepoints can be created to en-
able partial rollback.

n Automatic recovery after a crash.
n Flexible locking levels and multi-versioning for good concurrency performance un-

der query mix conditions that include both retrievals and updates.
n Row compression during storage and decompression during retrieval to save space.
n Low overhead for administration.

2.6.1.8 The FEDERATED Storage Engine
The FEDERATED storage engine provides access to tables that are managed by other
MySQL servers. In other words, the contents of a FEDERATED table really are located
remotely.When you create a FEDERATED table, you specify the host where the other
server is running and provide the username and password of an account on that server.
When you access the FEDERATED table, the local server connects to the remote server
using this account. For an example, see Section 2.6.2.7,“Using FEDERATED Tables.”

2.6.1.9 The NDB Storage Engine
NDB is MySQL’s cluster storage engine. For this storage engine, the MySQL server actu-
ally acts as a client to a cluster of other processes that provide access to the NDB tables.
Cluster node processes communicate with each other to manage tables in memory.The
tables are replicated among cluster processes for redundancy. Memory storage provides
high performance, and the cluster provides high availability because it survives failure of
any given node.

NDB configuration and use is beyond the scope of this book and is not covered fur-
ther here. See the MySQL Reference Manual for current details.

2.6.1.10 Other Storage Engines
There are several other MySQL storage engines that I will group here under the “miscel-
laneous” category:

n The ARCHIVE engine provides archival storage. It’s intended for storage of large
numbers of rows that are written once and never modified thereafter. For this reason,
it supports only a limited number of statements. INSERT and SELECT work, but

1212.6 Creating, Dropping, Indexing, and Altering Tables

REPLACE always acts like INSERT, and you cannot use DELETE or UPDATE. Rows are
compressed during storage and decompressed during retrieval to save space.The
ARCHIVE engine does not support indexing until MySQL 5.1.6, at which point an
ARCHIVE table can include an indexed AUTO_INCREMENT column; other columns
still cannot be indexed.

n The BLACKHOLE engine creates tables for which writes are ignored and reads re-
turn nothing.

n The CSV engine stores data in comma-separated values format. For each table, it
creates a .CSV file in the database directory.This is a plain text file in which each
table row appears as a single line.The CSV engine does not support indexing.

n The EXAMPLE engine is a minimal demonstration of how to get started writing a
storage engine. It exists mainly for developers to examine its source code and study
the basic concepts involved in hooking a storage engine into the server.

2.6.1.11 Storage Engine Portability Characteristics
Any table managed by a given MySQL server is portable to another server in the sense
that you can dump it into a text file with mysqldump, move the dump file to the machine
where the other server runs, and load the file to re-create the table.Another kind of
portability is “binary portability,” which means that you can directly copy the disk files
that represent the table to another machine, install them into the corresponding locations
under the data directory, and expect the MySQL server there to be able to use the table.

A general condition for binary portability of tables is that the source and destination
servers must be feature compatible. For example, the destination server must support the
storage engine that manages the tables. If the server does not have the appropriate engine,
it cannot access tables created by that engine on the source server.

Some storage engines create tables that are binary portable and some do not.The fol-
lowing list summarizes binary portability for individual engines:

n MyISAM and InnoDB tables are stored in machine-independent format and are
binary portable, assuming that your processor uses two’s-complement integer arith-
metic and IEEE floating-point format. Unless you have some kind of oddball
machine, neither of these conditions should present any real issues. In practice,
you’re probably most likely to see portability-compromising variation in hardware
if you’re using an embedded server built for a special-purpose device, as these
devices sometimes use processors that have nonstandard operating characteristics.

n MERGE tables are portable if their constituent MyISAM files are portable.
n MEMORY tables are not binary portable because their contents are stored in mem-

ory, not on disk.
n CSV tables are binary portable because their .CSV data files are plain text.
n BLACKHOLE tables are binary portable because they contain no data.

122 Chapter 2 Using SQL to Manage Data

n For the FEDERATED engine, the concept of portability does not apply because
the contents of a FEDERATED table are stored by another server.

n Falcon log and tablespace files are stored in a machine-dependent format.They are
binary portable only between machines that have identical hardware characteristics.
For example, you cannot move the Falcon files from a little-endian machine to a
big-endian machine.

The requirements described earlier for binary portability of MyISAM and InnoDB
tables between two machines are that the tables either contain no floating-point columns,
or that both machines use the same floating-point storage format.“Floating-point” means
FLOAT and DOUBLE here. DECIMAL columns contain fixed-point values that use a portable
storage format.

For InnoDB, an additional condition for binary portability is that database and table
names should be lowercase. InnoDB stores these names in lowercase in its data dictionary,
but the .frm file is created using the table name lettercase that you used in the CREATE
TABLE statement.This can result in a case-sensitivity mismatch if you create databases or
tables using names with uppercase characters and then try to move them to a platform
with differing filename case sensitivity.

For InnoDB, binary portability must be assessed for all InnoDB tables taken as a whole,
not at the individual table level. By default, the InnoDB storage engine stores the contents
of all its tables within a shared tablespace rather than within table-specific files. Conse-
quently, it’s the InnoDB tablespace files that are or are not portable, not individual InnoDB
tables.This means that the floating-point portability constraint applies if any InnoDB table
uses floating-point columns. Even if you configure InnoDB to use individual (per-table)
tablespaces, the data dictionary entries are stored in the shared tablespace.

Regardless of a storage engine’s general portability characteristics, you should not at-
tempt to copy table or tablespace files to another machine after you shut down the server
unless the server shut down cleanly. If you perform a copy after an abnormal shutdown,
you cannot assume the integrity of your tables.The tables may be in need of repair or
there may be transaction information still stored in a storage engine’s log files that needs
to be applied or rolled back to bring tables up to date.

It is sometimes possible to tell a running server to leave tables alone while you copy
their files. However, if the server is running and actively updating the tables or has changes
still cached in memory, the table contents on disk will be in flux and the associated files
will not yield usable table copies. For discussion of the conditions under which you can
avoid stopping the server while copying tables, see Section 14.2,“Performing Database
Maintenance with the Server Running.”

2.6.2 Creating Tables
To create a table, use a CREATE TABLE statement.The full syntax for this statement is com-
plex because there are so many optional clauses, but it’s usually fairly simple to use in

1232.6 Creating, Dropping, Indexing, and Altering Tables

practice. For example, most of the CREATE TABLE statements that we used in Chapter 1 are
reasonably uncomplicated. If you start with the more basic forms and work up, you
shouldn’t have much trouble.

A CREATE TABLE statement specifies, at a minimum, the table name and a list of the
columns in it. For example:

CREATE TABLE mytbl

(

name CHAR(20),

birth DATE NOT NULL,

weight INT,

sex ENUM('F','M')

);

In addition to the column definitions, you can specify how the table should be indexed
when you create it.Another option is to leave the table unindexed when you create it and
add the indexes later. For MyISAM tables, that’s a good strategy if you plan to populate
the table with a lot of data before you begin using it for queries. Updating indexes as you
insert each row is much slower than loading the data into an unindexed MyISAM table
and creating the indexes afterward.

We have already covered the basic syntax for CREATE TABLE in Chapter 1. Details on
how to write column definitions are given in Chapter 3. Here, we deal more generally
with some important extensions to CREATE TABLE that give you a lot of flexibility in how
you construct tables:

n Table options that modify storage characteristics
n Creating a table only if it doesn’t already exist
n Temporary tables that the server drops automatically when the client session ends
n Creating a table from another table or from the result of a SELECT query
n Using MERGE, partitioned, and FEDERATED tables

2.6.2.1 Table Options
To modify a table’s storage characteristics, add one or more table options following the
closing parenthesis in the CREATE TABLE statement.A complete list of options is given in
the description for CREATE TABLE in Appendix E.

One table option is ENGINE = engine_name, which specifies the storage engine to use
for the table. For example, to create a MEMORY or InnoDB table, write the statement
like this:

CREATE TABLE mytbl (...) ENGINE = MEMORY;

CREATE TABLE mytbl (...) ENGINE = InnoDB;

The engine name is not case sensitive.With no ENGINE option, the server creates the
table using the default storage engine.The built-in default is MyISAM, but you can

124 Chapter 2 Using SQL to Manage Data

configure the server to use a different default by starting it with the --default-storage-
engine option.At runtime, you can change the default storage engine by setting the
storage_engine system variable.

In MySQL 5.0, a server is configured such that it knows about a fixed set of storage
engines, some of which are always enabled and some of which might not be. If a CREATE
TABLE statement names a storage engine that is known but unavailable, MySQL creates
the table using the default engine and generates a warning. For example, if ARCHIVE is
known to the server but not available, you would see something like this if you try to cre-
ate an ARCHIVE table:

mysql> CREATE TABLE t (i INT) ENGINE = ARCHIVE;

Query OK, 0 rows affected, 1 warning (0.01 sec)

mysql> SHOW WARNINGS;

+---------+------+---+

| Level | Code | Message |

+---------+------+---+

| Warning | 1266 | Using storage engine MyISAM for table 't' |

+---------+------+---+

If you name an unknown storage engine, an error occurs.
In MySQL 5.1 and up, the server uses a pluggable architecture that enables storage en-

gines to be loaded at runtime.The concept of “known to the server” thus changes to
mean “those engines that are currently loaded.” If you create a table but name a storage
engine that is not loaded, two warnings occur:

mysql> CREATE TABLE t (i INT) ENGINE = ARCHIVE;

Query OK, 0 rows affected, 2 warnings (0.01 sec)

mysql> SHOW WARNINGS;

+---------+------+---+

| Level | Code | Message |

+---------+------+---+

| Warning | 1286 | Unknown table engine 'ARCHIVE' |

| Warning | 1266 | Using storage engine MyISAM for table 't' |

+---------+------+---+

To make sure that a table uses a particular storage engine, be sure to include the
ENGINE table option.The default engine can be changed, so you might not get the default
that you expect if you omit ENGINE. In addition, verify that the CREATE TABLE statement
produces no warnings, which typically indicate that the specified engine was not available
and that the default engine was used instead.

To prevent MySQL from substituting the default storage engine if the engine you
specify is not available, enable the NO_ENGINE_SUBSTITUTION SQL mode.

To determine which storage engine a table uses, issue a SHOW CREATE TABLE statement
and look for the ENGINE option in the output:

mysql> SHOW CREATE TABLE t\G

*************************** 1. row ***************************

Table: t

1252.6 Creating, Dropping, Indexing, and Altering Tables

Create Table: CREATE TABLE `t` (

`i` int(11) DEFAULT NULL

) ENGINE=MyISAM DEFAULT CHARSET=latin1

The storage engine is also available in the output from SHOW TABLE STATUS or the
INFORMATION_SCHEMA.TABLES table.

Some table options apply only to particular storage engines. For example, a MIN_ROWS
= n option can be useful for MEMORY tables to enable the MEMORY storage engine to
optimize memory usage:

CREATE TABLE mytbl (...) ENGINE = MEMORY MIN_ROWS = 10000;

If the MEMORY engine considers the value of MIN_ROWS to be large, it may allocate
memory in larger hunks to avoid the overhead of making many allocation calls.

The MAX_ROWS and AVG_ROW_LENGTH options can help you size a MyISAM table. By
default, MyISAM creates tables with an internal row pointer size that allows table files to
grow up to 256TB. If you specify the MAX_ROWS and AVG_ROW_LENGTH options, that gives
MyISAM information that it should use a pointer size for a table that can hold at least
MAX_ROWS rows.

To modify the storage characteristics of an existing table, table options can be used
with an ALTER TABLE statement. For example, to change mytbl from its current storage
engine to InnoDB, do this:

ALTER TABLE mytbl ENGINE = InnoDB;

For more information about changing storage engines, see Section 2.6.5,“Altering
Table Structure.”

2.6.2.2 Provisional Table Creation
To create a table only if it doesn’t already exist, use CREATE TABLE IF NOT EXISTS.You
can use this statement for an application that makes no assumptions about whether a table
that it needs has been set up in advance.The application can go ahead and attempt to cre-
ate the table as a matter of course.The IF NOT EXISTS modifier is particularly useful for
scripts that you run as batch jobs with mysql. In this context, a regular CREATE TABLE
statement doesn’t work very well.The first time the job runs, it creates the table, but the
second time an error occurs because the table already exists. If you use IF NOT EXISTS,
there is no problem.The first time the job runs, it creates the table, as before. For second
and subsequent times, table creation attempts are silently ignored without error.This en-
ables the job to continue processing as if the attempt had succeeded.

If you use IF NOT EXISTS, be aware that MySQL does not compare the table structure
in the CREATE TABLE statement with that of the existing table. If a table exists with the
given name but has a different structure, the statement does not fail. If that is a risk you do
not want to take, it might be better instead to use DROP TABLE IF EXISTS followed by
CREATE TABLE without IF NOT EXISTS.

126 Chapter 2 Using SQL to Manage Data

2.6.2.3 Temporary Tables
If you add the TEMPORARY keyword to a table-creation statement, the server creates a tem-
porary table that disappears automatically when your connection to the server terminates:

CREATE TEMPORARY TABLE tbl_name ... ;

This is handy because you don’t have to bother issuing a DROP TABLE statement to get
rid of the table, and the table doesn’t hang around if your connection terminates abnor-
mally. For example, if you have a complex query stored in a batch file that you run with
mysql and you decide not to wait for it to finish, you can kill the script with impunity
and the server will remove any TEMPORARY tables created by the script.

To create a temporary table using a particular storage engine, add an ENGINE table
option to the CREATE TEMPORARY TABLE statement.

Although the server drops a TEMPORARY table automatically when your client session
ends, you can drop it explicitly as soon as you’re done with it to enable the server to free
any resources associated with it.This is a good idea if your session with the server will not
end for a while, particularly for temporary MEMORY tables.

A TEMPORARY table is visible only to the client that creates the table. Different clients
can each create a TEMPORARY table with the same name and without conflict because each
client sees only the table that it created.

The name of a TEMPORARY table can be the same as that of an existing permanent
table.This is not an error, nor does the existing permanent table get clobbered. Instead,
the permanent table becomes hidden (inaccessible) to the client that creates the
TEMPORARY table while the TEMPORARY table exists. Suppose that you create a TEMPORARY

table named member in the sampdb database.The original member table becomes hidden,
and references to member refer to the TEMPORARY table. If you issue a DROP TABLE member

statement, the TEMPORARY table is removed and the original member table “reappears.” If
you disconnect from the server without dropping the TEMPORARY table, the server auto-
matically drops it for you.The next time you connect, the original member table is visible
again. (The original table also reappears if you rename a TEMPORARY table that hides it to
have a different name.)

The name-hiding mechanism works only to one level.That is, you cannot create two
TEMPORARY tables with the same name.

Keep in mind the following caveats when considering whether to use a TEMPORARY table:

n If your client program automatically reconnects to the server if the connection is
lost, any TEMPORARY tables will be gone when you reconnect. If you were using the
TEMPORARY table to “hide” a permanent table with the same name, the permanent
table now becomes the table that you use. For example, a DROP TABLE after an un-
detected reconnect will drop the permanent table.To avoid this problem, use DROP
TEMPORARY TABLE instead.

n Because TEMPORARY tables are visible only to the connection that created them, they
are not useful if you are using a connection pooling mechanism that does not guar-
antee the same connection for each statement that you issue.

1272.6 Creating, Dropping, Indexing, and Altering Tables

n If you use connection pooling or persistent connections, your connection to the
MySQL server will not necessarily close when your application terminates.Those
mechanisms might hold the connection open for use by other clients, which means
that you cannot assume that TEMPORARY tables will disappear automatically when
your application terminates.

2.6.2.4 Creating Tables from Other Tables or Query Results
It’s sometimes useful to create a copy of a table. For example, you might have a data file
that you want to load into a table using LOAD DATA, but you’re not quite sure about the op-
tions for specifying the data format.You can end up with malformed rows in the original
table if you don’t get the options right the first time. Using an empty copy of the original
table enables you to experiment with the LOAD DATA options for specifying column and
line delimiters until you’re satisfied your input rows are being interpreted properly.Then
you can load the file into the original table by rerunning the LOAD DATA statement with
the original table name.

It’s also sometimes desirable to save the result of a query into a table rather than
watching it scroll off the top of your screen. By saving the result, you can refer to it
later without rerunning the original query, perhaps to perform further analysis on it.

MySQL provides two statements for creating new tables from other tables or from
query results.These statements have differing advantages and disadvantages:

n CREATE TABLE ... LIKE creates a new table as an empty copy of the original one. It
copies the original table structure exactly so that each column is preserved with all
of its attributes and the index structure also is copied. However, the new table is
empty, so if you want to populate it, a second statement is needed (such as INSERT
INTO ... SELECT).Also, CREATE TABLE ... LIKE cannot create a new table from a sub-
set of the original table’s columns, and it cannot use columns from any other table
but the original one.

n CREATE TABLE ... SELECT creates a new table from the result of an arbitrary SELECT
statement. By default, this statement does not copy all column attributes such as
AUTO_INCREMENT. Nor does creating a table by selecting data into it automatically
copy any indexes from the original table, because result sets are not themselves in-
dexed. On the other hand, CREATE TABLE ... SELECT can both create and populate
the new table in a single statement. It also can create a new table using a subset of
the original table and include columns from other tables or columns created as the
result of expressions.

To use CREATE TABLE ... LIKE for creating an empty copy of an existing table, write a
statement like this:

CREATE TABLE new_tbl_name LIKE tbl_name;

128 Chapter 2 Using SQL to Manage Data

To create an empty copy of a table and then populate it from the original table, use
CREATE TABLE ... LIKE followed by INSERT INTO ... SELECT:

CREATE TABLE new_tbl_name LIKE tbl_name;

INSERT INTO new_tbl_name SELECT * FROM tbl_name;

To create a table as a temporary copy of itself, include the TEMPORARY keyword:

CREATE TEMPORARY TABLE new_tbl_name LIKE tbl_name;

INSERT INTO new_tbl_name SELECT * FROM tbl_name;

Using a TEMPORARY table with the same name as the original can be useful when you
want to try some statements that modify the contents of the table, but you don’t want to
change the original table.To use prewritten scripts that use the original table name, you
don’t need to edit them to refer to a different table; just add the CREATE TEMPORARY
TABLE and INSERT statements to the beginning of the script.The script will create a tem-
porary copy and operate on the copy, which the server deletes when the script finishes.
(However, bear in mind the auto-reconnect caveat noted in Section 2.6.2.3,“Temporary
Tables.”)

To insert into the new table only some of the rows from the original table, add a WHERE
clause that identifies which rows to select.The following statements create a new table
named student_f that contains only the rows for female students in the student table:

CREATE TABLE student_f LIKE student;

INSERT INTO student_f SELECT * FROM student WHERE sex = 'f';

If you don’t care about retaining the exact column definitions from the original table,
CREATE TABLE ... SELECT sometimes is easier to use than CREATE TABLE ... LIKE because it
can create and populate the new table in a single statement:

CREATE TABLE student_f SELECT * FROM student WHERE sex = 'f';

CREATE TABLE ... SELECT also can create new tables that don’t contain exactly the same
set of columns in an existing table.You can use it to cause a new table to spring into exis-
tence on the fly to hold the result of an arbitrary SELECT query.This makes it exception-
ally easy to create a table fully populated with the data in which you’re interested, ready to
be used in further statements. However, the new table can contain strange column names
if you’re not careful.When you create a table by selecting data into it, the column names
are taken from the columns that you are selecting. If a column is calculated as the result of
an expression, the name of the column is the text of the expression, which creates a table
with an unusual column name:

mysql> CREATE TABLE mytbl SELECT PI() * 2;

mysql> SELECT * FROM mytbl;

+----------+

| PI() * 2 |

+----------+

| 6.283185 |

+----------+

1292.6 Creating, Dropping, Indexing, and Altering Tables

That’s unfortunate, because the column name can be referred to directly only as a
quoted identifier:

mysql> SELECT `PI() * 2` FROM mytbl;

+----------+

| PI() * 2 |

+----------+

| 6.283185 |

+----------+

To avoid this problem and provide a column name that is easier to work with, use an alias:

mysql> DROP TABLE mytbl;

mysql> CREATE TABLE mytbl SELECT PI() * 2 AS mycol;

mysql> SELECT mycol FROM mytbl;

+----------+

| mycol |

+----------+

| 6.283185 |

+----------+

A related snag occurs if you select from different tables columns that have the same
name. Suppose that tables t1 and t2 both have a column c and you want to create a table
from all combinations of rows in both tables.The following statement fails because it at-
tempts to create a table with two columns named c:

mysql> CREATE TABLE t3 SELECT * FROM t1 INNER JOIN t2;

ERROR 1060 (42S21): Duplicate column name 'c'

To solve this problem, provide aliases as necessary to give each column a unique name
in the new table:

mysql> CREATE TABLE t3 SELECT t1.c, t2.c AS c2

-> FROM t1 INNER JOIN t2;

As mentioned previously, a shortcoming of CREATE TABLE ... SELECT is that not all
characteristics of the original data are incorporated into the structure of the new table. For
example, creating a table by selecting data into it does not copy indexes from the original
table, and it can lose column attributes.The retained attributes include whether the col-
umn is NULL or NOT NULL, the character set and collation, the default value, and the
column comment.

In some cases, you can force specific attributes to be used in the new table by invoking
the CAST() function in the SELECT part of the statement.The following CREATE TABLE ...
SELECT statement forces the columns produced by the SELECT to be treated as INT
UNSIGNED, TIME, and DECIMAL(10,5), as you can verify with DESCRIBE:

mysql> CREATE TABLE mytbl SELECT

-> CAST(1 AS UNSIGNED) AS i,

-> CAST(CURTIME() AS TIME) AS t,

-> CAST(PI() AS DECIMAL(10,5)) AS d;

130 Chapter 2 Using SQL to Manage Data

mysql> DESCRIBE mytbl;

+-------+-----------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------+-----------------+------+-----+---------+-------+

| i | int(1) unsigned | NO | | 0 | |

| t | time | YES | | NULL | |

| d | decimal(10,5) | NO | | 0.00000 | |

+-------+-----------------+------+-----+---------+-------+

The allowable cast types are BINARY (binary string), CHAR, DATE, DATETIME, TIME,
SIGNED, SIGNED INTEGER, UNSIGNED, UNSIGNED INTEGER, and DECIMAL.

It is also possible to provide explicit column definitions in the CREATE TABLE part, to
be used for the columns retrieved by the SELECT part. Columns in the two parts are
matched by name, so provide aliases in the SELECT part as necessary to cause them to
match properly:

mysql> CREATE TABLE mytbl (i INT UNSIGNED, t TIME, d DECIMAL(10,5))

-> SELECT

-> 1 AS i,

-> CAST(CURTIME() AS TIME) AS t,

-> CAST(PI() AS DECIMAL(10,5)) AS d;

mysql> DESCRIBE mytbl;

+-------+------------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------+------------------+------+-----+---------+-------+

| i | int(10) unsigned | YES | | NULL | |

| t | time | YES | | NULL | |

| d | decimal(10,5) | YES | | NULL | |

+-------+------------------+------+-----+---------+-------+

The technique of providing explicit definitions enables you to create numeric columns
with specified precision and scale, character columns that have a different width than that of
the longest value in the result set, and so forth.Also note that the Null and Default attrib-
utes for some of the columns are different in this example from those in the previous one.
You can provide explicit definitions for those attributes in the CREATE TABLE part if
necessary.

2.6.2.5 Using MERGE Tables
The MERGE storage engine enables you to perform queries on a set of MyISAM tables
simultaneously by treating them all as a single logical unit.As described earlier in Section
2.6.1,“Storage Engine Characteristics,” MERGE can be applied to a collection of My-
ISAM tables that all have identical structure.The columns in each table must be defined
with the same names and types in the same order, and the indexes must be defined in the
same way and in the same order.

1312.6 Creating, Dropping, Indexing, and Altering Tables

Suppose that you have a set of individual log tables that contain log entries on a year-
by-year basis and that each is defined like this, where CC and YY represent the century
and year:

CREATE TABLE log_CCYY

(

dt DATETIME NOT NULL,

info VARCHAR(100) NOT NULL,

INDEX (dt)

) ENGINE = MyISAM;

If the current set of log tables includes log_2004, log_2005, log_2006, log_2007, and
log_2008, you can set up a MERGE table that maps onto them like this:

CREATE TABLE log_merge

(

dt DATETIME NOT NULL,

info VARCHAR(100) NOT NULL,

INDEX (dt)

) ENGINE = MERGE UNION = (log_2004, log_2005, log_2006, log_2007, log_2008);

The ENGINE value must be MERGE, and the UNION option lists the tables to be included
in the MERGE table.After the table has been set up, you query it just like any other table,
but the queries will refer to all the constituent tables at once.This query determines the
total number of rows in all the log tables:

SELECT COUNT(*) FROM log_merge;

This query determines how many log entries there are per year:

SELECT YEAR(dt) AS y, COUNT(*) AS entries FROM log_merge GROUP BY y;

Besides the convenience of being able to refer to multiple tables without issuing multi-
ple queries, MERGE tables offer some other nice features:

n A MERGE table can be used to create a logical entity that exceeds the allowable
size of individual MyISAM tables.

n You can include compressed tables in the collection. For example, after a given year
comes to an end, you wouldn’t be adding any more entries to the corresponding log
file, so you could compress it with myisampack to save space.The MERGE table
will continue to function as before.

MERGE tables also support DELETE and UPDATE operations. INSERT is trickier because
MySQL needs to know which table to insert new rows into. MERGE table definitions
can include an INSERT_METHOD option with a value of NO, FIRST, or LAST to indicate that
INSERT is forbidden or that rows should be inserted into the first or last table named in
the UNION option. For example, the following definition would cause an INSERT into

132 Chapter 2 Using SQL to Manage Data

log_merge to be treated as an INSERT into log_2008, the last table named in the UNION
option:

CREATE TABLE log_merge

(

dt DATETIME NOT NULL,

info VARCHAR(100) NOT NULL,

INDEX (dt)

) ENGINE = MERGE UNION = (log_2004, log_2005, log_2006, log_2007, log_2008)

INSERT_METHOD = LAST;

When the year 2009 arrives, create a new underlying table, log_2009, that has the same
structure as the other log_CCYY tables, and modify the log_merge table to include
log_2009:

CREATE TABLE log_2009 LIKE log_2008;

ALTER TABLE log_merge

UNION = (log_2004, log_2005, log_2006, log_2007, log_2008, log_2009);

2.6.2.6 Using Partitioned Tables
MySQL 5.1 and up supports partitioned tables. Partitioning is similar in concept to the
MERGE storage engine in the sense that it enables use of table contents that are stored in
different locations. However, a partitioned table is a single table, not a logical construct
that maps onto multiple underlying tables.Also, a partitioned table can use storage engines
other than MyISAM, whereas MERGE tables require the use of MyISAM tables.

By sectioning table storage, partitioned tables offer benefits such as these:

n Table storage can be distributed over multiple devices, which may improve access
time by virtue of I/O parallelism.

n The optimizer may be able to localize searches to specific partitions, or to search
partitions in parallel.

To create a partitioned table, supply the list of columns and indexes in the CREATE
TABLE statement, as usual. In addition, specify a PARTITION BY clause that defines a parti-
tioning function to be used to assign rows to partitions, and possibly other partition-
related options.The partitioning function is analogous to the INSERT_METHOD option for
MERGE tables, but is more general because it distributes rows among all partitions,
whereas INSERT_METHOD designates a single table for all inserts.

Partitioning functions assign rows based on ranges or lists of values or hash values:

n Use range partitioning when rows contain a domain of values such as dates, income
level, or weight that can be divided into discrete ranges.

n Use list partitioning when it makes sense to specify an explicit list of values for each
partition, such as sets of postal codes, phone number prefixes, or IDs for entities that
you group by geographical region.

1332.6 Creating, Dropping, Indexing, and Altering Tables

n Use hash partitioning to distribute the rows among partitions according to hash val-
ues computed from row keys.You can either supply the hash function yourself or
tell MySQL which columns to use and it will compute values based on those
columns using a built-in hash function.

The partitioning function must be deterministic so that the same input consistently re-
sults in row assignment to the same partition.This rules out the use of functions such as
RAND() or NOW().

As a simple example, let’s create a partitioned analog to the MERGE table developed in
Section 2.6.2.5,“Using MERGE Tables.”That MERGE table, log_merge, has several un-
derlying log tables containing log entries for the years 2004 through 2008.The correspon-
ding partitioned table will be a single table comprising several underlying partitions. For
data consisting of log entries that each contain a date, the most natural partitioning is by
range.To assign rows for each year to a given partition, use the year part of the date value:

CREATE TABLE log_partition

(

dt DATETIME NOT NULL,

info VARCHAR(100) NOT NULL,

INDEX (dt)

)

PARTITION BY RANGE(YEAR(dt))

(

PARTITION p0 VALUES LESS THAN (2005),

PARTITION p1 VALUES LESS THAN (2006),

PARTITION p2 VALUES LESS THAN (2007),

PARTITION p3 VALUES LESS THAN (2008),

PARTITION p4 VALUES LESS THAN MAXVALUE

);

The MAXVALUE partition is assigned all rows that have dates from the year 2008 or later.
When the year 2009 arrives, you can split this partition so that all year 2008 rows get their
own partition and rows for 2009 and later go into the MAXVALUE partition:

ALTER TABLE log_partition REORGANIZE PARTITION p4

INTO (

PARTITION p4 VALUES LESS THAN (2009),

PARTITION p5 VALUES LESS THAN MAXVALUE

);

By default, partitions are stored under the directory for the database to which the par-
titioned table belongs.To distribute storage to other locations (for example, to place them
on different physical devices), use the DATA_DIRECTORY and INDEX_DIRECTORY partition
options. For more information about the syntax for these and other partitioning options,
see the description for CREATE TABLE in Appendix E.

134 Chapter 2 Using SQL to Manage Data

2.6.2.7 Using FEDERATED Tables
The FEDERATED storage engine enables you to access tables from one MySQL server
that actually are managed by another server.

Suppose that there is no sampdb database on your local server, but there is one available
from the MySQL server running on the host corn.snake.net and that you have an ac-
count for accessing that server.That account can be used by the local server through the
FEDERATED storage engine to make the sampdb tables available on the local server. For
each table that you want to access this way, create a FEDERATED table that has the same
columns as the remote table, but include a connection string that indicates to the local
server how to connect to the remote server.

Suppose that the student table on the remote server has this definition:

CREATE TABLE student

(

name VARCHAR(20) NOT NULL,

sex ENUM('F','M') NOT NULL,

student_id INT UNSIGNED NOT NULL AUTO_INCREMENT,

PRIMARY KEY (student_id)

) ENGINE = InnoDB;

To create a FEDERATED table on the local server, use the same definition, except that
the ENGINE option should be FEDERATED and a CONNECTION table option should be given
that provides connection information. (Prior to MySQL 5.0.13, use the COMMENT option
instead of CONNECTION.) The following definition creates a table named
federated_student that accesses the student table on corn.snake.net:

CREATE TABLE federated_student

(

name VARCHAR(20) NOT NULL,

sex ENUM('F','M') NOT NULL,

student_id INT UNSIGNED NOT NULL AUTO_INCREMENT,

PRIMARY KEY (student_id)

) ENGINE = FEDERATED

CONNECTION = 'mysql://sampadm:secret@corn.snake.net/sampdb/student';

The connection string in the CONNECTION value indicates that the username and pass-
word of the MySQL account on the remote server are sampadm and secret.The general
connection string syntax is as follows, where square brackets indicate optional information:

mysql://user_name[:password]@host_name[:port_num]/db_name/tbl_name

After you create the federated_student table, you can select from it to access the
remote student table.You can also use INSERT, UPDATE, and DELETE with
federated_student to modify the contents of the student table.

Note that the entire CONNECTION string (including the username and password) is visi-
ble to anyone who can use SHOW CREATE TABLE or similar statements for the FEDER-
ATED table.As of MySQL 5.1.15, you can avoid this problem: Create a stored server
definition using the CREATE SERVER statement (this requires the SUPER privilege) and refer

1352.6 Creating, Dropping, Indexing, and Altering Tables

to the server name in the CONNECTION option.To name the server corn_sampdb_server,
use this statement:

CREATE SERVER corn_sampdb_server

FOREIGN DATA WRAPPER mysql

OPTIONS (

USER 'sampadm',

PASSWORD 'secret',

HOST 'corn.snake.net',

DATABASE 'sampdb'

);

The MySQL server stores this definition as a row in the servers table in the mysql
database.To create a table that refers to the server definition, name the server in the
CONNECTION option using a statement like this:

CREATE TABLE federated_student2

(

name VARCHAR(20) NOT NULL,

sex ENUM('F','M') NOT NULL,

student_id INT UNSIGNED NOT NULL AUTO_INCREMENT,

PRIMARY KEY (student_id)

) ENGINE = FEDERATED

CONNECTION = 'corn_sampdb_server/student';

Using a server definition is more secure than listing connection parameters in the
CONNECTION option because the definition is visible only to users who have access to the
mysql database.Also, the server definition can make table setup easier because multiple
FEDERATED tables that share the same connection parameters can use the same
definition.

2.6.3 Dropping Tables
Dropping a table is much easier than creating it because you don’t have to specify any-
thing about the format of its contents.You just have to name it:

DROP TABLE tbl_name;

MySQL extends the DROP TABLE statement in several useful ways.To drop multiple ta-
bles, specify them all in the same statement:

DROP TABLE tbl_name1, tbl_name2, ... ;

If you’re not sure whether a table exists, but you want to drop it if it does, include IF
EXISTS in the statement:

DROP TABLE IF EXISTS tbl_name;

The IF EXISTS clause suppresses the error for nonexistent tables. (For each one, the
server generates a warning that you can view with SHOW WARNINGS.)

136 Chapter 2 Using SQL to Manage Data

IF EXISTS is particularly useful in scripts that you use with the mysql client. By de-
fault, mysql exits when an error occurs, and it is an error to try to remove a table that
doesn’t exist. For example, you might have a setup script that creates tables that you use as
the basis for further processing in other scripts. In this situation, you want to make sure
the setup script has a clean slate when it begins. If you use a regular DROP TABLE at the
beginning of the script, it would fail the first time because the tables have never been cre-
ated. If you use IF EXISTS, there is no problem. If the tables are there, they are dropped. If
they are not there, no error occurs and the script continues to execute.

To drop a table only if it is a temporary table, include the TEMPORARY keyword:

DROP TEMPORARY TABLE tbl_name;

2.6.4 Indexing Tables
Indexes are the primary means of speeding up access to the contents of your tables, partic-
ularly for queries that involve joins on multiple tables.This is an important enough topic
that an entire chapter discusses why you use indexes, how they work, and how best to take
advantage of them to optimize your queries (Chapter 5,“Query Optimization”).This sec-
tion covers the characteristics of indexes for the various table types and the syntax for cre-
ating and dropping indexes.

2.6.4.1 Storage Engine Index Characteristics
MySQL provides quite a bit of flexibility in the way you can construct indexes:

n You can index single columns or construct composite indexes that include multiple
columns.

n An index can be constrained to contain only unique values or allowed to contain
duplicate values.

n You can have more than one index on a table to help optimize different queries on
the table that are based on different columns.

n For string data types other than ENUM or SET, you can elect to index a prefix of a
column; that is, only the leftmost n characters, or n bytes for binary string types. (For
BLOB and TEXT columns, you can set up an index only if you specify a prefix
length.) If the column is mostly unique within the prefix length, you usually won’t
sacrifice performance, and may well improve it: Indexing a column prefix rather
than the entire column can make an index much smaller and faster to access.

Not all storage engines offer all indexing features.Table 2.3 summarizes the index
properties for some of MySQL’s storage engines.The table does not include the MERGE
storage engine, because MERGE tables are created from MyISAM tables and have similar
index characteristics. Nor does it include the ARCHIVE, BLACKHOLE, CSV, or EX-
AMPLE engines, which support indexing either not at all or only in limited fashion.

1372.6 Creating, Dropping, Indexing, and Altering Tables

Table 2.3 Storage Engine Index Characteristics

Index Characteristic MyISAM MEMORY InnoDB Falcon

NULL values allowed Yes Yes Yes Yes

Columns per index 16 16 16 16

Indexes per table 64 64 64 64

Maximum index row size (bytes) 1000 1024/3072 1024/3072 1100

Index column prefixes Yes Yes Yes Yes

Maximum prefix size (bytes) 1000 1024/3072 767 1100

BLOB/TEXT indexes Yes No Yes No

FULLTEXT indexes Yes No No No

SPATIAL indexes Yes No No No

HASH indexes No Yes No No

For the MEMORY and InnoDB storage engines, the index size limit is 1024 bytes be-
fore MySQL 5.0.17/5.1.4 and 3072 bytes from 5.0.17/5.1.4 on.The same is true for the
MEMORY index prefix size limit.

One implication of the differences in index characteristics for the various storage en-
gines is that if you require an index to have certain properties, you may not be able to use
certain types of tables. For example, to use a FULLTEXT or SPATIAL index, you must use a
MyISAM table.To index a TEXT column, you must use MyISAM or InnoDB.

If you have an existing table that you would like to convert to use a different storage
engine that has more suitable index characteristics, use ALTER TABLE to change the engine.
Suppose that you are using a MyISAM table but need the transactional capabilities offered
by InnoDB or Falcon. Convert the table using one of these statements:

ALTER TABLE tbl_name ENGINE = InnoDB;

ALTER TABLE tbl_name ENGINE = Falcon;

2.6.4.2 Creating Indexes
MySQL can create several types of indexes:

n A unique index.This disallows duplicate values. For a single-column index, this en-
sures that the column contains no duplicate values. For a multiple-column (compos-
ite) index, it ensures that no combination of values in the columns is duplicated
among the rows of the table.

n A regular (non-unique) index.This gives you indexing benefits but allows duplicates.
n A FULLTEXT index, used for performing full-text searches.This index type is sup-

ported only for MyISAM tables. For more information, see Section 2.15,“Using
FULLTEXT Searches.”

138 Chapter 2 Using SQL to Manage Data

n A SPATIAL index.These can be used only with MyISAM tables for the spatial data
types, which are described in Chapter 3. (For other storage engines that support
spatial data types, you can create non-SPATIAL indexes.)

n A HASH index.This is the default index type for MEMORY tables, although you can
override the default to create BTREE indexes instead.

You can create indexes for a new table when you use CREATE TABLE. Examples of this
are shown in Section 1.4.6,“Creating Tables.”To add indexes to existing tables, use ALTER
TABLE or CREATE INDEX. (MySQL maps CREATE INDEX statements onto ALTER TABLE
operations internally.)

ALTER TABLE is more versatile than CREATE INDEX because it can create any kind of
index supported by MySQL. For example:

ALTER TABLE tbl_name ADD INDEX index_name (index_columns);

ALTER TABLE tbl_name ADD UNIQUE index_name (index_columns);

ALTER TABLE tbl_name ADD PRIMARY KEY (index_columns);

ALTER TABLE tbl_name ADD FULLTEXT index_name (index_columns);

ALTER TABLE tbl_name ADD SPATIAL index_name (index_columns);

tbl_name is the name of the table to which the index should be added, and
index_columns indicates which column or columns to index. If the index consists of
more than one column, separate the names by commas.The index name index_name is
optional. If you leave it out, MySQL picks a name based on the name of the first indexed
column.

Indexed columns must be NOT NULL if the index is a PRIMARY KEY or SPATIAL index.
Otherwise, they can contain NULL values.

A single ALTER TABLE statement can include multiple table alterations if you separate
them by commas.This enables you to create several indexes at the same time, which is
faster than adding them one at a time with individual ALTER TABLE statements.

To place the constraint on an index that it contain only unique values, create the index
as a PRIMARY KEY or as a UNIQUE index.The two types of index are very similar, but have
two differences:

n A table can contain only one PRIMARY KEY. (This is because the name of a PRIMARY
KEY is always PRIMARY and a table cannot have two indexes with the same name.)
You can place multiple UNIQUE indexes on a table.

n A PRIMARY KEY cannot contain NULL values, whereas a UNIQUE index can. If a
UNIQUE index can contain NULL values, it can contain multiple NULL values.The rea-
son for this is that it is not possible to know whether one NULL represents the same
value as another, so they cannot be considered equal.

CREATE INDEX can add most types of indexes, with the exception of a PRIMARY KEY:

CREATE INDEX index_name ON tbl_name (index_columns);

CREATE UNIQUE INDEX index_name ON tbl_name (index_columns);

1392.6 Creating, Dropping, Indexing, and Altering Tables

CREATE FULLTEXT INDEX index_name ON tbl_name (index_columns);

CREATE SPATIAL INDEX index_name ON tbl_name (index_columns);

tbl_name, index_name, and index_columns have the same meaning as for ALTER
TABLE. Unlike ALTER TABLE, the index name is not optional with CREATE INDEX, and you
cannot create multiple indexes with a single statement.

To create indexes for a new table when you issue a CREATE TABLE statement, the syn-
tax is similar to that used for ALTER TABLE, but you specify the index-creation clauses in
addition to the column definitions:

CREATE TABLE tbl_name

(

... column definitions ...

INDEX index_name (index_columns),

UNIQUE index_name (index_columns),

PRIMARY KEY (index_columns),

FULLTEXT index_name (index_columns),

SPATIAL index_name (index_columns),

...

);

As with ALTER TABLE, index_name is optional. MySQL picks an index name if you
leave it out.

As a special case, you can create a single-column PRIMARY KEY or UNIQUE index by
adding a PRIMARY KEY or UNIQUE clause to the end of a column definition. For example,
the following CREATE TABLE statements are equivalent:

CREATE TABLE mytbl

(

i INT NOT NULL PRIMARY KEY,

j CHAR(10) NOT NULL UNIQUE

);

CREATE TABLE mytbl

(

i INT NOT NULL,

j CHAR(10) NOT NULL,

PRIMARY KEY (i),

UNIQUE (j)

);

The default index type for a MEMORY table is HASH.A hashed index is very fast for
exact-value lookups, which is the typical way MEMORY tables are used. However, if you
plan to use a MEMORY table for comparisons that can match a range of values (for ex-
ample, id < 100), hashed indexes do not work well. In this case, you’ll be better off creat-
ing a BTREE index instead. Do this by adding a USING BTREE clause to the index
definition:

CREATE TABLE namelist

140 Chapter 2 Using SQL to Manage Data

(

id INT NOT NULL,

name CHAR(100),

INDEX USING BTREE (id)

) ENGINE = MEMORY;

To index a prefix of a string column, the syntax for naming the column in the index
definition is col_name(n) rather than simply col_name.The prefix value, n, indicates that
the index should include the first n bytes of column values for binary string types, or the
first n characters for non-binary string types. For example, the following statement creates
a table with a CHAR column and a BINARY column. It indexes the first 10 characters of the
CHAR column and the first 15 bytes of the BINARY column:

CREATE TABLE addresslist

(

name CHAR(30) NOT NULL,

address BINARY(60) NOT NULL,

INDEX (name(10)),

INDEX (address(15))

);

When you index a prefix of a string column, the prefix length, just like the column
length, is specified in the same units as the column data type—that is, bytes for binary
strings and characters for non-binary strings. However, the maximum size of index entries
are measured internally in bytes.The two measures are the same for single-byte character
sets, but not for multi-byte character sets. For non-binary strings that have multi-byte
character sets, MySQL stores into index values as many complete characters as fit within
the allowed maximum byte length.

In some circumstances, you may find it not only desirable but necessary to index a col-
umn prefix rather than the entire column:

n Prefixes are required for indexing BLOB or TEXT columns.
n The length of index rows is equal to the sum of the length of the index parts of the

columns that make up the index. If this length exceeds the maximum allowable
number of bytes in index rows, you can make the index “narrower” by indexing a
column prefix. Suppose that a MyISAM table that uses the latin1 single-byte char-
acter set contains four CHAR(255) columns named c1 through c4.An index value
for each full column value takes 255 bytes, so an index on all four columns would
require 1,020 bytes. However, the maximum length of a MyISAM index row is
1,000 bytes, so you cannot create a composite index that includes the entire con-
tents of all four columns. However, you can create the index by indexing a shorter
part of some or all of them. For example, you could index the first 250 characters
from each column.

Columns in FULLTEXT indexes are indexed in full and do not have prefixes. If you spec-
ify a prefix length for a column in a FULLTEXT index, MySQL ignores it.

1412.6 Creating, Dropping, Indexing, and Altering Tables

Columns with spatial data types such as POINT or GEOMETRY can be indexed as follows:

n SPATIAL indexes can be used only for MyISAM tables, and only for columns that
are NOT NULL.The columns are indexed in full.

n Other index types (INDEX, UNIQUE, PRIMARY KEY) can be used with any storage en-
gine other than ARCHIVE that supports spatial data types. Columns can be NULL un-
less part of a PRIMARY KEY.A prefix length in bytes must be specified for each spatial
column in the index except POINT columns.

2.6.4.3 Dropping Indexes
To drop an index, use either a DROP INDEX or an ALTER TABLE statement.To use DROP
INDEX, you must name the index to be dropped:

DROP INDEX index_name ON tbl_name;

To drop a PRIMARY KEY with DROP INDEX, specify the name PRIMARY as a quoted
identifier:

DROP INDEX `PRIMARY` ON tbl_name;

That statement is unambiguous because a table may have only one PRIMARY KEY and
its name is always PRIMARY.

Like the CREATE INDEX statement, DROP INDEX is handled internally as an ALTER
TABLE statement.The preceding DROP INDEX statements correspond to the following
ALTER TABLE statements:

ALTER TABLE tbl_name DROP INDEX index_name;

ALTER TABLE tbl_name DROP PRIMARY KEY;

If you don’t know the names of a table’s indexes, use SHOW CREATE TABLE or SHOW
INDEX to find out.

When you drop columns from a table, indexes may be affected implicitly. If you drop a
column that is a part of an index, MySQL removes the column from the index as well. If
you drop all columns that make up an index, MySQL drops the entire index.

2.6.5 Altering Table Structure
ALTER TABLE is a versatile statement and has many uses.We’ve already seen a few of its ca-
pabilities earlier in this chapter (for changing storage engines and for creating and drop-
ping indexes).You can also use ALTER TABLE to rename tables, add or drop columns,
change column data types, and more.This section covers some of its features.Appendix E,
describes the complete syntax for ALTER TABLE.

ALTER TABLE is useful when you find that the structure of a table no longer reflects
what you want to do with it.You might want to use the table to record additional infor-
mation. Perhaps the table contains information that has become superfluous. Maybe exist-
ing columns are too small, or it turns out that you’ve defined columns larger than you

142 Chapter 2 Using SQL to Manage Data

need and you’d like to make them smaller to save space and improve query performance.
Here are some situations for which ALTER TABLE is valuable:

n You’re running a research project.You assign case numbers to research records using
an AUTO_INCREMENT column.You didn’t expect your funding to last long enough to
generate more than about 50,000 records, so you made the data type SMALLINT
UNSIGNED, which holds a maximum of 65,535 unique values. However, the funding
for the project was renewed, and it looks like you might generate another 50,000
records.You need to make the type bigger to accommodate more case numbers.

n Size changes can go the other way, too. Maybe you created a CHAR(255) column but
now recognize that no value in the table is more than 100 characters long.You can
shorten the column to save space.

n You want to convert a table to use a different storage engine to take advantage of
features offered by that engine. For example, MyISAM tables are not transaction-
safe, but you have an application that needs transactional capabilities.You can con-
vert the affected tables to use InnoDB or Falcon, because those storage engines are
transactional.

The syntax for ALTER TABLE looks like this:

ALTER TABLE tbl_name action [, action] ... ;

Each action specifies a modification that you want to make to the table. Some database
systems allow only a single action in an ALTER TABLE statement, but MySQL allows mul-
tiple actions, separated by commas.

Tip
If you need to remind yourself about a table’s current definition before using ALTER TABLE,
issue a SHOW CREATE TABLE statement. This statement also can be useful after ALTER
TABLE to verify that the alteration affected the table definition as you expect.

The following examples discuss some of the capabilities of ALTER TABLE.
Change a column’s data type. To change a data type, you can use either a CHANGE or

MODIFY clause. Suppose that the column in a table mytbl is SMALLINT UNSIGNED and you
want to change it to MEDIUMINT UNSIGNED. Do so using either of the following
commands:

ALTER TABLE mytbl MODIFY i MEDIUMINT UNSIGNED;

ALTER TABLE mytbl CHANGE i i MEDIUMINT UNSIGNED;

Why is the column named twice in the command that uses CHANGE? Because one
thing that CHANGE can do that MODIFY cannot is to rename the column in addition to
changing the type. If you had wanted to rename i to k at the same time you changed the
type, you’d do so like this:

ALTER TABLE mytbl CHANGE i k MEDIUMINT UNSIGNED;

The important thing with CHANGE is that you name the column you want to change
and then specify the column’s new name and definition.Thus, you must specify the name
twice if you don’t want to rename the column.

To rename a column without changing its data type, use CHANGE old_name new_name

followed by the column’s current definition.
You can assign character sets to individual columns, so it’s possible to use the

CHARACTER SET attribute in a column’s definition to change its character set:

ALTER TABLE t MODIFY c CHAR(20) CHARACTER SET ucs2;

An important reason for changing data types is to improve query efficiency for joins
that compare columns from two tables. Indexes often can be used for comparisons in joins
between similar column types, but comparisons are quicker when both columns are ex-
actly the same type. Suppose that you’re running a query like this:

SELECT ... FROM t1 INNER JOIN t2 WHERE t1.name = t2.name;

If t1.name is CHAR(10) and t2.name is CHAR(15), the query won’t run as quickly as if
they were both CHAR(15).You can make them the same by changing t1.name using ei-
ther of these commands:

ALTER TABLE t1 MODIFY name CHAR(15);

ALTER TABLE t1 CHANGE name name CHAR(15);

Convert a table to use a different storage engine.To convert a table from one stor-
age engine to another, use an ENGINE clause that specifies the new engine name:

ALTER TABLE tbl_name ENGINE = engine_name;

engine_name is a name such as MyISAM, MEMORY, or InnoDB. Lettercase does not matter.
One reason to change a storage engine is to make it transaction-safe. Suppose that you

have a MyISAM table and discover that an application that uses it needs to perform trans-
actional operations, including rollback in case failures occur. MyISAM tables do not sup-
port transactions, but you can make the table transaction-safe by converting it to an
InnoDB or Falcon table:

ALTER TABLE tbl_name ENGINE = InnoDB;

ALTER TABLE tbl_name ENGINE = Falcon;

When you convert a table to use a different engine, the allowable or sensible conver-
sions may depend on the feature compatibility of the old and new engines. For example,
the following conversions are disallowed:

n If you have a table that includes a BLOB column, you cannot convert the table to use
the MEMORY engine because MEMORY tables do not support BLOB columns.

n If you have a MyISAM table that includes FULLTEXT or SPATIAL indexes, you cannot
convert it to another engine because only MyISAM supports those types of indexes.

1432.6 Creating, Dropping, Indexing, and Altering Tables

144 Chapter 2 Using SQL to Manage Data

There are circumstances under which you should not use ALTER TABLE to convert a
table to use a different storage engine:

n MEMORY tables are held in memory and disappear when the server exits. It is not
a good idea to convert a table to type MEMORY if you require the table contents
to persist across server restarts.

n If you use a MERGE table to group a collection of MyISAM tables together, you
should avoid using ALTER TABLE to modify any of the MyISAM tables unless you
make the same change to all of them, and to the MERGE table as well.The proper
functioning of a MERGE table depends on its having the same structure as all of its
constituent MyISAM tables.

n An InnoDB table can be converted to use another storage engine. However, if the
table has foreign key constraints, they will be lost because only InnoDB supports
foreign keys.

Rename a table. Use a RENAME clause that specifies the new table name:

ALTER TABLE tbl_name RENAME TO new_tbl_name;

Another way to rename tables is with RENAME TABLE.The syntax looks like this:

RENAME TABLE old_name TO new_name;

One thing that RENAME TABLE can do that ALTER TABLE cannot is rename multiple ta-
bles in the same statement. For example, you can swap the names of two tables like this:

RENAME TABLE t1 TO tmp, t2 TO t1, tmp TO t2;

If you qualify a table name with a database name, you can move a table from one data-
base to another by renaming it. Either of the following statements move the table t from
the sampdb database to the test database:

ALTER TABLE sampdb.t RENAME TO test.t;

RENAME TABLE sampdb.t TO test.t;

You cannot rename a table to a name that already exists.
If you rename a MyISAM table that is part of a MERGE table, you must redefine the

MERGE table to refer to the new name.

2.7 Obtaining Database Metadata
MySQL provides several ways to obtain information about databases and the objects in
them (that is, database metadata):

n SHOW statements such as SHOW DATABASES or SHOW TABLES
n Tables in the INFORMATION_SCHEMA database
n Command-line programs such as mysqlshow or mysqldump

1452.7 Obtaining Database Metadata

The following sections describe how to use each of these information sources to access
metadata.

2.7.1 Obtaining Metadata with SHOW
MySQL provides a SHOW statement that displays database metadata in several forms. SHOW is
helpful for keeping track of the contents of your databases and for reminding yourself
about the structure of your tables.The following examples demonstrate a few uses for
SHOW statements.

List the databases managed by the server:

SHOW DATABASES;

Display the CREATE DATABASE statement for a database:

SHOW CREATE DATABASE db_name;

List the tables in the default database or in a given database:

SHOW TABLES;

SHOW TABLES FROM db_name;

SHOW TABLES doesn’t show TEMPORARY tables.
Display the CREATE TABLE statement for a table:

SHOW CREATE TABLE tbl_name;

Display information about columns or indexes in a table:

SHOW COLUMNS FROM tbl_name;

SHOW INDEX FROM tbl_name;

The DESCRIBE tbl_name and EXPLAIN tbl_name statements are synonymous with
SHOW COLUMNS FROM tbl_name.

Display descriptive information about tables in the default database or in a given
database:

SHOW TABLE STATUS;

SHOW TABLE STATUS FROM db_name;

Several forms of the SHOW statement take a LIKE 'pattern' clause allowing a pattern
to be given that limits the scope of the output. MySQL interprets 'pattern' as an SQL
pattern that may include the ‘%’ and ‘_’ wildcard characters. For example, this statement
displays the names of columns in the student table that begin with ‘s’:

mysql> SHOW COLUMNS FROM student LIKE 's%';

+------------+------------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+------------+------------------+------+-----+---------+----------------+

| sex | enum('F','M') | NO | | | |

| student_id | int(10) unsigned | NO | PRI | NULL | auto_increment |

+------------+------------------+------+-----+---------+----------------+

146 Chapter 2 Using SQL to Manage Data

To match a literal instance of a wildcard character in a LIKE pattern, precede it with a
backslash. Generally, this is done to match a literal ‘_’, which occurs frequently in database,
table, and column names.

Any SHOW statement that supports a LIKE clause can also be written to use a WHERE
clause.The SHOW statement still displays a fixed set of columns, but WHERE provides more
flexibility about specifying which rows to return.The WHERE clause should refer to the
columns displayed by the SHOW statement. If the column name is a reserved word such as
KEY, specify it as a quoted identifier.This statement determines which column in the
student table is the primary key:

mysql> SHOW COLUMNS FROM student WHERE `Key` = 'PRI';

+------------+------------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+------------+------------------+------+-----+---------+----------------+

| student_id | int(10) unsigned | NO | PRI | NULL | auto_increment |

+------------+------------------+------+-----+---------+----------------+

It’s sometimes useful to be able to tell from within an application whether a given table
exists.You can use SHOW TABLES to find out (but remember that SHOW TABLES does not
list TEMPORARY tables):

SHOW TABLES LIKE 'tbl_name';

SHOW TABLES FROM db_name LIKE 'tbl_name';

If the SHOW TABLES statement lists information for the table, it exists. It’s also possible
to determine table existence, even for TEMPORARY tables, with either of the following
statements:

SELECT COUNT(*) FROM tbl_name;

SELECT * FROM tbl_name WHERE FALSE;

Each statement succeeds if the table exists, and fails if it doesn’t.The first statement is
most appropriate for MyISAM tables, for which COUNT(*) with no WHERE clause is highly
optimized. It’s not so good for InnoDB tables, which require a full scan to count the rows.
The second statement is more general because it runs quickly for any storage engine.
These statements are most suitable for use within application programming languages such
as Perl or PHP because you can test the success or failure of the query and take action ac-
cordingly.They’re not especially useful in a batch script that you run from mysql because
you can’t do anything if an error occurs except terminate (or ignore the error, but then
there’s obviously no point in running the query at all).

To determine the storage engine for individual tables, you can use SHOW TABLE STATUS
or SHOW CREATE TABLE.The output from either statement includes a storage engine
indicator.

1472.7 Obtaining Database Metadata

2.7.2 Obtaining Metadata with INFORMATION_SCHEMA
Another way to obtain information about databases is to access the INFORMATION_SCHEMA
database. INFORMATION_SCHEMA is based on the SQL standard.That is, the access mecha-
nism is standard, even though some of the content is MySQL-specific.This makes
INFORMATION_SCHEMA more portable than the various SHOW statements, which are entirely
MySQL-specific.

INFORMATION_SCHEMA is accessed through SELECT statements and can be used in a flex-
ible manner. SHOW statements always display a fixed set of columns and you cannot capture
the output in a table.With INFORMATION_SCHEMA, the SELECT statement can name specific
output columns and a WHERE clause can specify any expression required to select the infor-
mation that you want.Also, you can use joins or subqueries, and you can use CREATE
TABLE ... SELECT or INSERT INTO ... SELECT to save the result of the retrieval in another
table for further processing.

You can think of INFORMATION_SCHEMA as a virtual database in which the tables are
views for different kinds of database metadata.To see what tables INFORMATION_SCHEMA
contains, use SHOW TABLES.The output displayed here is from MySQL 5.1 (5.0 has fewer
tables):

mysql> SHOW TABLES IN INFORMATION_SCHEMA;

+---------------------------------------+

| Tables_in_information_schema |

+---------------------------------------+

| CHARACTER_SETS |

| COLLATIONS |

| COLLATION_CHARACTER_SET_APPLICABILITY |

| COLUMNS |

| COLUMN_PRIVILEGES |

| ENGINES |

| EVENTS |

| FILES |

| GLOBAL_STATUS |

| GLOBAL_VARIABLES |

| KEY_COLUMN_USAGE |

| PARTITIONS |

| PLUGINS |

| PROCESSLIST |

| REFERENTIAL_CONSTRAINTS |

| ROUTINES |

| SCHEMATA |

| SCHEMA_PRIVILEGES |

| SESSION_STATUS |

| SESSION_VARIABLES |

| STATISTICS |

| TABLES |

| TABLE_CONSTRAINTS |

148 Chapter 2 Using SQL to Manage Data

| TABLE_PRIVILEGES |

| TRIGGERS |

| USER_PRIVILEGES |

| VIEWS |

+---------------------------------------+

The following list briefly describes the INFORMATION_SCHEMA tables just shown:

n SCHEMATA, TABLES, VIEWS, ROUTINES, TRIGGERS, EVENTS, PARTITIONS, COLUMNS

Information about databases; tables, views, stored routines, triggers, and events
within databases; table partitions; and columns within tables

n FILES

Information about NDB disk data files
n TABLE_CONSTRAINTS, KEY_COLUMN_USAGE

Information about tables and columns that have constraints such as unique-valued
indexes or foreign keys

n STATISTICS

Information about table index characteristics
n REFERENTIAL_CONSTRAINTS

Information about foreign keys
n CHARACTER_SETS, COLLATIONS, COLLATION_CHARACTER_SET_APPLICABILITY

Information about supported character sets, collations for each character set, and
mapping from each collation to its character set

n ENGINES, PLUGINS

Information about storage engines and server plugins
n USER_PRIVILEGES, SCHEMA_PRIVILEGES, TABLE_PRIVILEGES, COLUMN_PRIVILEGES

Global, database, table, and column privilege information from the user, db,
tables_priv, columns_priv tables in the mysql database

n GLOBAL_VARIABLES, SESSION_VARIABLES, GLOBAL_STATUS, SESSION_STATUS

Global and session values of system and status variables
n PROCESSLIST

Information about the threads executing within the server

Individual storage engines may add their own tables to INFORMATION_SCHEMA. For ex-
ample, Falcon does this if it is enabled.

To determine the columns contained in a given INFORMATION_SCHEMA table, use SHOW
COLUMNS or DESCRIBE:

mysql> DESCRIBE INFORMATION_SCHEMA.CHARACTER_SETS;

+----------------------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

1492.7 Obtaining Database Metadata

+----------------------+-------------+------+-----+---------+-------+

| CHARACTER_SET_NAME | varchar(64) | NO | | | |

| DEFAULT_COLLATE_NAME | varchar(64) | NO | | | |

| DESCRIPTION | varchar(60) | NO | | | |

| MAXLEN | bigint(3) | NO | | 0 | |

+----------------------+-------------+------+-----+---------+-------+

To display information from a table, use a SELECT statement. (Neither
INFORMATION_SCHEMA nor any of its table or column names are case sensitive.) The general
query to see all the columns in any given INFORMATION_SCHEMA table is as follows:

SELECT * FROM INFORMATION_SCHEMA.tbl_name;

Include a WHERE clause to be specific about what you want to see.
The preceding section described the use of SHOW statements to determine whether a

table exists or which storage engine it uses. INFORMATION_SCHEMA tables can provide the
same information.This query uses INFORMATION_SCHEMA to test for the existence of a par-
ticular table, returning 1 or 0 to indicate that the table does or does not exist, respectively:

mysql> SELECT COUNT(*) FROM INFORMATION_SCHEMA.TABLES

-> WHERE TABLE_SCHEMA='sampdb' AND TABLE_NAME='member';

+----------+

| COUNT(*) |

+----------+

| 1 |

+----------+

Use this query to check which storage engine a table uses:

mysql> SELECT ENGINE FROM INFORMATION_SCHEMA.TABLES

-> WHERE TABLE_SCHEMA='sampdb' AND TABLE_NAME='student';

+--------+

| ENGINE |

+--------+

| InnoDB |

+--------+

2.7.3 Obtaining Metadata from the Command Line
The mysqlshow command provides some of the same information as certain SHOW state-
ments, which enables you to get database and table information at your command
prompt.

List databases managed by the server:

% mysqlshow

List tables in a database:

% mysqlshow db_name

150 Chapter 2 Using SQL to Manage Data

Display information about columns in a table:

% mysqlshow db_name tbl_name

Display information about indexes in a table:

% mysqlshow --keys db_name tbl_name

Display descriptive information about tables in a database:

% mysqlshow --status db_name

The mysqldump client program enables you to see the structure of your tables in the
form of a CREATE TABLE statement (much like SHOW CREATE TABLE). If you use
mysqldump to review table structure, be sure to invoke it with the --no-data option so
that you don’t get swamped with your table’s data!

% mysqldump --no-data db_name [tbl_name] ...

If you specify only the database name without any table names, mysqldump displays the
structure for all tables in the database. Otherwise, it shows information only for the named
tables.

For both mysqlshow and mysqldump, specify the usual connection parameter options as
necessary, such as --host, --user, or --password.

2.8 Performing Multiple-Table Retrievals
with Joins
It does no good to put records in a database unless you retrieve them eventually and do
something with them.That’s the purpose of the SELECT statement: to help you get at your
data. SELECT probably is used more often than any other statement in the SQL language,
but it can also be the trickiest; the conditions you use for choosing rows can be arbitrarily
complex and can involve comparisons between columns in many tables.

The basic syntax of the SELECT statement looks like this:

SELECT select_list # What columns to select

FROM table_list # The tables from which to select rows

WHERE row_constraint # What conditions rows must satisfy

GROUP BY grouping_columns # How to group results

ORDER BY sorting_columns # How to sort results

HAVING group_constraint # What conditions groups must satisfy

LIMIT count; # Row count limit on results

Everything in this syntax is optional except the word SELECT and the select_list
part that specifies what you want to produce as output. Some databases require the FROM
clause as well. MySQL does not, which enables you to evaluate expressions without refer-
ring to any tables:

SELECT SQRT(POW(3,2)+POW(4,2));

1512.8 Performing Multiple-Table Retrievals with Joins

In Chapter 1, we devoted quite a bit of attention to single-table SELECT statements,
concentrating primarily on the output column list and the WHERE, GROUP BY, ORDER BY,
HAVING, and LIMIT clauses.This section covers an aspect of SELECT that is often confusing:
writing joins; that is, SELECT statements that retrieve rows from multiple tables.We’ll
discuss the types of join MySQL supports, what they mean, and how to specify them.This
should help you employ MySQL more effectively, because in many cases, the real problem
of figuring out how to write a query is determining the proper way to join tables
together.

One problem with using SELECT is that when you first encounter a new type of prob-
lem, it’s not always easy to see how to write a SELECT query to solve it. However, after you
figure it out, you can use that experience when you run across similar problems in the fu-
ture. SELECT is probably the statement for which past experience plays the largest role in
being able to use it effectively, simply because of the sheer variety of problems to which it
applies.

As you gain experience, you’ll be able to adapt joins more easily to new problems, and
you’ll find yourself thinking things like,“Oh, yes, that’s one of those LEFT JOIN things,”
or,“Aha, that’s a three-way join restricted by the common pairs of key columns.” (You
may find it encouraging to hear that experience helps you. Or you may find it alarming to
consider that you could wind up thinking in terms like that.)

Many of the examples that demonstrate how to use the forms of join operations that
MySQL supports use the following two tables, t1 and t2:

Table t1: Table t2:

+----+----+ +----+----+

| i1 | c1 | | i2 | c2 |

+----+----+ +----+----+

| 1 | a | | 2 | c |

| 2 | b | | 3 | b |

| 3 | c | | 4 | a |

+----+----+ +----+----+

The tables are deliberately chosen to be small so that the effect of each type of join can
be readily seen.

Other types of multiple-table SELECT statement are subqueries (one SELECT nested
within another) and UNION statements.These are covered in Section 2.9,“Performing
Multiple-Table Retrievals with Subqueries,” and Section 2.10,“Performing Multiple-
Table Retrievals with UNION.”

A related multiple-table feature that MySQL supports is the capability of deleting or
updating rows in one table based on the contents of another. For example, you might
want to remove rows in one table that aren’t matched by any row in another, or copy
values from columns in one table to columns in another. Section 2.12,“Multiple-Table
Deletes and Updates,” discusses these types of operations.

152 Chapter 2 Using SQL to Manage Data

2.8.1 The Inner Join
If a SELECT statement names multiple tables in the FROM clause with the names separated
by INNER JOIN, MySQL performs an inner join, which produces results by matching rows
in one table with rows in another table. For example, if you join t1 and t2 as follows, each
row in t1 is combined with each row in t2:

mysql> SELECT * FROM t1 INNER JOIN t2;

+----+----+----+----+

| i1 | c1 | i2 | c2 |

+----+----+----+----+

| 1 | a | 2 | c |

| 2 | b | 2 | c |

| 3 | c | 2 | c |

| 1 | a | 3 | b |

| 2 | b | 3 | b |

| 3 | c | 3 | b |

| 1 | a | 4 | a |

| 2 | b | 4 | a |

| 3 | c | 4 | a |

+----+----+----+----+

In this statement, SELECT * means “select every column from every table named in the
FROM clause.” You could also write this as SELECT t1.*, t2.*:

SELECT t1.*, t2.* FROM t1 INNER JOIN t2;

If you don’t want to select all columns or you want to display them in a different left-
to-right order, just name each column that you want to see, separated by commas.

A join where each row of each table is combined with each row in every other table to
produce all possible combinations is known as the “cartesian product.” Joining tables this
way has the potential to produce a very large number of rows because the possible row
count is the product of the number of rows in each table.A cross join between three tables
that contain 100, 200, and 300 rows, respectively, could return 100 × 200 × 300 = 6 mil-
lion rows.That’s a lot of rows, even though the individual tables are small. In cases like
this, normally a WHERE clause is useful for reducing the result set to a more manageable
size.

If you add a WHERE clause causing tables to be matched on the values of certain
columns, the join selects only rows with equal values in those columns:

mysql> SELECT t1.*, t2.* FROM t1 INNER JOIN t2 WHERE t1.i1 = t2.i2;

+----+----+----+----+

| i1 | c1 | i2 | c2 |

+----+----+----+----+

| 2 | b | 2 | c |

| 3 | c | 3 | b |

+----+----+----+----+

1532.8 Performing Multiple-Table Retrievals with Joins

The CROSS JOIN and JOIN join types are similar to INNER JOIN. For example, these
statements are equivalent:

SELECT t1.*, t2.* FROM t1 INNER JOIN t2 WHERE t1.i1 = t2.i2;

SELECT t1.*, t2.* FROM t1 CROSS JOIN t2 WHERE t1.i1 = t2.i2;

SELECT t1.*, t2.* FROM t1 JOIN t2 WHERE t1.i1 = t2.i2;

The ‘,’ (comma) join operator is similar as well:

SELECT t1.*, t2.* FROM t1, t2 WHERE t1.i1 = t2.i2;

However, the comma operator has a different precedence from the other join types,
and it can sometimes produce syntax errors when the other types will not. I recommend
that you avoid the comma operator.

INNER JOIN, CROSS JOIN, and JOIN (but not the comma operator) allow alternative
syntaxes for specifying how to match table columns:

n One syntax uses an ON clause rather than a WHERE clause.The following example
shows this using INNER JOIN:

SELECT t1.*, t2.* FROM t1 INNER JOIN t2 ON t1.i1 = t2.i2;

ON can be used regardless of whether the columns you’re joining on have the
same name.

n The other syntax involves a USING() clause; this is similar in concept to ON, but the
name of the joined column or columns must be the same in each table. For exam-
ple, the following query joins mytbl1.b to mytbl2.b:

SELECT mytbl1.*, mytbl2.* FROM mytbl1 INNER JOIN mytbl2 USING (b);

2.8.2 Qualifying References to Columns from Joined Tables
References to table columns throughout a SELECT statement must resolve unambiguously
to a single table named in the FROM clause. If only one table is named, there is no ambigu-
ity; all columns must be columns of that table. If multiple tables are named, any column
name that appears in only one table is similarly unambiguous. However, if a column name
appears in multiple tables, references to the column must be qualified with a table identi-
fier using tbl_name.col_name syntax to specify which table you mean. Suppose that a
table mytbl1 contains columns a and b, and a table mytbl2 contains columns b and c. In
this case, references to columns a or c are unambiguous, but references to b must be quali-
fied as either mytbl1.b or mytbl2.b:

SELECT a, mytbl1.b, mytbl2.b, c FROM mytbl1 INNER JOIN mytbl2 ... ;

Sometimes a table name qualifier is not sufficient to resolve a column reference. For ex-
ample, if you’re performing a self-join (that is, joining a table to itself), you’re using the table
multiple times within the query and it doesn’t help to qualify a column name with the
table name. In this case, table aliases are useful for communicating your intent.You can
assign an alias to any instance of the table and refer to columns from that instance as

154 Chapter 2 Using SQL to Manage Data

alias_name.col_name.The following query joins a table to itself, but assigns an alias to one
instance of the table to enable column references to be specified unambiguously:

SELECT mytbl.col1, m.col2 FROM mytbl INNER JOIN mytbl AS m

WHERE mytbl.col1 > m.col1;

2.8.3 Left and Right (Outer) Joins
An inner join shows only rows where a match can be found in both tables. Outer joins
show matches, too, but can also show rows in one table that have no match in the other
table.Two kinds of outer joins are left and right joins. Most of the examples in this section
use LEFT JOIN, which identifies rows in the left table that are not matched by the right
table. RIGHT JOIN is the same except that the roles of the tables are reversed.

A LEFT JOIN works like this: You specify the columns to be used for matching rows in
the two tables.When a row from the left table matches a row from the right table, the
contents of the rows are selected as an output row.When a row in the left table has no
match, it is still selected for output, but joined with a “fake” row from the right table that
contains NULL in all the columns.

In other words, a LEFT JOIN forces the result set to contain a row for every row se-
lected from the left table, whether or not there is a match for it in the right table.The left-
table rows with no match can be identified by the fact that all columns from the right
table are NULL.These result rows tell you which rows are missing from the right table.That
is an interesting and important property, because this kind of problem comes up in many
different contexts.Which customers have not been assigned an account representative? For
which inventory items have no sales been recorded? Or, closer to home with our sampdb
database:Which students have not taken a particular exam? Which students have no rows
in the absence table (that is, which students have perfect attendance)?

Consider once again our two tables, t1 and t2:

Table t1: Table t2:

+----+----+ +----+----+

| i1 | c1 | | i2 | c2 |

+----+----+ +----+----+

| 1 | a | | 2 | c |

| 2 | b | | 3 | b |

| 3 | c | | 4 | a |

+----+----+ +----+----+

If we use an inner join to match these tables on t1.i1 and t2.i2, we’ll get output
only for the values 2 and 3, because those are the values that appear in both tables:

mysql> SELECT t1.*, t2.* FROM t1 INNER JOIN t2 ON t1.i1 = t2.i2;

+----+----+----+----+

| i1 | c1 | i2 | c2 |

+----+----+----+----+

| 2 | b | 2 | c |

| 3 | c | 3 | b |

+----+----+----+----+

1552.8 Performing Multiple-Table Retrievals with Joins

A left join produces output for every row in t1, whether or not t2 matches it.To write
a left join, name the tables with LEFT JOIN in between rather than INNER JOIN:

mysql> SELECT t1.*, t2.* FROM t1 LEFT JOIN t2 ON t1.i1 = t2.i2;

+----+----+------+------+

| i1 | c1 | i2 | c2 |

+----+----+------+------+

| 1 | a | NULL | NULL |

| 2 | b | 2 | c |

| 3 | c | 3 | b |

+----+----+------+------+

Now there is an output row even for the t1.i1 value of 1, which has no match in t2.
All the columns in this row that correspond to t2 columns have a value of NULL.

One thing to watch out for with LEFT JOIN is that unless right-table columns are de-
fined as NOT NULL, you may get problematic rows in the result. For example, if the right
table contains columns with NULL values, you won’t be able to distinguish those NULL val-
ues from NULL values that identify unmatched rows.

As mentioned earlier, a RIGHT JOIN is like a LEFT JOIN with the roles of the tables re-
versed.These two statements are equivalent:

SELECT t1.*, t2.* FROM t1 LEFT JOIN t2 ON t1.i1 = t2.i2;

SELECT t1.*, t2.* FROM t2 RIGHT JOIN t1 ON t1.i1 = t2.i2;

The following discussion in phrased in terms of LEFT JOIN only, but you can adjust it
for RIGHT JOIN by reversing table roles.

LEFT JOIN is especially useful when you want to find only those left table rows that are
unmatched by the right table. Do this by adding a WHERE clause that selects only the rows
that have NULL values in a right table column—in other words, the rows in one table that
are missing from the other:

mysql> SELECT t1.*, t2.* FROM t1 LEFT JOIN t2 ON t1.i1 = t2.i2

-> WHERE t2.i2 IS NULL;

+----+----+------+------+

| i1 | c1 | i2 | c2 |

+----+----+------+------+

| 1 | a | NULL | NULL |

+----+----+------+------+

Normally, when you write a query like this, your real interest is in the unmatched val-
ues in the left table.The NULL columns from the right table are of no interest for display
purposes, so you would omit them from the output column list:

mysql> SELECT t1.* FROM t1 LEFT JOIN t2 ON t1.i1 = t2.i2

-> WHERE t2.i2 IS NULL;

+----+----+

| i1 | c1 |

+----+----+

| 1 | a |

+----+----+

156 Chapter 2 Using SQL to Manage Data

Like INNER JOIN, a LEFT JOIN can be written using an ON clause or a USING() clause
to specify the matching conditions.As with INNER JOIN, ON can be used whether or not
the joined columns from each table have the same name, but USING() requires that they
have the same names.

LEFT JOIN has a few synonyms and variants. LEFT OUTER JOIN is a synonym for LEFT
JOIN. MySQL also supports an ODBC-style notation for LEFT OUTER JOIN that uses
curly braces and OJ (“outer join”):

mysql> SELECT t1.* FROM { OJ t1 LEFT OUTER JOIN t2 ON t1.i1 = t2.i2 }

-> WHERE t2.i2 IS NULL;

+----+----+

| i1 | c1 |

+----+----+

| 1 | a |

+----+----+

NATURAL LEFT JOIN is similar to LEFT JOIN; it performs a LEFT JOIN, matching all
columns that have the same name in the left and right tables. (Thus, no ON or USING clause
is given.)

As already mentioned, LEFT JOIN is useful for answering “Which values are missing?”
questions. Let’s apply this principle to the tables in the sampdb database and consider a
more complex example than those shown earlier using t1 and t2.

For the grade-keeping project, first mentioned in Chapter 1, we have a student table
listing students, a grade_event table listing the grade events that have occurred, and a
score table listing scores for each student for each grade event. However, if a student was
ill on the day of some quiz or test, the score table wouldn’t contain any score for the stu-
dent for that event.A makeup quiz or test should be given in such cases, but how do we
find these missing rows?

The problem is to determine which students have no score for a given grade event, and
to do this for each grade event.Another way to say this is that we want to find out which
combinations of student and grade event are not present in the score table.This “which
values are not present” wording is a tip-off that we want a LEFT JOIN.The join isn’t as
simple as in the previous examples, though:We aren’t just looking for values that are not
present in a single column, we’re looking for a two-column combination.The combina-
tions we want are all the student/event combinations.These are produced by joining the
student table to the grade_event table:

FROM student INNER JOIN grade_event

Then we take the result of that join and perform a LEFT JOIN with the score table to
find the matches for student ID/event ID pairs:

FROM student INNER JOIN grade_event

LEFT JOIN score ON student.student_id = score.student.id

AND grade_event.event_id = score.event_id

1572.8 Performing Multiple-Table Retrievals with Joins

Note that the ON clause allows the rows in the score table to be joined according to
matches in different tables named earlier in the join.That’s the key for solving this prob-
lem.The LEFT JOIN forces a row to be generated for each row produced by the cross join
of the student and grade_event tables, even when there is no corresponding score

table row.The result set rows for these missing score rows can be identified by the fact
that the columns from the score table will all be NULL.We can identify these rows by
adding a condition in the WHERE clause.Any column from the score table will do, but be-
cause we’re looking for missing scores, it’s probably conceptually clearest to test the score

column:

WHERE score.score IS NULL

We can also sort the results using an ORDER BY clause.The two most logical orderings
are by event per student and by student per event. I’ll choose the first:

ORDER BY student.student_id, grade_event.event_id

Now all we need to do is name the columns we want to see in the output, and we’re
done. Here is the final statement:

SELECT

student.name, student.student_id,

grade_event.date, grade_event.event_id, grade_event.category

FROM

student INNER JOIN grade_event

LEFT JOIN score ON student.student_id = score.student_id

AND grade_event.event_id = score.event_id

WHERE

score.score IS NULL

ORDER BY

student.student_id, grade_event.event_id;

Running the query produces these results:

+-----------+------------+------------+----------+----------+

| name | student_id | date | event_id | category |

+-----------+------------+------------+----------+----------+

| Megan | 1 | 2008-09-16 | 4 | Q |

| Joseph | 2 | 2008-09-03 | 1 | Q |

| Katie | 4 | 2008-09-23 | 5 | Q |

| Devri | 13 | 2008-09-03 | 1 | Q |

| Devri | 13 | 2008-10-01 | 6 | T |

| Will | 17 | 2008-09-16 | 4 | Q |

| Avery | 20 | 2008-09-06 | 2 | Q |

| Gregory | 23 | 2008-10-01 | 6 | T |

| Sarah | 24 | 2008-09-23 | 5 | Q |

| Carter | 27 | 2008-09-16 | 4 | Q |

158 Chapter 2 Using SQL to Manage Data

| Carter | 27 | 2008-09-23 | 5 | Q |

| Gabrielle | 29 | 2008-09-16 | 4 | Q |

| Grace | 30 | 2008-09-23 | 5 | Q |

+-----------+------------+------------+----------+----------+

Here’s a subtle point.The output displays the student IDs and the event IDs.The
student_id column appears in both the student and score tables, so at first you might
think that the output column list could name either student.student_id or
score.student_id.That’s not the case, because the entire basis for being able to find the
rows we’re interested in is that all the score table columns are returned by the LEFT JOIN
as NULL. Selecting score.student_id would produce only a column of NULL values in the
output.The same principle applies to deciding which event_id column to display. It ap-
pears in both the grade_event and score tables, but the query selects
grade_event.event_id because the score.event_id values will always be NULL.

2.9 Performing Multiple-Table Retrievals with
Subqueries
Subquery support is a capability that allows one SELECT statement to be written within
parentheses and nested inside another. Here’s an example that looks up the IDs for grade
event rows that correspond to tests ('T') and uses them to select scores for those tests:

SELECT * FROM score

WHERE event_id IN (SELECT event_id FROM grade_event WHERE category = 'T');

Subqueries can return different types of information:

n A scalar subquery returns a single value.
n A column subquery returns a single column of one or more values.
n A row subquery returns a single row of one or more values.
n A table subquery returns a table of one or more rows of one or more columns.

Subquery results can be tested in different ways:

n Scalar subquery results can be evaluated using relative comparison operators such as
= or <.

n IN and NOT IN test whether a value is present in a set of values returned by a subquery.
n ALL, ANY, and SOME compare a value to the set of values returned by a subquery.
n EXISTS and NOT EXISTS test whether a subquery result is empty.

A scalar subquery is the most restrictive because it produces only a single value. But as a
consequence, scalar subqueries can be used in the widest variety of contexts.They are appli-
cable essentially anywhere that you can use a scalar operand, such as a term of an expression,
as a function argument, or in the output column list. Column, row, and table subqueries that
return more information cannot be used in contexts that require a single value.

1592.9 Performing Multiple-Table Retrievals with Subqueries

Subqueries can be correlated or uncorrelated.This is a function of whether a subquery
refers to and is dependent on values in the outer query.

You can use subqueries with statements other than SELECT. However, for statements
that modify tables (INSERT, REPLACE, DELETE, UPDATE, LOAD DATA) there is currently a re-
striction that the subquery cannot refer to the table being modified.

In some cases, subqueries can be rewritten as joins.You might find subquery rewriting
techniques useful if you’re writing queries that need to run on an older MySQL server, or
if you want to see whether the MySQL optimizer does a better job with a join than a
subquery.

The following sections discuss the kinds of operations you can use to test subquery re-
sults, how to write correlated subqueries, and how to rewrite subqueries as joins.

2.9.1 Subqueries with Relative Comparison Operators
The =, <>, >, >=, <, and <= operators perform relative-value comparisons.When used with
a scalar subquery, they find all rows in the outer query that stand in particular relationship
to the value returned by the subquery. For example, to identify the scores for the quiz that
took place on '2008-09-23', use a scalar subquery to determine the quiz event ID and
then match score rows against that ID in the outer SELECT:

SELECT * FROM score

WHERE event_id =

(SELECT event_id FROM grade_event

WHERE date = '2008-09-23' AND category = 'Q');

With this form of statement, where the subquery is preceded by a value and a relative
comparison operator, it is necessary that the subquery produce a single value.That is, it
must be a scalar subquery; if it produces multiple values, the statement will fail. In some
cases, it may be appropriate to satisfy the single-value requirement by limiting the sub-
query result with LIMIT 1.

Use of scalar subqueries with relative comparison operators is handy for solving prob-
lems where you’d be tempted to use an aggregate function in a WHERE clause. For example,
to determine which of the presidents in the president table was born first, you might try
this statement:

SELECT * FROM president WHERE birth = MIN(birth);

That doesn’t work because you can’t use aggregates in WHERE clauses.The WHERE clause
determines which rows to select, but the value of MIN() isn’t known until after the rows
have already been selected. However, you can use a subquery to produce the minimum
birth date like this:

SELECT * FROM president

WHERE birth = (SELECT MIN(birth) FROM president);

160 Chapter 2 Using SQL to Manage Data

Other aggregate functions can be used to solve similar problems.The following state-
ment uses a subquery to select the above-average scores from a given grade event:

SELECT * FROM score WHERE event_id = 5

AND score > (SELECT AVG(score) FROM score WHERE event_id = 5);

If a subquery returns a single row, you can use a row constructor to compare a set of
values (that is, a tuple) to the subquery result.This statement returns rows for presidents
who were born in the same city and state as John Adams:

mysql> SELECT last_name, first_name, city, state FROM president

-> WHERE (city, state) =

-> (SELECT city, state FROM president

-> WHERE last_name = 'Adams' AND first_name = 'John');

+-----------+-------------+-----------+-------+

| last_name | first_name | city | state |

+-----------+-------------+-----------+-------+

| Adams | John | Braintree | MA |

| Adams | John Quincy | Braintree | MA |

+-----------+-------------+-----------+-------+

You can also use ROW(city, state) notation, which is equivalent to (city, state).
Both act as row constructors that represent tuples.

2.9.2 IN and NOT IN Subqueries
The IN and NOT IN operators can be used when a subquery returns multiple rows to be
evaluated in comparison to the outer query.They test whether a comparison value is pres-
ent in a set of values. IN is true for rows in the outer query that match any row returned
by the subquery. NOT IN is true for rows in the outer query that match no rows returned
by the subquery.The following statements use IN and NOT IN to find those students who
have absences listed in the absence table, and those who have perfect attendance (no
absences):

mysql> SELECT * FROM student

-> WHERE student_id IN (SELECT student_id FROM absence);

+-------+-----+------------+

| name | sex | student_id |

+-------+-----+------------+

| Kyle | M | 3 |

| Abby | F | 5 |

| Peter | M | 10 |

| Will | M | 17 |

| Avery | F | 20 |

+-------+-----+------------+

mysql> SELECT * FROM student

-> WHERE student_id NOT IN (SELECT student_id FROM absence);

+-----------+-----+------------+

| name | sex | student_id |

1612.9 Performing Multiple-Table Retrievals with Subqueries

+-----------+-----+------------+

| Megan | F | 1 |

| Joseph | M | 2 |

| Katie | F | 4 |

| Nathan | M | 6 |

| Liesl | F | 7 |

...

IN and NOT IN also work for subqueries that return multiple columns. In other words,
you can use them with table subqueries. In this case, use a row constructor to specify the
comparison values to test against each column:

mysql> SELECT last_name, first_name, city, state FROM president

-> WHERE (city, state) IN

-> (SELECT city, state FROM president

-> WHERE last_name = 'Roosevelt');

+-----------+-------------+-----------+-------+

| last_name | first_name | city | state |

+-----------+-------------+-----------+-------+

| Roosevelt | Theodore | New York | NY |

| Roosevelt | Franklin D. | Hyde Park | NY |

+-----------+-------------+-----------+-------+

IN and NOT IN actually are synonyms for = ANY and <> ALL, which are covered in the
next section.

2.9.3 ALL, ANY, and SOME Subqueries
The ALL and ANY operators are used in conjunction with a relative comparison operator
to test the result of a column subquery.They test whether the comparison value stands in
particular relationship to all or some of the values returned by the subquery. For example,
<= ALL is true if the comparison value is less than or equal to every value that the sub-
query returns, whereas <= ANY is true if the comparison value is less than or equal to any
value that the subquery returns. SOME is a synonym for ANY.

This statement determines which president was born first by selecting the row with a
birth date less than or equal to all the birth dates in the president table (only the earliest
date satisfies this condition):

mysql> SELECT last_name, first_name, birth FROM president

-> WHERE birth <= ALL (SELECT birth FROM president);

+------------+------------+------------+

| last_name | first_name | birth |

+------------+------------+------------+

| Washington | George | 1732-02-22 |

+------------+------------+------------+

Less usefully, the following statement returns all rows because every date is less than or
equal to at least one other date (itself):

mysql> SELECT last_name, first_name, birth FROM president

-> WHERE birth <= ANY (SELECT birth FROM president);

+------------+---------------+------------+

| last_name | first_name | birth |

+------------+---------------+------------+

| Washington | George | 1732-02-22 |

| Adams | John | 1735-10-30 |

| Jefferson | Thomas | 1743-04-13 |

| Madison | James | 1751-03-16 |

| Monroe | James | 1758-04-28 |

...

When ALL, ANY, or SOME are used with the = comparison operator, the subquery can be
a table subquery. In this case, you test return rows using a row constructor to provide the
comparison values.

mysql> SELECT last_name, first_name, city, state FROM president

-> WHERE (city, state) = ANY

-> (SELECT city, state FROM president

-> WHERE last_name = 'Roosevelt');

+-----------+-------------+-----------+-------+

| last_name | first_name | city | state |

+-----------+-------------+-----------+-------+

| Roosevelt | Theodore | New York | NY |

| Roosevelt | Franklin D. | Hyde Park | NY |

+-----------+-------------+-----------+-------+

As mentioned in the previous section, IN and NOT IN are shorthand for = ANY and <>

ALL.That is, IN means “equal to any of the rows returned by the subquery” and NOT IN
means “unequal to all rows returned by the subquery.”

2.9.4 EXISTS and NOT EXISTS Subqueries
The EXISTS and NOT EXISTS operators merely test whether a subquery returns any rows.
If it does, EXISTS is true and NOT EXISTS is false.The following statements show some
trivial examples of these subqueries.The first returns 0 if the absence table is empty, the
second returns 1:

SELECT EXISTS (SELECT * FROM absence);

SELECT NOT EXISTS (SELECT * FROM absence);

EXISTS and NOT EXISTS actually are much more commonly used in correlated sub-
queries. For examples, see Section 2.9.5,“Correlated Subqueries.”

With EXISTS and NOT EXISTS, the subquery uses * as the output column list.There’s
no need to name columns explicitly, because the subquery is assessed as true or false based
on whether it returns any rows, not based on the particular values that the rows might

162 Chapter 2 Using SQL to Manage Data

contain.You can actually write pretty much anything for the subquery column selection
list, but if you want to make it explicit that you’re returning a true value when the sub-
query succeeds, you might write it with SELECT 1 rather than with SELECT *.

2.9.5 Correlated Subqueries
Subqueries can be uncorrelated or correlated:

n An uncorrelated subquery contains no references to values from the outer query.
An uncorrelated subquery can be executed by itself as a separate statement. For ex-
ample, the subquery in the following statement is uncorrelated because it refers
only to the table t1 and not to t2:

SELECT j FROM t2 WHERE j IN (SELECT i FROM t1);

n A correlated subquery does contain references to values from the outer query, and
thus is dependent on it. Due to this linkage, a correlated subquery cannot be exe-
cuted by itself as a separate statement. For example, the subquery in the following
statement is true for each value of column j in t2 that matches a column i value in
t1:

SELECT j FROM t2 WHERE (SELECT i FROM t1 WHERE i = j);

Correlated subqueries commonly are used for EXISTS and NOT EXISTS subqueries,
which are useful for finding rows in one table that match or don’t match rows in another.
Correlated subqueries work by passing values from the outer query to the subquery to
see whether they match the conditions specified in the subquery. For this reason, it’s nec-
essary to qualify column names with table names if they are ambiguous (appear in more
than one table).

The following EXISTS subquery identifies matches between the tables—that is, values
that are present in both.The statement selects students who have at least one absence
listed in the absence table:

SELECT student_id, name FROM student WHERE EXISTS

(SELECT * FROM absence WHERE absence.student_id = student.student_id);

NOT EXISTS identifies non-matches—values in one table that are not present in the
other.This statement selects students who have no absences:

SELECT student_id, name FROM student WHERE NOT EXISTS

(SELECT * FROM absence WHERE absence.student_id = student.student_id);

2.9.6 Subqueries in the FROM Clause
Subqueries can be used in the FROM clause to generate values. In this case, the result of the
subquery acts like a table.A subquery in the FROM clause can participate in joins, its values
can be tested in the WHERE clause, and so forth.When using this type of subquery, you
must provide a table alias to give the subquery result a name:

mysql> SELECT * FROM (SELECT 1, 2) AS t1 INNER JOIN (SELECT 3, 4) AS t2;

+---+---+---+---+

1632.9 Performing Multiple-Table Retrievals with Subqueries

| 1 | 2 | 3 | 4 |

+---+---+---+---+

| 1 | 2 | 3 | 4 |

+---+---+---+---+

2.9.7 Rewriting Subqueries as Joins
It’s often possible to rephrase a query that uses a subquery in terms of a join, and it’s not a
bad idea to examine queries that you might be inclined to write in terms of subqueries.A
join is sometimes more efficient than a subquery, so if a SELECT written as a subquery
takes a long time to execute, try writing it as a join to see whether it performs better.This
section shows how to do that.

2.9.7.1 Rewriting Subqueries That Select Matching Values
Here’s an example statement containing a subquery; it selects scores from the score table
only for tests (that is, it ignores quiz scores):

SELECT * FROM score

WHERE event_id IN (SELECT event_id FROM grade_event WHERE category = 'T');

The same statement can be written without a subquery by converting it to a simple
join:

SELECT score.* FROM score INNER JOIN grade_event

ON score.event_id = grade_event.event_id WHERE grade_event.category = 'T';

As another example, the following query selects scores for female students:

SELECT * from score

WHERE student_id IN (SELECT student_id FROM student WHERE sex = 'F');

This can be converted to a join as follows:

SELECT score.* FROM score INNER JOIN student

ON score.student_id = student.student_id WHERE student.sex = 'F';

There is a pattern here.The subquery statements follow this form:

SELECT * FROM table1

WHERE column1 IN (SELECT column2a FROM table2 WHERE column2b = value);

Such queries can be converted to a join using this form:

SELECT table1.* FROM table1 INNER JOIN table2

ON table1.column1 = table2.column2a WHERE table2.column2b = value;

In some cases, the subquery and the join might return different results.This occurs
when table2 contains multiple instances of column2a.The subquery form produces only
one instance of each column2a value, but the join would produce them all and its output
would include duplicate rows.To suppress these duplicates, begin the join with SELECT
DISTINCT rather than SELECT.

164 Chapter 2 Using SQL to Manage Data

2.9.7.2 Rewriting Subqueries That Select Non-Matching (Missing) Values
Another common type of subquery statement searches for values in one table that are not
present in another table.As we’ve seen before, the “which values are not present” type of
problem is a clue that a LEFT JOIN may be helpful. Here’s the statement with a subquery
seen earlier that tests for students who are not listed in the absence table (it finds those
students with perfect attendance):

SELECT * FROM student

WHERE student_id NOT IN (SELECT student_id FROM absence);

This query can be rewritten using a LEFT JOIN as follows:

SELECT student.*

FROM student LEFT JOIN absence ON student.student_id = absence.student_id

WHERE absence.student_id IS NULL;

In general terms, the subquery statement form is as follows:

SELECT * FROM table1

WHERE column1 NOT IN (SELECT column2 FROM table2);

A query having that form can be rewritten like this:

SELECT table1.*

FROM table1 LEFT JOIN table2 ON table1.column1 = table2.column2

WHERE table2.column2 IS NULL;

This assumes that table2.column2 is defined as NOT NULL.
The subquery does have the advantage of being more intuitive than the LEFT JOIN.

“Not in” is a concept that most people understand without difficulty, because it occurs
outside the context of database programming.The same cannot be said for the concept of
“left join,” for which there is no such basis for natural understanding.

2.10 Performing Multiple-Table Retrievals
with UNION
If you want to create a result set that combines the results from several queries, you can
do so by using a UNION statement. For the examples in this section, assume that you have
three tables, t1, t2, and t3 that look like this:

mysql> SELECT * FROM t1;

+------+-------+

| i | c |

+------+-------+

| 1 | red |

| 2 | blue |

| 3 | green |

+------+-------+

mysql> SELECT * FROM t2;

1652.10 Performing Multiple-Table Retrievals with UNION

+------+------+

| i | c |

+------+------+

| -1 | tan |

| 1 | red |

+------+------+

mysql> SELECT * FROM t3;

+------------+------+

| d | i |

+------------+------+

| 1904-01-01 | 100 |

| 2004-01-01 | 200 |

| 2004-01-01 | 200 |

+------------+------+

Tables t1 and t2 have integer and character columns, and t3 has date and integer
columns.To write a UNION statement that combines multiple retrievals, write several
SELECT statements and put the keyword UNION between them (they must retrieve the
same number of columns). For example, to select the integer column from each table, do
this:

mysql> SELECT i FROM t1 UNION SELECT i FROM t2 UNION SELECT i FROM t3;

+------+

| i |

+------+

| 1 |

| 2 |

| 3 |

| -1 |

| 100 |

| 200 |

+------+

UNION has the following properties.
Column name and data types. The column names for the UNION result come from

the names of the columns in the first SELECT.The second and subsequent SELECT state-
ments in the UNION must select the same number of columns, but corresponding columns
need not have the same names or data types. (Normally, you write UNION such that corre-
sponding columns do have the same types, but MySQL performs type conversion as nec-
essary if they do not.) Columns are matched by position rather than by name, which is
why the following two statements return different results, even though they select the
same values from the two tables:

mysql> SELECT i, c FROM t1 UNION SELECT i, d FROM t3;

+------+------------+

| i | c |

+------+------------+

| 1 | red |

| 2 | blue |

166 Chapter 2 Using SQL to Manage Data

| 3 | green |

| 100 | 1904-01-01 |

| 200 | 2004-01-01 |

+------+------------+

mysql> SELECT i, c FROM t1 UNION SELECT d, i FROM t3;

+------------+-------+

| i | c |

+------------+-------+

| 1 | red |

| 2 | blue |

| 3 | green |

| 1904-01-01 | 100 |

| 2004-01-01 | 200 |

+------------+-------+

In each statement, the data type for each column of the result is determined from the
selected values. In the first statement, strings and dates are selected for the second column.
The result is a string column. In the second statement, integers and dates are selected for
the first column, strings and integers for the second column. In both cases, the result is a
string column.

Duplicate-row handling. By default, UNION eliminates duplicate rows from the
result set:

mysql> SELECT * FROM t1 UNION SELECT * FROM t2 UNION SELECT * FROM t3;

+------------+-------+

| i | c |

+------------+-------+

| 1 | red |

| 2 | blue |

| 3 | green |

| -1 | tan |

| 1904-01-01 | 100 |

| 2004-01-01 | 200 |

+------------+-------+

t1 and t2 both have a row containing values of 1 and 'red', but only one such row
appears in the output.Also, t3 has two rows containing '2004-01-01'and 200, one of
which has been eliminated.

UNION DISTINCT is synonymous with UNION; both retain only distinct rows.
If you want to preserve duplicates, change each UNION to UNION ALL:

mysql> SELECT * FROM t1 UNION ALL SELECT * FROM t2 UNION ALL SELECT * FROM t3;

+------------+-------+

| i | c |

+------------+-------+

| 1 | red |

| 2 | blue |

| 3 | green |

1672.10 Performing Multiple-Table Retrievals with UNION

| -1 | tan |

| 1 | red |

| 1904-01-01 | 100 |

| 2004-01-01 | 200 |

| 2004-01-01 | 200 |

+------------+-------+

If you mix UNION or UNION DISTINCT with UNION ALL, any distinct union operation
takes precedence over any UNION ALL operations to its left.

ORDER BY and LIMIT handling. To sort a UNION result as a whole, place each SELECT
within parentheses and add an ORDER BY clause following the last one. However, because
the UNION uses column names from the first SELECT, the ORDER BY should refer to those
names, not the column names from the last SELECT:

mysql> (SELECT i, c FROM t1) UNION (SELECT i, d FROM t3)

-> ORDER BY c;

+------+------------+

| i | c |

+------+------------+

| 100 | 1904-01-01 |

| 200 | 2004-01-01 |

| 2 | blue |

| 3 | green |

| 1 | red |

+------+------------+

If a sort column is aliased, an ORDER BY at the end of the UNION must refer to the alias.
Also, the ORDER BY cannot refer to table names. If you need to sort by a column specified
as tbl_name.col_name in the first SELECT, alias the column and refer to the alias in the
ORDER BY clause.

Similarly, to limit the number of rows returned by a UNION, add LIMIT to the end of
the statement:

mysql> (SELECT * FROM t1) UNION (SELECT * FROM t2) UNION (SELECT * FROM t3)

-> LIMIT 2;

+------+-------------+

| i | c |

+------+-------------+

| 1 | red |

| 2 | blue |

+------+-------------+

ORDER BY and LIMIT also can be used within a parenthesized individual SELECT of a
UNION to apply only to that SELECT:

mysql> (SELECT * FROM t1 ORDER BY i LIMIT 2)

-> UNION (SELECT * FROM t2 ORDER BY i LIMIT 1)

-> UNION (SELECT * FROM t3 ORDER BY d LIMIT 2);

168 Chapter 2 Using SQL to Manage Data

+------------+-------------+

| i | c |

+------------+-------------+

| 1 | red |

| 2 | blue |

| -1 | tan |

| 1904-01-01 | 100 |

| 2004-01-01 | 200 |

+------------+-------------+

ORDER BY within an individual SELECT is used only if LIMIT is also present, to deter-
mine which rows the LIMIT applies to. It does not affect the order in which rows appear
in the final UNION result.

If you want to run a UNION-type query on MyISAM tables that have the same struc-
ture, you could set up a MERGE table and query that. One reason this is useful is that it
is simpler to write a query on a MERGE table than the corresponding UNION statement.
A query on the MERGE table is similar to a UNION that selects corresponding columns
from the individual tables that make up the MERGE table.That is, SELECT on a MERGE
table is like UNION ALL (duplicates are not removed), and SELECT DISTINCT is like UNION
or UNION DISTINCT (duplicates are removed).

2.11 Using Views
A view is a virtual table.That is, it acts like a table but actually contains no data. Instead, it
is defined in terms of base (“real”) tables or other views and provides alternative ways to
look at table data. Often this can simplify applications.

This section describes some applications for views. One thing it does not cover is the
DEFINER clause that views have in common with stored programs and that can be used
for security purposes to control access to view data. For information about DEFINER, see
Section 4.5,“Security for Stored Programs and Views.”

A simple view can be nothing more than a way to select a subset of a table’s
columns. Suppose that you often want to select only the last_name, first_name, city,
and state columns from the president table, but you don’t want to write out all the
columns like this:

SELECT last_name, first_name, city, state FROM president;

Nor do you want to use SELECT *.That’s easier to write, but * retrieves columns that
you don’t want.The solution is to define a view that retrieves only the desired columns:

CREATE VIEW vpres AS

SELECT last_name, first_name, city, state FROM president;

Now the view acts as a “window” into just those columns that you want to see.This
means that you can use SELECT * with the view and get back only the columns named in
the view definition:

mysql> SELECT * FROM vpres;

1692.11 Using Views

+------------+---------------+---------------------+-------+

| last_name | first_name | city | state |

+------------+---------------+---------------------+-------+

| Washington | George | Wakefield | VA |

| Adams | John | Braintree | MA |

| Jefferson | Thomas | Albemarle County | VA |

| Madison | James | Port Conway | VA |

| Monroe | James | Westmoreland County | VA |

...

If you include a WHERE clause, MySQL adds it to the view definition when executing
the statement to further restrict the result:

mysql> SELECT * FROM vpres WHERE last_name = 'Adams';

+-----------+-------------+-----------+-------+

| last_name | first_name | city | state |

+-----------+-------------+-----------+-------+

| Adams | John | Braintree | MA |

| Adams | John Quincy | Braintree | MA |

+-----------+-------------+-----------+-------+

The same is true if you add ORDER BY, LIMIT, and so forth.
When you use a view, you can refer only to those columns named in the view defini-

tion.That is, you cannot refer to a column that is not part of the view, even if the column
is part of the base table:

mysql> SELECT * FROM vpres WHERE suffix <> '';

ERROR 1054 (42S22): Unknown column 'suffix' in 'where clause'

The column names for a view by default are those named in the output column list of
its SELECT statement.To provide column names explicitly, add a list of names in parenthe-
ses following the view name in the view definition:

mysql> CREATE VIEW vpres2 (ln, fn) AS

-> SELECT last_name, first_name FROM president;

Now when you refer to the view, you must use the given column names rather than
the names in the SELECT:

mysql> SELECT last_name, first_name FROM vpres2;

ERROR 1054 (42S22) at line 1: Unknown column 'last_name' in 'field list'

mysql> SELECT ln, fn FROM vpres2;

+------------+---------------+

| ln | fn |

+------------+---------------+

| Washington | George |

| Adams | John |

| Jefferson | Thomas |

| Madison | James |

| Monroe | James |

...

170 Chapter 2 Using SQL to Manage Data

A view can be used to perform calculations automatically. In Section 1.4.9.6,“Work-
ing with Dates,” we developed a statement that determines the age of presidents at death.
The same calculation can be incorporated into a view definition:

mysql> CREATE VIEW pres_age AS

-> SELECT last_name, first_name, birth, death,

-> TIMESTAMPDIFF(YEAR, birth, death) AS age

-> FROM president;

This view includes an age column that is defined as a calculation, and selecting that
column from the view retrieves the results of the calculation:

mysql> SELECT * FROM pres_age;

+------------+---------------+------------+------------+------+

| last_name | first_name | birth | death | age |

+------------+---------------+------------+------------+------+

| Washington | George | 1732-02-22 | 1799-12-14 | 67 |

| Adams | John | 1735-10-30 | 1826-07-04 | 90 |

| Jefferson | Thomas | 1743-04-13 | 1826-07-04 | 83 |

| Madison | James | 1751-03-16 | 1836-06-28 | 85 |

| Monroe | James | 1758-04-28 | 1831-07-04 | 73 |

...

By including the age calculation in the view definition, it’s no longer necessary to
write out the formula to see the age values.The view hides the details.

A view can refer to multiple tables, which makes it easier to run queries that involve
joins.The following view looks up scores, joining them with student and grade event
information:

mysql> CREATE VIEW vstudent AS

-> SELECT student.student_id, name, date, score, category

-> FROM grade_event INNER JOIN score INNER JOIN student

-> ON grade_event.event_id = score.event_id

-> AND score.student_id = student.student_id;

When you select from the view, MySQL executes the join and returns information
from multiple tables:

mysql> SELECT * FROM vstudent;

+------------+-----------+------------+-------+----------+

| student_id | name | date | score | category |

+------------+-----------+------------+-------+----------+

| 1 | Megan | 2008-09-03 | 20 | Q |

| 3 | Kyle | 2008-09-03 | 20 | Q |

| 4 | Katie | 2008-09-03 | 18 | Q |

| 5 | Abby | 2008-09-03 | 13 | Q |

| 6 | Nathan | 2008-09-03 | 18 | Q |

| 7 | Liesl | 2008-09-03 | 14 | Q |

| 8 | Ian | 2008-09-03 | 14 | Q |

...

1712.11 Using Views

The view makes it trivial to retrieve the scores for a particular student by name:

mysql> SELECT * FROM vstudent WHERE name = 'emily';

+------------+-------+------------+-------+----------+

| student_id | name | date | score | category |

+------------+-------+------------+-------+----------+

| 31 | Emily | 2008-09-03 | 11 | Q |

| 31 | Emily | 2008-09-06 | 19 | Q |

| 31 | Emily | 2008-09-09 | 81 | T |

| 31 | Emily | 2008-09-16 | 19 | Q |

| 31 | Emily | 2008-09-23 | 9 | Q |

| 31 | Emily | 2008-10-01 | 76 | T |

+------------+-------+------------+-------+----------+

Some views are updatable, which means that you can insert, update, and delete rows in
the underlying table by means of operations on the view. Here is a simple example:

mysql> CREATE TABLE t (i INT);

mysql> INSERT INTO t (i) VALUES(1),(2),(3);

mysql> CREATE VIEW v AS SELECT i FROM t;

mysql> SELECT i FROM v;

+------+

| i |

+------+

| 1 |

| 2 |

| 3 |

+------+

mysql> INSERT INTO v (i) VALUES(4);

mysql> DELETE FROM v WHERE i < 3;

mysql> SELECT i FROM v;

+------+

| i |

+------+

| 3 |

| 4 |

+------+

mysql> UPDATE v SET i = i + 1;

mysql> SELECT i FROM v;

+------+

| i |

+------+

| 4 |

| 5 |

+------+

172 Chapter 2 Using SQL to Manage Data

For a view to be updatable, it must map directly onto a single table, it must select only
columns that are simple references to table columns (not arbitrary expressions), and any
operation on a view row must correspond to an operation on a single row in the under-
lying table. For example, if a view involves a summary calculated using an aggregate func-
tion, each view row can be based on multiple underlying table rows. In this case, the view
is not updatable because there is no way to tell which underlying table row should be
updated.

2.12 Multiple-Table Deletes and Updates
Sometimes it’s useful to delete rows based on whether they match or don’t match rows in
another table. Similarly, it’s often useful to update rows in one table using the contents of
rows in another table.This section describes how to perform multiple-table DELETE and
UPDATE operations.These types of statements draw heavily on the concepts used for joins,
so be sure you’re familiar with the material discussed earlier in Section 2.8,“Performing
Multiple-Table Retrievals with Joins.”

To perform a single-table DELETE or UPDATE, you refer only to the columns of one
table and thus need not qualify the column names with the table name. For example, to
delete all rows in a table t that have id values greater than 100, you’d write a statement
like this:

DELETE FROM t WHERE id > 100;

But what if you want to delete rows based not on properties inherent in the rows
themselves, but rather on their relationship to rows in another table? Suppose that you
want to delete from t those rows with id values that are found in another table t2?

To write a multiple-table DELETE, name all the tables in a FROM clause and specify the
conditions used to match rows in the tables in the WHERE clause.The following statement
deletes rows from table t1 where there is a matching id value in table t2:

DELETE t1 FROM t1 INNER JOIN t2 ON t1.id = t2.id;

Notice that if a column name appears in more than one of the tables, it becomes am-
biguous and must be qualified with a table name.

The syntax also allows for deleting rows from multiple tables at once.To delete rows
from both tables where there are matching id values, name them both after the DELETE
keyword:

DELETE t1, t2 FROM t1 INNER JOIN t2 ON t1.id = t2.id;

What if you want to delete non-matching rows? A multiple-table DELETE can use any
kind of join that you can write in a SELECT, so employ the same strategy that you’d use
when writing a SELECT that identifies the non-matching rows.That is, use a LEFT JOIN
or RIGHT JOIN. For example, to identify rows in t1 that have no match in t2, you’d write
a SELECT like this:

SELECT t1.* FROM t1 LEFT JOIN t2 ON t1.id = t2.id WHERE t2.id IS NULL;

1732.12 Multiple-Table Deletes and Updates

The analogous DELETE statement to find and remove those rows from t1 uses a LEFT
JOIN as well:

DELETE t1 FROM t1 LEFT JOIN t2 ON t1.id = t2.id WHERE t2.id IS NULL;

MySQL supports a second multiple-table DELETE syntax.With this syntax, use a FROM
clause to list the tables from which rows are to be deleted and a USING clause to join the
tables that determine which rows to delete.The preceding multiple-table DELETE state-
ments can be rewritten using this syntax as follows:

DELETE FROM t1 USING t1 INNER JOIN t2 ON t1.id = t2.id;

DELETE FROM t1, t2 USING t1 INNER JOIN t2 ON t1.id = t2.id;

DELETE FROM t1 USING t1 LEFT JOIN t2 ON t1.id = t2.id WHERE t2.id IS NULL;

The principles involved in writing multiple-table UPDATE statements are quite similar
to those used for DELETE: Name all the tables that participate in the operation and qualify
column references as necessary. Suppose that the quiz you gave on September 23, 2008,
contained a question that everyone got wrong, and then you discover that the reason for
this is that your answer key was incorrect.As a result, you want to add a point to every-
one’s score.With a multiple-table UPDATE, you can do this as follows:

UPDATE score, grade_event SET score.score = score.score + 1

WHERE score.event_id = grade_event.event_id

AND grade_event.date ='2008-09-23' AND grade_event.category = 'Q';

In this case, you could accomplish the same objective using a single-table update and a
subquery:

UPDATE score SET score = score + 1

WHERE event_id = (SELECT event_id FROM grade_event

WHERE date = '2008-09-23' AND category = 'Q');

But other updates cannot be written using subqueries. For example, you might want
to not only identify rows to update based on the contents of another table, but to copy
column values from one table to another.The following statement copies t1.a to t2.a

for rows that have a matching id column value:

UPDATE t1, t2 SET t2.a = t1.a WHERE t2.id = t1.id;

To perform multiple-table deletes or updates for InnoDB tables, you need not use the
syntax just described. Instead set up a foreign key relationship between tables that includes
an ON DELETE CASCADE or ON UPDATE CASCADE constraint. For details, see Section 2.14,
“Foreign Keys and Referential Integrity.”

2.13 Performing Transactions
A transaction is a set of SQL statements that execute as a unit and that can be canceled if
necessary. Either all the statements execute successfully, or none of them have any effect.
This is achieved through the use of commit and rollback capabilities. If all of the state-
ments in the transaction succeed, you commit it to record their effects permanently in the

174 Chapter 2 Using SQL to Manage Data

database. If an error occurs during the transaction, you roll it back to cancel it.Any state-
ments executed up to that point within the transaction are undone, leaving the database
in the state it was in prior to the point at which the transaction began.

Commit and rollback provide the means for ensuring that halfway-done operations
don’t make their way into your database and leave it in a partially updated (inconsistent)
state.The canonical example of this involves a financial transfer where money from one
account is placed into another account. Suppose that Bill writes a check to Bob for
$100.00 and Bob cashes the check. Bill’s account should be decremented by $100.00 and
Bob’s account incremented by the same amount:

UPDATE account SET balance = balance - 100 WHERE name = 'Bill';

UPDATE account SET balance = balance + 100 WHERE name = 'Bob';

If a crash occurs between the two statements, the operation is incomplete. Depending
on which statement executes first, Bill is $100 short without Bob having been credited, or
Bob is given $100 without Bill having been debited. Neither outcome is correct. If trans-
actional capabilities are not available to you, you have to figure out the state of ongoing
operations at crash time by examining your logs manually in order to determine how to
undo them or complete them.The rollback capabilities of transaction support enable you
to handle this situation properly by undoing the effect of the statements that executed be-
fore the error occurred. (You may still have to determine which transactions weren’t en-
tered and re-issue them, but at least you don’t have to worry about half-transactions
making your database inconsistent.)

Another use for transactions is to make sure that the rows involved in an operation are
not modified by other clients while you’re working with them. MySQL automatically
performs locking for single SQL statements to keep clients from interfering with each
other, but this is not always sufficient to guarantee that a database operation achieves its
intended result, because some operations are performed over the course of several state-
ments. In this case, different clients might interfere with each other.A transaction group
statements into a single execution unit to prevent concurrency problems that could oth-
erwise occur in a multiple-client environment.

Transactional systems typically are characterized as providing ACID properties.ACID
is an acronym for Atomic, Consistent, Isolated, and Durable, referring to four properties
that transactions should have:

• Atomicity: The statements a transaction consists of form a logical unit.You can’t
have just some of them execute.

• Consistency: The database is consistent before and after the transaction executes.
In other words, the transaction doesn’t make a mess of your database.

• Isolation: One transaction has no effect on another.

• Durability: When a transaction executes successfully to completion, its effects are
recorded permanently in the database.

Transactional processing provides stronger guarantees about the outcome of database
operations, but also requires more overhead in CPU cycles, memory, and disk space.

1752.13 Performing Transactions

MySQL offers some storage engines that are transaction-safe (such as InnoDB and Falcon),
and some that are not transaction-safe (such as MyISAM and MEMORY).Transactional
properties are essential for some applications and not for others, and you can choose which
ones make the most sense for your applications. Financial operations typically need trans-
actions, and the guarantees of data integrity outweigh the cost of additional overhead. On
the other hand, for an application that logs web page accesses to a database table, a loss of a
few rows if the server host crashes might be tolerable. In this case, you can use a non-
transactional storage engine to avoid the overhead required for transactional processing.

2.13.1 Using Transactions to Ensure Safe Statement Execution
To use transactions, you must use a transactional storage engine such as InnoDB or Fal-
con. Engines such as MyISAM and MEMORY will not work. If you’re not sure whether
your MySQL server supports any transactional storage engines, see Section 2.6.1.1,
“Checking Which Storage Engines Are Available.”

By default, MySQL runs in autocommit mode, which means that changes made by in-
dividual statements are committed to the database immediately to make them permanent.
In effect, each statement is its own transaction implicitly.To perform transactions explicitly,
disable autocommit mode and then tell MySQL when to commit or roll back changes.

One way to perform a transaction is to issue a START TRANSACTION (or BEGIN) state-
ment to suspend autocommit mode, execute the statements that make up the transaction,
and end the transaction with a COMMIT statement to make the changes permanent. If an
error occurs during the transaction, cancel it by issuing a ROLLBACK statement instead to
undo the changes. START TRANSACTION suspends the current autocommit mode, so after
the transaction has been committed or rolled back, the mode reverts to its state prior to
the START TRANSACTION. (If autocommit was enabled beforehand, ending the transaction
puts you back in autocommit mode. If it was disabled, ending the current transaction
causes you to begin the next one.)

The following example illustrates this approach. First, create a table to use:

mysql> CREATE TABLE t (name CHAR(20), UNIQUE (name)) ENGINE = InnoDB;

The statement creates an InnoDB table, but you can use a different transactional stor-
age engine if you like. Next, initiate a transaction with START TRANSACTION, add a couple
of rows to the table, commit the transaction, and then see what the table looks like:

mysql> START TRANSACTION;

mysql> INSERT INTO t SET name = 'William';

mysql> INSERT INTO t SET name = 'Wallace';

mysql> COMMIT;

mysql> SELECT * FROM t;

+---------+

| name |

+---------+

| Wallace |

| William |

+---------+

176 Chapter 2 Using SQL to Manage Data

You can see that the rows have been recorded in the table. If you had started up a sec-
ond instance of mysql and selected the contents of t after the inserts but before the com-
mit, the rows would not show up.They would not become visible to the second mysql
process until the COMMIT statement had been issued by the first one.

If an error occurs during a transaction, you can cancel it with ROLLBACK. Using the t
table again, you can see this by issuing the following statements:

mysql> START TRANSACTION;

mysql> INSERT INTO t SET name = 'Gromit';

mysql> INSERT INTO t SET name = 'Wallace';

ERROR 1062 (23000): Duplicate entry 'Wallace' for key 1

mysql> ROLLBACK;

mysql> SELECT * FROM t;

+---------+

| name |

+---------+

| Wallace |

| William |

+---------+

The second INSERT attempts to place a row into the table that duplicates an existing
name value.The statement fails because name has a UNIQUE index.After issuing the
ROLLBACK, the table has only the two rows that it contained prior to the failed transaction.
In particular, the INSERT that was performed just prior to the point of the error has been
undone and its effect is not recorded in the table.

Issuing a START TRANSACTION statement while a transaction is in process commits the
current transaction implicitly before beginning a new one.

Another way to perform transactions is to manipulate the autocommit mode directly
using SET statements:

SET autocommit = 0;

SET autocommit = 1;

Setting the autocommit variable to zero disables autocommit mode.The effect of any
statements that follow becomes part of the current transaction, which you end by issuing
a COMMIT or ROLLBACK statement to commit or cancel it.With this method, autocommit
mode remains off until you turn it back on, so ending one transaction also begins the
next one.You can also commit a transaction by re-enabling autocommit mode.

To see how this approach works, begin with the same table as for the previous
examples:

mysql> DROP TABLE t;

mysql> CREATE TABLE t (name CHAR(20), UNIQUE (name)) ENGINE = InnoDB;

Then disable autocommit mode, insert some rows, and commit the transaction:

mysql> SET autocommit = 0;

mysql> INSERT INTO t SET name = 'William';

1772.13 Performing Transactions

mysql> INSERT INTO t SET name = 'Wallace';

mysql> COMMIT;

mysql> SELECT * FROM t;

+---------+

| name |

+---------+

| Wallace |

| William |

+---------+

At this point, the two rows have been committed to the table, but autocommit mode
remains disabled. If you issue further statements, they become part of a new transaction,
which may be committed or rolled back independently of the first transaction.To verify
that autocommit is still off and that ROLLBACK will cancel uncommitted statements, issue
the following statements:

mysql> INSERT INTO t SET name = 'Gromit';

mysql> INSERT INTO t SET name = 'Wallace';

ERROR 1062 (23000): Duplicate entry 'Wallace' for key 1

mysql> ROLLBACK;

mysql> SELECT * FROM t;

+---------+

| name |

+---------+

| Wallace |

| William |

+---------+

To re-enable autocommit mode, use this statement:

mysql> SET autocommit = 1;

As just described, a transaction ends when you issue a COMMIT or ROLLBACK statement,
or when you re-enable autocommit while it is disabled.Transactions also end under other
circumstances. In addition to the SET autocommit, START TRANSACTION, BEGIN, COMMIT,
and ROLLBACK statements that affect transactions explicitly, certain other statements do so
implicitly because they cannot be part of a transaction. In general, these tend to be DDL
(data definition language) statements that create, alter, or drop databases or objects in
them, or statements that are lock-related. For example, if you issue any of the following
statements while a transaction is in progress, the server commits the transaction first be-
fore executing the statement:

ALTER TABLE

CREATE INDEX

DROP DATABASE

DROP INDEX

DROP TABLE

LOCK TABLES

RENAME TABLE

178 Chapter 2 Using SQL to Manage Data

SET autocommit = 1 (if not already set to 1)

TRUNCATE TABLE

UNLOCK TABLES (if tables currently are locked)

For a complete list of statements that cause implicit commits in your version of
MySQL, see the MySQL Reference Manual.

A transaction also ends if a client’s connection ends or is broken before a commit occurs.
In this case, the server automatically rolls back any transaction the client was performing.

If a client program automatically reconnects after its connection to the server is lost,
the connection will be reset to its default state of having autocommit enabled.

Transactions are useful in all kinds of situations. Suppose that you’re working with the
score table that is part of the grade-keeping project and you discover that the grades for
two students have gotten mixed up and need to be switched.The incorrectly entered
grades are as follows:

mysql> SELECT * FROM score WHERE event_id = 5 AND student_id IN (8,9);

+------------+----------+-------+

| student_id | event_id | score |

+------------+----------+-------+

| 8 | 5 | 18 |

| 9 | 5 | 13 |

+------------+----------+-------+

To fix this, student 8 should be given a score of 13 and student 9 a score of 18.That
can be done easily with two statements:

UPDATE score SET score = 13 WHERE event_id = 5 AND student_id = 8;

UPDATE score SET score = 18 WHERE event_id = 5 AND student_id = 9;

However, it’s necessary to ensure that both statements succeed as a unit.This is a prob-
lem to which transactional methods may be applied.To use START TRANSACTION, do this:

mysql> START TRANSACTION;

mysql> UPDATE score SET score = 13 WHERE event_id = 5 AND student_id = 8;

mysql> UPDATE score SET score = 18 WHERE event_id = 5 AND student_id = 9;

mysql> COMMIT;

To accomplish the same thing by manipulating the autocommit mode explicitly in-
stead, do this:

mysql> SET autocommit = 0;

mysql> UPDATE score SET score = 13 WHERE event_id = 5 AND student_id = 8;

mysql> UPDATE score SET score = 18 WHERE event_id = 5 AND student_id = 9;

mysql> COMMIT;

mysql> SET autocommit = 1;

Either way, the result is that the scores are swapped properly:

mysql> SELECT * FROM score WHERE event_id = 5 AND student_id IN (8,9);

1792.13 Performing Transactions

+------------+----------+-------+

| student_id | event_id | score |

+------------+----------+-------+

| 8 | 5 | 13 |

| 9 | 5 | 18 |

+------------+----------+-------+

2.13.2 Using Transaction Savepoints
MySQL enables you to perform a partial rollback of a transaction.To do this, issue a
SAVEPOINT statement within the transaction to set a marker.To roll back to just that point
in the transaction later, use a ROLLBACK statement that names the savepoint.The following
statements illustrate how this works:

mysql> CREATE TABLE t (i INT) ENGINE = InnoDB;

mysql> START TRANSACTION;

mysql> INSERT INTO t VALUES(1);

mysql> SAVEPOINT my_savepoint;

mysql> INSERT INTO t VALUES(2);

mysql> ROLLBACK TO SAVEPOINT my_savepoint;

mysql> INSERT INTO t VALUES(3);

mysql> COMMIT;

mysql> SELECT * FROM t;

+------+

| i |

+------+

| 1 |

| 3 |

+------+

After executing these statements, the first and third rows have been inserted, but the
second one has been canceled by the partial rollback to the my_savepoint savepoint.

2.13.3 Transaction Isolation
Because MySQL is a multiple-user database system, different clients can attempt to use
any given table at the same time. Storage engines such as MyISAM use table locking to
keep clients from modifying a table at the same time, but this does not provide good con-
currency performance when there are many updates.The InnoDB storage engine takes a
different approach. It uses row-level locking for finer-grained control over table access by
clients. One client can modify a row at the same time that another client reads or modi-
fies a different row in the same table. If both clients want to modify a row at the same
time, whichever of them acquires a lock on the row gets to modify it first.This provides
better concurrency than table locking. However, there is the question about whether one
client’s transaction should be able to see the changes made by another client’s transaction.

180 Chapter 2 Using SQL to Manage Data

InnoDB implements transaction isolation levels to give clients control over what kind of
changes made by other transactions they want to see. Different isolation levels allow or pre-
vent the various problems that can occur when different transactions run simultaneously:

n Dirty reads.A dirty read occurs when a change made by one transaction can be
seen by other transactions before the transaction has been committed.Another
transaction thus might think the row has been changed, even though that will not
really be true if the transaction that changed the row later is rolled back.

n Nonrepeatable reads.A nonrepeatable read refers to the failure by a transaction to
get the same result for a given SELECT statement each time it executes it.This might
happen if one transaction performs a SELECT twice but another transaction changes
some of the rows in between the two executions.

n Phantom rows.A phantom is a row that becomes visible to a transaction when it
was not previously. Suppose that a transaction performs a SELECT and then another
transaction inserts a row. If the first transaction runs the same SELECT again and sees
the new row, that is a phantom.

To deal with these problems, InnoDB supports four transaction isolation levels.These
levels determine which modifications made by one transaction can be seen by other
transactions that execute at the same time:

n READ UNCOMMITTED

A transaction can see row modifications made by other transactions even before they
have been committed.

n READ COMMITTED

A transaction can see row modifications made by other transactions only if they
have been committed.

n REPEATABLE READ

If a transaction performs a given SELECT twice, the result is repeatable.That is, it
gets the same result each time, even if other transactions have changed or inserted
rows in the meantime.

n SERIALIZABLE

This isolation level is similar to REPEATABLE READ but isolates transactions more
completely: Rows examined by one transaction cannot be modified by other trans-
actions until the first transaction completes.This enables one transaction to read
rows and at the same time prevent them from being modified by other transactions
until it is done with them.

Table 2.4 shows for each isolation level whether it allows dirty reads, nonrepeatable
reads, or phantom rows.The table is InnoDB-specific in that REPEATABLE READ does not
allow phantom rows to occur. Some database systems do allow phantoms at the
REPEATABLE READ isolation level.

1812.13 Performing Transactions

The default InnoDB isolation level is REPEATABLE READ.This can be changed at
server startup with the --transaction-isolation option, or at runtime with the SET
TRANSACTION statement.The statement has three forms:

SET GLOBAL TRANSACTION ISOLATION LEVEL level;

SET SESSION TRANSACTION ISOLATION LEVEL level;

SET TRANSACTION ISOLATION LEVEL level;

A client that has the SUPER privilege can use SET TRANSACTION to change the global
isolation level, which then applies to any clients that connect thereafter. In addition, any
client can change its own transaction isolation level, either for all subsequent transactions
within its session with the server (if SESSION is specified) or for its next transaction only
(if SESSION is omitted). No special privileges are required for the client-specific levels.

Most of the information in this section also applies to Falcon. Some differences from
InnoDB are that Falcon does not support the READ UNCOMMITTED isolation level and cur-
rently does not support SERIALIZABLE (although work is in progress to add support for
the latter level).

2.13.4 Non-Transactional Approaches to Transactional Problems
In a non-transactional environment, some transactional issues can be handled and some
cannot.The following discussion covers what can and cannot be achieved without using
transactions.You can use this information to determine whether an application can em-
ploy the techniques here and avoid the overhead of transaction-safe tables.

First, let’s consider how concurrency problems can occur when multiple clients at-
tempt to make changes to a database using operations that each require several statements.
Suppose that you’re in the garment sales business and your cash register software auto-
matically updates your inventory levels whenever one of your salesmen processes a sale.
The sequence of events shown here outlines the operations that take place when multiple
sales occur. For the example, assume that the initial shirt inventory level is 47.

1. Salesman A sells three shirts and registers the sale.The register software begins to
update the database by selecting the current shirt count (47):

SELECT quantity FROM inventory WHERE item = 'shirt';

182 Chapter 2 Using SQL to Manage Data

Table 2.4 Problems Allowed by Isolation Levels

Isolation Level Dirty Reads Nonrepeatable Reads Phantom Rows

READ UNCOMMITTED Yes Yes Yes

READ COMMITTED No Yes Yes

REPEATABLE READ No No No

SERIALIZABLE No No No

2. In the meantime, Salesman B has sold two shirts and registered the sale.The soft-
ware at the second register also begins to update the database:

SELECT quantity FROM inventory WHERE item ='shirt';

3. The first register computes the new inventory level to be 47-3 = 44 and updates
the shirt count accordingly:

UPDATE inventory SET quantity = 44 WHERE item = 'shirt';

4. The second register computes the new inventory level to be 47-2 = 45 and updates
the count:

UPDATE inventory SET quantity = 45 WHERE item = 'shirt';

At the end of this sequence of events, you’ve sold five shirts.That’s good. However, the
inventory level says 45.That’s bad, because it should be 42.The problem is that if you
look up the inventory level in one statement and update the value in another statement,
you have a multiple-statement operation.The action taken in the second statement is de-
pendent on the value retrieved in the first. If separate multiple-statement operations occur
during overlapping time frames, the statements from each operation intertwine and inter-
fere with each other.To solve this problem, it’s necessary that the statements for a given
operation execute without interference from other operations.

To deal with the concurrency issues inherent in the situation just described, you can
take a couple of approaches.

Lock the tables explicitly.You can group statements and execute them as a unit by
surrounding them with LOCK TABLES and UNLOCK TABLES statements: Lock all the tables
that you need to use, issue your statements, and release the locks.This prevents anyone
else from changing the tables while you have them locked. Using table locking, the in-
ventory update scenario might be handled like this:

1. Salesman A sells three shirts and registers the sale.The register software begins the in-
ventory process by acquiring a table lock and retrieving the current shirt count (47):

LOCK TABLES inventory WRITE;

SELECT quantity FROM inventory WHERE item = 'shirt';

A WRITE lock is necessary here because the ultimate goal of the operation is to
modify the inventory table, which involves writing to it.

2. In the meantime, Salesman B has sold two shirts and registered the sale.The soft-
ware at the second register also begins to update the database by trying to acquire a
lock:

LOCK TABLES inventory WRITE;

In this case, this statement blocks because Salesman A already holds a lock on the
table.

1832.13 Performing Transactions

3. The first register computes the new inventory level to be 47-3 = 44, updates the
shirt count, and releases the lock:

UPDATE inventory SET quantity = 44 WHERE item = 'shirt';

UNLOCK TABLES;

4. When the first register releases the lock, the second register’s lock request succeeds,
and it can proceed to retrieve the current shirt count (44):

SELECT quantity FROM inventory WHERE item = 'shirt';

5. The second register computes the new inventory level to be 44-2 = 42, updates the
shirt count, and releases the lock:

UPDATE inventory SET quantity = 42 WHERE item = 'shirt';

UNLOCK TABLES;

Now the statements from the two operations don’t get mixed up and the inventory
level is set properly.

If you’re using multiple tables, you must lock all of them before you execute the
grouped statements. If you only read from a particular table, however, you need only a
read lock on it, not a write lock. (This lets other clients read the tables while you’re using
them, but prevents clients from writing to them.) Suppose that you have a set of queries
in which you want to make some changes to the inventory table, and you also need to
read some data from a customer table. In this case, you need a write lock on the
inventory table and a read lock on the customer table:

LOCK TABLES inventory WRITE, customer READ;

... use the tables here ...

UNLOCK TABLES;

Use relative updates, not absolute updates. For the inventory updating method that
uses explicit table locking, the operation involves looking up the current inventory level
with one statement, computing the new value based on the number of shirts sold, and
then updating the level to the new value with another statement.Another way to keep
operations performed by multiple clients from interfering with each other is to reduce
each operation to a single statement.This eliminates inter-statement dependencies that
arise in multiple-statement operations. Not every operation can be handled by a single
statement, but for the inventory update scenario, this strategy works well. It’s possible to
perform each inventory update in one step simply by modifying the shirt count relative to
its current value:

1. Salesman A sells three shirts and the register software decrements the shirt count
by three:

UPDATE inventory SET quantity = quantity - 3 WHERE item = 'shirt';

184 Chapter 2 Using SQL to Manage Data

2. Salesman B sells two shirts and the register software decrements the shirt count
by two:

UPDATE inventory SET quantity = quantity - 2 WHERE item = 'shirt';

With this method, each modification to the database no longer requires multiple state-
ments.This eliminates concurrency issues, so there is no need to use explicit table locks. If
an operation you want to perform is similar to this, there may be no need for transactions
at all.

The non-transactional approaches just described can be applied successfully to many
types of problems, but they have certain limitations:

n Not every operation can be written in terms of relative updates. Sometimes you
must use multiple statements, in which case concurrency issues must be considered
and dealt with.

n You may be able to keep clients from interfering with each other by locking tables
for the duration of a multiple-statement operation, but what happens if an error oc-
curs in the middle of the operation? In this case, you’d want the effects of the earlier
statements to be undone so that the database isn’t left in a half-modified and incon-
sistent state. Unfortunately, although table locking can help you address concurrency
issues, non-transactional tables provide no assistance in recovering from errors.

n The locking strategy requires you to lock and unlock your tables yourself. If you
revise an operation in such a way that changes the set of tables used, you must
remember to modify the LOCK TABLES statement accordingly.

If any of these issues are significant for your applications, you should use transaction-
safe tables instead, because transactional capabilities help you deal with each issue.A trans-
action handler executes a set of statements as a unit and manages concurrency issues by
preventing clients from getting in the way of each other. It also enables rollback in the
case of failure to keep half-executed operations from damaging your database, and it de-
termines which locks are necessary and acquires them automatically.

1852.14 Foreign Keys and Referential Integrity

Can You Mix Transactional and Non-Transactional Tables?
It is possible to use both transactional and non-transactional tables during the course of a
transaction, but the result might not be what you expect. Statements for non-transactional
tables always take effect immediately, even when autocommit is disabled. In effect, non-
transactional tables are always in autocommit mode and each statement commits immedi-
ately. As a result, if you change a non-transactional table within a transaction and then
attempt a rollback, the non-transactional table changes cannot be undone.

2.14 Foreign Keys and Referential Integrity
A foreign key relationship enables you to declare that an index in one table is related to
an index in another. It also enables you to place constraints on what may be done to the
tables in the relationship.The database enforces the rules of this relationship to maintain

referential integrity. For example, the score table in the sampdb sample database contains
a student_id column, which we use to relate score rows to students in the student
table.When we created these tables in Chapter 1, we set up some explicit relationships
between them. One of these was that we declared score.student_id to be a foreign key
for the student.student_id column.That prevents a row from being entered into the
score table unless its student_id value exists in the student table. In other words, the
foreign key prevents entry of scores for non-existent students.

Foreign keys are not useful just for row entry, but for deletes and updates as well. For
example, we could set up a constraint such that if a student is deleted from the student
table, all corresponding rows for the student in the score table are deleted automatically
as well.This is called “cascaded delete,” because the effect of the delete cascades from one
table to another. Cascaded update is possible as well. For example, with cascaded update,
changing a student’s student_id value in the student table also changes the value in the
student’s corresponding score table rows.

Foreign keys help maintain the consistency of your data, and they provide a certain
measure of convenience.Without foreign keys, you are responsible for keeping track of
inter-table dependencies and maintaining their consistency from within your applications.
In some cases, doing this might not be much more work than issuing a few extra DELETE
statements to make sure that when you delete a row from one table, you also delete the
corresponding rows in any related tables. But it is extra work, and if the database engine
will perform consistency checks for you, why not let it? Automatic checking capability
becomes especially useful if your tables have particularly complex relationships.You likely
will not want to be responsible for implementing these dependencies in your applications.

In MySQL, the InnoDB storage engine provides foreign key support.This section de-
scribes how to set up InnoDB tables to define foreign keys, and how foreign keys affect
the way you use tables. First, it’s necessary to define some terms:

n The parent is the table that contains the original key values.
n The child is the related table that refers to key values in the parent.

Parent table key values are used to associate the two tables. Specifically, an index in the
child table refers to an index in the parent.The child index values must match those in
the parent or else be set to NULL to indicate that there is no associated parent table row.
The index in the child table is known as the “foreign key”—that is, the key that is foreign
(external) to the parent table but contains values that point to the parent.A foreign key
relationship can be set up to disallow NULL values, in which case all foreign key values
must match a value in the parent table.

InnoDB enforces these rules to guarantee that the foreign key relationship stays intact
with no mismatches.This is called “referential integrity.”

186 Chapter 2 Using SQL to Manage Data

2.14.1 Creating and Using Foreign Keys
The following syntax shows how to define a foreign key in a child table:

[CONSTRAINT constraint_name]
FOREIGN KEY [fk_name] (index_columns)
REFERENCES tbl_name (index_columns)
[ON DELETE action]
[ON UPDATE action]
[MATCH FULL | MATCH PARTIAL | MATCH SIMPLE]

Although all parts of this syntax are parsed, InnoDB does not implement the semantics
for all the clauses:The MATCH clause is not supported and is ignored if you specify it.Also,
some action values are recognized but have no effect. (For storage engines other than
InnoDB, the entire FOREIGN KEY definition is parsed but ignored.)

InnoDB pays attention to the following parts of the definition:

n The CONSTRAINT clause, if given, supplies a name for the foreign key constraint. If
you leave it out, InnoDB creates a name.

n FOREIGN KEY indicates the indexed columns in the child table that must match in-
dex values in the parent table. fk_name is the foreign key ID. If given, it is ignored
unless InnoDB automatically creates an index for the foreign key; in that case,
fk_name becomes the index name.

n REFERENCES names the parent table and the index columns in that table to which
the foreign key in the child table refers.The index_columns part of the
REFERENCES clause must have the same number of columns as the index_columns
that follows the FOREIGN KEY keywords.

n ON DELETE enables you to specify what happens to the child table when parent
table rows are deleted.The default if no ON DELETE clause is present is to reject any
attempt to delete rows in the parent table that have child rows pointing to them.To
specify an action value explicitly, use one of the following clauses:

n ON DELETE NO ACTION and ON DELETE RESTRICT are the same as omitting
the ON DELETE clause. (Some database systems have deferred checks, and NO
ACTION is a deferred check. In MySQL, foreign key constraints are checked
immediately, so NO ACTION and RESTRICT are the same.)

n ON DELETE CASCADE causes matching child rows to be deleted when the
corresponding parent row is deleted. In essence, the effect of the delete is
cascaded from the parent to the child.This enables you to perform multiple-
table deletes by deleting rows only from the parent table and letting InnoDB
take care of deleting corresponding rows from the child table.

n ON DELETE SET NULL causes index columns in matching child rows to be set
to NULL when the parent row is deleted. If you use this option, all the indexed
child table columns named in the foreign key definition must be defined to
allow NULL values. (One implication of using this action is that you cannot

1872.14 Foreign Keys and Referential Integrity

define the foreign key to be a PRIMARY KEY because primary keys do not
allow NULL values.)

n ON DELETE SET DEFAULT is recognized but unimplemented and InnoDB
issues an error.

n ON UPDATE enables you to specify what happens to the child table when parent
table rows are updated.The default if no ON UPDATE clause is present is to reject any
inserts or updates in the child table that result in foreign key values that don’t have
any match in the parent table index, and to prevent updates to parent table index
values to which child rows point.The possible action values are the same as for ON
DELETE and have similar effects.

To set up a foreign key relationship, follow these guidelines:

n The child table must have an index where the foreign key columns are listed as its
first columns.The parent table must also have an index in which the columns in the
REFERENCES clause are listed as its first columns. (In other words, the columns in the
key must be indexed in the tables on both ends of the foreign key relationship.) You
must create the parent table index explicitly before defining the foreign key rela-
tionship. InnoDB automatically creates an index on foreign key columns (the refer-
encing columns) in the child table if the CREATE TABLE statement does not include
such an index.This makes it easier to write the CREATE TABLE statement in some
cases. However, an automatically created index will be a non-unique index and will
include only the foreign key columns.You should define the index in the child
table explicitly if you want it to be a PRIMARY KEY or UNIQUE index, or if it should
include other columns in addition to those in the foreign key.

n Corresponding columns in the parent and child indexes must have compatible
types. For example, you cannot match an INT column with a CHAR column. Corre-
sponding character columns must be the same length. Corresponding integer
columns must have the same size and must both be signed or both UNSIGNED.

n You cannot index prefixes of string columns in foreign key relationships. (That is,
for string columns, you must index the entire column, not just a leading prefix of it.)

In Chapter 1, we created tables for the grade-keeping project that have simple foreign
key relationships. Now let’s work through an example that is more complex. Begin by
creating tables named parent and child, such that the child table contains a foreign key
that references the par_id column in the parent table:

CREATE TABLE parent

(

par_id INT NOT NULL,

PRIMARY KEY (par_id)

) ENGINE = INNODB;

CREATE TABLE child

(

188 Chapter 2 Using SQL to Manage Data

par_id INT NOT NULL,

child_id INT NOT NULL,

PRIMARY KEY (par_id, child_id),

FOREIGN KEY (par_id) REFERENCES parent (par_id)

ON DELETE CASCADE

ON UPDATE CASCADE

) ENGINE = INNODB;

The foreign key in this case uses ON DELETE CASCADE to specify that when a row is
deleted from the parent table, MySQL also should remove child rows with a matching
par_id value automatically. ON UPDATE CASCADE indicates that if a parent row par_id
value is changed, MySQL also should change any matching par_id values in the child
table to the new value.

Now insert a few rows into the parent table, and then add some rows to the child
table that have related key values:

mysql> INSERT INTO parent (par_id) VALUES(1),(2),(3);

mysql> INSERT INTO child (par_id,child_id) VALUES(1,1),(1,2);

mysql> INSERT INTO child (par_id,child_id) VALUES(2,1),(2,2),(2,3);

mysql> INSERT INTO child (par_id,child_id) VALUES(3,1);

These statements result in the following table contents, where each par_id value in
the child table matches a par_id value in the parent table:

mysql> SELECT * FROM parent;

+--------+

| par_id |

+--------+

| 1 |

| 2 |

| 3 |

+--------+

mysql> SELECT * FROM child;

+--------+----------+

| par_id | child_id |

+--------+----------+

| 1 | 1 |

| 1 | 2 |

| 2 | 1 |

| 2 | 2 |

| 2 | 3 |

| 3 | 1 |

+--------+----------+

To verify that InnoDB enforces the key relationship for insertion, try adding a row to
the child table that has a par_id value not found in the parent table:

mysql> INSERT INTO child (par_id,child_id) VALUES(4,1);

ERROR 1452 (23000): Cannot add or update a child row: a foreign key

1892.14 Foreign Keys and Referential Integrity

constraint fails (`sampdb`.`child`, CONSTRAINT `child_ibfk_1` FOREIGN

KEY (`par_id`) REFERENCES `parent` (`par_id`) ON DELETE CASCADE

ON UPDATE CASCADE)

To test cascaded delete, see what happens when you delete a parent row:

mysql> DELETE FROM parent WHERE par_id = 1;

MySQL deletes the row from the parent table:

mysql> SELECT * FROM parent;

+--------+

| par_id |

+--------+

| 2 |

| 3 |

+--------+

In addition, it cascades the effect of the DELETE statement to the child table:

mysql> SELECT * FROM child;

+--------+----------+

| par_id | child_id |

+--------+----------+

| 2 | 1 |

| 2 | 2 |

| 2 | 3 |

| 3 | 1 |

+--------+----------+

To test cascaded update, see what happens when you update a parent row:

mysql> UPDATE parent SET par_id = 100 WHERE par_id =2;

mysql> SELECT * FROM parent;

+--------+

| par_id |

+--------+

| 3 |

| 100 |

+--------+

mysql> SELECT * FROM child;

+--------+----------+

| par_id | child_id |

+--------+----------+

| 3 | 1 |

| 100 | 1 |

| 100 | 2 |

| 100 | 3 |

+--------+----------+

190 Chapter 2 Using SQL to Manage Data

The preceding example shows how to arrange for deletes or updates of a parent row
to cause cascaded deletes or updates of any corresponding child rows.The ON DELETE
and ON UPDATE clauses allow for other actions. For example, one possibility is to let the
child rows remain in the table but have their foreign key columns set to NULL.To do this,
it’s necessary to make several changes to the definition of the child table:

n Use ON DELETE SET NULL rather than ON DELETE CASCADE.This tells InnoDB to
set the foreign key column (par_id) to NULL instead of deleting the rows.

n Use ON UPDATE SET NULL rather than ON UPDATE CASCADE.This tells InnoDB to set
the foreign key column (par_id) to NULL when matching parent rows are updated.

n The original definition of child defines par_id as NOT NULL.That won’t work
with ON DELETE SET NULL or ON UPDATE SET NULL, so the column definition
must be changed to allow NULL.

n The original definition of child also defines par_id to be part of a PRIMARY KEY.
However, a PRIMARY KEY cannot contain NULL values. Changing par_id to allow
NULL therefore also requires that the PRIMARY KEY be changed to a UNIQUE index.
UNIQUE indexes enforce uniqueness except for NULL values, which can occur multi-
ple times in the index.

To see the effect of these changes, re-create the parent table using the original defini-
tion and load the same initial rows into it.Then create the child table using the new def-
inition shown here:

CREATE TABLE child

(

par_id INT NULL,

child_id INT NOT NULL,

UNIQUE (par_id, child_id),

FOREIGN KEY (par_id) REFERENCES parent (par_id)

ON DELETE SET NULL

ON UPDATE SET NULL

) ENGINE = INNODB;

With respect to inserting new rows, the child table behaves similarly to the original
definition.That is, it allows insertion of rows with par_id values found in the parent
table, but disallows entry of values that aren’t listed there:

mysql> INSERT INTO child (par_id,child_id) VALUES(1,1),(1,2);

mysql> INSERT INTO child (par_id,child_id) VALUES(2,1),(2,2),(2,3);

mysql> INSERT INTO child (par_id,child_id) VALUES(3,1);

mysql> INSERT INTO child (par_id,child_id) VALUES(4,1);

ERROR 1452 (23000): Cannot add or update a child row: a foreign key

constraint fails ('sampdb'.'child', CONSTRAINT 'child_ibfk_1' FOREIGN

KEY ('par_id') REFERENCES 'parent' ('par_id') ON DELETE SET NULL

ON UPDATE SET NULL)

1912.14 Foreign Keys and Referential Integrity

There is one difference with respect to inserting rows. Because the par_id column
now is defined as NULL, you can explicitly insert rows into the child table that contain
NULL and no error will occur.A difference in behavior also occurs when you delete a par-
ent row.Try removing a parent row and then check the contents of the child table to see
what happens:

mysql> DELETE FROM parent WHERE par_id = 1;

mysql> SELECT * FROM child;

+--------+----------+

| par_id | child_id |

+--------+----------+

| NULL | 1 |

| NULL | 2 |

| 2 | 1 |

| 2 | 2 |

| 2 | 3 |

| 3 | 1 |

+--------+----------+

In this case, the child rows that had 1 in the par_id column are not deleted. Instead,
the par_id column is set to NULL, as specified by the ON DELETE SET NULL constraint.

Updating a parent row has a similar effect:

mysql> UPDATE parent SET par_id = 100 WHERE par_id = 2;

mysql> SELECT * FROM child;

+--------+----------+

| par_id | child_id |

+--------+----------+

| NULL | 1 |

| NULL | 1 |

| NULL | 2 |

| NULL | 2 |

| NULL | 3 |

| 3 | 1 |

+--------+----------+

To see what foreign key relationships an InnoDB table has, use the SHOW CREATE
TABLE or SHOW TABLE STATUS statement.

If an error occurs when you attempt to create a table that has a foreign key, use the
SHOW ENGINE INNODB STATUS statement to get the full error message.

2.14.2 Living Without Foreign Keys
If your MySQL server doesn’t have InnoDB support, or you are using another storage en-
gine because you need features that InnoDB does not support (such as FULLTEXT indexes
or spatial data types), you cannot take advantage of foreign keys.What should you do to
maintain the integrity of relationships between your tables?

192 Chapter 2 Using SQL to Manage Data

The constraints that foreign keys enforce often are not difficult to implement through
application logic. Sometimes, it’s simply a matter of how you approach the data-entry
process. Consider the student and score tables from the grade-keeping project.These are
related by a foreign key relationship through the student_id values in each table. Suppose
that we had created these as MyISAM tables rather than as InnoDB tables. MyISAM does
not support foreign keys, so in this case the relationship between the tables would be im-
plicit rather than explicit.When you administer a test or quiz and have a new set of scores
to add to the database, you’d have to make sure that you don’t add score rows containing
student_id values that are not listed in the student table.

In some respects, this is just a matter of taking the proper approach to data entry.To
avoid inserting scores for nonexistent students, the way you’d enter a set of scores proba-
bly would be to use an application that begins with a list of students from the student
table. For each one, it would take the score and use the student’s ID number to generate a
new score table row.With this procedure, you would never enter a row for a student that
doesn’t exist. Nevertheless, it would still be possible to enter a bad row, for example, if you
issued an INSERT statement manually. (With InnoDB tables and foreign keys, no such pos-
sibility exists.)

What about the case where you delete a student row? Suppose that you want to delete
student number 13.This also implies you want to delete any score rows for that student.
With a foreign key relationship in place that specifies cascading delete, you’d simply delete
the student table row with the following statement and let MySQL take care of remov-
ing the corresponding score table rows automatically:

DELETE FROM student WHERE student_id = 13;

Without foreign key support, you must explicitly delete rows for all relevant tables to
achieve the same effect as cascading on DELETE:

DELETE FROM student WHERE student_id = 13;

DELETE FROM score WHERE student_id = 13;

Another way to do this is to use a multiple-table delete that achieves the same effect as
a cascaded delete with a single query. But watch out for a subtle trap.The following state-
ment appears to do the trick, but it’s actually not quite correct:

DELETE student, score FROM student INNER JOIN score

ON student.student_id = score.student_id WHERE student.student_id = 13;

The problem with this statement is that it will fail in the case where the student
doesn’t have any scores.The WHERE clause will find no matches and thus will not delete
anything from the student table. In this case, a LEFT JOIN is more appropriate, because it
will identify which student table row to delete even in the absence of any matching
score table rows:

DELETE student, score FROM student LEFT JOIN score USING (student_id)

WHERE student.student_id = 13;

1932.14 Foreign Keys and Referential Integrity

2.15 Using FULLTEXT Searches
MySQL includes the capability for performing full text searches.The full-text search en-
gine enables you to look for words or phrases without using pattern-matching operations.
There are three kinds of full-text search:

n Natural language searching.The search string is parsed into words and the search
looks for rows containing these words.

n Boolean mode searching.The search string is parsed into words, but words can be
modified by operator characters that indicate specific requirements such as that a
given word should be present or absent in matching rows, or that rows must con-
tain an exact phrase.

n Query expansion searching.This kind of search occurs in two phases.The first phase
is a natural language search.Then a second search is done using the original search
string concatenated with the most highly relevant matching rows from the first
search.This expands the search on the basis of the assumption that words related to
the original search string will match relevant rows that the original string did not.

Full-text search capability is enabled for a given table by creating a special kind of in-
dex and has the following characteristics:

n Full-text searches are based on FULLTEXT indexes, which can be created only for
MyISAM tables. Only CHAR, VARCHAR, and TEXT columns can be included in a
FULLTEXT index.

n Common words are ignored for FULLTEXT searches, where “common” means “pres-
ent in at least half the rows.” It’s especially important to remember this when you’re
setting up a test table to experiment with the FULLTEXT capability. Be sure to insert
at least three rows into your test table. If the table has just one or two rows, every
word in it will occur at least 50% of the time and you’ll never get any results!

n There is a built-in list of common words such as “the,”“after,” and “other” that are
called “stopwords” and that are always ignored.

n Words that are too short also are ignored. By default,“too short” is defined as fewer
than four characters, but you can reconfigure the server to set the minimum length
to a different value.

n Words are defined as sequences of characters that include letters, digits, apostrophes,
and underscores.This means that a string like “full-blooded” is considered to con-
tain two words,“full” and “blooded.” Normally, a full-text search matches whole
words, not partial words, and the FULLTEXT engine considers a row to match a
search string if it includes any of the words in the search string. If you use a boolean
full-text search, you can impose the additional constraint that all the words must be
present (either in any order, or, to perform a phrase search, in exactly the order
listed in the search string).With a boolean search, it’s also possible to match rows
that do not include certain words, or to add a wildcard modifier to match all words
that begin with a given prefix.

194 Chapter 2 Using SQL to Manage Data

n A FULLTEXT index can be created for a single column or multiple columns. If it
spans multiple columns, searches based on the index look through all the columns
simultaneously.The flip side of this is that when you perform a search, you must
specify a column list that corresponds exactly to the set of columns that matches
some FULLTEXT index. For example, if you want to search col1 sometimes, col2
sometimes, and both col1 and col2 sometimes, you should have three indexes: one
for each of the columns separately, and one that includes both columns.

The following examples show how to use full-text searching by creating FULLTEXT
indexes and then performing queries on them using the MATCH operator.A script to create
the table and some sample data to load into it are available in the fulltext directory of
the sampdb distribution.

A FULLTEXT index is created much the same way as other indexes.That is, you can
define it with CREATE TABLE when creating the table initially, or add it afterward with
ALTER TABLE or CREATE INDEX. Because FULLTEXT indexes require you to use MyISAM
tables, you can take advantage of one of the properties of the MyISAM storage engine if
you’re creating a new table to use for FULLTEXT searches:Table loading proceeds more
quickly if you populate the table first and then add the indexes afterward, rather than
loading data into an already indexed table. Suppose that you have a data file named
apothegm.txt containing famous sayings and the people to whom they’re attributed:

Aeschylus Time as he grows old teaches many lessons

Alexander Graham Bell Mr. Watson, come here. I want you!

Benjamin Franklin It is hard for an empty bag to stand upright

Benjamin Franklin Little strokes fell great oaks

Benjamin Franklin Remember that time is money

Miguel de Cervantes Bell, book, and candle

Proverbs 15:1 A soft answer turneth away wrath

Theodore Roosevelt Speak softly and carry a big stick

William Shakespeare But, soft! what light through yonder window breaks?

Robert Burton I light my candle from their torches.

If you want to search by phrase and attribution separately or together, you need to in-
dex each column separately, and also create an index that includes both columns.You can
create, populate, and index a table named apothegm as follows:

CREATE TABLE apothegm (attribution VARCHAR(40), phrase TEXT) ENGINE = MyISAM;

LOAD DATA LOCAL INFILE 'apothegm.txt' INTO TABLE apothegm;

ALTER TABLE apothegm

ADD FULLTEXT (phrase),

ADD FULLTEXT (attribution),

ADD FULLTEXT (phrase, attribution);

1952.15 Using FULLTEXT Searches

2.15.1 Natural Language FULLTEXT Searches
After setting up the table, perform natural language full-text searches on it using MATCH to
name the column or columns to search and AGAINST() to specify the search string. For
example:

mysql> SELECT * FROM apothegm WHERE MATCH(attribution) AGAINST('roosevelt');

+--------------------+------------------------------------+

| attribution | phrase |

+--------------------+------------------------------------+

| Theodore Roosevelt | Speak softly and carry a big stick |

+--------------------+------------------------------------+

mysql> SELECT * FROM apothegm WHERE MATCH(phrase) AGAINST('time');

+-------------------+---+

| attribution | phrase |

+-------------------+---+

| Benjamin Franklin | Remember that time is money |

| Aeschylus | Time as he grows old teaches many lessons |

+-------------------+---+

mysql> SELECT * FROM apothegm WHERE MATCH(attribution, phrase)

-> AGAINST('bell');

+-----------------------+------------------------------------+

| attribution | phrase |

+-----------------------+------------------------------------+

| Alexander Graham Bell | Mr. Watson, come here. I want you! |

| Miguel de Cervantes | Bell, book, and candle |

+-----------------------+------------------------------------+

In the last example, note how the query finds rows that contain the search word in dif-
ferent columns, which demonstrates the FULLTEXT capability of searching multiple
columns at once.Also note that the order of the columns as named in the query is
attribution, phrase.That differs from the order in which they were named when the
index was created (phrase, attribution), which illustrates that order does not matter.
What matters is that there must be some FULLTEXT index that consists of exactly the
columns named.

If you just want to see how many rows a search matches, use COUNT(*):

mysql> SELECT COUNT(*) FROM apothegm WHERE MATCH(phrase) AGAINST('time');

+----------+

| COUNT(*) |

+----------+

| 2 |

+----------+

Output rows for natural language FULLTEXT searches are ordered by decreasing
relevance when you use a MATCH expression in the WHERE clause. Relevance values are

196 Chapter 2 Using SQL to Manage Data

non-negative floating point values, with zero indicating “no relevance.”To see these val-
ues, use a MATCH expression in the output column list:

mysql> SELECT phrase, MATCH(phrase) AGAINST('time') AS relevance

-> FROM apothegm;

+---+-----------------+

| phrase | relevance |

+---+-----------------+

| Time as he grows old teaches many lessons | 1.3253291845322 |

| Mr. Watson, come here. I want you! | 0 |

| It is hard for an empty bag to stand upright | 0 |

| Little strokes fell great oaks | 0 |

| Remember that time is money | 1.3400621414185 |

| Bell, book, and candle | 0 |

| A soft answer turneth away wrath | 0 |

| Speak softly and carry a big stick | 0 |

| But, soft! what light through yonder window breaks? | 0 |

| I light my candle from their torches. | 0 |

+---+-----------------+

A natural language search finds rows that contain any of the search words, so a query
such as the following returns rows that contain either “hard” or “soft”:

mysql> SELECT * FROM apothegm WHERE MATCH(phrase)

-> AGAINST('hard soft');

+---------------------+---+

| attribution | phrase |

+---------------------+---+

| Benjamin Franklin | It is hard for an empty bag to stand upright |

| Proverbs 15:1 | A soft answer turneth away wrath |

| William Shakespeare | But, soft! what light through yonder window breaks? |

+---------------------+---+

Natural language mode is the default full-text search mode. In MySQL 5.1 and up, you
can specify this mode explicitly by adding IN NATURAL LANGUAGE MODE after the search
string.The following statement performs the same search as the preceding example:

SELECT * FROM apothegm WHERE MATCH(phrase)

AGAINST('hard soft' IN NATURAL LANGUAGE MODE);

2.15.2 Boolean Mode FULLTEXT Searches
Greater control over multiple-word matching can be obtained by using boolean mode
FULLTEXT searches.This type of search is performed by adding IN BOOLEAN MODE after the
search string in the AGAINST() function. Boolean searches have the following characteristics:

n The 50% rule is ignored; searches find words even if they occur in more than half
of the rows.

1972.15 Using FULLTEXT Searches

n Results are not sorted by relevance.
n A phrase search can be performed to require all words to be present in a particular

order.To match a phrase, specify the words of the phrase in double quotes. Matches
occur for rows that contain the same words together in the same order as listed in
the phrase:

mysql> SELECT * FROM apothegm

-> WHERE MATCH(attribution, phrase)

-> AGAINST('"bell book and candle"' IN BOOLEAN MODE);

+---------------------+------------------------+

| attribution | phrase |

+---------------------+------------------------+

| Miguel de Cervantes | Bell, book, and candle |

+---------------------+------------------------+

n It’s possible to perform a boolean mode full-text search on columns that are not
part of a FULLTEXT index, although this is much slower than using indexed
columns.

For boolean searches, modifiers may be applied to words in the search string.A leading
plus or minus sign requires a word to be present or not present in matching rows. For ex-
ample, a search string of 'bell' matches rows that contain “bell,” but a search string of
'+bell -candle' in boolean mode matches only rows that contain “bell” and do not
contain “candle.”

mysql> SELECT * FROM apothegm

-> WHERE MATCH(attribution, phrase)

-> AGAINST('bell');

+-----------------------+------------------------------------+

| attribution | phrase |

+-----------------------+------------------------------------+

| Alexander Graham Bell | Mr. Watson, come here. I want you! |

| Miguel de Cervantes | Bell, book, and candle |

+-----------------------+------------------------------------+

mysql> SELECT * FROM apothegm

-> WHERE MATCH(attribution, phrase)

-> AGAINST('+bell -candle' IN BOOLEAN MODE);

+-----------------------+------------------------------------+

| attribution | phrase |

+-----------------------+------------------------------------+

| Alexander Graham Bell | Mr. Watson, come here. I want you! |

+-----------------------+------------------------------------+

198 Chapter 2 Using SQL to Manage Data

A trailing asterisk acts as a wildcard so that any row containing words beginning with the
search word match. For example 'soft*' matches “soft,”“softly,”“softness,” and so forth:

mysql> SELECT * FROM apothegm WHERE MATCH(phrase)

-> AGAINST('soft*' IN BOOLEAN MODE);

+---------------------+--+

| attribution | phrase |

+---------------------+--+

| Proverbs 15:1 | A soft answer turneth away wrath |

| William Shakespeare | But, soft! what light through yonder window breaks?|

| Theodore Roosevelt | Speak softly and carry a big stick |

+---------------------+--+

However, the wildcard feature cannot be used to match words shorter than the mini-
mum index word length.

The entry for MATCH in Appendix C,“Operator and Function Reference,” lists the full
set of boolean mode modifiers.

Stopwords are ignored just as for natural language searches, even if marked as required.
A search for '+Alexander +the +great' finds rows containing “Alexander” and “great,”
but ignores “the” as a stopword.

2.15.3 Query Expansion FULLTEXT Searches
A full-text search with query expansion performs a two-phase search.The initial search is
like a regular natural language search.Then the most highly relevant rows from this search
are used for the second phase.The words in these rows are used along with the original
search terms to perform a second search. Because the set of search terms is larger, the re-
sult generally includes rows that are not found in the first phase but are related to them.

To perform this kind of search, add WITH QUERY EXPANSION following the search
terms.The following example provides an illustration.The first query shows a natural
language search.The second query shows a query expansion search. Its result includes an
extra row that contains none of the original search terms.This row is found because it
contains the word “candle” that is present in one of the rows found by the natural
language search.

mysql> SELECT * FROM apothegm

-> WHERE MATCH(attribution, phrase)

-> AGAINST('bell book');

+-----------------------+------------------------------------+

| attribution | phrase |

+-----------------------+------------------------------------+

| Miguel de Cervantes | Bell, book, and candle |

| Alexander Graham Bell | Mr. Watson, come here. I want you! |

+-----------------------+------------------------------------+

1992.15 Using FULLTEXT Searches

mysql> SELECT * FROM apothegm

-> WHERE MATCH(attribution, phrase)

-> AGAINST('bell book' WITH QUERY EXPANSION);

+-----------------------+---------------------------------------+

| attribution | phrase |

+-----------------------+---------------------------------------+

| Miguel de Cervantes | Bell, book, and candle |

| Alexander Graham Bell | Mr. Watson, come here. I want you! |

| Robert Burton | I light my candle from their torches. |

+-----------------------+---------------------------------------+

2.15.4 Configuring the FULLTEXT Search Engine
Several full-text parameters are configurable and can be modified by setting system vari-
ables.The parameters that determine the shortest and longest words to index in FULLTEXT
indexes are ft_min_word_len and ft_max_word_len.Words with lengths outside the
range defined by these two variables are ignored when FULLTEXT indexes are built.The
default minimum and maximum values are 4 and 84.

Suppose that you want to change the minimum word length from 4 to 3. Do so like this:

1. Start the server with the ft_min_word_len variable set to 3.To ensure that this
happens whenever the server starts, it’s best to place the setting in an option file
such as /etc/my.cnf:

[mysqld]

ft_min_word_len=3

2. For any existing tables that already have FULLTEXT indexes, you must rebuild those
indexes.You can drop and add the indexes, but it’s easier and sufficient to perform a
quick repair operation:

REPAIR TABLE tbl_name QUICK;

3. Any new FULLTEXT indexes that you create after changing the parameter will use
the new value automatically.

For more information on setting system variables, see Appendix D. For details on using
option files, see Appendix F.

200 Chapter 2 Using SQL to Manage Data

Note
If you use myisamchk to rebuild indexes for a table that contains any FULLTEXT indexes,
see the FULLTEXT-related notes in the myisamchk description in Appendix F.

3
Data Types

Virtually everything you do in MySQL involves data in some way or another because,
by definition, the purpose of a database management system is to manage data. Even a
statement as simple as SELECT 1 involves evaluation of an expression to produce an inte-
ger data value.

Every data value in MySQL has a type. For example, 37.4 is a number and 'abc' is a
string. Sometimes data types are explicit, such as when you issue a CREATE TABLE state-
ment that specifies the type for each column you define as part of the table:

CREATE TABLE mytbl

(

int_col INT, # integer-valued column

str_col CHAR(20), # string-valued column

date_col DATE # date-valued column

);

Other times data types are implicit, such as when you refer to literal values in an ex-
pression, pass values to a function, or use the value returned from a function.The follow-
ing INSERT statement does all of those things:

INSERT INTO mytbl (int_col,str_col,date_col)

VALUES(14,CONCAT('a','b'),20090115);

The statement performs the following operations, all of which involve data types:

n It assigns the integer value 14 to the integer column int_col.
n It passes the string values 'a' and 'b' to the CONCAT() string-concatenation func-

tion. CONCAT() returns the string value 'ab', which is assigned to the string column
str_col.

n It assigns the integer value 20090115 to the date column date_col.The assignment
involves a type mismatch, but the integer value can reasonably be interpreted as a
date value, so MySQL performs an automatic type conversion that converts the in-
teger 20090115 to the date '2009-01-15'.

202 Chapter 3 Data Types

To use MySQL effectively, it’s essential to understand how MySQL handles data.This
chapter describes the types of data values that MySQL can handle, and discusses the issues
involved in working with those types:

n The general categories of data values that MySQL can represent, including the
NULL value.

n The specific data types MySQL provides for table columns, and the properties that
characterize each data type. Some of MySQL’s data types are fairly generic, such as
the BLOB string type. Others behave in special ways that you should understand to
avoid being surprised.These include the TIMESTAMP data type and integer types that
have the AUTO_INCREMENT attribute.

n How the server’s SQL mode affects treatment of bad data values, and the use of
“strict” mode to reject bad values.

n How to generate and work with sequences.
n MySQL’s rules for expression evaluation.You can use a wide range of operators and

functions in expressions to retrieve, display, and manipulate data. Expression evalua-
tion includes rules governing type conversion that come into play when a value of
one type is used in a context requiring a value of another type. It’s important to
understand when type conversion happens and how it works; some conversions
don’t make sense and result in meaningless values.Assigning the string '13' to an
integer column results in the value 13. However, assigning the string 'abc' to that
column results in the value 0 (or an error in strict SQL mode) because 'abc' does-
n’t look like a number.Worse, if you perform a comparison without knowing the
conversion rules, you can do considerable damage, such as updating or deleting
every row in a table when you intend to affect only a few specific rows.

n How to choose data types appropriately for your table columns. It’s important to
know how to pick the best type for your purposes when you create a table, and
when to choose one type over another when several related types might be applica-
ble to the kind of values you want to store.

Two appendixes provide additional information that supplements the discussion in this
chapter about MySQL’s data types, operators, and functions.These are Appendix B,“Data
Type Reference,” and Appendix C,“Operator and Function Reference.”

The examples shown throughout this chapter use the CREATE TABLE and ALTER

TABLE statements extensively to create and alter tables.These statements should be reason-
ably familiar to you because we have used them in Chapter 1,“Getting Started with
MySQL,” and Chapter 2,“Using SQL to Manage Data.” See also Appendix E,“SQL
Syntax Reference.”

MySQL supports several storage engines, which differ in their properties. In some
cases, a column with a given data type behaves differently for different storage engines, so
the way you intend to use a column might determine or influence which storage engine
to choose when you create a table.This chapter refers to storage engines on occasion, but

2033.1 Data Value Categories

a more detailed description of the available engines and their characteristics can be found
in Chapter 2.

Data handling depends in some cases on how default values are defined and on the
current SQL mode. For general background on setting the SQL mode, see Section 2.1,
“The Server SQL Mode.” In the current chapter, Section 3.2.3,“Specifying Column
Default Values,” covers default value handing, and Section 3.3,“HowMySQL Handles
Invalid Data Values,” covers strict mode and the rules for treatment of bad data.

3.1 Data Value Categories
MySQL knows about several general categories in which data values can be represented.
These include numbers, string values, temporal values such as dates and times, spatial val-
ues, and the NULL value.

3.1.1 Numeric Values
Numbers are values such as 48, 193.62, or -2.378E12. MySQL understands numbers
specified as integers (which have no fractional part), fixed-point or floating-point values
(which may have a fractional part), and bit-field values.

3.1.1.1 Exact-Value and Approximate-Value Numbers
MySQL supports precision math for exact-value numbers, and approximate math for
approximate-value numbers.

Exact-value numbers are used exactly as specified when possible. Exact values include
integers (0, 14, -382) and numbers that have a decimal point (0.0, 38.5, -18.247).

Integers can be specified in decimal or hexadecimal format. In decimal format, an in-
teger consists of a sequence of digits with no decimal point. Hexadecimal values are
treated as strings by default, but in numeric contexts a hexadecimal constant is treated
as a 64-bit integer. For example, 0x10 is 16 decimal. Section 3.1.2,“String Values,” later in
this chapter, describes hexadecimal value syntax.

An exact-value number with a fractional part consists of a sequence of digits, a decimal
point, and another sequence of digits.The sequence of digits before or after the decimal
point may be empty, but not both.

Approximate values are represented as floating-point numbers in scientific notation
with a mantissa and exponent.This is indicated by immediately following an integer or
number with a fractional part by ‘e’ or ‘E’, an optional sign character (‘+’ or ‘-’), and an in-
teger exponent.The mantissa and exponent may be signed in any combination: 1.58E5, -
1.58E5, 1.58E-5, -1.58E-5.

Hexadecimal numbers cannot be used in scientific notation; the ‘e’ that begins the ex-
ponent part is also a legal hex digit and thus would be ambiguous.

Any number can be preceded by a plus or minus sign character (‘+’ or ‘-’) to indicate a
positive or negative value.

Calculations with exact values are exact, with no loss of accuracy within the limits of
the precision possible for such values. For example, you cannot insert 1.23456 as is into a

204 Chapter 3 Data Types

column that allows only two digits after the decimal point. Calculations with approximate
values are approximate and subject to rounding error.

MySQL evaluates an expression using exact or approximate math according to the fol-
lowing rules:

n If any approximate value is present in the expression, it is evaluated as a floating-
point (approximate) expression.

n For expressions containing only exact values that are all integers, evaluation uses
BIGINT (64-bit) precision.

n For expressions containing only exact values but where one or more values have a
fractional part, DECIMAL arithmetic is used with 65 digits of precision.

n If any string must be converted to a number to evaluate an expression, it is con-
verted to a double-precision floating-point value. Consequently, the expression is
approximate by the preceding rules.

3.1.1.2 Bit-Field Values
Bit-field values can be written as b'val' or 0bval, where val consists of one or more
binary digits (0 or 1). For example, b'1001' and 0b1001 represent 9 decimal.These bit-
value notations coincide with the introduction of the BIT data type in MySQL 5.0.3, but
bit-field values can be used more generally in other contexts.

A BIT value in a result set displays as a binary string, which may not print well.To
convert it to an integer, add zero or use CAST():

mysql> SELECT b'1001' + 0, CAST(b'1001' AS UNSIGNED);

+-------------+---------------------------+

| b'1001' + 0 | CAST(b'1001' AS UNSIGNED) |

+-------------+---------------------------+

| 9 | 9 |

+-------------+---------------------------+

3.1.2 String Values
Strings are values such as 'Madison, Wisconsin', 'patient shows improvement', or
even '12345' (which looks like a number, but isn’t). Usually, you can use either single or
double quotes to surround a string value, but there are two reasons to prefer single
quotes:

n The SQL standard specifies single quotes, so statements that use single-quoted
strings are more portable to other database engines.

n If the ANSI_QUOTES SQL mode is enabled, MySQL treats the double quote as an
identifier-quoting character, not as a string-quoting character.This means that a
double-quoted value must refer to something like a database or table name. Con-
sider the following statement:

SELECT "last_name" from president;

2053.1 Data Value Categories

Table 3.1 String Escape Sequences

Sequence Meaning

\0 NUL (zero-valued byte)

\' Single quote

\" Double quote

\b Backspace

\n Newline (linefeed)

\r Carriage return

\t Tab

\\ Single backslash

\Z Control-Z (Windows EOF character)

With ANSI_QUOTES disabled, the statement selects the literal string "last_name"
once for each row in the president table.With ANSI_QUOTES enabled, the state-
ment selects the values of the last_name column from the table.

For the examples following that use the double quote as a string quoting character,
assume that ANSI_QUOTES mode is not enabled.

MySQL recognizes several escape sequences within strings that indicate special charac-
ters, as shown in Table 3.1. Each sequence begins with a backslash character (‘\’) to sig-
nify a temporary escape from the usual rules for character interpretation. Note that a
NUL byte is not the same as the SQL NULL value; NUL is a zero-valued byte, whereas
NULL in SQL signifies the absence of a value.

The escape sequences shown in the table are case sensitive, and any character not listed
in the table is interpreted as itself if preceded by a backslash. For example, \t is a tab, but
\T is an ordinary ‘T’ character.

Table 3.1 shows that you can escape single or double quotes using backslash se-
quences, but you actually have several options for including quote characters within string
values:

n Double the quote character if the string itself is quoted using the same character:

'I can''t'

"He said, ""I told you so."""

n Quote the string with the other quote character. In this case, you do not double the
quote characters within the string:

"I can't"

'He said, "I told you so."'

n Escape the quote character with a backslash; this works regardless of the quote
characters used to quote the string:

'I can\'t'

"I can\'t"

"He said, \"I told you so.\""

'He said, \"I told you so.\"'

To turn off the special meaning of backslash and treat it as an ordinary character, en-
able the NO_BACKSLASH_ESCAPES SQL mode.

As an alternative to using quotes for writing string values, you can use two forms of
hexadecimal notation. String values may be specified using the standard SQL notation
X'val', where val consists of pairs of hexadecimal digits (‘0’ through ‘9’ and ‘a’ through
‘f’). For example, X'0a' is 10 decimal, and X'ffff' is 65535 decimal.The leading ‘X’ and
the nondecimal hex digits (‘a’ through ‘f’) can be specified in uppercase or lowercase:

mysql> SELECT X'4A', x'4a';

+-------+-------+

| X'4A' | x'4a' |

+-------+-------+

| J | J |

+-------+-------+

In string contexts, pairs of hexadecimal digits are interpreted as 8-bit numeric byte
values in the range from 0 to 255, and the result is used as a string. In numeric contexts, a
hexadecimal constant is treated as a number.The following statement illustrates the inter-
pretation of a hex constant in each type of context:

mysql> SELECT X'61626364', X'61626364'+0;

+-------------+---------------+

| X'61626364' | X'61626364'+0 |

+-------------+---------------+

| abcd | 1633837924 |

+-------------+---------------+

Hexadecimal values also may be written using 0x followed by one or more hexadeci-
mal digits.The leading 0x is case sensitive. 0x0a and 0x0A are legal hexadecimal values,
but 0X0a and 0X0A are not.

As with X'val' notation, 0x values are interpreted as strings, but may be used as num-
bers in numeric contexts:

mysql> SELECT 0x61626364, 0x61626364+0;

+------------+--------------+

| 0x61626364 | 0x61626364+0 |

+------------+--------------+

| abcd | 1633837924 |

+------------+--------------+

206 Chapter 3 Data Types

2073.1 Data Value Categories

X'val' notation requires an even number of digits.A value such as X'a' is illegal. If a
hexadecimal value written using 0x notation has an odd number of hex digits, MySQL
treats it as though the value has a leading zero. For example, 0xa is treated as 0x0a.

3.1.2.1 Types of Strings and Character Set Support
String values fall into two general categories, binary and non-binary:

n A binary string is a sequence of bytes.These bytes are interpreted without respect
to any concept of character set.A binary string has no special comparison or sorting
properties. Comparisons are done byte by byte based on numeric byte values; all
bytes are significant, including trailing spaces.

n A non-binary string is a sequence of characters. It is associated with a character set,
which determines the allowable characters that may be used and how MySQL in-
terprets the string contents. Character sets have one or more collating (sorting) or-
ders.The particular collation used for a string determines the ordering of characters
in the character set, which affects comparison operations.The default character set
and collation are latin1 and latin1_swedish_ci.

Trailing spaces in non-binary strings are not significant in comparisons, except that
for the TEXT types, index-based comparisons are padded at the end with spaces and
a duplicate-key error occurs if you attempt to insert into a unique-valued TEXT in-
dex a value that is different from an existing value only in the number of trailing
spaces.

Character units vary in their storage requirements.A single-byte character set such as
latin1 uses one byte per character, but there also are multi-byte character sets in which
some or all characters require more than one byte. For example, the Unicode character
sets available in MySQL are multi-byte. ucs2 is a double-byte character set in which each
character requires two bytes. utf8 is a variable-length multi-byte character set with char-
acters that take from one to three bytes. (As of MySQL 6.0.4, utf8 characters can require
up to four bytes.)

To find out which character sets and collations are available in your server, use these
two statements:

mysql> SHOW CHARACTER SET;

+----------+-----------------------------+---------------------+--------+

| Charset | Description | Default collation | Maxlen |

+----------+-----------------------------+---------------------+--------+

| big5 | Big5 Traditional Chinese | big5_chinese_ci | 2 |

| dec8 | DEC West European | dec8_swedish_ci | 1 |

| cp850 | DOS West European | cp850_general_ci | 1 |

| hp8 | HP West European | hp8_english_ci | 1 |

| koi8r | KOI8-R Relcom Russian | koi8r_general_ci | 1 |

| latin1 | cp1252 West European | latin1_swedish_ci | 1 |

...

| utf8 | UTF-8 Unicode | utf8_general_ci | 3 |

| ucs2 | UCS-2 Unicode | ucs2_general_ci | 2 |

...

mysql> SHOW COLLATION;

+----------------------+----------+-----+---------+----------+---------+

| Collation | Charset | Id | Default | Compiled | Sortlen |

+----------------------+----------+-----+---------+----------+---------+

| big5_chinese_ci | big5 | 1 | Yes | Yes | 1 |

| big5_bin | big5 | 84 | | Yes | 1 |

...

| latin1_german1_ci | latin1 | 5 | | Yes | 1 |

| latin1_swedish_ci | latin1 | 8 | Yes | Yes | 1 |

| latin1_danish_ci | latin1 | 15 | | Yes | 1 |

| latin1_german2_ci | latin1 | 31 | | Yes | 2 |

| latin1_bin | latin1 | 47 | | Yes | 1 |

| latin1_general_ci | latin1 | 48 | | Yes | 1 |

| latin1_general_cs | latin1 | 49 | | Yes | 1 |

| latin1_spanish_ci | latin1 | 94 | | Yes | 1 |

...

As shown by the output from SHOW COLLATION, each collation is tied to a particular
character set, and a given character set might have several collations. Collation names usu-
ally consist of a character set name, a language, and an additional suffix. For example,
utf8_icelandic_ci is a collation for the utf8 Unicode character set in which compar-
isons follow Icelandic sorting rules and characters are compared in case-insensitive fash-
ion. Collation suffixes have the following meanings:

n _ci indicates a case-insensitive collation.
n _cs indicates a case-sensitive collation.
n _bin indicates a binary collation.That is, comparisons are based on numeric charac-

ter code values without reference to any language. For this reason, _bin collation
names do not include any language name. Examples: latin1_bin and utf8_bin.

Binary and non-binary strings have different sorting properties:

n Binary strings are processed byte by byte in comparisons based solely on the
numeric value of each byte. One implication of this property is that binary strings
appear to be case sensitive ('abc' <> 'ABC'), but that is actually a side effect of the
fact that uppercase and lowercase versions of a letter have different numeric byte
values.There isn’t really any notion of lettercase for binary strings. Lettercase is a
function of collation, which applies only to character (non-binary) strings.

n Non-binary strings are processed character by character in comparisons, and the
relative value of each character is determined by the collating sequence that is used
for the character set. For many collations, uppercase and lowercase versions of a
given letter have the same collating value, so non-binary string comparisons typi-
cally are not case sensitive. However, that is not true for case-sensitive or binary
collations.

208 Chapter 3 Data Types

2093.1 Data Value Categories

Because collations are used for comparison and sorting, they affect many operations:

n Comparisons operators: <, <=, =, <>, >=, >, and LIKE.
n Sorting: ORDER BY, MIN(), and MAX().
n Grouping: GROUP BY and DISTINCT.

To determine the character set or collation of a string, use the CHARSET() or
COLLATION() function.

Quoted string literals are interpreted according to the current server settings.The de-
fault character set and collation are latin1 and latin1_swedish_ci:

mysql> SELECT CHARSET('abcd'), COLLATION('abcd');

+-----------------+-------------------+

| CHARSET('abcd') | COLLATION('abcd') |

+-----------------+-------------------+

| latin1 | latin1_swedish_ci |

+-----------------+-------------------+

MySQL treats hexadecimal constants as binary strings by default:

mysql> SELECT CHARSET(X'0123'), COLLATION(X'0123');

+------------------+--------------------+

| CHARSET(X'0123') | COLLATION(X'0123') |

+------------------+--------------------+

| binary | binary |

+------------------+--------------------+

Two notational conventions can be used to force a string literal to be interpreted with
a given character set. First, a string constant can be designated for interpretation with a
given character set using the following notation, where charset is the name of a sup-
ported character set:

_charset str

The _charset notation is called a “character set introducer.”The string can be written
as a quoted string or as a hexadecimal value.The following examples show how to cause
strings to be interpreted in the latin2 or utf8 character set:

_latin2 'abc'

_latin2 X'616263'

_latin2 0x616263

_utf8 'def'

_utf8 X'646566'

_utf8 0x646566

For quoted strings, whitespace is optional between the introducer and the following
string. For hexadecimal values, whitespace is required.

Second, the notation N'str' is equivalent to _utf8'str'. N (not case sensitive) and
must be followed immediately by a quoted string literal with no intervening whitespace.

Introducer notation works for quoted string literals or hexadecimal constants, but not
for string expressions or column values. However, any string value can be used to produce
a string in a designated character set using the CONVERT() function:

CONVERT(str USING charset);

Introducers and CONVERT() are not the same.An introducer merely modifies how the
string is interpreted. It does not change the string value (except that for multi-byte char-
acter sets, padding might be added if the string does not contain enough bytes).
CONVERT() takes a string argument and produces a new string in the desired character set.
To see the difference between introducers and CONVERT(), consider the following two
statements that refer to the ucs2 double-byte character set:

mysql> SET @s1 = _ucs2 'ABCD';

mysql> SET @s2 = CONVERT('ABCD' USING ucs2);

Assume that the default character set is latin1 (a single-byte character set).The first
statement interprets each pair of characters in the string 'ABCD' as a single double-byte
ucs2 character, resulting in a two-character ucs2 string.The second statement converts
each character of the string 'ABCD' to the corresponding ucs2 character, resulting in a
four-character ucs2 string.

What is the “length” of a string? It depends. If you measure with CHAR_LENGTH(), you
get the length in characters. If you measure with LENGTH(), you get the length in bytes.
For strings that contain multi-byte characters the two values differ:

mysql> SELECT CHAR_LENGTH(@s1), LENGTH(@s1), CHAR_LENGTH(@s2), LENGTH(@s2);

+------------------+-------------+------------------+-------------+

| CHAR_LENGTH(@s1) | LENGTH(@s1) | CHAR_LENGTH(@s2) | LENGTH(@s2) |

+------------------+-------------+------------------+-------------+

| 2 | 4 | 4 | 8 |

+------------------+-------------+------------------+-------------+

Here is a somewhat subtle point. A binary string is not the same thing as a non-binary
string that has a binary collation:

n The binary string has no character set. It is interpreted with byte semantics and
comparisons use single-byte numeric codes.

n A non-binary string with a binary collation has character semantics and comparisons
use numeric character values that might be based on multiple bytes per character.

Here’s one way to see the difference between binary and non-binary strings with re-
gard to lettercase. Create a binary string and a non-binary string that has a binary colla-
tion, and then pass each string to the UPPER() function:

mysql> SET @s1 = BINARY 'abcd';

mysql> SET @s2 = _latin1 'abcd' COLLATE latin1_bin;

mysql> SELECT UPPER(@s1), UPPER(@s2);

+------------+------------+

| UPPER(@s1) | UPPER(@s2) |

210 Chapter 3 Data Types

2113.1 Data Value Categories

+------------+------------+

| abcd | ABCD |

+------------+------------+

Why doesn’t UPPER() convert the binary string to uppercase? This happens because
the string has no character set, so there is no way to know which byte values correspond
to uppercase or lowercase characters.To use a binary string with functions such as
UPPER() and LOWER(), you must first convert it to a non-binary string:

mysql> SELECT @s1, UPPER(CONVERT(@s1 USING latin1));

+------+----------------------------------+

| @s1 | UPPER(CONVERT(@s1 USING latin1)) |

+------+----------------------------------+

| abcd | ABCD |

+------+----------------------------------+

3.1.2.2 Character Set-Related System Variables
The server maintains several system variables that are involved in various aspects of char-
acter set support. Most of these variables refer to character sets and the rest refer to colla-
tions. Each of the collation variables is linked to a corresponding character set variable.

Some of the character set variables indicate properties of the server or the current
database:

n character_set_system indicates the character set used for storing identifiers.This
is always utf8.

n character_set_server and collation_server indicate the server’s default char-
acter set and collation.

n character_set_database and collation_database indicate the character set and
collation of the default database.These are read-only and set automatically by the
server whenever you select a default database. If there is no default database, they’re
set to the server’s default character set and collation.These variables come into play
when you create a table but specify no explicit character set or collation. In this
case, the table defaults are taken from the database defaults.

Other character set variables influence how communication occurs between the client
and the server:

n character_set_client indicates the character set in which the client sends SQL
statements to the server.

n character_set_results indicates the character set in which the server returns
results to the client.“Results” include data values and also metadata such as column
names.

n character_set_connection is used by the server.When it receives a statement
string from the client, it converts the string from character_set_client to

character_set_connection and works with the statement in the latter character
set. (There is an exception:Any literal string in the statement that is preceded by a
character set introducer is interpreted using the character set indicated by the intro-
ducer.) collation_connection is used for comparisons between literal strings
within statement strings.

n character_set_filesystem indicates the filesystem character set. It is used for
interpreting literal strings known to refer to filenames in SQL statements such as
LOAD DATA.These filename strings are converted from character_set_client to
character_set_filesystem before opening the file.The default is binary (no
conversion).

Very likely you’ll find that most character set and collation variables are set to the same
value by default. For example, the following output indicates that client/server communi-
cation takes place using the latin1 character set:

mysql> SHOW VARIABLES LIKE 'character_set_%';

+--------------------------+--------+

| Variable_name | Value |

+--------------------------+--------+

| character_set_client | latin1 |

| character_set_connection | latin1 |

| character_set_database | latin1 |

| character_set_filesystem | binary |

| character_set_results | latin1 |

| character_set_server | latin1 |

| character_set_system | utf8 |

+--------------------------+--------+

mysql> SHOW VARIABLES LIKE 'collation_%';

+----------------------+-------------------+

| Variable_name | Value |

+----------------------+-------------------+

| collation_connection | latin1_swedish_ci |

| collation_database | latin1_swedish_ci |

| collation_server | latin1_swedish_ci |

+----------------------+-------------------+

A client that wants to talk to the server using another character set can change the
communication-related variables. For example, if you want to use utf8, change three
variables:

mysql> SET character_set_client = utf8;

mysql> SET character_set_results = utf8;

mysql> SET character_set_connection = utf8;

However, it’s more convenient to use a SET NAMES statement for this purpose.The fol-
lowing statement is equivalent to the preceding three SET statements:

mysql> SET NAMES 'utf8';

212 Chapter 3 Data Types

2133.1 Data Value Categories

One restriction on setting the communication character set is that you cannot use
ucs2. (In MySQL 6.0 and up, this restriction also applies to utf16 and utf32.)

Many client programs support a --default-character-set option that produces the
same effect as a SET NAMES statement by informing the server of the desired communica-
tion character set.

For variables that come in pairs (a character set variable and a collation variable), the
members of the pair are linked in the following ways:

n Setting the character set variable also sets the associated collation variable to the de-
fault collation for the character set.

n Setting the collation variable also sets the associated character set variable to the
character set implied by the first part of the collation name.

For example, setting character_set_connection to utf8 sets
collation_connection to utf8_general_ci. Setting collation_connection to
latin1_spanish_ci sets character_set_connection to latin1.

3.1.3 Date and Time (Temporal) Values
Dates and times are values such as '2011-06-17' or '12:30:43'. MySQL also under-
stands combined date/time values, such as '2011-06-17 12:30:43'.Take special note of
the fact that MySQL represents dates in year-month-day order.This syntax often surprises
newcomers to MySQL, although it is standard SQL format (also known as “ISO 8601”
format).You can display date values any way you like using the DATE_FORMAT() function,
but the default display format lists the year first. Input values must be specified with the
year first. For values in other formats, you might be able to convert them for input by
using the STR_TO_DATE() function.

3.1.4 Spatial Values
MySQL supports spatial values, although only for MyISAM, and, as of MySQL 5.0.16,
InnoDB, NDB, and ARCHIVE.This capability enables representation of values such as
points, lines, and polygons. For example, the following statement uses the text representa-
tion of a point value with X and Y coordinates of (10, 20) to create a POINT and assigns
the result to a user-defined variable:

SET @pt = POINTFROMTEXT('POINT(10 20)');

3.1.5 Boolean Values
In expressions, zero is considered false and any non-zero, non-NULL value is considered
true.

The special constants TRUE and FALSE evaluate to 1 and 0, respectively.They are not
case sensitive.

3.1.6 The NULL Value
NULL is something of a “typeless” value. Generally, it’s used to mean “no value,”“unknown
value,”“missing value,”“out of range,”“not applicable,”“none of the above,” and so forth.
You can insert NULL values into tables, retrieve them from tables, and test whether a value
is NULL. However, you cannot perform arithmetic on NULL values; if you try, the result is
NULL.Also, many functions return NULL if you invoke them with a NULL or invalid argu-
ment.

The keyword NULL is written without quotes and is not case sensitive. MySQL also
treats a standalone \N (case sensitive) as NULL:

mysql> SELECT \N, ISNULL(\N);

+------+------------+

| NULL | ISNULL(\N) |

+------+------------+

| NULL | 1 |

+------+------------+

3.2 MySQL Data Types
Each table in a database contains one or more columns.When you create a table using a
CREATE TABLE statement, you specify a data type for each column.A data type is more
specific than a general category such as “number” or “string.” For a column, the data type
is the means by which you precisely characterize the kind of values the column may con-
tain, such as SMALLINT or VARCHAR(32).This in turn determines how MySQL treats those
values. For example, if you have numeric values, you could store them using either a nu-
meric or string column, but MySQL will treat the values somewhat differently depending
on what type you use. Each data type has several characteristics:

n What kind of values it can represent.
n How much space values take up.
n Whether values are fixed-length (all values of the type take the same amount of

space) or variable-length (the amount of space depends on the particular value be-
ing stored)

n How MySQL compares and sorts values of the type
n Whether the type can be indexed

The following discussion surveys MySQL’s data types briefly, and then describes in
more detail the syntax for defining them and the properties that characterize each type,
such as their range and storage requirements.The type specifications are shown as you use
them in CREATE TABLE statements. Optional information is indicated by square brackets
([]). For example, the syntax MEDIUMINT[(M)] indicates that the maximum display width,
specified as (M), is optional. On the other hand, for VARCHAR(M), the lack of brackets indi-
cates that (M) is required.

214 Chapter 3 Data Types

2153.2 MySQL Data Types

3.2.1 Overview of Data Types
MySQL has numeric data types for integer, fixed-point, floating-point, and bit values, as
shown in Table 3.2. Numeric types other than BIT can be signed or unsigned.A special
attribute enables sequential integer or floating-point column values to be generated auto-
matically, which is useful in applications that require a series of unique identification
numbers.

Table 3.3 shows the MySQL string data types. Strings can hold anything, even arbi-
trary binary data such as images or sounds. Strings can be compared according to whether
they are case sensitive. In addition, you can perform pattern matching on strings. (Actu-
ally, in MySQL, you can even perform pattern matching on numeric types, but it’s more
commonly done with string types.)

Table 3.2 Numeric Data Types

Type Name Meaning

TINYINT A very small integer

SMALLINT A small integer

MEDIUMINT A medium-sized integer

INT A standard integer

BIGINT A large integer

DECIMAL A fixed-point number

FLOAT A single-precision floating-point number

DOUBLE A double-precision floating-point number

BIT A bit field

Table 3.3 String Data Types

Type Name Meaning

CHAR A fixed-length non-binary (character) string

VARCHAR A variable-length non-binary string

BINARY A fixed-length binary string

VARBINARY A variable-length binary string

TINYBLOB A very small BLOB (binary large object)

BLOB A small BLOB

MEDIUMBLOB A medium-sized BLOB

LONGBLOB A large BLOB

TINYTEXT A very small non-binary string

216 Chapter 3 Data Types

Table 3.4 Date and Time Data Types

Type Name Meaning

DATE A date value, in 'CCYY-MM-DD' format

TIME A time value, in 'hh:mm:ss' format

DATETIME A date and time value, in 'CCYY-MM-DD hh:mm:ss' format

TIMESTAMP A timestamp value, in 'CCYY-MM-DD hh:mm:ss' format

YEAR A year value, in CCYY or YY format

Table 3.3 String Data Types

Type Name Meaning

TEXT A small non-binary string

MEDIUMTEXT A medium-sized non-binary string

LONGTEXT A large non-binary string

ENUM An enumeration; each column value may be assigned one enu-
meration member

SET A set; each column value may be assigned zero or more set
members

Table 3.4 shows the MySQL date and types, where CC, YY, MM, DD, hh, mm, and ss repre-
sent century, year, month, day of the month, hour, minute, and second, respectively. For
temporal values, MySQL provides types for dates and times (either combined or separate)
and timestamps (a special type that enables you to track when changes were last made to a
row).There is also a type for efficiently representing year values when you don’t need an
entire date.

Table 3.5 shows the MySQL spatial data types.These represent various kinds of geo-
metrical or geographical values.

Table 3.5 Spatial Data Types

Type Name Meaning

GEOMETRY A spatial value of any type

POINT A point (a pair of X,Y coordinates)

LINESTRING A curve (one or more POINT values)

POLYGON A polygon

GEOMETRYCOLLECTION A collection of GEOMETRY values

MULTILINESTRING A collection of LINESTRING values

MULTIPOINT A collection of POINT values

MULTIPOLYGON A collection of POLYGON values

2173.2 MySQL Data Types

3.2.2 Specifying Column Types in Table Definitions
To create a table, issue a CREATE TABLE statement that includes a list of the columns in
the table. Here’s an example that creates a table named mytbl with three columns named
f, c, and i:

CREATE TABLE mytbl

(

f FLOAT(10,4),

c CHAR(15) NOT NULL DEFAULT 'none',

i TINYINT UNSIGNED NULL

);

Each column has a name and a type, and attributes can be associated with the type.
The syntax for defining a column is as follows:

col_name col_type [type_attributes] [general_attributes]

The name of the column, col_name, is always first in the definition and must be a legal
identifier.The precise rules for identifier syntax are given in Section 2.2,“MySQL Identi-
fier Syntax and Naming Rules.” Briefly summarized, column identifiers may be up to 64
characters long, and may consist of alphanumeric characters from the system character set,
as well as the underscore and dollar sign characters (‘_’ and ‘$’). Keywords such as SELECT,
DELETE, and CREATE normally are reserved and cannot be used. However, you can include
other characters within an identifier or use a reserved word as an identifier if you are
willing to put up with the bother of quoting it whenever you refer to it.To quote an
identifier, enclose it within backtick (‘'’) characters. If the ANSI_QUOTES SQL mode is
enabled, it is allowable to quote identifiers within double quote (‘"’) characters instead.

col_type indicates the column data type; that is, the specific kind of values the col-
umn can hold. Some type specifiers indicate the maximum length of the values you store
in the column. For others, the length is implied by the type name. For example, CHAR(10)
specifies an explicit length of 10 characters, whereas TINYTEXT values have an implicit
maximum length of 255 characters. Some of the type specifiers allow you to indicate a
maximum display width (how many characters to use for displaying values). For fixed-
point and floating-point types, you can specify the number of significant digits and num-
ber of decimal places.

Following the column’s data type, you may specify optional type-specific attributes as
well as more general attributes.These attributes function as type modifiers.They cause
MySQL to change the way it treats column values in some way:

n The type-specific attributes that are allowable depend on the data type you choose.
For example, UNSIGNED and ZEROFILL are allowable only for numeric types, and
CHARACTER SET and COLLATE are allowable only for non-binary string types.

n The general attributes may be given for any data type, with a few exceptions.You
may specify NULL or NOT NULL to indicate whether a column can hold NULL values.
For most data types, you can specify a DEFAULT clause to define a default value for

218 Chapter 3 Data Types

the column. Default value handling is described in Section 3.2.3,“Configuring
Time Zone Support.”

If multiple column attributes are present, there are some constraints on the order in
which they may appear. In general, you should be safe if you specify data type-specific at-
tributes such as UNSIGNED or ZEROFILL before general attributes such as NULL or NOT
NULL.

3.2.3 Specifying Column Default Values
For all but BLOB and TEXT types, spatial types, or columns with the AUTO_INCREMENT at-
tribute, you can specify a DEFAULT def_value clause to indicate that a column should be
assigned the value def_value when a new row is created that does not explicitly specify
the column’s value.With some limited exceptions for TIMESTAMP columns, def_value
must be a constant. It cannot be an expression or refer to other columns.

If a column definition includes no explicit DEFAULT clause and the column can take
NULL values, its default value is NULL. Otherwise, the handling of a missing DEFAULT clause
is version dependent.

From MySQL 5.0.2 on, the column is created without any DEFAULT clause.That is, it
has no default value.This affects how the server handles the column if a new row that
does not specify a value for the column is inserted into the table:

n When strict SQL mode is not in effect, the column is set to the implicit default for
its data type. (Implicit defaults are described shortly.)

n When strict SQL mode is in effect, an error occurs if the table is transactional.The
statement aborts and rolls back. For non-transactional tables, an error occurs and the
statement aborts if the row is the first row inserted by the statement. If it is not the
first row, you can elect to have the statement abort or to have the column set to its
implicit default with a warning.The choice depends on which strict mode setting is
in effect. See Section 3.3,“How MySQL Handles Invalid DataValues,” for details.

Before MySQL 5.0.2, MySQL defines the column with a DEFAULT clause that specifies
the implicit default value.

The implicit default for a column depends on its data type:

n For numeric columns, the default is 0, except for columns that have the
AUTO_INCREMENT attribute. For AUTO_INCREMENT, the default is the next number in
the column sequence.

n For date and time types except TIMESTAMP, the default is the “zero” value for the
type (for example, '0000-00-00' for DATE). For TIMESTAMP, the default is the cur-
rent date and time for the first TIMESTAMP column in a table, and the “zero” value
for any following TIMESTAMP columns. (TIMESTAMP defaults actually are more com-
plex and are discussed in Section 3.2.6.2,“The TIMESTAMP Data Type.”)

2193.2 MySQL Data Types

n For string types other than ENUM, the default is the empty string. For ENUM, the de-
fault is the first enumeration element. For SET, the default when the column cannot
contain NULL actually is the empty set, but that is equivalent to the empty string.

You can use the SHOW CREATE TABLE statement to see which columns have a DEFAULT
clause and what the default value is for those columns that have one.

3.2.4 Numeric Data Types
MySQL’s numeric data types group into three groups:

n Exact-value types, which include the integer types and DECIMAL. Integer types are
used for numbers that have no fractional part, such as 43, -3, 0, or -798432.You can
use integer columns for data represented by whole numbers, such as weight to the
nearest pound, height to the nearest inch, number of stars in a galaxy, number of
people in a household, or number of bacteria in a petri dish.The DECIMAL type
stores exact values that may have a fractional part, such as 3.14159, -.00273, or
-4.78.This is a good data type for information such as monetary values. Integer
and DECIMAL values are stored exactly as specified without rounding when possible,
and calculations are exact.

n The floating-point types are available in single precision (FLOAT) and double preci-
sion (DOUBLE).These types, like DECIMAL, are used for numbers that may have a frac-
tional part, but they hold approximate-value numbers such as 3.9E+4 or -0.1E-100
that are subject to rounding.They can be used when exact precision is not required
or for values that are so large that DECIMAL cannot represent them. Some types of
data you might represent as floating-point values are average crop yield, distances, or
unemployment rates.

n The BIT type is used for storing bit-field values.

Values with a fractional part can be assigned to integer columns, but will be rounded
using the “round half up” rule: If the fractional part is .5 or greater, the value is rounded
away from zero to the next integer (up for positive values, down for negative values.)
Conversely, integer values may be assigned to types that allow a fractional part.They are
treated as having a fractional part of zero.

When you specify a number, you should not include commas as a separator. For exam-
ple, 12345678.90 is legal, but 12,345,678.90 is not.

Table 3.6 shows the name and range of each numeric type, and Table 3.7 shows the
amount of storage required for values of each type. M represents the maximum display width
for integer types, the precision (number of significant digits) for floating-point and decimal
types, and the number of bits for BIT. D represents the scale (number of digits following the
decimal point) for types that have a fractional part; this is also known as the scale.

Storage for DECIMAL values depends on the number of digits on the left and right sides
of the decimal point. For each side, 4 bytes are required for each multiple of nine digits,

220 Chapter 3 Data Types

Table 3.6 Numeric Data Type Ranges

Type Specification Range

TINYINT[(M)] Signed values: -128 to 127 (-27 to 27-1); Unsigned values: 0 to
255 (0 to 28-1)

SMALLINT[(M)] Signed values: -32768 to 32767 (-215 to 215-1); Unsigned val-
ues: 0 to 65535 (0 to 216-1)

MEDIUMINT[(M)] Signed values: -8388608 to 8388607 (-223 to 223-1); Unsigned
values: 0 to 16777215 (0 to 224-1)

INT[(M)] Signed values: -2147483648 to 2147483647 (-231 to 231-1);
Unsigned values: 0 to 4294967295 (0 to 232-1)

BIGINT[(M)] Signed values: -9223372036854775808 to
9223372036854775807 (-263 to 263-1); Unsigned values: 0 to
18446744073709551615 (0 to 264-1)

DECIMAL([M[,D]]) Varies depending on M and D

FLOAT[(M,D)] Minimum non-zero values: ±1.175494351E-38; Maximum non-
zero values: ±3.402823466E+38

DOUBLE[(M,D)] Minimum non-zero values: ±2.2250738585072014E-308;
Maximum non-zero values: ±1.7976931348623157E+308

BIT[(M)] 0 to 2M-1

plus 1 to 4 bytes if there are any remaining digits. Storage per value is the sum of the left
and right side storage.

A BIT(M) value requires approximately (M+7)/8 bytes.

Table 3.7 Numeric Data Type Storage Requirements

Type Specification Storage Required

TINYINT[(M)] 1 byte

SMALLINT[(M)] 2 bytes

MEDIUMINT[(M)] 3 bytes

INT[(M)] 4 bytes

BIGINT[(M)] 8 bytes

DECIMAL([M[,D]]) Varies depending on M, D

FLOAT[(M,D)] 4 bytes

DOUBLE[(M,D)] 8 bytes

BIT[(M)] Varies depending on M

2213.2 MySQL Data Types

3.2.4.1 Exact-Value Numeric Data Types
The exact-value data types include the integer types and the fixed-point DECIMAL type.

The integer types in MySQL are TINYINT, SMALLINT, MEDIUMINT, INT, and BIGINT.
INTEGER is a synonym for INT.These types vary in the range of values they can represent
and in the amount of storage space they require. (The larger the range, the more storage is
required.) Integer columns can be defined as UNSIGNED to disallow negative values; this
shifts the range for the column upward to begin at 0.

When you define an integer column, you can specify an optional display size M. If
given, M should be an integer from 1 to 255. It represents the number of characters used
to display values for the column. For example, MEDIUMINT(4) specifies a MEDIUMINT col-
umn with a display width of 4. If you define an integer column without an explicit
width, a default width is assigned.The defaults are the lengths of the “longest” values for
each type. Note that displayed values are not chopped to fit within M characters. If the
printable representation of a particular value requires more than M characters, MySQL dis-
plays the full value.

The display size M for an integer column relates only to the number of characters used
to display column values. It has nothing to do with the number of bytes of storage space
required. For example, BIGINT values require 8 bytes of storage regardless of the display
width. It is not possible to magically cut the required storage space for a BIGINT column
in half by defining it as BIGINT(4). Nor does M have anything to do with the range of
values allowed. If you define a column as INT(3), that doesn’t restrict it to a maximum
value of 999.

DECIMAL is a fixed-point type:Values have a fixed number of decimals.The significance
of this fact is that DECIMAL values are not subject to roundoff error the way that floating-
point values are—a property that makes DECIMAL especially applicable for storing cur-
rency values.

NUMERIC and FIXED are synonyms for DECIMAL.
DECIMAL columns can be defined as UNSIGNED. Unlike the integer types, defining a

DECIMAL type as UNSIGNED doesn’t shift the type’s range upward, it merely eliminates the
negative end.

For a DECIMAL column, you may specify a maximum number of significant digits M and
the number of decimal places D.These correspond to the concepts of “precision” and
“scale” with which you may be familiar.The value of M should be from 1 to 65.The value
of D should be from 0 to 30 and no greater than M.

M and D are optional. If D is omitted, it defaults to 0. If M is omitted as well, it defaults to
10. In other words, the following equivalences hold:

DECIMAL = DECIMAL(10) = DECIMAL(10,0)

DECIMAL(n) = DECIMAL(n,0)

The maximum possible range for DECIMAL is determined by the values of M and D. If
you vary M and hold D fixed, the range becomes larger as M becomes larger (Table 3.8). If
you hold M fixed and vary D, the range becomes smaller as D becomes larger (Table 3.9).

222 Chapter 3 Data Types

Table 3.8 How M Affects the Range of DECIMAL(M,D)

Type Specification Range

DECIMAL(4,1) -999.9 to 999.9

DECIMAL(5,1) -9999.9 to 9999.9

DECIMAL(6,1) -99999.9 to 99999.9

Note
Before MySQL 5.0.3, DECIMAL values are stored as strings and have somewhat different
properties from those of the current representation. See the MySQL Reference Manual for
details. To convert DECIMAL columns in an old table to the current format, dump it with
mysqldump and then reload the dump file:

% mysqldump db_name tbl_name > file_name

% mysql db_name < file_name

3.2.4.2 Approximate-Value Numeric Data Types
MySQL provides two floating-point types, FLOAT and DOUBLE, that hold approximate-
value numbers. DOUBLE PRECISION is a synonym for DOUBLE.The REAL type is a synonym
for DOUBLE by default. If the REAL_AS_DEFAULT SQL mode is enabled, REAL is a synonym
for FLOAT.

Floating-point types can be defined as UNSIGNED, which eliminates the negative end of
the type’s range.

For each floating-point type (just as for DECIMAL), you may specify a maximum num-
ber of significant digits M and the number of decimal places D.The value of M should be
from 1 to 255.The value of D should be from 0 to 30 and no greater than M.

For FLOAT and DOUBLE, M and D are optional. If you omit both from the column defini-
tion, values are stored to the full precision allowed by your hardware.

FLOAT(p) syntax also is allowed. However, whereas p stands for the required number of
bits of precision in standard SQL, it is treated differently in MySQL. p may range from
0 to 53 and is used only to determine whether the column stores single-precision or
double-precision values. For p values from 0 to 24, the column is treated as single

Table 3.9 How D Affects the Range of DECIMAL(M,D)

Type Specification Range

DECIMAL(4,0) -9999 to 9999

DECIMAL(4,1) -999.9 to 999.9

DECIMAL(4,2) -99.99 to 99.99

2233.2 MySQL Data Types

precision. For values from 25 to 53, the column is treated as double precision.That is, the
column is treated as a FLOAT or DOUBLE with no M or D values.

3.2.4.3 The BIT Data Type
The BIT data type was introduced in MySQL 5.0.3 as a type for holding bit-field values.
When you define a BIT column, you can specify an optional maximum width M that indi-
cates the “width” of the column in bits. M should be an integer from 1 to 64. If omitted, M
defaults to 1.

Values retrieved from BIT columns are not displayed in printable form by default.To
display a printable representation of bit-field values, add zero or use CAST():

mysql> CREATE TABLE t (b BIT(3)); # 3-bit column; holds values 0 to 7

mysql> INSERT INTO t (b) VALUES(0),(b'11'),(b'101'),(b'111');

mysql> SELECT b+0, CAST(b AS UNSIGNED) FROM t;

+------+---------------------+

| b+0 | CAST(b AS UNSIGNED) |

+------+---------------------+

| 0 | 0 |

| 3 | 3 |

| 5 | 5 |

| 7 | 7 |

+------+---------------------+

The BIN() function is useful for displaying bit-field values or the result of computa-
tions on them in binary notation:

mysql> SELECT BIN(b), BIN(b & b'101'), BIN(b | b'101') FROM t;

+--------+-----------------+-----------------+

| BIN(b) | BIN(b & b'101') | BIN(b | b'101') |

+--------+-----------------+-----------------+

| 0 | 0 | 101 |

| 11 | 1 | 111 |

| 101 | 101 | 101 |

| 111 | 101 | 111 |

+--------+-----------------+-----------------+

3.2.4.4 Numeric Data Type Attributes
The UNSIGNED attribute disallows negative values. It can be used with all numeric types
except BIT, but is most commonly used with integer types. Making an integer column
UNSIGNED doesn’t change the “size” of the underlying data type’s range; it just shifts the
range upward. Consider this table definition:

CREATE TABLE mytbl

(

itiny TINYINT,

itiny_u TINYINT UNSIGNED

);

224 Chapter 3 Data Types

itiny and itiny_u both are TINYINT columns with a range of 256 values, but differ in
the set of allowable values.The range of itiny is -128 to 127, whereas the range of
itiny_u is shifted up, resulting in a range of 0 to 255.

UNSIGNED is useful for columns into which you plan to store information that doesn’t
take on negative values, such as population counts or attendance figures.Were you to use a
signed column for such values, you would use only half of the data type’s range. By mak-
ing the column UNSIGNED, you effectively double your usable range. For example, if you
use the column for sequence numbers, it will take twice as long to run out of values if
you make it UNSIGNED.

You can also specify UNSIGNED for DECIMAL or floating-point columns, although the
effect is slightly different from that for integer columns.The range does not shift upward;
instead, the upper end remains unchanged and the lower end becomes zero (effectively
cutting the range in half).

The SIGNED attribute is allowed for all numeric types that allow UNSIGNED. However, it
has no effect because such types are signed by default. SIGNED serves simply to indicate
explicitly in a column definition that the column allows negative values.

The ZEROFILL attribute can be specified for all numeric types except BIT. It causes dis-
played values for the column to be padded with leading zeros to the display width.You
can use ZEROFILL when you want to make sure column values always display using a
given number of digits.Actually, it’s more accurate to say “a given minimum number of
digits” because values wider than the display width are displayed in full without being
chopped.You can see this by issuing the following statements:

mysql> DROP TABLE IF EXISTS mytbl;

mysql> CREATE TABLE mytbl (my_zerofill INT(5) ZEROFILL);

mysql> INSERT INTO mytbl VALUES(1),(100),(10000),(1000000);

mysql> SELECT my_zerofill FROM mytbl;

+-------------+

| my_zerofill |

+-------------+

| 00001 |

| 00100 |

| 10000 |

| 1000000 |

+-------------+

Note that the final value is displayed in full, even though it is wider than the column’s
display width.

If you specify the ZEROFILL attribute for a column, it automatically becomes UNSIGNED
as well.

One other attribute, AUTO_INCREMENT, is allowed for integer or floating-point data
types. Specify the AUTO_INCREMENT attribute when you want to generate a series of
unique identifier values.When you insert NULL into an AUTO_INCREMENT column, MySQL
generates the next sequence value and stores it in the column. Normally, unless you take
steps to cause otherwise, AUTO_INCREMENT values begin at 1 and increase by 1 for each

2253.2 MySQL Data Types

new row.The sequence may be affected if you delete rows from the table.That is, se-
quence values might be reused; it is storage engine-dependent whether this occurs.

You can have at most one AUTO_INCREMENT column in a table.The column should have
the NOT NULL constraint, and it must be indexed. Generally, an AUTO_INCREMENT column is
indexed as a PRIMARY KEY or UNIQUE index.Also, because sequence values always are posi-
tive, you normally define the column UNSIGNED as well. For example, you can define an
AUTO_INCREMENT column in any of the following ways:

CREATE TABLE ai (i INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY);

CREATE TABLE ai (i INT UNSIGNED NOT NULL AUTO_INCREMENT UNIQUE);

CREATE TABLE ai (i INT UNSIGNED NOT NULL AUTO_INCREMENT, PRIMARY KEY (i));

CREATE TABLE ai (i INT UNSIGNED NOT NULL AUTO_INCREMENT, UNIQUE (i));

The first two forms shown specify the index information as part of the column defini-
tion.The second two specify the index as a separate clause of the CREATE TABLE state-
ment. Using a separate clause is optional if the index includes only the AUTO_INCREMENT
column. If you want to create a multiple-column index that includes the AUTO_INCREMENT
column, you must use a separate clause. (For an example of this, see Section 3.4.2.1,
“AUTO_INCREMENT for MyISAM Tables.”

It is always allowable to define an AUTO_INCREMENT column explicitly as NOT NULL, but
if you omit NOT NULL, MySQL adds it automatically.

Section 3.4,“Working with Sequences,” discusses the behavior of AUTO_INCREMENT
columns further.

Following the attributes just described, which are specific to numeric columns, you
may specify NULL or NOT NULL. If you do not specify NULL or NOT NULL for a numeric col-
umn, it allows NULL by default.

You also may specify a default value using the DEFAULT attribute.The following table
contains three INT columns, having default values of -1, 1, and NULL:

CREATE TABLE t

(

i1 INT DEFAULT -1,

i2 INT DEFAULT 1,

i3 INT DEFAULT NULL

);

Section 3.2.3,“Specifying Column Default Values,” earlier in the chapter described the
rules that MySQL uses for assigning a default value if a column definition includes no
DEFAULT clause.

3.2.4.5 Choosing Numeric Data Types
When you choose a type for a numeric column, consider the range of values that you
need to represent and choose the smallest type that will cover the range. Choosing a larger
type wastes space, leading to tables that are unnecessarily large and that cannot be
processed as efficiently as if you had chosen a smaller type. TINYINT is the best for integers
if the range of values in your data is small, such as a person’s age or number of siblings.

226 Chapter 3 Data Types

MEDIUMINT can represent millions of values and can be used for many more types of
values, at some additional cost in storage space. BIGINT has the largest range of all but re-
quires twice as much storage as the next smallest integer type (INT) and should be used
only when really necessary. For floating-point values, DOUBLE takes twice as much space as
FLOAT. Unless you need exceptionally high precision or an extremely large range of val-
ues, you can probably represent your data at half the storage cost by using FLOAT instead
of DOUBLE.

Every numeric column’s range of values is determined by its type. If you attempt to in-
sert a value that lies outside the column’s range, the result depends on whether strict SQL
mode is enabled. If it is, an out of range value results in an error. If strict mode is not en-
abled, truncation occurs: MySQL clips the value to the appropriate endpoint of the range,
uses the result, and generates a warning.

Value truncation occurs according to the range of the data type, not the display width.
For example, a SMALLINT(3) column has a display width of 3 and a range from -32768 to
32767.The value 12345 is wider than the display width but within the range of the col-
umn, so it is inserted without clipping and retrieved as 12345.The value 99999 is outside
the range, so it is clipped to 32767 when inserted. Subsequent retrievals return the value
32767.

For fixed-point or floating-point columns, if values are stored that have more digits in
the fractional part than allowed by the column specification, rounding occurs. If you store
1.23456 in a FLOAT(8,1) column, the result is 1.2. If you store the same value in a
FLOAT(8,4) column, the result is 1.2346.This means you should define such columns
with a sufficient number of decimals to store values as precise as you require. If you need
accuracy to thousandths, don’t define a type with only two decimal places.

3.2.5 String Data Types
MySQL provides several data types for storing string values. Strings are often used for text
values like these:

'N. Bertram, et al.'

'Pencils (no. 2 lead)'

'123 Elm St.'

'Monograph Series IX'

But strings are actually “generic” types in a sense because you can use them to repre-
sent any value. For example, you can use binary string types to hold binary data, such as
images, sounds, or compressed gzip output.

Table 3.10 shows all the types provided by MySQL for defining string-valued columns,
and the maximum size and storage requirements of each type. M represents the maximum
length of column values (in bytes for binary strings and characters for non-binary strings),
and L represents the actual length of a given value in bytes. w is the number of bytes re-
quired for the widest character in the character set.The BLOB and TEXT types each have
several variants that are distinguished by the maximum size of values they can hold.

2273.2 MySQL Data Types

Some types hold binary strings (byte strings) and others hold non-binary strings (char-
acter strings).Thus, maximum size as listed in Table 3.10 is given in number of bytes per
value for binary string types and number of characters for non-binary string types. For ex-
ample, BINARY(20) holds 20 bytes, whereas CHAR(20) holds 20 characters (which requires
more than 20 bytes for multi-byte characters).The differences between byte and character
semantics for binary and non-binary strings are characterized in Section 3.1.2,“String
Values.” Each of the binary string types for byte strings has a corresponding non-binary
type for character strings, as shown in Table 3.11.

Each of the non-binary string types, as well as ENUM and SET, can be assigned a charac-
ter set and collation. Different columns can be assigned different character sets. Character
set assignment is discussed in Section 3.2.5.5,“String Data Type Attributes.”

Table 3.10 String Data Types

Type Specification Maximum Size Storage Required

BINARY[(M)] M bytes M bytes

VARBINARY(M) M bytes L + 1 or 2 bytes

CHAR[(M)] M characters M × w bytes

VARCHAR(M) M characters L + 1 or 2 bytes

TINYBLOB 28-1 bytes L + 1 bytes

BLOB 216-1 bytes L + 2 bytes

MEDIUMBLOB 224-1 bytes L + 3 bytes

LONGBLOB 232-1 bytes L + 4 bytes

TINYTEXT 28-1 characters L + 1 bytes

TEXT 216-1 characters L + 2 bytes

MEDIUMTEXT 224-1 characters L + 3 bytes

LONGTEXT 232-1 characters L + 4 bytes

ENUM('value1','value2',...) 65,535 members 1 or 2 bytes

SET('value1','value2',...) 64 members 1, 2, 3, 4, or 8 bytes

Table 3.11 Corresponding Binary and Non-Binary String Types

Binary String Type Non-Binary String Type

BINARY CHAR

VARBINARY VARCHAR

BLOB TEXT

228 Chapter 3 Data Types

BINARY and CHAR are fixed-length string types. For columns of these types, MySQL al-
locates the same amount of storage for every value and pads those that are shorter than
the column length. Padding uses zero (0x00) bytes for BINARY and spaces for CHAR. Be-
cause CHAR(M) must be able to represent the largest possible string in the column’s charac-
ter set, each column requires M × w bytes, where w is the number of bytes required for the
widest character in the character set. For example, ujis characters take from one to three
bytes, so CHAR(20) must be allocated 60 bytes in case a value requires three bytes for all 20
characters.

Other string types are variable-length.The amount of storage taken by a value varies
from row to row and depends on the length of the values actually stored in the column.
This length is represented by L in the table for variable-length types.The extra bytes re-
quired in addition to L are the number of bytes needed to store the length of the value.
MySQL handles variable-length values by storing both the content of the value and a pre-
fix that records its length.These extra prefix “length bytes” are treated as an unsigned inte-
ger.There is a correspondence between a variable-length type’s maximum length, the
number of length bytes required for that type, and the range of the unsigned integer type
that uses the same number of bytes. For example, a MEDIUMBLOB value may be up to 224-1
bytes long and requires 3 bytes to record the length.The 3-byte integer type MEDIUMINT
has a maximum unsigned value of 224-1.That’s not a coincidence.

The length prefix for VARBINARY and VARCHAR requires 1 byte if the maximum length
of column values in bytes is less than 256.The requirement is 2 bytes otherwise.

Values for all string types except ENUM and SET are stored as a sequence of bytes and in-
terpreted either as bytes or characters depending on whether the type holds binary or
non-binary strings.Values that are too long to store are chopped to fit. (In strict mode, an
error occurs instead unless the chopped characters are spaces.) But string types range from
very small to very large, with the largest type able to hold nearly 4GB of data, so you
should be able to find something long enough to avoid truncation of your information.
(The effective maximum column size actually is imposed by the maximum packet size of
the client/server communication protocol, which is 1MB by default.)

For ENUM and SET, the column definition includes a list of legal string values, but ENUM
and SET values are stored internally as numbers, as detailed later in Section 3.2.5.4,“The
ENUM and SET Data Types.”Attempting to store a value other than those in the list causes
the value to be converted to '' (the empty string) unless strict mode is enabled. In strict
mode, an error occurs instead.

3.2.5.1 The CHAR and VARCHAR Data Types
The CHAR and VARCHAR string types hold non-binary strings, and thus are associated with a
character set and collation.

The primary differences between CHAR and VARCHAR lie in whether they have a fixed
or variable length, and in how trailing spaces are treated:

n CHAR is a fixed-length type, whereas VARCHAR is a variable-length type.
n Values retrieved from CHAR columns have trailing spaces removed. For a CHAR(M)

column, values that are shorter than M characters are padded to a length of M when

2293.2 MySQL Data Types

stored, but trailing spaces are stripped when the values are retrieved.As of MySQL
5.1.20, you can enable the PAD_CHAR_TO_FULL_LENGTH SQL mode to cause re-
trieved CHAR column values to retain trailing spaces.

n For a VARCHAR(M) column, trailing spaces are retained both for storage and retrieval.

CHAR columns can be defined with a maximum length M from 0 to 255. M is optional
for CHAR and defaults to 1 if missing. Note that CHAR(0) is legal.A CHAR(0) column can
be used to represent on/off values if you allow it to be NULL.Values in such a column can
have one of two values: NULL or the empty string.A CHAR(0) column takes very little stor-
age space in the table—only a single bit.

The syntactically allowable range of M for VARCHAR(M) is 1 to 65,535, but the effective
maximum number of characters is less than 65,535 because MySQL has a maximum row
size of 65,535 bytes.That has certain implications:

n A long VARCHAR requires two length bytes, which count against the row size.
n Use of multi-byte characters reduces the number of characters that can fit within

the maximum row size.
n Inclusion of other columns in the table reduces the amount of space for the
VARCHAR column in the row.

Keep in mind two general principles when choosing between CHAR and VARCHAR data
types:

n If your values all are M characters long, a VARCHAR(M) column actually will use more
space than a CHAR(M) column due to the extra byte or bytes required to record the
length of values. On the other hand, if your values vary in length, VARCHAR columns
have the advantage of taking less space.A CHAR(M) column always takes M characters,
even if it is empty or NULL.

n If you’re using MyISAM tables and your values don’t vary much in length, CHAR is a
better choice than VARCHAR because the MyISAM storage engine can process fixed-
length rows more efficiently than variable-length rows. See Section 5.3,“Choosing
Data Types for Efficient Queries.”

Note
Before MySQL 5.0.3, VARCHAR is handled somewhat differently:

n The maximum length for VARCHAR is 255.

n Trailing spaces are stripped from VARCHAR values when they are stored.

3.2.5.2 The BINARY and VARBINARY Data Types
The BINARY and VARBINARY types are similar to CHAR and VARCHAR, with the following
differences:

n CHAR and VARCHAR are non-binary types that store characters and have a character
set and collation. Comparisons are based on the collating sequence.

230 Chapter 3 Data Types

n BINARY and VARBINARY are binary types that store bytes and have no character set
or collation. Comparisons are based on numeric byte values.

The rules for handling of padding for BINARY values are as follows:

n As of MySQL 5.0.15, short values are padded with 0x00 bytes. Nothing is stripped
on retrieval.

n Before MySQL 5.0.15, short values are padded with spaces.Trailing spaces are
stripped on retrieval.

For VARBINARY, no padding occurs when values are stored and no stripping occurs for
retrieval.

3.2.5.3 The BLOB and TEXT Data Types
A “BLOB” is a binary large object—basically, a container that can hold anything you
want to toss into it, and that you can make about as big as you want. In MySQL, the BLOB
type is really a family of types (TINYBLOB, BLOB, MEDIUMBLOB, LONGBLOB).These types are
identical except in the maximum amount of information they can hold (see Table 3.10).
BLOB columns store binary strings.They are useful for storing data that may grow very
large or that may vary widely in size from row to row. Some examples are compressed
data, encrypted data, images, and sounds.

MySQL also has a family of TEXT types (TINYTEXT, TEXT, MEDIUMTEXT, LONGTEXT).
These are similar to the corresponding BLOB types, except that TEXT types store non-
binary strings rather than binary strings.That is, they store characters rather than bytes,
and are associated with a character set and collation.This results in the general differences
between binary and non-binary strings that were described earlier in Section 3.1.2,
“String Values.” For example, in comparison operations, BLOB values are compared in byte
units and TEXT values are compared in character units using the column collation.

BLOB or TEXT columns sometimes can be indexed, depending on the storage engine
you’re using:

n The MyISAM and InnoDB storage engines support BLOB and TEXT indexing.
However, you must specify a prefix size to be used for the index.This avoids creat-
ing index entries that might be huge and thereby defeat any benefits to be gained
by that index.The exception is that prefixes are not used for FULLTEXT indexes on
TEXT columns. FULLTEXT searches are based on the entire content of the indexed
columns, so any prefix you specify is ignored.

n MEMORY tables do not support BLOB and TEXT indexes because the MEMORY
engine does not support BLOB or TEXT columns at all.

BLOB or TEXT columns may require special care:

n Due to the typical large variation in the size of BLOB and TEXT values, tables con-
taining them are subject to high rates of fragmentation if many deletes and updates
are done. If you’re using a MyISAM table to store BLOB or TEXT values, you can run

2313.2 MySQL Data Types

OPTIMIZE TABLE periodically to reduce fragmentation and maintain good perform-
ance. See Chapter 5,“Query Optimization,” for more information.

n The max_sort_length system variable influences BLOB and TEXT comparison and
sorting operations. Only the first max_sort_length bytes of each value are used.
(For TEXT columns that use a multi-byte character set, this means that comparisons
might involve fewer than max_sort_length characters.) If this causes a problem
with the default max_sort_length value of 1024, you might want to increase the
value before performing comparisons.

n If you’re using very large values, you might need to configure the server to increase
the value of the max_allowed_packet parameter. See Section 12.6.2,“General-
Purpose System Variables,” for more information.You will also need to increase the
packet size for any client that wants to use very large values.The mysql and
mysqldump clients support setting this value directly using a startup option.

3.2.5.4 The ENUM and SET Data Types
ENUM and SET are special string data types that allow only values chosen from a fixed (pre-
defined) list of allowable strings.The primary difference between them is that ENUM col-
umn values must consist of exactly one member of the list of values, whereas SET column
values may contain any or all members of the list. In other words, ENUM is used for values
that are mutually exclusive, whereas SET allows multiple choices from the list.

The ENUM data type defines an enumeration. ENUM columns may be assigned values
consisting of exactly one member chosen from a list of values specified at table-creation
time.You can define an enumeration to have up to 65,535 members. Enumerations are
commonly used to represent category values. For example, values in a column defined as
ENUM('N','Y') can be either 'N' or 'Y'. Or you can use ENUM for such things as avail-
able sizes or colors for a product or for answers to multiple-choice questions in a survey
or questionnaire where a single response must be selected:

employees ENUM('less than 100','100-500','501-1500','more than 1500')

color ENUM('red','green','blue','black')

size ENUM('S','M','L','XL','XXL')

vote ENUM('Yes','No','Undecided')

If you are processing selections from a Web page that includes mutually exclusive radio
buttons, you can use an ENUM to represent the options from which a visitor to your site
chooses. For example, if you run an online pizza-ordering service, ENUM columns can be
used to represent the type of crust and size of pizza a customer orders:

crust ENUM('thin','regular','pan style','deep dish')

size ENUM('small','medium','large')

If enumeration categories represent counts, it’s important to choose your categories
properly when you create the enumeration. For example, when recording white blood
cell counts from a laboratory test, you might group the counts into categories like this:

wbc ENUM('0-100','101-300','>300')

232 Chapter 3 Data Types

If any given test result is provided as an exact count, you can record the value in the
wbc column using the category into which the count falls. But you cannot recover the
original count if you decide you want to convert the column from a category-based ENUM
to an integer column based on exact count. If you really need the exact count, use an in-
teger column instead, and group integer values into categories when you retrieve them
using the CASE construct. For example, if wbc is defined as an integer column, you can
select it as a category like this:

SELECT CASE WHEN wbc <= 100 THEN '0-100'

WHEN wbc <= 300 THEN '101-300'

ELSE '>300' END AS 'wbc category'

FROM ...

The SET type is similar to ENUM in the sense that when you create a SET column, you
specify a list of legal set members. But unlike ENUM, each column value may consist of
any number of members from the set.The set may have up to 64 members.You can use
a SET when you have a fixed set of values that are not mutually exclusive as they are in
an ENUM column. For example, you might use a SET to represent options available for an
automobile:

SET('luggage rack','cruise control','air conditioning','sun roof')

Then particular SET values would represent those options actually ordered by customers:

'cruise control,sun roof'

'luggage rack,air conditioning'

'luggage rack,cruise control,air conditioning'

'air conditioning'

''

The final value shown (the empty string) means that the customer ordered no options.
This is a legal value for any SET column.

SET column definitions are written as a list of individual strings separated by commas
to indicate what the set members are.A SET column value, on the other hand, is written
as a single string. If the value consists of multiple set members, the members are separated
within the string by commas.This means you shouldn’t use a string containing a comma
as a SET member.

Other uses for SET columns might be for representing information such as patient di-
agnoses or results from selections on Web pages. For a diagnosis, there may be a standard
list of symptoms to ask a patient about, and the patient might exhibit any or all of them:

SET('dizziness','shortness of breath','cough')

For an online pizza service, the Web page for ordering could have a set of check boxes
for ingredients that a customer wants as toppings on a pizza, several of which might be
chosen:

SET('pepperoni','sausage','mushrooms','onions','ripe olives')

2333.2 MySQL Data Types

The way you define the legal value list for an ENUM or SET column is significant in
several ways:

n The list determines the possible legal values for the column, as has already been
discussed.

n If an ENUM or SET column has a collation that is not case sensitive, you can insert
legal values in any lettercase and they will be recognized. However, the lettercase of
the strings as specified in the column definition determines the lettercase of column
values when they are retrieved later. For example, if you have an ENUM('Y','N')
column and you store 'y' and 'n' in it, the values are displayed as 'Y' and 'N'

when you retrieve them. If the column has a case sensitive or binary collation, you
must insert values using exactly the lettercase used in the column definition or the
values will not be recognized as legal. On the other hand, you can have distinct ele-
ments that differ only in lettercase, something that is not true when you use a colla-
tion that is not case sensitive.

n The order of values in an ENUM definition is the order used for sorting.The order of
values in a SET definition also determines sort order, although the relationship is
more complicated because column values may contain multiple set members.

n When MySQL displays a SET value that consists of multiple set members, the order
in which it lists the members within the value is determined by the order in which
they appear in the SET column definition.

ENUM and SET are classified as string types because enumeration and set members are
specified as strings when you create columns of these types. However, the ENUM and SET

types actually have a split personality:The members are stored internally as numbers and
you can work with them as such.This means that ENUM and SET types are more efficient
than other string types because they often can be handled using numeric operations
rather than string operations. It also means that ENUM and SET values can be used in either
string or numeric contexts. Finally, ENUM and SET columns can cause confusion if you use
them in string context but expect them to behave as numbers, or vice versa.

MySQL sequentially numbers ENUM members in the column definition beginning with
1. (The value 0 is reserved for the error member, which is represented in string form by
the empty string.) The number of enumeration values determines the storage size of an
ENUM column. One byte can represent 256 values and two bytes can represent 65,536 val-
ues. (Compare this to the ranges of the one-byte and two-byte integer types TINYINT
UNSIGNED and SMALLINT UNSIGNED.) Thus, counting the error member, the maximum
number of enumeration members is 65,536 and the storage size depends on whether
there are more than 256 members.You can specify a maximum of 65,535 (not 65,536)
members in the ENUM definition because MySQL reserves a spot for the error member as
an implicit member of every enumeration.When you assign an illegal value to an ENUM
column, MySQL assigns the error member. (In strict mode, an error occurs instead.)

234 Chapter 3 Data Types

The following example demonstrates that you can retrieve ENUM values in either string
or numeric form (which shows the numeric ordering of enumeration members and also
that the NULL value has no number in the ordering):

mysql> CREATE TABLE e_table (e ENUM('jane','fred','will','marcia'));

mysql> INSERT INTO e_table

-> VALUES('jane'),('fred'),('will'),('marcia'),(NULL);

mysql> SELECT e, e+0, e+1, e*3 FROM e_table;

+--------+------+------+------+

| e | e+0 | e+1 | e*3 |

+--------+------+------+------+

| jane | 1 | 2 | 3 |

| fred | 2 | 3 | 6 |

| will | 3 | 4 | 9 |

| marcia | 4 | 5 | 12 |

| NULL | NULL | NULL | NULL |

+--------+------+------+------+

You can compare ENUM members either by name or number:

mysql> SELECT e FROM e_table WHERE e='will';

+------+

| e |

+------+

| will |

+------+

mysql> SELECT e FROM e_table WHERE e=3;

+------+

| e |

+------+

| will |

+------+

It is possible to define the empty string as a legal enumeration member, but this will
only cause confusion.The string is assigned a non-zero numeric value, just as any other
member listed in the definition. However, an empty string also is used for the error mem-
ber that has a numeric value of 0, so it would correspond to two internal numeric element
values. In the following example, assigning the illegal enumeration value 'x' to the ENUM

column causes the error member to be assigned.This is distinguishable from the empty
string member listed in the column definition only when retrieved in numeric form:

mysql> CREATE TABLE t (e ENUM('a','','b'));

mysql> INSERT INTO t VALUES('a'),(''),('b'),('x');

mysql> SELECT e, e+0 FROM t;

+------+------+

| e | e+0 |

+------+------+

| a | 1 |

2353.2 MySQL Data Types

| | 2 |

| b | 3 |

| | 0 |

+------+------+

In strict mode, assigning the illegal value 'x' causes an error and no value is stored.
The numeric representation of SET columns is a little different from that for ENUM

columns. Set members are not numbered sequentially. Instead, members correspond to
successive individual bits in the SET value.The first set member corresponds to bit 0, the
second member corresponds to bit 1, and so on. In other words, the numeric values of
SET members all are powers of two.The empty string corresponds to a numeric SET value
of 0.

SET values are stored as bit values. Eight set members per byte can be stored this way,
so the storage size for a SET column is determined by the number of set members, up to a
maximum of 64 members. SET values take 1, 2, 3, 4, or 8 bytes for set sizes of 1 to 8, 9 to
16, 17 to 24, 25 to 32, and 33 to 64 members.

The representation of a SET as a set of bits is what allows a SET value to consist of
multiple set members.Any combination of bits can be turned on in the value, so the
value may consist of any combination of the strings in the SET definition that correspond
to those bits.

The following example shows the relationship between the string and numeric forms
of a SET column. It displays the numeric value in both decimal and binary form:

mysql> CREATE TABLE s_table (s SET('table','lamp','chair','stool'));

mysql> INSERT INTO s_table

-> VALUES('table'),('lamp'),('chair'),('stool'),(''),(NULL);

mysql> SELECT s, s+0, BIN(s+0) FROM s_table;

+-------+------+----------+

| s | s+0 | BIN(s+0) |

+-------+------+----------+

| table | 1 | 1 |

| lamp | 2 | 10 |

| chair | 4 | 100 |

| stool | 8 | 1000 |

| | 0 | 0 |

| NULL | NULL | NULL |

+-------+------+----------+

If you assign to the column s a value of 'lamp,stool', MySQL stores it internally as
10 (binary 1010) because 'lamp' has a value of 2 (bit 1) and 'stool' has a value of 8
(bit 3).

When you assign values to SET columns, the substrings don’t need to be listed in the
same order that you used when you defined the column. However, when you retrieve the
value later, members are displayed within the value in definition order.Also, if you assign
to a SET column a value containing substrings that are not listed as set members, those

236 Chapter 3 Data Types

strings drop out and the column is assigned a value consisting of the remaining substrings.
When you retrieve the value later, the illegal substrings will not be present.

If you assign a value of 'chair,couch,table' to the column s in s_table, two
things happen:

n 'couch' drops out because it’s not a member of the set.This occurs because
MySQL determines which bits correspond to each substring of the value to be as-
signed and turns them on in the stored value. 'couch' corresponds to no bit and is
ignored.

n When you retrieve the value later, it appears as 'table,chair'. On retrieval,
MySQL constructs the string value from the numeric value by scanning the bits in
order, which automatically reorders the substrings to the order used when the col-
umn was defined.This behavior also means that if you specify a set member more
than once in a value, it will appear only once when you retrieve the value. If you as-
sign 'lamp,lamp,lamp' to a SET column, it will be simply 'lamp' when retrieved.

In strict mode, use of an illegal SET member causes an error instead and the value is
not stored. In the preceding example, assigning a value containing 'couch' would cause
an error and the assignment would fail.

The fact that MySQL reorders members in a SET value means that if you search for
values using a string, you must list members in the proper order. If you insert
'chair,table' and then search for 'chair,table' you won’t find the row; you must
look for it as 'table,chair'.

Sorting and indexing of ENUM and SET columns is done according to the internal
(numeric) values of column values.The following example might appear to be incorrect
because the values are not displayed in alphanumeric order:

mysql> SELECT e FROM e_table ORDER BY e;

+--------+

| e |

+--------+

| NULL |

| |

| jane |

| fred |

| will |

| marcia |

+--------+

You can better see what’s going on by retrieving both the string and numeric forms of
the ENUM values:

mysql> SELECT e, e+0 FROM e_table ORDER BY e;

+--------+------+

| e | e+0 |

+--------+------+

| NULL | NULL |

2373.2 MySQL Data Types

| | 0 |

| jane | 1 |

| fred | 2 |

| will | 3 |

| marcia | 4 |

+--------+------+

If you have a fixed set of values and you want them to sort in a particular order, you
can exploit the ENUM sorting properties: Represent the values as an ENUM column in a table
and list the enumeration values in the column definition in the order that you want them
to be sorted. Suppose that you have a table representing personnel for a sports organiza-
tion, such as a football team, and that you want to sort output by personnel position so
that it comes out in a particular order, such as coaches, assistant coaches, quarterbacks,
running backs, receivers, linemen, and so on. Define the column as an ENUM and list the
enumeration elements in the order that you want to see them.Then column values auto-
matically will come out in that order for sort operations.

For cases where you want an ENUM to sort in normal lexical order, you can convert
the column to a non-ENUM string by using CAST() and sorting the result:

mysql> SELECT CAST(e AS CHAR) AS e_str FROM e_table ORDER BY e_str;

+--------+

| e_str |

+--------+

| NULL |

| |

| fred |

| jane |

| marcia |

| will |

+--------+

CAST() doesn’t change the displayed values, but has the effect in this statement of per-
forming an ENUM-to-string conversion that alters their sorting properties so they sort as
strings.

3.2.5.5 String Data Type Attributes
The attributes unique to the string data types are CHARACTER SET (or CHARSET) and
COLLATE for designating a character set and collating order.You can specify these as op-
tions for the table itself to set its defaults, or for individual columns to override the table
defaults. (Actually, each database also has a default character set and collation, as does the
server itself.These defaults sometimes come into play during table creation, as we’ll see
later.)

The CHARACTER SET and COLLATE attributes apply to the CHAR, VARCHAR, TEXT, ENUM,
and SET data types.They do not apply to the binary string data types (BINARY, VARBINARY,
and BLOB), because those types contain byte strings, not character strings.

238 Chapter 3 Data Types

When you specify the CHARACTER SET and COLLATE attributes, whether at the column,
table, or database level, the following rules apply:

n The character set must be one that the server supports.To display the available char-
acter sets, use SHOW CHARACTER SET.

n For a definition that includes both CHARACTER SET and COLLATE, the character set
and collation must be compatible. For example, with a character set of latin2, you
could use a collation of latin2_croatian_ci, but not latin1_bin.To display the
collations for each character set, use SHOW COLLATION.

n For a definition with CHARACTER SET but without COLLATE, the character set’s de-
fault collation is used.

n For a definition with COLLATE but without CHARACTER SET, the character set is de-
termined from the first part of the collation name.

To see how these rules apply, consider the following statement. It creates a table that
uses several character sets:

CREATE TABLE mytbl

(

c1 CHAR(10),

c2 CHAR(40) CHARACTER SET latin2,

c3 CHAR(10) COLLATE latin1_german1_ci,

c4 BINARY(40)

) CHARACTER SET utf8;

The resulting table has utf8 as its default character set. No COLLATE table option is
given, so the default table collation is the default utf8 collation (which is
utf8_general_ci).The c1 column definition contains no CHARACTER SET or COLLATE
attributes of its own, so the table defaults are used for it.The table-level character set and
collation are not used for c2, c3, and c4: c2 and c3 have their own character set informa-
tion, and c4 has a binary string type, so the character set attributes do not apply. For c2,
the collation is latin2_general_ci, the default collation for latin2. For c3, the charac-
ter set is latin1, as implied by the collation name latin1_german1_ci.

To see character set information for an existing table, use SHOW CREATE TABLE:

mysql> SHOW CREATE TABLE mytbl\G

*************************** 1. row ***************************

Table: mytbl

Create Table: CREATE TABLE `mytbl` (

`c1` char(10) default NULL,

`c2` char(40) character set latin2 default NULL,

`c3` char(10) character set latin1 collate latin1_german1_ci default NULL,

`c4` binary(40) default NULL

) ENGINE=MyISAM DEFAULT CHARSET=utf8

2393.2 MySQL Data Types

If SHOW CREATE TABLE does not display a column character set, it is the same as the
table default character set. If it does not display a column collation, it is the default colla-
tion for the character set.

You can also add the FULL keyword to SHOW COLUMNS to cause it to display collation
information (from which character sets can be derived):

mysql> SHOW FULL COLUMNS FROM mytbl;

+-------+------------+-------------------+------+-----+---------+...

| Field | Type | Collation | Null | Key | Default |...

+-------+------------+-------------------+------+-----+---------+...

| c1 | char(10) | utf8_general_ci | YES | | NULL |...

| c2 | char(40) | latin2_general_ci | YES | | NULL |...

| c3 | char(10) | latin1_german1_ci | YES | | NULL |...

| c4 | binary(40) | NULL | YES | | NULL |...

+-------+------------+-------------------+------+-----+---------+...

The preceding discussion mentions column and table character set assignments, but
character sets actually can be designated at the column, table, database, or server level.
When MySQL processes a character column definition, it determines which character set
to use for it by trying the following rules in order:

1. If the column definition includes a character set, use that set. (This includes the case
where only a COLLATE attribute is present, because that implies which character set
to use.)

2. Otherwise, if the table definition includes a table character set option, use that set.

3. Otherwise, use the database character set as the table default character set, which
also becomes the column character set. If the database was never assigned a charac-
ter set explicitly (for example, if it was created prior to MySQL 4.1), the database
character set is taken from the server character set.

In other words, MySQL searches up through the levels at which character sets may be
specified until it finds a character set defined, and then uses that for the column.The data-
base always has a default character set, so the search process is guaranteed to terminate at
the database level even if no character set is specified explicitly at any of the lower levels.

The character set name binary is special. If you assign the binary character set to a
non-binary string column, that is equivalent to defining the column using the correspon-
ding binary string type.The following pairs of column definitions each show two equiva-
lent definitions:

c1 CHAR(10) CHARACTER SET binary

c1 BINARY(10)

c2 VARCHAR(10) CHARACTER SET binary

c2 VARBINARY(10)

c3 TEXT CHARACTER SET binary

c3 BLOB

240 Chapter 3 Data Types

If you specify CHARACTER SET binary for a binary string column, it is ignored because
the type already is binary. If you specify CHARACTER SET binary for an ENUM or SET, it is
used as is.

If you assign the binary character set as a table option, it applies to each string column
that does not have any character set information specified in its own definition.

MySQL provides some shortcut attributes for defining character columns:

n The ASCII attribute is shorthand for CHARACTER SET latin1.
n The UNICODE attribute is shorthand for CHARACTER SET ucs2.
n If you use the BINARY attribute for a non-binary string column, ENUM, or SET, it is

shorthand for specifying the binary collation of the column’s character set. For
example, assuming a table default character set of latin1, these definitions are
equivalent:

c1 CHAR(10) BINARY

c2 CHAR(10) CHARACTER SET latin1 BINARY

c3 CHAR(10) CHARACTER SET latin1 COLLATE latin1_bin

If you specify the BINARY attribute for a binary string column, it is ignored because
the type already is binary.

The general attributes NULL or NOT NULL can be specified for any of the string types. If
you don’t specify either of them, NULL is the default. However, defining a string column as
NOT NULL does not prevent you from storing an empty string (that is, '') in the column.
In MySQL, an empty value is different from a missing value, so don’t make the mistake of
thinking that you can force a string column to contain non-empty values by defining it
NOT NULL. If you require string values to be non-empty, that is a constraint you must en-
force from within your own applications.

You can also specify a default value using a DEFAULT clause for all string data types ex-
cept the BLOB and TEXT types. Section 3.2.3,“Specifying Column Default Values,” earlier
in this chapter, described the rules that MySQL uses for assigning a default value if a col-
umn definition includes no DEFAULT clause.

3.2.5.6 Choosing String Data Types
When you choose a data type for a string column, consider the following questions:

Are values represented as character or binary data? For character data, non-binary
string types are most appropriate. For binary data, use a binary string type.

Do you want comparisons to be lettercase-aware? If so, use one of the non-binary
string types, because those store characters and are associated with a character set and
collation.

The case sensitivity of non-binary string values for comparison and sorting purposes is
controlled by the collation that you assign to them. If you want string values to be re-
garded equal regardless of lettercase, use a case-insensitive collation. Otherwise, use either
a binary or case-sensitive collation.A binary collation compares character units using the

2413.2 MySQL Data Types

numeric character codes.A case-sensitive collation compares character units using a spe-
cific collating order, which need not correspond to character code order. In either case,
the lowercase and uppercase versions of a given character are considered distinct for com-
parisons. Suppose that 'mysql', 'MySQL', and 'MYSQL' are strings in the latin1 character
set.They are all considered the same if compared using a case-insensitive collation such as
latin1_swedish_ci, but as three different strings if compared using the binary
latin1_bin collation or case-sensitive latin1_general_cs collation.

If you want to use a string column both for case-sensitive and not case-sensitive com-
parisons, use a collation that corresponds to the type of comparison you will perform
most often. For comparisons of the other type, apply the COLLATE operator to change the
collation. For example, if mycol is a CHAR column that uses the latin1 character set, you
can assign it the latin1_swedish_ci collation to perform case-insensitive comparisons
by default.The following comparison is not case sensitive:

mycol = 'ABC'

For those times when you need case-sensitive comparisons, use the latin1_general_
cs or latin1_bin collation.The following comparisons are case sensitive (it doesn’t mat-
ter whether you apply the COLLATE operator to the left hand string or the right hand
string):

mycol COLLATE latin1_general_cs = 'ABC'

mycol COLLATE latin1_bin = 'ABC'

mycol = 'ABC' COLLATE latin1_general_cs

mycol = 'ABC' COLLATE latin1_bin

Do you want to minimize storage requirements? If so, use a variable-length type,
not a fixed-length type.

Will the allowable column values always be chosen from a fixed set of legal
values? If so, ENUM or SET might be a good choice.

ENUM also can be useful if you have a limited set of string values that you want to sort
in some non-lexical order. Sorting of ENUM values occurs according to the order in which
you list the enumeration values in the column definition, so you can make the values sort
in any order you want.

Are trailing pad values significant? If values must be retrieved exactly as they are
stored without addition or removal of trailing spaces (or 0x00 bytes, for binary data types)
during storage or retrieval, use a TEXT or VARCHAR column for non-binary strings and a
BLOB or VARBINARY column for binary strings.This factor is important also if you are stor-
ing compressed, hashed, or encrypted values computed in such a way that the encoding
method might result in trailing spaces.Table 3.12 shows how trailing padding is handled
for storage and retrieval operations for various string data types.

As of MySQL 5.1.20, you can enable the PAD_CHAR_TO_FULL_LENGTH SQL mode to
cause retrieved CHAR column values to retain trailing spaces. For BINARY columns prior to
MySQL 5.0.15, short values are padded with spaces for storage and trailing spaces are
stripped for retrieval.

242 Chapter 3 Data Types

3.2.6 Date and Time Data Types
MySQL provides several data types for storing temporal values: DATE, TIME, DATETIME,
TIMESTAMP, and YEAR.Table 3.13 shows these types and the range of legal values for each
type.The storage requirements for each type are shown in Table 3.14.

Each date and time type has a “zero” value that is stored when you insert a value that
is illegal for the type, as shown in Table 3.15.The “zero” value also is the default value for
date and time columns that are defined with the NOT NULL constraint. Depending on the
SQL mode, illegal values might be treated as errors and rejected; see Section 3.3,
“HowMySQL Handles Invalid Data Values.”

Table 3.13 Date and Time Data Types

Type Specification Range

DATE '1000-01-01' to '9999-12-31'

TIME '-838:59:59' to '838:59:59'

DATETIME '1000-01-01 00:00:00' to '9999-12-31 23:59:59'

TIMESTAMP '1970-01-01 00:00:01' to '2038-01-19 03:14:07'

YEAR[(M)] 1901 to 2155 for YEAR(4), and 1970 to 2069 for YEAR(2)

Table 3.14 Date and Time Data Type Storage Requirements

Type Specification Storage Required

DATE 3 bytes

TIME 3 bytes

DATETIME 8 bytes

TIMESTAMP 4 bytes

YEAR 1 byte

Table 3.12 String Data Type Pad-Value Handling

Data Type Storage Retrieval Result

CHAR Padded Stripped Retrieved values have no trailing
padding

BINARY Padded No action Retrieved values have no trailing
padding

VARCHAR,
VARBINARY

No action No action Trailing padding is not changed

TEXT, BLOB No action No action Trailing padding is not changed

2433.2 MySQL Data Types

MySQL always represents dates with the year first, in accordance with the standard
SQL and ISO 8601 specifications. For example, December 3, 2008, is represented as
'2008-12-03'. However, MySQL does allow some leeway in how you can specify input
dates. For example, it will convert two-digit year values to four digits, and you need not
supply a leading zero digit for month and day values that are less than 10. However, you
must specify the year first and the day last. Formats that you may be more used to, such as
'12/3/99' or '3/12/99', will not be interpreted as you might intend. In such cases, you
might find the STR_TO_DATE() function useful for converting strings in non-ISO format
to ISO-format dates. Section 3.2.6.5,“Working with Date and Time Values,” further dis-
cusses the date interpretation rules that MySQL uses.

For combined date and time values, it is allowable to specify a ‘T’ character rather than
a space between the date and time (for example, '2008-12-31T12:00:00').

Time or combined date and time values can include a microseconds part following the
time, consisting of a decimal point and up to six digits. (For example, '12:30:15.5' or
'2008-06-15 10:30:12.000045'.) However, current support in MySQL for microsec-
ond values is only partial. Some temporal functions use them, but you cannot store a tem-
poral value that includes a microseconds part in a table; the microseconds part is
discarded.

For retrieval, you can display date and time values in a variety of formats by using the
DATE_FORMAT() and TIME_FORMAT() functions.

3.2.6.1 The DATE, TIME, and DATETIME Data Types
The DATE and TIME types hold date and time values.The DATETIME type holds combined
date and time values.The formats for the three types of values are 'CCYY-MM-DD',
'hh:mm:ss', and 'CCYY-MM-DD hh:mm:ss', where CC, YY, MM, DD hh, mm, and ss

represent century, year, month, day, hour, minute, and second, respectively.
For the DATETIME type, the date and time parts are both required; if you assign a DATE

value to a DATETIME column, MySQL automatically adds a time part of '00:00:00'.
Conversions work in the other direction as well. If you assign a DATETIME value to a DATE
or TIME column, MySQL discards the part that is irrelevant:

mysql> CREATE TABLE t (dt DATETIME, d DATE, t TIME);

mysql> INSERT INTO t (dt,d,t) VALUES(NOW(), NOW(), NOW());

mysql> SELECT * FROM t;

Table 3.15 Date and Time Type “Zero” Values

Type Specification Zero Value

DATE '0000-00-00'

TIME '00:00:00'

DATETIME '0000-00-00 00:00:00'

TIMESTAMP '0000-00-00 00:00:00'

YEAR 0000

244 Chapter 3 Data Types

+---------------------+------------+----------+

| dt | d | t |

+---------------------+------------+----------+

| 2007-09-14 10:26:26 | 2007-09-14 | 10:26:26 |

+---------------------+------------+----------+

MySQL treats the time in DATETIME and TIME values slightly different. For DATETIME,
the time part represents a time of day and must be in the range from '00:00:00' to
'23:59:59'.A TIME value, on the other hand, represents elapsed time—that’s why the
range shown in Table 3.13 for TIME columns includes values larger than '23:59:59' and
negative values.

One thing to watch out when inserting TIME values into a table is that if you use a
“short” (not fully qualified) value, it may not be interpreted as you expect. For example,
you’ll probably find that if you insert '30' and '12:30', into a TIME column, one value
will be interpreted from right to left and the other from left to right, resulting in stored
values of '00:00:30' and '12:30:00'. If you consider '12:30' to represent a value of
“12 minutes, 30 seconds,” you should specify it in fully qualified form as '00:12:30'.

3.2.6.2 The TIMESTAMP Data Type
TIMESTAMP is a temporal data type that stores combined date and time values. (The word
“timestamp” might appear to connote time only, but that is not the case.) The TIMESTAMP
data type has the special properties noted in the following discussion.

TIMESTAMP columns have a range of values from '1970-01-01 00:00:01' to '2038-

01-19 03:14:07'.The range is tied to Unix time, where the first day of 1970 is “day
zero,” also known as “the epoch.” Values are stored as a four-byte number of seconds since
the epoch.The beginning of 1970 determines the lower end of the TIMESTAMP range.The
upper end of the range corresponds to the maximum four-byte value for Unix time.

Values are stored in Universal Coordinated Time (UTC).When you store a TIMESTAMP
value, the server converts it from the connection’s time zone to UTC.When you retrieve
the value later, the server converts it back from UTC to the connection’s time zone, so
you see the same value that you stored. However, if another client connects to the server,
uses a different time zone, and retrieves the value, it will see the value adjusted to its own
time zone. In fact, you can see this effect within a single connection if you change your
own time zone:

mysql> CREATE TABLE t (ts TIMESTAMP);

mysql> SET time_zone = '+00:00'; # set time zone to UTC

mysql> INSERT INTO t VALUES('2000-01-01 00:00:00');

mysql> SELECT ts FROM t;

+---------------------+

| ts |

+---------------------+

2453.2 MySQL Data Types

| 2000-01-01 00:00:00 |

+---------------------+

mysql> SET time_zone = '+03:00'; # advance time zone 3 hours

mysql> SELECT ts FROM t;

+---------------------+

| ts |

+---------------------+

| 2000-01-01 03:00:00 |

+---------------------+

These examples specify time zones using values given as a signed offset in hours and
minutes relative to UTC. It is also possible to use named time zones such as
'Europe/Zurich' if the server time zone tables have been set up as described in Section
12.9.1,“Configuring Time Zone Support.”

TIMESTAMP has automatic initialization and update properties.You can designate any
single TIMESTAMP column in a table to have either or both of these properties:

n “Automatic initialization” means that for new rows the column is set to the current
timestamp if you omit it from the INSERT statement or set it to NULL.

n “Automatic update” means that for existing rows the column is updated to the cur-
rent timestamp when you change any other column. Setting a column to its current
value does not count as a change.You must set it to a different value for automatic
update to occur.

In addition, if you set any TIMESTAMP column to NULL, its value is set to the current
timestamp.You can defeat this by defining the column with the NULL attribute to allow
NULL values to be stored in the column.

Only one TIMESTAMP column in a table can be designated to have automatic proper-
ties.You cannot have automatic initialization for one TIMESTAMP column and automatic
update for another. Nor can you have automatic initialization for multiple columns, or
automatic update for multiple columns.

The syntax for specifying a TIMESTAMP column is as follows, assuming a column name
of ts:

ts TIMESTAMP [DEFAULT constant_value] [ON UPDATE CURRENT_TIMESTAMP]

The DEFAULT and ON UPDATE attributes can be given in any order, if both are given.
The default value can be CURRENT_TIMESTAMP or a constant value such as 0 or a value in
'CCYY-MM-DD hh:mm:ss' format. Synonyms for CURRENT_TIMESTAMP are
CURRENT_TIMESTAMP() and NOW(); they’re all interchangeable in a TIMESTAMP definition.

246 Chapter 3 Data Types

To have one or both of the automatic properties for the first TIMESTAMP column in
a table, you can define it using various combinations of the DEFAULT and ON UPDATE

attributes:

n With DEFAULT CURRENT_TIMESTAMP, the column has automatic initialization. It also
has automatic update if ON UPDATE CURRENT_TIMESTAMP is given.

n With neither attribute, MySQL defines the column with both DEFAULT
CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP.

n With a DEFAULT constant_value attribute that specifies a constant value, the
column does not have automatic initialization. It does have automatic update if
ON UPDATE CURRENT_TIMESTAMP is given.

n Without DEFAULT but with ON UPDATE CURRENT_TIMESTAMP, the default value is 0
and the column has automatic update.

To use automatic initialization or update for a TIMESTAMP column other than the first
one, you must explicitly define the first one with a DEFAULT constant_value attribute
and without ON UPDATE CURRENT_TIMESTAMP.Then you can use DEFAULT
CURRENT_TIMESTAMP or ON UPDATE CURRENT_TIMESTAMP (or both) with any other single
TIMESTAMP column.

If you want to defeat automatic initialization or update for a TIMESTAMP column, set it
explicitly to the desired value for insert or update operations. For example, you can pre-
vent an update from changing the column by setting the column to its current value.

TIMESTAMP column definitions also can include NULL or NOT NULL.The default is NOT
NULL. Its effect is that when you explicitly set the column to NULL, MySQL sets it to the
current timestamp. (This is true both for inserts and updates.) If you specify NULL, setting
the column to NULL stores NULL rather than the current timestamp.

If you want a table to contain a column that is set to the current timestamp for new
rows and that remains unchanged thereafter, you can achieve that two ways:

n Use a TIMESTAMP column declared as follows without an ON UPDATE attribute:

ts TIMESTAMP DEFAULT CURRENT_TIMESTAMP

When you create a new row, initialize the column to the current timestamp by set-
ting it to NULL or by omitting it from the INSERT statement.The column will retain
its value for subsequent updates unless you change it explicitly.

n Use a DATETIME column.When you create a row, initialize the column to NOW().
Whenever you update the row thereafter, leave the column alone.

If you want a table to contain columns for both a time-created value and a last-
modified value, use two TIMESTAMP columns:

CREATE TABLE t

(

t_created TIMESTAMP DEFAULT 0,

t_modified TIMESTAMP DEFAULT CURRENT_TIMESTAMP

2473.2 MySQL Data Types

ON UPDATE CURRENT_TIMESTAMP

... other columns ...

);

When you insert a new row, set both TIMESTAMP columns to NULL to set them to the
insertion timestamp.When you update an existing row, leave both columns alone;
t_modified will be updated automatically to the modification timestamp if any other
columns change value.

3.2.6.3 The YEAR Data Type
YEAR is a one-byte data type intended for efficient representation of year values.A YEAR
column definition may include a specification for a display width M, which should be either
4 or 2. If you omit M from a YEAR definition, the default is 4. YEAR(4) has a range of 1901
to 2155. YEAR(2) has a range of 1970 to 2069, but only the last two digits are displayed.You
can use the YEAR type when you want to store date information but only need the year
part of the date, such as year of birth, year of election to office, and so forth.When you do
not require a full date value, YEAR is much more space-efficient than other date types.

TINYINT has the same storage size as YEAR (one byte), but not the same range.To cover
the same range of years as YEAR by using an integer type, you would need a SMALLINT,
which takes twice as much space. If the range of years you need to represent coincides
with the range of the YEAR type, YEAR is more space-efficient than SMALLINT.Another ad-
vantage of YEAR over an integer column is that MySQL converts two-digit values into
four-digit values for you using MySQL’s usual year-guessing rules. For example, 97 and 14

become 1997 and 2014. However, be aware that inserting the numeric value 00 into a
four-digit YEAR column results in the value 0000 being stored, not 2000. If you want a
value of 00 to convert to 2000, specify it in string form as '0' or '00'.

3.2.6.4 Date and Time Data Type Attributes
The following remarks apply to all temporal types except TIMESTAMP:

n The general attributes NULL or NOT NULL may be specified. If you don’t specify ei-
ther of them, NULL is the default.

n You can also specify a default value using a DEFAULT clause. Section 3.2.3,
“Specifying Column Default Values,” described the rules that MySQL uses for as-
signing a default value if a column definition includes no DEFAULT clause.

Note that because default values must be constants, you cannot use a function such
as NOW() to supply a value of “the current date and time” as the default for a
DATETIME column.To achieve that result, set the column value explicitly to NOW()
whenever you create a new row, or else consider using a TIMESTAMP column in-
stead.Alternatively, set up a trigger that initializes the column to the appropriate
value; see Section 4.3,“Triggers.”

TIMESTAMP columns are special; the default for the first such column in a table is the
current date and time, and the “zero” value for any others. However, the full set of rules

248 Chapter 3 Data Types

governing default values is more complex. See Section 3.2.6.2,“The TIMESTAMP Data
Type,” for details.

3.2.6.5 Working with Date and Time Values
MySQL tries to interpret input values for date and time columns in a variety of formats,
including both string and numeric forms.Table 3.16 shows the allowable formats for each
of the date and time types.

MySQL interprets formats that have no century part (CC) using the rules described in
Section 3.2.6.6,“Interpretation of Ambiguous Year Values.” For string formats that include
delimiter characters, you don’t have to use ‘-’ for dates and ‘:’ for times.Any punctuation
character may be used as the delimiter. Interpretation of values depends on context, not
on the delimiter. For example, although times are typically specified using a delimiter of
‘:’, MySQL won’t interpret a value containing ‘:’ as a time in a context where a date is
expected. In addition, for the string formats that include delimiters, you need not specify

Table 3.16 Date and Time Type Input Formats

Type Allowable Formats

DATETIME, 'CCYY-MM-DD hh:mm:ss'

TIMESTAMP 'YY-MM-DD hh:mm:ss'

'CCYYMMDDhhmmss'

'YYMMDDhhmmss'

CCYYMMDDhhmmss

YYMMDDhhmmss

DATE 'CCYY-MM-DD'

'YY-MM-DD'

'CCYYMMDD'

'YYMMDD'

CCYYMMDD

YYMMDD

TIME 'hh:mm:ss'

'hhmmss'

hhmmss

YEAR 'CCYY'

'YY'

CCYY

YY

2493.2 MySQL Data Types

two digits for month, day, hour, minute, or second values that are less than 10.The follow-
ing are all equivalent:

'2012-02-03 05:04:09'

'2012-2-03 05:04:09'

'2012-2-3 05:04:09'

'2012-2-3 5:04:09'

'2012-2-3 5:4:09'

'2012-2-3 5:4:9'

MySQL may interpret values with leading zeros in different ways depending on
whether they are specified as strings or numbers.The string '001231' will be seen as a
six-digit value and interpreted as '2000-12-31' for a DATE, and as '2000-12-31
00:00:00' for a DATETIME. On the other hand, the number 001231 will be seen as 1231
after the parser gets done with it and then the interpretation becomes problematic.This is
a case where it’s best to supply a string value '001231', or else use a fully qualified value
if you are using numbers (that is, 20001231 for DATE and 200012310000 for DATETIME).

In general, you may freely assign values between the DATE, DATETIME, and TIMESTAMP
types, although there are certain restrictions to keep in mind:

n If you assign a DATETIME or TIMESTAMP value to a DATE, the time part is discarded.
n If you assign a DATE value to a DATETIME or TIMESTAMP, the time part of the result-

ing value is set to zero ('00:00:00').
n The types have different ranges. In particular, TIMESTAMP has a more limited range

(1970 to 2038); so, for example, you cannot assign a pre-1970 DATETIME value to a
TIMESTAMP and expect reasonable results. Nor can you assign values that are far in
the future to a TIMESTAMP.

MySQL provides many functions for working with date and time values. See
Appendix C for more information.

3.2.6.6 Interpretation of Ambiguous Year Values
For all date and time types that include a year part (DATE, DATETIME, TIMESTAMP, YEAR),
MySQL handles values that contain two-digit years by converting them to four-digit
years:

n Year values from 00 to 69 become 2000 to 2069
n Year values from 70 to 99 become 1970 to 1999

You can see the effect of these rules most easily by storing different two-digit values
into a YEAR column and then retrieving the results.This also demonstrates something you
should take note of:

mysql> CREATE TABLE y_table (y YEAR);

mysql> INSERT INTO y_table VALUES(68),(69),(99),(00),('00');

250 Chapter 3 Data Types

mysql> SELECT * FROM y_table;

+------+

| y |

+------+

| 2068 |

| 2069 |

| 1999 |

| 0000 |

| 2000 |

+------+

Observe that 00 is converted to 0000, not to 2000.That’s because, as a number, 00 is
the same as 0, and is a perfectly legal value for the YEAR type. If you insert a numeric zero,
that’s what you get.To get 2000 using a value that does not contain the century, insert the
string '0' or '00'.You can make sure that MySQL sees a string and not a number by in-
serting YEAR values using CAST(value AS CHAR) to produce a string result uniformly re-
gardless of whether value is a string or a number.

Keep in mind that the rules for converting two-digit to four-digit year values provide
only a reasonable guess.There is no way for MySQL to be certain about the meaning of a
two-digit year when the century is unspecified. MySQL’s conversion rules are adequate
for many situations, but if they don’t produce the values that you want, it is necessary to
provide unambiguous data with four-digit years. For example, to enter birth and death
dates into the president table, which lists U.S. presidents back into the 1700s, four-digit
year values are in order.Values in these columns span several centuries, so letting MySQL
guess the century from a two-digit year is definitely the wrong thing to do.

3.2.7 Spatial Data Types
Spatial values enable representation of values such as points, lines, and polygons.These
data types are implemented per the OpenGIS specification, which is available at the Open
Geospatial Consortium Web site (http://www.opengeospatial.org/).Table 3.17 lists the
spatial data types that MySQL supports.

Table 3.17 Spatial Data Types

Type Name Meaning

GEOMETRY A spatial value of any type

POINT A point (a pair of X,Y coordinates)

LINESTRING A curve (one or more POINT values)

POLYGON A polygon

GEOMETRYCOLLECTION A collection of GEOMETRY values

MULTILINESTRING A collection of LINESTRING values

MULTIPOINT A collection of POINT values

MULTIPOLYGON A collection of POLYGON values

http://www.opengeospatial.org/

2513.2 MySQL Data Types

The level of support for spatial types varies by storage engine.The most complete sup-
port is implemented in MyISAM. Other engines such as InnoDB, NDB, and ARCHIVE
offer more limited support. For example, in MyISAM tables, spatial values can be indexed
using either SPATIAL or non-SPATIAL indexes (using INDEX, UNIQUE, or PRIMARY KEY).
Other engines that support spatial data types can use only non-SPATIAL indexes (except
ARCHIVE, which cannot index spatial columns at all). If a table is partitioned, it cannot
contain spatial columns.

Spatial columns included in a SPATIAL index cannot use NULL to represent missing val-
ues within columns, because SPATIAL indexes do not allow NULL values. Depending on
your application, it might be acceptable to use an empty (zero-dimensional) value instead.

MySQL works with spatial values in three formats. One is the internal format that
MySQL uses for storing spatial values in tables.The other two are the Well-Known Text
(WKT) and Well-Known Binary (WKB) formats; these are standards for representing spa-
tial values as text strings or in binary format.The syntax for text strings and the binary
representation are defined in the OpenGIS specification. For example, the WKT format
for a POINT value with coordinates of x and y is written as a string:

'POINT(x y)'

Note the absence of a comma between the coordinate values. In lists of multiple coor-
dinates, commas separate pairs of x and y values.The following string represents a
LINESTRING value consisting of several points:

'LINESTRING(10 20, 0 0, 10 20, 0 0)'

More complex values have a more complex representation.This POLYGON has a rectan-
gular outer boundary and a triangular inner boundary:

'POLYGON((0 0, 100 0, 100 100, 0 100, 0 0),(30 30, 30 60, 45 60, 30 30))'

Because spatial values can be complex, most operations on them are done by invoking
functions.The set of spatial functions is extensive and includes functions for converting
from one format to another (see Appendix C).

The following example shows how to use several aspects of spatial support:

mysql> CREATE TABLE pt_tbl (p POINT);

mysql> INSERT INTO pt_tbl (p) VALUES

-> (POINTFROMTEXT('POINT(0 0)')),

-> (POINTFROMTEXT('POINT(0 50)')),

-> (POINTFROMTEXT('POINT(100 100)'));

mysql> CREATE FUNCTION dist (p1 POINT, p2 POINT)

-> RETURNS FLOAT DETERMINISTIC

-> RETURN SQRT(POW(X(p2)-X(p1),2) + POW(Y(p2)-Y(p1),2));

mysql> SET @ref_pt = POINTFROMTEXT('POINT(0 0)');

mysql> SELECT ASTEXT(p), dist (p, @ref_pt) AS dist FROM pt_tbl;

+----------------+-----------------+

252 Chapter 3 Data Types

| ASTEXT(p) | dist |

+----------------+-----------------+

| POINT(0 0) | 0 |

| POINT(0 50) | 50 |

| POINT(100 100) | 141.42135620117 |

+----------------+-----------------+

The example performs these operations:

1. It creates a table that includes a spatial column.

2. It populates the table with some POINT values, using the POINTFROMTEXT() func-
tion that produces an internal-format value from a WKT representation.

3. It creates a stored function that computes the distance between two points, using
the X() and Y() functions to extract point coordinates.

4. It computes the distance of each point in the table from a given reference point.

3.3 How MySQL Handles Invalid Data Values
Historically, the dominant principle for data handling in MySQL has been,“Garbage in,
garbage out.” In other words, MySQL attempts to store any data value you give it, but if
you don’t verify the value first before storing it, you may not like what you get back out.
However, as of MySQL 5.0.2, several SQL modes are available that enable you to reject
bad values and cause an error to occur instead.The following discussion first discusses
how MySQL handles improper data by default, and then covers the changes that occur
when you enable the various SQL modes that affect data handling.

By default, MySQL handles out-of-range or otherwise improper values as follows:

n For numeric or TIME columns, values that are outside the legal range are clipped to
the nearest endpoint of the range and the resulting value is stored.

n For string columns other than ENUM or SET, strings that are too long are truncated
to fit the maximum length of the column.

n Assignments to an ENUM or SET column depend on the values that are listed as legal
in the column definition. If you assign to an ENUM column a value that is not listed
as an enumeration member, the error member is assigned instead (that is, the empty
string that corresponds to the zero-valued member). If you assign to a SET column
a value containing substrings that are not listed as set members, those strings drop
out and the column is assigned a value consisting of the remaining members.

n For date or time columns, illegal values are converted to the appropriate “zero”
value for the type (see Table 3.15).

These conversions are reported as warnings for statements such as INSERT, REPLACE,
UPDATE, LOAD DATA, and ALTER TABLE.You can use SHOW WARNINGS after executing one
of those statements to see the warning messages.

2533.3 How MySQL Handles Invalid Data Values

To turn on stricter checking of inserted or updated data values, enable one of the fol-
lowing SQL modes:

mysql> SET sql_mode = 'STRICT_ALL_TABLES';

mysql> SET sql_mode = 'STRICT_TRANS_TABLES';

For transactional tables, both modes are identical: If an invalid or missing value is
found, an error occurs, the statement aborts and rolls back, and has no effect. For non-
transactional tables, the modes have the following effects:

n For both modes, if an invalid or missing value is found in the first row of a state-
ment that inserts or updates rows, an error occurs.The statement aborts and has no
effect, which is similar to what happens for transactional tables.

n If an error occurs after the first row in a statement that inserts or updates multiple
rows, some rows already will have been modified.The two strict modes control
whether the statement aborts at that point or continues to execute:

n With STRICT_ALL_TABLES, an error occurs and the statement aborts. Rows
affected earlier by the statement will already have been modified, so the result
is a partial update.

n With STRICT_TRANS_TABLES, MySQL aborts the statement for non-
transactional tables only if doing so would have the same effect as for a trans-
actional table.That is true only if the error occurs in the first row; an error in
a later row leaves the earlier rows already changed.Those changes cannot be
undone for a non-transactional table, so MySQL continues to execute the
statement to avoid a partial update. It converts each invalid value to the clos-
est legal value, as defined earlier in this section. For a missing value, MySQL
sets the column to the implicit default for its data type. Implicit defaults were
described in Section 3.2.3,“Specifying Column Default Values.”

Strict mode actually does not enable the strictest checking that MySQL can per-
form.You can enable any or all of the following modes to impose additional constraints
on input data:

n ERROR_FOR_DIVISION_BY_ZERO prevents entry of values if division by zero occurs
in strict mode. (Without strict mode, a warning occurs and NULL is inserted.)

n NO_ZERO_DATE prevents entry of the “zero” date value in strict mode.
n NO_ZERO_IN_DATE prevents entry of incomplete date values that have a month or

day part of zero in strict mode.

For example, to enable strict mode for all storage engines and also check for divide-
by-zero errors, set the SQL mode like this:

mysql> SET sql_mode = 'STRICT_ALL_TABLES,ERROR_FOR_DIVISION_BY_ZERO';

To turn on strict mode and all of the additional restrictions, you can simply enable
TRADITIONAL mode:

mysql> SET sql_mode = 'TRADITIONAL';

254 Chapter 3 Data Types

TRADITIONAL is shorthand for “both strict modes, plus a bunch of other restrictions.”
This is more like the way that other “traditional” SQL DBMSs act with regard to data
checking.

It is also possible to selectively weaken strict mode in some respects. If you enable the
ALLOW_INVALID_DATES SQL mode, MySQL doesn’t perform full checking of date parts.
Instead, it requires only that months be in the range from 1 to 12 and days be in the
range from 1 to 31 (which allows invalid values such as '2000-02-30' or '2000-06-31').
Another way to suppress errors is to use the IGNORE keyword with INSERT or UPDATE
statements.With IGNORE, statements that would result in an error due to invalid values re-
sult only in a warning.

The various options available give you the flexibility to choose the level of validity
checking that is appropriate for your applications.

3.4 Working with Sequences
Many applications need to generate unique numbers for identification purposes.The re-
quirement for unique values occurs in a number of contexts: membership numbers, sam-
ple or lot numbering, customer IDs, bug report or trouble ticket tags, and so forth.

MySQL’s mechanism for providing unique numbers is through the AUTO_INCREMENT
column attribute, which enables you to generate sequential numbers automatically. How-
ever, AUTO_INCREMENT columns are handled somewhat differently by the various storage
engines that MySQL supports, so it’s important to understand not only the general con-
cepts underlying the AUTO_INCREMENT mechanism, but also the differences between stor-
age engines.This section describes how AUTO_INCREMENT columns work in general and
for specific storage engines so that you can use them effectively without running into the
traps that sometimes surprise people. It also describes how you can generate a sequence
without using an AUTO_INCREMENT column.

3.4.1 General AUTO_INCREMENT Properties
AUTO_INCREMENT columns must be defined according to the following conditions:

n There can be only one column per table with the AUTO_INCREMENT attribute and it
should have an integer data type. (AUTO_INCREMENT is also allowed for floating-
point types, but is rarely used that way.)

n The column must be indexed. It is most common to use a PRIMARY KEY or UNIQUE
index, but it is allowable to use a non-unique index.

n The column must have a NOT NULL constraint. MySQL makes the column NOT
NULL even if you don’t explicitly declare it that way.

Once created, an AUTO_INCREMENT column behaves like this:

n Inserting NULL into an AUTO_INCREMENT column causes MySQL to generate the
next sequence number automatically and insert that value into the column.

2553.4 Working with Sequences

AUTO_INCREMENT sequences normally begin at 1 and increase monotonically, so suc-
cessive rows inserted into a table get sequence values of 1, 2, 3, and so forth. Under
some circumstances and depending on the storage engine, it may be possible to set
or reset the next sequence number explicitly or to reuse values deleted from the
top end of the sequence.

n The value of the most recently generated sequence number can be obtained by
calling the LAST_INSERT_ID() function.This enables you to reference the
AUTO_INCREMENT value in subsequent statements even without knowing what the
value is. LAST_INSERT_ID() returns 0 if no AUTO_INCREMENT value has been gener-
ated during the current connection.

LAST_INSERT_ID() is tied only to AUTO_INCREMENT values generated during the
current connection to the server. In particular, it is not affected by AUTO_INCREMENT
activity associated with other clients.You can generate a sequence number, and then
call LAST_INSERT_ID() to retrieve it later in the same connection, even if other
clients have generated their own sequence values in the meantime.

For a multiple-row INSERT that generates several AUTO_INCREMENT values,
LAST_INSERT_ID() returns the first one.

If you use INSERT DELAYED for storage engines that support delayed inserts, the
AUTO_INCREMENT value is not generated until the row actually is inserted. In this
case, LAST_INSERT_ID() cannot be relied on to return the sequence value.

n Inserting a row without specifying an explicit value for the AUTO_INCREMENT col-
umn is the same as inserting NULL into the column. If ai_col is an
AUTO_INCREMENT column, these statements are equivalent:

INSERT INTO t (ai_col,name) VALUES(NULL,'abc');

INSERT INTO t (name) VALUES('abc');

n By default, inserting 0 into an AUTO_INCREMENT column has the same effect as in-
serting NULL. If you enable the NO_AUTO_VALUE_ON_ZERO SQL mode, inserting a 0
results in a 0 being stored, not the next sequence value.

n If you insert a row and specify a non-NULL, non-zero value for an AUTO_INCREMENT
column that has a unique index, one of two things will happen. If a row already ex-
ists with that value, a duplicate-key error occurs. If a row does not exist with that
value, the row is inserted with the AUTO_INCREMENT column set to the given value.
If this value is larger than the current next sequence number, the sequence is reset
to continue with the next value after that for subsequent rows. In other words, you
can “bump up” the counter by inserting a row with a sequence value greater than
the current counter value.

Bumping up the counter can result in gaps in the sequence, but you also can exploit
this behavior to generate a sequence that begins at a value higher than 1. Suppose
that you create a table with an AUTO_INCREMENT column, but you want the sequence
to begin at 1000 rather than at 1.To achieve this, insert a “fake” row with a value of

256 Chapter 3 Data Types

999 in the AUTO_INCREMENT column. Rows inserted subsequently are assigned se-
quence numbers beginning with 1000, after which you can delete the fake row.

Why might you want to begin a sequence with a value higher than 1? One reason
is to make sequence numbers all have the same number of digits. If you’re generat-
ing customer ID numbers, and you expect never to have more than a million cus-
tomers, you could begin the series at 1,000,000.You’ll be able to add well over a
million customer records before the digit count for customer ID values changes.

n For some storage engines, values deleted from the top of a sequence are reused. In
this case, if you delete the row containing the largest value in an AUTO_INCREMENT
column, that value is reused the next time you generate a new value.An implication
of this property is that if you delete all the rows in the table, all values are reused
and the sequence starts over beginning at 1.

n If you use UPDATE to set an AUTO_INCREMENT column to a value that already exists
in another row, a duplicate-key error occurs if the column has a unique index. If
you update the column to a value larger than any existing column value, the se-
quence continues with the next number after that for subsequent rows. If you up-
date the column by assigning 0 to it, it is set to 0 (regardless of whether
NO_AUTO_VALUE_ON_ZERO is enabled).

n If you use REPLACE to update a row based on the value of the AUTO_INCREMENT col-
umn, the AUTO_INCREMENT value does not change. If you use REPLACE to update a
row based on the value of some other PRIMARY KEY or UNIQUE index, the
AUTO_INCREMENT column is updated with a new sequence number if you set it to
NULL, or if you set it to 0 and NO_AUTO_VALUE_ON_ZERO is not enabled.

3.4.2 Storage Engine-Specific AUTO_INCREMENT Properties
The general AUTO_INCREMENT characteristics just described form the basis for understand-
ing sequence behavior specific to other storage engines. Most engines implement behav-
ior that for the most part is similar to that just described, so keep the preceding discussion
in mind as you read on.

3.4.2.1 AUTO_INCREMENT for MyISAM Tables
MyISAM tables offer the most flexibility for sequence handling.The MyISAM storage
engine has the following AUTO_INCREMENT characteristics:

n MyISAM sequences normally are monotonic.The values in an automatically gener-
ated series are strictly increasing and are not reused if you delete rows. If the maxi-
mum value is 143 and you delete the row containing that value, MySQL still
generates the next value as 144.There are two exceptions to this behavior:

2573.4 Working with Sequences

n If you empty a table with TRUNCATE TABLE, the counter is reset to begin at 1.
n Values deleted from the top of a sequence are reused if you use a composite

index to generate multiple sequences within a table. (This technique is dis-
cussed shortly.)

n MyISAM sequences begin at 1 by default, but it is possible to start the sequence at
a higher value.With MyISAM tables, you can specify the initial value explicitly by
using an AUTO_INCREMENT = n option in the CREATE TABLE statement.The follow-
ing example creates a MyISAM table with an AUTO_INCREMENT column named seq
that begins at 1,000,000:

CREATE TABLE mytbl

(

seq INT UNSIGNED NOT NULL AUTO_INCREMENT,

PRIMARY KEY (seq)

) ENGINE = MYISAM AUTO_INCREMENT = 1000000;

A table can have only one AUTO_INCREMENT column, so there is never any ambigu-
ity about the column to which the terminating AUTO_INCREMENT = n option ap-
plies, even if the table has multiple columns.

n You can change the current sequence counter for an existing MyISAM table with
ALTER TABLE. If the sequence currently stands at 1000, the following statement
causes the next number generated to be 2000:

ALTER TABLE mytbl AUTO_INCREMENT = 2000;

If you want to reuse values that have been deleted from the top of the sequence,
you can do that, too.The following statement will set the counter down as far as
possible, causing the next number to be one larger than the current maximum
sequence value:

ALTER TABLE mytbl AUTO_INCREMENT = 1;

You cannot use the AUTO_INCREMENT option to set the current counter lower than
the current maximum value in the table. If an AUTO_INCREMENT column contains
the values 1 and 10, using AUTO_INCREMENT = 5 sets the counter so that the next
automatic value is 11.

The MyISAM storage engine supports the use of composite (multiple-column) in-
dexes for creating multiple independent sequences within the same table.To use this
feature, create a multiple-column PRIMARY KEY or UNIQUE index that includes an
AUTO_INCREMENT column as its final column. For each distinct key in the leftmost column
or columns of the index, the AUTO_INCREMENT column will generate a separate sequence
of values. For example, you might use a table named bugs for tracking bug reports of
several software projects, where the table is defined as follows:

258 Chapter 3 Data Types

CREATE TABLE bugs

(

proj_name VARCHAR(20) NOT NULL,

bug_id INT UNSIGNED NOT NULL AUTO_INCREMENT,

description VARCHAR(100),

PRIMARY KEY (proj_name, bug_id)

) ENGINE = MYISAM;

Here, the proj_name column identifies the project name and the description col-
umn contains the bug description.The bug_id column is an AUTO_INCREMENT column; by
creating an index that ties it to the proj_name column, you can generate an independent
series of sequence numbers for each project. Suppose that you enter the following rows
into the table to register three bugs for SuperBrowser and two for SpamSquisher:

mysql> INSERT INTO bugs (proj_name,description)

-> VALUES('SuperBrowser','crashes when displaying complex tables');

mysql> INSERT INTO bugs (proj_name,description)

-> VALUES('SuperBrowser','image scaling does not work');

mysql> INSERT INTO bugs (proj_name,description)

-> VALUES('SpamSquisher','fails to block known blacklisted domains');

mysql> INSERT INTO bugs (proj_name,description)

-> VALUES('SpamSquisher','fails to respect whitelist addresses');

mysql> INSERT INTO bugs (proj_name,description)

-> VALUES('SuperBrowser','background patterns not displayed');

The resulting table contents are as follows:

mysql> SELECT * FROM bugs ORDER BY proj_name, bug_id;

+--------------+--------+--+

| proj_name | bug_id | description |

+--------------+--------+--+

| SpamSquisher | 1 | fails to block known blacklisted domains |

| SpamSquisher | 2 | fails to respect whitelist addresses |

| SuperBrowser | 1 | crashes when displaying complex tables |

| SuperBrowser | 2 | image scaling does not work |

| SuperBrowser | 3 | background patterns not displayed |

+--------------+--------+--+

The table numbers the bug_id values for each project separately, regardless of the or-
der in which rows are entered for projects.You need not enter all rows for one project
before you enter rows for another.

If you use a composite index to create multiple sequences, values deleted from the top
of each individual sequence are reused.This differs from the usual MyISAM behavior of
not reusing values.

2593.4 Working with Sequences

3.4.2.2 AUTO_INCREMENT for MEMORY Tables
The MEMORY storage engine has the following AUTO_INCREMENT characteristics:

n The initial sequence value can be set with an AUTO_INCREMENT = n table option in
the CREATE TABLE statement, and can be modified after table creation time using
that option with ALTER TABLE.

n Values that are deleted from the top of the sequence normally are not reused. If you
empty the table with TRUNCATE TABLE, the sequence is reset to begin at 1.

n Composite indexes cannot be used to generate multiple independent sequences
within a table.

3.4.2.3 AUTO_INCREMENT for InnoDB Tables
The InnoDB storage engine has the following AUTO_INCREMENT characteristics:

n As of MySQL 5.0.3, the initial sequence value can be set with an AUTO_INCREMENT
= n table option in the CREATE TABLE statement, and can be modified after table
creation time using that option with ALTER TABLE.

n Values that are deleted from the top of the sequence normally are not reused. If you
empty the table with TRUNCATE TABLE, the sequence is reset to begin at 1. Reuse
can occur under the following conditions as well.The first time that you generate a
sequence value for an AUTO_INCREMENT column, InnoDB uses one greater than the
current maximum value in the column (or 1 if the table is empty). InnoDB main-
tains this counter in memory for use in generating subsequent values; it is not
stored in the table itself.This means that if you delete values from the top of the se-
quence and then restart the server, the deleted values are reused. Restarting the
server also cancels the effect of using an AUTO_INCREMENT table option in a CREATE
TABLE or ALTER TABLE statement.

n Gaps in a sequence can occur if transactions that generate AUTO_INCREMENT values
are rolled back.

n Composite indexes cannot be used to generate multiple independent sequences
within a table.

3.4.3 Issues to Consider with AUTO_INCREMENT Columns
You should keep the following points in mind to avoid being surprised when you use
AUTO_INCREMENT columns:

n Although it is common to use the term “AUTO_INCREMENT column,”
AUTO_INCREMENT is not a data type; it’s a data type attribute. Furthermore,
AUTO_INCREMENT is an attribute intended for use only with integer or floating-point
types. Older versions of MySQL are lax in enforcing this constraint and will let you
define a data type such as CHAR with the AUTO_INCREMENT attribute. However, only
the integer or floating-point types work correctly as AUTO_INCREMENT columns.

260 Chapter 3 Data Types

n The primary purpose of the AUTO_INCREMENT mechanism is to enable you to gen-
erate a sequence of positive integers.The use of non-positive numbers in an
AUTO_INCREMENT column is unsupported. Consequently, you may as well define
AUTO_INCREMENT columns to be UNSIGNED.With integer columns, using UNSIGNED
also has the advantage of giving you twice as many sequence numbers before you
hit the upper end of the data type’s range.

n Don’t be fooled into thinking that adding AUTO_INCREMENT to a column definition
is a magic way of getting an unlimited sequence of numbers. It’s not;
AUTO_INCREMENT sequences are always bound by the range of the underlying data
type. For example, if you use a TINYINT column, the maximum sequence number is
127.When you reach that limit, your application begins to fail with duplicate-key
errors. If you use TINYINT UNSIGNED instead, the limit is extended to 255, but there
is still a limit.

n Clearing a table’s contents entirely with TRUNCATE TABLE may reset a sequence
to begin again at 1, even for storage engines that normally do not reuse
AUTO_INCREMENT values.The sequence reset occurs due to the way that MySQL
attempts to optimize a complete table erasure operation:When possible, it tosses
the data rows and indexes and re-creates the table from scratch rather than delet-
ing rows one at a time.This causes sequence number information to be lost. If
you want to delete all rows but preserve the sequence information, you can sup-
press this optimization by using DELETE with a WHERE clause that is always true, to
force MySQL to evaluate the condition for each row and thus to delete every
row individually:

DELETE FROM tbl_name WHERE TRUE;

3.4.4 Tips for Working with AUTO_INCREMENT Columns
This section describes some useful techniques for working with AUTO_INCREMENT
columns.

3.4.4.1 Adding a Sequence Number Column to a Table
Suppose that you create and populate a table:

mysql> CREATE TABLE t (c CHAR(10));

mysql> INSERT INTO t VALUES('a'),('b'),('c');

mysql> SELECT * FROM t;

+------+

| c |

+------+

| a |

| b |

| c |

+------+

2613.4 Working with Sequences

Then you decide that you want to include a sequence number column in the table.To
do this, issue an ALTER TABLE statement to add an AUTO_INCREMENT column, using the
same kind of type definition that you’d use with CREATE TABLE:

mysql> ALTER TABLE t ADD i INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY;

mysql> SELECT * FROM t;

+------+---+

| c | i |

+------+---+

| a | 1 |

| b | 2 |

| c | 3 |

+------+---+

Note how MySQL assigns sequence values to the AUTO_INCREMENT column automati-
cally.You need not do so yourself.

3.4.4.2 Resequencing an Existing Column
If a table already has an AUTO_INCREMENT column, but you want to renumber it to elimi-
nate gaps in the sequence that may have resulted from row deletions, the easiest way to do
it is to drop the column and then add it again.When MySQL adds the column, it assigns
new sequence numbers automatically.

Suppose that a table t looks like this, where i is the AUTO_INCREMENT column:

mysql> CREATE TABLE t (c CHAR(10), i INT UNSIGNED AUTO_INCREMENT

-> NOT NULL PRIMARY KEY);

mysql> INSERT INTO t (c)

-> VALUES('a'),('b'),('c'),('d'),('e'),('f'),('g'),('h'),('i'),('j'),('k');

mysql> DELETE FROM t WHERE c IN('a','d','f','g','j');

mysql> SELECT * FROM t;

+------+----+

| c | i |

+------+----+

| b | 2 |

| c | 3 |

| e | 5 |

| h | 8 |

| i | 9 |

| k | 11 |

+------+----+

The following ALTER TABLE statement drops the column and then adds it again,
renumbering the column in the process:

mysql> ALTER TABLE t

-> DROP PRIMARY KEY,

-> DROP i,

-> ADD i INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,

262 Chapter 3 Data Types

-> AUTO_INCREMENT = 1;

mysql> SELECT * FROM t;

+------+---+

| c | i |

+------+---+

| b | 1 |

| c | 2 |

| e | 3 |

| h | 4 |

| i | 5 |

| k | 6 |

+------+---+

The AUTO_INCREMENT = 1 clause resets the sequence to begin again at 1. For a
MyISAM, MEMORY, or InnoDB table, you can use a value other than 1 to begin the
sequence at a different value. For other storage engines, omit the AUTO_INCREMENT clause,
because they do not allow the initial value to be specified this way.The sequence will
begin at 1.

Note that although it’s easy to resequence a column, and the question,“How do you
do it?” is a common one, there is usually very little need to do so. MySQL doesn’t care
whether a sequence has holes in it, nor do you gain any performance efficiencies by rese-
quencing. In addition, if you have rows in another table that refer to the values in the
AUTO_INCREMENT column, resequencing the column destroys the correspondence between
tables.

3.4.5 Generating Sequences Without AUTO_INCREMENT
MySQL supports a method for generating sequence numbers that doesn’t use an AUTO_
INCREMENT column at all. Instead, it uses an alternative form of the LAST_INSERT_ID()
function that takes an argument. If you insert or update a column using LAST_INSERT_
ID(expr), the next call to LAST_INSERT_ID() with no argument returns the value of
expr. In other words, MySQL treats expr as though it was generated as an AUTO_
INCREMENT value.This enables you to create a sequence number and then retrieve it later
in your session, confident that the value will not have been affected by the activity of
other clients.

One way to use this strategy is to create a single-row table containing a value that you
update each time you want the next value in the sequence. For example, you can create
and initialize the table like this:

CREATE TABLE seq_table (seq INT UNSIGNED NOT NULL);

INSERT INTO seq_table VALUES(0);

Those statements set up seq_table with a single row containing a seq value of 0.To
use the table, generate the next sequence number and retrieve it like this:

UPDATE seq_table SET seq = LAST_INSERT_ID(seq+1);

SELECT LAST_INSERT_ID();

2633.4 Working with Sequences

The UPDATE statement retrieves the current value of the seq column and increments it
by 1 to produce the next value in the sequence. Generating the new value using
LAST_INSERT_ID(seq+1) causes it to be treated like an AUTO_INCREMENT value, which
allows it to be retrieved by calling LAST_INSERT_ID() without an argument.
LAST_INSERT_ID() is client-specific, so you get the correct value even if other clients have
generated other sequence numbers in the interval between the UPDATE and the SELECT.

Other uses for this method are to generate sequence values that increment by a value
other than 1, or that are negative. For example, this statement can be executed repeatedly
to generate a sequence of numbers that increase by 100 each time:

UPDATE seq_table SET seq = LAST_INSERT_ID(seq+100);

Repeating the following statement generates a sequence of decreasing numbers:

UPDATE seq_table SET seq = LAST_INSERT_ID(seq-1);

You can also use this technique to generate a sequence that begins at an arbitrary
value, by setting the seq column to an appropriate initial value.

The preceding discussion describes how to set up a counter using a table with a single
row.That’s okay for a single counter. If you want several counters, add another column to
the table to serve as a counter identifier, and use a different row in the table for each
counter. Suppose that you have a Web site and you want to put some “this page has been
accessed n times” counters in several pages. Create a table with two columns. One col-
umn holds a name that uniquely identifies each counter.The other holds the current
counter value.You can still use the LAST_INSERT_ID() function, but you determine
which row it applies to by using the counter name. For example, you can create such a
table with the following statement:

CREATE TABLE counter

(

name VARCHAR(255) CHARACTER SET latin1 COLLATE latin1_general_cs NOT NULL,

value INT UNSIGNED,

PRIMARY KEY (name)

);

The name column is a string so that you can name a counter whatever you want, and
it’s defined as a PRIMARY KEY to prevent duplicate names.This assumes that applications
using the table agree on the names they’ll be using. For Web counters, uniqueness of
counter names is ensured simply by using the pathname of each page within the docu-
ment tree as its counter name.The name column has a case-sensitive collation to cause
pathname values to be treated as case sensitive. (If your system has pathnames that are not
case sensitive, use a collation that is not case sensitive.)

To use the counter table, the INSERT ... ON DUPLICATE KEY UPDATE statement is use-
ful, because it can insert a new row for a page that has not yet been counted, or update
the count for an existing page.Also, by using LAST_INSERT_ID(expr) to generate the
counter value, you can easily retrieve the current counter after updating it. For example,

264 Chapter 3 Data Types

to initialize or increment the counter for the site’s home page, and then retrieve the
counter for display, do this:

INSERT INTO counter (name, value)

VALUES('index.html', LAST_INSERT_ID(1))

ON DUPLICATE KEY UPDATE value = LAST_INSERT_ID(value+1);

SELECT LAST_INSERT_ID();

An alternative approach for incrementing counters of existing pages without using
LAST_INSERT_ID() is to do this:

UPDATE counter SET value = value+1 WHERE name = 'index.html';

SELECT value FROM counter WHERE name = 'index.html';

However, that doesn’t work correctly if another client increments the counter after
you issue the UPDATE and before you issue the SELECT.You could solve that problem by
putting LOCK TABLES and UNLOCK TABLES around the two statements. Or you could cre-
ate the table using a transactional storage engine and update the table within a transac-
tion. Either method blocks other clients while you’re using the counter, but the
LAST_INSERT_ID() method accomplishes the same thing more easily. Because its value is
client-specific, you always get the value you inserted, not the one from some other client,
and you don’t have to complicate the code with locks or transactions to keep other
clients out.

3.5 Expression Evaluation and Type Conversion
Expressions contain terms and operators and are evaluated to produce values.Terms can
include values such as constants, function calls, references to table columns, and scalar sub-
queries.These values may be combined using different kinds of operators, such as arith-
metic or comparison operators, and terms of an expression may be grouped with
parentheses. Expressions occur most commonly in the output column list and WHERE
clause of SELECT statements. For example, here is a query that is similar to one used for
age calculations in Chapter 1:

SELECT

CONCAT(last_name, ', ', first_name),

TIMESTAMPDIFF(YEAR, birth, death)

FROM president

WHERE

birth > '1900-1-1' AND DEATH IS NOT NULL;

Each selected value represents an expression, as does the content of the WHERE clause.
Expressions also occur in the WHERE clause of DELETE and UPDATE statements, the
VALUES() clause of INSERT statements, and so forth.

When MySQL encounters an expression, it evaluates the expression to produce a re-
sult. For example, (4*3) DIV (4-2) evaluates to the value 6. Expression evaluation may

2653.5 Expression Evaluation and Type Conversion

involve type conversion, such as when MySQL converts the number 960821 into a date
'1996-08-21' if the number is used in a context requiring a DATE value.

This section discusses how you can write expressions in MySQL and the rules that
govern the various kinds of type conversions that MySQL performs during the process of
expression evaluation. Each of MySQL’s operators is listed here, but MySQL has so many
functions that only a few are touched on. For more information, see Appendix C.

3.5.1 Writing Expressions
An expression can be as simple as a single constant, such as the numeric value 0 or string
value 'abc'.

Expressions can use function calls. Some functions take arguments (values inside the
parentheses), and some do not. Multiple arguments should be separated by commas.
When you invoke a built-in function, there can be spaces around arguments, but if there
is a space between the function name and the opening parenthesis, the MySQL parser
might misinterpret the function name.The usual result is a syntax error.You can tell
MySQL to allow spaces after names of built-in functions by enabling the IGNORE_SPACE
SQL mode. However, that also causes function names to be treated as reserved words.

Expressions can include references to table columns. In the simplest case, when the
table to which a column belongs is clear from context, a column reference may be given
simply as the column name. Only one table is named in each of the following SELECT
statements, so the column references are unambiguous, even though the same column
names are used in each statement:

SELECT last_name, first_name FROM president;

SELECT last_name, first_name FROM member;

If it’s not clear which table should be used, a column name can be qualified by preced-
ing it with the proper table name. If it’s not even clear which database should be used, the
table name can be preceded by the database name.You can also use these more-specific
qualified forms in unambiguous contexts if you simply want to be more explicit:

SELECT

president.last_name, president.first_name,

member.last_name, member.first_name

FROM president INNER JOIN member

WHERE president.last_name = member.last_name;

SELECT sampdb.student.name FROM sampdb.student;

Scalar subqueries can be used to provide a single value in an expression.The subquery
requires surrounding parentheses:

SELECT * FROM president WHERE birth = (SELECT MAX(birth) FROM president);

266 Chapter 3 Data Types

Finally, you can combine all these kinds of values (constants, function calls, column ref-
erences, and subqueries) to form more complex expressions.

3.5.1.1 Operator Types
Terms of expressions can be combined using several kinds of operators.This section de-
scribes what they do, and Section 3.5.1.2,“Operator Precedence,” discusses the order in
which they are evaluated.

Arithmetic operators, listed in Table 3.18, include the usual addition, subtraction, mul-
tiplication, and division operators, as well as the modulo operator.Arithmetic is per-
formed using BIGINT (64-bit) integer values for +, -, and * when both operands are
integers. If both operands are integers, the result is unsigned if either operand is unsigned.
For each operator other than DIV, if any operand is an approximate value, double-
precision floating-point arithmetic is used.This is also true for strings converted to num-
bers, because strings are converted to double-precision numbers. Be aware that if an inte-
ger operation involves large values such that the result exceeds 64-bit range, you will get
unpredictable results. (Actually, you should try to avoid exceeding 63-bit values; one bit is
needed to represent the sign.)

Logical operators, shown in Table 3.19, evaluate expressions to determine whether
they are true (non-zero) or false (zero). It is also possible for a logical expression to evalu-
ate to NULL if its value cannot be ascertained. For example, 1 AND NULL is of indetermi-
nate value.

Table 3.18 Arithmetic Operators

Operator Syntax Meaning

+ a + b Addition; sum of operands

- a - b Subtraction; difference of operands

- -a Unary minus; negation of operand

* a * b Multiplication; product of operands

/ a / b Division; quotient of operands

DIV a DIV b Division; integer quotient of operands

% a % b Modulo; remainder after division of operands

Table 3.19 Logical Operators

Operator Syntax Meaning

AND, && a AND b, a && b Logical intersection; true if both operands are
true

OR, || a OR b, a || b Logical union; true if either operand is true

XOR a XOR b Logical exclusive-OR; true if exactly one operand
is true

NOT, ! NOT a, !a Logical negation; true if operand is false

2673.5 Expression Evaluation and Type Conversion

As alternative forms of AND, OR, and NOT, MySQL supports the &&, ||, and ! operators,
respectively, as used in the C programming language. Note in particular the || operator.
Standard SQL specifies || as the string concatenation operator, but in MySQL it signifies
a logical OR operation. If you use the following expression, expecting it to perform string
concatenation, you may be surprised to discover that it returns the number 0:

'abc' || 'def' → 0

This happens because 'abc' and 'def' are converted to integers for the operation,
and both turn into 0. In MySQL, you must use CONCAT('abc','def') or proximity to
perform string concatenation:

CONCAT('abc','def') → 'abcdef'

'abc' 'def' → 'abcdef'

If you want the standard SQL behavior for ||, enable the PIPES_AS_CONCAT SQL
mode.

Bit operators, shown in Table 3.20, perform bitwise intersection, union, and exclusive-
OR, where each bit of the result is evaluated as the logical AND, OR, or exclusive-OR
of the corresponding bits of the operands.You can also perform bit shifts left or right. Bit
operations are performed using BIGINT (64-bit) integer values.

Comparison operators, shown in Table 3.21, include operators for testing relative mag-
nitude or lexical ordering of numbers and strings, as well as operators for performing pat-
tern matching and for testing NULL values.The <=> operator is MySQL-specific.

For a discussion of the comparison properties of strings, see Section 3.1.2,“String
Values.”

Table 3.20 Bit Operators

Operator Syntax Meaning

& a & b Bitwise AND (intersection); each bit of result is set if correspon-
ding bits of both operands are set

| a | b Bitwise OR (union); each bit of result is set if corresponding bit of
either operand is set

^ a ^ b Bitwise exclusive-OR; each bit of result is set only if exactly one
corresponding bit of the operands is set

<< a << b Left shift of a by b bit positions

>> a >> b Right shift of a by b bit positions

268 Chapter 3 Data Types

Pattern matching enables you to look for values without having to specify an exact lit-
eral value. MySQL provides SQL pattern matching using the LIKE operator and the wild-
card characters ‘%’ (match any sequence of characters) and ‘_’ (match any single character).
MySQL also provides pattern matching based on the REGEXP operator and regular expres-
sions that are similar to those used in Unix programs such as grep, sed, and vi.You must
use one of these pattern-matching operators to perform a pattern match; you cannot use
the = operator.To reverse the sense of a pattern match, use NOT LIKE or NOT REGEXP.

The two types of pattern matching differ in important respects besides the use of dif-
ferent operators and pattern characters:

n LIKE is multi-byte safe. REGEXP works correctly only for single-byte character sets
and does not take collation into account.

n LIKE SQL patterns match only if the entire string is matched. REGEXP regular ex-
pressions match if the pattern is found anywhere in the string.

Table 3.21 Comparison Operators

Operator Syntax Meaning

= a = b True if operands are equal

<=> a <=> b True if operands are equal (even if NULL)

<>, != a <> b, a != b True if operands are not equal

< a < b True if a is less than b

<= a <= b True if a is less than or equal to b

>= a >= b True if a is greater than or equal to b

> a > b True if a is greater than b

IN a IN (b1, b2, ...) True if a is equal to any of b1, b2, ...

BETWEEN a BETWEEN b AND c True if a is between the values of b and c,
inclusive

NOT BETWEEN a NOT BETWEEN b AND c True if a is not between the values of b and
c, inclusive

LIKE a LIKE b SQL pattern match; true if a matches b

NOT LIKE a NOT LIKE b SQL pattern match; true if a does not
match b

REGEXP a REGEXP b Regular expression match; true if a
matches b

NOT REGEXP a NOT REGEXP b Regular expression match; true if a does
not match b

IS NULL a IS NULL True if operand is NULL

IS NOT NULL a IS NOT NULL True if operand is not NULL

2693.5 Expression Evaluation and Type Conversion

Patterns used with the LIKE operator may include the ‘%’ and ‘_’ wildcard characters.
For example, the pattern 'Frank%' matches any string that begins with 'Frank':

'Franklin' LIKE 'Frank%' → 1

'Frankfurter' LIKE 'Frank%' → 1

The wildcard character ‘%’ matches any sequence of characters, including the empty se-
quence, so 'Frank%' matches 'Frank':

'Frank' LIKE 'Frank%' → 1

This also means the pattern '%' matches any string, including the empty string. How-
ever, '%' will not match NULL. In fact, any pattern match with a NULL operand fails:

'Frank' LIKE NULL → NULL

NULL LIKE '%' → NULL

MySQL’s LIKE operator compares its operands as binary strings if either operand is a
binary string. If the operands are non-binary strings, LIKE compares them according to
their collation:

'Frankly' LIKE 'Frank%' → 1

'frankly' LIKE 'Frank%' → 1

BINARY 'Frankly' LIKE 'Frank%' → 1

BINARY 'frankly' LIKE 'Frank%' → 0

'Frankly' COLLATE latin1_general_cs LIKE 'Frank%' → 1

'frankly' COLLATE latin1_general_cs LIKE 'Frank%' → 0

'Frankly' COLLATE latin1_bin LIKE 'Frank%' → 1

'frankly' COLLATE latin1_bin LIKE 'Frank%' → 0

This behavior differs from that of the standard SQL LIKE operator, which is case
sensitive.

The other wildcard character allowed with LIKE is ‘_’, which matches any single char-
acter.The pattern '___' matches any string of exactly three characters. 'c_t' matches
'cat', 'cot', 'cut', and even 'c_t' (because ‘_’ matches itself).

Wildcard characters may be specified anywhere in a pattern. '%bert' matches
'Englebert', 'Bert', and 'Albert'. '%bert%' matches all of those strings, and also
strings like 'Berthold', 'Bertram', and 'Alberta'. 'b%t' matches 'Bert', 'bent', and
'burnt'.

To match literal instances of the ‘%’ or ‘_’ characters, turn off their special meaning by
preceding them with a backslash (‘\%’ or ‘_’):

'abc' LIKE 'a%c' → 1

'abc' LIKE 'a\%c' → 0

'a%c' LIKE 'a\%c' → 1

'abc' LIKE 'a_c' → 1

'abc' LIKE 'a_c' → 0

'a_c' LIKE 'a_c' → 1

270 Chapter 3 Data Types

MySQL’s other form of pattern matching uses regular expressions.The operator is
REGEXP rather than LIKE.The following examples demonstrate several common regular
expression pattern characters.

The ‘.’ character is a wildcard that matches any single character:

'abc' REGEXP 'a.c' → 1

The [...] construction matches any character listed between the square brackets.

'e' REGEXP '[aeiou]' → 1

'f' REGEXP '[aeiou]' → 0

You can specify a range of characters by listing the endpoints of the range separated by
a dash (‘-’), or negate the sense of the class (to match any character not listed) by specify-
ing ‘^’ as the first character of the class:

'abc' REGEXP '[a-z]' → 1

'abc' REGEXP '[^a-z]' → 0

‘*’ means “match any number of the previous thing,” so that, for example, the pattern
'x*' matches any number of ‘x’ characters:

'abcdef' REGEXP 'a.*f' → 1

'abc' REGEXP '[0-9]*abc' → 1

'abc' REGEXP '[0-9][0-9]*' → 0

“Any number” includes zero instances, which is why the second expression succeeds.
To match one or more instances of the preceding thing rather than zero or more, use ‘+’
instead of ‘*’:

'abc' REGEXP 'cd*' → 1

'abc' REGEXP 'cd+' → 0

'abcd' REGEXP 'cd+' → 1

'^pattern' and 'pattern$' anchor a pattern match so that the pattern pattern
matches only when it occurs at the beginning or end of a string, and '^pattern$'
matches only if pattern matches the entire string:

'abc' REGEXP 'b' → 1

'abc' REGEXP '^b' → 0

'abc' REGEXP 'b$' → 0

'abc' REGEXP '^abc$' → 1

'abcd' REGEXP '^abc$' → 0

MySQL’s regular expression matching has other special pattern elements as well. See
Appendix C for more information.

A LIKE or REGEXP pattern can be taken from a table column, although this will be
slower than a constant pattern if the column contains several different values.The pattern
must be examined and converted to internal form each time the column value changes.

2713.5 Expression Evaluation and Type Conversion

3.5.1.2 Operator Precedence
When MySQL evaluates an expression, it looks at the operators to determine the order in
which it should group the terms of the expression. Some operators have higher prece-
dence; that is, they are “stronger” than others in the sense that they are evaluated earlier
than others. For example, multiplication and division have higher precedence than addi-
tion and subtraction.The following two expressions are equivalent because * and DIV are
evaluated before + and -:

3 + 4 * 2 - 10 DIV 2 → 6

3 + 8 - 5 → 6

Operator precedence is shown in the following list, from highest precedence to lowest.
Operators listed on the same line have the same precedence. Operators at a higher prece-
dence level are evaluated before operators at a lower precedence level. Operators at the
same precedence level are evaluated left to right.

BINARY COLLATE

!

- (unary minus) ~ (unary bit negation)

^

* / DIV % MOD

+ -

<< >>

&

|

< <= = <=> <> != >= > IN IS LIKE REGEXP RLIKE

BETWEEN CASE WHEN THEN ELSE

NOT

AND &&

XOR

OR ||

:=

Some operators have a different precedence depending on the SQL mode or MySQL
version. See Appendix C for details.

If you need to override the precedence of operators and change the order in which
expression terms are evaluated, use parentheses to group terms:

1 + 2 * 3 - 4 / 5 → 6.2000

(1 + 2) * (3 - 4) / 5 → -0.6000

3.5.1.3 NULL Values in Expressions
Take care when using NULL values in expressions, because the result may not always be
what you expect.The following guidelines will help you avoid surprises.

272 Chapter 3 Data Types

If you supply NULL as an operand to any arithmetic or bit operator, the result is NULL:

1 + NULL → NULL

1 | NULL → NULL

With logical operators, the result is NULL unless the result can be determined with
certainty:

1 AND NULL → NULL

1 OR NULL → 1

0 AND NULL → 0

0 OR NULL → NULL

NULL as an operand to any comparison or pattern-matching operator produces a NULL
result, except for the <=>, IS NULL, and IS NOT NULL operators, which are intended
specifically for dealing with NULL values:

1 = NULL → NULL

NULL = NULL → NULL

1 <=> NULL → 0

NULL LIKE '%' → NULL

NULL REGEXP '.*' → NULL

NULL <=> NULL → 1

1 IS NULL → 0

NULL IS NULL → 1

Functions generally return NULL if given NULL arguments, except for those functions de-
signed to deal with NULL arguments. For example, IFNULL() is able to handle NULL argu-
ments and returns true or false appropriately. On the other hand, STRCMP() expects
non-NULL arguments; if you pass it a NULL argument, it returns NULL rather than true or false.

In sorting operations, NULL values group together.They appear first in ascending sorts
and last in descending sorts.

3.5.2 Type Conversion
Whenever a value of one type is used in a context that requires a value of another type,
MySQL performs type conversion automatically according to the kind of operation
you’re performing. Conversion may occur for any of the following reasons:

n Conversion of operands to a type appropriate for evaluation of an operator
n Conversion of a function argument to a type expected by the function
n Conversion of a value for assignment into a table column that has a different type

You can also perform explicit type conversion using a cast operator or function.
The following expression involves implicit type conversion. It consists of the addition

operator + and two operands, 1 and '2':

1 + '2' → 3

2733.5 Expression Evaluation and Type Conversion

The operands are of different types (number and string), so MySQL converts one of
them to make them the same type. But which one should it change? In this case, + is a
numeric operator, so MySQL wants the operands to be numbers thus and converts the
string '2' to the number 2.Then it evaluates the expression to produce the result 3.

Here’s another example.The CONCAT() function concatenates strings to produce a
longer string as a result.To do this, it interprets its arguments as strings, no matter what
type they are. If you pass it a bunch of numbers, CONCAT() converts them to strings, and
then returns their concatenation:

CONCAT(1,23,456) → '123456'

If the call to CONCAT() is part of a larger expression, further type conversion may take
place. Consider the following expression and its result:

REPEAT('X',CONCAT(1,2,3)/10) → 'XXXXXXXXXXXX'

CONCAT(1,2,3) produces the string '123'.The expression '123'/10 is converted to
123/10 because division is an arithmetic operator.The result of this expression is 12.3, but
REPEAT() expects an integer repeat count, so the count is rounded to produce 12.Then
REPEAT('X',12) produces a string result of 12 ‘X’ characters.

If all arguments to CONCAT() are non-binary strings, the result is a non-binary string. If
any argument is a binary string, the result is a binary string.The latter principle includes
the case of numeric arguments, which are converted to binary strings.These examples
both appear to produce the same result:

CONCAT('1','23') → '123'

CONCAT(1,'23') → '123'

But if you check the result with CHARSET(), you can see that the expressions return a
non-binary and binary string, respectively:

CHARSET(CONCAT('1','23')) → 'latin1'

CHARSET(CONCAT(1,'23')) → 'binary'

A general principle to keep in mind is that, by default, MySQL attempts to convert
values to the type required by an expression rather than generating an error. Depending
on the context, it converts values of each of the three general categories (numbers,
strings, or dates and times) to values in any of the other categories. However, values can’t
always be converted from one type to another. If a value to be converted to a given type
doesn’t look like a legal value for that type, the conversion fails. Conversion to numbers
of things like 'abc' that don’t look like numbers results in a value of 0. Conversion to
date or time types of things that don’t look like a date or time result in the “zero” value
for the type. For example, converting the string 'abc' to a date results in the “zero” date
'0000-00-00'. On the other hand, any value can be treated as a string, so generally it’s
not a problem to convert a value to a string.

274 Chapter 3 Data Types

If you want to prevent conversion of illegal values to the closest legal values during
data input operations, you can enable strict mode to cause errors to occur instead. See
Section 3.3,“How MySQL Handles Invalid Data Values.”

MySQL also performs more minor type conversions. If you use a floating-point value
in an integer context, the value is converted (with rounding). Conversion in the other di-
rection works as well; an integer can be used without problem as a floating-point number.

Hexadecimal constants are treated as binary strings unless the context clearly indicates
a number. In string contexts, each pair of hexadecimal digits is converted to a character
and the result is used as a string.The following examples illustrate how this works:

0x61 → 'a'

0x61 + 0 → 97

X'61' → 'a'

X'61' + 0 → 97

CONCAT(0x61) → 'a'

CONCAT(0x61 + 0) → '97'

CONCAT(X'61') → 'a'

CONCAT(X'61' + 0) → '97'

For comparisons, context determines whether to treat a hexadecimal constant as a
binary string or a number:

n This expression treats the operands as binary strings and performs a byte-by-byte
comparison.

0x0d0a = '\r\n' → 1

n This expression compares a hexadecimal constant to a number, so it is converted to
a number for the comparison.

0x0a = 10 → 1

n This expression performs a binary string comparison.The first byte of the left
operand has a lesser value than the first byte of the right operand, so the result
is false.

0xee00 > 0xff → 0

n In this expression, the right operand hex constant is converted to a number because
of the arithmetic operator.Then for the comparison, the left operand is converted
to a number.The result is false because 0xee00 (60928) is not numerically less than
0xff (255).

0xee00 > 0xff+0 → 1

It’s possible to force a hexadecimal constant to be treated as a non-binary string by us-
ing a character set introducer or CONVERT():

0x61 → 'a'

0x61 = 'A' → 0

2753.5 Expression Evaluation and Type Conversion

_latin1 0x61 = 'A' → 1

CONVERT(0x61 USING latin1) = 'A' → 1

Some operators force conversion of the operands to the type expected by the opera-
tor, no matter what the type of the operands is.Arithmetic operators are an example of
this.They expect numbers, and the operands are converted accordingly:

3 + 4 → 7

'3' + 4 → 7

'3' + '4' → 7

In a string-to-number conversion, it’s not enough for a string simply to contain a
number somewhere. MySQL doesn’t look through the entire string hoping to find a
number, it looks only at the beginning; if the string has no leading numeric part, the con-
version result is 0.

'1973-2-4' + 0 → 1973

'12:14:01' + 0 → 12

'23-skidoo' + 0 → 23

'-23-skidoo' + 0 → -23

'carbon-14' + 0 → 0

MySQL’s string-to-number conversion rule converts numeric-looking strings to
floating-point values:

'-428.9' + 0 → -428.9

'3E-4' + 0 → 0.0003

This conversion does not work for hexadecimal-looking constants, though. Only the
leading zero is used:

'0xff' + 0 → 0

The bit operators are even stricter than the arithmetic operators.They want the opera-
tors to be not just numeric, but integers, and type conversion is performed accordingly.
This means that a fractional number such as 0.3 is not considered true, even though it’s
non-zero; that’s because when it’s converted to an integer, the result is 0. In the following
expressions, the operands are not considered true until they have a value of at least 1:

0.3 | .04 → 0

1.3 | .04 → 1

0.3 & .04 → 0

1.3 & .04 → 0

1.3 & 1.04 → 1

Pattern matching operators expect to operate on strings.This means you can use
MySQL’s pattern matching operators on numbers because it will convert them to strings
in the attempt to find a match!

12345 LIKE '1%' → 1

12345 REGEXP '1.*5' → 1

276 Chapter 3 Data Types

The magnitude comparison operators (<, <=, =, and so on) are context sensitive; that is,
they are evaluated according to the types of their operands.The following expression
compares the operands numerically because they both are numbers:

2 < 11 → 1

This expression involves string operands and thus results in a lexical comparison:

'2' < '11' → 0

In the following comparisons, the types are mixed, so MySQL compares them as num-
bers.As a result, both expressions are true:

'2' < 11 → 1

2 < '11' → 1

When evaluating comparisons, MySQL converts operands as necessary according to
the following rules:

n Other than for the <=> operator, comparisons involving NULL values evaluate as NULL.
(<=> is like =, except that NULL <=> NULL is true, whereas NULL = NULL is NULL.)

n If both operands are strings, they are compared lexically as strings. Binary strings are
compared on a byte-by-byte basis using the numeric value of each byte. Compar-
isons for non-binary strings are performed character-by-character using the collat-
ing sequence of the character set in which the strings are expressed. If the strings
have different character sets, the comparison may result in an error or fail to yield
meaningful results.A comparison between a binary and a non-binary string is
treated as a comparison of binary strings.

n If both operands are integers, they are compared numerically as integers.
n Hexadecimal constants that are not compared to a number are compared as binary

strings.
n Other than for IN(), if either operand is a TIMESTAMP or DATETIME value and the

other is a constant, the operands are compared as TIMESTAMP values.This is done to
make comparisons work better for ODBC applications.

n Otherwise, the operands are compared numerically as double-precision floating-
point values. Note that this includes the case of comparing a string and a number.
The string is converted to a double-precision number, which results in a value of 0
if the string doesn’t look like a number. For example, '14.3' converts to 14.3, but
'L4.3' converts to 0.

3.5.2.1 Date and Time Interpretation Rules
MySQL freely converts strings and numbers to date and time values as demanded by
context in an expression, and vice versa. Date and time values are converted to numbers
in numeric context; numbers are converted to dates or times in date or time contexts.
This conversion to a date or time value happens when you assign a value to a date or

2773.5 Expression Evaluation and Type Conversion

time column or when a function requires a date or time value. In comparisons, the gen-
eral rule is that date and time values are compared as strings.

If the table mytbl contains a DATE column date_col, the following statements are
equivalent:

INSERT INTO mytbl SET date_col = '2025-04-13';

INSERT INTO mytbl SET date_col = '20250413';

INSERT INTO mytbl SET date_col = 20250413;

In the following examples, the argument to the TO_DAYS() function is interpreted as
the same value for all three expressions:

TO_DAYS('2025-04-13') → 739719

TO_DAYS('20250413') → 739719

TO_DAYS(20250413) → 739719

3.5.2.2 Testing and Forcing Type Conversion
To see how type conversion will be handled in an expression, issue a SELECT query that
evaluates the expression so that you can examine the result:

mysql> SELECT X'41', X'41' + 0;

+-------+-----------+

| X'41' | X'41' + 0 |

+-------+-----------+

| A | 65 |

+-------+-----------+

If you cannot tell from inspection the type of an expression, select it into a new table
and check the table definition:

mysql> CREATE TABLE t SELECT X'41' AS col1, X'41' + 0 AS col2;

mysql> DESCRIBE t;

+-------+--------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------+--------------+------+-----+---------+-------+

| col1 | varbinary(1) | NO | | | |

| col2 | double(17,0) | NO | | 0 | |

+-------+--------------+------+-----+---------+-------+

Testing expression evaluation is especially useful for statements such as DELETE or
UPDATE that modify rows, because you want to be sure you’re affecting only the intended
rows. One way to check an expression is to run a preliminary SELECT statement with the
same WHERE clause that you’re going to use with the DELETE or UPDATE statement to ver-
ify that the clause selects the proper rows. Suppose that the table mytbl has a CHAR col-
umn char_col containing these values:

'abc'

'00'

'def'

278 Chapter 3 Data Types

'00'

'ghi'

Given these values, what is the effect of the following statement?

DELETE FROM mytbl WHERE char_col = 00;

The intended effect is probably to delete the two rows containing the value '00'.The
actual effect would be to delete all the rows—an unpleasant surprise.This happens as a
consequence of MySQL’s comparison rules. char_col is a string column, but 00 in the
statement is not quoted, so it is treated as a number. By MySQL’s comparison rules, a
comparison involving a string and a number evaluates as a comparison of two numbers.
As MySQL executes the DELETE statement, it converts each value of char_col to a num-
ber and compares it to 0. Unfortunately, although '00' converts to 0, so do all the strings
that don’t look like numbers.As a result, the WHERE clause is true for every row, and the
DELETE statement empties the table.This is a case where it would have been prudent to
test the WHERE clause with a SELECT statement prior to executing the DELETE, because that
would have shown you that too many rows are selected by the expression:

mysql> SELECT char_col FROM mytbl WHERE char_col = 00;

+----------+

| char_col |

+----------+

| abc |

| 00 |

| def |

| 00 |

| ghi |

+----------+

When you’re uncertain about the way a value will be used, you may want to exploit
MySQL’s type conversion to force an expression to a value of a particular type, or to call a
function that performs the desired conversion.The following list demonstrates several
useful conversion techniques.

Add +0 or +0.0 to a term to force conversion to a numeric value:

0x65 → 'e'

0x65 + 0 → 101

0x65 + 0.0 → 101.0

To chop off the fractional part of a number, use FLOOR() or CAST().To add a fractional
part to an integer, add an exact-value zero with the required number of decimal digits:

FLOOR(13.3) → 13

CAST(13.3 AS SIGNED) → 13

13 + 0.0 → 13.0

13 + 0.0000 → 13.0000

If you want rounding instead, use ROUND() rather than CAST().

2793.5 Expression Evaluation and Type Conversion

Use CAST() or CONCAT() to turn a value into a string:

14 → 14

CAST(14 AS CHAR) → '14'

CONCAT(14) → '14'

CONCAT() returns a binary string if it must convert a numeric argument to string form,
so the final two examples actually differ in their result.The CAST() expression returns a
non-binary string, whereas the CONCAT() expression returns a binary string.

Use HEX() to convert a number to a hexadecimal string:

HEX(255) → 'FF'

HEX(65535) → 'FFFF'

You can also use HEX() with a string value to convert it to a string of hex digit pairs
representing successive bytes in the string:

HEX('abcd'); → '61626364'

Use ASCII() to convert a single-byte character to its ASCII value:

'A' → 'A'

ASCII('A') → 65

To go in the other direction from ASCII code to character, use CHAR():

CHAR(65) → 'A'

Use DATE_ADD() or INTERVAL arithmetic to force a string or number to be treated as a
date:

DATE_ADD(20080101, INTERVAL 0 DAY) → '2008-01-01'

20080101 + INTERVAL 0 DAY → '2008-01-01'

DATE_ADD('20080101', INTERVAL 0 DAY) → '2008-01-01'

'20080101' + INTERVAL 0 DAY → '2008-01-01'

Generally, you can convert a date value to numeric form by adding zero:

CURDATE() → '2007-09-07'

CURDATE()+0 → 20070907

Temporal values with a time part convert to a value with a microseconds part:

NOW() → '2007-09-07 16:15:29'

NOW()+0 → 20070907161529.000000

CURTIME() → '16:15:29'

CURTIME()+0 → 161529.000000

To chop off the fractional part, cast the value to an integer:

CAST(NOW() AS UNSIGNED) → 20070907161529

CAST(CURTIME() AS UNSIGNED) → 161529

To convert a string from one character set to another, use CONVERT().To check
whether the result has the desired character set, use the CHARSET() function:

280 Chapter 3 Data Types

'abcd' → 'abcd'

CONVERT('abcd' USING ucs2) → 'abcd'

CHARSET('abcd') → 'latin1'

CHARSET(CONVERT('abcd' USING ucs2)) → 'ucs2'

Preceding a string with a character set introducer does not cause conversion of the string,
but MySQL interprets it as though it has the character set indicated by the introducer:

CHARSET(_ucs2 'abcd') → 'ucs2'

To determine the hexadecimal value of the UTF-8 character that corresponds to a
given hexadecimal UCS-2 character, combine CONVERT() with HEX().The following ex-
pression determines the UTF-8 value of the trademark symbol:

HEX(CONVERT(_ucs2 0x2122 USING utf8)) → 'E284A2'

To change the collation of a string, use the COLLATE operator.To check whether the
result has the desired collation, use the COLLATION() function:

COLLATION('abcd') → 'latin1_swedish_ci'

COLLATION('abcd' COLLATE latin1_bin) → 'latin1_bin'

The character set and collation must be compatible. If they are not, use a combination
of CONVERT() to convert the character set first and COLLATE to change the collation:

CONVERT('abcd' USING latin2) COLLATE latin2_bin

To convert a binary string to a non-binary string that has a given character set, use
CONVERT():

0x61626364 → 'abcd'

0x61626364 = 'ABCD' → 0

CONVERT(0x61626364 USING latin1) = 'ABCD' → 1

Alternatively, for binary quoted strings or hexadecimal values, use an introducer to
change the interpretation of the binary string:

_latin1 0x61626364 = 'ABCD' → 1

To cast a non-binary string to a binary string, use the BINARY keyword:

'abcd' = 'ABCD' → 1

BINARY 'abcd' = 'ABCD' → 0

'abcd' = BINARY 'ABCD' → 0

3.6 Choosing Data Types
Section 3.2,“MySQL Data Types,” described the various data types from which you can
choose and the general properties of those types, such as the kind of values they may con-
tain, how much storage space they take, and so on. But how do you actually decide which
types to use when you create a table? This section discusses issues to consider that will
help you choose.

2813.6 Choosing Data Types

The most “generic” data types are the string types.You can store anything in them be-
cause numbers and dates can be represented in string form. So should you just define all
your columns as strings and be done with it? No. Let’s consider a simple example. Sup-
pose that you have values that look like numbers.You could represent these as strings, but
should you? What happens if you do?

For one thing, you’ll probably use more space, because numbers can be stored more
efficiently using numeric columns than string columns.You’ll also notice some differences
in query results due to the different ways that numbers and strings are handled. For exam-
ple, the sort order for numbers is not the same as for strings.The number 2 is less than the
number 11, but the string '2' is lexically greater than the string '11'.You can work
around this by using the column in a numeric context like this:

SELECT col_name + 0 as num ... ORDER BY num;

Adding zero to the column forces a numeric sort, but is that a reasonable thing to do?
It’s a useful technique sometimes, but you don’t want to have to use it every time you
want a numeric sort. Causing MySQL to treat a string column as a number has a couple
of significant implications. It forces a string-to-number conversion for each column value,
which is inefficient.Also, using the column in a calculation prevents MySQL from using
any index on the column, which slows down the query further. Neither of these per-
formance degradations occur if you store the values as numbers in the first place.

The preceding example illustrates that several issues come into play when you choose
data types.The simple choice of using one representation rather than another has implica-
tions for storage requirements, query handling, and processing performance.The follow-
ing list gives a quick rundown of factors to think about when picking a type for a
column.

What kind of values will the column hold? Numbers? Strings? Dates? Spatial val-
ues? This is an obvious question, but you must ask it.You can represent any type of value
as a string, but as we’ve just seen, it’s likely that you’ll get better performance if you use
other more appropriate types for numeric values. (This is also true for temporal and spa-
tial values.) However, assessing the kind of values you’re working with isn’t necessarily
trivial, particularly for other people’s data. It’s especially important to ask what kind of
values the column will hold if you’re setting up a table for someone else, and you must be
sure to ask enough questions to get sufficient information for making a good decision.

Do your values lie within some particular range? If they are integers, will they al-
ways be non-negative? If so, you can use UNSIGNED. If they are strings, will they always be
chosen from among a fixed, limited set of values? If so, you may find ENUM or SET a useful
type.

There is a tradeoff between the range of a type and the amount of storage it uses. How
“big” a type do you need? For numbers, you can choose small types with a limited range
of values, or large types with a much larger range. For strings, you can make them short
or long, so you wouldn’t choose CHAR(255) if all the values you want to store contain
fewer than 10 characters.

282 Chapter 3 Data Types

What are the performance and efficiency issues? Some types can be processed
more efficiently than others. Numeric operations generally can be performed more
quickly than string operations. Short strings can be compared more quickly than long
strings, and also involve less disk overhead. For MyISAM tables, performance is better for
fixed-length rows than for variable-length rows.

The following sections consider these issues in more detail, except for the performance
issues, which are covered in Section 5.3,“Choosing Data Types for Efficient Queries.”

Before we proceed, I should point out that, although you want to make the best data
type choices you can when you create a table, it’s not the end of the world if you make a
choice that turns out to be nonoptimal.You can use ALTER TABLE to change the type to a
better one.This might be as simple as changing a SMALLINT to MEDIUMINT after finding
out your data set contains values larger than you originally thought. Or it can be more
complex, such as changing a CHAR to an ENUM with a specific set of allowed values.You
can use PROCEDURE ANALYSE() to obtain information about your table’s columns, such as
the minimum and maximum values as well as a suggested optimal type to cover the range
of values in a column:

SELECT * FROM tbl_name PROCEDURE ANALYSE();

The output from this query may help you determine that a smaller type can be used,
which can improve the performance of queries that involve the table and reduce the
amount of space required for table storage. For more information about PROCEDURE
ANALYSE(), see Section 5.3,“Choosing Data Types for Efficient Queries.”

3.6.1 What Kind of Values Will the Column Hold?
The first thing you think of when you’re trying to decide on a data type is the kind of
values the column will be used for because this has the most evident implications for the
type you choose. In general, you do the obvious thing:You store numbers in numeric
columns, strings in string columns, and dates and times in temporal columns. If your
numbers have a fractional part, you use a DECIMAL or floating-point type rather than an
integer type. But sometimes there are exceptions.The principle here is that you need to
understand the nature of your data to be able to choose the type in an informed manner.
If you’re going to store your own data, you probably have a good idea of how to charac-
terize it. On the other hand, if others ask you to set up a table for them, it’s sometimes a
different story. It may not be so easy to know just what you’re working with. Be sure to
ask enough questions to find out what kind of values the table really should contain.

Suppose that you’re told that a table needs a column to record “amount of precipita-
tion.” Is that a number? Or is it “mostly” numeric—that is, typically but not always coded
as a number? For example, when you watch the news on television, the weather report
generally includes a measure of precipitation. Sometimes this is a number (as in “0.25
inches of rain”), but sometimes it’s a “trace” of precipitation, meaning “not much at all.”
That’s fine for the weather report, but what does it mean for storage in a database? You
either need to quantify “trace” as a number so that you can use a numeric data type to

2833.6 Choosing Data Types

record precipitation amounts, or you need to use a string so that you can record the word
“trace.” Or you could come up with some more complicated arrangement, using a num-
ber column and a string column where you fill in one column and leave the other one
NULL. It should be obvious that you want to avoid that option, if possible; it makes the
table harder to understand and it makes query-writing much more difficult.

I would probably try to store all rows in numeric form, and then convert them as nec-
essary for display purposes. For example, if any non-zero amount of precipitation less
than .01 inches is considered a trace amount, you could display values from the column
like this:

SELECT IF(precip>0 AND precip<.01,'trace',precip) FROM ... ;

Some values are obviously numeric but you must determine whether to use an integer
or non-integer type.You should ask what your units are and what accuracy you require. Is
whole-unit accuracy sufficient or do you need to represent fractional units? This may help
you distinguish between integer and fixed-point or floating-point data types. For exam-
ple, if you’re recording weights to the nearest pound, you can use an integer column. If
you want to record fractional units, you’d use a fixed-point or floating-point column. In
some cases, you might even use multiple columns—for example, to record weight in
terms of pounds and ounces.

Height is a numeric type of information for which there are several representational
possibilities:

n Use a string such as '6-2' for a value like “6 feet, 2 inches.”This has the advantage
of having a form that’s easy to look at and understand (certainly more so than “74
inches”), but it’s difficult to use this kind of value for mathematical operations such
as summation or averaging.

n Use one numeric column for feet and another for inches.This would be a little eas-
ier to work with for numerical operations, but two columns are more difficult to
use than one.

n Use one numeric column representing inches.This is easiest for a database to work
with, and least meaningful for humans. But remember that you don’t have to pres-
ent values in the same format that you use to work with them.You can reformat
values for meaningful display using MySQL’s many functions.That means this
might be the best way to represent height.

Another type of numeric information is currency, such as U.S. dollars. For monetary
calculations, you’re working with values that have dollars and cents parts.These look like
floating-point values, but FLOAT and DOUBLE are subject to rounding error and may not be
suitable except for rows in which you need only approximate accuracy. Because people
tend to be touchy about their money, it’s more likely you need a type that affords perfect
accuracy.You have a couple of choices:

n You can represent money as a DECIMAL(M,2) type, choosing M as the maximum
width appropriate for the range of values you need.This gives you values with two

284 Chapter 3 Data Types

decimal places of accuracy.The advantage of DECIMAL is that values are not subject
to roundoff error and calculations are exact.

n You can represent all monetary values internally as cents using an integer type.The
advantage is that calculations are done internally using integers, which is very fast.
The disadvantage is that you will need to convert values on input or output by
multiplying or dividing by 100.

Some kinds of “numbers” aren’t.Telephone numbers, credit card numbers, and Social
Security numbers all can be written using non-digit characters such as spaces or dashes
and cannot be stored directly in a numeric column unless you strip the non-digits. But
even with non-digits stripped, you may want to store values as strings rather than as num-
bers to avoid loss of leading zeros.

If you need to store date information, do the values include a time? That is, will they
ever need to include a time? MySQL doesn’t provide a date type that has an optional time
part: DATE never has a time, and DATETIME must have a time. If the time really is optional,
use a DATE column to record the date, and a separate TIME column to record the time.
Then allow the TIME column to be NULL and interpret that as “no time”:

CREATE TABLE mytbl

(

date DATE NOT NULL, # date is required

time TIME NULL # time is optional (may be NULL)

);

One type of situation in which it’s especially important to determine whether you
need a time value occurs when you’re joining two tables with a master-detail relationship
that are “linked” based on date information. Suppose that you’re conducting research in-
volving test subjects. Following a standard initial battery of tests, you might run several
additional tests, with the choice of tests varying according to the results of the initial tests.
You can represent this information using a master-detail relationship, in which the subject
identification information and the standard initial tests are stored in a master row and any
additional tests are stored as rows in a secondary detail table.Then you link together the
two tables based on subject ID and the date on which the tests are given.

The question you must answer in this situation is whether you can use just the date or
whether you need both date and time.This depends on whether a subject might go
through the testing procedure more than once during the same day. If so, record the time
(for example, the time that the procedure begins), using either a DATETIME column or
separate DATE and TIME columns that both must be filled in.Without the time value, you
will not be able to associate a subject’s detail rows with the proper master rows if the sub-
ject is tested twice in a day.

I’ve heard people claim “I don’t need a time; I will never test a subject twice on the
same day.” Sometimes they’re correct, but I have also seen some of these same people turn
up later wondering how to prevent detail rows from being mixed up with the wrong

2853.6 Choosing Data Types

master row after entering data for subjects who were tested multiple times in a day. Sorry,
by then it’s too late!

Sometimes you can deal with this problem by retrofitting a TIME column into the ta-
bles. Unfortunately, it’s difficult to fix existing rows unless you have some independent
data source, such as the original paper rows. Otherwise, you have no way to disambiguate
detail rows to associate them with the proper master row. Even if you have an independ-
ent source of information, this is very messy and likely to cause problems for applications
that you’ve already written to use the tables. It’s best to explain the issues to the table
owners and make sure that you’ve gotten a good characterization of the data values be-
fore creating their tables.

Sometimes you have incomplete data, and this will influence your choice of data types.
You may be collecting birth and death dates for genealogical research, and sometimes all
you can find out is the year or year and month someone was born or died, but not the
exact date. If you use a DATE column, you can’t enter a date unless you have the full date.
If you want to be able to record whatever information you have, even if it’s incomplete,
you may have to keep separate year, month, and day columns.Then you can enter such
parts of the date as you have and leave the rest NULL.Another possibility is to use DATE
values in which the day or month and day parts are set to 0. Such “fuzzy” dates can be
used to represent incomplete date values.

3.6.2 Do Your Values Lie Within Some Particular Range?
If you’ve decided on the general category from which to pick a data type for a column,
thinking about the range of values you want to represent will help you narrow down
your choices to a particular type within that category. Suppose that you want to store in-
teger values.The range of your values determines the types you can use. If you need val-
ues in the range from 0 to 1000, you can use anything from a SMALLINT up to a BIGINT.
If your values range up to 2 million, you can’t use SMALLINT, so your choices range from
MEDIUMINT to BIGINT.

You could, of course, simply use the largest type for the kind of value you want to
store (BIGINT for the examples in the previous paragraph). Generally, however, you should
use the smallest type that is large enough for your purposes. By doing so, you’ll minimize
the amount of storage used by your tables, and they will give you better performance be-
cause smaller columns usually can be processed more quickly than larger ones. (Reading
smaller values requires less disk activity, and more key values fit into the key cache, allow-
ing indexed searches to be performed faster.)

If you don’t know the range of values you’ll need to be able to represent, you either
must guess or use BIGINT to accommodate the worst possible case. If you guess and the
type you choose turns out later to be too small, all is not lost. Use ALTER TABLE later to
make the column bigger.

Sometimes you even find out that you can make a column smaller. In Chapter 1, we
created a score table for the grade-keeping project that had a score column for record-
ing quiz and test scores.The column was created using INT in order to keep the discussion

286 Chapter 3 Data Types

simpler, but you can see now that if scores are in the range from 0 to 100, a better choice
would be TINYINT UNSIGNED, because that would use less storage.

The range of values in your data also affects the attributes you can use with your data
type. If values never are negative, you can use UNSIGNED; otherwise, you can’t.

String types don’t have a “range” in the same way numeric columns do, but they have a
length, and the maximum length you need affects the column types you can use. If you’re
storing character strings that are shorter than 256 characters, you can use CHAR, VARCHAR,
or TINYTEXT. If you want longer strings, you can use VARCHAR or a longer TEXT type.

For a string column used to represent a fixed set of values, you might consider using
an ENUM or SET data type.These can be good choices because they are represented inter-
nally as numbers. Operations on them are performed numerically, which makes them
more efficient than other string types.They also can be more compact than other string
types, which saves space. In addition, you can prevent entry of values not present in the
list of legal values by enabling strict SQL mode. See Section 3.3,“How MySQL Handles
Invalid Data Values.”

When characterizing the range of values you have to deal with, the best terms are “al-
ways” and “never” (as in “always less than 1000” or “never negative”), because they enable
you to constrain your data type choices more tightly. But be wary of using these terms
when they’re not really justified. Be especially wary if you’re consulting with other people
about their data and they start throwing around those two terms.When people say “al-
ways” or “never,” be sure they really mean it. Sometimes people say their data always have
a particular characteristic when they really mean “almost always.”

Suppose that you’re designing a table for a group of investigators who tell you,“Our
test scores are always 0 to 100.” Based on that statement, you choose TINYINT and you
make it UNSIGNED because the values are always non-negative.Then you find out that the
people who code the data for entry into the database sometimes use -1 to mean “student
was absent due to illness.” Oops.They didn’t tell you that. It might be acceptable to use
NULL to represent such values, but if not, you’ll have to record a -1, and then you can’t use
an UNSIGNED column. (This is an instance where ALTER TABLE comes to your rescue.)

Sometimes decisions about these cases can be made more easily by asking a simple
question:Are there ever exceptions? If an exceptional case ever occurs, even just once,
you must allow for it.You will find that people who talk to you about designing a data-
base invariably think that if exceptions don’t occur very often, they don’t matter.When
you’re creating a table, you can’t think that way.The question you need to ask isn’t “how
often do exceptions occur?” It’s “do exceptions ever occur?” If they do, you must take
them into account.

3.6.3 Inter-Relatedness of Data Type Choice Issues
You can’t always consider the issues involved in choosing data types as though they are
independent of one another. For example, range is related to storage size for numeric
types:As you increase the range, you require more storage, which affects performance.
Or consider the implications of using AUTO_INCREMENT to create a column for holding

2873.6 Choosing Data Types

unique sequence numbers.That single choice has several consequences involving the data
type, indexing, and the use of NULL:

n AUTO_INCREMENT is a column attribute that is best used with integer types.That im-
mediately limits your choices to TINYINT through BIGINT.

n An AUTO_INCREMENT column is intended only for generating sequences of positive
values, so you should define it as UNSIGNED.

n AUTO_INCREMENT columns must be indexed. Furthermore, to prevent duplicates in
the column, the index should be unique, so you should define the column as a
PRIMARY KEY or as a UNIQUE index.

n AUTO_INCREMENT columns must be NOT NULL. (If you omit NOT NULL, MySQL adds
it automatically.)

All of this means you do not just define an AUTO_INCREMENT column like this:

mycol arbitrary_type AUTO_INCREMENT

You define it like this:

mycol integer_type UNSIGNED NOT NULL AUTO_INCREMENT,

PRIMARY KEY (mycol)

Or like this:

mycol integer_type UNSIGNED NOT NULL AUTO_INCREMENT,

UNIQUE (mycol)

This page intentionally left blank

4
Stored Programs

MySQL supports several types of objects that are stored on the server side for later use.
Some are invoked on demand; others execute automatically when table modifications oc-
cur or when a scheduled time is reached:

n Stored functions return a result from a calculation and can be used in expressions.
n Stored procedures do not return a result directly but can be used to perform gen-

eral computations or produce result sets that are passed back to the client.
n Triggers are associated with a table and are defined to execute when the table is

modified via INSERT, DELETE, or UPDATE statements.
n Events execute on a time-activated basis according to a schedule.

MySQL added support for stored functions and procedures in version 5.0.0, triggers in
5.0.2, and events in 5.1.6.Whether you use the MySQL 5.0 or 5.1 series, it is best to use
recent versions to avoid problems in the early implementations of these object types.

Stored programs provide several benefits and capabilities:

n The executable part of the object can be written using compound statements that
extend SQL syntax to include blocks, loops, and conditional statements. (Section
E.1,“SQL Statement Syntax,” shows the syntax for all such statements.)

n Stored programs are stored on the server side, so all the code needed to define them
is sent over the network only once at program-creation time, not each time you
want to execute them.This reduces overhead.

n They enable encapsulation of complex calculations into program units that can be
easily invoked by name.

n They provide a means to standardize computational operations. If you provide a set
of stored programs as a “library” that many applications can use, those applications
all perform the operations in the same way.

n They provide a mechanism for handling errors.
n They improve database security because you can enable controlled access to sensi-

tive data by appropriate selection of the privileges a program has when it executes.

290 Chapter 4 Stored Programs

This chapter uses the following terminology:

n “Stored programs” refers collectively to stored objects of all types (functions, proce-
dures, triggers, and events).

n “Stored routines” is a more limited term that refers only to stored functions and
procedures. Both types of objects are defined using very similar syntax, so it is often
natural to discuss them together. In fact, the term “stored procedures” is frequently
used to refer both to procedures and functions. However, I find this unhelpfully
ambiguous and will not use the term that way.

Later sections in this chapter discuss how to write and use each type of stored pro-
gram. However, before getting into the details of any particular type of stored program,
we’ll begin with a discussion of an issue common to all of them: how to write compound
statements.

4.1 Compound Statements and Statement
Delimiters
A simple stored program that has a body consisting of a single SQL statement can be
written without any special treatment.The following procedure uses a SELECT statement
that displays the names of the tables in the sampdb database:

CREATE PROCEDURE sampdb_tables ()

SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES

WHERE TABLE_SCHEMA = 'sampdb' ORDER BY TABLE_NAME;

However, a stored program need not be limited to a single simple statement.The code
can contain multiple SQL statements, and it can use constructs such as local variables,
conditional statements, loops, and nested blocks.To write a stored program that uses these
features, use a compound statement, which consists of BEGIN and END to form a block
within which an arbitrary number of statements can be written.The following procedure
displays a greeting with your username, or “earthling” if you are an anonymous user:

CREATE PROCEDURE greetings ()

BEGIN

77 = 16 for username + 60 for hostname + 1 for '@'

DECLARE user CHAR(77) CHARACTER SET utf8;

SET user = (SELECT CURRENT_USER());

IF INSTR(user,'@') > 0 THEN

SET user = SUBSTRING_INDEX(user,'@',1);

END IF;

IF user = '' THEN # anonymous user

SET user = 'earthling';

END IF;

SELECT CONCAT('Greetings, ',user, '!') AS greeting;

END;

2914.1 Compound Statements and Statement Delimiters

An issue that arises in the use of compound statements is that the statements within a
block must be separated semicolon (‘;’) characters as delimiters.That also is the default
statement delimiter for the mysql program, so there is a conflict if you try to define stored
programs using mysql.To deal with this, use the delimiter command to redefine mysql’s
statement delimiter to a character or string that does not appear in the routine definition.
That causes mysql not to interpret semicolons as terminators and to pass the entire object
definition to the server as a single statement.You can redefine the terminator to semi-
colon again after defining the stored program.The following example temporarily
changes the mysql delimiter to $ while a stored procedure is being defined, and then exe-
cutes the procedure after restoring the default delimiter:

mysql> delimiter $

mysql> CREATE PROCEDURE show_times()

-> BEGIN

-> SELECT 'Local time is:', CURRENT_TIMESTAMP;

-> SELECT 'UTC time is:', UTC_TIMESTAMP;

-> END$

mysql> delimiter ;
mysql> CALL show_times();
+----------------+---------------------+

| Local time is: | CURRENT_TIMESTAMP |

+----------------+---------------------+

| Local time is: | 2008-05-15 18:20:13 |

+----------------+---------------------+

+--------------+---------------------+

| UTC time is: | UTC_TIMESTAMP |

+--------------+---------------------+

| UTC time is: | 2008-05-15 23:20:13 |

+--------------+---------------------+

The delimiter need not be $, and it need not be a single character:

mysql> delimiter EOF
mysql> CREATE PROCEDURE show_times()

-> BEGIN
-> SELECT 'Local time is:', CURRENT_TIMESTAMP;
-> SELECT 'UTC time is:', UTC_TIMESTAMP;
-> END EOF

mysql> delimiter ;

The principle to keep in mind is this: If a stored program’s body contains any internal
semicolons, you should redefine the delimiter while defining the program.

A compound statement need not be used only for complex stored programs.You can
use one even if a program body consists of a single statement, or even no statements:

CREATE PROCEDURE do_little ()

BEGIN

DO SLEEP(1);

292 Chapter 4 Stored Programs

END;

CREATE PROCEDURE do_nothing ()

BEGIN

END;

For stylistic consistency, you might prefer to use BEGIN and END for all stored program
definitions.

4.2 Stored Functions and Procedures
Stored functions calculate a value to be returned to the caller for use in expressions, just
like built-in functions such as COS() or HEX(). Stored procedures are executed as stand-
alone operations using the CALL statement rather than in expressions. Use a procedure if
you need only to perform a computation to produce an effect or action without return-
ing a value, or if the computation produces result sets (which a function is not allowed to
do).These are guidelines, not hard and fast rules. For example, if you need to return more
than one value, you cannot use a function. But you may be able to use a procedure, be-
cause procedures support parameter types that can have their values set when the proce-
dure executes, such that those values can be accessed by the caller after the procedure
finishes.

To create a stored function or procedure, use a CREATE FUNCTION or CREATE
PROCEDURE statement.The following example creates a function that takes an integer-
valued parameter representing a year. (I use p_ as a prefix to distinguish parameter names
from other names such as those of tables or columns.) The function uses a subquery to
determine how many presidents were born in that year and returns the count:

mysql> delimiter $
mysql> CREATE FUNCTION count_born_in_year(p_year INT)

-> RETURNS INT
-> READS SQL DATA
-> BEGIN
-> RETURN (SELECT COUNT(*) FROM president WHERE YEAR(birth) = p_year);
-> END$

mysql> delimiter ;

The function has a RETURNS clause to indicate the data type of its return value and a
body that computes that value.The function body must include at least one RETURN state-
ment to return a value to the caller. By defining a calculation as a function, you have a
simple way to execute it without specifying all the logic each time, and it can be invoked
just like a built-in function:

mysql> SELECT count_born_in_year(1908);
+--------------------------+

| count_born_in_year(1908) |

+--------------------------+

| 1 |

+--------------------------+

2934.2 Stored Functions and Procedures

mysql> SELECT count_born_in_year(1913);
+--------------------------+

| count_born_in_year(1913) |

+--------------------------+

| 2 |

+--------------------------+

Here, the function is invoked by itself, but stored functions can be used within arbi-
trarily complex expressions.

You cannot return multiple values from a given function.You could write multiple
functions and invoke them all from within a single statement, but another approach is to
use a stored procedure that “returns” values via OUT parameters.The procedure should
compute the desired values and assign them to the parameters, which then can be
accessed by the caller after the procedure returns. For details, see Section 4.2.2,“Stored
Procedure Parameter Types.”

If you define a stored function with the same name as a built-in function, you should
qualify the function name with the database name when you invoke it. For example, if
you define a stored function named PI() in the sampdb database, invoke it as
sampdb.PI() to make clear that you do not mean the built-in function. (To avoid this
ambiguity, it’s best not to use names of built-in functions.)

A stored procedure is similar to a stored function, but it doesn’t return a value.There-
fore, it does not have a RETURNS clause or any RETURN statements.The following simple
stored procedure is similar to the count_born_in_year() function, but instead of calcu-
lating a count as a return value, it displays a result set containing a row of information for
each president born in the given year.

mysql> delimiter $
mysql> CREATE PROCEDURE show_born_in_year(p_year INT)

-> BEGIN
-> SELECT first_name, last_name, birth, death
-> FROM president
-> WHERE YEAR(birth) = p_year;
-> END$

mysql> delimiter ;

Unlike stored functions, stored procedures are not used in expressions.They are in-
voked using the CALL statement:

mysql> CALL show_born_in_year(1908);
+------------+-----------+------------+------------+

| first_name | last_name | birth | death |

+------------+-----------+------------+------------+

| Lyndon B. | Johnson | 1908-08-27 | 1973-01-22 |

+------------+-----------+------------+------------+

mysql> CALL show_born_in_year(1913);
+------------+-----------+------------+------------+

| first_name | last_name | birth | death |

294 Chapter 4 Stored Programs

+------------+-----------+------------+------------+

| Richard M. | Nixon | 1913-01-09 | 1994-04-22 |

| Gerald R. | Ford | 1913-07-14 | 2006-12-26 |

+------------+-----------+------------+------------+

The procedure body in this case executes a SELECT statement.As the example illus-
trates, the result set from this statement is not returned as the procedure value, but instead
is sent to the client.A procedure can generate multiple result sets, each of which is sent in
turn to the client.

The examples thus far have only selected information, but stored routines also can
modify tables, as shown by the next example. update_expiration() is a stored routine
that updates data. It takes the ID of a Historical League member and updates the appro-
priate membership row with the given expiration date:

CREATE PROCEDURE update_expiration (p_id INT UNSIGNED, p_date DATE)

BEGIN

UPDATE member SET expiration = p_date WHERE member_id = p_id;

END;

The following calls of update_expiration() set member expirations to one year
from the current date and to “lifetime membership” (NULL means “no expiration”):

mysql> CALL update_expiration(61, CURDATE() + INTERVAL 1 YEAR);
mysql> CALL update_expiration(87, NULL);

Stored functions are subject to the restriction that they cannot modify a table that is be-
ing read or written by the statement that invoked the function. Stored procedures normally
do not have this restriction, but do become subject to it if they are invoked from within a
stored function. For example, you cannot call update_expiration() from within a stored
function that is used in a statement that selects from the member table.

4.2.1 Privileges for Stored Functions and Procedures
Stored functions and procedures belong to a database.To create a stored function or pro-
cedure, you must have the CREATE ROUTINE privilege for that database. By default, when
you create a stored routine, the server automatically grants you the EXECUTE and ALTER

ROUTINE privileges if you do not already have them, so that you can execute the routine
or drop it. If you do drop the routine, the server also automatically revokes those privi-
leges.You can set the automatic_sp_privileges system variable to 0 if you don’t want
automatic privilege granting and revocation to occur.

If the server has binary logging enabled, stored functions are subject to additional con-
ditions that are intended to make the binary log safe for backups and replication by re-
stricting creation of functions that are non-deterministic or modify data. (If a function
produces different results for given input values, restoring data by re-executing the binary

2954.2 Stored Functions and Procedures

log can fail to restore the original data, and the function can replicate differently on mas-
ter and slave servers.) These conditions are:

n If the log_bin_trust_function_creators system variable is not enabled, you
must have the SUPER privilege to be able to create stored functions.Also, each func-
tion that you create should be deterministic and should not modify data.To signal
this, declare it with one of the DETERMINISTIC, NO SQL, or READS SQL DATA char-
acteristics. For example:

CREATE FUNCTION half (p_value DOUBLE)

RETURNS DOUBLE

DETERMINISTIC

BEGIN

RETURN p_value / 2;

END;

n If the log_bin_trust_function_creators system variable is enabled, no restric-
tions are enforced.This is most appropriate in situations where you can trust all
users of the MySQL server not to define unsafe stored functions.

The conditions relating to log_bin_trust_function_creators also apply to trigger
creation. Before MySQL 5.1.6, you are not likely to notice this because you must have
the SUPER privilege to create triggers, and SUPER overrides the log_bin_trust_
function_creators restrictions.

4.2.2 Stored Procedure Parameter Types
Stored procedure parameters can have one of three types. For an IN parameter, the caller
passes a value into the procedure.The value can be modified within the procedure, but
any changes are not visible to the caller after the procedure returns.An OUT parameter is
the opposite.The procedure assigns a value to the parameter, which can be accessed by
the caller after the procedure returns.An INOUT parameter enables the caller to pass in a
value, and to get back a value.

To specify a parameter type explicitly, use IN, OUT, or INOUT immediately preceding the
parameter name in the parameter list. Parameters are IN by default if no type is given.

To use an OUT or INOUT parameter, specify a variable name when you call the proce-
dure.The procedure can set the parameter value, and the corresponding variable will have
that value when the procedure returns.The OUT and INOUT parameter types can be espe-
cially useful when you require a computation that produces multiple result values. (A
stored function returns only a single value, so it is inapplicable to such situations.)

The following procedure demonstrates use of OUT parameters. It counts the number of
male and female students in the student table and returns the counts via its parameters so
that the caller can access them:

CREATE PROCEDURE count_students_by_sex (OUT p_male INT, OUT p_female INT)

BEGIN

296 Chapter 4 Stored Programs

SELECT COUNT(*) FROM student WHERE sex = 'M' INTO p_male;

SELECT COUNT(*) FROM student WHERE sex = 'F' INTO p_female;

END;

To invoke the procedure, supply user-defined variables for the parameters.The proce-
dure puts the counts into these parameters, and after it returns, the variables contain the
counts:

mysql> CALL count_students_by_sex(@mcount, @fcount);
mysql> SELECT 'Number of male students: ', @mcount;
+----------------------------+---------+

| Number of male students: | @mcount |

+----------------------------+---------+

| Number of male students: | 16 |

+----------------------------+---------+

mysql> SELECT 'Number of female students:', @fcount;
+----------------------------+---------+

| Number of female students: | @fcount |

+----------------------------+---------+

| Number of female students: | 15 |

+----------------------------+---------+

More involved examples might require additional parameters. For example, you might
write a procedure that has an IN parameter that indicates the ID for a test or quiz in the
score table.The procedure could compute descriptive statistics from the relevant scores
(mean, standard deviation, range, and so forth), and then pass back all those values to the
caller by means of OUT parameters.

The IN, OUT, and INOUT keywords do not apply to stored functions, triggers, or events.
For stored functions, all parameters are like IN parameters.Triggers and events do not
have parameters at all.

4.3 Triggers
A trigger is a stored program that is associated with a particular table and is defined to ac-
tivate for INSERT, DELETE, or UPDATE statements for that table.A trigger can be set to acti-
vate either before or after each row processed by the statement.The trigger definition
includes a statement that executes when the trigger activates.

The following list describes some of the benefits that triggers provide:

n A trigger can examine or change new data values to be inserted or used to update a
row.This enables you to enforce data integrity constraints, such as verifying that a
percentage is a value from 0 to 100. It also makes it possible to perform input data
filtering.

n A trigger can supply default values for a column based on an expression.This en-
ables you to work around the restriction that default values in column definitions
must be constants.

2974.3 Triggers

n A trigger can examine the current contents of a row before it is deleted or updated.
This capability can be exploited to perform logging of changes to existing rows, for
example.

To create a trigger, use the CREATE TRIGGER statement.The definition indicates the
particular type of statement for which the trigger activates (INSERT, UPDATE, or DELETE),
and whether it activates before or after rows are modified.The basic syntax for trigger
creation looks like this:

CREATE TRIGGER trigger_name # the trigger name

{BEFORE | AFTER} # when the trigger activates

{INSERT | UPDATE | DELETE} # what statement activates it

ON tbl_name # the associated table

FOR EACH ROW trigger_stmt; # what the trigger does

tbl_name is the table with which the trigger is associated; trigger_name is the name
of the trigger itself. For trigger naming, I like to adopt a convention that helps make the
trigger purpose and table association clear, such as bi_tbl_name or ai_tbl_name for a
BEFORE INSERT or AFTER INSERT trigger on tbl_name.

trigger_stmt is the trigger body; that is, the statement that executes when the trigger
activates. In a trigger body, the syntax NEW.col_name can be used to refer to columns in
the new row to be inserted or updated in an INSERT or UPDATE trigger. Similarly,
OLD.col_name can be used to refer to columns in the old row to be deleted or updated in
a DELETE or UPDATE trigger.To change a column value within a BEFORE trigger before the
value is stored in the table, use SET NEW.col_name = value.

The following example shows a trigger bi_t for INSERT statements for a table t that
has an integer percent column for storing percentage values (0 to 100) and a DATETIME
column.The trigger uses BEFORE so that it can examine data values before they are in-
serted into the table.

mysql> CREATE TABLE t (percent INT, dt DATETIME);
mysql> delimiter $
mysql> CREATE TRIGGER bi_t BEFORE INSERT ON t

-> FOR EACH ROW BEGIN
-> SET NEW.dt = CURRENT_TIMESTAMP;
-> IF NEW.percent < 0 THEN
-> SET NEW.percent = 0;
-> ELSEIF NEW.percent > 100 THEN
-> SET NEW.percent = 100;
-> END IF;
-> END$

mysql> delimiter ;

The trigger performs two actions:

n For attempts to insert a percentage value that lies outside the range from 0 to 100,
the trigger converts the value to the nearest endpoint.

298 Chapter 4 Stored Programs

n The trigger automatically provides a value of CURRENT_TIMESTAMP for the
DATETIME column. In effect, this works around the limitation that a column’s de-
fault value must be a constant, and implements TIMESTAMP-like automatic initializa-
tion for a DATETIME column.

To see how the trigger works, insert some rows into the table, and then retrieve its
contents:

mysql> INSERT INTO t (percent) VALUES(-2); DO SLEEP(2);
mysql> INSERT INTO t (percent) VALUES(30); DO SLEEP(2);
mysql> INSERT INTO t (percent) VALUES(120);
mysql> SELECT * FROM t;
+---------+---------------------+

| percent | dt |

+---------+---------------------+

| 0 | 2008-05-15 18:38:22 |

| 30 | 2008-05-15 18:38:24 |

| 100 | 2008-05-15 18:38:26 |

+---------+---------------------+

The privilege required to create and drop triggers is version-specific. Before MySQL
5.1.6, you must have the SUPER privilege.As of MySQL 5.1.6, access control is more cor-
rectly handled: Because a trigger is associated with a table, you must have the TRIGGER
privilege for that table to be able to create and drop triggers for it.

4.4 Events
MySQL 5.1.6 and up has an event scheduler that enables you to perform time-activated
database operations.An event is a stored program that is associated with a schedule.The
schedule defines the time or times at which the event executes, and optionally when the
event ceases to exist. Events are especially useful for performing unattended administrative
operations such as periodic updates to summary reports, expiration of old data, or log
table rotation.This section demonstrates row expiration. For an example that shows how
to perform event-based log table rotation, see Section 12.5.7.4,“Expiring or Rotating
Log Tables.”

The event scheduler does not run by default, so you must turn it on if you want to use
events. Put the following lines in an option file that the server reads at startup:

[mysqld]

event_scheduler=ON

To check the status of the event scheduler at runtime, use this statement:

SHOW VARIABLES LIKE 'event_scheduler';

To stop or start the scheduler at runtime, change the value of the event_scheduler
system variable (it is a GLOBAL variable, so you must have the SUPER privilege):

SET GLOBAL event_scheduler = OFF; # or 0

SET GLOBAL event_scheduler = ON; # or 1

2994.4 Events

If you stop the scheduler, no events run. It is also possible to leave the scheduler run-
ning but disable individual events, as discussed later.

Note
If you set event_scheduler to DISABLED at startup, you can check but not change its sta-
tus at runtime. Also, you can create events, but they will not execute.

The event scheduler writes to the server’s error log, which you can check for informa-
tion about what the scheduler is doing. It logs events as it runs them, as well as errors that
occur during event execution. If the event scheduler is not running when you expect it
to be, check the error log for a message that indicates the reason why.

The following example shows how to create a simple event that deletes old rows from
a table. Suppose that you have a table named web_session that holds state information
for sessions associated with users who visit your Web site, and that this table has a
DATETIME column named last_visit that indicates the time of each user’s most recent
visit.To keep this table from accumulating stale rows, you can set up an event that period-
ically purges them.To execute the event every six hours and have it expire rows more
than a day old, write the event definition like this:

CREATE EVENT expire_web_session

ON SCHEDULE EVERY 4 HOUR

DO

DELETE FROM web_session

WHERE last_visit < CURRENT_TIMESTAMP - INTERVAL 1 DAY;

The EVERY n interval clauses specifies periodic execution at fixed intervals.The
interval values are like those used for the DATE_ADD() function, such as HOUR, DAY, or
MONTH. Following EVERY, you can also include STARTS datetime and ENDS datetime op-
tions that specify the initial and final execution time. By default, an EVERY event runs for
the first time immediately after it is created and has no final time.

The DO clause defines the event body, which is an SQL statement that executes when
the event runs.As for other stored program types, this can be a simple statement or a
compound statement written using BEGIN and END.

To create an event that runs only one time, use the AT scheduling type rather than
EVERY.A definition such as the following creates an event that executes once, an hour in
the future:

CREATE EVENT one_shot

ON SCHEDULE AT CURRENT_TIMESTAMP + INTERVAL 1 HOUR

DO ... ;

To disable an event to stop it from executing, or to re-enable a disabled event, use
ALTER EVENT:

ALTER EVENT event_name DISABLE;

ALTER EVENT event_name ENABLE;

300 Chapter 4 Stored Programs

An event belongs to a database, so you must have the EVENT privilege for that database
to create or drop events for it.

4.5 Security for Stored Programs and Views
When you create a stored program, you create an object that is to be executed later.The
same is true when you define a view: It sets up a SELECT statement intended for later invo-
cation.This “execute later” aspect of such objects means that the user who causes object
execution might not be the user who originally created it, which raises an important ques-
tion:What security context should the server use for checking access privileges at execu-
tion time?That is, which account’s privileges should apply?

By default, the server uses the account of the user who defined the object. Suppose
that I define a stored procedure p() that accesses tables belonging to me. If I give you the
EXECUTE privilege for p(), you can say CALL p() to invoke the procedure and it will ac-
cess my tables on your behalf because it runs with my privileges.This type of security
context can be good or bad:

n It’s good in the sense that it enables carefully written stored programs to be set up
that provide controlled access to tables for users who are not able to access them
directly.

n It’s bad if a user creates a stored program that accesses sensitive data but forgets
that other people who can invoke the object have the same access to that data as
its definer.

The definer for a stored program or view can be specified explicitly by including a
DEFINER = account clause in the CREATE statement for the object.This causes the named
account to be treated as the definer for purposes of access checking at execution time. For
example:

CREATE DEFINER = 'sampadm'@'localhost' PROCEDURE count_students()

SELECT COUNT(*) FROM student;

In a DEFINER clause, the definer value can be an account name in 'user_name'@
'host_name' format as used in account-management statements such as CREATE USER.
(See Section 12.4.1.1,“Specifying Account Names.”) For this format, user_name and
host_name must both be given.Alternatively, the value can be CURRENT_USER or
CURRENT_USER() to indicate the account of the user who executes the statement
(the same account that is used by default if no DEFINER clause is present).

If you have the SUPER privilege, you can give any syntactically legal account name as
the DEFINER value; a warning occurs if the account does not exist at the time. If you do
not have the SUPER privilege, you can set the definer only to your own account, using ei-
ther the literal account name or CURRENT_USER.

For views and stored functions and procedures, you can specify the SQL SECURITY
characteristic, which gives you an additional means of control over execution time access-
checking. SQL SECURITY takes a value of DEFINER (execute with the definer’s privileges)
or INVOKER (execute with the privileges of the user who invoked the object).

3014.5 Security for Stored Programs and Views

SQL SECURITY INVOKER is preferable for situations when you don’t want a stored pro-
gram or view to execute with any more privileges than a user already has.The following
view accesses a table in the mysql database, but runs with invoker privileges.That way, if
the invoker has no access to mysql.user, the view won’t subvert that restriction.

CREATE SQL SECURITY INVOKER VIEW v

AS SELECT CONCAT(User,'@',Host) AS Account, Password FROM mysql.user;

Triggers and events are invoked automatically by the server, so the concept of “invok-
ing user” does not apply.Thus, they have no SQL SECURITY characteristic and always exe-
cute with definer privileges.

If a stored program or view runs with definer privileges at execution time and the de-
finer account does not exist, an error occurs.

This page intentionally left blank

5
Query Optimization

The world of relational database theory is a world dominated by tables and sets, and op-
erations on tables and sets.A database is a set of tables, and a table is a set of rows and
columns.When you issue a SELECT statement to retrieve rows from a table, you get back
another set of rows and columns—that is, another table.These are abstract notions that
make no reference to the underlying representation a database system uses to operate on
the data in your tables.Another abstraction in set theory is that operations on tables hap-
pen all at once; queries are conceptualized as set operations for which there is no concept
of time.

The real world, of course, is quite different. Database management systems implement
abstract concepts but do so on real hardware bound by real physical constraints.As a re-
sult, queries take time—sometimes an annoyingly long time.And we, being impatient
creatures, don’t like to wait, so we leave the abstract world of instantaneous mathematical
operations on sets and look for ways to speed up our queries. Fortunately, there are several
techniques for doing so:

n Create indexes on tables to enable the database server to look up rows more
quickly.

n Consider how to write queries to take advantage of those indexes to the fullest ex-
tent, and use the EXPLAIN statement to check whether the MySQL server really is
doing so.

n Write queries to affect the server’s scheduling mechanism so that queries arriving
from multiple clients cooperate better.

n Tune the server’s configurable operating parameters to get it to perform more
efficiently.

n Analyze what’s going on with the underlying hardware and how to work around its
physical constraints to improve performance.

This chapter focuses on those kinds of issues, with the goal of assisting you in optimiz-
ing the performance of your database system so that it processes your queries as quickly as

304 Chapter 5 Query Optimization

ad table

company_num ad_num hit_fee

14
23
17
13
23
23
23
13
23
14
13
17

48
49
52
55
62
63
64
77
99

101
102
119

0.01
0.02
0.01
0.03
0.02
0.01
0.02
0.03
0.03
0.01
0.01
0.02

Figure 5.1 Unindexed ad table.

possible. MySQL is already quite fast, but even the fastest database can run queries more
quickly if you help it do so.

5.1 Using Indexing
Many techniques are available to you for speeding up queries, but indexing is the most
important one.That is, in general, the one thing that makes the most difference is the
proper use of indexes. It’s often true that when a query runs slowly, adding indexes solves
the problem immediately. But it doesn’t always work like that, because optimization isn’t
always simple. Nevertheless, if you don’t use indexes, in many cases you’re just wasting
your time trying to improve performance by other means. Use indexing first to get the
biggest performance boost and then see what other techniques might be helpful.

This section describes what an index is and how indexing improves query perform-
ance. It also discusses the circumstances under which indexes might degrade performance
and provides guidelines for choosing indexes for your table wisely. In the next section,
we’ll discuss MySQL’s query optimizer that attempts to find the most efficient way to ex-
ecute queries. It’s good to have some understanding of the optimizer in addition to
knowing how to create indexes because then you’ll be better able to take advantage of
the indexes you create. Certain ways of writing queries actually prevent your indexes
from being useful, and you’ll want to avoid having that happen.

5.1.1 Benefits of Indexing
Let’s consider how an index works, beginning with a table that has no indexes.An unin-
dexed table is simply an unordered collection of rows. Figure 5.1 shows the ad table that
was discussed in Chapter 1,“Getting Started with MySQL.” Because there are no indexes
on this table, finding the rows for a particular company requires examination of each row
in the table to see whether it matches the desired value.This involves a full table scan,
which is slow, as well as tremendously inefficient if the table is large but contains only a
few rows that match the search criteria.

3055.1 Using Indexing

ad table

company_num ad_num hit_fee

14
23
17
13
23
23
23
13
23
14
13
17

48
49
52
55
62
63
64
77
99

101
102
119

0.01
0.02
0.01
0.03
0.02
0.01
0.02
0.03
0.03
0.01
0.01
0.02

index

13
13
13
14
14
17
17
23
23
23
23
23

Figure 5.2 Indexed ad table.

Figure 5.2 shows the same table, but with the addition of an index on the
company_num column in the ad table.The index contains an entry for each row in the ad
table, but the index entries are sorted by company_num value. Now, instead of searching
through the table row by row looking for items that match, we can use the index. Sup-
pose that we’re looking for all rows for company 13.We begin scanning the index and
find three values for that company.Then we reach the index value for company 14, which
is higher than the one we’re looking for. Index values are sorted, so when we read the in-
dex row containing 14, we know we won’t find any more matches and can quit looking.
Thus, one efficiency gained by using the index is that we can tell where the matching
rows end and can skip the rest.Another efficiency comes about through the use of posi-
tioning algorithms for finding the first matching entry without doing a linear scan from
the start of the index (for example, a binary search is much quicker than a scan).That way,
we can quickly position to the first matching value and save a lot of time in the search.
Databases use various techniques for positioning to index values quickly, but it’s not so
important here what those techniques are.What’s important is that they work and that in-
dexing is a good thing because it enables their use.

You might be asking why we don’t just sort the data rows and dispense with the in-
dex.Wouldn’t that produce the same type of improvement in search speed? Yes, it
would—if the table had a single index. But you might want to add a second index, and
you can’t sort the data rows two different ways at once. For example, you might want one
index on customer names and another on customer ID numbers or phone numbers. Us-
ing indexes as entities separate from the data rows solves the problem and enables multiple
indexes to be created. In addition, rows in the index are generally shorter than data rows.
When you insert or delete new values, it’s easier to move around shorter index values to
maintain the sort order than to move around the longer data rows.

The particular details of index implementations vary for different MySQL storage
engines. For example, for a MyISAM table, the table’s data rows are kept in a data file,

and index values are kept in an index file.You can have more than one index on a table,
but they’re all stored in the same index file. Each index in the index file consists of a
sorted array of key rows that are used for fast access into the data file.

By contrast, the InnoDB storage engine does not separate data rows and index values
in the same way, although it does maintain indexes as sets of sorted values. By default, the
InnoDB engine uses a single tablespace within which it manages data and index storage
for all InnoDB tables. InnoDB can be configured to create each table with its own table-
space, but even so, a given table’s data and indexes are stored in the same tablespace file.

The preceding discussion describes the benefit of an index in the context of single-
table queries, where the use of an index speeds searches significantly by eliminating the
need for full table scans. Indexes are even more valuable when you’re running queries in-
volving joins on multiple tables. In a single-table query, the number of values you need to
examine per column is the number of rows in the table. In a multiple-table query, the
number of possible combinations skyrockets because it’s the product of the number of
rows in the tables.

Suppose that you have three unindexed tables, t1, t2, and t3, each containing a col-
umn i1, i2, and i3, respectively, and each consisting of 1,000 rows that contain the num-
bers 1 through 1000.A query to find all combinations of table rows in which the values
are equal looks like this:

SELECT t1.i1, t2.i2, t3.i3

FROM t1 INNER JOIN t2 INNER JOIN t3

WHERE t1.i1 = t2.i2 AND t2.i2 = t3.i3;

The result of this query should be 1,000 rows, each containing three equal values. If
we process the query in the absence of indexes, we have no idea which rows contain
which values without scanning them all. Consequently, we must try all combinations to
find the ones that match the WHERE clause.The number of possible combinations is 1,000
× 1,000 × 1,000 (one billion!), which is a million times more than the number of
matches.That’s a lot of wasted effort.To make things worse, as the tables grow, the time to
process joins on those tables grows even more if no indexes are used, leading to very poor
performance.We can speed things up considerably by indexing the tables, because the in-
dexes enable the query to be processed like this:

1. Select the first row from table t1 and see what value the row contains.

2. Using the index on table t2, go directly to the row that matches the value from t1.
Similarly, using the index on table t3, go directly to the row that matches the value
from t2.

3. Proceed to the next row of table t1 and repeat the preceding procedure. Do this
until all rows in t1 have been examined.

In this case, we still perform a full scan of table t1, but we can do indexed lookups on
t2 and t3 to pull out rows from those tables directly.The query runs about a million
times faster this way—literally.This example is contrived for the purpose of making a

306 Chapter 5 Query Optimization

3075.1 Using Indexing

point, but the problems it illustrates are real, and adding indexes to tables that have none
often results in dramatic performance gains.

MySQL uses indexes in several ways:

n As just described, indexes are used to speed up searches for rows matching terms of
a WHERE clause or rows that match rows in other tables when performing joins.

n For queries that use the MIN() or MAX() functions, the smallest or largest value in
an indexed column can be found quickly without examining every row.

n MySQL can often use indexes to perform sorting and grouping operations quickly
for ORDER BY and GROUP BY clauses.

n Sometimes MySQL can use an index to read all the information required for a
query. Suppose that you’re selecting values from an indexed numeric column in a
MyISAM table, and you’re selecting no other columns from the table. In this case,
when MySQL reads an index value from the index file, it obtains the same value
that it would get by reading the data file.There’s no reason to read values twice, so
the data file need not even be consulted.

5.1.2 Costs of Indexing
In general, if MySQL can figure out how to use an index to process a query more
quickly, it will.This means that, for the most part, if you don’t index your tables, you’re
hurting yourself.You can see that I’m painting a rosy picture of the benefits of indexing.
Are there disadvantages? Yes, there are.There are costs both in time and in space. In prac-
tice, these drawbacks tend to be outweighed by the advantages, but you should know
what they are.

First, indexes speed up retrievals but slow down inserts and deletes, as well as updates
of values in indexed columns.That is, indexes slow down most operations that involve
writing.This occurs because writing a row requires writing not only the data row, it re-
quires changes to any indexes as well.The more indexes a table has, the more changes
need to be made, and the greater the average performance degradation. Most tables re-
ceive many reads and few writes, but for a table with a high percentage of writes, the cost
of index updating might be significant. Section 5.4,“Loading Data Efficiently,”discusses
what you can do to reduce this cost.

Second, an index takes up disk space, and multiple indexes take up correspondingly
more space.This might cause you to reach a table size limit more quickly than if there are
no indexes:

n For a MyISAM table, indexing it heavily may cause the index file to reach its maxi-
mum size more quickly than the data file.

n All InnoDB tables that are located within the InnoDB shared tablespace compete
for the same common pool of space, and adding indexes depletes storage within this
tablespace more quickly. However, unlike the files used for MyISAM tables, the
InnoDB shared tablespace is not bound by your operating system’s file-size limit,

because it can be configured to use multiple files.As long as you have additional
disk space, you can expand the tablespace by adding new components to it.

InnoDB tables that use individual tablespaces store data and index values together
in the same file, so adding indexes causes the table to reach the maximum file size
more quickly.

The practical implication of both these factors is that if you don’t need a particular in-
dex to help queries perform better, don’t create it.

5.1.3 Choosing Indexes
The syntax for creating indexes is covered in Section 2.6.4.2,“Creating Indexes.” I assume
here that you’ve read that section. But knowing syntax doesn’t in itself help you deter-
mine how your tables should be indexed.That requires some thought about the way you
use your tables.This section gives some guidelines on how to identify candidate columns
for indexing and how best to set up indexes.

Index columns that you use for searching, sorting, or grouping, not columns you
select for output. In other words, the best candidate columns for indexing are the
columns that appear in your WHERE clause, columns named in join clauses, or columns that
appear in ORDER BY or GROUP BY clauses. Columns that appear only in the output column
list following the SELECT keyword are not good candidates:

SELECT

col_a ← not a candidate

FROM

tbl1 LEFT JOIN tbl2

ON tbl1.col_b = tbl2.col_c ← candidates

WHERE

col_d = expr; ← a candidate

The columns that you display and the columns you use in the WHERE clause might be
the same, of course.The point is that appearance of a column in the output column list is
not in itself a good indicator that it should be indexed.

Columns that appear in join clauses or in expressions of the form col1 = col2 in
WHERE clauses are especially good candidates for indexing. col_b and col_c in the query
just shown are examples of this. If MySQL can optimize a query using joined columns, it
cuts down the potential table-row combinations quite a bit by eliminating full table scans.

Consider column cardinality. The cardinality of a column is the number of distinct
values that it contains. For example, a column that contains the values 1, 3, 7, 4, 7, and 3
has a cardinality of four. Indexes work best for columns that have a high cardinality rela-
tive to the number of rows in the table (that is, columns that have many unique values
and few duplicates). For a column that contains many different age values, an index read-
ily differentiates rows. For a column that is used to record sex and contains only the two
values 'M' and 'F', an index will not help. If the values occur about equally, you’ll get
about half of the rows whichever value you search for. Under these circumstances, the

308 Chapter 5 Query Optimization

3095.1 Using Indexing

index might never be used at all, because the query optimizer generally skips an index in
favor of a full table scan if it determines that a value occurs in a large percentage of a
table’s rows.The conventional wisdom for this percentage used to be 30%. Nowadays the
optimizer is more complex and takes other factors into account, so the percentage is not
the sole determinant of when MySQL prefers a scan over using an index.

Index short values. Use smaller data types when possible. For example, don’t use a
BIGINT column if a MEDIUMINT is large enough to hold the values you need to store, and
don’t use CHAR(100) if none of your values are longer than 25 characters. Smaller values
improve index processing in several ways:

n Shorter values can be compared more quickly, so index lookups are faster.
n Smaller values result in smaller indexes that require less disk I/O.
n With shorter key values, index blocks in the key cache hold more key values.

MySQL can hold more keys in memory at once, which improves the likelihood of
locating key values without reading additional index blocks from disk.

For the InnoDB storage engine, which uses clustered indexes, it’s especially beneficial
to keep the primary key short.A clustered index is one where the data rows are stored to-
gether with (that is, clustered with) the primary key values. Other indexes are secondary
indexes; these store the primary key value with the secondary index values.A lookup in a
secondary index yields a primary key value, which then is used to locate the data row.The
implication is that primary key values are duplicated into each secondary index, so if pri-
mary key values are longer, the extra storage is required for each secondary index as well.

Index prefixes of string values. If you’re indexing a string column, specify a prefix
length whenever it’s reasonable to do so. For example, if you have a CHAR(200) column,
don’t index the entire column if most values are unique within the first 10 or 20 charac-
ters. Indexing the first 10 or 20 characters will save a lot of space in the index, and proba-
bly will make your queries faster as well. By indexing shorter values, you gain the
advantages described in the previous item relating to comparison speed and disk I/O re-
duction.You want to use some common sense, of course. Indexing just the first character
from a column isn’t likely to be that helpful because the resulting index won’t have very
many distinct values.

You can index prefixes of CHAR, VARCHAR, BINARY, VARBINARY, TEXT, and BLOB
columns, using the syntax described in Section 2.6.4.2, “Creating Indexes.”

Take advantage of leftmost prefixes.When you create an n-column composite in-
dex, you actually create n indexes that MySQL can use.A composite index serves as sev-
eral indexes because any leftmost set of columns in the index can be used to match rows.
Such a set is called a “leftmost prefix.” (This is different from indexing a prefix of a col-
umn, which creates an index using the first n characters or bytes of column values.)

Suppose that you have a table with a composite index on columns named state,
city, and zip. Rows in the index are sorted in state/city/zip order, so they’re auto-
matically sorted in state/city order and in state order as well.This means that
MySQL can take advantage of the index even if you specify only state values in a query,

or only state and city values.Thus, the index can be used to search the following com-
binations of columns:

state, city, zip

state, city

state

MySQL cannot use the index for searches that don’t involve a leftmost prefix. For ex-
ample, if you search by city or by zip, the index isn’t used. If you’re searching for a given
state and a particular ZIP code (columns 1 and 3 of the index), the index can’t be used
for the combination of values, although MySQL can narrow the search using the index to
find rows that match the state.

Don’t over-index. Don’t index everything in sight based on the assumption “the
more, the better.” Every additional index takes extra disk space and hurts performance of
write operations, as has already been mentioned. Indexes must be updated and possibly
reorganized when you modify the contents of your tables, and the more indexes you
have, the longer this takes. If you have an index that is rarely or never used, you’ll slow
down table modifications unnecessarily. In addition, MySQL considers indexes when
generating an execution plan for retrievals. Creating extra indexes creates more work for
the query optimizer. It’s also possible (if unlikely) that MySQL will fail to choose the best
index to use when you have too many indexes. Maintaining only the indexes you need
helps the query optimizer avoid making such mistakes.

If you’re thinking about adding an index to a table that is already indexed, consider
whether the index you’re considering adding is a leftmost prefix of an existing multiple-
column index. If so, don’t bother adding the index because, in effect, you already have it.
For example, if you already have an index on state, city, and zip, there is no point in
adding an index on state.The exception to this is that for FULLTEXT indexes, you must
have a separate index for each distinct set of columns that you want to search.

Match index types to the type of comparisons you perform.When you create an
index, most storage engines choose the index implementation they will use. For example,
InnoDB always uses B-tree indexes. MyISAM also uses B-tree indexes, except that it uses
R-tree indexes for spatial data types.The MEMORY storage engine uses hash indexes by
default, but also supports B-tree indexes and enables you to select which one you want.
To choose an index type, consider what kind of comparison operations you plan to per-
form on the indexed column:

n For a hash index, a hash function is applied to each column value.The resulting
hash values are stored in the index and used to perform lookups. (A hash function
implements an algorithm that is likely to produce distinct hash values for distinct
input values.The advantage of using hash values is that they can be compared more
efficiently than the original values.) Hash indexes are very fast for exact-match
comparisons performed with the = or <=> operators. But they are poor for compar-
isons that look for a range of values, as in these expressions:

id < 30

weight BETWEEN 100 AND 150

310 Chapter 5 Query Optimization

3115.2 The MySQL Query Optimizer

n B-tree indexes can be used effectively for comparisons involving exact or range-
based comparisons that use the <, <=, =, >=, >, <>, !=, and BETWEEN operators. B-tree
indexes can also be used for LIKE pattern matches if the pattern begins with a lit-
eral string rather than a wildcard character.

If you use a MEMORY table only for exact-value lookups, a hash index is a good
choice.This is the default index type for MEMORY tables, so you need do nothing spe-
cial. If you need to perform range-based comparisons with a MEMORY table, you
should use a B-tree index instead.To specify this type of index, add USING BTREE to your
index definition. For example:

CREATE TABLE lookup

(

id INT NOT NULL,

name CHAR(20),

PRIMARY KEY USING BTREE (id)

) ENGINE = MEMORY;

If the types of searches that you expect to use warrant it, a single MEMORY table can
have both hash indexes and B-tree indexes, even on the same column.

Some types of comparisons cannot use indexes. If you perform comparisons only by
passing column values to a function such as STRCMP(), there is no value in indexing the
column.The server must evaluate the function value for each row, which precludes use of
an index on the column.

Use the slow-query log to identify queries that may be performing badly. This
log can help you find queries that might benefit from indexing. (See Section 12.5,
“Maintaining Logs,” for general discussion of MySQL’s logs.) The slow-query log is
written as text, so it is viewable with any file-display program, or you can use the
mysqldumpslow utility to summarize its contents. If a given query shows up over and
over in this log, that’s a clue you’ve found a query that might not be written optimally.
You may be able to rewrite it to make it run more quickly. Keep in mind when assessing
your slow-query log that “slow” is measured in real time, so more queries will show
up in the slow-query log on a heavily loaded server than on a lightly loaded one.

5.2 The MySQL Query Optimizer
When you issue a statement that selects rows, MySQL analyzes it to see whether any
optimizations can be used to process the statement more quickly. In this section, we’ll
look at how the query optimizer works. For additional information about optimization
measures that MySQL takes, consult the optimization chapter in the MySQL Reference
Manual.

The MySQL query optimizer takes advantage of indexes, of course, but it also uses
other information. For example, if you issue the following query, MySQL will execute it
very quickly, no matter how large the table is:

SELECT * FROM tbl_name WHERE FALSE;

In this case, MySQL looks at the WHERE clause, realizes that no rows can possibly satisfy
the query, and doesn’t even bother to search the table.You can see this by issuing an
EXPLAIN statement, which tells MySQL to display some information about how it would
execute a SELECT query without actually executing it.To use EXPLAIN, just put the word
EXPLAIN in front of the SELECT statement:

mysql> EXPLAIN SELECT * FROM tbl_name WHERE FALSE\G

*************************** 1. row ***************************

id: 1

select_type: SIMPLE

table: NULL

type: NULL

possible_keys: NULL

key: NULL

key_len: NULL

ref: NULL

rows: NULL

Extra: Impossible WHERE

Normally, EXPLAIN returns more information than that, including values more inform-
ative than NULL about the indexes that will be used to scan tables, the types of joins that
will be used, and estimates of the number of rows that will need to be examined from
each table.

In some cases, EXPLAIN actually does execute part of a query, if it contains subqueries
in the FROM clause: EXPLAIN must execute the subqueries to find out what they return be-
fore analyzing the main SELECT statement.

5.2.1 How the Optimizer Works
The MySQL query optimizer has several goals, but its primary aims are to use indexes
whenever possible and to use the most restrictive index in order to eliminate from con-
sideration as many rows as possible as soon as possible.That last part might sound back-
ward and unintuitive.After all, your goal in issuing a SELECT statement is to find rows, not
to reject them.The reason the optimizer tries to reject rows is that the faster it can elimi-
nate rows, the more quickly the rows that do match your criteria can be found. Queries
can be processed more quickly if the most restrictive tests can be done first. Suppose that
you have a query that tests two columns, each of which has an index on it:

SELECT col3 FROM mytable

WHERE col1 = 'some value' AND col2 = 'some other value';

312 Chapter 5 Query Optimization

3135.2 The MySQL Query Optimizer

Suppose also that the test on col1 matches 900 rows, the test on col2 matches 300
rows, and that both tests together succeed on 30 rows.Testing col1 first results in 900
rows that must be examined to find the 30 that also match the col2 value.That’s 870
failed tests.Testing col2 first results in 300 rows that must be examined to find the 30 that
also match the col1 value.That’s only 270 failed tests, so less computation and disk I/O is
required.As a result, the optimizer will test col2 first because doing so results in less work
overall.

To help the optimizer take advantage of indexes, use the guidelines described here.
Analyze your tables.This generates index value distribution statistics that help the

optimizer make better estimates about index effectiveness. By default, when you compare
values in indexed columns to a constant, the optimizer assumes that key values are distrib-
uted evenly within the index.The optimizer will also do a quick check of the index to
estimate how many entries will be used when determining whether the index should be
used for constant comparisons. For MyISAM and InnoDB tables, you can tell the server
to perform an analysis of key values by using ANALYZE TABLE.

A table that is populated only once and then remains static need be analyzed only
once after being loaded.A table that undergoes updates should be reanalyzed occasionally
(at a frequency corresponding to how often updates occur).

Use EXPLAIN to verify optimizer operation.The EXPLAIN statement can tell you
whether indexes are being used.This information is helpful when you’re trying different
ways of writing a statement or checking whether adding indexes actually will make a dif-
ference in query execution efficiency. For examples, see Section 5.2.2, “Using EXPLAIN to
Check Optimizer Operation.”

Give the optimizer hints or override it when necessary.You can use FORCE INDEX,
USE INDEX, or IGNORE INDEX after a table name in the table list of a join to give the
server guidance about which indexes to prefer. See the description for SELECT in
Appendix E,“SQL Syntax Reference.”

You can also use STRAIGHT_JOIN to force the optimizer to use tables in a particular
order. Normally, the MySQL optimizer considers itself free to determine the order in
which to scan tables to retrieve rows most quickly. On occasion, the optimizer will make
a nonoptimal choice. If you find this happening, you can override the optimizer’s choice
using the STRAIGHT_JOIN keyword.A join performed with STRAIGHT_JOIN is like a cross
join but forces the tables to be joined in the order named in the FROM clause.

If you do this, you should order the tables so that the first table is the one from which
the smallest number of rows will be chosen. If you are not sure which table this is, put the
table with the greatest number of rows first. In other words, try to order the tables to
cause the most restrictive selection to come first. Queries perform better the earlier you
can narrow the possible candidate rows.

STRAIGHT_JOIN can be specified at two points in a SELECT statement.You can specify
it between the SELECT keyword and the selection list to have a global effect on all cross

joins in the statement, or you can specify it in the FROM clause.The following two state-
ments are equivalent:

SELECT STRAIGHT_JOIN ... FROM t1 INNER JOIN t2 INNER JOIN t3 ... ;

SELECT ... FROM t1 STRAIGHT_JOIN t2 STRAIGHT_JOIN t3 ... ;

Be sure to try the query with and without STRAIGHT_JOIN. MySQL might have some
good reason not to use indexes in the order you think is best, and STRAIGHT_JOIN may
not actually help. (Check the execution plans with EXPLAIN to see how MySQL handles
each statement.)

Compare columns that have the same data type. When you compare indexed
columns, identical data types will give you better performance than dissimilar types. For
example, INT is different from BIGINT, so an INT/INT or BIGINT/BIGINT comparison is
faster than an INT/BIGINT comparison. CHAR(10) is considered the same as CHAR(10) or
VARCHAR(10) but different from CHAR(12) or VARCHAR(12). If columns that you compare
frequently have different types, you can use ALTER TABLE to modify one of them so that
the types match.

Make indexed columns stand alone in comparison expressions. If you use a col-
umn in a function call or as part of a more complex term in an arithmetic expression,
MySQL can’t use the index because it must compute the value of the expression for
every row. Sometimes this is unavoidable, but many times you can rewrite a query to get
the indexed column to appear by itself.

The following WHERE clauses illustrate how this works.They are equivalent arithmeti-
cally, but quite different for optimization purposes:

WHERE mycol * 2 < 4

WHERE mycol < 4 / 2

For the first line, MySQL must retrieve the value of mycol for each row, multiply by 2,
and then compare the result to 4. In this case, no index can be used. Each value in the
column must be retrieved so that the expression on the left side of the comparison can be
evaluated. For the second line, the optimizer simplifies the expression 4/2 to the value 2,
and then uses an index on mycol to quickly find values less than 2.Therefore, the second
line is better than the first.

Let’s consider another example. Suppose that you have an indexed DATE column
date_col. If you issue a query such as the one following, the index isn’t used:

SELECT * FROM mytbl WHERE YEAR(date_col) < 1990;

The expression doesn’t compare 1990 to an indexed column; it compares 1990 to a
value calculated from the column, and that value must be computed for each row.As a re-
sult, the index on date_col is not used and query execution requires a full table scan.
What’s the fix? Just use a literal date, and then the index on date_col can be used to find
matching values in the columns:

WHERE date_col < '1990-01-01'

314 Chapter 5 Query Optimization

3155.2 The MySQL Query Optimizer

But suppose that you don’t have a specific date.You might be interested instead in
finding rows that have a date that lies within a certain number of days from today.There
are several ways to express a comparison of this type—not all of which are equally effi-
cient. Here are three possibilities:

WHERE TO_DAYS(date_col) - TO_DAYS(CURDATE()) < cutoff

WHERE TO_DAYS(date_col) < cutoff + TO_DAYS(CURDATE())

WHERE date_col < DATE_ADD(CURDATE(), INTERVAL cutoff DAY)

For the first line, no index is used because the column must be retrieved for each row
so that the value of TO_DAYS(date_col) can be computed.The second line is better.
Both cutoff and TO_DAYS(CURDATE()) are constants, so the right-hand side of the com-
parison can be calculated by the optimizer once before processing the query, rather than
once per row. But the date_col column still appears in a function call, preventing use of
the index.The third line is best of all.Again, the right-hand side of the comparison can be
computed once as a constant before executing the query, but now the value is a date.That
value can be compared directly to date_col values, which no longer need to be con-
verted to days. In this case, the index can be used.

Don’t use wildcards at the beginning of a LIKE pattern. Some string searches use a
WHERE clause of the following form:

WHERE col_name LIKE '%string%'

That’s the correct thing to do if you want to find the string no matter where it occurs
in the column. But don’t put ‘%’ on both sides of the string simply out of habit. If you’re
really looking for the string only when it occurs at the beginning of the column, leave
out the first ‘%’. Suppose that you’re looking in a column containing last names for names
like MacGregor or MacDougall that begin with 'Mac'. In that case, write the WHERE
clause like this:

WHERE last_name LIKE 'Mac%'

The optimizer looks at the literal initial part of the pattern and uses the index to find
rows that match as though you’d written the following expression, which is in a form that
enables an index on last_name to be used:

WHERE last_name >= 'Mac' AND last_name < 'Mad'

This optimization does not apply to pattern matches that use the REGEXP operator.
REGEXP expressions are never optimized.

Take advantage of areas in which the optimizer is more mature. MySQL can do
joins and subqueries, but subquery support is more recent, having been added in MySQL
4.1. Consequently, the optimizer has been better tuned for joins than for subqueries in
some cases.This has a practical implication when you have a subquery that runs slowly.
As discussed in Section 2.9.7, “Rewriting Subqueries as Joins,” some subqueries can be
reformulated as logically equivalent joins. If your slow subquery is one of these, try writ-
ing it as a join to see whether it performs better.

Test alternative forms of queries, but run them more than once. When testing al-
ternative forms of a query (for example, a subquery versus an equivalent join), run it sev-
eral times each way. If you run a query only once each of two different ways, you’ll often
find that the second query is faster just because information from the first query is still
cached and need not actually be read from the disk.You should also try to run queries
when the system load is relatively stable to avoid effects due to other activities on your
system.

Avoid overuse of MySQL’s automatic type conversion. MySQL will perform auto-
matic type conversion, but if you can avoid conversions, you may get better performance.
For example, if num_col is an integer column, each of these queries will return the same
result:

SELECT * FROM mytbl WHERE num_col = 4;

SELECT * FROM mytbl WHERE num_col = '4';

But the second query involves a type conversion.The conversion operation itself in-
volves a small performance penalty for converting the integer and string to double to per-
form the comparison.A more serious problem is that if num_col is indexed, a comparison
that involves type conversion may prevent the index from being used.

The opposite kind of comparison (comparing a string column to a numeric value)
also can prevent use of an index. Suppose that you write a query like this:

SELECT * FROM mytbl WHERE str_col = 4;

In this case, an index on str_col cannot be used because there can be many different
string values in str_col that are equal to 4 when converted to a number (for example,
'4', '4.0', and '4th').The only way to know which values qualify is to read each one,
convert it, and perform the comparison.To avoid this problem if you are looking for a
particular value such as '4', specify it that way in the query:

SELECT * FROM mytbl WHERE str_col = '4';

5.2.2 Using EXPLAIN to Check Optimizer Operation
The EXPLAIN statement is useful for gaining insight into the execution plans that the op-
timizer generates for processing statements. In this section, I’ll show two uses for EXPLAIN:

n To see whether writing a query different ways affects whether an index can be used.
n To see the effect that adding indexes to a table has on the optimizer’s ability to gen-

erate efficient execution plans.

The discussion describes only those EXPLAIN output fields that are relevant for the ex-
amples. EXPLAIN output is discussed further in Appendix E. The output shown is what I
see on my system. Depending on your server version and configuration, you might see
somewhat different results.

In Section 5.2.1,“How the Optimizer Works,” the point was made that the way you
write an expression can determine whether the optimizer can use available indexes.

316 Chapter 5 Query Optimization

3175.2 The MySQL Query Optimizer

Specifically, the discussion there used the example that of the three following logically
equivalent WHERE clauses, only the third enables use of an index:

WHERE TO_DAYS(date_col) - TO_DAYS(CURDATE()) < cutoff

WHERE TO_DAYS(date_col) < cutoff + TO_DAYS(CURDATE())

WHERE date_col < DATE_ADD(CURDATE(), INTERVAL cutoff DAY)

EXPLAIN enables you to check whether one way of writing an expression is better than
another.To see this, let’s try using each of the WHERE clauses to search for expiration col-
umn values in the member table, using a cutoff value of 30 days. However, as originally
created, the member table has no index on the expiration column.To enable the rela-
tionship to be seen between index use and how an expression is written, first index the
expiration column:

mysql> ALTER TABLE member ADD INDEX (expiration);

Then try EXPLAIN with each form of the expression to see what execution plans the
optimizer comes up with:

mysql> EXPLAIN SELECT * FROM MEMBER

-> WHERE TO_DAYS(expiration) - TO_DAYS(CURDATE()) < 30\G

*************************** 1. row ***************************

id: 1

select_type: SIMPLE

table: MEMBER

type: ALL

possible_keys: NULL

key: NULL

key_len: NULL

ref: NULL

rows: 102

Extra: Using where

mysql> EXPLAIN SELECT * FROM MEMBER

-> WHERE TO_DAYS(expiration) < 30 + TO_DAYS(CURDATE())\G

*************************** 1. row ***************************

id: 1

select_type: SIMPLE

table: MEMBER

type: ALL

possible_keys: NULL

key: NULL

key_len: NULL

ref: NULL

rows: 102

Extra: Using where

mysql> EXPLAIN SELECT * FROM MEMBER

-> WHERE expiration < DATE_ADD(CURDATE(), INTERVAL 30 DAY)\G

*************************** 1. row ***************************

id: 1

select_type: SIMPLE

table: MEMBER

type: range

possible_keys: expiration

key: expiration

key_len: 4

ref: NULL

rows: 6

Extra: Using where

The results for the first two statements show that the index is not used.The type value
indicates how values will be read from a table. ALL means “all rows will be examined.”
That is, a full table scan will be performed, without benefit of an index.The NULL in each
of the key-related columns also indicates that no index will be used.

By contrast, the result for the third statement shows that the WHERE clause has been
written such that the optimizer can use the index on the expiration column:

n The type value indicates that it can use the index to search for a specific range of
values (those less than the date given on the right side of the expression).

n The possible_keys and key values show that the index on expiration is consid-
ered a candidate index and also is the index that actually would be used.

n The rows value shows that the optimizer estimates that it would need to examine 6
rows to process the query.That’s better than the value of 102 for the first two exe-
cution plans.

A second use for EXPLAIN is to find out whether adding indexes would help the opti-
mizer execute a statement more efficiently. For this example, I will use just two tables that
initially are unindexed.This suffices to show the effect of creating indexes.The same prin-
ciples apply to more complex joins that involve many tables.

Suppose that we have two tables t1 and t2, each with 1,000 rows containing the val-
ues 1 to 1000.The query that we’ll examine looks for those rows where corresponding
values from the two tables are the same:

mysql> SELECT t1.i1, t2.i2 FROM t1 INNER JOIN t2

-> WHERE t1.i1 = t2.i2;

+------+------+

| i1 | i2 |

+------+------+

| 1 | 1 |

| 2 | 2 |

| 3 | 3 |

| 4 | 4 |

| 5 | 5 |

...

318 Chapter 5 Query Optimization

3195.2 The MySQL Query Optimizer

With no indexes on either of the tables, EXPLAIN produces this result:

mysql> EXPLAIN SELECT t1.i1, t2.i2 FROM t1 INNER JOIN t2

-> WHERE t1.i1 = t2.i2\G

*************************** 1. row ***************************

id: 1

select_type: SIMPLE

table: t1

type: ALL

possible_keys: NULL

key: NULL

key_len: NULL

ref: NULL

rows: 1000

Extra:

*************************** 2. row ***************************

id: 1

select_type: SIMPLE

table: t2

type: ALL

possible_keys: NULL

key: NULL

key_len: NULL

ref: NULL

rows: 1000

Extra: Using where

Here, ALL in the type column indicates a full table scan that examines all rows. NULL in
the possible_keys column indicates that no candidate indexes were found for speeding
up the query. (The key, key_len, and ref columns all are NULL as well due to the lack of
a suitable index.) Using where indicates that information in the WHERE clause is used to
identify qualifying rows.

Those pieces of information tell us that the optimizer finds no useful information for
executing the query more efficiently and will proceed as follows:

n It will perform a full scan of t1.
n For each row from t1, it will perform a full scan of t2, using the information in the
WHERE clause to identify qualifying rows.

The rows values show the optimizer’s estimates about how many rows it will need to
examine at each stage of the query.The estimate is 1000 for t1 because a full scan will be
done. Similarly, the estimate is 1000 for t2, but this is for each row in t1. In other words,
the number of row combinations that the optimizer estimates it will examine to process
the query is 1,000 × 1,000, or one million.That is highly wasteful of effort, because only
1,000 combinations actually satisfy the conditions in the WHERE clause.

To make this query more efficient, add an index on one of the joined columns and try
the EXPLAIN statement again:

mysql> ALTER TABLE t2 ADD INDEX (i2);

mysql> EXPLAIN SELECT t1.i1, t2.i2 FROM t1 INNER JOIN t2

-> WHERE t1.i1 = t2.i2\G

*************************** 1. row ***************************

id: 1

select_type: SIMPLE

table: t1

type: ALL

possible_keys: NULL

key: NULL

key_len: NULL

ref: NULL

rows: 1000

Extra:

*************************** 2. row ***************************

id: 1

select_type: SIMPLE

table: t2

type: ref

possible_keys: i2

key: i2

key_len: 5

ref: sampdb.t1.i1

rows: 10

Extra: Using where; Using index

This is an improvement.The output for t1 is unchanged (indicating that a full scan still
will be done on the table), but the optimizer can process t2 differently:

n type has changed from ALL to ref, meaning that a reference value (the value from
t1) can be used to perform an index lookup to locate qualifying rows in t2.

n The reference value is given in the ref field: sampdb.t1.i1.
n The rows value has dropped from 1000 to 10, which shows that the optimizer be-

lieves that it will need to examine only 10 rows in t2 for each row in t1. (That is a
somewhat pessimistic estimate. In fact, only one row in t2 will match each row
from t1.We’ll see a bit later how to help the optimizer improve this estimate.) The
total estimated number of row combinations is 1,000 × 10 = 10,000.That’s much
better than the previous estimate of one million in the absence of any indexing.

Is there any value in indexing t1? After all, for this particular join, it’s necessary to scan
one of the tables, and no index is needed to do that.To see whether there’s any effect,
index t1.i1 and run EXPLAIN again:

320 Chapter 5 Query Optimization

3215.2 The MySQL Query Optimizer

mysql> ALTER TABLE t1 ADD INDEX (i1);

mysql> EXPLAIN SELECT t1.i1, t2.i2 FROM t1 INNER JOIN t2

-> WHERE t1.i1 = t2.i2\G

*************************** 1. row ***************************

id: 1

select_type: SIMPLE

table: t1

type: index

possible_keys: i1

key: i1

key_len: 5

ref: NULL

rows: 1000

Extra: Using index

*************************** 2. row ***************************

id: 1

select_type: SIMPLE

table: t2

type: ref

possible_keys: i2

key: i2

key_len: 5

ref: sampdb.t1.i1

rows: 10

Extra: Using where; Using index

This output is similar to that for the previous EXPLAIN, but adding the index did make
some difference in the output for t1. type has changed from NULL to index and Extra

has changed from blank to Using index.These changes indicate that, although a full scan
of the indexed values still would be done, the optimizer now can read them directly from
the index without touching the data file at all.You will see this kind of result for a
MyISAM table when the optimizer knows that it can get all the information it needs by
consulting only the index file.You’ll also see it for InnoDB tables when the optimizer can
use information solely from the index without another seek to get the data row.

One further step we can take to help the optimizer make better cost estimates is to
run ANALYZE TABLE.This causes the server to generate statistics about the distribution of
key values.Analyzing the tables and running EXPLAIN again yields a better rows estimate:

mysql> ANALYZE TABLE t1, t2;

mysql> EXPLAIN SELECT t1.i1, t2.i2 FROM t1 INNER JOIN t2

-> WHERE t1.i1 = t2.i2\G

*************************** 1. row ***************************

id: 1

select_type: SIMPLE

table: t1

type: index

possible_keys: i1

key: i1

key_len: 5

ref: NULL

rows: 1000

Extra: Using index

*************************** 2. row ***************************

id: 1

select_type: SIMPLE

table: t2

type: ref

possible_keys: i2

key: i2

key_len: 5

ref: sampdb.t1.i1

rows: 1

Extra: Using where; Using index

In this case, the optimizer now estimates that each value from t1 will match only one
row in t2.

5.3 Choosing Data Types for Efficient Queries
Your choice of data type can influence query performance in several ways.This section
provides guidelines for choosing data types that can help queries run more quickly.

Use numeric rather than string operations. Calculations involving numbers gener-
ally are faster than those involving strings. Consider comparison operations. Numbers can
be compared in a single operation. String comparisons may involve several byte-by-byte
or character-by-character comparisons, more so as the strings become longer.

If a string column has a limited number of values, you can use an ENUM or SET type to
get the advantages of numeric operations.These types are represented internally as num-
bers and can be processed more efficiently.

Consider alternative representations for strings. Sometimes you can improve perform-
ance by representing string values as numbers. For example, to represent IP numbers in
dotted-quad notation, such as 192.168.0.4, you might use a string. Or you could instead
convert the IP numbers to integer form by storing each part of the dotted-quad form in
one byte of a four-byte INT UNSIGNED type. Storing integers would both save space and
speed lookups. On the other hand, representing IP numbers as INT values might make it
difficult to perform pattern matches such as you might do if you wanted to look for
numbers in a given subnet. Perhaps you can do the same thing by using bitmask opera-
tions.These kinds of issues illustrate that you cannot consider only space issues; you must
decide which representation is most appropriate based on what you want to do with the
values. (Whatever choice you make, the INET_ATON() and INET_NTOA() functions can
help convert between the two representations.)

Don’t use larger types when smaller ones will do. Smaller types can be processed
more quickly than larger types. For strings in particular, processing time is in direct

322 Chapter 5 Query Optimization

3235.3 Choosing Data Types for Efficient Queries

relationship to string length.Also, with smaller types, your tables will be smaller and
require less overhead for disk activity. If a column is indexed, using shorter values gives
you even more of a performance boost. Not only will the index speed up queries, shorter
index values can be processed more quickly than longer values.

For columns that use fixed-size data types, choose the smallest type that will hold the
required range of values. Don’t use BIGINT if MEDIUMINT will do. Don’t use DOUBLE if you
need only FLOAT precision. If you are using fixed-length CHAR columns, don’t make them
unnecessarily long. If the longest value you store in a column is 40 characters long, don’t
define it as CHAR(255); define it as CHAR(40).

For variable-size types, you may still be able to save space with smaller types.A BLOB
uses 2 bytes to record the length of the value, a LONGBLOB uses 4 bytes. If you’re storing
values that are never as long as 64KB, using BLOB saves you 2 bytes per value. (Similar
considerations apply for TEXT types.)

If you have a choice about row storage format, use one that is optimal for your
storage engine. For MyISAM tables, use fixed-length columns rather than variable-
length columns. For example, make all character columns CHAR rather than VARCHAR.The
tradeoff is that your table will use more space, but if you can afford the extra space, fixed-
length rows can be processed more quickly than variable-length rows.This is especially
true for tables that are modified often and therefore more subject to fragmentation:

n With variable-length rows, you get more fragmentation of a table on which you
perform many deletes or updates due to the differing sizes of the rows.You’ll need
to run OPTIMIZE TABLE periodically to maintain performance.This is not an issue
with fixed-length rows.

n Tables with fixed-length rows are easier to reconstruct if you have a table crash.The
beginning of each row can be determined because they all are at positions that are
multiples of the fixed row size, something that is not true with variable-length
rows.This is not a performance issue with respect to query processing, but it can
certainly speed up the table repair process.

Although converting a MyISAM table to use fixed-length columns can improve per-
formance, you should consider the following issues first:

n Fixed-length columns are faster but take more space. CHAR(n) columns always take
n characters per value (even empty ones) because values are padded with trailing
spaces when stored in the table. VARCHAR(n) columns take less space because only
as many characters are allocated as necessary to store each value, plus one or two
bytes per value to record the length.Thus, if you are choosing between CHAR and
VARCHAR columns, the tradeoff is one of time versus space. If speed is your primary
concern, use CHAR columns to get the performance benefits of fixed-length
columns. If space is at a premium, use VARCHAR columns.As a rule of thumb,
you can assume that fixed-length rows will improve performance even though
more space is used. But for an especially critical application, you might want to

implement a table both ways and run some tests to determine which alternative
actually is better for your particular application.

n Sometimes you cannot use a fixed-length type, even if you want to.There is no
fixed-length type for strings longer than 255 characters, for example.

MEMORY tables currently are stored using fixed-length rows, so it doesn’t matter
whether you use CHAR or VARCHAR columns. Both are treated implicitly as CHAR.

For InnoDB tables, the internal row storage format does not treat fixed-length and
variable-length columns differently (all rows use a header containing pointers to the col-
umn values), so using fixed-length CHAR columns is not in itself intrinsically simpler than
using variable-length VARCHAR columns. Consequently, the primary performance factor is
the amount of storage used for rows. Because CHAR on average takes more space than
VARCHAR, it’s preferable to use VARCHAR to minimize the amount of storage and disk I/O
needed to process rows.

Define columns to be NOT NULL. If a column is NOT NULL, it can be handled more
quickly because MySQL doesn’t have to check the column’s values during query process-
ing to see whether they are NULL. It also saves one bit per row in the table.Avoiding NULL
in columns may make your queries simpler because you don’t have to check for NULL as a
special case, and simpler queries generally can be processed more quickly.

Consider using ENUM columns. If you have a string column that has low cardinality
(contains only a limited number of distinct values), consider converting it to an ENUM
column. ENUM values can be processed quickly because they are represented internally as
numeric values.

Use PROCEDURE ANALYSE(). Run PROCEDURE ANALYSE() to see what it tells you
about the columns in your table:

SELECT * FROM tbl_name PROCEDURE ANALYSE();

SELECT * FROM tbl_name PROCEDURE ANALYSE(16,256);

One column of the output will be a suggestion for the optimal data type for each of
the columns in your table.The second example tells PROCEDURE ANALYSE() not to sug-
gest ENUM types that contain more than 16 values or that take more than 256 bytes (you
can change the values as you like).Without such restrictions, the output may be very
long; ENUM definitions are often difficult to read.

Based on the output from PROCEDURE ANALYSE(), you may find that your table can be
changed to take advantage of a more efficient type. If you decide to change a column’s
type, use ALTER TABLE.

Defragment tables that are subject to fragmentation.Tables that are modified a
great deal, particularly those that contain variable-length columns, are subject to fragmen-
tation. Fragmentation is bad because it leads to unused space in the disk blocks used to
store your table. Over time, you must read more blocks to get the valid rows, and per-
formance is reduced.This is true for any table with variable-length rows, but is particu-
larly acute for BLOB or TEXT columns because they can vary so much in size.

324 Chapter 5 Query Optimization

3255.3 Choosing Data Types for Efficient Queries

Use of OPTIMIZE TABLE on a regular basis helps keep performance on the table from
degrading. OPTIMIZE TABLE can be used to defragment MyISAM tables.A defragmenta-
tion method that works for any storage engine is to dump the table with mysqldump, and
then drop and re-create it using the dump file:

% mysqldump db_name tbl_name > dump.sql

% mysql db_name < dump.sql

Pack data into a BLOB or TEXT column. Using a BLOB or TEXT column to store data
that you pack and unpack in your application may enable you to get everything with a
single retrieval operation rather than with several.This can also be helpful for data values
that are not easy to represent in a standard table structure or that change over time. In the
discussion of the ALTER TABLE statement in Chapter 2,“Using SQL to Manage Data,”
one of the examples dealt with a table being used to hold results from the fields in a Web-
based questionnaire.That example discussed how you could use ALTER TABLE to add
columns to the table whenever you add questions to the questionnaire.

Another way to approach this problem is to have the application program that
processes the Web form pack the data into some kind of data structure, and then insert it
into a single BLOB or TEXT column. For example, you could represent the questionnaire
responses using XML and store the XML string in a TEXT column.This adds application
overhead on the client side for encoding the data (and decoding it later when you re-
trieve rows from the table), but simplifies the table structure, and eliminates the need to
change the table structure when you change your questionnaire.

On the other hand, BLOB and TEXT values can cause their own problems, especially if
you do a lot of DELETE or UPDATE operations. Deleting such values can leave large holes
in the table that will be filled in later with a row or rows of probably different sizes. (The
preceding discussion of defragmentation suggests how you might deal with this.)

Use a synthetic index. Synthetic index columns can sometimes be helpful. One
method is to create a hash value based on other columns and store it in a separate col-
umn.Then you can find rows by searching for hash values. However, note that this tech-
nique is good only for exact-match queries. (Hash values are useless for range searches
with operators such as < or >=.) Hash values can be generated by using the MD5() func-
tion. Other options are to use SHA1() or CRC32(). Or you can compute your own hash
values using logic within your application. Remember that a numeric hash value can be
stored very efficiently.Also, if the hash algorithm might produce string values that have
trailing spaces, do not store them using a data type that is subject to trailing-space
removal.

A synthetic hash index can be particularly useful with BLOB and TEXT columns. It can
be much quicker to find these kinds of values using a hash as an identifier value than by
searching the BLOB or TEXT column itself.

Avoid retrieving large BLOB or TEXT values unless you must. For example, a
SELECT * query that retrieves entire rows isn’t a good idea unless you’re sure the WHERE
clause is going to restrict the results to just the rows you want. Otherwise, you may be
pulling potentially very large values over the network for no purpose.This is another case

where BLOB or TEXT identifier information stored in a synthetic index column can be
useful.You can search that column to determine the row or rows you want and then re-
trieve the BLOB or TEXT values from the qualifying rows.

Segregate BLOB or TEXT columns into a separate table. Under some circumstances,
it may make sense to move these columns out of a table into a secondary table, if that en-
ables you to convert the table to fixed-length row format for the remaining columns.This
will reduce fragmentation in the primary table and allow you to take advantage of the
performance benefits of having fixed-length rows. It also enables you to run SELECT *
queries on the primary table without pulling large BLOB or TEXT values over the network.

5.4 Loading Data Efficiently
Most of the time you’ll probably be concerned about optimizing SELECT statements be-
cause they are the most common type of statement and because it’s not always straightfor-
ward to figure out how to optimize them. By comparison, loading data into your database
is straightforward. Nevertheless, there are strategies you can use to improve the efficiency
of data-loading operations.The basic principles are these:

n Bulk loading is more efficient than single-row loading because the key cache need
not be flushed after each input record is loaded. It can be flushed at the end of the
batch of records.The more you can reduce key cache flushing, the faster data load-
ing will be. (Index modifications are made in the key cache before being written to
disk; flushing the cache once rather than many times significantly reduces disk I/O.)

n Loading is faster when a table has no indexes than when it is indexed. If there are
indexes, not only must the row’s contents be added to the table, each index must
also be modified to reflect the addition of the new row.

n Shorter SQL statements are faster than longer statements because they involve less
parsing on the part of the server and because they can be sent over the network
from the client to the server more quickly.

Some of these factors may seem minor (the last one in particular), but if you’re loading
a lot of data, even small efficiencies make a difference. From the preceding general princi-
ples, several practical conclusions can be drawn about how to load data most quickly.

LOAD DATA (all forms) is more efficient than INSERT because it loads rows in bulk.The
server must parse and interpret only one statement, not several.Also, the index needs
flushing only after all rows have been processed, rather than after each row.

LOAD DATA is more efficient without LOCAL than with it.Without LOCAL, the file must
be located on the server and you must have the FILE privilege, but the server can read the
file directly from disk.With LOAD DATA LOCAL, the client reads the file and sends it over
the network to the server, which is slower.

If you must use INSERT, try to use the syntax that specifies multiple rows to be inserted
in a single statement:

INSERT INTO tbl_name VALUES(...),(...),... ;

326 Chapter 5 Query Optimization

3275.4 Loading Data Efficiently

The more rows you can specify in the statement, the better.This reduces the total
number of statements required and minimizes the amount of index flushing.This princi-
ple might seem to contradict the earlier one that shorter statements can be processed
faster than longer statements. But there is no contradiction.The issues here are that a sin-
gle INSERT statement that inserts multiple rows is shorter overall than an equivalent set of
individual single-row INSERT statements, and the multiple-row statement can be
processed on the server with much less index flushing.

If you use mysqldump to generate database backup files, it generates multiple-row
INSERT statements by default:The --opt (optimize) option is enabled, which turns on the
--extended-insert option that produces multiple-row INSERT statements, as well as
some other options that allow the dump file to be processed more efficiently when it is
reloaded.

Avoid using the --complete-insert option with mysqldump; the resulting INSERT
statements will be for single rows and will be longer and require more parsing than will
multiple-row statements.

If you must use multiple INSERT statements, group them if possible to reduce index
flushing. For transactional storage engines, do this by issuing the INSERT statements
within a single transaction rather than in autocommit mode:

START TRANSACTION;

INSERT INTO tbl_name ... ;

INSERT INTO tbl_name ... ;

INSERT INTO tbl_name ... ;

COMMIT;

For non-transactional storage engines, obtain a write lock on the table and issue the
INSERT statements while the table is locked:

LOCK TABLES tbl_name WRITE;

INSERT INTO tbl_name ... ;

INSERT INTO tbl_name ... ;

INSERT INTO tbl_name ... ;

UNLOCK TABLES;

Either way, you obtain the same benefit:The index is flushed once after all the state-
ments have been executed rather than once per INSERT statement.The latter is what hap-
pens in autocommit mode or if the table has not been locked.

For MyISAM tables, another strategy for reducing index flushing is to use the
DELAY_KEY_WRITE table option.With this option, data rows are written to the data file
immediately as usual, but the key cache is flushed only occasionally rather than after each
insert.To use delayed index flushing on a server-wide basis, start mysqld with the
--delay-key-write=ALL option. In this case, index block writes for a table are delayed
until blocks must be flushed to make room for other index values, until a FLUSH TABLES
statement has been executed, or until the table is closed.

If you choose to use delayed key writes for MyISAM tables, abnormal server shut-
downs can cause loss of index values.This is not a fatal problem because MyISAM in-
dexes can be repaired based on the data rows. However, to make sure that the repairs do
happen, start the server with the --myisam-recover=FORCE option.This option causes
the server to check MyISAM tables when it opens them and repair them automatically
as necessary.

For a replication slave server, you might want to use --delay-key-write=ALL to delay
index flushing for all MyISAM tables, regardless of how they were created originally on
the master server.

Use the compressed client/server protocol to reduce the amount of data going over
the network. For most MySQL clients, this can be specified using the --compress
command-line option. Generally, this should only be used on slow networks because
compression requires quite a bit of processor time.

Let MySQL insert default values for you.That is, don’t specify columns in INSERT
statements that will be assigned the default value anyway. On average, your statements will
be shorter, reducing the number of characters sent over the network to the server. In ad-
dition, because the statements contain fewer values, the server does less parsing and value
conversion.

For MyISAM tables, if you need to load a lot of data into a new table to populate it,
it’s faster to create the table without indexes, load the data, and then create the indexes. It’s
faster to create the indexes all at once rather than to modify them for each row. For a
table that already has indexes, data loading may be faster if you drop or deactivate the in-
dexes beforehand, and then rebuild or reactivate them afterward.These strategies do not
apply to InnoDB tables; InnoDB has no optimizations for separate index creation.

If you’re considering using the strategy of dropping or deactivating indexes for loading
data into MyISAM tables, think about the overall circumstances of your situation in as-
sessing whether any benefit is likely to be obtained. If you’re loading a small amount of
data into a large table, rebuilding the indexes probably will take longer than just loading
the data without any special preparation.

To drop and rebuild indexes, use DROP INDEX and CREATE INDEX, or the index-related
forms of ALTER TABLE.To deactivate and reactivate indexes, you have two choices:

n You can use the DISABLE KEYS and ENABLE KEYS forms of ALTER TABLE:

ALTER TABLE tbl_name DISABLE KEYS;

ALTER TABLE tbl_name ENABLE KEYS;

These statements turn off and on updating of any non-unique indexes in the table.

The DISABLE KEYS and ENABLE KEYS clauses for ALTER TABLE are the preferred
method for index deactivation and activation, because the server does the work. (If
you’re using a LOAD DATA statement to load data into an empty MyISAM table, the
server performs this optimization automatically.)

n The myisamchk utility can perform index manipulation. It operates directly on the
table files, so to use it you must have write access to the table files.You should also

328 Chapter 5 Query Optimization

3295.5 Scheduling and Locking Issues

observe the precautions described in Section 14.2, “Performing Database Mainte-
nance with the Server Running,” for keeping the server from accessing a table
while you’re using its files.

To deactivate a MyISAM table’s indexes with myisamchk, first make sure you’ve
told the server to leave the table alone, and then move into the appropriate database
directory and run the following command:

% myisamchk --keys-used=0 tbl_name

After loading the table with data, reactivate the indexes:

% myisamchk --recover --quick --keys-used=n tbl_name

n is interpreted as a bitmask indicating which indexes to enable. Bit 0 (the first bit)
corresponds to index 1. For example, if a table has three indexes, the value
of n should be 7 (111 binary).You can determine index numbers with the
--description option:

% myisamchk --description tbl_name

The preceding data-loading principles also apply to mixed-query environments in-
volving clients performing different kinds of operations. For example, generally you
should avoid long-running SELECT queries on tables that are changed (written to) fre-
quently.That causes a lot of contention and poor performance for the writers.A possible
way around this, if your writes are mostly INSERT operations, is to add new rows to an
auxiliary table and then add those rows to the main table periodically.This is not a viable
strategy if you need to be able to access new rows immediately, but if you can afford to
leave them inaccessible for a short time, use of the auxiliary table will help you two ways.
First, it reduces contention with SELECT queries that are taking place on the main table,
so they execute more quickly. Second, it takes less time overall to load a batch of rows
from the auxiliary table into the main table than it would to load the rows individually;
the key cache need be flushed only at the end of each batch, rather than after each indi-
vidual row.

One application for this strategy is when you’re logging Web page accesses from your
Web server into a MySQL database. In this case, it may not be a high priority to make
sure that the entries get into the main table right away.

If you’re using mixed INSERT and SELECT statements with a MyISAM table, you might
be able to take advantage of concurrent inserts.This feature enables the inserts to take
place at the same time as retrievals without the use of an auxiliary table. For details, see
Section 5.5.3, “Using Concurrent Inserts.”

5.5 Scheduling and Locking Issues
The previous sections focus primarily on making individual queries faster. MySQL also
enables you to affect the scheduling priorities of statements, which may allow queries ar-
riving from several clients to cooperate better so that individual clients aren’t locked out

for a long time. Changing the priorities can also ensure that particular kinds of queries
are processed more quickly.This section looks at MySQL’s default scheduling policy and
the options that are available to you for influencing this policy. It also describes the use of
concurrent inserts and the effect that storage engine locking levels have on concurrency
among clients. For the purposes of this discussion, a client performing a retrieval (a
SELECT) is a reader.A client performing an operation that modifies a table (DELETE,
INSERT, REPLACE, or UPDATE) is a writer.

MySQL’s default scheduling policy can be summarized like this:

n Writes have higher priority than reads.
n Writes to a table must occur one at a time, and write requests are processed in the

order in which they arrive.
n Multiple reads from a table can be processed simultaneously.

The MyISAM, MERGE, and MEMORY storage engines implement this scheduling
policy with the aid of table locks.Whenever a client accesses a table, a lock for it must be
acquired first.When the client is finished with a table, the lock on it can be released.
It’s possible to acquire and release locks explicitly by issuing LOCK TABLES and UNLOCK

TABLES statements, but normally the server’s lock manager automatically acquires locks as
necessary and releases them when they no longer are needed.The type of lock required
depends on whether a client is writing or reading.

A client performing a write to a table must have a lock for exclusive table access.The
table is in an inconsistent state while the operation is in progress because the data row is
being deleted, added, or changed, and any indexes on the table may need to be updated to
match.Allowing other clients to access the table while the table is in flux would cause
problems. It’s clearly a bad thing to allow two clients to write to the table at the same
time because that would quickly corrupt the table into an unusable mess. But it’s not
good to allow a client to read from an in-flux table, either, because the table might be
changing at the location being read, and the results would be inaccurate.

A client performing a read from a table must have a lock to prevent other clients from
writing to the table and changing it during the read.The lock need not be for exclusive
access, however. Reading doesn’t change the table, so there is no reason one reader should
prevent another from accessing the table.Therefore, a read lock enables other clients to
read the table at the same time.

MySQL provides several statement modifiers that allow you to influence its scheduling
policy:

n The LOW_PRIORITY keyword applies to DELETE, INSERT, LOAD DATA, REPLACE, and
UPDATE statements.

n The HIGH_PRIORITY keyword applies to SELECT and INSERT statements.
n The DELAYED keyword applies to INSERT and REPLACE statements.

330 Chapter 5 Query Optimization

3315.5 Scheduling and Locking Issues

The LOW_PRIORITY and HIGH_PRIORITY modifiers have an effect only for storage en-
gines that use table locks (MyISAM, MERGE, and MEMORY).The DELAYED modifier
works for MyISAM, MEMORY,ARCHIVE, and (as of MySQL 5.1.19) BLACKHOLE
tables.

5.5.1 Changing Statement Scheduling Priorities
The LOW_PRIORITY keyword affects execution scheduling for DELETE, INSERT, LOAD
DATA, REPLACE, and UPDATE statements. Normally, if a write operation for a table arrives
while the table is being read, the writer blocks until the reader is done. (Once a query has
begun it will not be interrupted, so the reader is allowed to finish.) If another read re-
quest arrives while the writer is waiting, the reader blocks, too, because the default sched-
uling policy is that writers have higher priority than readers.When the first reader
finishes, the writer proceeds, and when the writer finishes, the second reader proceeds.

If the write request is a LOW_PRIORITY request, the write is not considered to have a
higher priority than reads. In this case, if a second read request arrives while the writer is
waiting, the second reader is allowed to slip in ahead of the writer. Only when there are
no more readers is the writer allowed to proceed. One implication of this scheduling
modification is that, theoretically, it’s possible for LOW_PRIORITY writes to be blocked for-
ever: If additional read requests keep arriving while previous ones are still in progress, the
new requests are allowed to get in ahead of the LOW_PRIORITY write.

The HIGH_PRIORITY keyword for SELECT queries is similar. It enables a SELECT to slip
in ahead of a waiting write, even if the write normally has higher priority.Another effect
is that a high-priority SELECT will execute ahead of normal SELECT statements, because
those will block for the write.

If you want all statements that support the LOW_PRIORITY option to be treated as hav-
ing low priority by default, start the server with the --low-priority-updates option.
The effect of this option can be canceled for individual INSERT statements by using
INSERT HIGH_PRIORITY to elevate them to the normal write priority.

5.5.2 Using Delayed Inserts
The DELAYED modifier applies to INSERT and REPLACE statements.When a DELAYED insert
request arrives for a table, the server puts the rows in a queue and returns a status to the
client immediately so that the client can proceed even before the rows have been in-
serted. If readers are reading from the table, the rows in the queue are held until there are
no readers.Then the server begins inserting the rows in the delayed-row queue.The
server checks periodically whether any new read requests have arrived and are waiting. If
so, the delayed-row queue is suspended and the readers are allowed to proceed.When
there are no readers left, the server begins inserting delayed rows again.This process con-
tinues until the queue is empty.

LOW_PRIORITY and DELAYED are similar in the sense that both allow row insertion
to be deferred, but they are quite different in how they affect client operation.

LOW_PRIORITY forces the client to wait until the rows can be inserted. DELAYED enables
the client to continue and the server buffers the rows in memory until it has time to
process them.

INSERT DELAYED is useful if other clients may be running lengthy SELECT statements
and you don’t want to block waiting for completion of the insertion.The client issuing
the INSERT DELAYED can proceed more quickly because the server simply queues the row
to be inserted.

You should be aware of certain other differences between normal INSERT and INSERT

DELAYED behavior, however.The client gets back an error if the INSERT DELAYED state-
ment contains a syntax error, but other information that would normally be available is
not. For example, you can’t rely on getting the AUTO_INCREMENT value when the state-
ment returns.Also, you won’t get a count for the number of duplicates on unique in-
dexes.This happens because the insert operation returns a status before the operation
actually has been completed.Another implication is that because rows from INSERT
DELAYED statements are queued in memory, the rows are lost if the server crashes or is
killed with kill -9. (This doesn’t happen with a normal kill -TERM kill; in that case,
the server inserts the rows before exiting.)

5.5.3 Using Concurrent Inserts
The MyISAM storage engine allows an exception to the general principle that readers
block writers.This occurs under the condition that a MyISAM table has no holes in the
middle of the data file, such as can result from deleting or updating rows.When the table
has no holes, any INSERT statements must necessarily add rows at the end rather than in
the middle. Under such circumstances, MySQL allows clients to add rows to the table
even while other clients are reading from it.These are known as “concurrent inserts”
because they take place at the same time as retrievals without being blocked.

If you want to use concurrent inserts, note the following:

n Do not use the LOW_PRIORITY modifier with your INSERT statements. It causes
INSERT always to block for readers and thus prevents concurrent inserts from being
performed.

n Readers that need to lock the table explicitly but still want to allow concurrent in-
serts should use LOCK TABLES ... READ LOCAL rather than LOCK TABLES ... READ.The
LOCAL keyword acquires a lock that enables concurrent inserts to proceed, because
it applies only to existing rows in the table and does not block new rows from be-
ing added to the end.

n LOAD DATA operations should use the CONCURRENT modifier to allow SELECT state-
ments for the table to take place at the same time.

n A MyISAM table that has holes in the middle cannot be used for concurrent in-
serts. However, you can defragment the table with the OPTIMIZE TABLE statement.
That eliminates the holes, at least until further deletes or updates occur.

332 Chapter 5 Query Optimization

3335.5 Scheduling and Locking Issues

5.5.4 Locking Levels and Concurrency
The scheduling modifiers discussed in the preceding sections allow you to influence the
default scheduling policy. For the most part, these modifiers were introduced to deal with
issues that arise from the use of table-level locks, which is what the MyISAM, MERGE,
and MEMORY storage engines use to manage table contention.

The InnoDB storage engine implements locking at a different level and thus has dif-
fering performance characteristics in terms of contention management. InnoDB uses
row-level locks, but only as necessary. (In many cases, such as when only reads are done,
InnoDB may use no locks at all.)

The locking level used by a storage engine has a significant effect on concurrency
among clients. Suppose that two clients each want to update a row in a given table.To per-
form the update, each client requires a write lock. For a MyISAM table, the engine will
acquire a table lock for the first client, which causes the second client to block until the
first one has finished.With an InnoDB table, greater concurrency can be achieved: Both
updates can proceed simultaneously as long as both clients aren’t updating the same row.

The general principle is that table locking at a finer level enables better concurrency,
because more clients can be using a table at the same time if they use different parts of it.
The practical implication is that different storage engines will be better suited for differ-
ent statement mixes:

n MyISAM is extremely fast for retrievals. However, the use of table-level locks can
be a problem in environments with mixed retrievals and updates, especially if the
retrievals tend to be long-running. Under these conditions, updates may need to
wait a long time before they can proceed.

n InnoDB tables can provide better performance when there are many updates.
Because locking is done at the row level rather than at the table level, the extent
of the table that is locked is smaller.This reduces lock contention and improves
concurrency.

Table locking does have an advantage over finer levels of locking in terms of deadlock
prevention.With table locks, deadlock never occurs.The server can determine which
tables are needed by looking at the statement and locking them all ahead of time.With
InnoDB tables, deadlock can occur because the storage engine does not acquire all neces-
sary locks at the beginning of a transaction. Instead, locks are acquired as they are deter-
mined to be necessary during the course of processing the transaction. It’s possible that
two statements will acquire locks and then try to acquire further locks that each depend
on already-held locks being released.As a result, each client holds a lock that the other
needs before it can continue.This results in deadlock, and the server must abort one of
the transactions.

5.6 Administrative-Level Optimizations
The previous sections describe optimizations that can be performed by unprivileged
MySQL users.Administrators who have control of the MySQL server or the machine on
which it runs can perform additional optimizations. For example, some server parameters
pertain to query processing and may be tuned, and certain hardware configuration factors
have a direct effect on query processing speed. In many cases, these optimizations improve
the performance of the server as a whole, and thus have a beneficial effect for all MySQL
users.

In general, you should keep the following principles in mind when performing
administrative optimizations:

n Accessing data in memory is faster than accessing data from disk.
n Keeping data in memory as long as possible reduces disk activity.
n Retaining information from an index is more important than retaining contents of

data rows.

The most common way to apply these principles is to increase the size of the server’s
caches.The server has many parameters (system variables) that you can change to config-
ure its operation. Several of these directly affect the speed of query processing.The most
important parameters you can change are the sizes of the table cache and the caches used
by the storage engines to buffer information for indexing operations. If you have memory
available, allocating it to the server’s caches enables information to be held in memory
longer and reduces disk activity.This is good, because it’s much faster to access informa-
tion from memory than to read it from disk.You can configure the size of several caches:

n When the server opens table files, it tries to keep them open so as to minimize the
number of file-opening operations.To do this, it maintains information about open
files in the table cache.The table_cache system variable (table_open_cache in
MySQL 5.1) controls the size of this cache. If the server accesses lots of tables, the
table cache fills up and the server closes tables that haven’t been used for a while to
make room for opening new tables.To assess how effective the table cache is, check
the Opened_tables status indicator:

SHOW STATUS LIKE 'Opened_tables';

Opened_tables indicates the number of times a table had to be opened because it
wasn’t already open. (This value is also displayed as the Opens value in the output of
the mysqladmin status command.) If the number remains stable or increases
slowly, it’s probably set to about the right value. If the number grows quickly, it
means the cache is too small and that tables often have to be closed to make room
to open other tables. If you have file descriptors available, increasing the table cache
size will reduce the number of table opening operations.

n The MyISAM key buffer is used to hold index blocks for index-related operations
on MyISAM tables. Its size is controlled by the key_buffer_size system variable.

334 Chapter 5 Query Optimization

3355.6 Administrative-Level Optimizations

Larger values allow MySQL to hold more index blocks in memory at once, which
increases the likelihood of finding key values in memory without having to read a
new block from disk.The default size of the key buffer is 8MB. If you have lots of
memory, that’s a very conservative value and you should be able to increase it sub-
stantially and see a considerable improvement in performance for index-based re-
trievals and for index creation and modification operations.

You can create additional key caches for MyISAM tables and assign specific tables
to them.This can help query processing for those tables, as explained in Section
5.6.1, “Using MyISAM Key Caches.”

n The InnoDB storage engine has its own cache for buffering data and index values,
and it also maintains a log buffer.The sizes for these resources are controlled by
the innodb_buffer_pool_size and innodb_log_buffer_size system variables,
respectively.

n Another special cache is the query cache, described later in Section 5.6.2, “Using
the Query Cache.”

Instructions for setting system variables can be found in Section 12.6.1, “Checking
and Setting System Variable Values.” When you change parameter values, follow these
guidelines:

n Change one parameter at a time. Otherwise, you’re varying multiple independent
variables and it becomes more difficult to assess the effect of each change.

n Increase system variable values incrementally. If you increase a variable by a huge
amount on the theory that more is always better, you may run your system out of re-
sources, causing it to thrash or slow to a crawl because you’ve set the value too high.

n Rather than experimenting with parameter tuning on your production MySQL
server, it might be prudent to set up a separate test server.

n To get an idea of the kinds of parameter variables that are likely to be appropriate
for your system, take a look at the my-small.cnf, my-medium.cnf, my-large.cnf,
and my-huge.cnf option files included with MySQL distributions. (On Unix, you
can find them under the share directory in binary distributions and under the
support-files directory in source distributions. On Windows, they are located in
the base installation directory, and the filename suffix is .ini.) These files will give
you some idea of which parameters are best to change for servers that receive dif-
ferent levels of use, and also some representative values to use for those parameters.

Other strategies you can adopt to help the server operate more efficiently include the
following:

n Disable storage engines that you don’t need.The server won’t allocate any memory
for disabled engines, allowing you to devote it to other uses. Most storage engines
can be excluded from the server binary at configuration time if you build MySQL
from source. For those engines that are included in the server, many can be disabled

at runtime with the appropriate startup options. For details, see Section 12.7.1,
“Selecting Which Storage Engines a Server Supports.”

n Keep grant table permissions simple.Although the server caches grant table con-
tents in memory, if you have any rows in the tables_priv, columns_priv, or
procs_priv tables, the server must check their contents when it does privilege
checking for SQL statements. If those tables are empty, the server can optimize its
privilege checking to skip those privilege levels.

n If you build MySQL from source, configure it to use static libraries rather than
shared libraries. Dynamic binaries that use shared libraries save on disk space, but
static binaries are faster. However, some systems require dynamic linking if you use
the user-defined function (UDF) mechanism. On such systems, static binaries will
not work.

5.6.1 Using MyISAM Key Caches
When MySQL executes a statement that uses indexes from MyISAM tables, it uses a key
cache to hold index values.The cache enables disk I/O to be reduced: If key values
needed from a table are found in the cache, they need not be read from disk again. How-
ever, the key cache is a finite resource and it is shared among all MyISAM tables by
default. If key values are not found in the cache and the cache is full, contention results:
Some values currently in the cache must be discarded to make room for new values.The
next time the discarded values are needed, they must be read from disk again.

If you have an especially heavily used MyISAM table, it would be beneficial to ensure
that its keys remain in memory, but contention in the cache works against this. Con-
tention can arise either when keys need to be read from the same table, or from other
tables.You might avoid same-table contention by making the key cache large enough to
hold all of a given table’s indexes completely, but keys from other tables would still con-
tend for space in the cache.

MySQL offers a solution to this problem because it supports setting up multiple key
caches and enables a table’s indexes to be assigned to and preloaded into a given cache.
This can be useful if you have a table that sees especially heavy use and you have suffi-
cient memory to load its indexes into the cache.This capability enables you to avoid both
same-table and other-table contention: Create a cache that is large enough to hold a
table’s indexes completely and devote the cache exclusively to the use of that table. No
disk I/O is necessary after the keys have been loaded into the cache.Also, key values will
never need to be discarded from the cache and key lookups for the table can be done in
memory.

The following example shows how to set up a key cache for the member table in the
sampdb database, using a cache with a name of member_cache and a size of 1MB.You
must have the SUPER privilege to carry out these instructions.

1. Set up a separate key cache large enough to hold the indexes from the table:

mysql> SET GLOBAL member_cache.key_buffer_size = 1024*1024;

336 Chapter 5 Query Optimization

3375.6 Administrative-Level Optimizations

2. Assign the table to the key cache:

mysql> CACHE INDEX member IN member_cache;

+---------------+--------------------+----------+----------+

| Table | Op | Msg_type | Msg_text |

+---------------+--------------------+----------+----------+

| sampdb.member | assign_to_keycache | status | OK |

+---------------+--------------------+----------+----------+

3. Preload the table’s indexes into its key cache:

mysql> LOAD INDEX INTO CACHE member;

+---------------+--------------+----------+----------+

| Table | Op | Msg_type | Msg_text |

+---------------+--------------+----------+----------+

| sampdb.member | preload_keys | status | OK |

+---------------+--------------+----------+----------+

If you want to load other tables into the same cache or create other key caches for
other tables, that can be done as well. For more information about key caches, consult
Section 12.7.2, “Configuring the MyISAM Storage Engine.”

The effects of the statements that set up a separate key cache do not persist across
server restarts. If you want the cache to be used each time the server runs, you must
arrange to execute the statements at each restart.To do this, you can put them in a file
and name the file with the --init-file server option.

5.6.2 Using the Query Cache
The MySQL server can use a query cache to speed up processing of SELECT statements
that are executed repeatedly.The resulting performance improvement often is dramatic.
The query cache has these characteristics:

n The first time a given SELECT statement is executed, the server remembers the text
of the query and the results that it returns.

n The next time the server sees that statement, it doesn’t bother to execute it again.
Instead, the server pulls the result directly from the query cache and returns it to
the client.

n Query caching is based on the literal text of query strings as they are received by
the server. Queries are considered the same if the text of the queries is exactly the
same. Queries are considered different if they differ in lettercase or come from
clients that are using different character sets or communication protocols.They also
are considered different if they are otherwise identical but do not actually refer to
the same tables (for example, if they refer to identically named tables in different
databases).

n A query is not cached if the query returns non-deterministic results. For example, a
query that uses NOW() returns different results over time, so it cannot be cached.

n When a table is modified, any cached queries that refer to it become invalid and are
discarded.This prevents the server from returning out-of-date results.

Support for the query cache is built in by default. If you don’t want to use the cache,
and want to avoid incurring even the minimal overhead that it involves, you can build the
server without it by running the configure script with the --without-query-cache
option.

To determine whether a server supports the query cache, check the value of the
have_query_cache system variable:

mysql> SHOW VARIABLES LIKE 'have_query_cache';

+------------------+-------+

| Variable_name | Value |

+------------------+-------+

| have_query_cache | YES |

+------------------+-------+

338 Chapter 5 Query Optimization

For servers that do include query cache support, cache operation is based on the values
of three system variables:

n query_cache_type determines the operating mode of the query cache.The fol-
lowing table shows the possible mode values.

n query_cache_size determines the amount of memory to allocate for the cache,
in bytes.

n query_cache_limit sets the maximum result set size that will be cached; query re-
sults larger than this value are never cached.

For example, to enable the query cache and allocate 16MB of memory for it, use the
following settings in an option file:

[mysqld]

query_cache_type=1

query_cache_size=16M

The amount of memory indicated by query_cache_size is allocated even if
query_cache_type is zero.To avoid wasting memory, set the size to zero unless you plan
to enable the cache. Note that a size of zero effectively disables the cache even if
query_cache_type is non-zero.

Mode Meaning

0 Don’t cache query results or retrieve cached results

1 Cache queries except those that begin with SELECT SQL_NO_CACHE

2 Cache on demand only those queries that begin with SELECT
SQL_CACHE

3395.6 Administrative-Level Optimizations

Individual clients begin with query caching behavior in the state indicated by the
server’s default caching mode.A client can change the default caching mode for its
queries by using this statement:

SET query_cache_type = val;

val can be 0, 1, or 2, which have the same meanings as when setting the query_
cache_type variable at server startup. In a SET statement, the symbolic values OFF, ON,
and DEMAND are synonyms for 0, 1, and 2.

A client also can control caching of individual queries by adding a modifier following
the SELECT keyword. SELECT SQL_CACHE for a cacheable query causes the result to be
cached if the cache mode is ON or DEMAND. SELECT SQL_NO_CACHE causes the result not to
be cached.

Suppression of caching can be useful for queries that retrieve information from a con-
stantly changing table. In that case, the cache is unlikely to be of much use. Suppose that
you’re logging Web server requests to a table in MySQL, and also that you periodically
run a set of summary queries on the table. For a reasonably busy Web server, new rows
will be inserted into the table frequently and thus any query results cached for the table
become invalidated quickly.The implication is that although you might issue the sum-
mary queries repeatedly, it’s unlikely that the query cache will be of any value for them.
Under such circumstances, it makes sense to issue the queries using the SQL_NO_CACHE
modifier to tell the server not to bother caching their results.

5.6.3 Hardware Optimizations
The earlier part of this chapter discusses techniques that help improve your server’s per-
formance regardless of your hardware configuration.You can of course get better hard-
ware to make your server run faster. But not all hardware-related changes are equally
valuable.When assessing what kinds of hardware improvements you might make, the most
important principles are the same as those that apply to server parameter tuning: Put as
much information in fast storage as possible, and keep it there as long as possible.

The following items describe several aspects of hardware configuration that can be
modified to improve server performance.

Install more memory into your machine. This enables you to configure larger values
for the server’s cache and buffer sizes, which enables it to keep data in memory longer
and with less need to fetch information from disk.

Reconfigure your system to remove all disk swap devices. This may be possible if
you have enough RAM to do all swapping into a memory filesystem. Otherwise, some
systems will continue to swap to disk even if you have sufficient RAM for swapping.

Add faster disks to improve I/O latency. Seek time is typically the primary deter-
minant of performance here. It’s slow to move the heads laterally; after the heads have
been positioned, reading blocks off the track is fast by comparison. However, if you have a
choice between adding more memory and getting faster disks, add more memory. Mem-
ory is always faster than your disks, and adding memory enables you to use larger caches,
which reduces disk activity.

340 Chapter 5 Query Optimization

Take advantage of parallelism by redistributing disk activity across physical
devices. If you can split reading or writing across multiple physical devices, it will be
quicker than reading and writing everything from the same device. For example, if you
store databases on one device and logs on another, writing to both devices at once will be
faster than if databases and logs share the same device. Note that using different partitions
on the same physical device doesn’t count as parallelism.That won’t help because they’ll
still contend for the same physical resource (disk heads).The procedure for moving logs
and databases is described in Section 11.3, “Relocating Data Directory Contents.”

Before you relocate data to a different device, make sure that you understand your sys-
tem’s load characteristics. If there’s some other major activity already taking place on a
particular physical device, putting a database there may actually make performance worse.
For example, you may not realize any overall benefit if you process a lot of Web traffic and
move a database onto the device where your Web server document tree is located.

Use of RAID devices can give you some advantages of parallelism as well.
Use multi-processor hardware. For a multi-threaded application like the MySQL

server, multi-processor hardware can execute multiple threads at the same time.

6
Introduction to MySQL

Programming

This chapter describes some of the reasons for writing your own MySQL-based pro-
grams rather than using the standard client programs included in MySQL distributions. It
also gives a conceptual overview of the interfaces we’ll use for the three languages cov-
ered in the following chapters (C, Perl, and PHP), and discusses factors to consider when
choosing a language for a program.

6.1 Why Write Your Own MySQL Programs?
MySQL distributions include a set of client programs. For example, mysqldump exports
table definitions and contents, mysqlimport loads data files into tables, mysqladmin per-
forms administrative operations, and mysql lets you interact with the server to execute ar-
bitrary SQL statements.

The standard client programs handle many of the most common tasks that MySQL
users need to perform, but applications sometimes have requirements that are outside the
capabilities of those clients.To address this issue, the MySQL server has a client applica-
tion programming interface (API) that gives you the flexibility to satisfy whatever special-
ized requirements your applications may have.The client API provides access to the
MySQL server and opens up possibilities limited only by your own imagination.

In this part of the book, we’ll discuss what you need to know to write MySQL-based
programs for accessing your databases.To understand what you gain by writing your own
programs, consider what you can accomplish that way in comparison to using the capa-
bilities of the mysql client and its no-frills interface to the MySQL server:

n You can customize input handling. With mysql, you enter raw SQL statements.
With your own programs, you can provide input methods for the user that are
more intuitive and easier to use.Your program can eliminate the need for its users
to know SQL, or even to be aware of the role of the database in the task being per-
formed. Input collection can be something as rudimentary as a command-line in-
terface that prompts the user and reads a value, or a more sophisticated screen-based

342 Chapter 6 Introduction to MySQL Programming

entry form implemented using a screen management package such as curses or
S-Lang, an X window using Tcl/Tk, or a form in a Web page.

For most people, it’s a lot easier to specify search parameters by filling in a form
than by issuing a SELECT statement. For example, a real estate agent looking for
houses in a certain price range, style, or location just wants to enter search parame-
ters into a form and get back the qualifying offerings with a minimum of fuss. Sim-
ilar considerations apply for entering new rows or updating existing rows:A
keyboard operator in a data entry department should need to know only the values
to be entered into rows, not the SQL syntax for INSERT, REPLACE, or UPDATE.

n You can validate input provided by the user. For example, you can check
dates to make sure they conform to the format that MySQL expects, or you can
require certain fields to be filled in.This enhances the safety and security of your
applications.

n You can generate input automatically. Some applications might not even involve
a human user, such as when input for MySQL is generated by another program.
You might configure your Web server to write log entries to MySQL rather than to
a file, or set up a system-monitoring program that runs periodically and records sta-
tus information to a database.

n You can customize your output. mysql output is essentially unformatted; you
have a choice of tab-delimited or tabular style. If you want nicer-looking output,
you must format it yourself.This might range from something as simple as printing
“Missing” rather than NULL to more complex report-generation requirements. Con-
sider the following report:

State City Sales

AZ Mesa $94,384.24

Phoenix $17,328.28

Subtotal $117,712.52

CA Los Angeles $118,198.18

Oakland $38,838.36

Subtotal $157,036.54

==============================

TOTAL $274,749.06

This report includes several specialized elements:
n Customized headers.
n Suppression of repeating values in the State column so that the values are

printed only when they change.
n Subtotal and total calculations.

3436.1 Why Write Your Own MySQL Programs?

n Formatting of numbers, such as 94384.24, to print as dollar amounts, such as
$94,384.24.

Another common task involving complex formatting is invoice production,
where you need to associate each invoice header with information about the
customer and about each item ordered.This kind of report can easily exceed
mysql’s formatting capabilities.

For some types of tasks, you may not want to produce any output at all. Per-
haps you’re simply retrieving information to calculate a result that you insert
back into another database table. Or you want the output to go somewhere
other than to the user running the query. For example, if you’re extracting
names and email addresses to feed automatically into a process that generates
form letters for bulk email, your program does produce output, but it con-
sists of messages that go to the mail recipients, not to the person running the
program.

n You can work around constraints imposed by the nature of SQL itself. For the
most part, SQL scripts consist of a set of statements executed one at a time from
beginning to end, with minimal error checking. If you execute a file of SQL
queries using mysql in batch mode, mysql either quits after the first error, or, if you
specify the --force option, executes all the queries indiscriminately, no matter how
many errors occur. By writing your own program, it’s possible to selectively adapt
to the success or failure of queries by providing flow control around statement-
execution operations.You can make execution of one query contingent on the suc-
cess or failure of another, or make decisions about what to do next based on the
result of a previous query.

It is true that MySQL supports stored programs, which provides additional flexibil-
ity at the SQL level by means of flow-control and error-handling constructs. How-
ever, these constructs are not as flexible as those provided by general-purpose
programming languages.

SQL has very limited persistence across statements. It’s difficult to use the results
from one query and apply them to another or to tie together the results of multiple
queries. LAST_INSERT_ID() can be used to get the AUTO_INCREMENT value that was
most recently generated by a prior statement, and user variables can be assigned val-
ues and referred to later. But that’s about all.This limitation makes certain common
operations difficult to perform using SQL alone, such as retrieving a set of rows and
using each one as the basis for a complex series of subsequent operations. If you re-
trieve a list of customers and then look up a detailed credit history for each one, the
process may involve several queries per customer.

In general, a tool other than mysql is needed for tasks that involve master-detail re-
lationships and have complex output-formatting requirements.A program provides

344 Chapter 6 Introduction to MySQL Programming

the “glue” that links queries together and enables you to use the output from one
query as the input to another.

n You can integrate MySQL into any application. Many programs stand to benefit
by exploiting the capability of a database to provide information.The client-
programming interface gives you the means to do this.An application that must
verify a customer number or check whether an item is present in inventory can do
so by issuing a quick query. A Web application that enables a client to ask for all
books by a certain author can look them up in a database and send the results to
the client’s browser.

It’s possible to achieve a kind of rudimentary “integration” of MySQL into an ap-
plication by using a shell script that invokes mysql with an input file containing
SQL statements, and then postprocessing the output using other utilities. But that
can become ugly, especially as your task becomes more involved. It may also pro-
duce a sense of “this works, but it feels wrong” as the application grows by accre-
tion into a messy patchwork. In addition, the process-creation overhead of a shell
script that runs other commands may be more than you want to incur. It can be
more effective to use the client interface to interact with the MySQL server
directly, extracting exactly the information you want as you need it at each phase
of your application’s execution.

Chapter 1,“Getting Started with MySQL,” enumerated several goals with respect to
our sampdb sample database that require us to write programs to interact with the
MySQL server. Some of these goals are shown in the following list:

n Format the Historical League member directory for printing
n Enable online presentation and searching of the member directory
n Send membership renewal notices by email
n Easily enter student scores into the gradebook using a Web browser

One issue that we’ll consider in some detail is the question of how to integrate
MySQL’s capabilities into a Web environment. MySQL provides no direct support for
Web applications, but by combining MySQL with appropriate tools, you can issue queries
from your Web server on behalf of a client user and report the results to the user’s
browser.This enables your databases to be accessed easily over the Web.

There are two complementary perspectives on the marriage of MySQL and the Web:

n Use a Web server to provide enhanced access to MySQL. In this case, your
main interest is your database, and you want to use the Web as a tool to gain easier
access to your data.This is the point of view that a MySQL administrator would
take.The place of a database in such a scenario is explicit and obvious because it’s
the focus of your interest. For example, you can write Web pages that enable you to
see a list of the tables in your database, and to examine the structure or contents of
each one.

3456.2 APIs Available for MySQL

n Use MySQL to enhance the capabilities of your Web server. In this case, your
primary interest is your Web site, and you may want to use MySQL as a tool for
making your site’s content more valuable to the people who visit it.This is the
point of view a Web developer would take. For example, if you run a message board
or discussion list at the site, you can use a database to keep track of the messages.
The role of MySQL in this case is more subtle; users of the site might not even be
aware that a database plays a part in the services the site offers.

These perspectives need not be mutually exclusive. For example, in the Historical
League scenario, we’ll use the Web as a means for members to gain easy access to the
contents of the membership directory by making entries available online.That is a use of
the Web to provide access to the database.At the same time, adding directory content to
the League’s Web site increases the site’s value to members.That is a use of the database to
enhance the services provided at the site.

No matter how you view the integration of MySQL with the Web, the implementa-
tion is similar.You connect your Web site front end to your MySQL back end, using the
Web server as an intermediary.The Web server collects information from a client user,
sends it to the MySQL server in the form of a query, and then retrieves the result and re-
turns it to the client’s browser for viewing.

You don’t have to put your data online, of course, but often there are benefits to doing
so, particularly in comparison with accessing your data via the standard MySQL client
programs:

n People accessing your data through the Web can use whichever browser they prefer,
on whatever platform they prefer.They’re not limited to systems on which the
standard MySQL client programs run. No matter how widespread the MySQL
clients are,Web browsers are more so.

n The interface for a Web application can be made simpler to use than that of a
standalone command-line MySQL client.

n A Web interface can be customized to the requirements of a particular application.
The MySQL clients are general-purpose tools with a fixed interface.

n Dynamic Web pages extend MySQL’s capabilities to do things that are difficult or
impossible to do using only the standard MySQL clients. For example, you can’t re-
ally use them to put together an application that incorporates a shopping cart.

Any programming language can be used to write Web-based applications, but some are
more suitable than others.We’ll consider this issue in Section 6.3, “Choosing an API.”

6.2 APIs Available for MySQL
The MySQL server has a low-level “native” client-server protocol that defines how client
programs establish connections to and communicate with it. Clients can use this protocol
at various levels of abstraction:

346 Chapter 6 Introduction to MySQL Programming

n To facilitate application development, MySQL provides a client library written in
the C programming language that enables you to access MySQL databases from
within any C program.The client library implements an application programming
interface (API) consisting of a set of data structures and functions that map onto
native protocol operations.The C API provided by this library is much more con-
venient to work with than the native protocol.

n MySQL interfaces for other languages can link the C client library into the lan-
guage processor.The client library thus provides the means whereby MySQL bind-
ings for other languages can be built on top of the C API.This type of interface
exists for Perl, PHP, Python, Ruby, C++,Tcl, and others.

n There are also interfaces for other languages that implement the native client-server
protocol directly rather than using the C library to handle communication.These
exist for Java, PHP, and Ruby, for example.

Each language binding defines its own interface that specifies the rules for accessing
MySQL.There is insufficient space here to discuss all of the APIs available for MySQL.
Instead, we’ll concentrate on three of the most popular APIs:

n The C client library API.This is the primary programming interface to MySQL.
It’s used, for example, to implement the standard clients in the MySQL distribution,
such as mysql, mysqladmin, and mysqldump.

n The DBI (Database Interface) API for Perl. DBI is implemented as a Perl mod-
ule that interfaces with other modules at the DBD (Database Driver) level, each of
which provides access to a specific database engine.The particular DBD module
used here is the one that provides MySQL support.We’ll use MySQL with DBI to
create standalone scripts to be invoked from the command line and scripts to be in-
voked by a Web server to provide Web access to MySQL.

n The PHP API. PHP is a server-side scripting language that provides a convenient
way of embedding programs in Web pages. Such a page is processed by PHP on the
server host before being sent to the client, which enables the script to generate
dynamic content, such as including the result of a MySQL query into the page.
Like DBI, PHP includes support for accessing several database engines in addition
to MySQL. It has engine-specific interfaces, and interfaces that are more engine-
independent.This book uses one of the latter, known as PHP Data Objects (PDO).

The present chapter provides a comparative overview of these three APIs to describe
their general characteristics and to give you an idea why you might choose one over an-
other for particular applications. Each of the following three chapters discusses one of the
APIs in detail.

There’s no reason to consider yourself locked into a single API, of course. Get to
know several APIs and arm yourself with the knowledge that enables you to choose be-
tween them wisely. If you have a large project with several components, you might use
multiple APIs and write some parts in one language and other parts in another language,

3476.2 APIs Available for MySQL

depending on which one is most appropriate for each piece of the job.You may also find
it instructive to implement an application in several ways if you have time.This gives you
direct experience with different APIs as they apply to your own applications.

If you do not have the software required for using any of the APIs, see Appendix A,
“Obtaining and Installing Software.”

Should you be interested in additional MySQL programming information beyond
what the following chapters provide, other books are available.The two with which I am
most familiar (because I wrote them) are MySQL and Perl for the Web (New Riders, 2001)
and MySQL Cookbook, second edition (O’Reilly, 2006).The first provides extensive cov-
erage of the use of MySQL and DBI in Web environments.The second discusses how to
write MySQL programs using Perl DBI, the PHP PEAR DB module, Ruby DBI (similar
to Perl DBI), Python’s DB-API interface, and the Java JDBC interface. If you’re interested
specifically in Java, see MySQL and Java Developer’s Guide (Matthews, Cole, and Gradecki;
Wiley, 2003). One of the authors (Mark Matthews) is the creator of MySQL
Connector/J, the official Java interface for MySQL.

6.2.1 The C API
The C API is used within the context of compiled C programs. It’s a client library that
provides an interface for talking to the MySQL server, giving you the capabilities you
need for establishing a connection to and conversing with the server.

The C clients provided in the MySQL distribution are based on this API.The C client
library also serves as the basis for most of the MySQL bindings for other languages. For
example, the MySQL-specific driver for the Perl DBI module is made MySQL-aware by
linking in the code for the MySQL C client library.

6.2.2 The Perl DBI API
The DBI API is used within the context of applications written for the Perl scripting lan-
guage.This API tries to work with as many databases as possible, while at the same time
hiding database-specific details from the script writer. DBI does this using Perl modules
that work together in a two-level architecture (see Figure 6.1):

n The DBI (database interface) level provides the general-purpose interface for client
scripts.This level provides an abstraction that does not refer to specific database
engines.

n The DBD (database driver) level provides support for various database engines by
means of drivers that are engine specific.The DBD-level module that implements
DBI support for MySQL is named DBD::mysql.

The DBI architecture enables you to write applications in relatively generic fashion.
When you write a DBI script, you use a standard set of database-access calls.The DBI
layer invokes the proper driver at the DBD level to handle your requests, and the driver
handles the specific issues involved in communicating with the particular database server
you want to use.The DBD level passes data returned from the server back up to the DBI

348 Chapter 6 Introduction to MySQL Programming

Database
Interface

level

Database
Driver
level

RDBMS
level

Application
level

Perl script

$dbh = DBI->connect ("DBI:mysql"...");
...or...
$dbh = DBI->connect ("DBI:Pg:...");

Perl interpreter

DBI

MySQL
driver

PostgreSQL
driver

PostgreSQL
server

MySQL
server

Other
servers

Other
DBDs

Figure 6.1 DBI architecture.

layer, which presents the data to your application.The form of the data is consistent no
matter the database from which the data originated.

From the application writer’s point of view, the result is an interface that hides differ-
ences between database engines, yet works with a wide variety of engines—as many as
there are drivers for. DBI provides a consistent client interface that increases portability
because you can access each database engine in a uniform fashion.

The one aspect of script writing that is necessarily engine-specific occurs when you
connect to a database server, because you must indicate which driver to use to establish
the connection. For example, to use a MySQL database, you connect like this:

$dbh = DBI->connect ("DBI:mysql:...");

To use PostgreSQL or Oracle instead, connect like this:

$dbh = DBI->connect ("DBI:Pg:...");

$dbh = DBI->connect ("DBI:Oracle:...");

After you’ve made the connection, you don’t need to make any specific reference to
the driver. DBI and the driver itself work out the database-specific details.

That’s the theory, anyway. However, you should be aware of two factors that work
against DBI script portability:

n SQL implementations differ between RDBMS engines, and it’s perfectly possible to
write SQL statements for one engine that another will not understand. If your SQL
is reasonably generic, your scripts will be correspondingly portable between en-
gines. But if your SQL is engine dependent, your scripts will be, too. For example,

3496.2 APIs Available for MySQL

if you use the MySQL-specific SHOW VARIABLES statement, your script won’t work
with other database servers.

n DBD modules often provide engine-specific types of information to enable script
writers to use particular features of particular database systems. For example, the
DBD for MySQL provides a way to access properties of the columns in a query re-
sult such as the maximum length of values in each column, whether columns are
numeric, and so forth. Other database servers don’t necessarily make analogous
types of information available. DBD-specific features are antithetical to portability;
by using them, you make it more difficult to use a script written for MySQL with
other database systems.

Despite the potential of these two factors for making your scripts database specific, the
DBI mechanism for providing database access in an abstract fashion is a reasonable means
of achieving portability. It’s up to you to decide how much you want to take advantage
of nonportable features.As you will discover in Chapter 8,“Writing MySQL Programs
Using Perl DBI,” I make little effort to avoid MySQL-specific constructs provided by the
MySQL DBD.That’s because you should know what those constructs are so that you can
decide for yourself whether to use them. For further information, see Appendix H,“Perl
DBI API Reference,” which lists all the MySQL-specific constructs.

6.2.3 The PHP API
Like Perl, PHP is a scripting language. Unlike Perl, PHP is designed less as a general-
purpose language than as a language for writing Web applications.The PHP API is used
primarily as a means of embedding executable scripts into Web pages.This makes it easy
for Web developers to write pages with dynamically generated content.When a client
browser sends a request for a PHP page to a Web server, PHP executes any script it finds
in the page and replaces it with the script’s output.The result is sent to the browser.This
enables the page that actually appears in the browser to change according to the circum-
stances under which the page is requested. For example, when the following short PHP
script is embedded in a Web page, it displays the IP number of the client host that re-
quested the page:

<?php echo $_SERVER["REMOTE_ADDR"]; ?>

As a less trivial and more interesting application, you can use a script to provide up-to-
the-minute information to visitors based on the contents of your database.The following
example shows a simple script such as might be used at the Historical League Web site.
The script issues a query to determine the current League membership count and reports
it to the person visiting the site:

<html>

<head>

<title>U.S. Historical League</title>

</head>

<body bgcolor="white">

<p>Welcome to the U.S. Historical League Web Site.</p>

<?php

USHL home page

try

{

$dbh = new PDO("mysql:host=localhost;dbname=sampdb", "sampadm", "secret");

$dbh->setAttribute (PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

$sth = $dbh->query ("SELECT COUNT(*) FROM member");

$count = $sth->fetchColumn (0);

print ("<p>The League currently has $count members.</p>");

$dbh = NULL; # close connection

}

catch (PDOException $e) { } # empty handler (catch but ignore errors)

?>

</body>

</html>

PHP scripts typically look like HTML pages with executable code embedded inside
<?php and ?> tags.A page can contain any number of code fragments.This provides an
extremely flexible approach to script development. For example, you can write a PHP
script as a normal HTML page initially to set up the general page framework, and then
add code later to generate the dynamic parts of the page.

PHP actually has multiple types of database interfaces.Among these is a set of low-
level libraries, each of which works with a single database engine and which make no
effort to unify the interface to different engines the way DBI does. Instead, the interface
to each engine looks much like the interface for the corresponding C library that imple-
ments the low-level API for that engine. For example, the names of the PHP functions
that you use to access MySQL from within PHP scripts are very similar to the names of
the functions in the MySQL C client library.

A more DBI-like approach is available for PHP by using the PHP Data Objects
(PDO) extension.This extension provides a more abstract interface to database engines
using a two-level architecture similar to that used by DBI.The PHP scripts in Chapter 9,
“Writing MySQL Programs Using PHP,” employ the PDO extension for database access.

6.3 Choosing an API
This section provides general guidelines to help you choose an API for various types of
applications. It compares the capabilities of the C, DBI, and PHP APIs to give you some
idea of their relative strengths and weaknesses, and to indicate when you might choose
one over another.

I am not advocating any one of these languages over the others, although I do have my
preferences.You will have your own preferences, too, as have the technical reviewers for
this book. One reviewer felt that I should emphasize the importance of C for MySQL

350 Chapter 6 Introduction to MySQL Programming

3516.3 Choosing an API

programming to a much greater extent, whereas another thought I should come down
much harder on C programming and discourage its use.The lesson from these varying
viewpoints is that you should weigh the factors discussed in this section and come to
your own conclusions.

A number of considerations enter into assessing which API is most suitable for a par-
ticular task:

n Intended execution environment. The context in which you expect the applica-
tion to be used.

n Performance. How efficiently applications perform when written in the API
language.

n Ease of development. How convenient the API and its language make application
writing.

n Portability.Whether the application will be used for database systems other than
MySQL.

The following discussion further examines each of these factors. Be aware that some of
the factors interact. For example, you want an application that performs well, but it might
be just as important to use a language that lets you develop the application quickly even if
it doesn’t perform quite as efficiently.

6.3.1 Execution Environment
When you write an application, you generally have some idea of the environment in
which it will be used. For example, it might be a report generator program that you in-
voke from the shell, or an accounts payable summary program that runs as a cron job at
the end of each month. Commands run from the shell or from cron generally stand on
their own and require little information from the execution environment. On the other
hand, you might be writing an application intended to be invoked by a Web server. Such
a program might expect to be able to extract very specific types of information from its
execution environment:What browser is the client using? What parameters were entered
into a mailing list subscription request form? Did the client supply the correct password
for accessing personnel information?

Each API language varies in its suitability for writing applications in these differing
environments:

n C is a general-purpose language, so in principle you can use it for anything. In
practice, C tends to be used more often for standalone programs rather than for
Web programming. One reason might be that it’s not as easy to perform text pro-
cessing and memory management in C as it is in Perl or in PHP, and those capabili-
ties tend to be heavily used in Web applications.

n Perl, like C, is suitable for writing standalone programs. However, it also happens
that Perl is quite useful for Web site development—for example, by using the

CGI.pm module.This makes Perl a handy language for writing applications that
link MySQL with the Web. Such an application can interface to the Web via the
CGI.pm module and interface to MySQL using DBI.

n PHP is intended by design for writing Web applications, so that’s obviously the en-
vironment to which it is best suited. Furthermore, database access is one of PHP’s
biggest strengths, so it’s a natural choice for Web applications that perform MySQL-
related tasks. It’s possible to use PHP as a standalone interpreter (for example, to ex-
ecute scripts from the shell), but it’s not used that way very much.

Given these considerations, C and Perl are the most likely candidate languages if you’re
writing a standalone application. For Web applications, Perl and PHP are most suitable. If
you need to write both types of applications, but don’t know any of these languages and
want to learn as few as possible, Perl might be your best option.

6.3.2 Performance
All other things being equal, we prefer to have applications run as quickly as possible.
However, the actual importance of performance tends to be related to the frequency with
which a program is used. For a program that you run once a month as a cron job during
the night, performance might not matter that much. On the other hand, if you run a pro-
gram many times a second on a heavily used Web site, every bit of efficiency you gain can
make a big difference. In the latter case, performance plays a significant role in the useful-
ness and appeal of your site.A slow site is annoying for visitors, no matter what the site is
about, and if you depend on the site as a source of income, decreased performance trans-
lates directly into reduced revenue.You cannot service as many connections at a time, and
visitors who tire of waiting give up and go elsewhere.

Performance assessment is a complex issue.The best indicator of how well your appli-
cation will perform when written for a particular API is to write it under that API and
try it.And the best comparative test is to implement multiple versions under different
APIs to see how they stack up against each other. Of course, that’s not how development
usually works. More often, you just want to get your program written.After it’s working,
you can think about tuning it to see whether it can run faster or use less memory, or
whether it has some other aspect that you can improve. But there are at least two general
factors that you can count on as affecting performance in a relatively consistent way:

n Compiled programs execute more quickly than interpreted scripts.
n For interpreted languages used in a Web context, performance is better when the

interpreter is invoked as a module that is part of the Web server itself rather than as
a separate process.

6.3.2.1 Compiled Versus Interpreted Languages
As a general principle, compiled applications are more efficient, use less memory, and exe-
cute more quickly than an equivalent version of the program written in a scripting lan-
guage.This is due to the overhead involved with the language interpreter that executes

352 Chapter 6 Introduction to MySQL Programming

3536.3 Choosing an API

the scripts. C is compiled and Perl and PHP are interpreted, so C programs generally will
run faster than Perl or PHP scripts.Thus, C might be the best choice for a heavily used
program.

Other factors tend to diminish the distinction between compiled and interpreted pro-
grams. For one thing, writing in C generally gives you a faster program, but it’s quite pos-
sible to write inefficient C programs.Writing a program in a compiled language is no
automatic passport to better performance; it’s still necessary to think about what you’re
doing. In addition, the difference between compiled and interpreted programs is lessened
if a scripted application spends most of its time executing code in compiled MySQL
client library routines that are linked into the interpreter engine.

6.3.2.2 Standalone Versus Module Versions of Language Interpreters
For Web-based applications, script language interpreters are usually used in one of two
forms—at least for Apache, the Web server used in this book for writing Web applications:

n You can arrange for Apache to invoke the script interpreter as a separate process. In
this mode of operation, when Apache needs to run a Perl or PHP script, it starts the
corresponding interpreter and tells it to execute the script. In this case,Apache uses
the interpreters as CGI programs—that is, it communicates with them using the
Common Gateway Interface (CGI) protocol.

n The interpreter can be used as a module that is linked in directly to the Apache bi-
nary and that runs as part of the Apache process itself. In Apache terms, the Perl and
PHP interpreters take the form of the mod_perl and mod_php modules.

Perl and PHP advocates will argue the speed advantages of their favorite interpreter,
but all agree that the form in which the interpreter runs is a much bigger factor than the
languages themselves. Either interpreter runs much faster as a module than as a standalone
CGI application.With a standalone application, it’s necessary to start up the interpreter
each time a script is to be executed, so you incur a significant penalty in process-creation
overhead.When used as a module within an already running Apache process, an inter-
preter’s capabilities can be accessed from your Web pages instantly.This dramatically im-
proves performance by reducing overhead and translates directly into an increased
capacity to handle incoming requests and to dispatch them quickly.

The startup penalty for a standalone interpreter typically results in at least an order of
magnitude poorer performance than the module interpreter. Interpreter startup cost is
particularly significant when you consider that Web page serving typically involves quick
transactions with light processing rather than substantial ones with a lot of processing. If
you spend a lot of time just starting up and not very much actually executing the script,
you’re wasting most of your resources. It’s like spending most of the day getting ready for
work, arriving at 4 o’clock in the afternoon, and then going home at 5.

You might wonder why there is any benefit with the module versions of the inter-
preters—after all, you must still start up Apache itself, right? The savings comes from the
fact that a given Apache process handles multiple requests.When Apache starts, it imme-
diately spawns a pool of child processes to be used to handle incoming requests.When a

request arrives that involves execution of a script, there is already an Apache process ready
and waiting to handle it.Also, each instance of Apache services multiple requests, so the
process startup cost is incurred only once per set of requests, not once per request.
(Apache 2 can use multiple threads rather than separate processes to reduce the overhead
even more.)

One potentially significant difference between Perl and PHP is that Perl has a bigger
memory footprint;Apache processes are larger with mod_perl linked in than with
mod_php. PHP was designed under the assumptions that it must live cooperatively within
another process and that it might be activated and deactivated multiple times within the
life of that process. Perl was designed to be run from the command line as a standalone
program, not as a language meant to be embedded in a Web server process.This probably
contributes to its larger memory footprint; as a module, Perl simply isn’t running in its
natural environment. Other factors that contribute to the larger footprint are script
caching and additional Perl modules that scripts use. In both cases, more code is brought
into memory and remains there for the life of the Apache process. (To minimize this
problem, there are techniques that allow you to designate only certain Apache processes as
enabled for mod_perl.That way, you incur the extra memory overhead only for those
processes that execute Perl scripts.The mod_perl area of the Apache Web site has a good
discussion of various strategies from which to choose.Visit http://perl.apache.org/docs/
for more information.)

The standalone version of a language interpreter does have one advantage over its
module counterpart, in that you can arrange for it to run scripts under a different user ID.
The module versions run scripts under the same user ID as the Web server, which is typi-
cally an account with minimal privileges for security reasons.That doesn’t work very well
for scripts that require specific privileges (for example, if you need to read or write pro-
tected files).You can combine the module and standalone approaches if you like: Use the
module version by default and the standalone version for situations in which scripts need
to run with the privileges of a particular user.

What this adds up to is that, whether you choose Perl or PHP, you should try to use it
as an Apache module rather than by invoking a separate interpreter process. Reserve use
of the standalone interpreter only for those cases that cannot be handled by the module,
such as scripts that require special privileges. For these instances, you can process your
script by using Apache’s suEXEC mechanism to start up the interpreter under a given
user ID.

6.3.3 Development Time
The factors just described affect the performance of your applications, but raw execution
efficiency may not be your only goal.Your own time is important, too, as is ease of pro-
gramming, so another factor to consider in choosing an API for MySQL programming is
how quickly you can develop your applications. If you can write a Perl or PHP script in
half the time it takes to develop the equivalent C program, you might elect not to use the
C API, even if the resulting application doesn’t run quite as fast. It’s often reasonable to be

354 Chapter 6 Introduction to MySQL Programming

http://perl.apache.org/docs/

3556.3 Choosing an API

less concerned about a program’s execution time than about the time you spend writing
it, particularly for applications that aren’t executed frequently.An hour of your time is
worth a lot more than an hour of machine time!

Generally, scripting languages enable you to get a program going more quickly, espe-
cially for working out a prototype of the finished application.At least two factors con-
tribute to this. First, scripting languages tend to provide higher-level constructs than
compiled languages.This enables you to think at a higher level of abstraction, so you can
think about what you want to do rather than about the details involved in doing it. For
example, PHP associative arrays and Perl hashes are great time savers for maintaining data
involving key/value relationships (such as student ID/student name pairs). C has no such
construct. If you wanted to implement it in C, you would need to write code to handle
many low-level details involving issues such as memory management and string manipu-
lation, and you would need to debug it.This takes time.

Second, the development cycle has fewer steps for scripting languages than for com-
piled languages.With C, you engage in an edit-compile-test cycle during application de-
velopment. Every time you modify a program, you must recompile it before testing.With
Perl and PHP, the development cycle is simply edit-test because you can run a script im-
mediately after each modification with no compiling. On the other hand, the C compiler
enforces more constraints on your program in the form of stricter type checking.The
greater discipline imposed by the compiler can help you avoid bugs that you would not
catch as easily in looser languages, such as Perl and PHP. If you misspell a variable name in
C, the compiler will warn you. PHP and Perl won’t do so unless you ask them to.These
tighter constraints can be especially valuable as your applications become larger and more
difficult to maintain.

In general, the tradeoff is the usual one between compiled and interpreted languages
for development time versus performance: Do you want to develop the program using a
compiled language so that it will execute more quickly when it runs, but spend more
time writing it? Or do you want to write the program as a script so that you can get it
running in the least amount of time, even at the cost of some execution speed?

It’s also possible to combine the two approaches.Write a script as a “first draft” to
quickly develop an application prototype to test out your logic and make sure the algo-
rithms are appropriate. If the program proves useful and is executed frequently enough
that performance becomes a concern, you can recode it as a compiled application.This
gives you the best of both worlds: quick prototyping for initial development of the appli-
cation, and the best performance for the final product.

In a strict sense, the Perl DBI and PHP APIs give you no capabilities that are not al-
ready present in the C client library. However, the environment in which MySQL capa-
bilities are embedded is very different for C than for Perl or PHP. Consider what tasks
you’ll need to perform as you interact with the MySQL server and ask how much each
API language will help you carry them out. Here are some examples:

n Memory management. In C, you find yourself working with malloc() and
free() for any tasks involving dynamically allocated data structures. Perl and PHP

handle that for you. For example, they allow arrays to grow in size automatically,
and dynamic-length strings can be used without ever thinking about memory
management.

n Text manipulation. Perl has the most highly developed capabilities in this area, and
PHP runs a close second. C is very rudimentary by comparison, coming in a distant
third.

Of course, in C you can write your own libraries to encapsulate tasks such as memory
management and text processing into functions that make the job easier. But then you
still have to debug them, and you want your algorithms to be efficient, too. In these re-
spects, it’s a fair bet that the algorithms in Perl and PHP for these things have had the
benefit of being examined by many pairs of eyes, so generally they should be both well
debugged and reasonably efficient.You can save your own time by taking advantage of the
time that others have already put into the job. (On the other hand, if an interpreter does
happen to have a bug, you may simply have to live with it or try to find a workaround
until the problem is fixed.When you write in C, you have a finer level of control over the
behavior of your program.)

The languages differ in how “safe” they are.The C API provides the lowest-level inter-
face to the server and enforces the least policy. In this sense, it provides the least amount
of safety net. If you execute API functions out of order, you may be lucky and get an
“out-of-sync” error, or you may be unlucky and have your program crash. Perl and PHP
both protect you pretty well.A script will fail if you don’t do things in the proper order,
but the interpreter won’t crash.Another fertile source of crashing bugs in C programs is
the use of dynamically allocated memory and pointers associated with them. Perl and
PHP handle memory management for you, so your scripts are much less likely to die
from memory management bugs.

Development time is affected by the amount of external support that is available for a
language. C external support is available in the form of wrapper libraries that encapsulate
MySQL C API functions into routines that are easier to use. Libraries that do this are
available for both C and C++. Perl undoubtedly has the largest number of add-ons, in the
form of Perl modules (these are similar in concept to Apache modules).There is even an
infrastructure in place designed to make it easy to locate and obtain these modules (the
CPAN, or Comprehensive Perl Archive Network). Using Perl modules, you gain access to
all kinds of functions without writing a line of code.Want to write a script that generates
a report from a database, and then mail it to someone as an attachment? Just visit
cpan.perl.org, get one of the MIME modules, and you have instant attachment-
generation capability. PHP has archives known as PEAR (PHP Extension and Application
Repository) and PECL (PHP Extension Community Library), available at pear.php.net
and pecl.php.net.

356 Chapter 6 Introduction to MySQL Programming

3576.3 Choosing an API

6.3.4 Portability
The question of portability has to do with how easily a program written to use MySQL
can be modified to use a different database engine.This may be something you don’t care
about. However, unless you can predict the future, it is a little risky to say,“I’ll never use
this program with any database other than MySQL.” Suppose that you get a different job
and want to use your old programs, but your new employer uses a different database sys-
tem? What then? If portability is a priority, you should consider the clear differences be-
tween APIs:

n DBI provides the most portable API because database independence is an explicit
DBI design goal.

n PHP script portability is similar to DBI if you use the PDO database-access exten-
sion mentioned earlier. If you use only the low-level database-access libraries, PHP
is less portable because it doesn’t provide the same sort of uniform interface to vari-
ous database engines that DBI does.The PHP function calls for each supported
database tend to resemble those in the corresponding underlying C API.To use a
different engine, at a minimum you’ll need to change the names of the database-
related functions that you invoke.You may also have to revise your application’s
logic a bit as well because the interfaces for the various databases don’t all work
quite the same way.

n The C API provides the least portability between databases. By its very nature it is
designed specifically for MySQL.

Portability in the form of database independence is especially important when you
need to access multiple database systems within the same application.This can involve
simple tasks such as moving data from one RDBMS to another, or more complex under-
takings, such as generating a report based on information combined from a number of
database systems.

This page intentionally left blank

7
Writing MySQL

Programs Using C

MySQL provides a client library written in the C programming language that you can
use to write client programs that access MySQL databases.This library defines an applica-
tion programming interface that includes the following facilities:

n Connection management routines that establish and terminate a session with a server
n Routines that construct SQL statements, send them to the server, and process the

results
n Status-checking and error-reporting functions for determining the exact reason for

an error when an API call fails
n Routines that help you process options given in option files or on the command line

This chapter shows how to use the C client library to write your own programs, using
conventions that are reasonably consistent with those used by the client programs in-
cluded in the MySQL distribution. I assume that you know something about program-
ming in C, but I’ve tried not to assume that you’re an expert.

The first part of this chapter develops a series of short programs.The series culminates
in a simple program that serves as the framework for a client skeleton that does nothing
but connect to and disconnect from the server.The reason for this is that although
MySQL client programs are written for different purposes, one thing they all have in
common is that they must establish a connection to the server.

The resulting skeleton program is generic, so it is usable as the basis for any number of
other client programs.After developing it, we’ll pause to consider how to execute various
kinds of SQL statements. Initially, we’ll discuss how to handle specific hardcoded state-
ments, and then develop code that can be used to process arbitrary statements.After that,
we’ll add some statement-processing code to the skeleton to develop another program
that’s similar to the mysql client and that can be used to issue statements interactively.

360 Chapter 7 Writing MySQL Programs Using C

The chapter then demonstrates several other activities that the client library enables
you to perform:

n Writing client programs that communicate with the server over secure connections
using the Secure Sockets Layer (SSL) protocol

n Writing applications that use libmysqld, the embedded server library
n Sending multiple statements to the server at once and processing the result sets that

come back
n Using server-side prepared statements

This chapter discusses only those functions and data types from the client library that
we need for the example programs. For a comprehensive listing of all functions and types,
see Appendix G,“C API Reference” (online).You can use that appendix as a reference for
further background on any part of the client library you’re trying to use.

The example programs are available online so that you can try them directly without
typing them in yourself.They are part of the sampdb distribution, located under the capi
directory of the distribution. See Appendix A,“Obtaining and Installing Software,” for
downloading instructions.

Where to Find Example Programs
A common question on the MySQL mailing list is “Where can I find some examples of
clients written in C?” The answer, of course, is “right here in this book.” But something
many people seem not to consider is that a MySQL source distribution includes several
client programs that happen to be written in C (mysql, mysqladmin, and mysqldump, for
example). Because the distribution is readily available, it provides you with quite a bit of ex-
ample client code. Therefore, if you haven’t already done so, grab a source distribution
sometime and take a look at the programs in its client and tests directories.

7.1 Compiling and Linking Client Programs
This section describes the steps involved in compiling and linking a program that uses the
MySQL client library.The commands to build clients vary somewhat from system to sys-
tem, and you might need to modify the commands shown here a bit. However, the de-
scription is general and you should be able to apply it to most client programs you write.

When you write a MySQL client program in C, you’ll need a C compiler, obviously.
The examples shown here use gcc, which is probably the most common compiler used
on Unix.You’ll also need the MySQL header files and client library.

The header files and client library constitute the basis of MySQL client programming
support. If MySQL was installed on your system from a source or binary distribution,
client programming support should have been installed as part of that process. If RPM
packages were used, this support won’t be present unless you installed the developer
RPM. Should you need to obtain the MySQL header files and library, see Appendix A.

To compile and link a client program, you might need to specify where the MySQL
header files and client library are located, because often they are not installed in locations

3617.1 Compiling and Linking Client Programs

that the compiler and linker search by default. For the following examples, suppose that
the header file and client library locations are /usr/local/include/mysql and
/usr/local/lib/mysql. Modify the pathnames as appropriate for your own system.

To tell the compiler how to find the MySQL header files when you compile a source
file into an object file, pass it an -I option that names the appropriate directory. For exam-
ple, to compile myclient.c to produce myclient.o, you might use a command like this:

% gcc -c -I/usr/local/include/mysql myclient.c

To tell the linker where to find the client library and what its name is, pass -L/usr/
local/lib/mysql and -lmysqlclient arguments when you link the object file to pro-
duce an executable binary, as follows:

% gcc -o myclient myclient.o -L/usr/local/lib/mysql -lmysqlclient

If your client consists of multiple files, name all the object files on the link command.
The link step may result in error messages having to do with functions that cannot be

found. In such cases, you’ll need to supply additional -l options to name the libraries
containing the functions. If you see a message about compress() or uncompress(), try
adding -lz or -lgz to tell the linker to search the zlib compression library:

% gcc -o myclient myclient.o -L/usr/local/lib/mysql -lmysqlclient -lz

If the message names the floor() function, add -lm to link in the math library.You
might need to add other libraries as well. For example, you’ll probably need -lsocket and
-lnsl on Solaris.

As an alternative to figuring out the proper flags for compiling and linking MySQL
programs yourself, you can use the mysql_config utility to do it for you. For example, the
utility might indicate that the following options are needed:

% mysql_config --include

-I'/usr/local/mysql/include/mysql'

% mysql_config --libs

-L'/usr/local/mysql/lib/mysql' -lmysqlclient -lz -lcrypt -lnsl -lm

To use mysql_config directly within your compile or link commands, invoke it within
backticks:

% gcc -c `mysql_config --include` myclient.c

% gcc -o myclient myclient.o `mysql_config --libs`

The shell will execute mysql_config and substitute its output into the surrounding
command, which automatically provides the appropriate flags for gcc.

If you don’t use make to build programs, I suggest you learn how so that you won’t
have to type a lot of program-building commands manually. Suppose that you have a
client program, myclient, that comprises two source files, main.c and lib.c, and a header
file, myclient.h.You might write a simple Makefile to build this program as follows.
Note that indented lines are indented with tabs; if you use spaces, the Makefile will
not work.

362 Chapter 7 Writing MySQL Programs Using C

CC = gcc

INCLUDES = -I/usr/local/include/mysql

LIBS = -L/usr/local/lib/mysql -lmysqlclient

all: myclient

main.o: main.c myclient.h

$(CC) -c $(INCLUDES) main.c

lib.o: lib.c myclient.h

$(CC) -c $(INCLUDES) lib.c

myclient: main.o lib.o

$(CC) -o myclient main.o lib.o $(LIBS)

clean:

rm -f myclient main.o lib.o

Using the Makefile, you can rebuild your program whenever you modify any of the
source files simply by running make, which displays and executes the necessary commands:

% make

gcc -c -I/usr/local/mysql/include/mysql myclient.c

gcc -o myclient myclient.o -L/usr/local/mysql/lib/mysql -lmysqlclient

That’s easier and less error prone than typing long gcc commands.A Makefile also
makes it easier to modify the build process. For example, if your system is one for which
you need to link in additional libraries such as the math and compression libraries, edit the
LIBS line in the Makefile to add -lm and -lz:

LIBS = -L/usr/local/lib/mysql -lmysqlclient -lm -lz

If you need other libraries, add them to the LIBS line as well.Thereafter when you run
make, it will use the updated value of LIBS automatically.

Another way to change make variables other than editing the Makefile is to specify
them on the command line. For example, if your C compiler is named cc rather than gcc,
you can say so like this:

% make CC=cc

If mysql_config is available, you can use it to avoid writing literal include file and li-
brary directory pathnames in the Makefile.Write the INCLUDES and LIBS lines as follows
instead:

INCLUDES = ${shell mysql_config --include}

LIBS = ${shell mysql_config --libs}

When make runs, it executes each mysql_config command and uses its output to set
the corresponding variable value.The ${shell} construct shown here is supported by
GNU make; you might need to use a somewhat different syntax if your version of make
isn’t based on GNU make.

3637.2 Connecting to the Server

If you’re using an integrated development environment (IDE), you might not use a
Makefile at all.The details will depend on your particular IDE.

7.2 Connecting to the Server
Our first MySQL client program is about as simple as can be: It connects to a MySQL
server, disconnects, and exits.That’s not very useful in itself, but you have to know how to
do it because you must be connected to a server before you can do anything with a
MySQL database. Connecting to a server is such a common operation that code you de-
velop to establish the connection is code you’ll use in every client program you write. Be-
sides, this task gives us something simple to start with.The code can be fleshed out later to
do something more useful.

Our first client program, connect1, consists of a single source file, connect1.c:

/*

* connect1.c - connect to and disconnect from MySQL server

*/

#include <my_global.h>

#include <my_sys.h>

#include <mysql.h>

static char *opt_host_name = NULL; /* server host (default=localhost) */

static char *opt_user_name = NULL; /* username (default=login name) */

static char *opt_password = NULL; /* password (default=none) */

static unsigned int opt_port_num = 0; /* port number (use built-in value) */

static char *opt_socket_name = NULL; /* socket name (use built-in value) */

static char *opt_db_name = NULL; /* database name (default=none) */

static unsigned int opt_flags = 0; /* connection flags (none) */

static MYSQL *conn; /* pointer to connection handler */

int

main (int argc, char *argv[])

{

MY_INIT (argv[0]);

/* initialize client library */

if (mysql_library_init (0, NULL, NULL))

{

fprintf (stderr, "mysql_library_init() failed\n");

exit (1);

}

/* initialize connection handler */

conn = mysql_init (NULL);

if (conn == NULL)

{

fprintf (stderr, "mysql_init() failed (probably out of memory)\n");

364 Chapter 7 Writing MySQL Programs Using C

exit (1);

}

/* connect to server */

if (mysql_real_connect (conn, opt_host_name, opt_user_name, opt_password,

opt_db_name, opt_port_num, opt_socket_name, opt_flags) == NULL)

{

fprintf (stderr, "mysql_real_connect() failed\n");

mysql_close (conn);

exit (1);

}

/* disconnect from server, terminate client library */

mysql_close (conn);

mysql_library_end ();

exit (0);

}

The source file begins by including the header files my_global.h, my_sys.h, and
mysql.h. Depending on what a MySQL client program does, it might need to include
other header files as well, but these three usually are the bare minimum:

n my_global.h takes care of including several other header files that are likely to be
generally useful, such as stdio.h. It also includes Windows compatibility informa-
tion if you’re compiling the program on Windows. (You might not intend to build
the program under Windows yourself, but if you plan to distribute your code, using
my_global.h will help anyone else who does compile under Windows.)

n my_sys.h contains various portability macros and definitions for structures and
functions used by the client library.

n mysql.h defines the primary MySQL-related constants and data structures.

The order of inclusion is important; my_global.h is intended to be included before
any other MySQL-specific header files.

Next, the program declares a set of variables corresponding to the parameters that need
to be specified when connecting to the server. For this client, the parameters are hard-
wired to have default values. Later, we’ll develop a more flexible approach that enables the
defaults to be overridden using values specified either in option files or on the command
line. (That’s why the names all begin with opt_; the intent is that eventually those vari-
ables will become settable through command options.) The program also declares a
pointer to a MYSQL structure that will serve as a connection handler.

The main() function of the program establishes and terminates the connection to the
server. Making a connection is a two-step process:

1. Call mysql_init() to obtain a connection handler.

2. Call mysql_real_connect() to establish a connection to the server.

When you pass NULL to mysql_init(), it automatically allocates a MYSQL structure, ini-
tializes it, and returns a pointer to it.The MYSQL data type is a structure containing infor-
mation about a connection.Variables of this type are called “connection handlers.”

3657.2 Connecting to the Server

Another approach is to pass a pointer to an existing MYSQL structure. In this case,
mysql_init() initializes that structure and returns a pointer to it without allocating the
structure itself.

mysql_real_connect() takes about a zillion parameters:

n A pointer to the connection handler.This should be the value returned by
mysql_init().

n The server host.This value is interpreted in a platform-specific way. On Unix, if you
specify a string containing a hostname or IP number, the client connects to the
given host by using a TCP/IP connection. If you specify NULL or the host
"localhost", the client connects to the server running on the local host by using a
Unix socket file.

On Windows, the behavior is similar, except that for "localhost", a shared-
memory or TCP/IP connection is used rather than a Unix socket file connection.
On Windows, the connection is attempted to the local server using a named pipe if
the host is "." or NULL and the server supports named-pipe connections.

n The username and password for the MySQL account to be used. If the name is
NULL, the client library sends your login name to the server (or ODBC, for Windows).
If the password is NULL, no password is sent.

n The name of the database to select as the default database after the connection has
been established. If this value is NULL, no database is selected.

n The port number.This is used for TCP/IP connections.A value of 0 tells the client
library to use the default port number.

n The socket filename. On Unix, the name is used for Unix socket file connections.
On Windows, the name is interpreted as the name to use for a pipe connection.A
value of NULL tells the client library to use the default socket (or pipe) name.

n A flags value.The connect1 program passes a value of 0 because it isn’t using any
special connection options.

You can find more information about mysql_real_connect() in Appendix G
(online).The description there discusses in more detail issues such as how the hostname
parameter interacts with the port number and socket filename parameters, and lists the
options that can be specified in the flags parameter.The appendix also describes
mysql_options(), which you can use to specify other connection-related options prior
to calling mysql_real_connect().

To terminate the connection, invoke mysql_close() and pass it a pointer to the
connection handler. If you allocated the handler automatically by passing NULL to
mysql_init(), mysql_close() automatically deallocates the handler when you terminate
the connection.After calling mysql_close(), the handler cannot be used for further
communication with the server.

366 Chapter 7 Writing MySQL Programs Using C

In addition to the connection-establishment code, connect1.c uses three other calls:

n MY_INIT() is an initialization macro. It sets a global variable to point to the name of
your program (which you pass as its argument), for use by MySQL libraries in error
messages. It also calls my_init() to perform some setup operations.

n mysql_library_init() initializes the MySQL client library.You should call it be-
fore invoking any other mysql_xxx() functions.

n mysql_library_end() terminates use of the client library and performs any neces-
sary cleanup.You should call it when you are done using the client library.

To try connect1, compile and link it using the instructions given earlier in the chapter
for building client programs, and then run it. Under Unix, run the program like this:

% ./connect1

The leading “./” might be necessary on Unix if your shell does not have the current
directory (“.”) in its search path. If the current directory is in your search path, or you are
using Windows, you can omit the “./” from the command name:

% connect1

If connect1 produces no output, it connected successfully. On the other hand, you
might see something like this:

% ./connect1

mysql_real_connect() failed

This output indicates that no connection was established, but it doesn’t tell you why.
Very likely the reason for the failure is that the default connection parameters (hostname,
username, and so on) are unsuitable.Assuming that is so, one way to fix the problem is to
recompile the program after editing the initializers for the parameter variables and chang-
ing them to values that enable you to access your server.That might be beneficial in the
sense that at least you’d be able to make a connection. But the program still would contain
hardcoded values, which isn’t very flexible if other people are to use it. It’s also insecure
because it exposes your password.You might think that the password becomes hidden
when you compile your program into binary executable form, but it’s not hidden at all if
someone can run the strings utility on the binary.Also, anyone with read access to the
source file can get the password with no work at all.

The preceding paragraph makes plain two significant shortcomings of the connect1
program:

n The error output isn’t very informative about specific causes of problems.
n There isn’t a flexible way for the user who runs the program to specify connection

parameters because they are hardwired into the source code. It would be better to
give the user the ability to override the parameters by specifying them in an option
file or on the command line.

The next section addresses these problems.

3677.3 Handling Errors and Processing Command Options

7.3 Handling Errors and Processing Command
Options
Our next client, connect2, will be similar to connect1 in the sense that it connects to the
MySQL server, disconnects, and exits. However, connect2 has two important differences:

n It provides more information when errors occur. connect1 printed only a brief
message if something went wrong, but we can do a better job of error reporting be-
cause the MySQL client library includes functions that return specific information
about the causes of errors.

n It enables the user to specify connection parameters as options on the command
line or in option files.

7.3.1 Checking for Errors
Let’s consider the topic of error-handling first.To start off, I want to emphasize that it’s
important to check for errors whenever you invoke a MySQL function that can fail. It
seems to be fairly common in programming texts to say “Error checking is left as an exer-
cise for the reader.” I suppose that this is because checking for errors is—let’s face it—
such a bore. Nevertheless, it is necessary for MySQL client programs to test for error
conditions and respond to them appropriately.The client library functions that return sta-
tus values do so for a reason, and you ignore them at your peril. For example, if a function
returns a pointer to a data structure or NULL to indicate an error, you’d better check the
return value.Attempts to use NULL later in the program when a pointer to a valid data
structure is expected will lead to strange results or crash your program.

Failure to check return values is an unnecessary cause of programming difficulties and
is a phenomenon that plays itself out frequently on the MySQL mailing lists.Typical ques-
tions are “Why does my program crash when it issues this statement?” or “How come my
query doesn’t return anything?” In many cases, the program in question didn’t check
whether the connection was established successfully before issuing the statement or didn’t
check to make sure the server successfully executed the statement before trying to retrieve
the results.

Don’t make the mistake of assuming that every client library call succeeds. If you don’t
check return values, you’ll end up trying to track down obscure problems that occur in
your programs, or users of your programs will wonder why those programs behave errati-
cally, or both.

Routines in the MySQL client library that return a value generally indicate success or
failure in one of two ways, depending on whether the return value is a pointer or an integer.

Pointer-valued functions return a non-NULL pointer for success and NULL for failure.
(NULL in this context means “a C NULL pointer,” not “a MySQL NULL column value.”)

Of the client library routines we’ve used so far, mysql_init() and
mysql_real_connect() both return a pointer to the connection handler to indicate suc-
cess and NULL to indicate failure.

368 Chapter 7 Writing MySQL Programs Using C

Integer-valued functions commonly return 0 for success and non-zero for failure. It’s
important not to test for specific non-zero values, such as -1.There is no guarantee that a
client library function returns any particular value when it fails. On occasion, you may see
code that tests a return value from a C API function mysql_XXX() incorrectly like this:

if (mysql_XXX () == -1) /* this test is incorrect */

fprintf (stderr, "something bad happened\n");

This test might work, and it might not.The MySQL API doesn’t specify that any non-
zero error return will be a particular value, other than that it (obviously) isn’t zero.You
should write the test like this:

if (mysql_XXX () != 0) /* this test is correct */

fprintf (stderr, "something bad happened\n");

Alternatively, write the test like this, which is equivalent and slightly simpler to write:

if (mysql_XXX ()) /* this test is correct */

fprintf (stderr, "something bad happened\n");

If you look through the source code for MySQL itself, you’ll find that generally it uses
the second form of the test.

Not every API call returns a value.The other client routine we’ve used,
mysql_close(), is one that does not. (How could it fail? And if it did, so what? You were
done with the connection, anyway.)

When a client library call does fail, three calls in the API are useful for finding out why:

n mysql_error() returns a string containing an error message.
n mysql_errno() returns a MySQL-specific numeric error code.
n mysql_sqlstate() returns an SQLSTATE code.The SQLSTATE value is more

vendor neutral because it is based on the ANSI SQL and ODBC standards.

The argument to each function is a pointer to the connection handler.You should call
them immediately after an error occurs. If you issue another API call that returns a status,
any error information you get from mysql_error(), mysql_errno(), or
mysql_sqlstate() will apply to the later call instead.

Generally, the user of a program will find an error message more enlightening than
either of the error codes, so if you report only one value, I suggest that it be the message.
The examples in this chapter report all three values for completeness. However, it’s a lot of
work to write three function invocations every place an error might occur. Instead, let’s
write a utility function, print_error(), that prints an error message supplied by us as
well as the error values provided by the MySQL client library routines. In other words, we
won’t write out the calls to the mysql_errno() mysql_error(), and mysql_sqlstate()
functions like this each time an error test occurs:

if (...some MySQL function fails...)

{

fprintf (stderr, "...some error message...:\nError %u (%s): %s\n",

mysql_errno (conn), mysql_sqlstate (conn), mysql_error (conn));

3697.3 Handling Errors and Processing Command Options

}

It’s easier to report errors by using a utility function that can be called like this instead:

if (...some MySQL function fails...)

{

print_error (conn, "...some error message...");

}

print_error() prints the error message and calls the MySQL error functions.The
print_error() call is simpler than the fprintf() call, so it’s easier to write and it makes
the program easier to read.Also, if print_error() is written to do something sensible
even when conn is NULL, we can use it under circumstances such as when mysql_init()
call fails.Then we won’t have a mix of error-reporting calls—some to fprintf() and
some to print_error().

I can hear someone in the back row objecting:“Well, you don’t really have to call every
error function each time you want to report an error.You’re deliberately overstating the
tedium of reporting errors that way just so your utility function looks more useful.And
you wouldn’t really write out all that error-printing code a bunch of times anyway; you’d
write it once, and then use copy and paste when you need it again.”Those are reasonable
objections, but I respond to them as follows:

n Even if you use copy and paste, it’s easier to do so with shorter sections of code.
n If it’s easy to report errors, you’re more likely to be consistent about checking for

them when you should.
n Whether or not you prefer to invoke all error functions each time you report an

error, writing out all the error-reporting code the long way leads to the temptation
to take shortcuts and be inconsistent when you do report errors.Wrapping the
error-reporting code in a utility function that’s easy to invoke lessens this tempta-
tion and improves coding consistency.

n If you ever do decide to modify the format of your error messages, it’s a lot easier if
you need to make the change only one place, rather than throughout your program.
Or, if you decide to write error messages to a log file instead of (or in addition to)
writing them to stderr, it’s easier if you only have to change print_error().This
approach is less error prone and, again, lessens the temptation to do the job halfway
and be inconsistent.

n If you use a debugger when testing your programs, putting a breakpoint in the
error-reporting function is a convenient way to have the program break to the
debugger when it detects an error condition.

For these reasons, programs in the rest of this chapter that need to check for MySQL-
related errors use print_error() to report problems.

The following listing shows the definition of print_error(), which provides the
benefits just discussed:

370 Chapter 7 Writing MySQL Programs Using C

static void

print_error (MYSQL *conn, char *message)

{

fprintf (stderr, "%s\n", message);

if (conn != NULL)

{

fprintf (stderr, "Error %u (%s): %s\n",

mysql_errno (conn), mysql_sqlstate (conn), mysql_error (conn));

}

}

The part of connect2.c that will need to check for errors is similar to the correspon-
ding code in connect1.c, and looks like this when we use print_error():

/* initialize connection handler */

conn = mysql_init (NULL);

if (conn == NULL)

{

print_error (NULL, "mysql_init() failed (probably out of memory)");

exit (1);

}

/* connect to server */

if (mysql_real_connect (conn, opt_host_name, opt_user_name, opt_password,

opt_db_name, opt_port_num, opt_socket_name, opt_flags) == NULL)

{

print_error (conn, "mysql_real_connect() failed");

mysql_close (conn);

exit (1);

}

The error-checking logic is based on the fact that both mysql_init() and
mysql_real_connect() return NULL if they fail. Note that if mysql_init() fails, we pass
NULL as the first argument to print_error().That causes it not to invoke the MySQL
error-reporting functions, because the connection handler passed to those functions can-
not be assumed to contain any meaningful information. By contrast, if mysql_real_
connect() fails, we do pass the connection handler to print_error().The handler won’t
contain information that corresponds to a valid connection, but it will contain diagnostic
information that can be extracted by the error-reporting functions.The handler also can
be passed to mysql_close() to release any memory that may have been allocated auto-
matically for it by mysql_init(). (Don’t pass the handler to any other client routines,
though! Because most of them assume a valid connection, your program may crash.)

The rest of the programs in this chapter perform error checking, and your own pro-
grams should, too. It might seem like more work, but in the long run it’s really less be-
cause you spend less time tracking down subtle problems. I’ll also take this approach of
checking for errors in Chapter 8,“Writing MySQL Programs Using Perl DBI,” and
Chapter 9,“Writing MySQL Programs Using PHP.”

3717.3 Handling Errors and Processing Command Options

7.3.2 Getting Connection Parameters at Runtime
Now we’re ready to tackle the task of enabling users to specify connection parameters at
runtime rather than using hardwired default parameters.The connect1 client program had
a significant shortcoming in that the connection parameters were written literally into the
source code.To change any of those values, you’d have to edit the source file and recom-
pile it.That’s not very convenient, especially if you intend to make your program available
for other people to use. One common way to specify connection parameters at runtime is
by using command-line options. For example, the programs in the MySQL distribution
accept parameters in either of two forms, as shown in the following table.

For consistency with the standard MySQL clients, our connect2 client program will
accept those same formats. It’s easy to do this because the client library includes support
for option processing. In addition, connect2 will have the capability to extract informa-
tion from option files.This enables you to put connection parameters in ~/.my.cnf (that
is, the .my.cnf file in your home directory) or in any global option file.Then you don’t
have to specify the options on the command line each time you invoke the program.The
client library makes it easy to check for MySQL option files and pull any relevant values
from them. By adding only a few lines of code to your programs, you can make them
option file-aware, and you don’t have to reinvent the wheel by writing your own code to
do it. (For a description of option file syntax, see Section F.2.2,“Option Files.”

Before showing how option processing works in connect2 itself, we’ll develop a cou-
ple of programs that illustrate the general principles involved.These show how option
handling works fairly simply and without the added complication of connecting to the
MySQL server and processing statements.

Note
MySQL provides two other options that relate to connection establishment. --protocol
specifies the connection protocol (TCP/IP, Unix socket file, and so on), and --shared-
memory-base-name specifies the name of the shared memory to use for shared-memory
connections on Windows. This chapter doesn’t cover either of these options, but the sampdb
distribution contains the source code for a program, protocol, that shows how to use them
if you are interested.

Parameter Long Option Form Short Option Form

Hostname --host=host_name -h host_name

Username --user=user_name -u user_name

Password --password or -p or

--password=your_pass -pyour_pass

Port number --port=port_num -P port_num

Socket name --socket=socket_name -S socket_name

372 Chapter 7 Writing MySQL Programs Using C

7.3.2.1 Accessing Option File Contents
To read option files for connection parameter values, invoke the load_defaults() func-
tion. load_defaults() looks for option files, parses their contents for any option groups
in which you’re interested, and rewrites your program’s argument vector (the argv[]
array). It puts information from those option groups in the form of command line options
at the beginning of argv[].That way, the options appear to have been specified on the
command line.When you parse the command options, you see the connection parameters
in your normal option-processing code.The options are added to argv[] immediately
after the command name and before any other arguments (rather than at the end), so that
any connection parameters specified on the command line occur later than and thus over-
ride any options added by load_defaults().

Here’s a little program, show_argv, that demonstrates how to use load_defaults()
and illustrates how it modifies your argument vector:

/*

* show_argv.c - show effect of load_defaults() on argument vector

*/

#include <my_global.h>

#include <my_sys.h>

#include <mysql.h>

static const char *client_groups[] = { "client", NULL };

int

main (int argc, char *argv[])

{

int i;

printf ("Original argument vector:\n");

for (i = 0; i < argc; i++)

printf ("arg %d: %s\n", i, argv[i]);

MY_INIT (argv[0]);

load_defaults ("my", client_groups, &argc, &argv);

printf ("Modified argument vector:\n");

for (i = 0; i < argc; i++)

printf ("arg %d: %s\n", i, argv[i]);

exit (0);

}

The option file-processing code involves several components:

n client_groups[] is an array of character strings indicating the names of the option
file groups from which you want to obtain options. Client programs normally

3737.3 Handling Errors and Processing Command Options

include at least "client" in the list (which represents the [client] group), but you
can list as many groups as you like.The last element of the array must be NULL to
indicate where the list ends.

n MY_INIT() is an initialization macro.We have used it before, but the important point
here is that MY_INIT() calls my_init() to perform some setup operations required
by load_defaults().

n load_defaults() reads the option files. It takes four arguments: the prefix used in
the names of your option files (this should always be "my"), the array listing the
names of the option groups in which you’re interested, and the addresses of your
program’s argument count and vector. Don’t pass the values of the count and vector.
Pass their addresses instead because load_defaults() needs to change their values.
In particular, even though argv is already a pointer, you still pass &argv, that
pointer’s address.

show_argv prints its arguments twice to show the effect that load_defaults() has on
the argument array. First it prints the arguments as they were specified on the command
line.Then it calls load_defaults() and prints the argument array again.

To see how load_defaults() works, make sure that you have a .my.cnf file in your
home directory with some settings specified for the [client] group. (On Windows, you
can use the C:\my.ini file instead.) Suppose that the file looks like this:

[client]

user=sampadm

password=secret

host=some_host

If that is the case, executing show_argv should produce output like this:

% ./show_argv a b

Original argument vector:

arg 0: ./show_argv

arg 1: a

arg 2: b

Modified argument vector:

arg 0: ./show_argv

arg 1: --user=sampadm

arg 2: --password=secret

arg 3: --host=some_host

arg 4: a

arg 5: b

When show_argv prints the argument vector the second time, the values in the option
file show up as part of the argument list. It’s also possible that you’ll see some options that
were not specified on the command line or in your ~/.my.cnf file. If this occurs, you will
likely find that options for the [client] group are listed in a system-wide option file.This
can happen because load_defaults() actually looks for option files in several locations.
(For a list of these locations, see Section F.2.2,“Option Files.”

374 Chapter 7 Writing MySQL Programs Using C

Client programs that use load_defaults() generally include "client" in the list of
option group names (so that they get any general client settings from option files), but you
can set up your option file-processing code to obtain options from other groups as well.
Suppose that you want show_argv to read options in the [client] and [show_argv]

groups.To accomplish this, find the following line in show_argv.c:

const char *client_groups[] = { "client", NULL };

Change the line to this:

const char *client_groups[] = { "show_argv", "client", NULL };

Then recompile show_argv, and the modified program will read options from both
groups.To verify this, add a [show_argv] group to your ~/.my.cnf file:

[client]

user=sampadm

password=secret

host=some_host

[show_argv]

host=other_host

With these changes, invoking show_argv again produces a result different from before:

% ./show_argv a b

Original argument vector:

arg 0: ./show_argv

arg 1: a

arg 2: b

Modified argument vector:

arg 0: ./show_argv

arg 1: --user=sampadm

arg 2: --password=secret

arg 3: --host=some_host

arg 4: --host=other_host

arg 5: a

arg 6: b

The order in which option values appear in the argument array is determined by the
order in which they are listed in your option file, not the order in which option group
names are listed in the client_groups[] array.This means you’ll probably want to specify
program-specific groups after the [client] group in your option file.That way, if you
specify an option in both groups, the program-specific value takes precedence over the
more general [client] group value.You can see this in the example just shown:The host
option was specified in both the [client] and [show_argv] groups, but because the
[show_argv] group appears last in the option file, its host setting appears later in the
argument vector and takes precedence.

3757.3 Handling Errors and Processing Command Options

load_defaults() does not pick up values from your environment settings. If you want
to use the values of environment variables such as MYSQL_TCP_PORT or MYSQL_UNIX_PORT,
you must arrange for that yourself by using getenv(). I’m not going to add that capability
to our clients, but here’s a short code fragment that shows how to check the values of a
couple of the standard MySQL-related environment variables:

extern char *getenv();

char *p;

int port_num = 0;

char *socket_name = NULL;

if ((p = getenv ("MYSQL_TCP_PORT")) != NULL)

port_num = atoi (p);

if ((p = getenv ("MYSQL_UNIX_PORT")) != NULL)

socket_name = p;

In the standard MySQL clients, environment variable values have lower precedence
than values specified in option files or on the command line. If you want to check envi-
ronment variables in your own programs and want to be consistent with that convention,
check the environment before (not after) calling load_defaults() or processing
command-line options.

load_defaults() and Security
On multiple-user systems, utilities such as the ps program can display argument lists from
arbitrary processes, including those being run by other users. Because of this, you might be
wondering if there are any process-snooping implications of load_defaults() taking pass-
words that it finds in option files and putting them in your argument list. This actually is not
a problem because ps displays the original argv[] contents. Any password argument cre-
ated by load_defaults() points to an area of memory that it allocates for itself. That area
is not part of the original vector, so ps never sees it.

On the other hand, a password that is given on the command line does show up in ps. This is
one reason why it’s not a good idea to specify passwords that way. One precaution a program
can take to help reduce the risk is to remove the password from the argument list as soon as
it starts executing. Section 7.3.2.2, “Processing Command-Line Arguments,” shows how to do
that.

7.3.2.2 Processing Command-Line Arguments
Using load_defaults(), we can get all the connection parameters into the argument
vector, but now we need a way to process the vector.The handle_options() function is
designed for this. handle_options() is part of the MySQL client library, so you have
access to it whenever you link in that library.

Some of the characteristics of the client library option-processing routines are as follows:

n Precise specification of the option type and range of legal values. For example, you
can indicate not only that an option must have integer values, but that it must be
positive and a multiple of 1024.

376 Chapter 7 Writing MySQL Programs Using C

n Integration of help text to make it easy to print a help message by calling a standard
library function.There is no need to write your own special code to produce a help
message.

n Built-in support for the standard --no-defaults, --print-defaults, --defaults-
file, and --defaults-extra-file options. (These options are described in Sec-
tion F.2.2,“Option Files.”

n Support for a standard set of option prefixes, such as --disable-, --enable-, and
--loose-, make it easier to implement boolean (on/off) and ignorable options.
(This capability is not used in this chapter, but is described in Section F.2,“Specify-
ing Program Options.”

To demonstrate how to use MySQL’s option-handling facilities, this section describes a
show_opt program that invokes load_defaults() to read option files and set up the ar-
gument vector, and then processes the result using handle_options().

show_opt enables you to experiment with various ways of specifying connection pa-
rameters (whether in option files or on the command line), and to see the result by show-
ing you what values would be used to make a connection to the MySQL server. show_opt
is useful for getting a feel for what will happen in our next client program, connect2,
which hooks up this option-processing code with code that actually does connect to the
server.

To illustrate what happens at each phase of argument processing, show_opt performs
the following actions:

1. Sets up default values for the hostname, username, password, and other connection
parameters.

2. Prints the original connection parameter and argument vector values.

3. Calls load_defaults() to rewrite the argument vector to reflect option file con-
tents, and then prints the resulting vector.

4. Calls the option processing routine handle_options() to process the argument
vector, and then prints the resulting connection parameter values and whatever is
left in the argument vector.

The following discussion explains how show_opt works, but first take a look at its
source file, show_opt.c:

/*

* show_opt.c - demonstrate option processing with load_defaults()

* and handle_options()

*/

#include <my_global.h>

#include <my_sys.h>

#include <mysql.h>

#include <my_getopt.h>

3777.3 Handling Errors and Processing Command Options

static char *opt_host_name = NULL; /* server host (default=localhost) */

static char *opt_user_name = NULL; /* username (default=login name) */

static char *opt_password = NULL; /* password (default=none) */

static unsigned int opt_port_num = 0; /* port number (use built-in value) */

static char *opt_socket_name = NULL; /* socket name (use built-in value) */

static const char *client_groups[] = { "client", NULL };

static struct my_option my_opts[] = /* option information structures */

{

{"help", '?', "Display this help and exit",

NULL, NULL, NULL,

GET_NO_ARG, NO_ARG, 0, 0, 0, 0, 0, 0},

{"host", 'h', "Host to connect to",

(uchar **) &opt_host_name, NULL, NULL,

GET_STR, REQUIRED_ARG, 0, 0, 0, 0, 0, 0},

{"password", 'p', "Password",

(uchar **) &opt_password, NULL, NULL,

GET_STR, OPT_ARG, 0, 0, 0, 0, 0, 0},

{"port", 'P', "Port number",

(uchar **) &opt_port_num, NULL, NULL,

GET_UINT, REQUIRED_ARG, 0, 0, 0, 0, 0, 0},

{"socket", 'S', "Socket path",

(uchar **) &opt_socket_name, NULL, NULL,

GET_STR, REQUIRED_ARG, 0, 0, 0, 0, 0, 0},

{"user", 'u', "User name",

(uchar **) &opt_user_name, NULL, NULL,

GET_STR, REQUIRED_ARG, 0, 0, 0, 0, 0, 0},

{ NULL, 0, NULL, NULL, NULL, NULL, GET_NO_ARG, NO_ARG, 0, 0, 0, 0, 0, 0 }

};

static my_bool

get_one_option (int optid, const struct my_option *opt, char *argument)

{

switch (optid)

{

case '?':

my_print_help (my_opts); /* print help message */

exit (0);

}

return (0);

}

int

main (int argc, char *argv[])

{

378 Chapter 7 Writing MySQL Programs Using C

int i;

int opt_err;

printf ("Original connection parameters:\n");

printf ("hostname: %s\n", opt_host_name ? opt_host_name : "(null)");

printf ("username: %s\n", opt_user_name ? opt_user_name : "(null)");

printf ("password: %s\n", opt_password ? opt_password : "(null)");

printf ("port number: %u\n", opt_port_num);

printf ("socket filename: %s\n",

opt_socket_name ? opt_socket_name : "(null)");

printf ("Original argument vector:\n");

for (i = 0; i < argc; i++)

printf ("arg %d: %s\n", i, argv[i]);

MY_INIT (argv[0]);

load_defaults ("my", client_groups, &argc, &argv);

printf ("Argument vector after calling load_defaults():\n");

for (i = 0; i < argc; i++)

printf ("arg %d: %s\n", i, argv[i]);

if ((opt_err = handle_options (&argc, &argv, my_opts, get_one_option)))

exit (opt_err);

printf ("Connection parameters after calling handle_options():\n");

printf ("hostname: %s\n", opt_host_name ? opt_host_name : "(null)");

printf ("username: %s\n", opt_user_name ? opt_user_name : "(null)");

printf ("password: %s\n", opt_password ? opt_password : "(null)");

printf ("port number: %u\n", opt_port_num);

printf ("socket filename: %s\n",

opt_socket_name ? opt_socket_name : "(null)");

printf ("Argument vector after calling handle_options():\n");

for (i = 0; i < argc; i++)

printf ("arg %d: %s\n", i, argv[i]);

exit (0);

}

Note
The source code for show_opt.c and several other programs later in this chapter uses the
uchar** type in MySQL-related data structures. Before MySQL 5.1.20, you’ll find that the
MySQL header files use gptr*, which results in warnings when you compile the programs.
You can ignore these warnings.

3797.3 Handling Errors and Processing Command Options

The option-processing approach illustrated by show_opt.c involves several aspects that
are common to any program that uses the MySQL client library to handle command
options. In your own programs, you should do the same things:

1. In addition to the other files that we already have been including, include
my_getopt.h as well. my_getopt.h defines the interface to MySQL’s option-
processing facilities.

2. Define an array of my_option structures. In show_opt.c, this array is named
my_opts.The array should have one structure per option that the program under-
stands. Each structure provides information such as an option’s short and long
names, its default value, whether the value is a number or string, and so forth.

3. After invoking load_defaults() to read the option files and set up the argument
vector, process the options by calling handle_options().The first two arguments to
handle_options() are the addresses of your program’s argument count and vector.
(Just as with load_options(), you pass the addresses of these variables, not their
values.) The third argument points to the array of my_option structures.The fourth
argument is a pointer to a helper function.The handle_options() routine and the
my_options structures are designed to make it possible for most option-processing
actions to be performed automatically for you by the client library. However, to
allow for special actions that the library does not handle, your program should also
define a helper function for handle_options() to call. In show_opt.c, this function
is named get_one_option().

The my_option structure defines the types of information that must be specified for
each option that the program understands:

struct my_option

{

const char *name; /* option's long name */

int id; /* option's short name or code */

const char *comment; /* option description for help message */

uchar **value; /* pointer to variable to store value in */

uchar **u_max_value; /* The user defined max variable value */

struct st_typelib *typelib; /* pointer to possible values (unused) */

ulong var_type; /* option value's type */

enum get_opt_arg_type arg_type; /* whether option value is required */

longlong def_value; /* option's default value */

longlong min_value; /* option's minimum allowable value */

longlong max_value; /* option's maximum allowable value */

longlong sub_size; /* amount to shift value by */

long block_size; /* option value multiplier */

void *app_type; /* reserved for application-specific use */

};

380 Chapter 7 Writing MySQL Programs Using C

var_type Value Meaning C Type

GET_NO_ARG No value

GET_BOOL Boolean value my_bool

GET_INT Integer value int

GET_UINT Unsigned integer value unsigned int

GET_LONG Long integer value long

GET_ULONG Unsigned long integer value unsigned long

GET_LL Long long integer value long long

The members of the my_option structure are used as follows:

n name is the long option name.This is the --name form of the option, without the
leading dashes. For example, if the long option is --user, list it as "user" in the
my_option structure.

n id is the short (single-letter) option name, or a code value associated with the
option if it has no single-letter name. For example, if the short option is -u, list it as
'u' in the my_option structure. For options that have only a long name and no cor-
responding single-character name, you should make up a set of option code values
to be used internally for the short names.The values must be unique and different
from all the single-character names. (To satisfy the latter constraint, make the codes
greater than 255, the largest possible single-character value. For an example of this
technique, see Section 7.6,“Writing Clients That Include SSL Support.”)

n comment is an explanatory string that describes the purpose of the option.This is the
text that you want displayed in a help message.

n value is the address of a generic pointer, declared as a uchar ** value. If the option
takes an argument, value points to the variable where you want the argument to be
stored.After the options have been processed, you can check that variable to see
what the option has been set to.The data type of the variable that’s pointed to must
be consistent with the value of the var_type member. If the option takes no argu-
ment, value is NULL.

n u_max_value is another address of a generic pointer, but it’s used only by the server.
For client programs, set u_max_value to NULL.

n typelib currently is unused. In future MySQL releases, it may be used to allow a
list of legal values to be specified, in which case any option value given will be
required to match one of these values.

n var_type indicates what kind of value must follow the option name on the com-
mand line.The following table shows these types, their meanings, and the corre-
sponding C type.

3817.3 Handling Errors and Processing Command Options

var_type Value Meaning C Type

GET_ULL Unsigned long long integer value unsigned long long

GET_STR String value char *

GET_STR_ALLOC String value char *

GET_DISABLED Option is disabled

GET_ENUM Enumeration value (currently unused)

GET_SET Set value (currently unused)

GET_DOUBLE Double-precision (floating-point) value double

GET_DOUBLE is available as of MySQL 5.1.21.

The difference between GET_STR and GET_STR_ALLOC is that for GET_STR, the client
library sets the option variable to point directly at the value in the argument vector,
whereas for GET_STR_ALLOC, it makes a copy of the argument and sets the option
variable to point to the copy.

The GET_DISABLED type can be used to indicate that an option is no longer avail-
able, or that it is available only when the program is built a certain way (for exam-
ple, with debugging support enabled).To see an example, take a look at the
mysql.cc file in a MySQL source distribution.

n arg_type indicates whether a value follows the option name, and may be any of the
values shown in the following table.

If arg_type is NO_ARG, var_type should be set to GET_NO_ARG.
n def_value is for numeric-valued options. It is the default value to assign to the op-

tion if no explicit value is specified in the argument vector.
n min_value is for numeric-valued options. It is the smallest value that may be speci-

fied. Smaller values are bumped up to this value automatically. Use 0 to indicate “no
minimum.”

n max_value is for numeric-valued options. It is the largest value that may be speci-
fied. Larger values are bumped down to this value automatically. Use 0 to indicate
“no maximum.”

arg_type Value Meaning

NO_ARG Option takes no following argument

OPT_ARG Option may take a following argument

REQUIRED_ARG Option requires a following argument

382 Chapter 7 Writing MySQL Programs Using C

n sub_size is for numeric-valued options. It is an offset that is used to convert values
from the range as given in the argument vector to the range that is used internally.
For example, if values are given on the command line in the range from 1 to 256,
but the program wants to use an internal range of 0 to 255, set sub_size to 1.

n block_size is for numeric-valued options.This value indicates a block size if it is
non-zero. Option values given by the user are rounded down to the nearest multiple
of this size if necessary. For example, if values must be even, set the block size to 2;
handle_options() rounds odd values down to the nearest even number.

n app_type is reserved for application-specific use.

The my_opts array should have a my_option structure for each valid option, followed
by a terminating structure that is set up as follows to indicate the end of the array:

{ NULL, 0, NULL, NULL, NULL, NULL, GET_NO_ARG, NO_ARG, 0, 0, 0, 0, 0, 0 }

When you invoke handle_options() to process the argument vector, it skips over the
first argument (the program name), and then processes option arguments—that is, argu-
ments that begin with a dash.This continues until it reaches the end of the vector or
encounters the special two-dash “end of options” argument (‘--’).As handle_options()
moves through the argument vector, it calls the helper function once per option to enable
that function to perform any special processing. handle_options() passes three argu-
ments to the helper function: the short option value, a pointer to the option’s my_option
structure, and a pointer to the argument that follows the option in the argument vector
(which will be NULL if the option is specified without a following value).

When handle_options() returns, the argument count and vector are reset appropri-
ately to represent an argument list containing only the non-option arguments.

Here is a sample invocation of show_opt and the resulting output (assuming that
~/.my.cnf still has the same contents as for the final show_argv example in Section
7.3.2.1,“Accessing Option File Contents”):

% ./show_opt -h yet_another_host --user=bill x

Original connection parameters:

hostname: (null)

username: (null)

password: (null)

port number: 0

socket filename: (null)

Original argument vector:

arg 0: ./show_opt

arg 1: -h

arg 3: yet_another_host

arg 3: --user=bill

arg 4: x

Argument vector after calling load_defaults():

arg 0: ./show_opt

arg 1: --user=sampadm

3837.3 Handling Errors and Processing Command Options

arg 2: --password=secret

arg 3: --host=some_host

arg 4: -h

arg 5: yet_another_host

arg 6: --user=bill

arg 7: x

Connection parameters after calling handle_options():

hostname: yet_another_host

username: bill

password: secret

port number: 0

socket filename: (null)

Argument vector after calling handle_options():

arg 0: x

The output shows that the hostname is picked up from the command line (overriding
the value in the option file), and that the username and password come from the option
file. handle_options() correctly parses options whether specified in short-option form
(such as -h yet_another_host) or in long-option form (such as --user=bill).

The get_one_option() helper function is used in conjunction with
handle_options(). For show_opt, it is fairly minimal and takes no action except for the
--help or -? options (for which handle_options() passes an optid value of '?'):

static my_bool

get_one_option (int optid, const struct my_option *opt, char *argument)

{

switch (optid)

{

case '?':

my_print_help (my_opts); /* print help message */

exit (0);

}

return (0);

}

my_print_help() is a client library routine that automatically produces a help message
for you, based on the option names and comment strings in the my_opts array.To see how
it works, try the following command:

% ./show_opt --help

You can add other cases to the switch() statement in get_one_option() as necessary
(and we’ll do so in connect2 shortly). For example, get_one_option() is useful for han-
dling password options.When you specify such an option, the password value may or may
not be given, as indicated by OPT_ARG in the option information structure.That is, you can
specify the option as --password or --password=your_pass if you use the long-option
form, or as -p or -pyour_pass if you use the short-option form. MySQL clients typically
allow you to omit the password value on the command line, and then prompt you for it.

384 Chapter 7 Writing MySQL Programs Using C

This enables you to avoid giving the password on the command line, which keeps people
from seeing your password. In later programs, we’ll use get_one_option() to check
whether a password value was given.We’ll save the value if so, and otherwise set a flag to
indicate that the program should prompt the user for a password before attempting to
connect to the server.

You might find it instructive to modify the option structures in show_opt.c to see
how your changes affect the program’s behavior. For example, if you set the minimum,
maximum, and block size values for the --port option to 100, 1000, and 25, you’ll find
after recompiling the program that you cannot set the port number to a value outside the
range from 100 to 1000, and that values get rounded down automatically to the nearest
multiple of 25.

The option processing routines also handle the --no-defaults, --print-defaults,
--defaults-file, and --defaults-extra-file options automatically.Try invoking
show_opt with each of these options to see what happens.

7.3.3 Incorporating Option-Processing into a MySQL Client
Program
Now we’re ready to write connect2.c. It has the following characteristics:

n It connects to the MySQL server, disconnects, and exits.This is similar to what
connect1.c does, but is modified to use the print_error() function developed
earlier for reporting errors.

n It processes options from the command line or in option files.This is done using
code similar to that from show_opt.c, but is modified to prompt the user for a pass-
word if necessary.

The resulting source file, connect2.c, looks like this:

/*

* connect2.c - connect to MySQL server, using connection parameters

* specified in an option file or on the command line

*/

#include <my_global.h>

#include <my_sys.h>

#include <m_string.h> /* for strdup() */

#include <mysql.h>

#include <my_getopt.h>

static char *opt_host_name = NULL; /* server host (default=localhost) */

static char *opt_user_name = NULL; /* username (default=login name) */

static char *opt_password = NULL; /* password (default=none) */

static unsigned int opt_port_num = 0; /* port number (use built-in value) */

static char *opt_socket_name = NULL; /* socket name (use built-in value) */

static char *opt_db_name = NULL; /* database name (default=none) */

static unsigned int opt_flags = 0; /* connection flags (none) */

3857.3 Handling Errors and Processing Command Options

static int ask_password = 0; /* whether to solicit password */

static MYSQL *conn; /* pointer to connection handler */

static const char *client_groups[] = { "client", NULL };

static struct my_option my_opts[] = /* option information structures */

{

{"help", '?', "Display this help and exit",

NULL, NULL, NULL,

GET_NO_ARG, NO_ARG, 0, 0, 0, 0, 0, 0},

{"host", 'h', "Host to connect to",

(uchar **) &opt_host_name, NULL, NULL,

GET_STR, REQUIRED_ARG, 0, 0, 0, 0, 0, 0},

{"password", 'p', "Password",

(uchar **) &opt_password, NULL, NULL,

GET_STR, OPT_ARG, 0, 0, 0, 0, 0, 0},

{"port", 'P', "Port number",

(uchar **) &opt_port_num, NULL, NULL,

GET_UINT, REQUIRED_ARG, 0, 0, 0, 0, 0, 0},

{"socket", 'S', "Socket path",

(uchar **) &opt_socket_name, NULL, NULL,

GET_STR, REQUIRED_ARG, 0, 0, 0, 0, 0, 0},

{"user", 'u', "User name",

(uchar **) &opt_user_name, NULL, NULL,

GET_STR, REQUIRED_ARG, 0, 0, 0, 0, 0, 0},

{ NULL, 0, NULL, NULL, NULL, NULL, GET_NO_ARG, NO_ARG, 0, 0, 0, 0, 0, 0 }

};

static void

print_error (MYSQL *conn, char *message)

{

fprintf (stderr, "%s\n", message);

if (conn != NULL)

{

fprintf (stderr, "Error %u (%s): %s\n",

mysql_errno (conn), mysql_sqlstate (conn), mysql_error (conn));

}

}

static my_bool

get_one_option (int optid, const struct my_option *opt, char *argument)

{

switch (optid)

{

386 Chapter 7 Writing MySQL Programs Using C

case '?':

my_print_help (my_opts); /* print help message */

exit (0);

case 'p': /* password */

if (!argument) /* no value given; solicit it later */

ask_password = 1;

else /* copy password, overwrite original */

{

opt_password = strdup (argument);

if (opt_password == NULL)

{

print_error (NULL, "could not allocate password buffer");

exit (1);

}

while (*argument)

*argument++ = 'x';

ask_password = 0;

}

break;

}

return (0);

}

int

main (int argc, char *argv[])

{

int opt_err;

MY_INIT (argv[0]);

load_defaults ("my", client_groups, &argc, &argv);

if ((opt_err = handle_options (&argc, &argv, my_opts, get_one_option)))

exit (opt_err);

/* solicit password if necessary */

if (ask_password)

opt_password = get_tty_password (NULL);

/* get database name if present on command line */

if (argc > 0)

{

opt_db_name = argv[0];

--argc; ++argv;

}

/* initialize client library */

if (mysql_library_init (0, NULL, NULL))

3877.3 Handling Errors and Processing Command Options

{

print_error (NULL, "mysql_library_init() failed");

exit (1);

}

/* initialize connection handler */

conn = mysql_init (NULL);

if (conn == NULL)

{

print_error (NULL, "mysql_init() failed (probably out of memory)");

exit (1);

}

/* connect to server */

if (mysql_real_connect (conn, opt_host_name, opt_user_name, opt_password,

opt_db_name, opt_port_num, opt_socket_name, opt_flags) == NULL)

{

print_error (conn, "mysql_real_connect() failed");

mysql_close (conn);

exit (1);

}

/* ... issue statements and process results here ... */

/* disconnect from server, terminate client library */

mysql_close (conn);

mysql_library_end ();

exit (0);

}

Compared to the connect1 and show_opt programs that we developed earlier,
connect2 does a few new things:

n It enables a default database to be specified as a command-line argument.This is
consistent with the behavior of the standard clients in MySQL distributions.

n If a password value is present in the argument vector, get_one_option() makes a
copy of it and then overwrites the original.This minimizes the time window during
which a password specified on the command line is visible to ps or to other system
status programs. (The window is only minimized, not eliminated. Specifying pass-
words on the command line still is a security risk.)

n If a password option was given without a value, get_one_option() sets a flag to in-
dicate that the program should prompt the user for a password.That’s done in
main() after all options have been processed, using the get_tty_password() func-
tion.This is a utility routine in the client library that prompts for a password with-
out echoing it on the screen.You may ask,“Why not just call getpass()?”The
answer is that not all systems have that function (for example,Windows does not).

388 Chapter 7 Writing MySQL Programs Using C

get_tty_password() is portable across systems because it’s configured to adjust to
system idiosyncrasies.

Compile and link connect2, and then try running it:

% ./connect2

If connect2 produces no output (as just shown), it connected successfully. On the other
hand, you might see something like this:

% ./connect2

mysql_real_connect() failed:

Error 1045 (28000): Access denied for user 'sampadm'@'localhost'

(using password: NO)

This output indicates no connection was established, and it says why. In this case,
Access denied means that you need to supply appropriate connection parameters.With
connect1, there was no way to do so short of editing and recompiling. connect2 connects
to the MySQL server according to the options you specify on the command line or in an
option file.Assume that there is no option file to complicate matters. If you invoke
connect2 with no arguments, it connects to localhost and passes your Unix login name
and no password to the server. If instead you invoke connect2 as shown in the following
command, it prompts for a password (because there is no password value immediately fol-
lowing -p), connects to some_host, and passes the username some_user to the server as
well as the password you type in:

% ./connect2 -h some_host -p -u some_user some_db

connect2 also passes the database name some_db to mysql_real_connect() to make
that the default database. If there is an option file, its contents are processed and used to
modify the connection parameters accordingly.

Let’s step back for a moment and consider what’s been achieved so far.The work that
has gone into producing connect2 accomplishes something that’s necessary for every
MySQL client: connecting to the server using appropriate parameters. It also does a good
job of reporting errors if the connection attempt fails.What we have now serves as a
framework that can be used as the basis for many different client programs.To write a new
client, do this:

1. Make a copy of connect2.c.

2. If the program accepts additional options other than the standard ones that
connect2.c knows about, add them to the my_opts array and modify the option-
processing loop.

3. Add your own application-specific code between the connect and disconnect calls.

And you’re done.
All the real action for your application will take place between the

mysql_real_connect() and mysql_close() calls, but having a reusable skeleton means

3897.4 Processing SQL Statements

that you can concentrate more on what you’re really interested in—being able to access
the content of your databases.

7.4 Processing SQL Statements
The purpose of connecting to the server is to conduct a conversation with it while the
connection is open.This section shows how to communicate with the server to process
statements. Each statement you execute involves the following steps:

1. Construct the statement.The way you do this depends on the contents of the state-
ment—in particular, whether it contains binary data.

2. Issue the statement by sending it to the server.The server will execute the statement
and generate a result.

3. Process the statement result.This depends on what type of statement you issued. For
example, a SELECT statement returns rows of data for you to process.An INSERT
statement does not.

The MySQL client library includes two sets of routines for statement execution.The
first set is based on sending each statement as a string to the server and retrieving the re-
sults with all columns returned in string format.The second set is based on a binary pro-
tocol that enables non-string data values to be sent and returned in native format without
conversion to and from string format.

This section discusses the original method for processing SQL statements. Section 7.9,
“Using Server-Side Prepared Statements,” covers the binary protocol.

One factor to consider in constructing statements is which function to use for sending
them to the server.The more general statement-issuing routine is mysql_real_query().
With this routine, you provide the statement as a counted string (a string plus a length).
You must keep track of the length of your statement string and pass that to mysql_real_
query(), along with the string itself. Because the statement is treated as a counted string
rather than as a null-terminated string, it may contain anything, including binary data or
null bytes.

The other statement-issuing function, mysql_query(), is more restrictive in what it
allows in the statement string but often is easier to use.Any statement passed to
mysql_query() should be a null-terminated string.This means the statement text cannot
contain null bytes because those would cause it to be interpreted erroneously as shorter
than it really is. Generally speaking, if your statement can contain arbitrary binary data, it
might contain null bytes, so you shouldn’t use mysql_query(). On the other hand, when
you are working with null-terminated strings, you have the luxury of constructing state-
ments using standard C library string functions that you’re probably already familiar with,
such as strcpy() and sprintf().

Another factor to consider in constructing statements is whether you need to perform
any character-escaping operations.This is necessary if you want to construct statements
using values that contain binary data or other troublesome characters, such as quotes or

390 Chapter 7 Writing MySQL Programs Using C

backslashes.This is discussed in Section 7.4.7.1,“Working with Strings That Contain
Special Characters.”

A simple outline of statement handling looks like this:

if (mysql_query (conn, stmt_str) != 0)

{

/* failure; report error */

}

else

{

/* success; find out what effect the statement had */

}

mysql_query() and mysql_real_query() both return zero for statements that succeed
and non-zero for failure.To say that a statement “succeeded” means the server accepted it
as legal and was able to execute it. It does not indicate anything about the effect of the
statement. For example, it does not indicate that a SELECT statement selected any rows or
that a DELETE statement deleted any rows. Checking what effect the statement actually
had involves additional processing.

A statement may fail for a variety of reasons. Common causes of failure include the
following:

n It contains a syntax error.
n It’s semantically illegal—for example, a statement that refers to a non-existent table.
n You don’t have sufficient privileges to access a table referred to by the statement.

Statements may be grouped into two broad categories: those that modify rows and
those that return a result set (a set of rows). Statements such as INSERT, DELETE, and
UPDATE modify rows and return a count to indicate the number of affected rows.

Statements such as SELECT and SHOW return a result set. In the MySQL C API, the result
set returned by such statements is represented by the MYSQL_RES data type.This is a struc-
ture that contains the data values for the rows, and also metadata about the values (such as
the column names and data value lengths). Is it legal for a result set to be empty (that is, to
contain zero rows).

7.4.1 Handling Statements That Modify Rows
To process a statement that modifies rows, issue it with mysql_query() or
mysql_real_query(). If the statement succeeds, you can find out how many rows were
inserted, deleted, or updated by calling mysql_affected_rows().

The following example shows how to handle a statement that modifies rows:

if (mysql_query (conn, "INSERT INTO my_tbl SET name = 'My Name'") != 0)

{

print_error (conn, "INSERT statement failed");

}

else

3917.4 Processing SQL Statements

{

printf ("INSERT statement succeeded; number of rows affected: %lu\n",

(unsigned long) mysql_affected_rows (conn));

}

Note how the result of mysql_affected_rows() is cast to unsigned long for print-
ing.This function returns a value of type my_ulonglong, but attempting to print a value of
that type directly may not work on all systems. Casting the value to unsigned long and
using a print format of %lu solves the problem.The same principle applies to any other
functions that return my_ulonglong values, such as mysql_num_rows() and
mysql_insert_id(). If you want your client programs to be portable across different
systems, keep this in mind.

mysql_affected_rows() returns the number of rows affected by the statement, but
the meaning of “rows affected” depends on the type of statement. For INSERT, REPLACE, or
DELETE, it is the number of rows inserted, replaced, or deleted. For UPDATE, it is the num-
ber of rows updated, which means the number of rows that MySQL actually modified.
MySQL does not update a row if its contents are the same as what you’re updating it to.
This means that although a row might be selected for updating (by the WHERE clause of
the UPDATE statement), it might not actually be changed.

This meaning of “rows affected” for UPDATE actually is something of a controversial
point because some people want it to mean “rows matched”—that is, the number of rows
selected for updating, even if the update operation doesn’t actually change their values. If
your application requires such a meaning, you can request that behavior when you con-
nect to the server by passing a value of CLIENT_FOUND_ROWS in the flags parameter to
mysql_real_connect().

7.4.2 Handling Statements That Return a Result Set
Statements that return data do so in the form of a result set that you retrieve after issuing
the statement by calling mysql_query() or mysql_real_query(). It’s important to realize
that in MySQL, SELECT is not the only statement that returns rows. Statements such as
SHOW, DESCRIBE, EXPLAIN, and CHECK TABLE do so as well. For all of these statements, you
must perform additional row-handling processing after issuing the statement.

Handling a result set involves these steps:

1. Generate the result set by calling mysql_store_result() or mysql_use_result().
These functions return a MYSQL_RES pointer for success or NULL for failure.
Later, we’ll go over the differences between mysql_store_result() and
mysql_use_result(), as well as the conditions under which you would choose one
over the other. For now, our examples use mysql_store_result(), which retrieves
the rows from the server immediately and buffers them in memory on the
client side.

2. Call mysql_fetch_row() for each row of the result set.This function returns a
MYSQL_ROW value, or NULL when there are no more rows.A MYSQL_ROW value is a
pointer to an array of strings representing the values for each column in the row.

392 Chapter 7 Writing MySQL Programs Using C

What you do with the row depends on your application. For example, you might
print the column values or perform some statistical calculation on them.

3. When you are done with the result set, call mysql_free_result() to deallocate the
memory it uses. If you neglect to do this, your application will leak memory. It’s
especially important to dispose of result sets properly for long-running applications.
Otherwise, you will notice your system slowly being taken over by processes that
consume ever-increasing amounts of system resources.

The following example outlines how to process a statement that returns a result set:

MYSQL_RES *res_set;

if (mysql_query (conn, "SHOW TABLES FROM sampdb") != 0)

print_error (conn, "mysql_query() failed");

else

{

res_set = mysql_store_result (conn); /* generate result set */

if (res_set == NULL)

print_error (conn, "mysql_store_result() failed");

else

{

/* process result set, and then deallocate it */

process_result_set (conn, res_set);

mysql_free_result (res_set);

}

}

The example hides the details of result set processing within another function,
process_result_set(), which we have not yet defined. Generally, operations that handle
a result set are based on a loop that looks something like this:

MYSQL_ROW row;

while ((row = mysql_fetch_row (res_set)) != NULL)

{

/* do something with row contents */

}

mysql_fetch_row() returns a MYSQL_ROW value, which is a pointer to an array of val-
ues. If the return value is assigned to a variable named row, each value within the row may
be accessed as row[i], where i ranges from 0 to one less than the number of columns in
the row.There are several important points about the MYSQL_ROW data type to note:

n MYSQL_ROW is a pointer type, so you declare a variable of that type as MYSQL_ROW
row, not as MYSQL_ROW *row.

n Values for all data types, even numeric types, are returned in the MYSQL_ROW array as
strings. If you want to treat a value as a number, you must convert the string yourself.

3937.4 Processing SQL Statements

n The strings in a MYSQL_ROW array are null-terminated. However, if a column can
contain binary data, it might contain null bytes, so you should not treat the value as
a null-terminated string. Get the column length to find out how long the column
value is. (Section 7.4.6,“Using Result Set Metadata,” discusses how to determine
column lengths.)

n SQL NULL values are represented by C NULL pointers in the MYSQL_ROW array. Unless
you know that a column is declared NOT NULL, you should always check whether
values for the column are NULL, or your program may crash as a result of attempting
to dereference a NULL pointer.

What you do with each row depends on the purpose of your application. For purposes
of illustration, let’s just print each row as a set of column values separated by tabs.To do
that, it’s necessary to know how many columns values rows contain.That information is
returned by another client library function, mysql_num_fields().

Here’s the code for process_result_set():

void

process_result_set (MYSQL *conn, MYSQL_RES *res_set)

{

MYSQL_ROW row;

unsigned int i;

while ((row = mysql_fetch_row (res_set)) != NULL)

{

for (i = 0; i < mysql_num_fields (res_set); i++)

{

if (i > 0)

fputc ('\t', stdout);

printf ("%s", row[i] != NULL ? row[i] : "NULL");

}

fputc ('\n', stdout);

}

if (mysql_errno (conn) != 0)

print_error (conn, "mysql_fetch_row() failed");

else

printf ("Number of rows returned: %lu\n",

(unsigned long) mysql_num_rows (res_set));

}

process_result_set() displays the contents of each row in tab-delimited format (dis-
playing NULL values as the word “NULL”), and then prints a count of the number of rows
retrieved.That count is available by calling mysql_num_rows(). Like mysql_affected_
rows(), mysql_num_rows() returns a my_ulonglong value, so you should cast its value to
unsigned long and use a %lu format to print it. But note that unlike mysql_affected_
rows(), which takes a connection handler argument, mysql_num_rows() takes a result set
pointer as its argument.

394 Chapter 7 Writing MySQL Programs Using C

The code that follows the loop includes an error test as a precautionary measure. If
you create the result set with mysql_store_result(), a NULL return value from
mysql_fetch_row() always means “no more rows.” However, if you create the result set
with mysql_use_result(), a NULL return value from mysql_fetch_row() can mean “no
more rows” or that an error occurred. Because process_result_set() has no idea
whether its caller used mysql_store_result() or mysql_use_result() to generate the
result set, the error test enables it to detect errors properly either way.

The version of process_result_set() just shown takes a rather minimalist approach
to printing column values—one that has certain shortcomings. Suppose that you execute
this query:

SELECT last_name, first_name, city, state FROM president

ORDER BY last_name, first_name

You will receive the following output, which is not so easy to read:

Adams John Braintree MA

Adams John Quincy Braintree MA

Arthur Chester A. Fairfield VT

Buchanan James Mercersburg PA

Bush George H.W. Milton MA

Bush George W. New Haven CT

Carter James E. Plains GA

...

We could make the output prettier by providing information such as column labels and
making the values line up vertically.To do that, we need the labels, and we need to know
the widest value in each column.That information is available, but not as part of the col-
umn data values—it’s part of the result set’s metadata (data about the data).After we gen-
eralize our statement handler a bit, we’ll write a nicer display formatter in Section 7.4.6,
“Using Result Set Metadata.”

Printing Binary Data
Columns containing binary value that include null bytes will not print properly using the %s
printf() format specifier. printf() expects a null-terminated string and prints the col-
umn value only up to the first null byte. For binary data, it’s best to use a function that ac-
cepts a column length argument so that you can print the full value. For example, you could
use fwrite().

7.4.3 A General-Purpose Statement Handler
The preceding statement-handling examples were written using knowledge of whether
the statement should return any data.That was possible because the statements were hard-
wired into the code:We used an INSERT statement, which does not return a result set, and
a SHOW TABLES statement, which does.

However, you might not always know what kind of statement a given statement repre-
sents. For example, if you execute a statement that you read from the keyboard or from a

3957.4 Processing SQL Statements

file, it might be anything.You won’t know ahead of time whether to expect it to return
rows, or even whether it’s legal.What then? You certainly don’t want to try to parse the
statement to determine what kind of statement it is.That’s not as simple as it might seem.
For example, it’s not sufficient to check whether the first word is SELECT because the
statement might begin with a comment, as follows:

/* comment */ SELECT ...

Fortunately, you don’t have to know the statement type in advance to be able to handle
it properly.The MySQL C API makes it possible to write a general-purpose statement
handler that correctly processes any kind of statement, whether or not it returns a result
set, and whether it executes successfully or fails. Before writing the code for this handler,
let’s outline the procedure that it implements:

1. Issue the statement. If it fails, we’re done.

2. If the statement succeeds, call mysql_store_result() to retrieve the rows from the
server and create a result set.

3. If mysql_store_result() succeeds, the statement returned a result set. Process the
rows by calling mysql_fetch_row() until it returns NULL, and then free the result set.

4. If mysql_store_result() fails, it could be that the statement does not return a re-
sult set, or that it should have but an error occurred while trying to retrieve the set.
You can distinguish between these outcomes by passing the connection handler to
mysql_field_count() and checking its return value:

n If mysql_field_count() returns 0, it means the statement returned no
columns, and thus no result set. (This indicates that it was a statement such as
INSERT, DELETE, or UPDATE.)

n If mysql_field_count() returns a non-zero value, it means that an error oc-
curred, because the statement should have returned a result set but didn’t.This
can happen for various reasons. For example, the result set may have been so
large that memory allocation failed, or a network outage between the client
and the server may have occurred while fetching rows.

The following listing shows a function that processes any statement, given a connection
handler and a null-terminated statement string:

void

process_statement (MYSQL *conn, char *stmt_str)

{

MYSQL_RES *res_set;

if (mysql_query (conn, stmt_str) != 0) /* the statement failed */

{

print_error (conn, "Could not execute statement");

return;

}

396 Chapter 7 Writing MySQL Programs Using C

/* the statement succeeded; determine whether it returned data */

res_set = mysql_store_result (conn);

if (res_set) /* a result set was returned */

{

/* process rows and then free the result set */

process_result_set (conn, res_set);

mysql_free_result (res_set);

}

else /* no result set was returned */

{

/*

* does the lack of a result set mean that the statement didn't

* return one, or that it should have but an error occurred?

*/

if (mysql_field_count (conn) == 0)

{

/*

* statement generated no result set (it was not a SELECT,

* SHOW, DESCRIBE, etc.); just report rows-affected value.

*/

printf ("Number of rows affected: %lu\n",

(unsigned long) mysql_affected_rows (conn));

}

else /* an error occurred */

{

print_error (conn, "Could not retrieve result set");

}

}

}

7.4.4 Alternative Approaches to Statement Processing
The version of process_statement() just shown has these three properties:

n It uses mysql_query() to issue the statement.
n It uses mysql_store_query() to retrieve the result set.
n When no result set is obtained, it uses mysql_field_count() to distinguish occur-

rence of an error from a result set not being expected.

Alternative approaches are possible for all three of those aspects of statement handling:

n You can use a counted statement string and mysql_real_query() rather than a
null-terminated statement string and mysql_query().

n You can create the result set by calling mysql_use_result() rather than
mysql_store_result().

3977.4 Processing SQL Statements

n You can call mysql_error() or mysql_errno() rather than mysql_field_count()
to determine whether result set retrieval failed or whether there was simply no set
to retrieve.

Any or all of these approaches can be used instead of those used in
process_statement(). Here is a process_real_statement() function that is analogous
to process_statement() but that uses all three alternatives:

void

process_real_statement (MYSQL *conn, char *stmt_str, unsigned int len)

{

MYSQL_RES *res_set;

if (mysql_real_query (conn, stmt_str, len) != 0) /* the statement failed */

{

print_error (conn, "Could not execute statement");

return;

}

/* the statement succeeded; determine whether it returned data */

res_set = mysql_use_result (conn);

if (res_set) /* a result set was returned */

{

/* process rows and then free the result set */

process_result_set (conn, res_set);

mysql_free_result (res_set);

}

else /* no result set was returned */

{

/*

* does the lack of a result set mean that the statement didn't

* return one, or that it should have but an error occurred?

*/

if (mysql_errno (conn) == 0)

{

/*

* statement generated no result set (it was not a SELECT,

* SHOW, DESCRIBE, etc.); just report rows-affected value.

*/

printf ("Number of rows affected: %lu\n",

(unsigned long) mysql_affected_rows (conn));

}

else /* an error occurred */

{

print_error (conn, "Could not retrieve result set");

}

}

}

398 Chapter 7 Writing MySQL Programs Using C

7.4.5 mysql_store_result() Versus mysql_use_result()
The mysql_store_result() and mysql_use_result() functions are similar in that both
take a connection handler argument and return a result set. However, the differences
between them actually are quite extensive.The primary difference between the two
functions lies in the way rows of the result set are retrieved from the server. mysql_store_
result() retrieves all the rows immediately when you call it. mysql_use_result() initi-
ates the retrieval but doesn’t actually get any of the rows.These differing approaches to
row retrieval give rise to all other differences between the two functions.This section
compares them so that you’ll know how to choose the one that’s most appropriate for a
given application.

When mysql_store_result() retrieves a result set from the server, it fetches the rows,
allocates memory for them, and buffers them on the client side. Subsequent calls to
mysql_fetch_row() never return an error because they simply pull a row out of a data
structure that already holds the result set. Consequently, a NULL return from
mysql_fetch_row() always means you’ve reached the end of the result set.

By contrast, mysql_use_result() doesn’t retrieve any rows itself. Instead, it simply ini-
tiates a row-by-row retrieval, which you must complete yourself by calling
mysql_fetch_row() for each row. In this case, although a NULL return from
mysql_fetch_row() normally still means the end of the result set has been reached, it
may mean instead that an error occurred while communicating with the server.You can
distinguish the two outcomes by calling mysql_errno() or mysql_error().

mysql_store_result() has higher memory and processing requirements than does
mysql_use_result() because the entire result set is maintained in the client.The over-
head for memory allocation and data structure setup is greater, and a client that retrieves
large result sets runs the risk of running out of memory. If you’re going to retrieve a lot of
rows in a single result set, you might want to use mysql_use_result() instead.

mysql_use_result() has lower memory requirements because only enough space to
handle a single row at a time need be allocated.This can be faster because you’re not
setting up as complex a data structure for the result set. On the other hand,
mysql_use_result() places a greater burden on the server, which must hold rows of the
result set until the client sees fit to retrieve all of them.This makes mysql_use_result() a
poor choice for certain types of clients:

n Interactive clients that advance from row to row at the request of the user. (You
don’t want the server waiting to send the next row just because the user decides to
take a coffee break.)

n Clients that do a lot of processing between row retrievals.

In both of these types of situations, the client fails to retrieve all rows in the result set
quickly.This ties up the server and can have a negative impact on other clients, particularly
if you are using a storage engine like MyISAM that uses table locks:Tables from which

3997.4 Processing SQL Statements

you retrieve data are read-locked for the duration of the query. Other clients that are try-
ing to update those tables will be blocked.

Offsetting the additional memory requirements incurred by mysql_store_result()
are certain benefits of having access to the entire result set at once.All rows of the set are
available, so you have random access into them:The mysql_data_seek(),
mysql_row_seek(), and mysql_row_tell() functions enable you to access rows in any
order you want.With mysql_use_result(), you can access rows only in the order in
which they are retrieved by mysql_fetch_row(). If you intend to process rows in any
order other than sequentially as they are returned from the server, you must use
mysql_store_result() instead. For example, if you have an application that enables the
user to browse back and forth among the rows selected by a query, you’d be best served by
using mysql_store_result().

With mysql_store_result(), you have access to certain types of column information
that are unavailable when you use mysql_use_result().The number of rows in the result
set is obtained by calling mysql_num_rows().The maximum widths of the values in each
column are stored in the max_width member of the MYSQL_FIELD column information
structures.With mysql_use_result(), mysql_num_rows() doesn’t return the correct
value until you’ve fetched all the rows; similarly, max_width is unavailable because it can
be calculated only after every row’s data have been seen.

Because mysql_use_result() does less work than mysql_store_result(), it imposes
a requirement that mysql_store_result() does not:The client must call
mysql_fetch_row() for every row in the result set. If you fail to do this before issuing
another statement, any remaining rows in the current result set become part of the next
statement’s result set and an “out of sync” error occurs. (You can avoid this by calling
mysql_free_result() before issuing the second statement. mysql_free_result() will
fetch and discard any pending rows for you.) One implication of this processing model is
that with mysql_use_result() you can work only with a single result set at a time.

Sync errors do not happen with mysql_store_result() because when that function
returns, there are no rows yet to be fetched from the server. In fact, with
mysql_store_result(), you need not call mysql_fetch_row() explicitly at all.This can
sometimes be useful if all that you’re interested in is whether you got a non-empty result,
rather than what the result contains. For example, to find out whether a table mytbl exists,
you can execute this statement:

SHOW TABLES LIKE 'mytbl'

If, after calling mysql_store_result(), the value of mysql_num_rows() is non-zero,
the table exists. mysql_fetch_row() need not be called.

Result sets generated with mysql_store_result() should be freed with
mysql_free_result() at some point, but this need not necessarily be done before issuing
another statement.This means that you can generate multiple result sets and work with
them simultaneously, in contrast to the “one result set at a time” constraint imposed when
you’re working with mysql_use_result().

400 Chapter 7 Writing MySQL Programs Using C

If you want to provide maximum flexibility, give users the option of selecting either re-
sult set processing method. mysql and mysqldump are two programs that do this.They use
mysql_store_result() by default but switch to mysql_use_result() if the --quick
option is given.

7.4.6 Using Result Set Metadata
Result sets contain not only the column values for data rows but also information about
the data.This information is called the result set “metadata,” which includes:

n The number of rows and columns in the result set, available by calling
mysql_num_rows() and mysql_num_fields().

n The length of each column value in the current row, available by calling
mysql_fetch_lengths().

n Information about each column, such as the column name and type, the maximum
width of each column’s values, and the table the column comes from.This informa-
tion is stored in MYSQL_FIELD structures, which typically are obtained by calling
mysql_fetch_field().Appendix G (online) describes the MYSQL_FIELD structure
in detail and lists all functions that provide access to column information.

Metadata availability is partially dependent on your result set processing method.As
indicated in Section 7.4.5,“mysql_store_result()Versus mysql_use_result(),” if you
want to use the row count or maximum column length values, you must create the result
set with mysql_store_result(), not with mysql_use_result().

Result set metadata is helpful for making decisions about how to process result set data:

n Column names and widths are useful for producing nicely formatted output that
has column titles and that lines up vertically.

n The column count indicates how many times to iterate through a loop that
processes successive column values for data rows.

n You can use the row or column counts if you need to allocate data structures that
depend on knowing the dimensions of the result set.

n The data type of a column enables you to tell whether a column represents a num-
ber, whether it might contain binary data, and so forth.

Earlier, in Section 7.4.2,“Handling Statements That Return a Result Set,” we wrote a
version of process_result_set() that printed columns from result set rows in tab-
delimited format.That’s good for certain purposes (such as when you want to import the
data into a spreadsheet), but it’s not a nice display format for visual inspection or for print-
outs. Recall that our earlier version of process_result_set() produced this output:

Adams John Braintree MA

Adams John Quincy Braintree MA

Arthur Chester A. Fairfield VT

4017.4 Processing SQL Statements

Buchanan James Mercersburg PA

Bush George H.W. Milton MA

Bush George W. New Haven CT

Carter James E. Plains GA

...

Let’s write a different version of process_result_set() that produces tabular output
instead by titling and “boxing” each column.This version will display those same results in
a format that’s easier to interpret:

+------------+---------------+---------------------+-------+

| last_name | first_name | city | state |

+------------+---------------+---------------------+-------+

| Adams | John | Braintree | MA |

| Adams | John Quincy | Braintree | MA |

| Arthur | Chester A. | Fairfield | VT |

| Buchanan | James | Mercersburg | PA |

| Bush | George H.W. | Milton | MA |

| Bush | George W. | New Haven | CT |

| Carter | James E. | Plains | GA |

...

+------------+---------------+---------------------+-------+

The display algorithm performs these steps:

1. Determines the display width of each column.

2. Prints a row of boxed column labels (delimited by vertical bars and preceded and
followed by rows of dashes).

3. Prints the values in each row of the result set, with each column boxed (delimited
by vertical bars) and lined up vertically. In addition, prints numbers right justified
and prints the word “NULL” for NULL values.

4. At the end, prints a count of the number of rows retrieved.

This exercise provides a good demonstration showing how to use result set metadata
because it requires knowledge of quite a number of things about the result set other than
just the values of the data contained in its rows.

You may be thinking to yourself,“Hmm, that description sounds suspiciously similar to
the way mysql displays its output.”Yes, it does, and you’re welcome to compare the source
for mysql to the code we end up with for process_result_set().They’re not the same,
and you might find it instructive to compare the two approaches to the same problem.

First, it’s necessary to determine the display width of each column.The following list-
ing shows how to do this. Observe that the calculations are based entirely on the result set
metadata, and make no reference whatsoever to the row values:

MYSQL_FIELD *field;

unsigned long col_len;

unsigned int i;

402 Chapter 7 Writing MySQL Programs Using C

/* determine column display widths -- requires result set to be */

/* generated with mysql_store_result(), not mysql_use_result() */

mysql_field_seek (res_set, 0);

for (i = 0; i < mysql_num_fields (res_set); i++)

{

field = mysql_fetch_field (res_set);

col_len = strlen (field->name);

if (col_len < field->max_length)

col_len = field->max_length;

if (col_len < 4 && !IS_NOT_NULL (field->flags))

col_len = 4; /* 4 = length of the word "NULL" */

field->max_length = col_len; /* reset column info */

}

This code calculates column widths by iterating through the MYSQL_FIELD structures
for the columns in the result set.We position to the first structure by calling
mysql_field_seek(). Subsequent calls to mysql_fetch_field() return pointers to the
structures for successive columns.The width of a column for display purposes is the maxi-
mum of three values, each of which depends on metadata in the column information
structure:

n The length of field->name, the column title.
n field->max_length, the length of the longest data value in the column.
n The length of the string “NULL” if the column can contain NULL values.
field->flags indicates whether the column can contain NULL.

Notice that after the display width for a column is known, we assign that value to
max_length, which is a member of a structure that we obtain from the client library. Is
that allowable, or should the contents of the MYSQL_FIELD structure be considered read-
only? Normally, I would say “read-only,” but some of the client programs in the MySQL
distribution change the max_length value in a similar way, so I assume that it’s okay. (If
you prefer an alternative approach that doesn’t modify max_length, allocate an array of
unsigned long values and store the calculated widths in that array.)

The display width calculations involve one caveat. Recall that max_length has no
meaning when you create a result set using mysql_use_result(). Because we need
max_length to determine the display width of the column values, proper operation of the
algorithm requires that the result set be generated using mysql_store_result(). In pro-
grams that use mysql_use_result() rather than mysql_store_result(), one possible
workaround is to use the length member of the MYSQL_FIELD structure, which tells you
the maximum length that column values can be.

When we know the column widths, we’re ready to print.Titles are easy to handle. For
a given column, we simply use the column information structure pointed to by field and
print the name member, using the width calculated earlier:

printf (" %-*s |", (int) field->max_length, field->name);

4037.4 Processing SQL Statements

For the data, we loop through the rows in the result set, printing column values for the
current row during each iteration. Printing column values from the row is a bit tricky be-
cause a value might be NULL, or it might represent a number (in which case we print it
right justified). Column values are printed as follows, where row[i] holds the data value
and field points to the column information:

if (row[i] == NULL) /* print the word "NULL" */

printf (" %-*s |", (int) field->max_length, "NULL");

else if (IS_NUM (field->type)) /* print value right-justified */

printf (" %*s |", (int) field->max_length, row[i]);

else /* print value left-justified */

printf (" %-*s |", (int) field->max_length, row[i]);

The value of the IS_NUM() macro is true if the column data type indicated by
field->type is one of the numeric types, such as INT, FLOAT, or DECIMAL.

The final code to display the result set is as follows. Because we’re printing lines of
dashes multiple times, it’s easier to write a print_dashes() function to do so rather than
to repeat the dash-generation code several places:

void

print_dashes (MYSQL_RES *res_set)

{

MYSQL_FIELD *field;

unsigned int i, j;

mysql_field_seek (res_set, 0);

fputc ('+', stdout);

for (i = 0; i < mysql_num_fields (res_set); i++)

{

field = mysql_fetch_field (res_set);

for (j = 0; j < field->max_length + 2; j++)

fputc ('-', stdout);

fputc ('+', stdout);

}

fputc ('\n', stdout);

}

void

process_result_set (MYSQL *conn, MYSQL_RES *res_set)

{

MYSQL_ROW row;

MYSQL_FIELD *field;

unsigned long col_len;

unsigned int i;

/* determine column display widths -- requires result set to be */

/* generated with mysql_store_result(), not mysql_use_result() */

404 Chapter 7 Writing MySQL Programs Using C

mysql_field_seek (res_set, 0);

for (i = 0; i < mysql_num_fields (res_set); i++)

{

field = mysql_fetch_field (res_set);

col_len = strlen (field->name);

if (col_len < field->max_length)

col_len = field->max_length;

if (col_len < 4 && !IS_NOT_NULL (field->flags))

col_len = 4; /* 4 = length of the word "NULL" */

field->max_length = col_len; /* reset column info */

}

print_dashes (res_set);

fputc ('|', stdout);

mysql_field_seek (res_set, 0);

for (i = 0; i < mysql_num_fields (res_set); i++)

{

field = mysql_fetch_field (res_set);

printf (" %-*s |", (int) field->max_length, field->name);

}

fputc ('\n', stdout);

print_dashes (res_set);

while ((row = mysql_fetch_row (res_set)) != NULL)

{

mysql_field_seek (res_set, 0);

fputc ('|', stdout);

for (i = 0; i < mysql_num_fields (res_set); i++)

{

field = mysql_fetch_field (res_set);

if (row[i] == NULL) /* print the word "NULL" */

printf (" %-*s |", (int) field->max_length, "NULL");

else if (IS_NUM (field->type)) /* print value right-justified */

printf (" %*s |", (int) field->max_length, row[i]);

else /* print value left-justified */

printf (" %-*s |", (int) field->max_length, row[i]);

}

fputc ('\n', stdout);

}

print_dashes (res_set);

printf ("Number of rows returned: %lu\n",

(unsigned long) mysql_num_rows (res_set));

}

4057.4 Processing SQL Statements

The MySQL client library provides several ways of accessing the column information
structures. For example, the code in the preceding example accesses these structures sev-
eral times using loops of the following general form:

mysql_field_seek (res_set, 0);

for (i = 0; i < mysql_num_fields (res_set); i++)

{

field = mysql_fetch_field (res_set);

...

}

However, the combination of mysql_field_seek() and mysql_fetch_field() is only
one way of getting MYSQL_FIELD structures. See the descriptions of the
mysql_fetch_fields() and mysql_fetch_field_direct() functions in Appendix G
(online) for other ways of accessing column information structures.

Use the metadata Program to Display Result Set Metadata
The sampdb distribution contains the source for a program named metadata that you can
compile and run to see what metadata various kinds of statements produce. It prompts for
and executes SQL statements, but displays result set metadata rather than result set
contents.

7.4.7 Encoding Special Characters and Binary Data
If a program executes statements entered by the user, it can assume either that those state-
ments are legal or that the program can simply report an error to the user. For example, a
user who wants to include a quote character within a quoted string must either double
the quote or precede it by a backslash:

'O''Malley'

'O\'Malley'

Applications that construct their own statements must take the same precautions.This
section describes how to handle quoting issues in string values and how to work with bi-
nary data.

7.4.7.1 Working with Strings That Contain Special Characters
If inserted literally into a statement, data values containing quotes, null bytes, or back-
slashes can cause problems when you try to execute the statement.The following discus-
sion describes the nature of the difficulty and how to solve it.

Suppose that you want to construct a SELECT statement based on the contents of the
null-terminated string pointed to by the name_val variable:

char stmt_buf[1024];

sprintf (stmt_buf, "SELECT * FROM mytbl WHERE name='%s'", name_val);

406 Chapter 7 Writing MySQL Programs Using C

If the value of name_val is something like O'Malley, Brian, the resulting statement is
illegal because a quote appears inside a quoted string:

SELECT * FROM mytbl WHERE name='O'Malley, Brian'

You need to treat the inner quote specially so that the server doesn’t interpret it as the
end of the name.The standard SQL convention for doing this is to double the quote within
the string. MySQL understands that convention, and also allows the quote to be preceded
by a backslash, so you can write the statement using either of the following formats:

SELECT * FROM mytbl WHERE name='O''Malley, Brian'

SELECT * FROM mytbl WHERE name='O\'Malley, Brian'

To deal with this problem, use mysql_real_escape_string(), which encodes special
characters to make them usable in quoted strings. Characters that
mysql_real_escape_string() considers special are the null byte, single quote, double
quote, backslash, newline, carriage return, and Control-Z. (The last one is special on Win-
dows, where it often signifies end-of-file.)

When should you use mysql_real_escape_string()? The safest answer is “always.”
However, if you’re sure of the format of your data and know that it’s okay—perhaps be-
cause you have performed some prior validation check on it—you need not encode it.
For example, if you are working with strings that you know represent legal phone num-
bers consisting entirely of digits and dashes, you don’t need to call
mysql_real_escape_string(). Otherwise, you probably should.

mysql_real_escape_string() encodes problematic characters by turning them into
two-character sequences that begin with a backslash. For example, a null byte becomes
‘\0’, where the ‘0’ is a printable ASCII zero, not a null. Backslash, single quote, and double
quote become ‘\\’, ‘\'’, and ‘\"’.

To use mysql_real_escape_string(), invoke it like this:

to_len = mysql_real_escape_string (conn, to_str, from_str, from_len);

mysql_real_escape_string() encodes from_str and writes the result into to_str. It
also adds a terminating null, which is convenient because you can use the resulting string
with functions such as strcpy(), strlen(), or printf().

from_str points to a char buffer containing the string to be encoded.This string may
contain anything, including binary data. to_str points to an existing char buffer where
you want the encoded string to be written; do not pass an uninitialized or NULL pointer,
expecting mysql_real_escape_string() to allocate space for you.The length of the
buffer pointed to by to_str must be at least (from_len*2)+1 bytes long. (It’s possible that
every character in from_str will need encoding with two characters; the extra byte is for
the terminating null.)

from_len and to_len are unsigned long values. from_len indicates the length of the
data in from_str; it’s necessary to provide the length because from_str may contain null
bytes and cannot be treated as a null-terminated string. to_len, the return value from
mysql_real_escape_string(), is the actual length of the resulting encoded string, not
counting the terminating null.

4077.4 Processing SQL Statements

When mysql_real_escape_string() returns, the encoded result in to_str can be
treated as a null-terminated string because any null bytes in from_str are encoded as the
printable ‘\0’ sequence.

To rewrite the SELECT-constructing code so that it works even for name values that
contain quotes, we could do something like this:

char stmt_buf[1024], *p;

p = strcpy (stmt_buf, "SELECT * FROM mytbl WHERE name='");

p += strlen (p);

p += mysql_real_escape_string (conn, p, name_val, strlen (name_val));

*p++ = '\'';

*p = '\0';

Yes, that’s ugly.To simplify the code a bit, at the cost of using a second buffer, do this
instead:

char stmt_buf[1024], buf[1024];

(void) mysql_real_escape_string (conn, buf, name_val, strlen (name_val));

sprintf (stmt_buf, "SELECT * FROM mytbl WHERE name='%s'", buf);

It’s important to make sure that the buffers you pass to mysql_real_escape_string()
really exist. Consider the following example, which violates that principle:

char *from_str = "some string";

char *to_str;

unsigned long len;

len = mysql_real_escape_string (conn, to_str, from_str, strlen (from_str));

What’s the problem? to_str must point to an existing buffer, and it doesn’t—it’s not
initialized and may point to some random location. Don’t pass an uninitialized pointer as
the to_str argument to mysql_real_escape_string() unless you want it to stomp mer-
rily all over some random piece of memory.

7.4.7.2 Working with Binary Data
Another problematic situation involves the use of arbitrary binary data in a statement.This
happens, for example, in applications that store images in a database. Because a binary
value may contain any character (including null bytes, quotes, or backslashes), it cannot be
considered safe to put into a statement as is.

mysql_real_escape_string() is essential for working with binary data.This section
shows how to do so, using image data read from a file.The discussion applies to any other
form of binary data as well.

408 Chapter 7 Writing MySQL Programs Using C

Suppose that you want to read images from files and store them in a table named
picture, along with a unique identifier.The MEDIUMBLOB type is a good choice for binary
values less than 16MB in size, so you could use a table specification like this:

CREATE TABLE picture

(

pict_id INT NOT NULL PRIMARY KEY,

pict_data MEDIUMBLOB

);

To actually get an image from a file into the picture table, the following function,
load_image(), does the job, given an identifier number and a pointer to an open file con-
taining the image data:

int

load_image (MYSQL *conn, int id, FILE *f)

{

char stmt_buf[1024*1024], buf[1024*10], *p;

unsigned long from_len;

int status;

/* begin creating an INSERT statement, adding the id value */

sprintf (stmt_buf,

"INSERT INTO picture (pict_id,pict_data) VALUES (%d,'",

id);

p = stmt_buf + strlen (stmt_buf);

/* read data from file in chunks, encode each */

/* chunk, and add to end of statement */

while ((from_len = fread (buf, 1, sizeof (buf), f)) > 0)

{

/* don't overrun end of statement buffer! */

if (p + (2*from_len) + 3 > stmt_buf + sizeof (stmt_buf))

{

print_error (NULL, "image is too big");

return (1);

}

p += mysql_real_escape_string (conn, p, buf, from_len);

}

*p++ = '\'';

*p++ = ')';

status = mysql_real_query (conn, stmt_buf, (unsigned long) (p - stmt_buf));

return (status);

}

load_image() doesn’t allocate a very large statement buffer (1MB), so it works only
for relatively small images. In a real-world application, you might allocate the buffer
dynamically based on the size of the image file.

4097.5 An Interactive Statement-Execution Program

Getting an image value (or any binary value) back out of a database isn’t nearly as
much of a problem as putting it in to begin with.The data value is available in raw form
in the MYSQL_ROW variable, and the length is available by calling mysql_fetch_lengths().
Just be sure to treat the value as a counted string, not as a null-terminated string.

7.5 An Interactive Statement-Execution Program
We are now in a position to put together much of what we’ve developed so far and use it
to write a simple interactive statement-execution client, exec_stmt.This program lets you
enter statements, executes them using our general-purpose statement handler
process_statement(), and displays the results using the process_result_set() display
formatter developed in the preceding section.

exec_stmt is similar in some ways to mysql, although of course with not as many fea-
tures.There are several restrictions on what exec_stmt will allow as input:

n Each input line must contain a single complete statement.
n Statements should not be terminated by a semicolon or by \g.
n The only non-SQL commands that are recognized are quit and \q, which termi-

nate the program.You can also use Control-D to quit.

It turns out that exec_stmt is almost completely trivial to write (about a dozen lines of
new code).Almost everything we need is provided by our client program skeleton
(connect2.c) and by other functions that we have written already.The only thing we
need to add is a loop that collects input lines and executes them.

To construct exec_stmt, begin by copying the client skeleton connect2.c to
exec_stmt.c.Then add to that the code for the process_statement(),
process_result_set(), and print_dashes() functions. Finally, in exec_stmt.c, look
for the line in main() that says this:

/* ... issue statements and process results here ... */

Replace that line with this while loop:

while (1)

{

char buf[10000];

fprintf (stderr, "query> "); /* print prompt */

if (fgets (buf, sizeof (buf), stdin) == NULL) /* read statement */

break;

if (strcmp (buf, "quit\n") == 0 || strcmp (buf, "\\q\n") == 0)

break;

process_statement (conn, buf); /* execute it */

}

Compile exec_stmt.c to produce exec_stmt.o, link exec_stmt.o with the client
library to produce exec_stmt, and you’re done.You have an interactive MySQL client

410 Chapter 7 Writing MySQL Programs Using C

program that can execute any statement and display the results.The following example
shows how the program works, both for SELECT and non-SELECT statements, as well as for
statements that are erroneous:

% ./exec_stmt

query> USE sampdb

Number of rows affected: 0

query> SELECT DATABASE(), USER()

+------------+-------------------+

| DATABASE() | USER() |

+------------+-------------------+

| sampdb | sampadm@localhost |

+------------+-------------------+

Number of rows returned: 1

query> SELECT COUNT(*) FROM president

+----------+

| COUNT(*) |

+----------+

| 42 |

+----------+

Number of rows returned: 1

query> SELECT last_name, first_name FROM president ORDER BY last_name LIMIT 3

+-----------+-------------+

| last_name | first_name |

+-----------+-------------+

| Adams | John |

| Adams | John Quincy |

| Arthur | Chester A. |

+-----------+-------------+

Number of rows returned: 3

query> CREATE TABLE t (i INT)

Number of rows affected: 0

query> SELECT j FROM t

Could not execute statement

Error 1054 (42S22): Unknown column 'j' in 'field list'

query> USE mysql

Could not execute statement

Error 1044 (42000): Access denied for user 'sampadm'@'localhost' to

database 'mysql'

7.6 Writing Clients That Include SSL Support
MySQL includes SSL support, and you can use it to write your own programs that access
the server over secure connections.To show how this is done, this section describes the
process of modifying exec_stmt to produce a similar client named exec_stmt_ssl that
outwardly is much the same but enables encrypted connections to be established. For

4117.6 Writing Clients That Include SSL Support

exec_stmt_ssl to work properly, MySQL must have been built with SSL support, and
the server must be started with the proper options that identify its certificate and key files.
You’ll also need certificate and key files on the client end. For more information, see
Section 13.3,“Setting Up Secure Connections.”

The sampdb distribution contains a source file, exec_stmt_ssl.c, from which the
client program exec_stmt_ssl can be built.The following procedure describes how
exec_stmt_ssl.c is created, beginning with exec_stmt.c:

1. Copy exec_stmt.c to exec_stmt_ssl.c.The remaining steps apply to
exec_stmt_ssl.c.

2. To enable the compiler to detect whether SSL support is available, the MySQL
header file my_config.h defines the symbol HAVE_OPENSSL appropriately.This
means that when writing SSL-related code, you use the following construct so that
the code will be ignored if SSL cannot be used:

#ifdef HAVE_OPENSSL

...SSL-related code here...

#endif

You need not include my_config.h explicitly because it is included by
my_global.h, and exec_stmt_ssl.c already includes the latter file.

3. Modify the my_opts array that contains option information structures so that it
includes entries for the standard SSL-related options (--ssl-ca, --ssl-key, and so
forth).The easiest way to do this is to include the contents of the sslopt-
longopts.h file into the my_opts array with an #include directive.After making
the change, my_opts looks like this:

static struct my_option my_opts[] = /* option information structures */

{

{"help", '?', "Display this help and exit",

NULL, NULL, NULL,

GET_NO_ARG, NO_ARG, 0, 0, 0, 0, 0, 0},

{"host", 'h', "Host to connect to",

(uchar **) &opt_host_name, NULL, NULL,

GET_STR, REQUIRED_ARG, 0, 0, 0, 0, 0, 0},

{"password", 'p', "Password",

(uchar **) &opt_password, NULL, NULL,

GET_STR, OPT_ARG, 0, 0, 0, 0, 0, 0},

{"port", 'P', "Port number",

(uchar **) &opt_port_num, NULL, NULL,

GET_UINT, REQUIRED_ARG, 0, 0, 0, 0, 0, 0},

{"socket", 'S', "Socket path",

(uchar **) &opt_socket_name, NULL, NULL,

GET_STR, REQUIRED_ARG, 0, 0, 0, 0, 0, 0},

{"user", 'u', "User name",

(uchar **) &opt_user_name, NULL, NULL,

412 Chapter 7 Writing MySQL Programs Using C

GET_STR, REQUIRED_ARG, 0, 0, 0, 0, 0, 0},

#include <sslopt-longopts.h>

{ NULL, 0, NULL, NULL, NULL, NULL, GET_NO_ARG, NO_ARG, 0, 0, 0, 0, 0, 0 }

};

sslopt-longopts.h is a public MySQL header file. Its contents look like this (re-
formatted slightly):

#ifdef HAVE_OPENSSL

{"ssl", OPT_SSL_SSL,

"Enable SSL for connection (automatically enabled with other flags).

Disable with --skip-ssl.",

(uchar **) &opt_use_ssl, (uchar **) &opt_use_ssl, 0,

GET_BOOL, NO_ARG, 0, 0, 0, 0, 0, 0},

{"ssl-ca", OPT_SSL_CA,

"CA file in PEM format (check OpenSSL docs, implies --ssl).",

(uchar **) &opt_ssl_ca, (uchar **) &opt_ssl_ca, 0,

GET_STR, REQUIRED_ARG, 0, 0, 0, 0, 0, 0},

{"ssl-capath", OPT_SSL_CAPATH,

"CA directory (check OpenSSL docs, implies --ssl).",

(uchar **) &opt_ssl_capath, (uchar **) &opt_ssl_capath, 0,

GET_STR, REQUIRED_ARG, 0, 0, 0, 0, 0, 0},

{"ssl-cert", OPT_SSL_CERT, "X509 cert in PEM format (implies --ssl).",

(uchar **) &opt_ssl_cert, (uchar **) &opt_ssl_cert, 0,

GET_STR, REQUIRED_ARG, 0, 0, 0, 0, 0, 0},

{"ssl-cipher", OPT_SSL_CIPHER, "SSL cipher to use (implies --ssl).",

(uchar **) &opt_ssl_cipher, (uchar **) &opt_ssl_cipher, 0,

GET_STR, REQUIRED_ARG, 0, 0, 0, 0, 0, 0},

{"ssl-key", OPT_SSL_KEY, "X509 key in PEM format (implies --ssl).",

(uchar **) &opt_ssl_key, (uchar **) &opt_ssl_key, 0,

GET_STR, REQUIRED_ARG, 0, 0, 0, 0, 0, 0},

#ifdef MYSQL_CLIENT

{"ssl-verify-server-cert", OPT_SSL_VERIFY_SERVER_CERT,

"Verify server's \"Common Name\" in its cert against hostname used

when connecting. This option is disabled by default.",

(uchar **) &opt_ssl_verify_server_cert,

(uchar **) &opt_ssl_verify_server_cert, 0,

GET_BOOL, NO_ARG, 0, 0, 0, 0, 0, 0},

#endif

#endif /* HAVE_OPENSSL */

4. The option structures defined by sslopt-longopts.h refer to the values
OPT_SSL_SSL, OPT_SSL_KEY, and so forth.These are used for the short option codes

4137.6 Writing Clients That Include SSL Support

and must be defined by your program, which can be done by adding the following
lines preceding the definition of the my_opts array:

#ifdef HAVE_OPENSSL

enum options_client

{

OPT_SSL_SSL=256,

OPT_SSL_KEY,

OPT_SSL_CERT,

OPT_SSL_CA,

OPT_SSL_CAPATH,

OPT_SSL_CIPHER,

OPT_SSL_VERIFY_SERVER_CERT

};

#endif

When writing your own applications, if a given program also defines codes for
other options, make sure that these OPT_SSL_XXX symbols have values different from
those codes.

5. The SSL-related option structures in sslopt-longopts.h refer to a set of variables
that are used to hold the option values.To declare these, use an #include directive
to include the contents of the sslopt-vars.h file into your program preceding the
definition of the my_opts array. sslopt-vars.h looks like this:

#ifdef HAVE_OPENSSL

static my_bool opt_use_ssl = 0;

static char *opt_ssl_ca = 0;

static char *opt_ssl_capath = 0;

static char *opt_ssl_cert = 0;

static char *opt_ssl_cipher = 0;

static char *opt_ssl_key = 0;

#ifdef MYSQL_CLIENT

static my_bool opt_ssl_verify_server_cert= 0;

#endif

#endif

6. In the get_one_option() routine, add a line near the end that includes the
sslopt-case.h file:

static my_bool

get_one_option (int optid, const struct my_option *opt, char *argument)

{

switch (optid)

{

case '?':

my_print_help (my_opts); /* print help message */

exit (0);

414 Chapter 7 Writing MySQL Programs Using C

case 'p': /* password */

if (!argument) /* no value given; solicit it later */

ask_password = 1;

else /* copy password, overwrite original */

{

opt_password = strdup (argument);

if (opt_password == NULL)

{

print_error (NULL, "could not allocate password buffer");

exit (1);

}

while (*argument)

*argument++ = 'x';

ask_password = 0;

}

break;

#include <sslopt-case.h>

}

return (0);

}

sslopt-case.h includes additional cases for the switch() statement that detect
when any of the SSL options were given and sets the opt_use_ssl variable if so. It
looks like this:

#ifdef HAVE_OPENSSL

case OPT_SSL_KEY:

case OPT_SSL_CERT:

case OPT_SSL_CA:

case OPT_SSL_CAPATH:

case OPT_SSL_CIPHER:

/*

Enable use of SSL if we are using any ssl option

One can disable SSL later by using --skip-ssl or --ssl=0

*/

opt_use_ssl= 1;

break;

#endif

The effect of this is that after option processing has been done, it is possible to deter-
mine whether the user wants a secure connection by checking the value of opt_use_ssl.

If you use the preceding procedure, the usual load_defaults() and handle_

options() routines will take care of parsing the SSL-related options and setting their val-
ues for you automatically.The only other thing you need to do is pass SSL option infor-
mation to the client library before connecting to the server if the options indicate that the

4157.6 Writing Clients That Include SSL Support

user wants an SSL connection. Do this by invoking mysql_ssl_set() after calling
mysql_init() and before calling mysql_real_connect().The sequence looks like this:

/* initialize connection handler */

conn = mysql_init (NULL);

if (conn == NULL)

{

print_error (NULL, "mysql_init() failed (probably out of memory)");

exit (1);

}

#ifdef HAVE_OPENSSL

/* pass SSL information to client library */

if (opt_use_ssl)

mysql_ssl_set (conn, opt_ssl_key, opt_ssl_cert, opt_ssl_ca,

opt_ssl_capath, opt_ssl_cipher);

#if (MYSQL_VERSION_ID >= 50023 && MYSQL_VERSION_ID < 50100) \

|| MYSQL_VERSION_ID >= 50111

mysql_options (conn,MYSQL_OPT_SSL_VERIFY_SERVER_CERT,

(char*)&opt_ssl_verify_server_cert);

#endif

#endif

/* connect to server */

if (mysql_real_connect (conn, opt_host_name, opt_user_name, opt_password,

opt_db_name, opt_port_num, opt_socket_name, opt_flags) == NULL)

{

print_error (conn, "mysql_real_connect() failed");

mysql_close (conn);

exit (1);

}

This code doesn’t test mysql_ssl_set() to see whether it returns an error.Any prob-
lems with the information you supply to that function will result in an error when you
call mysql_real_connect().The complicated test to determine whether to invoke
mysql_options() reflects that the addition of MYSQL_OPT_SSL_VERIFY_SERVER_CERT
occurred in version 5.0.23 for MySQL 5.0 and 5.1.11 for MySQL 5.1.

Compile exec_stmt_ssl.c to produce the exec_stmt_ssl program and then run it.
Assuming that the mysql_real_connect() call succeeds, you can proceed to issue state-
ments. If you invoke exec_stmt_ssl with the appropriate SSL options, communication
with the server should occur over an encrypted connection.To determine whether that is
so, issue the following statement:

SHOW STATUS LIKE 'Ssl_cipher'

416 Chapter 7 Writing MySQL Programs Using C

The value of Ssl_cipher will be non-blank if an encryption cipher is in use. (To make
this easier, the version of exec_stmt_ssl included in the sampdb distribution actually is-
sues the statement for you and reports the result.)

7.7 Using the Embedded Server Library
MySQL includes an embedded server library, libmysqld, that contains the MySQL server
in a form that can be linked (embedded) into applications.This enables you to produce
MySQL-based standalone applications, as opposed to applications that connect as a client
over a network to a separate server program.

To write an embedded server application, two requirements must be satisfied. First, the
embedded server library must be installed:

n If you’re building from source, enable the library by using the --with-embedded-

server option when you run configure.This applies equally to MySQL 5.0 and 5.1.
n If you want to use a binary distribution, you must use MySQL 5.1 because 5.0

binary distributions do not include libmysqld. Current versions of 5.1 do include
libmysqld. However, if you use RPM packages, be aware that there is a separate
“embedded” RPM that you must install for libmysqld support.

Second, you’ll need to include a small amount of code in your application to start up
and shut down the server.

After making sure that both requirements are met, it’s necessary only to compile the
application and link in the embedded server library (-lmysqld) rather than the regular
client library (-lmysqlclient).The design of the server library is such that if you write an
application to use it, you can easily produce either an embedded or a client/server version
of the application simply by linking in the appropriate library.This works because the reg-
ular client library contains interface functions that perform initialization and finalization
appropriate to client/server communication rather than to communication with an
embedded server.

7.7.1 Writing an Embedded Server Application
Writing an application that uses the embedded server is little different from writing one
that operates in a client/server context. In fact, if you begin with a program that is written
as a client/server application, you can easily convert it to use the embedded server instead.
The following procedure describes how to produce an embedded application named
embapp, beginning with exec_stmt.c:

1. Copy exec_stmt.c to embapp.c.The remaining steps apply to embapp.c. (The rea-
son we begin with exec_stmt.c rather than exec_stmt_ssl.c is that there is no
need to use SSL for connections that are set up internally within a single application.)

2. Add mysql_embed.h to the set of MySQL header files used by the program:

#include <my_global.h>

#include <my_sys.h>

4177.7 Using the Embedded Server Library

#include <m_string.h> /* for strdup() */

#include <mysql.h>

#include <mysql_embed.h>

#include <my_getopt.h>

3. An embedded application includes both a client side and a server side, so it can
process one group of options for the client, and another group for the server. For
example, an application named embapp might read the [client] and [embapp]

groups from option files for the client part.To set that up, modify the definition of
the client_groups array to look like this:

static const char *client_groups[] =

{

"client", "embapp", NULL

};

Options in these groups can be processed by load_defaults() and
handle_options() in the usual fashion.Then define another list of option groups
for the server side to use. By convention, this list should include the [server] and
[embedded] groups, and also the [appname_server] group, where appname is the
name of your application. For a program named embapp, the application-specific
group will be [embapp_server], so you declare the list of group names as follows:

static const char *server_groups[] =

{

"server", "embedded", "embapp_server", NULL

};

4. Call mysql_library_init() before initiating communication with the server,
modifying the call so that it passes any options to be processed by the server.A good
place to do this is before you call mysql_init().

5. Call mysql_library_end() after you’re done using the server.A good place to do
this is after you call mysql_close().

After making these changes, the main() function in embapp.c looks like this:

int

main (int argc, char *argv[])

{

int opt_err;

MY_INIT (argv[0]);

load_defaults ("my", client_groups, &argc, &argv);

if ((opt_err = handle_options (&argc, &argv, my_opts, get_one_option)))

exit (opt_err);

/* solicit password if necessary */

418 Chapter 7 Writing MySQL Programs Using C

if (ask_password)

opt_password = get_tty_password (NULL);

/* get database name if present on command line */

if (argc > 0)

{

opt_db_name = argv[0];

--argc; ++argv;

}

/* initialize embedded server library */

if (mysql_library_init (0, NULL, (char **) server_groups))

{

print_error (NULL, "mysql_library_init() failed");

exit (1);

}

/* initialize connection handler */

conn = mysql_init (NULL);

if (conn == NULL)

{

print_error (NULL, "mysql_init() failed (probably out of memory)");

exit (1);

}

/* connect to server */

if (mysql_real_connect (conn, opt_host_name, opt_user_name, opt_password,

opt_db_name, opt_port_num, opt_socket_name, opt_flags) == NULL)

{

print_error (conn, "mysql_real_connect() failed");

mysql_close (conn);

exit (1);

}

while (1)

{

char buf[10000];

fprintf (stderr, "query> "); /* print prompt */

if (fgets (buf, sizeof (buf), stdin) == NULL) /* read statement */

break;

if (strcmp (buf, "quit\n") == 0 || strcmp (buf, "\\q\n") == 0)

break;

process_statement (conn, buf); /* execute it */

}

/* disconnect from server */

4197.7 Using the Embedded Server Library

mysql_close (conn);

/* shut down embedded server library */

mysql_library_end ();

exit (0);

}

7.7.2 Producing the Application Executable Binary
To produce the embedded-server executable binary for embapp, link in the -lmysqld
library rather than the -lmysqlclient library.The mysql_config utility is useful here.
Just as it can show you the flags to use for linking in the regular client library, it also can
display the flags necessary for the embedded server:

% mysql_config --libmysqld-libs

-L'/usr/local/mysql/lib/mysql' -lmysqld -lz -lm

Thus, to produce an embedded version of embapp, use commands like these:

% gcc -c `mysql_config --include` embapp.c

% gcc -o embapp embapp.o `mysql_config --libmysqld-libs`

Note
In these commands, you might find it necessary to use a C++ compiler such as g++ rather
than a C compiler.

At this point, you have an embedded application that contains everything you need to
access your MySQL databases. However, be sure when you execute embapp that it does
not attempt to use the same data directory as any standalone servers that may already be
running on the same machine.

Also, under Unix, the application must run with privileges that give it access to the
data directory.You can either run embapp while logged in as the user that owns the data
directory, or you can make it a setuid program that changes its user ID to that user when
it starts. For example, to set embapp to run with the privileges of a user named mysql,
issue the following commands as root:

chown mysql embapp

chmod 4755 embapp

Alternatively, have the embedded application use a different data directory.You can
specify the location by placing a datadir option in the [embapp_server] group of an
option file. (The option group for the server half of the application.)

Should you decide that you want to produce a non-embedded version of the applica-
tion that operates in a client/server context, link it against the regular client library.You
can do so by building it like this:

% gcc -c `mysql_config --include` embapp.c

% gcc -o embapp embapp.o `mysql_config --libs`

420 Chapter 7 Writing MySQL Programs Using C

The regular client library includes versions of mysql_library_init() and
mysql_library_end() that perform initialization and finalization appropriate to
client/server communication rather than to communication with an embedded server.

7.8 Using Multiple-Statement Execution
The MySQL client library supports multiple-statement execution capability.This enables
you to send a string to the server consisting of multiple statements separated by semi-
colons, and then retrieve the result sets one after the other.

Multiple-statement execution is not enabled by default, so you must tell the server that
you want to use it.There are two ways to do this.The first is to add the CLIENT_MULTI_
STATEMENTS option in the flags argument to mysql_real_connect() at connect time:

opt_flags |= CLIENT_MULTI_STATEMENTS;

if (mysql_real_connect (conn, opt_host_name, opt_user_name, opt_password,

opt_db_name, opt_port_num, opt_socket_name, opt_flags) == NULL)

{

print_error (conn, "mysql_real_connect() failed");

mysql_close (conn);

exit (1);

}

The other is to use mysql_set_server_option() to enable the capability for an exist-
ing connection. For example:

if (mysql_set_server_option (conn, MYSQL_OPTION_MULTI_STATEMENTS_ON) != 0)

print_error (conn, "Could not enable multiple-statement execution");

Which method is preferable? If the program does not use stored procedures, either one
is suitable. If the program does use stored procedures and invokes a CALL statement that
returns a result set, the first method is better.That’s because CLIENT_MULTI_STATEMENTS
also turns on the CLIENT_MULTI_RESULTS option, which must be enabled or an error
occurs if a stored procedure attempts to return a result. (More preferable yet might be to
add CLIENT_MULTI_RESULTS to the flags argument to mysql_real_connect(), because
that makes it explicit that you’re enabling the option.)

Two functions form the basis for checking the current status of result retrieval when
you’re processing multiple result sets:

n mysql_more_results() returns non-zero if more results are available and zero
otherwise.

n mysql_next_result() returns a status and also initiates retrieval of the next set if
more results are available.The status is zero if more results are available, -1 if not, and
a value greater than zero if an error occurred.

You can use these functions by putting your result-retrieval code inside a loop.After
retrieving a result with your usual code, check whether there are any results yet to be

4217.8 Using Multiple-Statement Execution

retrieved. If so, perform another iteration of the loop. If not, exit the loop. Depending on
how you structure your loop, you may not need to call mysql_more_results() at all.
That’s because you can also tell from the return value of mysql_next_result() whether
more results are available.

In Section 7.4.3,“A General-Purpose Statement Handler,” we wrote a function,
process_statement(), that executes a statement and retrieves the result or displays the
number of rows affected. By placing the result-retrieval code into a loop and incorporat-
ing mysql_next_result(), we can write a similar function, process_multi_
statement(), that can retrieve multiple results:

void

process_multi_statement (MYSQL *conn, char *stmt_str)

{

MYSQL_RES *res_set;

int status;

int keep_going = 1;

if (mysql_query (conn, stmt_str) != 0) /* the statement(s) failed */

{

print_error (conn, "Could not execute statement(s)");

return;

}

/* the statement(s) succeeded; enter result-retrieval loop */

do {

/* determine whether current statement returned data */

res_set = mysql_store_result (conn);

if (res_set) /* a result set was returned */

{

/* process rows and then free the result set */

process_result_set (conn, res_set);

mysql_free_result (res_set);

}

else /* no result set was returned */

{

/*

* does the lack of a result set mean that the statement didn't

* return one, or that it should have but an error occurred?

*/

if (mysql_field_count (conn) == 0)

{

/*

* statement generated no result set (it was not a SELECT,

* SHOW, DESCRIBE, etc.); just report rows-affected value.

*/

printf ("Number of rows affected: %lu\n",

422 Chapter 7 Writing MySQL Programs Using C

(unsigned long) mysql_affected_rows (conn));

}

else /* an error occurred */

{

print_error (conn, "Could not retrieve result set");

keep_going = 0;

}

}

/* determine whether more results exist */

/* 0 = yes, -1 = no, >0 = error */

status = mysql_next_result (conn);

if (status != 0) /* no more results, or an error occurred */

{

keep_going = 0;

if (status > 0) /* error */

print_error (conn, "Could not execute statement");

}

} while (keep_going);

}

If you like, you can just test whether the result of mysql_next_result() is zero, and
exit the loop if not.The disadvantage of this simpler strategy is that if there are no more
results, you don’t know whether you’ve reached the end normally or an error occurred.
In other words, you don’t know whether to print an error message.

7.9 Using Server-Side Prepared Statements
In the earlier parts of this chapter, the code for SQL statement processing is based on the
set of functions provided by the MySQL client library that send and retrieve all informa-
tion in string form.This section discusses how to use the binary client/server protocol.
The binary protocol supports server-side prepared statements and enables transmission of
data values in native format.

Not all statements can be prepared.The prepared-statement API applies to these state-
ments: CREATE TABLE, DELETE, DO, INSERT, REPLACE, SELECT, SET, UPDATE, and most varia-
tions of SHOW.The list of supported statements was considerably expanded in MySQL 5.1.
See the MySQL Reference Manual for 5.1 for the exact current list.

To use the binary protocol, you must create a statement handler.With this handler,
send a statement to the server to be “prepared,” or preprocessed.The server analyzes the
statement, remembers it, and sends back information about it that the client library stores
in the statement handler. Further processing for the statement uses this handler.

A statement to be prepared can be parameterized by including ‘?’ characters to indicate
where data values appear that you will supply later when you execute the statement. For
example, you might prepare a statement that looks like this:

INSERT INTO score (event_id,student_id,score) VALUES(?,?,?)

4237.9 Using Server-Side Prepared Statements

This statement includes three ‘?’ characters that act as parameter markers or place-
holders. Later, you can supply data values to be bound to the placeholders.These com-
plete the statement when you execute it. By parameterizing a statement, you make it
reusable:The same statement can be executed multiple times, each time with a new set of
data values.What this means is that you send the text of the statement only once. Each
time you execute the statement, you need send only the data values. For repeated state-
ment execution, this provides a performance boost:

n The server needs to analyze the statement only once, not each time it is executed.
n Network overhead is reduced, because you send only the data values for each exe-

cution, not an entire statement.
n Data values are sent without conversion to string form, which reduces execution

overhead. For example, the three columns named in the preceding INSERT statement
all are INT columns.Were you to use mysql_query() or mysql_real_query() to
execute a similar INSERT statement, it would be necessary to convert the data values
to strings for inclusion in the text of the statement.With the prepared statement in-
terface, you send the data values separately in binary format.

n No conversion is needed for retrieving results, either. In result sets returned by pre-
pared statements, non-string values are returned in binary format without conver-
sion to string form.

The binary protocol does have some disadvantages, compared to the original non-
binary protocol:

n It is more difficult to use because more setup is necessary for transmitting and
receiving data values.

n The binary protocol does not support all statements. For example, USE statements
don’t work.

n For interactive programs, you may as well use the original protocol. In that case,
each statement received from the user is executed only once.There is little benefit
to using prepared statements, which provide the greatest efficiency gain for state-
ments that you execute repeatedly.

The general procedure for using a prepared statement involves several steps:

1. Allocate a statement handler by calling mysql_stmt_init().This function returns a
pointer to the handler, which you use for the following steps.

2. Call mysql_stmt_prepare() to send a statement to the server to be prepared and
associated with the statement handler.The server determines certain characteristics
of the statement, such as what kind of statement it is, how many parameter markers
it contains, and whether it will produce a result set when executed.

3. If the statement contains any placeholders, you must provide data for each of them
before you can execute it.To do this, set up a MYSQL_BIND structure for each param-
eter. Each structure indicates one parameter’s data type, its value, whether it is NULL,

424 Chapter 7 Writing MySQL Programs Using C

and so on.Then bind these structures to the statement by calling
mysql_stmt_bind_param().

4. Invoke mysql_stmt_execute() to execute the statement.

5. If the statement modifies data rather than producing a result set (for example, if it is
an INSERT or UPDATE), call mysql_stmt_affected_rows() to determine the num-
ber of rows affected by the statement.

6. If the statement produces a result set, call mysql_stmt_result_metadata() if you
want to obtain metadata about the result set.To fetch the rows, you use MYSQL_BIND
structures again, but this time they serve as receptacles for data returned from the
server rather than a source of data to send to the server.You must set up one
MYSQL_BIND structure for each column in the result set.They contain information
about the values you expect to receive from the server in each row. Bind the struc-
tures to the statement handler by calling mysql_stmt_bind_result(), and then in-
voke mysql_stmt_fetch() repeatedly to get each row.After each fetch, you can
access the column values for the current row.

An optional action you can take before calling mysql_stmt_fetch() is to call
mysql_stmt_store_result(). If you do this, the result set rows are fetched all at
once from the server and buffered in memory on the client side.Also, the number
of rows in the result set can be determined by calling mysql_stmt_num_rows(),
which otherwise returns zero.

After fetching the result set, call mysql_stmt_free_result() to release memory
associated with it.

7. If you want to re-execute the statement, return to step 4.

8. If you want to prepare a different statement using the handler, return to step 2.

9. When you’re done with the statement handler, dispose of it by calling
mysql_stmt_close(). If the client connection closes while the server still has
prepared statements associated with the connection, the server disposes of them
automatically.

A client application can prepare multiple statements, and then execute each in the
order appropriate to the application.

The following discussion describes how to write a simple program that inserts some
rows into a table and then retrieves them.The part of the program that processes INSERT
statement illustrates how to use placeholders in a statement and transmit data values to the
server to be bound to the prepared statement when it is executed.The part that processes
a SELECT statement shows how to retrieve a result set produced by executing a prepared
statement.You can find the source for this program in the prepared.c and

4257.9 Using Server-Side Prepared Statements

process_prepared_statement.c files in the capi directory of the sampdb distribution.
I won’t show the code for setting up the connection because it is similar to that for earlier
programs.

The main part of the program that sets up to use prepared statements looks like this:

void

process_prepared_statements (MYSQL *conn)

{

MYSQL_STMT *stmt;

char *use_stmt = "USE sampdb";

char *drop_stmt = "DROP TABLE IF EXISTS t";

char *create_stmt =

"CREATE TABLE t (i INT, f FLOAT, c CHAR(24), dt DATETIME)";

/* select database and create test table */

if (mysql_query (conn, use_stmt) != 0

|| mysql_query (conn, drop_stmt) != 0

|| mysql_query (conn, create_stmt) != 0)

{

print_error (conn, "Could not set up test table");

return;

}

stmt = mysql_stmt_init (conn); /* allocate statement handler */

if (stmt == NULL)

{

print_error (conn, "Could not initialize statement handler");

return;

}

/* insert and retrieve some records */

insert_rows (stmt);

select_rows (stmt);

mysql_stmt_close (stmt); /* deallocate statement handler */

}

First, we select a database and create a test table.The table contains four columns of
varying data types: an INT, a FLOAT, a CHAR, and a DATETIME.These different data types
need to be handled in slightly different ways, as will become evident.

After the table has been created, we invoke mysql_stmt_init() to allocate a prepared
statement handler, insert and retrieve some rows, and deallocate the handler.All the real
work takes place in the insert_rows() and select_rows() functions, which we will get
to shortly. For error handling, the program also uses a function, print_stmt_error(),

426 Chapter 7 Writing MySQL Programs Using C

that is similar to the print_error() function used in earlier programs but invokes the
error functions that are specific to prepared statements:

static void

print_stmt_error (MYSQL_STMT *stmt, char *message)

{

fprintf (stderr, "%s\n", message);

if (stmt != NULL)

{

fprintf (stderr, "Error %u (%s): %s\n",

mysql_stmt_errno (stmt),

mysql_stmt_sqlstate (stmt),

mysql_stmt_error (stmt));

}

}

The insert_rows() function takes care of adding new rows to the test table:

static void

insert_rows (MYSQL_STMT *stmt)

{

char *stmt_str = "INSERT INTO t (i,f,c,dt) VALUES(?,?,?,?)";

MYSQL_BIND param[4];

int my_int;

float my_float;

char my_str[26]; /* ctime() returns 26-character string */

MYSQL_TIME my_datetime;

unsigned long my_str_length;

time_t clock;

struct tm *cur_time;

int i;

printf ("Inserting records...\n");

if (mysql_stmt_prepare (stmt, stmt_str, strlen (stmt_str)) != 0)

{

print_stmt_error (stmt, "Could not prepare INSERT statement");

return;

}

/*

* zero the parameter structures, and then perform all parameter

* initialization that is constant and does not change for each row

*/

memset ((void *) param, 0, sizeof (param));

/* set up INT parameter */

4277.9 Using Server-Side Prepared Statements

param[0].buffer_type = MYSQL_TYPE_LONG;

param[0].buffer = (void *) &my_int;

param[0].is_unsigned = 0;

param[0].is_null = 0;

/* buffer_length, length need not be set */

/* set up FLOAT parameter */

param[1].buffer_type = MYSQL_TYPE_FLOAT;

param[1].buffer = (void *) &my_float;

param[1].is_null = 0;

/* is_unsigned, buffer_length, length need not be set */

/* set up CHAR parameter */

param[2].buffer_type = MYSQL_TYPE_STRING;

param[2].buffer = (void *) my_str;

param[2].buffer_length = sizeof (my_str);

param[2].is_null = 0;

/* is_unsigned need not be set, length is set later */

/* set up DATETIME parameter */

param[3].buffer_type = MYSQL_TYPE_DATETIME;

param[3].buffer = (void *) &my_datetime;

param[3].is_null = 0;

/* is_unsigned, buffer_length, length need not be set */

if (mysql_stmt_bind_param (stmt, param) != 0)

{

print_stmt_error (stmt, "Could not bind parameters for INSERT");

return;

}

for (i = 1; i <= 5; i++)

{

printf ("Inserting record %d...\n", i);

(void) time (&clock); /* get current time */

/* set the variables that are associated with each parameter */

/* param[0]: set my_int value */

my_int = i;

428 Chapter 7 Writing MySQL Programs Using C

/* param[1]: set my_float value */

my_float = (float) i;

/* param[2]: set my_str to current ctime() string value */

/* and set length to point to var that indicates my_str length */

(void) strcpy (my_str, ctime (&clock));

my_str[24] = '\0'; /* chop off trailing newline */

my_str_length = strlen (my_str);

param[2].length = &my_str_length;

/* param[3]: set my_datetime to current date and time components */

cur_time = localtime (&clock);

my_datetime.year = cur_time->tm_year + 1900;

my_datetime.month = cur_time->tm_mon + 1;

my_datetime.day = cur_time->tm_mday;

my_datetime.hour = cur_time->tm_hour;

my_datetime.minute = cur_time->tm_min;

my_datetime.second = cur_time->tm_sec;

my_datetime.second_part = 0;

my_datetime.neg = 0;

if (mysql_stmt_execute (stmt) != 0)

{

print_stmt_error (stmt, "Could not execute statement");

return;

}

sleep (1); /* pause briefly (to let the time change) */

}

}

The overall purpose of insert_rows() is to insert five rows into the test table, each of
which will contain these values:

n An INT value from 1 to 5.
n A FLOAT value from 1.0 to 5.0.
n A CHAR value.To generate these values, we’ll call the ctime() system function to

get the value of “now” as a string. ctime() returns values that have this format:

Sun Sep 19 16:47:23 CDT 2004

n A DATETIME value.This also will be the value of “now,” but stored in a MYSQL_TIME
structure.The binary protocol uses MYSQL_TIME structures to transmit DATETIME,
TIMESTAMP, DATE, and TIME values.

4297.9 Using Server-Side Prepared Statements

The first thing we do in insert_rows() is prepare an INSERT statement by passing it
to mysql_stmt_prepare().The statement looks like this:

INSERT INTO t (i,f,c,dt) VALUES(?,?,?,?)

The statement contains four placeholders, so it’s necessary to supply four data values
each time the statement is executed. Placeholders typically represent data values in
VALUES() lists or in WHERE clauses. But there are places in which they cannot be used:

n As identifiers such as table or column names.This statement is illegal:

SELECT * FROM ?

n You can use placeholders on one side of an operator, but not on both sides.This
statement is legal:

SELECT * FROM student WHERE student_id = ?

However, this statement is illegal:

SELECT * FROM student WHERE ? = ?

This restriction is necessary so that the server can determine the data type of
parameters.

The next step is to set up an array of MYSQL_BIND structures, one for each placeholder.
As demonstrated in insert_rows(), setting these up involves two stages:

1. Initialize all parts of the structures that will be the same for each row inserted.

2. Perform a row-insertion loop that, for each row, initializes the parts of the structures
that vary for each row.

You could actually perform all initialization within the loop, but that would be less
efficient.

The first initialization stage begins by zeroing the contents of the param array contain-
ing the MYSQL_BIND structures.The program uses memset(), but you could use bzero() if
your system doesn’t have memset().These two statements are equivalent:

memset ((void *) param, 0, sizeof (param));

bzero ((void *) param, sizeof (param));

Clearing the param array implicitly sets all structure members to zero. Code that fol-
lows sets some members to zero to make it explicit what’s going on, but that is not
strictly necessary. In practice, you need not assign zero to any structure members after
clearing the structures.

430 Chapter 7 Writing MySQL Programs Using C

The next step is to assign the proper information to each parameter in the
MYSQL_BIND array. For each parameter, the structure members that need to be set depend
on the type of value you’re transmitting:

n The buffer_type member always must be set; it indicates the data type of the value.
Appendix G (online) contains a table that lists each of the allowable type codes and
shows the SQL and C types that correspond to each code.

n The buffer member should be set to the address of the variable that contains the
data value. insert_rows() declares four variables to hold row values: my_int,
my_float, my_str, and my_datetime. Each param[i].buffer value is set to point
to the appropriate variable.When it comes time to insert a row, we’ll set these four
variables to the table column values and they will be used to create the new row.

n The is_unsigned member applies only to integer data types. It should be set to true
(non-zero) or false (zero) to indicate whether the parameter corresponds to an
UNSIGNED integer type. Our table contains a signed INT column, so we set
is_unsigned to zero.Were the column an INT UNSIGNED, we would set is_unsigned
to 1, and would also declare my_int as unsigned int rather than as int.

n The is_null member indicates whether you’re transmitting a NULL value. In the
general case, you set this member to the address of a my_bool variable.Then, before
inserting any given row, you set the variable true or false to specify whether the
value to be inserted is NULL. If no NULL values are to be sent (as is the case here),
you can set is_null to zero and no my_bool variable is needed.

n For character string values or binary data (BLOB values), two more MYSQL_BIND
members come into play.These indicate the size of the buffer in which the value is
stored and the actual size of the current value being transmitted. In many cases
these might be the same, but they will be different if you’re using a fixed-size buffer
and sending values that vary in length from row to row. buffer_length indicates
the size of the buffer. length is a pointer; it should be set to the address of an
unsigned long variable that contains the actual length of the value to be sent.

For numeric and temporal data types, buffer_length and length need not be set.
The size of each of these types is fixed and can be determined from the
buffer_type value. For example, MYSQL_TYPE_LONG and MYSQL_TYPE_FLOAT indi-
cate four-byte and eight-byte values.

After the initial setup of the MYSQL_BIND array has been done, we bind the array to the
prepared statement by passing the array to mysql_stmt_bind_param().Then it’s time to
assign values to the variables that the MYSQL_BIND structures point to and execute the
statement.This takes place in a loop that executes five times. Each iteration of the loop
assigns values to the statement parameters:

n For the integer and floating-point parameters, it’s necessary only to assign values to
the associated int and float variables.

4317.9 Using Server-Side Prepared Statements

n For the string parameter, we assign the current time in string format to the associ-
ated char buffer.This value is obtained by calling ctime(), and then chopping off
the newline character.

n The datetime parameter also is assigned the current time, but this is done by assign-
ing the component parts of the time to the individual members of the associated
MYSQL_TIME structure.

With the parameter values set, we execute the statement by invoking mysql_stmt_
execute().This function transmits the current values to the server, which incorporates
them into the prepared statement and executes it.

When insert_rows() returns, the test table has been populated and select_rows()
can be called to retrieve them:

static void

select_rows (MYSQL_STMT *stmt)

{

char *stmt_str = "SELECT i, f, c, dt FROM t";

MYSQL_BIND param[4];

int my_int;

float my_float;

char my_str[24];

unsigned long my_str_length;

MYSQL_TIME my_datetime;

my_bool is_null[4];

printf ("Retrieving records...\n");

if (mysql_stmt_prepare (stmt, stmt_str, strlen (stmt_str)) != 0)

{

print_stmt_error (stmt, "Could not prepare SELECT statement");

return;

}

if (mysql_stmt_field_count (stmt) != 4)

{

print_stmt_error (stmt, "Unexpected column count from SELECT");

return;

}

/*

* initialize the result column structures

*/

memset ((void *) param, 0, sizeof (param)); /* zero the structures */

/* set up INT parameter */

432 Chapter 7 Writing MySQL Programs Using C

param[0].buffer_type = MYSQL_TYPE_LONG;

param[0].buffer = (void *) &my_int;

param[0].is_unsigned = 0;

param[0].is_null = &is_null[0];

/* buffer_length, length need not be set */

/* set up FLOAT parameter */

param[1].buffer_type = MYSQL_TYPE_FLOAT;

param[1].buffer = (void *) &my_float;

param[1].is_null = &is_null[1];

/* is_unsigned, buffer_length, length need not be set */

/* set up CHAR parameter */

param[2].buffer_type = MYSQL_TYPE_STRING;

param[2].buffer = (void *) my_str;

param[2].buffer_length = sizeof (my_str);

param[2].length = &my_str_length;

param[2].is_null = &is_null[2];

/* is_unsigned need not be set */

/* set up DATETIME parameter */

param[3].buffer_type = MYSQL_TYPE_DATETIME;

param[3].buffer = (void *) &my_datetime;

param[3].is_null = &is_null[3];

/* is_unsigned, buffer_length, length need not be set */

if (mysql_stmt_bind_result (stmt, param) != 0)

{

print_stmt_error (stmt, "Could not bind parameters for SELECT");

return;

}

if (mysql_stmt_execute (stmt) != 0)

{

print_stmt_error (stmt, "Could not execute SELECT");

return;

}

/*

* fetch result set into client memory; this is optional, but it

* allows mysql_stmt_num_rows() to be called to determine the

* number of rows in the result set.

*/

4337.9 Using Server-Side Prepared Statements

if (mysql_stmt_store_result (stmt) != 0)

{

print_stmt_error (stmt, "Could not buffer result set");

return;

}

else

{

/* mysql_stmt_store_result() makes row count available */

printf ("Number of rows retrieved: %lu\n",

(unsigned long) mysql_stmt_num_rows (stmt));

}

while (mysql_stmt_fetch (stmt) == 0) /* fetch each row */

{

/* display row values */

printf ("%d ", my_int);

printf ("%.2f ", my_float);

printf ("%*.*s ", my_str_length, my_str_length, my_str);

printf ("%04d-%02d-%02d %02d:%02d:%02d\n",

my_datetime.year,

my_datetime.month,

my_datetime.day,

my_datetime.hour,

my_datetime.minute,

my_datetime.second);

}

mysql_stmt_free_result (stmt); /* deallocate result set */

}

select_rows() prepares a SELECT statement, executes it, and retrieves the result. In
this case, the statement contains no placeholders:

SELECT i, f, c, dt FROM t

That means we don’t need to set up any MYSQL_BIND structures before executing the
statement. But we’re not off the hook.The bulk of the work in select_rows(), just as in
insert_rows(), is setting up an array of MYSQL_BIND structures.The difference is that
they’re used to receive data values from the server after executing the statement rather
than to set up data values to be sent to the server before executing the statement.

Nevertheless, the procedure for setting up the MYSQL_BIND array is somewhat similar
to the corresponding code in insert_rows():

1. Zero the array.

2. Set the buffer_type member of each parameter to the appropriate type code.

434 Chapter 7 Writing MySQL Programs Using C

3. Point the buffer member of each parameter to the variable where the correspon-
ding column value should be stored when rows are fetched.

4. Set the is_unsigned member for the integer parameter to zero.

5. For the string parameter, set the buffer_length value to the maximum number of
bytes that should be fetched, and set length to the address of an unsigned long
variable.At fetch time, this variable will be set to the actual number of bytes
fetched.

6. For every parameter, set the is_null member to the address of a my_bool variable.
At fetch time, these variables will be set to indicate whether the fetched values are
NULL. (Our program ignores these variables after fetching rows because we know that
the test table contains no NULL values. In the general case, you should check them.)

After setting up the parameters, we bind the array to the statement by calling
mysql_stmt_bind_result(), and then execute the statement.

At this point, you can immediately begin fetching rows by calling mysql_stmt_
fetch(). Our program demonstrates an optional step that you can do first: It calls
mysql_stmt_store_result(), which fetches the entire result set and buffers it in client
memory.The advantage of doing this is that you can call mysql_stmt_num_rows() to find
out how many rows are in the result set.The disadvantage is that it uses more memory on
the client side.

The row-fetching loop involves calling mysql_stmt_fetch() until it returns a non-
zero value.After each fetch, the variables associated with the parameter structures contain
the column values for the current row.

Once all the rows have been fetched, a call to mysql_stmt_free_result() releases any
memory associated with the result set.

At this point, select_rows() returns to the caller, which invokes
mysql_stmt_close() to dispose of the prepared statement handler.

The preceding discussion provides a broad overview of the prepared statement inter-
face and some of its key functions.The client library includes several other related func-
tions; for more information, consult Appendix G (online).

8
Writing MySQL Programs

Using Perl DBI

This chapter describes how to use the Perl DBI interface for MySQL. It does not discuss
DBI philosophy or architecture. For information about those aspects of DBI (particularly
in comparison with the C and PHP APIs), see Chapter 6,“Introduction to MySQL
Programming.”

The examples discussed here draw on our sample database, sampdb, using the tables
created for the grade-keeping project and for the Historical League in Chapter 1,
“Getting Started with MySQL.”To get the most from this chapter, it’s best if you know
something about Perl. If you don’t, you may be able to get along and write your own
scripts simply by copying the sample code you see here, but you will probably find a good
Perl book a worthwhile investment. One such book is Programming Perl,Third Edition by
Wall, Christiansen, and Orwant (O’Reilly, 2000).

DBI is currently at version 1.601, although most of the discussion here applies to ear-
lier versions as well. DBI requires at least Perl 5.6.0 (and 5.6.1 is preferred to 5.6.0).You
must also have the DBD::mysql Perl module installed, as well as the MySQL C client
library and header files. If you plan to write Web-based DBI scripts in the manner dis-
cussed here, you should also obtain the CGI.pm module. In this chapter, CGI.pm is used
in conjunction with the Apache Web server. If you need to obtain any of these packages,
see Appendix A,“Obtaining and Installing Software.” Instructions for obtaining the exam-
ple scripts developed in this chapter are also given in that appendix.They are part of the
sampdb distribution, which you can download to avoid retyping the scripts yourself.The
scripts used in this chapter are located under the perlapi directory of the distribution.

For the most part, this chapter describes Perl DBI methods and variables only as they
are needed for the discussion here. For a more comprehensive listing of methods and
variables, see Appendix H,“Perl DBI API Reference” (online).You can use that appendix
as a reference for further background on any part of DBI that you’re trying to use. Online
documentation is available by running the following commands:

% perldoc DBI

436 Chapter 8 Writing MySQL Programs Using Perl DBI

% perldoc DBI::FAQ

% perldoc DBD::mysql

At the database driver (DBD) level, the driver for MySQL is built on top of the
MySQL C client library, and therefore shares some of its characteristics. See Chapter 7,
“Writing MySQL Programs Using C,” for more information about the client library.

8.1 Perl Script Characteristics
Perl scripts are text files, so you can create them using any text editor.All Perl scripts in
this chapter follow the Unix convention that they begin with a #! (shebang) line that
specifies the pathname of the program to use for executing the script.The line I use is as
follows:

#!/usr/bin/perl

On Unix, you’ll need to modify the #! line if the pathname to Perl is different on
your system, such as /usr/local/bin/perl5 or /opt/bin/perl. Otherwise, Perl scripts
won’t run properly on your system.

You can invoke a Perl script myscript.pl as follows on any system to run it:

% perl myscript.pl

However, you may also be able to execute the script without naming the perl program
explicitly. On Unix, do this by changing the file mode with chmod to make the script
executable:

% chmod +x myscript.pl

Then you can run the script just by typing its name:

% ./myscript.pl

That is the script invocation style that will be used for examples shown in this chapter.
The leading “./” should be used if the script is located in your current directory (“.”)
and your shell does not have the current directory in its search path. Otherwise, you can
omit the “./” from the command name:

% myscript.pl

Under Windows, you can set up a filename association between Perl and filenames
ending in .pl. For example, if you install ActiveState Perl, its installation program enables
you to set up an association so that filenames ending with .pl are run by Perl. In that
case, you can run a Perl script just by naming it on the command line:

C:\> myscript.pl

4378.2 Perl DBI Overview

Table 8.1 Conventional Perl DBI Handle Variable Names

Name Meaning

$dbh A handle to a database object

$sth A handle to a statement (query) object

$fh A handle to an open file

$h A “generic” handle; the meaning depends on context

Table 8.2 Conventional Perl DBI Non-Handle Variable Names

Name Meaning

$rc The return code from operations that return true or false

$rv The return value from operations that return an integer

$rows The return value from operations that return a row count

@ary An array (list) representing a row of values returned by a query

8.2 Perl DBI Overview
This section provides background information for DBI that you’ll need for writing your
own scripts and for understanding scripts written by others. If you’re already familiar with
DBI, you may want to skip directly to Section 8.3,“Putting DBI to Work.”

8.2.1 DBI Data Types
In some ways, using the Perl DBI API is similar to using the C client library described in
Chapter 7. When you use the C client library, you call functions and access MySQL-related
data primarily by means of pointers to structures or to arrays.When you use the DBI
API, you also call functions and use pointers to structures, except that functions are called
“methods,” pointers are called “references,” pointer variables are called “handles,” and the
structures that handles point to are called “objects.”

DBI uses several kinds of handles.These tend to be referred to in DBI documentation
by the conventional names shown in Table 8.1.The way you use these handles will become
clear as we go along. Several conventional names for non-handle variables are used as well
(see Table 8.2).This chapter doesn’t actually use every one of these variable names, but it’s
useful to know them when you read DBI scripts written by other people.

8.2.2 A Simple DBI Script
Let’s start with a simple script, dump_members.pl, that illustrates several standard concepts
in DBI programming, such as connecting to and disconnecting from the MySQL server,
issuing SQL statements, and retrieving data.This script produces output consisting of the

Historical League’s member list in tab-delimited format.The format is not so interesting
in itself.At this point, it’s more important see how to use DBI than to produce pretty
output. dump_members.pl looks like this:

#!/usr/bin/perl

dump_members.pl - dump Historical League's membership list

use strict;

use warnings;

use DBI;

data source name, username, password, connection attributes

my $dsn = "DBI:mysql:sampdb:localhost";

my $user_name = "sampadm";

my $password = "secret";

my %conn_attrs = (RaiseError => 1, PrintError => 0, AutoCommit => 1);

connect to database

my $dbh = DBI->connect ($dsn, $user_name, $password, \%conn_attrs);

issue query

my $sth = $dbh->prepare ("SELECT last_name, first_name, suffix, email,"

. " street, city, state, zip, phone FROM member ORDER BY last_name");

$sth->execute ();

read and display query result

while (my @ary = $sth->fetchrow_array ())

{

print join ("\t", @ary), "\n";

}

$sth->finish ();

$dbh->disconnect ();

To try the script for yourself, either use the copy that’s included in the sampdb distri-
bution or create it using a text editor. If you use a word processor, be sure to save the
script as plain text. Don’t save it in the word processor’s native format.You’ll probably
need to change at least some of the connection parameters, such as the hostname, data-
base name, username, or password. (That will be true for other scripts in this chapter that
name the connection parameters as well.) Later, in Section 8.2.9,“Specifying Connection
Parameters,” we’ll see how to get parameters from an option file instead of putting them
directly in the script.

Now let’s go through the script a piece at a time.The first line contains the standard
where-to-find-Perl indicator:

#!/usr/bin/perl

438 Chapter 8 Writing MySQL Programs Using Perl DBI

4398.2 Perl DBI Overview

This line is part of every script we’ll discuss in this chapter; I won’t mention it further.
It’s a good idea to include in a script at least a minimal description of its purpose, so

the next line is a comment to give anyone who looks at the script a clue about what
it does:

dump_members.pl - dump Historical League's membership list

Text from a ‘#’ character to the end of a line is considered a comment. It’s a useful
practice to sprinkle comments throughout your scripts to explain how they work.

Next we have several use statements:

use strict;

use warnings;

use DBI;

use strict tells Perl to require you to declare variables before using them.You can
write scripts without putting in a use strict line, but it’s useful for catching mistakes, so
I recommend you always include it. For example, if you declare a variable $my_var but
then later erroneously refer to it as $mv_var, the following message will appear when you
run the script in strict mode:

Global symbol "$mv_var" requires explicit package name at line n

When you see that, you think,“Huh? I never used any variable named $mv_var!”Then
you look at line n of your script, see that you misspelled $my_var as $mv_var, and fix it.
Without strict mode, Perl won’t squawk about $mv_var; it simply creates a new variable
by that name with a value of undef (undefined) and uses it without complaint.And
you’re left to wonder why your script doesn’t work.

use warnings tells Perl to issue a warning if it finds that you use questionable language
constructs or perform operations such as printing uninitialized variables.This is useful
because it can alert you to code that should be rewritten.

use DBI tells the Perl interpreter that it needs to pull in the DBI module.Without
this line, an error occurs as soon as you try to do anything DBI-related in the script. It’s
unnecessary to indicate which DBD-level driver module to use; DBI activates the right
one for you when you connect to your database.

Because we’re operating in strict mode, we must declare the variables the script uses,
by means of the my keyword.Think of it as though the script is saying “I am explicitly
indicating that these are my variables.”The next section of the script sets up the variables
that specify connection parameters, and then uses them to connect to the database:

data source name, username, password, connection attributes

my $dsn = "DBI:mysql:sampdb:localhost";

my $user_name = "sampadm";

my $password = "secret";

my %conn_attrs = (RaiseError => 1, PrintError => 0, AutoCommit => 1);

connect to database

my $dbh = DBI->connect ($dsn, $user_name, $password, \%conn_attrs);

The connect() call is invoked as DBI->connect() because it’s a method of the DBI
class.You don’t really have to know what that means; it’s just a little object-oriented
jargon to make your head hurt. (If you do want to know, it means that connect() is a
function that “belongs” to DBI.) connect() takes several arguments:

n The data source, also known as the “data source name,” or “DSN.”The DSN
indicates which DBD module to use and possibly other parameters.

n The username and password for your MySQL account.
n An optional argument indicating additional connection attributes. If it is given,

this argument should be passed as a reference to a hash that specifies connection
attribute names and values.

Data source formats are determined by the requirements of the particular DBD module
you want to use. For the MySQL driver, allowable DSN formats include either of the
following:

DBI:mysql:db_name

DBI:mysql:db_name:host_name

The capitalization of DBI doesn’t matter, but mysql must be lowercase. db_name repre-
sents the name of the database you want to use and host_name indicates the host where
the server is running. If you omit the hostname, it defaults to localhost. (Section 8.2.9,
“Specifying Connection Parameters,” discusses other allowable data source formats.)

The connection-attribute hash that we’ve specified as the value for %conn_attrs
enables the RaiseError attribute and disables PrintError.These settings cause DBI to
check for database-related errors and exit with an error message if it detects one. (That’s
why you don’t see error-checking code anywhere in the dump_members.pl script; DBI
handles it all.) Section 8.2.3,“Handling Errors,” covers alternative methods of responding
to errors.

The attribute hash also enables the AutoCommit attribute. Currently, this is not strictly
necessary, but it does make explicit that the script enables autocommit mode for transac-
tion handling.The script doesn’t include any explicit transactions, but there is some
possibility that DBI will in the future require scripts to specify the AutoCommit attribute
explicitly. Doing so in scripts now ensures that they are ready if such a change does occur.

To specify the connection attributes, you could instead provide the hash reference
directly in the call to connect():

my $dbh = DBI->connect ($dsn, $user_name, $password,

{ RaiseError => 1, PrintError => 0, AutoCommit => 1 });

Different people find one style or the other easier to read or edit, but operationally
both approaches are the same.

If the connect() call succeeds, it returns a database handle, which we assign to $dbh.
By default, connect() returns undef if it fails. However, because the script enables
RaiseError, DBI will exit after displaying an error message if something goes wrong in

440 Chapter 8 Writing MySQL Programs Using Perl DBI

4418.2 Perl DBI Overview

the connect() call. (This is true for other DBI methods, too. I’ll describe what they
return to indicate an error, but they won’t return at all if RaiseError is enabled.)

After connecting to the database, dump_members.pl issues a SELECT statement to retrieve
the membership list, and then executes a loop to process each of the rows returned.These
rows constitute the result set.To perform a SELECT, prepare the statement first, and then
execute it:

issue query

my $sth = $dbh->prepare ("SELECT last_name, first_name, suffix, email,"

. " street, city, state, zip, phone FROM member ORDER BY last_name");

$sth->execute ();

prepare() is invoked using the database handle; it passes the SQL statement to the
driver for preprocessing before execution. Some drivers actually do something with the
statement at this point. Others just remember it until you invoke execute() to cause the
statement to be performed.The return value from prepare() is a statement handle, here
assigned to $sth.The statement handle is used for all further processing related to the
statement.

Notice that the statement string itself has no terminating semicolon.You no doubt
have the habit of terminating SQL statements with a ‘;’ character (developed through
long hours of interaction with the mysql program). However, it’s best to break yourself of
that habit when using DBI, because semicolons often cause statements to fail with syntax
errors.The same applies to adding \g or \G to statement strings—don’t.Those statement
terminators are conventions of mysql and are not used when issuing statements in DBI
scripts.The end of the statement string implicitly terminates the statement and no explicit
terminator is necessary.

When you invoke a method without passing it any arguments, you can leave off the
parentheses.These two calls are equivalent:

$sth->execute ();

$sth->execute;

I prefer to include the parentheses because they make the call look less like a variable
reference to me.Your preference may be different.

After you call execute(), the rows of the membership list are available for processing.
In the dump_members.pl script, the row-fetching loop simply prints the contents of each
row as a tab-delimited set of values:

read and display query result

while (my @ary = $sth->fetchrow_array ())

{

print join ("\t", @ary), "\n";

}

$sth->finish ();

fetchrow_array() returns an array containing the column values of the current row,
or an empty array when there are no more rows.Thus, the loop fetches successive rows
returned by the SELECT statement and prints each one with tabs between column values.

NULL values in the database are returned as undef values to the Perl script, but these
print as empty strings, not as the word “NULL”. undef column values also have another
effect when you run the script; they result in warnings like this from the Perl interpreter:

Use of uninitialized value in join at dump_members.pl line n.

These warnings are triggered by the inclusion of the use warnings statement. If you
remove the statement and run the script again, the warnings will go away. However,
warnings mode is useful for discovering problems (such as printing uninitialized variables!),
so a better way to eliminate the warnings is to detect and deal with undef values. Section
8.2.5,“Handling Statements That Return a Result Set,” discusses some techniques for
doing so.

In the print statement, note that the tab and newline characters (represented as the \t
and \n sequences, respectively) are enclosed in double quotes. In Perl, escape sequences
are interpreted only when they occur within double quotes, not within single quotes. If
single quotes had been used, the output would be full of literal instances of \t and \n.

After the row-fetching loop terminates, the call to finish() indicates that the state-
ment handle is no longer needed and that any temporary resources allocated to it can
be freed. In this script, the call to finish() is for illustrative purposes only. It need not
actually be invoked here, because the row-fetching call will do so automatically when it
encounters the end of the result set. finish() is more useful in situations where you
fetch only part of the result set and do not reach its end (for example, if you fetch only
the first row). Examples from this point on do not use finish() unless it’s necessary.

Having printed the membership list, we’re done, so we can disconnect from the server
before exiting:

$dbh->disconnect ();

dump_members.pl illustrates a number of concepts that are common to most DBI
programs, and at this point you could probably start writing your own DBI programs
without knowing anything more. For example, to write out the contents of some other
table, all you’d need to do is change the text of the SELECT statement that is passed to the
prepare() method.And in fact, if you want to see some applications of this technique,
you can skip ahead immediately to the part of Section 8.3,“Putting DBI to Work,” that
discusses how to generate the member list for the Historical League’s annual meeting
program and the League’s printed directory. However, DBI provides many other useful
capabilities.The next sections cover some of these in more detail so that you can see how
to do more than run simple SELECT statements in your Perl scripts.

442 Chapter 8 Writing MySQL Programs Using Perl DBI

4438.2 Perl DBI Overview

8.2.3 Handling Errors
dump_members.pl turned on the RaiseError error-handling attribute when it invoked
the connect() method so that errors would automatically terminate the script with an
error message rather than just returning error codes. It’s possible to handle errors in other
ways. For example, you can check for errors yourself rather than having DBI do it.

To see how to control DBI’s error-handling behavior, let’s take a closer look at the
connection attribute hash passed as the final argument to connect():

data source name, username, password, connection attributes

my $dsn = "DBI:mysql:sampdb:localhost";

my $user_name = "sampadm";

my $password = "secret";

my %conn_attrs = (RaiseError => 1, PrintError => 0, AutoCommit => 1);

connect to database

my $dbh = DBI->connect ($dsn, $user_name, $password, \%conn_attrs);

The two attributes relevant for error handling are RaiseError and PrintError:

n If RaiseError is enabled (set to a non-zero value), DBI raises an exception when
an error occurs in a DBI method. By default, this results in a call to die() to print
a message and exit the script.

n If PrintError is enabled, DBI calls warn() to print a message when a DBI error
occurs, but the script continues executing.

By default, RaiseError is disabled and PrintError is enabled. In this case, if the
connect() call fails, DBI prints a message but continues executing.Thus, with the default
error-handling behavior that you get if you omit the fourth argument to connect(), you
might check for errors like this:

my $dbh = DBI->connect ($dsn, $user_name, $password)

or exit (1);

In this case, if an error occurs, connect() returns undef to indicate failure, and that
triggers the call to exit().You need not print an error message because DBI already will
have printed one.

If you were to explicitly specify the default values for the error-checking attributes,
the settings passed to connect() would look like this:

my %conn_attrs = (RaiseError => 0, PrintError => 1, AutoCommit => 1);

my $dbh = DBI->connect ($dsn, $user_name, $password, \%conn_attrs)

or exit (1);

That’s more work to write out, but it’s also more obvious to the casual reader what the
error-handling behavior is.

To check for errors yourself and print your own messages, disable both RaiseError
and PrintError:

my %conn_attrs = (RaiseError => 0, PrintError => 0, AutoCommit => 1);

my $dbh = DBI->connect ($dsn, $user_name, $password, \%conn_attrs)

or die "Could not connect to server: $DBI::err ($DBI::errstr)\n";

The $DBI::err and $DBI::errstr, variables used in the code just shown are useful
for constructing error messages.They contain the MySQL error code and error string,
much like the mysql_errno() and mysql_error() C API functions. If no error
occurred, $DBI::err will be 0 or undef, and $DBI::errstr will be the empty string or
undef. (In other words, both variables will be false.)

If you want DBI to handle errors for you so that you don’t have to check for them
yourself, enable RaiseError and disable PrintError:

my %conn_attrs = (RaiseError => 1, PrintError => 0, AutoCommit => 1);

my $dbh = DBI->connect ($dsn, $user_name, $password, \%conn_attrs);

This is by far the easiest approach, and it is how almost all scripts presented in this
chapter are written.The reason for disabling PrintError when enabling RaiseError is
to prevent the possibility of having error messages being printed twice. (If both attributes
are enabled, the DBI handlers for both might be called under some circumstances.)

Enabling RaiseError may not be appropriate if you want to execute some sort of
cleanup code of your own when the script exits, although in this case you might be able
to do what you want by redefining the $SIG{__DIE__} signal handler.Another reason
you might want to avoid enabling the RaiseError attribute is that DBI prints technical
information in its messages, like this:

disconnect(DBI::db=HASH(0x197aae4)) invalidates 1 active statement. Either

destroy statement handles or call finish on them before disconnecting.

That’s useful information for a programmer, but it could be the kind of thing you
want to avoid presenting to the everyday user. In that case, it can be better to check for
errors yourself so that you can display messages that are more meaningful to the people
you expect to be using the script. Or you might consider redefining the $SIG{__DIE__}
handler here, too.That could be useful because you can enable RaiseError to simplify
error handling, but replace the default error messages that DBI presents with your own
messages.To provide your own __DIE__ handler, do something like the following before
executing any DBI calls:

$SIG{__DIE__} = sub { die "Sorry, an error occurred\n"; };

You can also define a subroutine in the usual fashion and set the signal handler value
using a reference to the subroutine:

sub die_handler

{

die "Sorry, an error occurred\n";

444 Chapter 8 Writing MySQL Programs Using Perl DBI

4458.2 Perl DBI Overview

}

$SIG{__DIE__} = \&die_handler;

The following script, dump_members2.pl, illustrates how you might write a script
when you want to check for errors yourself and print your own messages.
dump_members2.pl processes the same statement as dump_members.pl, but explicitly dis-
ables PrintError and RaiseError and then tests the result of every DBI call.When an
error occurs, the script invokes the subroutine bail_out() to print a message and the
contents of $DBI::err and $DBI::errstr before exiting:

#!/usr/bin/perl

dump_members2.pl - dump Historical League's membership list

use strict;

use warnings;

use DBI;

data source name, username, password, connection attributes

my $dsn = "DBI:mysql:sampdb:localhost";

my $user_name = "sampadm";

my $password = "secret";

my %conn_attrs = (RaiseError => 0, PrintError => 0, AutoCommit => 1);

connect to database

my $dbh = DBI->connect ($dsn, $user_name, $password, \%conn_attrs)

or bail_out ("Cannot connect to database");

issue query

my $sth = $dbh->prepare ("SELECT last_name, first_name, suffix, email,"

. " street, city, state, zip, phone FROM member ORDER BY last_name")

or bail_out ("Cannot prepare query");

$sth->execute ()

or bail_out ("Cannot execute query");

read and display query result

while (my @ary = $sth->fetchrow_array ())

{

print join ("\t", @ary), "\n";

}

!$DBI::err

or bail_out ("Error during retrieval");

$dbh->disconnect ()

or bail_out ("Cannot disconnect from database");

bail_out() subroutine - print error code and string, and then exit

sub bail_out

{

my $message = shift;

die "$message\nError $DBI::err ($DBI::errstr)\n";

}

bail_out() is similar to the print_error() function that we used for writing C pro-
grams in Chapter 7, except that bail_out() exits rather than returning to the caller.
bail_out() saves you the trouble of writing out the values of $DBI::err and
$DBI::errstr every time you want to print an error message.Also, by encapsulating
error message printing into a subroutine, you can change the format of your error mes-
sages uniformly throughout your script simply by making a change to the subroutine.

The dump_members2.pl script has a test following the row-fetching loop. Because the
script doesn’t automatically exit if an error occurs in fetchrow_array(), it’s prudent to
determine whether the loop terminated because the result set was read completely (normal
termination) or because an error occurred.The loop terminates either way, of course, but
if an error occurs, output from the script will be truncated.Without an error check, the
person running the script wouldn’t have any idea that anything was wrong! If you’re
checking for errors yourself, be sure to test the result of your fetch loops.

8.2.4 Handling Statements That Modify Rows
Statements that modify rows, such as DELETE, INSERT, REPLACE, and UPDATE, are relatively
easy to process compared to statements that return rows, such as SELECT, DESCRIBE,
EXPLAIN, and SHOW.To process a non-SELECT statement, pass it to do() using the database
handle.The do() method prepares and executes the statement in one step. For example,
to create a new member entry for Marcia Brown with an expiration date of June 3, 2012,
you can do the following:

$rows = $dbh->do ("INSERT INTO member (last_name,first_name,expiration)"

. " VALUES('Brown','Marcia','2012-06-03')");

The do() method returns a count of the number of rows affected, undef if something
goes wrong, and -1 if the number of rows is unknown for some reason. Errors can occur
for various reasons. (For example, the statement might be malformed or you might not
have permission to access the table.) For a non-undef return value, watch out for the case
in which no rows are affected.When this happens, do() doesn’t return the number 0;
instead, it returns the string "0E0" (Perl’s scientific notation form of zero). "0E0" evaluates
to 0 in a numeric context but is considered true in conditional tests so that it can be dis-
tinguished easily from undef. If do() returned 0, it would be more difficult to distinguish
between the occurrence of an error (undef) and the “no rows affected” case.You can
check for an error using either of the following tests:

446 Chapter 8 Writing MySQL Programs Using Perl DBI

4478.2 Perl DBI Overview

if (!defined ($rows))

{

print "An error occurred\n";

}

if (!$rows)

{

print "An error occurred\n";

}

In numeric contexts, "0E0" evaluates as 0, so the following code will correctly print
the number of rows for any non-undef value of $rows:

if (!$rows)

{

print "An error occurred\n";

}

else

{

$rows += 0; # force conversion to number if value is "0E0"

print "Number of rows affected: $rows\n";

}

You could also print $rows using a %d format specifier with printf() to force an im-
plicit conversion to a number:

if (!$rows)

{

print "An error occurred\n";

}

else

{

printf "Number of rows affected: %d\n", $rows;

}

The do() method is equivalent to using prepare() followed by execute().This
means that the preceding INSERT statement could be issued as follows rather than by
invoking do():

$sth = $dbh->prepare ("INSERT INTO member (last_name,first_name,expiration)"

. " VALUES('Brown','Marcia','2012-06-03')");

$rows = $sth->execute ();

8.2.5 Handling Statements That Return a Result Set
This section provides more information about several options that you have for executing
row-fetching loops for SELECT statements (or for other SELECT-like statements that return
rows, such as DESCRIBE, EXPLAIN, and SHOW). It also discusses how to get a count of the
number of rows in a result, how to handle result sets for which no loop is necessary, and
how to retrieve an entire result set all at once.

Table 8.3 DBI Row-Fetching Methods

Method Name Return Value

fetchrow_array() Array of row values

fetchrow_arrayref() Reference to array of row values

fetch() Same as fetchrow_arrayref()

fetchrow_hashref() Reference to hash of row values, keyed by column name

8.2.5.1 Writing Row-Fetching Loops
The dump_members.pl script retrieved data using a sequence of DBI methods:
prepare() lets the driver preprocess the statement, execute() begins executing the state-
ment, and fetchrow_array() fetches each row of the result set.

prepare() and execute() are fairly standard parts of processing any statement that
returns rows. However, for fetching the rows, fetchrow_array() is actually only one
choice from among several available methods (see Table 8.3).

448 Chapter 8 Writing MySQL Programs Using Perl DBI

The following examples show how to use each row-fetching method.The examples
loop through the rows of a result set, and for each row, print the column values separated
by commas.There are more efficient ways to write the code in some cases, but the exam-
ples are written for illustrative purposes (to show the syntax for accessing individual
column values), not for efficiency.

Use fetchrow_array() as follows:

while (my @ary = $sth->fetchrow_array ())

{

my $delim = "";

for (my $i = 0; $i < @ary; $i++)

{

$ary[$i] = "" if !defined ($ary[$i]); # NULL value?

print $delim, $ary[$i];

$delim = ",";

}

print "\n";

}

Each call to fetchrow_array() returns an array of row values, or an empty array
when there are no more rows.The inner loop tests each column value to see whether it’s
defined, and sets it to the empty string if not.This converts NULL values (which are repre-
sented by DBI as undef) to empty strings. It might seem that this is an entirely superflu-
ous action; after all, Perl prints nothing for both undef and the empty string.The reason
for the test is that if the script is run with warnings enabled, Perl will issue a “Use of
uninitialized value” warning message if you attempt to print an undef value. Converting

4498.2 Perl DBI Overview

undef to the empty string eliminates the warnings.You’ll see a similar construct used
elsewhere throughout this chapter.

If you prefer to print a different value for undef values, such as the string “NULL”, just
change the if-test a little:

while (my @ary = $sth->fetchrow_array ())

{

my $delim = "";

for (my $i = 0; $i < @ary; $i++)

{

$ary[$i] = "NULL" if !defined ($ary[$i]); # NULL value?

print $delim, $ary[$i];

$delim = ",";

}

print "\n";

}

When working with an array of values, you can shorten the code a bit by using map to
convert all the undef array elements at once:

while (my @ary = $sth->fetchrow_array ())

{

@ary = map { defined ($_) ? $_ : "NULL" } @ary;

print join (",", @ary), "\n";

}

map processes each element of the array using the expression within the braces and
returns an array containing the resulting values.

An alternative to assigning the return value of fetchrow_array() to an array variable
is to fetch column values into a set of scalar variables.This enables you to work with vari-
able names that are more meaningful than $ary[0], $ary[1], and so forth. Suppose that
you want to retrieve member names and email values into variables. Using
fetchrow_array(), you could select and fetch rows like this:

my $sth = $dbh->prepare ("SELECT last_name, first_name, suffix, email"

. " FROM member ORDER BY last_name");

$sth->execute ();

while (my ($last_name, $first_name, $suffix, $email)

= $sth->fetchrow_array ())

{

do something with variables

}

When you use a list of variables this way, you must make sure that the order of the
columns selected by the statement matches the order of the variables into which you
fetch the values. DBI has no idea of the order in which columns are named by your
SELECT statement, so it’s up to you to assign variables correctly.You can also cause column
values to be assigned to individual variables automatically when you fetch a row, using a

450 Chapter 8 Writing MySQL Programs Using Perl DBI

technique known as “parameter binding” (see Section 8.2.7,“Placeholders and Prepared
Statements”).

If you fetch a single value into a variable, be careful how you write the assignment. If
you write the beginning of your loop like this, it will work correctly:

while (my ($val) = $sth->fetchrow->array ()) ...

The value is fetched in list context, so the test will fail only when there are no more
rows. But if you write the test like this instead, it will fail in mysterious ways:

while (my $val = $sth->fetchrow->array ()) ...

The difference here is that the value is fetched in scalar context, so if $val happens to
be zero, undef, or the empty string, the test evaluates as false and terminates the loop,
even though you have not yet reached the end of the result set.

The second row-fetching method, fetchrow_arrayref(), is similar to
fetchrow_array(), but instead of returning an array containing the column values for
the current row, it returns a reference to the array, or undef when there are no more
rows. Use it like this:

while (my $ary_ref = $sth->fetchrow_arrayref ())

{

my $delim = "";

for (my $i = 0; $i < @{$ary_ref}; $i++)

{

$ary_ref->[$i] = "" if !defined ($ary_ref->[$i]); # NULL value?

print $delim, $ary_ref->[$i];

$delim = ",";

}

print "\n";

}

You access array elements through the array reference, $ary_ref.This is something
like dereferencing a pointer, so you use $ary_ref->[$i] rather than $ary[$i].To con-
vert the reference to an array, use the @{$ary_ref} construct.

fetchrow_arrayref() is unsuitable for fetching variables into a list. For example, the
following loop does not work:

while (my ($var1, $var2, $var3, $var4) = @{$sth->fetchrow_arrayref ()})

{

do something with variables

}

As long as fetchrow_arrayref() actually fetches a row, the loop functions properly.
But when there are no more rows, fetchrow_arrayref() returns undef, and @{undef}
isn’t legal. (It’s like trying to de-reference a NULL pointer in a C program.)

The third row-fetching method, fetchrow_hashref(), is used like this:

while (my $hash_ref = $sth->fetchrow_hashref ())

4518.2 Perl DBI Overview

{

my $delim = "";

foreach my $key (keys (%{$hash_ref}))

{

$hash_ref->{$key} = "" if !defined ($hash_ref->{$key}); # NULL value?

print $delim, $hash_ref->{$key};

$delim = ",";

}

print "\n";

}

Each call to fetchrow_hashref() returns a reference to a hash of row values keyed on
column names, or undef when there are no more rows. In this case, column values don’t
come out in any particular order, because members of Perl hashes are unordered. How-
ever, DBI keys the hash elements using the column names, so $hash_ref gives you a
single variable through which you can access any column value by name.This means you
can pull out the values (or any subset of them) in any order you want, and you don’t have
to know the order in which the columns were retrieved by the SELECT statement. For
example, to access the name and email columns, you can do this:

while (my $hash_ref = $sth->fetchrow_hashref ())

{

my $delim = "";

foreach my $key ("last_name", "first_name", "suffix", "email")

{

$hash_ref->{$key} = "" if !defined ($hash_ref->{$key}); # NULL value?

print $delim, $hash_ref->{$key};

$delim = ",";

}

print "\n";

}

fetchrow_hashref() is especially useful when you want to pass a row of values to a
function without requiring the function to know the order in which columns are named
in the SELECT statement. In this case, you would call fetchrow_hashref() to retrieve
rows and write a function that accesses values from the row hash using column names.

Keep in mind the following caveats when you use fetchrow_hashref():

n If you need every bit of performance, fetchrow_hashref() is not the best choice.
It’s less efficient than fetchrow_array() or fetchrow_arrayref().

n By default, the column names are used as key values with the same lettercase as the
column names written in the SELECT statement. In MySQL, column names are not
case sensitive, so the statement will work the same way no matter what lettercase
you use to write column names. But Perl hash key names are case sensitive, which
may cause you problems.To avoid potential lettercase mismatch problems, you can

452 Chapter 8 Writing MySQL Programs Using Perl DBI

tell fetchrow_hashref() to force column names into a particular lettercase by
passing it a NAME_lc or NAME_uc attribute:

$hash_ref = $sth->fetchrow_hashref ("NAME_lc"); # use lowercase names

$hash_ref = $sth->fetchrow_hashref ("NAME_uc"); # use uppercase names

n The hash contains one element per unique column name. If you’re performing a
join that returns columns from multiple tables with overlapping names, you won’t
be able to access all the column values. If you issue the following statement,
fetchrow_hashref() will return a hash having only one element, name:

SELECT a.name, b.name FROM a INNER JOIN b WHERE a.name = b.name

To avoid this problem, use aliases to make sure that each column has a distinct
name. For example, if you rewrite the statement as follows, fetchrow_hashref()
will return a reference to a hash with two elements, name and name2:

SELECT a.name, b.name AS name2 FROM a INNER JOIN b WHERE a.name = b.name

8.2.5.2 Determining the Number of Rows Returned by a Statement
How can you tell the number of rows returned by a SELECT or SELECT-like statement?
One way is to count the rows as you fetch them. In fact, this is the only portable way in
DBI to know how many rows a SELECT statement returned. If you’re using the MySQL
driver, you can call the rows() method using the statement handle after invoking
execute(). But this is not portable to other database systems, and the DBI documentation
explicitly discourages using rows() for SELECT statements. Even for MySQL, if you’ve
set the mysql_use_result attribute, rows() doesn’t return the correct result until
you’ve fetched all the rows. So you may as well just count the rows as you fetch them.
(See Appendix H (online), for more information about mysql_use_result.)

8.2.5.3 Fetching Single-Row Results
It’s not necessary to run a loop to get your results if the result set consists of a single row.
Suppose that you want to write a script, count_members.pl, that tells you the current
number of Historical League members.The code to perform the statement looks like
this:

issue query

my $sth = $dbh->prepare ("SELECT COUNT(*) FROM member");

$sth->execute ();

read and display query result

my $count = $sth->fetchrow_array ();

$sth->finish ();

$count = "can't tell" if !defined ($count);

print "$count\n";

4538.2 Perl DBI Overview

The SELECT statement will return only one row, so no loop is required; we call
fetchrow_array() just once. In addition, because we’re selecting only one column, it’s
not even necessary to assign the return value to an array.When fetchrow_array() is
called in a scalar context (where a single value rather than a list is expected), it returns
one column of the row, or undef if no row is available. DBI does not define which
element of the row fetchrow_array() returns in scalar context, but that’s all right for
the statement just shown. It retrieves only a single value, so there is no ambiguity about
what value is returned.

This code invokes finish() to free the result set, even though the set consists of just
one row. (fetchrow_array() frees a result set implicitly when it notices that you have
reached the end of the set, but that would happen here only if you called it a second
time.)

Another type of query for which you expect at most a single row is one that contains
LIMIT 1 to restrict the number of rows returned.A common use for this is to return the
row that contains the maximum or minimum value for a particular column. For example,
the following query prints the name and birth date of the president who was born most
recently:

my $stmt = "SELECT last_name, first_name, birth FROM president"

. " WHERE birth = (SELECT MAX(birth) FROM president)";

my $sth = $dbh->prepare ($stmt);

$sth->execute ();

my ($last_name, $first_name, $birth) = $sth->fetchrow_array ();

$sth->finish ();

if (!defined ($last_name))

{

print "Query returned no result\n";

}

else

{

print "Most recently born president: $first_name $last_name ($birth)\n";

}

Other types of statements for which no fetch loop is necessary are those that use
MAX() or MIN() to select a single row. But in all these cases, an even easier way to get a
single-row result is to use the database handle method selectrow_array(), which com-
bines prepare(), execute() and row fetching into a single call. It returns an array (not a
reference), or an empty array if the query returned no row or an error occurred.The pre-
vious example can be rewritten like this using selectrow_array():

my $stmt = "SELECT last_name, first_name, birth FROM president"

. " WHERE birth = (SELECT MAX(birth) FROM president)";

my ($last_name, $first_name, $birth) = $dbh->selectrow_array ($stmt);

if (!defined ($last_name))

{

454 Chapter 8 Writing MySQL Programs Using Perl DBI

print "Query returned no result\n";

}

else

{

print "Most recently born president: $first_name $last_name ($birth)\n";

}

8.2.5.4 Working with Complete Result Sets
When you use a fetch loop, DBI provides no way to process the rows in any order other
than that in which they are returned by the loop.Also, after you fetch a row, the previous
row is lost unless you take steps to maintain it in memory.These behaviors aren’t always
desirable. For example, they’re unsuitable if you need to make multiple passes through the
rows to perform a statistical calculation. (Perhaps you want to go through the result set
once to assess some general numeric characteristics of your data, and then step through
the rows again performing a more specific analysis.)

It’s possible to access your result set as a whole in a couple different ways.You can per-
form the usual fetch loop and save each row as you fetch it, or you can use a method that
returns an entire result set all at once. Either way, you end up with a matrix containing
one row per row in the result set, and as many columns as you selected.Then you can
process elements of the matrix in any order you want, as many times as you want.The
following discussion describes both approaches.

One way to use a fetch loop to capture the result set is to use fetchrow_array() and
save an array of references to the rows.The following code does the same thing as the
fetch-and-print loop in dump_members.pl, except that it saves all the rows, and then
prints the matrix. It illustrates how to determine the number of rows and columns in the
matrix and how to access individual members of the matrix:

my @matrix = (); # array of array references

while (my @ary = $sth->fetchrow_array ()) # fetch each row

{

push (@matrix, [@ary]); # save reference to just-fetched row

}

determine dimensions of matrix

my $rows = scalar (@matrix);

my $cols = ($rows == 0 ? 0 : scalar (@{$matrix[0]}));

for (my $i = 0; $i < $rows; $i++) # print each row

{

my $delim = "";

for (my $j = 0; $j < $cols; $j++)

{

$matrix[$i][$j] = "" if !defined ($matrix[$i][$j]); # NULL value?

4558.2 Perl DBI Overview

print $delim, $matrix[$i][$j];

$delim = ",";

}

print "\n";

}

When you check the dimensions of the matrix, the number of rows must be deter-
mined first because calculation of the number of columns is contingent on whether the
matrix is empty. If $rows is 0, the matrix is empty and $cols becomes 0 as well. Other-
wise, the number of columns can be calculated as the number of elements in the first row,
using the syntax @{$matrix[0]} to access the row as a whole.

The preceding example fetches each row as an array, and then saves a reference to it.
You might suppose that it would be more efficient to call fetchrow_arrayref() instead
to retrieve row references directly:

my @matrix = (); # array of array references

while (my $ary_ref = $sth->fetchrow_arrayref ())

{

push (@matrix, $ary_ref); # save reference to just-fetched row

}

That doesn’t work, because fetchrow_arrayref() reuses the array to which the refer-
ence points.The resulting matrix is an array of references, each of which points to the
same row—the final row retrieved.Therefore, if you want to construct a matrix by fetch-
ing a row at a time, use fetchrow_array() rather than fetchrow_arrayref().

As an alternative to using a fetch loop, invoke one of the DBI methods that return the
entire result set. For example, fetchall_arrayref() returns a reference to an array of
references, each of which points to the contents of one row of the result set. (That’s a
mouthful; it means that the return value is a reference to a matrix.) To use fetchall_
arrayref(), call prepare() and execute(), and then retrieve the result like this:

fetch all rows as a reference to an array of references

my $matrix_ref = $sth->fetchall_arrayref ();

You can determine the dimensions of the array and access its elements as follows:

determine dimensions of matrix

my $rows = (!defined ($matrix_ref) ? 0 : scalar (@{$matrix_ref}));

my $cols = ($rows == 0 ? 0 : scalar (@{$matrix_ref->[0]}));

for (my $i = 0; $i < $rows; $i++) # print each row

{

my $delim = "";

for (my $j = 0; $j < $cols; $j++)

{

$matrix_ref->[$i][$j] = "" if !defined ($matrix_ref->[$i][$j]); # NULL?

456 Chapter 8 Writing MySQL Programs Using Perl DBI

print $delim, $matrix_ref->[$i][$j];

$delim = ",";

}

print "\n";

}

fetchall_arrayref() returns a reference to an empty array if the result set is empty.
The result is undef if an error occurs, so if you don’t have RaiseError enabled, you must
check the return value before you start using it.

The number of rows and columns is determined by whether the matrix is empty. If
you want to access an entire row $i of the matrix as an array, use the syntax
@{$matrix_ref->[$i]}.

It’s certainly simpler to use fetchall_arrayref() to retrieve a result set than to write
a row-fetching loop, although the syntax for accessing array elements is a little trickier.A
method that’s similar to fetchall_arrayref() but that does even more work is
selectall_arrayref().This method performs the entire prepare(), execute(), fetch
loop sequence for you.To use selectall_arrayref(), pass your statement directly to it
using the database handle:

fetch all rows as a reference to an array of references

my $matrix_ref = $dbh->selectall_arrayref ($stmt);

determine dimensions of matrix

my $rows = (!defined ($matrix_ref) ? 0 : scalar (@{$matrix_ref}));

my $cols = ($rows == 0 ? 0 : scalar (@{$matrix_ref->[0]}));

for (my $i = 0; $i < $rows; $i++) # print each row

{

my $delim = "";

for (my $j = 0; $j < $cols; $j++)

{

$matrix_ref->[$i][$j] = "" if !defined ($matrix_ref->[$i][$j]); # NULL?

print $delim, $matrix_ref->[$i][$j];

$delim = ",";

}

print "\n";

}

8.2.5.5 Checking for NULL Values
When you retrieve information from a database, you might need to distinguish between
column values that are NULL from those that are zero or the empty string.This is easy to
do because DBI returns NULL column values as undef. However, you must be sure to use
the correct test. If you try the following code fragment, it prints "false!" all three times:

$col_val = undef; if (!$col_val) { print "false!\n"; }

$col_val = 0; if (!$col_val) { print "false!\n"; }

4578.2 Perl DBI Overview

$col_val = ""; if (!$col_val) { print "false!\n"; }

What that demonstrates is that the form of the test is unable to distinguish between
undef, 0, and the empty string.The next fragment prints "false!" for both tests, indicat-
ing that the test cannot distinguish undef from the empty string:

$col_val = undef; if ($col_val eq "") { print "false!\n"; }

$col_val = ""; if ($col_val eq "") { print "false!\n"; }

This fragment prints the same output, showing that the second test fails to distinguish
0 from the empty string:

$col_val = "";

if ($col_val eq "") { print "false!\n"; }

if ($col_val == 0) { print "false!\n"; }

To distinguish between undef (NULL) column values and non-undef values, use
defined().After you know a value doesn’t represent NULL, you can distinguish between
other types of values using appropriate tests. For example:

if (!defined ($col_val)) { print "NULL\n"; }

elsif ($col_val eq "") { print "empty string\n"; }

elsif ($col_val == 0) { print "zero\n"; }

else { print "other\n"; }

It’s important to perform the tests in the proper order because both the second and
third comparisons are true if $col_val is an empty string. If you reverse the order of
those comparisons, you’ll incorrectly interpret empty strings as zero.

8.2.6 Quoting Special Characters in Statement Strings
Thus far, we have constructed statements in the most basic way possible, using simple
quoted strings.That causes a problem at the Perl lexical level when your quoted strings
contain quoted values.You can also have problems at the SQL level when you want to
insert or select values that contain quotes, backslashes, or binary data. If you specify a
statement as a Perl quoted string, you must escape any occurrences of the quoting
character that occur within the statement string itself:

$stmt = 'INSERT INTO absence VALUES(14,\'2008-09-16\')';

$stmt = "INSERT INTO absence VALUES(14,\"2008-09-16\")";

Both Perl and MySQL allow you to quote strings using either single or double quotes,
so you can sometimes avoid escaping by mixing quote characters:

$stmt = 'INSERT INTO absence VALUES(14,"2008-09-16")';

$stmt = "INSERT INTO absence VALUES(14,'2008-09-16')";

458 Chapter 8 Writing MySQL Programs Using Perl DBI

However, you must take care that the strings will be interpreted as you want. Consider
these factors:

n The two types of quotes are not equivalent in Perl.Variable references are inter-
preted only within double quotes.Therefore, single quotes are not very useful when
you want to construct statements by embedding variable references in the statement
string. For example, if the value of $var is 14, the following two strings are not
equivalent:

"SELECT * FROM member WHERE member_id = $var"

'SELECT * FROM member WHERE member_id = $var'

The resulting strings as Perl interprets them as follows:

"SELECT * FROM member WHERE member_id = 14"

'SELECT * FROM member WHERE member_id = $var'

Clearly, the first string is more like something you’d want to pass to the MySQL
server. For the second, the server will interpret $var as the literal name of a column
in the member table.

n Single quotes and double quotes are not always equivalent in MySQL. If the server
is running with the ANSI_QUOTES SQL mode disabled, you can indeed use either
type of quote to quote a string. But if ANSI_QUOTES is enabled, strings must be
quoted with single quotes; double quotes can be used only for quoting identifiers
such as database or table names. Consequently, it’s safest to quote strings with single
quotes, because that works regardless of whether ANSI_QUOTES is on or off.

At the Perl level, an alternative to quoting strings with double quotes is to use the
qq{} construct, which tells Perl to treat everything between qq{ and } as a double-quoted
string. (Think of double-q as meaning “double-quote.”) For example, these two lines are
equivalent:

$date = "2008-09-16";

$date = qq{2008-09-16};

When you use qq{}, you can construct statements without thinking so much about
quoting issues because you can use quote characters (single or double) freely within the
statement string without having to escape them. In addition, variable references are inter-
preted. Both properties of qq{} are illustrated by the following INSERT statement:

$id = 14;

$date = "2008-09-16";

$stmt = qq{INSERT INTO absence VALUES($id,'$date')};

You don’t have to use ‘{’ and ‘}’ as the qq delimiters. Other forms, such as qq() and
qq//, will work, too, as long as the closing delimiter doesn’t occur within the string. I
prefer qq{} because the ‘}’ character is less likely than ‘)’ or ‘/’ to occur within the text of
the statement and be mistaken for the end of the statement string. For example,‘)’ occurs

4598.2 Perl DBI Overview

within the INSERT statement just shown, so qq() would not be a useful construct for
quoting the statement string.

The qq{} construct can cross line boundaries, which is useful if you want to make the
statement string stand out from the surrounding Perl code:

$id = 14;

$date = "2008-09-16";

$stmt = qq{

INSERT INTO absence VALUES($id,'$date')

};

This is also useful if you simply want to format your statement on multiple lines to
make it more readable. For example, the SELECT statement in the dump_members.pl script
looks like this:

$sth = $dbh->prepare ("SELECT last_name, first_name, suffix, email,"

. " street, city, state, zip, phone FROM member ORDER BY last_name");

With qq{}, it could be written like this instead:

$sth = $dbh->prepare (qq{

SELECT

last_name, first_name, suffix, email,

street, city, state, zip, phone

FROM member

ORDER BY last_name

});

It’s true that double-quoted strings can cross line boundaries, too. But I find that qq{
and } stand out better than two lone ‘"’ characters and make the statement easier to read.
This book uses both forms; see which you prefer.

The qq{} construct takes care of quoting issues at the Perl lexical level so that you can
use quotes in a string easily without having Perl complain about them. However, you
must also think about SQL-level syntax. Consider this attempt to insert a row into the
member table:

$last = "O'Malley";

$first = "Brian";

$expiration = "2013-09-01";

$rows = $dbh->do (qq{

INSERT INTO member (last_name,first_name,expiration)

VALUES('$last','$first','$expiration')

});

The resulting string that do() sends to MySQL looks like this:

INSERT INTO member (last_name,first_name,expiration)

VALUES('O'Malley','Brian','2013-09-01')

460 Chapter 8 Writing MySQL Programs Using Perl DBI

That is not legal SQL because for 'O'Malley' a single quote occurs within a single-
quoted string.We encountered this quoting problem earlier in Chapter 7. There we dealt
with the issue by using the mysql_real_escape_string() function. DBI provides a
similar mechanism: For each quoted value that you want to use literally in a statement,
call the quote() method and use its return value instead. The preceding example is more
properly written as follows:

$last = $dbh->quote ("O'Malley");

$first = $dbh->quote ("Brian");

$expiration = $dbh->quote ("2013-09-01");

$rows = $dbh->do (qq{

INSERT INTO member (last_name,first_name,expiration)

VALUES($last,$first,$expiration)

});

Now the string that do() sends to MySQL looks like this, with the quote that occurs
within the quoted string properly escaped:

INSERT INTO member (last_name,first_name,expiration)

VALUES('O\'Malley','Brian','2013-09-01')

Note that when you refer to $last and $first in the statement string, you do not
add any surrounding quotes; the quote() method supplies them for you. If you add
quotes yourself, your statement will have too many of them, as shown by the following
example:

$value = "paul";

$quoted_value = $dbh->quote ($value);

print "The quoted value is: $quoted_value\n";

print "The quoted value is: '$quoted_value'\n";

These statements produce the following output:

The quoted value is: 'paul'

The quoted value is: ''paul''

In the second case, the string contains too many quotes.

8.2.7 Placeholders and Prepared Statements
In the preceding sections, we constructed statements by putting data values to be inserted
or used as selection criteria directly into the statement string. It’s not necessary to do this.
DBI allows you to use special markers called “placeholders” within a statement string, and
then supply the values to be used in place of those markers when the statement is exe-
cuted.This is called “binding the values to the statement.” One reason for doing this is
that you get the character-quoting benefits of the quote() method without having to
invoke quote() explicitly.Another reason is improved performance: If you’re executing a

4618.2 Perl DBI Overview

statement over and over within a loop, you can prepare it first and then execute it multiple
times.This avoids the overhead of preparing the statement before each execution.

As an illustration of how placeholders work, suppose that you’re beginning a new
semester at school and you want to clear out the student table for your gradebook and
then initialize it with the new students by using a list of student names contained in a file.
Without placeholders, you can delete the existing table contents and load the new names
like this:

$dbh->do (qq{ DELETE FROM student }); # delete existing rows

while (<>) # read each input line,

{ # use it to add a new row

chomp;

$_ = $dbh->quote ($_);

$dbh->do (qq{ INSERT INTO student SET name = $_ });

}

This approach requires that you handle special characters in the data values yourself by
calling quote(). It’s also inefficient, because the basic form of the INSERT statement is the
same each time, and do() calls prepare() and execute() each time through the loop. It’s
more efficient to call prepare() a single time to set up the INSERT before entering the
loop and invoke only execute() within the loop.That avoids all invocations of
prepare() but one. DBI allows this to be done as follows:

$dbh->do (qq{ DELETE FROM student }); # delete existing rows

my $sth = $dbh->prepare (qq{ INSERT INTO student SET name = ? });

while (<>) # read each input line,

{ # use it to add a new row

chomp;

$sth->execute ($_);

}

In general, if you find yourself calling do() inside a loop, it’s better to invoke
prepare() prior to the loop and execute() inside it. Note the ‘?’ character in the
INSERT statement.That’s the placeholder.When execute() is invoked, you pass the value
to be substituted for the placeholder when the statement is sent to the server. DBI auto-
matically quotes special characters in the value, so there is no need to call quote().

Some things to note about placeholders:

n Do not enclose the placeholder character in quotes within the statement string. If
you do, it will not be recognized as a placeholder.

n Do not use the quote() method to specify placeholder values, or you will get extra
quotes in the values you’re inserting.

n You can have more than one placeholder in a statement string, but be sure to pass
as many values to execute() as there are placeholder markers.

462 Chapter 8 Writing MySQL Programs Using Perl DBI

n Each placeholder must specify a single value, not a list of values. For example, when
you want to specify multiple data values, you cannot prepare and execute a state-
ment like this:

my $sth = $dbh->prepare (qq{

INSERT INTO member last_name, first_name VALUES(?)

});

$sth->execute ("Adams,Bill,2014-07-19");

You must specify the values separately and provide one placeholder for each:

my $sth = $dbh->prepare (qq{

INSERT INTO member last_name, first_name VALUES(?,?,?)

});

$sth->execute ("Adams","Bill","2014-07-19");

n To specify NULL as a placeholder value, use undef.
n Placeholders and quote() are intended only for data values. Do not try to use a

placeholder for keywords such SELECT or for identifiers such database, table, or
column names. It won’t work because the keyword or identifier will be placed into
the statement surrounded by quotes, and the statement will fail with a syntax error.

For some database engines, you get another performance benefit from using place-
holders, in addition to improved efficiency in loops. Certain engines cache prepared
statements and possibly the statement execution plan.That way, if the same statement is
received by the server later, it can be reused and processed more quickly without the
initial preparation overhead. Statement caching is especially helpful for complex SELECT
statements because it may take some time to prepare the statement and generate a good
execution plan. Placeholders give you a better chance at making the statement cacheable
because they make statements more generic than statements constructed by embedding
specific data values directly in the statement string.

MySQL does not cache execution plans. MySQL has a query cache, but it operates by
caching result sets for query strings, not by caching execution plans.The query cache is
discussed in Chapter 5,“Query Optimization.”

By default, MySQL does not cache prepared statements, either. Parameter binding to
placeholders takes place on the client side within the DBD::mysql module. However, the
binary protocol implemented in the C client library does allow for statements to be pre-
pared on the server side and for parameter binding to be handled by the server.
DBD::mysql can take advantage of this capability.

To turn on server-side prepared statements and parameter binding, all you need to do
is enable the mysql_server_prepare option. For example, given a database handle $dbh,
this can be done as follows:

$dbh->{mysql_server_prepare} = 1;

To disable server-side prepared statements, set the option to 0.

4638.2 Perl DBI Overview

For mysql_server_prepare support, it is best to use DBD::mysql 3.0009 or higher
because there were some changes to the default value of this option in some of the
preceding releases.

Even if you don’t use MySQL’s server-side capabilities for prepared statements, it still
can be beneficial to write your statements using placeholders:When you port a script for
use with a database engine that does cache execution plans, it will execute statements
with placeholders more efficiently than those without.

The Mystery undef
Some DBI methods like do() and selectrow_array() that execute a statement string
enable you to provide placeholder values to be bound to any ‘?’ characters in the statement.
For example, you can update a row like this:

my $rows = $dbh->do (

"UPDATE member SET expiration = ? WHERE member_id = ?",

undef, "2007-01-01", 14);

Or fetch a row like this:

my $ref = $dbh->selectrow_arrayref (

"SELECT * FROM member WHERE member_id = ?",

undef, 14);

Observe that, in both cases, the placeholder values are preceded by a mysterious undef
argument that appears to do nothing. The reason it’s there is that, for statement-execution
methods that allow placeholder arguments, those arguments are preceded by another argu-
ment that can be used to specify statement-processing attributes. Such attributes are rarely
(if ever) used, but the argument still must be present, so just specify it as undef.

8.2.8 Binding Query Results to Script Variables
Placeholders enable you to substitute values into a statement string at statement execution
time. In other words, you can parameterize the “input” to the statement. DBI also provides
a corresponding output operation called “parameter binding” that enables you to parame-
terize the “output” by retrieving column values into variables automatically when you
fetch a row without having to assign values to the variables yourself.

Suppose that you have a query to retrieve names from the member table.You can tell
DBI to assign the values of the selected columns to Perl variables.When you fetch a row,
the variables are automatically updated with the corresponding column values, which
makes the retrieval very efficient. Here’s an example that shows how to bind the columns
to variables and then access them in the fetch loop:

my ($last_name, $first_name, $suffix);

my $sth = $dbh->prepare (qq{

SELECT last_name, first_name, suffix

FROM member ORDER BY last_name, first_name

});

$sth->execute ();

464 Chapter 8 Writing MySQL Programs Using Perl DBI

$sth->bind_col (1, \$last_name);

$sth->bind_col (2, \$first_name);

$sth->bind_col (3, \$suffix);

print "$last_name, $first_name, $suffix\n" while $sth->fetch ();

bind_col() should be called after execute() and before fetching rows. Each call
should specify a column number and a reference to the variable you want to associate
with the column. Column numbers begin with 1.

As an alternative to individual calls to bind_col(), you can pass all the variable refer-
ences in a single call to bind_columns():

my ($last_name, $first_name, $suffix);

my $sth = $dbh->prepare (qq{

SELECT last_name, first_name, suffix

FROM member ORDER BY last_name, first_name

});

$sth->execute ();

$sth->bind_columns (\$last_name, \$first_name, \$suffix);

print "$last_name, $first_name, $suffix\n" while $sth->fetch ();

bind_columns() should be called after execute() and before fetching rows.

8.2.9 Specifying Connection Parameters
The most direct way to establish a server connection is to specify all the connection
parameters as arguments to the connect() method:

my $dsn = "DBI:mysql:db_name:host_name";

my $dbh = DBI->connect ($dsn, user_name, password);

If you leave out connection parameters, DBI attempts to determine what values to use
as follows:

n The DBI_DSN environment variable is used if set and the data source name (DSN) is
undefined or is the empty string.The DBI_USER and DBI_PASS environment vari-
ables are used if set and the username and password are undefined (but not if they
are the empty string). Under Windows, the USER variable is used if the username is
undefined.

n If you leave out the hostname, DBI attempts to connect to the local host.
n If you specify undef or an empty string for the username, it defaults to your Unix

login name. Under Windows, the username defaults to ODBC.
n If you specify undef or an empty string for the password, no password is sent.

You can specify certain options in the DSN by appending them to the initial part of
the string, each preceded by a semicolon. For example, you can use the
mysql_read_default_file option to specify an option file pathname:

my $dsn = "DBI:mysql:sampdb;mysql_read_default_file=/home/paul/.my.cnf";

4658.2 Perl DBI Overview

When the script executes, it will read the named file for connection parameters. Sup-
pose that /home/paul/.my.cnf has the following contents:

[client]

host=localhost

user=sampadm

password=secret

In this case, the connect() call will attempt to connect to the MySQL server on
localhost and will connect as user sampadm with password secret. Under Unix, you can
tell your script to use the option file that belongs to the person who happens to be run-
ning it by parameterizing the filename like this:

my $dsn = "DBI:mysql:sampdb;mysql_read_default_file=$ENV{HOME}/.my.cnf";

$ENV{HOME} contains the pathname to the home directory of the user running the
script, so the connection parameters that it uses will be pulled from that user’s own option
file. By writing a script in this way, you don’t have to embed connection parameters liter-
ally in the script.

Using mysql_read_default_file causes the script to read only the named option file,
which may be undesirable if you want it to look for parameters in system-wide option
files as well (such as /etc/my.cnf under Unix or C:\my.ini under Windows).To have the
script read all the standard option files for connection parameters, use mysql_read_
default_group instead.This option causes parameters in the [client] group to be used,
as well as in the group that you specify in the option’s value. For example, if you have
options that are specific to your sampdb-related scripts, you can list them in a [sampdb]
group and then use a data source value like this:

my $dsn = "DBI:mysql:sampdb;mysql_read_default_group=sampdb";

If you want to read just the [client] group from the standard option files, specify the
option like this:

my $dsn = "DBI:mysql:sampdb;mysql_read_default_group=client";

For more details on options for specifying the data source string, see Appendix H
(online). For more information on the format of MySQL option files, see Appendix F,
“MySQL Program Reference.”

One difficulty with using mysql_read_default_file on Windows is that file path-
names typically begin with a drive letter and a colon.That’s a problem, because DBI inter-
prets colon as the character that separates parts of the DSN string. It’s possible to work
around this, although the method is ugly:

1. Use chdir() to change location to the root directory of the drive where the option
file is located, so that pathnames specified without a drive letter will be interpreted
relative to that drive.

2. Specify the filename as the value of the mysql_read_default_file option in the
DSN, but without the leading drive letter or colon.

466 Chapter 8 Writing MySQL Programs Using Perl DBI

3. If it’s necessary to leave the current directory undisturbed by the connect operation,
save the current directory pathname before calling connect() and then chdir()
back to it after connecting.

The following code fragment shows how to do this if you want to use the option file
C:\my.ini. (Note that backslashes in Windows pathnames are specified as slashes in Perl
strings.)

save current directory pathname

use Cwd;

my $orig_dir = cwd ();

change to root dir of drive where file is located

chdir ("C:/") or die "Cannot chdir: $!\n";

connect using parameters in C:\my.ini

my $dsn = "DBI:mysql:sampdb:localhost;mysql_read_default_file=/my.ini";

my %conn_attrs = (RaiseError => 1, PrintError => 0, AutoCommit => 1);

my $dbh = DBI->connect ($dsn, undef, undef, \%conn_attrs);

change back to original directory

chdir ($orig_dir) or die "Cannot chdir: $!\n";

Using an option file doesn’t prevent you from specifying connection parameters in the
connect() call (for example, if you want the script to connect as a particular user).Any
explicit hostname, username, and password values specified in the connect() call override
connection parameters found in the option file. For example, you might want your script
to parse options such as --host and --user from the command line and use those values,
if they are given, in preference to any found in an option file.That would be useful be-
cause it’s the way the standard MySQL clients behave.Your DBI scripts would therefore
be consistent with that behavior.

For the remaining command-line scripts that we develop in this chapter, I’ll use some
standard connection setup and teardown code. I’ll just show it once here so that we can
concentrate on the main body of each script as we write it:

#!/usr/bin/perl

use strict;

use warnings;

use DBI;

parse connection parameters from command line if given

use Getopt::Long;

$Getopt::Long::ignorecase = 0; # options are case sensitive

$Getopt::Long::bundling = 1; # -uname = -u name, not -u -n -a -m -e

default parameters - all undefined initially

my ($host_name, $password, $port_num, $socket_name, $user_name);

4678.2 Perl DBI Overview

GetOptions (

=i means an integer value is required after option

=s means a string value is required after option

"host|h=s" => \$host_name,

"password|p=s" => \$password,

"port|P=i" => \$port_num,

"socket|S=s" => \$socket_name,

"user|u=s" => \$user_name

) or exit (1);

construct data source

my $dsn = "DBI:mysql:sampdb";

$dsn .= ";host=$host_name" if $host_name;

$dsn .= ";port=$port_num" if $port_num;

$dsn .= ";mysql_socket=$socket_name" if $socket_name;

$dsn .= ";mysql_read_default_group=client";

connect to server

my %conn_attrs = (RaiseError => 1, PrintError => 0, AutoCommit => 1);

my $dbh = DBI->connect ($dsn, $user_name, $password, \%conn_attrs);

This code initializes DBI, looks for connection parameters on the command line, and
then makes the connection to the MySQL server using parameters from the command
line or found in the [client] group in the standard option files. If you have your con-
nection parameters listed in your option file, you won’t have to enter them when you run
a script that uses this code.

The final part of each script will be similar, too; it simply terminates the connection
before exiting:

$dbh->disconnect ();

When we get to Web programming, Section 8.4,“Using DBI in Web Applications,”
we’ll modify the connection setup code a bit, but the basic idea will be similar.

There is one unfortunate difference between the way the standard MySQL clients and
the Getopt module handle command-line options.The standard clients have special
option-processing code that allows a password option (--password or -p) to be specified
with or without an immediately following password value, and to prompt for a password if
the value is not given.

With Getopt, if you try to make the password value optional for --password and -p,
you cannot unambiguously specify the option without a value unless it is either the last
argument on the command line or is immediately followed by another option. Suppose
that you have a script that expects a table name argument to follow the options. If the
script is invoked as follows, Getopt will interpret mytbl as the password value rather than
prompting for a password:

% ./myscript.pl -u paul -p mytbl

468 Chapter 8 Writing MySQL Programs Using Perl DBI

To avoid this kind of problem, the code in the Perl framework just shown requires a
password option, if given, to be specified with a value.

8.2.10 Debugging
To debug a malfunctioning DBI script, two techniques are commonly used, either alone
or in tandem. First, you can sprinkle print statements throughout your script.This enables
you to tailor your debugging output the way you want it, but you must add the statements
manually. Second, you can use DBI’s built-in tracing capabilities.This is more general and
more systematic, and it occurs automatically after you turn it on. DBI tracing also shows
you information about the operation of the driver that you cannot get otherwise.

8.2.10.1 Debugging Using Print Statements
Here’s a common question:“I have a statement that works fine when I execute it using
the mysql program, but it doesn’t work from my DBI script. How come?” It’s not unusual
to find that the DBI script really is issuing a different statement than you think. If you
print a statement before executing it, you might be surprised to see what you’re actually
sending to the server. Suppose that a statement as you type it into mysql looks like this:

mysql> INSERT INTO member (last_name,first_name,expiration)

-> VALUES('Brown','Marcia','2012-06-03');

Then you try the same thing in a DBI script (leaving out the terminating semicolon, of
course):

$last = "Brown";

$first = "Marcia";

$expiration = "2012-06-03";

$stmt = qq{

INSERT INTO member (last_name,first_name,expiration)

VALUES($last,$first,$expiration)

};

$rows = $dbh->do ($stmt);

That doesn’t work, even though it’s the same statement. Or is it? Try printing it:

print "$stmt\n";

Here is the result:

INSERT INTO member (last_name,first_name,expiration)

VALUES(Brown,Marcia,2012-06-03)

From this output, you can see that the statement is not the same at all.There are no
quotes around the values in the VALUES() list. One way to specify the statement properly
is like this, using quote():

$last = $dbh->quote ("Brown");

$first = $dbh->quote ("Marcia");

$expiration = $dbh->quote ("2012-06-03");

4698.2 Perl DBI Overview

$stmt = qq{

INSERT INTO member (last_name,first_name,expiration)

VALUES($last,$first,$expiration)

};

$rows = $dbh->do ($stmt);

Alternatively, you can specify the statement using placeholders and pass the values to be
inserted into it as arguments to the do() method:

$last = "Brown";

$first = "Marcia";

$expiration = "2012-06-03";

$stmt = qq{

INSERT INTO member (last_name,first_name,expiration)

VALUES(?,?,?)

};

$rows = $dbh->do ($stmt, undef, $last, $first, $expiration);

Unfortunately, when you use the latter approach, you cannot see what the complete
statement looks like by printing it because the placeholder values aren’t evaluated until
you invoke do().When you use placeholders, tracing may be a more helpful debugging
method.

8.2.10.2 Debugging Using Tracing
DBI offers a tracing mechanism that generates debugging information to help you figure
out why a script doesn’t work properly.Trace levels range from 0 (off) to 15 (maximum
information). Generally, trace levels 1 through 4 are the most useful. For example, a level 2
trace shows you the text of statements that you’re executing (including the result of place-
holder substitutions), the result of calls to quote(), and so forth.This can be of immense
help in tracking down a problem.

You can control tracing from within individual scripts using the trace() method, or you
can set the DBI_TRACE environment variable to affect tracing for all DBI scripts you run.

To use the trace() call, pass a trace level argument and optionally a filename. If you
specify no filename, all trace output goes to STDERR; otherwise, it goes to the named file.
The following call sets up a level 1 trace to STDERR:

DBI->trace (1);

This call sets up a level 2 trace to the trace.out file:

DBI->trace (2, "trace.out");

To disable tracing, specify a trace level of zero:

DBI->trace (0);

When invoked as DBI->trace(), all DBI operations are traced. For a more fine-
grained approach, enable tracing at the individual handle level.This is useful when you
have a good idea where a problem in your script lies and you don’t want to wade through

470 Chapter 8 Writing MySQL Programs Using Perl DBI

the trace output for everything that occurs up to that point. For example, if you’re having
problems with a particular SELECT query, you can trace the statement handle associated
with the query:

$sth = $dbh->prepare (qq{ SELECT ... }); # create the statement handle

$sth->trace (1); # enable tracing on the statement

$sth->execute ();

If you specify a filename argument to any trace() call, whether for DBI as a whole or
for an individual handle, all trace output goes to that file.

The TraceLevel attribute is an alternative to the trace() method.This attribute
allows you to set or get the trace level for a given handle:

$dbh->{TraceLevel} = 3; # set database handle trace level

my $cur_level = $sth->{TraceLevel}; # get statement handle trace level

To turn on tracing globally so that it takes effect for all DBI scripts that you run, set the
DBI_TRACE environment variable from your shell.The syntax for this depends on the shell
you use:

n For csh or tcsh:

% setenv DBI_TRACE value

n For sh, bash, or ksh:

$ export DBI_TRACE=value

n For Windows:

C:\> set DBI_TRACE=value

The format of value is the same for all shells: a number n to turn on tracing at level n
to STDERR, a filename to turn on level 2 tracing to the named file, or n=file_name to turn
on level n tracing to the named file. Here are some examples, using tcsh syntax:

n A level 1 trace to STDERR:

% setenv DBI_TRACE 1

n A level 1 trace to the file trace.out:

% setenv DBI_TRACE 1=trace.out

n A level 2 trace to the file trace.out:

% setenv DBI_TRACE trace.out

Using DBI_TRACE is advantageous in that you can enable DBI script tracing without
making any changes to your scripts. But if you turn on tracing to a file from your shell, be
sure to turn it off after you resolve the problem. Debugging output is appended to the
trace file without overwriting it, so the file can become quite large if you’re not careful.

4718.2 Perl DBI Overview

It’s a particularly bad idea to define DBI_TRACE in a shell startup file such as .cshrc,
.tcshrc, .login, or .profile!

To turn off DBI_TRACE for various command interpreters, use any of the commands
shown:

n For csh or tcsh:

% setenv DBI_TRACE 0

% unsetenv DBI_TRACE

n For sh, bash, or ksh:

$ unset DBI_TRACE

$ export DBI_TRACE=0

n For Windows:

C:\> unset DBI_TRACE

C:\> set DBI_TRACE=0

8.2.11 Using Result Set Metadata
You can use DBI to gain access to result set metadata—that is, descriptive information
about the rows selected by a query.To get this information, access the attributes of the
statement handle associated with the query that generated the result set. Some of these
are standard DBI attributes that are available across all database drivers (such as
NUM_OF_FIELDS, the number of columns in the result set). Others, which are MySQL-
specific, are provided by DBD::mysql, the MySQL driver for DBI.These attributes, such
as mysql_max_length, which tells you the maximum width of the values in each column,
are not applicable to other database systems.To the extent that you use any of the
MySQL-specific attributes, you risk making your scripts nonportable to other databases.
On the other hand, they can make it easier to get the information you want.

You must ask for metadata at the right time. Generally, result set attributes are not avail-
able for a SELECT statement until after you’ve invoked prepare() and execute(). In addi-
tion, attributes may become invalid after you reach the end of the result set with a
row-fetching function or after you invoke finish().

The following example shows how to use one of the MySQL-specific metadata
attributes, mysql_max_length, in conjunction with the more general attributes
NUM_OF_FIELDS, which indicates the number of columns in the result set, and NAME, which
holds their names.We can combine the information provided by these attributes to write
a script, tabular.pl, that produces output from SELECT queries in the same tabular
(boxed) style that you get when you run the mysql client program in interactive mode.
The main body of tabular.pl follows.You can replace the SELECT statement with any
other; the output-writing routines are independent of the particular statement.

my $sth = $dbh->prepare (qq{

SELECT last_name, first_name, suffix, city, state

FROM president ORDER BY last_name, first_name

472 Chapter 8 Writing MySQL Programs Using Perl DBI

});

$sth->execute (); # attributes should be available after this call

actual maximum widths of column values in result set

my @wid = @{$sth->{mysql_max_length}};

number of columns in result set

my $ncols = $sth->{NUM_OF_FIELDS};

adjust column widths if data values are narrower than column headings

or than the word "NULL"

for (my $i = 0; $i < $ncols; $i++)

{

my $name_wid = length ($sth->{NAME}->[$i]);

$wid[$i] = $name_wid if $wid[$i] < $name_wid;

$wid[$i] = 4 if $wid[$i] < 4;

}

print tabular-format output

print_dashes (\@wid, $ncols); # row of dashes

print_row ($sth->{NAME}, \@wid, $ncols); #column headings

print_dashes (\@wid, $ncols); #row of dashes

while (my $ary_ref = $sth->fetchrow_arrayref ())

{

print_row ($ary_ref, \@wid, $ncols); #row data values

}

print_dashes (\@wid, $ncols); #row of dashes

After the statement has been initiated with execute(), we can grab the metadata we
need. $sth->{NUM_OF_FIELDS} is a scalar value indicating how many columns are in the
result set. $sth->{NAME} and $sth->{mysql_max_length} give us the column names and
maximum width of each column’s values.The value of each of these two attributes is a
reference to an array that contains an element for each column of the result set, in the
order that columns are named in the statement.

The remaining calculations are very much like those used for the exec_stmt program
developed in Chapter 7. For example, to avoid misaligned output, we adjust the column
width values upward if the name of a column is wider than any of the data values in the
column.

The output functions, print_dashes() and print_row(), are written as follows.They
too are similar to the corresponding code in exec_stmt:

sub print_dashes

{

my $wid_ary_ref = shift; # reference to array of column widths

my $cols = shift; # number of columns

for (my $i = 0; $i < $cols; $i++)

{

4738.2 Perl DBI Overview

print "+", "-" x ($wid_ary_ref->[$i]+2);

}

print "+\n";

}

print row of data. (doesn't right-align numeric columns)

sub print_row

{

my $val_ary_ref = shift; # reference to array of column values

my $wid_ary_ref = shift; # reference to array of column widths

my $cols = shift; # number of columns

for (my $i = 0; $i < $cols; $i++)

{

printf "| %-*s ", $wid_ary_ref->[$i],

defined ($val_ary_ref->[$i]) ? $val_ary_ref->[$i] : "NULL";

}

print "|\n";

}

The output from tabular.pl looks like this:

+------------+---------------+--------+---------------------+-------+

| last_name | first_name | suffix | city | state |

+------------+---------------+--------+---------------------+-------+

| Adams | John | NULL | Braintree | MA |

| Adams | John Quincy | NULL | Braintree | MA |

| Arthur | Chester A. | NULL | Fairfield | VT |

| Buchanan | James | NULL | Mercersburg | PA |

| Bush | George H.W. | NULL | Milton | MA |

| Bush | George W. | NULL | New Haven | CT |

| Carter | James E. | Jr. | Plains | GA |

...

Our next script uses column metadata to produce output in a different format.This
script, show_member.pl, enables you to take a quick look at Historical League member
entries without entering any queries. Given a member’s last name, it displays the selected
entry like this:

% ./show_member.pl artel

last_name: Artel

first_name: Mike

suffix:

expiration: 2011-04-16

email: mike_artel@venus.org

street: 4264 Lovering Rd.

city: Miami

474 Chapter 8 Writing MySQL Programs Using Perl DBI

state: FL

zip: 12777

phone: 075-961-0712

interests: Civil Rights,Education,Revolutionary War

member_id: 63

You can also invoke show_member.pl using a membership number, or using a SQL
pattern to match several last names.The following commands show the entry for member
23 or the entries for members with last names that start with “C”:

% ./show_member.pl 23

% ./show_member.pl C%

The main body of the show_member.pl script follows. It uses the NAME attribute to de-
termine the labels to use for each row of output, and the NUM_OF_FIELDS attribute to find
out how many columns the result set contains:

my $count = 0; # number of entries printed so far

my @label = (); # column label array

my $label_wid = 0;

while (@ARGV) # run query for each argument on command line

{

my $arg = shift (@ARGV);

default is to do a pattern search by last name...

my $clause = "last_name LIKE " . $dbh->quote ($arg);

...but do ID search instead if argument is numeric

$clause = "member_id = " . $dbh->quote ($arg) if $arg =~ /^\d+$/;

issue query

my $sth = $dbh->prepare (qq{

SELECT * FROM member

WHERE $clause

ORDER BY last_name, first_name

});

$sth->execute ();

get column names to use for labels and

determine max column name width for formatting

(but do this only the first time through the loop)

if ($label_wid == 0)

{

@label = @{$sth->{NAME}};

foreach my $label (@label)

{

$label_wid = length ($label) if $label_wid < length ($label);

}

4758.2 Perl DBI Overview

}

read and display query result

my $matches = 0;

while (my @ary = $sth->fetchrow_array ())

{

print newline before 2nd and subsequent entries

print "\n" if ++$count > 1;

foreach (my $i = 0; $i < $sth->{NUM_OF_FIELDS}; $i++)

{

print label

printf "%-*s", $label_wid+1, $label[$i] . ":";

print value, if there is one

print " ", $ary[$i] if defined ($ary[$i]);

print "\n";

}

++$matches;

}

print "\nNo match was found for \"$arg\"\n" if $matches == 0;

}

The purpose of show_member.pl is to show the entire contents of an entry, no matter
what the fields are. By using SELECT * to retrieve all the columns and the NAME attribute
to find out what they are, this script works without modification even if columns are
added to or dropped from the member table.

If you just want to know what columns a table contains without retrieving any rows,
you can issue this statement:

SELECT * FROM tbl_name WHERE FALSE

The WHERE FALSE clause is false for all rows, so executing the statement has the effect
of generating column metadata but returning no rows.After invoking prepare() and
execute() in the usual way for the statement, you can get the column names from
@{$sth->{NAME}}. Be aware that although this little trick of using an “empty” query
works for MySQL, it’s not portable and may not work for other database systems.

For more information on the attributes provided by DBI and by DBD::mysql, see
Appendix H (online). It’s up to you to determine whether you want to strive for
portability by avoiding MySQL-specific attributes, or take advantage of them at the
cost of portability.

8.2.12 Performing Transactions
One way to perform transactions in a DBI script is to issue explicit SET autocommit,
START TRANSACTION, COMMIT, and ROLLBACK statements. (Section 2.13,“Performing Trans-
actions,” describes these statements.) However, DBI provides its own abstraction for per-
forming transactional operations.This abstraction is expressed in terms of DBI methods
and attributes, and takes care of issuing the proper transaction-related SQL statements for

476 Chapter 8 Writing MySQL Programs Using Perl DBI

you automatically. It’s also portable to other database systems that support transactions,
whereas the SQL statements may not be.

To use the DBI transaction mechanism, these requirements must be satisfied:

n Your MySQL server must support at least one transaction-safe storage engine such
as InnoDB or Falcon. Section 2.6.1.1,“Checking Which Storage Engines Are Avail-
able,” describes how to determine whether this is true.

n Your application must use tables that are of a transaction-safe type. If they are not,
use ALTER TABLE to change their type. For example, to change a given table
tbl_name to be an InnoDB table, use this statement:

ALTER TABLE tbl_name ENGINE = InnoDB;

Assuming that those requirements are satisfied, use this general procedure for transac-
tional processing in DBI:

1. Disable (or temporarily suspend) autocommit mode so that SQL statements won’t
be committed until you commit them yourself.

2. Issue the statements that are part of a transaction, but do so within an eval block
that executes with RaiseError enabled and PrintError disabled so that any errors
will terminate the block without printing errors. If the block executes successfully,
the last operation within it should be to invoke commit() to commit the transaction.

3. When the eval block finishes, check its termination status. If an error occurred, in-
voke rollback() to cancel the transaction and report the error if that’s appropriate.

4. Restore the autocommit mode and error-handling attributes as necessary.

The following example shows how to implement this approach. It’s based on a scenario
from Chapter 2,“Using SQL to Manage Data,” that showed how to issue transaction-
related statements manually from the mysql client.The scenario is one in which you dis-
cover that you’ve mistakenly mixed up two scores for students in the score table and need
to switch them: Student 8 has been given a score of 18, student 9 has been given a score
of 13, and the scores should be the other way around.The two UPDATE statements needed
to correct this problem are as follows:

UPDATE score SET score = 13 WHERE event_id = 5 AND student_id = 8;

UPDATE score SET score = 18 WHERE event_id = 5 AND student_id = 9;

You want to update both rows with the correct scores, but both updates must succeed
as a unit.The example in the earlier chapter surrounded the updates by explicit SQL
statements for setting the autocommit mode, committing, and rolling back.Within a Perl
script that uses the DBI transaction mechanism, perform the updates as follows:

my $orig_re = $dbh->{RaiseError}; # save error-handling attributes

my $orig_pe = $dbh->{PrintError};

my $orig_ac = $dbh->{AutoCommit}; # save auto-commit mode

$dbh->{RaiseError} = 1; # cause errors to raise exceptions

$dbh->{PrintError} = 0; # but suppress error messages

4778.3 Putting DBI to Work

$dbh->{AutoCommit} = 0; # don't commit until we say so

eval

{

issue the statements that are part of the transaction

my $sth = $dbh->prepare (qq{

UPDATE score SET score = ?

WHERE event_id = ? AND student_id = ?

});

$sth->execute (13, 5, 8);

$sth->execute (18, 5, 9);

$dbh->commit(); # commit the transaction

};

if ($@) # did the transaction fail?

{

print "A transaction error occurred: $@\n";

roll back, but use eval to trap rollback failure

eval { $dbh->rollback (); }

}

$dbh->{AutoCommit} = $orig_ac; # restore auto-commit mode

$dbh->{RaiseError} = $orig_re; # restore error-handling attributes

$dbh->{PrintError} = $orig_pe;

The eval block does the work of performing the transaction, and its termination status
is available in the $@ variable. If the UPDATE statements and the commit() method execute
without error, $@ will be empty. If an error occurs, the eval block fails and $@ holds the
error message. In that case, the code prints the message, and then cancels the transaction
by invoking rollback(). (The rollback operation is placed within its own eval block to
prevent it from terminating the script if it fails.)

In this chapter, DBI scripts generally use an error-handling mode in which
RaiseError is enabled and PrintError is disabled.This means that they already will have
the values required for performing transactions, and thus it really wouldn’t have been nec-
essary to save, set, and restore those attributes as shown in the example. However, doing so
is an approach that will work even for circumstances under which you’re not sure in ad-
vance what the error-handling attributes might be.

8.3 Putting DBI to Work
At this point you’ve seen a number of the concepts involved in DBI programming, so let’s
move on to some of the things we wanted to be able to do with our sample database. Our
goals were outlined initially in Chapter 1.Those that we’ll tackle by writing DBI scripts in
this chapter are listed here:

n For the grade-keeping project, we want to be able to retrieve scores for any given
quiz or test.

478 Chapter 8 Writing MySQL Programs Using Perl DBI

n For the Historical League, we want to do the following:
n Produce the member directory in different formats.We want a names-only list

for use in the program distributed at the League’s annual meeting, and in a
format we can use for generating the printed directory.

n Find League members that need to renew their memberships soon, and then
send them email to let them know about it.

n Edit member entries. (We’ll need to update their expiration dates when they
renew their memberships, after all.)

n Find members that share a common interest.
n Put the directory online.

For some of these tasks, we’ll write scripts that run from the command line. For the
others, we’ll create scripts in Section 8.4,“Using DBI in Web Applications,” that you can
use in conjunction with your Web server.At the end of the chapter, we’ll still have a num-
ber of goals left to accomplish.We’ll finish up those that remain in Chapter 9,“Writing
MySQL Programs Using PHP.”

8.3.1 Generating the Historical League Directory
One of our goals is to be able to produce information from the Historical League direc-
tory in different formats.The simplest format to be generated is a list of member names
for the printed program distributed to attendees at the League’s annual meeting.The for-
mat can be a simple plain text listing. It will become part of the larger document used
to create the meeting program, so all we need is something that can be pasted into that
document.

For the printed member directory, a better representation than plain text is needed be-
cause we want something nicely formatted.A reasonable choice here is RTF (Rich Text
Format), a format developed by Microsoft that is understood by many word processors.
Word is one such program, of course, but many others such as OpenOffice understand it
as well. Different word processors support RTF to varying degrees, but we’ll use a basic
subset of the full RTF specification that should be understandable by any program that is
RTF-aware. For example, on Mac OS X, the TextEdit editor and the Safari Web browser
can read the RTF output that we’ll generate.

The procedures for generating the annual meeting list (plain text) and RTF directory
formats are essentially the same: Issue a query to retrieve the entries, and then run a loop
that fetches and formats each entry. Given that basic similarity, it would be nice to avoid
writing separate scripts for each format.To that end, let’s write a single script, gen_dir.pl,
that can generate different types of output.We’ll structure the script as follows:

1. Before writing out member entries, perform any initialization that might be neces-
sary for the output format. No special initialization is necessary for the plain text
member list, but we’ll need to write out some initial control language for the RTF
version.

4798.3 Putting DBI to Work

2. Fetch and print each entry, formatted appropriately for the type of output we want.

3. After all the entries have been processed, perform any necessary cleanup and termi-
nation.Again, no special handling is needed for plain text format, but some closing
control language is required for the RTF version.

It’s possible that in the future we’ll want to use this script to write output in other for-
mats, so let’s make it extensible by setting up a “switchbox,” that is, a hash with an element
for each output format. Each element specifies which functions to invoke to carry out
each output generation phase for a given format: an initialization function, an entry-
writing function, and a cleanup function:

switchbox containing formatting functions for each output format

my %switchbox =

(

"text" => # functions for plain text format

{

"init" => undef, # no initialization needed

"entry" => \&text_format_entry,

"cleanup" => undef # no cleanup needed

},

"rtf" => # functions for RTF format

{

"init" => \&rtf_init,

"entry" => \&rtf_format_entry,

"cleanup" => \&rtf_cleanup

}

);

Each element of the switchbox is keyed by a format name ("text" or "rtf").We’ll
write the script so that you specify the desired format on the command line when you
run it:

% ./gen_dir.pl text

% ./gen_dir.pl rtf

By setting up a switchbox this way, we’ll be able to add the capability for a new format
easily, should we want to do so:

1. Write three formatting functions for the output generation phases.

2. Add a new element to the switchbox that defines a format name and that points to
the output functions.

3. To produce output in the new format, invoke gen_dir.pl and specify the format
name on the command line.

The code for selecting the proper switchbox entry according to the first argument
on the command line follows. If no format name or an invalid name is specified on the

480 Chapter 8 Writing MySQL Programs Using Perl DBI

command line, the script produces an error message and displays a list of the allowable
names. Otherwise, $func_hashref will point to the appropriate switchbox entry:

my $formats = join (" ", sort (keys (%switchbox)));

make sure one argument was specified on the command line

@ARGV == 1

or die "Usage: gen_dir.pl format_type\nAllowable formats: $formats\n";

determine proper switchbox entry from argument on command line;

if no entry is found, the format type is invalid

my $func_hashref = $switchbox{$ARGV[0]};

defined ($func_hashref)

or die "Unknown format: $ARGV[0]\nAllowable formats: $formats\n";

The format selection code is based on the fact that the output format names are the
keys in the %switchbox hash. If a valid format name is given, the corresponding switchbox
entry points to the output functions. If an invalid name is given, no entry will exist.This
makes it unnecessary to hardwire any names into the format selection code. It also means
that if you add a new entry to the switchbox, the code detects it automatically with no
change.

If a valid format name is specified on the command line, the preceding code sets
$func_hashref. Its value is a reference to the hash that points to the output-writing func-
tions for the selected format.We can use it to invoke the initialization function, fetch and
print the entries, and invoke the cleanup function:

invoke the initialization function if there is one

&{$func_hashref->{init}} if defined ($func_hashref->{init});

fetch and print entries if there is an entry formatting function

if (defined ($func_hashref->{entry}))

{

my $sth = $dbh->prepare (qq{

SELECT * FROM member ORDER BY last_name, first_name

});

$sth->execute ();

while (my $entry_ref = $sth->fetchrow_hashref ("NAME_lc"))

{

pass entry by reference to the formatting function

&{$func_hashref->{entry}} ($entry_ref);

}

}

invoke the cleanup function if there is one

&{$func_hashref->{cleanup}} if defined ($func_hashref->{cleanup});

The entry-fetching loop uses fetchrow_hashref() for a reason. If the loop fetched an
array, each formatting function would have to know the order of the columns. It’s possible

4818.3 Putting DBI to Work

to figure that out by accessing the $sth->{NAME} attribute (which contains column names
in the order in which they are returned), but why bother? By using a hash reference,
formatting functions can just name the column values they want using $entry_
ref->{col_name}.That technique is much easier than using the NAME attribute and it can
be used for any format we want to generate, because we know that any fields we need will
be in the hash.

All that remains is to write the functions named by the switchbox entries for each
output format.

8.3.1.1 Generating the Plain Text Member List
For the text output format, no initialization or cleanup calls are necessary.We need only
an entry-formatting function, text_format_entry(), that takes a reference to a member
entry and prints the member’s name.The tricky part of printing names is dealing with the
suffix part. Suffixes such as “Jr.” or “Sr.” should be preceded by a comma and a space,
whereas suffixes such as “II” or “III” should be preceded only by a space:

Michael Alvis IV

Clarence Elgar, Jr.

Bill Matthews, Sr.

Mark York II

The letters ‘I’,‘V’, and ‘X’ are the only ones used in the roman numerals for the 1st to
the 39th generation. It’s unlikely that we’ll need any numerals beyond that range, so we
can determine whether to add a comma by checking whether the suffix value matches
the following pattern:

/^[IVX]+$/

The code in text_format_entry() that puts the parts of the name together in the
proper order is something we’ll need for the RTF version of the directory as well. So in-
stead of duplicating that code in rtf_format_entry(), let’s stuff it into a helper function:

sub format_name

{

my $entry_ref = shift;

my $name = $entry_ref->{first_name} . " " . $entry_ref->{last_name};

if (defined ($entry_ref->{suffix})) # there is a name suffix

{

no comma for suffixes of I, II, III, etc.

$name .= "," unless $entry_ref->{suffix} =~ /^[IVX]+$/;

$name .= " " . $entry_ref->{suffix}

}

return ($name);

}

482 Chapter 8 Writing MySQL Programs Using Perl DBI

With format_name() in place, the implementation of the text_format_entry()
function that prints an entry becomes almost completely trivial:

sub text_format_entry

{

printf "%s\n", format_name ($_[0]);

}

8.3.1.2 Generating the Rich Text Format Directory
Generating the RTF version of the directory is a little more involved than generating the
member list for the annual meeting program. For one thing, we need to print more infor-
mation from each entry. For another, we need to put out some RTF control language
with each entry to achieve the effects that we want, and some control language at the be-
ginning and end of the document.A minimal RTF document framework looks like this:

{\rtf0

{\fonttbl {\f0 Times;}}

\plain \f0 \fs24

...document content goes here...

}

The document begins and ends with curly braces ‘{’ and ‘}’. RTF keywords begin
with a backslash, and the first keyword of the document must be \rtfn, where n is the
version number of the RTF specification that the document uses.Version 0 is fine for our
purposes.

Within the document, we specify a font table to indicate the font to use for the entries.
Font table information is listed in a group consisting of curly braces containing a leading
\fonttbl keyword and some font information.The font table in the framework just
shown defines font number 0 to be in Times. (We need only one font, but you could use
more if you wanted to be fancier.)

The next few directives set up the default formatting style: \plain selects plain format,
\f0 selects font 0 (which is defined as Times in the font table), and \fs24 sets the font size
to 12 points (the number following \fs indicates the size in half-points). It’s unnecessary
to set up margins because most word processors will supply reasonable defaults.

The initialization and cleanup functions produce the document framework.They look
like this (note the doubled backslashes to get single backslashes in the output):

sub rtf_init

{

print "{\\rtf0\n";

print "{\\fonttbl {\\f0 Times;}}\n";

print "\\plain \\f0 \\fs24\n";

}

sub rtf_cleanup

{

4838.3 Putting DBI to Work

print "}\n";

}

The entry-formatting function produces the document content.We take a very simple
approach, printing each entry as a series of lines, with a label on each line. If the informa-
tion corresponding to a particular output line is missing, the line is omitted. For example,
the “Email:” line need not be printed for members that have no email address. Some lines,
such as the “Address:” line, are composed from the information in multiple columns
(street, city, state, zip), so the script must be able to deal with various combinations
of missing values. Here’s a sample of the output format we’ll use:

Name: Mike Artel

Address: 4264 Lovering Rd., Miami, FL 12777

Telephone: 075-961-0712

Email: mike_artel@venus.org

Interests: Civil Rights,Education,Revolutionary War

For that entry, the RTF representation looks like this:

\b Name: Mike Artel\b0\par

Address: 4264 Lovering Rd., Miami, FL 12777\par

Telephone: 075-961-0712\par

Email: mike_artel@venus.org\par

Interests: Civil Rights,Education,Revolutionary War\par

To make the “Name:” line bold, it should begin with \b followed by a space to turn
boldface on, and end with \b0 to turn boldface off.The member name is formatted by
the format_name() function shown earlier in Section 8.3.1.1,“Generating the Plain Text
Member List.” Each line has a paragraph marker (\par) at the end to tell the word proces-
sor to move to the next line—nothing too complicated.The primary difficulties lie in for-
matting the address string and determining which output lines to print:

sub rtf_format_entry

{

my $entry_ref = shift;

printf "\\b Name: %s\\b0\\par\n", format_name ($entry_ref);

my $address = "";

$address .= $entry_ref->{street}

if defined ($entry_ref->{street});

$address .= ", " . $entry_ref->{city}

if defined ($entry_ref->{city});

$address .= ", " . $entry_ref->{state}

if defined ($entry_ref->{state});

$address .= " " . $entry_ref->{zip}

if defined ($entry_ref->{zip});

print "Address: $address\\par\n"

if $address ne "";

print "Telephone: $entry_ref->{phone}\\par\n"

484 Chapter 8 Writing MySQL Programs Using Perl DBI

if defined ($entry_ref->{phone});

print "Email: $entry_ref->{email}\\par\n"

if defined ($entry_ref->{email});

print "Interests: $entry_ref->{interests}\\par\n"

if defined ($entry_ref->{interests});

print "\\par\n";

}

You’re not locked into this particular formatting style, of course.You can change how
you print any of the fields, so you can change the style of your printed directory almost at
will, simply by changing rtf_format_entry().When the directory was in its original
form (a word processing document), that was something not so easily done.

The gen_dir.pl script now is complete, and you can generate the directory in either
plain text or RTF output format by running commands such as these:

% ./gen_dir.pl text > names.txt

% ./gen_dir.pl rtf > directory.rtf

At this point, it’s a simple step to read the plain text name list and paste it into the an-
nual meeting program document or to read the RTF file into any program that under-
stands RTF.

DBI makes it easy to extract the information we want from MySQL, and Perl’s text-
processing capabilities make it easy to put that information into the format we want to see.
MySQL doesn’t provide any particularly fancy way of formatting output, but it doesn’t
matter because of the ease with which you can integrate MySQL’s database handling abili-
ties into a language such as Perl, which has excellent text manipulation capabilities.

8.3.2 Sending Membership Renewal Notices
With the Historical League directory maintained in its original form (as a word process-
ing document), it’s a time-consuming and error prone activity to determine which mem-
bers need to be notified that their membership should be renewed. Now that we have the
information in a database, it’s possible to automate the renewal-notification process a bit.
We can identify members who need to renew, and send them a message via email so that
we don’t have to contact them by phone or surface mail.

What we need to do is determine which memberships have expired already or are due
for renewal within a certain number of days.The query for this involves a date calculation
that’s relatively simple:

SELECT ... FROM member

WHERE expiration < DATE_ADD(CURDATE(), INTERVAL cutoff DAY)

cutoff signifies the number of days of leeway we want to grant.The query selects
member entries that are due for renewal in fewer than that many days (or that have
already expired).To find only memberships that have expired, a cutoff value of 0 identifies
rows with expiration dates in the past.

4858.3 Putting DBI to Work

After identifying the rows that qualify for notification, what should we do with them?
One option would be to send mail directly from the same script, but it might be useful to
be able to review the list first before sending any messages. For this reason, we’ll use a
two-stage approach:

1. Run a need_renewal.pl script to produce a list of members that need to renew.
You can examine this list to verify or edit it, and then use it as input to the second
stage that sends the renewal notices.

2. Run a renewal_notify.pl script that sends members a “please renew” notice by
email.The script should warn you about members that have no email address so that
you can contact them by other means.

For the first part of this task, the need_renewal.pl script must identify which mem-
bers need to renew.The main part of the script that does so looks like this:

use default cutoff of 30 days...

my $cutoff = 30;

...but reset if a numeric argument is given on the command line

$cutoff = shift (@ARGV) if @ARGV && $ARGV[0] =~ /^\d+$/;

inform user what cutoff the script is using

warn "Using cutoff of $cutoff days\n";

my $sth = $dbh->prepare (qq{

SELECT

member_id, email, last_name, first_name, expiration,

TO_DAYS(expiration) - TO_DAYS(CURDATE()) AS days

FROM member

WHERE expiration < DATE_ADD(CURDATE(), INTERVAL ? DAY)

ORDER BY expiration, last_name, first_name

});

$sth->execute ($cutoff); # pass cutoff as placeholder value

while (my $entry_ref = $sth->fetchrow_hashref ())

{

convert undef values to empty strings for printing

foreach my $key (keys (%{$entry_ref}))

{

$entry_ref->{$key} = "" if !defined ($entry_ref->{$key});

}

print join ("\t",

$entry_ref->{member_id},

$entry_ref->{email},

$entry_ref->{last_name},

$entry_ref->{first_name},

$entry_ref->{expiration},

486 Chapter 8 Writing MySQL Programs Using Perl DBI

$entry_ref->{days} . " days"),

"\n";

}

The output from the need_renewal.pl script looks something like the following
(you’ll get different output because the results are determined against the current date,
which will be different for you while reading this book than for me while writing it):

89 g.steve@pluto.com Garner Steve 2007-08-03 -38 days

18 york_mark@earth.com York Mark 2007-08-24 -17 days

82 john_edwards@venus.org Edwards John 2007-09-12 2 days

Observe that some memberships need to be renewed in a negative number of days.
That means they’ve already expired! (This happens when you maintain rows manually;
people slip through the cracks. Now that we have the information in a database, we’re
finding out that we missed a few people before.)

The second part of the renewal notification task involves a script renewal_notify.pl
that sends out the notices by email.To make renewal_notify.pl a little easier to use, we
can make it understand three kinds of command-line arguments: membership ID num-
bers, email addresses, and filenames. Numeric arguments signify membership ID values,
and arguments containing a ‘@’ character signify email addresses.Anything else is inter-
preted as the name of a file that should be read to find ID numbers or email addresses.
This method enables you to specify members by their ID number or email address, and
you can do so either directly on the command line or by listing them in a file. (In particu-
lar, you can save the output of need_renewal.pl in a file, and then use the file as input to
renewal_notify.pl.)

For each member who is to be sent a notice, the script looks up the relevant member
table entry, extracts the email address, and sends a message to that address. If there is no
address in the entry, renewal_notify.pl generates a warning message that you need to
contact these members in some other way.

The main argument-processing loop follows. If no arguments were specified on the
command line, we read the standard input for input. Otherwise, we process each argument
by passing it to interpret_argument() for classification as an ID number, an email
address, or a filename:

if (@ARGV == 0) # no arguments, read STDIN for values

{

read_file (*STDIN);

}

else

{

while (my $arg = shift (@ARGV))

{

interpret argument, with filename recursion

interpret_argument ($arg, 1);

}

}

4878.3 Putting DBI to Work

The function read_file() reads the contents of a file (assumed to be open already)
and looks at the first field of each line. (If we feed the output of need_renewal.pl to
renewal_notify.pl, each line has several fields, but we want to look only at the first one,
which will contain a member ID number.)

sub read_file

{

my $fh = shift; # handle to already-opened file

my $arg;

while (defined ($arg = <$fh>))

{

strip off everything past column 1, including newline

$arg =~ s/\s.*//s;

interpret argument, without filename recursion

interpret_argument ($arg, 0);

}

}

The interpret_argument() function classifies each argument to determine whether
it’s an ID number, an email address, or a filename. For ID numbers and email addresses, it
looks up the appropriate member entry and passes it to notify_member().We have to be
careful with members specified by email address. It’s possible that two members have the
same address (for example, a husband and wife), and we don’t want to send a message to
someone to whom it doesn’t apply.To avoid this, we look up the member ID correspon-
ding to an email address to make sure that there is exactly one. If the address matches
more than one ID number, it’s ambiguous and we ignore it after printing a warning.

If an argument doesn’t look like an ID number or email address, it’s taken to be the
name of a file to read for further input.We have to be careful here, too—we don’t want to
read a file if we’re already reading a file, to avoid the possibility of an infinite loop:

sub interpret_argument

{

my ($arg, $recurse) = @_;

if ($arg =~ /^\d+$/) # numeric membership ID

{

notify_member ($arg);

}

elsif ($arg =~ /@/) # email address

{

get member_id associated with address

(there should be exactly one)

my $stmt = qq{ SELECT member_id FROM member WHERE email = ? };

my $ary_ref = $dbh->selectcol_arrayref ($stmt, undef, $arg);

if (scalar (@{$ary_ref}) == 0)

{

488 Chapter 8 Writing MySQL Programs Using Perl DBI

warn "Email address $arg matches no entry: ignored\n";

}

elsif (scalar (@{$ary_ref}) > 1)

{

warn "Email address $arg matches multiple entries: ignored\n";

}

else

{

notify_member ($ary_ref->[0]);

}

}

else # filename

{

if (!$recurse)

{

warn "filename $arg inside file: ignored\n";

}

else

{

open (IN, $arg) or die "Cannot open $arg: $!\n";

read_file (*IN);

close (IN);

}

}

}

The notify_member() function is responsible for actually sending the renewal notice.
If it turns out that the member has no email address, notify_member() can’t send any
message, but it prints a warning so that you know you need to contact the member in
some other way.You can invoke show_member.pl with the membership ID number
shown in the message to see the full entry—to find out what the member’s phone num-
ber and address are, for example. notify_member() looks like this:

sub notify_member

{

my $member_id = shift;

warn "Notifying $member_id...\n";

my $stmt = qq{ SELECT * FROM member WHERE member_id = ? };

my $sth = $dbh->prepare ($stmt);

$sth->execute ($member_id);

my @col_name = @{$sth->{NAME}};

my $entry_ref = $sth->fetchrow_hashref ();

$sth->finish ();

if (!$entry_ref) # no member found!

{

warn "NO ENTRY found for member $member_id!\n";

4898.3 Putting DBI to Work

return;

}

if (!defined ($entry_ref->{email})) # no email address in entry

{

warn "Member $member_id has no email address; no message was sent\n";

return;

}

open (OUT, "| $sendmail") or die "Cannot open mailer\n";

print OUT <<EOF;

To: $entry_ref->{email}

Subject: Your USHL membership is in need of renewal

Greetings. Your membership in the U.S. Historical League is

due to expire soon. We hope that you'll take a few minutes to

contact the League office to renew your membership. The

contents of your member entry are shown below. Please note

particularly the expiration date.

Thank you.

EOF

foreach my $col_name (@col_name)

{

printf OUT "$col_name:";

printf OUT " $entry_ref->{$col_name}"

if defined ($entry_ref->{$col_name});

printf OUT "\n";

}

close (OUT);

}

The notify_member() function sends mail by opening a pipe to the sendmail pro-
gram and shoving the mail message into the pipe.The pathname to sendmail is set as a
parameter near the beginning of the renewal_notify.pl script.You might need to
change this path because the location of sendmail varies from system to system:

change path to match your system

my $sendmail = "/usr/sbin/sendmail -t -oi";

If you don’t have sendmail, the script will not work properly. (For example,Windows
systems typically do not have sendmail installed.) To handle this case, the sampdb distribu-
tion contains a modified version of renewal_notify.pl named renewal_notify2.pl

that uses the Mail::Sendmail module that works without the sendmail program. If you
install that module, you can use renewal_notify2.pl instead.

You could get fancier with this script. For example, you could add a column to the
member table to record when the most recent renewal reminder was sent out and then
modify renewal_notify.pl to update that column when it sends mail. Doing so would

490 Chapter 8 Writing MySQL Programs Using Perl DBI

help you to not send out notices too frequently.As it is, we’ll just assume that you won’t
run this program more than once a month or so.

The two scripts are done now.You can use them as follows:

1. Run need_renewal.pl to generate a list of memberships that have expired or will
soon do so:

% ./need_renewal.pl > tmp

2. Take a look at tmp to see whether it looks reasonable.

3. If so, use it as input to renewal_notify.pl to send renewal messages:

% ./renewal_notify.pl tmp

To notify individual members, you can specify them by ID number or email address.
For example, the following command notifies member 18 and the member having the
email address g.steve@pluto.com:

% ./renewal_notify.pl 18 g.steve@pluto.com

8.3.3 Historical League Member Entry Editing
After we start sending out renewal notices, it’s safe to assume that some of the people we
notify will renew their memberships.When that happens, we need a way to update their
entries with new expiration dates. In the next chapter, we’ll develop a way to edit mem-
ber rows over the Web, but this section shows how to write a command-line script,
edit_member.pl, that enables you to update entries using the simple approach of prompt-
ing for new values for each part of an entry. It works like this:

n If invoked with no argument on the command line, edit_member.pl assumes that
you want to enter a new member. It prompts for the initial information to be
placed in the member’s entry, and creates a new entry.

n If invoked with a membership ID number on the command line, edit_member.pl
looks up the existing contents of the entry, and then prompts for updates to each
column. If you enter a value for a column, it replaces the current value. If you press
Enter, the column is not changed. If you enter the word “none,” it clears the col-
umn’s current value. (If you don’t know a member’s ID number, you can run
show_member.pl last_name to see which entries match the given last name and
from that determine the proper ID.)

It’s probably overkill to allow an entire entry to be edited this way if all you want to do
is update a member’s expiration date. On the other hand, a script like this also provides a
simple general-purpose way for its user to update any part of an entry without knowing
any SQL. (One special case is that edit_member.pl won’t allow you to change the
member_id field because that’s automatically assigned when an entry is created and
shouldn’t change thereafter.)

4918.3 Putting DBI to Work

The first thing edit_member.pl needs to know is the names of the columns in the
member table and whether they can be assigned NULL values.The latter property will be
used when a column value is cleared (we’ll assign the column NULL if the column can take
NULL values and the empty string otherwise).The required information is available in the
COLUMNS table of the INFORMATION_SCHEMA database:

my @col_name = (); # array of column names

my %nullable = (); # column nullability, keyed on column name

get member table column names

my $sth = $dbh->prepare (qq{

SELECT COLUMN_NAME, UPPER(IS_NULLABLE)

FROM INFORMATION_SCHEMA.COLUMNS

WHERE TABLE_SCHEMA = ? AND TABLE_NAME = ?

});

$sth->execute ("sampdb", "member");

while (my ($col_name, $is_nullable) = $sth->fetchrow_array ())

{

push (@col_name, $col_name);

$nullable{$col_name} = ($is_nullable eq "YES");

}

Using the column information, the script produces an array containing the column
names in order, and a hash keyed by column name that indicates whether each column is
nullable.Then edit_member.pl enters its main loop:

if (@ARGV == 0) # if no arguments were given, create a new entry

{

pass reference to array of column names

new_member (\@col_name);

}

else # otherwise edit entries using arguments as member IDs

{

save @ARGV, and then empty it so that when the script reads from

STDIN, it doesn't interpret @ARGV contents as input filenames

my @id = @ARGV;

@ARGV = ();

for each ID value, look up the entry, and then edit it

while (my $id = shift (@id))

{

$sth = $dbh->prepare (qq{

SELECT * FROM member WHERE member_id = ?

});

$sth->execute ($id);

my $entry_ref = $sth->fetchrow_hashref ();

$sth->finish ();

if (!$entry_ref)

{

warn "No member exists with member ID = $id\n";

492 Chapter 8 Writing MySQL Programs Using Perl DBI

next;

}

pass reference to array of column names and reference to entry

edit_member (\@col_name, $entry_ref);

}

}

The code for creating a new member entry solicits values for each member table col-
umn, and then issues an INSERT statement to add a new row:

sub new_member

{

my $col_name_ref = shift; # reference to array of column names

my $entry_ref = { }; # create new entry as a hash

return unless prompt ("Create new entry (y/n)? ") =~ /^y/i;

prompt for new values; user types in new value, or Enter

to leave value unchanged, "NONE" to clear the value, or

"EXIT" to exit without creating the record.

foreach my $col_name (@{$col_name_ref})

{

next if $col_name eq "member_id"; # skip key field

my $col_val = col_prompt ($col_name, undef);

next if $col_val eq ""; # user pressed Enter

return if uc ($col_val) eq "EXIT"; # early exit

if (uc ($col_val) eq "NONE")

{

enter NULL if column is nullable, empty string otherwise

$col_val = ($nullable{$col_name} ? undef : "");

}

$entry_ref->{$col_name} = $col_val;

}

show values, ask for confirmation before inserting

show_member ($col_name_ref, $entry_ref);

return unless prompt ("\nInsert this entry (y/n)? ") =~ /^y/i;

construct an INSERT query, and then issue it.

my $stmt = "INSERT INTO member";

my $delim = " SET "; # put "SET" before first column, "," before others

foreach my $col_name (@{$col_name_ref})

{

only specify values for columns that were given one

next if !defined ($entry_ref->{$col_name});

quote() quotes undef as the word NULL (without quotes),

which is what we want. Columns that are NOT NULL are

assigned their default values.

$stmt .= sprintf ("%s %s=%s", $delim, $col_name,

$dbh->quote ($entry_ref->{$col_name}));

4938.3 Putting DBI to Work

$delim = ",";

}

$dbh->do ($stmt) or warn "Warning: new entry not created!\n"

}

edit_member.pl uses two routines to prompt the user for information. prompt() asks
a question and returns the answer:

sub prompt

{

my $str = shift;

print STDERR $str;

chomp ($str = <STDIN>);

return ($str);

}

col_prompt() takes a column name argument. It prints the name as a prompt to solicit
a new column value, and returns the value entered by the user:

sub col_prompt

{

my ($col_name, $entry_ref) = @_;

my $prompt = $col_name;

if (defined ($entry_ref))

{

my $cur_val = $entry_ref->{$col_name};

$cur_val = "NULL" if !defined ($cur_val);

$prompt .= " [$cur_val]";

}

$prompt .= ": ";

print STDERR $prompt;

my $str = <STDIN>;

chomp ($str);

return ($str);

}

The second argument to col_prompt() is a reference to the hash that represents the
member entry. For creating a new entry, this value will be undef, but when editing exist-
ing rows, it will point to the current contents of the entry. In that case, col_prompt() in-
cludes the current value of the column that it’s prompting for in the prompt string so that
the user can see what it is.The user can accept the value simply by pressing Enter.

The code for editing an existing member is similar to that for creating a new member.
However, we have an entry to work with, so the prompt routine displays the current entry
values, and the edit_member() function issues an UPDATE statement rather than an
INSERT:

sub edit_member

494 Chapter 8 Writing MySQL Programs Using Perl DBI

{

references to an array of column names and to the entry hash

my ($col_name_ref, $entry_ref) = @_;

show initial values, ask for okay to go ahead and edit

show_member ($col_name_ref, $entry_ref);

return unless prompt ("\nEdit this entry (y/n)? ") =~ /^y/i;

prompt for new values; user types in new value, or Enter

to leave value unchanged, "NONE" to clear the value, or

"EXIT" to exit without changing the record.

foreach my $col_name (@{$col_name_ref})

{

next if $col_name eq "member_id"; # skip key field

my $col_val = col_prompt ($col_name, $entry_ref);

next if $col_val eq ""; # user pressed Enter

return if uc ($col_val) eq "EXIT"; # early exit

if (uc ($col_val) eq "NONE")

{

enter NULL if column is nullable, empty string otherwise

$col_val = ($nullable{$col_name} ? undef : "");

}

$entry_ref->{$col_name} = $col_val;

}

show new values, ask for confirmation before updating

show_member ($col_name_ref, $entry_ref);

return unless prompt ("\nUpdate this entry (y/n)? ") =~ /^y/i;

construct an UPDATE query, and then issue it.

my $stmt = "UPDATE member";

my $delim = " SET "; # put "SET" before first column, "," before others

foreach my $col_name (@{$col_name_ref})

{

next if $col_name eq "member_id"; # skip key field

quote() quotes undef as the word NULL (without quotes),

which is what we want.

$stmt .= sprintf ("%s %s=%s", $delim, $col_name,

$dbh->quote ($entry_ref->{$col_name}));

$delim = ",";

}

$stmt .= " WHERE member_id = " . $dbh->quote ($entry_ref->{member_id});

$dbh->do ($stmt) or warn "Warning: entry not undated!\n"

}

A problem with edit_member.pl is that it doesn’t do any input value validation. For
most fields in the member table, there isn’t much to validate—they’re just string fields. But
for the expiration column, input values really should be checked to make sure that they

4958.3 Putting DBI to Work

look like dates. In a general-purpose data entry application, you’d probably want to extract
information about a table to determine the types of all its columns.Then you could base
validation constraints on those types.That’s more involved than I want to go into here, so
I’m just going to add a quick hack to the col_prompt() function to check the format of
the input if the column is expiration.A minimal date value check can be done like this:

sub col_prompt

{

my ($col_name, $entry_ref) = @_;

loop:

my $prompt = $col_name;

if (defined ($entry_ref))

{

my $cur_val = $entry_ref->{$col_name};

$cur_val = "NULL" if !defined ($cur_val);

$prompt .= " [$cur_val]";

}

$prompt .= ": ";

print STDERR $prompt;

my $str = <STDIN>;

chomp ($str);

perform rudimentary check on the expiration date

if ($str && $col_name eq "expiration") # check expiration date format

{

if ($str !~ /^\d+\D\d+\D\d+$/)

{

warn "$str is not a legal date, try again\n";

goto loop;

}

}

return ($str);

}

The pattern tests for three sequences of digits separated by non-digit characters.This is
only a partial check because it doesn’t detect values such as "1999-14-92" as being illegal.
To make the script better, you could give it more stringent date checks or add other
checks such as requiring the first and last name fields to be given non-empty values.

Other improvements are possible:

n Skip the update operation for an existing entry if the user made no changes.You
could do this by saving the original values of the member entry columns, and then
writing the UPDATE statement to update only those columns that had changed. If
there were none, the statement need not even be issued.

n Notify the user if the row was already changed by someone else while the user was
editing it.To do this, write the WHERE clause to include AND col_name = col_val for
each original column value.This will cause the UPDATE to fail if someone else had

496 Chapter 8 Writing MySQL Programs Using Perl DBI

changed the row, which provides feedback that two people are trying to change the
entry at the same time.

n Enable strict SQL mode and other input restrictions, which causes MySQL itself to
reject bad values and return an error if the input cannot be used as given:

$dbh->do ("SET sql_mode = 'TRADITIONAL'");

Here’s another shortcoming of the edit_member.pl script that you might consider
how to address:As written, the script opens a connection to the database before executing
the prompt loop and doesn’t close the connection until after writing out the row within
the loop. If the user takes a long time to enter or update the row, or just happens to do
something else for a while, the connection can remain open for a long time. How would
you modify edit_member.pl to hold the connection open only as long as necessary?

8.3.4 Finding Historical League Members with Common Interests
One of the duties of the Historical League secretary is to process requests from members
for a list of other members who share a particular interest within the field of U.S. history,
such as the Great Depression or the life of Abraham Lincoln. It’s easy enough to find such
members when the directory is maintained in a word processor document by using the
word processor’s “Find” function. However, producing a list consisting only of the qualify-
ing member entries is more difficult because it involves a lot of copy and paste.With
MySQL, the job becomes much easier because we can just run a query like this:

SELECT * FROM member WHERE interests LIKE '%lincoln%'

ORDER BY last_name, first_name

Unfortunately, the results don’t look very nice if we run this query from the mysql
client. Let’s put together a little DBI script, interests.pl, that performs the search for us
and produces better-looking output. interests.pl first checks to make sure that there is
at least one argument named on the command line, because there is nothing to search for
otherwise.Then, for each argument, the script runs a search on the interests column of
the member table:

@ARGV or die "Usage: interests.pl keyword\n";

search_members (shift (@ARGV)) while @ARGV;

To search for the keyword string, we put ‘%’ wildcard characters on each side and per-
form a pattern match so that the string can be found anywhere in the interests column.
Then we print the matching entries:

sub search_members

{

my $interest = shift;

print "Search results for keyword: $interest\n\n";

my $sth = $dbh->prepare (qq{

SELECT * FROM member WHERE interests LIKE ?

ORDER BY last_name, first_name

4978.3 Putting DBI to Work

});

look for string anywhere in interest field

$sth->execute ("%" . $interest . "%");

my $count = 0;

while (my $hash_ref = $sth->fetchrow_hashref ())

{

format_entry ($hash_ref);

++$count;

}

print "Number of matching entries: $count\n\n";

}

The format_entry() function turns an entry into its printable representation. I won’t
show it here, because it’s essentially the same as the rtf_format_entry() function from
the gen_dir.pl script, with the RTF control words stripped out.Take a look at the
interests.pl script in the sampdb distribution to see the implementation.

8.3.5 Putting the Historical League Directory Online
In Section 8.4,“Using DBI in Web Applications,” we’ll start writing scripts that connect to
the MySQL server to extract information and write that information in the form of Web
pages that appear in a client’s Web browser.Those scripts generate HTML dynamically ac-
cording to what the client requested. Before we reach that point, let’s begin thinking
about HTML by writing a DBI script that generates a static HTML document that can
be loaded into a Web server’s document tree.A good candidate for this task is to produce
the Historical League directory in HTML format (after all, one of our goals was to put
the directory online).

A simple HTML document has a structure something like the following:

<html> ← beginning of document

<head> ← beginning of document head

<title>My Page Title</title> ← title of document

</head> ← end of document head

<body bgcolor="white"> ← beginning of document body

(white background)

<h1>My Level 1 Heading</h1> ← a level 1 heading

... content of document body ...

</body> ← end of document body

</html> ← end of document

It’s not necessary to write a completely new script to generate the directory in HTML
format. Recall that when we wrote the gen_dir.pl script, we used an extensible frame-
work so that we’d be able to plug in code for producing the directory in additional

498 Chapter 8 Writing MySQL Programs Using Perl DBI

formats. Let’s take advantage of that extensibility now by adding code for generating
HTML output.To do this, we need to make the following modifications to gen_dir.pl:

n Write document initialization and cleanup functions.
n Write a function to format individual member rows.
n Add a switchbox element that identifies the format name and associates it with the

functions that produce output in that format.

The HTML document outline just shown breaks down pretty easily into prolog and
epilog sections that can be handled by the initialization and cleanup functions, as well as a
middle part that can be generated by the entry-formatting function.The HTML initial-
ization function generates everything up through the heading, and the cleanup function
generates the closing </body> and </html> tags:

sub html_init

{

print "<html>\n";

print "<head>\n";

print "<title>U.S. Historical League Member Directory</title>\n";

print "</head>\n";

print "<body bgcolor=\"white\">\n";

print "<h1>U.S. Historical League Member Directory</h1>\n";

}

sub html_cleanup

{

print "</body>\n";

print "</html>\n";

}

The real work, as usual, lies in formatting the entries. But even this isn’t very difficult.
We can make a copy of the rtf_format_entry() function named html_format_
entry(), and modify it to make sure that any special characters in the entry are encoded
and to replace the RTF control words with HTML markup tags:

sub html_format_entry

{

my $entry_ref = shift;

Convert <, >, ", and & to the corresponding HTML entities

(<, >, ", &)

foreach my $key (keys (%{$entry_ref}))

{

next unless defined ($entry_ref->{$key});

$entry_ref->{$key} =~ s/&/&/g;

$entry_ref->{$key} =~ s/\"/"/g;

$entry_ref->{$key} =~ s/>/>/g;

$entry_ref->{$key} =~ s/</</g;

4998.3 Putting DBI to Work

}

printf "Name: %s
\n", format_name ($entry_ref);

my $address = "";

$address .= $entry_ref->{street}

if defined ($entry_ref->{street});

$address .= ", " . $entry_ref->{city}

if defined ($entry_ref->{city});

$address .= ", " . $entry_ref->{state}

if defined ($entry_ref->{state});

$address .= " " . $entry_ref->{zip}

if defined ($entry_ref->{zip});

print "Address: $address
\n"

if $address ne "";

print "Telephone: $entry_ref->{phone}
\n"

if defined ($entry_ref->{phone});

print "Email: $entry_ref->{email}
\n"

if defined ($entry_ref->{email});

print "Interests: $entry_ref->{interests}
\n"

if defined ($entry_ref->{interests});

print "
\n";

}

The function produces output that looks like this:

Name: Mike Artel

Address: 4264 Lovering Rd., Miami, FL 12777

Telephone: 075-961-0712

Email: mike_artel@venus.org

Interests: Civil Rights,Education,Revolutionary War

The reason for using
 rather than
 is to write the document as well-formed
XHTML, which is more strict than HTML. Some distinctions between HTML and
XHTML are discussed briefly in Section 8.4.2.2,“Producing Web Output.”

The last modification needed for gen_dir.pl is to add to the switchbox another ele-
ment that points to the HTML-writing functions.The modified switchbox looks like this,
where the final element defines a format named html that points to the functions that
produce the various parts of an HTML document:

switchbox containing formatting functions for each output format

my %switchbox =

(

"text" => # functions for plain text format

{

"init" => undef, # no initialization needed

"entry" => \&text_format_entry,

"cleanup" => undef # no cleanup needed

},

500 Chapter 8 Writing MySQL Programs Using Perl DBI

"rtf" => # functions for RTF format

{

"init" => \&rtf_init,

"entry" => \&rtf_format_entry,

"cleanup" => \&rtf_cleanup

},

"html" => # functions for HTML format

{

"init" => \&html_init,

"entry" => \&html_format_entry,

"cleanup" => \&html_cleanup

}

);

To make the directory available in HTML format, run the following command and
install the resulting output file, directory.html, in your Web server’s document tree:

% ./gen_dir.pl html > directory.html

Whenever you update the member table in the database, you can run the command
again to update the online version. If you want to avoid running the command manually,
another strategy is to set up a job that executes periodically to update the online directory
automatically. On Unix, you can use cron for this. Suppose that the gen_dir.pl script is
installed in /usr/local/bin and the Historical League directory in the Web server docu-
ment tree is /usr/local/apache/htdocs/ushl.Then a crontab entry like this one can
be used to update the directory every morning at 4 a.m. (enter the entire command on a
single line):

0 4 * * * /usr/local/bin/gen_dir.pl

> /usr/local/apache/htdocs/ushl/directory.html

The user who runs this cron job must have permission to write files into the docu-
ment tree directory.

8.4 Using DBI in Web Applications
The DBI scripts developed thus far have been designed for use in a command-line envi-
ronment. DBI is useful in other contexts as well, such as in the development of Web-based
applications.When you write DBI scripts that can be invoked by your Web server in re-
sponse to requests sent by Web browsers, you open up new and interesting possibilities for
users to interact with your databases. For example, if you write a script that displays data in
tabular form, it can easily turn each column heading into a link that can be selected to re-
sort the data on that column.This enables users to view data in a different way with a sin-
gle click, without entering any queries. Or you can provide a form into which a user can
enter criteria for a database search, and then display a page containing the results of the
search. Simple capabilities like this can dramatically alter the level of interactivity you
provide for accessing the contents of your databases. In addition,Web browser display

5018.4 Using DBI in Web Applications

capabilities typically are better than what you get with a terminal window, so you can
create nicer-looking output as well.

In this section, we’ll create the following Web-based scripts:

n A general browser for the tables in the sampdb database.This isn’t related to any
specific task we want to accomplish with the database, but it illustrates several Web
programming concepts and provides a convenient means of seeing what information
the tables contain.

n A score browser that enables us to see the scores for any given quiz or test.This is
handy as a quick means of reviewing grade event results for the grade-keeping
project, and it’s useful when we need to establish the grading curve for a test so that
we can mark papers with letter grades.

n A script that finds Historical League members who share a common interest.This is
done by allowing the user to enter a search phrase, and then searching the
interests column of the member table for that phrase.We already wrote a
command-line script, interests.pl, to do this earlier, in Section 8.3.4,“Finding
Historical League Members with Common Interests.” But the command-line
version can be executed only by people who have login accounts on the machine
where the script is installed. Providing a Web-based version opens up the directory
to anyone who has a Web browser. Having another version also provides an instruc-
tive point of reference, allowing comparison of multiple approaches to the same
task. (Actually, we’ll develop two Web-based implementations. One is based on
pattern matching, just like interests.pl.The other performs FULLTEXT searches.)

To write these scripts, we’ll use the CGI.pm Perl module, which provides an easy
way to link DBI to the Web. (For instructions on getting CGI.pm, see Appendix A.)
The CGI.pm module is so called because it helps you write scripts that use the Common
Gateway Interface protocol that defines how a Web server communicates with other
programs. CGI.pm handles the details involved in a number of common housekeeping
tasks, such as collecting the values of parameters passed as input to your script by the Web
server. CGI.pm also provides convenient methods for generating HTML output, which
reduces the chance of writing out malformed HTML compared to writing raw HTML
tags yourself.

You’ll learn enough about CGI.pm in this chapter to write your own Web applica-
tions, but not all of its capabilities are covered.To learn more about this module, see
Official Guide to Programming with CGI.pm, by Lincoln Stein (John Wiley, 1998), or check
http://stein.cshl.org/WWW/software/CGI/ to read the online documentation.

Another text covering CGI.pm that’s specifically targeted to MySQL and DBI is my
book MySQL and Perl for the Web (New Riders, 2000).

The Web-based scripts described in the remainder of this chapter are located under the
perlapi/web directory of the sampdb distribution.

http://stein.cshl.org/WWW/software/CGI/

502 Chapter 8 Writing MySQL Programs Using Perl DBI

8.4.1 Setting Up Apache for CGI Scripts
In addition to DBI and CGI.pm, there’s one more component we need for writing Web-
based scripts: a Web server.The instructions here are geared toward using scripts with the
Apache server, but you should be able to use a different server if you like by adapting the
instructions a bit.

I assume here that the various parts of your Apache installation are located under
/usr/local/apache for Unix and under C:\Apache forWindows. For our purposes, the
most important subdirectories of the Apache top-level directory are htdocs (for the
HTML document tree), cgi-bin (for executable scripts and programs to be invoked by the
Web server), and conf (for configuration files).These directories might be located some-
where else on your system. If so, make the appropriate adjustments to the following notes.

You should verify that the cgi-bin directory is not located within the Apache docu-
ment tree.This is a safety precaution that prevents clients from requesting the source code
for your scripts as plain text.You don’t want malicious clients to be able to examine your
scripts for security holes by siphoning off the text of the scripts and studying them.

To install a CGI script for use with Apache, copy it to your cgi-bin directory. Under
Unix, the script must begin with a #! line and have its mode set to be executable, just as
for a command-line script. In addition, it’s a good idea to set the script to be owned by
the user that Apache runs as and to be accessible only to that user. For example, if Apache
runs as a user named www, use the following commands to make a script named
myscript.pl owned by and executable and readable only by that user:

chown www myscript.pl

chmod u=rx,go-rwx myscript.pl

You might need to run these commands as root. If you don’t have permission to install
scripts in the cgi-bin directory, ask your system administrator to do so on your behalf.

UnderWindows, the chown and chmod commands are unnecessary, but the script should
still begin with a #! line.The line can list the full pathname to your Perl program. For ex-
ample, if Perl is installed as C:\Perl\bin\perl.exe, the #! line can be written like this:

#!C:/Perl/bin/perl

Alternatively, on Windows, you can write the line more simply as follows if your PATH
environment variable is set to include the directory in which Perl is installed:

#!perl

The Perl scripts in the sampdb distribution all specify the pathname of Perl on the #!
line as /usr/bin/perl. Modify each script if necessary to provide a pathname that is
appropriate for your own system.

After a script has been installed in the cgi-bin directory, you can request it from your
browser by sending the appropriate URL to your Web server. For example, for a Web
server running on the local host, you would request myscript.pl from it using a URL
like this:

http://localhost/cgi-bin/myscript.pl

5038.4 Using DBI in Web Applications

Remember to change the example URLs throughout this chapter to point to your
own Web server host rather than to localhost.

Requesting a script with your browser causes it to be executed by the Web server.The
script’s output is sent back to you, and the result appears as a page in your browser.

When you run DBI scripts from the command line, warnings and error messages go to
your terminal. In a Web environment, there is no terminal, so these messages go to the
Apache error log.You should determine where this log is located because it can provide
useful information to help debug your scripts. On my system, it’s the error_log file in the
logs directory under the Apache root, /usr/local/apache. It may be somewhere else on
your system.The location of the log is determined by the ErrorLog directive in the
httpd.conf configuration file, which is located in Apache’s conf directory.

8.4.2 A Brief CGI.pm Primer
To write a Perl script that uses the CGI.pm module, put a use CGI statement near the be-
ginning of the script that imports the module’s function names.The standard set of the
most commonly used functions can be imported like this:

use CGI qw(:standard);

Then you can invoke CGI.pm functions to produce various kinds of HTML struc-
tures. In general, the functions are named after the corresponding HTML elements. For
example, to produce a level 1 header and a paragraph, invoke the h1() and p() functions:

print h1 ("This is a header");

print p ("This is a paragraph");

CGI.pm also supports an object-oriented style of use that allows you to invoke its
functions without importing the names.To do this, include a use statement and create a
CGI object:

use CGI;

my $cgi = new CGI;

The object gives you access to CGI.pm functions, which you invoke as methods of the
object:

print $cgi->h1 ("This is a header");

print $cgi->p ("This is a paragraph");

The object-oriented interface requires that you write the $cgi-> prefix all the time; in
this book I’ll use the simpler function call interface. However, one disadvantage of the
function call interface is that if a CGI.pm function has the same name as a Perl built-in
function, you must invoke it in a non-conflicting way. For example, CGI.pm has a func-
tion named tr() that produces the <tr> and </tr> tags that surround the cells in a row
of an HTML table.That function’s name conflicts with the name of the built-in Perl tr
transliteration function.To work around this problem when using the CGI.pm function
call interface, invoke tr() either as Tr() or as TR().When you use the object-oriented
interface, this problem does not occur, because you invoke tr() as a method of your $cgi

504 Chapter 8 Writing MySQL Programs Using Perl DBI

object (that is, as $cgi->tr()), which makes it clear that you’re not referring to the built-
in Perl function.

8.4.2.1 Checking for Web Input Parameters
One of the things that CGI.pm does for you is to take care of all the ugly details involved
in collecting input information provided by the Web server to your script.All you need to
do to get that information is invoke the param() function.You can get the names of all
available parameters like this:

my @param = param ();

To retrieve the value of a particular parameter, pass its name to param(). If the parame-
ter is set, param() returns its value, or undef if it isn’t set:

my $my_param = param ("my_param");

print "my_param value: ", (defined ($my_param) ? $my_param : "not set"), "\n";

8.4.2.2 Producing Web Output
Many of CGI.pm’s functions generate output to be sent to the client browser. Consider
the following HTML document:

<html>

<head>

<title>My Simple Page</title>

</head>

<body bgcolor="white">

<h1>Page Heading</h1>

<p>Paragraph 1.</p>

<p>Paragraph 2.</p>

</body>

</html>

The following script uses CGI.pm output functions to produce the equivalent document:

#!/usr/bin/perl

simple_doc.pl - produce simple HTML page

use strict;

use warnings;

use CGI qw(:standard);

print header ();

print start_html (-title => "My Simple Page", -bgcolor => "white");

print h1 ("Page Heading");

print p ("Paragraph 1.");

print p ("Paragraph 2.");

print end_html ();

5058.4 Using DBI in Web Applications

The header() function generates a Content-Type: header that precedes the page
content. It’s necessary to write this header when producing Web pages from scripts, to let
the browser know what kind of document to expect. (This differs from the way you write
static HTML pages. For those, it’s not necessary to produce a header because the Web
server sends one to the browser automatically.) By default, header() writes a header that
looks like this:

Content-Type: text/html

Following the header() invocation are calls to functions that generate the page con-
tent. start_html() produces the tags from the opening <html> tag through the opening
<body> tag, h1() and p() write the heading and paragraph elements, and end_html()
adds the closing document tags.

As illustrated by the start_html() call, many CGI.pm functions allow you to specify
named parameters, with each parameter given in -name=>value format.This is advanta-
geous for functions that take many parameters that are optional, because you can specify
just those parameters you need, and you can list them in any order.

Using CGI.pm output-generating functions doesn’t preclude you from writing out raw
HTML yourself if you want.You can mix the two approaches, combining calls to CGI.pm
functions with print statements that generate literal tags. However, one of the advantages
of using CGI.pm to generate output instead of writing HTML yourself are that you can
think in logical units rather than in terms of individual markup tags, and your HTML is
less likely to contain errors. (The reason I say “less likely” is that CGI.pm won’t prevent
you from doing bizarre things, such as including a list inside of a heading.)

CGI.pm also provides some portability advantages that you don’t get by writing your
own HTML. For example, as of version 2.69, CGI.pm automatically writes XHTML out-
put. If you’re using an older version of CGI.pm that writes plain HTML, all you need to
do to upgrade your scripts to start writing XHTML instead is update CGI.pm itself.

XHTML is similar to HTML but has a more well-defined format. HTML is easy to
learn and use, but one of its problems is that browser implementations tend to differ in
how they interpret it. For example, they are forgiving of malformed HTML in different
ways.This means that a not-quite-correct page may display properly in one browser but
incorrectly in another. XHTML’s requirements are stricter, to help ensure that documents
are well formed. Some of the differences between HTML and XHTML follow:

n Unlike HTML, every opening tag in XHTML must have a closing tag. For exam-
ple, paragraphs are written using <p> and </p> tags, but the closing </p> tag often is
omitted in HTML documents. In XHTML, the </p> tag is required. For HTML
tags that don’t have any body, such as
 and <hr>, the XHTML requirement that
all tags be closed in leads to ungainly constructs like
</br> and <hr></hr>.To
deal with this, XHTML allows single-tag shortcut forms (
, <hr/>) that serve
for both the opening and closing tags. However, older browsers that see tags like
these will sometimes mistake the tag names as br/ and hr/. Inserting a space before
the slash and writing the tags as
 and <hr /> helps to minimize the occur-
rence of such problems.

506 Chapter 8 Writing MySQL Programs Using Perl DBI

n In HTML, tag and attribute names are not case sensitive. For example, <BODY
BGCOLOR="white"> and <body bgcolor="white"> are the same. In XHTML, tag
and attribute names should be lowercase, so only <body bgcolor="white"> is
allowable.

n HTML attribute values can be unquoted or even missing. For example, this table
data cell construct is legal in HTML:

<td width=40 nowrap>Some text</td>

In XHTML, attributes must have values, and they must be quoted.A common con-
vention for HTML attributes that normally are used without a value is to use the
attribute name as its value.The XHTML equivalent of the preceding <tr> element
looks like this:

<td width="40" nowrap="nowrap">Some text</td>

All the Web scripts in this book generate output that conforms to XHTML rules. In
this chapter, we’ll rely on CGI.pm to generate properly formatted XHTML markup.The
scripts discussed in Chapter 9 also produce XHTML but generate the markup tags for
themselves because PHP doesn’t provide tag-generating functions the way CGI.pm does.

8.4.2.3 Escaping HTML and URL Text
If text that you write to a Web page may contain special characters, you should make sure
that they are escaped properly by processing the text with escapeHTML().This is also true
when you construct URLs that may contain special characters, although in that case you
should use the escape() function instead. It’s important to use the appropriate encoding
function because each one recognizes a different set of special characters and encodes
them differently. escapeHTML() escapes special characters as their equivalent HTML enti-
ties. For example,‘<’ becomes the < entity. escape() escapes each special character as %
followed by two hexadecimal digits representing the numeric character code, so ‘<’
becomes %3C. Consider the following short Perl script, escape_demo.pl, which demon-
strates both forms of escaping:

#!/usr/bin/perl

escape_demo.pl - demonstrate CGI.pm output-encoding functions

use strict;

use warnings;

use CGI qw(escapeHTML escape); # import escapeHTML() and escape()

Assign default string value, but use command-line argument if present

my $s = "1<=2, right?";

$s = shift (@ARGV) if @ARGV;

print "Unencoded string: ", $s, "\n";

print "Encoded for use as HTML text: ", escapeHTML ($s), "\n";

print "Encoded for use in a URL: ", escape ($s), "\n";

5078.4 Using DBI in Web Applications

The script encodes the string $s using each function and prints the result.When you
run it, the script produces the following output, from which you can see that encoding
conventions for HTML text are not the same as encoding for URLs:

unencoded string: 1<=2, right?

encoded for use as HTML text: 1<=2, right?

encoded for use in a URL: 1%3C%3D2%2C%20right%3F

If you provide a command-line argument to escape_demo.pl, the script encodes that
argument rather than the default string.This enables you to see the encoding for a string
of your own choosing.

The escape_demo.pl script imports the names of the encoding functions in the use
CGI statement. Depending on how current your version of CGI.pm is, they might not be
included in the standard set of functions, so you’ll need to import them even if you also
import the standard set, like this:

use CGI qw (:standard escapeHTML escape);

8.4.2.4 Writing Multiple-Purpose Pages
One of the primary reasons to write Web-based scripts that generate HTML instead of
writing static HTML documents is that a script can produce different kinds of pages
depending on the way it’s invoked.All the CGI scripts we’re going to write have that
property. Each one operates as follows:

n When you first request the script from your browser, it generates an initial page that
enables you to select what kind of information you want.

n When you make a selection, your browser sends a request back to the Web server
that causes the script to be re-invoked.The script then retrieves and displays in a
second page the specific information you requested.

An issue that must be addressed here is that you want the selection that you make from
the first page to determine the contents of the second page, but Web pages normally are
independent of one another unless you make some sort of special arrangements.The solu-
tion is to have the script generate pages that set a parameter to a value that tells the next
invocation of the script what you want.When you first invoke the script, the parameter
will have no value; this tells the script to present its initial page.When you indicate what
information you’d like to see, the script is invoked again, but this time the parameter will
be set to a value that instructs the script what to do.

There are different ways for Web pages to pass instructions to a script. One way is for
the page to include a form that the user fills in.When the user submits the form, its con-
tents are submitted to the Web server.The server passes the information along to the
script, which can find out what was submitted by invoking the param() function.This is
what we’ll do to implement keyword searches of the Historical League directory:The
search page includes a form in which the user enters the keyword to search for.

Another way of specifying instructions for a script is to add parameter values to the
end of the URL that you send to the Web server when you request the script.This is the

508 Chapter 8 Writing MySQL Programs Using Perl DBI

approach we’ll use for our sampdb table browser and score browser scripts.The way this
works is that the script generates a page containing hyperlinks.When you select a link, it
invokes the script again, but the link includes a parameter value that instructs the script
what to do. In effect, the script invokes itself in different ways to provide different kinds of
results, depending on which link you select.

A script can allow itself to be invoked by sending to the browser a page containing
a self-referential hyperlink—that is, a link to its own URL. For example, if a script
myscript.pl is installed in the Web server’s cgi-bin directory, it can produce a page that
contains this link:

Click Me!

When the user clicks on the text “Click Me!” in the page, the user’s browser sends a
request for myscript.pl back to the Web server. Of course, in and of itself, all that will do
is cause the script to send out the same page again because no other information is sup-
plied in the URL. However, if you add a parameter to it, that parameter is sent back to the
Web server when the user selects the link.The server invokes the script and the script can
call param() to detect that the parameter was set and take action according to its value.

To attach a parameter to the end of the URL, add a ‘?’ character followed by a
name=value pair indicating the parameter name and its value. For example, to add a size
parameter with a value of large, write the URL like this:

/cgi-bin/myscript.pl?size=large

To attach multiple parameters, separate them by ‘;’ or ‘&’ characters:

/cgi-bin/myscript.pl?size=large;color=blue

CGI.pm understands either ‘;’ or ‘&’ as a parameter separator character. Other language
APIs for Web programming vary in their conventions, so you’ll need to know whether
they expect ‘;’ or ‘&’ and construct URLs accordingly.We’ll use ‘;’ here.

To construct a self-referencing URL with attached parameters, a script should begin by
calling the CGI.pm url() function to obtain its own URL, and then append parameters
to it like this:

$url = url (); # get URL for script

$url .= "?size=large"; # add first parameter

$url .= ";color=blue"; # add second parameter

Using url() to get the script path enables you to avoid hardwiring the path into the
code.

To generate a hyperlink, pass the URL to CGI.pm’s a() function:

print a ({-href => $url}, "Click Me!");

The print statement produces a hyperlink that looks like this:

Click Me!

5098.4 Using DBI in Web Applications

The preceding example constructs the value of $url in somewhat cavalier fashion, be-
cause it doesn’t take into account the possibility that the parameter values or the link label
might contain special characters. Unless you’re certain that the values and the label don’t
require any encoding, it’s best to use the CGI.pm encoding functions.The escape()
function encodes values to be appended to a URL, and escapeHTML() encodes regular
HTML text. For example, if the value of the hyperlink label is stored in $label, and the
values for the size and color parameters are stored in the variables $size and $color,
you can perform the proper encoding like this:

$url = sprintf ("%s?size=%s;color=%s",

url (), escape ($size), escape ($color));

print a ({-href => $url}, escapeHTML ($label));

To see how self-referential URL construction works in the context of an application,
consider the following short CGI script, flip_flop.pl.When first invoked, it presents a
page called Page A that contains a single hyperlink. Selecting the link invokes the script
again, but the link also includes a pageb parameter to tell flip_flop.pl to display Page
B. (In this case, we don’t care about the parameter’s value, just whether it’s set.) Page B will
also contain a link to the script, but without a pageb parameter.This means that selecting
the link in Page B causes the original page to be redisplayed. In other words, subsequent
invocations of the script flip the page back and forth between Page A and Page B:

#!/usr/bin/perl

flip_flop.pl - simple multiple-output-page CGI.pm script

use strict;

use warnings;

use CGI qw(:standard);

my $url;

my $this_page;

my $next_page;

determine which page to display based on absence or presence

of the pageb parameter

if (!defined (param ("pageb"))) # display page A w/link to page B

{

$this_page = "A";

$next_page = "B";

$url = url () . "?pageb=1";

}

else # display page B w/link to page A

{

$this_page = "B";

$next_page = "A";

$url = url ();

510 Chapter 8 Writing MySQL Programs Using Perl DBI

}

print header ();

print start_html (-title => "Flip-Flop: Page $this_page",

-bgcolor => "white");

print p ("This is Page $this_page. To select Page $next_page, "

. a ({-href => $url}, "click here"));

print end_html ();

Install the script in your cgi-bin directory, and then request it from your browser us-
ing a URL like this one, but substituting the name of your own Web server for
localhost:

http://localhost/cgi-bin/flip_flop.pl

Select the link in the page several times to see how the script alternates the pages that
it generates.

Now, suppose that another client comes along and starts requesting flip_flop.pl.
What happens? Will the two of you interfere with each other? No, because the initial re-
quest from each of you will include no pageb parameter, and the script will respond with
its initial page.Thereafter, the requests sent by each of you will include or omit the param-
eter according to which page you currently happen to be viewing. flip_flop.pl gener-
ates an alternating series of pages properly for each client, independent of the actions of
any other client.

8.4.3 Connecting to the MySQL Server from Web Scripts
The command-line scripts developed earlier in Section 8.3,“Putting DBI to Work,”
shared a common preamble for establishing a connection to the MySQL server. Most of
our CGI scripts share some preamble code, too, but it’s a little different:

#!/usr/bin/perl

use strict;

use warnings;

use DBI;

use CGI qw(:standard);

use Cwd;

option file that should contain connection parameters for UNIX

my $option_file = "/usr/local/apache/conf/sampdb.cnf";

my $option_drive_root;

override file location for Windows

if ($^O =~ /^MSWin/i || $^O =~ /^dos/)

{

$option_drive_root = "C:/";

$option_file = "/Apache/conf/sampdb.cnf";

}

5118.4 Using DBI in Web Applications

construct data source and connect to server (under Windows, save

current working directory first, change location to option file

drive, connect, and then restore current directory)

my $orig_dir;

if (defined ($option_drive_root))

{

$orig_dir = cwd ();

chdir ($option_drive_root)

or die "Cannot chdir to $option_drive_root: $!\n";

}

my $dsn = "DBI:mysql:sampdb;mysql_read_default_file=$option_file";

my %conn_attrs = (RaiseError => 1, PrintError => 0, AutoCommit => 1);

my $dbh = DBI->connect ($dsn, undef, undef, \%conn_attrs);

if (defined ($option_drive_root))

{

chdir ($orig_dir)

or die "Cannot chdir to $orig_dir: $!\n";

}

This preamble differs from the one we used for command-line scripts in the following
respects:

n The first section now contains use CGI and use Cwd statements.The first is for the
CGI.pm module.The second is for the module that returns the pathname of the
current working directory; it’s used in case the script is running under Windows, as
described later.

n No connection parameters are parsed from the command-line arguments. Instead,
the code assumes that they’ll be listed in an option file.

n Instead of using mysql_read_default_group to read the standard option files, we
use mysql_read_default_file to read a single file intended specifically for options
to be used by Web scripts that access the sampdb database.As shown, the code looks
for options stored in /usr/local/apache/conf/sampdb.cnf under Unix, or in
C:\Apache\conf\sampdb.cnf under Windows. Note that, under Windows, the
code changes location to the root directory of the drive where the option file is
located before connecting, and back to the original directory afterward.The ration-
ale for this ugly hack is described in Section 8.2.9,“Specifying Connection
Parameters.”

The sampdb distribution contains a sampdb.cnf file that you can install for use by your
DBI-based Web scripts. It looks like this:

[client]

host=localhost

user=sampadm

password=secret

512 Chapter 8 Writing MySQL Programs Using Perl DBI

To use the Web-based scripts developed in this chapter on your own system, you
should change the option file location in the preamble if you use a different location.You
should also install the sampdb.cnf option file in the appropriate location and list in it op-
tion values for the MySQL server host and the MySQL account name and password that
you want to use.

Under Unix, you should set the option file to be owned by the account used to run
Apache and set the file’s mode to 400 or 600 so that no other user can read it.This pre-
vents one form of security exploit because it keeps other users who have login accounts
on the Web server host from reading the option file directly.

Unfortunately, the option file still can be read by other users who can install a script for
the Web server to execute. Scripts invoked by the Web server execute with the privileges
of the login account used for running the Web server.This means that another user who
can install a Web script can write the script so that it opens the option file and displays its
contents in a Web page. Because that script runs as the Web server user, it will have full
permission to read the file, which exposes the connection parameters necessary to connect
to MySQL and access the sampdb database. If you are the only person with login access
on your Web server host, this doesn’t matter. But if other users that you don’t trust have
login access on the machine, you might find it prudent to create a MySQL account that
has read-only (SELECT) privileges on the sampdb database, and then list that account’s
name and password in the sampdb.cnf file, rather than your own name and password.
That way you don’t risk allowing scripts to connect to your database through a MySQL
account that has permission to modify its tables. Chapter 12,“General MySQL Adminis-
tration,” discusses how to create a MySQL user account with restricted privileges.The
downside of this strategy is that with a read-only MySQL account, you can write scripts
only for data retrieval, not for data entry.

Alternatively, you can arrange to execute scripts under Apache’s suEXEC mechanism.
This enables you to execute a script as a specific trusted login user, and then write the script
to get the connection parameters from an option file that is readable only to that user.

Still another option for writing a script is to have it solicit a MySQL account username
and password from the client, and then use those values to establish a connection to the
MySQL server.This is more suitable for scripts that you create for administrative purposes
than for scripts that you provide for general use. In any case, you should be aware that
some methods of name and password solicitation are subject to attack by anyone who can
put a sniffer on the network between the Web server and your browser, so you may want
to set up a secure connection.That is beyond the scope of this book.

As you may gather from the preceding paragraphs,Web script security can be a tricky
thing. It’s definitely a topic about which you should read more for yourself, because it’s a
big subject which I really cannot do justice to here.The book MySQL and Perl for the Web
mentioned earlier includes a chapter devoted specifically to Web security, including in-
structions for setting up secure connections using SSL. Other good sources of information
are the security material in the Apache manual, and the WWW security FAQ is available
at http://www.w3.org/Security/Faq/.

http://www.w3.org/Security/Faq/

5138.4 Using DBI in Web Applications

8.4.4 A Web-Based Database Browser
Our first Web-based MySQL application is a simple script, db_browse.pl, that enables
you to see what tables exist in the sampdb database and to examine the contents of any of
these tables interactively from your Web browser.The script works like this:

n When you first request db_browse.pl from your browser, it connects to the
MySQL server, retrieves a list of tables in the sampdb database, and sends your
browser a page that presents each table as a hyperlink.When you select a table name
link from this page, your browser sends a request to the Web server asking
db_browse.pl to display the contents of that table.

n If db_browse.pl finds when it’s invoked that you’ve selected a table name, it re-
trieves the contents of the table and presents the information to your Web browser.
The heading for each column of data is the name of the column in the table. Head-
ings are presented as hyperlinks; if you select one of them, your browser sends a re-
quest to the Web server to redisplay the same table, but this time sorted by the
column you selected.

Warning
Before we go any further, you should be aware that although db_browse.pl is instructive
in terms of illustrating several useful Web programming concepts, it also represents a
security hole. The script will display any table in the sampdb, which can be a problem:
In Chapter 9, we’ll write a script that Historical League members can use to edit their
membership entries over the Web. Access to the entries is controlled through passwords
that are stored in a member_pass table. Having db_browse.pl enabled at that point
would enable anyone to look through the password table, and thus gain access to the
information necessary to edit any member table entry! Thus, it’s a good idea to remove
the script from your cgi-bin directory after you’ve tried it and understand how it works.
(Alternatively, install it on a private Web server that is not accessible to untrusted users.)

Okay, assuming that you haven’t been spooked by the preceding dire warnings, let’s see
how db_browse.pl works.The main body of the script puts out the initial part of the
Web page and then checks the tbl_name parameter to see whether it’s supposed to dis-
play some particular table:

#!/usr/bin/perl

db_browse.pl - Allow sampdb database browsing over the Web

use strict;

use warnings;

use DBI;

use CGI qw (:standard escapeHTML escape);

... set up connection to database (not shown) ...

my $db_name = "sampdb";

514 Chapter 8 Writing MySQL Programs Using Perl DBI

put out initial part of page

my $title = "$db_name Database Browser";

print header ();

print start_html (-title => $title, -bgcolor => "white");

print h1 ($title);

parameters to look for in URL

my $tbl_name = param ("tbl_name");

my $sort_col = param ("sort_col");

If $tbl_name has no value, display a clickable list of tables.

Otherwise, display contents of the given table. $sort_col, if

set, indicates which column to sort by.

if (!defined ($tbl_name))

{

display_table_names ($dbh, $db_name)

}

else

{

display_table_contents ($dbh, $db_name, $tbl_name, $sort_col);

}

print end_html ();

It’s easy to find out what value a parameter has because CGI.pm does all the work of
finding out what information the Web server passes to the script.We need only call
param() with the name of the parameter in which we’re interested. In the main body of
db_browse.pl, that parameter is named tbl_name. If it’s not set, this is the initial invoca-
tion of the script and it displays the table list. Otherwise, it displays the contents of the
table named by the tbl_name parameter, sorted by the column named in the sort_col
parameter.

The display_table_names() function generates the initial page. display_table_
names() retrieves the table list and writes out a bullet list in which each item is the name
of a table in the sampdb database:

sub display_table_names

{

my ($dbh, $db_name) = @_;

print p ("Select a table by clicking on its name:");

retrieve reference to single-column array of table names

my $sth = $dbh->prepare (qq{

SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES

WHERE TABLE_SCHEMA = ? ORDER BY TABLE_NAME

5158.4 Using DBI in Web Applications

});

$sth->execute ($db_name);

Construct a bullet list using the ul() (unordered list) and

li() (list item) functions. Each item is a hyperlink that

re-invokes the script to display a particular table.

my @item;

while (my ($tbl_name) = $sth->fetchrow_array ())

{

my $url = sprintf ("%s?tbl_name=%s", url (), escape ($tbl_name));

my $link = a ({-href => $url}, escapeHTML ($tbl_name));

push (@item, li ($link));

}

print ul (@item);

}

The li() function adds and tags around each list item and ul() adds the
 and tags around the set of items. Each table name in the list is presented as a
hyperlink that reinvokes the script to display the contents of the named table.The result-
ing list generated by display_table_names() looks like this:

absence

grade_event

member

...

If the tbl_name parameter has a value when db_browse.pl is invoked, the script
passes that value to display_table_contents(), along with the name of the column by
which to sort the results if one was given:

sub display_table_contents

{

my ($dbh, $db_name, $tbl_name, $sort_col) = @_;

my $sort_clause = "";

my @rows;

my @cells;

if sort column is specified, use it to sort the results

if (defined ($sort_col))

{

$sort_clause = " ORDER BY " . $dbh->quote_identifier ($sort_col);

}

present a link that returns user to table list page

print p (a ({-href => url ()}, "Show Table List"));

516 Chapter 8 Writing MySQL Programs Using Perl DBI

print p (strong ("Contents of $tbl_name table:"));

my $sth = $dbh->prepare (

"SELECT * FROM "

. $dbh->quote_identifier ($db_name, $tbl_name)

. "$sort_clause LIMIT 200"

);

$sth->execute ();

Use the names of the columns in the database table as the

headings in an HTML table. Make each name a hyperlink that

causes the script to be reinvoked to redisplay the table,

sorted by the named column.

foreach my $col_name (@{$sth->{NAME}})

{

my $url = sprintf ("%s?tbl_name=%s;sort_col=%s",

url (),

escape ($tbl_name),

escape ($col_name));

my $link = a ({-href => $url}, escapeHTML ($col_name));

push (@cells, th ($link));

}

push (@rows, Tr (@cells));

display table rows

while (my @ary = $sth->fetchrow_array ())

{

@cells = ();

foreach my $val (@ary)

{

display value if non-empty, else display non-breaking space

if (defined ($val) && $val ne "")

{

$val = escapeHTML ($val);

}

else

{

$val = " ";

}

push (@cells, td ($val));

}

push (@rows, Tr (@cells));

}

display table with a border

5178.4 Using DBI in Web Applications

print table ({-border => "1"}, @rows);

}

The query also includes a LIMIT 200 clause, as a simple precaution against the script
sending huge amounts of data to your browser. (That’s not likely to happen for the tables
in the sampdb database, but it might occur if you adapt the script to display the contents
of tables in other databases.) display_table_contents() shows the rows from the table
as an HTML table, using the th() and td() functions to produce table header and data
cells, Tr() to group cells into rows, and table() to produce the <table> tags that sur-
round the rows.

The HTML table presents column headings as hyperlinks that redisplay the database
table.These links include a sort_col parameter that explicitly specifies the column to use
for sorting. For example, for a page that displays the contents of the grade_event table,
the column heading links look like this:

date

category

event_id

display_table_contents() uses a little trick of turning empty values into a non-
breaking space (). In a bordered table, some browsers don’t display borders for
empty cells properly; putting a non-breaking space in the cell fixes that problem.

If you want to write a more general script, you could alter db_browse.pl to browse
multiple databases. For example, you could have the script begin by displaying a list of
databases on the server, rather than a list of tables within a particular database.Then you
could pick a database to get a list of its tables and go from there.

8.4.5 A Grade-Keeping Project Score Browser
Our next Web script, score_browse.pl, is designed to display scores that have been
recorded for the grade-keeping project. Strictly speaking, we should have a way of enter-
ing the scores before we create a way of retrieving them, but I’m saving the score entry
script until the next chapter. In the meantime, we do have several sets of scores in the
database already from the early part of the grading period.We can use the script to display
those scores, even in the absence of a convenient score entry method.The script displays
an ordered list of scores for any test or quiz, which is useful for determining the grading
curve and assigning letter grades.

score_browse.pl has some similarities to db_browse.pl (both serve as information
browsers), but is intended for the more specific purpose of looking at scores for a given
quiz or test.The initial page presents a list of the possible grade events from which to
choose, and enables the user to select any of them to see the scores associated with the
event. Scores for a given event are sorted by score with the highest scores first, so you can
use the result to determine the grading curve.

518 Chapter 8 Writing MySQL Programs Using Perl DBI

The score_browse.pl script needs to examine only one parameter, event_id, to see
whether a grade event was specified. If not, score_browse.pl displays the rows of the
grade_event table so that the user can select one. Otherwise, it displays the scores associ-
ated with the chosen event:

... set up connection to database (not shown) ...

put out initial part of page

my $title = "Grade-Keeping Project -- Score Browser";

print header ();

print start_html (-title => $title, -bgcolor => "white");

print h1 ($title);

parameter that tells us which grade event to display scores for

my $event_id = param ("event_id");

if $event_id has no value, display the event list.

otherwise display the scores for the given event.

if (!defined ($event_id))

{

display_events ($dbh)

}

else

{

display_scores ($dbh, $event_id);

}

print end_html ();

The display_events() function pulls out information from the grade_event table
and displays it as a table, using column names from the query for the table column head-
ings.Within each row, the event_id value is displayed as a hyperlink that can be selected
to trigger a query that retrieves the scores for the event.The URL for each event is sim-
ply the path to score_browse.pl with a parameter attached that specifies the event
number:

/cgi-bin/score_browse.pl?event_id=n

display_events() looks like this:

sub display_events

{

my $dbh = shift;

my @rows;

my @cells;

print p ("Select an event by clicking on its number:");

5198.4 Using DBI in Web Applications

get list of events

my $sth = $dbh->prepare (qq{

SELECT event_id, date, category

FROM grade_event

ORDER BY event_id

});

$sth->execute ();

use column names for table column headings

for (my $i = 0; $i < $sth->{NUM_OF_FIELDS}; $i++)

{

push (@cells, th (escapeHTML ($sth->{NAME}->[$i])));

}

push (@rows, Tr (@cells));

display information for each event as a row in a table

while (my ($event_id, $date, $category) = $sth->fetchrow_array ())

{

@cells = ();

display event ID as a hyperlink that reinvokes the script

to show the event's scores

my $url = sprintf ("%s?event_id=%d", url (), event_id;

my $link = a ({-href => $url}, escapeHTML ($event_id));

push (@cells, td ($link));

display event date and category

push (@cells, td (escapeHTML ($date)));

push (@cells, td (escapeHTML ($category)));

push (@rows, Tr (@cells));

}

display table with a border

print table ({-border => "1"}, @rows);

}

When the user selects an event, the browser sends a request for score_browse.pl that
has an event ID at the end. score_browse.pl finds the event_id parameter set and calls
the display_scores() function to list all the scores for the specified event.This function
also displays the text “Show Event List” as a hyperlink back to the initial page so that the
user can easily return to the event list page and select a different event:

sub display_scores

{

my ($dbh, $event_id) = @_;

my @rows;

my @cells;

Generate a link to the script that does not include any event_id

520 Chapter 8 Writing MySQL Programs Using Perl DBI

parameter. If the user selects this link, the script will display

the event list.

print p (a ({-href => url ()}, "Show Event List"));

select scores for the given event

my $sth = $dbh->prepare (qq{

SELECT

student.name,

grade_event.date,

score.score,

grade_event.category

FROM

student INNER JOIN score INNER JOIN grade_event

ON

student.student_id = score.student_id

AND score.event_id = grade_event.event_id

WHERE

grade_event.event_id = ?

ORDER BY

grade_event.date ASC,

grade_event.category ASC,

score.score DESC

});

$sth->execute ($event_id); # bind event ID to placeholder in query

print p (strong ("Scores for grade event $event_id"));

use column names for table column headings

for (my $i = 0; $i < $sth->{NUM_OF_FIELDS}; $i++)

{

push (@cells, th (escapeHTML ($sth->{NAME}->[$i])));

}

push (@rows, Tr (@cells));

while (my @ary = $sth->fetchrow_array ())

{

@cells = ();

foreach my $val (@ary)

{

display value if non-empty, else display non-breaking space

if (defined ($val) && $val ne "")

{

$val = escapeHTML ($val);

}

else

{

5218.4 Using DBI in Web Applications

$val = " ";

}

push (@cells, td ($val));

}

push (@rows, Tr (@cells));

}

display table with a border

print table ({-border => "1"}, @rows);

}

The statement that display_scores() executes is quite similar to one that we devel-
oped way back in Section 1.4.9.10,“Retrieving Information from Multiple Tables,”
which describes how to write joins. In that section, we asked for scores for a given date
because dates are more meaningful than event ID values. In contrast, when we use
score_browse.pl, we know the exact event ID.That’s not because we think in terms of
event IDs (we don’t), but because the script presents a list of them from which to choose,
along with their dates and categories.You can see that this type of interface reduces the
need to know particular details.You don’t need to know an event ID; it’s necessary only
to be able to recognize the date of the event you want.The script associates it with the
proper ID for you.

8.4.6 Historical League Common-Interest Searching
The db_browse.pl and score_browse.pl scripts enable the user to make a selection
from a list of choices in an initial page, where the choices are presented as hyperlinks that
re-invoke the script with particular parameter values.Another way to enable users to pro-
vide information is to present a form that the user fills in.This is more appropriate when
the range of possible choices isn’t constrained to some easily determined set of values.
Our next script demonstrates this method of soliciting user input.

In Section 8.3,“Putting DBI toWork,” we constructed a command-line script,
interests.pl, for finding Historical League members who share a particular interest.
However, that script isn’t something that League members have access to; the League sec-
retary must run the script from the command prompt and then mail the result to the
member who requested the list. It’d be nice to make this search capability more widely
available so that members could use it for themselves.Writing aWeb-based script is one
way to do that.The rest of this section discusses two approaches to table searching.The first
is based on pattern matching, and the second uses MySQL FULLTEXT search capabilities.

8.4.6.1 Performing Searches Using Pattern Matching
The first search script, ushl_browse.pl, displays a form into which the user can enter a
keyword.When the user submits the form, the script is re-invoked to search the member

table for qualifying members and display the results.The search is done by adding the ‘%’
wildcard character to both ends of the keyword and performing a LIKE pattern match,
which finds rows that have the keyword anywhere in the interests column value.

522 Chapter 8 Writing MySQL Programs Using Perl DBI

The main part of the script displays the keyword form. It also checks to see if a key-
word was just submitted and performs a search if so:

my $title = "U.S. Historical League Interest Search";

print header ();

print start_html (-title => $title, -bgcolor => "white");

print h1 ($title);

parameter to look for

my $keyword = param ("keyword");

Display a keyword entry form. In addition, if $keyword is defined,

search for and display a list of members who have that interest.

print start_form (-method => "post");

print p ("Enter a keyword to search for:");

print textfield (-name => "keyword", -value => "", -size => 40);

print submit (-name => "button", -value => "Search");

print end_form ();

connect to server and run a search if a keyword was specified

if (defined ($keyword) && $keyword !~ /^\s*$/)

{

... set up connection to database (not shown) ...

search_members ($dbh, $keyword);

... disconnect (not shown) ...

}

The script communicates information to itself a little differently than db_browse.pl
or score_browse.pl. It does not add a parameter to the end of a URL. Instead, the
browser encodes the information in the form and sends it as part of a post request. How-
ever, CGI.pm makes it irrelevant how the information is sent, because param() returns
the parameter value no matter how it was sent—just one more thing that CGI.pm does
to make Web programming easier.

Keyword searches are performed by the search_members() function. It takes a data-
base handle and the keyword as arguments, and then runs the search query and displays
the list of matching member rows:

sub search_members

{

my ($dbh, $interest) = @_;

print p ("Search results for keyword: " . escapeHTML ($interest));

my $sth = $dbh->prepare (qq{

SELECT * FROM member WHERE interests LIKE ?

ORDER BY last_name, first_name

});

5238.4 Using DBI in Web Applications

look for string anywhere in interest field

$sth->execute ("%" . $interest . "%");

my $count = 0;

while (my $ref = $sth->fetchrow_hashref ())

{

html_format_entry ($ref);

++$count;

}

print p ("Number of matching entries: $count");

}

When you run the ushl_browse.pl script, you’ll notice that each time you submit a
keyword value, it’s redisplayed in the form on the next page.This happens even though
the script specifies an empty string as the value of the keyword field when it generates the
form.The reason is that CGI.pm automatically fills in form fields with values from the
script execution environment if they are present. If you want to defeat this behavior and
make the field blank every time, include an override parameter in the textfield() call:

print textfield (-name => "keyword",

-value => "",

-override => 1,

-size => 40);

search_members() uses a helper function html_format_entry() to display individual
entries.That function is much like the one of the same name that we wrote earlier for the
gen_dir.pl script. (See Section 8.3.1,“Generating the Historical League Directory.”)
However, whereas the earlier version of the function generated HTML by printing
markup tags directly, the version used by ushl_browse.pl uses CGI.pm functions to pro-
duce the tags:

sub html_format_entry

{

my $entry_ref = shift;

encode characters that are special in HTML

foreach my $key (keys (%{$entry_ref}))

{

next unless defined ($entry_ref->{$key});

$entry_ref->{$key} = escapeHTML ($entry_ref->{$key});

}

print strong ("Name: " . format_name ($entry_ref)), br ();

my $address = "";

$address .= $entry_ref->{street}

if defined ($entry_ref->{street});

$address .= ", " . $entry_ref->{city}

if defined ($entry_ref->{city});

$address .= ", " . $entry_ref->{state}

524 Chapter 8 Writing MySQL Programs Using Perl DBI

if defined ($entry_ref->{state});

$address .= " " . $entry_ref->{zip}

if defined ($entry_ref->{zip});

print "Address: $address", br ()

if $address ne "";

print "Telephone: $entry_ref->{phone}", br ()

if defined ($entry_ref->{phone});

print "Email: $entry_ref->{email}", br ()

if defined ($entry_ref->{email});

print "Interests: $entry_ref->{interests}", br ()

if defined ($entry_ref->{interests});

print br ();

}

html_format_entry() uses the format_name() function to glue the first_name,
last_name, and suffix column values together. It’s identical to the function of the same
name in the gen_dir.pl script.

8.4.6.2 Performing Searches Using a FULLTEXT Index
Historical League members may have multiple interests. If so, they are separated by com-
mas in the interests column of the member table. For example:

Revolutionary War,Spanish-American War,Colonial period,Gold rush,Lincoln

Can you use ushl_browse.pl, to search for rows that match any of several keywords?
Sort of, but not really.You can enter several words into the search form, but rows won’t
match unless you construct a more complicated query that looks for a match on each
word.A more flexible way to approach the interest-searching task is to use a FULLTEXT in-
dex.This section describes a script ushl_ft_browse.pl that does so. For more informa-
tion about MySQL’s FULLTEXT capabilities, see Section 2.15,“Using FULLTEXT Searches.”

Before you can use the member table for FULLTEXT searching, it must be a MyISAM
table. If you created member using some other storage engine, convert it to a MyISAM
table with ALTER TABLE:

ALTER TABLE member ENGINE = MyISAM;

Next, it’s necessary to index the member table properly.To do that, use the following
statement:

ALTER TABLE member ADD FULLTEXT (interests);

That allows the interests column to be used for FULLTEXT searches.The
ushl_ft_browse.pl script in the sampdb distribution is based on ushl_browse.pl, and
differs from it only in the search_members() function that constructs the search query.
The modified version of the function looks like this:

sub search_members

{

my ($dbh, $interest) = @_;

5258.4 Using DBI in Web Applications

print p ("Search results for keyword: " . escapeHTML ($interest));

my $sth = $dbh->prepare (qq{

SELECT * FROM member WHERE MATCH(interests) AGAINST(?)

ORDER BY last_name, first_name

});

look for string anywhere in interest field

$sth->execute ($interest);

my $count = 0;

while (my $ref = $sth->fetchrow_hashref ())

{

html_format_entry ($ref);

++$count;

}

print p ("Number of matching entries: $count");

}

This version of search_members() has the following changes relative to the earlier one:

n The query uses MATCH() ... AGAINST() rather than LIKE.
n No ‘%’ wildcard characters are added to the keyword string to convert it to a pattern.

With these changes, you can invoke ushl_ft_browse.pl from your Web browser and
enter multiple keywords into the search form (with or without commas).The script will
find member entries that match any of them.

You could get a lot fancier with this script. One possibility is to take advantage of the
fact that FULLTEXT searches can search multiple columns at once by setting up the index
to span several columns and then modifying ushl_ft_browse.pl to search them all. For
example, you could drop the original FULLTEXT index and add another that uses the
last_name and full_name columns in addition to the interests column:

ALTER TABLE member DROP INDEX interests;

ALTER TABLE member ADD FULLTEXT (interests,last_name,first_name);

To use the new index, modify the SELECT statement in the search_members() func-
tion to change MATCH(interests) to MATCH(interests,last_name,first_name).

Another change you might make to ushl_ft_browse.pl would be to add a couple of
radio buttons to the form to enable the user to choose between “match any keyword”
and “match all keywords” modes.The “match any” mode is the one that the script uses
currently.To implement a “match all” mode, change the statement to use an IN BOOLEAN
MODE type of FULLTEXT search, and precede each keyword by a ‘+’ character to require that
it be present in matching rows. For information about boolean mode searching, see
Section 2.15.2,“Boolean Mode FULLTEXT Searches.”

This page intentionally left blank

9
Writing MySQL Programs

Using PHP

PHP is a scripting language for writing Web pages containing embedded code that is
executed whenever a page is accessed and that can generate dynamic content to be in-
cluded as part of the output sent to a client’s Web browser.This chapter describes how to
write PHP-based Web applications that use MySQL. For a comparison of PHP with the
C and Perl DBI APIs for MySQL programming, see Chapter 6,“Introduction to MySQL
Programming.”

The examples in this chapter draw on our sampdb sample database, using the tables
created for the grade-keeping project and for the Historical League in Chapter 1,“Get-
ting Started with MySQL.”The applications described here should run under PHP 5 or
higher.

This chapter refers to PDO constants using the class-constant notation for PHP 5.1
and up (for example, PDO::FETCH_NUM). For PHP 5.0, use global-constant notation in-
stead (for example, PDO_FETCH_NUM).

This chapter was written under the assumption that you’ll use PHP in conjunction
with the Apache Web server, although you can probably substitute a different server. In
addition, PHP currently must be built with the MySQL C client library linked in, or it
will not know how to access MySQL databases. (This requirement will be lifted when
mysqlnd becomes available, as described shortly.) If you need to obtain any of this soft-
ware, see Appendix A,“Obtaining and Installing Software.”That appendix also provides
instructions for obtaining the sampdb distribution that contains the example scripts devel-
oped in this chapter.You can download the scripts to avoid typing them in yourself.You’ll
find the scripts for the chapter under the phpapi directory of that distribution.

Under Unix, PHP may be used as an Apache module or as a standalone interpreter
used as a traditional CGI program. Under Windows, PHP can run only as a standalone
program unless you use Apache 2.x. In that case, you have the option of running PHP as
an Apache module. On either platform, running PHP as a module is preferable for per-
formance reasons.

528 Chapter 9 Writing MySQL Programs Using PHP

PHP offers several ways to interface with MySQL:
n In PHP 5 and up, you can use the “MySQL improved” extension, mysqli.This ex-

tension provides two calling styles.You can use it as a set of functions with names of
the form mysqli_xxx(), or through an object-oriented interface.

n The mysql extension is the original interface to MySQL. It consists of functions
with names of the form mysql_xxx(). For the most part, these map directly onto
the C API functions with the same names.There is no object-oriented interface for
this extension. mysql is less capable than mysqli, not only because it has less flexi-
bility in calling style, but also because it provides no access to features developed in
MySQL 4.1 and up. mysql was developed before MySQL 4.1 and probably should
be treated as deprecated.

n Other interfaces are less tied to specific database engines.This chapter uses PHP
Data Objects (PDO), an extension that provides an object-oriented database-inde-
pendent interface similar in design to the Perl DBI module. It uses a two-level ar-
chitecture in which the top level presents a uniform interface and the lower level
consists of drivers for various database engines.To switch from one driver to an-
other, you modify the arguments passed to the connection call so that they are ap-
propriate for the driver that you want to use.

PDO requires PHP 5.0 or higher because it uses object-oriented features not avail-
able in older versions of PHP.

The mysql and mysqli extensions and the PDO driver for MySQL were originally
designed to be linked against the MySQL C client library (the libmysqlclient library
described in Appendix G,“C API Reference” [online]). One effect of this design is that it
introduces a dependency of PHP on a part of the MySQL distribution if you want to
install PHP for purposes of accessing MySQL databases.A newer library, mysqlnd, is un-
der development that can be used as a libmysqlclient replacement. mysqlnd is a native
driver that implements the same communication protocol but requires no part of a
MySQL distribution. mysqlnd will be included in PHP as of version 5.3, which means
that it will be possible to access MySQL databases from PHP without having the MySQL
client library installed.

For the most part, this chapter describes only those PDO objects and methods that are
needed for the discussion here. It also covers only the MySQL driver for PDO. Drivers
for other database engines are available as well, but are not discussed here. For a more
comprehensive listing of the PDO interface, see Appendix I,“PHP API Reference” (on-
line).You’ll likely also want to consult the PHP manual, which describes all PHP capabili-
ties.The manual is available from the PHP Web site, http://www.php.net/.

Filenames for PHP scripts generally end with a suffix that enables your Web server to
recognize that they should be executed by invoking the PHP interpreter. If you use a suf-
fix that the server doesn’t recognize, it will serve your PHP scripts as plain text. Scripts in
this chapter use the .php suffix. For instructions on configuring Apache to recognize the
suffix you want to use, see Appendix A. (If you are not in control of the Apache installa-
tion on your machine, check with the system administrator to find out the proper suffix

http://www.php.net/

5299.1 PHP Overview

to use.) The appendix also describes how to set up Apache to treat any script named
index.php as the default page for the directory in which it is located, similar to the way
Apache treats files named index.html.

To use the scripts developed in this chapter, you’ll need to install them where your
Web server can access them.The convention used here is that the U.S. Historical League
and grade-keeping projects have their own directories called ushl and gp at the top level
of the Apache document tree.To set up your Web server that way, you should create those
directories now. For a server running on the local host, pages in those two directories will
have URLs that begin like this:

http://localhost/ushl/...

http://localhost/gp/...

For example, the home pages in each directory can be called index.php and would be
accessed as follows:

http://localhost/ushl/index.php

http://localhost/gp/index.php

If you have Apache configured to use index.php as the default page for a directory,
the following URLs are equivalent in practice to the preceding ones:

http://localhost/ushl/

http://localhost/gp/

Remember to change the example URLs throughout this chapter to point to your
own Web server host rather than to localhost.

9.1 PHP Overview
The basic operation of PHP is to interpret a script to produce a Web page that is sent to a
client.A PHP script typically contains a mix of HTML and executable code.The HTML
is sent literally to the client without modification, whereas the PHP code is executed and
replaced by whatever output it produces. Consequently, the client never sees the code; it
sees only the resulting HTML page. (The PHP scripts developed in this chapter generate
pages that are well formed as XHTML, not just as HTML. For a brief description of
XHTML, see Section 8.4.2.2,“Writing Web Output.”)

When PHP begins reading a file, it simply copies whatever it finds there to the output,
under the assumption that the contents of the file represent literal text, such as HTML
content.When the PHP interpreter encounters a special opening tag, it switches from
text copy mode to PHP code mode and starts interpreting the file as PHP code to be ex-
ecuted.The interpreter switches from code mode back to text mode when it sees another
special tag that signals the end of the code.This enables you to mix static text (the HTML
part) with dynamically generated results (output from the PHP code part) to produce a
page that varies depending on the circumstances under which it is called. For example,
you might use a PHP script to process the result of a form into which a user has entered
parameters for a database search. Depending on what the user types, the search parameters

530 Chapter 9 Writing MySQL Programs Using PHP

might be different each time the form is submitted, so when the script searches for and
displays the information the user requested, each resulting page will be different.

Let’s see how PHP works beginning with an extremely simple script:

<html>

<body>

<p>hello, world</p>

</body>

</html>

This script is in fact so simple that it contains no PHP code! “What good is that?,” you
ask.That’s a reasonable question.The answer is that it’s sometimes useful to set up a script
containing just the HTML framework for the page you want to produce and then add the
PHP code later.This is perfectly legal, and the PHP interpreter has no problem with it.

To include PHP code in a script, distinguish it from the surrounding text with the
special opening and closing tags: <?php and ?>.When the PHP interpreter encounters the
opening <?php tag, it switches from text mode to PHP code mode and treats whatever it
finds as executable code until it sees the closing ?> tag.The code between the tags is in-
terpreted and replaced by its output.The previous example could be rewritten to include
a small section of PHP code like this:

<html>

<body>

<p><?php print ("hello, world"); ?></p>

</body>

</html>

In this case, the code part is minimal, consisting of a single line.When the code exe-
cutes, it produces the output hello, world, which becomes part of the output sent to
the client’s browser.Thus, the Web page produced by this script is equivalent to the one
produced by the preceding example, where the script consisted entirely of HTML.

You can use PHP code to generate any part of a Web page.We’ve already seen one ex-
treme, in which the entire script consists of literal HTML and contains no PHP code.The
other extreme is to produce the HTML completely from within code mode:

<?php

print ("<html>\n");

print ("<body>\n");

print ("<p>hello, world</p>\n");

print ("</body>\n");

print ("</html>\n");

?>

These three examples demonstrate that PHP gives you a lot of flexibility in how you
produce output. PHP leaves it up to you to decide whatever combination of HTML and
PHP code is appropriate. PHP is also flexible in that you don’t need to put all your code

5319.1 PHP Overview

in one place.You can switch between text mode and PHP code mode throughout the
script however you please, as often as you want.

PHP allows tag styles other than the <?php and ?> style that is used for examples in
this chapter. See Appendix I (online) for a description of the tag styles that are available
and instructions on enabling them.

Standalone PHP Scripts
The example scripts in this chapter are written with the expectation that they will be invoked
by a Web server to generate a Web page. However, if you have a standalone version of PHP,
you can use it to execute PHP scripts from the command line. Suppose that you have a
script named hello.php that looks like this:

<?php print ("hello, world\n"); ?>

To execute the script from the command line yourself, use this command:

% php hello.php

hello, world

This is sometimes useful when you’re working on a script, because you can see right away
whether it has syntax errors or other problems without having to request the script from a
browser each time you make a change. For this reason, you may want to build a standalone
version of PHP even if normally you use it as a module from within Apache.

9.1.1 A Simple PHP Script
If PHP provided only the capability of producing what is essentially static HTML by
means of print statements, it wouldn’t be very useful. PHP’s power is that it generates dy-
namic pages: output that can vary from one invocation of a script to the next.The script
described in this section shows a simple example of this capability. It’s still relatively short,
but a bit more substantial than the previous examples. It shows how easily you can access
a MySQL database from PHP and use the results of a query in a Web page.The script
forms a simple basis for a home page for the Historical League Web site.As we go on,
we’ll make the script a bit more elaborate, but for now all it does is display a short wel-
come message and a count of the current League membership:

<html>

<head>

<title>U.S. Historical League</title>

</head>

<body bgcolor="white">

<p>Welcome to the U.S. Historical League Web Site.</p>

<?php

USHL home page

try

{

$dbh = new PDO("mysql:host=localhost;dbname=sampdb", "sampadm", "secret");

532 Chapter 9 Writing MySQL Programs Using PHP

$dbh->setAttribute (PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

$sth = $dbh->query ("SELECT COUNT(*) FROM member");

$count = $sth->fetchColumn (0);

print ("<p>The League currently has $count members.</p>");

$dbh = NULL; # close connection

}

catch (PDOException $e) { } # empty handler (catch but ignore errors)

?>

</body>

</html>

The welcome message is just static text, so it’s easiest to write it as literal HTML.The
membership count, on the other hand, is dynamic and changes over time, so it must be
determined at execution time by querying the member table in the sampdb database.To
perform that task, the code within the opening and closing script tags follows these steps:

1. Opens a connection to the MySQL server and makes the sampdb database the de-
fault database.

2. Enables exceptions for subsequent PDO calls so that errors can be caught easily
without testing for them explicitly.

3. Sends a query to the server to determine how many members the Historical
League has at the moment (assessed as the number of rows in the member table).

4. Uses the query result to construct a message containing the membership count.

5. Closes the connection to the MySQL server.

The script just shown can be found as the file named index.php in the phpapi/ushl
directory of the sampdb distribution. Change the connection parameters as necessary, in-
stall a copy of the script as index.php in the ushl directory of your Web server’s docu-
ment tree, and request it from your browser using either of these URLs (changing the
hostname and pathname as appropriate for your own Web server):

http://localhost/ushl/

http://localhost/ushl/index.php

Let’s break down the script into pieces to see how it works.The first step is to connect
to the server:

$dbh = new PDO("mysql:host=localhost;dbname=sampdb", "sampadm", "secret");

new PDO() invokes the constructor for the PDO class.The constructor attempts to con-
nect to the database server and raises an exception if it fails. Otherwise, it returns a PDO
object that serves as a database handle.

The first argument to new PDO() is a string called a “data source name.”The second
and third arguments are the username and password to use for connecting to the server,
sampadm and secret.The DSN string tells PDO which driver to use, followed by driver-
specific parameters. For MySQL, the driver name is mysql, and the parameters are the

5339.1 PHP Overview

host where the server is running and the database to select as the default database.The
DSN shown indicates that the MySQL server host and default database are localhost
and sampdb. Both parameters following the colon are optional.The default value for host
is localhost, so this parameter actually could have been omitted. If you omit dbname, no
default database is selected. (The DSN can take other forms, and other parameters are
allowed. For details, see Appendix I [online].)

Perhaps it makes you nervous that the username and password are embedded in the
script for all to see.And, indeed, it should. It’s true that the name and password don’t ap-
pear in the resulting Web page that is sent to the client, because the script’s contents are
replaced by its output. Nevertheless, if the Web server becomes misconfigured somehow
and fails to recognize that your script needs to be processed by PHP, it will send the script
as plain text, which exposes the connection parameters.We’ll deal with this problem in
Section 9.1.2,“Using PHP Library Files for Code Encapsulation.”

The database handle returned by new PDO() becomes the means for further interac-
tion with the MySQL server, such as issuing SQL statements to be executed.After a suc-
cessful connection, the default error mode for PDO calls is to fail silently, which requires
that you check for errors explicitly.To make it easier to handle problems, the script en-
ables exceptions for PDO errors:

$dbh->setAttribute (PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

With exceptions enabled, a try/catch construct can be used to “route” errors to an
exception handler without explicit tests. If you don’t use try/catch, exceptions termi-
nate your script.

The script next sends the member-counting query to the server by invoking the data-
base handle’s query() method, and then extracts and displays the result:

$sth = $dbh->query ("SELECT COUNT(*) FROM member");

$count = $sth->fetchColumn (0);

print ("<p>The League currently has $count members.</p>");

The query() method sends the query to the server to be executed. Note that the
query string contains no terminating semicolon character or \g or \G sequence, in con-
trast to the way you issue statements from within the mysql program. query() is used for
statements that return rows. (Use a different method, exec(), for statements that modify
rows.) query() returns a PDOStatement object that is a statement handle for manipulat-
ing the result set.

For the query shown, the result set consists of a single row with a single column value
representing the membership count.The script invokes the $sth object’s fetchColumn()
method to fetch the row and extract the first column (column 0).

After printing the count, the script closes the connection to the server by setting the
database handle to NULL.This is optional. If you don’t close the connection, PHP closes it
when the script terminates.

The code for interacting with MySQL occurs within a try block so that any excep-
tion raised for an error can be caught and handled by the corresponding catch block.

534 Chapter 9 Writing MySQL Programs Using PHP

The connection attempt raises an exception automatically if it fails, and the
setAttribute() call enables exceptions for any subsequent PDO calls that fail.The
catch block in the example is empty, so its effect is to trap and ignore errors.The script
writes no message for an error because printing the membership count is ancillary to the
greeting presented by the home page. (An error message in this context is likely simply to
be confusing to people visiting the Web site.) Section 9.1.8,“Handling Errors,” discusses
other ways to deal with errors.

Variables in PHP
In PHP, you can make variables spring into existence simply by using them. Our home page
script uses three such variables, $dbh, $sth, and $count, none of which are declared any-
where. (There are contexts for which you do declare a variable, such as in an exception han-
dler or when you reference a global variable inside a function.)

Variables are signified by an identifier preceded by a dollar sign (‘$’). This is true no matter
what kind of value the variable represents, although for arrays and objects you tack on
some extra stuff to access individual elements of the value. If a variable $x represents a
single scalar value, such as a number or a string, you access it as just $x. If $x represents
an array with numeric indices, you access its elements as $x[0], $x[1], and so on. If $x rep-
resents an array with associative indices such as "yellow" or "large," you access its ele-
ments as $x["yellow"] or $x["large"]. PHP arrays can even have both numeric and
associative elements. For example, $x[1] and $x["large"] both can be elements of the same
array. If $x represents an object, it has properties that you access as $x->property_name.
For example, $x->yellow and $x->large may be properties of $x. Numbers are not legal as
property names unless you use curly braces, so $x->{1} is a valid construct in PHP, but
$x->1 is not. Curly braces can also be used if you need to refer to property names that con-
tain spaces or other illegal characters.

9.1.2 Using PHP Library Files for Code Encapsulation
PHP scripts differ from DBI scripts in that PHP scripts are located within your Web
server document tree, whereas DBI scripts typically are located in a cgi-bin directory
that’s located outside of the document tree.This brings up a security issue:A server con-
figuration error can cause pages located within the document tree to be served as plain
text to clients.This means that usernames and passwords for establishing connections to
the MySQL server are at a higher risk of being exposed to the outside world in a PHP
script than in a DBI script.

Our initial Historical League home page script is subject to this problem because it
contains the literal values of the MySQL username and password. Let’s move these con-
nection parameters out of the script using two of PHP’s capabilities: functions and include
files.We’ll write a function sampdb_connect() that establishes a connection and returns a
database handle, and put that function in an include file—a library file that is not part of
our main script but that can be referenced from it.This approach has several benefits:

n It’s easier to write connection establishment code.We can write out the con-
nection parameters once in the sampdb_connect() helper function, not in every

5359.1 PHP Overview

individual script that needs to connect. Moving details like this into a library and
out of our scripts tends to make them more understandable because you can con-
centrate on the unique aspects of each script without being distracted by common
connection setup code.

n The include file can be used by multiple scripts.This promotes code reusability
and makes code more maintainable. It also enables global changes to be made easily
to every script that accesses the file. For example, if we move the sampdb database
from localhost to boa.snake.net, we don’t need to change a bunch of individual
scripts. Instead, we just change the hostname parameter in the include file where the
sampdb_connect() function is defined.

n The include file can be moved outside of the Apache document tree.This
means that clients cannot request the include file directly from their browsers, so its
contents cannot be exposed to them even if the Web server becomes misconfigured.
Using an include file is a good strategy for hiding any kind of sensitive information
that you don’t want to be sent offsite by your Web server. However, although this is
a security improvement, don’t be lulled into thinking that it makes the username
and password secure in all senses. Other users who have login accounts on the Web
server host (and thus have access to its filesystem) might be able to read the include
file directly unless you take certain precautions. Section 8.4.3,“Connecting to the
MySQL Server from Web Scripts,” has some notes that pertain to installing DBI
configuration files so as to protect them from other users. Similar precautions apply
to the use of PHP include files.

To use include files, you need to have a place to put them, and you need to tell PHP to
look for them. If your system already has such a location, you can use that. If not, use the
following procedure to establish an include file location:

1. Create a directory outside of the Web server document tree in which to store PHP
include files. I use /usr/local/apache/lib/php, which is outside the location of
my document tree, /usr/local/apache/htdocs.

2. Include files can be accessed from scripts by full pathname or, if you set up PHP’s
search path, by just their basename (the last component of the pathname).The latter
approach is more convenient because PHP will find the file for us.The search path
used by PHP when searching for include files is controlled by the value of the
include_path configuration setting in the PHP initialization file, php.ini. Find this
file on your system (mine is installed in /usr/local/lib), and locate the
include_path line. If it has no value, set it to the full pathname of your new in-
clude directory:

include_path = "/usr/local/apache/lib/php"

If include_path already has a value, add the new directory to that value:

include_path = "/usr/local/apache/lib/php:current_value"

536 Chapter 9 Writing MySQL Programs Using PHP

For Unix, use colon characters as shown to separate directories listed in
include_path. For Windows, use semicolons instead.

After modifying php.ini, restart Apache so that your changes take effect.

Use of PHP include files is analogous to the use of C header files. For example, the
way that PHP can look for include files in several directories is similar to the way
the C preprocessor looks in multiple directories for C header files.

3. Create the include file that you want to use and put it into the include directory.
The file should have some distinctive name; we’ll use sampdb_pdo.php.This file
eventually will contain several functions, but to start with, it need contain only the
sampdb_connect() function:

<?php

sampdb_pdo.php - common functions for sampdb PDO-based PHP scripts

Function that uses our top-secret username and password to connect

to the MySQL server to use the sampdb database. It also enables

exceptions for errors that occur for subsequent PDO calls.

Return value is the database handle produced by new PDO().

function sampdb_connect ()

{

$dbh = new PDO("mysql:host=localhost;dbname=sampdb",
"sampadm", "secret");

$dbh->setAttribute (PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

return ($dbh);

}

?>

The sampdb_connect() function connects to the database server by constructing a
data source name and passing it to new PDO() along with the MySQL account user-
name and password.Then it sets the error-handling mode to cause exceptions to be
raised for PDO errors and returns the database handle to use for further interaction
with the server. Use the function like this:

$dbh = sampdb_connect ();

The reason for enabling exceptions in sampdb_connect() is that it’s more conven-
ient to turn them on in the library file rather than individually in each script that
uses the library file.

Observe that the PHP code in the sampdb_pdo.php file is bracketed within
<?php and ?> script tags.That’s because PHP begins reading include files in text
copy mode. If you omit the tags, PHP will send out the file as plain text rather than
interpreting it as PHP code.That’s just fine if you intend the file to produce literal

5379.1 PHP Overview

HTML, but if you want its contents to be executed, you must enclose the PHP
code within script tags.

4. To reference the include file from a script, use one of the following statements:

include "sampdb_pdo.php";

require "sampdb_pdo.php";

include_once "sampdb_pdo.php";

require_once "sampdb_pdo.php";

PHP handles the four statements as follows:
n include and require include and evaluate the contents of the named file.

They differ in that if the file is missing, include produces a warning and
execution continues, whereas require produces an error and execution
terminates.

n The include_once and require_once statements are similar to include and
require, except that if PHP already has read the named file, it will not read it
again.This can be useful when include files include other files, to avoid the
possibility of including a file multiple times and perhaps triggering function
redefinition errors.

The scripts in this chapter use require_once.When PHP sees the file-inclusion
statement, it searches for the file and reads its contents.Anything in the file becomes
accessible to the following parts of the script.

The sampdb distribution includes the sampdb_pdo.php file in its phpapi directory.
Modify the connection parameters as necessary to reflect those that you use for connect-
ing to MySQL.Then copy the file to the include directory that you want to use, and set
the file’s mode and ownership so that it’s readable by your Web server (and not by other
users).

Now we can modify the Historical League home page to reference the
sampdb_pdo.php include file and connect to the MySQL server by invoking
sampdb_connect():

<html>

<head>

<title>U.S. Historical League</title>

</head>

<body bgcolor="white">

<p>Welcome to the U.S. Historical League Web Site.</p>

<?php

USHL home page - version 2

require_once "sampdb_pdo.php";

try

538 Chapter 9 Writing MySQL Programs Using PHP

{

$dbh = sampdb_connect ();

$sth = $dbh->query ("SELECT COUNT(*) FROM member");

$count = $sth->fetchColumn (0);

print ("<p>The League currently has $count members.</p>");

$dbh = NULL; # close connection

}

catch (PDOException $e) { } # empty handler (catch but ignore errors)

?>

</body>

</html>

The script just shown can be found as index2.php in the phpapi/ushl directory of
the sampdb distribution. Copy it to the ushl directory in your Web server’s document
tree, naming it index.php to replace the file of that name that is there now.This action re-
places the less secure version with a more secure one because the new file contains no lit-
eral MySQL username or password.

You may be thinking that we haven’t really saved all that much coding in the home
page by using an include file. But just wait.The sampdb_pdo.php file can be used for
other functions as well, and thus serves as a convenient repository for any routine that we
expect to be useful in multiple scripts. In fact, we can create two more such functions to
put in that file right now. Every Web script we write in the remainder of the chapter will
generate a fairly stereotypical set of HTML tags at the beginning of a page and another set
at the end. Rather than writing out those tags in each script, we can write functions
html_begin() and html_end() to generate them for us.The html_begin() function can
take a couple of arguments that specify a page title and header.The code for the two func-
tions looks like this:

function html_begin ($title, $header)

{

print ("<html>\n");

print ("<head>\n");

if ($title != "")

print ("<title>$title</title>\n");

print ("</head>\n");

print ("<body bgcolor=\"white\">\n");

if ($header != "")

print ("<h2>$header</h2>\n");

}

function html_end ()

{

print ("</body>\n");

print ("</html>\n");

}

5399.1 PHP Overview

After putting html_begin() and html_end() in sampdb_pdo.php, the Historical
League home page can be modified to use them.The resulting script (index3.php) looks
like this:

<?php

USHL home page - version 3

require_once "sampdb_pdo.php";

$title = "U.S. Historical League";

html_begin ($title, $title);

?>

<p>Welcome to the U.S. Historical League Web Site.</p>

<?php

try

{

$dbh = sampdb_connect ();

$sth = $dbh->query ("SELECT COUNT(*) FROM member");

$count = $sth->fetchColumn (0);

print ("<p>The League currently has $count members.</p>");

$dbh = NULL; # close connection

}

catch (PDOException $e) { } # empty handler (catch but ignore errors)

html_end ();

?>

Notice that the PHP code has been split into two pieces, with the literal HTML text
of the welcome message appearing between the pieces. Copy index3.php to the ushl di-
rectory in your Web server’s document tree, naming it index.php to replace the file of
that name that is there now.

The use of functions for generating the initial and final part of the page provides an
important capability. If you want to change the look of your page headers or footers, just
modify the functions appropriately, and every script that uses them will be affected auto-
matically. For instance, you might want to put a message “Copyright USHL” at the bot-
tom of each Historical League page.Adding the message to a page-trailer function such as
html_end() is an easy way to do that.

9.1.3 A Simple Data-Retrieval Page
The script that we’ve embedded in the Historical League home page runs a query that re-
turns just a single row (the membership count). Our next script shows how to process a
multiple-row result set (the full contents of the member table).This is the PHP equivalent
of the DBI script dump_members.pl developed in Section 8.2.2,“A Simple DBI Script,”
so we’ll call it dump_members.php.The PHP version differs from the DBI version in that

540 Chapter 9 Writing MySQL Programs Using PHP

it’s intended to be used in a Web environment rather than from the command line. For
this reason, it needs to produce HTML output rather than tab-delimited text.To make
rows and columns line up nicely, dump_members.php writes the member rows as an
HTML table.The script looks like this:

<?php

dump_members.php - dump U.S. Historical League membership as HTML table

require_once "sampdb_pdo.php";

$title = "U.S. Historical League Member List";

html_begin ($title, $title);

$dbh = sampdb_connect ();

issue statement

$stmt = "SELECT last_name, first_name, suffix, email,"

. " street, city, state, zip, phone FROM member ORDER BY last_name";

$sth = $dbh->query ($stmt);

print ("<table>\n"); # begin table

read results of statement, and then clean up

while ($row = $sth->fetch (PDO::FETCH_NUM))

{

print ("<tr>\n"); # begin table row

for ($i = 0; $i < $sth->columnCount (); $i++)

{

escape any special characters and print table cell

print ("<td>" . htmlspecialchars ($row[$i]) . "</td>\n");

}

print ("</tr>\n"); # end table row

}

print ("</table>\n"); # end table

$dbh = NULL; # close connection

html_end ();

?>

sampdb_connect() enables exceptions for PDO errors, but dump_members.php con-
tains no try/catch construct to handle exceptions.What happens if an error occurs? In
this case, PHP’s default behavior is to terminate the script and print a message that de-
scribes the problem.This contrasts with the Historical League home page, where we used
an empty exception handler to cause errors to be ignored. For the home page, displaying
the membership count was just a little addition to the script’s main purpose of presenting
a greeting to the visitor, so printing a message if the count could not be retrieved would
have just been a distraction. For dump_members.php, displaying database content is the

5419.1 PHP Overview

entire reason for the script’s existence, so if a problem occurs that prevents the result from
being displayed, it’s reasonable to print an error message indicating what the problem was.

After issuing the query to select the member table rows, the script uses the fetch()
method, which returns the next row of the result set, or FALSE if there are no more.The
PDO::FETCH_NUM argument tells fetch() to return a row with numerically indexed
columns.

To encode values for display in the Web page, dump_members.php uses the
htmlspecialchars() function to take care of escaping characters that are special in
HTML, such as ‘<’, ‘>’, or ‘&’. (To encode values for inclusion with URLs, use
urlencode() instead.) These two PHP encoding functions are similar to the CGI.pm
escapeHTML() and escape() methods for Perl that are discussed in Section 8.4.2.3,
“Escaping HTML and URL Text.”

To try the dump_members.php script, install it in the ushl directory of your Web server
document tree and access it from your Web browser using this URL:

http://localhost/ushl/dump_members.php

To let people know about dump_members.php, place a link to it in the Historical
League home page script.The modified script (index4.php) looks like this:

<?php

USHL home page - version 4

require_once "sampdb_pdo.php";

$title = "U.S. Historical League";

html_begin ($title, $title);

?>

<p>Welcome to the U.S. Historical League Web Site.</p>

<?php

try

{

$dbh = sampdb_connect ();

$sth = $dbh->query ("SELECT COUNT(*) FROM member");

$count = $sth->fetchColumn (0);

print ("<p>The League currently has $count members.</p>");

$dbh = NULL; # close connection

}

catch (PDOException $e) { } # empty handler (catch but ignore errors)

?>

<p>

You can view the directory of members here.

</p>

542 Chapter 9 Writing MySQL Programs Using PHP

<?php

html_end ();

?>

As for earlier home page revisions, copy index4.php to the ushl directory in your
Web server’s document tree, naming it index.php to replace the file of that name that is
there now.

The dump_members.php script demonstrates how a PHP script can retrieve informa-
tion from MySQL and convert it into Web page content. If you like, you can modify the
script to produce more elaborate results. One such modification is to display the values
from the email column as live hyperlinks rather than as static text, to make it easier for
site visitors to send mail to League members.The sampdb distribution contains a
dump_members2.php script that does this. It differs from dump_members.php only slightly,
in the loop that fetches and displays member entries.The original loop looks like this:

while ($row = $sth->fetch (PDO::FETCH_NUM))

{

print ("<tr>\n"); # begin table row

for ($i = 0; $i < $sth->columnCount (); $i++)

{

escape any special characters and print table cell

print ("<td>" . htmlspecialchars ($row[$i]) . "</td>\n");

}

print ("</tr>\n"); # end table row

}

The email addresses are in the fourth column of the query result, so dump_members2.
php treats that column differently from the rest, printing a hyperlink if the value is not
empty:

while ($row = $sth->fetch (PDO::FETCH_NUM))

{

print ("<tr>\n"); # begin table row

for ($i = 0; $i < $sth->columnCount (); $i++)

{

print ("<td>");

escape any special characters and print table cell;

email is in column 4 (index 3) of result

if ($i == 3 && $row[$i] != "")

{

printf ("%s",

$row[$i],

htmlspecialchars ($row[$i]));

}

else

{

print (htmlspecialchars ($row[$i]));

}

5439.1 PHP Overview

print ("</td>\n");

}

print ("</tr>\n"); # end table row

}

9.1.4 Processing Statement Results
PDO provides several ways to execute SQL statements:

n A PDO object has exec() and query() methods that take an SQL statement argu-
ment, execute the statement immediately, and return the result:

n For statements such as DELETE, INSERT, REPLACE, and UPDATE that modify
rows, invoke exec(), which returns a count to indicate how many rows were
changed (deleted, inserted, replaced, or updated, as the case may be).

n For statements such as SELECT that produce a result set, invoke query(),
which returns a PDOStatement statement-handle object.You can use this ob-
ject to obtain further information about the result set. For example, you can
find out how many columns the result set has by calling its columnCount()
method, or access the rows in the result by invoking fetch().

n PDO also supports two-stage statement execution via prepared statements.The PDO
object has a prepare() method that takes an SQL statement argument, but instead
of executing the statement immediately, prepare() performs some initial processing
and returns a PDOStatement statement-handle object.The statement handle has an
execute() method for executing the statement and other methods for processing
the result.

prepare() and execute() can be used for all statements.They are not specific to
statements that modify rows or statements that return rows.

Prepared statements also offer the important capabilities of statement re-execution
for improved performance and handling of special characters in data values. See
Section 9.1.6,“Using Prepared Statements.”

The following sections examine PDO statement-execution capabilities in more detail.
The examples assume that exceptions are enabled for errors.

9.1.4.1 Handling Statements That Modify Rows
Use the database handle exec() method for statements that modify rows. exec() returns a
row count that indicates how many rows were affected. Suppose that you want to delete
the row for member 149 in the member table and report the result.The following example
shows how to determine whether the statement actually deleted any rows:

$count = $dbh->exec ("DELETE FROM member WHERE member_id = 149");

if ($count > 0)

544 Chapter 9 Writing MySQL Programs Using PHP

print ("Member 149 was deleted\n");

else

print ("No record for member 149 was found\n");

9.1.4.2 Handling Statements That Return a Result Set
Use the database handle query() method for statements that produce a result set. query()
returns a PDOStatement statement-handle object that gives you access to the result set.
The statement handle has a number of useful methods, such as these:

n fetch() returns successive rows of the result, or FALSE when there are no more.
n fetchColumn() is similar but returns a single column of each row.
n columnCount() returns the number of columns in the result set. (The row count is

not available from a method call.You must fetch the rows and count them.)

The earlier examples that discuss the USHL home page showed how to fetch a single-
value result using a single call to fetchColumn(). For cases when you expect to get back
multiple rows containing multiple columns, it’s common to invoke the fetch() method
in a loop to fetch the results.The following example illustrates one way to do this. It also
counts the rows while fetching them to determine how many there are.

$sth = $dbh->query ("SELECT * FROM member");

fetch each row in result set

$count = 0;

while ($row = $sth->fetch (PDO::FETCH_NUM))

{

print values in row, separated by commas

for ($i = 0; $i < $sth->columnCount (); $i++)

print ($row[$i] . ($i < $sth->columnCount () - 1 ? "," : "\n"));

$count++;

}

printf ("Number of rows returned: %d\n", $count);

fetch() takes an argument that specifies what kind of value to return.Table 9.1 lists
some of the common fetch modes.

Table 9.1 Row-Fetching Mode Values

Argument Return Value

PDO::FETCH_ASSOC An array; access the elements by associative index.

PDO::FETCH_NUM An array; access the elements by numeric index.

PDO::FETCH_BOTH An array; access the elements by associative or numeric index.

PDO::FETCH_OBJ An object; access the elements as properties.

5459.1 PHP Overview

The fetch() argument is optional; without it, the default mode is used. Unless you re-
set the default, it is PDO::FETCH_BOTH, so fetch() returns each row as an array with ele-
ments that can be accessed by column name or numeric index.

To set the default fetch mode prior to fetching rows, pass an extra argument to
query() or invoke the statement handle setFetchMode() method. Each of the following
examples sets the fetch mode to PDO::FETCH_NUM to affect subsequent retrieval of the re-
sult set:

$sth = $dbh->query ($stmt, PDO::FETCH_NUM);

$sth = $dbh->query ($stmt);

$sth->setFetchMode (PDO::FETCH_NUM);

With a fetch mode of PDO::FETCH_ASSOC, fetch() returns the next row of the result
set as an associative array. Element names are the names of the columns selected by the
query. For example, if you retrieve the last_name and first_name values from the
president table, access the columns as follows:

$stmt = "SELECT last_name, first_name FROM president";

$sth = $dbh->query ($stmt);

while ($row = $sth->fetch (PDO::FETCH_ASSOC))

printf ("%s %s\n", $row["first_name"], $row["last_name"]);

With a fetch mode of PDO::FETCH_NUM, fetch() returns the next row of the result set
as an array, with elements that are accessed by numeric index beginning with 0.To deter-
mine the number of columns in the result set, invoke the statement handle’s
columnCount() method.The following simple loop fetches and prints row values in tab-
delimited format:

$stmt = "SELECT * FROM president";

$sth = $dbh->query ($stmt);

while ($row = $sth->fetch (PDO::FETCH_NUM))

{

for ($i = 0; $i < $sth->columnCount (); $i++)

print ($row[$i] . ($i < $sth->columnCount () - 1 ? "\t" : "\n"));

}

A fetch mode of PDO::FETCH_BOTH causes fetch() to return an array with elements
that can be accessed either by numeric index or column name.This is like a combination
of PDO::FETCH_NUM and PDO::FETCH_ASSOC.

With a fetch mode of PDO::FETCH_OBJ, fetch() returns the next row of the result set
as an object with properties that you access using $row->col_name syntax:

while ($row = $sth->fetch (PDO::FETCH_OBJ))

printf ("%s %s\n", $row->first_name, $row->last_name);

546 Chapter 9 Writing MySQL Programs Using PHP

What if your query contains calculated columns? For example, you might issue a query
that returns values that are calculated as the result of an expression:

SELECT CONCAT(first_name, ' ', last_name) FROM president

A query that is written like that is unsuitable when fetching rows as objects.The name
of the selected column is the expression itself, which isn’t a legal property name. However,
you can supply a legal name by giving the column an alias.The following query aliases the
column as full_name:

SELECT CONCAT(first_name, ' ', last_name) AS full_name FROM president

If you fetch each row from that query as an object, the alias allows the column to be
accessed as $row->full_name.

The preceding examples use a row-fetching loop of this form that assigns each row to
the $row variable:

while ($row = $sth->fetch ([fetch_mode]))

... handle row ...

However, there are other ways to fetch rows. One is to fetch an array and assign the re-
sult to a list of variables. For example, to assign the last_name and first_name columns
to variables named $ln and $fn and print the names in first name, last name order, do this:

$stmt = "SELECT last_name, first_name FROM president";

$sth = $dbh->query ($stmt);

while (list ($ln, $fn) = $sth->fetch (PDO::FETCH_NUM))

printf ("%s %s\n", $fn, $ln);

The variables can have any legal names you like, but their order in the list() must
correspond to the order of the columns selected by the query.

It’s also possible to retrieve individual column values directly into PHP variables.To do
this, bind columns of the result set to variables using bindColumn(), and fetch rows using
the PDO::FETCH_BOUND fetch mode.That causes fetch() to return TRUE while rows re-
main, and to assign column values to the bound variables for each row fetched:

$stmt = "SELECT last_name, first_name FROM president";

$sth = $dbh->query ($stmt);

$sth->bindColumn (1, $ln);

$sth->bindColumn (2, $fn);

while ($sth->fetch (PDO::FETCH_BOUND))

printf ("%s %s\n", $fn, $ln);

To fetch all rows at once into an array, use fetchAll():

$rows = $sth->fetchAll ();

Like fetch(), fetchAll() uses the default fetch mode, or accepts an explicit fetch-
mode argument.

A statement handle can be used as an iterator without invoking fetch() explicitly:

foreach ($sth as $row)

printf ("%s %s\n", $row["first_name"], $row["last_name"]);

5479.1 PHP Overview

The default fetch mode determines how the rows are returned.

9.1.5 Testing for NULL Values in Query Results
PHP represents the SQL NULL value in result sets using the PHP NULL value. One way to
check for NULL in a column value returned from a SELECT query is to use the is_null()
function.The following example selects and prints names and email addresses from the
member table, printing “No email address available” if the address is NULL:

$stmt = "SELECT last_name, first_name, email FROM member";

$sth = $dbh->query ($stmt);

while (list ($last_name, $first_name, $email) = $sth->fetch (PDO::FETCH_NUM))

{

printf ("Name: %s %s, Email: ", $first_name, $last_name);

if (is_null ($email))

print ("No email address available");

else

print ($email);

print ("\n");

}

You can also test for SQL NULL values by comparing a value to the PHP NULL constant
using the === identically-equal-to operator:

if ($email === NULL)

print ("No email address available");

else

print ($email);

PHP NULL is the same as an unset value, so isset() provides another way to test for
NULL values:

if (!isset ($email))

print ("No email address available");

else

print ($email);

9.1.6 Using Prepared Statements
The exec() and query() methods described earlier execute SQL statements and return
their results immediately. PDO can also prepare and execute statements in separate steps.
Use the database handle with prepare() to obtain a statement handle, and use the state-
ment handle to execute the statement:

$sth = $dbh->prepare ($stmt);

$sth->execute ();

548 Chapter 9 Writing MySQL Programs Using PHP

After executing the statement, if it modifies rows, you can get the rows-affected count
by invoking rowCount():

$count = $sth->rowCount ();

If the statement returns rows, methods such as fetch() and columnCount() apply.To
determine the number of rows, count them as you fetch them. (rowCount() applies only
to statements that modify rows.)

Prepared statements provide some important capabilities:

n Statement strings can contain placeholders rather than literal data values.After
preparing a statement, bind specific data values to the placeholders prior to each ex-
ecution, and PDO takes care of any handling needed to escape or quote special
characters or NULL values.There are several ways to bind values to placeholders, as
described in Section 9.1.7,“Using Placeholders to Handle Data Quoting Issues.”

n A prepared statement can be executed repeatedly.This avoids the preparation over-
head for each execution, which is very useful for statements that you plan to exe-
cute multiple times because it can provide enhanced performance. For example, to
insert multiple rows, you can prepare() an INSERT statement once.Then
execute() it within a loop that supplies data values for individual rows each time
through the loop, using placeholders to bind the values to the statement.

9.1.7 Using Placeholders to Handle Data Quoting Issues
It’s necessary to be aware of quoting issues when you’re constructing SQL statement
strings in PHP, just as it is in other languages such as C and Perl. Suppose that you’re con-
structing a statement to insert a new row into a table. In the statement string, you might
put quotes around each value to be inserted into a string column:

$last = "O'Malley";

$first = "Brian";

$expiration = "2013-09-01";

$stmt = "INSERT INTO member (last_name,first_name,expiration)"

. " VALUES('$last','$first','$expiration')";

The problem here is that one of the quoted values itself contains a quote (O'Malley),
which results in a syntax error if you send the statement to the MySQL server.To deal
with this in C, we could call mysql_real_escape_string() or mysql_escape_string().
In a Perl DBI script, we could use quote(). PDO has a database handle quote() method
that accomplishes much the same objective. For example, a call to quote("O'Malley") re-
turns the value 'O\'Malley'.To use quote() for statement construction, insert the value
that it returns directly into the statement string, without adding any extra quotes yourself:

$last = $dbh->quote ("O'Malley");

$first = $dbh->quote ("Brian");

$expiration = $dbh->quote ("2013-09-01");

$stmt = "INSERT INTO member (last_name,first_name,expiration)"

. " VALUES($last,$first,$expiration)";

5499.1 PHP Overview

Unfortunately, quote() has some shortcomings that reduce its usefulness in compari-
son to its DBI counterpart of the same name:

n It is not implemented for all drivers, in which case it returns FALSE rather than a
quoted string.

n For a value of NULL, you’d want to insert the word “NULL” into the statement
string without any surrounding quotes. But if you pass NULL to quote(), it returns
the empty string ('').To deal with this, you must either know somehow what a
value is, or test it and handle it differentially depending on whether it represents a
NULL value.This gets messy quickly.

Because of these deficiencies, I recommend avoiding quote() except perhaps when
you know you’ll be working only with non-NULL string-valued data.A better approach is
to use prepared statements.Then you can specify placeholders in SQL statements and let
PDO do all the quoting for you.To indicate where data values should go when you pre-
pare an SQL statement, use ‘?’ characters as placeholder markers.Then supply the data val-
ues as an array of parameters to the statement when you execute it:

$stmt = "INSERT INTO member (last_name,first_name,expiration) VALUES(?,?,?)";

$sth = $dbh->prepare ($stmt);

$sth->execute (array ("O'Malley", "Brian", "2013-09-01"));

PDO takes care of any handling required for special characters in strings, and correctly
processes non-string values such as numbers and NULL.

A different way to supply the data values is to bind them to the placeholders individu-
ally with bindValue() before calling execute():

$stmt = "INSERT INTO member (last_name,first_name,expiration) VALUES(?,?,?)";

$sth = $dbh->prepare ($stmt);

$sth->bindValue (1, "O'Malley");

$sth->bindValue (2, "Brian");

$sth->bindValue (3, "2013-09-01");

$sth->execute ();

The preceding examples use positional placeholders:‘?’ markers that are all the same
and distinguished only by their position within the statement string. PDO also supports
named-placeholder style in which a placeholder consists of a name preceded by a colon.
Prepare the statement to be executed, and then pass to execute() an associative array of
values that ties each value to the appropriate name:

$stmt = "INSERT INTO member (last_name,first_name,expiration)

VALUES(:last_name,:first_name,:expiration)";

$sth = $dbh->prepare ($stmt);

$sth->execute (array (

":last_name" => "O'Malley",

":first_name" => "Brian",

":expiration" =>"2013-09-01"

));

550 Chapter 9 Writing MySQL Programs Using PHP

Alternatively, bind each value to its placeholder name before calling execute():

$stmt = "INSERT INTO member (last_name,first_name,expiration)

VALUES(:last_name,:first_name,:expiration)";

$sth = $dbh->prepare ($stmt);

$sth->bindValue (":last_name", "O'Malley");

$sth->bindValue (":first_name", "Brian");

$sth->bindValue (":expiration", "2013-09-01");

$sth->execute ();

One advantage of named placeholders is that it is easier to keep track of the association
between placeholders and data values when there are large numbers of parameters.

9.1.8 Handling Errors
It’s essential to arrange to handle errors when you interact with MySQL. If you assume
that every call will succeed, you’ll have a much more difficult time figuring out why your
script doesn’t work when an error does occur.

When you attempt to connect to the database server by invoking new PDO(), an ex-
ception occurs if the attempt fails.Assuming that the attempt succeeds and you get back a
valid database handle, PDO processes errors for subsequent operations that are based on
that handle according to the PDO error mode.You can set the error mode as follows:

$dbh->setAttribute (PDO::ATTR_ERRMODE, mode_value);

PDO supports three error mode values:

n PDO::ERRMODE_SILENT: PDO does nothing other than set error information for the
object that caused the error.This is the default error mode.

n PDO::ERRMODE_WARNING:This is similar to silent mode, but PDO emits a warning
message in addition to setting the error information.

n PDO::ERRMODE_EXCEPTION: PDO raises an exception after setting the error
information.

In all cases, if you know the object for which the error occurred, you can invoke its
errorCode() or errorInfo() methods to obtain error information:

n errorCode() returns a five-character SQLSTATE value.A return value equal to
PDO::ERR_NONE ("00000") means “no error.”

n errorInfo() returns a three-element array containing the SQLSTATE value and a
driver-specific code and message. For MySQL, the latter two values are a numeric
error code and descriptive error message.

In silent or warning mode, error handling involves checking the result of each PDO
operation that might fail. For example:

if (!($sth = $dbh->prepare ("SELECT * FROM non_existent_table")))

die ("Cannot prepare statement: " . $dbh->errorCode () . "\n");

5519.1 PHP Overview

else if (!$sth->execute ())

die ("Cannot execute statement: " . $sth->errorCode () . "\n");

Note that errorCode() is invoked using the handle for which the error occurred.The
same is true for errorInfo().

If you enable exceptions, PHP throws a PDOException when an error occurs for a
PDO operation. If no error occurs, the operation succeeded. Otherwise, the exception
causes PHP to terminate your script unless you catch the error.To do so, put the code
that might fail into a try block and the error-processing code in the corresponding
catch block:

try

{

... perform a database operation ...

}

catch (PDOException $e)

{

... handle the error ...

}

The exception object ($e in the example) has its own methods that provide error
information:

n getCode() returns an error code.
n getMessage() returns a string containing an error message.

The following example enables exceptions and shows how to display error information
when a statement fails to execute:

$dbh->setAttribute (PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

try

{

$dbh->exec ("DELETE FROM non_existent_table");

}

catch (PDOException $e)

{

Print error information from exception object

print ("getCode value: " . $e->getCode () . "\n");

print ("getMessage value: " . $e->getMessage () . "\n");

Print error information from database handle

print ("errorCode value: " . $dbh->errorCode () . "\n");

print ("errorInfo value: " . join (",", $dbh->errorInfo ()) . "\n");

}

The example displays information from the exception object ($e), and also from the
database-handle object ($dbh).That’s possible here because the only PDO handle used in
the try block is $dbh.Were you using multiple handles in the try block, you wouldn’t
know in the catch block which of them caused the error, so you’d need to rely only on

552 Chapter 9 Writing MySQL Programs Using PHP

the exception methods.Alternatively, you could restructure the code to isolate use of each
PDO handle into its own try/catch construct.

Some PHP functions or operations produce an error message if an error occurs, in ad-
dition to returning a status value. In Web contexts, this message appears in the page sent to
the client browser, which may not be what you want.To suppress the (possibly cryptic) er-
ror message that a function normally would produce, precede the function name by the @

operator: For example, to suppress the error message from a function named some_func()

so that you can report failure in a more suitable manner, you might do something like this:

$status = @some_func ();

9.2 Putting PHP to Work
The remaining part of this chapter tackles the goals set out in Chapter 1 that we have yet
to accomplish:

n For the grade-keeping project, we need to write a script that enables us to enter and
edit test and quiz scores.

n For visitors to the Historical League Web site, we want to develop an online quiz
about U.S. presidents, and to make it interactive so that the questions can be gener-
ated on the fly.

n We also want to make it possible for Historical League members to edit their direc-
tory entries online.This will keep the information up to date and reduce the
amount of entry editing that must be done by the League secretary.

Each of these scripts generates multiple Web pages and communicates from one invo-
cation of the script to the next by means of information embedded in the pages it creates.
If you’re not familiar with the concept of inter-page communication, you might want to
read Section 8.4.2.4,“Writing Multiple-Purpose Pages.”

9.2.1 An Online Score-Entry Application
In this section, we’ll turn our attention to the grade-keeping project and write a
score_entry.php script for managing test and quiz scores.The Web directory for the
project is named gp under the Apache document tree root, which corresponds to this
URL for our site:

http://localhost/gp/

The directory is thus far unpopulated, so visitors requesting that URL may receive
only a “page not found” error or an empty directory listing page.To rectify that problem,
create a short script named index.php and place it in the gp directory to serve as the pro-
ject’s home page.The following script suffices for now. It contains two links. One link is to
the score_browse.pl script that we wrote in Section 8.4.5,“A Grade-Keeping Project

5539.2 Putting PHP to Work

Score Browser,” because that script pertains to the grade-keeping project.The other link is
to the score_entry.php script that we’re about to write:

<?php

Grade-Keeping Project home page

require_once "sampdb_pdo.php";

$title = "Grade-Keeping Project";

html_begin ($title, $title);

?>

<p>

View test and quiz scores

</p>

<p>

Enter or edit test and quiz scores

</p>

<?php

html_end ();

?>

You can find this index.php script in the phpapi/gp directory of the sampdb distribu-
tion. Copy it to the gp directory of your Web server document tree.

Let’s consider how to design and implement the score_entry.php script that will let
us enter a set of test or quiz scores or edit existing sets of scores. Entry capability will be
useful whenever we have a new set of scores to add to the database. Editing capability is
necessary for changing scores later; for example, to handle scores of students who take a
test or quiz later than the rest of the class due to absence for illness or other reason (or,
perish the thought, to correct errors should we happen to enter a score incorrectly). Con-
ceptually, the score entry script operates like this:

n The initial page presents a list of known grade events and enables you to choose
one, or to indicate that you want to create a new event.

n If you choose to create a new event, the script presents a page that enables you to
specify the date and event category (test or quiz).After it adds the event to the data-
base, the script redisplays the event list page, which at that point will include the
new event.

n If you choose an existing event from the list, the script presents a score-entry page
showing the event ID, date, and category, a table that lists each student in the class,
and a Submit button. Each row in the table shows one student’s name and current
score for the event. For new events, all scores will be blank. For existing events, the
scores will be those you entered at some earlier time.You can fill in or change the
scores, and then select the Submit button.At that point, the script will enter the
scores into the score table or revise existing scores.This operation needs to be done

554 Chapter 9 Writing MySQL Programs Using PHP

as a transaction to make sure that all score modifications succeed as a unit or all are
canceled if an error occurs.

9.2.1.1 Collecting Web Input in PHP
Before implementing the score_entry.php script, we must take a slight detour to discuss
how input parameters work in PHP.The script needs to perform several different actions,
which means that it must pass a status value from page to page so that the script can tell
what it’s supposed to do each time it’s invoked. One way to do this is to pass parameters at
the end of the URL. For example, we can add a parameter named action to the script
URL like this:

http://localhost/gp/score_entry.php?action=value

Parameter values may also come from the contents of a form submitted by the user.
Each field in the form that is returned by the user’s browser as part of a form submission
will have a name and a value.

PHP makes input parameters available to scripts through special arrays. Parameters en-
coded at the end of a URL and sent as part of a get request are placed in the
$HTTP_GET_VARS global array and $_GET superglobal array. For parameters received in a
post request (such as the contents of a form that has a method attribute value of post), the
parameters are placed in the $HTTP_POST_VARS global array and $_PUT superglobal array.

The global arrays must be declared explicitly if you use them in contexts other than at
the top level of your PHP scripts, such as within function definitions.The superglobal ar-
rays are accessible in any scope without any special declaration. For simplicity, we’ll use
the $_GET and $_PUT superglobal arrays. ($HTTP_GET_VARS and $HTTP_POST_VARS are
deprecated now, anyway.)

$_GET and $_PUT are associative arrays, with elements keyed to the parameter names.
For example, an action parameter sent in the URL becomes available to a PHP script as
the value of $_GET["action"]. Suppose that a form contains fields called name and
address.When a user submits the form, the Web server invokes a script to process the
form’s contents. If the form is submitted as a get request, the script can find out what val-
ues were entered into the form by checking the values of the $_GET["name"] and
$_GET["address"] variables. If the form is submitted as a post request, the variables will
be in $_POST["name"] and $_POST["address"].

For forms that contain a lot of fields, it can be inconvenient to give them all unique
names. PHP makes it easy to pass arrays in and out of forms. If you use field names such as
x[0], x[1], and so forth, PHP will store them in $_GET["x"] or $_POST["x"], the value
of which will itself be an array. If you assign the array value to a variable $x, the array ele-
ments are available as $x[0], $x[1], and so on.

In most cases, we won’t care whether a parameter was submitted via get or post, so we
can write a utility routine, script_param(), that takes a parameter name and checks both
arrays to find the parameter value. If the parameter is not present, the routine returns NULL:

function script_param ($name)

{

5559.2 Putting PHP to Work

$val = NULL;

if (isset ($_GET[$name]))

$val = $_GET[$name];

else if (isset ($_POST[$name]))

$val = $_POST[$name];

if (get_magic_quotes_gpc ())

$val = remove_backslashes ($val);

return ($val);

}

script_param() enables a script to easily access the values of input parameters by
name, without being concerned which array they might be stored in. It also processes the
parameter value after extracting it by passing the value to remove_backslashes().The
purpose of doing this is to adapt to configurations that have the magic_quotes_gpc set-
ting enabled with a line like this in the PHP initialization file:

magic_quotes_gpc = On;

If that setting is turned on, PHP adds backslashes to parameter values to quote special
characters such as quotes or backslashes.The extra backslashes make it more difficult to
check parameter values to see whether they’re valid, so remove_backslashes() strips
them out. It’s implemented using a recursive algorithm because in PHP it’s possible to cre-
ate parameters that take the form of nested arrays:

function remove_backslashes ($val)

{

if (is_array ($val))

{

foreach ($val as $k => $v)

$val[$k] = remove_backslashes ($v);

}

else if (!is_null ($val))

$val = stripslashes ($val);

return ($val);

}

Web Input Parameters and register_globals
You may be familiar with PHP’s register_globals configuration setting that causes Web
input parameters to be registered directly into script variables. For example, a form field or
URL parameter named x would be stored directly into a variable named $x in your script. Un-
fortunately, enabling this capability means that clients can set variables in your scripts in
ways you may not intend. This is a security risk, for which reason the PHP development team
recommends that register_globals be disabled. The script_param() routine deliber-
ately uses only the arrays provided specifically for input parameters, which is more secure
and also works regardless of the register_globals setting.

556 Chapter 9 Writing MySQL Programs Using PHP

9.2.1.2 Displaying and Entering Scores
Now that we have support in place for extracting Web input parameters conveniently, we
can use that support for writing score_entry.php.That script needs to be able to com-
municate information from one invocation of itself to the next.We’ll use a parameter
called action for this, which can be obtained as follows when the script executes:

$action = script_param ("action");

If the parameter isn’t set, that means the script is being invoked for the first time. Oth-
erwise, it can test the value of $action to find out what to do.The general framework for
script_entry.php looks like this:

<?php

score_entry.php - Score Entry script for grade-keeping project

require_once "sampdb_pdo.php";

define action constants

define ("SHOW_INITIAL_PAGE", 0);

define ("SOLICIT_EVENT", 1);

define ("ADD_EVENT", 2);

define ("DISPLAY_SCORES", 3);

define ("ENTER_SCORES", 4);

... put input-handling functions here ...

$title = "Grade-Keeping Project -- Score Entry";

html_begin ($title, $title);

$dbh = sampdb_connect ();

determine what action to perform (the default is to

present the initial page if no action is specified)

$action = script_param ("action");

if (is_null ($action))

$action = SHOW_INITIAL_PAGE;

switch ($action)

{

case SHOW_INITIAL_PAGE: # present initial page

display_events ($dbh);

break;

case SOLICIT_EVENT: # ask for new event information

solicit_event_info ();

break;

case ADD_EVENT: # add new event to database

add_new_event ($dbh);

5579.2 Putting PHP to Work

display_events ($dbh);

break;

case DISPLAY_SCORES: # display scores for selected event

display_scores ($dbh);

break;

case ENTER_SCORES: # enter new or edited scores

enter_scores ($dbh);

display_events ($dbh);

break;

default:

die ("Unknown action code ($action)\n");

}

$dbh = NULL; # close connection

html_end ();

?>

The $action variable can take on several values, which we test in the switch state-
ment. In PHP, switch is much like its C counterpart; it’s used here to determine which
action to take and to call the functions that implement the action.To avoid having to use
literal action values, the switch statement refers to symbolic action names that are set up
earlier in the script using PHP’s define() construct.

Let’s examine the functions that handle these actions one at a time.The first one,
display_events(), presents a list of allowable events by retrieving rows of the
grade_event table from MySQL and displaying them. Each row of the table lists the
event ID, date, and event category (test or quiz).The event ID appears in the page as a hy-
perlink that you can select to edit the scores for that event. Following the event rows, the
function adds one more row containing a link that enables a new event to be created:

function display_events ($dbh)

{

print ("Select an event by clicking on its number, or select\n");

print ("New Event to create a new grade event:

\n");

print ("<table border=\"1\">\n");

Print a row of table column headers

print ("<tr>\n");

display_cell ("th", "Event ID");

display_cell ("th", "Date");

display_cell ("th", "Category");

print ("</tr>\n");

Present list of existing events. Associate each event id with a

link that will show the scores for the event.

558 Chapter 9 Writing MySQL Programs Using PHP

$stmt = "SELECT event_id, date, category

FROM grade_event ORDER BY event_id";

$sth = $dbh->query ($stmt);

while ($row = $sth->fetch ())

{

print ("<tr>\n");

$url = sprintf ("%s?action=%d&event_id=%d",

script_name (),

DISPLAY_SCORES,

$row["event_id"]);

display_cell ("td",

""

. $row["event_id"]

. "",

FALSE);

display_cell ("td", $row["date"]);

display_cell ("td", $row["category"]);

print ("</tr>\n");

}

Add one more link for creating a new event

print ("<tr align=\"center\">\n");

$url = sprintf ("%s?action=%d",

script_name (),

SOLICIT_EVENT);

display_cell ("td colspan=\"3\"",

"Create New Event",

FALSE);

print ("</tr>\n");

print ("</table>\n");

}

The URLs for the hyperlinks that re-invoke score_entry.php are constructed using
script_name(), a function that figures out the script’s own pathname. script_name() is
useful because it enables you to avoid hardwiring the name of the script into the code. (If
you write the name literally, the script will break if you rename it.) script_name() can be
found in the sampdb_pdo.php file.

script_name() is somewhat similar to script_param() in that it accesses a PHP su-
perglobal array. However, it uses a different array because the script name is part of the in-
formation supplied by the Web server, not as part of the input parameters:

function script_name ()

{

return ($_SERVER["SCRIPT_NAME"]);

}

5599.2 Putting PHP to Work

The display_cell() function used by display_events() generates cells in the
event table:

Display a cell of an HTML table. $tag is the tag name ("th" or "td"

for a header or data cell), $value is the value to display, and

$encode should be true or false, indicating whether or not to perform

HTML-encoding of the value before displaying it. $encode is optional,

and is true by default.

function display_cell ($tag, $value, $encode = TRUE)

{

if (strlen ($value) == 0) # is the value empty/unset?

$value = " ";

else if ($encode) # perform HTML-encoding if requested

$value = htmlspecialchars ($value);

print ("<$tag>$value</$tag>\n");

}

If you select the “Create New Event” link in the table that display_events() pres-
ents, score_entry.php is re-invoked with an action of SOLICIT_EVENT.That triggers a
call to solicit_event_info(), which displays a form that enables you to enter the date
and category for the new event:

function solicit_event_info ()

{

printf ("<form method=\"post\" action=\"%s?action=%d\">\n",

script_name (),

ADD_EVENT);

print ("Enter information for new grade event:

\n");

print ("Date: ");

print ("<input type=\"text\" name=\"date\" value=\"\" size=\"10\" />\n");

print ("
\n");

print ("Category: ");

print ("<input type=\"radio\" name=\"category\" value=\"T\"");

print (" checked=\"checked\" />Test\n");

print ("<input type=\"radio\" name=\"category\" value=\"Q\" />Quiz\n");

print ("

\n");

print ("<input type=\"submit\" name=\"submit\" value=\"Submit\" />\n");

print ("</form>\n");

}

The form generated by solicit_event_info() contains an edit field for entering the
date, a pair of radio buttons for specifying whether the new event is a test or a quiz, and a
Submit button.The default event category is 'T' (test). (The script writes out literal
HTML to construct the form here. For later scripts in this chapter, we’ll develop a set of
helper functions that generate form elements.)

560 Chapter 9 Writing MySQL Programs Using PHP

When you fill in this form and submit it, score_entry.php is invoked again, this time
with an action value equal to ADD_EVENT.The add_new_event() function then is called
to enter a new row into the grade_event table:

function add_new_event ($dbh)

{

$date = script_param ("date"); # get date and event category

$category = script_param ("category"); # entered by user

if (empty ($date)) # make sure a date was entered, and in ISO 8601 format

die ("No date specified\n");

if (!preg_match ('/^\d{4}\D\d{1,2}\D\d{1,2}$/', $date))

die ("Please enter the date in ISO 8601 format (CCYY-MM-DD)\n");

if ($category != "T" && $category != "Q")

die ("Bad event category\n");

$stmt = "INSERT INTO grade_event (date,category) VALUES(?,?)";

$sth = $dbh->prepare ($stmt);

$sth->execute (array ($date, $category));

}

add_new_event() uses the script_param() library routine to access the parameter
values that correspond to the date and category fields in the new-event entry form.
Then it performs some minimal safety checks:

n The date should not be empty, and it should have been entered in ISO 8601 for-
mat.The preg_match() function performs a pattern match for ISO 8601 format:

preg_match ('/^\d{4}\D\d{1,2}\D\d{1,2}$/', $date)

Single quotes are used here to prevent interpretation of the dollar sign and the
backslash as special characters.The test is true if the date consists of three sequences
of digits separated by non-digit characters.That’s not bullet-proof, but it’s easy to
add to the script, and it catches many common errors.

For additional safety, you might want to enable input data restrictions by setting the
SQL mode before inserting the data. For example:

$dbh->exec ("SET sql_mode = 'TRADITIONAL'");

n The event category must be one of the values allowed in the category column of
the grade_event table ('T' or 'Q').

If the parameter values look okay, add_new_event() enters a new row into the
grade_event table.The statement-execution code uses placeholders to make sure the data
values are quoted properly for insertion into the query string.After executing the state-
ment, add_new_event() returns to the main part of the script (the switch statement),
which displays the event list again so that you can select the new event and begin entering
scores for it.

5619.2 Putting PHP to Work

When you select an item from the event list shown by the display_events() func-
tion, the score_entry.php script invokes the display_scores() function. Each event
link contains an event number encoded as an event_id parameter, so display_scores()
gets the parameter value, checks it to make sure it’s an integer, and uses it in a query to re-
trieve a row for each student and any current scores the students may have for the event:

function display_scores ($dbh)

{

Get event ID number, which must look like an integer

$event_id = script_param ("event_id");

if (!ctype_digit ($event_id))

die ("Bad event ID\n");

Select scores for the given event

$stmt = "

SELECT

student.student_id, student.name, grade_event.date,

score.score AS score, grade_event.category

FROM student

INNER JOIN grade_event

LEFT JOIN score ON student.student_id = score.student_id

AND grade_event.event_id = score.event_id

WHERE grade_event.event_id = ?

ORDER BY student.name";

$sth = $dbh->prepare ($stmt);

$sth->execute (array ($event_id));

fetch the rows into an array so we know how many there are

$rows = $sth->fetchAll ();

if (count ($rows) == 0)

die ("No information was found for the selected event\n");

printf ("<form method=\"post\" action=\"%s?action=%d&event_id=%d\">\n",

script_name (),

ENTER_SCORES,

$event_id);

print scores as an HTML table

for ($row_num = 0; $row_num < count ($rows); $row_num++)

{

$row = $rows[$row_num];

Print event info and table heading preceding the first row

if ($row_num == 0)

{

printf ("Event ID: %d, Event date: %s, Event category: %s\n",

$event_id,

562 Chapter 9 Writing MySQL Programs Using PHP

$row["date"],

$row["category"]);

print ("

\n");

print ("<table border=\"1\">\n");

print ("<tr>\n");

display_cell ("th", "Name");

display_cell ("th", "Score");

print "</tr>\n";

}

print ("<tr>\n");

display_cell ("td", $row["name"]);

$col_val = sprintf ("<input type=\"text\" name=\"score[%d]\"",

$row["student_id"]);

$col_val .= sprintf (" value=\"%d\" size=\"5\" />
\n",

$row["score"]);

display_cell ("td", $col_val, FALSE);

print ("</tr>\n");

}

print ("</table>\n");

print ("
\n");

print ("<input type=\"submit\" name=\"submit\" value=\"Submit\" />\n");

print "</form>\n";

}

The query that display_scores() uses to retrieve score information for the selected
event is not just a simple join between tables, because that wouldn’t select a row for any
student who has no score for the event. In particular, for a new event, the join would se-
lect no rows, and we’d have an empty entry form! We need to use a LEFT JOIN to force a
row to be retrieved for each student, regardless of whether the student already has a score
in the score table. If the student has no score for the given event, the value retrieved by
the query is NULL. (Background for a query similar to the one that display_scores()
uses to retrieve score rows from MySQL is given in Section 2.7.3,“Left and Right Joins.”)

The script places scores retrieved by the query into the form as input fields having
names like score[n], where n is a student_id value.You can enter or edit the scores and
then submit the form to have them stored in the database.When your browser sends the
form back to the Web server, PHP converts these fields into elements of an array associ-
ated with the name score that can be retrieved as follows:

$score = script_param ("score");

Elements of the array are keyed by student ID, so we can easily associate each student
with the corresponding score submitted in the form. Form processing might involve exe-
cution of several statements (one per student) and we don’t want the update to succeed
only partially. In Chapter 1, we created the score table as an InnoDB table.That enables
us to take advantage of InnoDB’s transactional capabilities. In particular, we can make sure
that the entire data-entry operation takes place as an atomic unit by performing it as a

5639.2 Putting PHP to Work

transaction.That way, the changes either all succeed together, or no changes are all are
made to the database.Transaction processing in PDO has this general structure (assuming
that exceptions are enabled for PDO errors):

try

{

$dbh->beginTransaction (); # start the transaction

... perform database operation ...

$dbh->commit (); # transaction succeeded

}

catch (PDOException $e)

{

$dbh->rollback (); # transaction failed

}

score_entry.php uses that structure ensure integrity of the data-entry operation. (The
rollback operation is placed within its own try/catch construct to prevent it from termi-
nating the script if it fails.)

The enter_scores() function processes the form contents to determine which scores
need to be updated or deleted:

function enter_scores ($dbh)

{

Get event ID number and array of scores for the event

$event_id = script_param ("event_id");

$score = script_param ("score");

if (!ctype_digit ($event_id)) # must look like integer

die ("Bad event ID\n");

Prepare the statements that are executed repeatedly

$sth_del = $dbh->prepare ("DELETE FROM score

WHERE event_id = ? AND student_id = ?");

$sth_repl = $dbh->prepare ("REPLACE INTO score

(event_id,student_id,score)

VALUES(?,?,?)");

enter scores within a transaction

try

{

$dbh->beginTransaction ();

$blank_count = 0;

$nonblank_count = 0;

foreach ($score as $student_id => $new_score)

{

$new_score = trim ($new_score);

564 Chapter 9 Writing MySQL Programs Using PHP

if (empty ($new_score))

{

if no score is provided for student in the form, delete any

score the student may have had in the database previously

++$blank_count;

$sth = $sth_del;

$params = array ($event_id, $student_id);

}

else if (ctype_digit ($new_score)) # must look like integer

{

if a score is provided, replace any score that

might already be present in the database

++$nonblank_count;

$sth = $sth_repl;

$params = array ($event_id, $student_id, $new_score);

}

else

{

throw new PDOException ("invalid score: $new_score");

}

$sth->execute ($params);

}

transaction succeeded, commit it

$dbh->commit ();

printf ("Number of scores entered: %d
\n", $nonblank_count);

printf ("Number of scores missing: %d
\n", $blank_count);

}

catch (PDOException $e)

{

printf ("Score entry failed: %s
\n",

htmlspecialchars ($e->getMessage ()));

roll back, but use empty exception handler to catch rollback failure

try

{

$dbh->rollback ();

}

catch (PDOException $e) { }

}

print ("
\n");

}

Student ID values and the scores associated with them are obtained by iterating
through the $score array.The loop processes each score as follows:

n If the score is blank after any whitespace is trimmed from its ends, there is nothing
to be entered. But just in case there was a score previously, the script tries to delete
it. (Perhaps we mistakenly entered a score earlier for a student who actually was

5659.2 Putting PHP to Work

absent, and now we need to remove it.) If the student had no score, the DELETE
finds no row to remove, but that’s harmless.

n If the score is not blank, the function performs some rudimentary validation of the
value and accepts it if it looks like an integer. Note that integer testing is done using
a pattern match rather than PHP’s is_int() function.The latter is for testing
whether a variable’s type is integer, but form values are encoded as strings. is_int()
returns FALSE for any string, even if it contains only digit characters.What we need
here is a content check to verify the string.The following function returns TRUE if
every character from the beginning to the end of the string $str is a digit:

ctype_digit ($str)

If the score looks okay, we add it to the score table.The statement is REPLACE
rather than INSERT because we may be replacing an existing score rather than enter-
ing a new one. If the student had no score for the grade event, REPLACE adds a new
row, just like INSERT. Otherwise, REPLACE replaces the old score with the new one.

Prior to the loop, the script invokes beginTransaction(), which disables autocommit
mode. Following the loop, the script commits the transaction if no errors occurred. If
something goes wrong, the script rolls back the transaction.

That takes care of the score_entry.php script.All score entry and editing can be done
from your Web browser now. One obvious shortcoming is that the script provides no se-
curity; anyone who can connect to the Web server can edit scores.The script that we’ll
write later for Historical League member entry editing shows a simple authentication
scheme that could be adapted for this script.

9.2.2 Creating an Interactive Online Quiz
One of the goals for the Historical League Web site was to provide an online version of a
quiz, similar to some of the quizzes that the League publishes in the children’s section of
its newsletter,“Chronicles of U.S. Past.”We created the president table, in fact, precisely
so that we could use it as a source of questions for a history-based quiz. Let’s do this now,
using a script called pres_quiz.php.

The basic idea is to pick and ask a question about a president at random, and then so-
licit an answer from the user and check whether the answer is correct.The types of ques-
tions the script might present could be based on any part of the president table rows, but
for simplicity, we’ll constrain it to asking only where presidents were born.Another sim-
plifying measure is to present the questions in multiple-choice format.That’s easier for the
user, who need only pick from among a set of choices, rather than typing in a response. It’s
also easier for us because we don’t have to do any pattern matching to check whatever the
user might have typed in.We need only a simple comparison of the user’s choice and the
value that we’re looking for.

The pres_quiz.php script must perform two functions:

n When initially invoked, it should generate and display a new question by looking up
information from the president table.

566 Chapter 9 Writing MySQL Programs Using PHP

n If the user has just submitted a response, the script must check it and provide feed-
back to indicate whether it was correct. If the response was incorrect, the script
should redisplay the same question. Otherwise, it should generate and display a new
question.

The outline for the script is quite simple. It presents the initial question page if the user
isn’t submitting a response, and checks the answer otherwise:

<?php

pres_quiz.php - script to quiz user on presidential birthplaces

require_once "sampdb_pdo.php";

... put quiz-handling functions here ...

$title = "U.S. President Quiz";

html_begin ($title, $title);

$dbh = sampdb_connect ();

$response = script_param ("response");

if (is_null ($response)) # invoked for first time

present_question ($dbh);

else # user submitted response to form

check_response ($dbh);

$dbh = NULL; # close connection

html_end ();

?>

To create the questions, we’ll use ORDER BY RAND(). Using the RAND() function, we
can select rows at random from the president table. For example, to pick a president
name and birthplace randomly, this query does the job:

SELECT CONCAT(first_name, ' ', last_name) AS name,

CONCAT(city, ', ', state) AS place

FROM president ORDER BY RAND() LIMIT 1;

The name is the president about whom we ask the question, and the birthplace is the
correct answer to the question,“Where was this president born?”We’ll also need to pres-
ent some incorrect choices, which we can select using a similar query:

SELECT DISTINCT CONCAT(city, ', ', state) AS place

FROM president ORDER BY RAND();

From the result of that query, we’ll select the first four values that differ from the cor-
rect response.The reason for using DISTINCT in this query is to avoid the possibility of se-
lecting the same birthplace for the choice list more than once. DISTINCT would be

5679.2 Putting PHP to Work

unnecessary if birthplaces were unique, but they are not, as you can discover by issuing the
following statement:

mysql> SELECT city, state, COUNT(*) AS count FROM president

-> GROUP BY city, state HAVING count > 1;

+-----------+-------+-------+

| city | state | count |

+-----------+-------+-------+

| Braintree | MA | 2 |

+-----------+-------+-------+

The function that generates the question and the set of possible responses looks like this:

function present_question ($dbh)

{

issue statement to pick a president and get birthplace

$stmt = "SELECT CONCAT(first_name, ' ', last_name) AS name,

CONCAT(city, ', ', state) AS place

FROM president ORDER BY RAND() LIMIT 1";

$sth = $dbh->query ($stmt);

$row = $sth->fetch ();

$name = $row["name"];

$place = $row["place"];

Construct the set of birthplace choices to present.

Set up the $choices array containing five birthplaces, one

of which is the correct response.

$stmt = "SELECT DISTINCT CONCAT(city, ', ', state) AS place

FROM president ORDER BY RAND()";

$sth = $dbh->query ($stmt);

$choices[] = $place; # initialize array with correct choice

while (count ($choices) < 5 && $row = $sth->fetch ())

{

if ($row["place"] != $place)

$choices[] = $row["place"]; # add another incorrect choice

}

randomize choices, display form

shuffle ($choices);

display_form ($name, $place, $choices);

}

The display_form() function called by present_question() generates the quiz
question using a form that displays the name of the president, a set of radio buttons that
lists the possible choices, and a Submit button.This form serves the obvious purpose of
presenting quiz information to the user, but it also needs to do something else: It must
present the quiz information to the client, and it must arrange that when the user submits
a response, the information sent back to the Web server enables the script to check
whether the response is correct and redisplay the question if not.

568 Chapter 9 Writing MySQL Programs Using PHP

Presenting the quiz question is a matter of displaying the president’s name and the pos-
sible birthplace choices, which is straightforward enough.Arranging to check the response
and possibly redisplay the question is a little trickier. It requires that we have access to the
correct answer and also to all the information needed to regenerate the question. One
way to do this is to use a set of hidden fields to include all the necessary information in
the form.These fields become part of the form and will be returned when the user sub-
mits a response, but are not displayed for the user to see.

We’ll call the hidden fields name, place, and choices to represent the president’s name,
correct birthplace, and the set of possible choices, respectively.The choices can be encoded
as a single string easily by using implode() to concatenate the values with a special delim-
iter character in between. (The delimiter enables us to properly break apart the string later
with explode() if it becomes necessary to redisplay the question.) The display_form()
function takes care of producing the form:

function display_form ($name, $place, $choices)

{

printf ("<form method=\"post\" action=\"%s\">\n", script_name ());

hidden_field ("name", $name);

hidden_field ("place", $place);

hidden_field ("choices", implode ("#", $choices));

printf ("Where was %s born?

\n", htmlspecialchars ($name));

for ($i = 0; $i < 5; $i++)

{

radio_button ("response", $choices[$i], $choices[$i], FALSE);

print ("
\n");

}

print ("
\n");

submit_button ("submit", "Submit");

print ("</form>\n");

}

display_form() uses several helper functions to generate the form fields.The first is
hidden_field(), which generates the <input> tag for a hidden field:

function hidden_field ($name, $value)

{

printf ("<input type=\"%s\" name=\"%s\" value=\"%s\" />\n",

"hidden",

htmlspecialchars ($name),

htmlspecialchars ($value));

}

Because hidden_field() is a general-purpose routine likely to be useful in many
scripts, the logical place to put it is in our library file, sampdb_pdo.php. Note that it uses
htmlspecialchars() to encode both the name and value attributes of the <input> tag,
in case the $name or $value variable contains special characters such as quotes.

5699.2 Putting PHP to Work

Two other helper functions, radio_button() and submit_button(), are implemented
as follows:

function radio_button ($name, $value, $label, $checked)

{

printf ("<input type=\"%s\" name=\"%s\" value=\"%s\"%s />%s\n",

"radio",

htmlspecialchars ($name),

htmlspecialchars ($value),

($checked ? " checked=\"checked\"" : ""),

htmlspecialchars ($label));

}

function submit_button ($name, $value)

{

printf ("<input type=\"%s\" name=\"%s\" value=\"%s\" />\n",

"submit",

htmlspecialchars ($name),

htmlspecialchars ($value));

}

When the user chooses a birthplace from among the available options and submits the
form, the response is returned to the Web server as the value of the response parameter.
We can discover the value of response by calling script_param(), which also gives us a
way to figure out whether the script is being called for the first time or whether the user
is submitting a response to a previously displayed form.The parameter will not be present
if this is a first-time invocation, so the main body of the script can determine what it
should do based on the parameter’s presence or absence:

$response = script_param ("response");

if (is_null ($response)) # invoked for first time

present_question ($dbh);

else # user submitted response to form

check_response ($dbh);

We still need to write the check_response() function that compares the user’s re-
sponse to the correct answer. For this, the values present in the name, place, and choices
hidden fields are needed.We encoded the correct answer in the place field of the form,
and the user’s response will be in the response field, so to check the answer all we need
to do is compare the two. Based on the result of the comparison, check_response() pro-
vides some feedback and then either generates and displays a new question, or else redis-
plays the same question:

function check_response ($dbh)

{

$name = script_param ("name");

$place = script_param ("place");

$choices = script_param ("choices");

570 Chapter 9 Writing MySQL Programs Using PHP

$response = script_param ("response");

Is the user's response the correct birthplace?

if ($response == $place)

{

print ("That is correct!
\n");

printf ("%s was born in %s.
\n",

htmlspecialchars ($name),

htmlspecialchars ($place));

print ("Try the next question:

\n");

present_question($dbh);

}

else

{

printf ("\"%s\" is not correct. Please try again.

\n",

htmlspecialchars ($response));

$choices = explode ("#", $choices);

display_form ($name, $place, $choices);

}

}

We’re done.Add a link for pres_quiz.php to the Historical League home page, and
visitors can try the quiz to test their knowledge. (You can copy index5.php from the
phpapi/ushl directory of the sampdb distribution to the ushl directory in your Web
server’s document tree, naming it index.php to replace the file of that name that is there
now.)

Hidden Fields Are Insecure
pres_quiz.php relies on hidden fields as a means of transmitting information that is
needed for the next invocation of the script but that the user should not see. That’s fine for
a script like this, which is intended only for fun. But hidden fields should not be used for any
information that the user must not ever be allowed to examine directly, because they are
not secure in any sense. To see why not, install pres_quiz.php in the ushl directory of
your Web server document tree and request it from your browser. Then use the browser’s
View Source command to see the raw HTML for the quiz page. There you’ll find the contents
of the place hidden field that contains the correct answer for the current quiz question, ex-
posed for anyone to see. This means it’s very easy to cheat on the quiz. That’s no big deal
for this particular application, but the example does illustrate that hidden fields are not se-
cure in the least. For information that really must be kept secure from the user, use some
other method such as a session where information is stored on the server side.

9.2.3 Historical League Online Member Entry Editing
Our final PHP script, edit_member.php, is intended to enable the Historical League
members to edit their own directory entries online. Using this script, members will be
able to correct or update their membership information whenever they want without

5719.2 Putting PHP to Work

having to contact the League office to submit the changes. Providing this capability should
help keep the member directory more up to date, and, not incidentally, reduce the work-
load of the League secretary.

One precaution we need to take is to make sure each entry can be modified only by
the member the entry is for, or by the League secretary.This means we need some form of
security.As a demonstration of a simple form of authentication, we’ll use MySQL to store
passwords for each member and require that a member supply the correct password to
gain access to the editing form that our script presents.The script works as follows:

n When initially invoked, edit_script.php presents a login form containing fields
for the member ID and a password.

n When the login form is submitted, the script looks in a password table that associ-
ates member IDs and passwords. If the password matches, the script looks up the
member entry from the member table and displays it for editing.

n When the edited form is submitted, we update the entry in the database using the
contents of the form.

For any of this to work, we’ll need to assign passwords.An easy way to do this is to
generate them randomly.The following statements set up a table named member_pass, and
then create a password for each member by generating an MD5 checksum from a random
number and using the first eight characters of the result. In a real situation, you might let
members pick their own passwords, but this technique provides a quick and easy way to
set something up initially:

mysql> CREATE TABLE member_pass (

-> member_id INT UNSIGNED NOT NULL PRIMARY KEY,

-> password CHAR(8));

mysql> INSERT INTO member_pass (member_id, password)

-> SELECT member_id, LEFT(MD5(RAND()), 8) AS password FROM member;

In addition to a password for each person listed in the member table, we’ll add a special
entry to the member_pass table for member 0, with a password of bigshot that will serve
as the administrative (superuser) password.The League secretary can use this password to
gain access to any entry:

mysql> INSERT INTO member_pass (member_id, password) VALUES(0, 'bigshot');

Note
Before creating the member_pass table, you might want to remove the db_browse.pl script
from your Web server’s script directory. That script, written in Section 8.4.4, “A Web-Based
Database Browser,” allows anyone to browse the contents of any table in the sampdb data-
base—including the member_pass table. Thus, it could be used to see any League mem-
ber’s password or the administrative password.

572 Chapter 9 Writing MySQL Programs Using PHP

After the member_pass table has been set up, we’re ready to begin building
edit_member.php.The framework for the script is as follows:

<?php

edit_member.php - Edit U.S. Historical League member entries via the Web

require_once "sampdb_pdo.php";

define action constants

define ("SHOW_INITIAL_PAGE", 0);

define ("DISPLAY_ENTRY", 1);

define ("UPDATE_ENTRY", 2);

... put input-handling functions here ...

$title = "U.S. Historical League -- Member Editing Form";

html_begin ($title, $title);

$dbh = sampdb_connect ();

determine what action to perform (the default if

none is specified is to present the initial page)

$action = script_param ("action");

if (is_null ($action))

$action = SHOW_INITIAL_PAGE;

switch ($action)

{

case SHOW_INITIAL_PAGE: # present initial page

display_login_page ();

break;

case DISPLAY_ENTRY: # display entry for editing

display_entry ($dbh);

break;

case UPDATE_ENTRY: # store updated entry in database

update_entry ($dbh);

break;

default:

die ("Unknown action code ($action)\n");

}

$dbh = NULL; # close connection

html_end ();

?>

5739.2 Putting PHP to Work

The display_login_page() function presents the initial page containing a form that
asks for a member ID and password:

function display_login_page ()

{

printf ("<form method=\"post\" action=\"%s?action=%d\">\n",

script_name (),

DISPLAY_ENTRY);

print ("Enter your membership ID number and password,\n");

print ("then select Submit.\n

\n");

print ("<table>\n");

print ("<tr>");

print ("<td>Member ID</td><td>");

text_field ("member_id", "", 10);

print ("</td></tr>");

print ("<tr>");

print ("<td>Password</td><td>");

password_field ("password", "", 10);

print ("</td></tr>");

print ("</table>\n");

submit_button ("button", "Submit");

print "</form>\n";

}

The form presents the captions and the value entry fields within an HTML table so
that they line up nicely.With only two fields, this is a minor touch, but it’s a generally
useful technique, especially when you create forms with captions of very dissimilar
lengths, because it eliminates vertical raggedness. Lining up the form components can
make the form easier for the user to read and understand.

display_login_form() uses two more helper functions that can be found in the
sampdb_pdo.php library file. text_field() presents an editable text input field:

function text_field ($name, $value, $size)

{

printf ("<input type=\"%s\" name=\"%s\" value=\"%s\" size=\"%s\" />\n",

"text",

htmlspecialchars ($name),

htmlspecialchars ($value),

htmlspecialchars ($size));

}

password_field() is similar, except that the type attribute is password.
When the user enters a member ID and password and submits the form, the action

parameter will be equal to DISPLAY_ENTRY, and the switch statement in the next invoca-
tion of edit_member.php invokes the display_entry() function to check the password
and display the member entry if the password matches:

function display_entry ($dbh)

574 Chapter 9 Writing MySQL Programs Using PHP

{

Get script parameters; trim whitespace from the ID, but not

from the password, because the password must match exactly.

$member_id = trim (script_param ("member_id"));

$password = script_param ("password");

if (empty ($member_id))

die ("No member ID was specified\n");

if (!ctype_digit ($member_id)) # must look like integer

die ("Invalid member ID was specified (must be an integer)\n");

if (empty ($password))

die ("No password was specified\n");

if (check_pass ($dbh, $member_id, $password)) # regular member

$admin = FALSE;

else if (check_pass ($dbh, 0, $password)) # administrator

$admin = TRUE;

else

die ("Invalid password\n");

$stmt = "SELECT

last_name, first_name, suffix, email, street, city,

state, zip, phone, interests, member_id, expiration

FROM member WHERE member_id = ?

ORDER BY last_name";

$sth = $dbh->prepare ($stmt);

$sth->execute (array ($member_id));

if (!($row = $sth->fetch ()))

die ("No user with member_id = $member_id was found\n");

printf ("<form method=\"post\" action=\"%s?action=%d\">\n",

script_name (),

UPDATE_ENTRY);

Add member ID and password as hidden values so that next invocation

of script can tell which record the form corresponds to and so that

the user need not re-enter the password.

hidden_field ("member_id", $member_id);

hidden_field ("password", $password);

Format results of statement for editing

print ("<table>\n");

5759.2 Putting PHP to Work

Display member ID as static text

display_column ("Member ID", $row, "member_id", FALSE);

$admin is true if the user provided the administrative password,

false otherwise. Administrative users can edit the expiration

date, regular users cannot.

display_column ("Expiration", $row, "expiration", $admin);

Display other values as editable text

display_column ("Last name", $row, "last_name");

display_column ("First name", $row, "first_name");

display_column ("Suffix", $row, "suffix");

display_column ("Email", $row, "email");

display_column ("Street", $row, "street");

display_column ("City", $row, "city");

display_column ("State", $row, "state");

display_column ("Zip", $row, "zip");

display_column ("Phone", $row, "phone");

display_column ("Interests", $row, "interests");

print ("</table>\n");

submit_button ("button", "Submit");

print "</form>\n";

}

The first thing that display_entry() does is to verify the password. If the password
supplied by the user matches the password stored in the member_pass table for the given
member ID, or if it matches the administrative password (that is, the password for the spe-
cial member ID 0), edit_member.php displays the entry in a form so that its contents can
be edited.The password-checking function check_pass() runs a simple query to yank a
row from the member_pass table and compare its password column value to the pass-
word supplied by the user in the login form:

function check_pass ($dbh, $id, $pass)

{

$stmt = "SELECT password FROM member_pass WHERE member_id = ?";

$sth = $dbh->prepare ($stmt);

$sth->execute (array ($id));

TRUE if a password was found and it matches

return (($row = $sth->fetch ()) && $row["password"] == $pass);

}

576 Chapter 9 Writing MySQL Programs Using PHP

Assuming that the password matches, display_entry() looks up the row from the
member table corresponding to the given member ID, and then goes on to generate an
editing form initialized with the values from the row. Most of the fields are presented as
editable text fields so that the user can change them, but there are two exceptions. First,
the member_id value is displayed as static text.This is the key value that uniquely identi-
fies the row, so it should not be changed. Second, the expiration date is not something
that we want League members to be able to change. (They’d be able to push the date far-
ther into the future, in effect renewing their memberships without paying their dues.) On
the other hand, if the administrative password was given at login time, the script does
present the expiration date in an editable field.Assuming that the League secretary knows
this password, this enables the secretary to update the expiration date for members who
renew their memberships.

The display_column() function handles display of field labels and values. Its argu-
ments are the label to display next to the field value, the array that contains the row to be
edited, the name of the column within the row that contains the field value, and a
boolean value that indicates whether to present the value in editable or static form.The
last value is optional, with a default value of TRUE:

function display_column ($label, $row, $col_name, $editable = TRUE)

{

print ("<tr>\n");

print ("<td>" . htmlspecialchars ($label) . "</td>\n");

print ("<td>");

if ($editable) # display as editable field

text_field ("row[$col_name]", $row[$col_name], 80);

else # display as read-only text

print (htmlspecialchars ($row[$col_name]));

print ("</td>\n");

print ("</tr>\n");

}

For editable values, display_column() generates text fields using names that have the
format row[col_name].That way, when the user submits the form, PHP will place all the
field values into an array variable, with elements keyed by column name.This makes it
easy to extract the form contents and to associate each field value with its corresponding
member table column when we update the row in the database. For example, by fetching
the array into a $row variable, we can access the telephone number as $row["phone"].

The display_entry() function also embeds the member_id and password values as
hidden fields in the form so that they will carry over to the next invocation of
edit_script.php when the user submits the edited entry.The ID enables the script to
determine which member table row to update, and the password enables it to verify that
the user logged in before. (Notice that this simple authentication method involves passing
the password back and forth in clear text, which isn’t generally such a great idea. But the
Historical League is not a high-security organization, so this method suffices for our

5779.2 Putting PHP to Work

purposes.Were you performing operations such as financial transactions, you’d certainly
use a more secure form of authentication.)

The function that updates the membership entry when the form is submitted looks
like this:

function update_entry ($dbh)

{

Get script parameters; trim whitespace from the ID, but not

from the password, because the password must match exactly,

or from the row, because it is an array.

$member_id = trim (script_param ("member_id"));

$password = script_param ("password");

$row = script_param ("row");

$member_id = trim ($member_id);

if (empty ($member_id))

die ("No member ID was specified\n");

if (!ctype_digit ($member_id)) # must look like integer

die ("Invalid member ID was specified (must be an integer)\n");

if (!check_pass ($dbh, $member_id, $password)

&& !check_pass ($dbh, 0, $password))

die ("Invalid password\n");

Examine the metadata for the member table to determine whether

each column allows NULL values. (Make sure nullability is

retrieved in uppercase.)

$stmt = "SELECT COLUMN_NAME, UPPER(IS_NULLABLE)

FROM INFORMATION_SCHEMA.COLUMNS

WHERE TABLE_SCHEMA = ? AND TABLE_NAME = ?";

$sth = $dbh->prepare ($stmt);

$sth->execute (array ("sampdb", "member"));

$nullable = array ();

while ($info = $sth->fetch ())

$nullable[$info[0]] = ($info[1] == "YES");

Iterate through each field in the form, using the values to

construct an UPDATE statement that contains placeholders, and

the array of data values to bind to the placeholders.

$stmt = "UPDATE member ";

$delim = "SET";

$params = array ();

foreach ($row as $col_name => $val)

{

$stmt .= "$delim $col_name=?";

578 Chapter 9 Writing MySQL Programs Using PHP

$delim = ",";

if a form value is empty, update the corresponding column value

with NULL if the column is nullable. This prevents trying to

put an empty string into the expiration date column when it

should be NULL, for example.

$val = trim ($val);

if (empty ($val))

{

if ($nullable[$col_name])

$params[] = NULL; # enter NULL

else

$params[] = ""; # enter empty string

}

else

$params[] = $val;

}

$stmt .= " WHERE member_id = ?";

$params[] = $member_id;

$sth = $dbh->prepare ($stmt);

$sth->execute ($params);

printf ("
Edit another member record\n",

script_name ());

}

First we re-verify the password to make sure someone isn’t attempting to hoax us by
sending a faked form, and then we update the entry.The update requires some care be-
cause if a field in the form is blank, it may need to be entered as NULL rather than as an
empty string.The expiration column is an example of this. Suppose that the League
secretary logs in with the administrative password (so that the expiration field is editable)
and clears the field to indicate “lifetime membership.”This should correspond to a NULL
membership expiration date in the database, not an empty string (which isn’t a legal date).
Therefore, it’s necessary to be able to tell which columns can take NULL values and insert
NULL (rather than an empty string) when such a column is left blank in the form.

To handle this problem, update_entry() looks up the metadata for the member table
and constructs an associative array keyed on column name that indicates which columns
can have NULL values and which cannot.This information is available in the COLUMNS table
of the INFORMATION_SCHEMA database.The values that we need from the table are the col-
umn name and whether it allows NULL values (that is, the COLUMN_NAME and IS_NULLABLE

values).
At this point, the edit_member.php script is finished. Install it in the ushl directory of

the web document tree, let the members know their passwords, and they’ll be able to up-
date their own membership information over the Web.

10
Introduction to

MySQL Administration

MySQL has grown in complexity somewhat over time as it has become more capable.
But as database systems go, MySQL is relatively simple to use, and the effort required to
bring up a MySQL installation and use it is modest as well.This simplicity accounts for
much of MySQL’s popularity, especially among people who aren’t, and don’t want to be,
system administrators. It helps to be a trained computer professional, but that’s certainly
not a requirement for running MySQL successfully.

Nevertheless, a MySQL installation doesn’t run itself, regardless of your level of ex-
pertise. Someone must watch over it to make sure it operates smoothly and efficiently, and
someone must know what to do when problems occur. If the job falls on you to make
sure MySQL is happy at your site, keep reading.

Part III of this book,“MySQL Administration,” examines the various duties of
MySQL administrators.This chapter provides a brief overview of the responsibilities in-
volved in administering a MySQL installation.The following chapters provide detailed
instructions for carrying them out.

If you are a new or inexperienced MySQL administrator, don’t let the long list of re-
sponsibilities presented in this chapter scare you. Each task listed in the following sections
is important, but you need not learn them all at once. If you like, you can use the chapters
in this part of the book as a reference, looking up topics as you discover that you need to
know about them.

If you have experience administering other database systems, you will find that run-
ning a MySQL installation is similar in some ways and that your experience is a valuable
resource. But MySQL administration also has its own unique requirements.This part of
the book will help you become familiar with them.

580 Chapter 10 Introduction to MySQL Administration

10.1 MySQL Components
The MySQL database system consists of several components.You should be familiar with
what these components are and the purpose of each, so that you understand both the na-
ture of the system you’re administering and the tools available to help you do your job. If
you take the time to understand what you’re overseeing, your work will be much easier.
To that end, you should acquaint yourself with the following aspects of MySQL.

The MySQL server.The server, mysqld, is the hub of a MySQL installation; it per-
forms all manipulation of databases and tables. On Unix, several related scripts are avail-
able to assist in server startup. mysqld_safe is a related program used to start the server,
monitor it, and restart it in case it goes down.The mysql.server script is useful on ver-
sions of Unix that use run-level directories for starting system services. If you run multi-
ple servers on a single host, mysqld_multi can help you manage them more easily. On
Windows, you have the choice of running the server from the command line or as a
Windows service.

The MySQL clients and utilities. Several MySQL programs are available to help
you communicate with the server. For administrative tasks, some of the most important
ones are listed here:

n mysql—An interactive program that enables you to send SQL statements to the
server and to view the results.You can also use mysql to execute batch scripts (text
files containing SQL statements).

n mysqladmin—An administrative program for performing tasks such as shutting
down the server, checking its configuration, or monitoring its status if it appears not
to be functioning properly.

n mysqldump and mysqlhotcopy—Tools for backing up your databases or copying
databases to another server.

n mysqlcheck and myisamchk—Programs that help you perform table checking,
analysis, and optimization, as well as repairs if tables become damaged. mysqlcheck
works with MyISAM tables and to some extent with tables for other storage en-
gines. myisamchk is for use only with MyISAM tables.

The server’s language, SQL.You should be able to talk to the server in its own lan-
guage.As a simple example, you might need to find out why a user’s privileges aren’t
working the way you expect them to work.There is no substitute for being able to go in
and communicate with the server directly, which you can do by using the mysql client
program to issue SQL statements that let you examine the grant tables.

If you don’t know any SQL, be sure to acquire at least a basic understanding of it.A
lack of SQL fluency will only hinder you in your administrative tasks, whereas the time
you take to learn will be repaid many times over.A real mastery of SQL takes some time,
but the basic skills can be attained quickly. For instruction in SQL and the use of the
mysql command-line client, see Chapter 1,“Getting Started with MySQL.”

58110.2 General MySQL Administration

The MySQL data directory.The data directory is where the server stores its data-
bases and status files. It’s important to understand the structure and contents of the data
directory so that you know how the server uses the filesystem to represent databases and
tables, as well as where the server logs are located and what they contain.You should also
know your options for managing allocation of disk space across filesystems should you
find that the filesystem on which the data directory is located is becoming too full.

10.2 General MySQL Administration
General administration deals primarily with the operation of mysqld, the MySQL server,
and with providing your users with access to the server.The following duties are most
important in carrying out this responsibility.

Server startup and shutdown.You should know how to start and stop the server
manually from the command line and how to arrange for automatic startup and shut-
down when your system starts and stops. It’s also important to know what to do to get
the server going again if it crashes or will not start properly.

User account maintenance.You should understand the difference between MySQL
user accounts and Unix or Windows login accounts.You should know how to set up
MySQL accounts by specifying which users can connect to the server, where they can
connect from, and what they are allowed to do.You’ll also need to know how to reset for-
gotten passwords.

Log maintenance.You should understand what types of logs are available and which
ones will be useful to you, as well as when and how to perform log maintenance. Log ro-
tation and expiration are essential for preventing the logs from filling up your filesystem.

Server configuration and tuning. The MySQL server is highly configurable. Some
of the operational characteristics that you can control include which storage engines the
server supports, the default character set, and its default time zone.

Another configuration issue involves server tuning.Your users want the server to per-
form at its best.The quick-and-dirty method for improving how well your server runs is
to buy more memory or to get faster disks. But those brute-force techniques are no sub-
stitute for understanding how the server works.You should know what parameters are
available for tuning the server’s operation and how they apply to your situation.At some
sites, queries tend to be mostly retrievals.At others, inserts and updates dominate.The
choice of which parameters to change will be influenced by the query mix that you ob-
serve at your own site.

Multiple server management. It’s useful to run multiple servers on the same ma-
chine under some circumstances.You can test a new MySQL release while leaving your
current production server in place, or provide better privacy for different groups of users
by giving each group its own server. (The latter scenario is particularly relevant to Inter-
net service providers.) For such situations, you should know how to set up multiple si-
multaneous installations.

582 Chapter 10 Introduction to MySQL Administration

Updating MySQL software. New MySQL releases appear from time to time.You
should know how to keep up to date with these releases to take advantage of bug fixes
and new features. Understand the circumstances under which it’s more reasonable to hold
off on upgrading, and know how to choose between the stable and development releases.

10.3 Access Control and Security
When you maintain a MySQL installation, it’s important to make sure that the informa-
tion your users entrust to their databases is kept secure.The MySQL administrator is re-
sponsible for controlling access to the data directory and the server, and should
understand the following issues.

Filesystem security. A Unix machine may host several user accounts that have no
MySQL-related administrative duties. It’s important to ensure that these accounts have no
access to the data directory.This prevents them from compromising data on a filesystem
level by copying database tables or removing them, or by being able to read logs that may
contain sensitive information.You should know how to set up a Unix user account to be
used for running the MySQL server, how to set up the data directory so that it is owned
by that user, and how to start up the server to run with that user’s privileges.

MySQL server security.You must understand how the MySQL security system
works so that when you set up user accounts, you grant them the proper privileges for ac-
cessing the MySQL server. Users connecting to the server over the network should have
permission to do only what they are supposed to be able to do.You don’t want to inad-
vertently grant overly permissive access to accounts due to faulty understanding of the
security system!

10.4 Database Maintenance, Backups, and
Replication
Every MySQL administrator hopes to avoid having to deal with corrupted or destroyed
database tables. But hope alone won’t keep problems from occurring.You should take
steps to minimize your risks and learn what to do if bad things do happen.

Preventive maintenance. A regular program of preventive maintenance should be
put in place to minimize the likelihood of database corruption or damage.You should
also be making backups, of course, but preventive maintenance reduces the chance that
you’ll need to use them.

Database backups. In the event of a severe system crash, database backups are of
crucial importance.You want to be able to restore your databases to the state they were in
at the time of the crash with as little data loss as possible. Note that backing up your data-
bases is not the same thing as performing general system backups (as is done, for example,
by using the Unix dump program).The files corresponding to your database tables might
be in flux due to server activity when system backups take place, so restoring those files
will not give you internally consistent tables.The mysqldump program generates backup
files that are more useful for database restoration, and it enables you to create backups

58310.4 Database Maintenance, Backups, and Replication

without taking down the server.You might also need the backup files for moving data-
bases to a different location in the event of a full disk.

Crash recovery. Should disaster strike in spite of your best efforts, you should know
how to repair or restore your tables. Crash recovery should be necessary only rarely, but
when it is, it’s an unpleasant, high-stress business (especially with the phone ringing and
people knocking on the door while you’re scrambling to fix things). Nevertheless, you
must know how to do it because your users will be quite unhappy otherwise! Be familiar
with MySQL’s table-checking and repair programs. Know how to recover data using your
backup files and how to use the binary log to recover changes that were made after your
most recent backup.

Database migration. If you decide to run MySQL on a faster host, you’ll need to
copy your databases to a different machine.You should understand the procedure for do-
ing this, should the need arise. Database file contents might be machine dependent; if so,
you can’t just copy them from one system to another.

Database replication. Making a backup or a copy of a database takes a snapshot of
its state at one point in time.Another option available to you is to use replication, which
involves setting up two servers in cooperative fashion such that changes to databases man-
aged by one server are propagated on a continuing basis to the corresponding databases
managed by the other server.

To use replication, you should know how to set up a server as a master replication
server, and how to set up slave servers that replicate the master. If trouble occurs and
replication stops, you must know where to look to identify the problem and how to get
replication started again.

The preceding outline summarizes the responsibilities you undertake by becoming a
MySQL administrator.The next few chapters discuss them in more detail and describe
procedures to follow so that you can carry out these responsibilities effectively.We’ll dis-
cuss the MySQL data directory first; that’s the primary resource you’re maintaining and
you should understand its layout and contents. From there, we move on to general
administrative duties, a discussion of MySQL’s security system, and maintenance and
backups.

This page intentionally left blank

11
The MySQL Data Directory

Conceptually, most relational database systems are broadly similar:They manage a set of
databases, and each database includes a set of tables. But every system has its own way of
organizing the data it manages, and MySQL is no exception. By default, all information
managed by the MySQL server mysqld is stored under a location called the MySQL data
directory.All databases are stored here, and so are the status files and logs that provide in-
formation about the server’s operation. If you have any administrative responsibilities for a
MySQL installation, familiarity with the layout and use of the data directory is funda-
mental to carrying out your duties. Even if you don’t perform any MySQL administra-
tion, you can benefit from reading this chapter because it never hurts to have a better idea
of how the server operates.

This chapter covers the following topics:

n How to determine the location of the data directory. Because the data direc-
tory is so central to the operation of the MySQL server, you should know how to
determine where it is located so that you can administer its contents effectively.

n How the server organizes and provides access to the databases and tables it
manages. This is important for setting up preventive maintenance schedules, and
for performing crash recovery should table corruption ever occur.

n What status files and logs the server generates and what they contain. Their
contents provide useful information about how the server is running, which is use-
ful if you encounter problems.

n How to change the default location or organization of the data directory.This
can be important for managing the allocation of disk resources on your system—for
example, by balancing disk activity across drives or by relocating data to filesystems
with more free space.You can also use this knowledge in planning placement of
new databases.

For Unix systems, the chapter assumes the existence of a login account that is used for
performing MySQL administrative tasks and for running the server. In this book, the user
and group names for that account both are mysql. Section 12.2.1.1,“Running the Server

586 Chapter 11 The MySQL Data Directory

Using an Unprivileged Login Account,” discusses the reasons for using a designated login
account for MySQL administration.

11.1 Location of the Data Directory
A default data directory location is compiled into the server. Under Unix, typical defaults
are /usr/local/mysql/var if you install MySQL from a source distribution, /usr/
local/mysql/data if you install from a binary distribution, or /var/lib/mysql if you
install from an RPM package. Under Windows, the default data directory location often is
C:\Program Files\MySQL\MySQL Server 5.0\data or C:\mysql\data.

If you compile MySQL from source, you can designate the default data directory loca-
tion by using the --localstatedir=dir_name command-line option when you run
configure.

At server startup, you can specify the data directory location by using a --datadir=
dir_name option.This is useful for naming a location different from the compiled-in
default.Another way to name the location is to list it in an option file that the server
reads at startup time.Then you need not specify it on the command line each time you
start the server.

As a MySQL administrator, you should know where your server’s data directory is lo-
cated, but if you don’t know (perhaps you are taking over for a previous administrator who
left poor notes), there are several ways to find out.The following notes describe a method
that you can use when the server is not running, and another that you can use when it is.

Look in an option file that the server reads when it starts. For example, if you look in
/etc/my.cnf under Unix or C:\my.ini under Windows, you may find a datadir line in
the [mysqld] option group of the file:

[mysqld]

datadir=/path/to/data/directory

The pathname indicates the location of the data directory.
If you are not sure where the server looks for option files, invoke it as follows and

check the help message, which lists option file locations near the beginning:

% mysqld --verbose --help

If the server is running, connect to it and ask it for the data directory location.The
server maintains a number of system variables pertaining to its operation, and it can re-
port any of their values.The data directory location is indicated by the datadir variable,
which you can obtain using a SHOW VARIABLES statement or a mysqladmin variables
command.To determine the value using SHOW VARIABLES, issue this statement:

mysql> SHOW VARIABLES LIKE 'datadir';

+---------------+-----------------------+

| Variable_name | Value |

+---------------+-----------------------+

| datadir | /usr/local/mysql/var/ |

+---------------+-----------------------+

58711.2 Structure of the Data Directory

From the command line, use mysqladmin. On Unix, the output might look like this:

% mysqladmin variables

+---------------+-----------------------+

| Variable_name | Value |

+---------------+-----------------------+

...

| datadir | /usr/local/mysql/var/ |

...

On Windows, the output might look like this instead:

C:\> mysqladmin variables

+---------------+---+

| Variable_name | Value |

+---------------+---+

...

| datadir | c:\Program Files\MySQL\MySQL Server 5.0\data\ |

...

If you have multiple servers running, they will be listening on different network inter-
faces (TCP/IP ports, Unix socket files, or Windows named pipes or shared memory).You
can get data directory information by connecting to each server in turn using appropriate
connection parameter options.

If the data directory already has been created at one location and you want to move
it somewhere else, see Section 11.3, “Relocating Data Directory Contents.”

11.2 Structure of the Data Directory
The MySQL data directory contains all the databases managed by the server. In general,
these are organized into a tree structure implemented in straightforward fashion by taking
advantage of the hierarchical structure of the Unix or Windows filesystem:

n Each database has a database directory located under the data directory.
n Tables, views, and triggers within a database correspond to files in the database

directory.

A given storage engine might use a storage structure that varies from the general hier-
archical implementation of databases using directories and files. For example, the InnoDB
storage engine can store all InnoDB tables from all databases within a single common ta-
blespace.This tablespace is implemented using one or more large files that are treated as a
single unified data structure within which tables and indexes are represented. InnoDB
stores tablespace files in the data directory by default.

The data directory also may contain other files:

588 Chapter 11 The MySQL Data Directory

n The server’s process ID (PID) file.When it starts, the server writes its process ID to
this file so that other programs can discover the value if they need to send signals to
it. (This file is not used by the embedded server.)

n Status and log files that are generated by the server.These files provide important
information about the server’s operation and are valuable for administrators, espe-
cially when something goes wrong and you’re trying to determine the cause of the
problem. If some particular statement crashes the server, for example, you may be
able to identify the offending statement by examining the logs. (If you configure
the server to log to database tables rather than to files, the log tables are in the
mysql database.)

n Server-related files, such as the DES key file or the server’s SSL certificate and key
files. It’s common for administrators to use the data directory as the location for
these files.

11.2.1 How the MySQL Server Provides Access to Data
When MySQL is used in the usual client/server setup, all databases under the data direc-
tory are managed by a single entity, the MySQL server mysqld. Client programs never
manipulate data directly. Instead, the server provides the sole point of contact through
which databases are accessed, acting as the intermediary between client programs and the
data they want to use. Figure 11.1 illustrates this architecture.

When the server starts, it opens any logs that you request it to maintain, and then pres-
ents a network interface to the data directory by listening for various types of network
connections. (Section 12.3, “Controlling How the Server Listens for Connections” pre-
sents the details of selecting which network interfaces to use.) To access data, a client pro-
gram establishes a connection to the server, and then communicates requests as SQL
statements to perform the desired operations such as creating a table, selecting rows, or
updating rows.The server performs each operation and sends back the result to the client.
The server is multi-threaded and can service multiple simultaneous client connections.
However, because update operations are performed one at a time, the server in effect seri-
alizes requests so that two clients can never change a given row at exactly the same time.

If you’re running an application that uses the embedded server, a slightly different
architecture applies, because there is only one “client”; that is, the application into which
the server is linked. In this case, the server listens to an internal communication channel
rather than to network interfaces. However, it’s still the embedded server part of the ap-
plication that manages access to the data directory, and it’s still necessary to coordinate
SQL statement activity arriving over multiple connections if the application happens to
open several connections to its embedded server.

Under normal conditions, having the server act as the sole arbiter of database access
provides assurance against the kinds of corruption that can result from multiple processes
accessing the database tables at the same time. Nevertheless, administrators should be aware
that there are times when the server does not have exclusive control of the data directory:

58911.2 Structure of the Data Directory

Network
Interface

Client 1

Unix domain socket
(Unix)

Client 2

TCP/IP port
(Unix, Windows)

MySQL server

Data directory

Database 1

Table 1 Table 2 Table 3 Table 1 Table 2 Table 3 Table 1 Table 2 Table 3

Database 2 Database n. . .

Client 3

Named pipe
(Windows)

Figure 11.1 How the MySQL server controls access to the data directory.

n When you run multiple servers on a single data directory. Normally a single
server manages all databases on a host, but you can run multiple servers if you like. If
each server manages its own data directory, there is no problem of interaction. It’s
possible to start multiple servers and point them at the same data directory, but this is
not a good idea and it is not recommended. If you try it, you’d better make sure that
your system provides good file locking or the servers will not cooperate properly.
You also risk having your logs become a source of confusion (rather than a source of
helpful information) if you have multiple servers writing to them at the same time.

n When you use direct-access maintenance utilities. Programs such as myisamchk
and myisampack are used for MyISAM table maintenance, troubleshooting, repair,
and compression operations.These programs operate directly on the files that cor-
respond to the tables. Because these utilities can change table contents, using them
to operate on tables at the same time the server is doing so can cause table damage.
The best way to avoid problems of this sort is to stop the server before running
these table utilities. If that is not possible, it’s very important to understand how to
tell the server not to access a table while you’re using a utility that operates directly
on the table files. See Section 14.2, “Performing Database Maintenance with the
Server Running,” for instructions on how to cooperate with the server when using
these programs.An alternative to myisamchk is to use statements such as CHECK
TABLE and REPAIR TABLE (or the mysqlcheck program, which issues the statements
for you).Those statements eliminate the problem of interaction with the server by
instructing the server itself to perform the table maintenance operations.

590 Chapter 11 The MySQL Data Directory

11.2.2 Representation of Databases in the Filesystem
Each database managed by the MySQL server has its own database directory. Database di-
rectories exist as subdirectories of the data directory, each with the same name as the
database it represents. For example, if DATADIR represents the location of the data direc-
tory for the server on your machine, a database named mydb corresponds to the database
directory DATADIR/mydb on Unix, or DATADIR\mydb on Windows.

SHOW DATABASES produces essentially nothing more than a list of the names of the di-
rectories located within the data directory.

CREATE DATABASE db_name creates a directory named db_name under the data direc-
tory to act as the database directory. It also creates a db.opt file in the database directory
that lists the database default character set and collation. Under Unix, the database direc-
tory is owned by and accessible only to the login account that is used for running the
server.

The DROP DATABASE statement is implemented nearly as simply. DROP DATABASE
db_name removes the db_name directory in the data directory, along with any files con-
tained within it for tables and other database objects such as views or triggers.This is
almost the same as manually removing the database directory with a filesystem-level com-
mand such as rm on Unix or del on Windows.The differences between a DROP DATABASE
statement and a filesystem command are as follows:

n For DROP DATABASE, the server removes only files with extensions known to be
used for tables and other database objects. If you’ve created other files or directories
in the database directory, the server leaves them intact. In this case, the database di-
rectory cannot be removed and the DROP DATABASE statement returns an error.
One implication of this is that the database name continues to be displayed by SHOW
DATABASES.To deal with this, remove any extraneous files and subdirectories manu-
ally, and then issue the DROP DATABASE statement again.

n You cannot safely remove InnoDB tables in a database by removing the database di-
rectory. For each InnoDB table, InnoDB maintains a data dictionary entry in its
shared tablespace, and it might also store the table’s contents there as well. If a data-
base contains InnoDB tables, you must use DROP DATABASE so that the InnoDB
storage engine can update its data dictionary and delete any table contents from the
tablespace.

11.2.3 Representation of Tables in the Filesystem
MySQL supports several storage engines, such as MyISAM, MERGE, MEMORY, Inn-
oDB, Falcon, CSV, and FEDERATED. MySQL represents every table on disk by at least
one file, which is the .frm format file that contains a description of the table’s structure.
The server creates the .frm file. Individual storage engines may create additional files that
contain the data rows and index information.The names and structure of these files vary
according to the storage engine.

59111.2 Structure of the Data Directory

The following discussion outlines the characteristics of some representative storage en-
gines in terms of how they store files on disk. For additional information about how these
engines differ in features and behavior, see Section 2.6.1,“Storage Engine Characteristics.”

MyISAM is the default storage engine. MySQL represents each MyISAM table by
three files in the database directory of the database that contains the table. Each file has a
basename that is the same as the table name, and an extension that indicates the purpose
of the file. For example, a MyISAM table named mytbl has these three files:

n mytbl.frm is the format file that contains a description of the table structure.
n mytbl.MYD is the data file that stores the contents of the table’s rows.
n mytbl.MYI contains index information for any indexes the table has.

A MERGE table is a logical construct. It represents a collection of identically struc-
tured MyISAM tables that are treated as a single larger table.Within a database directory,
a MERGE table named mytbl is represented by two files:

n mytbl.frm is the format file.
n mytbl.MRG is a text file that contains a list of the names of the table’s constituent

MyISAM tables, one name per line.

MEMORY tables are in-memory tables.A MEMORY table has only an .frm file that
describes its format in the database directory.The table is not otherwise represented in the
filesystem at all because the server stores a MEMORY table’s data and indexes in memory
rather than on disk.When the server shuts down, the contents of a MEMORY table are
lost.When the server restarts, the table still exists (because the .frm file still exists), but it
is empty.

An InnoDB table has an .frm format file containing the table structure in the database
directory. For table contents, InnoDB has two representations, both based on tablespaces:

n The shared tablespace.This tablespace consists of one or more large files in the data
directory.These component files of the tablespace form a logically contiguous stor-
age area equal in size to the sum of the sizes of the individual files.By default, InnoDB
stores its tables in the shared tablespace. For such tables, the only table-specific file
is the .frm file.

n Individual tablespaces.You can configure InnoDB to use one tablespace file per table.
In this case, each InnoDB table has two table-specific files in the database directory:
The .frm file and an .ibd file that contains the table’s data and indexes.

The shared tablespace is used for another purpose, too. InnoDB maintains an internal
data dictionary that contains information about each of its tables.This dictionary is stored
in the shared tablespace, which therefore is necessary even if you are using individual
tablespaces to store table contents.

592 Chapter 11 The MySQL Data Directory

A Falcon table has an .frm format file containing the table structure in the database
directory. Falcon stores table contents in tablespace files.There are three standard table-
space files, one of which is used for user tables:

n falcon_master.fts is for internal tables.
n falcon_temporary.fts is for temporary tables.
n falcon_user.fts is the default tablespace file for user tables.

Falcon creates the standard tablespace files in the data directory.Additional tablespace
files can be created by user request.These need not be located in the data directory.

The CSV storage engine stores table rows as plain text using comma-separated values
format. Each table has two files in the database directory:The .frm file contains the table
structure and a .CSV file contains the table rows.

A FEDERATED table is a table that points to a remote table on another MySQL
server.That is, rows are not stored locally, but retrieved from the remote table as necessary.
Because of this, no data or indexes are stored locally.The only local file is the .frm file in
the database directory that describes the table format.

11.2.4 Representation of Views and Triggers in the Filesystem
Each view and trigger object is associated with a single file in the database directory of
the database containing the object.

A view consists of an .frm file that contains the view definition and other related
attributes.The file basename corresponds to the view name, so a view named myview is
represented by myview.frm.

A trigger is stored in a .TRG file that contains the trigger definition and other related
attributes.The trigger file has a basename corresponding to the table to which the trigger
belongs. For example, a trigger named mytrig associated with a table named mytbl will
be stored in mytbl.TRG, not mytrig.TRG.There might in fact be more than one trigger
stored in this file:A table can have multiple triggers; if so, the server stores the definitions
for all of them in the same .TRG file.

11.2.5 How SQL Statements Map onto Table File Operations
Every storage engine uses an .frm file to store the table format (definition), so the output
from SHOW TABLES FROM db_name is the same as a listing of the basenames of the .frm
files in the database directory for db_name.

To create a table of any of the types supported by MySQL, you issue a CREATE TABLE
statement that defines the table’s structure, and that includes an ENGINE = engine_name

clause to indicate which storage engine you want to use. If you omit the ENGINE clause,
MySQL uses the default storage engine (MyISAM, unless you change it).The server
creates an .frm file for the new table that contains the internal encoding of its definition,
and then tells the appropriate storage engine to create any other files that are associated

59311.2 Structure of the Data Directory

with the table. For example, MyISAM creates .MYD and .MYI data and index files, and
CSV creates a .CSV data file. For InnoDB tables, the storage engine creates a data diction-
ary entry and initializes data and index information for the table within the appropriate
InnoDB tablespace. Under Unix, the ownership and mode of any files created to repre-
sent the table are set to enable access only to the account that is used to run the server.

When you issue an ALTER TABLE statement, the server re-encodes the table’s .frm file
to reflect the structural change indicated by the statement and modifies the contents of
the data and index files likewise.This happens for CREATE INDEX and DROP INDEX as well
because they are handled by the server as equivalent ALTER TABLE statements. If the
ALTER TABLE statement changes the table’s storage engine, the table constants are trans-
ferred to the new engine, which rewrites the contents using the appropriate type of files
used by the engine to represent tables.

MySQL implements DROP TABLE by removing the files that represent the table. If you
drop an InnoDB table, the InnoDB storage engine also updates its data dictionary and
marks as free any space associated with the table within the InnoDB shared tablespace.
Falcon similarly frees the table contents within the appropriate tablespace file.

For some storage engines, such as MyISAM, MERGE, or CSV, you can remove a table
manually by removing the files in the database directory to which the table corresponds.
For other storage engines, such as InnoDB, Falcon, or MEMORY, parts of the table might
not be represented within the filesystem in table-specific files, so DROP TABLE does not
have a filesystem command equivalent. For example, an InnoDB table that is stored in the
shared tablespace is always uniquely associated with an .frm file, but removing that file
does not properly drop the table.The InnoDB data dictionary must be updated by InnoDB
itself, and removing the .frm file leaves the table data and indexes “stranded” within the
shared tablespace.

If the InnoDB table has an individual tablespace, it is represented in the database direc-
tory by the .frm file and its own .ibd file. However, it is still not correct to “drop” the
table by removing those files because that does not give InnoDB a change to update the
data dictionary. It is necessary to use DROP TABLE so that InnoDB can remove the files and
update the data dictionary.

11.2.6 Operating System Constraints on Database Object Names
MySQL has general rules for identifiers that name databases and other objects such as
tables.The rules are detailed in Section 2.2, “MySQL Identifier Syntax and Naming
Rules,” but may be summarized briefly as follows:

n Unquoted identifiers may be constructed from the alphanumeric characters in the
system character set (utf8), as well as the underscore and dollar characters (‘_’ and ‘$’).

n Quoting an identifier within backticks enables it to contain other characters (for
example, `odd?name!`). Quoting is also often necessary if you use an SQL reserved

594 Chapter 11 The MySQL Data Directory

word as an identifier. If the ANSI_QUOTES SQL mode is enabled, identifiers can be
quoted within either backticks or double quotes.

n Identifiers may be up to 64 characters long.

In addition, the operating system on which a MySQL server runs may impose other
constraints on identifiers.These stem from filesystem naming conventions because data-
base and table names correspond to names of directories and files: Every database is repre-
sented in the filesystem by its database directory, and every table, no matter what storage
engine is used, is represented in the filesystem by at least an .frm file.Therefore, these re-
strictions apply:

n MySQL allows database and table names to be up to 64 characters long, but the
length of names is also bound by the length allowed by your operating system.

n Case sensitivity of the underlying filesystem affects how you name and refer to
databases and tables. If the filesystem is case sensitive (as is typical for Unix), the two
filenames abc and ABC refer to different files. If the filesystem is not case sensitive (as
for Windows, or for HFS+ filesystems under Mac OS X), abc and ABC refer to the
same file.You should keep this issue in mind if you develop a database on a server
that uses case-sensitive filenames and there is a possibility you might move or repli-
cate the database to a server where filenames are not case sensitive.

Before MySQL 5.1.6, additional filesystem-related naming constraints are enforced:

n Database and table names cannot contain characters that are illegal in filenames.
However, the rules for legal characters vary per operating system, which means there
are characters that MySQL might allow in a name but that you would be well ad-
vised to avoid. For example, by using a quoted identifier, you can include a ‘*’ char-
acter in a table name on Unix. ButWindows does not allow ‘*’ characters in
filenames, so you would not be able to replicate or move the table toWindows with-
out renaming it first. It’s best to stick with plain characters and avoid exotic ones.

n A database or table name cannot include the pathname separator character, even if
quoted. On Unix and Windows, pathname components are separated by ‘/’ and ‘\’,
respectively, and neither character may be used. Both are disallowed regardless of
platform to make it easier to move databases and tables from one platform to an-
other. (For example, if you were allowed to use ‘/’ in the name of a table on Win-
dows, you could not move or replicate the table to Unix.)

The problems just described that are caused by illegal or nonportable characters in
filenames go away as of MySQL 5.1.6, because the server encodes special characters in
identifiers that may be problematic in filenames.This encoding enables the restriction in
names against ‘/’, ‘\’, and other characters to be lifted. In a name as used in SQL state-
ments, any character outside the set of digits and Latin letters is mapped in the correspon-
ding filename to ‘@’ followed by an encoded character value. For example,‘?’ and ‘!’ have

59511.2 Structure of the Data Directory

encodings of 003f and 0021, so a table named odd?name! has an .frm file named
odd@003fname@0021.frm. Other files associated with the table are named similarly.

If you upgrade to MySQL 5.1.6 or later from an older version, be sure to tell the
server to re-encode any database and table names as necessary by using this command:

% mysqlcheck --all-databases --check-upgrade --fix-db-names --fix-table-names

As mentioned earlier, filesystem case sensitivity affects database and table naming. One
way to deal with this issue is to always use names that have a given lettercase.Another is
to run the server with the lower_case_table_names system variable set to 1, which has
two effects:

n The server converts a table’s name to lowercase before creating the corresponding
disk files.

n When the table is referenced later in a statement, the server converts its name to
lowercase before attempting to find the table on disk.

The result of these actions is that names uniformly are treated as not case sensitive, re-
gardless of the filesystem case sensitivity.This makes it easier to move databases and tables
between systems. However, if you plan to use this strategy, you should configure the
server to set the lower_case_table_names variable before you start creating databases or
tables, not after. If you set the variable after having already created databases or tables that
have names that include uppercase characters, the setting will not have the desired effect
because you will already have names stored on disk that are not entirely lowercase.To
avoid this problem, rename any tables that have names containing uppercase characters to
names that are entirely lowercase before setting lower_case_table_names. (To rename a
table, use ALTER TABLE or RENAME TABLE.) If you have a lot of tables that need to be re-
named, or databases that have names containing uppercase characters, it is easier to dump
the databases and then re-create them after setting lower_case_table_names:

1. Dump each database using mysqldump:

% mysqldump --databases db_name > db_name.sql

2. Drop each database with DROP DATABASE.

3. Stop the server, reconfigure it to set lower_case_table_names, and restart the
server.

4. Reload each dump file using mysql:

% mysql < db_name.sql

With lower_case_table_names set, each database and table will be re-created with a
lowercase name on disk.

lower_case_table_names actually has several possible values. For more information,
see Appendix D,“System, Status, and User Variable Reference.”

596 Chapter 11 The MySQL Data Directory

Falcon handles database and table names in case-insensitive fashion, regardless of the
actual lower_case_table_names setting.

11.2.7 Factors That Affect Maximum Table Size
Table sizes in MySQL are bounded, but sizes are limited by a combination of factors, so it
is not always a simple matter to determine precisely what the bounds are.

The operating system imposes a maximum file-size limit. Limits as low as 2GB used to
be common, but this is no longer true because the trend has been for operating systems
to relax file size constraints over time.The operating system size limit applies to files used
to represent tables, such as the .MYD and .MYI files for a MyISAM table. It also applies to
the files that make up any InnoDB tablespace. However, the overall InnoDB shared table-
space size can easily exceed the maximum file size: Just configure it to consist of multiple
files, each of which can be the maximum file size.Another way to circumvent the file-size
limit is to use raw partitions in the InnoDB tablespace.Tablespace components that are on
raw partitions can be as large as the partition itself. Instructions for configuring InnoDB
are given in Section 12.7.3.1, “Configuring the InnoDB Tablespace.”

In addition to operating-system limits, MySQL has its own internal limits on table
sizes.These vary by storage engine:

n For MyISAM tables, the .MYD and .MYI files are limited to 256TB apiece by de-
fault. However, by using the AVG_ROW_LENGTH and MAX_ROWS options when you
create the table, the files can be up to 65,536TB each. (See the description of
CREATE TABLE in Appendix E,“SQL Syntax Reference.”) These options affect
internal row pointer width, which determines the maximum number of rows the
table can hold. If a MyISAM table has grown to its maximum size and you are
getting error 135 or 136, you can use ALTER TABLE to increase the option values.
To change the default MyISAM pointer width directly, set the myisam_data_
pointer_size system variable; the new setting applies to tables created thereafter.

n The maximum size of a MERGE table is the sum of the maximum sizes of its con-
stituent MyISAM tables.

n For InnoDB, the maximum size of the InnoDB shared tablespace is 4 billion pages,
where the default page size is 16KB. (MySQL can be recompiled from source to
use an InnoDB page size ranging from 8KB to 64KB.) The maximum tablespace
size also is the bound on the size of any individual InnoDB table stored in the ta-
blespace. If InnoDB is configured to use individual tablespaces, each table’s contents
are stored in its .ibd file. In this case, InnoDB table size is bound by operating sys-
tem file-size limits.

n Falcon tablespace files have a maximum size of 128TB, and Falcon tables are limited
to 232 rows.

For storage engines that represent data and indexes in separate files, a table’s size limit is
reached when any of its individual files hits the file-size limit. For a MyISAM table, the

59711.2 Structure of the Data Directory

table’s indexing characteristics affect which file this will be. For a table with no or few in-
dexes, it is likely that the data file will reach its size limit first. For a heavily indexed table,
the index file may reach the limit first.

The presence of an AUTO_INCREMENT column implicitly limits the number of rows a
table may have. For example, if the column is TINYINT UNSIGNED, the maximum value it
may hold is 255, so that also becomes the maximum number of rows the table may hold.
Larger integer types allow more rows. More generally, including any PRIMARY KEY or
UNIQUE index in a table limits its row count to the maximum number of unique values in
the index.

To determine the actual table size you can achieve, you must consider all applicable
factors.The effective maximum table size likely will be determined by the smallest of
those factors. Suppose that you want to create a MyISAM table. MySQL will allow the
data and index files to reach 256TB each, using the default data pointer size. But if your
operating system imposes a size limit on files of 2GB, that will be the effective limit for
the table files. On the other hand, if your system supports files that can be larger than
256TB, the determining factor on table size then will be a MySQL factor, namely the
internal data pointer size.This is a factor that you can control.

With respect to InnoDB tables that are stored in the shared tablespace, a single
InnoDB table can grow as large as that tablespace and the tablespace can span multiple
files to become quite large. But if, as is more likely, you have many InnoDB tables, they all
share the same space and thus each is constrained in size not only by the size of the table-
space, but also by how much of the tablespace is allocated to other tables.Any individual
InnoDB table can grow as long as the tablespace is not full. Conversely, when the table-
space fills up, no InnoDB table can grow any larger until you add another component to
the tablespace to make it bigger.Alternatively, you can make the last tablespace compo-
nent auto-extending, so that it will grow as long as it does not exceed the file-size limit
of your system and disk space is available. See Section 12.7.3.1, “Configuring the InnoDB
Tablespace,” for details on tablespace configuration.

Falcon tablespace files grow automatically from their initial size but are limited to
128TB.You can create additional tablespaces and move tables from one tablespace to an-
other should a given tablespace become too “crowded.” Section 12.7.4, “Configuring the
Falcon Storage Engine,” discusses Falcon tablespace creation.

11.2.8 Implications of Data Directory Structure for System
Performance
The structure of the MySQL data directory is easy to understand because it uses the hier-
archical structure of the filesystem in such a natural way.At the same time, this structure
has certain performance implications, particularly regarding operations that open the files
that represent database tables.

One consequence of the data directory structure is that, for storage engines that repre-
sent individual tables each with their own files, each open table can require a file descrip-
tor. If a table is represented by multiple files, opening the table requires multiple file
descriptors, not just one.The server caches descriptors intelligently, but a busy server can

598 Chapter 11 The MySQL Data Directory

easily use up lots of them while servicing many simultaneous client connections or exe-
cuting complex statements that reference several tables.This can be a problem, because
file descriptors are a scarce resource on many systems, particularly those that set the de-
fault per-process descriptor limit fairly low.An operating system that imposes a low limit
and makes no provision for increasing it would not make a good choice for running a
high-activity MySQL server.

Another effect of representing each table by its own files is that table-opening time in-
creases with the number of tables. Operations that open tables map onto the file-opening
operations provided by the operating system, and as such are bound by the efficiency of
the system’s directory-lookup routines. Normally this isn’t much of an issue, but it is
something to consider if you’ll need large numbers of tables in a database. For example, a
MyISAM table is represented by three files. If you want to have 10,000 MyISAM tables,
your database directory will contain 30,000 files.With that many files, you may notice a
slowdown due to the time taken by file-opening operations. If this is cause for concern,
you might want to think about using a type of filesystem that is highly efficient at dealing
with large numbers of files. For example, XFS or JFS exhibit good performance even
with large numbers of small files. If it is not possible to choose a different filesystem, it
may be necessary to re-evaluate the structure of your tables in relation to the needs of
your applications and reorganize your tables accordingly. Consider whether you really re-
quire so many tables; sometimes applications multiply tables needlessly.An application that
creates a separate table per user results in many tables, all of which have identical struc-
tures. If you wanted to combine the tables into a single table, you might be able to do so
by adding another column identifying the user to which each row applies. If this signifi-
cantly reduces the number of tables, the application’s performance improves.

As always in database design, you must consider whether this particular strategy is
worthwhile for a given application. Reasons not to combine tables in the manner just
described are as follows:

n Increased disk space requirements. Combining tables reduces the number of tables
required (decreasing table-opening times), but adds another column (increasing disk
space requirements).This is a typical time versus space tradeoff and you’d need to
decide which factor is most important. If speed is paramount, you’d probably be
willing to sacrifice a little extra disk space. If space is tight, it might be more accept-
able to use multiple tables and live with a slight delay.

n Security considerations.These may constrain your ability or desire to combine ta-
bles. One reason to use a separate table per user is to enable access to each table for
only a single MySQL account by means of table-level privileges. If you combine ta-
bles, data for all users will be in the same table.

MySQL has no provision for restricting access to particular rows to a given user;
thus, you might not be able to combine tables without compromising access con-
trol. One possibility is to use views that select rows only for the current user, and
grant access through the views.Alternatively, if all access to the data is controlled by
your application (users never connect directly to the database), you can combine the
tables and use application logic to enforce row-level access to the combined result.

59911.2 Structure of the Data Directory

Another way to create many tables without requiring so many individual files is to use
InnoDB tables and store them in the InnoDB shared tablespace. In this case, the InnoDB
storage engine associates only an .frm file uniquely with each table, and stores the data
and index information for all InnoDB tables together.This minimizes the number of disk
files needed to represent the tables, and it also substantially reduces the number of file de-
scriptors required for open tables. InnoDB needs only one descriptor per component file
of the tablespace (which is constant during the life of the server process), and briefly a de-
scriptor for any table that it opens while it reads the table’s .frm file.

A similar strategy can be used with Falcon, which enables the data and indexes of mul-
tiple tables to be stored in a single tablespace file.

11.2.9 MySQL Status and Log Files
In addition to database directories, the MySQL data directory contains a number of status
and log files, as summarized in Table 11.1.The default location for each file is the server’s
data directory, and the default name for many of them is derived using the server host
name, denoted as HOSTNAME in the table.The binary and relay logs are created as a num-
bered sequence of files, denoted by nnnnnn.The table lists only the server-level status and
log files. Individual storage engines may create their own logs or other files. For example,
InnoDB and Falcon do this.

Table 11.1 MySQL Status and Log Files

File Type Default Name File Contents

Process ID file HOSTNAME.pid The server process ID

Error log HOSTNAME.err Startup and shutdown events and error
conditions

General query
log

HOSTNAME.log Connect/disconnect events and state-
ment information

Binary log HOSTNAME-bin.nnnnnn Binary representation of statements that
modify data

Binary log
index

HOSTNAME-bin.index List of current binary log files

Relay log HOSTNAME-relay-bin.

nnnnnn

Data modifications received by slave
server from master

Relay log index HOSTNAME-relay-bin.index List of current relay log files

Master info file master.info Parameters for connecting to master
server

Relay info file relay-log.info Status of relay log processing

Slow-query log HOSTNAME-slow.log Text of statements that take a long time
to process

600 Chapter 11 The MySQL Data Directory

For the general query log and the slow-query log, you can select whether the server
writes to a log file, to a log table in the mysql database, or both. Section 12.5.6,“Using
Log Tables,” describes logging to tables in more detail.

11.2.9.1 The Process ID File
The MySQL server writes its process ID (PID) into the PID file when it starts, and re-
moves the file when it shuts down. Other processes can use this file to determine whether
the server is running and what its process ID is if so. For example, if the operating system
runs the mysql.server script at system shutdown time to stop the MySQL server, that
script examines the PID file to determine which process it needs to send a termination
signal to.

If the server cannot create the PID file (for example, if you run it on read-only media
such as a CD-ROM), it writes a message to the error log and continues.

The PID file is not used by the embedded server, which needs no PID file because it
is started and stopped by the application within which it is embedded.

11.2.9.2 The MySQL Logs
MySQL can maintain several types of log files. Most logging is optional; you use server
startup options to enable just the logs you need and also to specify their names if you
don’t like the default names. Be aware that logs can grow quite large, so it’s important to
make sure they don’t fill up your filesystem.You can expire the logs periodically to keep
the amount of space that they use within bounds.

This section briefly describes a few of the log files. For more information about the
logs, the options that control the server’s logging behavior, and log expiration, see Section
12.5, “Maintaining Logs.”

The error log contains a record of diagnostic information produced by the server
when exceptional conditions occur. If the server fails to start up or exits unexpectedly,
this log is useful because it will often contain the reason why.

The general query log provides general information about server operation: who is
connecting from where and what statements they are issuing.The binary log contains
statement information, too, but only for statements that modify database contents. It also
contains information such as timestamps needed to keep slave servers synchronized when
the server is a master server in a replication setup.The contents of the binary log are writ-
ten in binary format as “events” that can be executed by providing them as input to the
mysql client.The accompanying binary log index file lists which binary log files the
server currently is maintaining.

The binary log is useful if you have a crash and must revert to backup files, because
you can repeat the updates performed after the backup was made by feeding the log files
to the server.This enables you to bring your databases up to the state they were in when
the crash occurred.The binary log is also used if you set up replication servers, because it
serves as a record of the updates that must be transmitted from a master server to slave

60111.2 Structure of the Data Directory

servers. Backup procedures and replication are discussed in more detail in Chapter 14,
“Database Maintenance, Backups, and Replication.”

Here is a sample of the kind of information that appears in the general query log as
the result of a short client session that creates a table in the test database, inserts a row
into the table, and then drops the table:

080412 11:38:34 31 Connect sampadm@localhost on sampdb

080412 11:38:42 31 Query CREATE TABLE mytbl (val INT)

080412 11:38:47 31 Query INSERT INTO mytbl VALUES(1)

080412 11:38:52 31 Query DROP TABLE mytbl

080412 11:38:56 31 Quit

The general log contains columns for date and time, server thread ID (connection ID),
event category, and event-specific information. For any line that is missing the date and
time fields, the values are the same as for the previous line that does have them. (In other
words, the server logs the date and time only when they change from the previously
logged date and time.)

The same session appears in the binary log as follows when viewed by displaying its
contents with the mysqlbinlog program. (The output is slightly reformatted to accom-
modate long lines.) The statements include terminating semicolons, allowing them to be
given as input to the mysql program should the updates need to be repeated for a data-
base recovery operation. Comment lines begin with ‘#’ characters.

at 1222

#080412 11:38:42 server id 1 log_pos 1222 Query thread_id=31

exec_time=0 error_code=0

use sampdb;

SET TIMESTAMP=1092328722;

CREATE TABLE mytbl (val INT);

at 1287

#080412 11:38:47 server id 1 log_pos 1287 Query thread_id=31

exec_time=0 error_code=0

SET TIMESTAMP=1092328727;

INSERT INTO mytbl VALUES(1);

at 1351

#080412 11:38:52 server id 1 log_pos 1351 Query thread_id=31

exec_time=0 error_code=0

SET TIMESTAMP=1092328732;

DROP TABLE mytbl;

It’s a good idea to make sure that your log files are secure and not readable by arbitrary
users, because they may contain the text of statements that include sensitive information
such as passwords. For example, the following log entry displays the password for the root
user; it’s certainly not the kind of information you want just anyone to have access to:

080412 16:47:24 44 Query SET PASSWORD FOR

'root'@'localhost'=PASSWORD('secret')

The server writes log files to the data directory by default, so a good precaution for se-
curing your logs is to secure the data directory against being accessed on the server host
by login accounts other than the one used by the MySQL administrator. For details of
this procedure, see Section 13.1.2, “Securing Your MySQL Installation.”

11.3 Relocating Data Directory Contents
Earlier parts of this chapter discuss the data directory structure in its default configura-
tion, which is that all databases, status files, and log files are located within it. However,
you have some latitude in determining the placement of the data directory’s contents.
MySQL enables you to relocate the data directory itself or certain elements within it.
There are several reasons why you might want to do this:

n The filesystem that contains the data directory has become full and you need to
move it to a filesystem with more capacity.

n If your data directory is on a busy disk drive, you can put it on a less active drive to
balance disk activity across physical devices.You can put databases and log files on
different drives or distribute databases across drives for the same reasons. Similarly,
the InnoDB shared tablespace is conceptually a single large block of storage, but you
can put its individual component files on different drives to improve performance.
If you use partitioned tables, you can do the same with individual table partitions.

n Putting databases on one disk and logs on another disk helps minimize the damage
that can be caused by a failure of a single disk.

n You might want to run multiple servers, each with its own data directory.This is
one way to work around problems with per-process file descriptor limits, especially
if you cannot reconfigure the kernel for your system to enable higher limits.

The rest of this section discusses which parts of the data directory can be moved and
how you go about making such changes.

11.3.1 Relocation Methods
There are two ways to relocate the data directory or elements within it.

First, on any platform, you can specify an option at server startup, either on the com-
mand line or in an option file. For example, to specify the data directory location, start
the server with a --datadir=dir_name option on the command line or put the following
lines in an option file:

[mysqld]

datadir=dir_name

Typically, the option file group name for server options is [mysqld], as shown in the
example. However, depending on your circumstances, other option group names may be
more appropriate. For example, the [embedded] group applies to the embedded server. If
you’re running multiple servers using mysqld_multi, the group names will be of the

602 Chapter 11 The MySQL Data Directory

60311.3 Relocating Data Directory Contents

form [mysqldn], where n is some integer associated with a particular server instance.
Section 12.2.3, “Specifying Server Startup Options,” discusses which option groups apply
to different server startup methods, and also provides instructions for running multiple
servers.

Second, on Unix, you can move the file or directory to be relocated, and then make a
symlink (symbolic link) in the original location that points to the new location.

Neither of these methods works universally for everything that you can relocate.Table
11.2 summarizes what can be relocated and which relocation methods can be used. If you
use an option file, it is possible to specify options in a global option file such as
/etc/my.cnf under Unix or C:\my.ini on Windows.

Table 11.2 Relocation Method Summary

Entity to Relocate Applicable Relocation Methods

Entire data directory Startup option or symlink

Individual database directories Symlink

Individual database tables Symlink

InnoDB tablespace files Startup option

Server PID file Startup option

Log files Startup option

11.3.2 Relocation Precautions
Before you attempt to relocate anything, it is prudent to make a backup of your data so
that you can restore it if you mess up the relocation operation.Also, you should stop the
MySQL server before relocating, and then restart it afterward. For certain types of reloca-
tions, such as moving a database directory, it is sometimes possible to keep the server run-
ning, but not recommended. If you do that, you must make sure that the server is not
accessing the database you’re moving.You should also be sure to issue a FLUSH TABLES
statement before moving the database to make sure that the server closes all open table
files. Failure to observe these precautions can result in damaged tables.

11.3.3 Assessing the Effect of Relocation
Before attempting to relocate anything, it’s a good idea to verify that the operation will
have the desired effect. For example, on Unix, you can use the du, df, and ls -l com-
mands for obtaining disk space information. However, you must correctly understand the
layout of your filesystem for any of these to be useful.

The following example illustrates a subtle trap to watch out for when assessing a data
directory relocation. Suppose that your data directory is /usr/local/mysql/data and

604 Chapter 11 The MySQL Data Directory

you want to move it to /var/mysql because df indicates the /var filesystem has more
free space:

% df -k /usr /var

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/sda5 28834716K 24078024K 3291968K 88% /usr

/dev/sda6 28834716K 9175456K 18194536K 34% /var

To find out how much space relocating the data directory should free up on the /usr
filesystem, use du -s:

% du -s /usr/local/mysql/data

3264308K /usr/local/mysql/data

This result indicates that moving the data directory from /usr to var should free
about 3GB on /usr. But would it really? To find out, try df in the data directory. Suppose
that you get output like this:

% df -k /usr/local/mysql/data

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/sda6 28834716K 9175456K 18194536K 34% /var

That’s odd.Why does df report the space on the /var filesystem? The following ls -l
command provides the answer:

% ls -l /usr/local/mysql/data

lrwxrwxr-x 1 mysql mysql 10 Dec 11 23:46 data -> /var/mysql

This output shows that /usr/local/mysql/data is a symlink to /var/mysql. In other
words, the data directory already has been relocated to the /var filesystem and replaced
with a symlink that points there. So much for freeing up a lot of space on /usr by mov-
ing the data directory to /var!

The lesson here is that a few moments spent assessing the effect of relocation can keep
you from wasting a lot of time moving things around, only to find that you’ve failed to
achieve your objective.

11.3.4 Relocating the Entire Data Directory
To relocate the data directory, stop the MySQL server, and then move the data directory
to its new location.After the move, you should restart the server with a --datadir option
that explicitly indicates the new location. On Unix, an alternative to using --datadir is
to create a symbolic link in the original data directory location that points to the new
location.

11.3.5 Relocating Individual Databases
The server always looks for database directories in the data directory, so the only way to
relocate a database is by the symlink method.The procedure for this differs for Unix and
Windows.

60511.3 Relocating Data Directory Contents

Under Unix, relocate a database as follows:

1. Stop the server if it is running.

2. Move the database directory to its new location, or copy it and remove the original.

3. Create a symlink in the data directory that has the name of the original database
and that points to the new database location.

4. Restart the server.

The following example shows how to relocate a database bigdb from the
/usr/local/mysql/data directory to /var/db:

% mysqladmin -p -u root shutdown

Enter password: ******

% cd /usr/local/mysql/data

% tar cf - bigdb | (cd /var/db; tar xf -)

% rm -rf bigdb

% ln -s /var/db/bigdb bigdb

% mysqld_safe &

You should execute these commands while logged in as the MySQL administrator.
Under Windows, database relocation is handled somewhat differently:

1. Stop the server if it is running.

2. Move the database directory to its new location, or copy it and remove the original.

3. Create a file in the MySQL data directory that acts as a symbolic link to let the
MySQL server know where to find the relocated database directory.The file should
have a .sym extension and a basename that is the database name. For example, if
you move the sampdb database from C:\mysql\data\sampdb to E:\mysql-

book\sampdb, you should create a file named C:\mysql\data\sampdb.sym that
contains this line:

E:\mysql-book\sampdb\

4. Make sure that symbolic link support is enabled when you restart the server.Win-
dows servers should have this enabled by default, but you can enable it explicitly by
using the --symbolic-links option on the command line or by placing these lines
in an option file:

[mysqld]

symbolic-links

If you’re moving a database to another filesystem as an attempt to redistribute database
storage, remember that if you are using InnoDB tables that are stored in the InnoDB
shared tablespace, the contents of those tables are not located in the database directory. For
a database composed primarily of such InnoDB tables, relocating the database directory

606 Chapter 11 The MySQL Data Directory

will relocate only their .frm files, not their contents.This will have little effect on storage
distribution.

Similarly, Falcon table contents are stored in Falcon tablespace files, not in database
directories.

11.3.6 Relocating Individual Tables
Relocation of an individual table is supported only under certain limited circumstances:

n You must be using Unix and the table to be relocated must be a MyISAM table.
n Your operating system must have a working realpath() system call. If you do, the

result of the following query will be YES:

mysql> SHOW VARIABLES LIKE 'have_symlink';

+---------------+-------+

| Variable_name | Value |

+---------------+-------+

| have_symlink | YES |

+---------------+-------+

If both of those conditions are true, you can move the table’s .MYD data and .MYI in-
dex files to their new locations and then create symlinks to them in the database directory
under the original data and index filenames. (Leave the .frm file in the database direc-
tory.) Before doing this, either stop the server while you move the files, or lock the table
to prevent the server from using it, as described in Section 14.2, “Performing Database
Maintenance with the Server Running.”

11.3.7 Relocating the InnoDB Shared Tablespace
You configure the InnoDB shared tablespace initially by listing the locations of its com-
ponent files in an option file, using the innodb_data_home_dir and
innodb_data_file_path options. (For details on configuring the shared tablespace, see
Section 12.7.3.1,“Configuring the InnoDB Tablespace.”) If you have already created the
tablespace, it’s possible to relocate regular files that are part of it; for example, to distribute
them across different filesystems. Because you list the file locations using startup options,
the way to relocate some or all of the tablespace files is as follows:

1. Stop the server if it is running.

2. Move the tablespace file or files that you want to relocate.

3. Update the option file where the InnoDB configuration is defined, to reflect the
new locations of any files that you moved.

4. Restart the server.

60711.3 Relocating Data Directory Contents

11.3.8 Relocating Status and Log Files
To relocate the PID file or a log file, stop the server, and then restart it with the appropri-
ate option to specify the file’s new location. For example, to create the PID file as
/tmp/mysql.pid, use --pid-file=/tmp/mysql.pid on the command line or include
these lines in an option file:

[mysqld]

pid-file=/tmp/mysql.pid

If you specify the filename as an absolute pathname, the server creates the file using
that pathname. If you use a relative name, the server creates the file under the data direc-
tory. For example, if you specify --pid-file=mysqld.pid, the PID file will be
mysqld.pid in the data directory.

Some systems keep server PID files in a specific directory, such as /var/run.You might
want to put the MySQL PID file there, too, for consistency of system operation. In simi-
lar fashion, if your system uses /var/log for log files, you can put the MySQL logs there,
too. However, many systems allow only root to write to these directories.That means
you’d need to run the server as root, which for security reasons is not a good idea.What
you can do instead is create subdirectories /var/run/mysql and /var/log/mysql and set
them to be owned by the account you use for running the server. For example, if that ac-
count has user and group names of mysql, you can execute the following commands as
root:

mkdir /var/run/mysql

chown mysql /var/run/mysql

chgrp mysql /var/run/mysql

chmod u=rwx,go-rwx /var/run/mysql

mkdir /var/log/mysql

chown mysql /var/log/mysql

chgrp mysql /var/log/mysql

chmod u=rwx,go-rwx /var/log/mysql

Then the server won’t have any problems writing files in those directories and you can
start it with options that specify files there. For example:

[mysqld]

pid-file = /var/run/mysql/mysql.pid

log-error = /var/log/mysql/log.err

log = /var/log/mysql/querylog

log-bin = /var/log/mysql/binlog

For more information about log file options and how to use them, see Section 12.5,
“Maintaining Logs.”

This page intentionally left blank

12
General MySQL Administration

This chapter discusses the responsibilities that you must carry out to keep MySQL run-
ning smoothly if you administer MySQL at your site:

n Securing your MySQL setup after installing it
n Making sure that the server is up and running as much of the time as possible
n Setting up user accounts so that clients can access the server
n Maintaining server logs
n Modifying and monitoring the server’s operating parameters for better performance
n Running multiple servers
n Determining whether and when to upgrade MySQL to a newer version

Other significant administrative concerns are covered in Chapter 13,“Access Control
and Security,” and Chapter 14,“Database Maintenance, Backups, and Replication.”

This chapter covers several programs that are essential for MySQL administrators to
know about:

n mysqld is the MySQL server.
n mysqld_safe, mysql.server, and mysqld_multi are used for starting the server.
n mysqladmin performs miscellaneous administrative operations.

Much of the information in this chapter can be better appreciated if you have an un-
derstanding of MySQL’s data directory, which is where the server stores databases, log files,
and other information. For details, see Chapter 11,“The MySQL Data Directory.” For
additional information specific to the SQL statements and programs discussed here, see
Appendix E,“SQL Syntax Reference,” and Appendix F,“MySQL Program Reference.”

Note
For simplicity (and to keep pathnames shorter), most of the Windows-related material in this
chapter assumes that MySQL is installed at C:\mysql. However, the MySQL installation wiz-
ard for Windows likes to install the distribution under C:\Program Files\MySQL\MySQL

610 Chapter 12 General MySQL Administration

Server X.Y, where X.Y is a number like 5.0 or 5.1. If you use that installation location, be
sure to adjust Windows pathnames shown in this chapter accordingly.

12.1 Securing a New MySQL Installation
Let’s begin by covering an administrative task that you should perform immediately after
installing MySQL: Making sure that the server can be accessed only by authorized users.
This is a matter of understanding which MySQL user accounts are created during installa-
tion, setting up passwords for those that are needed, and removing the rest.

The MySQL installation procedure sets up the server’s data directory and populates it
with two databases:

n A mysql database containing the grant tables that control access by clients to the server
n A test database that can be used for testing purposes

If you’ve just installed MySQL for the first time (for example, using the instructions in
Appendix A,“Obtaining and Installing Software.”), the grant tables in the mysql database
contain accounts in their initial state that enables anyone to connect to the server without
a password.This is insecure, so you should assign passwords to these accounts. If you’re
upgrading MySQL by installing a newer version on top of an existing installation for
which the grant tables are already set up, passwords probably have already been assigned. If
you’re setting up a second installation on a machine that already has MySQL installed in
another location, you’ll need to set up passwords for the new server. However, in this case,
you might run into the complication that passwords might be picked up from option files
created for the existing installation, as discussed in Section 12.1.3,“Setting Up Passwords
for a Second Server.”

For concreteness, the examples in the following discussion assume that you are running
the MySQL server on a machine with a hostname of cobra.snake.net and that you will
be connecting to the server from that same machine.Whenever you see that hostname in
the instructions, substitute the name of your own server host.The examples also assume
that your MySQL server has already been started, because you’ll need to connect to it.

Note
Some MySQL installers give you the option of creating passwords during the installation pro-
cedure, but even if you use one of those installers, the information here will help you better
understand the initial MySQL user accounts. The following discussion assumes that you
have not yet established any passwords. An installer may also give you the option of creat-
ing only some of the initial accounts described here, in which case you need not deal with
those not created.

12.1.1 Establishing Passwords for the Initial MySQL Accounts
This section describes how to check which accounts are present in your grant tables and
how to set their passwords.

The grant tables in the mysql database are set up during the MySQL installation pro-
cedure with two kinds of accounts:

61112.1 Securing a New MySQL Installation

n Accounts that have a username of root.These are superuser accounts intended for
administrative purposes.The root accounts have all privileges and can do anything,
including deleting all your databases and shutting down the server. (The fact that
the MySQL and Unix superuser accounts both have the name root is coincidental.
Each has exceptional privileges, but they have nothing to do with each other.)

n Accounts that have a blank username.These are “anonymous” accounts; they enable
people to connect to the server without having accounts explicitly set up for them
in advance.Anonymous users usually are given very few privileges, to limit the
scope of what they can do. (On Windows, versions of MySQL prior to
5.0.36/5.1.16 may include an anonymous account that has superuser privileges,
which you should handle as described later in this section.)

Every account known to a MySQL server is listed in the user table of its mysql data-
base, so that’s where you’ll find the initial accounts. None of these accounts have pass-
words by default, because it’s expected that you’ll supply your own.Therefore, one of your
first acts in administering a MySQL installation should be to establish passwords. Other-
wise, unauthorized users can gain superuser access to your server by connecting as root.
After you secure the initial accounts, you can proceed to set up other accounts to enable
the members of your user community to connect to the server under names that you
specify and with privileges appropriate for what those users should be allowed to do.
Section 12.4,“Managing MySQL User Accounts,” provides instructions for setting up
new accounts and modifying existing ones.

Each entry (row) in the user table contains a Host value that indicates the host from
which a user can connect, and User and Password values that indicate the name and pass-
word the user must give when connecting from that host.The user table also has a num-
ber of columns that indicate what superuser privileges each account has.

To see what accounts are present and whether they have passwords, connect to the
server as root and query the mysql.user table.This should be possible without specifying
a password because even root has no password initially:

% mysql -u root

mysql> SELECT Host, User, Password FROM mysql.user;

+-----------------+------+----------+

| Host | User | Password |

+-----------------+------+----------+

| localhost | root | |

| cobra.snake.net | root | |

| 127.0.0.1 | root | |

| localhost | | |

| cobra.snake.net | | |

+-----------------+------+----------+

The output that you see on your own server may not be exactly the same as shown
here, but each account that you see with a blank Password value is one to which you
should assign a password.

612 Chapter 12 General MySQL Administration

Host User Password Superuser Privileges

localhost root All

127.0.0.1 root All

cobra.snake.net root All

localhost None

cobra.snake.net None

Under Unix, the data directory is initialized during the installation procedure by the
mysql_install_db script. If you install MySQL on Linux from RPM packages on or
Mac OS X using a DMG package, mysql_install_db is run for you automatically.
Otherwise, you run it yourself. See Appendix A for details.

One purpose of mysql_install_db is to set up the grant tables in the mysql database.
On a server host named cobra.snake.net, mysql_install_db initializes the user table
with the accounts shown in the following table.

These user table account entries enable connections by client programs as follows:

n The root entries enable you to connect to the local MySQL server, using a host-
name of localhost, 127.0.0.1, or cobra.snake.net. For example, if you invoke
the mysql program while logged in on cobra.snake.net, you can connect as root
using either of these commands:

% mysql -h localhost -u root

% mysql -h cobra.snake.net -u root

As root, you have all privileges and can perform any operation.
n The entries with blank User values are the anonymous accounts.They enable con-

nections to the local MySQL server, using a hostname of localhost or
cobra.snake.net, and without specifying any username:

% mysql -h localhost

% mysql -h cobra.snake.net

Anonymous users have no superuser privileges.

Under Windows, the data directory and the mysql database are included pre-initialized
with the MySQL distribution, with accounts that are somewhat different from those on
Unix systems.The Windows user table entries look like those in the following table.

61312.1 Securing a New MySQL Installation

Host User Password Superuser Privileges

localhost root All

127.0.0.1 root All

localhost Depends on version

These user table account entries enable connections by client programs as follows:

n You can connect as root from the local host.As root, you have all privileges and
can perform any operation.

n You can connect anonymously with no username from the local host. For current
versions of MySQL, this account has no superuser privileges. Before MySQL
5.0.36/5.1.16, the account has the same superuser privileges as root and can do
anything. In this case, you may want to revoke those privileges in addition to assign-
ing a password to the account, or perhaps just delete the account entirely.

Another grant table (the db table, not shown) contains privilege information that en-
ables anonymous users to use the test database or any database having a name that begins
with test_.

The rest of this section describes how to set the root and anonymous-user passwords.
The examples use a representative set of accounts, but the particular set of SQL statements
that you’ll need to use depends on which accounts actually are present on your system.

Depending on how you assign passwords, you may also need to tell the server to reload
the grant tables so that it notices the change.The server performs access control using in-
memory copies of the grant tables. For some methods of changing passwords in the user
table, the server may not recognize that you’ve changed anything, so you must explicitly
tell it to re-read the tables.

One password-assignment method is to connect to the server as root, determine
which accounts have no password, and use a SET PASSWORD statement for each one.
Suppose that you connect to the server and find that the following accounts have no
password:

% mysql -u root

mysql> SELECT Host, User FROM mysql.user WHERE Password = '';

+-----------------+------+

| Host | User |

+-----------------+------+

| localhost | root |

| cobra.snake.net | root |

| 127.0.0.1 | root |

| localhost | |

| cobra.snake.net | |

+-----------------+------+

These accounts can be assigned passwords with SET PASSWORD statements. Each state-
ment should specify an account name in 'user_name'@'host_name' format, using the

614 Chapter 12 General MySQL Administration

User and Host values of the user table row that you want to modify. (If the User value is
blank, the user_name value is '', the empty string.) To set the root and anonymous-user
passwords for the accounts just shown, use the following statements:

mysql> SET PASSWORD FOR 'root'@'localhost' = PASSWORD('rootpass');

mysql> SET PASSWORD FOR 'root'@'cobra.snake.net' = PASSWORD('rootpass');

mysql> SET PASSWORD FOR 'root'@'127.0.0.1' = PASSWORD('rootpass');

mysql> SET PASSWORD FOR ''@'localhost' = PASSWORD('anonpass');

mysql> SET PASSWORD FOR ''@'cobra.snake.net' = PASSWORD('anonpass');

An alternative to SET PASSWORD is to modify the user table directly with UPDATE.This
method can be used to specify a password for all accounts with a given User value, regard-
less of their Host value, and thus modify multiple accounts simultaneously.To set the pass-
word for all root accounts and all anonymous-user accounts, use these statements:

mysql> UPDATE mysql.user SET Password=PASSWORD('rootpass') WHERE User='root';

mysql> UPDATE mysql.user SET Password=PASSWORD('anonpass') WHERE User='';

mysql> FLUSH PRIVILEGES;

When you use SET PASSWORD to change passwords, the server notices that you’ve made
a change to the grant tables and automatically re-reads them to refresh its in-memory
copy of the tables. If you use UPDATE to modify the user table directly, it’s necessary to ex-
plicitly tell the server to reload the tables.That’s the purpose of the FLUSH PRIVILEGES
statement following the UPDATE statements.

On Windows, if an anonymous-user account with the same superuser privileges as
root is present, that is likely more power than you want the account to have. If you want
to retain the account but with no superuser privileges, you can revoke them. Check
which privileges the account has with this statement:

mysql> SHOW GRANTS for ''@'localhost';

If the account has no superuser privileges, the output will look like this and you need
take no further action:

+--------------------------------------+

| Grants for @localhost |

+--------------------------------------+

| GRANT USAGE ON *.* TO ''@'localhost' |

+--------------------------------------+

If the account has superuser privileges, you’ll see this instead:

+---+

| Grants for @localhost |

+---+

| GRANT ALL PRIVILEGES ON *.* TO ''@'localhost' WITH GRANT OPTION |

+---+

To revoke the account’s privileges, use these REVOKE statements:

mysql> REVOKE ALL ON *.* FROM ''@'localhost';

mysql> REVOKE GRANT OPTION ON *.* FROM ''@'localhost';

61512.1 Securing a New MySQL Installation

Another option for dealing with anonymous-user accounts is to remove them entirely.
I recommend this if you have no need for them.To remove the accounts, use DROP USER:

mysql> DROP USER ''@'localhost';

mysql> DROP USER ''@'cobra.snake.net';

The main benefit of removing the anonymous-user accounts is that it significantly sim-
plifies the task of setting up non-anonymous accounts. Otherwise, you may have to deal
with the curious phenomenon described in Section 13.2.3,“A Privilege Puzzle.” You can
read that section for the details behind this phenomenon.

For REVOKE and DROP USER, the server automatically re-reads the grant tables and no
FLUSH PRIVILEGES statement is needed.

Now that you have established the account passwords (and reloaded the grant tables if
necessary), the appropriate password is needed for each attempt to connect to the server.
In particular, no one can connect as root without knowing the password:

% mysql -u root

ERROR 1045 (28000): Access denied for user 'root'@'localhost'

(using password: NO)

% mysql -p -u root

Enter password: rootpass

mysql>

The need to specify a password when connecting to the server from this point on will
be true not just for mysql, but also for other programs such as mysqladmin and
mysqldump. For brevity, many of the examples in later sections of this chapter do not show
the -u or -p options. I assume that you’ll add them as necessary whenever you connect to
the server.

12.1.2 Setting Up Passwords for a Second Server
The preceding instructions assume that you’re establishing passwords on a system that has-
n’t had MySQL installed on it before. However, if MySQL is already installed in one loca-
tion and you’re setting the passwords for a new server installed in a second location on the
same machine, you may find when you attempt to connect to the new server without a
password that it rejects the attempt with the following error:

% mysql -u root

ERROR 1045 (28000): Access denied for user 'root'@'localhost'

(using password: YES)

Hm! Why did the server say it received a password, when you didn’t specify one? This
usually indicates that you have an option file set up that contains the password for access-
ing the previously installed server. mysql finds the option file and automatically uses the
password listed there.To override that and explicitly specify “no password,” use a -p option
and press Enter when mysql prompts for the password:

% mysql -p -u root

Enter password: ← just press Enter

616 Chapter 12 General MySQL Administration

You can use this strategy when you invoke mysqladmin or other MySQL client pro-
grams as well.

Additional discussion on using several servers can be found in Section 12.10,“Running
Multiple Servers.”

12.2 Arranging for MySQL Server Startup
and Shutdown
One general goal that you have as a MySQL administrator is to make sure that the server,
mysqld, is running as much of the time as possible so that your users can access it. Occa-
sionally, however, it’s necessary to stop the server. For example, if you’re relocating a data-
base, you can’t have the server updating tables in that database at the same time, so you
must shut it down.The tension between the desire to keep the server running and the
need to stop it occasionally is something this book can’t resolve for you. But we can at
least discuss how to get the server started and stopped so that you have the ability to per-
form either operation as you see fit. Many aspects of the procedures for this are different
for Unix and Windows, so the following discussion covers them separately.

12.2.1 Running the MySQL Server On Unix
On Unix, the MySQL server can be started manually from the command line. It’s also
possible to arrange for the server to run automatically at system boot time as part of the
standard startup procedure. (This is in fact probably how you’ll start the server under nor-
mal operating conditions after you get everything set up the way you want.) But before
discussing how to start the server, let’s consider which login account should be used to
start it. On a multi-user operating system such as Unix, you have a choice about which
login account to use for running the server. If you start the server manually, it runs as the
Unix user you happen to be logged in as. For example, if I log in as paul and start the
server, it runs as paul. If instead I use the su command to switch user to root and then
start the server, it runs as root.

Keep in mind two goals for your MySQL server startup procedures under Unix:
The server should run as some user other than root.To say the server runs “as” a

given user means that the server process is associated with the user ID of that user’s Unix
login account, and that it has that user’s privileges for reading and writing files in the
filesystem.This has certain security implications, particularly for processes that run as the
root user, because root is enabled to do anything, however dangerous. One way to avoid
these dangers is to have the server relinquish its special privileges. Processes that start as
root have the capability to change their user ID to that of another account and thus give
up root’s privileges in exchange for those of a regular unprivileged user.This makes the
process less dangerous. In general, you should limit the power of any process unless it re-
ally needs root access, and mysqld in particular does not.The server needs to access and
manage the contents of the MySQL data directory, but little else.This means that if the
server starts as root, you should tell it to change its user ID during startup to run as an
unprivileged user.

61712.2 Arranging for MySQL Server Startup and Shutdown

The server should run as the same user every time it executes. It’s inconsistent for
the server to run with one user’s privileges sometimes and with another user’s privileges
other times.That leads to files and directories being created under the data directory with
varying ownerships, and results in the server not being able to access certain databases or
tables depending on who it runs as. By consistently running the server as the same user,
you avoid this problem.

12.2.1.1 Running the Server Using an Unprivileged Login Account
Using a separate, unprivileged account rather than root for MySQL-related activity has
several benefits:

n If you do not run the server as root, no one can exploit it as a security hole to gain
root access.

n As it runs, the server will create files owned by the mysql account rather than by
root. For example, MySQL users who have the FILE privilege cannot cause the
server to write root-owned files.The fewer such files on your system, the better.

n It’s safer to perform MySQL administrative tasks while you are logged in as an un-
privileged user than as root. If you make a mistake while performing a filesystem
operation as root, the consequences can be devastating.

n It’s cleaner conceptually and administratively to create a separate account that is
devoted exclusively to MySQL activity. It’s also easier to see what things on your
system are MySQL related. For example, in the directory where crontab files are
kept, you’ll have a separate file for the MySQL user, mysql. Otherwise, the MySQL
cron jobs will be listed in root’s crontab file, along with everything else done as
root on a periodic basis.

To set up mysqld to run as an unprivileged non-root user, follow this procedure:

1. Stop the server if it’s running:

% mysqladmin -p -u root shutdown

2. Choose which login account to use for running mysqld.You can also designate a
group name specifically for use with MySQL. Here, we’ll use mysql for both the
user and group names. If you use different names, substitute them anywhere you see
mysql used as a user or group name elsewhere in this book. For example, if you in-
stall MySQL under your own account because you have no special administrative
privileges on your system, you’ll probably also run the server as yourself. In this case,
substitute your own login name and group name for mysql.

3. If necessary, create the login account for the username you’ve chosen, using your
system’s usual account-creation procedure.You’ll need to do this as root.

Should you elect to use the account named mysql for running the server, you might
not need to create it yourself. If you install MySQL on Linux using an RPM pack-
age, the installation procedure creates the account automatically. Current versions of

618 Chapter 12 General MySQL Administration

Mac OS X come with a mysql account already set up. Other systems might do
the same.

4. Modify the user and group ownership of the MySQL data directory and any subdi-
rectories and files under it so that the mysql user owns them. For example, if the
data directory is /usr/local/mysql/data, you can set up ownership for that direc-
tory and its contents as follows:

chown -R mysql /usr/local/mysql/data

chgrp -R mysql /usr/local/mysql/data

Run those commands as root.

5. It’s a good security precaution to set the access mode of the data directory to keep
other people out of it.To do this, modify its permissions so that it can be accessed
only by the mysql user. If the data directory is /usr/local/mysql/data, you can
set up everything in and under it to be accessible only to mysql by turning off all
the “group” and “other” permissions as follows:

chmod -R go-rwx /usr/local/mysql/data

The last couple of steps actually are part of a more comprehensive lockdown procedure
that is detailed in Section 13.1.2,“Securing Your MySQL Installation.” Be sure to check
that section for additional instructions on making ownership and mode assignments, par-
ticularly if your MySQL installation has a nonstandard layout.

After completing the preceding procedure, you should make sure always to start the
server with an option of --user=mysql so that it will switch its user ID to mysql if it’s in-
voked by root.This is true both for when you run the server manually as root, and for
setting up the server to be invoked during your system’s startup procedure. Unix systems
perform startup operations as the Unix root user, so any processes initiated as part of that
procedure execute by default with root privileges.

The best way to ensure that the user is specified consistently is to list it in an option file
that the server reads. For example, put the following lines in /etc/my.cnf:

[mysqld]

user=mysql

For more information on option files, see Section 12.2.3,“Specifying Server Startup
Options.”

If you happen to start the server while logged in as mysql, the presence of the user
line in your option file will result in a warning to the effect that the option can be used
only by root.This means that the server does not have the capability to change its user ID
and will run as mysql.That’s what you want anyway, so just ignore the warning.

12.2.1.2 Starting the Server on Unix
After deciding which login account to use for running the server, you have several choices
about how to start it. It’s possible to run the server manually from the command line or

61912.2 Arranging for MySQL Server Startup and Shutdown

automatically during the system startup procedure. Methods for doing this include the
following:

n Invoke mysqld directly.This is probably the least common method. I won’t discuss
it further, except to say that the following command is useful for finding out what
startup options the server supports:

% mysqld --verbose --help

n Invoke the mysqld_safe script. mysqld_safe invokes the server for you and then
monitors it and restarts it if it terminates abnormally. mysqld_safe commonly is
used on BSD-style versions of Unix, and it also is invoked by mysql.server on
non-BSD systems and on Mac OS X.

mysqld_safe redirects error messages and other diagnostic output from the server
to syslog or to a file in the data directory to produce an error log. If you send error
output to a file, mysqld_safe sets the ownership of the file so that it is owned by
the login account named by the --user option.This can lead to trouble if you to
use different --user values at different times.The symptom is that mysqld_safe’s
attempt to write to the error log file will fail with a “permission denied” error.This
can be especially problematic because if you examine the error log to see what the
difficulty is, it will contain no useful information related to the cause! If this prob-
lem occurs, remove the error log file and invoke mysqld_safe again.

n Invoke the mysqld.server script. mysql.server starts the server by executing
mysqld_safe.This script can be invoked with an argument of start or stop to in-
dicate whether you want the server to start or stop. It serves as a wrapper around
mysqld_safe and commonly is used on systems that employ the System V method
of arranging startup and shutdown scripts into several directories. Each directory
corresponds to a particular run level and contains scripts to be invoked when the
machine enters or exits that run level.

n To coordinate several servers, use the mysqld_multi script.This script reads
an option file in which you list startup parameters for multiple servers. It enables
you to start or stop each one, or check whether it is running.This startup script is
more complicated than the others, so I’ll defer discussion to Section 12.10,
“Running Multiple Servers.”

The mysqld_safe and mysqld_multi scripts are installed in the bin directory under
the MySQL installation directory or can be found in the scripts directory of MySQL
source distributions.The mysql.server script is installed under the share/mysql direc-
tory under the MySQL installation directory or can be found in the support-files
directory of MySQL source distributions. If you want to use mysql.server, you might
need to copy it to the proper run-level directory and make it executable. (Some installa-
tion methods install mysql.server for you. Linux RPM and Mac OS X DMG packages
do so, for example.) If you use a MySQL RPM obtained from another vendor, a similar
startup script might be installed under a different name, such as mysqld.

620 Chapter 12 General MySQL Administration

The type of system you have determines the arrangements that you’ll need to make to
have a startup script execute at system boot time. Read through the following examples
and use or adapt the instructions that most closely match the startup procedures for your
system.

For BSD-style systems, it’s common to have a few files in the /etc directory that initi-
ate services at boot time.These files often have names that begin with rc, and it’s likely
that there will be a file named rc.local (or something similar) intended specifically for
starting locally installed services. On an rc-based system, you might add lines such as the
following to rc.local to start the server:

if [-x /usr/local/bin/mysqld_safe]; then

/usr/local/bin/mysqld_safe &

fi

Modify the lines appropriately if the pathname to mysqld_safe is different on your
system.

For System V-style systems, you can install mysql.server. Copy it to the appropriate
run-level directory under /etc.This may have been done for you already if you run Linux
and installed MySQL from an RPM package. Otherwise, install the script in the main
startup script directory with the name you want to use, make sure the script is executable,
and place links to it in the appropriate run-level directory.

Note
Normally, you install mysql.server into the run-level directory under the name mysql, but
I’ll generally continue to discuss it as mysql.server to make it clear what I’m referring to.

The layout for run-level directories varies from system to system, so you’ll need to
check to see how your system organizes them. For example, under Solaris, the general
multi-user run level is 2.The main script directory is /etc/init.d, and the run-level di-
rectory is /etc/rc2.d, so the commands would look like this:

cp mysql.server /etc/init.d/mysql

cd /etc/init.d

chmod +x mysql

cd /etc/rc2.d

ln -s ../init.d/mysql S99mysql

At system startup time, the boot procedure automatically invokes the S99mysql script
with an argument of start.

Many Linux variants have a similar set of directories, but organized under
/etc/init.d and /etc/rc.d. Such Linux systems typically have a chkconfig command
that is intended for startup script management.You can use it to help you install the
mysql.server script instead of manually running commands like those just shown.The
following instructions show how to install mysql.server into the startup directories using
a name of mysql:

62112.2 Arranging for MySQL Server Startup and Shutdown

1. Copy the mysql.server script from wherever it’s located into the init.d directory
and make it executable:

cp mysql.server /etc/init.d/mysql

chmod +x /etc/init.d/mysql

2. Register the script and enable it:

chkconfig --add mysql

chkconfig mysql on

3. To verify that the script has been properly enabled, run chkconfig with the --list
option:

chkconfig --list mysql

mysql 0:off 1:off 2:on 3:on 4:on 5:on 6:off

That output indicates that the script will execute automatically for run levels 3, 4, and 5.
If you don’t have chkconfig, you can use a procedure similar to that used for Solaris,

although the pathnames are slightly different.To enable the script for run level 3, use these
commands:

cp mysql.server /etc/init.d/mysql

cd /etc/init.d

chmod +x mysql

cd /etc/rc.d/rc3.d

ln -s /etc/init.d/mysql S99mysql

Under Mac OS X, the startup procedure is different yet.The /Library/StartupItems
and /System/Library/StartupItems directories contain subdirectories for the services
that are initiated at system boot time.The DMG package provided for Mac OS X at the
MySQL Web site contains an installer that places a startup item for the MySQL server
into one of these directories.

12.2.2 Running the MySQL Server On Windows
On Windows, you can start the MySQL server manually from the command line. It’s also
possible to install the server as a Windows service.You can set the service to run automati-
cally when Windows starts and control it from the command line or by using the
Windows Services Manager.

MySQL distributions for Windows include several servers, each of which is built with
different options.You can find a summary of the different servers in Appendix A. For this
discussion, I’ll use the name mysqld for examples, but your distribution might contain
servers with different names such as mysqld-nt or mysqld-debug.

Windows servers provide two types of connections that Unix servers do not:

n Connections via named pipes, if the server is started with the --enable-named-
pipe option.

622 Chapter 12 General MySQL Administration

n Connections via shared memory, if the server is started with the --shared-memory
option.

Prior to MySQL 5.1.21, only the servers named mysqld-nt and mysqld-debug sup-
port named pipes. (The “nt” derives from the fact that named pipes are a feature first avail-
able in Windows NT, the predecessor to Windows 2000. mysqld-debug is like mysqld-nt
with the addition of debugging support.) As of 5.1.21, all Windows servers are built with
named-pipe support, and there are no longer any servers with -nt in the name.

12.2.2.1 Running the Server Manually on Windows
To start a server manually, invoke it from the command line in a console window:

C:\> mysqld

If you want error messages to go to the console window rather than to the error log
(the host_name.err file in the data directory), use the --console option:

C:\> mysqld --console

When you run a MySQL server from the command line, you will not necessarily see
another command prompt until the server exits.That’s okay. It just means that you need to
open another console window to use for running client programs.

If you add the --shared-memory option to the startup command, the server enables
local clients to connect using shared memory. Similarly, if your server was built with
named-pipe support, start it with the --enable-named-pipe option to enable local clients
to connect via named pipes.

To stop the server, use mysqladmin:

C:\> mysqladmin -p -u root shutdown

12.2.2.2 Running the Server as a Windows Service
OnWindows, any MySQL server can be installed as aWindows service using this command:

C:\> C:\mysql\bin\mysqld --install

The command uses the full pathname to the server. If the server is installed in a differ-
ent location, modify the pathname accordingly.

The service-installation command does not actually start mysqld. Instead, it causes
mysqld to run automatically whenever Windows starts. If you prefer to use a service that
does not run automatically, install the server as a “manual” service:

C:\> C:\mysql\bin\mysqld --install-manual

As a general rule, when you install a server as a Windows service, you give no other
options on the command line and list them in an option file instead. (See Section 12.2.3,
“Specifying Server Startup Options.”) However, it is possible to specify a service name and
option file as arguments, as described in the following discussion.This is especially useful
when you install several Windows servers as services. (See Section 12.10,“Running Multi-
ple Servers.”)

62312.2 Arranging for MySQL Server Startup and Shutdown

When you install a MySQL server as a Windows service, the default service name is
MySQL. (Service names are not case sensitive.) It’s possible to specify a service name explic-
itly following the --install option:

C:\> C:\mysql\bin\mysqld --install service_name

Windows services each must have a unique name, so one reason for choosing a service
name other than MySQL is that it enables you to run multiple MySQL servers as services.
The service name affects which option groups the server reads from option files when it
starts:

n With no service_name argument or a service name of MySQL, the server uses the
default service name (MySQL) and reads the [mysqld] group from the standard
option files.

n With a service_name argument different from MySQL, the server uses that name as
the service name and reads the [mysqld] and [service_name] groups from the
standard option files.

If you specify a service name, you can also specify a --defaults-file option as the
final option on the command line when you install a server:

C:\> C:\mysql\bin\mysqld --install service_name --defaults-file=file_name

This gives you an alternative means of providing server-specific options.The name of
the file is remembered and used by the server whenever it starts, and it reads options only
from the [mysqld] group of that file.This syntax requires a service name to be given, so
to use the default service name, specify a service_name value of MySQL.

A single option other than --defaults-file is allowed following the service name,
but --defaults-file is more flexible because you can put as many options as you need
in the file.

After the server has been installed as a service, you control it using the service name.
This can be done from the command line, or from the Windows Services Manager if you
prefer a graphical interface. Depending on your version of Windows, the Services Man-
ager can be found as a Services item in the Windows Control Panel or in the Administra-
tive Tools item in the Control Panel.

To start or stop the service from the command line, use the following commands:

C:\> net start MySQL

C:\> net stop MySQL

If you use the Services Manager, it presents a window that displays a list of the services
it knows about, along with additional information such as whether each service is running
and whether it is automatic or manual.To start or stop the MySQL server, select its entry
in the services list and then choose the appropriate button or menu item.

You can also stop the server from the command line with mysqladmin shutdown.

624 Chapter 12 General MySQL Administration

Note
Although you can control services using either the Services Manager or commands at the
command prompt, you should avoid interactions between the two approaches. Make sure to
close the Services Manager whenever you invoke service-related commands from the
prompt.

To remove the MySQL server from the list of services, first stop it if it is running, and
then issue this command:

C:\> mysqld --remove

The command removes the MySQL service having the default service name of MySQL.
To indicate explicitly which service to remove, specify its name following the --remove
option:

C:\> mysqld --remove service_name

12.2.3 Specifying Server Startup Options
On any platform, there are two primary methods for specifying startup options when you
invoke the server:

n List the options on the command line. In this case, it’s possible to use either the long
or short forms of any option for which both forms are available. For example, you
can use either --user=mysql or -u mysql.

n List the options in an option file. Options specified this way are given one per line.
Only the long option form can be used, and it’s written without the leading dashes:

[mysqld]

user=mysql

See Section F.1.3,“Option Files,” for a general discussion of the format and syntax of
option files, and the locations in which the server looks for them.

The two option-specification methods are not mutually exclusive.The server looks for
options both in option files and on the command line, with options on the command line
taking precedence.

It’s generally easiest to use an option file because options specified that way take effect
each time the server starts, whatever startup method you use. Listing options on the com-
mand line works only if you start the server manually or by using mysqld_safe. It does
not work for mysql.server, which is intended to support only the start and stop argu-
ments on the command line.Also, with limited exceptions, you cannot specify startup
options on the command line if you use --install, --install-manual, or --remove to
install or remove a Windows server as a service. (Section 12.2.2.2,“Running the Server as
a Windows Service,” discusses the exceptions.)

The locations in which the server looks for option files depends on your version of
MySQL (see Section F.1.3,“Option Files”). However, /etc/my.cnf on Unix and

62512.2 Arranging for MySQL Server Startup and Shutdown

C:\my.ini on Windows work for any version from MySQL 5.0 and up. If the file you
want to use doesn’t exist, create it as a plain text file.

Server startup options typically are placed in the [mysqld] option group. For example,
to indicate that you want the server to run as mysql and to use a base directory location
of /usr/local/mysql, you can put the following group of lines in the option file:

[mysqld]

user=mysql

basedir=/usr/local/mysql

That is equivalent to launching the server as follows with the options on the com-
mand line:

% mysqld --user=mysql --basedir=/usr/local/mysql

Table 12.1 shows the standard list of option groups used by servers and the server
startup programs.The line for mysqld also applies to servers with variant names such as
mysqld-debug on Windows.

The [mysqld-X.Y] notation for mysqld indicates that servers read the release series-
specific group. MySQL 5.0 servers read [mysqld-5.0], MySQL 5.1 servers read [mysqld-
5.1], and so on.

mysqld_safe reads the [safe_mysqld] group for compatibility reasons; mysqld_safe
was known as safe_mysqld before MySQL 4.0.

mysql.server reads option files only to look for basedir, datadir, and pid-file op-
tion values.

The line for libmysqld refers to the embedded server library that can be linked into
programs to produce MySQL-based applications that do not require a separate standalone
server. (Chapter 7,“Writing MySQL Programs Using C,” describes how to write appli-
cations that use the embedded server.) The [appname_server] notation indicates the
application-specific option group to be read by an application named appname that in-
cludes the embedded server. (This is only a suggested convention. It must be implemented
by the application itself.)

On Windows, if you install a MySQL server as a Windows service and do not use the
default service name, that affects the option groups that the server reads. For details, see
Section 12.2.2.2,“Running the Server as a Windows Service.”

Table 12.1 Option Groups Used by Server Programs

Program Option Groups Used By Program

mysqld [mysqld], [server], [mysqld-X.Y]

mysqld_safe [mysqld], [server], [mysqld_safe], [safe_mysqld]

mysql.server [mysqld], [server], [mysql_server], [mysql.server]

libmysqld [server], [embedded], [appname_server]

626 Chapter 12 General MySQL Administration

When you place options in a group, choose the group that will be used in the context
or contexts that you want.The [server] group can be used for options that apply to any
server, whether standalone or embedded.The [mysqld] or [embedded] groups can be
used for options that apply only to standalone servers or to embedded servers. Similarly,
the [mysqld_safe] or [mysql.server] groups enable you to specify options that apply
only to one startup script or the other.

If you launch the server by using the mysqld_safe or mysql.server script, another
way to specify options is to edit the script to pass those options directly to the server.This is
a last resort because it has a significant disadvantage: Each time you upgrade MySQL, your
modified script gets wiped out with the new version and you must redo your changes.

12.2.4 Stopping the Server
To stop the server manually, use mysqladmin:

% mysqladmin -p -u root shutdown

This works for both Unix andWindows. If you installed the server as a service under
Windows, it’s also possible to use the graphical interface offered by the Services Manager to
select and stop the server, or to stop the server manually from the command line like this:

C:\> net stop MySQL

If you have set up the server to start automatically when your system boots, you
shouldn’t need to do anything special to stop it automatically at system shutdown time.
BSD Unix systems normally shut down processes by sending a TERM signal; they respond
to the signal appropriately (or are killed unceremoniously if they fail to do so). mysqld re-
sponds by terminating when it receives this signal.

For System V-style Unix systems that start the server with mysql.server, the shut-
down process invokes that script with an argument of stop to tell the server to shut
down.You can also invoke the script yourself to stop the server manually. For example, if
you’ve installed the mysql.server script as /etc/init.d/mysql, you can invoke it as fol-
lows (you’ll need to be root to do this):

/etc/init.d/mysql stop

If you run the MySQL server as a Windows service, the service manager automatically
tells the server to stop when Windows shuts down. If you do not run the server as a serv-
ice, you should stop the server manually with mysqladmin shutdown or net stop MySQL
at the command line before shutting down Windows.

12.2.5 Regaining Control of the Server When You Cannot
Connect to It
Under certain circumstances you might need to restart the server manually if you find that
you no longer can connect to it.This presents something of a conundrum, because typi-
cally you stop the server by connecting to it so that you can tell it to shut down (for ex-
ample, by executing a mysqladmin shutdown command). How can this situation arise?

62712.2 Arranging for MySQL Server Startup and Shutdown

First, the MySQL root password might have gotten set to a value that you don’t know.
This can happen when you change the password—for example, if you accidentally type an
invisible control character when you enter the new password value. Or you may simply
have forgotten the password.

Second, under Unix, connections to localhost by default are made through a Unix
domain socket file such as /tmp/mysql.sock. If the socket file gets removed, local clients
won’t be able to use it to connect.This might happen if your system runs a cron job that
removes temporary files in the /tmp directory now and then.

If the reason you can’t connect to the server is that the Unix socket file has been re-
moved, you can get it back simply by restarting the server. (The server will re-create the
socket file when it comes back up.) The trick here is that because the socket file is gone,
you can’t use it to establish a connection for telling the server to stop.You must establish
a TCP/IP connection instead.To do this, connect to the local server by using the
--protocol=tcp option or by specifying a host value of 127.0.0.1 rather than
localhost:

% mysqladmin -p -u root --protocol=tcp shutdown

% mysqladmin -p -u root -h 127.0.0.1 shutdown

127.0.0.1 is an IP number (it refers to the local host’s loopback interface), so it explic-
itly forces a TCP/IP connection to be used rather than a socket connection.

If it is the case that the Unix socket file is being removed by a cron job, the missing-
socket problem will recur until you change the cron job or use a socket file located some-
where else.You can specify a different socket by naming it in a global option file. For
example, if the MySQL base directory is /usr/local/mysql, you can use a socket file in
that directory by adding these lines to /etc/my.cnf:

[mysqld]

socket=/usr/local/mysql/mysql.sock

[client]

socket=/usr/local/mysql/mysql.sock

Restart the server after making the change so that it creates the socket file in the new
location. It’s necessary to specify the Unix socket file pathname both for the server and for
client programs so that they all use the same file. If you set the pathname only for the server,
client programs still will expect to find the file at the old location.A limitation of this
method is that it works only for clients that read the option file; some third-party programs
might not. If you recompile MySQL from source, you can reconfigure the distribution to
use a different pathname by default both for the server and clients.This automatically affects
third-party programs that use the client library, unless they have been statically linked with
the old library. In that case, you must recompile them to use the new library.

If you can’t connect because you can’t remember or don’t know the root password,
you need to regain control of the server so that you can set the password again.To do this,
use the following procedure:

628 Chapter 12 General MySQL Administration

1. Stop the server. Under Unix, if you can log in as root on the server host, you can
terminate the server using the kill command. Find out the server’s process ID by
looking in the server’s PID file (which is usually located in the data directory), or by
using the ps command.Then try telling the server process to shut down normally
by sending it a TERM signal:

kill -TERM PID

That way, tables and logs will be flushed properly. If the server is jammed and
unresponsive to a normal termination signal, you can use kill -9 to forcibly
terminate it.

kill -9 PID

kill -9 is a last resort because there might be unflushed modifications in memory,
and you risk leaving tables in an inconsistent state.

Under Linux, ps might show several mysqld “processes.”These are really threads of
the same process, so you can kill any of them to kill them all.

If you start the server using mysqld_safe, it will be monitoring the server for ab-
normal termination. If you kill the server with kill -9, mysqld_safe will immedi-
ately restart it.To avoid this, determine the PID of the mysqld_safe process and kill
it first before killing mysqld.

If you run the server as a service under Windows, you can stop it normally without
knowing any passwords by using the Services Manager or by issuing this command:

C:\> net stop MySQL

To forcibly terminate the server on Windows, use the Task Manager (Alt-Control-
Del). Like kill -9 on Unix, this is a last resort.

2. Restart the server with the --skip-grant-tables option to disable use of the
grant tables for verifying connections.That enables you to connect with no pass-
word and with all privileges. However, it also leaves your server wide open so that
other people can connect the same way, so issue a FLUSH PRIVILEGES statement as
soon as you connect:

% mysql

mysql> FLUSH PRIVILEGES;

The FLUSH statement tells the server to reread the grant tables, causing it to start us-
ing them again for access control.You will remain connected, but the server will re-
quire any subsequent connection attempts by other clients to be validated with the
grant tables as usual.The FLUSH statement also re-enables the SET PASSWORD state-
ment, which is disabled when the server is not using the grant tables.After reloading

62912.3 Controlling How the Server Listens for Connections

the tables, you can change the root password with SET PASSWORD or UPDATE, as
shown in Section 12.1,“Securing a New MySQL Installation.” For example:

mysql> SET PASSWORD FOR 'root'@'localhost' = PASSWORD('rootpass');

Be sure to change the password for all root accounts if there is more than one.

3. After changing the root password, shut down the server and restart it using your
normal startup procedure.You now should be able to connect to it as root using the
new password.

Should you be forced to terminate the server with kill -9 under Unix or with the
Task Manager under Windows, the abrupt nature of the shutdown gives the server no
chance to flush any unsaved changes to disk.To help deal with problems that may occur
due to this kind of shutdown, it’s a good idea to enable auto-recovery in the server. For
details, see Section 14.2.1,“Using the Server’s Auto-Recovery Capabilities.”

12.3 Controlling How the Server Listens for
Connections
The MySQL server listens for connections on several network interfaces, which you can
control as follows:

n On all platforms, the server listens on a network port for TCP/IP connections, un-
less started with the --skip-networking option.The default port number is 3306;
to specify a different number, use the --port option. If the server host has more
than one IP number, you can specify which one the server should use when listen-
ing for connections by starting it with a --bind-address option.

n Under Unix, the server listens on a Unix domain socket file for connections
from local clients that connect to the special hostname localhost or that specify
the --protocol=socket option. Use of the socket file by the server cannot be
turned off.The default socket file usually is /tmp/mysql.sock, although operating
system distributions that include MySQL often use a different location.To specify a
socket file pathname explicitly, use the --socket option.

n For Windows servers that include support for named pipes, named-pipe connections
are disabled by default.To enable this capability, start the server with the --enable-
named-pipe option.This enables local clients to connect through the named pipe
by specifying the --protocol=pipe option or by connecting to the special host-
name “.” (period). By default, the pipe name is MySQL (not case sensitive).To specify
a different name, use the --socket option.

n MySQL supports shared-memory connections on Windows, but this capability is
disabled by default.To enable it, start the server with the --shared-memory option.
When enabled, it becomes the default connection protocol for local clients. Local
clients also can use the --protocol=memory option to specify use of shared memory

630 Chapter 12 General MySQL Administration

explicitly. By default, the shared-memory name is MYSQL (case sensitive).To specify a
different name, use the --shared-memory-base-name option.

A client that wants to connect to a local server using TCP/IP even when some other
protocol might be used by default should specify 127.0.0.1 as the server hostname.That’s
the address of the TCP/IP loopback interface.Another way to force a TCP/IP connection
is to use the --protocol=tcp option.

If you run a single server, it’s typical to let the server use its default network settings. If
you run more than one server, it’s necessary to make sure each one uses unique network-
ing parameters. See Section 12.10,“Running Multiple Servers,” for more information.

The preceding discussion applies only to standalone servers that operate in a
client/server environment. It does not apply to the embedded server, which communi-
cates with the application program that it’s linked into by means of an internal channel
and does not listen to any external network interfaces at all.

12.4 Managing MySQL User Accounts
A MySQL administrator should know how to set up MySQL user accounts by specifying
which users can connect to the server, where they can connect from, and what they can
do while connected.This information is stored in the grant tables in the mysql database,
which are manipulated primarily by means of these account-management SQL
statements:

n CREATE USER, DROP USER, and RENAME USER create, remove, and rename MySQL
accounts.

n GRANT specifies account privileges (and creates accounts if they do not exist).
n REVOKE removes privileges from existing MySQL accounts.
n SET PASSWORD assigns passwords to existing accounts.
n SHOW GRANTS displays the privileges held by existing accounts.

The account-management statements affect several grant tables in the mysql database
(Table 12.2).

Table 12.2 MySQL Grant Tables

Grant Table Contents

user Users who can connect to the server and their global privileges

db Database privileges

tables_priv Table privileges

columns_priv Column privileges

procs_priv Stored-routine privileges

63112.4 Managing MySQL User Accounts

There is a another grant table named host, but it is not affected by account-
management statements, is obsolete, and is not discussed here.

When you issue a CREATE USER statement, you specify an account name consisting of a
username and hostname, and optionally assign a password to the account.The server cre-
ates a row for the account in the user table.This is also true for GRANT if the account does
not already exist. For GRANT, if the statement specifies any global privileges (administrative
privileges or privileges that apply to all databases), those are recorded in the user table,
too. If GRANT specifies privileges that are specific to a given database, table, table column, or
stored routine, they are recorded in the db, tables_priv, columns_priv, or procs_priv
tables. REVOKE removes privileges from the grant tables, and DROP USER removes all rows
associated with the account from the tables.

It is also possible to manipulate the contents of the grant tables directly by issuing SQL
statements like INSERT and UPDATE. However, account-management statements such as
GRANT and REVOKE make it easier to manage user accounts by acting as a front end to the
grant tables.They are generally more convenient to work with conceptually because you
describe the access modifications that you want to perform and the server maps your re-
quests onto the proper grant table changes automatically. Nevertheless, although it’s easier
to use GRANT and REVOKE than to modify the grant tables directly, I advise that you supple-
ment the material in this chapter by reading Chapter 13. That chapter discusses the grant
tables in more detail, to help you understand how they work “underneath” the level of the
account-management statements.

The following sections describe how to set up and remove MySQL user accounts, how
to grant and revoke privileges, and how to change passwords or reset lost passwords.

Note
Some versions of MySQL introduce new privileges, which changes the structure of the grant
tables. The first time you install MySQL on a machine, the installation procedure creates the
grant tables with the structure that is current for the version that you install. If you upgrade
MySQL to a newer version, you should run mysql_upgrade to update the grant tables with
any modifications that have been made since your current version.

mysql_upgrade needs to connect to the local server as the MySQL root user, so invoke it
with the appropriate password:

% mysql_upgrade --password=rootpass

12.4.1 High-Level MySQL Account Management
Three statements perform high-level operations on MySQL accounts:

n CREATE USER creates a new account and optionally assigns a password:

CREATE USER account [IDENTIFIED BY 'password'];

CREATE USER grants no privileges; that is done with GRANT.
n DROP USER removes an existing account and any privileges associated with it:

DROP USER account;

632 Chapter 12 General MySQL Administration

DROP USER does not drop any databases or objects within databases that were acces-
sible to the dropped account.

n RENAME USER changes the name of an existing account:

RENAME USER from_account TO to_account;

All three statements can be used if you have the global CREATE USER privilege. Other-
wise, you must have the INSERT, DELETE, or UPDATE privilege for the mysql database to
use CREATE USER, DROP USER, or RENAME USER, respectively.

To set up a new account, it’s generally possible to figure out the kind of CREATE USER
statement to issue by asking these questions:

n What is the user’s name?
n From which host or hosts should the user be able to connect?
n What is the user’s password?

The first two questions determine the account value to use in the statement, and the
third determines the password for the IDENTIFIED BY clause.The rules for the account
value are given in Section 12.4.1.1,“Specifying Account Names.” For IDENTIFIED BY,
the password value should be the literal text of the password. CREATE USER will encode
the password for you; don’t use the PASSWORD() function as you do with the SET PASSWORD
statement. If you specify no IDENTIFIED BY clause, the account is created with no
password, which is insecure and should be avoided.

12.4.1.1 Specifying Account Names
The account value in account-management statements such as CREATE USER consists of a
username and hostname in 'user_name'@'host_name' format: In MySQL, you specify
not only who can connect but from where.This enables you to set up separate accounts
for two users who have the same name but that connect from different locations. MySQL
lets you distinguish between them and assign privileges to each one independent of the
other.The server stores the user_name and host_name values in the User and Host

columns of the user table row for the account, and in any other grant table rows associ-
ated with the account.

Your username in MySQL is just a name that you use to identify yourself when you
connect to the server.The name has no necessary connection to your Unix or Windows
login name. By default, the MySQL username that client programs use on Unix is your
login name if you don’t specify a name explicitly, but that’s just a convention.There also is
nothing special about the name root that is used for the MySQL superuser that can do
anything.You could just as well change this name to superduper in the grant tables and
then connect as superduper to perform operations that require superuser privileges.

By choosing an account value appropriately, you can enable a user to connect from as
specific or broad a set of hosts as you like.At one extreme, you can limit access to a single
host if you know users will be connecting only from that host:

63312.4 Managing MySQL User Accounts

CREATE USER 'boris'@'localhost' IDENTIFIED BY 'frost';

CREATE USER 'fred'@'ares.mars.net' IDENTIFIED BY 'steam';

Keep in mind that the hostname part is the host from which the client will be connect-
ing. It is not the server host to which the client will connect (unless they are the same).

Enabling a user to connect only from a single host is the strictest form of access you
can allow.At the other extreme, you might have a user who travels a lot and needs to be
able to connect from hosts all over the world. If the user’s name is max, you can enable
him to connect from anywhere like this:

CREATE USER 'max'@'%' IDENTIFIED BY 'mist';

The ‘%’ character functions as a wildcard with the same meaning as in a LIKE pattern
match.Thus, as a hostname specifier, % means “any host.”This is the easiest way to set up a
user, but it’s also the least secure. (Using it also may result in occasional head scratching on
your part, for reasons described in Section 13.2.3,“A Privilege Puzzle.”)

The other LIKE wildcard character (‘_’) can be used in host values to match any single
character.

To specify a literal ‘%’ or ‘_’ wildcard character, precede it by a backslash.
To take a middle ground, you can enable a user to connect from a limited set of hosts.

For example, to enable mary to connect from any host in the snake.net domain, use a
host specifier of %.snake.net:

CREATE USER 'mary'@'%.snake.net' IDENTIFIED BY 'fog';

The host part of the account value can be given using an IP number rather than a
hostname if you like.You can specify a literal IP number, a number that contains pattern
characters, or an IP number with a netmask that indicates which bits to use for the net-
work number:

CREATE USER 'joe'@'192.168.128.3' IDENTIFIED BY 'water';

CREATE USER 'ardis'@'192.168.128.%' IDENTIFIED BY 'snow';

CREATE USER 'rex'@'192.168.128.0/255.255.255.0' IDENTIFIED BY 'ice';

The first of these statements indicates a specific single address, 192.168.128.3, from
which the user can connect.The second specifies an IP pattern for the 192.168.128
Class C subnet. In the third statement, 192.168.128.0/255.255.255.0 specifies a net-
mask that has the first 24 bits turned on. It matches any host with 192.168.128 in the
first 24 bits of its IP number. Netmask values must be 255.0.0.0, 255.255.0.0,
255.255.255.0, or 255.255.255.255.

Using a hostname of localhost in an account name enables a user to connect to the
server from the local host in a number of ways:

n On Unix, the user can connect by specifying a host value of localhost or
127.0.0.1.The localhost connection is made using the Unix socket file.
127.0.0.1 causes a TCP/IP connection to be made using the local host’s loopback
IP interface.

634 Chapter 12 General MySQL Administration

n On Windows, the user can connect by specifying a host value of localhost or
127.0.0.1. Both of these connections are made using TCP/IP, except that if the
server supports shared-memory connections, a connection to localhost is made
using shared memory by default. If the server supports named-pipe connections,
the user can connect through the pipe by specifying a hostname of “.” (period).

If the username or hostname part of an account value can be used as an unquoted
identifier, you need not quote it. If it contains any special characters such as ‘-’ or ‘%’, you
must quote it. For example, in boris@localhost, both parts are legal without quotes.
However, it is always safe to use quotes, and the examples in this book do so as a rule.
Usernames and hostnames can be quoted either with string quoting characters or identi-
fier quoting characters. Quote the username and hostname separately: Use
'boris'@'localhost', not 'boris@localhost'.

If you give no hostname part at all in an account specifier, it’s the same as using a host
part of %.Thus, 'max' and 'max'@'%' are equivalent account values.This means that if
you intend to specify an account of 'boris'@'localhost' but mistakenly write
'boris@localhost' instead, MySQL will accept it as legal.What happens is that MySQL
interprets 'boris@localhost' as containing only a user part and adds the default host
part of % to it, resulting in an effective account name of 'boris@localhost'@'%'.To
avoid this, remember to quote the user and host parts of account names separately.

12.4.1.2 Specifying the Local Hostname in Account Names
It’s common to have problems connecting from the server host if you use the server’s
hostname rather than localhost.This can occur due to a mismatch between the way the
name is specified in the grant tables and the way your DNS name resolver reports the
name to programs. Suppose that the server host’s fully qualified name is
cobra.snake.net. If the resolver reports an unqualified name, such as cobra, but the
grant tables contain rows with the fully qualified name (or vice versa), this mismatch will
occur.

To determine if this is happening on your system, try connecting to the local server
using a -h option that specifies the name of your host:

% mysql -h cobra.snake.net

Then look in the server’s general log file. How does the server write the hostname
there when it reports the connection attempt? Is the name in unqualified or fully quali-
fied form? That tells you how you’ll need to specify the hostname part when you use it in
account names.

12.4.2 Granting Privileges
To give access privileges to an account, use the GRANT statement, which looks like this:

GRANT privileges (columns)

ON what

TO account [IDENTIFIED BY 'password']

63512.4 Managing MySQL User Accounts

[REQUIRE encryption requirements]

[WITH grant or resource management options];

If the named account exists, GRANT modifies its privileges. If the account does not ex-
ist, GRANT creates it with the given privileges.To avoid the possibility of GRANT creating a
new account that has no password (and thus is insecure), enable the
NO_AUTO_CREATE_USER SQL mode.This mode is available as of MySQL 5.0.2 and pre-
vents GRANT from creating the account unless an IDENTIFIED BY clause is present.

Several of these clauses are optional and need not be specified at all. In general, you’ll
most commonly use the following parts:

n privileges indicates the privileges to assign to the account. For example, the
SELECT privilege enables a user to issue SELECT statements and the SHUTDOWN privi-
lege enables the user to shut down the server. Multiple privileges can be named,
separated by commas.

n columns indicates the columns to which a privilege applies, separated by commas
and listed within parentheses.This is optional, and you use it only to set up
column-specific privileges.The column list must follow the name of each privilege
to which it applies.

n what indicates the level at which the privileges apply.The most powerful level is the
global level, for which any given privilege applies to all databases and all tables.
Global privileges can be thought of as superuser privileges. Privileges also can be
made database-specific, table-specific, column-specific (if you specify a columns
clause), or routine-specific.

n account indicates which account is being granted the privileges.The account for-
mat is 'user_name'@'host_name', as described in Section 12.4.1.1,“Specifying
Account Names.”

n password indicates the password to assign to the account.This is optional and is
unnecessary if the account already exists and has a password. If you include the
IDENTIFIED BY clause for an existing account, the new password replaces the cur-
rent one.As with CREATE USER, when you do use IDENTIFIED BY, the password
value should be the literal text of the password. GRANT will encode the password for
you; don’t use the PASSWORD() function.

The REQUIRE and WITH clauses are optional. REQUIRE is used for setting up accounts
that must connect over secure connections using SSL. WITH is used to grant the GRANT
OPTION privilege that enables the account to give its own privileges to other users. WITH
also is used to specify resource management options that enable you to place limits on
how many connections or statements an account can use per hour.These options help
you prevent the account from hogging the server.

636 Chapter 12 General MySQL Administration

To specify what an account can do, it’s generally possible to figure out the kind of
GRANT statement to issue by asking these questions:

n What type of access should the account be given? That is, what level of privileges
should the user have, and what should they apply to?

n Are secure connections required?
n Should the user be allowed to administer privileges?
n Should the user’s resource consumption be limited?

The following sections show how to answer these questions and provide examples that
illustrate how to use the various clauses of the GRANT statement.

12.4.2.1 Defining the Privileges an Account Has
You can grant several types of privileges.These are summarized in Table 12.3,Table 12.4,
and Table 12.5, and are described in more detail in Chapter 13,“Access Control and
Security.”That chapter discusses the privileges in terms of both their purpose and their
relationship to the underlying grant tables.

Table 12.3 Administrative Privileges

Privilege Name Operation Enabled by Privilege

CREATE USER Use high-level account-management statements

FILE Read and write files on the server host

GRANT OPTION Grant the account’s privileges to other accounts

PROCESS View information about the threads executing within the server

RELOAD Reload the grant tables or flush the logs or caches

REPLICATION

CLIENT

Ask about master and slave server locations

REPLICATION

SLAVE

Act as a replication slave server

SHOW DATABASES See all database names with SHOW DATABASES

SHUTDOWN Shut down the server

SUPER Kill threads and perform other supervisory operations

Table 12.4 Object Privileges

Privilege Name Operation Enabled by Privilege

ALTER Alter tables and indexes

ALTER ROUTINE Alter or drop stored functions and procedures

CREATE Create databases and tables

CREATE ROUTINE Create stored functions and procedures

63712.4 Managing MySQL User Accounts

The privileges shown in Table 12.3 are administrative privileges. Normally, you grant
them relatively sparingly because they enable users to affect the operation of the server.
(The SHUTDOWN privilege is not one you should hand out on an everyday basis, for exam-
ple.) The privileges in Table 12.4 apply to databases, tables, columns, and stored routines.
They control access to data managed by the server.The privilege specifiers in Table 12.5
are special. ALL means “all privileges” (except that it does not include the GRANT OPTION
privilege). USAGE means “no privileges.” That is,“create the account, but don’t grant it any
privileges.” USAGE also can be used to modify non-privilege-related aspects of an existing
account without changing its current privileges. (See Section 12.4.2.2,“Using the ‘No
Privileges’ USAGE Privilege.)

CREATE VIEW and SHOW VIEW were introduced in MySQL 5.0.1. ALTER ROUTINE,
CREATE ROUTINE, and CREATE USER were introduced in MySQL 5.0.3, which is also the
version in which the EXECUTE privilege became operational. EVENT and TRIGGER were
introduced in MySQL 5.1.6. (Before 5.1.6, SUPER rather than TRIGGER is required to
manipulate triggers.)

Table 12.4 Object Privileges

Privilege Name Operation Enabled by Privilege

CREATE TEMPORARY TABLES Create temporary tables using the TEMPORARY keyword

CREATE VIEW Create views

DELETE Delete rows from tables

DROP Remove databases, tables, and other objects

EVENT Create, drop, or alter events for the event scheduler

EXECUTE Execute stored functions and procedures

INDEX Create or drop indexes

INSERT Insert new rows into tables

LOCK TABLES Explicitly lock tables with LOCK TABLES statements

REFERENCES Unused (reserved for future use)

SELECT Retrieve rows from tables

SHOW VIEW See view definitions with SHOW CREATE VIEW

TRIGGER Create or drop triggers

UPDATE Modify table rows

Table 12.5 Miscellaneous Privileges

Privilege Name Operation Enabled by Privilege

ALL [PRIVILEGES] All operations (except GRANT)

USAGE A special “no privileges” privilege

638 Chapter 12 General MySQL Administration

Table 12.6 Privilege-Level Specifiers

Privilege Specifier Level at Which Privileges Apply

ON *.* Global privileges: all databases, all objects in databases

ON * Global privileges if no default database has been selected; data-
base privileges for the default database otherwise

ON db_name.* Database privileges: all objects in the named database

ON db_name.tbl_name Table privileges: all columns in the named table

ON tbl_name Table privileges: all columns in the named table in the default
database

ON

db_name.routine_name

Privileges for the named routine in the named database

To grant a privilege, you must have that privilege yourself, and you must have the
GRANT OPTION privilege.

You can grant privileges at different levels, from global to very specific.This is con-
trolled by the ON clause specifier, as shown in Table 12.6.

As of MySQL 5.0.6, to specify explicitly the type of object to which the privileges
apply if there is an ambiguity, you can include a TABLE, FUNCTION, or PROCEDURE keyword
(for example, ON TABLE mydb.mytbl or ON FUNCTION mydb.myfunc).

The USAGE privilege should be specified only at the global level (that is, with ON *.*).
For the table-level specifiers, you can specify a (columns) clause following a privilege

name to grant that privilege at the column level.The syntax for this is shown in a later
example.

The ALL privilege specifier grants all privileges that are available at a given level. For
example, at the global level, it grants all privileges.At the table level, it grants only privi-
leges that apply to tables. ALL can be used only when granting global, database, table, or
routine privileges. For column privileges, you must name each privilege that you want
to grant.

Global privileges are the most powerful because they apply to any database.To create a
superuser account that can do anything, including being able to grant privileges to other
users, issue these statements:

CREATE USER 'ethel'@'localhost' IDENTIFIED BY 'coffee';

GRANT ALL ON *.* TO 'ethel'@'localhost' WITH GRANT OPTION;

The ON *.* clause means “all databases and all objects in them.”As a safety precaution,
the account created in the example is allowed to connect only from the local host. Limit-
ing the hosts from which a superuser can connect is a good idea because it restricts the
set of hosts from which password-cracking attempts can be mounted.

63912.4 Managing MySQL User Accounts

The privileges in Table 12.3 are administrative in nature and, except for GRANT, can be
granted only using the ON *.* global-privilege specifier. For example, the RELOAD privi-
lege enables use of FLUSH, so the following statements set up a user named flush that can
do nothing but issue FLUSH statements:

CREATE USER 'flush'@'localhost' IDENTIFIED BY 'flushpass';

GRANT RELOAD ON *.* TO 'flush'@'localhost';

This type of MySQL account can be useful for writing administrative scripts that per-
form operations such as flushing the logs during log file maintenance (see Section 12.5.7,
“Log Management”).

Database-level privileges apply to a particular database and all objects in it.To grant
privileges at this level, use an ON db_name.* clause:

CREATE USER 'bill'@'racer.snake.net' IDENTIFIED BY 'rock';

GRANT ALL ON sampdb.* TO 'bill'@'racer.snake.net';

CREATE USER 'reader'@'%' IDENTIFIED BY 'dirt';

GRANT SELECT ON menagerie.* TO 'reader'@'%';

The first set of statements grants bill full privileges for any table in the sampdb data-
base when he connects from racer.snake.net.The second creates a restricted-access
user named reader that can connect from any host to access any table in the menagerie
database, but only with SELECT statements.That is, reader is a “read-only” user.

You can list multiple privileges to be granted, separated by commas. For example, to
give a user the ability to read and modify the contents of existing tables in the sampdb
database, but not to create new tables or drop tables, do not grant the ALL privilege for
the database. Instead, name only the specific privileges to be enabled:

CREATE USER 'jennie'@'%' IDENTIFIED BY 'boron';

GRANT SELECT,INSERT,DELETE,UPDATE ON sampdb.* TO 'jennie'@'%';

For more fine-grained access control below the database level, you can grant privileges
for individual tables, or even for individual columns in tables. Column-specific privileges
are useful when there are parts of a table you want to hide from a user, or when you want
a user to be able to modify only particular columns. Suppose that someone volunteers to
help you out at the Historical League as an office assistant.That’s good news, but you
decide to begin by granting your new assistant read-only access to the member table that
contains membership information, plus a column-specific UPDATE privilege on the
expiration and address-related columns of that table.That way, your assistant will have
write access only for the rather modest tasks of updating expiration dates as people renew
their memberships and making address changes.The statements needed to set up this
MySQL account are as follows:

CREATE USER 'assistant'@'localhost' IDENTIFIED BY 'officehelp';

GRANT SELECT, UPDATE (expiration,street,city,state,zip)

ON sampdb.member TO 'assistant'@'localhost';

640 Chapter 12 General MySQL Administration

The GRANT statement grants read access to the entire member table (because no column
list follows SELECT), and grants update access only for the columns named in parentheses
following the UPDATE privilege keyword.

To grant privileges at the column level for multiple privileges in a GRANT statement,
the column list in parentheses must follow each privilege name.

If you quote database, table, or column names in a GRANT statement, quote them as
identifiers, not as strings. For example:

GRANT SELECT, UPDATE (`expiration`,`street`,`city`,`state`,`zip`)

ON `sampdb`.`member` TO 'assistant'@'localhost';

Rows in the grant tables do not “follow” database object renaming operations. For ex-
ample, privileges for a given table or column no longer apply if you rename the table or
column.

12.4.2.2 Using the “No Privileges” USAGE Privilege
The special USAGE privilege specifier means “no privileges.”This may not seem very use-
ful at first glance, but it is. It enables you to change characteristics of an account other
than those that pertain to privileges, while leaving the existing privileges alone.To use it,
“grant” the USAGE privilege at the global level, specify the account name, and provide the
new non-privilege characteristics of the account. For example, if you want to change an
account password, require that the user connect using SSL, or impose a connection limit
on an account without affecting the privileges held by the account, use statements like
these:

GRANT USAGE ON *.* TO account IDENTIFIED BY 'new_password';

GRANT USAGE ON *.* TO account REQUIRE SSL;

GRANT USAGE ON *.* TO account WITH MAX_CONNECTIONS_PER_HOUR 10;

12.4.2.3 Requiring an Account to Use Secure Connections
MySQL enables clients to establish secure connections using the SSL (Secure Sockets
Layer) protocol, which encrypts the data stream between the client and the server so that
it is not sent in the clear. In addition, X509 can be used as a means for the client to pro-
vide identification information over SSL connections. Secure connections provide an
extra measure of protection, at the price of the extra CPU cycles required to perform en-
cryption and decryption.

To specify requirements for secure connections, use a REQUIRE clause.To require only
that a user connect via SSL without being more specific about the type of secure connec-
tion the user must make, use REQUIRE SSL:

CREATE USER 'eladio'@'%.snake.net' IDENTIFIED BY 'flint';

GRANT ALL ON sampdb.* TO 'eladio'@'%.snake.net' REQUIRE SSL;

To be more strict, you can require that the client present a valid X509 certificate:

GRANT ALL ON sampdb.* TO 'eladio'@'%.snake.net' REQUIRE X509;

64112.4 Managing MySQL User Accounts

REQUIRE X509 imposes no constraints on the certificate’s contents other than that it be
valid.To be even more strict, REQUIRE enables you to indicate that the client’s X509 cer-
tificate must have certain characteristics.These characteristics are given with ISSUER or
SUBJECT options in the REQUIRE clause. ISSUER and SUBJECT refer to the certificate issuer
and recipient. For example, the ssl directory of the sampdb distribution includes a client
certificate file, client-cert.pem, that you can use for testing SSL connections.The issuer
and subject values in the certificate can be displayed using the openssl command:

% openssl x509 -issuer -subject -noout -in client-cert.pem

issuer= /C=US/ST=WI/L=Madison/O=sampdb/OU=CA/CN=sampdb

subject= /C=US/ST=WI/L=Madison/O=sampdb/OU=client/CN=sampdb

The following GRANT statement indicates an account for which the client must present
a certificate that matches both of those values:

GRANT ALL ON sampdb.* TO 'eladio'@'%.snake.net'

REQUIRE ISSUER '/C=US/ST=WI/L=Madison/O=sampdb/OU=CA/CN=sampdb'

AND SUBJECT '/C=US/ST=WI/L=Madison/O=sampdb/OU=client/CN=sampdb';

You can also use REQUIRE to indicate that the connection must be encrypted using a
particular cipher type:

GRANT ALL ON sampdb.* TO 'eladio'@'%.snake.net'

REQUIRE CIPHER 'DHE-RSA-AES256-SHA';

To indicate explicitly that secure connections are not required, use REQUIRE NONE.This
is the default when you create a new account, but it can be useful for removing a require-
ment for SSL from an account that currently has it.

Some additional points to be aware of when using a REQUIRE clause:

n Issuing a GRANT statement that requires an account to use secure connections only
sets up a constraint on the account. It doesn’t actually provide the means for a
client program to connect securely with that account. For that to happen, MySQL
must be configured to include SSL support, and you must start the server and
clients in a particular way. Section 13.3,“Setting Up Secure Connections,” describes
how to do this.

n If you specify that connections for an account must use SSL, but SSL is not sup-
ported by either the server or client programs, the account is effectively unusable.

n REQUIRE is used only to indicate whether an account must connect using secure
connections. If the server and client programs are configured with SSL support, any
user is still able to use secure connections, even if not required to do so.

n There is little point in using a REQUIRE clause for accounts that don’t connect to
the server over an external network. Such connections can’t be snooped, so making
them encrypted gains you nothing and incurs increased computational load with-
out benefit.Accounts like this include those that connect to the server only
through a Unix socket file, a named pipe, shared memory, or to the IP number

642 Chapter 12 General MySQL Administration

127.0.0.1 (the host’s loopback interface).These connections use interfaces that are
handled internally to the host and for which no traffic crosses an external network.

12.4.2.4 Enabling an Account to Administer Privileges
You can enable an account to grant its own privileges to other accounts by specifying the
WITH GRANT OPTION clause.To use this clause, you must have the GRANT OPTION privilege
yourself.

One reason to give an account the GRANT OPTION privilege is to enable the owner of a
database to control access to the database: Grant the owner all privileges on the database,
including the GRANT OPTION privilege. For example, if you want alicia to be able to
connect from any host in the big-corp.com domain and administer privileges for all
tables in the sales database, set up the account this way:

CREATE USER 'alicia'@'%.big-corp.com' IDENTIFIED BY 'shale';

GRANT ALL ON sales.* TO 'alicia'@'%.big-corp.com' WITH GRANT OPTION;

In effect, the WITH GRANT OPTION clause enables you to delegate access-granting rights
to another user. But be aware that two users with the GRANT OPTION privilege can grant
each other their own privileges. If you’ve given one user only the SELECT privilege but
another user has GRANT OPTION plus other privileges in addition to SELECT, the second
user can make the first one “stronger.”

Another way to grant the GRANT OPTION privilege is simply to list it in the beginning
part of the GRANT statement:

GRANT GRANT OPTION ON sales.* TO 'alicia'@'%.big-corp.com';

However, a statement such as this one will not work:

GRANT ALL,GRANT OPTION ON sales.* TO 'alicia'@'%.big-corp.com';

In a GRANT statement, ALL can be used only by itself, not in a list that names other
privilege specifiers.

GRANT OPTION applies to all privileges at or below the level at which it is granted, not
to individual privileges. If you give an account the GRANT OPTION privilege at a given
level, the account can grant any privilege that it holds at that level.You cannot specify that
the account can grant some of the privileges that it holds at that level but not others.

12.4.2.5 Limiting an Account’s Resource Consumption
The MySQL grant system enables you to place limits on the number of times per hour
that an account can connect to the server, and the number of statements or updates per
hour the account can issue.To specify these limits, use a WITH clause.The following state-
ment sets up an account 'spike'@'localhost' that has full access to the sampdb data-
base, but can connect only ten times per hour and issue 200 statements per hour (of
which at most 50 can be updates):

CREATE USER 'spike'@'localhost' IDENTIFIED BY 'pyrite';

GRANT ALL ON sampdb.* TO 'spike'@'localhost'

64312.4 Managing MySQL User Accounts

WITH MAX_CONNECTIONS_PER_HOUR 10 MAX_QUERIES_PER_HOUR 200

MAX_UPDATES_PER_HOUR 50;

The default value for each option is zero, which means “no limit.”This means that if
you have placed a resource limit on an account, you can remove the limit by changing
the limit value to zero. For example, to remove the limit on the number of times per hour
that spike can connect, use this statement:

GRANT USAGE ON *.* TO 'spike'@'localhost'

WITH MAX_CONNECTIONS_PER_HOUR 0;

A user cannot subvert these limits by using multiple connections to the server, because
all connections for a given account are counted together.

As of MySQL 5.0.3, a fourth resource limit, MAX_USER_CONNECTIONS, is available to
control the maximum number of simultaneous connections that the account can have.
If the limit is zero (the default), the limit is controlled by the value of the
max_user_connections system variable.A non-zero value limits the account to that
many simultaneous connections.

The order of the resource management options within the WITH clause does not matter.
Any administrative user who has the RELOAD privilege can reset the current counter

values by issuing a FLUSH USER_RESOURCES statement. FLUSH PRIVILEGES does this as
well.After the counters have been reset, accounts that have reached their hourly limits
once again can connect and issue statements.A reset also occurs for an individual account
if you issue a GRANT statement that sets that account’s limits.

12.4.3 Displaying Account Privileges
To see what privileges an account has, use the SHOW GRANTS statement:

SHOW GRANTS FOR 'sampadm'@'localhost';

To see your own privileges, use either of these statements:

SHOW GRANTS;

SHOW GRANTS FOR CURRENT_USER();

12.4.4 Revoking Privileges and Removing Users
To take away some or all of an account’s privileges, use the REVOKE statement.The syntax
for REVOKE is somewhat similar to that for the GRANT statement, except that TO is replaced
by FROM, and there are no IDENTIFIED BY, REQUIRE, or WITH clauses:

REVOKE privileges [(columns)] ON what FROM account;

For example, the following GRANT statement grants all privileges on the sampdb data-
base, and the REVOKE statement removes the account’s privileges for making changes to
existing rows:

GRANT ALL ON sampdb.* TO 'boris'@'localhost';

REVOKE DELETE,UPDATE ON sampdb.* FROM 'boris'@'localhost';

644 Chapter 12 General MySQL Administration

The GRANT OPTION privilege is not included in ALL. If you have granted it, revoke it
by naming it explicitly in the privileges part of a REVOKE statement:

REVOKE GRANT OPTION ON sales.* FROM 'alicia'@'%.big-corp.com';

To revoke a privilege, you must have that privilege yourself, and you must have the
GRANT OPTION privilege.

To revoke all privileges held by an account at all levels, use this statement:

REVOKE ALL PRIVILEGES,GRANT OPTION FROM account;

Notice that there is no ON clause in this syntax. It requires the global CREATE USER
privilege or the UPDATE privilege for the mysql database.

If you revoke all of an account’s privileges at the database, table, column, or routine
level, MySQL removes the corresponding account row from the db, tables_priv,
columns_priv, or procs_priv table. Revoking all of an account’s global privileges sets
the privilege columns to 'N' in its user table row, but does not delete the row.That is,
REVOKE does not delete the account entirely, which means that the user can still connect
to the server.To remove an account completely, use DROP USER instead of REVOKE (see
Section 12.4.1,“High-Level MySQL Account Management”).

Somewhat paradoxically, there are a few revocation operations that are done with
GRANT. For example, if you specify that an account must connect using SSL, there is no
REVOKE syntax for rescinding that requirement. Instead, issue a GRANT statement that grants
the USAGE privilege at the global level (to leave existing privileges unchanged) and in-
clude a REQUIRE NONE clause to indicate that SSL is not required:

GRANT USAGE ON *.* TO account REQUIRE NONE;

Similarly, if you set up resource limits on a user, you don’t remove those limits with
REVOKE. Instead, use GRANT with USAGE to set the limit values to zero (“no limit”):

GRANT USAGE ON *.* TO account

WITH MAX_CONNECTIONS_PER_HOUR 0 MAX_QUERIES_PER_HOUR 0

MAX_UPDATES_PER_HOUR 0;

12.4.5 Changing Passwords or Resetting Lost Passwords
One way to change or reset an account’s password is to use an UPDATE statement that
identifies the User and Host values for the account’s user table row, and then flush the
privileges:

mysql> USE mysql;

mysql> UPDATE user SET Password=PASSWORD('silicon')

-> WHERE User='boris' AND Host='localhost';

mysql> FLUSH PRIVILEGES;

However, it’s easier to use SET PASSWORD because you name the account using the
same format as for other account-management statements, and it’s unnecessary to flush
the privileges explicitly:

64512.5 Maintaining Logs

mysql> SET PASSWORD FOR 'boris'@'localhost' = PASSWORD('silicon');

You can always change your own password with SET PASSWORD, unless you have con-
nected as an anonymous user.To change the password for another account, you must have
the UPDATE privilege for the mysql database.

Another, less common, way to change a password is to use GRANT USAGE with an
IDENTIFIED BY clause, in which case you specify the password literally rather than by us-
ing the PASSWORD() function:

mysql> GRANT USAGE ON *.* TO 'boris'@'localhost' IDENTIFIED BY 'silicon';

If you need to reset the root password because you’ve forgotten it and can’t connect
to the server, you have something of a problem, because normally you must connect as
root to change the root password. If you don’t know the password, you’ll need to force
the server to stop and restart it without grant table validation.The procedure is described
in Section 12.2.5,“Regaining Control of the Server When You Cannot Connect to It.”

12.5 Maintaining Logs
The MySQL server has the capability of producing several kinds of logs.These are useful
for diagnosing problems, improving server performance, enabling replication, and crash
recovery.When the server begins executing, it examines its startup options to see whether
it should perform logging and opens the appropriate logs if so.There are several types of
logs you can tell the server to produce.The following list describes each one briefly, and
the next several sections provide more detail.

n The error log.This log contains a record of server startups and shutdowns, as well
as messages about problems or exceptional conditions.This is the place to look if
the server fails to start.When that happens, the server writes a message to the error
log before it terminates to indicate what problem occurred.

n The general query log.This log contains a record of client connections, SQL
statements received from clients, and various other miscellaneous events. It is useful
for monitoring server activity: who is connecting, from where, and what they are
doing. It’s the most convenient log to use when you want to find out what state-
ments clients are sending to the server, which can be very useful for troubleshoot-
ing or debugging.

n The slow-query log.This log’s purpose is to help you identify statements that
may be in need of being rewritten for better performance.The server maintains a
long_query_time system variable that defines “slow” queries (10 seconds by de-
fault). If a query takes more than that many seconds of real time, it is considered
slow and is recorded in the slow-query log.The slow-query log also can be used to
log queries for which no indexes were used.

n The binary log and the binary log index file.This log consists of one or more
files that contain a record of modifications performed by UPDATE, DELETE, INSERT,

646 Chapter 12 General MySQL Administration

CREATE TABLE, DROP TABLE, GRANT, and so forth. Binary log contents are written as
data modification “events” encoded in binary format.The binary log files are ac-
companied by an index file that lists which binary log files exist on the server.

The binary log has two purposes:
n It can be used in conjunction with your backups to restore tables after a

crash.You can restore databases from your backup files, and then use
mysqlbinlog to convert the binary log contents to text statements.Any
statements that modified the databases subsequent to the backup can be used
as input to mysql to bring databases to the state they were in at the time of
the crash.

n The data modification events stored in the binary log are transmitted to repli-
cation slave servers.

n The relay log and the relay log index file. If the server acts as a replication slave,
it maintains a relay log that contains a record of data-modification events received
from the master that need to be executed. Relay log files have the same format as
binary log files, and there is an index file that lists which relay log files exist on the
slave.

Of all the logs, the general query log is most useful for monitoring the server, so when
you first start using MySQL, I recommend that you enable the general log in addition to
whatever other logs you want.After you have gained some experience with MySQL, you
may want to turn off the general log to reduce your disk space requirements.

By default, each enabled log is written as a file (or sequence of files) in the data direc-
tory. In MySQL 5.1, you have a choice of writing some logs to alternative destinations:
The error log can be sent to syslog, and the general and slow-query logs can be written
to tables in the mysql database.

The server doesn’t create any log unless you ask for it, with these exceptions:

n On Unix, if you start the server with the mysqld_safe script, that script sets up the
error log and tells the server to use it.

n On Windows, the server creates the error log unless you specify the --console op-
tion to send diagnostic information to the console window rather than to a file.

Logs are controlled by specifying startup options for mysqld. Other than the binary
and relay logs, these logs are written in text format and can be viewed directly.To display
the contents of a binary or relay log file, use the mysqlbinlog utility.

To enable server logging, use the options shown in the following table. If the log file-
name is optional (as indicated by square brackets) and you don’t provide a name, the
server uses a default name and writes the log file in the data directory.The server derives
the default name for each of the log files from the name of your server host, represented
by HOSTNAME in the following discussion. If you specify a log name as a relative pathname,
the server interprets it relative to the data directory.A full pathname can be specified
to place the log in some other directory.The server will create any log file that does not

64712.5 Maintaining Logs

exist. However, it will not create the directory in which the file is to be written, so create
that directory if necessary before starting the server.

You can specify options for server logs on the command line for mysqld or
mysqld_safe. However, because you usually specify log options the same way each time
you start the server, it’s most common to list them in an appropriate group of an option
file.Typically, options are listed in the [mysqld] or [mysqld_safe] group, but they need
not always be. Section 12.2.3,“Specifying Server Startup Options,” details the option
groups applicable to the server and to the server startup programs.

There also are some special-purpose logs that are managed by individual storage en-
gines.The ISAM log is used for debugging purposes to record changes to MyISAM ta-
bles; I won’t mention it further.The InnoDB and Falcon engines, if they are enabled,
create logs to be used for auto-recovery after a crash.You cannot control whether these
engines generate their logs, but you can specify where they write them by using the op-
tions in the following table.The default location is the data directory.

Flushing the Logs
Flushing the logs causes the server to close and reopen log files. This can be done by exe-
cuting a mysqladmin flush-logs command or a FLUSH LOGS statement. On Unix, send-
ing a SIGHUP signal to the server also flushes the logs. mysqladmin refresh flushes the
logs, but it does other things as well, such as flushing the table cache, so it’s overkill if you
just want to flush the logs.

Logging Option Log Enabled by Option

--log-error[=file_name] Error log file

--log[=file_name] General log file

--log-slow-queries[=file_name] Slow-query log file

--log-output[=destination] General/slow-query log destination

--log-bin[=file_name] Binary log file

--log-bin-index=file_name Binary log index file

--relay-log[=file_name] Relay log file

--relay-log-index=file_name Relay log index file

Logging Option Purpose

--innodb_log_group_home_dir=dir_name InnoDB log file directory

--falcon-serial-log-dir=dir_name Falcon log file directory

648 Chapter 12 General MySQL Administration

The binary and relay log files are created in numbered sequence. Flushing the logs causes
the server to close the current log file and open a new one with the next number in the se-
quence.

Log flushing can be useful for log expiration or rotation purposes, as discussed in Section
12.5.7, “Log Management.”

Log flushing does not apply to storage engine-specific logs.

12.5.1 The Error Log
The error log is used for recording when the server starts and stops, and for diagnostic and
error information.The amount of information logged can be influenced by using the
--log-warnings option, which takes values from 0 to 2 to select increasing levels of
logging.

If the server is logging errors to a file, FLUSH LOGS causes server to rename the file with
an extension of -old and begin logging to a new file with the original name.

Other error log properties are handled differently on Unix and Windows, as described
in the following discussion.

12.5.1.1 The Error Log on Unix
On Unix, mysqld does not create an error log by default, but instead sends diagnostic out-
put to the console. If you invoke mysqld directly, you can send error output to a file rather
than to the console by specifying a --log-error option, either on the command line or
in the [mysqld] group of an option file.

If you start the server by invoking mysqld_safe, an error log is created by default be-
cause mysqld_safe invokes mysqld with the server’s output redirected to the error log.
The default error log filename is HOSTNAME.err.You can indicate a different error log
name by specifying a --log-error option, either on the command line or in the
[mysqld_safe] or [mysqld] group of an option file. (mysqld_safe looks in [mysqld]
option groups and uses the --log-error option there if it finds one.)

mysqld_safe and mysqld treat the --log-error option somewhat differently, so you
probably should specify the option only to one of them if you use it explicitly:

n For mysqld, you can specify the option without a filename. In this case, it creates the
file using the name HOSTNAME.err in the data directory. For mysqld_safe, you must
specify a filename if you use the option.

n If you specify a relative filename for the --log-error option, mysqld and
mysqld_safe interpret it in different ways. mysqld interprets the name relative to
the data directory, as does mysqld_safe from MySQL 5.1.11 and up. Prior to
5.1.11, mysqld_safe interprets the name relative to the directory from which it is
invoked. Consequently, if you use mysqld_safe but don’t always invoke it from the
same directory (for example, if you execute it manually from different locations on
different occasions), it’s best to specify the error log name as an absolute pathname
to ensure that it is created in the same location.

64912.5 Maintaining Logs

n mysqld adds an extension of .err, as does mysqld_safe from MySQL 5.1.11 and up.
Prior to 5.1.11, mysqld_safe uses the filename as given even if it has no extension.

If the error log file already exists but is not writable to the login account used for run-
ning the server, startup will fail with no output being written to the error log.This can
happen if you start the server with different --user values at different times. It’s best to
use the same account consistently, as discussed in Section 12.2.1.1,“Running the Server
Using an Unprivileged Login Account.”

As of MySQL 5.1.20, you can send error output to syslog rather than to a log file if
you start the server with mysqld_safe. (It is best to use 5.1.21 or higher to avoid prob-
lems in the early implementation of this feature.) To use syslog for diagnostic output,
start mysqld_safe with the --syslog option rather than --log-error.With logging to
syslog, messages from mysqld and mysqld_safe are written with a tag (prefix) of mysqld
and mysqld_safe, respectively. If you specify a --syslog-tag=str option, the tags are
mysqld-str and mysqld_safe-str instead.

If you start the server using the mysql.server script, an error log is always created be-
cause mysql.server invokes mysqld_safe. However, mysql.server doesn’t recognize
any error-logging options on the command line or in its [mysql.server] option group.
You can specify any required options to mysqld_safe or mysqld as described earlier in
this section.

12.5.1.2 The Error Log on Windows
On Windows, the server writes diagnostic information to a file named HOSTNAME.err in
the data directory by default. If you start the server manually with the --console option,
it writes diagnostic output to the console window and does not create an error log. (If the
server runs as a Windows service, the --console option has no effect because there is no
console to write to in that case.)

12.5.2 The General Query Log
This log contains a record of when clients connect to the server, each statement that is
sent to it by clients, and various other events such as server startup and shutdown.The
server writes statements to this log in the order that it receives them.This may well be dif-
ferent from the order in which they finish executing, particularly for a mix of simple and
complex statements.

To enable the general log, specify the --log option. If you give the option without a
filename, the default name is HOSTNAME.log in the data directory.

As of MySQL 5.1.6, you can write the general log to a file, a database table, or both.
For details, see Section 12.5.6,“Using Log Tables.”

12.5.3 The Slow-Query Log
The slow-query log provides a record of which queries took a long time to execute:

n “Long” is defined as the value of the long_query_time system variable in seconds
(10 seconds by default).The minimum and default values are 1 and 10 before

650 Chapter 12 General MySQL Administration

MySQL 5.1.21.As of 5.1.21, the value can have a fractional part in microseconds
and the minimum value is 0.

n As of MySQL 5.1.21, queries must also examine at least min_examined_row_limit
rows or they are not logged.The default value is 0.

Because the time a query takes is not known until it finishes, queries are written to the
slow-query log after they execute, not when they are received. Slow queries also cause the
server to increment its Slow_queries status variable.

The slow-query log is written as text, so it is viewable with any file-display program,
or you can use the mysqldumpslow utility to summarize its contents.

The slow-query log can be useful for identifying queries that you might be able to im-
prove if you rewrite them. However, when interpreting its contents, you’ll need to take
general system load into account.“Slowness” is measured in real time (not CPU time), so
if your server is bogged down, it’s more likely that a query will be assessed as slow, even if
at some other time it runs under the limit.

To enable the slow-query log, specify the --log-slow-queries option. If you give the
option without a filename, the default name is HOSTNAME-slow.log in the data directory.

As of MySQL 5.1.6, you can write the slow-query log to a file, a database table, or
both. For details, see Section 12.5.6,“Using Log Tables.” For logging to a table, the frac-
tional part of query execution time is discarded.

Several related options affect what is written to the slow-query log:With --log-
short-format, the server writes less information to the log.With --log-queries-not-
using-indexes, the server also logs queries that execute without benefit of any index.
--log-slow-admin-statements causes the server to log slow administrative statements
such as ANALYZE TABLE or ALTER TABLE.

12.5.4 The Binary Log and the Binary Log Index File
The server uses the binary log to record data-modification “events” such as those resulting
from INSERT, DELETE, or UPDATE statements. It does not write SELECT operations to this
log.An UPDATE statement such as the following one does not appear in the binary log, ei-
ther, because it doesn’t actually change any values:

UPDATE t SET i = i;

MySQL must execute a statement first to determine whether it modifies data, so it
writes information to the binary log after statements finish executing rather than when it
receives them.

The binary log also contains information that is useful for replication purposes, such as
statement execution timestamps.

Unlike other logs, information is not written to the binary log as text, but in a more
efficient binary format.This takes less space than text, but the binary nature of this log
means that it is not directly viewable.You can use the mysqlbinlog utility to display the
contents of binary log files in readable text form.

65112.5 Maintaining Logs

The binary log can be used for database backup and recovery.Also, if you want to set up
a server as a master server that is replicated to a slave server, you must enable the binary log.

The server writes events to the binary log in order of execution.That is, they’re logged
in the order they finish, not the order in which they are received, which is an important
property for making replication work properly. For statements that are part of a transac-
tion, the server caches them until the transaction is committed.Then the server logs all
events in the transaction. If the transaction is rolled back, the transaction is not written to
the binary log, because it results in no changes to the database.

Actually, it is more correct to say that rolled-back transactions usually are not written to
the binary log. If a transaction makes changes to non-transactional tables such as MyISAM
tables, those changes cannot be rolled back. In this case, even a rolled-back transaction is
logged to the binary log, to ensure that in a replication setup the changes to the non-
transactional tables replicate properly.

To enable the binary log, specify the --log-bin option. If you give the option without
a filename, the server generates binary log files in numbered sequence, using HOSTNAME-
bin as the basename: HOSTNAME-bin.000001, HOSTNAME-bin.000002, and so forth. Other-
wise, the server uses the name that you specify as the sequence basename (if the name
includes an extension, the extension is ignored).The server generates the next file in the
sequence each time you start it or flush the logs, or when the current log reaches its maxi-
mum size.This size is determined by the value of the max_binlog_size system variable.

If you enable binary logging, the server also creates an accompanying binary log index
file that lists the names of the existing binary log files.The default index filename is the
same as the basename of the binary log files, with an .index extension.To specify a name
explicitly, use the --log-bin-index option. If the name includes no extension, .index is
added to the name automatically. For example, if you specify --log-bin-index=binlog,
the index filename becomes binlog.index.

If you use the --log-short-format option in conjunction with --log-bin, MySQL
writes less information to the binary log.

Before MySQL 5.1, events written to the binary log are statement-based.As of 5.1,
logging can be done using either statement-based or row-based format. For example, with
statement-based logging, an UPDATE is logged as an UPDATE statement, whereas with row-
based logging the UPDATE is logged in terms of the changes to be made to individual rows
that are updated. (See Section 14.7.3,“Binary Logging Formats.”) The --binlog-
format=format option specifies which type of logging to use.The allowable option values
are STATEMENT, ROW, and MIXED.As of MySQL 5.1.12, the default is MIXED, which uses
row-based logging except in cases where statement-based logging must be used instead.

If you are using the binary log for replication purposes, be sure not to delete any given
binary log file until you are sure that its contents have been replicated to all applicable
slave servers and it is no longer needed. Section 12.5.7.2,“Expiring Binary Log and Relay
Log Files,” describes how to check this.

652 Chapter 12 General MySQL Administration

Binary Log Files and System Backups
Your binary (and relay) logs won’t be any good for database recovery or replication if a disk
crash causes you to lose them. Make sure you’re performing regular filesystem backups. It’s
also a good idea to write these logs to a different disk from the one on which your data-
bases are stored, which requires that you relocate them from the data directory where the
server writes them by default. To do this, use the logging options to specify different log lo-
cations.

12.5.5 The Relay Log and the Relay Log Index File
A server that is a replication slave writes data modifications (“events”) from the master
server to its relay log as it receives them.The relay log acts as a holding area for these
modifications where they are held pending execution on the slave server.

Two separate slave server threads handle event reading and execution.The I/O thread
reads events from the master and logs them to the relay logs.The SQL thead reads the re-
lay log files, executes the events, and deletes each file when it has been completely
processed.This decoupling of function enables the threads to run independently.

The relay log shares several characteristics with the binary log:

n The server creates relay log files in numbered sequence.
n There is an index file that lists the current set of relay log files.
n Relay log files have the same format as binary log files, so you can display their con-

tents with the mysqlbinlog program.

To enable the relay log, specify the --relay-log option. If you give the option with-
out a filename, the server generates relay log files in numbered sequence, using HOSTNAME-
relay-bin as the basename: HOSTNAME-relay-bin.000001,
HOSTNAME-relay-bin.000002, and so forth. Otherwise, the server uses the name that you
specify as the sequence basename (if the name includes an extension, the extension is ig-
nored).The server generates the next file in the sequence each time you start it or flush
the logs, or when the current log reaches its maximum size.This size is determined by the
value of the max_relay_log_size system variable.

If you enable relay logging, the server also creates an accompanying relay log index file
that lists the names of the existing relay log files.The default index filename is the same as
the basename of the relay log files, with an .index extension.To specify a name explicitly,
use the --relay-log-index option. If the name includes no extension, .index is added
to the name automatically. For example, if you specify --relay-log-index=relay-log,
the index filename becomes relay-log.index.

12.5.6 Using Log Tables
Before MySQL 5.1.6, the server writes entries for the general query log and slow-query
log to files if they are enabled.As of 5.1.6, when these logs are enabled, you can write log
output to a log file, a log table in the mysql database, or both. (It is best to use 5.1.21 or
higher to avoid problems in the early implementation of this feature.The following dis-
cussion assumes a version at least that recent.)

65312.5 Maintaining Logs

To select the log output destinations, use the --log-output=destinations option
when you start the server.The destinations value is a list of one or more comma-
separated values: FILE (log to files), TABLE (log to tables), or NONE (do not log). NONE, if
present, overrides any other destinations.The default is FILE if --log-output is not given
or given without a value.

--log-output determines only which log destinations to use but does not enable log-
ging.To enable the general query log or slow-query log, use the --log or --log-slow-
queries option, just as before log table tables are available. (See Section 12.5.2,“The
General Query Log,” and Section 12.5.3,“The Slow-Query Log.”)

Logging destinations can be changed at runtime by setting the global log_output sys-
tem variable. For example, to temporarily disable logging, use this statement:

SET GLOBAL log_output='NONE';

To re-enable logging and use files as well as tables, do this:

SET GLOBAL log_output='FILE,TABLE';

If a log is enabled, the server writes startup messages to its log file, but writes no
queries to the file thereafter unless the FILE destination has been selected.

The server implements TABLE logging using the general_log and slow_log tables in
the mysql database. (Be sure to run mysql_upgrade to ensure that these tables exist if you
upgrade to MySQL 5.1.6 or higher from an older version.)

The global general_log_file and slow_query_log_file system variables are set to
the names of the log files. If logging to files is enabled, changing the value of either vari-
able changes the name of the file to which the server writes the corresponding log.

The contents of the log tables are intended for viewing but cannot be modified except
as done by the server itself. Consequently, you can use them with SELECT, but not INSERT,
DELETE, or UPDATE. (You can empty a log table with TRUNCATE TABLE, however.)

12.5.7 Log Management
Logging is important, but one danger of enabling logging is that it has the potential to
generate huge amounts of information, possibly filling up your disks.This is especially true
if you have a busy server that processes lots of statements.You can use log file expiration
techniques to keep the last few logs available online while preventing logs from growing
without bound. Several methods are available for keeping logs manageable:

n Log rotation. This applies to log files that have a fixed name, such as the general
and slow-query log files.

n Age-based expiration. This method removes log files that are older than a certain
age. It can be applied to numbered log files that are created in numbered sequence,
such as the binary log. However, you should not use this technique if you use the
binary log for replication.

n Replication-related expiration. If you use the binary log files for replication, it’s
better not to expire them based on age.You should expire them only after you

654 Chapter 12 General MySQL Administration

know they have been sent completely to each slave.This form of expiration there-
fore is based on determining which binary log files are still in use.

A replication slave server creates the relay log files in numbered sequence and re-
moves them automatically as it finishes processing them.To reduce the amount of
relay log information stored on disk, you can lower the maximum allowable size by
setting the max_relay_log_size system variable.

n Log table truncation or rotation. If you are logging to tables in the mysql data-
base, you can truncate them or rename and replace them with empty tables.

Log rotation often is used in conjunction with log flushing, to make sure that any
buffered log information has been written to disk. Logs can be flushed by executing a
mysqladmin flush-logs command or by issuing a FLUSH LOGS statement.

The following sections describe how to use these expiration methods.The example
log-expiration scripts discussed here are located in the admin directory of the sampdb

distribution.
For any techniques that you put into practice, you should also consider how the log

files fit into your database backup methods. It’s a good idea to back up any log files that
may be needed for recovery operations, so you shouldn’t expire them before backing
them up.

12.5.7.1 Rotating Fixed-Name Log Files
The MySQL server writes some types of log information to files that have fixed names,
such as the general query log file and the slow-query log file.To expire fixed-name log
files, use log rotation.This enables you to maintain the last few logs online but limit the
number to as many as you choose, to prevent them from overrunning your disk.

Log file rotation works as follows. Suppose that your general query log file is named
qlog.At the first rotation, rename qlog to qlog.1 and tell the server to begin writing a
new log file named qlog.At the second rotation, rename qlog.1 to qlog.2, qlog to
qlog.1, and tell the server to begin writing another new qlog file. In this way, each file
rotates through the names qlog.1, qlog.2, and so forth.When the file reaches a certain
point in the rotation, expire it by letting the previous file overwrite it. For example, if you
rotate the logs daily and you want to keep a week’s work of logs, you would keep qlog.1
through qlog.7.At each rotation, you expire qlog.7 by letting qlog.6 overwrite it to
become the new qlog.7.

The frequency of log rotation and the number of old logs you keep will depend on
how busy your server is (active servers generate more log information) and how much
disk space you’re willing to allocate to old logs.

On Unix, you can rename the current log file while the server has it open.After doing
so, flushing the logs causes the server to close that file and open a new one, thereby creat-
ing a new log file with the original name.The following shell script,
rotate_fixed_logs.sh, performs rotation of fixed-name log files:

#!/bin/sh

rotate_fixed_logs.sh - rotate MySQL log file that has a fixed name

65512.5 Maintaining Logs

Argument 1: log filename

if [$# -ne 1]; then

echo "Usage: $0 logname" 1>&2

exit 1

fi

logfile=$1

mv $logfile.6 $logfile.7

mv $logfile.5 $logfile.6

mv $logfile.4 $logfile.5

mv $logfile.3 $logfile.4

mv $logfile.2 $logfile.3

mv $logfile.1 $logfile.2

mv $logfile $logfile.1

mysqladmin flush-logs

The script takes the log filename as its argument.You can either specify the full path-
name of the file or change directory into the log directory and specify the file’s name in
that directory. For example, to rotate a log file named qlog in /usr/mysql/data, execute
the script like this:

% rotate_fixed_logs.sh /usr/mysql/data/qlog

Or like this:

% cd /usr/mysql/data

% rotate_fixed_logs.sh qlog

Note
The first few times the log rotation script executes, you won’t have a full set of log files in the
rotation, so the script complains that it can’t find all the files to be rotated. That’s normal.

To make sure that you have permission to rename the log files, run the script while
logged in under the same account that you use for running the server (that’s the mysql
account in this book). Note that the mysqladmin command in the script includes no con-
nection parameter arguments such as -u or -p. If the relevant parameters for invoking
mysqladmin are stored in the .my.cnf option file in the mysql account home directory,
you don’t need to specify them on the mysqladmin command in the script. If you don’t
use an option file, the mysqladmin command needs to know how to connect to the server
using a MySQL account that has sufficient privileges to flush the logs.To handle this, you
might want to set up a limited-privilege account that can’t do anything but issue flush
commands.Then you can put that account’s password in the script with minimal risk if
you make the script accessible only to mysql. If you want to do this, the MySQL account

656 Chapter 12 General MySQL Administration

should have only the RELOAD privilege. For example, to call the user flush and assign a
password of flushpass, use the following statements:

CREATE USER 'flush'@'localhost' IDENTIFIED BY 'flushpass';

GRANT RELOAD ON *.* TO 'flush'@'localhost';

After creating this account, change the mysqladmin command in the
rotate_fixed_logs.sh script to look like this:

mysqladmin -u flush -pflushpass flush-logs

To protect the script against being read by other login accounts, you can make the
script readable only to mysql. Execute the following command while logged in as mysql:

% chmod go-rwx rotate_fixed_logs.sh

To see how to use the rotate_fixed_logs.sh script to rotate and flush the logs peri-
odically, consult Section 12.5.7.3,“Automating the Log Expiration Procedure.”

Under Linux, you may prefer to use the logrotate utility to install the mysql-
log-rotate script that comes with the MySQL distribution, rather than using
rotate_fixed_logs.sh or writing your own script. Look for mysql-log-rotate in
/usr/share/mysql for RPM distributions, or in the support-files directory of your
MySQL installation for binary distributions, or under the share/mysql directory of
MySQL source distributions.

On Windows, log file renaming can be performed using the following batch script,
rotate_fixed_logs.bat:

@echo off

REM rotate_fixed_logs.bat - rotate MySQL log file that has a fixed name

REM Argument 1: log filename

if not "%1" == "" goto ROTATE

@echo Usage: rotate_fixed_logs logname

goto DONE

:ROTATE

set logfile=%1

erase %logfile%.7

rename %logfile%.6 %logfile%.7

rename %logfile%.5 %logfile%.6

rename %logfile%.4 %logfile%.5

rename %logfile%.3 %logfile%.4

rename %logfile%.2 %logfile%.3

rename %logfile%.1 %logfile%.2

rename %logfile% %logfile%.1

:DONE

65712.5 Maintaining Logs

Invoke rotate_fixed_logs.bat much like the rotate_fixed_logs.sh shell script,
with a single argument that names the log file to be rotated. For example, to rotate a log
file named qlog in C:\mysql\data, execute the script like this:

C:\> rotate_fixed_logs C:\mysql\data\qlog

Or like this:

C:\> cd \mysql\data

C:\> rotate_fixed_logs qlog

Note
Until MySQL 5.0.17/5.1.3, you cannot rename the general query log or slow-query log file on
Windows while the server has it open; a “file in use” error occurs. Therefore, for older
servers, to ensure that a log file is not open so that you can rotate it, first stop the server,
and then perform the file renaming and restart the server.

12.5.7.2 Expiring Binary Log and Relay Log Files
Fixed-name log files can be expired using filename rotation, as just discussed. For num-
bered logs such as the binary log and the relay log, the server generates logs in numbered
sequence, and expiration needs to be handled a bit differently.

For the binary log, there are two approaches that you can take:

n Expire log files based on age (assessed as time of last modification).You can do this if
you are not using the binary log for replication.

n Expire log files based on whether they are still in use.This is more applicable if you
are using the binary log for replication.

If you are not using the binary log for replication, the easiest way to expire the log files
is to set the expire_logs_days system variable.When this variable has a value n greater
than zero, the server automatically expires binary log files that are older than n days old
and updates the binary log index file. For example, to set this variable to expire binary log
files that have not been changed for a week, put these lines in an option file:

[mysqld]

expire_logs_days=7

The server checks whether to expire binary log files when it starts and when it opens a
new log file.

If you use the binary log for replication, do not use age-based replication. In this case,
age is not an indicator of whether a log file can be removed. Suppose that a slave server is
down and has not been sent the contents of a given binary log file. If the slave does not
come back up by the time the file reaches its expiration age, the file would be discarded
and replication would fail.To avoid this problem, you should consider a binary log file
eligible for expiration only after its contents have been replicated to all slave servers.

A difficulty here is that, due to the asynchronous nature of MySQL replication, the
master server itself doesn’t know how many slaves there are or which files have been prop-
agated to them.The master won’t purge binary log files that have not yet been sent to

658 Chapter 12 General MySQL Administration

connected slaves, but there is no guarantee that a given slave is connected at any particular
time.You must know which servers are acting as slaves, and then connect to each one and
issue a SHOW SLAVE STATUS statement to determine which of the master’s binary log files
the slave currently is processing. (The file’s name is the value in the Master_Log_File
column.) Any binary log that is no longer used by any of the slaves can be removed.

To understand how this works, suppose that you have the following scenario:

n The local server is the master and it has two slaves, S1 and S2.
n The binary log files that exist on the master have names of binlog.000038 through
binlog.000042.

n SHOW SLAVE STATUS produces the following result on S1:

mysql> SHOW SLAVE STATUS\G

...

Master_Log_File: binlog.000041

...

And this result on S2:

mysql> SHOW SLAVE STATUS\G

...

Master_Log_File: binlog.000040

...

In this case, the lowest-numbered binary log still required by the set of slave servers is
binlog.000040, so any log with a lower number can be removed.To do that, connect to
the master server and issue the following statement:

mysql> PURGE MASTER LOGS TO 'binlog.000040';

That causes the server to delete all binary log files with numbers lower than the named
file, which for the situation just described includes binlog.000038 and binlog.000039.

The SHOW SLAVE STATUS and PURGE MASTER LOGS statements each require the SUPER
privilege.

To expire relay log files, you need take no special action.A replication slave server cre-
ates the relay log files in numbered sequence. It generates a new relay log file when the
current one reaches the maximum allowable size (or when the logs are flushed), and
removes old files automatically as it finishes processing them. However, if the maximum
relay log size is large, the current file also grows large.To reduce the amount of relay log
information stored on disk, you can lower the maximum allowable size by setting the
max_relay_log_size system variable.

12.5.7.3 Automating the Log Expiration Procedure
It’s possible to invoke log expiration scripts manually, but you need not remember to exe-
cute them yourself if you have a way to schedule the commands to run automatically. On
Unix, one way to do this is to use the cron utility and set up a crontab file that defines

65912.5 Maintaining Logs

the expiration schedule. If you’re not familiar with cron, check the relevant Unix manual
pages using these commands:

% man cron

% man crontab

You might need to use another command to read about the crontab file format:

% man 5 crontab

Suppose that you want to rotate a general query log named qlog by using the
rotate_fixed_logs.sh script, that this script is installed in /home/mysql/bin, and that
the log files are located in the /var/mysql/data directory. Log in as mysql, and then edit
the mysql user’s crontab file using this command:

% crontab -e

This command enables you to edit a copy of your current crontab file (which might
be empty if no cron jobs have yet been set up).Add a line to the file that looks like this:

30 4 * * * /home/mysql/bin/rotate_fixed_logs.sh /var/mysql/data/qlog

This entry tells cron to run the script at 04:30 each day.You can vary the time or
scheduling as desired; check the crontab manual page for the format of the entries.You’ll
probably want to rotate the logs more frequently for a busy server that generates lots of
log information than for one that is less active.

To make sure that the logs are flushed regularly (for example, to generate the next
numbered binary log), you can schedule a mysqladmin flush-logs command to execute
periodically by adding another crontab entry.You might need to list the full pathname to
mysqladmin to make sure that cron can find it.

Automatic log file expiration is more problematic on Windows before MySQL
5.0.17/5.1.3, because you cannot rename the general query log or slow-query log file
while the server has it open (see Section 12.5.7.1,“Rotating Fixed-Name Log Files”).
This means that you cannot rotate any current log file without stopping and restarting the
server, and there might be no time of day when you can guarantee that the server will not
be in use.

12.5.7.4 Expiring or Rotating Log Tables
If the server is writing the general query log or slow-query log to tables in the mysql
database, you can either truncate the tables or use a form of table rotation.

To truncate the tables, use these statements:

USE mysql;

TRUNCATE TABLE general_log;

TRUNCATE TABLE slow_log;

To rotate a log table, first create an empty copy.Then perform an atomic rename that
“swaps out” the current table and replaces it with the empty one in a single statement:

USE mysql;

660 Chapter 12 General MySQL Administration

CREATE TABLE general_log_tmp LIKE general_log;

RENAME TABLE general_log TO general_log_old, general_log_tmp TO general_log;

CREATE TABLE slow_log_tmp LIKE slow_log;

RENAME TABLE slow_log TO slow_log_old, slow_log_tmp TO slow_log;

RENAME TABLE for log tables requires MySQL 5.1.13 or higher.
If you have the event scheduler running, log table rotation can be done automatically

by creating an event such as the one following.The event rotates the log tables each day.
Change the ON SCHEDULE clause to vary the frequency.

CREATE EVENT mysql.rotate_log_tables

ON SCHEDULE EVERY 1 DAY

DO BEGIN

DROP TABLE IF EXISTS general_log_old, general_log_tmp;

CREATE TABLE general_log_tmp LIKE general_log;

RENAME TABLE

general_log TO general_log_old,

general_log_tmp TO general_log;

DROP TABLE IF EXISTS slow_log_old, slow_log_tmp;

CREATE TABLE slow_log_tmp LIKE slow_log;

RENAME TABLE

slow_log TO slow_log_old,

slow_log_tmp TO slow_log;

END;

12.6 Tuning the Server
The MySQL server has several system variables (parameters) that affect how it operates.
You can display these variables with the SHOW VARIABLES statement. If the default variable
values are not appropriate, you can change them to configure the server with values that
are better for the environment in which it runs. Some of these variables are used for per-
formance tuning, such as those that control the size of memory buffers. For example, if
you have plenty of memory, you can tell the server to use larger buffers for disk and index
operations.This will hold more information in memory and decrease the number of disk
accesses that need to be made. If your system is more modest, you can tell the server to
use smaller buffers.This will likely make the server run more slowly but may improve
overall system performance by preventing the MySQL server from hogging system re-
sources to the detriment of other processes.

Other variables affect how the server interacts with clients, such as the variables that
control the SQL mode, the default storage engine, and the current time zone.

The server also has a set of status variables that provide information about how it is
actually performing as it runs.You can display these variables with the SHOW STATUS state-
ment.These status variables help you monitor the server and check the effect of configu-
ration changes that you make by modifying the system variables.

66112.6 Tuning the Server

The following sections discuss the general syntax for setting or examining system vari-
ables and describe some of the variables that have application to the operation of the
server as a whole. For tuning parameters specific to individual storage engines, see Section
12.7,“Storage Engine Configuration.” You can also find additional discussion of server
tuning in the optimization chapter of the MySQL Reference Manual.

12.6.1 Checking and Setting System Variable Values
Most system variables can be set at server startup time using options on the command line
or in option files.The general syntax is described in Section F.1,“Specifying Program
Options.” System variables can be displayed at runtime with SHOW VARIABLES, and many
of them can be modified while the server is running.The ability to set variables at run-
time gives you better control over server operation, and can help you avoid stopping the
server to reconfigure it under circumstances when that might otherwise be necessary. (For
example, you can experiment with buffer sizes to see how that affects server performance,
without having to stop and restart the server for each change.) Changes made at runtime
do not last beyond termination of the server process, but if you determine a value for a
variable that is better than its current default, you can set the variable in an option file to
cause the value to be used whenever the server starts in the future.

Several system variables pertain to the manner in which the server interacts with
clients.The ability to change these variables affords clients a measure of control over how
the server operates and enables applications to customize the behavior they require.

System variables can exist at two levels: global and session-specific. Global variables
affect the operation of the server as a whole. Session-specific variables affect only how the
server treats a given client connection. For variables that exist at both levels, the global
values are used to initialize the corresponding session variables.This happens only when
a new client connection begins; changing a global variable during a connection does not
affect the current value of the client’s corresponding session variable.

It is possible for a system variable to have both global and session forms, only a global
form, or only a session form:

n The sql_mode system variable that indicates the default SQL mode is an example of
a variable that exists at both the global and session levels.The SQL mode affects sev-
eral aspects of SQL statement processing by the server.When each client connects, it
gets its own session-specific sql_mode variable, which initially has the same value as
the global variable.Any client can modify the value of its session variable to change
the server’s behavior for its own connection without affecting how the server treats
other clients.A client that has the SUPER privilege also can change the global
sql_mode variable.The new global value is used to initialize the session variable for
clients that connect after the change.

n The key_buffer_size system variable is an example of a global-only variable. It
controls the size of the default key cache that buffers the contents of MyISAM table
indexes.This key cache is shared among all clients, so there is no reason to have a
session value for each client.

662 Chapter 12 General MySQL Administration

n Some variables exist only at the session level.The autocommit variable is one of
these. Each client begins with its autocommit mode enabled by default, but can dis-
able it as necessary.

Appendix D,“System, Status, and User Variable Reference,” lists all system variables and
indicates which of them can be set at startup time and runtime.The following discussion
indicates the syntax for checking system variables and for setting their values.

12.6.1.1 Checking System Variable Values
To see the current values of system variables, use SHOW VARIABLES:

mysql> SHOW VARIABLES;

+----------------------------------+------------------+

| Variable_name | Value |

+----------------------------------+------------------+

| auto_increment_increment | 1 |

| auto_increment_offset | 1 |

| autocommit | ON |

| automatic_sp_privileges | ON |

| back_log | 50 |

| basedir | /usr/local/mysql |

| big_tables | OFF |

...

With a LIKE clause, you can restrict output to rows for variables with names that match
a given SQL pattern:

mysql> SHOW VARIABLES LIKE 'key%';

+--------------------------+---------+

| Variable_name | Value |

+--------------------------+---------+

| key_buffer_size | 8388572 |

| key_cache_age_threshold | 300 |

| key_cache_block_size | 1024 |

| key_cache_division_limit | 100 |

+--------------------------+---------+

As of MySQL 5.0.2, a WHERE clause can be used to specify general conditions for se-
lecting rows.The following statement finds timeouts that are set to less than 60 seconds:

mysql> SHOW VARIABLES

-> WHERE Variable_name LIKE '%timeout%' AND Value < 60;

+----------------------------+-------+

| Variable_name | Value |

+----------------------------+-------+

| connect_timeout | 10 |

| innodb_lock_wait_timeout | 50 |

| innodb_rollback_on_timeout | OFF |

66312.6 Tuning the Server

| net_read_timeout | 30 |

| table_lock_wait_timeout | 50 |

+----------------------------+-------+

SHOW VARIABLES returns each variable’s session value if one exists at that level and the
global value if not.To specifically request the values of global or session variables, add
GLOBAL or SESSION to the statement:

SHOW GLOBAL VARIABLES;

SHOW SESSION VARIABLES;

LOCAL is a synonym for SESSION.
The mysqladmin variables command displays the current values of the server’s

global system variables.
Individual variable values can be selected using @@GLOBAL.var_name syntax for a global

variable, or @@SESSION.var_name or @@LOCAL.var_name for a session variable. If you use
@@var_name syntax without a level qualifier, the session variable is used if it exists and the
global value if not.

The @@- syntax is general purpose and can be used in SET, SELECT, or other SQL
statements:

SELECT 'Default storage engine:', @@storage_engine;

Most of the session-only variables are not displayed at all by SHOW VARIABLES, but you
can access their values by name:

SELECT @@autocommit, @@warning_count;

As of MySQL 5.1.12, you can also query the INFORMATION_SCHEMA tables named
GLOBAL_VARIABLES and SESSION_VARIABLES to obtain system variable information.

12.6.1.2 Setting System Variables at Server Startup Time
Many global system variables can be set when the server starts.There are two syntaxes for
doing this:

n You can treat a variable name as an option name and set it directly. For example, the
max_connections variable controls the maximum number of simultaneous client
connections.To set this variable to 200, you can do so using this option on the
mysqld command line:

% mysqld --max_connections=200

You can also set the variable in an option file using this syntax:

[mysqld]

max_connections=200

664 Chapter 12 General MySQL Administration

Another feature of the variable-as-option syntax is that underscores can be given as
dashes so that the variable reference looks more like other options. On the com-
mand line, set the variable like this:

% mysqld --max-connections=200

In an option file, set it like this:

[mysqld]

max-connections=200

n You can set a variable at server startup with the --set-variable or -O option.This
syntax is older and is deprecated but still supported for now. On the command line,
set a variable like this:

% mysqld --set-variable=max_connections=200

% mysqld -O max_connections=200

In option files, only the long-option form is allowable:

[mysqld]

set-variable=max_connections=200

It’s usually more convenient to set system variables in an option file than on the com-
mand line because you don’t have to remember to set them each time you start the server.

For variables that represent buffer sizes or lengths, values are in bytes if specified as a
number with no suffix, or may be specified with a suffix of ‘K’, ‘M’, or ‘G’, to indicate kilo-
bytes, megabytes, or gigabytes, respectively. Suffixes are not case sensitive, so you can also
use ‘k’, ‘m’, or ‘g’.

Some system variables cannot be set directly using a startup option. In such cases, there
often is a related option. For example, you cannot directly set the storage_engine variable
at startup, but the --default-storage-engine option can be used instead.Appendix D
indicates which global system variables can be set directly. For those that cannot, the
appendix lists the related option for setting the variable if there is one.

12.6.1.3 Setting System Variables at Runtime
The syntax for setting system variables at runtime depends on whether you want to set a
global variable or a session variable.To set a global variable named var_name, use a SET
statement having one of these formats:

SET GLOBAL var_name = value;

SET @@GLOBAL.var_name = value;

To set a session variable, similar syntax applies:

SET SESSION var_name = value;

SET @@SESSION.var_name = value;

LOCAL is a synonym for SESSION.

66512.6 Tuning the Server

If no level indicator is present, the SET statement modifies the session variable:

SET var_name = value;

SET @@var_name = value;

You can set several variables in a single SET statement by separating the assignments
with commas:

SET SESSION sql_warnings = 0, GLOBAL storage_engine = InnoDB;

In a statement that sets multiple variables, an explicit GLOBAL or SESSION level indicator
applies to following variable settings that do not include a level of their own.The follow-
ing statement sets the global v1 and v2 variables, and the session v3 and v4 variables:

SET GLOBAL v1 = val1, v2 = val2, SESSION v3 = val3, v4 = val4;

You must have the SUPER privilege to set a global variable.The setting persists until
changed again or the server exits. No special privileges are needed to set a session variable.
The setting persists until changed again or the current connection terminates.

Unlike variables that are set at startup time, you cannot specify runtime values using
suffix letters of ‘K’, ‘M’, or ‘G’. However, you can use expressions, and expressions can refer
to the values of other variables.The following statements set the global
read_buffer_size value to 2MB, and the session value to twice that:

SET GLOBAL read_buffer_size = 2*1024*1024;

SET SESSION read_buffer_size = 2*@@GLOBAL.read_buffer_size;

Many system variables can be set to the special value DEFAULT. For those variables that
understand this syntax, assigning DEFAULT to a global variable sets it to the compiled-in
default (even if a different value was given with a startup option).Assigning DEFAULT to a
session variable sets it to the current value of the corresponding global variable.

MySQL supports the concept of a structured system variable, which consists of a set of
related system variables that are grouped and accessed as components of the structured
variable. Currently, the only structured variables that exist are used for configuring My-
ISAM key caches, so their syntax is discussed in Section 12.7.2,“Configuring the My-
ISAM Storage Engine.”

12.6.2 General-Purpose System Variables
The following list describes several system variables that are useful for general perform-
ance tuning:

n delayed_queue_size determines the number of rows from INSERT DELAYED state-
ments that can be queued per table (for those storage engines that support DELAYED
inserts) before clients issuing additional INSERT DELAYED statements get blocked. If
you have many clients that use INSERT DELAYED to avoid being blocked but find
that they are being blocked anyway because too many rows are being queued,
increasing the value of this variable can be useful.That enables a larger queue and

666 Chapter 12 General MySQL Administration

reduces the amount of client blocking that occurs. (Section 5.5,“Scheduling and
Locking Issues,” discusses INSERT DELAYED in detail.)

n max_allowed_packet is the maximum size to which the buffer used for client com-
munications can grow.The largest value to which this variable can be set is 1GB.

The default buffer size for the server is 1MB. Some clients also have their own
max_allowed_packet variable. If you have clients that send very long statements to
the server (for example, statements that include large BLOB or TEXT values), this vari-
able may need to be increased both on the server end and on the client end. For ex-
ample, to start the server with a 64MB packet limit, you could add these lines to the
server option file:

[mysqld]

max_allowed_packet=64M

For occasions when you need to invoke mysql or mysqldump with a 64MB packet
limit, do so like this:

% mysql --max_allowed_packet=64M ...other options...

% mysqldump --max_allowed_packet=64M ...other options...

To use these settings all the time, add these lines to your option file:

[mysql]

max_allowed_packet=64M

[mysqldump]

max_allowed_packet=64M

n max_connections is the maximum number of simultaneous client connections the
server allows. If your server is busy, you might need to increase this value. For exam-
ple, if your MySQL server is used by an active Web server to process lots of state-
ments generated by DBI or PHP scripts, visitors to your site might find requests
being refused if this variable is set too low.

n table_cache (table_open_cache as of MySQL 5.1.3.)

The size of the table cache. Increasing this value enables mysqld to keep more tables
open simultaneously by reducing the number of file open and close operations that
must be done.

If you increase the values of max_connections or table_cache/table_open_cache,
the server will require a larger number of file descriptors.That may cause problems with
operating system limits on the per-process number of file descriptors, in which case you’ll
need to increase the limit or work around it. Procedures vary for increasing the limit on
the number of file descriptors.You can try setting the open_files_limit variable for
mysqld. If you cannot set the open files limit high enough using one of those methods,
you might need to configure your system to allow more file descriptors. Some systems can
be configured simply by editing a system description file and restarting. For others, you

66712.6 Tuning the Server

must edit a kernel description file and rebuild the kernel. Consult the documentation for
your system to see how to proceed.

One way to work around per-process file descriptor limits is to split your data direc-
tory into multiple data directories and run multiple servers.This effectively multiplies the
number of file descriptors available by the number of servers you run. On the other hand,
this strategy can result in complications. For example, you cannot access databases in dif-
ferent data directories from a single server, and you need to set up privileges in the grant
tables of multiple servers for users that need access to more than one server.

Another possibility for reducing file-descriptor requirements is to set up replication of
your main MySQL server to one or more slave servers.All updates should be directed to
the main server, but requests from clients that perform only retrievals can be distributed
among all the servers.This lessens the client load of the main server and reduces its file
descriptor requirements.

Some variables control resources that are allocated on a per-client basis. Increasing
these variables has the potential to increase the server’s resource requirements dramatically
if many clients connect to it simultaneously.Two values that you might increase in hopes
of improving performance are those of the read_buffer_size and sort_buffer_size

variables, which determine the size of the buffers that are used during read and sort oper-
ations. Be careful, though:These buffers are allocated for each connection, so if you make
the values of the corresponding variables quite large, performance may actually suffer due
to exorbitant system resource consumption.

It’s best to change the sizes of per-connection buffers incrementally and then test your
changes rather than bump them up by a large amount all at once. Doing so enables you to
assess the effect of each change with less likelihood of serious performance degradation.
Be sure to use realistic test conditions as well.These buffers are allocated only as needed
rather than as soon as a client connects. For example, the sort buffer is not allocated for a
client unless it performs a query that requires a sort operation.The join_buffer_size
variable controls the size of the buffer used for non-indexed joins between tables, but a
client that runs no joins needs no join buffer. (Conversely, a client that runs complex
many-table joins might need multiple join buffers simultaneously.) Your test conditions
should use clients that connect at the same time and run complex statements so that you
can see the real effect on the server’s memory requirements.

12.6.3 Checking Status Variable Values
The server maintains status variables that enable you to monitor its runtime operation.You
can display these variables with the SHOW STATUS statement:

mysql> SHOW STATUS;

+-----------------------------------+----------+

| Variable_name | Value |

+-----------------------------------+----------+

| Aborted_clients | 0 |

| Aborted_connects | 1 |

| Binlog_cache_disk_use | 0 |

668 Chapter 12 General MySQL Administration

| Binlog_cache_use | 3 |

| Bytes_received | 125 |

| Bytes_sent | 151 |

| Com_admin_commands | 0 |

...

As of MySQL 5.0.2, the status variables (like system variables) have global and session-
specific values, so the statement can take GLOBAL or SESSION modifiers:

SHOW GLOBAL STATUS;

SHOW SESSION STATUS;

GLOBAL shows the status for the server as a whole (all connections together). SESSION
shows the status for the current connection.The default is SESSION. LOCAL is a synonym
for SESSION.

To write a SHOW STATUS statement that uses a modifier but is portable to MySQL ver-
sions older than 5.0.2, put the modifier in a version-specific comment. For example:

SHOW /*!50002 GLOBAL */ STATUS;

If a variable has only a global value, you get the same value for GLOBAL and SESSION.
Appendix D indicates which values each status variable has.

Similar to SHOW VARIABLES, a LIKE clause restricts output to those variables with
names that match a given SQL pattern. For example, to check the values of the MyISAM
key cache variables, use this statement:

mysql> SHOW GLOBAL STATUS LIKE 'Key%';

+------------------------+-------+

| Variable_name | Value |

+------------------------+-------+

| Key_blocks_not_flushed | 0 |

| Key_blocks_unused | 7247 |

| Key_blocks_used | 13 |

| Key_read_requests | 41 |

| Key_reads | 14 |

| Key_write_requests | 40 |

| Key_writes | 2 |

+------------------------+-------+

As of MySQL 5.0.2, a WHERE clause can be used to specify general conditions for
selecting rows.

As of MySQL 5.1.12, you can also query the INFORMATION_SCHEMA tables named
GLOBAL_STATUS and SESSION_STATUS to obtain status variable information. For example:

SELECT * FROM INFORMATION_SCHEMA.GLOBAL_STATUS

WHERE VARIABLE_NAME LIKE 'Qcache%' OR VARIABLE_NAME LIKE 'Key%';

Status variables are set only by the server, so they are read only to users and cannot be
modified with SET the way that system variables can.

66912.7 Storage Engine Configuration

12.7 Storage Engine Configuration
The MySQL server supports multiple storage engines and is highly configurable in terms
of which engines to make available. General storage engine characteristics are discussed in
Chapter 2,“Using SQL to Manage Data.”The following discussion describes how to con-
figure which engines your server uses. It also provides specific configuration information
for the MyISAM, InnoDB, and Falcon storage engines.

12.7.1 Selecting Which Storage Engines a Server Supports
The MySQL server provides flexible control over which storage engines are available:

n If you build MySQL from source, you can determine which of the optional storage
engines to build.

n For any server, whether or not you compile it yourself, you can selectively enable or
disable at startup some of the optional storage engines that are built.You might dis-
able engines that you don’t need so as to reduce server memory requirements.
(Keep in mind that if you disable an engine, you cannot access any tables that might
already have been created by it.)

n You can find out at runtime which engines are available, and which one is the de-
fault engine.

Table 12.7 shows the options to use with configure to include or exclude each en-
gine when building MySQL from source. Some engines, if built, can be disabled with an
option to mysqld at startup time if you do not want to use them. Falcon requires MySQL
6.0 or higher.The --skip-archive option requires MySQL 5.1 or higher.

Table 12.7 Storage Engine Configuration and Runtime Options

Engine Configuration Options Runtime Options

ARCHIVE --with-archive-storage-engine, --skip-archive

--without-archive-storage-engine

BLACKHOLE --with-blackhole-storage-engine,

--without-blackhole-storage-engine

CSV --with-csv-storage-engine,

--without-csv-storage-engine

EXAMPLE --with-example-storage-engine,

--without-example-storage-engine

Falcon --with-falcon-storage-engine, --skip-falcon

--without-falcon-storage-engine

FEDERATED --with-federated-storage-engine,

--without-federated-storage-engine

InnoDB --with-innodb, --skip-innodb

670 Chapter 12 General MySQL Administration

The MyISAM storage engine is always available. It can be neither excluded at configu-
ration time nor disabled at server startup time. (The grant tables are MyISAM tables, so it
is necessary that the MyISAM engine be available to read them.) The MERGE and
MEMORY engines are always available as well.

In a given MySQL source distribution, there may be other storage engines that you
can use other than those shown in the preceding table. In the top directory of the distri-
bution, use this command to see which engines can be built:

% ./configure --help

To see which options enable or disable engines for a given server at runtime, invoke it
like this:

% mysqld --verbose --help

As the server runs, it designates one storage engine as the default, which it uses for
tables that are created without an explicit ENGINE = engine_name option. MyISAM is
compiled in as the default engine, but you can select a different default at server startup
or at runtime.

To select a default engine at startup, use the --default-storage-
engine=engine_name option. For example, to make InnoDB the default engine, put the
following lines in your server option file:

[mysqld]

default-storage-engine = innodb

To change the default storage engine at runtime, use one of the following statements:

SET GLOBAL storage_engine = engine_name;

SET SESSION storage_engine = engine_name;

The first statement requires the SUPER privilege and sets the default engine for all
clients that connect thereafter.The second requires no special privilege and affects only
the current client session. It can be used by any client to change its own default engine.

To check which storage engines are the global and session defaults, use this statement:

SELECT @@GLOBAL.storage_engine, @@SESSION.storage_engine;

To determine which storage engines are available, use the SHOW ENGINES statement or
query the ENGINES table of the INFORMATION_SCHEMA database. For examples, see Section
2.6.1.1,“Checking Which Storage Engines Are Available.”

Table 12.7 Storage Engine Configuration and Runtime Options

Engine Configuration Options Runtime Options

--without-innodb

MyISAM Always built Always enabled

MEMORY Always built Always enabled

MERGE Always built Always enabled

67112.7 Storage Engine Configuration

12.7.2 Configuring the MyISAM Storage Engine
MyISAM tables have separate data and index files, which are handled differently:

n For caching data rows read from or written to a MyISAM table, the server relies on
the operating system to use its own filesystem caching mechanism.

n For index processing, MyISAM manages its own key cache, which is the most im-
portant configurable resource for the MyISAM storage engine.The key cache is
used for index-based retrievals and sorts, and for index creation and modification
operations.

This section describes the general operation of the key cache and the system variables
that you use to configure it.

The MyISAM key cache operates as follows:

n Initially, the key cache is empty.
n When the server needs to examine index values from a table during statement exe-

cution, it checks whether they have already been read into the key cache. If so, it
consults the in-memory values. Otherwise, it reads the index file for the table to
read the index values from disk into a buffer block in the cache.

n If the cache is full when new index values need to be read in, the server must dis-
card values from one of the buffer blocks. By default, it determines which values to
discard on the basis of a least recently used (LRU) algorithm.That is, the server
chooses the cache buffer that has been unused for the longest time. Blocks are
maintained as a chain ordered by last access time, so the server simply picks the one
at the end of the chain.

n If the chosen buffer has not been modified, its contents are overwritten with newly
read index values. Otherwise, the buffer first must be flushed to the index file before
being overwritten.

Values not found in the cache when requested are “misses” and must be read from disk.
Values that are found are “hits.”The purpose of the key cache is to reduce disk accesses
(that is, to minimize the ratio of misses to requests). It boosts performance greatly because
memory access is much faster than disk access.

Index buffers containing frequently used values tend to stay in the key cache, but a
larger cache increases the chance of a hit.This in turn decreases the need to discard buffers
to make room for new ones and minimizes the number of disk accesses needed for index
processing. If your server’s key cache currently is small and you have memory available,
making the cache larger generally is one of the single easiest and best configuration
changes you can make.

To configure the key cache size, set the key_buffer_size system variable. Its default
value is 8MB, but can be increased up to 4GB if you have the memory available. For ex-
ample, to set the key cache to 512MB, you can put these lines in an option file:

672 Chapter 12 General MySQL Administration

[mysqld]

key_buffer_size = 512M

Be careful not to set the key cache size so large that you use all available memory.That
can cause the key cache itself to get paged out, which defeats the purpose of using a cache
to hold information in memory. Remember too that other storage engines use their own
buffers for which memory must be allocated, and that generally there are other processes
running on the server host that require memory.

The preceding discussion is written as though there is a single key cache. However,
MySQL actually supports multiple key caches, which provides more control over cache
operation through the following features:

n You can use the default single key cache or create multiple caches.
n You have control over total cache size, cache block size, and the buffer discard

algorithm.
n You can assign tables to specific caches.
n You can preload table indexes into a cache.

Multiple key caches can serve to reduce cache contention. If you have a table or set of
tables that are heavily used, you can assign them to a separate key cache so that index
caching for them does not have to compete with all the other tables that are processed
through the default cache.

Each key cache is associated with a set of system variables. Because these variables are
related, they are grouped as components that form a structured system variable. Structured
variables are an extension of simple system variables, so they are accessed using a syntax
that combines a cache name and a variable name:

cache_name.var_name

Each key cache structured variable has these components:

n key_buffer_size is the total size of the key cache, in bytes.
n key_cache_block_size is the size of blocks in the key cache, in bytes. By default,

blocks are 1024 bytes.
n key_cache_limit influences the cache buffer reuse algorithm. If set to its default

value of 100, the key cache uses a least recently used strategy for determining which
cache buffers to reuse. If set lower than 100, the key cache uses a midpoint insertion
strategy that splits the cache into warm and hot sub-chains.The value of
key_cache_limit is the percentage of the key cache to use for the warm buffer
sub-chain.The value should be from 1 to 100.

With the midpoint insertion strategy that uses warm and hot sub-chains, an at-
tempt is made to keep the most frequently accessed buffer blocks in the hot sub-
chain. Buffers can move between the hot or warm sub-chains as access to them
increases or decreases. Buffers to reuse and overwrite always are chosen from the
warm sub-chain.

67312.7 Storage Engine Configuration

n key_cache_age_threshold indicates how long buffers stay unused in the hot sub-
chain of the key cache before being moved to the warm sub-chain. Higher values
enable blocks to remain in the hot sub-chain longer.The default is 300.The mini-
mum value is 100.

One key cache is the default and has a name of default. If you refer to a key cache
component variable without using a cache name, MySQL uses the default cache.Thus,
key_buffer_size and default.key_buffer_size refer to the same variable. Key cache
names must be legal identifiers and are not case sensitive.They can be quoted like any
other identifier (see Section 2.2,“MySQL Identifier Syntax and Naming Rules”).

To create a new key cache, simply assign a value to one of the components of the asso-
ciated variable. For example, to create a cache named my_cache with a size of 24MB, at
server startup, add these lines to the server option file:

[mysqld]

my_cache.key_buffer_size = 24M

To create the cache at runtime, use this statement:

SET GLOBAL my_cache.key_buffer_size = 24*1024*1024;

The GLOBAL keyword is necessary because key caches are global. No special privileges
are required to access component values, but you must have the SUPER privilege to set
them.

After you create a key cache, you can assign MyISAM tables to it with CACHE INDEX.
This statement names a key cache and one or more tables to be assigned to it.The follow-
ing statement assigns the member and president tables from the sampdb database to the
cache named my_cache:

CACHE INDEX member, president IN my_cache;

You can also preload table indexes into their assigned cache with LOAD INDEX INTO
CACHE if you choose:

LOAD INDEX INTO CACHE member, president;

It is not necessary to preload the indexes, but the server reads index blocks sequentially
if you do.This is more efficient than waiting for them to be fetched as needed.

The CACHE INDEX and LOAD INDEX INTO CACHE statements require that you have the
INDEX privilege for the tables that are to be assigned to or preloaded into a cache.

To destroy a key cache, set its size to zero.Any tables assigned to the cache are reas-
signed to the default cache. If you set the size of the default key cache to zero, indexes of
tables assigned to it are processed using filesystem caching the same way as for MyISAM
data files.

Key cache assignments last only until the server shuts down.To make assignments each
time the server starts, place the appropriate CACHE INDEX and LOAD INDEX INTO CACHE

statements in a file and start the server with an --init-file option that names the file.

674 Chapter 12 General MySQL Administration

12.7.3 Configuring the InnoDB Storage Engine
The InnoDB storage engine manages a shared tablespace for storing table contents and its
data dictionary.You also have the option of configuring InnoDB to use one tablespace per
table. InnoDB has its own log files and memory buffers as well.

12.7.3.1 Configuring the InnoDB Tablespace
By default, the InnoDB storage engine does not use separate files for each table the way
that other storage engines such as MyISAM do. Instead, it manages all InnoDB tables
within a single shared tablespace, which is a logically unified block of storage that the
engine treats as a giant data structure. (In a sense, the tablespace is something like a virtual
filesystem.) For an InnoDB table stored in the shared tablespace, the only file uniquely
associated with the table is the .frm format file that is stored in the database directory of
the database that the table belongs to.The shared tablespace also contains the InnoDB data
dictionary that stores information about table structure.

It is also possible to configure InnoDB to represent each table using its own tablespace
file. In other words, tables are created using individual tablespaces.To use individual table-
spaces, start the server with the ---innodb-file-per-table option.The shared table-
space still is needed even in this case because it contains the InnoDB data dictionary,
although it need not be as large.

12.7.3.1.1 Shared InnoDB Tablespace Configuration Parameters
The InnoDB shared tablespace, although logically a single storage area, comprises one or
more files on disk. Each component can be a regular file or a raw partition.This section
describes the configuration options that you use to set up and manage the shared table-
space. It’s possible to specify these options on the server command line, but in practice
this is rarely done. Instead, you should configure the tablespace using an appropriate
server group in an option file (for example, the [mysqld] or [server] group), so that the
server uses the same configuration consistently each time it starts.Two options are the
most important:

n innodb_data_home_dir specifies the parent directory of all the component files
that make up the tablespace. If you don’t specify this option, its default value is the
data directory.

n innodb_data_file_path indicates the specifications for the component files of the
tablespace under the InnoDB home directory.The value of this option is a list of
one or more file specifications, separated by semicolons. Each specification consists
of a filename, a size, and possibly other options, separated by colons.The combined
size of the tablespace components must be at least 10MB.

If you provide no values for either option, the InnoDB storage engine creates a default
tablespace consisting of a single 10MB auto-extending file named ibdata1 in the server’s
data directory. By using these options, you can explicitly control the number, size, and
placement of the files in the shared tablespace.

67512.7 Storage Engine Configuration

As a simple example, suppose that you want to create a tablespace consisting of two
50MB files named innodata1 and innodata2 in the data directory. Configure the files as
follows:

[mysqld]

innodb_data_file_path = innodata1:50M;innodata2:50M

No innodb_data_home_dir setting is required in this case because its default value is
the server’s data directory, the desired location for the files.

The following rules describe how the InnoDB storage engine combines the values of
innodb_data_home_dir and innodb_data_file_path to determine the pathnames of the
tablespace files:

n If innodb_data_home_dir is empty, InnoDB treats all file specifications in
innodb_data_file_path as absolute pathnames.“Empty” means that you specify the
option with no value after the equal sign; it does not mean the option is unspecified.

n If innodb_data_home_dir is not empty, it should name the directory under which
all the file specifications in innodb_data_file_path are located. In this case,
InnoDB interprets those filenames relative to the innodb_data_home_dir value.

n If innodb_data_home_dir is not specified, its default value is the pathname to the
MySQL data directory, and InnoDB interprets the filenames in
innodb_data_file_path relative to the data directory.

Based on the preceding rules, the following three configurations each specify the same
set of tablespace files, assuming that the data directory is /var/mysql/data:

[mysqld]

innodb_data_home_dir=

innodb_data_file_path=/var/mysql/data/ibdata1:50M;/var/mysql/data/ibdata2:50M

[mysqld]

innodb_data_home_dir=/var/mysql/data

innodb_data_file_path=ibdata1:50M;ibdata2:50M

[mysqld]

innodb_data_file_path=ibdata1:50M;ibdata2:50M

The innodb_data_file_path value consists of file specifications that are separated by
semicolons.The parts of each specification are separated by colons.The simplest file speci-
fication syntax consists of a filename and a size, but other syntaxes are legal:

path:size

path:size:autoextend

path:size:autoextend:max:maxsize

The first format specifies a file with a fixed size of size.A size value should be a posi-
tive integer followed by M or G to indicate units of megabytes or gigabytes, respectively.
The second format specifies an auto-extending file; if the file fills up, InnoDB extends it

676 Chapter 12 General MySQL Administration

incrementally.The third format is similar, but includes a value indicating the maximum
size to which the auto-extending file is allowed to grow. Only the final component of the
tablespace may be listed as auto-extending.

The default auto-extend increment is 8MB.To specify a different increment, set the
innodb_autoextend_increment system variable.

12.7.3.1.2 Configuring the Shared InnoDB Tablespace
In the usual case, the shared tablespace consists only of regular files and does not include
any raw partitions (device files).To perform the initial setup for a shared tablespace that
contains only regular files, use this procedure:

1. Add the appropriate lines to the option file.

2. Make sure that the directories exist in which the tablespace component files are to
be created. InnoDB creates files, but it will not create directories.

3. Make sure that none of the component files already exist.

4. Start the server. InnoDB will notice that the files do not exist, and will create and
initialize them.

If you’ve already started the server without configuring InnoDB explicitly, InnoDB
will have created a shared tablespace using the default configuration.To configure the
tablespace explicitly, first stop the server and remove the InnoDB-related files (tablespace
and log files).Then specify the configuration options you want to use and restart the
server. (Do this before creating any InnoDB tables. Otherwise, you must dump the tables
with mysqldump before reconfiguring and reload them afterward.)

It is a little more complex to use raw partitions as components of the InnoDB shared
tablespace, but there are several reasons to consider doing so:

n You can easily create very large tablespaces.A partition component can span the
entire extent of the partition, whereas regular file components are limited in size to
the maximum file size allowed by your operating system.

n Raw partition files are guaranteed to be composed of entirely contiguous space on
disk, whereas regular files are subject to filesystem fragmentation.When it initializes
the tablespace, InnoDB tries to minimize fragmentation of regular files by writing
enough zeros to the files to force space for them to be allocated all at once rather
than incrementally. But this can only reduce fragmentation; it cannot guarantee that
it will not occur.

n Raw partitions reduce overhead by eliminating the filesystem management layer.
On some systems, this overhead may not be significant, but on others the difference
might be enough to justify using partitions.

A factor that counts against using raw partitions in the InnoDB tablespace is that your
system backup software might be oriented toward use with filesystems rather than parti-
tions. In this case, using partitions would make it more difficult to perform system backups.

67712.7 Storage Engine Configuration

Including a raw partition in the tablespace is a two-step procedure. Suppose that you
want to use a 20GB partition on a Unix system that has a pathname of /dev/rdsk8. In
this case, it’s necessary to specify a value for innodb_data_home_dir because the partition
doesn’t lie under the data directory. For example, if you set innodb_data_home_dir to an
empty value, you can list the full pathname of the device file in innodb_data_file_path
to configure the partition as follows:

1. Configure the partition initially with a size value that has a newraw suffix.This suffix
tells InnoDB that the file is a raw partition that needs to be initialized:

[mysqld]

innodb_data_home_dir =

innodb_data_file_path = /dev/rdsk8:20Gnewraw

2. Start the server. InnoDB sees the newraw suffix and initializes the partition. It also
treats the tablespace as read-only, because it knows that you have not completed the
second step.

3. After the partition has been initialized, stop the server.

4. Modify the configuration information to change the suffix from newraw to raw:

[mysqld]

innodb_data_home_dir =

innodb_data_file_path = /dev/rdsk8:20Graw

5. Start the server again. InnoDB sees that the suffix is raw rather than newraw and as-
sumes that the partition has been initialized and that it can use the tablespace in
read/write fashion.

If you specify a raw partition as part of the InnoDB tablespace, make sure its permis-
sions are set so that the server has read/write access to it.Also, make sure the partition is
being used for no other purpose. Otherwise you will have competing processes each
thinking that they own the partition and can use it as they please, with the result that
they’ll stomp all over each other’s data. For example, if you mistakenly specify a swap par-
tition for use by InnoDB, your system will behave quite erratically!

When configuring the InnoDB shared tablespace on Windows systems, backslashes in
pathnames can be specified using either single forward slashes (‘/’) or doubled backslashes
(‘\\’).Also, you should still separate the parts of each file specification with colons, even
though colons may also appear in filenames (full Windows pathnames begin with a drive
letter and a colon).When it encounters a colon, InnoDB resolves this ambiguity by look-
ing at the following character. If it is a digit, the next part of the specification is taken to
be a size. Otherwise, it’s taken as part of a pathname. For example, the following configu-
ration sets up a tablespace consisting of files on the C and D drives with sizes of 50MB
and 60MB:

[mysqld]

innodb_data_home_dir =

innodb_data_file_path = C:/ibdata1:50M;D:/ibdata2:60M

678 Chapter 12 General MySQL Administration

When you’re setting up the initial tablespace, if startup fails because InnoDB cannot
create some necessary file, check the error log to see what the problem was.Then remove
all the files that InnoDB created (excluding any raw partitions you may be using), correct
the configuration error, and start the server again. If you have raw partitions, remember to
change the specification to say newraw when initializing the partitions and back to raw
after starting and stopping the server.

12.7.3.1.3 Reconfiguring the Shared InnoDB Tablespace
After the shared tablespace has been initialized and you have begun to use it, you cannot
change the size of its component files. However, you can add another file at the end of the
list of existing files, which may be helpful if the tablespace fills up. One symptom of a full
tablespace is that InnoDB transactions consistently fail and roll back when they should
succeed.You can determine the amount of free space with the following statement, where
tbl_name is the name of any InnoDB table that is located in the shared tablespace:

mysql> SHOW TABLE STATUS LIKE 'tbl_name';

To make the shared tablespace larger by adding another component, use this procedure:

1. Stop the server if it is running.

2. If the final component of the tablespace is an auto-extending file, you must change
its specification to that of a fixed-size file before adding another file after it.To do
this, determine the current actual size of the file.Then round the size down to the
nearest multiple of 1 megabyte (measured as 1,048,576 bytes, not 1,000,000 bytes)
and use that size in the file’s specification. Suppose that you have a file currently
listed like this:

[mysqld]

innodb_data_file_path = ibdata1:100M:autoextend

If the file’s actual size now is 121,634,816 bytes, that is 121,634,816 / 1,048,576 =
116 megabytes. Change the specification as follows:

[mysqld]

innodb_data_file_path = ibdata1:116M

3. Add the specification for the new component to the end of the current file list. If
the new component is a regular file, make sure that it does not already exist. If the
component is a raw partition, add it using the two-step procedure described earlier
for specifying a partition as part of the tablespace. (That is, first with newraw, and
then with raw after starting and stopping the server.)

4. Restart the server.

If you want to reconfigure the shared tablespace in some way other than adding a new
file to the end, you should dump it and then reconstruct it using the new configuration:

67912.7 Storage Engine Configuration

1. Use mysqldump to dump all your InnoDB tables that are stored in the shared table-
space.

2. Stop the server and delete your existing InnoDB shared tablespace files (other than
raw partitions), the InnoDB log files, and the .frm files that correspond to the
dumped InnoDB tables. (An alternative to deleting .frm files is to use DROP TABLE
for every InnoDB table while the server is running.)

3. Reinitialize the tablespace according to the new configuration you want to use.

4. Reload the dump file into the server to re-create the InnoDB tables.

12.7.3.1.4 Using Individual (Per-Table) InnoDB Tablespaces
To use one tablespace per InnoDB table, start the server with the --innodb-file-per-
table option. In this case, each InnoDB table has an .frm format file and an .ibd data
file, both stored in the database directory for the database that contains the table.

The choice of whether to use individual tablespaces affects only how InnoDB creates
new tables. InnoDB can always access tables already created in the shared tablespace or
with individual tablespaces, regardless of whether the --innodb-file-per-table option
is used.

12.7.3.2 InnoDB Storage Engine Variables
The preceding section discusses how to configure InnoDB’s tablespace. InnoDB also has
its own log files and memory buffers, and several other configuration parameters.The fol-
lowing list describes a few parameters that commonly are used to affect the operation of
the InnoDB storage engine.

n innodb_buffer_pool_size

If you have the memory available, making the InnoDB buffer pool larger can reduce
disk usage for accessing table data and indexes.

n innodb_log_buffer_size

InnoDB tries to buffer information about each transaction in memory and flush it
to disk in a single operation when the transaction finishes. If a transaction is large
and exceeds the size of the buffer, more disk activity is required to flush the buffer
multiple times before the transaction finishes. Increasing the size of the buffer
enables larger transactions to be buffered in memory without early flushing.The
default value is 1MB.The maximum useful value is 8MB.

n innodb_log_group_home_dir

InnoDB has its own log files, which it creates during server startup if they do not
exist. By default, these logs are created in the data directory and have names that be-
gin with ib_. innodb_log_group_home_dir can be used to set the pathname to the

680 Chapter 12 General MySQL Administration

directory where InnoDB should write its log files. InnoDB will create only files, not
directories, so make sure that the log file directory exists prior to starting the server.

n innodb_log_file_size, innodb_log_files_in_group

When its logs fill up, InnoDB checkpoints the buffer pool by flushing it to disk.
Using larger InnoDB log files reduces the frequency with which the logs fill up, and
thus reduces the number of times this flushing occurs. (The tradeoff is that with
larger logs, the time for recovery after a crash increases.) You can modify
innodb_log_file_size to change the size of the log files or innodb_log_
files_in_group to change the number of files.The important characteristic is the
total size of the logs, which is the product of the two values.The total size of the
logs must not exceed 4GB.

12.7.4 Configuring the Falcon Storage Engine
The Falcon storage engine is designed with the goal of being self-tuning and relatively
maintenance free so as to simplify administration. For example, Falcon log and tablespace
files grow automatically as necessary and free space is reclaimed as it becomes available.

The following list describes some of the Falcon parameters that you might want to
change when configuring your server:

n falcon_page_size

Falcon writes tablespaces using a fixed page size (4KB by default).You can assign
falcon_page_size a value in bytes to select a page size.The allowable values are
1KB, 2KB, 4KB, 8KB, 16KB or 32KB.You must configure the page size before
Falcon creates any tablespace files.To change the page size if Falcon has already cre-
ated tablespaces, you must back up and drop your Falcon tables, stop the server and
remove the Falcon files, and then restart the server with the new page size and
reload the dump file.

n falcon_serial_log_dir

The directory in which Falcon creates its log files.The default location is the data
directory.

Falcon enables you to create additional tablespaces for table storage.You might do this
to distribute storage across multiple physical devices for better I/O efficiency, for example.
To create a new tablespace for Falcon tables, use CREATE TABLESPACE:

CREATE TABLESPACE myts

ADD DATAFILE '/usr/local/mysql/data/falcon_myts.fts'

ENGINE = FALCON;

By default, Falcon tables are assigned to the default tablespace when they are created.
To put a table in your new tablespace, use a TABLESPACE option in the CREATE TABLE
statement:

CREATE TABLE mytbl (i INT) ENGINE = Falcon TABLESPACE myts;

68112.9 Internationalization and Localization Issues

12.8 Enabling or Disabling LOCAL Capability for
LOAD DATA
The LOCAL capability for the LOAD DATA statement need not be enabled. It can be con-
trolled at build time and at runtime as follows:

n At build time, LOCAL capability for the client library can be enabled or disabled by
default by using the --enable-local-infile or --disable-local-infile option
when you run configure.

n At runtime, the server can be started with the --local-infile or --skip-local-
infile options to enable or disable LOCAL capability on the server side.

If LOCAL is disabled on the server side, clients cannot use this capability at all. If LOCAL
is enabled on the server side, the client library might still have LOCAL disabled by default
on the client side, but certain programs may allow it to be enabled on demand. For exam-
ple, mysql has a --local-infile option to enable LOCAL, and mysqlimport has a
--local option.

For programs that have no explicit option for enabling or disabling LOCAL, you might
still be able to control this capability if the program reads option files implicitly.This de-
pends on whether the program invokes the mysql_options() C API function with the
MYSQL_READ_DEFAULT_FILE or MYSQL_READ_DEFAULT_GROUP option that causes option
files to be read when the connection to the server is made. If the program does use
mysql_options() in this way, you can list a local-infile or disable-local-infile
option in an appropriate option file to enable or disable LOCAL.The mysql_options()
function is described in Appendix G,“C API Reference” (online).

Programming interfaces for MySQL in other languages also may be able to control
LOCAL this way if they are based on the C API and invoke mysql_options(). For exam-
ple, in a Perl DBI script, you can use the mysql_read_default_file and mysql_read_

default_group options in the data source name string that controls how the script con-
nects to the MySQL server.

12.9 Internationalization and Localization Issues
“Internationalization” refers to the capability of software to be used according to local
convention, for any of a variety of locations.“Localization” refers to selecting a particular
set of local conventions from among those sets that are supported.The following aspects of
MySQL configuration relate to internationalization and localization:

n The server default time zone
n The language used for displaying diagnostic and error messages
n The available character sets and the default character set

682 Chapter 12 General MySQL Administration

12.9.1 Configuring Time Zone Support
In MySQL the server sets its default time zone by examining its environment. Most often,
this will be the local time zone of the server host, but you can specify the time zone ex-
plicitly at server startup. In addition, the server enables each client that connects to over-
ride the default setting and set its own time zone.This enables applications to use time
settings that depend on where the client program is running rather than where the server
is running.The following discussion describes MySQL’s capabilities for supporting multi-
ple time zones.

Two system variables hold time zone information:

n system_time_zone represents the time zone that the server determines to be the
server host time zone at startup time.This variable exists only as a global system
variable and cannot be reset at runtime.You can influence how the server sets
system_time_zone at startup time by setting the TZ environment variable to the
desired time zone before starting the server. However, it may not be easy to guaran-
tee that TZ will be set in some contexts, such as when the server is started during
the system boot sequence. On Unix, another way to set the time zone is by specify-
ing a --timezone option to the mysqld_safe startup script (not to mysqld, which
does not understand the option). It’s probably best to list this option in the
[mysqld_safe] group of an option file, especially if you invoke mysqld_safe indi-
rectly through mysql.server, which does not support command-line options. For
example, to specify the U.S. Central time zone for mysqld_safe, add the following
to your server option file:

[mysqld_safe]

timezone=US/Central

The example shows one widely used syntax (it works on Solaris, Linux, and Mac
OS X, for example).Another common syntax is as follows:

[mysqld_safe]

timezone=CST6CDT

Use whatever syntax is indicated in your system documentation.
n time_zone represents the MySQL server’s default time zone. By default, this vari-

able is set to SYSTEM, which means “use the system_time_zone setting.” You can set
time_zone at startup time by using the --default-time-zone option for mysqld.
As the server runs, it uses the global value of time_zone to set the session
time_zone value for each client that connects, which becomes the client’s default
time zone.Any client can reset the time zone for its own connection by setting the
session time_zone variable.An administrative client that has the SUPER privilege can
set the global time_zone variable to change the default for clients that connect
thereafter.

68312.9 Internationalization and Localization Issues

To determine the current values of the global and session time zone variables, use this
statement:

SELECT @@GLOBAL.time_zone, @@SESSION.time_zone;

You can set the time_zone variable using three kinds of values, although one of them
requires additional administrative action.The statements shown here set the session value.
If you have the SUPER privilege, you can substitute GLOBAL to set the global value.

n You can use the value SYSTEM to set time_zone to the value of system_time_zone:

SET SESSION time_zone = 'SYSTEM';

n You can use values that specify a signed hour and minute offset from UTC:

SET SESSION time_zone = '+00:00'; # UTC

SET SESSION time_zone = '+03:00'; # 3 hours ahead of UTC

SET SESSION time_zone = '-11:00'; # 11 hours behind UTC

n You can use named time zones that refer to a locale:

SET SESSION time_zone = 'US/Central';

SET SESSION time_zone = 'CST6CDT';

SET SESSION time_zone = 'Asia/Jakarta';

To use the last method (setting the time zone by name), you must enable the server to
understand time zone names by loading information from the operating system’s time
zone files into a set of tables in the mysql database.This does not happen automatically
during MySQL installation.You must populate the tables manually by using the
mysql_tzinfo_to_sql program, which reads time zone files and constructs SQL state-
ments from their contents. Feed these statements to the mysql program to execute them.

To set up the time zone tables on a system that has time zone files, determine where
they are installed. If this location is /usr/share/zoneinfo, the command to load the files
into the mysql database looks like this:

% mysql_tzinfo_to_sql /usr/share/zoneinfo | mysql -p -u root mysql

Then restart the server.That should suffice for most versions of Unix. For Windows
and for Unix systems that do not have a set of time zone files, you can obtain a package
containing a set of pre-built MyISAM tables containing time zone information from this
location:

http://dev.mysql.com/downloads/timezones.html

Download the package and unpack it.With the MySQL server stopped, copy the .frm,
.MYD, and .MYI files into the mysql database directory under your data directory.Then
restart the server.

http://dev.mysql.com/downloads/timezones.html

684 Chapter 12 General MySQL Administration

12.9.2 Selecting the Language for Error Messages
The MySQL server can produce diagnostic and error messages in any of several lan-
guages.The default is english, but you can specify others.To see which are available,
look under the share/mysql directory of your MySQL installation.The directories that
have language names correspond to the available languages.To change the message lan-
guage, use the --language startup option.The argument can be either the language
name or the pathname to the language directory. For example, to use French if your
installation is located under /usr/local/mysql, use either --language=french or
--language=/usr/local/mysql/share/mysql/french.

12.9.3 Configuring Character Set Support
A character set determines which characters are allowed in string values. MySQL supports
multiple character sets and you can select character sets at the server, database, table, col-
umn, and string constant levels. MySQL also supports multiple collating sequences per
character set. Collations affect string comparison and sorting operations.

This section describes how to configure MySQL’s character set support. For general
background on the server’s character set capabilities, see Chapter 2. For details on creating
character columns and using them, see Chapter 3,“Data Types.”

When you configure the server at build time, you can specify which character sets the
server should support, as well as the default character set and collation. Use the following
options to the configure script:

n To specify which of the available character sets the server should support, use the
--with-extra-charsets option. Its argument is a comma-separated list of charac-
ter set names. For example, you can include support for the latin1, big5, and
hebrew character sets like this:

% ./configure --with-extra-charsets=latin1,big5,hebrew

Two special character set names select groups of character sets: all includes all avail-
able character sets, and complex includes all complex character sets.A set is complex
if it is either a multi-byte character set or it requires special rules for sorting.

To determine which character sets can be selected, use the following command and
look for the description of the --with-charset option in the output:

% ./configure --help

n The default character set is latin1.To configure a different default, use the --with-
charset option.

n The default collation is latin1_swedish_ci.To configure a different default, use
the --with-collation option.The collation must be compatible with the default
character set. (That is, the beginning part of the collation name must be the same as
the character set name.)

68512.10 Running Multiple Servers

Here is a sample configuration command that uses all three options:

% ./configure --with-charset=utf8 \

--with-collation=utf8_icelandic_ci \

--with-extra-charsets=all

At runtime, the server sets its default character set and collation to the built-in defaults
unless you specify otherwise.To select different default values, use the --character-set-
server and --collation-server startup options.The collation must be compatible with
the character set.

When you run a client program, you can specify the character set that you want the
program to use by giving the --default-character-set option. If the character set you
want isn’t available as part of your MySQL installation, but you do have the necessary
character set files installed under another directory, you can tell the client program their
location by specifying the --character-sets-dir option.

12.10 Running Multiple Servers
Most people run a single MySQL server on a given machine, but there are circumstances
under which multiple servers can be useful:

n You want to test a new version of the server while leaving your production server
undisturbed. In this case, you’ll be running different server binaries.

n You want to try replication to familiarize yourself with it, but you have only a single
server host and must run the master and slave on the same machine.

n Operating systems typically impose per-process limits on the number of open file
descriptors. If your system makes it difficult to raise the limit, running multiple in-
stances of the server binary is one way to work around that limitation. (For exam-
ple, raising the limit might require recompiling the kernel, and you cannot to do
that if you’re not in charge of administering the machine.)

n Internet service providers often provide individual customers with their own
MySQL installation, which necessarily requires multiple servers.This may involve
running multiple instances of the same binary if all customers run the same version
of MySQL, or different binaries if some customers run different versions than others.

Those are some of the more common reasons to run multiple servers, but there are
others. For example, if you write MySQL documentation, it’s often necessary to test vari-
ous server versions empirically to see how their behavior differs. I fall into this category,
for which reason I have several dozen servers installed. However, I run very few of them
all the time.The others I run only on occasion for testing purposes, so I must be able to
start and stop them easily on demand.

686 Chapter 12 General MySQL Administration

12.10.1 General Multiple Server Issues
Running multiple servers is more complicated than running just one because you need to
keep them from interfering with each other. Some of the issues that arise occur when you
install MySQL. If you want to have several different versions installed simultaneously, they
must each be placed into a different location. For precompiled binary distributions, you
can accomplish this by unpacking them into different directories. For source distributions
that you compile yourself, you can use the --prefix option for configure to specify a
different installation location for each distribution.

Other issues occur at runtime when you start the servers. Every server process must
have unique values for several parameters. For example, each server must listen to a differ-
ent TCP/IP port for incoming connections or they will collide with each other.This is
true whether you run different server binaries or multiple instances of a single binary.The
same principle applies to other connection interfaces: Unix socket files,Windows named
pipes, or shared memory. If you enable logging, each server must write to its own set of
log files, because having different servers write to the same files is sure to cause problems.

You can specify a server’s options at runtime when you start it, typically in an option
file.Alternatively, if you run several server binaries that you compile from source yourself,
you can specify during the build process a different set of parameter values for each server
to use.These become its built-in defaults, and you need not specify them explicitly at
runtime.

When you run multiple servers, be sure to keep good notes on the parameters you’re
using so that you don’t lose track of what’s going on. One way to do this is to use option
files to specify the parameters.The option files serve as a form of explicit documentation,
which can be useful even for servers that have unique default parameter values compiled in.

The following discussion enumerates several types of runtime options that have the
potential for causing conflicts if they’re not set on a per-server basis. Note that some
options influence others, so you may not need to set each one explicitly for every server.
For example, each server must use a unique set of log files when it runs. But the data
directory is the default location for all of them, so if each server uses a different data direc-
tory, that implicitly results in different sets of log files.

n If you’re running different server versions, it’s typical for each distribution to be in-
stalled under a different base directory. Each server also should have a separate data
directory. (Use of separate data directories is mandatory on Windows and strongly
recommended on Unix.) To specify these values explicitly, use the options in the
following table.

Option Purpose

--basedir=dir_name Pathname to root directory of MySQL
installation

--datadir=dir_name Pathname to data directory

68712.10 Running Multiple Servers

In many cases, the data directory will be a subdirectory of the base directory, but not
always. For example, an Internet service provider might provide a common set of
MySQL server and client programs for its customers, but run for each customer an
instance of the server that uses a customer-specific data directory. In this case, the
base directory would be the same for all servers, but individual data directories
would be located in different places, perhaps under customer home directories.

n The network interface options in the following table must have different values for
each server, to prevent multiple servers from listening on the same interfaces.

On Windows, the --socket or --shared-memory-base-name options need be
given only for those servers that are run with the --enable-named-pipe or --
shared-memory options to enable named-pipe or shared-memory connections. In
this case, one server can use the default named-pipe and shared-memory names
(MySQL and MYSQL, respectively), but any others must specify different names.

n If you enable logging, any log filenames that you use must be different for each
server. Otherwise, you’ll have multiple servers contending to write to the same log
files.That is at best confusing, and at worst prevents things like replication from
working correctly. Log files named by the options in the following table are created
under the server’s data directory if you specify relative filenames. If each server uses
a different data directory, you need not specify absolute pathnames to get each one
to log to a distinct set of files. (See Section 12.5,“Maintaining Logs,” for more
information about naming log files.)

Option Purpose

--port=port_num Port number for TCP/IP connections

--socket=file_name Unix domain socket-file pathname or Windows named-
pipe name

--pid-file=file_name Pathname to file in which server writes its process ID

--shared-memory-

base-name=name

Name of shared memory to use for shared-memory con-
nections (Windows only)

Logging Option Log Enabled by Option

--log-error[=file_name] Error log file

--log[=file_name] General log file

--log-slow-queries[=file_name] Slow-query log file

--log-output[=destination] General/slow-query log destination

--log-bin[=file_name] Binary log file

--log-bin-index=file_name Binary log index file

688 Chapter 12 General MySQL Administration

n If you are using servers as replication slaves, each must have a unique set of master
and relay log information files.These are created in the data directory by default and
are set explicitly with the --master-info-file and --relay-log-info-file

options.
n Under Unix, if you use mysqld_safe to start your servers, it creates an error log file

(in the data directory by default).You can specify the error log name explicitly with
--log-error=file_name. However, before MySQL 5.1.11, if you specify a relative
pathname, mysqld_safe interprets it as relative to the directory from which it is in-
voked, not relative to the data directory. Specify an absolute pathname to make sure
you always create the error log in the proper location.Alternatively, as of MySQL
5.1.20, you can send error output to syslog. For details, see Section 12.5.1,“The
Error Log.”

n If the InnoDB or Falcon storage engine is enabled, the directory in which it writes
its logs must be unique per server. By default, these engines write their logs to the
data directory.To change the location, use the options in this table.

Each server that uses InnoDB must be configured to use its own shared tablespace.
The options for this are described in Section 12.7.3.1,“Configuring the InnoDB
Tablespace.”

n Under Unix, it may be necessary to specify a --user option on a per-server basis to
indicate the login account to use for running each server.This is very likely if you’re
providing individual MySQL server instances for different users, each of whom
“owns” a separate data directory.

n Under Windows, different servers that are installed as services each must use a
unique service name.

12.10.2 Configuring and Compiling Different Servers
If you’re going to build different versions of the server, you should install them in different
locations.The easiest way to keep different distributions separate is to indicate a different
installation base directory for each one by using the --prefix option when you run
configure. If you incorporate the version number into the base directory name, it’s easy
to tell which directory corresponds to which version of MySQL.This section illustrates

Logging Option Log Enabled by Option

--relay-log[=file_name] Relay log file

Logging Option Purpose

--innodb_log_group_home_dir=dir_name InnoDB log file directory

--falcon-serial-log-dir=dir_name Falcon log file directory

--relay-log-index=file_name Relay log index file

68912.10 Running Multiple Servers

one way to accomplish that goal. It describes the particular configuration conventions that
I use to keep my own MySQL installations separate.

My layout places all MySQL installations under a common directory, /var/mysql.To
install a given distribution, I put it in a subdirectory of /var/mysql named using the dis-
tribution’s version number. For example, I use /var/mysql/50124 as the installation base
directory for MySQL 5.1.24, which can be accomplished by running configure with a
--prefix=/var/mysql/50124 option. I also use other options for additional server-specific
values, such as the TCP/IP port number and socket pathname.The configuration I use
makes the TCP/IP port number equal to the version number, puts the socket file directly
in the base directory, and names the data directory as data there.

To set up these configuration options, I use a shell script named config-ver that
looks like this (note that the data directory option for configure is --localstatedir,
not --datadir):

VERSION=50124

BASEDIR=/var/mysql/$VERSION

TCP_PORT=$VERSION

HANDLERS="

--with-archive-storage-engine

--with-csv-storage-engine

--with-federated-storage-engine

--with-innodb

"

OTHER="

--enable-local-infile

--with-embedded-server

--with-extra-charsets=all

--with-partition

--with-row-based-replication

--with-ssl

"

rm -f config.cache

CXX=gcc \

./configure \

--prefix=$BASEDIR \

--localstatedir=$BASEDIR/data \

--with-unix-socket-path=$BASEDIR/mysql.sock \

--with-tcp-port=$TCP_PORT \

$HANDLERS $OTHER

I make sure the first line is set to the proper version number and modify the other val-
ues as necessary according to which of the optional storage engines I want to compile in,
whether to enable LOCAL support for LOAD DATA, and so forth.That done, the following
commands configure, build, and install the distribution:

% sh config-ver

% make

% make install

690 Chapter 12 General MySQL Administration

These commands work for a source distribution that has been packaged as a release. If
you are working with a source tree obtained as a clone of the latest development sources,
the configure script must be created as described in the MySQL Reference Manual
before you can use config-ver.

After installing a given version of MySQL, it’s necessary to change location into its
installation base directory and initialize the data directory and grant tables:

cd /var/mysql/50124

./bin/mysql_install_db --user=user_name

user_name is the name of the login account to be used for running the server (for ex-
ample, the mysql account).You should run these commands while logged in as root or as
user_name.

At this point, I perform the lockdown procedure for the MySQL installation direc-
tory that is described briefly in Section 12.2.1.1,“Running the Server Using an Unpriv-
ileged Login Account,” and in more detail in Section 13.1.2,“SecuringYour MySQL
Installation”.

After that, all that remains is to set up any options that I want to use in option files and
to arrange for starting the server. Section 12.10.4,“Using mysqld_multi for Server
Management,” discusses one way to do this.

12.10.3 Strategies for Specifying Startup Options
After you have your servers installed, how do you get them started up with the proper set
of runtime options that each one needs? You have several choices:

n If you run different servers that you build yourself, you can compile in a different set
of defaults for each one and no options need to be given at runtime.This has the dis-
advantage that it’s not necessarily obvious what parameters any given server is using.

n To specify options at runtime, you can list them on the command line or in option
files. If you need to specify lots of options, writing them on the command line is
likely to be impractical. Putting them in option files is more convenient, although
then the trick is to get each server to read the proper set of options. Strategies for
accomplishing this include the following:

n Use a --defaults-file option to specify the file that the server should read
to find all of its options, and specify a different file for each server.This way,
you can put all the options needed by a given server into one file to fully
specify its setup in a single place. (Note that when you use this option, none
of the usual option files, such as /etc/my.cnf, will be read.)

n Put any options that are common to all servers in a global option file such as
/etc/my.cnf and use a --defaults-extra-file option on the command
line to specify a file that contains additional options that are specific to a given
server. For example, use the [mysqld] group in /etc/my.cnf for options that

69112.10 Running Multiple Servers

should apply to all servers.These need not be replicated in individual per-
server option files.

Be sure that any options placed into a common option group are understood
by all servers that you run. For example, you can’t use event_manager=1 to
enable the event scheduler if any of your servers are older than version 5.1.6,
because that is when events were introduced. Its presence in a common
option group will cause startup failure for older servers.

If all of your servers are from MySQL 4.0.2 or newer, you can use the
loose-opt_name syntax to specify options that are not understood by all
servers. Servers that do not understand an option given this way will ignore
the option and continue to execute after logging a warning. For more infor-
mation about “loose” options, see Section F.1,“Specifying Program Options.”

n Use the mysqld_multi script to manage startup for multiple servers.This
script enables you to list the options for all servers in a single file but associate
each server with its own particular option group in the file.

n Under Windows, you can run multiple services, using the special option file group
naming conventions specific to this style of server setup. See Section 12.2.2.2,
“Running the Server as a Windows Service.”

The following sections show some ways to apply these strategies by demonstrating
how to use mysqld_multi and how to run multiple servers under Windows.

12.10.4 Using mysqld_multi for Server Management
On Unix, the mysqld_safe and mysql.server scripts that are commonly used to start
the server both work best in a single-server setting.To make it easier to handle several
servers, the mysqld_multi script can be used instead.

mysqld_multi works on the basis that you assign a specific number to each server
setup you want to create, and then list that server’s options in an option file [mysqldn]
group, where n is the number.The option file can also contain a [mysqld_multi] group
that lists options specifically for mysqld_multi itself. For example, if I have servers in-
stalled for MySQL 5.0.56, 5.1.24, and 6.0.5, I might designate their option groups as
[mysqld50056], [mysqld50124], and [mysqld60005] and set up the options in the
/etc/my.cnf file like this:

[mysqld50056]

basedir=/var/mysql/50056

datadir=/var/mysql/50056/data

mysqld=/var/mysql/50056/bin/safe_mysqld

socket=/var/mysql/50056/mysql.sock

port=50056

user=mysql

log=qlog

log-bin=binlog

innodb_data_file_path = ibdata1:100M

692 Chapter 12 General MySQL Administration

[mysqld50124]

basedir=/var/mysql/50124

datadir=/var/mysql/50124/data

mysqld=/var/mysql/50124/bin/mysqld_safe

socket=/var/mysql/50124/mysql.sock

port=50124

user=mysql

log=qlog

log-bin=binlog

innodb_data_file_path = ibdata1:50M:autoextend

event_scheduler=ON

[mysqld60005]

basedir=/var/mysql/60005

datadir=/var/mysql/60005/data

mysqld=/var/mysql/60005/bin/mysqld_safe

socket=/var/mysql/60005/mysql.sock

port=60005

user=mysql

log=qlog

log-bin=binlog

skip-innodb

language=french

character-set-server=utf8

The layout parameters that I’ve set up here for each server correspond to the directory
configuration described in Section 12.10.2,“Configuring and Compiling Different
Servers.” I’ve also specified additional server-specific parameters that correspond to varia-
tions in types of logs, storage engines, and so forth.

To start a given server, invoke mysqld_multi with a command word of start and the
server’s option group number on the command line:

% mysqld_multi --no-log start 50124

The --no-log option causes status messages to be sent to the terminal rather than to a
log file.This enables you to see what’s going on more easily.You can specify more than
one server by giving the group numbers as a comma-separated list.A range of server
numbers can be specified by separating the numbers with a dash. However, there must be
no whitespace in the server list. For example:

% mysqld_multi --no-log start 50056,50124-60005

To stop servers or obtain a status report indicating whether they are running, use a
command word of stop or report followed by the server list. For these commands,
mysqld_multi invokes mysqladmin to communicate with the servers, so you’ll also need
to specify a username and password for an administrative account:

% mysqld_multi --nolog --user=root --password=rootpass stop 50056

% mysqld_multi --nolog --user=root --password=rootpass report 50056,60005

69312.10 Running Multiple Servers

The user and password must be applicable to all servers that you want to control with a
given command. mysqld_multi attempts to determine the location of mysqladmin auto-
matically, or you can specify the path explicitly in the [mysqld_multi] group of an
option file.You can also list a default administrative username and password in that option
group to be used for the stop and report commands. For example:

[mysqld_multi]

mysqladmin=/usr/local/mysql/bin/mysqladmin

user=leeloo

password=multipass

From a security standpoint, it is preferable to list the administrative password in an op-
tion file rather than to expose it on the command line. If you put the password in a file,
make sure that the file isn’t publicly readable! For instructions on making the file private,
see Section 13.1.2.2,“Securing Option Files.”

12.10.5 Running Multiple Servers on Windows
There are a couple ways to run multiple servers on Windows. One method is based on
starting the servers manually, and the other is to use multiple Windows services.You can
mix the two approaches if you like.

To start multiple servers manually, create an option file for each one that lists its param-
eters. For example, to run two servers that use the same program binaries but different
data directories, you might create two option files that look like this:

C:\my.ini1 file:

[mysqld]

basedir=C:/mysql

datadir=C:/mysql/data

port=3306

C:\my.ini2 file:

[mysqld]

basedir=C:/mysql

datadir=C:/mysql/data2

port=3307

The data directory must exist before you can start a server, because there is no
mysql_install_db equivalent for Windows. C:\mysql\data should already have been
created for you if you installed MySQL into C:\mysql.The easiest way to set up
C:\mysql\data2 is to create it as a copy of C:\mysql\data. Use the following command
(while no server is running):

C:\> xcopy C:\mysql\data C:\mysql\data2 /E

Then start the servers from the command line, using --defaults-file to tell each
one to read a specific option file:

C:\> mysqld --defaults-file=C:\my.ini1

C:\> mysqld --defaults-file=C:\my.ini2

694 Chapter 12 General MySQL Administration

Clients should connect by specifying the port number appropriate for the server they
want to access.This includes the use of mysqladmin for shutting down the servers.The
first of the following commands uses the default port (3306) and the second specifies port
3307 explicitly:

C:\> mysqladmin -p -u root shutdown

C:\> mysqladmin -p -u root -P 3307 shutdown

To install a MySQL server as a Windows service, use the --install option. For exam-
ple, to install mysqld as a service, you might use one of these commands:

C:\> C:\mysql\bin\mysqld --install

C:\> C:\mysql\bin\mysqld --install service_name

The --install command uses the full pathname to the server.With no service_name
argument or a name of MySQL, the default service name (MySQL) is used; otherwise, the
given name is used. (The rules about which option groups are read in the two cases are
given in Section 12.2.2.2,“Running the Server as a Windows Service.”)

Suppose that you want to run two instances of mysqld, using service names of MySQL
and mysqlsvc2, shared-memory names of MYSQL and mysqlsvc2, and the same data direc-
tories shown in the previous example. Set up the options for each server in one of the
standard option files (such as C:\my.ini) as follows:

group for default ("MySQL") service

[mysqld]

basedir=C:/mysql

datadir=C:/mysql/data

port=3306

shared-memory

shared-memory-base-name=MYSQL

group for "mysqlsvc2" service

[mysqlsvc2]

basedir=C:/mysql

datadir=C:/mysql/data2

port=3307

shared-memory

shared-memory-base-name=mysqlsvc2

The order of the groups is significant.The server installed under the default service
name of MySQL reads only the [mysqld] option group. However, the server installed under
the non-default service name of mysqlsvc2 reads both the [mysqld] and [mysqlsvc2]

groups. By placing the [mysqlsvc2] group second in the option file, it can be used to
override all the options in the [mysqld] group with values that are appropriate for the
server running as the mysqlsvc2 service.

To install and start the services, use these commands:

C:\> C:\mysql\bin\mysqld --install

C:\> net start MySQL

69512.11 Updating MySQL

C:\> C:\mysql\bin\mysqld --install mysqlsvc2

C:\> net start mysqlsvc2

If you provide a service name, you can also specify a --defaults-file option as the
final option on the command line when you install a server:

C:\> C:\mysql\bin\mysqld --install service_name --defaults-file=file_name

This gives you an alternative means of providing server-specific options.The name of
the file is remembered and used by the server whenever it starts, and it reads options only
from the [mysqld] group of that file.

When there are multiple servers running, clients can connect to the default server
using the default TCP/IP port or shared-memory name.To connect to the second server,
specify its TCP/IP or shared-memory parameters explicitly:

C:\> mysql --protocol=tcp --port=3307

C:\> mysql --protocol=memory --shared-memory-base-name=mysqlsvc2

To shut down the servers, use mysqladmin shutdown, net stop, or the Services Man-
ager.To uninstall the services, shut down the servers if they are running, and then remove
each service by specifying --remove and the same service name that you used at server
installation time.You can omit the service name if it is the default name (MySQL):

C:\> mysql --remove

C:\> mysql --remove mysqlsvc2

12.11 Updating MySQL
Because MySQL is under active development, updates appear regularly.This raises the
question for the administrator as to whether to upgrade an MySQL installation when new
releases appear.The following guidelines should help you make this decision.

The first thing you should do when a new release appears is to determine how it differs
from previous releases.To make sure you’re aware of new releases, subscribe to the
announce@lists.mysql.com mailing list. (Visit http://lists.mysql.com/ to find out how to
subscribe.) Each announcement includes the new change notes, so this is a good way to re-
main apprised of new developments. (Alternatively, check the “Release Notes” or “Change
Notes” appendix in the MySQL Reference Manual to familiarize yourself with what’s new.)
Also, you should read the section on upgrading in the MySQL Reference Manual for the
relevant release series.That section indicates any important issues you should consider and
points out any special steps you must take when upgrading.This information is particularly
important if the new release introduces behaviors that are incompatible with earlier releases.

After checking the change notes and upgrading sections in the manual, ask yourself
these questions:

n Are you experiencing problems with your current version that the new version fixes?
n Does the new version have additional features that you want or need?
n Is performance improved for certain types of operations that you use?

http://lists.mysql.com/

696 Chapter 12 General MySQL Administration

If the answer to all these questions is no, you have no compelling reason to upgrade. If
the answer to any question is yes, you might want to go ahead. However, at this point, it’s
often useful to wait a few days and watch the MySQL mailing list to see what other peo-
ple report about the release.Was the upgrade helpful? Were bugs or other problems found?

Some other factors to consider that may help you make your decision are as follows:

n Releases in a stable series are most often for bug fixes, not new features.There is gen-
erally less risk for upgrades within a stable series than within a development series.

n If you upgrade MySQL, you might need to upgrade other programs that are built
with the MySQL C client library linked in. For example, after a MySQL upgrade,
other libraries or applications that depend on the MySQL C client library might
need to be rebuilt to link the new client library. (Examples include the Perl
DBD::mysql module and PHP.An obvious symptom that you need to rebuild them
is that all your MySQL-related DBI and PHP scripts start dumping core after you
upgrade MySQL.) If you prefer to avoid these rebuilds, you might be better off not
upgrading MySQL. If you use statically linked rather than dynamically linked pro-
grams, the likelihood of this problem is much reduced, but then your system mem-
ory requirements increase.

If you’re still not sure whether to upgrade, you can test the new server independently
of your current server.You can do this either by running it in parallel with your produc-
tion server, or by installing it on a different machine. It’s easier to maintain independence
between servers if you use a different machine because you have greater freedom to con-
figure it as you choose. If you elect to run the new server in parallel with an existing
server on the same host, be sure to configure it with unique values for parameters such as
the installation location, the data directory, and the network interfaces on which the server
listens for connections. For details, see Section 12.10,“Running Multiple Servers.”

In either case, you’ll probably want to test the new server using a copy of the data in
your existing databases. See Section 14.3,“Making Database Backups,” for instructions on
copying databases.

If you upgrade to a version that it not backward compatible with older versions and
then decide to revert to the earlier version, it may not be so easy to downgrade. For ex-
ample, several changes were made in the early releases of MySQL 5.0 (storage format for
the VARCHAR and DECIMAL data types being notable examples). If you upgrade from
MySQL 4.1 to 5.0 or higher and convert your tables to 5.0 format, they’ll be incompati-
ble with your older server. If you decide to downgrade back to 4.1, one useful strategy is
to dump your databases using the --compatible option of mysqldump to generate dump
files for loading into the older server.

69712.11 Updating MySQL

Don’t Be Afraid to Try Development Releases
It’s not a wise idea to use a development release for production purposes, such as manag-
ing your business assets. On the other hand, I do encourage you to test new releases, per-
haps with a copy of your production data. The greater the number of people that try new
releases, the more thoroughly they are exercised. This improves the likelihood of finding any
bugs that may exist, which is a good thing. Bug reports are a significant factor in helping
MySQL development move forward, because the developers do fix problems that the user
community reports.

If you want an ongoing source of statements to be executed by a test server, consider using a
production server as a replication master and setting up the test server as a replication
slave. That way, updates executed by the master server will be sent to the slave server, pro-
viding it with a continual stream of input. The master will not send any retrievals to the slave,
but you can point client programs at the slave and issue SELECT statements to see how it
processes them.

This page intentionally left blank

13
Access Control and Security

As a MySQL administrator, you are responsible for keeping the contents of databases se-
cure so that data can be accessed by only those who have the proper authorization.To ac-
complish this goal, you must maintain the security and integrity of your MySQL
installation. Chapter 12,“General MySQL Administration,” already touched on a few se-
curity-related topics, such as the importance of assigning passwords to the initial MySQL
root accounts and how to set up additional user accounts.Those topics were dealt with as
part of the process of getting your installation up and running. In this chapter, we’ll look
more closely at security-related issues:

n Why security is important and what kind of attacks you should guard against
n Internal security risks you face from other users with login accounts on the server

host and what you can do about them
n External security risks you face from clients connecting to the server over the net-

work and what you can do about them

Internal security concerns the issues that arise in relation to other users who have di-
rect access to the MySQL server host—that is, other users who have login accounts on
that host. Generally, internal security exploits involve filesystem access.To counter this,
you need to protect the contents of your MySQL installation from being attacked by
people who have accounts on the machine on which the server runs. In particular, the
server’s data directory should be owned and controlled by the login account used for run-
ning the MySQL server. If you don’t do this, your other security-related efforts may be
compromised. For example, you’ll want to make sure you’ve properly set up the MySQL
accounts listed in the grant tables that control client connections over the network, but
the integrity of those tables depends on adequate filesystem protection. If the access mode
for the data directory contents is too permissive, someone might be able to put in place
an entirely different client access policy by replacing the files that correspond to the grant
tables.

External security concerns the issues involved with clients connecting from outside.
It’s necessary to protect the MySQL server from being attacked through connections
coming in over the network asking for access to database contents.You should set up the

700 Chapter 13 Access Control and Security

MySQL grant tables so that they don’t allow access to the databases managed by the
server unless a valid name and password are supplied.Another danger is that it may be
possible for a third party to monitor the network and capture traffic between the server
and a client.To deal with such concerns, you can configure your MySQL installation to
support connections that use the Secure Sockets Layer (SSL) protocol.

This chapter provides a guide to the security issues you should be aware of and gives
instructions that show how to prevent unauthorized access at both the internal and exter-
nal levels.The chapter often refers to the login account used for running the MySQL
server and for performing other MySQL-related administrative tasks.The user and group
names used here for this account both are mysql. Change the names in the examples if
you use other user and group names (for example, if you run the MySQL server using
your own login account).

13.1 Internal Security: Preventing Unauthorized
Filesystem Access
This section shows how to lock down your MySQL installation to keep it from being
tampered with by unauthorized users on the server host.The section applies only to Unix
systems; I assume that if you’re running a server on Windows, you have complete control
of the machine and that there are no other local users.

The MySQL installation procedure creates several directories, some of which require
protection different from others. For example, there is no need for the server program to
be accessible to anyone other than the MySQL administrative login account. By contrast,
the client programs normally should be publicly accessible so that other users can run
them—but not so accessible that they can be modified or replaced.

Other files to be protected are created after the initial installation, either by yourself as
part of your post-installation configuration procedure, or by the server as it runs. Files cre-
ated by you include option files or SSL-related files. Directories and files that the server
creates for itself as it runs include database directories, the files under those directories
that correspond to tables in the databases, log files, and the Unix socket file.

Clearly you want to maintain the privacy of the databases maintained by the server.
Database owners usually, and rightly, consider database contents private. Even if they
don’t, it should be their choice to make the contents of a database public rather than hav-
ing its contents exposed due to insufficient protection of the database directory.

Log files must be kept secure because they contain the text of statements sent by
clients to the server.This is a general concern in that anyone with log file access can
monitor changes to the contents of databases.A more specific security issue relating to log
files is that they might contain the text of sensitive statements, including passwords.
MySQL uses password encryption, but this applies to connection establishment after pass-
words already have been set up.The process of setting up a password involves a statement
such as CREATE USER, GRANT, or SET PASSWORD, and these statements are logged in plain
text form in some of the logs.An attacker who has read access to the logs may be able to

70113.1 Internal Security: Preventing Unauthorized Filesystem Access

discover sensitive information through an act as simple as running grep on the log files to
look for words such as GRANT or PASSWORD.

Certain other files must be accessible to client programs, such as the Unix socket file.
Normally you’ll want to allow access to the file, but not full control of it. For example,
users should be able to connect to the server through the socket file, but they should not
be able to delete the file; that would compromise the ability of other users to connect to
the server.

13.1.1 How to Steal Data
The following description provides a brief example that illustrates why security is impor-
tant. It underscores the fact that you don’t want other users to have direct access to the
MySQL data directory.

The MySQL server provides a flexible privilege system implemented by means of the
grant tables in the mysql database.You can set up the contents of these tables to allow or
deny database access to clients.This provides you with security against unauthorized net-
work access to your data. However, setting up good security for network access to your
databases is an exercise in futility if other users on the server host have direct access to the
contents of the data directory. Unless you know that you are the only person who ever
logs in on the machine where the MySQL server is running, you need to be concerned
about the possibility of other people on that machine gaining access to the data directory.

Obviously you don’t want other users on the server host to have direct write access to
data directory files, because then they can stomp all over your status files or database tables.
But direct read access is just as dangerous. If a table’s files can be read, it is trivial to steal
the files and to get MySQL itself to show you the contents of the table. How? Like this:

1. Install your own rogue MySQL server on the server host, but with a port, socket
file, and data directory that are different from those used by the official server.

2. Run mysql_install_db to initialize your data directory.This action gives you full
access to your server as the MySQL root user, and sets up a test database that can
serve as a convenient repository for stolen tables.

3. Access the data directory of the server you want to attack, copying the files corre-
sponding to the table or tables that you want to steal into the test directory under
your own server’s data directory.This action requires only read access to the tar-
geted data directory.

4. Start your rogue server. Presto! Its test database now contains copies of the stolen
tables, which you can access at will. SHOW TABLES FROM test shows which tables
you have a copy of, and SELECT * shows the entire contents of any of them.

5. To be really nasty, open up the permissions on the anonymous user accounts for
your server so that anyone can connect to the server from any host to access your
test database.That effectively publishes the stolen tables to the world.

702 Chapter 13 Access Control and Security

Think about this scenario for a moment, and then reverse the perspective. Do you
want someone to do that to you? Of course not. So protect yourself using the instructions
in the following discussion.

13.1.2 Securing Your MySQL Installation
The procedure described here shows how to set up ownerships and access modes for the
directories and files that make up your MySQL installation.The instructions here use
mysql for both the user and group names that are to be given ownership of the installa-
tion. (Whatever the user is, it should be something other than root, for reasons discussed
in Section 12.2.1.1,“Running the Server Using an Unprivileged Login Account.”) The
instructions also assume a layout such that all parts of your MySQL installation are located
under a single base directory, rather than scattered in various places throughout your
filesystem. In the examples, the installation base directory is /usr/local/mysql and the
data directory is located under that with a pathname of /usr/local/mysql/data.

After going through the procedure, I’ll describe how to handle some non-standard
types of installation layouts.Your system layout may vary from any of those described
here, but you should be able to adapt the general principles appropriately. Change the
names and pathnames as necessary for your own system. If you run multiple servers, you
should perform the procedure for each one.

You can determine whether your data directory contains insecure files or directories
by executing ls -la. Look for files or directories that have the “group” or “other” per-
missions turned on. Here’s a listing of a data directory that is insecure, as are some of the
database directories within it:

% ls -la /usr/local/mysql/data

total 10148

drwxrwxr-x 11 mysql wheel 1024 May 8 12:20 .

drwxr-xr-x 22 root wheel 512 May 8 13:31 ..

drwx------ 2 mysql mysql 512 Apr 16 15:57 menagerie

drwxrwxr-x 2 mysql wheel 512 Jun 25 1998 mysql

drwx------ 7 mysql mysql 1024 May 7 10:45 sampdb

drwxrwxr-x 2 mysql wheel 1536 Jun 25 1998 test

drwx------ 2 mysql mysql 1024 May 8 18:43 tmp

‘.’ represents the directory being listed, that is, /usr/local/mysql/data.‘..’ repre-
sents the parent directory, /usr/local/mysql. Some of the database directories have the
proper permissions: drwx------ enables read, write, and execute access to the owner, but
no access to anyone else. But other directories have an overly permissive access mode:
drwxrwxr-x enables read and execute access to all other users, even those outside of the
mysql group.The situation shown in this example is one that resulted over time, starting
with a (very) old MySQL installation that was progressively upgraded to successive newer
versions.The less-restrictive permissions were created by older MySQL servers that were
less stringent than more recent servers about setting permissions. (You can see that the
more restrictive database directories, menagerie, sampdb, and tmp, all have more recent

70313.1 Internal Security: Preventing Unauthorized Filesystem Access

dates.) Current MySQL servers set the permissions on database directories that they cre-
ate to be accessible only to the account they run as.

You can also use ls -la to check the base directory of the MySQL installation,
/usr/local/mysql. For example, you might get a result something like this:

% ls -la /usr/local/mysql

total 44

drwxrwxr-x 13 mysql mysql 1024 May 7 10:45 .

drwxr-xr-x 24 root wheel 1024 May 1 12:54 ..

drwxr-xr-x 2 mysql mysql 1024 Jul 16 20:58 bin

drwxrwxr-x 12 mysql wheel 1024 May 8 12:20 data

drwxr-xr-x 3 mysql mysql 512 May 7 10:45 include

drwxr-xr-x 2 mysql mysql 512 May 7 10:45 info

drwxr-xr-x 3 mysql mysql 512 May 7 10:45 lib

drwxr--r-x 2 mysql mysql 512 Jul 16 20:58 libexec

drwxr-xr-x 3 mysql mysql 512 May 7 10:45 man

drwxr-xr-x 6 mysql mysql 1024 May 7 10:45 mysql-test

drwxr-xr-x 3 mysql mysql 512 May 7 10:45 share

drwxr-xr-x 7 mysql mysql 1024 May 7 10:45 sql-bench

The data directory permissions and ownership need to be changed, as already indi-
cated. One other change you might make is to restrict access to the libexec directory,
which is where the mysqld server lives. Nobody but the MySQL administrator needs ac-
cess to the server, so you can make that directory private to the mysql login account.

To correct the problems just described, use the following procedure.The general idea
is to lock down everything to be accessible only to the mysql account, except for those
parts of the installation that other users have a legitimate need to access.

Note that some parts of this procedure do not apply if your installation is such that the
MySQL server and client programs are installed in general system directories along with
other non-MySQL programs. (This is typical if you install MySQL using RPM packages.)
For example, the server might be located in /usr/sbin and the clients in /usr/bin. In
that case, the ownership and mode of the MySQL programs should be set the same as
other programs in those directories.

1. If the MySQL server is running, tell it to stop:

% mysqladmin -p -u root shutdown

2. Set the owner and group name assignments of the entire MySQL installation to
those of the MySQL administrative account using the following commands, which
you must execute as root:

chown -R mysql /usr/local/mysql

chgrp -R mysql /usr/local/mysql

704 Chapter 13 Access Control and Security

Another popular approach is to make everything owned by root except the data
directory, which you can accomplish like this:

chown -R root /usr/local/mysql

chgrp -R mysql /usr/local/mysql

chown -R mysql /usr/local/mysql/data

chgrp -R mysql /usr/local/mysql/data

If you set the general ownership to root, you’ll need to perform most of the fol-
lowing steps as root. Otherwise, you can perform them as mysql.

3. For the base directory and any of its subdirectories that clients should be able to ac-
cess, change their mode so that mysql has full access and everyone else has only
read and execute permission.That may be how they are set already, but if not,
change them. For example, the base directory can be set using either of the follow-
ing commands:

% chmod 755 /usr/local/mysql

% chmod u=rwx,go=rx /usr/local/mysql

Similarly, the bin directory that contains the client programs can be set with either
of these commands:

% chmod 755 /usr/local/mysql/bin

% chmod u=rwx,go=rx /usr/local/mysql/bin

4. Directories that clients need not have access to can be made private to mysql.The
libexec directory that contains the server is an example. Either of the following
commands will set its mode appropriately:

% chmod 700 /usr/local/mysql/libexec

% chmod u=rwx,go-rwx /usr/local/mysql/libexec

5. Change the mode of your data directory and all files and directories under it so that
they are private to mysql:

% chmod -R go-rwx /usr/local/mysql/data

That prevents login accounts other than the one used for running the server from
directly accessing the contents of your data directory.

After using the preceding instructions, your MySQL installation base directory has
ownerships and permissions that look something like this:

% ls -la /usr/local/mysql

total 44

drwxr-xr-x 13 mysql mysql 1024 May 7 10:45 .

drwxr-xr-x 24 root wheel 1024 May 1 12:54 ..

drwxr-xr-x 2 mysql mysql 1024 Jul 16 20:58 bin

70513.1 Internal Security: Preventing Unauthorized Filesystem Access

drwx------ 12 mysql mysql 1024 May 8 12:20 data

drwxr-xr-x 3 mysql mysql 512 May 7 10:45 include

drwxr-xr-x 2 mysql mysql 512 May 7 10:45 info

drwxr-xr-x 3 mysql mysql 512 May 7 10:45 lib

drwx------ 2 mysql mysql 512 Jul 16 20:58 libexec

drwxr-xr-x 3 mysql mysql 512 May 7 10:45 man

drwxr-xr-x 6 mysql mysql 1024 May 7 10:45 mysql-test

drwxr-xr-x 3 mysql mysql 512 May 7 10:45 share

drwxr-xr-x 7 mysql mysql 1024 May 7 10:45 sql-bench

As shown, everything now is owned by mysql, with a group ownership of mysql.The
exception is for ‘..’, which refers to the parent directory of /usr/local/mysql.That di-
rectory is owned by and modifiable only by root, which is good.You don’t want unprivi-
leged users to be able to mess with the directory containing your installation.

The data directory under the base directory has even more restrictive permissions:

% ls -la /usr/local/mysql/data

total 10148

drwx------ 11 mysql mysql 1024 May 8 12:20 .

drwxr-xr-x 22 mysql mysql 512 May 8 13:31 ..

drwx------ 2 mysql mysql 512 Apr 16 15:57 menagerie

drwx------ 2 mysql mysql 512 Jun 25 1998 mysql

drwx------ 7 mysql mysql 1024 May 7 10:45 sampdb

drwx------ 2 mysql mysql 1536 Jun 25 1998 test

drwx------ 2 mysql mysql 1024 May 8 18:43 tmp

Here, the ‘..’ line refers to the parent of the data directory, that is, the MySQL base
directory.

An exception to the mysql-only policy of access to the data directory may be neces-
sary for particular files. For example, if you use the data directory as the location for the
Unix socket file, it will be necessary to open up access to the directory a little. Otherwise,
client programs won’t be able to connect to the server through the socket.To allow client
programs to access the socket file without providing full read access to the data directory,
use this command:

% chmod go+x /usr/local/mysql/data

To avoid opening up the data directory this way, use a different location for the Unix
socket file, such as the base directory.The same principle applies to other files that pro-
grams other than mysqld have a legitimate need to access, such as option files that contain
global client parameters.

As stated earlier, the preceding procedure assumes that all MySQL-related files are
located under a single base directory. If that’s not true, you’ll need to locate each
MySQL-related directory and perform the appropriate operations on each of them. For
example, if your data directory is located at /var/mysql/data rather than under

706 Chapter 13 Access Control and Security

/usr/local/mysql, you’ll need to issue these commands to change the ownership of
your installation properly:

chown -R mysql /usr/local/mysql

chgrp -R mysql /usr/local/mysql

chown -R mysql /var/mysql/data

chgrp -R mysql /var/mysql/data

Or, suppose that you create an innodb directory under the MySQL installation direc-
tory in which to keep all InnoDB-related files. By default, these files are placed in the
data directory. If you put them in your innodb directory instead, set that directory to have
the same access mode as the data directory.This principle also applies if you relocate other
files that normally would be placed in the data directory, such as log files.

Another complication occurs if some of the directories under the installation root are
really symbolic links that point elsewhere. If your versions of chown and chgrp don’t fol-
low symlinks, you’ll need to track down the links and apply the ownership changes in the
locations to which the links point. One way to do this is to use find:

find /usr/local/mysql -follow -print | xargs chown mysql

find /usr/local/mysql -follow -print | xargs chgrp mysql

Similar considerations apply to changing access modes. For example, if there are sym-
bolic links under your data directory and chmod doesn’t follow them, use this command
instead:

find /usr/local/mysql/data -follow -print | xargs chmod go-rwx

Because the ownership and permissions of the data directory contents at this point are
set to enable access only for the mysql login user, you should make sure the server always
runs as mysql from now on.An easy way to ensure this is to specify the user in the
[mysqld] section of the /etc/my.cnf file or other my.cnf file that the server reads when
it starts:

[mysqld]

user=mysql

That way, the server will run as mysql whether you start it while logged in as root or
as mysql.Additional information on running the server using a particular login account is
given in Section 12.2.1.1,“Running the Server Using an Unprivileged Login Account.”

After securing your MySQL installation, you can restart the server.

13.1.2.1 Securing the Unix Socket File
The server uses a Unix domain socket file for connections by clients to localhost.The
socket file normally is publicly accessible so that client programs can use it. However, it
should not be located in a directory where arbitrary clients have delete permission. For
example, it’s common for the socket file to be created in the /tmp directory, but on some
Unix systems, that directory has permissions that enable users to delete files other than
their own.That means any user can remove the socket file and as a result prevent client

70713.1 Internal Security: Preventing Unauthorized Filesystem Access

programs from establishing localhost connections to the server until the server is
restarted to re-create the socket file. It’s better if the /tmp directory has its “sticky bit”
set, so that even if anyone can create files in the directory, users can remove only their
own files.You can set the sticky bit for the directory by executing the following com-
mand as root:

chmod +t /tmp

Some installations place the socket file in the data directory, which leads to a problem
if you make the data directory private to mysql: No client program can access the socket
file, unless it is run by root or mysql. In this case, one option is to open up the data di-
rectory slightly so that clients can see the socket file:

% chmod go+x /usr/local/mysql/data

Another approach is to change the location in which the server creates the socket file.
For example, you might configure MySQL to create the file in the base directory by
specifying a location of /usr/local/mysql/mysql.sock. Either specify the location in a
global option file, or recompile from source to build in the location as the default. If you
elect to use an option file, be sure to specify the location both for the server and for
clients:

[mysqld]

socket=/usr/local/mysql/mysql.sock

[client]

socket=/usr/local/mysql/mysql.sock

Recompiling is more work, but is a more complete solution because using an option file
will not work for client programs that do not check option files. (All the standard MySQL
clients do, but third-party programs may not.) By recompiling, the new socket location will
become the default known by the client library; any program that uses the client library
thus gets the new location as its own default, whether or not it uses option files.

13.1.2.2 Securing Option Files
Option files represent a potential point of compromise to the extent that they contain
options that should not be exposed:

n Don’t make an option file publicly readable if it contains sensitive information such
as MySQL account names or passwords.

n /etc/my.cnf normally is publicly readable because it’s a common location in
which to specify global client options.This means you should not use it for server
options such as replication passwords.

n Each user-specific .my.cnf option file should be owned by and accessible only by
the user in whose home directory the file appears.To do this for your own file, exe-
cute the following command in your home directory:

% chmod u=rw,go-rwx .my.cnf

708 Chapter 13 Access Control and Security

n Other option files need to have their access mode set depending on what you use
them for.

One way to ensure that user-specific option files have the proper mode and ownership
is to run a program that looks for a .my.cnf file in each user’s home directory and cor-
rects any problems.The following Perl script, chk_mysql_opt_files.pl, will do this:

#!/usr/bin/perl

chk_mysql_opt_files.pl - check user-specific .my.cnf files and make sure

the ownership and mode is correct. Each file should be owned by the

user in whose home directory the file is found. The mode should

have the "group" and "other" permissions turned off.

This script must be run as root. Execute it with your password file as

input. If you have an /etc/passwd file, run it like this:

chk_mysql_opt_file.pl /etc/passwd

For Mac OS X, use the netinfo database:

nidump passwd . | chk_mysql_opt_file.pl

use strict;

use warnings;

while (<>)

{

my ($uid, $home) = (split (/:/, $_))[2,5];

my $cnf_file = "$home/.my.cnf";

next unless -f $cnf_file; # is there a .my.cnf file?

if ((stat ($cnf_file))[4] != $uid) # test ownership

{

warn "Changing ownership of $cnf_file to $uid\n";

chown ($uid, (stat ($cnf_file))[5], $cnf_file);

}

my $mode = (stat ($cnf_file))[2];

if ($mode & 077) # test group/other access bits

{

warn sprintf ("Changing mode of %s from %o to %o\n",

$cnf_file, $mode, $mode & ~077);

chmod ($mode & ~077, $cnf_file);

}

}

You can find chk_mysql_opt_files.pl in the admin directory of the sampdb distri-
bution.You must run this script as root because it needs to be able to change mode and
ownership of files owned by other users.To execute the script automatically, set it up as a
nightly cron job run by root.

70913.2 External Security: Preventing Unauthorized Network Access

13.2 External Security: Preventing Unauthorized
Network Access
The MySQL security system is flexible. It enables you to set up user access privileges in
many different ways. Normally, you do this by using account-management statements
such as CREATE USER, GRANT, and REVOKE, which modify on your behalf the grant tables
that control client access. However, you might find that user privileges don’t seem to be
working the way you want. For such situations, it’s helpful to understand the structure of
the MySQL grant tables and how the server uses them to determine access permissions.
Such an understanding enables you to add, remove, or modify user privileges by modify-
ing the grant tables directly. It also enables you to diagnose privilege problems when you
examine the tables.

I assume that you’ve read Section 12.4,“Managing MySQL User Accounts,” and that
you understand how the various account-management statements work.These statements
provide a convenient way for you to set up MySQL user accounts and associate privileges
with them, but they are just a front end.All the real action takes place in the MySQL
grant tables.

13.2.1 Structure and Contents of the MySQL Grant Tables
Access to MySQL databases by clients that connect to the server over the network is con-
trolled by the contents of the grant tables.These tables are located in the mysql database
and are initialized during the process of installing MySQL on a machine for the first time
(as described in Appendix A,“Obtaining and Installing Software,” for example).These
tables are named user, db, tables_priv, columns_priv, and procs_priv.The server uses
these tables as follows:

n The user table lists accounts for users that can connect to the server, their pass-
words, and which global (superuser) privileges each user has, if any. It’s important to
recognize that any privileges that are enabled in the user table are global privileges
that apply to all databases. For example, if you enable the DELETE privilege in a user
table row, the account associated with the row will be able to delete rows from any
table in any database. Consider carefully before you do this.

Because of the superuser nature of privileges specified in the user table, it’s gener-
ally best to leave all the privileges turned off for rows in this table and list more spe-
cific privileges in other tables that are more restrictive.There are two exceptions to
this principle:

First, superusers such as root and other administrative accounts need global privi-
leges to operate the server.These accounts tend to be few.

Second, a few specific global privileges usually can be granted safely.These pertain
to creating temporary tables, locking tables, and (perhaps) being able to use the
SHOW DATABASES statement. Many installations will grant these; others where
tighter control is desired or necessary will not.

710 Chapter 13 Access Control and Security

The user table also has columns for SSL options that pertain to the establishment
of secure connections with SSL, and columns for resource management that can be
used to prevent a given account from monopolizing the server.

n The db table lists which accounts have privileges for which databases. If you grant a
privilege here, it applies to all objects in a database (tables, stored routines, and so
forth).

n The tables_priv table lists table-level privileges.A privilege specified here applies
to all columns in a table.

n The columns_priv table lists column-level privileges.A privilege specified here ap-
plies to a particular column in a table.

n The procs_priv table contains privileges for stored routines (functions and proce-
dures).A privilege specified here applies to a particular routine in a database.This
table was introduced in MySQL 5.0.3.

The mysql database also contains a grant table named host, which is used in combina-
tion with the db table. However, the host table is obsolete and is discussed no further here.

The structure of each grant table is shown in the next several tables, broken down by
type of column. Each grant table contains two primary kinds of columns: scope-of-access
columns that determine when a row applies, and privilege columns that determine which
privileges a row grants.The privilege columns can be subdivided further into columns for
administrative operations and those that are related to operations on particular kinds of
objects.The user table has additional columns for SSL connections and resource manage-
ment; these are present only in the user table because they apply globally. Some of the
grant tables contain other miscellaneous columns, but they don’t concern us here because
they have no bearing on account management.

Table 13.1 Grant Table Scope-of-Access Columns

user db tables_priv columns_priv procs_priv

Table Table Table Table Table

Host Host Host Host Host

User User User User User

Password Db Db Db Db

Table_name Table_name Routine_name

Column_name Routine_type

71113.2 External Security: Preventing Unauthorized Network Access

Table 13.3 Grant Table Object Privilege Columns

user Table db Table

Alter_priv Alter_priv

Alter_routine_priv Alter_routine_priv

Create_priv Create_priv

Create_routine_priv Create_routine_priv

Create_tmp_table_priv Create_tmp_table_priv

Create_view_priv Create_view_priv

Delete_priv Delete_priv

Drop_priv Drop_priv

Event_priv Event_priv

Execute_priv Execute_priv

Index_priv Index_priv

Insert_priv Insert_priv

Lock_tables_priv Lock_tables_priv

References_priv References_priv

Select_priv Select_priv

Table 13.2 Grant Table Administrative Privilege Columns

user Table db Table host Table

Create_user_priv

File_priv

Grant_priv Grant_priv Grant_priv

Process_priv

Reload_priv

Repl_client_priv

Repl_slave_priv

Show_db_priv

Shutdown_priv

Super_priv

712 Chapter 13 Access Control and Security

The grant table system includes tables_priv, columns_priv, and procs_priv tables
for defining privileges for specific tables, columns, and stored functions and procedures.
There is no rows_priv table because MySQL doesn’t provide row-level privileges. For
example, you cannot restrict a user’s access to just those rows in a table that contain a par-
ticular value in some column. If you need this capability, you must implement it within
your own applications. One way to implement cooperative row-level locking is to use ad-
visory locking functions such as GET_LOCK() and RELEASE_LOCK().The procedure for
this is described in Section C.2.8,“Advisory Locking Functions.”

New releases of MySQL sometimes add new privileges. For example, the Event_priv
and Trigger_priv columns were implemented in MySQL 5.1.6.When you upgrade an
existing MySQL installation to such a version, it’s necessary to update the grant tables be-
fore you can use the new privileges. Section 12.3,“Managing MySQL User Accounts,”
describes the procedure for doing this.

13.2.1.1 Grant Table Scope-of-Access Columns
The grant table scope columns are used to determine which rows the server consults
when an account attempts to perform a given operation. Each grant table row contains

Table 13.4 Grant Table SSL and Resource Management
Columns (user Table Only)

SSL Columns Resource Management Columns

ssl_type max_connections

ssl_cipher max_questions

x509_issuer max_updates

x509_subject max_user_connections

tables_priv Table columns_priv Table procs_priv Table

Table_priv Column_priv Proc_priv

Column_priv

Table 13.3 Grant Table Object Privilege Columns

user Table db Table

Show_view_priv Show_view_priv

Trigger_priv Trigger_priv

Update_priv Update_priv

71313.2 External Security: Preventing Unauthorized Network Access

Host and User columns to indicate that the row applies to connections from a given host
by a particular user. For example, a user table row with localhost and bill in the Host
and User columns would be used for connections from the local host by bill, but not
for connections by betty.The other tables contain additional scope columns.The db
table contains a Db column to indicate which database the row applies to. Similarly, rows
in the tables_priv and columns_priv tables contain scope columns that further narrow
their scope to a particular table in a database or column in a table.The procs_priv scope
columns specify which stored function or procedure a row applies to.

13.2.1.2 Grant Table Privilege Columns
The grant tables also contain privilege columns. For each row, these indicate which privi-
leges are held by the user who matches the values listed in the scope columns.The privi-
leges supported by MySQL are shown in the following lists, which describe the
administrative privileges and the privileges that control database and table access. Each list
uses the privilege names that are used for the GRANT statement. For the most part, these
privilege names bear an obvious resemblance to the names of privilege columns in the
grant tables. For example, the SELECT privilege corresponds to the Select_priv column.

13.2.1.3 Administrative Privileges
The following privileges apply to administrative operations that control the operation of
the server or a user’s ability to grant privileges:

n CREATE USER

Enables you to use the CREATE USER, DROP USER, RENAME USER, and REVOKE ALL
PRIVILEGES statements.This privilege was introduced in MySQL 5.0.3.

n FILE

Enables you to tell the server to read or write files on the server host.To keep the
use of this privilege within certain bounds, the server takes certain precautions:

n You can access only files that are world-readable, and thus likely not to be
considered protected in any way.

n Any file that you want to write must not already exist.This prevents you from
coercing the server into overwriting important files, such as /etc/passwd, or
database files in a database belonging to someone else. (If this constraint were
not enforced, you could completely replace the contents of the grant tables in
the mysql database, for example.)

Despite these precautions by the server, this privilege should not be granted with-
out just cause; it can be extremely dangerous, as discussed in Section 13.2.4,“Grant
Table Risks to Avoid.” If you do grant the FILE privilege, be sure not to run the
server as the root login user on Unix, because root can create new files anywhere in
the filesystem. By running the server from an ordinary login account, you ensure
that it can create files only in directories accessible to that account. See also Section
12.2.1.1,“Running the Server Using an Unprivileged Login Account.”

714 Chapter 13 Access Control and Security

n GRANT OPTION

Enables you to grant other users the privileges you have yourself, including the
GRANT OPTION privilege.

n PROCESS

The MySQL server is multi-threaded, which enables it to service multiple client
connections simultaneously.These threads may be thought of as processes running
within the server.The PROCESS privilege enables you to use the SHOW PROCESSLIST
statement or the mysqladmin processlist command to view information about
activities that are currently executing.This privilege gives you the ability to see all
activities, even those associated with other users.You can always see your own activ-
ities, even without the PROCESS privilege.

n RELOAD

Enables you to perform a variety of administrative server operations.With the
RELOAD privilege, you have the ability to issue statements such as FLUSH and RESET.
You can also perform the following mysqladmin commands: reload, refresh,
flush-hosts, flush-logs, flush-privileges, flush-status, flush-tables, and
flush-threads.

n REPLICATION CLIENT

Enables you to inquire about the location and status of master and slave servers us-
ing the SHOW MASTER STATUS and SHOW SLAVE STATUS statements.

n REPLICATION SLAVE

Enables a client to connect to a master server and request slave server updates, and
to use the SHOW SLAVE HOSTS and SHOW BINLOG EVENTS statements.This privilege
must be granted to slave server accounts that are used to connect to the master.

n SHOW DATABASES

Enables you to see all database names by issuing the SHOW DATABASES statement. If
you don’t have this privilege, you can see a given database name only if you have
some privilege for it. However, this ability is conveyed by any global privilege that
applies to databases, which includes the CREATE TEMPORARY TABLES and LOCK TA-

BLES privileges that commonly are granted globally.To ensure that only users who
have the SHOW DATABASES privilege can use the SHOW DATABASES statement, start
the server with the --skip-show-database option.

n SHUTDOWN

Enables you to shut down the server, for example, with the mysqladmin shutdown
command.

n SUPER

Enables you to kill server processes with the KILL statement or the mysqladmin
kill command.This privilege gives you the ability to kill any process, even those

71513.2 External Security: Preventing Unauthorized Network Access

associated with other users.You can always kill your own processes, even without
the SUPER privilege.

Other statements enabled by this privilege are SET for modifying global system
variables and the global transaction isolation level, CHANGE MASTER, PURGE MASTER
LOGS, SHOW MASTER STATUS, SHOW SLAVE STATUS, START SLAVE, and STOP SLAVE.
SUPER also enables you to perform DES decryption with the DES_DECRYPT() func-
tion based on the keys stored in the DES key file.

The SUPER privilege enables the use of mysqladmin debug, and it overrides any
max_connections setting when connecting to the server, so that you can access the
connection slot that the server reserves for administrative connections even when
all the regular slots are taken. SUPER also enables adding and dropping triggers until
MySQL 5.1.6, at which point the TRIGGER privilege is required instead.

13.2.1.4 Database and Table Privileges
The following privileges apply to operations on databases and tables:

n ALTER

Enables you to use the ALTER TABLE statement, although you might also need addi-
tional privileges, depending on what you want to do with the table.

n ALTER ROUTINE

Enables you to alter or drop stored functions and procedures.This privilege was in-
troduced in MySQL 5.0.3.

n CREATE

Enables you to create databases and tables.This privilege does not enable you to cre-
ate indexes on a table, except those defined initially in its CREATE TABLE statement.

n CREATE ROUTINE

Enables you to create stored functions and procedures.This privilege was intro-
duced in MySQL 5.0.3.

n CREATE TEMPORARY TABLES

Enables you to create temporary tables with the CREATE TEMPORARY TABLE statement.
n CREATE VIEW

Enables you to create views.This privilege was introduced in MySQL 5.0.1.
n DELETE

Enables you to remove existing rows from tables.
n DROP

Enables you to drop databases and tables.This privilege does not enable you to drop
indexes.

716 Chapter 13 Access Control and Security

n EVENT

Enables you to manipulate event scheduler events.This privilege was introduced in
MySQL 5.1.6.

n EXECUTE

Enables you to execute stored functions and procedures.This privilege was imple-
mented in MySQL 5.0.3. (It existed before that but was not used for anything.)

n INDEX

Enables you to create or drop indexes from tables, assign indexes to key caches, and
preload indexes into key caches.

n INSERT

Enables you to insert new rows in tables.
n LOCK TABLES

Enables you to lock tables by issuing explicit LOCK TABLES statements.This privi-
lege applies only to tables for which you also have the SELECT privilege, but enables
you to place read or write locks, not just read locks.The privilege does not apply to
locks that are acquired implicitly on your behalf by the server during the process of
statement execution. Such locks are set and released automatically regardless of your
LOCK TABLES privilege setting.

n REFERENCES

This privilege currently is unused. Eventually it may be used to define who can set
up foreign key constraints.

n SELECT

Enables you to retrieve data from tables using SELECT statements.This privilege is
unnecessary for SELECT statements such as SELECT NOW() or SELECT 4/2, which do
nothing more than evaluate expressions and involve no tables.

n SHOW VIEW

Enables use of the SHOW CREATE VIEW statement to see view definitions.This privi-
lege was introduced in MySQL 5.0.1.

n TRIGGER

Enables you to add and drop triggers.This privilege was introduced in MySQL
5.1.6. Before that, trigger manipulation requires the SUPER privilege.

n UPDATE

Enables you to modify existing rows in tables.

Some operations require a combination of privileges. For example, REPLACE may im-
plicitly cause a DELETE followed by an INSERT, so it requires both the DELETE and INSERT

privileges.

71713.2 External Security: Preventing Unauthorized Network Access

13.2.1.5 How the Grant Tables Represent Privileges
In the user and db tables, each privilege is specified as a separate column.These columns
are all defined to have a type of ENUM('N','Y'), with a default value of 'N' (off). For ex-
ample, the Select_priv column is defined like this:

Select_priv ENUM('N','Y') CHARACTER SET utf8 NOT NULL DEFAULT 'N'

Privileges in the tables_priv and columns_priv tables are represented by a SET,
which allows any combination of privileges to be stored in a single column.The
Table_priv column in the tables_priv table is defined like this (Trigger is absent be-
fore MySQL 5.1.6):

SET('Select','Insert','Update','Delete','Create','Drop','Grant',

'References','Index','Alter','Create_view','Show_view','Trigger')

CHARACTER SET utf8 NOT NULL DEFAULT ''

The Column_priv column in the columns_priv table is defined like this:

SET('Select','Insert','Update','References')

CHARACTER SET utf8 NOT NULL DEFAULT ''

The reason there are fewer column privileges than table privileges is that fewer opera-
tions make sense at the column level. For example, you can delete a row from a table to
remove it, but you can’t delete individual columns of a row.

Note that INSERT exists at the column level. If you have the INSERT privilege only for
some columns in a table, you can specify values only for those columns when inserting
new rows; the other columns will be set to their default values.

The tables_priv, columns_priv, and procs_priv tables are newer than the user and
db tables, which is why they use the more efficient SET representation to list multiple
privileges in a single column.

The user table contains several administrative privilege columns that are not present
in any of the other grant tables, such as File_priv, Process_priv, Reload_priv, and
Shutdown_priv.These privileges are present only in the user table because they are
global privileges that are not associated with any particular database or table. It doesn’t
make sense to allow or not allow a user to shut down the server based on what the de-
fault database is, for example.

13.2.1.6 Grant Table SSL-Related Columns
Several columns in the user table apply to authentication of secure connections over
SSL.The primary column is ssl_type, which indicates whether and what type of secure
connection is required for an account. ssl_type is represented as an ENUM with four pos-
sible values:

ENUM('','ANY','X509','SPECIFIED') CHARACTER SET utf8 NOT NULL DEFAULT ''

718 Chapter 13 Access Control and Security

The ssl_type enumeration values have the following meanings:

n '' (the empty string) indicates that the account is not required to use secure con-
nections.This is the default value; it’s used when you set up an account but do not
specify any REQUIRE clause or when you specify REQUIRE NONE explicitly.

n 'ANY' indicates that the account must use a secure connection, but that it can be
any kind of secure connection; it’s a kind of “generic” requirement.The column is
set to this value when you specify REQUIRE SSL in a GRANT statement.

n 'X509' indicates that the account must use a secure connection and that the client
must supply a valid X509 certificate.The contents of the certificate are not other-
wise relevant.The column is set to this value when you specify REQUIRE X509.

n 'SPECIFIED' indicates that the client must use a secure connection that meets spe-
cific requirements.The column is set to this value when you specify any combina-
tion of ISSUER, SUBJECT, or CIPHER values in the REQUIRE clause.

For all ssl_type values except 'SPECIFIED', the server ignores the values in the other
SSL-related columns when validating client connection attempts. For 'SPECIFIED', the
server checks the other columns, and for any that have non-empty values, the client must
supply matching information:

n ssl_cipher, if non-empty, indicates the cipher method that the client must use
when connecting. It can be used to prevent the client from using weak cipher
methods.

n x509_issuer, if non-empty, indicates the issuer value that must be found in the
X509 certificate presented by the client.

n x509_subject, if non-empty, indicates the subject value that must be found in the
X509 certificate presented by the client.

ssl_cipher, x509_issuer, and x509_subject all are represented in the user table as
BLOB columns.

More information about using SSL for secure connections is given later in the chapter,
in Section 13.3,“Setting Up Secure Connections.”

13.2.1.7 Grant Table Resource Management Columns
The following columns in the user table enable you to limit the extent to which any
given MySQL account can consume server resources:

n max_connections indicates the number of times per hour the account can connect
to the server.A value of zero means “no limit.”This column has the same name as
the max_connections system variable, but the two are unrelated.

n max_questions indicates the number of statements per hour the account can issue.
A value of zero means “no limit.”

n max_updates is like max_questions, but applies more specifically to statements that
modify data.A value of zero means “no limit.”

71913.2 External Security: Preventing Unauthorized Network Access

n max_user_connections indicates the maximum number of simultaneous client
connections allowed to the account. If the value is zero, the server assesses the
simultaneous-connection limit using the global value of the max_user_

connections system variable.A value greater than zero takes precedence over
the max_user_connections system variable.This column was introduced in
MySQL 5.0.3.

If the server restarts, the current counters are reset to zero.A reset also occurs, except
for the max_user_connections value, if you reload the grant tables or issue a FLUSH
USER_RESOURCES statement.

More information about setting account limits is given in Section 12.3.1.5,“Limiting
an Account’s Resource Consumption.”

13.2.2 How the Server Controls Client Access
The MySQL server enforces two stages of client access control.The first stage occurs
when you attempt to connect to the server.The server looks at the user table to see
whether it can find a row that matches the host you’re connecting from, your name, and
the password you supplied. If there is no match, you can’t connect. If there is a match, the
server also checks the user table SSL and resource management columns:

n If you’ve reached your connections-per-hour or simultaneous-connections limit,
the server rejects the connection.

n If the user table row indicates that a secure connection is required, the server
determines whether the credentials you supply match those required in the SSL-
related columns. If not, the server rejects the connection.

If everything checks out okay, the server establishes the connection and you proceed
to the second stage. If you are making a secure connection, your client program and the
server encrypt the traffic between them.

In the second stage, the server checks two things for each statement you issue. First, it
checks your statements-per-hour and updates-per-hour limits. Second, the server checks
the grant tables to verify that you have sufficient access privileges to perform the state-
ment.The limits are checked first because if you’ve reached them, there is little point in
checking your privileges.The second stage continues until you disconnect from the
server.

The following discussion describes in some detail the rules that the MySQL server
uses to match grant table rows to incoming client connection requests and to statements.
This includes the types of values that are legal in the grant table scope columns, how
privilege values from different grant tables are combined, and the order in which the
server searches rows from a given grant table.

720 Chapter 13 Access Control and Security

13.2.2.1 Scope Column Contents
Each scope column is governed by rules that define what kinds of values are legal and
how the server interprets those values. Some of the scope columns require literal values,
but most of them allow wildcards or other special values.

n Host

A Host column value can be a hostname or an IP number.The value localhost
means the local host. It matches when a client connects from the local host to one
of the server’s local network interfaces, defined as follows:

n The Unix socket file, on Unix systems.
n A named pipe or shared memory, on Windows.
n The TCP loopback interface, that is, the interface with an IP number of
127.0.0.1.This works on any system.

localhost does not match if the client connects using the host’s actual name or IP
number. Suppose that the name of the local host is cobra.snake.net and there are
two rows for a user named bob in the user table, one with a Host value of
localhost and the other with a value of cobra.snake.net.The row with
localhost matches if bob connects from the local host using either of the follow-
ing commands, on either Unix or Windows:

% mysql -p -u bob -h localhost

% mysql -p -u bob -h 127.0.0.1

In addition, on Windows, the localhost row matches if bob connects like this:

C:\> mysql -p -u bob -h .

C:\> mysql -p -u bob --protocol=pipe

C:\> mysql -p -u bob --protocol=memory

The row with a Host value of cobra.snake.net matches if bob connects from the
local host using the server’s hostname (cobra.snake.net) or the IP number that
corresponds to the hostname.The connection will use TCP/IP in both cases.

You can specify Host values using wildcards.The ‘%’ and ‘_’ SQL pattern characters
may be used and have the same meaning as when you use the LIKE operator in a
query. (Regular expressions of the type used with REGEXP are not allowed.) The
SQL pattern characters work both for names and for IP numbers. For example,
%.example.com matches any host in the example.com domain, and %.edu matches
any host at any educational institution. Similarly, 10.0.% matches any host in the
10.0 class B subnet, whereas 192.168.3.% matches any host in the 192.168.3 class
C subnet.

A Host value of % matches any host at all and may be used to enable a user to con-
nect from anywhere.A blank Host value in a grant table is the same as %, with one
exception: In the db table, a blank Host value means “check the host table for

72113.2 External Security: Preventing Unauthorized Network Access

further information.” However, the host table is obsolete, so you should not use a
blank Host value.

You can also specify a network number with a netmask indicating which bits of the
client IP number must match the network number. For example, 192.168.128.0/
255.255.255.0 specifies a 24-bit network number and matches any client host for
which the first 24 bits of its IP number have a value equal to 192.168.128.You can
think of this as another kind of wildcard.A netmask value must be 255.0.0.0,
255.255.0.0, 255.255.255.0, or 255.255.255.255.That is, it must begin with a
multiple of eight bits set to 1, and have the remaining bits set to 0.

n User

Usernames must be either literal values or blank (empty).A blank value matches
any name and thus means “anonymous.” Otherwise, the value matches exactly the
name specified. In particular, % as a User value does not mean blank. It matches a
user with a literal name of %, which is probably not what you want.

When an incoming connection is verified against the user table, if the first matching
row contains a blank User value, the client is considered to be an anonymous user.

n Password

Password values are either blank (empty) or non-blank, and wildcards are not al-
lowed.A blank password doesn’t mean that any password matches. It means that the
user must specify no password.

Passwords are stored as encrypted values, not literal text. If you store a literal pass-
word in the Password column, the user will not be able to connect! The CREATE
USER and GRANT statements and the mysqladmin password command encrypt the
password for you automatically. If you use statements such as INSERT, REPLACE,
UPDATE, or SET PASSWORD to modify the grant tables, you should specify the pass-
word as PASSWORD('new_password'), not as 'new_password'.

n Db

In the db table, Db values may be specified literally or by using the ‘%’ or ‘_’ SQL
pattern characters to specify a wildcard.A value of % or blank matches any database.
In the columns_priv, tables_priv, and procs_priv tables, Db values must be lit-
eral database names.They match exactly the name specified. Patterns and empty
values are not allowed.

n Table_name, Column_name, Routine_name

A value in these columns must be a literal table name, column name, or stored rou-
tine name, respectively.The value matches exactly the name specified. Patterns and
empty values are not allowed.

n Routine_type

A value in this column must be either 'FUNCTION' or 'PROCEDURE' and indicates
whether the name in the row’s Routine_name column applies to a stored function

722 Chapter 13 Access Control and Security

or procedure.The Routine_name and Routine_type values uniquely identify a
stored routine in the database specified in the Db column.

Scope columns are treated by the server as case sensitive or not as indicated in Table
13.5. Note in particular that Db and Table_name values are always treated as case sensitive,
even though treatment of database and table names in SQL statements depends on the
filesystem case sensitivity of the host where the server runs (typically case sensitive under
Unix, and not case sensitive under Windows).

How MySQL Encrypts Passwords in the user Table
The MySQL server encrypts passwords with the PASSWORD() function before storing them in
the user table. This prevents passwords from being exposed as plain text even to users who
have read access to the table. It seems to be a common assumption that PASSWORD() im-
plements the same kind of encryption as is used for Unix passwords, but that is not true.
The two kinds of encryption are similar in that both are one-way and not reversible, but
MySQL doesn’t use the same encryption algorithm that Unix does. This means that even if
you use your Unix password as your MySQL password, you shouldn’t expect the encrypted
password strings to match. To perform Unix encryption for a MySQL application, use the
CRYPT() function rather than PASSWORD(). If you’re curious about other encryption options
that are available for use in your applications, see Section C.2.7, “Security and Compression
Functions.”

13.2.2.2 Statement Access Verification
Each time you issue an SQL statement, the server determines whether you’ve reached
your statement resource limits.These limits are given by the max_questions and
max_updates values stored in the user table. If you have not reached your limits, the
server also checks whether you have sufficient access privileges to execute the statement.
It determines your privileges by checking the privileges from the user, db, tables_priv,

Table 13.5 Case Sensitivity in Grant Table Scope Columns

Column Case Sensitive

Host No

User Yes

Password Yes

Db Yes

Table_name Yes

Column_name No

Routine_name No

72313.2 External Security: Preventing Unauthorized Network Access

columns_priv, and procs_priv tables, until the server either verifies that you have
proper access or it has searched all the tables in vain. More specifically:

1. The server checks the user table row that matched when you connected initially,
to see what global privileges you have. If you have any such privileges and they are
sufficient for the statement, the server executes it.

2. If your global privileges are insufficient, the server looks for a row that matches you
in the db table. If it finds one, it adds the privileges in that row to your global privi-
leges. If the result is sufficient for the statement, the server executes it.

3. If the combination of your global and database-level privileges is insufficient, the
server checks the tables_priv, columns_priv, and procs_privs tables to deter-
mine whether you have the necessary privileges to execute the statement.

4. If, after all the tables have been checked, you still don’t have the privileges needed
to execute the statement, the server rejects your attempt to do so.

In boolean terms, the server combines the privileges from the grant tables as follows:

user OR db OR tables_priv OR columns_priv or procs_priv

The preceding description no doubt makes access checking sound like a rather compli-
cated process, especially when you consider that the server checks privileges for every sin-
gle statement that each client issues. However, the process is quite fast because the server
doesn’t actually look up information from the grant tables for every statement. Instead, it
reads the contents of the tables into memory when it starts, and then verifies statements
using the in-memory copies.This gives a performance boost to access-checking opera-
tions. Furthermore, if you keep your privilege specifications simple, you can ensure that
access checking is as fast as possible.When the server reads the grant tables into memory,
it notices whether any accounts have resource limits, and whether any have table-level,
column-level, or routine-level privileges. If not, it knows that it need not check any of
those types of information when checking privileges for statements issued by clients.This
means the server can omit certain steps from the full access-checking procedure.

The use of in-memory copies of the grant tables for access checking has an important
side effect: If you change the contents of the grant tables directly, the server won’t notice
the privilege change. For example, if you add a new MySQL user by using an INSERT
statement to add a new row to the user table, that in itself will not enable the user named
in the row to connect to the server.This is something that often confuses new administra-
tors (and sometimes more-experienced ones!), but the solution is quite simple:Tell the
server to reload the contents of the grant tables after you modify them directly.You can
do this by issuing a FLUSH PRIVILEGES statement or by executing mysqladmin flush-
privileges or mysqladmin reload.

There is no need to tell the server to reload the grant tables when you use CREATE
USER, DROP USER, RENAME USER, GRANT, REVOKE, or SET PASSWORD to set up or modify

724 Chapter 13 Access Control and Security

user accounts.The server maps those statements onto operations that modify the grant ta-
bles, and then refreshes its in-memory copies of the tables automatically.

13.2.2.3 Scope Column Matching Order
The MySQL server sorts rows from the grant tables in a particular way, and then tries to
match incoming connections by looking through the rows in order.The first match
found determines the row that is used. It’s important to understand the sort order that
MySQL uses, especially for the user table.This seems to trip up a lot of people in their
attempts to understand MySQL security.

When the server reads the contents of the user table, it sorts rows according to the
values in the Host and User columns.The Host column is dominant, so rows with the
same Host value are sorted together, and then ordered according to the User value. How-
ever, sorting is not lexical, or rather, it’s only partially so.The principle to keep in mind is
that the server prefers literal values over patterns, and more-specific patterns over less-spe-
cific patterns.This means that if you’re connecting from boa.snake.net and there are
rows with Host values of boa.snake.net and %.snake.net, the server prefers the first
row over the second. Similarly, %.snake.net is preferred over %.net, which in turn is
preferred over %. Matching for IP numbers works that way, too. For a client connecting
from a host with an IP number of 192.168.3.14, rows with the following Host values all
match, but are preferred in the order shown:

192.168.3.14

192.168.3.%

192.168.%

192.%

%

Another principle to remember is that when the server tries to match user table rows,
it looks for a Host value match first and a User value match second, not the other way
around.

13.2.3 A Privilege Puzzle
This section describes a particular scenario that demonstrates why it’s useful to under-
stand the order in which the server searches user table rows when validating connection
attempts. It also shows how to solve a problem that seems to be fairly common with new
MySQL installations, at least judged by the frequency with which it comes up on the
MySQL mailing lists:A MySQL administrator sets up a new installation, including the
default root and anonymous-user rows in the user table.A good administrator will assign
passwords for the root accounts, but it’s common (if inadvisable) to leave the anonymous
users as is, with no passwords. Now, suppose that the administrator wants to set up a new
account for a user who will be connecting from several different hosts.The easiest way to
enable this is by creating the account with % as the host part of the account name in the
GRANT statement so that the user can connect from anywhere:

GRANT ALL ON sampdb.* TO 'fred'@'%' IDENTIFIED BY 'cocoa';

72513.2 External Security: Preventing Unauthorized Network Access

The intent here is to grant the user fred all privileges for the sampdb database and to
enable him to connect from any host he likes. Unfortunately, the probable result is that
fred will be able to connect from any host, except the server host itself! Suppose that the
server host is named cobra.snake.net. If fred tries to connect remotely from the host
boa.snake.net, the attempt succeeds:

% mysql -p -u fred -h cobra.snake.net sampdb

Enter password: cocoa

mysql>

But if fred tries to connect locally from the server host cobra.snake.net, the at-
tempt fails, even though fred supplies his password correctly:

% mysql -p -u fred -h localhost sampdb

Enter password: cocoa

ERROR 1045 (28000): Access denied for user 'fred'@'localhost'

(using password: YES)

This problem occurs if your user table contains any default anonymous-user rows that
have blank usernames. Such rows are created by the mysql_install_db initialization
script under Unix and are present in the pre-initialized user table included with
Windows distributions. (Section 12.1,“Securing a New MySQL Installation,” has a
detailed description of the initial user table rows.) The reason the second connection
attempt fails is that when the server attempts to validate fred, one of the anonymous-user
rows takes precedence over fred’s row in the matching order.The anonymous-user row
requires the user to connect with no password (rather than with the password cocoa), so
a password mismatch results.

Why does this happen? To understand what’s going on, it’s necessary to consider both
how MySQL’s grant tables are set up initially and how the server uses user table rows
when it validates client connections. For example, under Unix, when you run the
mysql_install_db script on cobra.snake.net to initialize the grant tables, the resulting
user table contains rows with Host and User values that look like this:

+-----------------+------+

| Host | User |

+-----------------+------+

| localhost | root |

| cobra.snake.net | root |

| 127.0.0.1 | root |

| localhost | |

| cobra.snake.net | |

+-----------------+------+

The first three rows enable users to connect as root from the local server.The last two
rows enable users to connect anonymously from the local server.After the administrator

726 Chapter 13 Access Control and Security

sets up the account for fred with the GRANT statement shown earlier, the user table con-
tains these rows:

+-----------------+------+

| Host | User |

+-----------------+------+

| localhost | root |

| cobra.snake.net | root |

| 127.0.0.1 | root |

| localhost | |

| cobra.snake.net | |

| % | fred |

+-----------------+------+

But the order of the rows as shown is not the order that the server uses when validat-
ing connection requests. Instead, it sorts rows by host first and then by user within host,
putting more-specific values first and less-specific values last:

+-----------------+------+

| Host | User |

+-----------------+------+

| localhost | root |

| localhost | |

| 127.0.0.1 | root |

| cobra.snake.net | root |

| cobra.snake.net | |

| % | fred |

+-----------------+------+

The two rows with localhost in the Host column sort together, with the row for
root first because that’s a more specific username than the blank value.The rows with
cobra.snake.net sort together in a similar way. Furthermore, all of these rows have a lit-
eral Host value without any wildcard characters, so they all sort ahead of the row for
fred, which does use a wildcard character in its Host value. In particular, both of the
anonymous-user rows take precedence over fred’s row in the sort order.

The result is that when fred attempts to connect from the local host, one of the rows
with a blank username matches before the row containing % in the Host column.The
blank password in the anonymous-user row doesn’t match fred’s password of cocoa, so
the connection fails. One implication of this phenomenon is that it is possible for fred to
connect from the local host, but only if he specifies no password. Unfortunately, then he will
be validated as an anonymous user and won’t have the privileges associated with the
fred@% account.

What all this means is that although it’s very convenient to use wildcards when you set
up an account for a user who will connect from multiple hosts, the user may have prob-
lems connecting from the local host due to the anonymous rows in the user table.

72713.2 External Security: Preventing Unauthorized Network Access

What is the solution to this problem? Actually, you can solve it two ways. First, you can
set up a second account for fred that explicitly lists localhost as the host value:

GRANT ALL ON sampdb.* TO 'fred'@'localhost' IDENTIFIED BY 'cocoa';

If you do that, the server will sort the rows from the user table as follows:

+-----------------+------+

| Host | User |

+-----------------+------+

| localhost | fred |

| localhost | root |

| localhost | |

| 127.0.0.1 | root |

| cobra.snake.net | root |

| cobra.snake.net | |

| % | fred |

+-----------------+------+

Now when fred connects from the local host, the row with localhost and fred will
match ahead of the anonymous-user rows.When he connects from any other host, the row
with % and fred will match.The downside of having two accounts for fred is that when-
ever you want to change his privileges or password, you’ll have to make the change twice.

The second solution is much easier: Remove the anonymous accounts from the user
table with these DROP USER statements:

DROP USER ''@'localhost';

DROP USER ''@'cobra.snake.net';

The remaining user table rows sort into this order:

+-----------------+------+

| Host | User |

+-----------------+------+

| localhost | root |

| 127.0.0.1 | root |

| cobra.snake.net | root |

| % | fred |

+-----------------+------+

Now when fred attempts to connect from the local host, he’ll succeed, because there
won’t be any rows in the user table that will match ahead of his.

In general, I recommend that if you want to make your life easier as an administrator,
you should delete any anonymous-user accounts that are present in the initial grant ta-
bles. In my view, these accounts are not very useful, and they tend to cause more prob-
lems than they’re worth.

The puzzle presented in this section addresses a specific situation, but contains a more
general lesson. If privileges for a given account don’t work the way you expect, look in
the grant tables to see whether there’s some row containing Host values that are more

728 Chapter 13 Access Control and Security

specific than the row for the user in question and that will match connection attempts by
that user. If so, that may explain the problem.You might need to make the user’s row
more specific, or add another row to cover the more specific case.

13.2.4 Grant Table Risks to Avoid
This section describes precautions to observe when you grant privileges, and the atten-
dant risks of unwise choices.

Avoid creating anonymous-user accounts. Even if they don’t have sufficient privileges
to cause damage directly, allowing a user to connect still may provide access to that user
to look around and gather information such as what databases and tables you have, or to
monitor the server with SHOW STATUS and SHOW VARIABLES.

Find accounts that have no passwords and either remove them or assign passwords.To
find such accounts, use this query:

mysql> SELECT Host, User FROM mysql.user WHERE Password = '';

Find accounts that have password hash values in the older pre-MySQL 4.1 format and
change them to the more secure password hash format that is used as of MySQL 4.1.Val-
ues in the older format have a length of 16 and do not begin with the ‘*’ character, so you
can identify them using either of these statements:

mysql> SELECT Host, User FROM mysql.user WHERE LENGTH(Password) = 16;

mysql> SELECT Host, User FROM mysql.user WHERE Password NOT LIKE '*%';

However, that you cannot institute this security measure unless all client programs that
connect to your server are from MySQL 4.1 or later and can authenticate using the newer
password mechanism.Assuming that you can use newer passwords for all clients, you need
only make sure that the server was not started with the --old-passwords option, and
then use SET PASSWORD to set the password for each account that has an old-format pass-
word.The new password format will be used for each account. For additional security,
start the server with the --secure-auth option. Otherwise, a client can reset its password
to the old format with OLD_PASSWORD() and then connect using that password.
--secure-auth prevents clients from connecting unless they have a new-format
password.

Unless you really need to use patterns in hostname specifiers, avoid doing so when set-
ting up accounts. Broadening the range of hosts from which a given user can connect also
broadens the range from which an imposter claiming to be that user can try to break in.

Grant superuser privileges sparingly.That is, don’t enable privileges in user table rows.
Those privileges are global and enable the user to affect the operation of your server or to
access any database. Grant privileges at a more specific level instead, to restrict user access
to particular databases or database objects such as tables or stored routines.

Don’t grant privileges for the mysql database that contains the grant tables.A user with
privileges for that database may be able to modify its tables to acquire privileges on any
other database as well. In effect, granting privileges that enable a user to modify the mysql
database tables gives that user all global privileges: If the user can modify the tables

72913.2 External Security: Preventing Unauthorized Network Access

directly, that’s equivalent to being able to issue any account-management statement you
can think of.

Be careful with the GRANT OPTION privilege.Two users with different privileges that
both have the GRANT OPTION privilege can make each other’s access rights more powerful.

The FILE privilege is particularly dangerous; don’t grant it lightly. Here’s an example
of something a user with the FILE privilege can do:

CREATE TABLE etc_passwd (pwd_entry TEXT);

LOAD DATA INFILE '/etc/passwd' INTO TABLE etc_passwd;

After executing those statements, the user has access to the contents of your server
host’s password file just by issuing a SELECT:

SELECT * FROM etc_passwd;

The name of any publicly readable file on the server host may be substituted for
/etc/passwd in the LOAD DATA statement. If a user has connected from a remote host, the
effect is that granting the FILE privilege enables network access for that user to a poten-
tially large portion of your server host’s filesystem.

The FILE privilege also can be exploited to compromise databases on systems that
aren’t set up with sufficiently restrictive data directory permissions.This is one reason why
you should set the data directory contents to be readable only by the server. If files corre-
sponding to database tables are world-readable, not only can any user with an account on
the server host read them, but any client user with the FILE privilege can connect over
the network and read them, too! The following procedure demonstrates how:

1. Create a table containing a LONGBLOB column:

USE test;

CREATE TABLE tmp (b LONGBLOB);

2. Use the table to read in the contents of each of the files that correspond to the
table you want to steal. For example, if a user has a MyISAM table named x in a
database other_db, that table is represented by three files, x.frm, x.MYD, and x.MYI.
You can read those files and copy them into corresponding files in the test data-
base like this:

LOAD DATA INFILE './other_db/x.frm' INTO TABLE tmp

FIELDS ESCAPED BY '' LINES TERMINATED BY '';

SELECT * FROM tmp INTO OUTFILE 'x.frm'

FIELDS ESCAPED BY '' LINES TERMINATED BY '';

DELETE FROM tmp;

LOAD DATA INFILE './other_db/x.MYD' INTO TABLE tmp

FIELDS ESCAPED BY '' LINES TERMINATED BY '';

SELECT * FROM tmp INTO OUTFILE 'x.MYD'

FIELDS ESCAPED BY '' LINES TERMINATED BY '';

DELETE FROM tmp;

LOAD DATA INFILE './other_db/x.MYI' INTO TABLE tmp

730 Chapter 13 Access Control and Security

FIELDS ESCAPED BY '' LINES TERMINATED BY '';

SELECT * FROM tmp INTO OUTFILE 'x.MYI'

FIELDS ESCAPED BY '' LINES TERMINATED BY '';

3. After executing those statements, the test database directory also will contain files
named x.frm, x.MYD, and x.MYI. In other words, the test database will contain a
table x that is a stolen duplicate of the table in the other_db database.

To avoid having someone attack your users’ tables in the same way, set the permissions
on your data directory contents according to the instructions in given earlier in Section
13.1.2,“Securing Your MySQL Installation.”As an additional measure, avoid granting the
SHOW DATABASE privilege and run the server with the --skip-show-database option.
This prevents users from using SHOW DATABASES and SHOW TABLES for databases to which
they have no access, and helps to keep users from finding out about databases and tables
they shouldn’t be accessing.

The dangers of the FILE privilege are amplified if you run the MySQL server as
root.That’s inadvisable in the first place, and is particularly so when combined with
FILE. Because root can create files anywhere in the filesystem, a user with the FILE

privilege can do so as well, even a user who has connected from a remote host.The
server won’t create a file that already exists, but it’s sometimes possible to create new files
that will alter the operation of the server host or compromise its security. For example, if
any of the files /etc/resolv.conf, /etc/hosts.equiv, /etc/hosts.lpd, or
/etc/sudoers do not already exist, a user who is able to cause the MySQL server to
create them can drastically change the way your server host behaves.To avoid these prob-
lems, don’t run mysqld as root. (See Section 12.2.1.1,“Running the Server Using an
Unprivileged Login Account.”)

The PROCESS and SUPER privileges should be granted only to trusted MySQL ac-
counts.With PROCESS, a user can use SHOW PROCESSLIST to see the text of statements be-
ing executed by the server.This enables a user to snoop on other users and possibly see
information that should remain private.With SUPER, the user can kill statements being ex-
ecuted by other users, disrupting their activities. SUPER also enables a user to purge log
files and perform other actions that can compromise server operation.

Don’t give the RELOAD privilege to people who don’t need it. RELOAD enables a user to
issue FLUSH and RESET statements, which can be abused in several ways:

n Binary and relay log files are created with names that form a numbered sequence.
If you have configured the server to perform binary or relay logging, each FLUSH
LOGS statement creates the next log in the sequence.A user with the RELOAD privi-
lege who performs many log flushing operations can cause the server to create large
numbers of files.

n A user with the RELOAD privilege can defeat the resource management mechanism
by reloading the grant tables with FLUSH PRIVILEGES or with FLUSH USER_
RESOURCES. Both statements reset resource management counters to zero.

73113.3 Setting Up Secure Connections

n FLUSH TABLES can be used repeatedly to cause the server to flush its open-table
cache, which degrades performance by preventing the server from taking advantage
of the cache. Similarly, RESET QUERY CACHE can be used to negate the benefits of
the query cache.

n RESET MASTER LOGS causes a replication master server to delete all of its binary log
files even if they still are in use, which removes the information necessary to main-
tain replication integrity.

The ALTER privilege can be used in ways you may not intend. Suppose that you want
one user to be able to access table1 but not table2.Another user with the ALTER privi-
lege may be able to subvert your intent by using ALTER TABLE to rename table2 to
table1.

13.3 Setting Up Secure Connections
MySQL provides support for secure, encrypted connections over SSL. By default, an SSL-
enabled MySQL installation enables a client to ask for secure connections on an optional
basis. It’s also possible for administrators to use GRANT to indicate that a given account is
required to connect securely.The tradeoff between connection types is that an unencrypted
connection has higher performance, whereas an encrypted connection is secure but
somewhat slower due to the additional computational burden that encryption imposes.

Note that there is little point in using SSL for connections to the local host that are
made using a Unix socket file, a named pipe, shared memory, or to the IP number
127.0.0.1 (the network loopback interface).The traffic for such connections never leaves
the local host.The real benefit of SSL comes when the information that you’re transmit-
ting goes over a network that may be susceptible to snooping.

To take advantage of SSL support for encrypted connections between the server and
client programs, use the following general procedure:

1. Make sure the server and client programs have been compiled with SSL support.

2. Start the server with options that tell it where to find its certificate and key files;
these are necessary to set up secure connections.

3. To connect securely with a client program, invoke it with options that tell it where
to find your own certificate and key files.

The following discussion describes this process in more detail.
Your MySQL distribution must be built with SSL support included. Either get a bi-

nary distribution that has SSL compiled in, or build MySQL from source. Binary distri-
butions for most platforms support SSL. If you compile MySQL yourself, be sure to
supply the necessary options at configuration time (for example, one of the --with-*ssl
options on Unix; see Section A.4.3.3,“Installing a Source Distribution”).After you start
your SSL-capable server, verify that it supports SSL by connecting with mysql and issuing
the following query:

mysql> SHOW VARIABLES LIKE 'have_ssl';

732 Chapter 13 Access Control and Security

+---------------+----------+

| Variable_name | Value |

+---------------+----------+

| have_ssl | DISABLED |

+---------------+----------+

If you see DISABLED or YES, SSL support is available. DISABLED means that support is
present but has not yet been enabled.That’s okay; the files necessary to enable SSL are dis-
cussed next.

With a MySQL installation that includes SSL support, the server and its clients
can communicate securely. Each end of a connection uses three files to set up secure
communications:

n A Certificate Authority (CA) certificate.A CA is a trusted third party; its certificate
is used to verify the authenticity of the client and server certificates. It’s common to
purchase a CA certificate from a commercial entity, but you can generate your own.

n A certificate file that authenticates one side of the connection to the other.
n A key file, used to encrypt and decrypt traffic over the connection.

The server’s certificate and key files must be installed first. If you don’t have files if
your own, the ssl directory of the sampdb distribution contains some boilerplate files
that you can use:

n ca-cert.pem, the Certificate Authority certificate
n server-cert.pem, the server’s certificate
n server-key.pem, the server’s public key

Copy these three files to your server’s data directory, and then add some lines to the
[mysqld] group of an option file that the server reads when it starts, such as
/etc/my.cnf on Unix or C:\my.ini on Windows.The options should indicate the path-
names to the certificate and key files. For example, if the data directory is
/usr/local/mysql/data, list the options like this:

[mysqld]

ssl-ca=/usr/local/mysql/data/ca-cert.pem

ssl-cert=/usr/local/mysql/data/server-cert.pem

ssl-key=/usr/local/mysql/data/server-key.pem

You can put the certificate and key files elsewhere if you like, but the location should
be one to which only the server has access.After you install the SSL files and modify the
option file, restart the server.

At this point, you have enabled the server to allow encrypted connections, and
have_ssl should have a value of YES. However, client programs still can connect to the
server only over unencrypted connections.To enable a client to use secure connections,
specify certificate and key files for the client side as well.The ssl directory of the sampdb
distribution contains files for this.You can use the same CA certificate file (ca-cert.pem).

73313.3 Setting Up Secure Connections

The client certificate and key files are named client-cert.pem and client-key.pem.
Copy these three files to some directory under your own account.Then let the client
program know where they are by adding some lines to an option file that the client reads
when you execute it, such as the .my.cnf file in your home directory on Unix.

Suppose that I want to use encrypted connections for the mysql program. I can copy
the SSL files to my home directory, /home/paul, and then put the following lines in my
.my.cnf file:

[mysql]

ssl-ca=/home/paul/ca-cert.pem

ssl-cert=/home/paul/client-cert.pem

ssl-key=/home/paul/client-key.pem

You can set up your own account similarly. It’s also a good precaution to make sure
your certificate and key files are accessible only to yourself.After modifying .my.cnf to
indicate where the SSL files are located, invoke mysql and issue a \s or status com-
mand.The SSL line in the output should indicate that the connection is encrypted:

mysql> status;

mysql Ver 14.14 Distrib 5.1.25-rc, for pc-linux-gnu (i686)

Connection id: 5

Current database:

Current user: sampadm@localhost

SSL: Cipher in use is DHE-RSA-AES256-SHA

...

You can also issue the following query to see what values the SSL-related server status
variables have:

SHOW STATUS LIKE 'Ssl%';

The presence of the SSL-related options in the [mysql] option file group causes
mysql to use SSL connections by default. If you comment out those lines or remove
them from your option file, mysql uses a regular non-encrypted connection. It’s also pos-
sible to ignore the SSL options by invoking mysql like this:

% mysql --skip-ssl

The SSL options in the [mysql] group can be copied to other program-specific
groups to enable use of SSL for other programs. However, it may not be a good idea to
put the options in the general [client] group.That will cause any client program to fail
that doesn’t understand how to use SSL. (If you want to put the options there anyway, use
the loose- prefix so that non-SSL-aware programs will ignore them.)

734 Chapter 13 Access Control and Security

As an alternative to listing SSL options in the option file, you can specify them on the
command line. For example, in the directory where the SSL files are located, I might in-
voke mysql like this (enter the command all on one line):

% mysql --ssl-ca=ca-cert.pem --ssl-cert=client-cert.pem

--ssl-key=client-key.pem

However, all that typing is burdensome to do often.
The certificate and key files in the sampdb distribution suffice to enable you to estab-

lish encrypted connections. However, they’re publicly available (anyone can get the distri-
bution), so connections thus established cannot truly be said to be secure.After you use
these files to verify that SSL is working properly, you should replace them with ones that
you generate yourself. For instructions on making your own certificate and key files, see
the ssl/README.txt file in the sampdb distribution.You may also want to consider pur-
chasing a commercial certificate.

The discussion thus far describes how any account can use SSL on an optional basis.
You can also set up an account to disallow unencrypted connections and require it to use
SSL.This can be done for a new or existing account.

If you use GRANT to create a new account, add a REQUIRE clause that specifies the con-
straints that connections must satisfy. Suppose that you want to set up a user named laura
who will be connecting to the server on cobra.snake.net from the host rat.snake.
net to access the finance database.To require only that connections be encrypted, use
this statement:

GRANT ALL ON finance.* TO 'laura'@'rat.snake.net'

IDENTIFIED BY 'moneymoneymoney'

REQUIRE SSL;

For more security, use REQUIRE X509 instead. In that case, laura must supply a valid
X509 client certificate when connecting. (This will be the file named by the --ssl-cert
option.) As long as the certificate is valid, its contents don’t otherwise matter.To require
specific certificate contents, use some combination of CIPHER, ISSUER, and SUBJECT in
the REQUIRE clause. CIPHER indicates the type of encryption method you want the con-
nection to use. ISSUER or SUBJECT indicate that the client certificate must have been is-
sued by a particular source or for a particular recipient.These clauses narrow the scope of
otherwise-valid certificates to include only those with specific content.The following
GRANT statement requires a particular issuer in the client certificate and specifies the use of
EXP1024-RC4-SHA encryption:

GRANT ALL ON finance.* TO 'laura'@'rat.snake.net'

IDENTIFIED BY 'moneymoneymoney'

REQUIRE ISSUER '/C=US/ST=WI/L=Madison/O=sampdb/OU=CA/CN=sampdb'

CIPHER 'EXP1024-RC4-SHA';

To modify an existing account to require SSL connections, use a GRANT USAGE state-
ment of the following form, where require_options specifies the SSL characteristics
that you want to enforce:

73513.3 Setting Up Secure Connections

GRANT USAGE ON *.* TO 'user_name'@'host_name' REQUIRE require_options;

GRANT USAGE ON *.* leaves the account’s privileges unchanged and modifies only
SSL-related account attributes.

If an account currently is set to require SSL and you want to rescind that requirement,
use GRANT USAGE in conjunction with REQUIRE NONE:

GRANT USAGE ON *.* TO 'user_name'@'host_name' REQUIRE NONE;

If you are using a MySQL API for a language such as Perl or PHP, SSL capabilities de-
pend not only on the language API but on the MySQL client library that is linked into it.
The client library must have been compiled with SSL support so that it can support SSL
connections to the server.Also, the language API must be recent enough to use the SSL
capabilities of the client library. For example, the PHP mysqli extension supports SSL
connections, but the older mysql extension does not.

This page intentionally left blank

14
Database Maintenance,

Backups, and Replication

Ideally, MySQL runs smoothly from the time that you first install it. But problems some-
times do occur for a variety of reasons, ranging from power outages to hardware failure to
improper shutdown of the MySQL server (such as when you force-terminate it with
kill -9 or when the server host crashes). Events such as these, many of which are be-
yond your control, can result in damage to database tables, typically caused by incomplete
writes in the middle of table changes.

This chapter describes what you can do to minimize your risks and to be ready if dis-
aster strikes anyway.The techniques covered here include making database backups, per-
forming table checking and repair operations, and how to use recovery procedures in
case you do lose data.The chapter also discusses database copying procedures for transfer-
ring a database from one server to another because these are often are quite similar to
backup techniques.Another “copy” technique covered here is replication, in which a
slave server is initialized with a duplicate of a master server’s data, and then when changes
occur thereafter on the master, they are propagated to the slave as well.The slave thus
serves as a “continuous copy” of the master. Replication can be used to achieve other
purposes as well.To name two, client load can be split between servers to lessen the load
on the master, and the slave can be more easily paused or stopped than the master for
making backups.

14.1 Principles of Preventive Maintenance
This section summarizes general principles of preventive maintenance. Later sections pro-
vide details on implementing these principles.

To prepare in advance against database problems, take the following actions:
n Enable the auto-recovery capabilities that the MySQL server provides.

738 Chapter 14 Database Maintenance, Backups, and Replication

n Set up scheduled preventive maintenance to perform table checking periodically.
Routine table-checking procedures can help you detect and correct minor prob-
lems before they become worse.

n Set up a database backup schedule. Should the worst occur and you be faced with
catastrophic system failure, you’ll need the backups to perform recovery operations.
Enable your binary log, too, so that you have a record of updates that took place af-
ter the backup was made. (See Section 12.5.4,“The Binary Log and the Binary Log
Index File.”) Binary logging provides significant advantages for backup and replica-
tion and has negligible performance overhead (about 1%), so there is little reason
not to enable it.

If table damage or data loss does occur despite your efforts, exercise your options for
dealing with such problems:

n Check your tables, and then fix any that are found to be corrupt if possible. Minor
damage often can be corrected by using MySQL’s table repair capabilities.

n For circumstances under which table checking and repair isn’t sufficient to get you
up and running, perform data recovery using your backups and your binary log.
Begin by using the backups to restore your tables to their state at the time of the
backup.After that, use the log files to re-apply any updates that were made after the
backup, to bring your tables to their state when the crash occurred.

The tools at your disposal for carrying out these tasks include the capabilities of the
MySQL server itself and also several other utilities included in the MySQL distribution:

n When the server starts, transactional storage engines can perform auto-recovery.You
can also enable automatic table repair for the MyISAM storage engine.These capa-
bilities are useful when the server restart follows a crash.

n Use the mysqldump or mysqlhotcopy program to make backups of your databases,
should you need to recover them later.

n To tell the server to perform table maintenance operations on demand, use SQL
statements such as CHECK TABLE and REPAIR TABLE. For a command-line interface
to these statements, use the mysqlcheck program.The myisamchk utility also can
check tables for problems and perform various corrective actions.

Some of these programs, such as mysqlcheck and mysqldump, work in cooperation
with the server.They connect as clients to the server and issue SQL statements that in-
struct the server what kind of table maintenance operation to perform. By contrast,
myisamchk is an independent standalone program that operates directly on the files used
to represent tables. Because the server also accesses those files while it runs, myisamchk
acts in effect as a competitor to the server.This means that you must take steps to prevent
myisamchk and the server from interfering with each other. For example, if you’re repair-
ing a table with myisamchk, it’s necessary to keep the server from trying to write to the
table at the same time. Failure to do so can result in much worse problems than those
you’re trying to correct!

73914.2 Performing Database Maintenance with the Server Running

The need to cooperate with the server arises in connection with several of the admin-
istrative tasks discussed in this chapter, from making backups to performing table repairs.
Therefore, the next section begins by describing how to keep the server at bay when nec-
essary, and sections following discuss how to prepare for problems, how to make backups,
and how to use repair and recovery techniques if necessary.

Under Unix, operations that require you to directly work with table files or other files
under the data directory should be performed while you’re logged in as the MySQL ad-
ministrator so that you have permission to access the files. In this book, the name of that
login account is mysql. It’s also possible to access the files as root, but in that case, make
sure when you’re done that any files you work with have the same mode and ownership
as when you began.

For a full listing of the options supported by the SQL statements and programs dis-
cussed in this chapter, see Appendix E,“SQL Syntax Reference,” and Appendix F,
“MySQL Program Reference.”

14.2 Performing Database Maintenance with
the Server Running
Some maintenance operations are performed by connecting to the server and telling it
what to do.To perform consistency checks or table repairs on a MyISAM table, one way
to do so is to issue a CHECK TABLE or REPAIR TABLE statement (or invoke the
mysqlcheck program) and let the server do the work. In this case, the server will access
the .frm, .MYD, and .MYI files that represent the table. In general, this is the best approach
to take if possible:When the server performs the requested maintenance operations, it
handles any issues involved in coordinating access to the table so that you need not think
about them.

Other maintenance operations are performed by a program external to the server, in
which case, you must think about issues of table access coordination. For example, another
way to check or repair a MyISAM table is to invoke the myisamchk utility, which opens
the table files directly without going through the server.While myisamchk accesses the
table files, it’s necessary to prevent the server from changing the table at the same time. If
you don’t do that, the competing efforts to access the table can damage it and make it un-
usable. It’s obviously a bad thing for the server and myisamchk both to be writing to the
table at the same time, but even having one of them reading while the other program is
writing isn’t good, either.The program doing the reading can become confused if the
table is being changed by the other program at the same time.

The need to prevent the server from accessing tables comes up in other contexts as well:
n Compressing a MyISAM table with myisampack.
n Relocating a MyISAM table’s data file or index file.
n Relocating a database.

740 Chapter 14 Database Maintenance, Backups, and Replication

n Some backup techniques involve copying table files.To ensure consistent backup
files, it’s necessary to keep the server from changing the tables during the backup
procedure.

n Some recovery methods are based on replacing damaged tables with good backup
copies.While you are replacing the table, you must not allow the server to access it
at all.

The most effective way to prevent the server from interfering with you is to shut it
down. Clearly, if the server is not running, it can’t access the tables you’re working with.
But administrators are understandably reluctant to take the server completely offline be-
cause that makes all databases and tables unavailable, not just those that you want to check
or repair.

To avoid stopping the server while at the same time preventing problems of interac-
tion between a running server and operations that you’re performing externally to it, co-
ordinate with the server by using a locking protocol.The server has two kinds of locking:

n The server uses internal locking to keep requests from different clients from getting
mixed up with each other—for example, to keep one client’s SELECT query from
being interrupted by another client’s UPDATE statement. But you can also exploit in-
ternal locking to prevent clients from accessing a table while you are working with
the table externally to the server.

n The server can use external locking to prevent other programs from modifying
table files while it’s using them.This is based on the locking capabilities available for
your operating system at the filesystem level. Normally, the reason the server uses
external locking is for cooperation with programs like myisamchk during table
checking operations. However, external locking doesn’t work reliably on some sys-
tems.Another limitation is that external locking is useful only for operations that
require read-only access to table files, such as table checking. External locking can-
not be used for operations that require read/write access, such as table repair. Exter-
nal locking is based on file locking, but repair operations performed by myisamchk
copy table files to new files as they work, and then use the new files to replace the
originals.The server knows nothing of the new files, which renders useless any at-
tempt at coordinating access by means of file locks.

The following discussion covers only the use of internal locking to coordinate with
the server for table access. Because external locking is problematic, I discuss it no further.

14.2.1 Locking Individual Tables for Read-Only or Read/Write
Access
To use the server’s internal locking mechanism to prevent it from accessing a table while
you work on it, the general idea is that you connect to the server with mysql and issue a
LOCK TABLE statement for the table you want to use.Then, with mysql idle (that is, sitting
there not doing anything with the table except keeping it locked), you do whatever you
need to do with the table files.When you’re done, switch back to your mysql session and
release the lock to tell the server it’s okay to use the table again.

74114.2 Performing Database Maintenance with the Server Running

The locking protocol to use depends on whether you need read-only access or
read/write access to the table’s files:

n For operations that just check or copy the files, read-only access is sufficient.
n For operations that modify the files, such as table repair or replacing damaged files

with good ones, you need read/write access.

The locking protocols use the LOCK TABLE and UNLOCK TABLE statements to acquire
and release locks.They also use FLUSH TABLE to tell the server to flush any pending
changes to disk and as a means of informing the server that it will need to reopen the
table when next it accesses it.The examples use the FLUSH TABLE syntax that takes a
table-name argument and flushes only that specific table.

You must perform all the LOCK, FLUSH, and UNLOCK statements from within a single ses-
sion with the server. For example, you cannot connect to the server with the mysql pro-
gram, lock a table, and then quit, intending to connect again later to unlock the table.
That doesn’t work because when you quit mysql, the server releases the lock automati-
cally.At that point, the server considers itself free to use the table again, with the result
that it is no longer safe for you to work with the table files.

One easy way to perform the locking procedures is to keep two windows open.This
enables you to leave mysql running in one window while you work with the table files in
the other. If you’re not using a windowing environment, you can suspend and resume
mysql using your shell’s job control facilities while you work with the table.

The internal-locking techniques described here for locking individual tables apply
only when working with table files for storage engines such as MyISAM that represent
each table with its own unique files.They do not apply to storage engines such as
InnoDB or Falcon that store information about multiple tables in a given file. For exam-
ple, InnoDB by default represents all InnoDB tables together within the files that make
up its shared tablespace. (Even when configured to use individual per-table tablespaces,
InnoDB still stores some information about each table in its data dictionary, which is
stored in the shared tablespace.)

14.2.1.1 Locking a Table for Read-Only Access
The read-only locking protocol is appropriate for operations that need only to read a
table’s files, such as making copies of the files or checking them for inconsistencies. It’s
sufficient to acquire a read lock in this case; the server will prevent other clients from
modifying the table, but will allow them to read from it.This protocol should not be used
when you need to modify a table.

1. In window A, invoke mysql and issue the following statements to obtain a read lock
and flush the table:

% mysql db_name
mysql> LOCK TABLE tbl_name READ;
mysql> FLUSH TABLE tbl_name;

742 Chapter 14 Database Maintenance, Backups, and Replication

LOCK TABLE acquires a lock that prevents other clients from writing to the table and
modifying it while you’re checking it.The FLUSH statement causes the server to
close the table files, which flushes any unwritten changes that might still be cached
in memory.

2. With mysql sitting idle, switch to window B so that you can work with the table
files. For example, you can check a MyISAM table like this:

% myisamchk tbl_name

If your current directory is the table’s database directory, you can use the command
as shown. Otherwise, you’ll need to precede the table name with the path to that
directory. For example:

% myisamchk /usr/local/mysql/data/tbl_name

This example is for illustration only.The particular commands you issue will de-
pend on what maintenance operation you’re performing.

3. When you’re done working with the table, switch back to the mysql session in
window A and release the table lock:

mysql> UNLOCK TABLE;

It’s possible that your work with the table will indicate that further action is necessary.
For example, if you check a table with myisamchk, it may find problems that need correc-
tion.The corrective procedure will require read/write access, which you can obtain safely
using the protocol described in the next section.

14.2.1.2 Locking a Table for Read/Write Access
The read/write locking protocol is appropriate for operations such as table repair that
need to modify a table’s files.To do this, you must acquire a write lock to completely pre-
vent all server access to the table while you’re working on it.

The locking procedure for repairing a table is similar to the procedure for checking it,
with two differences. First, you must obtain a write lock rather than a read lock. Because
you’ll be modifying the table, you can’t let the server access it at all, not even to read it.
Second, you should issue a second FLUSH TABLE statement after working with the table.
Some operations involve building a new index file, such as repairing a table with
myisamchk, and the server won’t notice the new index unless you flush the table cache
again.To lock a table for read/write access, use this procedure:

1. Invoke mysql in window A and issue the following statements to obtain a write
lock and flush the table:

% mysql db_name
mysql> LOCK TABLE tbl_name WRITE;
mysql> FLUSH TABLE tbl_name;

74314.3 General Preventative Maintenance

2. With mysql sitting idle, switch to window B so that you can work directly with the
table files. For example, you can repair a MyISAM table like this:

% myisamchk --recover tbl_name

This example is for illustration only.The particular commands you issue will de-
pend on what maintenance operation you’re performing. (It might be prudent to
make copies of the table files first, in case something goes wrong.)

3. When you’re done working with the table, switch back to the mysql session in
window A, flush the table again, and release the table lock:

mysql> FLUSH TABLE tbl_name;
mysql> UNLOCK TABLE;

14.2.2 Locking All Databases for Read-Only Access
A convenient way to prevent clients from making any changes to any table is to place a
read lock on all tables in all databases at once.To do this, issue the following statements:

mysql> FLUSH TABLES WITH READ LOCK;

mysql> SET GLOBAL read_only = ON;

The FLUSH statement acquires a global read lock, and the SET statement blocks until all
other clients release any table locks they have and finish any outstanding transactions.
When the statement returns, other clients can read but not change tables.

To allow changes to be made once again, use these statements:

mysql> SET GLOBAL read_only = OFF;

mysql> UNLOCK TABLES;

While the tables are locked this way, other clients can read from them but cannot
make changes.This is a good way to make the server quiescent for operations such as
making copies of all your database directories. On the other hand, it’s unfriendly to all
clients that need to make updates, so you should hold the server lock no longer than nec-
essary. It is also insufficient for operations such as making a binary backup of all tables
managed by a transactional storage engine because the engine might have outstanding
transactions pending and only partly flushed to its log files. Operations like that require
that you stop the server to make sure everything is flushed and all files are closed.

14.3 General Preventative Maintenance
This section outlines some general strategies to help you maintain the integrity of your
databases:

n Enable the auto-recovery capabilities that the MySQL server provides.
n Schedule regular preventive maintenance to check your tables.

744 Chapter 14 Database Maintenance, Backups, and Replication

n Have a policy of making regular database backups, so that you have something to
fall back on if your databases are damaged or lost.

The first two items are discussed here. Section 14.4,“Making Database Backups,”
covers several backup techniques.

14.3.1 Using the Server’s Auto-Recovery Capabilities
One of your first lines of defense in maintaining database integrity is the MySQL server’s
crash recovery capabilities. One of these (transactional storage engine recovery) is auto-
matic and happens at server startup.Another (MyISAM recovery) is optional and must be
enabled explicitly.

When the server starts, it can perform certain types of table checking to help deal with
problems resulting from an earlier server or machine crash. MySQL is designed to recover
from a variety of problems, so if you do nothing more than restart the server normally, it
will make the necessary corrections for you in many cases:

n If the InnoDB storage engine is enabled, it checks for a variety of problems auto-
matically. Committed transactions that are present in its redo log but not yet flushed
to tables are rolled forward (redone). Uncommitted transactions in progress at the
time of the crash are rolled back (discarded) using the undo log.The result is to
leave your InnoDB tables in a consistent state, so that their contents reflect all trans-
actions that had been committed up to the point of the crash.

n The Falcon storage engine, if enabled, has a similar capability. It attempts auto-
recovery based on the contents of its serial log.

If InnoDB auto-recovery fails due to a non-recoverable problem, the server exits after
writing a message to the error log.To force the server to start up anyway so that you can
attempt a manual recovery procedure, see Section 14.7.4,“Coping with InnoDB Auto-
Recovery Problems.”

For MyISAM tables, the server supports an optional form of table recovery that you
must enable explicitly.When you do so, the server performs a check each time it opens a
MyISAM table. If the table was not closed properly after its most recent use or is marked
as crashed, the server checks and repairs it.To enable MyISAM table recovery, start the
server with the --myisam-recover=level option.The value of level is a comma-
separated list of one or more of the following values: BACKUP (create a backup of the table
if the repair will change it), FORCE (force recovery even if more than a row of data will be
lost), QUICK (quick recovery), or DEFAULT (recover without any of the other special han-
dling; this is the same as specifying the option with no value at all). For example, to force
recovery if problems are found, but create a backup first, start the server with --myisam-
recover=BACKUP,FORCE.

Enabling MyISAM auto-recovery is useful as a general maintenance strategy because
otherwise a MyISAM table that is found to have problems becomes unavailable until you
notice the problem and initiate repair manually. MyISAM recovery is especially important

74514.3 General Preventative Maintenance

if you run the server with the --delay-key-write option or have individual MyISAM
tables configured to use delayed key writes. Under those conditions, index changes are
not flushed until tables close, which increases performance as the server runs, but also
means that indexes will need repair for any delayed-key tables that are open at the time of
a crash.

14.3.2 Scheduling Preventive Maintenance
In addition to enabling auto-recovery, you should consider setting up a schedule of pre-
ventive maintenance.This helps detect problems automatically so that you can take steps
to correct them. By arranging to check your tables on a regular basis, you’ll reduce the
likelihood of having to resort to your backups. On Unix, this is most easily accomplished
by using a cron job, typically invoked from the crontab file of the account used to run
the server. (See Section 12.5.7.3,“Automating the Log Expiration Procedure,” for infor-
mation about setting up cron jobs.)

The mysqlcheck program is useful for checking MyISAM and InnoDB tables while
the server is online. Suppose that you want to set up a maintenance job that invokes
mysqlcheck. If you run the server as the mysql user, you can set up periodic check from
that user’s crontab file.Add an entry to the file that looks something like this. Enter
everything on a single line and use the path for mysqlcheck that is correct for your
system:

45 3 * * 0 /usr/local/mysql/bin/mysqlcheck

--all-databases --check-only-changed --silent

The entry tells cron to run mysqlcheck at 03:45 every Sunday.You can vary the time
or scheduling as desired.

The --all-databases option causes mysqlcheck to check all tables in all databases.
This gives you an easy way to use it for maximum effect. For the proper options to use to
have mysqlcheck check only certain databases or tables, see the program description in
Appendix F.

The --check-only-changed option tells mysqlcheck to skip any table that hasn’t
been modified since it was last checked successfully, and the --silent option suppresses
output unless there are errors in the tables. cron jobs typically generate a mail message if a
job produces any output at all, and there’s little reason to receive mail for table-checking
jobs that find no problems. Note that even with --silent, you may get some diagnostic
output if your databases have tables for storage engines that mysqlcheck doesn’t know
how to check.

Note
While a table is being checked, it cannot be updated. Automatic-maintenance strategies
might not be appropriate for large tables that need to be updated frequently if you cannot af-
ford to block updates for the duration of the check operation.

746 Chapter 14 Database Maintenance, Backups, and Replication

14.4 Making Database Backups
It’s important to back up your databases in case tables are lost or damaged. If a serious sys-
tem crash occurs, you want to be able to restore your tables to the state they were in at the
time of the crash with as little data loss as possible. Likewise, a user who issues an unwise
DROP DATABASE, DROP TABLE, or DELETE statement may show up at your door requesting
that you perform data recovery.

Database backups also are useful for copying databases to another server. Most com-
monly, a database is transferred to a server running on another host, but you can also
transfer data to a different server running on the same host.You might do this if you’re
testing a server for a new release of MySQL and want to use it with real data from your
production server.

Another use for a backup is to set up a replication server, because one of the first steps
in setting up a slave server is to take a snapshot of the master server at a specific point in
time.The backup serves as this snapshot, and loading it into the slave server brings it up to
date with respect to the master server.Thereafter, updates made on the master server are
replicated to the slave server through the standard replication protocol. Section 14.8.2,
“Establishing a Master-Slave Replication Relationship,” discusses the procedure for setting
up replication.

Let’s begin with some general principles that govern backup practices and that will
help you decide which techniques to use.Then we’ll get to the details of specific backup
methods.

There are two general categories of database backups:

n Text-format backups made by using mysqldump to write table contents into dump
files.These files consist of CREATE TABLE and INSERT SQL statements that can be
reloaded into the server later to restore the tables.

n Binary backups made by directly copying the files containing table contents.This
type of backup can be made in various ways. For example, you can use a program
such as mysqlhotcopy, cp, tar, or rsync.

Each method has its own advantages and disadvantages. Some of the factors to consider
are whether you can leave the server running, the time needed to make the backup, porta-
bility of the backup, and the scope of what is backed up.

n mysqldump operates in cooperation with the MySQL server, so you can use it while
the server is running. Binary-backup methods involve file copy operations that are
done external to the server. Some of these methods require that you stop the server.
For those that do not, you still must take steps to ensure that the server does not
modify the tables while you copy them.

n mysqldump is slower than binary-backup techniques because the dump operation
involves transferring the information over the network connection between
mysqldump and the server. Binary-backup methods operate by copying files at the
filesystem level and require no network traffic.

74714.4 Making Database Backups

n mysqldump generates text files containing SQL statements.These files are portable to
other machines, even those with a different hardware architecture.They are there-
fore usable for copying databases from one server to another. Files generated by
direct-copy binary backup methods may or may not be portable to other machines.
It depends on whether your tables use a machine-independent storage format.
MyISAM and InnoDB tables normally are machine independent. For those storage
engines, directly copied files can be moved to a server running on a machine with a
different hardware architecture. Falcon log and tablespace files are stored in a machine-
dependent format.They are binary portable only between machines that have
identical hardware characteristics. For further discussion of the portability of various
storage engines, see Section 2.6.1.11,“Storage Engine Portability Characteristics.”

n mysqldump dumps output consisting of database contents (tables, views, stored rou-
tines, and so forth). It does not back up information not stored within a database,
such as configuration files, log files, or replication status files. Binary backups can
include any or all of these because you can copy any files you like as part of the
backup.

Whichever backup method you choose, adherence to the following principles ensures
the best results if you ever need to restore database contents:

n Perform backups regularly. Set a schedule and stick to it.
n Configure the server to perform binary logging (see Section 12.5,“Maintaining

Logs”).The binary log can help when you need to restore databases after a crash:Af-
ter you use your backup files to restore the databases to the state they were in at the
time of the backup, you can re-apply the changes that occurred after the backup
was made by re-executing the contents of the log files.This restores the tables in the
databases to their state at the time the crash occurred.

n Use a consistent and meaningful naming scheme for your backup files. Names like
backup1, backup2, and so forth are not particularly helpful.When it comes time to
perform a restore operation, you’ll waste time figuring out what’s in the files.You
may find it useful to construct backup filenames using database names and dates. For
example, if you dump the sampdb database on January 2, 2008, you might name the
backup file sampdb-2008-01-02. If you run multiple servers, incorporate a server
identifier into the name.

n Put your backup files on a filesystem different from the one you use for your data-
bases.This reduces the likelihood of filling up the filesystem containing the data di-
rectory as a result of generating backups. If the filesystem where you store the
backups is on a different physical drive, you further reduce the extent of damage
that can be caused by drive failure, because loss of any one drive cannot destroy
both your data directory and your backups.

748 Chapter 14 Database Maintenance, Backups, and Replication

n Include your database backup files in your regular filesystem backups. If you have a
complete crash that wipes out not only your data directory but also the disk drive
containing your database backups, you’ll be in real trouble. Back up your log files, too.

n Expire your backup files periodically to keep them from filling your disk. One way
to do this is to use file rotation techniques. Section 12.5.7,“Log Management,” dis-
cusses these techniques in relation to log files, but the same principles apply to
backup file expiration as well.

The sections immediately following describe several specific backup methods. If you
are using replication, Section 14.8.4,“Using a Replication Slave for Making Backups,”
describes a method that leaves your master server completely undisturbed.

14.4.1 Making Text Backups with mysqldump
The mysqldump program creates text dump files. By default, it writes a dump file in SQL
format consisting of CREATE TABLE statements that create the tables being dumped and
INSERT statements containing the data for the rows in the tables.To re-create the dumped
tables later, reload the dump file into MySQL by using it as input to mysql. For example,
to dump and reload a single table (sampdb.member), use these commands:

% mysqldump sampdb member > member.sql

% mysql sampdb < member.sql

Don’t use mysqlimport to reload SQL-format mysqldump output. mysqlimport
expects to read rows of data, not SQL statements.

To back up all tables from all databases into a single file, you can use a command like this:

% mysqldump --all-databases > /archive/mysql/dump-all.2008-01-02

However, the result is a rather large dump file if you have a lot of data.You can dump
each single database into its own file as follows:

% mysqldump mysql > /archive/mysql/mysql.2008-01-02

% mysqldump sampdb > /archive/mysql/sampdb.2008-01-02

% ...

The beginning of a mysqldump output file looks something like this:

-- MySQL dump 10.11

--

-- Host: localhost Database: sampdb

-- --

-- Server version 5.0.54-log

... several SET statements ...

--

-- Table structure for table `absence`

--

74914.4 Making Database Backups

DROP TABLE IF EXISTS `absence`;

CREATE TABLE `absence` (

`student_id` int(10) unsigned NOT NULL,

`date` date NOT NULL,

PRIMARY KEY (`student_id`,`date`),

CONSTRAINT `absence_ibfk_1` FOREIGN KEY (`student_id`)

REFERENCES `student` (`student_id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

--

-- Dumping data for table `absence`

--

LOCK TABLES `absence` WRITE;

/*!40000 ALTER TABLE `absence` DISABLE KEYS */;

INSERT INTO `absence` VALUES (3,'2008-09-03'),(5,'2008-09-03'),

(10,'2008-09-06'),(10,'2008-09-09'),(17,'2008-09-07'),(20,'2008-09-07');

/*!40000 ALTER TABLE `absence` ENABLE KEYS */;

UNLOCK TABLES;

...

The rest of the file consists of more SQL statements such as CREATE TABLE and
INSERT.

Dump files often are large, so you’ll likely want to do what you can to make them
smaller. mysqldump has an --opt option, which enables several other options that have the
effect of optimizing the dump process to generate smaller output.These options also opti-
mize the restore process because the output can be processed more quickly when you
reload the dump file later. For example, one effect of --opt is to cause mysqldump to write
multiple-row INSERT statements.These take less space and can be reloaded more quickly
than the equivalent set of single-row INSERT statements.

The --opt option is enabled by default (this has been true since MySQL 4.1), so it
need not be specified explicitly. If you want to disable it, use --skip-opt.

Another way to reduce the size of a dump file is to compress it. On Windows, you can
use WinZip or similar program to compress the dump and produce a file in Zip format.
On Unix, you might use gzip or bzip2 instead.You can even compress the backup as you
generate it by using a command pipeline:

% mysqldump sampdb | gzip > /archive/mysql/sampdb.2008-01-02.gz

% mysqldump sampdb | bzip2 > /archive/mysql/sampdb.2008-01-02.bz2

If large dump files are difficult to manage, it’s possible to dump the contents of individ-
ual tables by naming them following the database name on the mysqldump command line.
mysqldump will dump just the named tables rather than all the tables in the database,
resulting in smaller, more manageable files.The following example shows how to dump
subsets of the sampdb tables into separate files:

% mysqldump sampdb member president > hist-league.sql

% mysqldump sampdb student score grade_event absence > gradebook.sql

750 Chapter 14 Database Maintenance, Backups, and Replication

mysqldump has many options. Some of those that you may find useful include the
following:

n Typically, you name a database on the mysqldump command line, optionally fol-
lowed by specific table names.To dump several databases at once, use the
--databases option. mysqldump will interpret all names as database names and
dump all the tables in each of them.To dump all of a server’s databases, use
--all-databases. In this case, you supply no database or table name arguments.
Both --databases and --all-databases cause the output for each database to be
preceded by CREATE DATABASE IF NOT EXISTS and USE statements.

Be careful with the --all-databases option if you intend to load the dump out-
put into another server:The dump will include the grant tables in the mysql data-
base, and you may not really want to replace the other server’s grant tables.

n By default, mysqldump dumps both table structure (the CREATE TABLE statements)
and table contents (the INSERT statements).To dump just one or the other, use the
--no-create-info or --no-data options.

n As already mentioned, the --opt option optimizes the dump process. It turns on
other options that speed up dumping the data. In addition, the dump file is written
in such a way that it can be processed more quickly later when loaded back into the
server.

The --opt option is on by default, so you need not specify it explicitly. If you really
want an unoptimized dump, use the --skip-opt option.

Making backups using --opt is probably the most common method because of the
benefits for backup speed. Be warned, however, that the --opt option does have a
price; what --opt optimizes is your backup procedure, not access by other clients to
the database.The --opt option prevents anyone from updating any of the tables that
you’re dumping because it locks all the tables at once.You can easily see for yourself
the effect of this on general database access. Just try making a backup at the time of
day when your database is normally most heavily used. It won’t take long for your
phone to start ringing with people calling to find out what’s going on. (I’d appreci-
ate it if you would refrain from asking how I happen to know this.)

--opt is useful for generating backup files that you intend to use for periodically re-
freshing the contents of another database (for example, a database on another
server).That’s because it automatically enables the --add-drop-table option, which
tells mysqldump to precede each CREATE TABLE statement in the file with a DROP
TABLE IF NOT EXISTS statement for the same table.When you take the backup file
and load it into the second database later, you won’t get an error if the tables already
exist. If you’re running a second test server that’s not a replication slave, you can use
this technique to reload it periodically with a copy of the data from the databases on
your production server.

75114.4 Making Database Backups

n One effect of --opt is that it enables the --extended-insert option that causes
mysqldump to write multiple-row INSERT statements.This is a disadvantage if you
want a more readable dump file.To produce single-row INSERT statements, use the
--skip-extended-insert option.

n The combination of --flush-logs and --lock-all-tables is helpful for check-
pointing your database. --lock-all-tables acquires a global read lock, and
--flush-logs closes and reopens the log files. If binary logging is enabled, flushing
the logs creates a new binary log file that will contain only those data modifications
that occur subsequent to the checkpoint.This synchronizes your log to the time
of the backup. (The downside is that locking all the tables is detrimental to client
access during the backups if you have clients that need to perform updates.)

If you use --flush-logs to checkpoint the logs to the time of the backup, it’s
probably best to dump entire databases at a time. During restore operations, it’s
common to extract log contents on a per-database basis. If you dump individual
tables, it’s much more difficult to synchronize log checkpoints against your backup
files. (There is no option for extracting updates for individual tables from the logs, so
you’ll have to extract them yourself.)

n If you’re dumping InnoDB or Falcon tables, the --single-transaction option
dumps the tables within a transaction so that you get a consistent backup.

n If your databases contain stored routines, triggers, and events, you can explicitly
include them in dump output with the --routines, --triggers, and --events
options, which are available as of MySQL 5.0.13, 5.0.11, and 5.1.8, respectively.
Each of these options has a --skip form as well (for example, --skip-triggers)
to disable dumping of the corresponding objects. By default, triggers are included,
but stored routines and events are not.

mysqldump has several other options; see Appendix F.

14.4.2 Making Binary Database Backups
A method for backing up databases or tables that doesn’t involve mysqldump is to copy
table files directly.Typically this is done using regular filesystem utilities (such as cp, tar, or
rsync), or a special program developed for the task (such as mysqlhotcopy or InnoDB
Hot Backup).There are two key points to observe when you use a direct-copy backup
method:

n You must make sure the tables aren’t being used. If the server is changing a table
while you’re copying it, the copy will be worthless.The best way to ensure the in-
tegrity of your backups is to stop the server, copy the files, and restart the server.
Some binary backup methods in fact require that you stop the server. If you don’t
want to stop the server (and the backup method doesn’t require that you do so), use
a read-only locking protocol to prevent the server from changing the tables while
you’re copying them. See Section 14.2,“Performing Database Maintenance with the
Server Running.”

752 Chapter 14 Database Maintenance, Backups, and Replication

n You must copy all files that are required to restore the tables that you’re backing up.
Direct-copy methods are easiest to use for storage engines such as MyISAM that
represent a given table using a unique set of files in the database directory.To back
up a MyISAM table, you need to copy only its .frm, .MYD, and .MYI files. For a
storage engine such as InnoDB, it’s more complicated:You must copy the .frm files,
plus all the tablespace files and the InnoDB log files.

If you make a binary backup, beware of symbolic links, such as symlinks in the data di-
rectory to database directories or symlinks to MyISAM data or index files.These present a
problem because your file-copying technique might copy only the symlinks and not the
data that they point to.

14.4.2.1 Making a Complete Binary Backup
A complete binary backup includes all files in which table contents are stored and any log
files that are used by specific storage engines. For good measure, you should also copy the
binary log files. If the server is a replication slave, copy the relay log files and the
master.info and relay-log.info files.Also, the slave may have created files with names
of the form SQL_LOAD-xxx in its temporary file directory.You should back these up, too;
they’re needed for LOAD DATA statements.These files will be in the directory named by the
--slave-load-tmpdir option; if not given, it defaults to the value of the tmpdir system
variable.To make it easier to identify these files for backup, create a directory to be de-
voted to use by the slave server, and start the slave with the --slave-load-tmpdir option
set to that value.

To properly copy all the files just discussed, you must stop the server and it must shut
down cleanly, so that storage engines close their log files and the server closes any other
logs that it is writing.

All of that sounds like a lot of stuff to back up, but it is not necessarily complicated to
do so. For example, all of your database directories are under the data directory, and logs
and information files are created there by default as well. In this case, you can make a
backup by stopping the server and copying the entire data directory. For example, to cre-
ate a backup as a compressed tar file under the /archive/mysql directory, change loca-
tion into the data directory and back up the whole thing. For example:

% cd /usr/local/mysql/data

% tar czf /archive/mysql/backup-all-2008-04-11.tar.gz .

14.4.2.2 Making a Partial Binary Backup
Making a partial binary backup by copying files is similar to making a complete backup,
except that you copy only a subset of the full set of files. Suppose that you want to back
up the mydb database located under the data directory /usr/local/mysql/data and store
the backup under the archive directory /archive/mysql. Stop the server and then exe-
cute these commands:

% cd /usr/local/mysql/data

75314.4 Making Database Backups

% cp -r mydb /archive/mysql

After executing these commands, the /archive/mysql/mydb directory contains a copy
of the mydb database. Individual MyISAM tables can be backed up like this (create
/archive/mysql/mydb first if it does not exist):

% cd /usr/local/mysql/data/mydb

% cp tbl1.* /archive/mysql/mydb

% cp tbl2.* /archive/mysql/mydb

...

When you’re done making the backup, restart the server.
In some cases, a partial backup can be made without stopping the server if you use a

read-locking protocol to lock the tables that you want to copy.This is true if a database
contains only MyISAM tables, for example. If the mydb database used in the preceding ex-
amples is such a database, you can read-lock and flush the tables prior to executing the
backup commands, and then release the table locks after the backup is complete.

14.4.2.3 Making Backups with mysqlhotcopy
mysqlhotcopy is a Perl DBI script that helps you make database backups.The “hot” in the
name refers to the fact that the backups are made while the server is running.

mysqlhotcopy has the following principal benefits:

n It’s faster than mysqldump because it directly copies table files rather than requesting
the tables from the server the way mysqldump does. (This means that you must run
mysqlhotcopy on the server host; it does not work with remote servers.)

n It’s convenient, because it automatically manages for you the locking protocol nec-
essary to keep the server from changing the tables while they’re being copied.
mysqlhotcopy does this by using internal locking as described in Section 14.2.1.1,
“Locking a Table for Read-Only Access.”

n It can flush the binary log, which synchronizes the checkpoints for the backup files
and the log files.This makes the backups easier to use for recovery, should that be
necessary later.

mysqlhotcopy also has certain limitations:

n It must be used while the server is running because it tells the server to read-lock
the tables that it wants to copy, and it must be run on the server host because it di-
rectly accesses the table files.

n It can be used only for MyISAM and ARCHIVE tables.
n It works only on Unix and NetWare, not on Windows.

The following examples assume that databases to be backed up contain only MyISAM
or ARCHIVE tables.

754 Chapter 14 Database Maintenance, Backups, and Replication

There are several ways to invoke mysqlhotcopy. Suppose that you want to copy a data-
base named mydb.The following command creates a directory mydb_copy in the server’s
data directory and copies the files in the mydb database directory into it:

% mysqlhotcopy mydb

However, I recommend that you not back up a database into the data directory because
the new database directory will also appear to the server to be a database that it can access.
You can see this by issuing a SHOW DATABASES statement after executing the preceding
command.The output will show both mydb and mydb_copy. Because of this, the tables in
the backup directory could be modified by clients that connect to the server.

To make a copy of the mydb database under a specific directory, give the directory
pathname following the database name. For example, to copy the mydb database to a direc-
tory named /archive/mysql/mydb, use this command:

% mysqlhotcopy mydb /archive/mysql

To determine what actions mysqlhotcopy would perform for any given command, in-
clude the --dryrun or -n option in your invocation syntax.This runs mysqlhotcopy in
“no execution” mode, so that it just prints commands rather than executing them.

14.4.3 Backing Up InnoDB or Falcon Tables
Tables for transactional storage engines such as InnoDB or Falcon can be dumped using
mysqldump, just like any other kind of tables. One option that is useful for transactional
engines is --single-transaction, which causes mysqldump to dump the tables as part of
a transaction. For InnoDB and Falcon, this ensures that the tables are not modified during
the dump so that you get a consistent backup. (This option does not provide consistent
backup for MySQL Cluster.)

You can also make a binary backup of InnoDB tables by using InnoDB Hot Backup,
which is available from Innobase. InnoDB Hot Backup is a commercial tool that enables
you to make InnoDB backups with the server running.Visit http://innodb.com for
details.

To make a binary InnoDB backup yourself, take care to observe the following special
requirements:

n InnoDB has its own log files for transaction management that are active while the
server is running.Therefore, to make a binary backup, you must stop the server. Fur-
thermore, the server must shut down cleanly, not abnormally, so that InnoDB has a
chance to finish outstanding transactions and close its logs properly.

n To make a binary backup of your InnoDB tables, you must copy the these files:
n The shared tablespace files.
n The .frm file for each table.
n The .ibd file for each table, if you have configured InnoDB to use individual

tablespace files.

http://innodb.com

75514.5 Copying Databases to Another Server

n The InnoDB log files.
n The option file in which the shared tablespace configuration is specified.

(Make a copy of the option file because you’ll want it for reinitializing the
shared tablespace should you suffer loss of the current option file.)

To make a binary Falcon backup, the procedure is similar except that you copy the
Falcon tablespace and log files (the files with .fts, .fl1, and .fl2 extensions).

14.5 Copying Databases to Another Server
Database backups can be used to copy a database from one MySQL server to another.This
section describes some methods for performing database transfers. For purpose of this dis-
cussion, I assume that the objective is to transfer a database from the server on the local
host to a server on the remote host boa.snake.net. However, the two servers could just
as well be running on the same host.Also, although the following discussion describes
how to copy entire databases, you can adapt the techniques to copying individual tables.

The following discussion shows how to use two methods for copying a database to an-
other server.The first makes a backup of the database that results in a file or set of files.
You can copy the files to the second server host and load them into the second MySQL
server.The second method dumps the database over the network from one server and
loads it directly into the other server.This avoids the need for any intermediate files.

14.5.1 Copying Databases Using a Backup File
To copy a database using a text backup file, create the file using mysqldump, copy it to the
second server host, and load it into the MySQL server there.The following example illus-
trates how to copy the sampdb database with this procedure:

1. Create a dump file:

% mysqldump --databases sampdb > sampdb.sql

The --databases option causes mysqldump to add CREATE DATABASE IF EXISTS
and USE statements for the sampdb database.That way, when you load the dump file
on the remote host, it automatically creates and selects the database so the dumped
tables are loaded into that database.

2. Copy the dump file to the remote host.The following command uses scp to copy
the file to the /tmp directory on boa.snake.net:

% scp sampdb.sql boa.snake.net:/tmp

3. Log in on the remote host and load the dump file into the MySQL server there:

% mysql < /tmp/sampdb.sql

756 Chapter 14 Database Maintenance, Backups, and Replication

Another approach is to use binary-backup techniques: Copy database files (rather than
a dump file) from one host to the other. Suppose that the mydb database has only My-
ISAM tables. In this case, table information is contained entirely in the files in the mydb
database directory. If the local data directory is /usr/local/mysql/data and the remote
data directory on boa.snake.net is /var/mysql/data, the following commands copy the
mydb database directory to that host:

% cd /usr/local/mysql/data

% scp -r mydb boa.snake.net:/var/mysql/data

To copy database files to another host this way, certain requirements must be satisfied:

n Both machines must have the same hardware architecture, or the tables you’re copy-
ing must all be for a binary-portable storage engine.The resulting tables on the sec-
ond host may appear to have very strange contents otherwise.

n You must prevent the servers on both hosts from attempting to change the tables
while you’re copying them.The safest approach is to stop both servers while you’re
working with the tables.

14.5.2 Copying Databases from One Server to Another
The mysqldump technique shown in the previous section creates a dump file to be copied
to the destination server host.Alternatively, you can write the output of mysqldump over
the network directly to the other server so that no intermediate file is needed. For exam-
ple, to copy the sampdb database from the local host to the server on boa.snake.net, do
so like this:

% mysqldump --databases sampdb | mysql -h boa.snake.net

mysql reads the dump output, connects to the server on boa.snake.net, and loads the
dump into that server.

If you cannot access the remote MySQL server from the local host, but you can access
it by logging in there, use ssh to invoke mysql remotely:

% mysqldump --databases sampdb | ssh boa.snake.net mysql

On a slow network, the --compress option can improve performance when copying a
database to another machine because it reduces the number of bytes traveling over the
network:

% mysqldump --databases sampdb | mysql --compress -h boa.snake.net sampdb

The --compress option is given for the program that communicates with the server
on the remote host, not the one that communicates with the local server. Compression ap-
plies only to network traffic; it does not cause compressed tables to be created in the desti-
nation database.

75714.6 Checking and Repairing Database Tables

14.6 Checking and Repairing Database Tables
Database damage occurs for a number of reasons and varies in extent. If you’re lucky, you
may simply have minor damage to a table or two (for example, if your machine goes
down briefly due to a power outage). In this case, it’s likely that the server can repair the
damage when it comes back up. If you’re not so lucky, you may have to replace your en-
tire data directory (for example, if a disk dies and takes your data directory with it). Re-
covery also is needed under other circumstances, such as when users mistakenly drop
databases or tables or delete a table’s contents.Whatever the reason for these unfortunate
events, you’ll need to perform some sort of recovery.

This section describes table checking and repair procedures you can use to deal with
more minor forms of damage. If you suspect that a table has become corrupted, check it
for errors. If the table checks okay, you’re done. If not, try to repair it using these guidelines:

n Begin with a faster but less thorough repair method to see whether it will correct
the damage.

n If you find that it is not sufficient, escalate to more thorough (but slower) repair
methods, until either the damage has been repaired or you cannot escalate further.

In practice, most problems can be fixed without going to more extensive and slower
repair methods.

In the event that tables or databases are lost or irreparably damaged, you’ll need to re-
store them from your database backups and binary log. For instructions, see Section 14.7,
“Using Backups for Data Recovery.”

A general outline of the alternatives available to you for checking and repairing My-
ISAM and InnoDB tables follows. Specific details are given after that.

To check and repair MyISAM tables, you have a choice of approaches:

n Use the CHECK TABLE and REPAIR TABLE statements, or use the mysqlcheck pro-
gram, which connects to the server and issues those statements for you.

n Use the myisamchk program, which operates on the table files directly.

As mentioned earlier in the chapter, if you have a choice when performing table main-
tenance between letting the server do the work or running an external utility, it’s easier to
let the server do the work.Then you need not be concerned about using any locking pro-
tocols to coordinate table access.That advantage applies when using CHECK TABLE and
REPAIR TABLE (or mysqlcheck). If you use myisamchk, you must ensure that the server
does not use the tables while you’re working on them. Nevertheless, you might decide to
use myisamchk for the following reasons:

n You can use myisamchk when the server is stopped. CREATE TABLE and REPAIR

TABLE require that the server be running.

758 Chapter 14 Database Maintenance, Backups, and Replication

n You can tell myisamchk to use larger buffers to make checking and repair operations
run faster.This can be helpful if you have very large tables.

To check an InnoDB table, use CHECK TABLE or mysqlcheck. If the table is found to
have problems, dump it with mysqldump.Then drop the table and reload the dump file to
re-create it.The following sequence of commands shows how you might check, dump,
and reload the absence table in the sampdb database:

% mysqlcheck sampdb absence

% mysqldump sampdb absence > absence.sql

% mysql sampdb < absence.sql

14.6.1 Using the Server to Check and Repair Tables
To have the server do the work of checking or repairing tables, you can use the CHECK
TABLE or REPAIR TABLE statements or the mysqlcheck program.

14.6.1.1 Checking Tables with CHECK TABLE
The CHECK TABLE statement provides an interface to the server’s table checking capabili-
ties. It works for MyISAM and InnoDB tables. It also works for views as of MySQL 5.0.2,
for ARCHIVE tables as of 5.0.16, and CSV tables as of 5.1.9.

To use CHECK TABLE, provide a list of one or more table names, optionally followed by
modifiers that indicate what type of check to do. For example, the following statement
performs a medium-level check on three tables, but only if they have not been properly
closed:

CHECK TABLE tbl1, tbl2, tbl3 FAST MEDIUM;

The full list of check options is detailed in Appendix E. The options apply to MyISAM
tables, but may not be used by other storage engines.

It’s possible that CHECK TABLE will actually modify a table in some cases. For example,
if a table is marked as corrupt or as not having been closed properly, but the check finds
no problems, CHECK TABLE marks the table as okay.This change involves only modifying
an internal flag.

14.6.1.2 Repairing Tables with REPAIR TABLE
The REPAIR TABLE statement provides an interface to the server’s table repair capabilities.
It works with MyISAM and ARCHIVE tables, and with CSV tables as of MySQL 5.1.19.

To use REPAIR TABLE, provide a list of one or more table names, optionally followed
by modifiers that indicate what type of repair to do. For example, the following statement
tries to repair three tables in quick repair mode:

REPAIR TABLE tbl1, tbl2, tbl3 QUICK;

The full list of repair options is detailed in Appendix E. The options apply to MyISAM
tables, but may not be used by other storage engines.

75914.6 Checking and Repairing Database Tables

14.6.2 Using mysqlcheck to Check and Repair Tables
The mysqlcheck program provides a command-line interface to the CHECK TABLE and
REPAIR TABLE statements. It connects to the server and issues the appropriate statements
for you based on the options you specify.Therefore, mysqlcheck can check or repair tables
for the same storage engines as CHECK TABLE and REPAIR TABLE.

Typically, you invoke mysqlcheck with a database name, optionally followed by one or
more table names.With just a database name, mysqlcheck checks all the tables in the
database:

% mysqlcheck sampdb

With table names following the database name, mysqlcheck checks only those tables:

% mysqlcheck sampdb president member

If you specify the --databases option, all following arguments are interpreted as data-
base names and mysqlcheck checks all the tables in each database:

% mysqlcheck --databases sampdb test

If you specify --all-databases, mysqlcheck checks all tables in all databases. No
database or table name arguments are needed:

% mysqlcheck --all-databases

mysqlcheck is more convenient than issuing the CHECK TABLE and REPAIR TABLE

statements directly, because those statements require that you explicitly name each table to
be checked or repaired.With mysqlcheck, it’s much easier to check all tables in a database:
It looks up the names of the tables in the database for you and constructs statements that
name the appropriate tables.

By default, mysqlcheck checks tables using a medium check, but supports options that
enable explicit selection of the type of operation to perform.The following table shows
some mysqlcheck options and the CHECK TABLE options to which they correspond. (As
with CHECK TABLE, these options apply to MyISAM tables but may not be used by other
storage engines.)

mysqlcheck Option CHECK TABLE Option

--check-only-changed CHANGED

--extended EXTENDED

--fast FAST

--medium-check MEDIUM

--quick QUICK

760 Chapter 14 Database Maintenance, Backups, and Replication

14.6.3 Using myisamchk to Check and Repair Tables
The myisamchk utility can check and repair MyISAM tables. myisamchk does its work by
accessing table files directly, so before invoking it, it is advisable to stop the server to pre-
vent the server from accessing the table files at the same time as myisamchk. If you leave
the server running, make sure you read Section 14.2.1,“Locking Individual Tables for
Read-Only or Read/Write Access.” That section discusses the proper locking protocols
for preventing the server from using a table at the same time that you’re performing
checking or repair procedures on it with myisamchk.The following discussion assumes
that you have either stopped the server or are using the appropriate locking protocol.

myisamchk makes no assumptions about where tables are located.To run it, specify the
pathnames to the table files you want to use. It’s most convenient to do this if you’re in the
directory that contains the tables.Typically, you change location into the relevant database
directory first before invoking myisamchk, and then tell it which tables you want to check
or repair, along with the options that indicate what type of operation to perform:

% myisamchk options tbl_name ...

A tbl_name argument can be either a table name or the name of the table’s index file.
These commands are equivalent:

% myisamchk member

% myisamchk member.MYI

To name all the relevant index files in the database directory, you can use a filename
pattern (assuming that your command interpreter understands and expands wildcards):

% myisamchk options *.MYI

If you don’t want to perform a myisamchk maintenance operation on the original table
files, copy them to another directory and then work with the copies in that directory.

mysqlcheck Option REPAIR TABLE Option

--repair no options (performs a standard repair operation)

--repair --extended EXTENDED

--repair --quick QUICK

--repair --use-frm USE_FRM

mysqlcheck can also perform table repair operations, but only for MyISAM tables.The
following table shows some mysqlcheck options and the REPAIR TABLE options to which
they correspond. (As with REPAIR TABLE, these options apply to MyISAM tables but may
not be used by other storage engines.)

76114.6 Checking and Repairing Database Tables

Note
If the table contains any FULLTEXT indexes, it might be necessary to use additional
myisamchk options during repairs. For details, see the FULLTEXT-related notes in the
myisamchk description in Appendix F.

1. Try to fix the table using the --recover option. Use the --quick option as well to
attempt recovery based only on the contents of the index file without touching the
data file:

% myisamchk --recover --quick tbl_name

2. If problems remain, rerun the command without the --quick option to enable
myisamchk to modify the data file, too:

% myisamchk --recover tbl_name

14.6.3.1 Checking Tables with myisamchk
myisamchk provides table-checking methods that vary in how thoroughly they examine a
table.To perform a normal table check, use either of the following commands:

% myisamchk tbl_name
% myisamchk --check tbl_name

myisamchk’s default action with no options is --check, so those commands are equiva-
lent.

The normal check method usually is sufficient to identify problems. If it reports no er-
rors but you still suspect damage (perhaps because queries do not seem to return the cor-
rect results), perform an intermediate-level check by specifying the --medium-check
option.This is somewhat slower but more thorough. Finally, you can perform the most
extensive check by specifying the --extend-check option.This can be very slow, but it is
extremely thorough. For each row in the table’s data file, the associated key for every in-
dex in the index file is checked to make sure it really points to the correct row.

If no errors are reported for a check with --extend-check, you can be sure your
table is okay. If you still have problems with the table, the cause must lie elsewhere.
Re-examine any statements that seem to yield problematic results to verify that they are
written correctly. If you believe the problem might be with the MySQL server, consider
filing a bug report or upgrading to a newer version.

If myisamchk reports that a table has errors, you should try to repair it.

14.6.3.2 Repairing Tables with myisamchk
To perform a repair operation on a table with myisamchk, use the following procedure. It
first tries the repair types that are faster but less thorough, and then escalates to slower but
more thorough methods if faster methods fail to correct the problems. Before using the
repair procedure, make copies of the table files in case something goes wrong.That is un-
likely, but if it happens, you can make a new copy of the table from the copied files and
try a different recovery method.

762 Chapter 14 Database Maintenance, Backups, and Replication

3. If that doesn’t work, try the --safe-recover repair mode.This is slower than regu-
lar recovery mode, but is capable of fixing a few problems that --recover mode
will not:

% myisamchk --safe-recover tbl_name

It’s possible when you run these commands that myisamchk will stop with an error
message of the form Can't create new temp file: file_name.Typically, this indicates
the presence of a temporary file that was left around from a previous failed repair attempt.
To force removal of the temporary file, repeat the command but add the --force option.

If the preceding repair procedure fails to repair the table, your index file may be miss-
ing or damaged beyond repair. It’s also possible, although unlikely, that the table’s .frm
format file is missing. In either of these cases, you’ll need to replace the affected files, and
then try the repair procedure again.

To regenerate the index file for a table t, use this procedure if you have the table’s for-
mat file, t.frm:

1. Change location into the database directory that contains the crashed table.

2. Move the table’s data file, t.MYD, to a safe place.

3. Invoke mysql and re-create a new empty table by executing the following statement:

mysql> TRUNCATE TABLE t;

TRUNCATE TABLE uses the table format file, t.frm, to regenerate new data and index
files from scratch.

4. Exit mysql and move the original data file back into the database directory, replac-
ing the new empty data file you just created.That creates a mismatch between the
data file and the index file, but the index file has a legal internal structure that the
server can interpret and rebuild based on the contents of the data file and table for-
mat file.

5. Attempt a table repair again using the procedure at the beginning of this section.

If you don’t have the table’s .frm format file, you’ll need to recover it from your
backup files first.Then use the procedure at the beginning of this section. If you are miss-
ing the .frm file and also have no backup, but you know the CREATE TABLE statement
that must be issued to create the table, you still might be able to repair it as follows:

1. Change location into the database directory that contains the crashed table.

2. Move the table’s data file, t.MYD, to a safe place. If you want to try to use the index
file, t.MYI, move that, too.

3. Invoke mysql and issue the CREATE TABLE statement that creates the table.This cre-
ates new .frm, .MYD, and .MYI files.

4. Exit mysql and move the original data file back into the database directory, replac-
ing the new data file you just created. If you moved the index file in step 2, move it
back into the database directory, too.

76314.7 Using Backups for Data Recovery

Variable Meaning

key_buffer_size Size of buffer used to hold index blocks

read_buffer_size Size of buffer used for read operations

sort_buffer_size Size of buffer used for sorting

write_buffer_size Size of buffer used for write operations

5. Attempt a table repair again using the procedure at the beginning of this section.

14.6.3.3 Getting myisamchk to Run Faster
myisamchk can take a long time to run, especially if you’re working with a large table or
using one of the more-extensive checking or repair methods.You can speed up this
process by telling myisamchk to use more memory when it runs. myisamchk has several
variables that can be set, the most important of which control the sizes of the buffers that
it uses (see following table).

To find out what values myisamchk uses for these variables by default, run it with the
--help option.To specify a different value, use --var_name=value on the command
line. For example, if you have sufficient memory to spare, you can tell myisamchk to use
a 16MB sort buffer and 1MB read and write buffers by invoking it like this:

% myisamchk --sort_buffer_size=16M --read_buffer_size=1M \

--write_buffer_size=1M other-options tbl_name

For repair operations, --sort_buffer_size applies when the --recover option is
given, but not with --safe-recover.A --key_buffer_size setting applies when
--safe-recover is given or when you check the table with --extend-check.

14.7 Using Backups for Data Recovery
Recovery procedures involve two sources of information: your backup files and your bi-
nary log. Backup files can be either dump files generated with mysqldump or files copied
using one of the binary backup methods.

The backup files restore tables to the state they were in at the time the backup was
performed.The binary log files that were written after the backup contain the statements
that have modified the tables since then. mysqlbinlog converts these log files back into
text SQL statements so that you can execute them with mysql.This enables you to re-
apply the changes made between the time of the backup and the time at which problems
occurred.

The recovery procedure varies depending on how much information you must re-
store. In fact, it may be easier to restore an entire database than a single table, because it’s
easier to apply the binary log files for a database than for a table.

764 Chapter 14 Database Maintenance, Backups, and Replication

The discussion here assumes that you’ve been performing database backups and have
binary logging enabled. If that’s not true, you’re living dangerously.You should enable the
binary log right now and generate a new backup before reading further.You don’t ever
want to be in the position of having irretrievably lost a table because you were lax about
saving the information necessary to restore it.To find out how to enable the binary log,
see Section 12.5.4,“The Binary Log and the Binary Log Index File.”To make a backup,
see the instructions in Section 14.3,“Making Database Backups.”

14.7.1 Recovering Entire Databases
The general procedure for recovering one or more databases involves the following steps:

1. Make a copy of the contents of the database directory or directories.You may want
this later if you make a mistake or something goes wrong during recovery.

2. Reload the databases using your most recent backup files:
n If your backups are dump files generated by mysqldump, reload each file by

using it as input to mysql.

If the database or databases that you need to recover include the mysql data-
base that contains the grant tables and you are using dump files to recover
the tables, you’ll need to reload them while running the server using the
--skip-grant-tables option. Otherwise, it may complain about not being
able to find the grant tables. It’s also a good idea to use --skip-networking
to cause the server to reject all remote connection attempts while you’re
performing the restoration.After you’ve restored the tables, stop the server
and restart it normally so that it uses the grant tables and listens to its
network interfaces as usual.

n If you’re using files from a binary backup (for example, a backup made with
mysqlhotcopy, tar, or cp), stop the server so that it doesn’t try to access the
databases while they are being restored.Then copy the backup files back to
their original locations (probably under the data directory), and restart the
server.

3. Use the binary log to re-execute the data modifications that occurred subsequent
to the time at which the backup was made.The procedure for this is given in
Section 14.6.3,“Re-Executing Statements in Binary Log Files.”

14.7.2 Recovering Individual Tables
Recovering an individual table can be more difficult than recovering a database. If you
have a dump file generated by mysqldump that contains only that table, just reload the file.
If you have a dump file that contains data for many tables, you can recover one of them

76514.7 Using Backups for Data Recovery

by editing the file to delete the data for the other tables and then reloading the remain-
der.That’s the easy part.

The more difficult part of recovery is extracting the parts of the binary logs that apply
to the table. mysqlbinlog supports a --database option to limit its output to the state-
ments for a single database, but there is no corresponding single-table option.A strategy
that you might find useful in this situation is to restore more than you need, and then dis-
card what you don’t want.This procedure can actually be easier than trying to restore a
single table by extracting the relevant parts from the binary log.

1. Restore the entire contents of the database that contains the table you want, but do
so into a second, empty database.You can do this with your backups and by re-
applying the binary log. However, there are two complications:

n A dump file from mysqldump might contain a USE statement for the original
database.You’ll need to either change it or remove it before using the dump
file as input to mysql.

n Output from mysqlbinlog will contain one or more USE statements for the
original database. Save the output in a file so that you can edit these statements
to name the second database before using the file as input to mysql.

2. From the second database, use mysqldump to dump the table in which you are
interested.

3. Drop the original table and load the dump file into the original database to re-
create the table. If you run mysqldump with the --opt or --add-drop-table
option, the dump file itself will contain a DROP TABLE statement that removes the
table before re-creating it.

For MyISAM tables, an alternative to using mysqldump is to directly copy the table
files from the second database directory to the original database directory. Make sure that
no server is working with either copy of the table when you perform the copy operation.

14.7.3 Re-Executing Statements in Binary Log Files
After you restore databases or tables from your backup files, re-apply the portions of your
binary log files that contain the statements executed after the backup was made.This
brings your tables up to date.

The mysqlbinlog program converts binary log files to statements in text form, making
them easy to execute: Use the output from mysqlbinlog as input to mysql.

Depending on what you restored from backup, you might need to apply all statements
in the binary log files, or just those for a particular database.You might also need to select
only those statements that were executed within a particular time interval. mysqlbinlog
can do these things. It can process multiple binary log files, and it can limit its output to
statements for a given database or time interval.

766 Chapter 14 Database Maintenance, Backups, and Replication

The following instructions for applying the binary log files assume that the logs all
have names of the form binlog.nnnnnn, where nnnnnn is the six-digit extension indicat-
ing the log sequence number.Adjust the instructions if your logs have a basename different
from binlog.Also, I focus here on the use of local binary log files that exist on the same
host where you execute mysqlbinlog.The program is capable of reading remote binary
log files, but that is not covered here. For details on mysqlbinlog remote log processing
options, see Appendix F.

If the backup from which you restored your databases was made before all of your
current binary log files were written, you’ll need to apply the contents of each file.To do
so, use this command in the directory where the files are located:

% mysqlbinlog binlog.[0-9]* | mysql

If you need to edit the logs before re-executing them, convert them to text format and
save the result in a file.Then edit the file and feed the result to mysql. Here is an example:

% mysqlbinlog binlog.[0-9]* > text_file
% vi text_file
% mysql < text_file

This strategy is necessary if the reason that you’re performing recovery and using the
logs to restore information is because someone issued an ill-advised DROP DATABASE, DROP
TABLE, or DELETE statement.You’ll need to remove that statement from the logs before
executing their contents.

The binlog.[0-9]* pattern in the preceding mysqlbinlog commands expands to the
list of binary log files, normally in the same order in which they were generated by the
server.

Do not use mysqlbinlog and mysql to process binary log files one by one.There
might be inter-file dependencies that will be broken unless you process the files as a
group. For example, a TEMPORARY table created in one log file might be used in a later log
file. If you process each log file separately, all TEMPORARY tables created by each log are
dropped as the corresponding mysql invocation finishes and become unavailable to state-
ments in the following logs.

To extract only those statements that pertain to a particular database, use the
--database option to mysqlbinlog:

% mysqlbinlog --database=db_name binlog.[0-9]* | mysql

mysqlbinlog also supports several options for extracting statements that occur within
a particular time window (for example, statements written after a given backup was
made).You may need to examine what’s in the log files to see what option values to sup-
ply. Here is a sample of mysqlbinlog output (with some of the comment lines shortened
to fit the page):

...

at 1077

#071030 16:50:36 server id 1 end_log_pos 106 Query....

76714.7 Using Backups for Data Recovery

SET TIMESTAMP=1193781036;

INSERT INTO absence VALUES (3,'2008-09-03');

at 1183

#071030 16:50:36 server id 1 end_log_pos 1210 Xid = 386

COMMIT;

at 1210

#071030 16:50:36 server id 1 end_log_pos 106 Query....

SET TIMESTAMP=1193781036;

INSERT INTO absence VALUES (5,'2008-09-03');

at 1316

#071030 16:50:36 server id 1 end_log_pos 1343 Xid = 387

COMMIT;

at 1343

#071030 16:50:36 server id 1 end_log_pos 107 Query....

SET TIMESTAMP=1193781036;

INSERT INTO absence VALUES (10,'2008-09-06');

at 1450

#071030 16:50:36 server id 1 end_log_pos 1477 Xid = 388

COMMIT;

...

Suppose that you want to re-execute the modifications in the binary log that were
made beginning at 2007-10-30 16:50:36.That value can be given to the
--start-datetime option in either of these formats:

% mysqlbinlog --start-datetime=20071030165036 binlog.[0-9]* | mysql

% mysqlbinlog --start-datetime="2007-10-30 16:50:36" binlog.[0-9]* | mysql

There is a corresponding --stop-datetime option for giving the ending time.There
are also position-based options that take log_pos values shown in the log. For information,
see the description of mysqlbinlog in Appendix F.

14.7.4 Coping with InnoDB Auto-Recovery Problems
If the MySQL server or the server host crashes, the InnoDB storage engine attempts to
perform auto-recovery when the MySQL server restarts. In rare instances, auto-recovery
might fail.This section describes what to do if that happens.

In the event that InnoDB detects a non-recoverable problem during server startup, its
auto-recovery process fails. In this case, set the innodb_force_recovery system variable
to a non-zero value between 1 and 6 to cause the server to start up even if InnoDB
recovery after a crash otherwise fails.To set the variable, put a line in the [mysqld] group
of your server’s option file:

[mysqld]

innodb_force_recovery=level

768 Chapter 14 Database Maintenance, Backups, and Replication

The InnoDB storage engine uses more conservative strategies for lower values of
level.A typical recommended starting value is 4.After the server starts, dump your
InnoDB tables with mysqldump to get back as much information as possible, drop the
tables, and restore them from the mysqldump output file.This procedure re-creates the
tables in a form that is internally consistent, and may be sufficient to achieve a satisfactory
recovery.After performing the recovery, remove the line that sets innodb_force_
recovery from the option file.

If you need to restore all of your InnoDB tables, you’ll need to use your backups.The
approach to take depends on what kind of backup you made:

n If you made a binary backup, you should have copies of the shared and individual
tablespace files, the InnoDB log files, the .frm file for each table, and the option file
that defines your InnoDB configuration.After making sure the server is stopped,
delete any existing InnoDB files and replace them with your backup copies.Then
make sure your current server option file lists the InnoDB configuration the same
way as your saved option file and restart the server.

n If you backed up your InnoDB tables by running mysqldump to generate a dump
file, you should reinitialize the shared tablespace and InnoDB logs and reload the
dump file into InnoDB:

1. Stop the server and remove any existing InnoDB-related files: the shared and
individual tablespace files (other than raw partitions), the InnoDB log files,
and the .frm files for all InnoDB tables.

2. Configure the shared tablespace the same way you did initially and restart the
server. InnoDB then will re-create its shared tablespace and log files. For
instructions, see Section 12.7.3.1,“Configuring the InnoDB Tablespace.”
Remember that initializing the tablespace is a two-step process if you’re using
any raw partitions.

3. Reload your dump file or files by using them as input to mysql.This re-
creates the InnoDB tables.

After restoring the InnoDB tables from the backups, re-apply any updates from your
binary log that occurred after the backup was made. (See Section 14.7.3,“Re-Executing
Statements in Binary Log Files.”) This is easiest if you’re restoring your InnoDB tables as
part of restoring your entire set of databases, because in that case you can apply all the up-
dates made subsequent to the backup. If you’re restoring only your InnoDB tables, apply-
ing the logs will be trickier because you should use the updates only for those tables.

14.8 Setting Up Replication Servers
One form of database “replication” involves simply copying a database to another server.
But if the original database changes and you want to keep the copy up to date, you must
repeat the operation later.To achieve continual updating of a secondary database as
changes are made to the contents of a master database, use MySQL’s live replication

76914.8 Setting Up Replication Servers

capabilities.This gives you a means of keeping a copy of a database and making sure that
changes to the original database propagate on a timely basis to the copy automatically.

14.8.1 How Replication Works
Database replication in MySQL is based on the following principles:

n In a replication relationship, one server acts as the master and another server acts as
the slave. Each server must be assigned a unique replication ID.

n There can be multiple slaves per master.A slave can serve as a master to another
slave, thus creating a chain of replication servers. Multiple-master replication to a
slave is also possible, but is trickier to set up and is not covered here.

n Each slave must begin with its databases synchronized to those of its master.That is,
any database to be replicated on the slave must be an identical copy of the master
database when replication begins.After that, updates that are made on the master
server propagate to the slave. Updates should not be made directly to the replicated
databases on the slave.

n Communication of updates is based on the master server’s binary logs, which is
where updates are recorded that are to be sent to the slaves. Binary logging there-
fore must be enabled on the master server. Stored updates in the binary log are
called “events.”

n Each slave server must have permission to connect to the master and request updates.
When a slave connects to its master, it tells the master how far into the master’s
binary log it had progressed when it last connected.This progress is measured in
terms of replication coordinates:A binary log filename and position within that file.
The master then begins sending to the slave those events in the binary log that
occurred after the given coordinates.When the slave has read all available events, it
pauses and waits for more.

n As new updates occur on the master server, it writes them to its binary log for later
transmission to its slaves.

n The master server handles connected slaves much as it handles regular clients, and
connected slaves count against the limit set by the max_connections system variable.

n On the slave side, the server uses two threads to handle replication duties.The I/O
thread receives events to be processed from the master server and writes them to
the slave’s relay log.The SQL thread reads events from the relay log and executes
them.The relay log serves as the means by which the I/O thread communicates
changes to the SQL thread.As each relay log file is processed completely, the slave
removes it automatically.The I/O and SQL threads operate independently, so each
can be stopped or started separately from the other.This decoupling of function
into different threads has important benefits. For example, the I/O thread can
continue to read events from the master server while you stop the SQL thread so
that no updates occur in the slave’s databases while you make a backup.

770 Chapter 14 Database Maintenance, Backups, and Replication

Replication support is an area of active development, so it’s sometimes difficult to keep
track of just which replication-related feature was added when.You should consider com-
patibility constraints between different server versions. Replication compatibility is based
on the binary log format, of which there have been several versions.The original format
was developed in MySQL 3.23 when replication support was added, and others were
developed in MySQL 4.0, 5.0, and 5.1.

In general, I recommend that you follow these guidelines:

n Within a given MySQL series (5.0, 5.1, and so forth), try to use the most recent
version possible.This gives you the benefit of the richest feature set and the greatest
number of restrictions removed and problems eliminated.

n Try to match binary log formats for your master and slave servers. For example, try
to match 5.1 masters with 5.1 slaves, not 5.1 masters with 5.0 slaves or vice versa. If
your master and slave versions must differ, replicate from older masters to newer
slaves, not the other way around.

Assuming that your servers have compatible binary log formats, they must also be
feature-compatible. For example, if the master server replicates InnoDB tables that require
the use of transactions or foreign keys, the slave server must include the InnoDB storage
engine.

14.8.2 Establishing a Master-Slave Replication Relationship
The following procedure describes how to set up a master-slave replication relationship
between two servers:

1. Determine what ID value you want to assign to each server and record it in an
option file that the server reads when it starts.These IDs must be different and each
should be a positive integer from 1 to 232-1.The ID values will be needed for the
server-id startup option used with each server. In addition, enable binary logging
on the master if it is not already enabled.To accomplish this on the master and
slave, respectively, use option groups with the following lines:

[mysqld]

server-id=master_server_id
log-bin=binlog_name

[mysqld]

server-id=slave_server_id

Restart both servers so that the changes take effect.

2. On the master server, set up an account that the slave server can use to connect to
the master server and request updates:

CREATE USER 'slave_user'@'slave_host' IDENTIFIED BY 'slave_pass';
GRANT REPLICATION SLAVE ON *.* TO 'slave_user'@'slave_host';

77114.8 Setting Up Replication Servers

Remember the slave_user and slave_pass values for later when you tell the slave
server how to connect to the master. No other privileges are needed if the account
is used only for the single, limited purpose of replication. However, you may want
to grant additional privileges to the account if you plan to use it connect to the
master from the slave host “manually” with the mysql program for testing.Then
you won’t be so limited in what you can do. (For example, if REPLICATION SLAVE
is the only privilege granted to the account, you might not even be able to see
database names on the master server with SHOW DATABASES.)

3. Connect to the master server and determine its current replication coordinates by
executing SHOW MASTER STATUS:

mysql> FLUSH TABLES; SHOW MASTER STATUS;

+---------------+----------+--------------+------------------+

| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |

+---------------+----------+--------------+------------------+

| binlog.000093 | 1707 | | |

+-----------------+-----------+----------------+--------------------+

Remember the File and Position values.You will need them later so that you can
tell the slave the point from which to start reading binary log events from the mas-
ter.

Important:You must make sure that no updates occur on the master from the time
that you determine its replication coordinates until after you make a snapshot of its
data to be transferred to the slave.

4. The slave server must begin with an exact copy of the databases to be replicated.
Perform the initial synchronization of the slave to the master server by copying the
master’s databases to the slave. One way to do this is to make a backup on the mas-
ter host, and then move it to the slave host and load it into the slave server.Another
method is to copy all the databases over the network from the master to the slave.
Database backup and copying techniques are discussed elsewhere in this chapter.

If you haven’t created any databases or tables on the master, you can skip this step
because there is nothing to take a snapshot of.

5. Connect to the slave and use CHANGE MASTER to configure it with the parameters
for connecting to the master server and the initial replication coordinates:

CHANGE MASTER TO

MASTER_HOST = 'master_host',
MASTER_USER = 'slave_user',
MASTER_PASSWORD = 'slave_pass',
MASTER_LOG_FILE = 'log_file_name',
MASTER_LOG_POS = log_file_pos;

772 Chapter 14 Database Maintenance, Backups, and Replication

'master_host' is the name of the host where the master server is running.The
'slave_user' and 'slave_pass' values should be the name and password of the
account that you set up on the master server earlier for the slave server to use when
it connects to the master to request updates. 'log_file_name' and log_file_pos

are the values you obtained from SHOW MASTER STATUS.

On Unix, a socket file is used for connections to localhost, but replication
through a socket file is not supported.Therefore, if the master host is the same as
the slave host, use 127.0.0.1 rather than localhost to make sure that the slave
uses a TCP/IP connection.

If the master isn’t listening on the default port, you can include a MASTER_PORT
option in the CHANGE statement to indicate a port number.

6. Tell the slave to start replicating:

START SLAVE;

The slave should connect to the master and start replicating.You can check this
with the SHOW SLAVE STATUS statement on the slave.

The slave stores the CHANGE MASTER parameters in a file named master.info in its
data directory to record the initial replication status, and updates the file as replication
proceeds. If you need to change replication parameters later, connect to the slave and use
CHANGE MASTER again.The slave automatically updates the master.info file with these
changes.

The information stored in the master.info file includes the username and password
for connecting to the master server.This information should be confidential, so make sure
that the file is accessible only to the MySQL administrator’s login account on the slave
server. For example, lock down the data directory contents as described in Section 13.1.2,
“Securing Your MySQL Installation.”

The procedure just described is based on the assumption that you want to replicate all
databases from the master to the slave. However, it’s very likely that you don’t want to use
the same user accounts on both servers. (For example, you might want to set up a private
replication slave that people cannot connect to even if they have an account on the mas-
ter.) To maintain accounts on the slave separately from those on the master, do two things:

1. When you transfer the initial data snapshot from the master to the slave, don’t
include the mysql database, or else back up the slave’s mysql database before the
transfer and restore it after.

2. Tell the slave to ignore any updates from the master for the mysql database. Do this
as follows in the slave’s option file:

[mysqld]

replicate-ignore-db=mysql

The replicate-ignore-db option can be given multiple times, once per database, if
you want the slave to ignore several databases.

77314.8 Setting Up Replication Servers

It’s possible to exclude databases on the master side rather than on the slave side by
using the binlog-ignore-db option in the master’s option file.This reduces traffic
between the master and slave, but also unfortunately causes the binary log to contain no
information for the ignored databases.That information is useful for performing recovery
on the master after a crash, so database exclusion on the slave side is usually preferable.

After you have replication set up and running, there are several statements that you
may find useful for monitoring or controlling the master and the slave. Details about
these statements are available in Appendix E. A brief summary follows:

n SHOW SLAVE STATUS on a slave shows whether replication is running and the
current replication coordinates.The coordinates can be used to determine which
binary log files from the master are no longer needed.

n PURGE MASTER on the master expires binary log files.You can use this after issuing a
SHOW SLAVE STATUS statement on each of the slaves to determine which log files
no longer are needed.

n The STOP SLAVE and START SLAVE statements suspend and resume a slave server’s
replication-related activity.These statements can be useful for telling the slave to be
quiescent while you’re making a backup, for example. (See Section 14.8.4,“Using a
Replication Slave for Making Backups.”)

As mentioned earlier, a slave server uses two threads internally to manage replication.
The I/O thread talks to the master server, receives updates from it, and writes updates
to its relay log.The SQL thread reads the relay log and executes the updates it finds there.
You can use STOP SLAVE and START SLAVE to suspend or resume each thread individually
by adding IO_THREAD or SQL_THREAD to the end of the statement. For example, STOP
SLAVE SQL_THREAD stops execution by the slave of the updates in the relay log, but
enables the slave to continue to read updates from the master and record them in the
relay log.

Relay log files are generated in numbered sequence, much like the binary log files.
There also is a relay log index file analogous to the binary log index.The default relay log
and index files are HOSTNAME-relay-bin.nnnnnn and HOSTNAME-relay-bin.index in the
data directory.The defaults can be changed with the --relay-log and --relay-log-

index server startup options.

14.8.3 Binary Logging Formats
Before MySQL 5.1, the server writes data-modification events to the binary log as SQL
statements.This is known as statement-based binary logging, and replication based on it is
statement-based replication. Beginning with MySQL 5.1.5, an alternative format is avail-
able in which the server logs changes to individual data rows.This is row-based logging
and replication. Mixed-format logging was added in 5.1.8, for which the server switches
between statement-based and row-based logging as it deems best.

774 Chapter 14 Database Maintenance, Backups, and Replication

In general, statement-based logging produces smaller log files with contents that are
easier to understand. Row-based logging provides finer specification of updates to be
made, which is advantageous for replication when the original statements might be non-
deterministic and produce different effects on master and slave.

As of MySQL 5.1, the logging format is selected by using the --binlog-format op-
tion at startup or (as of 5.1.8) by setting the global binlog_format system variable at
runtime.The default format as of 5.1.12 is MIXED. Other values are STATEMENT or ROW to
force a given format.

14.8.4 Using a Replication Slave for Making Backups
If you have a replication slave server set up, it can help you resolve a conflict of interest
that arises from your duties as a MySQL administrator:

n On the one hand, it’s important to maximize the availability of your server to the
members of your user community, which includes allowing them to make database
updates.

n On the other hand, it’s important to make backups, which is best done while you
prevent anyone from making database changes.Also, for recovery purposes, backups
are most useful if you make sure your backup file and log file checkpoints are syn-
chronized, either by stopping the server or by locking all the tables at once.

The goal of maintaining accessibility conflicts with enforcing complete or partial loss
of database access to clients while making backups.A replication slave provides a way out
of this dilemma. Rather than making backups of the master server, use the slave server in-
stead. Stop the slave or suspend replication on it before you make the backup.Then restart
the slave or resume replication afterward, and the slave will catch up on any updates made
by the master server during the backup period.This way you need not stop the master or
otherwise make it unavailable to clients during the backup.

The following list describes some possible strategies for backing up the slave:

n For a binary backup of all slave data, stop the slave server, follow the instructions in
Section 14.4.2.1,“Making a Complete Binary Backup,” and restart the server.

n For a backup using a method such as mysqldump that does not require the slave to
be stopped, you can back up the slave while the SQL thread is stopped, and then
restart the thread after making the backup: Suspend replication on the slave with
STOP SLAVE SQL_THREAD and flush its logs.Then make the backup and resume
replication with START SLAVE.This way the slave won’t make changes to databases
while you’re backing them up.The I/O thread can be left running; it will continue
to write events to the relay log that it receives from the master.When you restart the
SQL thread after making the backup, it catches up with any accumulated updates.

77514.8 Setting Up Replication Servers

This approach assumes that clients do not make updates on the slave server.You
should also not use this method if you intend to use a binary backup method that
copies database files directly. Even though the SQL thread is stopped, there might
be information cached in memory that has not been flushed to disk.

n Some backup methods do not require even that you suspend replication. For exam-
ple, if you’re backing up a single database containing only MyISAM tables, you can
use mysqlhotcopy or mysqldump with the appropriate options to lock all the tables
at once. In these cases, the slave server can continue to run, but it won’t attempt any
updates to the locked tables during the backup.When the backup program finishes
and releases the locks, the slave resumes update processing automatically.

This page intentionally left blank

A
Obtaining and Installing

Software

This appendix describes how to obtain the sampdb distribution that is used for setting
up the sample database that serves for examples throughout this book.To use the distribu-
tion, you’ll also need to have MySQL running.To that end, the appendix also discusses
how to obtain and install MySQL and related software such as the Perl DBI and CGI.pm
modules, PHP, and Apache. It provides information for both Unix and Windows.

The purpose of this appendix is to bring together in one place summary installation
instructions for each of the packages that are discussed here, not to replace the instruc-
tions that come with the packages. In fact, I encourage you to read the package instruc-
tions.This appendix provides general information that should suffice for many situations,
but each package also contains instructions to help you troubleshoot problems when a
standard installation procedure fails. For example, the MySQL manual contains a chapter
that deals extensively with installation procedures and includes solutions for many operat-
ing system-specific problems.

A.1 Obtaining the sampdb Sample Database
Distribution
The sampdb distribution is available at http://www.kitebird.com/mysql-book/ and con-
tains the files that are used to set up and access the sampdb sample database.The distribu-
tion is available in compressed tar file and Zip archive formats.To unpack a distribution
in tar format, use one of these commands (use the second command if your version of
tar doesn’t understand the z option):

% tar zxf sampdb.tar.gz

% gunzip < sampdb.tar.gz | tar xf -

To unpack a Zip-format distribution, use a utility such as WinZip, pkunzip, or unzip.

http://www.kitebird.com/mysql-book/

778 Appendix A Obtaining and Installing Software

When you unpack the distribution, it will create a directory named sampdb containing
several files and subdirectories:

n A README.txt file containing additional general instructions for using the distribu-
tion.This is the first file you should look at. Individual subdirectories of the distri-
bution may also contain a README.txt file with more information.

n Files for creating and loading the sampdb database.These are used in Chapter 1,
“Getting Started with MySQL.”

n A capi directory containing the C programs used in Chapter 7,“Writing MySQL
Programs Using C.”

n A perlapi directory containing the Perl DBI scripts used in Chapter 8,“Writing
MySQL Programs Using Perl DBI.”

n A phpapi directory containing the PHP scripts used in Chapter 9,“Writing
MySQL Programs Using PHP.”

n An ssl directory containing certificate and key files for setting up SSL connections
between MySQL client programs and the server.

The sampdb directory also includes a few other directories containing files that are ref-
erenced at various other points in this book. Check the README.txt file for further
information.

A.2 Obtaining MySQL and Related Software
To use this book, you must install MySQL if you haven’t already done so. For third-party
tools, you need install only those that you plan to use:

n To write Perl scripts that access MySQL databases, you must install the DBI and
DBD::mysql modules. If you plan to write Web-based DBI scripts, you’ll probably
want to install the CGI.pm module as well, and you’ll need a Web server.The
Apache server is used in this book, but others may work, too.

n If you want to write PHP scripts as described in this book, you must install PHP
and also the PHP Data Objects (PDO) database-access extension. Normally, PHP is
used for Web scripting, which means you also need a Web server.The Apache server
is used in this book for PHP scripts.

Precompiled binaries are available for many of the installation packages. For example,
RPM packages are available for Linux. If you prefer to compile software from source, or if
a binary distribution isn’t available for your platform, you’ll need a C compiler (C++ for
MySQL).

If you have an account with an Internet service provider that offers MySQL services,
it’s very likely that all these packages have been installed already. In that case, you can go
ahead and use them and skip the rest of this appendix. Otherwise, the primary distribu-
tion points for each of the packages you’ll need are shown in the following table. Several

779A.2 Obtaining MySQL and Related Software

Package Location

MySQL http://dev.mysql.com/

Perl modules http://cpan.perl.org/

PHP http://www.php.net/

Apache http://httpd.apache.org/

of these sites offer mirror sites that provide the same software but that may be closer to
you and result in better download times.

The version and distribution format of a package that you install depends on your needs:

n If you need maximum stability, you should be conservative and use the most recent
stable version of a package.That gives you the benefit of the newest features and the
greatest number of bug fixes without exposing you to experimental code in devel-
opment versions.

n If you’re interested in being on the cutting edge, or you require a feature that’s
available only in the newest version, you should use the latest development release.

n For MySQL, pre-built binary distributions often are built using optimization flags
that are better than what the configuration script in the source distribution might
figure out by itself.The MySQL developers recommend that you use a binary dis-
tribution of MySQL obtained from dev.mysql.com if possible.They build some
distributions using commercial optimizing compilers to make MySQL even faster.
Consequently, programs in a binary distribution may run faster than those you’d
compile yourself. In addition, the developers have extensive experience in avoiding
or working around compiler and system library bugs that prevent MySQL from
working properly.

The Web sites for each package indicate which versions are the latest stable releases
and which are development releases.They also provide per-version feature change lists to
help you decide which release is best for you.

Binary distributions are available in the native packaging format for some platforms,
such as RPM packages for Linux or DMG packages for Mac OS X. Other more generic
formats also are available, such as compressed tar files for Unix systems and Zip archives
for Windows.

If you are working with a binary distribution, unpacking it is equivalent to installing it
because the files are unpacked into the directories where you want them to end up. On
Unix, you might need to be root to unpack a distribution if it installs files in protected
directories.

Source distributions generally take the form of compressed tar files or Zip archives.
You can unpack a source distribution into the area that you want to use for compiling,
and then install the software into the desired installation location. On Unix, you might

http://dev.mysql.com/
http://cpan.perl.org/
http://www.php.net/
http://httpd.apache.org/

780 Appendix A Obtaining and Installing Software

need to be root to perform the install step, but that should not be necessary for any con-
figuration or compilation steps.

If you are installing from source on Unix, several of the packages discussed here are
configured with the configure utility, which makes it easy to set up and build software
on a variety of systems. If a build fails, you might need to rerun configure with options
different from those you originally specified. Before doing so, you should prevent
configure from picking up information that it saved from the previous time you ran it.
Clean out the stored configuration like this:

% make distclean

Or like this:

% rm config.cache

% make clean

Subscribing to Mailing Lists for Help
When you install a package, it’s a good idea to subscribe to the general discussion list for
that package so that you can ask questions and receive helpful answers. If you install de-
velopment releases, you definitely should join and read the mailing list associated with the
software to stay abreast of bug reports and fixes. If you don’t want all the traffic from a
general discussion list, you can subscribe to the announcement list so that you receive
notices of new releases. Instructions for subscribing to mailing lists and using them are
provided in the Introduction. The Web sites for each package also provide subscription
information.

A.3 Choosing a Version of MySQL
Distributions are available for several MySQL release series. Generally, you should use the
highest-numbered version available in the series you want to use. Currently, stable releases
are being produced in the 5.0 series and development releases come from 5.1 and up.This
book uses MySQL 5.0 as its baseline but covers features available in the 5.1 and early 6.0
releases.

Normally, I recommend that you use a stable release and not a development release, so
my recommendation for most readers is to use MySQL 5.0. If you want to experiment
with newer features such as the event scheduler, use MySQL 5.1 or later. (As I write,
stable releases will soon be available for 5.1, at which point you can choose either 5.0 or
5.1 without using a development release.)

A.4 Installing MySQL on Unix
MySQL distributions for Unix are available in binary (pre-built) and source formats. Bi-
nary distributions are easier to install, but you must accept the installation layout and con-
figuration defaults that are built into the distribution. Source distributions are more
difficult to install because you must compile the software, but you also get more control

781A.4 Installing MySQL on Unix

over configuration parameters. For example, you can compile the distribution to include
only the storage engines and character sets that you want, and you can install the software
wherever you like.

In the instructions here, I cover how to install MySQL on Unix for the following dis-
tribution types:

n tar file binary distributions
n RPM packages on Linux
n tar file source distributions

However, you should be aware that there are other installation methods for MySQL,
such as by using a DMG disk image on Mac OS X, a FreeBSD port, a Gentoo Linux
ebuild, or apt-get on Debian Linux. If you’re using a Unix or Unix-like system that has
its own packaging system, you might want to use that for installing MySQL instead of the
instructions here. (If so, you should still take a look at the instructions in Section A.4.3,
“Post-Installation Steps,” after performing the initial installation.)

MySQL distributions contain one or more of the following components:

n The mysqld server
n Client programs (mysql, mysqladmin, and so forth)
n Client programming support (C libraries and header files)
n Language support
n Documentation
n The benchmark database

Source and binary distributions contain all of these components. Individual RPM
packages contain only some of them, so you might need to install multiple RPMs to get
everything you need.

If you plan to connect to a server that’s running on another machine, you don’t need
to install a server. But you should always install client software so that you can connect to
whichever server you use.Also, the C client library is required for writing programs using
any API that incorporates that library. For example, you’ll need it for DBI if you plan to
write MySQL-based Perl scripts.

Installing MySQL on Unix involves the following steps:

1. If you are going to install a server, create a login account for the user and group that
you’ll use for running it. (This is for a first-time installation only, not for an upgrade
to a newer version.) On Linux, installing a server RPM automatically causes the
login account to be created if necessary.

2. Obtain and unpack any distributions you want to install. If you are using a source
distribution, compile it and install it.

782 Appendix A Obtaining and Installing Software

3. Run the mysql_install_db script to initialize the data directory and grant tables.
(This is for a first-time installation only, not for an upgrade to a newer version.)
Some distribution types run mysql_install_db for you when you install them.
This includes server RPM packages on Linux and DMG packages on Mac OS X.

4. Start the server.

5. Read Chapter 12,“General MySQL Administration,” to become familiar with gen-
eral administrative procedures. In particular, you should read the sections on server
startup and shutdown and on running the server using an unprivileged user account.

A.4.1 Creating a Login Account for the MySQL User
This step is necessary only for a first-time installation, and only if you’re going to run a
MySQL server.You can skip it for an upgrade or if you’re installing MySQL client soft-
ware only.

The MySQL server can be run as any Unix user on your system, but for security and
administrative reasons, you should not run the server as root. I recommend that you cre-
ate a separate account to use for MySQL administration and that you run the server as
that user.That way, you can log in as that user and have full privileges in the data directory
for performing maintenance and troubleshooting. For additional discussion on the benefits
of using an account other than root for MySQL, see Section 12.2.1.1,“Running the
Server Using an Unprivileged Login Account.”

Procedures for creating user accounts vary from system to system. Consult your local
documentation for specific details. (If you use RPM packages, the server RPM installation
procedure creates a login account for a user named mysql automatically for you.)

This book uses mysql for both the Unix user and group names of the MySQL admin-
istrative account. If you plan to install MySQL only for your own use, you can run it from
your own account, in which case you’ll use your own login and group names wherever
you see mysql for a user or group name in this book.

Before you create an account to use for running MySQL, check first to see whether
your system already has one. Many Unix systems include a mysql user and group among
the set of standard accounts. For example, current versions of Mac OS X include a mysql
account (which satisfies the assumption made by Mac OS X DMG packages that a login
account named mysql already exists).

A.4.2 Obtaining and Installing a MySQL Distribution on Unix
The following sections describe how to install MySQL using different types of distribu-
tions.The instructions use version to stand for the MySQL version number, platform to
stand for the type of system on which you’re installing it, and cpu to indicate the proces-
sor type or types for which the distribution was built.These values are used in distribution
filenames so that distributions can be identified easily and distinguished from one another.
A version number is something like 5.0.56, 5.1.24-rc, or 6.0.5-alpha. Platform/CPU

783A.4 Installing MySQL on Unix

names look like solaris10-sparc for a system running Solaris 10 on SPARC hardware
or linux-i686 for a system running Linux on Intel hardware.

A.4.2.1 Installing a tar File Binary Distribution
tar file binary distribution files have names such as mysql-version-platform-
cpu.tar.gz. Obtain the distribution file for the version and platform you want and put it
in the directory under which you want to install MySQL (for example, /usr/local).

Unpack the distribution using one of the following commands (use the second com-
mand if your version of tar doesn’t understand the z option):

% tar zxf mysql-version-platform-cpu.tar.gz

% gunzip < mysql-version-platform-cpu.tar.gz | tar xf -

Unpacking a distribution file creates a directory named mysql-version-platform-
cpu that contains the distribution’s contents.To make it easier to refer to this directory,
create a symbolic link to it named mysql:

% ln -s mysql-version-platform-cpu mysql

After creating the link, you can refer to the installation directory as /usr/local/mysql
(assuming that you installed MySQL under /usr/local).

Now proceed to Section A.4.3,“Post-Installation Steps.”

A.4.2.2 Installing an RPM Distribution
RPM packages are available for installing MySQL on RPM-based Linux systems.The
following list describes some of the more commonly used packages. In the package file-
names, version stands for the MySQL version number, platform stands for the target
system type (or glibc23 for generic packages that should work on any Linux distribu-
tion that supports glibc 2.3), and cpu indicates the processor type or types for which
the distribution was built.

n MySQL-server-version-platform-cpu.rpm

The server software.
n MySQL-client-version-platform-cpu.rpm

The client programs. If you install MySQL from RPM packages, you should always
install the client package.

n MySQL-embedded-version-platform-cpu.rpm

The embedded server, libmysqld. (Available for MySQL 5.1 and up.)
n MySQL-devel-version-platform-cpu.rpm

Development support (client libraries and header files) for writing client programs.
You’ll need this RPM if you want to write your own C programs or Perl DBI
scripts for accessing MySQL databases. MySQL APIs for other languages might
depend on these client libraries and header files as well.

n MySQL-shared-version-platform-cpu.rpm

784 Appendix A Obtaining and Installing Software

Shared client libraries.
n MySQL-bench-version-platform-cpu.rpm

Benchmarks and tests.These require Perl DBI support. (See Section A.4.4,
“Installing Perl DBI Support on Unix.”)

n MySQL-version.src.rpm

The source for the server, clients, benchmarks, and tests.

You don’t need to be in any particular directory when you install an RPM package,
because RPMs include information indicating where their contents should be placed. For
any RPM package rpm_file, you can find out where its contents will be installed with
the following command:

% rpm -qpl rpm_file

To install an RPM package, use this command (you’ll need to do this as root):

rpm -i rpm_file

Various parts of MySQL are divided into different RPM packages, so you may need to
install more than one RPM. For a typical installation, you should install both the server
and client RPMs. If you install only the server RPM, you won’t be able to do much with
it, because it doesn’t include the client programs.

For server support, use this command:

rpm -i MySQL-version-platform-cpu.rpm

To install the client programs, use this command:

rpm -i MySQL-client-version-platform-cpu.rpm

If you plan to write your own programs using the client programming support, make
sure to install the development RPM package:

rpm -i MySQL-devel-version-platform-cpu.rpm

If you want to install MySQL from the source RPM package, the following command
should be sufficient:

rpmbuild --recompile --clean MySQL-version.src.rpm

Now proceed to Section A.4.3,“Post-Installation Steps.”

A.4.2.3 Installing a Source Distribution
MySQL source distributions have names such as mysql-version.tar.gz, where version
is the MySQL version number. (Unlike binary distributions, source distributions apply to
all systems, so there are no platform or cpu values in the filename.) Pick the directory
under which you want to unpack the distribution and move into it. Obtain the distribu-
tion file and unpack it using one of the following commands (use the second command if
your version of tar doesn’t understand the z option):

785A.4 Installing MySQL on Unix

% tar zxf mysql-version.tar.gz

% gunzip < mysql-version.tar.gz | tar xf -

Unpacking the distribution file creates a directory named mysql-version that contains
the distribution’s contents. Change location into that directory:

% cd mysql-version

Now you need to configure and compile the distribution before you can install it. If
the following steps fail, check the installation chapter in the MySQL Reference Manual,
particularly any platform-specific notes it contains about your type of system.

Use the configure command to configure the distribution:

% ./configure

You may want to specify options for configure.To obtain a list of available options,
run this command:

% ./configure --help

The following list shows some common configuration options:

n --with-innodb, --without-innodb

Include or exclude support for the InnoDB storage engine. Excluding InnoDB
makes the server smaller and causes it to use less memory. However, you should in-
clude this engine if you plan to use InnoDB tables.

n --without-server

Configure the distribution to build client support only (client programs or client
libraries).You might do this if you’re planning to access a server that’s running on
another machine.

n --with-embedded-server

Build the embedded server library, libmysqld.
n --with-yassl, --with-openssl, --with-ssl

Configure the distribution to include SSL support.This is necessary if you want to
use encrypted SSL connections between clients and the server. Before MySQL
5.1.11, use --with-yassl or --with-openssl to select yaSSL or OpenSSL.As of
5.1.11, use --with-ssl to select yaSSL, or --with-ssl=path_name to select
OpenSSL; the pathname indicates where the OpenSSL header files and libraries can
be found.

n --prefix=dir_name

By default, the installation base directory is /usr/local.The data directory, server,
clients, client libraries, header files, manual pages, and language files are installed in
the var, libexec, bin, lib, include, man, and share directories under the base di-
rectory. If you want to change the installation base, use the --prefix option.
dir_name should be a full pathname. For example, to install everything under the
/usr/local/mysql directory, use --prefix=/usr/local/mysql.

786 Appendix A Obtaining and Installing Software

n --localstatedir=dir_name

This option changes the location of the data directory.You can use this if you don’t
want to put your databases under the installation base directory. dir_name should be
a full pathname.

After you run configure, compile the distribution and install it:

% make

% make install

You might need to be root to run the install command if you didn’t run configure
with a --prefix option that specifies an installation directory in which you have write
permission.

Now proceed to Section A.4.3,“Post-Installation Steps.”

A.4.3 Post-Installation Steps
For a first-time installation, there are certain steps that you should take after you install
MySQL:

1. Set your PATH environment variable to include the directory where the MySQL
client programs are installed. If you installed only the client programs and are not
running a server, this is the only step that applies here and you can skip the others.

2. Initialize the MySQL data directory and grant tables.

3. Start the MySQL server.

4. Set up the time zone tables to enable named time zones to be used.

5. Set up the server-side help tables.

If you are upgrading an existing MySQL installation to a newer version, you probably
have taken care of a number of those items already, such as setting your PATH and initializ-
ing the data directory. However, it’s possible that you’ll need to do one or more of these
things:

n Update your grant tables to make sure that they have the current structure.
n Set up the time zone tables, if your previous installation was from a version older

than 4.1.3 that does not understand multiple time zones.These tables enable sup-
port for named time zones.

n Update the server-side help tables to use the current help text.

The following sections describe how to perform these actions. Use those sections that
apply to your situation.

A.4.3.1 Setting Your PATH Environment Variable
If you want to be able to invoke MySQL client programs from the command line without
typing their full pathnames, set your PATH environment variable to include the bin

787A.4 Installing MySQL on Unix

directory located under the MySQL installation directory.Your shell uses this variable to
determine where to look for commands. PATH usually is set in one of your shell’s startup
files, such as .tcshrc for tcsh, or .bashrc or .bash_profile for bash. For example, if
you use tcsh, there might be a line in your .tcshrc file that looks like this:

setenv PATH /bin:/usr/bin:/usr/local/bin

If the MySQL client programs are installed in /usr/local/mysql/bin, change the
value of PATH as follows:

setenv PATH /usr/local/mysql/bin:/bin:/usr/bin:/usr/local/bin

If you use bash, one or more of your shell startup files might contain a line like this:

PATH=/bin:/usr/bin:/usr/local/bin

Change the setting to this:

PATH=/usr/local/mysql/bin:/bin:/usr/bin:/usr/local/bin

After you modify the shell startup file or files, the new setting takes effect each time
you log in thereafter.

A.4.3.2 Initializing the Data Directory and Grant Tables
Before you can use your MySQL installation, you must initialize the mysql database that
contains the grant tables controlling network access to your server.This step is needed
only for a first-time installation and only if you will run a server. It is not needed for an
upgrade to an existing installation or for a client-only installation.

In the following instructions, DATADIR represents the pathname to your data directory. It
is typically located under your MySQL installation base directory and named data or var.
Normally, you run the commands shown here as root. If you’re logged in as the MySQL
user (for example, mysql) or you’ve installed MySQL under your own account because
you intend to run it for yourself, you can execute the commands without being root and
should omit the --user option.You can also skip the chown and chgrp commands.

To initialize the data directory, the mysql database, and the default grant tables, change
location into the MySQL installation directory and run the mysql_install_db script.
(You need not do this if you are installing from RPM packages or a Mac OS X package
because they run mysql_install_db for you.) For example, if you installed MySQL into
/usr/local/mysql, the commands look like this:

cd /usr/local/mysql

bin/mysql_install_db --user=mysql

If mysql_install_db fails, consult the installation chapter in the MySQL Reference
Manual to see what it says about the problem you’re encountering. If mysql_install_db
doesn’t run to completion successfully, any grant tables it may have created are likely in-
complete.You should remove them because mysql_install_db does not try to re-create
any tables that it finds already created.You can remove the entire mysql database like this:

rm -rf DATADIR/mysql

788 Appendix A Obtaining and Installing Software

After running mysql_install_db, change the user and group ownership and the ac-
cess mode of all files under the data directory.Assuming that the user and group names
both should be mysql, the commands look like this:

chown -R mysql DATADIR

chgrp -R mysql DATADIR

chmod -R go-rwx DATADIR

The chown and chgrp commands change the ownership to the MySQL login account
user and group, and chmod changes the access mode to keep everybody out of the data
directory except that user.

A.4.3.3 Starting the Server
This step is needed only if you plan to run a server. Skip it for a client-only installation.
Run the commands in this section from the MySQL installation directory (just as for the
commands in the previous section). Normally, you run the commands as root. If you’re
logged in as the MySQL user (for example, mysql) or you’ve installed MySQL under your
own account, you can execute the commands without being root and should omit the
--user option.

Change location into the MySQL installation base directory (for example,
/usr/local/mysql), and then use the following command to start the server:

cd /usr/local/mysql

bin/mysqld_safe --user=mysql &

The --user option tells the server to run as mysql.
If you are installing MySQL for the first time on this machine, there are other actions

that you’ll probably want to perform at this point:

n The default installation enables anyone to use the MySQL root accounts without a
password. For security reasons, it’s a good idea to assign passwords to them.

n You can arrange for the server to start and stop automatically as part of your sys-
tem’s normal startup and shutdown procedures.

n You can put the --user option in an option file to avoid having to specify it each
time you start the server.

n Various kinds of logging can be enabled.These are useful for monitoring the server,
for replication, and for data recovery procedures.

n You can enable or disable storage engines, or specify tuning parameters for them.

Instructions for performing these actions are given in Chapter 12.

A.4.3.4 Installing or Upgrading Additional System Tables
If you are upgrading a MySQL installation, it is possible that the grant table structure has
changed since your original installation.To update the tables to the current structure, use
the instructions in Section 12.4,“Managing MySQL User Accounts.”

789A.4 Installing MySQL on Unix

To set up the time zone tables that are needed for named time zone support, use the
instructions in Section 12.9.1,“Configuring Time Zone Support.”

The mysql command-line client can access server-side help via the help command.
For this to work, the help tables in the mysql database must be set up. Most installation
methods do this automatically for a first-time install, but if you use a method for which
this does not occur, you can load the help tables manually.To do this, make sure that the
server is running.Then locate the fill_help_tables.sql file, which contains SQL state-
ments that create and load the tables. Likely locations are in /usr/share/mysql, the
share directory under the MySQL base installation directory, or the scripts directory of
a source distribution.After you find the file, execute the following command in the direc-
tory where the file is located:

% mysql -p -u root mysql < fill_help_tables.sql

The command will prompt you for the root account password. Omit the -p option if
you have not yet set up a password.

A.4.4 Installing Perl DBI Support on Unix
Install the DBI software if you want to write Perl scripts that access MySQL databases:

n You must install the DBI module that provides the general DBI driver, and the
DBD::mysql module that provides the MySQL-specific driver. DBI requires Perl
5.6.0 or later. (If you don’t have Perl installed, visit http://www.perl.com/, down-
load a Perl distribution, and install it before you install DBI support.)

n The MySQL C client libraries and header files must be available as well, because
DBD::mysql uses them.They should already have been installed as part of the
MySQL installation procedure.

n If you want to write Web-based DBI scripts, install the CGI.pm module.

To find out whether a given Perl module already is installed, use the perldoc com-
mand. If the module is installed, perldoc will display its documentation:

% perldoc DBI

% perldoc DBD::mysql

% perldoc CGI

The easiest way to install Perl modules under Unix is to use the CPAN shell. Issue the
following commands as root:

perl -MCPAN -e shell

cpan> install DBI

cpan> force install DBD::mysql

cpan> install CGI

The installation command for DBD::mysql uses force install to cause installation to
proceed even if the test phase fails.The tests assume that they can connect to a server run-
ning on the local host using an anonymous-user MySQL account with no password.That

http://www.perl.com/

790 Appendix A Obtaining and Installing Software

means the tests fail unless you happen to have an insecure account. (If you do have such
an account, the tests should succeed and you can omit force, but you really should assign
passwords to all your MySQL accounts.)

Another way to install Perl modules is to download source distributions from
cpan.perl.org as compressed tar files. Unpack a distribution file dist_file.tar.gz
using one of the following commands (use the second command if your version of tar
doesn’t understand the z option):

% tar zxf dist_file.tar.gz

% gunzip < dist_file.tar.gz | tar xf -

Then change location into the distribution directory created by the tar command and
run these commands (you might need to be root to run the installation step):

% perl Makefile.PL

% make

% make test

make install

The make test command will fail unless you have an insecure anonymous-user
MySQL account, as described earlier in this section. If you want to use a different ac-
count, run perl Makefile.PL --help to see how. Otherwise, just ignore failed tests and
proceed to the installation command.

If you have problems installing the Perl modules, consult the README file for the rele-
vant distribution, as well as the mail archives for the DBI mailing list.The answers for
most installation problems can be found there.

A.4.5 Installing Apache and PHP on Unix
The PDO database-access extension for PHP requires PHP 5.0 or higher. For PHP 5.1 or
higher, PDO is included with PHP. For PHP 5.0, PDO must be installed separately.This
can be done using the pecl command-line program. See http://www.php.net/pdo for
more information.

The following instructions assume that you’ll run PHP as a dynamic shared object
(DSO) module using the Apache httpd server.This means that Apache should be installed
first, and then you can build and install PHP. If Apache is not installed on your system al-
ready, you can either install a binary distribution that has DSO support enabled, or else
compile a source distribution to include DSO support.

After Apache has been installed, configure your PHP distribution using a command
such as the one following (enter it on a single line).The command assumes that Apache
and MySQL are installed under /usr/local.Adjust the pathnames as necessary for your
system.

% ./configure

--with-apxs=/usr/local/apache/bin/apxs

--enable-pdo

--with-pdo-mysql=/usr/local/mysql

http://www.php.net/pdo

791A.4 Installing MySQL on Unix

--with-mysqli=/usr/local/mysql/bin/mysql_config

--with-mysql=/usr/local/mysql

--with-zlib

The options are used as follows. For each option that includes a pathname value, if
configure can determine the location of the required information for itself, you can give
the option without the pathname.

n --with-axps[=/path/to/apxs]

Tells configure where to find apxs, the Apache Extension Tool helper script that
provides other modules with information about your Apache configuration.

n --enable-pdo

Includes support for the PDO extension.
n --with-pdo-mysql[=/path/to/mysql]

Includes MySQL support for PDO.The pathname indicates where MySQL is
installed so that configure can determine where the MySQL header files and
libraries are located.

n --with-mysqli[=/path/to/mysql_config]

Includes support for the mysqli “MySQL improved” extension. This option is not
needed for PDO.You might use this option to enable people who aren’t using PDO
to run scripts based on the mysqli extension. /path/to/mysql_config is the path-
name to the mysql_config script. configure invokes the script to obtain MySQL
configuration information.

n --with-mysql[=/path/to/mysql]

Includes support for mysql, the original MySQL extension. This option is not needed
for PDO. You might use this option to build in mysql, to enable people who aren’t
using PDO to run scripts based on the original extension.The pathname indicates
where MySQL is installed so that configure can determine where the MySQL
header files and libraries are located.

n --with-zlib

This option is needed because the MySQL client library accesses compression
functions.

After configuring PHP, build and install it as follows (you might need to be root to
perform the installation commands):

% make

make install

cp php.ini-dist /usr/local/lib/php.ini

The cp command installs a baseline PHP initialization file where PHP can find it.You
can substitute php.ini-recommended for php.ini-dist if you like.Take a look at both
and choose the one you prefer.

792 Appendix A Obtaining and Installing Software

After PHP and PDO have been installed, edit the Apache configuration file,
httpd.conf.You’ll need to instruct Apache to load the PHP module when it starts, and
also how to recognize PHP scripts. (httpd.conf might include other files via Include
directives. If you don’t see the information described in the following paragraphs, check
any included files as well.)

To tell Apache to load the PHP module, httpd.conf will need to include LoadModule
and AddModule directives in the appropriate sections (look for other similar directives).
The directives might already have been added for you during the installation step. If not,
you must add them yourself.They should look something like this, although the pathname
in the LoadModule directive might need adjustment for your system:

LoadModule php5_module libexec/libphp5.so

AddModule mod_php5.c

Next, edit httpd.conf to tell Apache how to recognize PHP scripts. PHP recognition
is based on the filename extension that you use for PHP scripts.The most common ex-
tension is .php, which is the extension used for examples in this book.To enable .php as
the PHP script extension, include the following line in the httpd.conf file:

AddType application/x-httpd-php .php

You can also tell Apache to recognize index.php as an allowable default file for a
directory when no filename is specified at the end of a URL.You’ll probably find a line in
httpd.conf that looks like this:

DirectoryIndex index.html

Change it to this:

DirectoryIndex index.php index.html

After editing the Apache configuration file, stop the httpd server if it was already run-
ning, and then restart it. On many systems, commands such as those following accomplish
this (executed as root):

/usr/local/apache/bin/apachectl stop

/usr/local/apache/bin/apachectl start

You can also set up Apache to start and stop at system startup and shutdown time. See
the Apache documentation for instructions. Normally, this involves running apachectl
start at boot time and apachectl stop at shutdown time.

If you encounter problems setting up PHP, check the “VERBOSE INSTALL” section
of the INSTALL file included with the PHP distribution. (It’s a good idea to read that file
anyway. It contains lots of useful information.)

A.5 Installing MySQL on Windows
I assume that you have a relatively recently version such as Windows 2000, XP, 2003, or
Vista. Some features covered in this book such as named pipes and Windows services are
not available in older versions (Windows 95, 98, or Me).

793A.5 Installing MySQL on Windows

There are three distribution types to choose from on Windows:

n A Noinstall package is a Zip archive containing all components needed for a
MySQL installation.A Noinstall package has a filename that begins with mysql-
noinstall.You simply unpack the archive to produce a folder, and then move the
folder to where you want MySQL to be installed. For example, unpacking a distri-
bution named mysql-noinstall-5.0.51-win32.zip produces a folder named
mysql-noinstall-5.0.51-win32. If you want to install MySQL at C:\mysql,
rename the folder to mysql and move it to the root directory on the C: drive.

n A Complete package contains a Configuration Wizard and all components needed
for a MySQL installation.A Complete package has a filename of the form mysql-
version-win32.zip.To install a Complete package, download it, launch the
Setup.exe program that it contains, and then follow the instructions in the dialogs
that it presents.

n An Essentials package is similar to the Complete package, but contains only a mini-
mal set of files needed for a MySQL installation. For example, it omits the debug-
ging version of the MySQL server.An Essentials package is a self-contained installer
and has a filename that begins with mysql-essential and a suffix of .msi.To install
an Essentials package, download it, launch it, and then follow the instructions in the
dialogs that it presents.

The Complete and Essentials package installers like to put MySQL under C:\Program
Files\MySQL rather than at C:\mysql.They also create a Start Menu entry and a key in
the Windows registry, which the Noinstall package does not.

For additional information about installing MySQL on Windows, see the installation
chapter in the MySQL Reference Manual.

To be able to invoke MySQL programs from the command line without typing their
full pathnames, set your PATH environment variable to include the bin directory under the
location where MySQL is installed. For example, if you install MySQL in C:\mysql, add
C:\mysql\bin to your path.You can set your path by using the System item in the
Control Panel.You might need to restart Windows for the change to take effect.

The following instructions assume that you have set your PATH variable, so they omit
the leading path to command names (except for mysqld --install commands, which
use the full pathname to mysqld).

After installing MySQL on Windows, it is not necessary to initialize the data directory
or the grant tables because they are included pre-initialized in the distribution. However, if
you install MySQL in any place other than the default location selected by the installer,
you must place a [mysqld] option group in an option file that the server reads when it
starts, so that it can determine where the installation base directory and the data directory
are located.Typical option files are the my.ini file in the MySQL installation directory or
C:\my.ini. For example, if you install MySQL in C:\mysql, the option group should
look like this (note the use of forward slashes in the pathnames rather than backslashes):

794 Appendix A Obtaining and Installing Software

[mysqld]

basedir=C:/mysql

datadir=C:/mysql/data

If you select a different installation directory, you’ll need to change the pathnames in
the option file.

MySQL distributions for Windows include several servers, each of which is built with
different options:

n Prior to MySQL 5.1.21, mysqld-nt and mysqld are separate servers with and with-
out support for named pipes, respectively.

n As of MySQL 5.1.21, mysqld includes support for named pipes and there is no sep-
arate mysqld-nt server.

n mysql-debug in all versions has support for named pipes, debugging, and automatic
memory allocation checking.

In general, unless you need the debugging support provided by the mysqld-debug
server, you are better off choosing another server. mysqld-debug uses much more mem-
ory and runs more slowly than the other Windows servers.

For servers that support connections using named pipes, this connection type is dis-
abled by default.All servers support shared-memory connections, but these too are
disabled by default.To enable these capabilities, you must add the appropriate lines to
the [mysqld] group in your option file:

[mysqld]

enable-named-pipe

shared-memory

On Windows, any MySQL server can be installed to run as a service that starts auto-
matically whenever Windows starts. For example, to install the mysqld server as a
Windows service, use this command:

C:\> C:\mysql\bin\mysqld --install

The install command uses the full pathname to the server. If the server is installed in a
different location, modify the pathname accordingly.

If you use --install-manual rather than --install, the server is installed as a
Windows service, but does not run automatically when Windows starts.You must use the
Windows Services Manager or the net start command.

If you install a MySQL server as a Windows service, you can specify other options by
putting them in the [mysqld] group of an option file.

For a server that is installed as a service, you can start it manually using the Windows
Services Manager.You should be able to find this as a Services item in the Windows
Control Panel or in the Administrative Tools item in the Control Panel.The service also
can be started using the following command:

C:\> net start MySQL

795A.5 Installing MySQL on Windows

To stop the server, use the Services Manager or one of the following commands:

C:\> net stop MySQL

C:\> mysqladmin -u root shutdown

To remove MySQL as a service, shut down the server if it is running, and then invoke
this command:

C:\> mysqld --remove

To avoid interactions between the Services Manager and commands issued from the
command prompt, it is best to close the Services Manager whenever you invoke service-
related commands from the prompt.

If you do not install the server as a service, you can start and stop the server manually
from the command line. For example, to run mysqld, start it as follows:

C:\> mysqld

You can specify other options on the command line if you want.To shut down the
server, use mysqladmin:

C:\> mysqladmin -u root shutdown

To run a server in console mode so that it displays error messages in a console window,
invoke it with the --console option. For example, to run mysqld this way, use the fol-
lowing command:

C:\> mysqld --console

When you run a MySQL server in console mode, you can specify other options on the
command line after the --console option or in an option file.To shut down the server,
use mysqladmin.

Note
When you run a MySQL server from the command line, you will not necessarily see another
command prompt until the server exits. If this occurs, just open another console window in
which to run MySQL client programs.

If you have problems getting the server to run, check the Windows notes in the instal-
lation chapter in the MySQL Reference Manual.

If you are installing MySQL for the first time on this machine, there are other actions
that you’ll probably want to perform at this point:

n The default installation enables anyone to use the MySQL root accounts without a
password. For security reasons, it’s a good idea to assign passwords to them.

n You can arrange for the server to start and stop automatically as part of your sys-
tem’s normal startup and shutdown procedures.

n You can put the --user option in an option file to avoid having to specify it each
time you start the server.

796 Appendix A Obtaining and Installing Software

n Various kinds of logging can be enabled.These are useful for monitoring the server,
for replication, and for data recovery procedures.

n You can enable or disable storage engines, or specify tuning parameters for them.

Instructions for performing these actions are given in Chapter 12.
If you are upgrading a MySQL installation, it is possible that the grant table structure

has changed since your original installation.To update the tables to the current structure,
use the instructions in Section 12.4,“Managing MySQL User Accounts.”

Current distributions of MySQL for Windows include the server-side help tables used
for the help command of the mysql client. It should not be necessary to set up the help
tables manually. However, the time zone tables that are needed for named time zone sup-
port may be missing or empty.To set up these tables, use the instructions in Section
12.9.1,“Configuring Time Zone Support.”

A.5.1 Installing Perl DBI Support on Windows
The easiest way to install Perl modules under Windows is to get the ActiveState Perl dis-
tribution from www.activestate.com and install it.Then fetch and install the additional
Perl modules that you need.The ppm (Perl Package Manager) program is used for this.

C:\> ppm

ppm> install DBI

ppm> install DBD-mysql

ppm> install CGI

A.5.2 Installing Apache and PHP on Windows
Apache and PHP are available as Windows binaries from the Apache and PHP Web sites
listed in Section A.2,“Obtaining MySQL and Related Software.” Under Apache 2.x, you
can run PHP either as a standalone program or as an Apache module.

The PDO database-access extension for PHP requires PHP 5.0 or higher. PHP binary
distributions for Windows are available in Zip archive and .msi installer formats. If you
use a Zip archive, unpack it at the location where you want PHP installed.The .msi
package is more convenient because it will walk you through configuring Apache for
PHP support and set your PATH to include the PHP installation location. However, if you
use the installer, be sure to select extension installation or PDO and MySQL support will
not be installed.

www.activestate.com

B
Data Type Reference

This appendix describes the data types provided by MySQL. More information on the
use of each type is given in Chapter 3,“Data Types.” Changes in behavior since 5.0.0 are
indicated in the descriptions for individual types.

Type name specifications are written using the following conventions:

n Square brackets ([]) in syntax descriptions indicate optional information.
n M represents the maximum display width for integer types, the precision (number

of significant digits) for floating-point and decimal types, the number of bits for
BIT, and the maximum length for string types. In string column definitions, the
length is specified in bytes for binary string types and in characters for non-binary
string types.

n D represents the scale (number of digits following the decimal point) for types that
have a fractional part; this is also known as the scale. D should be no greater than M.
As of MySQL 5.0.10, M cannot be less than D or an error occurs. Before MySQL
5.0.10, the value of M is adjusted to be D+1 if it is smaller than that.

Each type description includes one or more of the following kinds of information:
Meaning. A short description of the type.
Allowable attributes. Optional attribute keywords that may be associated with the

data type in CREATE TABLE or ALTER TABLE statements.Attributes are listed in alphabeti-
cal order, but this does not necessarily correspond to the order imposed by the syntax of
CREATE TABLE or ALTER TABLE (described in Appendix E,“SQL Syntax Reference”).The
attributes listed for individual data type descriptions are in addition to global attributes
that apply to all or almost all data types.The global attributes are listed here rather than in
each type description:

n NULL or NOT NULL may be specified for any type.
n DEFAULT default_value may be specified in all column definitions except for inte-

ger columns that have the AUTO_INCREMENT attribute, BLOB and TEXT columns, and
spatial columns.With the exception of the TIMESTAMP type, default values must be
constants. For example, you cannot specify DEFAULT CURDATE() for a DATE column.

798 Appendix B Data Type Reference

Allowable length. For columns with string data types, this is the maximum allowable
length of values that can be stored in the column.

Range. For numeric or temporal (date and time) types, the range of values that the
type can represent. For integer numeric types, two ranges are given because integer
columns can be signed or unsigned, and the ranges are different for each case.

Zero value. For temporal types, the “zero” value that is stored if an illegal value is in-
serted into the column. (The SQL mode must be set to allow this or an error occurs for
illegal values.)

Default value.The default value if no explicit DEFAULT attribute is present in the type
specification.This applies only when strict SQL mode is not enabled. If no DEFAULT
clause is given in strict mode, the column is defined with a default of NULL if it can take
NULL values, and with no default value otherwise. For further information, see Section
3.2.3,“Specifying Column Default Values.”

Storage required. The number of bytes or characters required to store values of the
type. For some types, this value is fixed. For other types, the number varies depending on
the length of the value stored in the column.

Comparisons. For string types, this value specifies how comparisons are performed. It
applies to grouping, sorting, and indexing as well, because those operations are based on
comparisons. Binary string types are compared byte by byte using the numeric value of
each byte. Non-binary string types are compared character by character based on the
character set collating sequence.

Synonyms. Synonyms for the type name.
Note. Miscellaneous observations about the type.
Here’s a general tip that’s useful if you’re not sure how your version of MySQL will

treat a given column definition. Create a table that contains a column defined the way
you’re wondering about, and then use SHOW CREATE TABLE or DESCRIBE to see how
MySQL reports the definition. For example, if you can’t remember the effect of the
UNICODE character type attribute or SERIAL shorthand data type, create a table that uses
them and then tell MySQL to display the resulting table definition:

mysql> CREATE TABLE t (c CHAR(10) UNICODE, s SERIAL);

mysql> SHOW CREATE TABLE t\G

*************************** 1. row ***************************

Table: t

Create Table: CREATE TABLE `t` (

`c` char(10) character set ucs2 default NULL,

`s` bigint(20) unsigned NOT NULL auto_increment,

UNIQUE KEY `s` (`s`)

) ENGINE=MyISAM DEFAULT CHARSET=latin1

799B.1 Numeric Types

B.1 Numeric Types
MySQL provides exact-value and approximate-value numeric data types. Numeric types
have different ranges, so choose them according to the range of values you need to repre-
sent.There is also a BIT type for representing bit-field values.

The integer and fixed-point (DECIMAL) types are exact-value data types. FLOAT and
DOUBLE types are approximate-value data types. For the exact-value types, values are
stored exactly as given and calculations are performed exactly with no rounding error if
the values and calculations are within range of the types. Exact-value types are platform-
independent, so results obtained using them are the same on all systems. For approximate-
value types, calculations are subject to rounding error and variations due to differences in
hardware implementations of floating-point operations.

For integer types, a column must be indexed if the AUTO_INCREMENT attribute is speci-
fied. Inserting NULL into an AUTO_INCREMENT column causes the next sequence value to
be inserted into the column.Typically, this is a value that is one greater than the column’s
current maximum value. Chapter 3 details the precise behavior of AUTO_INCREMENT
columns. (Actually, AUTO_INCREMENT can be used with floating-point data types as well,
but use with integer columns is much more common.)

The ZEROFILL and UNSIGNED attributes can be given for numeric types other than BIT:

n Values are padded with leading zeros to the column’s display width if the ZEROFILL
attribute is specified.

n If the UNSIGNED attribute is specified, negative values are disallowed. (SIGNED is also
an allowable attribute, but has no effect because numeric types are signed by default.)

SERIAL DEFAULT VALUE as an attribute for integer or floating-point data types is
shorthand for NOT NULL AUTO_INCREMENT UNIQUE.

In some cases, specifying one attribute causes another to be enabled as well. Specifying
ZEROFILL for a numeric type automatically causes the column to be UNSIGNED. Specifying
AUTO_INCREMENT automatically causes the column to be NOT NULL.

Note that the DESCRIBE and SHOW COLUMNS statements report the default value for an
AUTO_INCREMENT column as NULL, although you cannot store a literal NULL into such a
column.This indicates that you produce the default column value (the next sequence
number) by setting the column to NULL when you create a new row.

B.1.1 Integer Types
n TINYINT[(M)]

Meaning. A very small integer. M is the maximum display width, from 1 to 255. If
omitted, M defaults to 4 (or 3 if the column is UNSIGNED).

Allowable attributes. AUTO_INCREMENT, SERIAL DEFAULT VALUE, UNSIGNED,
ZEROFILL

Range. -128 to 127 (-27 to 27-1), or 0 to 255 (0 to 28-1) if UNSIGNED

Default value. NULL if the column can be NULL, 0 if NOT NULL

800 Appendix B Data Type Reference

Storage required. 1 byte

Synonyms. INT1[(M)]. BOOL and BOOLEAN are synonyms for TINYINT(1). Before
MySQL 5.0.3, BIT is a synonym for TINYINT(1); as of 5.0.3, BIT is a separate
data type.

n SMALLINT[(M)]

Meaning. A small integer. M is the maximum display width, from 1 to 255. If omit-
ted, M defaults to 6 (or 5 if the column is UNSIGNED).

Allowable attributes. AUTO_INCREMENT, SERIAL DEFAULT VALUE, UNSIGNED,
ZEROFILL

Range. -32768 to 32767 (-215 to 215-1), or 0 to 65535 (0 to 216-1) if UNSIGNED

Default value. NULL if the column can be NULL, 0 if NOT NULL

Storage required. 2 bytes

Synonyms. INT2[(M)]

n MEDIUMINT[(M)]

Meaning. A medium-sized integer. M is the maximum display width, from 1 to 255.
If omitted, M defaults to 9 (or 8 if the column is UNSIGNED).

Allowable attributes. AUTO_INCREMENT, SERIAL DEFAULT VALUE, UNSIGNED,
ZEROFILL

Range. -8388608 to 8388607 (-223 to 223-1), or 0 to 16777215 (0 to 224-1) if
UNSIGNED

Default value. NULL if the column can be NULL, 0 if NOT NULL

Storage required. 3 bytes

Synonyms. INT3[(M)] and MIDDLEINT[(M)]

n INT[(M)]

Meaning. A normal-sized integer. M is the maximum display width, from 1 to 255.
If omitted, M defaults to 11 (or 10 if the column is UNSIGNED).

Allowable attributes. AUTO_INCREMENT, SERIAL DEFAULT VALUE, UNSIGNED,
ZEROFILL

Range. -2147483648 to 2147483647 (-231 to 231-1), or 0 to 4294967295
(0 to 232-1) if UNSIGNED

Default value. NULL if the column can be NULL, 0 if NOT NULL

Storage required. 4 bytes

Synonyms. INTEGER[(M)] and INT4[(M)]

n BIGINT[(M)]

Meaning. A large integer. M is the maximum display width, from 1 to 255. If omit-
ted, M defaults to 20.

801B.1 Numeric Types

Allowable attributes. AUTO_INCREMENT, SERIAL DEFAULT VALUE, UNSIGNED,
ZEROFILL

Range. -9223372036854775808 to 9223372036854775807 (-263 to 263-1), or 0 to
18446744073709551615 (0 to 264-1) if UNSIGNED

Default value. NULL if the column can be NULL, 0 if NOT NULL

Storage required. 8 bytes

Synonyms. INT8[(M)]

Note. SERIAL as a data type name is shorthand for BIGINT UNSIGNED NOT NULL
AUTO_INCREMENT UNIQUE.

B.1.2 Fixed-Point Types
n DECIMAL[(M,[D])]

Meaning. A fixed-point number. M is the number of significant digits that values
can have, from 1 to 65. D is the number of decimal places, from 0 to 30. If D is 0,
column values have no decimal point or fractional part. If omitted, M and D default
to 10 and 0, respectively.

Allowable attributes. UNSIGNED, ZEROFILL

Range.The range for a given DECIMAL column is determined by M and D and
whether the UNSIGNED attribute is given.

Default value. NULL if the column can be NULL, 0 if NOT NULL

Storage required. Storage depends on the number of digits on the left and right
sides of the decimal point. For each side, 4 bytes are required for each multiple of
nine digits, plus 1 to 4 bytes if there are any remaining digits. Storage per value is
the sum of the left and right side storage.

Synonyms. NUMERIC[(M,[D])], DEC[(M,[D])], and FIXED[(M,[D])]

Note. Before MySQL 5.0.3, DECIMAL values are stored as strings and have some-
what different properties than those of the current representation. See the MySQL
Reference Manual for details.

B.1.3 Floating-Point Types
n FLOAT(p)

Meaning. A floating-point number. In standard SQL, the precision p represents the
minimum required bits of precision. In MySQL, p is used only to determine
whether the data type is single-precision or double-precision:

n For values of p from 0 to 24, the type is single-precision, equivalent to FLOAT
with no M or D specifiers.

n For values of p from 25 to 53, the type is double-precision, equivalent to
DOUBLE with no M or D specifiers.

802 Appendix B Data Type Reference

Values of p outside the range from 0 to 53 are illegal.

Allowable attributes. UNSIGNED, ZEROFILL

Range. See the FLOAT and DOUBLE type descriptions later in this section.

Default value. NULL if the column can be NULL, 0 if NOT NULL

Storage required. 4 bytes for single-precision, 8 bytes for double-precision.
n FLOAT[(M,D)]

Meaning. A small floating-point number; single-precision (less precise than
DOUBLE). M is the number of significant digits that values can have, from 1 to 255. D
is the number of decimal places, from 0 to 30. If D is 0, column values have no deci-
mal point or fractional part. If M and D are omitted, the display size and number
of decimals are undefined; values are stored to the full precision allowed by your
hardware.

Allowable attributes. UNSIGNED, ZEROFILL

Range. Minimum non-zero values are ±1.175494351E-38; maximum non-zero
values are ±3.402823466E+38. Negative values are disallowed if the column is
UNSIGNED.

Default value. NULL if the column can be NULL, 0 if NOT NULL

Storage required. 4 bytes

Synonyms. FLOAT4 is a synonym for FLOAT with no M or D specifiers. If the
REAL_AS_FLOAT SQL mode is enabled, REAL[(M,D)] is a synonym for
FLOAT[(M,D)].

n DOUBLE[(M,D)]

Meaning. A large floating-point number; double-precision (more precise than
FLOAT). M and D have the same meaning as for FLOAT.

Allowable attributes. UNSIGNED, ZEROFILL

Range. Minimum non-zero values are ±2.2250738585072014E-308, maximum
non-zero values are ±1.7976931348623157E+308. Negative values are disallowed if
the column is UNSIGNED.

Default value. NULL if the column can be NULL, 0 if NOT NULL

Storage required. 8 bytes

Synonyms. DOUBLE PRECISION[(M,D)] is a synonym for DOUBLE[(M,D)], as is
REAL[(M,D)] if the REAL_AS_FLOAT SQL mode is not enabled. FLOAT8 is a syn-
onym for DOUBLE with no M or D specifiers.

803B.2 String Types

B.1.4 BIT Type
n BIT[(M])]

Meaning. A bit-field value. M should be an integer from 1 to 64 indicating the
number of bits per value. If omitted, M defaults to 1.

Allowable attributes. None, other than the global attributes

Default value. NULL if the column can be NULL, 0 if NOT NULL

Storage required. Approximately (M+7)/8 bytes.

Note. The BIT type was introduced as a separate data type in MySQL 5.0.3. Initial
BIT support was limited to MyISAM; this was extended to InnoDB, MEMORY,
and ARCHIVE in 5.0.5, and to Falcon in MySQL 6.0. Prior to 5.0.3, BIT is a
synonym for TINYINT(1).

B.2 String Types
The MySQL string types are general-purpose types and commonly are used to store
binary or character (text) data.Types are available to hold values of varying maximum
lengths and can be chosen according to whether you want values to be treated as binary
or non-binary strings.

BINARY, VARBINARY, and the BLOB types are binary string types.A binary string is a
sequence of bytes, and its length is measured in bytes. Binary strings have no character set
and values are compared based on their numeric byte values.

CHAR, VARCHAR, and the TEXT types are non-binary string types.A non-binary string is
a sequence of characters. It has a character set and collation.The character set defines the
allowable characters for the data type and the collation defines the character sort order.A
length as specified in a non-binary string column definition indicates how many charac-
ters you want the column to be able to hold.

Lengths of non-binary string values normally are measured in characters but can be
measured in bytes instead.To obtain the length of a non-binary string in characters or
bytes, use the CHAR_LENGTH() or LENGTH() function, respectively.A non-binary string that
is n characters long is also n bytes long if it contains single-byte characters, but more than
n bytes long if it contains multi-byte characters.This affects the storage requirements for
non-binary string columns:

n Fixed-length columns such as CHAR(M) require enough space to store M instances of
the widest character in the character set. For example, characters in the utf8 char-
acter set vary from one to three bytes each, so CHAR(M) requires M × 3 bytes. (In
MySQL 6.0.4 and up, utf8 characters can require up to four bytes.)

n Variable-length columns such as VARCHAR(M) require only enough space to store
the actual characters in a given value, plus the prefix that store the value’s length in
bytes.A VARCHAR(10) column with the double-byte ucs2 character set requires one
byte for the length prefix, plus anywhere from 0 bytes for an empty string to 20
bytes for a 10-character string.

804 Appendix B Data Type Reference

You can specify a character set and collation for the non-binary string types (CHAR,
VARCHAR, TEXT), as well as for the ENUM and SET types:

n The syntax for specifying a character set is CHARACTER SET charset, where
charset is a character set name such as latin1, greek, or utf8. CHARSET is a syn-
onym for CHARACTER SET.

n The syntax for specifying a collation is COLLATE collation, where collation
names one of the allowable collations for the character set.

n If no character set or collation are given, they are determined from the table de-
faults. If a character set is given without a collation, the collation is the default col-
lation for the character set. If a collation is given without a character set, the
character set is implied by the collation name. If a character set and collation both
are given, the collation must be compatible with the character set. For example, the
latin1_bin collation is compatible with latin1 but not with utf8.

n The binary character set and the BINARY column attribute are treated specially:
n If you specify CHARACTER SET binary for a non-binary string type, it causes

conversion to the corresponding binary string type.That is, CHAR becomes
BINARY, VARCHAR becomes VARBINARY, and the TEXT types become BLOB
types. ENUM and SET have no corresponding binary types, so CHARACTER SET
binary simply becomes a column attribute as is.

n The BINARY attribute is equivalent to specifying the binary collation for the
character set (the collation name that ends with _bin). For example, a col-
umn defined as CHAR(10) CHARACTER SET utf8 BINARY becomes CHAR(10)
CHARACTER SET utf8 COLLATE utf8_bin.

n For non-binary string types, the ASCII and UNICODE attributes are shorthand for
CHARACTER SET latin1 and CHARACTER SET ucs2, respectively.

The allowable character sets and collations supported by the server can be determined
by issuing the SHOW CHARACTER SET and SHOW COLLATION statements.These statements
show which collation is the default for each character set.You can also examine the
CHARACTER_SETS and COLLATIONS tables in the INFORMATION_SCHEMA database, which
contain equivalent information.

Handling of values that are too long to be stored in a string column is dependent on
the SQL mode value. If strict mode is not enabled, values are chopped to fit.Also, a warn-
ing is generated unless the chopped characters are spaces. In strict mode, an error occurs
and no value is inserted if non-space characters must be chopped.

Handling of trailing pad values varies for different string types:

n For CHAR, values are padded with spaces if necessary to the column length when
stored.Trailing spaces are removed when values are retrieved.

n For BINARY, values are padded with 0x00 bytes if necessary to the column length
when stored. Nothing is removed when values are retrieved. (Before MySQL

805B.2 String Types

5.0.15, BINARY values are padded with spaces when stored, and trailing spaces are
removed on retrieval.)

n For VARBINARY and VARCHAR, no padding is added or removed when values are
stored or retrieved. (Before MySQL 5.0.3, trailing spaces are removed when values
are stored.)

n For the BLOB and TEXT types, no pad values are added or removed for storage or
retrieval.

n For ENUM and SET, any trailing spaces in member values listed in the column defini-
tion are ignored. Consequently, any trailing spaces are stripped from values stored in
the column because MySQL converts each value to the corresponding internal nu-
meric value of the column member.This affects comparisons as well, in that trailing
spaces are not significant in values compared to ENUM or SET columns.

B.2.1 Binary String Types
n BINARY[(M)]

Meaning. A fixed-length binary string 0 to M bytes long. M should be an integer
from 0 to 255. If omitted, M defaults to 1.

Allowable attributes. None, other than the global attributes

Allowable length. 0 to M bytes

Default value. NULL if the column can be NULL, '' (empty string) if NOT NULL

Storage required. M bytes

Comparisons. Byte by byte, based on numeric byte values
n VARBINARY(M)

Meaning. A variable-length binary string 0 to M bytes long. M should be an integer
from 0 to 65535 (0 to 255 prior to MySQL 5.0.3).

Allowable attributes. None, other than the global attributes

Allowable length. 0 to M bytes

Default value. NULL if the column can be NULL, '' (empty string) if NOT NULL

Storage required. Length of value (in bytes), plus a 1-byte or 2-byte prefix to
record the length.The prefix requires 1 byte if the maximum length of column val-
ues in bytes is less than 256, 2 bytes otherwise.

Comparisons. Byte by byte, based on numeric byte values

Note. In practice, the maximum length of a VARBINARY column may be less than
65535 bytes, depending on storage engine internal row-size limits and the space re-
quired by other columns in the table.

n TINYBLOB

Meaning. A small BLOB (binary string) value

806 Appendix B Data Type Reference

Allowable attributes. None, other than the global attributes

Allowable length. 0 to 255 (0 to 28-1) bytes

Default value. NULL if the column can be NULL, '' (empty string) if NOT NULL

Storage required. Length of value (in bytes), plus 1 byte to record the length

Comparisons. Byte by byte, based on numeric byte values
n BLOB[(M)]

Meaning. A normal-sized BLOB (binary string) value

Allowable attributes. None, other than the global attributes

Allowable length. 0 to 65535 (0 to 216-1) bytes. If a length M is given, it is used to
choose the appropriate data type and then discarded. For lengths of 1 to 65535, the
data type becomes BLOB. For lengths of 65536 or greater, the data types becomes
whichever of MEDIUMBLOB or LONGBLOB is required to accommodate values of the
given length.

Default value. NULL if the column can be NULL, '' (empty string) if NOT NULL

Storage required. Length of value (in bytes), plus 2 bytes to record the length

Comparisons. Byte by byte, based on numeric byte values
n MEDIUMBLOB

Meaning. A medium-sized BLOB (binary string) value

Allowable attributes. None, other than the global attributes

Allowable length. 0 to 16777215 (0 to 224-1) bytes

Default value. NULL if the column can be NULL, '' (empty string) if NOT NULL

Storage required. Length of value (in bytes), plus 3 bytes to record the length

Comparisons. Byte by byte, based on numeric byte values

Synonyms. LONG VARBINARY

n LONGBLOB

Meaning. A large BLOB (binary string) value

Allowable attributes. None, other than the global attributes

Allowable length. 0 to 4294967295 (0 to 232-1) bytes

Default value. NULL if the column can be NULL, '' (empty string) if NOT NULL

Storage required. Length of value (in bytes), plus 4 bytes to record the length

Comparisons. Byte by byte, based on numeric byte values

807B.2 String Types

B.2.2 Non-Binary String Types
n CHAR[(M)]

Meaning. A fixed-length non-binary string 0 to M characters long. M should be an
integer from 0 to 255. If omitted, M defaults to 1.

Allowable attributes. BINARY, CHARACTER SET, COLLATE

Allowable length. 0 to M characters

Default value. NULL if the column can be NULL, '' (empty string) if NOT NULL

Storage required. M characters, which is M × w bytes, where w is the number of
bytes required for the widest character in the column character set

Comparisons. Character by character, based on the column collation

Synonyms. NCHAR(M) and NATIONAL CHAR(M) are synonyms for CHAR(M)
CHARACTER SET utf8.

n VARCHAR(M)

Meaning. A variable-length non-binary string 0 to M characters long. M should be
an integer from 0 to 65535 (0 to 255 prior to MySQL 5.0.3).

Allowable attributes. BINARY, CHARACTER SET, COLLATE

Allowable length. 0 to M characters, possibly less as indicated in the Note

Default value. NULL if the column can be NULL, '' (empty string) if NOT NULL

Storage required. Length of value (in bytes), plus a 1-byte or 2-byte prefix to
record the length.The prefix requires 1 byte if the maximum length of column
values in bytes is less than 256, 2 bytes otherwise.

Comparisons. Character by character, based on the column collation

Synonyms. CHAR VARYING(M). NVARCHAR(M), NCHAR VARYING(M) and NATIONAL

CHAR VARYING(M) are synonyms for VARCHAR(M) CHARACTER SET utf8.

Note. In practice, the maximum length of a VARCHAR column is limited to 65535
bytes, and possibly less depending on storage engine internal row-size limits,
whether the column character set is single-byte or multi-byte, and the space
required by other columns in the table.

n TINYTEXT

Meaning. A small TEXT (non-binary string) value

Allowable attributes. BINARY, CHARACTER SET, COLLATE

Allowable length. 0 to 255 (0 to 28-1) characters, possibly less as indicated in
the Note

Default value. NULL if the column can be NULL, '' (empty string) if NOT NULL

Storage required. Length of value (in bytes), plus 1 byte to record the length

Comparisons. Character by character, based on the column collation

808 Appendix B Data Type Reference

Note. The value can contain up to 255 bytes; the number of characters allowed is
less than 255 if the value contains multi-byte characters.

n TEXT[(M)]

Meaning. A normal-sized TEXT (non-binary string) value

Allowable attributes. BINARY, CHARACTER SET, COLLATE

Allowable length. 0 to 65535 (0 to 216-1) characters, possibly less as indicated in
the Note. If a length M is given, it is used to choose the appropriate data type and
then discarded. For lengths of 1 to 65535, the data type becomes TEXT. For lengths
of 65536 or greater, the data types becomes whichever of MEDIUMTEXT or LONGTEXT
is required to accommodate values of the given length.

Default value. NULL if the column can be NULL, '' (empty string) if NOT NULL

Storage required. Length of value (in bytes), plus 2 bytes to record the length

Comparisons. Character by character, based on the data type collation

Note. The value can contain up to 65535 bytes; the number of characters allowed
is less than 65535 if the value contains multi-byte characters.

n MEDIUMTEXT

Meaning. A medium-sized TEXT (non-binary string) value

Allowable attributes. BINARY, CHARACTER SET, COLLATE

Allowable length. 0 to 16777215 (0 to 224-1) characters, possibly less as indicated
in the Note

Default value. NULL if the column can be NULL, '' (empty string) if NOT NULL

Storage required. Length of value (in bytes), plus 3 bytes to record the length

Comparisons. Character by character, based on the data type collation

Note. The value can contain up to 16777215 bytes; the number of characters
allowed is less than 16777215 if the value contains multi-byte characters.

Synonyms. LONG VARCHAR

n LONGTEXT

Meaning. A large TEXT (non-binary string) value

Allowable attributes. BINARY, CHARACTER SET, COLLATE

Allowable length. 0 to 4294967295 (0 to 232-1) characters, possibly less as indi-
cated in the Note

Default value. NULL if the column can be NULL, '' (empty string) if NOT NULL

Storage required. Length of value (in bytes), plus 4 bytes to record the length

Comparisons. Character by character, based on the data type collation

Note. The value can contain up to 4294967295 bytes; the number of characters
allowed is less than 4294967295 if the value contains multi-byte characters.

809B.3 Date and Time Types

B.2.3 ENUM and SET Types
n ENUM('value1','value2',...)

Meaning. An enumeration; column values can be assigned exactly one member of
the value list

Allowable attributes. CHARACTER SET, COLLATE

Default value. NULL if the column can be NULL, first enumeration value if NOT NULL

Storage required. 1 byte for enumerations with 1 to 255 members, 2 bytes for
enumerations with 256 to 65535 members

Comparisons. Based on the numeric value of column values

Note. In the data type definition, any trailing spaces present in member values are
ignored.

n SET('value1','value2',...)

Meaning. A set; column values can be assigned zero or more members of the
value list

Allowable attributes. CHARACTER SET, COLLATE

Default value. NULL if the column can be NULL, '' (empty set) if NOT NULL

Storage required. 1 byte (for sets with 1 to 8 members), 2 bytes (9 to 16 mem-
bers), 3 bytes (17 to 24 members), 4 bytes (25 to 32 members), or 8 bytes (33 to 64
members)

Comparisons. Based on the numeric value of column values

Note. In the data type definition, any trailing spaces present in member values are
ignored.

B.3 Date and Time Types
MySQL provides several types to represent temporal data.Types are available for dates and
times, either separate or in combination.There is a special timestamp type that is updated
automatically when a row changes, and a type for storing years when you don’t need a
complete date.

The terms CC, YY, MM, and DD in date formats represent century, year, month, and day of
month, respectively.The terms hh, mm, and ss in time formats represent hour, minute, and
second, respectively.

n DATE

Meaning. A date, in 'CCYY-MM-DD' format

Allowable attributes. None, other than the global attributes

Range. '1000-01-01' to '9999-12-31'

Zero value. '0000-00-00'

Default value. NULL if the column can be NULL, '0000-00-00' if NOT NULL

810 Appendix B Data Type Reference

Storage required. 3 bytes
n DATETIME

Meaning. A date and time value, in 'CCYY-MM-DD hh:mm:ss' format

Allowable attributes. None, other than the global attributes

Range. '1000-01-01 00:00:00' to '9999-12-31 23:59:59'

Zero value. '0000-00-00 00:00:00'

Default value. NULL if the column can be NULL, '0000-00-00 00:00:00' if
NOT NULL

Storage required. 8 bytes
n TIME

Meaning. A time, in 'hh:mm:ss' format (or '-hh:mm:ss' for negative values).

Allowable attributes. None, other than the global attributes

Range. '-838:59:59' to '838:59:59'

Zero value. '00:00:00'

Default value. NULL if the column can be NULL, '00:00:00' if NOT NULL

Storage required. 3 bytes

Note. Although '00:00:00' is used as the zero value when illegal values are in-
serted into a TIME column, it is also a legal value that lies within the normal col-
umn range.

n TIMESTAMP

Meaning. A timestamp (date and time), in 'CCYY-MM-DD hh:mm:ss' format.The
TIMESTAMP type has several special behaviors:

n Inserting a NULL into any TIMESTAMP column of a table inserts the current
date and time, unless the column has been declared to allow NULL.

n One TIMESTAMP column per table can have two auto-modification properties:
n Automatic initialization:When a row is created, the default value for

the column is the current timestamp.
n Automatic updating:When a row is updated, changing the value of any

other column in the row causes the TIMESTAMP column to be updated
to the date and time at which the modification occurs.

You can designate which TIMESTAMP should be treated this way, and you can
suppress automatic initialization, updating, or both. See Chapter 3 for
additional details.

Allowable attributes. One TIMESTAMP column in a table can have attributes of
DEFAULT CURRENT_TIMESTAMP or ON UPDATE CURRENT_TIMESTAMP, or both. (You
cannot use one attribute with one TIMESTAMP column and the other attribute with

811B.4 Spatial Types

another TIMESTAMP column, nor can you use either attribute with more than one
TIMESTAMP column.) DEFAULT CURRENT_TIMESTAMP causes the column to be set to
the current date and time at row creation time if no value is given for the column.
ON UPDATE CURRENT_TIMESTAMP causes the column to be updated the current date
and time when any other column in the row is changed from its current value.
CURRENT_TIMESTAMP() and NOW() are understood as synonyms for
CURRENT_TIMESTAMP.

A constant DEFAULT value can be specified to assign a TIMESTAMP column a fixed
date and time value or zero.

The NULL attribute can be given to allow a TIMESTAMP column to store NULL values.
Without this attribute, storing a NULL into a TIMESTAMP column sets it to the cur-
rent date and time.

Range. '1970-01-01 00:00:01' UTC to '2038-01-19 03:14:07' UTC

Zero value. '0000-00-00 00:00:00'

Default value. DESCRIBE and SHOW COLUMNS display the default value as
CURRENT_TIMESTAMP if the column is set automatically to the current date and time
when rows are created. Otherwise the constant date and time default value is dis-
played. See the discussion of the allowable attributes.

Storage required. 4 bytes

Note. During table creation, TIMESTAMP columns are subject to the setting of the
SQL mode. If the MAXDB SQL mode is enabled, any TIMESTAMP column is created
as a DATETIME column instead, for compatibility with the MaxDB DBMS.

n YEAR[(M)]

Meaning. A year value. If given, M must be 2 or 4 for formats of YY or CCYY. If
omitted, M defaults to 4.

Allowable attributes. None, other than the global attributes

Range. 1901 to 2155, and 0000 for YEAR(4). 1970 to 2069 for YEAR(2), but only
the last two digits are displayed.

Zero value. 0000 for YEAR(4), 00 for YEAR(2)

Default value. NULL if the column can be NULL, 0000 or 00 if NOT NULL

Storage required. 1 byte

B.4 Spatial Types
These types are used to represent spatial or geometric values. In MySQL, spatial values
can be represented in Well-Known Text,Well-Known Binary, or internal spatial format.
The spatial data types are used for storing internal-format values.

Spatial data types are available only if the server has been compiled with support for
them, as indicated by the value of the have_geometry system variable.

812 Appendix B Data Type Reference

Support for spatial types and the types of indexes that may be created for them varies
by storage engine. MyISAM tables support spatial types as well as SPATIAL and non-
SPATIAL indexes on them. Other engines such as InnoDB and ARCHIVE support spatial
types but only allow non-SPATIAL indexes on them. See Section 3.2.7,“Spatial Data
Types,” for more information.

For all spatial types, the allowable attributes are NULL and NOT NULL.
n GEOMETRY

Meaning. A geometry object.This type can hold a single value of any spatial type.
n GEOMETRYCOLLECTION

Meaning. A collection of one or more geometry objects (values of any spatial
type).

n LINESTRING

Meaning. A curve, represented as a set of one or more POINT values.
n MULTILINESTRING

Meaning. A collection of one or more LINESTRING values.
n MULTIPOINT

Meaning. A collection of one or more POINT values.
n MULTIPOLYGON

Meaning. A collection of one or more POLYGON values.
n POINT

Meaning. A point (a pair of X/Y coordinates).
n POLYGON

Meaning. A polygon, represented as a set of one or more simple, closed
LINESTRING values.

C
Operator and Function

Reference

This appendix lists the operators and functions you can use to construct expressions in
SQL statements. Changes in behavior since 5.0.0 are indicated in the descriptions for in-
dividual operators and functions.

Operator and function examples are written in the following format:

expr → result

The expression expr demonstrates how to use an operator or function, and result
shows the value that results from evaluating the expression. For example:

RIGHT('my cat',3) → 'cat'

This means that the function call RIGHT('my cat',3) produces the string result
'cat'.You can try the examples shown in this appendix for yourself using the mysql pro-
gram.To try the preceding example, invoke the mysql program, type in the example ex-
pression with SELECT in front of it and a semicolon after it, and press Enter:

mysql> SELECT RIGHT('my cat',3);

+-------------------+

| RIGHT('my cat',3) |

+-------------------+

| cat |

+-------------------+

MySQL does not require a SELECT statement to have a FROM clause, which makes it
easy to experiment with operators and functions by entering expressions in this way.

Examples in this appendix include complete SELECT statements for functions that can-
not be demonstrated otherwise. Section C.2.6,“Summary Functions,” is written that way
because those functions make no sense except in reference to a particular table.

Function names, as well as operators that are words, such as BETWEEN, may be specified
in any lettercase.

814 Appendix C Operator and Function Reference

Certain types of function arguments occur repeatedly and are represented by names
with the following conventional meanings:

n expr represents an expression; depending on the context, this may be a numeric,
string, or date or time expression, and may incorporate constants, references to table
columns, or other expressions.

n str represents a string; it can be a literal string, a reference to a table column that
has a string data type, or an expression that produces a string.

n n represents an integer (as do letters near to n in the alphabet).
n x represents a floating-point number (as do letters near to x in the alphabet).

Other argument names are used less often and are defined where used. Square brackets
([]) in syntax descriptions indicate optional parts of operator or function call sequences.

Evaluation of an expression often involves type conversion of the values in that ex-
pression. See Section 3.5.2,“Type Conversion,” for details on the circumstances under
which conversions occur and the rules that MySQL uses to convert values from one type
to another.

C.1 Operators
Operators are used to combine terms in expressions to perform arithmetic, compare val-
ues, perform bitwise or logical operations, and match patterns.

C.1.1 Operator Precedence
Operators have differing precedence levels.The levels are shown in the following list,
from highest to lowest. Operators on the same line have the same precedence. Operators
at a given precedence level are evaluated left to right. Operators at a higher precedence
level are evaluated before operators at a lower precedence level.

BINARY COLLATE

!

- (unary minus) ~ (unary bit negation)

^

* / DIV % MOD

+ -

<< >>

&

|

< <= = <=> <> != >= > IN IS LIKE REGEXP RLIKE

BETWEEN CASE WHEN THEN ELSE

NOT

AND &&

XOR

OR ||

:=

815C.1 Operators

The unary operators (unary minus, unary bit negation, NOT, BINARY, and COLLATE)
bind more tightly than the binary operators.That is, they group with the immediately fol-
lowing term in an expression, not with the rest of the expression as a whole.

-2+3 → 1

-(2+3) → -5

Some operator precedences vary depending on the server SQL mode or MySQL
version:

n If the PIPES_AS_CONCAT SQL mode is enabled, || becomes a string concatenation
operator rather than logical OR, and its precedence is elevated to a level between ^
and the unary operators.

n NOT has a lower precedence than the ! operator.To make NOT have the same prece-
dence as ! (which was the behavior before MySQL 5.0.2), enable the
HIGH_NOT_PRECEDENCE SQL mode.

C.1.2 Grouping Operators
These operators enable you to group expression terms to control order of evaluation or
to group values into tuples.

n (...)

Parentheses can be used to group parts of an expression.They override the default
operator precedence that otherwise determines the order in which terms of an ex-
pression are evaluated. (See Section C.1.1,“Operator Precedence.”) Parentheses also
may be used simply for visual clarity to make an expression more readable. Nested
parenthesized expressions are evaluated from innermost to outermost.

1 + 2 * 3 / 4 → 2.5000

(((1 + 2) * 3) / 4) → 2.2500

n (expr[,expr]...)

ROW(expr[,expr]...)

These row constructors can be used to express a comparison between two tuples
(sets) of values.The tuples to be compared must contain the same number of values.
The two syntaxes (with and without the ROW keyword) are equivalent. For example,
if a subquery returns a row containing three values, you can compare the result to a
given three-value tuple using either of the following constructs:

SELECT ... FROM t2 WHERE (0,1,2) = (SELECT col1, col2, col3 FROM ...);

SELECT ... FROM t2 WHERE ROW(0,1,2) = (SELECT col1, col2, col3 FROM ...);

Row constructors can be used in non-subquery contexts as well.The following
statement is legal:

SELECT * FROM president WHERE (first_name,last_name) = ('John','Adams');

816 Appendix C Operator and Function Reference

C.1.3 Arithmetic Operators
These operators perform standard arithmetic.The arithmetic operators work on numbers,
not strings (although MySQL automatically converts strings that look like numbers to the
corresponding numeric value).

Arithmetic operators follow these rules:

n Strings are converted to double-precision numbers when used in numeric context.
n Calculations use 64-bit integer arithmetic for +, -, and * if both operands are inte-

gers.This means that expressions involving large values might exceed the range of
64-bit integer calculations, with unpredictable results.

999999999999999999 * 999999999999999999 → -7527149226598858751

99999999999 * 99999999999 * 99999999999 → -1504485813132150785

18014398509481984 * 18014398509481984 → 0

n If both operands are integers and at least one is unsigned, the result is unsigned.
n The operand with the greatest precision determines the precision of the result for
+, -, /, *, and % if either operand is real.

n Division performed with / uses 64-bit integer arithmetic in contexts where the re-
sult is used as an integer.

n Division of two exact-value numbers performed with / has a scale equal to the
scale of the dividend plus the value of the div_precision_increment system vari-
able, which is 4 by default.

n Arithmetic involving NULL values produces a NULL result.

The following arithmetic operators are available:
n +

Addition; evaluates to the sum of the operands.

2 + 2 → 4

3.2 + 4.7 → 7.9

'43bc' + '21d' → 64

'abc' + 'def' → 0

The final example in this listing shows that + does not serve as the string concate-
nation operator the way it does in some languages. Instead, the strings are converted
to numbers before the arithmetic operation takes place. Strings that don’t look like
numbers are converted to 0.To concatenate strings, use the CONCAT() function.

n -

Subtraction or unary minus; evaluates to the difference of the operands when used
between two terms of an expression, or to the negative of the operand when used
in front of a single term (that is, it flips the sign of the term).

10 - 7 → 3

-(10 - 7) → -3

817C.1 Operators

n *

Multiplication; evaluates to the product of the operands.

2 * 3 → 6

2.3 * -4.5 → -10.35

n /

Division; evaluates to the quotient of the operands. Division by zero produces a
NULL result.

3 / 1 → 3.0000

1 / 3 → 0.3333

1 / 0 → NULL

n DIV

Integer division; evaluates to the quotient of the operands with no fractional part.
Division by zero produces a NULL result.

3 DIV 1 → 3

1 DIV 3 → 0

1 DIV 0 → NULL

n %, MOD

The modulo operator; evaluates to the remainder of m divided by n.The m % n or m
MOD n operator syntax is the same as the MOD(m,n) function syntax.As with divi-
sion, the modulo operator with a divisor of zero returns NULL.

12 % 4 → 0

12 % 5 → 2

12 % 0 → NULL

For values with a fractional part, modulo returns the exact remainder after division.

14.4 % 3.2 → 1.6

C.1.4 Comparison Operators
Comparison operators return 1 if the comparison is true and 0 if the comparison is false.
You can compare numbers or strings. Operands are converted as necessary according to
the following rules:

n Other than for the <=> operator, comparisons involving NULL values evaluate as NULL.
(<=> is like =, except that NULL <=> NULL is true, whereas NULL = NULL is NULL.)

n If both operands are strings, they are compared lexically as strings. Binary strings are
compared on a byte-by-byte basis using the numeric value of each byte. Com-
parisons for non-binary strings are performed character-by-character using the

818 Appendix C Operator and Function Reference

collating sequence of the character set in which the strings are expressed. If the
strings have different character sets, the comparison may result in an error or fail to
yield meaningful results.A comparison between a binary and a non-binary string is
treated as a comparison of binary strings.

n If both operands are integers, they are compared numerically as integers.
n Hexadecimal constants that are not compared to a number are compared as binary

strings.
n Other than for IN(), if either operand is a TIMESTAMP or DATETIME value and the

other is a constant, the operands are compared as TIMESTAMP values.This is done to
make comparisons work better for ODBC applications.

n Otherwise, the operands are compared numerically as double-precision floating-
point values. Note that this includes the case of comparing a string and a number.
The string is converted to a double-precision number, which results in a value of 0
if the string doesn’t look like a number. For example, '14.3' converts to 14.3, but
'L4.3' converts to 0.

The following comparisons illustrate these rules:

2 < 12 → 1

'2' < '12' → 0

'2' < 12 → 1

The first comparison involves two integers, which are compared numerically.The sec-
ond comparison involves two strings, which are compared lexically.The third comparison
involves a string and a number, so the string is converted to double precision and the
operands are compared as double-precision values.

MySQL performs string comparisons as follows: Binary strings are compared on a
byte-by-byte basis using the numeric value of each byte. Comparisons for non-binary
strings are performed character by character using the collating sequence of the character
set in which the strings are expressed. If the strings have different character sets, the com-
parison may result in an error or fail to yield meaningful results.A comparison between a
binary and a non-binary string is treated as a comparison of binary strings.

n =

Evaluates to 1 if the operands are equal, 0 otherwise.

1 = 1 → 1

1 = 2 → 0

'abc' = 'abc' → 1

'abc' = 'ABC' → 1

'abc' = 'def' → 0

'abc' = 0 → 1

'abc' is equal to both 'abc' and 'ABC' because string comparisons are not case
sensitive for non-binary strings. 'abc' is equal to 0 because it’s converted to a

819C.1 Operators

number in accordance to the comparison rules. Because 'abc' doesn’t look like a
number, it’s converted to 0 for purposes of the comparison.

For non-binary strings, the character set collation of the operands determines the
comparison value of characters that are similar but differ in lettercase or in accent
or diacritical marks.

String comparisons are not case sensitive unless the comparison involves a binary
string or a non-binary string with a binary or case-sensitive collation. For example,
a case-sensitive comparison is performed if you use the BINARY keyword or are
comparing values from BINARY, VARBINARY, or BLOB columns.

'abc' = 'ABC' → 1

BINARY 'abc' = 'ABC' → 0

BINARY 'abc' = 'abc' → 1

_latin1 'abc' COLLATE latin1_bin = 'ABC' → 0

_latin1 'abc' COLLATE latin1_general_cs = 'ABC' → 0

Trailing spaces are significant for binary string comparisons, but not for non-binary
string comparisons.

BINARY 'a' = 'a ' → 0

'a' = 'a ' → 1

n <=>

NULL-safe equality; this operator is similar to =, except that it evaluates to 1 when
the operands are equal, even when they are NULL.

1 <=> 1 → 1

1 <=> 2 → 0

NULL <=> NULL → 1

NULL = NULL → NULL

The final two examples show how <=> and = handle NULL comparisons differently.
n <>, !=

Evaluates to 1 if the operands are unequal, 0 otherwise.

3.4 != 3.4 → 0

'abc' <> 'ABC' → 0

BINARY 'abc' <> 'ABC' → 1

'abc' != 'def' → 1

n <

Evaluates to 1 if the left operand is less than the right operand, 0 otherwise.

3 < 10 → 1

105.4 < 10e+1 → 0

'abc' < 'ABC' → 0

'abc' < 'def' → 1

820 Appendix C Operator and Function Reference

n <=

Evaluates to 1 if the left operand is less than or equal to the right operand, 0
otherwise.

'abc' <= 'a' → 0

'a' <= 'abc' → 1

13.5 <= 14 → 1

(3 * 4) - (6 * 2) <= 0 → 1

n >

Evaluates to 1 if the left operand is greater than the right operand, 0 otherwise.

PI() > 3 → 1

'abc' > 'a' → 1

SIN(0) > COS(0) → 0

n >=

Evaluates to 1 if the left operand is greater than or equal to the right operand, 0
otherwise.

'abc' >= 'a' → 1

'a' >= 'abc' → 0

13.5 >= 14 → 0

(3 * 4) - (6 * 2) >= 0 → 1

n expr BETWEEN min AND max
expr NOT BETWEEN min AND max

BETWEEN evaluates to 1 if expr lies within the range of values spanned by min and
max (inclusive), 0 otherwise. For NOT BETWEEN, the opposite is true. If the operands
expr, min, and max are all of the same type, these expressions are equivalent:

expr BETWEEN min AND max

(min <= expr AND expr <= max)

If the operands are not of the same type, type conversion occurs and the two ex-
pressions may not be equivalent. BETWEEN is evaluated using comparisons deter-
mined according to the type of expr:

n If expr is a string, the operands are compared lexically as strings, using the
rules given at the beginning of this section.

n If expr is an integer, the operands are compared numerically as integers.
n If neither of the preceding rules is true, the operands are compared numeri-

cally as floating-point numbers.

'def' BETWEEN 'abc' AND 'ghi' → 1

'def' BETWEEN 'abc' AND 'def' → 1

13.3 BETWEEN 10 AND 20 → 1

821C.1 Operators

13.3 BETWEEN 10 AND 13 → 0

2 BETWEEN 2 AND 2 → 1

'B' BETWEEN 'A' AND 'a' → 0

BINARY 'B' BETWEEN 'A' AND 'a' → 1

For BETWEEN expressions that use mixed temporal types or mixed temporal types
and strings, it is best to use CAST() to ensure that all operands have the same type.

n CASE [expr] WHEN expr1 THEN result1 ... [ELSE default] END

When the initial expression, expr, is present, CASE compares it to the expression
following each WHEN. For the first one that is equal, the corresponding THEN value
becomes the result.This is useful for comparing a given value to a set of values.

CASE 0 WHEN 1 THEN 'T' WHEN 0 THEN 'F' END → 'F'

CASE 'F' WHEN 'T' THEN 1 WHEN 'F' THEN 0 END → 0

When the initial expression, expr, is not present, CASE evaluates WHEN expressions.
For the first one that is true (non-zero, non-NULL), the corresponding THEN value
becomes the result.This is useful for performing non-equality tests or testing arbi-
trary conditions.

CASE WHEN 1=0 THEN 'absurd' WHEN 1=1 THEN 'obvious' END

→ 'obvious'

If no WHEN expression matches, the ELSE value is the result. If there is no ELSE
clause, CASE evaluates to NULL.

CASE 0 WHEN 1 THEN 'true' ELSE 'false' END → 'false'

CASE 0 WHEN 1 THEN 'true' END → NULL

CASE WHEN 1=0 THEN 'true' ELSE 'false' END → 'false'

CASE WHEN 1/0 THEN 'true' END → NULL

The return type for a CASE expression is determined from the aggregated types of
the return values by default.

CASE 1 WHEN 0 THEN 0 ELSE 1 END → 1

CASE 1 WHEN 0 THEN '0' ELSE '1' END → '1'

However, the default return type is also affected by surrounding context, which
may cause conversion to string, number, and so forth.

Note that the CASE expression differs from the CASE statement described in Section
E.2.1,“Control Structure Statements.”

n expr IN (value1,value2,...)

expr NOT IN (value1,value2,...)

IN() evaluates to 1 if expr is one of the values in the list, 0 otherwise. For NOT
IN(), the opposite is true.The following expressions are equivalent:

expr NOT IN (value1,value2,...)

NOT (expr IN (value1,value2,...))

822 Appendix C Operator and Function Reference

If all values in the list are constants, MySQL sorts them and evaluates the IN() test
using a binary search, which is very fast.

3 IN (1,2,3,4,5) → 1

'd' IN ('a','b','c','d','e') → 1

'f' IN ('a','b','c','d','e') → 0

3 NOT IN (1,2,3,4,5) → 0

'd' NOT IN ('a','b','c','d','e') → 0

'f' NOT IN ('a','b','c','d','e') → 1

n expr IS {FALSE | TRUE | UNKNOWN}

These constructs test expr against logical false, true, or unknown, and return 0
(false) or 1 (true).A value of 0 is considered false, non-zero, non-NULL values are
considered true, and NULL is unknown.

2 IS FALSE → 0

2 IS TRUE → 1

2 IS UNKNOWN → 0

NULL IS FALSE → 0

NULL IS TRUE → 0

NULL IS UNKNOWN → 1

n expr IS NULL

expr IS NOT NULL

IS NULL evaluates to 1 if the value of expr is NULL, 0 otherwise. IS NOT NULL is the
opposite.The following expressions are equivalent:

expr IS NOT NULL

NOT (expr IS NULL)

IS NULL and IS NOT NULL should be used to determine whether the value of expr
is NULL.You cannot use the regular equality and inequality comparison operators (=,
<>, !=) for this purpose. (However, you can use <=> to test for equality with NULL.)

NULL IS NULL → 1

0 IS NULL → 0

NULL IS NOT NULL → 0

0 IS NOT NULL → 1

NOT (0 IS NULL) → 1

NOT (NULL IS NULL) → 0

823C.1 Operators

C.1.5 Bit Operators
This section describes operators that perform bitwise calculations. Bit operations are per-
formed using BIGINT values (64-bit integers), which limits the maximum range of the
operations. Bit operations produce 64-bit unsigned values, or NULL if any operand is NULL.

n &

Evaluates to the bitwise AND (intersection) of the operands.

1 & 1 → 1

1 & 2 → 0

7 & 5 → 5

n |

Evaluates to the bitwise OR (union) of the operands.

1 | 1 → 1

1 | 2 → 3

1 | 2 | 4 | 8 → 15

1 | 2 | 4 | 8 | 15 → 15

n ^

Evaluates to the bitwise XOR (exclusive-OR) of the operands.

1 ^ 1 → 0

1 ^ 0 → 1

255 ^ 127 → 128

n <<

Shifts the leftmost operand left the number of bit positions indicated by the right
operand. Shifting by a negative amount results in a value of zero.
1 << 2 → 4

2 << 2 → 8

1 << 63 → 9223372036854775808

1 << 64 → 0

The last two examples demonstrate the limits of 64-bit calculations.
n >>

Shifts the leftmost operand right the number of bit positions indicated by the right
operand. Shifting by a negative amount results in a value of zero.

16 >> 3 → 2

16 >> 4 → 1

16 >> 5 → 0

n ~

Performs bitwise negation (inversion) of the following operand.That is, all 0 bits
become 1 and vice versa.

824 Appendix C Operator and Function Reference

~0 → 18446744073709551615

~(-1) → 0

~~(-1) → 18446744073709551615

C.1.6 Logical Operators
Logical operators (also known as “boolean operators”) test the truth or falsity of expres-
sions. Logical operations return 1 for true, 0 for false, and NULL for unknown. Logical
operators interpret non-zero, non-NULL operands as true, 0 as false, and NULL and
unknown.

Logical operators expect operands to be numbers, so string operands are converted to
numbers before the operator is evaluated.

In MySQL, !, ||, and && indicate logical operations, as they do in C. In particular, ||
does not perform string concatenation as it does in standard SQL. Use the CONCAT()
function instead to concatenate strings. If you want || to be treated as the string concate-
nation operator, enable the PIPES_AS_CONCAT SQL mode.

n NOT, !

Logical negation; evaluates to 1 if the following operand is false and 0 if the
operand is true, except that NOT NULL is NULL.

NOT 0 → 1

NOT 1 → 0

NOT NULL → NULL

NOT 3 → 0

NOT NOT 1 → 1

NOT '1' → 0

NOT '0' → 1

NOT 'abc' → 1

The last several examples demonstrate conversion of a string operand to a number
before operator evaluation.

The precedence of NOT can be modified as described in Section C.1.1,“Operator
Precedence.”

n AND, &&

Logical AND; evaluates to 1 if both operands are true (non-zero, non-NULL), 0 if ei-
ther operand is false, and NULL otherwise (the result cannot be determined).

4 AND 2 → 1

0 AND 0 → 0

0 AND 3 → 0

1 AND NULL → NULL

0 AND NULL → 0

NULL AND NULL → NULL

825C.1 Operators

n OR, ||

Logical OR; evaluates to 1 if either operand is true (non-zero, non-NULL), 0 if both
operands are false, and NULL otherwise (the result cannot be determined).

4 OR 2 → 1

0 OR 3 → 1

0 OR 0 → 0

1 OR NULL → 1

0 OR NULL → NULL

NULL OR NULL → NULL

n XOR

Logical exclusive-OR; evaluates to 1 if exactly one operand is true (non-zero, non-
NULL), and 0 otherwise. Evaluates to NULL (unknown) if either operand is NULL.

0 XOR 0 → 0

0 XOR 9 → 1

7 XOR 0 → 1

5 XOR 2 → 0

C.1.7 Cast Operators
Cast operators convert values from one type to another.

n _charset str

The _charset operator is called an “introducer.” It causes the following string con-
stant or column value to be interpreted using a given character set. charset must
be the name of a character set supported by the server. For example, the following
expressions interpret the string 'abcd' using a character set of latin2 or utf8.

_latin2 'abcd'

_utf8 'abcd'

For introducers for multi-byte character sets, padding of the result may occur if the
end of the operand does not have the proper number of bytes to create a complete
character.

n BINARY str

BINARY causes the following operand to be treated as a binary string. Comparisons
involving the result will be performed byte by byte using the numeric value of each
byte. If the following operand is a number, it is converted to string form.

'abc' = 'ABC' → 1

'abc' = BINARY 'ABC' → 0

BINARY 'abc' = 'ABC' → 0

'2' < 12 → 1

'2' < BINARY 12 → 0

826 Appendix C Operator and Function Reference

In the last example, BINARY causes a number-to-string conversion.The operands
then are compared as binary strings.

n str COLLATE collation

The COLLATE operator causes the given string str to have the given collation
(which must be one of the legal collations for the character set of str). COLLATE
affects operations such as comparisons, sorting, grouping, and DISTINCT.

SELECT ... WHERE utf8_str COLLATE utf8_icelandic_ci > 'M';

SELECT MAX(greek_str COLLATE greek_general_ci) FROM ... ;

SELECT ... GROUP BY latin1_str COLLATE latin1_german2_ci;

SELECT ... ORDER BY sjis_str COLLATE sjis_bin;

SELECT DISTINCT latin2_str COLLATE latin2_croatian_ci FROM ...;

C.1.8 Pattern-Matching Operators
MySQL provides SQL pattern matching using LIKE and regular expression pattern
matching using REGEXP. SQL pattern matching succeeds only if the pattern matches the
entire string to be matched. Regular expression pattern matching succeeds if the pattern
is found anywhere in the string.

Section 3.5.1.1,“Operator Types,” provides additional discussion and examples of pat-
tern matching.

n str LIKE pattern [ESCAPE 'c']
str NOT LIKE pattern [ESCAPE 'c']

LIKE performs an SQL pattern match and evaluates to 1 if the pattern string
pattern matches the entire string expression str. If the pattern does not match,
LIKE evaluates to 0. For NOT LIKE, the opposite is true.These two expressions are
equivalent:

str NOT LIKE pattern [ESCAPE 'c']

NOT (str LIKE pattern [ESCAPE 'c'])

The result is NULL if either operand is NULL.

Two characters have special meaning in SQL patterns and serve as wildcards:
n ‘%’ matches any sequence of characters (including an empty string) other

than NULL.
n ‘_’ (underscore) matches any single character.

Patterns may contain either or both wildcard characters.

'catnip' LIKE 'cat%' → 1

'dogwood' LIKE '%wood' → 1

'bird' LIKE '____' → 1

'bird' LIKE '___' → 0

'dogwood' LIKE '%wo__' → 1

827C.1 Operators

LIKE compares the strings as binary strings if either operand is a binary string, or
using the operand collation if the operands are non-binary strings.

'abc' LIKE 'ABC' → 1

BINARY 'abc' LIKE 'ABC' → 0

'abc' LIKE BINARY 'ABC' → 0

'abc' LIKE 'ABC' COLLATE latin1_general_ci → 1

'abc' LIKE 'ABC' COLLATE latin1_general_cs → 0

Because ‘%’ matches any sequence of characters, it matches no characters.

'' LIKE '%' → 1

'cat' LIKE 'cat%' → 1

In MySQL, you can use LIKE with numeric expressions.

50 + 50 LIKE '1%' → 1

200 LIKE '2__' → 1

To match a wildcard character literally, turn off its special meaning in the pattern
string by preceding it with the escape character, ‘\’.

'100% pure' LIKE '100%' → 1

'100% pure' LIKE '100\%' → 0

'100% pure' LIKE '100\% pure' → 1

To interpret ‘\’ literally, enable the NO_BACKSLASH_ESCAPES SQL mode.Alterna-
tively, to redefine the escape character, specify an ESCAPE clause.

'100% pure' LIKE '100^%' ESCAPE '^' → 0

'100% pure' LIKE '100^% pure' ESCAPE '^' → 1

n str REGEXP pattern
str NOT REGEXP pattern

REGEXP performs a regular expression pattern match. It evaluates to 1 if the pattern
string pattern matches the string expression str, 0 otherwise. For NOT REGEXP, the
opposite is true.These two expressions are equivalent:

str NOT REGEXP pattern

NOT (str REGEXP pattern)

The result of a regular expression match is NULL if either operand is NULL.

REGEXP compares the strings as binary strings if either operand is a binary string, or
using the operand collation if the operands are non-binary strings.

'abc' REGEXP 'ABC' → 1

BINARY 'abc' REGEXP 'ABC' → 0

'abc' REGEXP BINARY 'ABC' → 0

'abc' REGEXP 'ABC' COLLATE latin1_bin → 0

'abc' COLLATE latin1_bin REGEXP 'ABC' → 0

828 Appendix C Operator and Function Reference

Element Meaning

^ Match the beginning of the string

$ Match the end of the string

. Match any single character, including newline

[...] Match any character appearing between the brackets

[^...] Match any character not appearing between the brackets

e* Match zero or more instances of pattern element e

e+ Match one or more instances of pattern element e

e? Match zero or one instances of pattern element e

e1|e2 Match pattern element e1 or e2

e{m} Match m instances of pattern element e

e{m,} Match m or more instances of pattern element e

e{,n} Match zero to n instances of pattern element e

e{m,n} Match m to n instances of pattern element e

(...) Group pattern elements into a single element

other Non-special characters match themselves

REGEXP is not multi-byte safe and works only for single-byte character sets.

Regular expressions are similar to the patterns used by the Unix utilities grep and
sed.The following table shows the allowable pattern sequences.

A regular expression pattern need not match the entire string, it just needs to be
found somewhere in the string.

'cats and dogs' REGEXP 'dogs' → 1

'cats and dogs' REGEXP 'cats' → 1

'cats and dogs' REGEXP 'c.*a.*d' → 1

'cats and dogs' REGEXP 'o' → 1

'cats and dogs' REGEXP 'x' → 0

You can use ^ or $ to force a pattern to match only at the beginning or end of the
string.

'abcde' REGEXP 'b' → 1

'abcde' REGEXP '^b' → 0

'abcde' REGEXP 'b$' → 0

829C.1 Operators

Class Meaning

[:alnum:] Alphabetic and numeric characters

[:alpha:] Alphabetic characters

[:blank:] Whitespace (space or tab characters)

[:cntrl:] Control characters

[:digit:] Decimal digits (0-9)

[:graph:] Graphic (non-blank) characters

[:lower:] Lowercase alphabetic characters

[:print:] Graphic or space characters

[:punct:] Punctuation characters

[:space:] Space, tab, newline, or carriage return

[:upper:] Uppercase alphabetic characters

[:xdigit:] Hexadecimal digits (0-9, a-f, A-F)

'abcde' REGEXP '^a' → 1

'abcde' REGEXP 'e$' → 1

'abcde' REGEXP '^a.*e$' → 1

The [...] and [^...] constructs specify character classes.Within a class, a range of
characters may be indicated using a dash between the first and last characters of the
range. For example, [a-z] matches any lowercase letter from ‘a’ to ‘z’, and [0-9]
matches any decimal digit.

'bin' REGEXP '^b[aeiou]n$' → 1

'bxn' REGEXP '^b[aeiou]n$' → 0

'oboeist' REGEXP '^ob[aeiou]+st$' → 1

'wolf359' REGEXP '[a-z]+[0-9]+' → 1

'wolf359' REGEXP '[0-9a-z]+' → 1

'wolf359' REGEXP '[0-9]+[a-z]+' → 0

To include a literal ‘]’ within a class, it must be the first character of the class.To in-
clude a literal ‘-’, it must be the first or last character of the class.To include a literal
‘^’, it must not be the first character after the ‘[’.

Several special regular expression POSIX character class constructions having to do
with collating sequences and equivalence classes are available as well, as shown in
the following table.These class names include the ‘[’ and ‘]’ square bracket charac-
ters in their names, so when you write a character class expression that refers to any
of them, be sure to include enough brackets.

The POSIX constructors are used within a character class:

'abc' REGEXP '[[:space:]]' → 0

'a c' REGEXP '[[:space:]]' → 1

'abc' REGEXP '[[:digit:][:punct:]]' → 0

'a0c' REGEXP '[[:digit:][:punct:]]' → 1

'a,c' REGEXP '[[:digit:][:punct:]]' → 1

Within a character class, the special markers [:<:] and [:>:] match the beginning
and end of word boundaries, respectively.A word character is considered to be any
character in the alnum class or underscore.A word consists of one or more word
characters not preceded by or followed by word characters.

'a few words' REGEXP '[[:<:]]few[[:>:]]' → 1

'a few words' REGEXP '[[:<:]]fe[[:>:]]' → 0

MySQL uses syntax similar to C for escape sequences within regular expression
strings. For example, ‘\n’, ‘\t’, and ‘\\’ are interpreted as newline, tab, and back-
slash.To specify such characters in a pattern, double the backslashes (‘\\n’, ‘\\t’,
and ‘\\\\’). One backslash is stripped off during query parsing; interpretation of
the remaining escape sequence occurs during the pattern match operation.
n str RLIKE pattern

str NOT RLIKE pattern

RLIKE and NOT RLIKE are synonyms for REGEXP and NOT REGEXP.

C.2 Functions
Functions are called to perform a calculation and return a value. By default, functions
must be invoked with no space between the function name and the parenthesis following
it or an error may occur:

mysql> SELECT NOW();

+---------------------+

| NOW() |

+---------------------+

| 2008-04-30 22:39:26 |

+---------------------+

mysql> SELECT NOW ();

ERROR 1305 (42000): FUNCTION NOW does not exist

If the IGNORE_SPACE SQL mode is enabled, the server allows spaces after names of
built-in functions, although a side effect is that all function names become reserved
words.You also may be able to select this behavior on a connection-specific basis,
depending on the client program. For example, you can start mysql with the

830 Appendix C Operator and Function Reference

831C.2 Functions

--ignore-space option; in C programs, you can call mysql_real_connect() with the
CLIENT_IGNORE_SPACE option.

In most cases, multiple arguments to a function are separated by commas. Spaces are
allowed around function arguments. Both of the following lines are legal:

CONCAT('abc','def')

CONCAT('abc' , 'def')

There are a few exceptions to this syntax, such as TRIM() or EXTRACT():

TRIM(' ' FROM ' x ') → 'x'

EXTRACT(YEAR FROM '2003-01-01') → 2003

Each function entry describes its allowable syntax.

C.2.1 Comparison Functions
These functions perform comparison of values.

n ELT(n,str1,str2,...)

Returns the n-th string from the list of strings str1, str2, ... Returns NULL if n is
NULL, the n-th string is NULL, or there is no n-th string.The index of the first string
is 1. ELT() is complementary to FIELD().

ELT(3,'a','b','c','d','e') → 'c'

ELT(0,'a','b','c','d','e') → NULL

ELT(6,'a','b','c','d','e') → NULL

ELT(FIELD('b','a','b','c'),'a','b','c') → 'b'

n FIELD(arg0,arg1,arg2,...)

Finds arg0 in the list of arguments arg1, arg2, ... and returns the index of the
matching argument (beginning with 1). Returns 0 if there is no match or if arg0 is
NULL. String comparison is used if all arguments are strings, numeric comparison if
all arguments are numbers, and double-precision comparison otherwise. FIELD() is
complementary to ELT().

FIELD('b','a','b','c') → 2

FIELD('d','a','b','c') → 0

FIELD(NULL,'a','b','c') → 0

FIELD(ELT(2,'a','b','c'),'a','b','c') → 2

n GREATEST(expr1,expr2,...)

Returns the largest argument, where “largest” is defined according to the following
rules:

n If the function is called in an integer context or all its arguments are integers,
the arguments are compared as integers.

n If the function is called in a floating-point context or all its arguments are
floating-point values, the arguments are compared as floating-point values.

n If neither of the preceding two rules apply, the arguments are compared as
strings. String comparison rules are as described at the beginning of Section
C.1.4,“Comparison Operators.”

GREATEST(2,3,1) → 3

GREATEST(38.5,94.2,-1) → 94.2

GREATEST('a','ab','abc') → 'abc'

GREATEST(1,3,5) → 5

GREATEST('A','b','C') → 'C'

GREATEST(BINARY 'A','b','C') → 'b'

n IF(expr1,expr2,expr3)

If expr1 is true (non-zero, non-NULL), returns expr2; otherwise, it returns expr3.
The return type for IF() is determined using the following tests, in order:A string,
if expr2 or expr3 is a string; a floating-point value if either of them is a floating-
point value; or an integer if either of them is an integer.

IF(1,'true','false') → 'true'

IF(0,'true','false') → 'false'

IF(NULL,'true','false') → 'false'

IF(1.3,'non-zero','zero') → 'non-zero'

IF(0.3 <> 0,'non-zero','zero') → 'non-zero'

Note that the IF() function differs from the IF statement described in Section
E.2.1,“Control Structure Statements.”

n IFNULL(expr1,expr2)

Returns expr2 if the value of the expression expr1 is NULL; otherwise, it returns
expr1. IFNULL() returns a number or string according to the context in which it is
used.

IFNULL(NULL,'null') → 'null'

IFNULL('not null','null') → 'not null'

n INTERVAL(n,n1,n2,...)

Returns 0 if n < n1, 1 if n < n2, and so on, or -1 if n is NULL.That is, INTERVAL()
finds the position of the first argument within the intervals defined by the remain-
ing arguments.All arguments must be integers.The values n1, n2, ... must be in
strictly increasing order (n1 < n2 < ...) because a fast binary search is used.
INTERVAL() behaves unpredictably otherwise.

INTERVAL(2,0,1,3) → 2

INTERVAL(7,1,3,5,7,9) → 4

832 Appendix C Operator and Function Reference

833C.2 Functions

n ISNULL(expr)

Returns 1 if the value of the expression expr is NULL; otherwise, it returns 0.

ISNULL(NULL) → 1

ISNULL(0) → 0

ISNULL(1) → 0

n LEAST(expr1,expr2,...)

Returns the smallest argument, where “smallest” is defined using the same compari-
son rules as for the GREATEST() function.

LEAST(2,3,1) → 1

LEAST(38.5,94.2,-1) → -1

LEAST('a','ab','abc') → 'a'

n NULLIF(expr1,expr2)

Returns expr1 if the two expression values differ, NULL if they are the same.

NULLIF(3,4) → 3

NULLIF(3,3) → NULL

n STRCMP(str1,str2)

This function returns 1, 0, or -1, depending on whether the first argument is lexi-
cally greater than, equal to, or less than the second argument. If either argument is
NULL, the function returns NULL. STRCMP() compares the strings as binary strings if
either operand is a binary string, or uses the operand collation if the operands are
non-binary strings.

STRCMP('a','a') → 0

STRCMP('a','A') → 0

STRCMP(BINARY 'a','A') → 1

STRCMP('A' COLLATE latin1_general_ci,'a') → 0

STRCMP('A' COLLATE latin1_general_cs,'a') → -1

C.2.2 Cast Functions
These functions convert values from one type to another.

n CAST(expr AS type)

Cast an expression value expr to a given type.The type value may be BINARY(n)
(binary string), CHAR(n) (non-binary string), DATE, DATETIME, TIME, SIGNED
[INTEGER], UNSIGNED [INTEGER], or (as of MySQL 5.0.8) DECIMAL[(M[,D])].

CAST(304 AS BINARY) → '304'

CAST(-1 AS UNSIGNED) → 18446744073709551615

CAST(13 AS DECIMAL(5,2)) → 13.00

An optional length n may be specified for BINARY and CHAR, which causes the result
to have no more than n bytes or characters, respectively. For BINARY, values with less
than n bytes are padded to a length of n with 0x00 bytes as of MySQL 5.0.17.

CAST() can be useful for forcing columns to have a particular type when creating a
new table with CREATE TABLE ... SELECT.

mysql> CREATE TABLE t SELECT CAST(20080101 AS DATE) AS date_val;

mysql> SHOW COLUMNS FROM t;

+----------+------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+----------+------+------+-----+---------+-------+

| date_val | date | YES | | NULL | |

+----------+------+------+-----+---------+-------+

mysql> SELECT * FROM t;

+------------+

| date_val |

+------------+

| 2008-01-01 |

+------------+

CONVERT() is similar to CAST(), but CONVERT() has ODBC syntax, whereas CAST()
has standard SQL syntax.

n CONVERT(expr,type)

CONVERT(expr USING charset)

The first form of CONVERT() serves the same purpose as CAST(), but has slightly
different syntax.The expr and type arguments have the same meaning.The second
(USING) form converts the value to a string that has the given character set.

CONVERT(304,BINARY) → '304'

CONVERT(-1,UNSIGNED) → 18446744073709551615

CONVERT('abc' USING utf8); → 'abc'

C.2.3 Numeric Functions
Numeric functions return NULL if you pass arguments that are out of range or otherwise
invalid.

n ABS(x)

Returns the absolute value of x.

ABS(13.5) → 13.5

ABS(-13.5) → 13.5

n ACOS(x)

Returns the arccosine of x, or NULL if x is not in the range from -1 to 1.

ACOS(1) → 0

834 Appendix C Operator and Function Reference

835C.2 Functions

ACOS(0) → 1.5707963267949

ACOS(-1) → 3.1415926535898

n ASIN(x)

Returns the arcsine of x, or NULL if x is not in the range from -1 to 1.

ASIN(1) → 1.5707963267949

ASIN(0) → 0

ASIN(-1) → -1.5707963267949

n ATAN(x)

ATAN(y,x)

The one-argument form of ATAN() returns the arctangent of x.The two-argument
form is a synonym for ATAN2().

ATAN(1) → 0.78539816339745

ATAN(0) → 0

ATAN(-1) → -0.78539816339745

n ATAN2(y,x)

This is like ATAN(y/x) but it uses the signs of both arguments to determine the
quadrant of the return value.

ATAN2(1,1) → 0.78539816339745

ATAN2(1,-1) → 2.3561944901923

ATAN2(-1,1) → -0.78539816339745

ATAN2(-1,-1) → -2.3561944901923

n CEILING(x)

CEIL(x)

Returns the smallest integer not less than x. If the argument has an exact-value nu-
meric type, the return value does, too. Otherwise the return value has a floating-
point (approximate-value) type.This is true even though the value has no fractional
part.

CEILING(3.8) → 4

CEILING(-3.8) → -3

n COS(x)

Returns the cosine of x, where x is measured in radians.

COS(0) → 1

COS(PI()) → -1

n COT(x)

Returns the cotangent of x, where x is measured in radians.
COT(PI()/4) → 1

n CRC32(str)

Computes a cyclic redundancy check value from the argument, which is treated as
a string.The return value is a 32-bit unsigned value in the range from 0 to 232-1, or
NULL if the argument is NULL.

CRC32('xyz') → 3951999591

CRC32('0') → 4108050209

CRC32(0) → 4108050209

CRC32(NULL) → NULL

n DEGREES(x)

Returns the value of x, converted from radians to degrees.

DEGREES(PI()) → 180

DEGREES(PI()*2) → 360

DEGREES(PI()/2) → 90

DEGREES(-PI()) → -180

n EXP(x)

Returns ex, where e is the base of natural logarithms.

EXP(1) → 2.718281828459

EXP(2) → 7.3890560989307

EXP(-1) → 0.36787944117144

1/EXP(1) → 0.36787944117144

n FLOOR(x)

Returns the largest integer not greater than x. If the argument has an exact-value
numeric type, the return value does, too. Otherwise the return value has a floating-
point (approximate-value) type.This is true even though the value has no fractional
part.

FLOOR(3.8) → 3

FLOOR(-3.8) → -4

n LN(x)

This is a synonym for LOG().
n LOG(x)

LOG(b,x)

The one-argument form of LOG() returns the natural (base e) logarithm of x.

LOG(0) → NULL

LOG(1) → 0

LOG(2) → 0.69314718055995

LOG(EXP(1)) → 1

836 Appendix C Operator and Function Reference

837C.2 Functions

The two-argument form returns the logarithm of x to the base b.

LOG(10,100) → 2

LOG(2,256) → 8

You can also compute the logarithm of x to the base b using LOG(x)/LOG(b).

LOG(100)/LOG(10) → 2

LOG10(100) → 2

n LOG10(x)

Returns the logarithm of x to the base 10.

LOG10(0) → NULL

LOG10(10) → 1

LOG10(100) → 2

n LOG2(x)

Returns the logarithm of x to the base 2.

LOG2(0) → NULL

LOG2(255) → 7.9943534368589

LOG2(32767) → 14.99995597177

LOG2() tells you the “width” of a value in bits. One use for this is to assess the
amount of storage required for the value.

n MOD(m,n)

MOD() performs a modulo operation. MOD(m,n) function syntax is the same as m % n

or m MOD n operator syntax (see Section C.1.3,“Arithmetic Operators”).
n PI()

Returns the value of π.
PI() → 3.141593

n POW(x,y)

POWER(x,y)

Returns xy, that is, x raised to the power y.

POW(2,3) → 8

POW(2,-3) → 0.125

POW(4,.5) → 2

POW(16,.25) → 2

n RADIANS(x)

Returns the value of x, converted from degrees to radians.

RADIANS(0) → 0

RADIANS(360) → 6.2831853071796

RADIANS(-360) → -6.2831853071796

n RAND()

RAND(n)

RAND() returns a random floating-point value in the range from 0.0 to 1.0.With a
constant integer argument n, RAND(n) does the same thing, using n as the seed value
for the randomizer.You can use a seed value when you need a repeatable sequence
of numbers for the values in a column of a result set. (Non-constant arguments are
disallowed as of MySQL 5.0.13; before that, their effect is undefined.)

RAND() → 0.1036697114852

RAND() → 0.5725383884949

RAND(10) → 0.65705152196535

RAND(10) → 0.65705152196535

Seeding operations are client-specific. If one client invokes RAND(n) to seed the
random number generator, that does not affect the numbers returned for other
clients.

If RAND() appears in the WHERE clause, it is invoked once for each execution of the
clause.

n ROUND(x)

ROUND(x,d)

ROUND() returns the value of x, rounded to a number with d decimal places. If d is
0 or missing, the result has no decimal point or fractional part.The return value has
the same numeric type as the first argument, so the result has no decimals if that ar-
gument is an integer. Numbers specified as strings undergo the usual conversion to
double-precision and are handled as such.

ROUND(15.3) → 15

ROUND(15.5) → 16

ROUND(-33.27834,2) → -33.28

ROUND(1,4) → 1

ROUND('1',4) → 1.0000

If d is negative, ROUND() trims any fractional part and zeros ABS(d) digits to the left
of the decimal point.
ROUND(123456,-2) → 123500

Before MySQL 5.0.3, the precise behavior of ROUND() depends on the rounding
behavior of your underlying math library.This means the results from ROUND() may
vary from system to system.As of MySQL 5.0.3, ROUND() handles rounding for x as
follows:

n For approximate-value numbers, rounding still depends on the underlying
math library.

838 Appendix C Operator and Function Reference

839C.2 Functions

n Exact-value numbers with a fractional part of .5 or greater are rounded away
from zero. Exact-value numbers with a fractional part less than .5 are rounded
toward zero. For example, 1.5 and -1.5 round to 2 and -2, whereas 1.49 and
-1.49 round to 1 and -1.

For information about what constitutes an exact or approximate number, see
Section 3.1.1.1,“Exact-Value and Approximate-Value Numbers.”

n SIGN(x)

Returns -1, 0, or 1, depending on whether the value of x is negative, zero, or
positive.

SIGN(15.803) → 1

SIGN(0) → 0

SIGN(-99) → -1

n SIN(x)

Returns the sine of x, where x is measured in radians.

SIN(0) → 0

SIN(PI()/2) → 1

n SQRT(x)

Returns the non-negative square root of x.

SQRT(625) → 25

SQRT(2.25) → 1.5

SQRT(-1) → NULL

n TAN(x)

Returns the tangent of x, where x is measured in radians.

TAN(0) → 0

TAN(PI()/4) → 1

n TRUNCATE(x,d)

Returns the value x, with the fractional part truncated to d decimal places. If d is 0,
the result has no decimal point or fractional part. If d is greater than the number of
decimal places in x, the fractional part is right-padded with trailing zeros to the
desired width.

TRUNCATE(1.23,1) → 1.2

TRUNCATE(1.23,0) → 1

TRUNCATE(1.23,4) → 1.2300

If d is negative, TRUNCATE() trims any fractional part and zeros ABS(d) digits to the
left of the decimal point.

TRUNCATE(123456.789,-3) → 123000

C.2.4 String Functions
Most of the functions in this section return a string result. Some of them, such as
LENGTH(), take strings as arguments and return a number. For functions that operate on
strings based on string positions, the position of the first (leftmost) character is 1, not 0.

Several string functions are multi-byte safe: CHAR_LENGTH(), INSERT(), INSTR(),
LCASE(), LEFT(), LOCATE(), LOWER(), LTRIM(), MID(), POSITION(), REPLACE(),
REVERSE(), RIGHT(), RPAD(), RTRIM(), SUBSTRING(), SUBSTRING_INDEX(), TRIM(),
UCASE(), and UPPER().

n ASCII(str)

Returns the integer value of the leftmost byte of the string str, in the range from 0
to 255. It returns 0 if str is empty or NULL if str is NULL. str should contain only
8-bit characters.

ASCII('abc') → 97

ASCII('') → 0

ASCII(NULL) → NULL

n BIN(n)

Returns a string containing the binary-digit representation of the argument n.The
following two expressions are equivalent:

BIN(65) → '1000001'

CONV(65,10,2) → '1000001'

See the description of CONV() for more information.
n CHAR(n1,n2,... [USING charset])

Before MySQL 5.0.15, interprets the n1, n2, ... arguments as numeric character
codes and returns a string in the connection character set consisting of the concate-
nation of the corresponding character values.The codes are interpreted modulo
256 (only the lower 8 bits are used).As of MySQL 5.0.15, character codes larger
than 255 produce multiple result bytes, and the USING option may be given.With-
out USING, the return value is a binary string.With USING, the return value has the
named character set. If the result is not legal for the character set, a warning occurs
(and in strict SQL mode, the result is NULL). NULL arguments are ignored.

CHAR(65) → 'A'

CHAR(97) → 'a'

CHAR(89,105,107,101,115,33) → 'Yikes!'

n CHAR_LENGTH(str)

CHARACTER_LENGTH(str)

840 Appendix C Operator and Function Reference

Coercibility Meaning

0 Collation is explicit, cannot be coerced

1 No collation specified

2 Collation is implicit

3 Collation of system values such as USER()

4 Collation is coercible

5 Collation is ignorable (as for NULL)

841C.2 Functions

These functions are similar to LENGTH(), except that the argument length is
counted in characters, not bytes. (Multi-byte characters are each counted as having
a length of 1.)

n CHARSET(str)

Returns the name of the character set of the given string, or NULL if the argument
is NULL.

CHARSET('abc') → 'latin1'

CHARSET(CONVERT('abc' USING utf8)) → 'utf8'

CHARSET(123) → 'binary'

n COALESCE(expr1,expr2,...)

Returns the first non-NULL element in the list, or NULL if no argument is non-NULL.

COALESCE(NULL,1/0,2,'a',45+97) → '2'

COALESCE(NULL,1/0) → NULL

n COERCIBILITY(str)

Returns the collation coercibility of a string, or NULL if the argument is illegal.
Coercibility is the degree to which a string is subject to having its collation
changed in expressions that involve other strings.The following table shows the
return values, from lesser to greater coercibility.

COERCIBILITY(_utf8 'abc' COLLATE utf8_bin) → 0

COERCIBILITY('abc') → 4

n COLLATION(str)

Returns the name of the collation of the given string, or NULL if the argument is
illegal.

COLLATION(_latin2 'abc') → 'latin2_general_ci'

COLLATION(CONVERT('abc' USING utf8) COLLATE utf8_bin)

→ 'utf8_bin'

842 Appendix C Operator and Function Reference

n CONCAT(str1,str2,...)

Returns a string consisting of the concatenation of all of its arguments, or NULL if
any argument is NULL.The result is a binary string if any argument is a binary
string, or a non-binary string if each argument is a non-binary string.Any numeric
argument is converted to a binary string unless you cast it to a non-binary string.
CONCAT() may be called with a single argument.

CONCAT('abc','def') → 'abcdef'

CONCAT('abc') → 'abc'

CONCAT('abc',NULL) → NULL

CONCAT('Hello',', ','goodbye') → 'Hello, goodbye'

Another way to concatenate strings is by proximity; specify them next to each other.

'three' 'blind' 'mice' → 'threeblindmice'

'abc' 'def' = 'abcdef' → 1

n CONCAT_WS(delim,str1,str2,...)

Similar to CONCAT(), but returns a string consisting of the concatenation of its sec-
ond and following arguments, with the delim string used as the separator between
strings. Returns NULL if delim is NULL, but ignores any NULL values in the list of
strings to be concatenated.

CONCAT_WS(',','a','b','','d') → 'a,b,,d'

CONCAT_WS('*-*','lemon','lime',NULL,'grape') → 'lemon*-*lime*-*grape'

n CONV(n,from_base,to_base)

Given a number n represented in base from_base, returns a string representation of
n in base to_base.The result is NULL if any argument is NULL. from_base and
to_base should be integers in the range from 2 to 36. n is treated as a BIGINT value
(64-bit integer) but may be specified as a string because numbers in bases higher
than 10 may contain non-decimal digits. (This also is the reason that CONV() re-
turns a string; the result may contain characters from ‘A’ to ‘Z’ for bases 11 to 36.)
The result is 0 if n is not a legal number in base from_base. (For example, if
from_base is 16 and n is 'abcdefg', the result is 0 because ‘g’ is not a legal hexa-
decimal digit.)

Non-decimal characters in n may be specified in either uppercase or lowercase.
Non-decimal characters in the result will be uppercase.

Convert 14 specified as a hexadecimal number to binary:

CONV('e',16,2) → '1110'

Convert 255 specified in binary to octal:

CONV(11111111,2,8) → '377'

CONV('11111111',2,8) → '377'

843C.2 Functions

n is treated as an unsigned number by default. If you specify to_base as a negative
number, n is treated as a signed number.

CONV(-10,10,16) → 'FFFFFFFFFFFFFFF6'

CONV(-10,10,-16) → '-A'

n EXPORT_SET(n,on,off[,delim[,bit_count]])

Returns a string consisting of the strings on and off, separated by the delimiter
string delim.The default delimiter is a comma. on is used to represent each bit that
is set in the value n, and off is used to represent each bit that is not set.The left-
most string in the result corresponds to the low-order bit in n. bit_count indicates
the maximum number of bits in n to examine.The default bit_count value is 64,
which also is its maximum value. Returns NULL if any argument is NULL.

EXPORT_SET(7,'+','-','',5) → '+++--'

EXPORT_SET(0xa,'1','0','',6) → '010100'

EXPORT_SET(97,'Y','N',',',8) → 'Y,N,N,N,N,Y,Y,N'

n FIND_IN_SET(str,str_list)

str_list is a string consisting of substrings separated by commas (that is, it is like a
SET value). FIND_IN_SET() returns the index of str within str_list. Returns 0 if
str is not present in str_list, or NULL if either argument is NULL.The index of
the first substring is 1.

FIND_IN_SET('cow','moose,cow,pig') → 2

FIND_IN_SET('dog','moose,cow,pig') → 0

n FORMAT(x,d)

Formats the number x to d decimals using a format like 'nn,nnn.nnn' and returns
the result as a string. If d is 0, the result has no decimal point or fractional part.

FORMAT(1234.56789,3) → '1,234.568'

FORMAT(999999.99,2) → '999,999.99'

FORMAT(999999.99,0) → '1,000,000'

Note the rounding behavior exhibited by the final example.
n HEX(n)

HEX(str)

With a numeric argument n, HEX() returns the hexadecimal-digit representation of
the argument, as a string.The following two expressions are equivalent:

HEX(65) → '41'

CONV(65,10,16) → '41'

See the description of CONV() for more information.

844 Appendix C Operator and Function Reference

HEX() also can accept a string argument; in this case, it returns a string consisting of
each character in the argument represented as two hex digits.This form of HEX() is
the inverse of UNHEX().

HEX('255') → '323535'

HEX('abc') → '616263'

UNHEX(HEX('abc')) → 'abc'

n INSERT(str,pos,len,ins_str)

Returns the string str, with the substring beginning at position pos and len char-
acters long replaced by the string ins_str. Returns the original string if pos is out
of range, or NULL if any argument is NULL.

INSERT('nighttime',6,4,'fall') → 'nightfall'

INSERT('sunshine',1,3,'rain or ') → 'rain or shine'

INSERT('sunshine',0,3,'rain or ') → 'sunshine'

n INSTR(str,substr)

INSTR() is like the two-argument form of LOCATE(), but with the arguments
reversed.The following two expressions are equivalent:

INSTR(str,substr)

LOCATE(substr,str)

n LCASE(str)

This function is a synonym for LOWER().
n LEFT(str,len)

Returns the leftmost len characters from the string str, or the entire string if there
aren’t that many characters. Returns NULL if either argument is NULL. Returns the
empty string if len is NULL or less than 1.

LEFT('my left foot',2) → 'my'

LEFT(NULL,10) → NULL

LEFT('abc',NULL) → NULL

LEFT('abc',0) → ''

n LENGTH(str)

Returns the length of the string str, in bytes. (Multi-byte characters are each
counted as having a length greater than 1.) To measure the length in characters, use
CHAR_LENGTH().

LENGTH('abc') → 3

LENGTH(CONVERT('abc' USING ucs2)) → 6

LENGTH('') → 0

LENGTH(NULL) → NULL

845C.2 Functions

n LOCATE(substr,str)

LOCATE(substr,str,pos)

The two-argument form of LOCATE() returns the position of the first occurrence
of the string substr within the string str, or 0 if substr does not occur within
str. Returns NULL if any argument is NULL. If the position argument pos is given,
LOCATE() starts looking for substr at that position. LOCATE() compares the strings
as binary strings if either operand is a binary string, or using the operand collation if
the operands are non-binary strings.

LOCATE('b','abc') → 2

LOCATE('b','ABC') → 2

LOCATE(BINARY 'b','ABC') → 0

LOCATE('b' COLLATE latin1_general_ci,'ABC') → 2

LOCATE('b' COLLATE latin1_general_cs,'ABC') → 0

n LOWER(str)

Returns the string str with all the characters converted to lowercase, or NULL if
str is NULL.

LOWER('New York, NY') → 'new york, ny'

LOWER(NULL) → NULL

Lettercase conversion is based on the collation of the argument’s character set. If the
argument is a binary string, there is no character set or collation and LOWER() re-
turns the argument unchanged.

LOWER(BINARY 'New York, NY') → 'New York, NY'

LOWER(0x414243) → 'ABC'

To deal with this, convert or cast the argument to a non-binary string that has an
appropriate collation.

LOWER(CONVERT(BINARY 'New York, NY' USING latin1))

→ 'new york, ny'

LOWER(_latin1 0x414243) → 'abc'

n LPAD(str,len,pad_str)

Returns a string consisting of the value of the string str, left-padded with the
string pad_str to a length of len characters. Returns NULL if any argument is NULL.

LPAD('abc',12,'def') → 'defdefdefabc'

LPAD('abc',10,'.') → '.......abc'

LPAD() shortens the result to len characters if str has a length greater than len.

LPAD('abc',2,'.') → 'ab'

846 Appendix C Operator and Function Reference

n LTRIM(str)

Returns the string str with leftmost (leading) spaces removed, or NULL if str
is NULL.

LTRIM(' abc ') → 'abc '

n MAKE_SET(n,bit0_str,bit1_str,...)

Constructs a SET value (a string consisting of substrings separated by commas)
based on the value of the integer n and the strings bit0_str, bit1_str, ... For each
bit that is set in the value of n, the corresponding string is included in the result. (If
bit 0 is set, the result includes bit0_str, and so on.) If n is 0, the result is the empty
string. If n is NULL, the result is NULL. If any string in the list is NULL, it is ignored
when constructing the result string.

MAKE_SET(8,'a','b','c','d','e') → 'd'

MAKE_SET(1|2|4,'a','b','c','d','e') → 'a,b,c'

MAKE_SET(2+16,'a','b','c','d','e') → 'b,e'

MAKE_SET(-1,'a','b','c','d','e') → 'a,b,c,d,e'

The final example selects every string because the value -1 has all bits turned on.
n MATCH(col_list) AGAINST(str [search_mode])

MATCH(col_list) AGAINST(str IN BOOLEAN MODE)

MATCH(col_list) AGAINST(str WITH QUERY EXPANSION)

MATCH performs a search operation using a FULLTEXT index.The MATCH list consists
of one or more column names separated by commas.These must be the columns
that make up a FULLTEXT index on the table you are searching.The str argument
to AGAINST() indicates the word or words to search for in the given columns.
Words are sequences of characters made up of letters, digits, apostrophes, or under-
scores.The parentheses are optional for MATCH, but not for AGAINST.

By default, the search is performed in natural language mode.An explicit
search_mode argument can have one of the following values:
n IN NATURAL LANGUAGE MODE

n IN BOOLEAN MODE

n WITH QUERY EXPANSION

n IN NATURAL LANGUAGE MODE WITH QUERY EXPANSION

The modes that include IN NATURAL LANGUAGE MODE were introduced in
MySQL 5.1.7.

For a natural language search, MATCH() produces a relevance ranking for each row.
Ranks are non-negative floating-point numbers, with a rank of zero indicating that
the search words were not found. Positive values indicate that at least one search
word was found.Words that are present in more than half the rows of the table are
considered to have zero relevance because they are so common. In addition,
MySQL has an internal list of stopwords that are never considered relevant (for
example,“the” and “but”).

847C.2 Functions

If the search mode is IN BOOLEAN MODE, search results are based purely on absence
or presence of the search words without regard to how often they occur in the
table. For boolean searches, words in the search string can be modified with the fol-
lowing operators to affect how the search is done:

n A leading + or - indicates that the word must be present or absent.
n A leading < or > decreases or increases a word’s contribution to the relevance

value calculation.
n A leading ~ negates a word’s contribution to the relevance value calculation,

but does not exclude rows containing the word entirely as - would.
n A trailing * acts as a wildcard operator. For example, act* matches act, acts,
action, and so forth.

n A phrase search may be performed by surrounding the phrase within double
quotes ("phrase"). For a match to occur, each word must be present together
in the order given in the phrase.

n Parentheses group words into expressions. Parenthesized expressions can be
nested.

Words with no modifiers are treated as optional in a boolean search, just as for nat-
ural language searches.

It’s possible to perform a boolean-mode search in the absence of a FULLTEXT index,
but this can be quite slow.

If the search mode is WITH QUERY EXPANSION, a natural language search is done
once using the search string, and then again using the search string and the infor-
mation from the first few most highly relevant matches from the original search.
This enables rows with content related to the original search string to be found.

For more information on FULLTEXT searching, see Section 2.15,“Using FULLTEXT
Searches.”

n MID(str,pos,len)

MID(str,pos)

The three-argument form of MID() returns a substring of the string str beginning
at position pos and len characters long.The two-argument form returns the sub-
string beginning at pos to the end of the string. Returns NULL if any argument is
NULL.

MID('what a dull example',8,4) → 'dull'

MID('what a dull example',8) → 'dull example'

MID() is actually a synonym for SUBSTRING() and can be used with any of the
forms of syntax that SUBSTRING() allows.

848 Appendix C Operator and Function Reference

n OCT(n)

Returns a string containing the octal-digit representation of the argument n.The
following two expressions are equivalent:

OCT(65) → '101'

CONV(65,10,8) → '101'

See the description of CONV() for more information.
n OCTET_LENGTH(str)

This function is a synonym for LENGTH().
n ORD(str)

Returns the ordinal value of the first character of the string str, or NULL if str is
NULL. If the first character is a single-byte character, ORD() is the same as ASCII().

ORD('abc') → 97

ASCII('abc') → 97

For a multi-byte character, ORD() returns a value determined from the numeric val-
ues of the character’s individual bytes b1 through bn (from right to left):

b1 + (b2 × 256) + (b3 × 256 × 256) + ...

n POSITION(substr IN str)

This is like the two-argument form of LOCATE().The following expressions are
equivalent:

POSITION(substr IN str)

LOCATE(substr,str)

n QUOTE(str)

Processes its argument to return a string that is properly quoted for use in an SQL
statement.This is useful for writing queries that produce other queries as their
result. For non-NULL values, the return value has each single quote, backslash,
Control-Z character, and NUL (zero-valued byte) escaped with a leading backslash,
and the result is surrounded by single quotes. If str is NULL, the return value is the
word “NULL” without any surrounding single quotes.

QUOTE("Let's go!") → 'Let\'s go!'

QUOTE(NULL) → 'NULL'

n REPEAT(str,n)

Returns a string consisting of n repetitions of the string str. Returns the empty
string if n is non-positive, or NULL if either argument is NULL.

REPEAT('x',10) → 'xxxxxxxxxx'

REPEAT('abc',3) → 'abcabcabc'

849C.2 Functions

n REPLACE(str,from_str,to_str)

Returns a string consisting of the string str with all occurrences of the string
from_str replaced by the string to_str. If to_str is empty, the effect is to delete
occurrences of from_str. If from_str is empty, REPLACE() returns str unchanged.
Returns NULL if any argument is NULL.

REPLACE('abracadabra','a','oh') → 'ohbrohcohdohbroh'

REPLACE('abracadabra','a','') → 'brcdbr'

REPLACE('abracadabra','','x') → 'abracadabra'

n REVERSE(str)

Returns a string consisting of the string str with the characters reversed. Returns
NULL if str is NULL.

REVERSE('abracadabra') → 'arbadacarba'

REVERSE('tararA ta tar a raT') → 'Tar a rat at Ararat'

n RIGHT(str,len)

Returns the rightmost len characters from the string str, or the entire string if
there aren’t that many characters. Returns NULL if either argument is NULL. Returns
the empty string if len is NULL or less than 1.

RIGHT('rightmost',4) → 'most'

n RPAD(str,len,pad_str)

Returns a string consisting of the value of the string str, right-padded with the
string pad_str to a length of len characters. Returns NULL if any argument is NULL.

RPAD('abc',12,'def') → 'abcdefdefdef'

RPAD('abc',10,'.') → 'abc.......'

RPAD() shortens the result to len characters if str has a length greater than len.

RPAD('abc',2,'.') → 'ab'

n RTRIM(str)

Returns the string str with rightmost (trailing) spaces removed, or NULL if str is
NULL.

RTRIM(' abc ') → ' abc'

n SOUNDEX(str)

expr1 SOUNDS LIKE expr2

SOUNDEX() returns a soundex string calculated from the string str, or NULL if str is
NULL. Non-alphanumeric characters in str are ignored. International non-
alphabetic characters outside the range from ‘A’ to ‘Z’ are treated as vowels.
SOUNDEX() results may not be meaningful for strings with multi-byte characters or
for languages other than English.

850 Appendix C Operator and Function Reference

SOUNDEX('Cow') → 'C000'

SOUNDEX('Cowl') → 'C400'

SOUNDEX('Howl') → 'H400'

SOUNDEX('Hello') → 'H400'

The SOUNDS LIKE operator is equivalent to the SOUNDEX() function.
n SPACE(n)

Returns a string consisting of n spaces, the empty string if n is non-positive, or NULL
if n is NULL.

SPACE(6) → ' '

SPACE(0) → ''

SPACE(NULL) → NULL

n SUBSTR(arguments)

SUBSTR() is a synonym for SUBSTRING(). The same argument formats are
allowed.

n SUBSTRING(str,pos)

SUBSTRING(str,pos,len)

SUBSTRING(str FROM pos)

SUBSTRING(str FROM pos FOR len)

Returns a substring from the string str, beginning at position pos, or NULL if any
argument is NULL. If a len argument is given, returns a substring that many charac-
ters long; otherwise, it returns the entire rightmost part of str, beginning at posi-
tion pos.

SUBSTRING('abcdef',3) → 'cdef'

SUBSTRING('abcdef',3,2) → 'cd'

The following expressions are equivalent:

SUBSTRING(str,pos,len)

SUBSTRING(str FROM pos FOR len)

MID(str,pos,len)

n SUBSTRING_INDEX(str,delim,n)

Returns a substring from the string str. If n is positive, SUBSTRING_INDEX() finds
the n-th occurrence of the delimiter string delim, and then returns everything to
the left of that delimiter. If n is negative, SUBSTRING_INDEX() finds the n-th occur-
rence of delim, counting back from the right end of str, and then returns every-
thing to the right of that delimiter. If SUBSTRING_INDEX() does not find delim in
str, it returns the entire string. It returns NULL if any argument is NULL.

SUBSTRING_INDEX('jar-jar','j',-2) → 'ar-jar'

SUBSTRING_INDEX('sampadm@localhost','@',1) → 'sampadm'

SUBSTRING_INDEX('sampadm@localhost','@',-1) → 'localhost'

851C.2 Functions

n TRIM([trim_str FROM] str)

TRIM([|LEADING | TRAILING | BOTH} [trim_str] FROM] str)

The first form returns the string str with leading and trailing instances of the
string trim_str trimmed off. In the second form, if LEADING is specified, TRIM()
strips leading occurrences of trim_str. If TRAILING is specified, TRIM() strips trail-
ing occurrences of trim_str. If BOTH is specified, TRIM() strips leading and trailing
occurrences of trim_str.The default is BOTH if none of LEADING, TRAILING, or
BOTH is specified. Spaces are trimmed if trim_str is not specified.

TRIM('^' FROM '^^^xyz^^') → 'xyz'

TRIM(LEADING '^' FROM '^^^xyz^^') → 'xyz^^'

TRIM(TRAILING '^' FROM '^^^xyz^^') → '^^^xyz'

TRIM(BOTH '^' FROM '^^^xyz^^') → 'xyz'

TRIM(BOTH FROM ' abc ') → 'abc'

TRIM(' abc ') → 'abc'

n UCASE(str)

This function is a synonym for UPPER().
n UNHEX(expr)

The argument is interpreted as a string containing pairs of hexadecimal digits. Each
pair of digits is converted to a character and the return value is a binary string con-
sisting of these characters. UNHEX() is the inverse of HEX().

UNHEX('414243') → 'ABC'

HEX(UNHEX('414243')) → '414243'

UNHEX(HEX('ABC')) → 'ABC'

UNHEX(414243) → 'ABC'

CHARSET(UNHEX('414243')) → 'binary'

n UPPER(str)

Returns the string str with all the characters converted to uppercase, or NULL if
str is NULL.

UPPER('New York, NY') → 'NEW YORK, NY'

UPPER(NULL) → NULL

See the description of the LOWER() function for notes regarding lettercase conver-
sion of binary strings.

n WEIGHT_STRING(str [AS type(n)] [LEVEL levels] [flags])

Returns the weight string for str as a binary string that indicates how str is han-
dled for comparison and sorting operations.Two strings with equal weight strings
compare as equal, otherwise they have the same relative ordering as their weight
strings.The AS option causes str to have a given type and length, and the LEVEL
option specifies which collation levels to return. No flags values are implemented
currently.

852 Appendix C Operator and Function Reference

If str is a binary string, the weight string is the same as str. If str is a non-binary
string, it has a collation and the result string contains collation weights. If str is
NULL, the result is NULL.The examples here use HEX() to present the weight strings
in printable format:

HEX(WEIGHT_STRING(BINARY 'Hello')) → '48656C6C6F'

HEX(WEIGHT_STRING('Hello')) → '48454C4C4F'

HEX(WEIGHT_STRING(_utf8'Hello')) → '00480045004C004C004F'

str can be cast to a given type and length using an AS clause.To treat str as a CHAR
string n characters long, use AS CHAR(n).The string will be padded at the end with
spaces as necessary. AS BINARY(n) treats the string as a binary string n bytes long
and padding uses 0x00 bytes. n must be 1 or greater. str is truncated rather than
padded if its length is greater than n.

A collation might have levels. By default, the result includes weights for all levels.To
return weights only for particular levels, use a LEVEL clause.The levels value can
be a list of one or more comma-separated integers, or a range of two dash-separated
integers. Levels in a list must be in increasing order.The second level in a range is
treated as the first level if it is less than the first level. Individual level values are
clipped to lie within 1 and the maximum level for the collation if they are outside
that range.

Level values in a list can be followed by a modifier: ASC to return unmodified
weights (the default), DESC to return bit-inverted weights, or REVERSE to return
weights for the reversed value of str.

HEX(WEIGHT_STRING('abc' LEVEL 1 ASC)) → '414243'

HEX(WEIGHT_STRING('abc' LEVEL 1 DESC)) → 'BEBDBC'

HEX(WEIGHT_STRING('abc' LEVEL 1 REVERSE)) → '434241'

WEIGHT_STRING() was introduced in MySQL 5.2.4.

C.2.5 Date and Time Functions
The date and time functions take various types of arguments. In general, a function that
expects a DATE argument also will accept a DATETIME or TIMESTAMP argument and will ig-
nore the time part of the value. Some functions that expect a TIME value accept DATETIME
or TIMESTAMP arguments and ignore the date part.

Many of the functions in this section are able to interpret numeric arguments as tem-
poral values.

MONTH('2008-07-25') → 7

MONTH(20080725) → 7

Similarly, for many functions that return a temporal value, the return value will be
converted to a string or number, depending on context.

853C.2 Functions

CURDATE() → '2008-05-01'

CONCAT('Today is ', CURDATE()) → 'Today is 2008-05-01'

CURDATE() + 0 → 20080501

When conversion of a time or date and time value to number occurs, the numeric value
will have a microseconds part of .000000.To chop this off, cast the result to an integer.

NOW()+0 → 20080501183210.000000

CURTIME()+0 → 183210.000000

CAST(NOW() AS UNSIGNED) → 20080501183210

CAST(CURTIME() AS UNSIGNED) → 183210

Several functions that extract part of a date return 0 for “incomplete” dates. For exam-
ple, MONTH() and DAYOFMONTH() return 0 for an argument of '2013-00-00'.The same is
true for date-part format specifiers as used with DATE_FORMAT().

If you don’t supply legal date or time values to date and time functions, you can’t ex-
pect a reasonable result.Verify your arguments first.

n ADDDATE(date,INTERVAL expr interval)

ADDDATE(date,expr)

For the first syntax, ADDDATE() takes a date or date and time value date, adds a
temporal interval to it, and returns the result.This is a synonym for DATE_ADD().

ADDDATE('2004-12-01',INTERVAL 1 YEAR) → '2005-12-01'

For the second syntax, ADDDATE() takes a date or date and time value date, adds a
temporal value representing number of days to it, and returns the result.

ADDDATE('2004-12-01',365) → '2005-12-01'

The second syntax can be rewritten in terms of the first syntax like this:

ADDDATE(date,expr) = ADDDATE(date,INTERVAL expr DAY)

n ADDTIME(expr1,expr2)

Adds the two expressions and returns the result. expr1 should be a time or date and
time value, and expr2 should be time value. Each value can contain a microseconds
part.

ADDTIME('06:30:00.5','12:30:00.5') → '19:00:01.000000'

ADDTIME('2004-01-01 00:00:00','12:30:00') → '2004-01-01 12:30:00'

n CONVERT_TZ(date,from_zone,to_zone)

Given the date or date and time value date, CONVERT_TZ() treats it as a value in the
time zone from_zone, converts it to a value in the time zone to_zone, and returns
the result. Returns NULL if any argument is invalid.Time zones can be specified as
described in Section 12.9.1,“Configuring Time Zone Support.” For CONVERT_TZ()
to work properly, the resulting value must lie within the range of the TIMESTAMP
data type.

854 Appendix C Operator and Function Reference

CONVERT_TZ('2009-02-11 00:00:00','US/Central','US/Eastern')

→ '2009-02-11 01:00:00'

CONVERT_TZ('2009-02-11','+00:00','-03:00') → '2009-02-10 21:00:00'

n CURDATE()

Returns the current date in the connection time zone as a DATE value in 'CCYY-
MM-DD' format.

CURDATE() → '2008-05-01'

n CURRENT_DATE()

This function is a synonym for CURDATE().The parentheses are optional.
n CURRENT_TIME()

This function is a synonym for CURTIME().The parentheses are optional.
n CURRENT_TIMESTAMP()

This function is a synonym for NOW().The parentheses are optional.
n CURTIME()

Returns the current time of day in the connection time zone as a TIME value in
'hh:mm:ss' format.

CURTIME() → '18:32:58'

n DATE(expr)

Returns the date part of expr, which should be a date or date and time expression.

DATE('2008-03-12') → '2008-03-12'

DATE('2008-03-12 16:15:00') → '2008-03-12'

n DATE_ADD(date,INTERVAL expr interval)

Takes a date or date and time value date, adds a temporal interval to it, and returns
the result. expr specifies the time value to be added to date (or subtracted, if expr
begins with ‘-’), and interval specifies how to interpret the interval.The result is a
DATE value if date is a DATE value and no time-related values are involved in calcu-
lating the result. Otherwise, the result is a DATETIME value.The result is NULL if date
is not a legal date.

DATE_ADD('2009-12-01',INTERVAL 1 YEAR) → '2010-12-01'

DATE_ADD('2009-12-01',INTERVAL 60 DAY) → '2010-01-30'

DATE_ADD('2009-12-01',INTERVAL -3 MONTH) → '2009-09-01'

DATE_ADD('2009-12-01 08:30:00',INTERVAL 12 HOUR) → '2009-12-01 20:30:00'

The following table shows the allowable interval values, their meanings, and the
format in which values for each interval type should be specified.The keyword
INTERVAL and the interval specifiers are not case sensitive.

855C.2 Functions

Interval Type Meaning Value Format

MICROSECOND Microseconds uuuuuu

SECOND Seconds ss

SECOND_MICROSECOND Seconds and microseconds 'ss.uuuuuu'

MINUTE Minutes mm

MINUTE_SECOND Minutes and seconds 'mm:ss'

MINUTE_MICROSECOND Minutes and microseconds 'mm.uuuuuu'

HOUR Hours hh

HOUR_MINUTE Hours and minutes 'hh:mm'

HOUR_SECOND Hours, minutes, and seconds 'hh:mm:ss'

HOUR_MICROSECOND Hours and microseconds 'hh.uuuuuu'

DAY Days DD

DAY_HOUR Days and hours 'DD hh'

DAY_MINUTE Days, hours, and minutes 'DD hh:mm'

DAY_SECOND Days, hours, minutes, and seconds 'DD hh:mm:ss'

DAY_MICROSECOND Days and microseconds 'DD.uuuuuu'

WEEK Weeks WW

MONTH Months MM

QUARTER Quarters QQ

YEAR Years YY

YEAR_MONTH Years and months 'YY-MM'

The expression expr that is added to the date may be specified as a number or as a
string, unless it contains non-digit characters, in which case it must be a string.The
delimiter characters may be any punctuation character.

DATE_ADD('2005-12-01',INTERVAL '2:3' YEAR_MONTH) → '2008-03-01'

DATE_ADD('2005-12-01',INTERVAL '2-3' YEAR_MONTH) → '2008-03-01'

The parts of the value of expr are matched from right to left against the parts to be
expected based on the interval specifier. For example, the expected format for
HOUR_SECOND is 'hh:mm:ss'.An expr value of '15:21' is interpreted as
'00:15:21', not as '15:21:00'.

856 Appendix C Operator and Function Reference

Specifier Meaning

%f Microseconds in six-digit form (000000, 000001, ...)

%S, %s Second in two-digit form (00, 01, ..., 59)

%i Minute in two-digit form (00, 01, ..., 59)

%H Hour in two-digit form, 24-hour time (00, 01, ..., 23)

%h, %I Hour in two-digit form, 12-hour time (01, 02, ..., 12)

%k Hour in numeric form, 24-hour time (0, 1, ..., 23)

%l Hour in numeric form, 12-hour time (1, 2, ..., 12)

%T Time in 24-hour form (hh:mm:ss)

%r Time in 12-hour form (hh:mm:ss AM or hh:mm:ss PM)

DATE_ADD('2003-12-01 12:00:00',INTERVAL '15:21' HOUR_SECOND)

→ '2003-12-01 12:15:21'

If interval is YEAR, MONTH, or YEAR_MONTH and the day part of the result is larger
than the number of days in the result month, the day is set to the maximum num-
ber of days in that month.

DATE_ADD('2003-12-31',INTERVAL 2 MONTH) → '2004-02-29'

An alternative syntax can be used for date addition.

'2003-12-31' + INTERVAL 2 MONTH → '2004-02-29'

INTERVAL 2 MONTH + '2003-12-31' → '2004-02-29'

n DATE_FORMAT(date,format)

Formats a date or date and time value date according to the formatting string
format and returns the resulting string. DATE_FORMAT() can be used to reformat
date or date and time values from the form MySQL uses to provide any format you
want.

DATE_FORMAT('2004-12-01','%M %e, %Y') → 'December 1, 2004'

DATE_FORMAT('2004-12-01','The %D of %M') → 'The 1st of December'

The following table shows the specifiers that are allowed in the formatting string.
The ranges shown for the numeric month and day specifiers begin with zero be-
cause zero may be produced for dates that are incomplete, such as '2004-00-13' or
'1998-12-00'.

The ‘%’ character preceding each format code is required. Characters present in the
formatting string that are not listed in the table are copied to the result string literally.

857C.2 Functions

Specifier Meaning

%p AM or PM

%W Weekday name (Sunday, Monday, ..., Saturday)

%a Weekday name in abbreviated form (Sun, Mon, ..., Sat)

%d Day of the month in two-digit form (00, 01, ..., 31)

%e Day of the month in numeric form (0, 1, ..., 31)

%D Day of the month with English suffix (0th, 1st, 2nd, 3rd, ...)

%w Day of the week in numeric form (0=Sunday, 1=Monday, ..., 6=Saturday)

%j Day of the year in three-digit form (001, 002, ..., 366)

%U Week (00, ..., 53), where Sunday is the first day of the week

%u Week (00, ..., 53), where Monday is the first day of the week

%V Week (01, ..., 53), where Sunday is the first day of the week

%v Week (01, ..., 53), where Monday is the first day of the week

%M Month name (January, February, ..., December)

%b Month name in abbreviated form (Jan, Feb, ..., Dec)

%m Month in two-digit form (00, 01, ..., 12)

%c Month in numeric form (0, 1, ..., 12)

%Y Year in four-digit form

%y Year in two-digit form

%X Year for the week in which Sunday is the first day, four-digit form

%x Year for the week in which Monday is the first day, four-digit form

%% A literal '%' character

If you refer to time specifiers for a DATE value, the time part of the value is treated
as '00:00:00'.

DATE_FORMAT('2004-12-01','%i') → '00'

n DATE_SUB(date,INTERVAL expr interval)

DATE_SUB() performs date arithmetic in the same manner as DATE_ADD(), except
that expr is subtracted from the date or date and time value date. See DATE_ADD()
for more information.

858 Appendix C Operator and Function Reference

DATE_SUB('2009-12-01',INTERVAL 1 MONTH) → '2009-11-01'

DATE_SUB('2009-12-01',INTERVAL '13-2' YEAR_MONTH) → '1996-10-01'

DATE_SUB('2009-12-01 04:53:12',INTERVAL '13-2' MINUTE_SECOND)

→ '2009-12-01 04:40:10'

DATE_SUB('2009-12-01 04:53:12',INTERVAL '13-2' HOUR_MINUTE)

→ '2009-11-30 15:51:12'

An alternative syntax is supported for date subtraction.

'2009-12-01' - INTERVAL 1 MONTH → '2009-11-01'

Using this syntax, the INTERVAL clause must be on the right side of the subtraction
operator, because you cannot subtract a date from an interval.

n DATEDIFF(expr1,expr2)

Returns the difference in number of days between the two expressions, which
should be date or date and time values.The result is positive if the first argument is
later than the second.Any time part in the values is ignored.

DATEDIFF('1987-01-01','1987-01-08') → -7

DATEDIFF('1987-01-08','1987-01-01') → 7

DATEDIFF('1987-01-01 12:00:00','1987-01-08') → -7

DATEDIFF('1987-01-08','1987-01-01 12:00:00') → 7

n DAY(date)

This function is a synonym for DAYOFMONTH().
n DAYNAME(date)

Returns a string containing the weekday name for the date value date, or NULL if
the name cannot be determined.

DAYNAME('2004-12-01') → 'Wednesday'

DAYNAME('1900-12-01') → 'Saturday'

DAYNAME('1900-12-00') → NULL

n DAYOFMONTH(date)

Returns the numeric value of the day of the month for the date value date, in the
range from 0 to 31 (0 for partial dates with no day part).

DAYOFMONTH('2002-12-01') → 1

DAYOFMONTH('2002-12-25') → 25

DAYOFMONTH('2002-12-00') → 0

n DAYOFWEEK(date)

Returns the numeric value of the weekday for the date value date.Weekday values
are in the range from 1 for Sunday to 7 for Saturday, per the ODBC standard. See
also the WEEKDAY() function.

DAYOFWEEK('2004-12-05') → 1

DAYNAME('2004-12-05') → 'Sunday'

DAYOFWEEK('2004-12-18') → 7

DAYNAME('2004-12-18') → 'Saturday'

859C.2 Functions

n DAYOFYEAR(date)

Returns the numeric value of the day of the year for the date value date, in the
range from 1 to 366.

DAYOFYEAR('2002-12-01') → 335

DAYOFYEAR('2004-12-31') → 366

n EXTRACT(interval FROM datetime)

Returns the part of the date and time value datetime indicated by interval,
which may be any of the interval specifiers that are allowed for DATE_ADD().

EXTRACT(YEAR FROM '2002-12-01 13:42:19') → 2002

EXTRACT(MONTH FROM '2002-12-01 13:42:19') → 12

EXTRACT(DAY FROM '2002-12-01 13:42:19') → 1

EXTRACT(HOUR_MINUTE FROM '2002-12-01 13:42:19') → 1342

EXTRACT(SECOND FROM '2002-12-01 13:42:19') → 19

EXTRACT() can be used with dates that have “missing” parts.

EXTRACT(YEAR FROM '2004-00-12') → 2004

EXTRACT(MONTH FROM '2004-00-12') → 0

EXTRACT(DAY FROM '2004-00-12') → 12

n FROM_DAYS(n)

Given a numeric value n representing the number of days since the year 0 (typically
obtained by calling TO_DAYS()), returns the corresponding date.

TO_DAYS('2009-12-01') → 734107

FROM_DAYS(734107 + 3) → '2009-12-04'

FROM_DAYS() is intended only for dates covered by the Gregorian calendar (1582 on).
n FROM_UNIXTIME(unix_timestamp)

FROM_UNIXTIME(unix_timestamp,format)

Given a Unix timestamp value unix_timestamp such as is returned by
UNIX_TIMESTAMP(), returns a date and time in the connection time zone as a
DATETIME value in 'CCYY-MM-DD hh:mm:ss' format. If the format argument is
given, the return value is formatted as a string just as it would be by the
DATE_FORMAT() function.

UNIX_TIMESTAMP() → 1209684883

FROM_UNIXTIME(1209684883) → '2008-05-01 18:34:43'

FROM_UNIXTIME(1209684883,'%Y') → '2008'

n GET_FORMAT(val_type,format_type)

Returns a format string of the type that can be used with the DATE_FORMAT(),
TIME_FORMAT(), and STR_TO_DATE() functions.The val_type argument indicates a
data type and can be DATE, TIME, DATETIME, or TIMESTAMP.The format_type

860 Appendix C Operator and Function Reference

argument indicates which style of format string to return and can be 'EUR' (Euro-
pean), 'INTERNAL' (internal representation), 'ISO' (ISO 9075, not ISO 8601),
'JIS' (Japanese Industrial Standards), or 'USA' (United States).

GET_FORMAT() returns format strings for each combination of val_type and
format_type as shown in the following table.

val_type format_type Format String

DATE 'EUR' '%d.%m.%Y'

DATE 'INTERNAL' '%Y%m%d'

DATE 'ISO' '%Y-%m-%d'

DATE 'JIS' '%Y-%m-%d'

DATE 'USA' '%m.%d.%Y'

TIME 'EUR' '%H.%i.%s'

TIME 'INTERNAL' '%H%i%s'

TIME 'ISO' '%H:%i:%s'

TIME 'JIS' '%H:%i:%s'

TIME 'USA' '%h:%i:%s %p'

DATETIME 'EUR' '%Y-%m-%d %H.%i.%s'

DATETIME 'INTERNAL' '%Y%m%d%H%i%s'

DATETIME 'ISO' '%Y-%m-%d %H:%i:%s'

DATETIME 'JIS' '%Y-%m-%d %H:%i:%s'

DATETIME 'USA' '%Y-%m-%d %H.%i.%s'

Note that the date part of the 'EUR' and 'USA' format strings for DATETIME differs
from the 'EUR' and 'USA' format strings for DATE.
n HOUR(time)

Returns the numeric value of the hour for the time value time, in the range from 0
to 23.

HOUR('12:31:58') → 12

HOUR(123158) → 12

861C.2 Functions

n LAST_DAY(date)

Returns the date for the last day of the month in which the argument falls. date
should be a date or date and time value.

LAST_DAY('2003-07-01') → '2003-07-31'

LAST_DAY('2003-07-01 12:30:00') → '2003-07-31'

n LOCALTIME()

LOCALTIMESTAMP()

These functions are synonyms for NOW().The parentheses are optional.
n MAKEDATE(year,day_of_year)

Given a year and a day of the year, returns a date value.The result is NULL if
day_of_year is less than 1.

MAKEDATE(2010,365) → '2010-12-31'

MAKEDATE(2010,367) → '2011-01-02'

MAKEDATE(2010,0) → NULL

n MAKETIME(hour,minute,second)

Returns a time value constructed from the given hour, minute, and second, or NULL
if the arguments are out of range.The minute and second values should be in the
range from 0 to 59.The hour can be outside that range. If the hour is negative, the
result is negative.

MAKETIME(0,0,0) → '00:00:00'

MAKETIME(12,59,59) → '12:59:59'

MAKETIME(12,59,60) → NULL

MAKETIME(-12,59,59) → '-12:59:59'

n MICROSECOND(expr)

Returns the microsecond part of the given time or date and time value.The return
value has a range of 0 to 999999.

MICROSECOND('00:00:00.000001'); → 1

MICROSECOND('2004-06-30: 23:59:59.5'); → 500000

n MINUTE(time)

Returns the numeric value of the minute for the time value time, in the range
from 0 to 59.

MINUTE('12:31:58') → 31

MINUTE(123158) → 31

n MONTH(date)

Returns the numeric value of the month of the year for the date value date, in
the range from 0 to 12 (0 for partial dates with no month part).

862 Appendix C Operator and Function Reference

MONTH('2002-12-01') → 12

MONTH(20021201) → 12

MONTH('2002-00-01') → 0

n MONTHNAME(date)

Returns a string containing the month name for the date value date, or NULL for
partial dates with no month part.

MONTHNAME('2002-12-01') → 'December'

MONTHNAME(20021201) → 'December'

MONTHNAME('2002-00-01') → NULL

n NOW()

Returns the current date and time in the connection time zone as a DATETIME
value in 'CCYY-MM-DD hh:mm:ss' format.

NOW() → '2008-05-01 18:36:09'

NOW() returns the date and time when the statement in which it appears began to
execute, regardless of how long the statement takes. If NOW() occurs within a stored
routine or trigger, it returns the time when the routine or trigger began executing.
(Compare this behavior with that of SYSDATE().)

n PERIOD_ADD(period,n)

Adds n months to the period value period and returns the result.The return value
format is CCYYMM.The period argument format may be CCYYMM or YYMM (neither is
a date value).

PERIOD_ADD(201002,12) → 201102

PERIOD_ADD(0802,-3) → 200711

n PERIOD_DIFF(period1,period2)

Takes the difference of the period-valued arguments and returns the number of
months between them.The arguments may be in the format CCYYMM or YYMM (nei-
ther is a date value).

PERIOD_DIFF(200302,200202) → 12

PERIOD_DIFF(200711,0802) → -3

n QUARTER(date)

Returns the numeric value of the quarter of the year for the date value date, in the
range from 1 to 4.

QUARTER('2008-12-01') → 4

QUARTER('2009-01-01') → 1

863C.2 Functions

n SECOND(time)

Returns the numeric value of the second for the time value time, in the range
from 0 to 59.

SECOND('12:31:58') → 58

SECOND(123158) → 58

n SEC_TO_TIME(seconds)

Given a number of seconds seconds, returns the corresponding time as a TIME
value in 'hh:mm:ss' format.

SEC_TO_TIME(29834) → '08:17:14'

n STR_TO_DATE(str,format_str)

Interprets the string argument str using the formatting argument format_str and
returns a TIME, DATE, or DATETIME value, depending on the formatting specifiers
present in format_str.You can use this function to interpret temporal values in
non-ISO format. STR_TO_DATE() performs the inverse operation of
DATE_FORMAT(), and the format specifiers listed in the description of
DATE_FORMAT() also are legal for STR_TO_DATE(). If str is illegal or cannot be in-
terpreted using the given format string, the result is NULL.

STR_TO_DATE('3/16/1960','%m/%d/%Y') → '1960-03-16'

STR_TO_DATE('12.20.32','%H.%i.%s') → '12:20:32'

STR_TO_DATE('3/16/1960 12:20:32','%m/%d/%Y %H:%i:%s')

→ '1960-03-16 12:20:32'

STR_TO_DATE('3/16/1960','%m-%d-%Y') → NULL

n SUBDATE(date,INTERVAL expr interval)

SUBDATE(date,expr)

For the first syntax, SUBDATE() takes a date or date and time value date, subtracts a
temporal interval from it, and returns the result.This is a synonym for DATE_SUB().

SUBDATE('2009-12-01',INTERVAL 1 MONTH) → '2009-11-01'

For the second syntax, SUBDATE() takes a date or date and time value date, sub-
tracts a temporal value representing number of days from it, and returns the result.
This is similar to the corresponding syntax for ADDDATE().

SUBDATE('2009-12-01',30) → '2009-11-01'

n SUBTIME(expr1,expr2)

Subtracts the second expression from the first and returns the result. expr1 should
be a time or date and time value, and expr2 should be a time value.The values can
contain a microseconds part.

SUBTIME('06:30:00.5','12:30:00.5') → '-06:00:00.000000'

SUBTIME('2009-01-01 00:00:00','12:30:00') → '2008-12-31 11:30:00'

864 Appendix C Operator and Function Reference

n SYSDATE()

Returns the current date and time in the connection time zone as a DATETIME
value in 'CCYY-MM-DD hh:mm:ss' format.This function is similar to NOW(), except
that as of MySQL 5.0.13, SYSDATE() returns the date and time when it was in-
voked, whereas NOW() returns the beginning execution time of the statement
within which it occurs. (See the description of NOW() for more detail.) To make
SYSDATE() behave like NOW(), start the server with the --sysdate-is-now option
(available as of 5.0.20).

n TIME(expr)

Returns the time part of expr, which should be a time or date and time expression.

TIME('16:15:00') → '16:15:00'

TIME('2005-03-12 16:15:00') → '16:15:00'

n TIME_FORMAT(time,format)

Formats the time value time according to the formatting string format and returns
the resulting string.This function also accepts DATETIME or TIMESTAMP arguments.
The formatting string is like that used by DATE_FORMAT(), but the only specifiers
that may be used are those that are time-related. Other specifiers result in a NULL
value or 0.

TIME_FORMAT('12:31:58','%H %i') → '12 31'

TIME_FORMAT(123158,'%H %i') → '12 31'

n TIME_TO_SEC(time)

Given a value time representing elapsed time, returns a number representing the
corresponding number of seconds.The return value may be passed to
SEC_TO_TIME() to convert it back to a time.

TIME_TO_SEC('08:17:14') → 29834

SEC_TO_TIME(29834) → '08:17:14'

If given a DATETIME or TIMESTAMP value, TIME_TO_SEC() ignores the date part.

TIME_TO_SEC('2012-03-26 08:17:14') → 29834

n TIMEDIFF(expr1,expr2)

Returns the time difference between the two expressions.The first and second ex-
pressions are the start and end times, respectively.They should both be time or date
and time values; you cannot mix a time value and a date and time value.

TIMEDIFF('00:00:00','09:30:45') → '-09:30:45'

TIMEDIFF('09:30:45','00:00:00') → '09:30:45'

n TIMESTAMP(expr1[,expr2])

The single-argument form takes a date or date and time value expr1 and returns a
DATETIME value.The two-argument form adds the time value expr2 to expr1 and
returns the result as a DATETIME value.

865C.2 Functions

TIMESTAMP('1985-12-14'); → '1985-12-14 00:00:00'

TIMESTAMP('1985-12-14 09:00:00'); → '1985-12-14 09:00:00'

TIMESTAMP('1985-12-14','18:00:00'); → '1985-12-14 18:00:00'

TIMESTAMP('1985-12-14 09:00:00','18:00:00'); → '1985-12-15 03:00:00'

TIMESTAMP('1985-12-14 09:00:00','-18:00:00'); → '1985-12-13 15:00:00'

n TIMESTAMPADD(interval,expr1,expr2)

Interprets expr1 as an integer number of units given by the interval argument,
adds it to the date or date and time value expr2, and returns the result.The allow-
able interval values are FRAC_SECOND, SECOND, MINUTE, HOUR, DAY, WEEK, MONTH,
QUARTER, and YEAR.Any of these values also may be given with a prefix of
SQL_TSI_.As of 5.0.60/5.1.24, FRAC_SECOND is deprecated; instead, MICROSECOND is
preferred for specifying a unit of microseconds.

TIMESTAMPADD(DAY,12,'1995-07-01') → '1995-07-13'

TIMESTAMPADD(MONTH,12,'1995-07-01') → '1996-07-01'

TIMESTAMPADD(SQL_TSI_MONTH,12,'1995-07-01') → '1996-07-01'

n TIMESTAMPDIFF(interval,expr1,expr2)

Calculates the difference between the date or date and time expressions expr1 and
expr2, and returns the result in the units given by the interval argument.Allow-
able interval values are the same as those given in the description for
TIMESTAMPADD().

TIMESTAMPDIFF(DAY,'1995-07-01','1995-08-01') → 31

TIMESTAMPDIFF(MONTH,'1995-07-01','1995-08-01') → 1

n TO_DAYS(date)

Returns a numeric value representing the date value date converted to the number
of days since the year 0.The return value may be passed to FROM_DAYS() to convert
it back to a date.

TO_DAYS('2010-12-01') → 734472

FROM_DAYS(734472 - 365) → '2009-12-01'

If given a DATETIME or TIMESTAMP value, TO_DAYS() ignores the time part.

TO_DAYS('2010-12-01 12:14:37') → 734472

TO_DAYS() is intended only for dates covered by the Gregorian calendar (1582 on).
n UNIX_TIMESTAMP()

UNIX_TIMESTAMP(date)

When called with no arguments, returns the number of seconds since the reference
date '1970-01-01 00:00:00' UTC.When called with a date-valued argument
date, returns the number of seconds between the reference date and the argument.
date may be specified several ways: as a DATE, DATETIME, or TIMESTAMP value, or as a
number in the format CCYYMMDD or YYMMDD.The server interprets date as a value in

866 Appendix C Operator and Function Reference

the connection time zone and converts it to UTC, unless the value comes from a
TIMESTAMP column (for which the stored value is already in UTC).

UNIX_TIMESTAMP() → 1209685069

UNIX_TIMESTAMP('2007-12-01') → 1196488800

UNIX_TIMESTAMP(20071201) → 1196488800

n UTC_DATE()

Returns the current UTC date as a DATE value in 'CCYY:MM:DD' format.The
parentheses are optional.

UTC_DATE() → '2008-05-01'

n UTC_TIME()

Returns the current UTC time as a TIME value in 'hh:mm:ss' format.The paren-
theses are optional.

UTC_TIME() → '23:37:56'

n UTC_TIMESTAMP()

Returns the current UTC date and time as a DATETIME value in 'CCYY-MM-DD
hh:mm:ss' format.The parentheses are optional.

UTC_TIMESTAMP() → '2008-05-01 23:38:02'

n WEEK(date[,mode])

When called with a single argument, returns a number representing the week of
the year for the date value date, in the range from 0 to 53.The week is assumed to
start on Sunday.When called with two arguments, WEEK() returns the same kind of
value, but the mode argument indicates the day on which the week starts and
whether to return a value in the range from 0 to 53 or 1 to 53.The following table
indicates the meaning of the possible mode values.

Mode Starting Day
Return
Range Meaning

0 Sunday 0..53 Week 1 is first week containing a Sunday

1 Monday 0..53 Week 1 is first week with more than three days

2 Sunday 1..53 Week 1 is first week containing a Sunday

3 Monday 1..53 Week 1 is first week with more than three days

4 Sunday 0..53 Week 1 is first week with more than three days

5 Monday 0..53 Week 1 is first week containing a Monday

6 Sunday 1..53 Week 1 is first week with more than three days

7 Monday 1..53 Week 1 is first week containing a Monday

867C.2 Functions

If mode is missing, the value of the default_week_format system variable is used.

WEEK('2003-12-08') → 49

WEEK('2003-12-08',0) → 49

WEEK('2003-12-08',1) → 50

A WEEK() value of 0 indicates that the date occurs prior to the first instance of the
week starting day (Sunday or Monday, depending on the mode value).

WEEK('2005-01-01') → 0

DAYNAME('2005-01-01') → 'Saturday'

WEEK('2006-01-01',1) → 0

DAYNAME('2006-01-01') → 'Sunday'

n WEEKDAY(date)

Returns the numeric value of the weekday for the date value date, or NULL if the
name cannot be determined.Weekday values are in the range from 0 for Monday
to 6 for Sunday; see also the DAYOFWEEK() function.

WEEKDAY('2002-12-08') → 6

DAYNAME('2002-12-08') → 'Sunday'

WEEKDAY('2002-12-16') → 0

DAYNAME('2002-12-16') → 'Monday'

WEEKDAY('2002-12-00') → NULL

n WEEKOFYEAR(date)

This is the same as WEEK(date,3).
n YEAR(date)

Returns the numeric value of the year for the date value date.

YEAR('2002-12-01') → 2002

YEAR(20021201) → 2002

n YEARWEEK(date[,mode])

Returns a number in the format CCYYWW representing the year and week of the year
for the date value date.The mode argument, if given, is the same as for the WEEK()
function.

YEARWEEK('2006-01-01') → 200601

YEARWEEK('2006-01-01',0) → 200601

YEARWEEK('2006-01-01',1) → 200552

The year for the result may differ from the year in the argument for the first or last
week of the year.

WEEK('2008-01-01') → 0

YEARWEEK('2008-01-01') → 200752

868 Appendix C Operator and Function Reference

C.2.6 Summary Functions
Summary functions are also known as “aggregate” functions.They calculate a single value
based on a group of values. However, the resulting value is based only on non-NULL values
from the selected rows (with the exception that COUNT(*) counts all rows). Summary
functions can be used to summarize an entire set of values, or to produce summaries for
each subgroup of a set of values when the query includes a GROUP BY clause. See Section
1.4.9.9,“Generating Summaries.”

For the examples in this section, assume the existence of a table mytbl with an integer
column mycol that contains eight rows with the values 1, 3, 5, 5, 7, 9, 9, and NULL.

mysql> SELECT mycol FROM mytbl;

+-------+

| mycol |

+-------+

| 1 |

| 3 |

| 5 |

| 5 |

| 7 |

| 9 |

| 9 |

| NULL |

+-------+

n AVG([DISTINCT] expr)

Returns the average value of expr for all non-NULL values in the selected rows.
Returns NULL if there are no non-NULL values.

SELECT AVG(mycol) FROM mytbl → 5.5714

SELECT AVG(mycol)*2 FROM mytbl → 11.1429

SELECT AVG(mycol*2) FROM mytbl → 11.1429

DISTINCT is allowable as of MySQL 5.0.3. It causes AVG() to return the average of
the distinct expr values.

n BIT_AND(expr)

Returns the bitwise AND value of expr for all non-NULL values in the selected
rows. Returns ~0 if there are no non-NULL values.

SELECT BIT_AND(mycol) FROM mytbl → 1

n BIT_OR(expr)

Returns the bitwise OR value of expr for all non-NULL values in the selected rows.
Returns 0 if there are no non-NULL values.

SELECT BIT_OR(mycol) FROM mytbl → 15

n BIT_XOR(expr)

869C.2 Functions

Returns the bitwise exclusive-OR value of expr for all non-NULL values in the
elected rows. Returns 0 if there are no non-NULL values.

SELECT BIT_XOR(mycol) FROM mytbl → 5

n COUNT(expr)

COUNT(*)

COUNT(DISTINCT expr1,expr2,...)

With an expression argument, returns a count of the number of non-NULL values in
the result set. Returns 0 if there are no non-NULL values.With an argument of *,
returns a count of all rows in the result set, regardless of their contents.

SELECT COUNT(mycol) FROM mytbl → 7

SELECT COUNT(*) FROM mytbl → 8

For MyISAM tables, COUNT(*) with no WHERE clause is optimized to return the
number of rows in the table named in the FROM clause very quickly.When more
than one table is named, COUNT(*) returns the product of the number of rows in
the individual tables.

SELECT COUNT(*) FROM mytbl AS m1 INNER JOIN mytbl AS m2

→ 64

COUNT(DISTINCT) can be used to count the number of distinct non-NULL values.

SELECT COUNT(DISTINCT mycol) FROM mytbl → 5

SELECT COUNT(DISTINCT MOD(mycol,3)) FROM mytbl → 3

If multiple expressions are given, COUNT(DISTINCT) counts the number of distinct
combinations of non-NULL values.

n GROUP_CONCAT([DISTINCT] var_list [ORDER BY ...] [SEPARATOR str])

This function concatenates the non-NULL values in a group of strings and returns
the result. It returns NULL if there are no non-NULL values.You can use DISTINCT to
remove duplicates, ORDER BY to sort the results, and SEPARATOR to specify the de-
limiter between strings. By default, GROUP_CONCAT() does not perform duplicate
removal or sorting, and separates values by commas.

Values returned by GROUP_CONCAT() are limited in length to the value of the
group_concat_max_len system variable.You can change the value of this variable
to enable longer values.

mysql> CREATE TABLE t (name CHAR(10));

mysql> INSERT INTO t VALUES('dog'),('cat'),('rat'),('dog'),('rat');

mysql> SELECT GROUP_CONCAT(name) FROM t;

+---------------------+

| GROUP_CONCAT(name) |

+---------------------+

| dog,cat,rat,dog,rat |

870 Appendix C Operator and Function Reference

+---------------------+

mysql> SELECT GROUP_CONCAT(name SEPARATOR ':') FROM t;

+----------------------------------+

| GROUP_CONCAT(name SEPARATOR ':') |

+----------------------------------+

| dog:cat:rat:dog:rat |

+----------------------------------+

mysql> SELECT GROUP_CONCAT(name ORDER BY name DESC) FROM t;

+---------------------------------------+

| GROUP_CONCAT(name ORDER BY name DESC) |

+---------------------------------------+

| rat,rat,dog,dog,cat |

+---------------------------------------+

mysql> SELECT GROUP_CONCAT(DISTINCT name ORDER BY name) FROM t;

+---+

| GROUP_CONCAT(DISTINCT name ORDER BY name) |

+---+

| cat,dog,rat |

+---+

n MAX([DISTINCT] expr)

Returns the maximum value of expr for all non-NULL values in the selected rows.
Returns NULL if there are no non-NULL values. MAX() also can be used with strings
or temporal values, in which case it returns the lexically or temporally greatest
value.

SELECT MAX(mycol) FROM mytbl → 9

DISTINCT causes MAX() to return the maximum of the distinct expr values (which
does not change the result).

n MIN([DISTINCT] expr)

Returns the minimum value of expr for all non-NULL values in the selected rows.
Returns NULL if there are no non-NULL values. MIN() also may be used with strings
or temporal values, in which case it returns the lexically or temporally least value.

SELECT MIN(mycol) FROM mytbl → 1

DISTINCT causes MIN() to return the minimum of the distinct expr values (which
does not change the result).

n STD(expr)

STDDEV(expr)

STDDEV_POP(expr)

Returns the population standard deviation of expr for all non-NULL values in the
selected rows. Returns NULL if there are no non-NULL values.

SELECT STDDEV_POP(mycol) FROM mytbl → 2.7701

871C.2 Functions

STDDEV_POP() was introduced in MySQL 5.0.3.
n STDDEV_SAMP(expr)

Returns the sample standard deviation of expr for all non-NULL values in the
selected rows. Returns NULL if there are no non-NULL values.

SELECT STDDEV_SAMP(mycol) FROM mytbl → 2.9921

STDDEV_SAMP() was introduced in MySQL 5.0.3.
n SUM([DISTINCT] expr)

Returns the sum of expr for all non-NULL values in the selected rows. Returns
NULL if there are no non-NULL values.

SELECT SUM(mycol) FROM mytbl → 39

DISTINCT causes SUM() to return the sum of the distinct expr values.
n VARIANCE(expr)

VAR_POP(expr)

Returns the population variance of expr for all non-NULL values in the selected
rows. Returns NULL if there are no non-NULL values.

SELECT VAR_POP(mycol) FROM mytbl → 7.6735

VAR_POP() was introduced in MySQL 5.0.3.
n VAR_SAMP(expr)

Returns the sample variance of expr for all non-NULL values in the selected rows.
Returns NULL if there are no non-NULL values.

SELECT VAR_SAMP(mycol) FROM mytbl → 8.9524

VAR_SAMP() was introduced in MySQL 5.0.3.

C.2.7 Security and Compression Functions
These functions perform various security-related operations such as encrypting or com-
pressing strings. Several of these functions come in pairs, with one function producing an
encrypted value and the other performing decryption. Such pairs of functions typically
use a string as a key or password value.You must decrypt a value with the same key used
to encrypt it if you want to get back the original value.The decrypted result will be
meaningless otherwise.

If you want to save the result in a database when using encryption functions that
return a binary string, it’s common to use a column that is one of the BLOB types.

n AES_DECRYPT(str,key_str)

Given an encrypted string str obtained as a result of a call to AES_ENCRYPT(),
decrypts it using the key string key_str and returns the resulting string. Returns
NULL if either argument is NULL.

872 Appendix C Operator and Function Reference

AES_DECRYPT(AES_ENCRYPT('secret','scramble'),'scramble')

→ 'secret'

n AES_ENCRYPT(str,key_str)

Encrypts the string str with the key string key_str using the Advanced
Encryption Standard (AES) and a 128-bit key length. Returns the result as a binary
string, or NULL if either argument is NULL.The string may be decoded with
AES_DECRYPT(), using the same key string.

n COMPRESS(str)

Returns a compressed version of the argument string as a binary string, or NULL if
the server was not compiled with a compression library.

n DECODE(str,key_str)

Given an encrypted string str obtained as a result of a call to ENCODE(), decrypts it
using the key string key_str. Returns the resulting string, or NULL if str is NULL.

DECODE(ENCODE('secret','scramble'),'scramble') → 'secret'

n DES_DECRYPT(str [,key_str])

Decrypts a string str, which should be an encrypted value produced by
DES_ENCRYPT(). If SSL support has not been enabled or decryption fails,
DES_DECRYPT() returns NULL.

If a key_str argument is given, it is used as the decryption key. If no key_str argu-
ment is given, DES_DECRYPT() uses a key from the server’s DES key file to decrypt
the string.The key number is determined from bits 0-6 of the first byte of the en-
crypted string.The location of the key file is specified at server startup time by
means of the --des-key-file option. If different keys are used to encrypt and
decrypt the string, the result will not be meaningful.

If str does not look like an encrypted string, DES_DECRYPT() returns the string
unchanged. (This will occur, for example, if the first byte does not have bit 7 set.)

Use of the single-argument form of DES_DECRYPT() requires the SUPER privilege.
n DES_ENCRYPT(str [, {key_num|key_str}])

Performs DES encryption on the string str and returns the encrypted result as a
binary string.The encrypted string may be decrypted with DES_DECRYPT(). If SSL
support has not been enabled or encryption fails, DES_ENCRYPT() returns NULL.

If a key_str argument is given, it is used as the encryption key. If a key_num argu-
ment is given, it should be a value from 0 to 9, indicating the key number of an
entry in the server’s DES key file. In this case, the encryption key is taken from that
entry. If no key_str or key_num argument is given, the first key from the DES key
file is used to perform encryption. (This is not necessarily the same as specifying a
key_num value of 0.)

873C.2 Functions

The first byte of the resulting string indicates how the string was encrypted.This
byte will have bit 7 set, and bits 0-6 indicate the key number.The number is 0 to 9
to specify which key in the DES key file was used to encrypt the string, or 127 if a
key_str argument was used. For example, if you encrypt a string using key 3, the
first byte of the result will be 131 (that is, 128+3). If you encrypt a string with a
key_str value, the first byte will be 255 (that is, 128+127).

For encryption performed on the basis of a key number, the server reads the DES
key file to find the corresponding key string.The location of the key file is specified
at server startup time by means of the --des-key-file option.The key file con-
tains lines of the following format:

key_num key_str

Each key_num value should be a number from 0 to 9 and the key_str value is the
corresponding encryption key. key_num and key_str should be separated by at least
one whitespace character. Lines in the key file may be arranged in any order.

Unlike DES_DECRYPT(), DES_ENCRYPT() does not require the SUPER privilege to
use keys from the DES key file. (Anyone can encrypt information based on the key
file; only privileged users are allowed to use it for decryption.)

n ENCODE(str,key_str)

Encrypts the string str using the key string key_str and returns the result as a bi-
nary string.The string may be decoded with DECODE(), using the same key string.

n ENCRYPT(str [,salt])

Encrypts the string str and returns the resulting string, or NULL if either argument
is NULL.This is a non-reversible encryption.The salt argument, if given, should be
a string with two characters or more characters. By specifying a salt value, the en-
crypted result for str will be the same each time.With no salt argument, MySQL
uses a random value, so identical calls to ENCRYPT() yield different results over time.

ENCRYPT('secret','AB') → 'ABS5SGh1EL6bk'

ENCRYPT('secret','AB') → 'ABS5SGh1EL6bk'

ENCRYPT('secret') → '9ai/2GobGFmXY'

ENCRYPT('secret') → 'Ea5Y.zUlAoUz.'

ENCRYPT() uses the Unix crypt() system call and is subject to the way crypt()

operates for those systems on which it is present. In particular, on some systems,
crypt() looks at only the first eight characters of the string to be encrypted. If
crypt() is unavailable on your system, ENCRYPT() always returns NULL.

It is not recommended that str contain multi-byte characters unless it uses utf8
because crypt() expects the string to be null-terminated.

874 Appendix C Operator and Function Reference

n MD5(str)

Calculates a 128-bit checksum from the string str based on the RSA Data
Security, Inc. MD5 Message-Digest algorithm.The return value is a binary string
consisting of 32 hexadecimal digits, or NULL if the argument is NULL.

MD5('secret') → '5ebe2294ecd0e0f08eab7690d2a6ee69'

See also the SHA1() function.
n OLD_PASSWORD(str)

This function returns the encrypted password value that PASSWORD() returned prior
to MySQL 4.1.

n PASSWORD(str)

Given a string str, calculates and returns an encrypted password string of the form
used in the MySQL grant tables.This is a non-reversible encryption.

PASSWORD('secret') → '*14E65567ABDB5135D0CFD9A70B3032C179A49EE7'

PASSWORD() does not use the same algorithm as the one used on Unix to encrypt
user account passwords. For that type of encryption, use ENCRYPT().

If the old_passwords system variable is non-zero, PASSWORD() returns the pass-
word encrypted using the same hashing algorithm that was used prior to MySQL
4.1. In this case, PASSWORD() and OLD_PASSWORD() return the same value.
old_passwords can be enabled by using a SET GLOBAL old_passwords = 1 state-
ment or by starting the server with the --old-passwords option,

n SHA1(str)

SHA(str)

Calculates a 160-bit checksum from the string str using the Secure Hash
Algorithm.The return value is a binary string consisting of 40 hexadecimal digits,
or NULL if the argument is NULL.

SHA1('secret') → 'e5e9fa1ba31ecd1ae84f75caaa474f3a663f05f4'

n SHA2(str,hash_length)

This function is similar to SHA1(), but is more secure. It hashes the first argument,
producing a result with a bit length indicated by the second argument.The hash
length must be 224, 256, 384, or 512.The result is a binary string of the specified
number of bits, represented as hexadecimal digits.The result is NULL if either argu-
ment is NULL or the hash length is invalid.

SHA2('secret',224)

→ '95c7fbca92ac5083afda62a564a3d014fc3b72c9140e3cb99ea6bf12'

SHA2() was introduced in MySQL 6.0.5.

875C.2 Functions

n UNCOMPRESS(str)

Given a string that was compressed with the COMPRESS() function, UNCOMPRESS()
returns the original string. Returns NULL if the argument is not a compressed string
or if the server was not compiled with a compression library.

n UNCOMPRESSED_LENGTH(str)

Given a string that was compressed with the COMPRESS() function, returns the
length of the original uncompressed string. Returns NULL if the server was not
compiled with a compression library.

C.2.8 Advisory Locking Functions
The functions in this section are used for advisory (cooperative) locking.You can use
them to write applications that cooperate based on the status of an agreed-upon lock
name.The primary functions for this purpose are GET_LOCK() and RELEASE_LOCK(),
which are used to acquire and release locks.Two other functions, IS_FREE_LOCK() and
IS_USED_LOCK(), can be used to query the status of a lock or determine which client
holds a lock.

The basic for advisory locking is that you lock a name, which is nothing more than
a string.An advisory lock is private in the sense that only the client that holds a lock on
a name can release it, and global in the sense that any client can query the status of a
lock name.

To acquire a lock, call GET_LOCK(str,timeout), where str indicates the lock name
and timeout is a timeout value in seconds. GET_LOCK() returns 1 if the lock was obtained
successfully within the timeout period, 0 if the lock attempt failed due to timing out, or
NULL if an error occurred.

The timeout value determines how long to wait while attempting to obtain the lock,
not the duration of the lock.After it is obtained, the lock remains in force until released.

The following call acquires a lock named 'Nellie', waiting up to 10 seconds for it:

GET_LOCK('Nellie',10)

The lock applies only to the string name itself. It does not lock a database, a table, or any
rows or columns within a table. In other words, the lock does not prevent any other client
from doing anything to database tables, which is why GET_LOCK() locking is advisory
only—it simply enables other cooperating clients to determine whether the lock is in force.

A client that has a lock on a name blocks attempts by other clients to lock the name
(or attempts by other threads within a multi-threaded client that maintains multiple con-
nections to the server). Suppose that client 1 locks the string 'Nellie'. If client 2 at-
tempts to lock the same string, it will block until client 1 releases the lock or until the
timeout period expires. If client 1 releases the lock within the timeout period, client 2
will acquire the lock successfully. Otherwise, client 2 will fail.

Because two clients cannot lock a given string at the same time, applications that agree
on a name can use the lock status of that name as an indicator of when it is safe to

876 Appendix C Operator and Function Reference

perform operations related to the name. For example, you can construct a lock name
based on a unique key value for a row in a table to enable cooperative locking of that
row.

To release a lock explicitly, call RELEASE_LOCK() with the lock name:

RELEASE_LOCK('Nellie')

RELEASE_LOCK() returns 1 if the lock was released successfully, 0 if the lock was held
by another connection (you can release only your own locks), or NULL if no such lock
exists.

Any lock held by a client is automatically released if the same client issues another
GET_LOCK() call, because only one string at a time can be locked per client connection.
In this case, the lock being held is released before the new lock is obtained, even if the
lock name is the same.A lock also is released when the client’s connection to the server
terminates. Note that if you have a very long-running client and its connection times out
due to inactivity, any lock held by the client is released.

To test the status of a lock name, you have two options:

n Invoke IS_FREE_LOCK(str), which returns 1 if the name is available (not currently
being used as a lock), 0 if the name is in use, or NULL if an error occurred.

n Invoke IS_USED_LOCK(str), which returns NULL if there is no lock or the connec-
tion ID of the client that holds it if there is one.

You can also use GETLOCK(str,0) as a simple poll to determine without waiting
whether a lock on str is in force. However, this has the side effect of locking the string if
it is not currently locked, so you must remember to call RELEASE_LOCK() as appropriate.

All advisory locking functions return NULL if the lock name argument is NULL.
n GET_LOCK(str,timeout)

Attempt to acquire an advisory lock with the name indicated by the string str
within a timeout value of timeout seconds. GET_LOCK() returns 1 if the lock was
obtained successfully within the timeout period, 0 if the lock attempt failed due to
timing out, or NULL if an error occurred.

n IS_FREE_LOCK(str)

Checks the status of the advisory lock named by str. Returns 1 if the name is
available (not currently being used as a lock), 0 if the name is in use, or NULL if an
error occurred.

n IS_USED_LOCK(str)

If there is a lock with the name given by str, IS_USED_LOCK() returns the connec-
tion ID of the client that created the lock. Returns NULL if there is no such lock.

n RELEASE_LOCK(str)

Releases the advisory lock named by str. Returns 1 if the lock was released success-
fully, 0 if the lock was held by another connection, or NULL if no such lock exists.

877C.2 Functions

C.2.9 Spatial Functions
The functions in this section operate on spatial values, also known here as “geometries.”
For more information on spatial data types, see Chapter 3,“Data Types.”

Spatial values can be represented in three formats:

n Well-Known Binary (WKB) format
n Well-Known Text (WKT) format
n Internal format

Functions that take spatial arguments expect them to be in the correct format. If you
pass a spatial value in a different format or pass a non-spatial value, the result is NULL.
There are functions for converting between spatial values in different formats.

Most functions that take spatial arguments expect them to be in internal format, and
MySQL uses only internal format when storing spatial values in columns that have a spa-
tial data type.You can store values in WKT or WKB formats by using columns with other
data types, such as BLOB.

Spatial values can be associated with a spatial reference ID (SRID). Many of the spatial
functions take SRID as optional arguments.

Note
Because these spatial functions are implemented against the OpenGIS specification, the fol-
lowing sections also point out when functions in the specification are not implemented, or
are implemented in a different way from that described in the specification.

C.2.9.1 Spatial Value Format-Conversion Functions
The following functions accept a geometry value in Well-Known Binary format and re-
turn a geometry value in internal format. wkb_expr represents a WKB value for a geome-
try object of the type accepted by a given function. srid is an optional spatial reference
identifier.

n GEOMCOLLFROMWKB(wkb_expr[,srid])

GEOMETRYCOLLECTIONFROMWKB(wkb_expr[,srid])

Produces a GEOMETRYCOLLECTION value from its WKB value.
n GEOMFROMWKB(wkb_expr[,srid])

GEOMETRYFROMWKB(wkb_expr[,srid])

Produces a GEOMETRY value from its WKB value.This function can accept a WKB
value for any spatial type.

n LINEFROMWKB(wkb_expr[,srid])

LINESTRINGFROMWKB(wkb_expr[,srid])

Produces a LINESTRING value from its WKB value.

878 Appendix C Operator and Function Reference

n MLINEFROMWKB(wkb_expr[,srid])

MULTILINESTRINGFROMWKB(wkb_expr[,srid])

Produces a MULTILINESTRING value from its WKB value.
n MPOINTFROMWKB(wkb_expr[,srid])

MULTIPOINTFROMWKB(wkb_expr[,srid])

Produces a MULTIPOINT value from its WKB value.
n MPOLYFROMWKB(wkb_expr[,srid])

MULTIPOLYGONFROMWKB(wkb_expr[,srid])

Produces a MULTIPOLYGON value from its WKB value.
n POINTFROMWKB(wkb_expr[,srid])

Produces a POINT value from its WKB value.
n POLYFROMWKB(wkb_expr[,srid])

POLYGONFROMWKB(wkb_expr[,srid])

Produces a POLYGON value from its WKB value.

Unimplemented functions.The OpenGIS specification describes optional functions
BDPOLYFROMWKB() and BDMPOLYFROMWKB() for creating geometries from WKB values.
MySQL does not implement these functions.

The following functions accept a geometry value in Well-Known Text format and re-
turn a geometry value in internal format. wkt_expr represents a WKT value for a geome-
try object of the type accepted by a given function. srid is an optional spatial reference
identifier.

n GEOMCOLLFROMTEXT(wkt_expr[,srid])

GEOMETRYCOLLECTIONFROMTEXT(wkt_expr[,srid])

Produces a GEOMETRYCOLLECTION value from its WKT value.
n GEOMFROMTEXT(wkt_expr[,srid])

GEOMETRYFROMTEXT(wkt_expr[,srid])

Produces a GEOMETRY value from its WKT value.This function can accept a WKT
value for any spatial type.

n LINEFROMTEXT(wkt_expr[,srid])

LINESTRINGFROMTEXT(wkt_expr[,srid])

Produces a LINESTRING value from its WKT value.
n MLINEFROMTEXT(wkt_expr[,srid])

MULTILINESTRINGFROMTEXT(wkt_expr[,srid])

879C.2 Functions

Produces a MULTILINESTRING value from its WKT value.
n MPOINTFROMTEXT(wkt_expr[,srid])

MULTIPOINTFROMTEXT(wkt_expr[,srid])

Produces a MULTIPOINT value from its WKT value.
n MPOLYFROMTEXT(wkt_expr[,srid])

MULTIPOLYGONFROMTEXT(wkt_expr[,srid])

Produces a MULTIPOLYGON value from its WKT value.
n POINTFROMTEXT(wkt_expr[,srid])

Produces a POINT value from its WKT value.
n POLYFROMTEXT(wkt_expr[,srid])

POLYGONFROMTEXT(wkt_expr[,srid])

Produces a POLYGON value from its WKT value.

Unimplemented functions.The OpenGIS specification describes optional functions
BDPOLYFROMTEXT() and BDMPOLYFROMTEXT() for creating geometries from WKT values.
MySQL does not implement these functions.

The following functions take a geometry in internal format and return the correspon-
ding value in Well-Known Binary format:

n ASBINARY(geom)

n ASWKB(geom)

The following functions take a geometry in internal format and return the correspon-
ding value in Well-Known Text format:

n ASTEXT(geom)

n ASWKT(geom)

C.2.9.2 Spatial Property Functions
The following functions take a spatial value geom of any type in internal format and re-
turn a property of the value.

n DIMENSION(geom)

Returns the dimension of the geometry. Dimension values have the meanings
shown in the following table.

Dimension Meaning

-1 Empty geometry

0 Geometry with no length or area

1 Geometry with a non-zero length and zero area

2 Geometry with a non-zero area

880 Appendix C Operator and Function Reference

Examples:A POINT has a dimension of 0, a LINESTRING has a dimension of 1, and a
POLYGON has a dimension of 2.

n ENVELOPE(geom)

Returns a POLYGON representing the minimum bounding rectangle of the geometry.
n GEOMETRYTYPE(geom)

Returns the spatial type of the geometry as a string.

GEOMETRYTYPE(GEOMFROMTEXT('LINESTRING(1 1,2 2)')) → 'LINESTRING'

n SRID(geom)

Returns the spatial reference ID of the geometry as an integer.

Unimplemented functions.The OpenGIS specification also defines the following
general spatial property functions, but MySQL does not implement them: BOUNDARY(),
ISEMPTY(), and ISSIMPLE().

The following functions take a spatial POINT value pt in internal format and return a
property of the value.

n X(pt)

Returns the X-coordinate of the point as a double-precision number.
n Y(pt)

Returns theY-coordinate of the point as a double-precision number.

The following functions take a spatial LINESTRING value ls in internal format and re-
turn a property of the value.

n ENDPOINT(ls)

Returns the end point (final point) of ls as a POINT value.
n GLENGTH(ls)

Returns the length of ls as a double-precision value.
n ISCLOSED(ls)

Returns 1 if ls is closed, 0 if it is not, and -1 if it is NULL.A closed LINESTRING is
one for which the starting point and end point are the same.

n NUMPOINTS(ls)

Returns the number of points in ls.
n POINTN(ls,n)

Returns the n-th point in ls as a POINT value. Points are numbered beginning
with 1.

n STARTPOINT(ls)

Returns the starting point (first point) of ls as a POINT value.

881C.2 Functions

Unimplemented function.The OpenGIS specification also defines the following
LINESTRING property function, but MySQL does not implement it: ISRING().

The following functions take a spatial MULTILINESTRING value mls in internal format
and return a property of the value.

n GLENGTH(mls)

Returns the length of mls as a double-precision value.The length of a
MULTILINESTRING value is the sum of its constituent LINESTRING values.

n ISCLOSED(mls)

Returns 1 if ls is closed, 0 if it is not, and -1 if it is NULL.A closed
MULTILINESTRING is one for which the starting point and end point are the same
for each of its constituent LINESTRING values.

The following functions take a spatial POLYGON value poly in internal format and
return a property of the value.

n AREA(poly)

Returns the area of poly as a double-precision number.
n EXTERIORRING(poly)

Returns the exterior ring of poly as a LINESTRING value.
n INTERIORRINGN(poly,n)

Returns the n-th interior ring of poly as a LINESTRING value. Rings are numbered
beginning with 1.

n NUMINTERIORRINGS(poly)

Returns the number of interior rings in poly.

The following function takes a spatial MULTIPOLYGON value mpoly in internal format
and returns a property of the value.

n AREA(mpoly)

Returns the area of mpoly as a double-precision number.

Unimplemented functions.The OpenGIS specification also defines the following
MULTIPOLYGON property functions, but MySQL does not implement them: CENTROID(),
POINTONSURFACE().

The following functions take a spatial GEOMETRYCOLLECTION value gc in internal for-
mat and return a property of the value.

n GEOMETRYN(gc,n)

Returns the n-th geometry of gc.The type of the return value depends on what
the n-th geometry is. Geometries are numbered beginning with 1.

n NUMGEOMETRIES(gc)

Returns the number of geometries in gc.

882 Appendix C Operator and Function Reference

C.2.9.3 Spatial Relationship Functions
MySQL implements the following functions for testing spatial relationships between two
geometries geom1 and geom2 in internal spatial format.These functions are based on the
minimum bounding rectangle (MBR) of each geometry value.

n MBRCONTAINS(geom1,geom2)

Returns 1 if the minimum bounding rectangle of geom1 contains the minimum
bounding rectangle of geom2, 0 if it does not.

n MBRDISJOINT(geom1,geom2)

Returns 1 if the minimum bounding rectangles of geom1 and geom2 are disjoint, 0
if they are not. Geometries are disjoint if they do not intersect.

n MBREQUAL(geom1,geom2)

Returns 1 if the minimum bounding rectangles of geom1 and geom2 are equal, 0 if
they are not.

n MBRINTERSECTS(geom1,geom2)

Returns 1 if the minimum bounding rectangles of geom1 and geom2 intersect, 0 if
they do not.

n MBROVERLAPS(geom1,geom2)

Returns 1 if the minimum bounding rectangles of geom1 and geom2 overlap, 0 if
they do not.

n MBRTOUCHES(geom1,geom2)

Returns 1 if the minimum bounding rectangles of geom1 and geom2 touch, 0 if
they do not.

n MBRWITHIN(geom1,geom2)

Returns 1 if the minimum bounding rectangle of geom1 is within the minimum
bounding rectangle of geom2, 0 if it does not.

The OpenGIS specification defines the following functions for testing spatial relation-
ships. MySQL currently implements them the same way as the corresponding MBR-
based functions.

n CONTAINS(geom1,geom2)

n DISJOINT(geom1,geom2)

n EQUALS(geom1,geom2)

n INTERSECTS(geom1,geom2)

n OVERLAPS(geom1,geom2)

n TOUCHES(geom1,geom2)

n WITHIN(geom1,geom2)

883C.2 Functions

Unimplemented functions.The OpenGIS specification also defines these spatial-
relationship functions, which are not implemented: CROSSES(), DISTANCE(), and
RELATED().

C.2.10 XML Functions
The functions in this section enable a string representing an XML fragment to be
processed with an XPath expression to extract text from the fragment or return the frag-
ment with a matched element replaced by another string.

The XML string arguments to these functions must contain tags that are properly
balanced and nested.

These functions use XPath 1.0. For general information about XPath, see the specifi-
cation at http://www.w3.org/TR/xpath.There are some limitations on XPath support.
See the MySQL Reference Manual for the current restrictions.

n EXTRACTVALUE(xml_str,xpath_expr)

Applies the XPath expression to evaluate the XML string and returns the content
of the first text node from the element matched by the expression. If the expression
matches multiple elements, the result is the first text node from each of the
matched elements concatenated with spaces between.

EXTRACTVALUE('<a>B<c>C</c>','//b') → 'B'

EXTRACTVALUE('<a>B1B2B3','//b')

→ 'B1 B2 B3'

If there is no match, the result is the empty string (the same as if there is a match
for an element with no text content).

EXTRACTVALUE() was introduced in MySQL 5.1.5.
n UPDATEXML(xml_str,xpath_expr,xml_new)

Applies the XPath expression to evaluate the XML string, replaces the matched ele-
ment with xml_new, and returns the result. If the expression matches nothing or
matches multiple elements, the XML string is returned without modification.

UPDATEXML() was introduced in MySQL 5.1.5.

C.2.11 Miscellaneous Functions
The functions in this section do not fall into any of the categories in the preceding
sections.

n BENCHMARK(n,expr)

Evaluates the expression expr repetitively n times. BENCHMARK() is something of an
unusual function in that it is intended for use within the mysql client program. Its
return value is always 0, and thus of no use.The value of interest is the elapsed time
that mysql displays following the result of the query:

http://www.w3.org/TR/xpath

884 Appendix C Operator and Function Reference

mysql> SELECT BENCHMARK(1000000,PASSWORD('secret'));

+---------------------------------------+

| BENCHMARK(1000000,PASSWORD('secret')) |

+---------------------------------------+

| 0 |

+---------------------------------------+

1 row in set (2.35 sec)

The time is only an approximate indicator of how quickly the server evaluates the
expression because it represents wall-clock time on the client, not CPU time on the
server.The time can be influenced by factors such as the load on the server, whether
the server is in a runnable state or swapped out when the query arrives, and so forth.
You may want to execute it several times to see what a representative value is.

n BIT_COUNT(n)

Returns the number of bits that are set in the argument, which is treated as a
BIGINT value (a 64-bit integer).

BIT_COUNT(0) → 0

BIT_COUNT(1) → 1

BIT_COUNT(2) → 1

BIT_COUNT(7) → 3

BIT_COUNT(-1) → 64

BIT_COUNT(NULL) → NULL

n BIT_LENGTH(str)

Returns the length of the string str in bits, or NULL if the argument is NULL.

BIT_LENGTH('abc') → 24

BIT_LENGTH('a long string') → 104

BIT_LENGTH(CONVERT('abc' USING ucs2)) → 48

n CONNECTION_ID()

Returns the connection identifier that the server associates with the current client
connection. Every client has an identifier that is unique among the set of currently
connected clients.

CONNECTION_ID() → 10146

n CURRENT_USER()

When you connect to the MySQL server, your connection is authenticated against
some particular account row in the mysql.user table.The CURRENT_USER()
function returns the values from the User and Host columns of that row, as a utf8
string in 'user_name@host_name' format.The parentheses are optional.

CURRENT_USER() → 'sampadm@localhost'

SUBSTRING_INDEX(CURRENT_USER(),'@',1) → 'sampadm'

885C.2 Functions

You can use CURRENT_USER() to determine who the server believes you to be.This
might be different from the user that you specified when connecting if the server
authenticates you as some other account. In particular, if the server authenticates
you as an anonymous user, the username part of the return value is empty, whereas
the username part of the value returned by USER() contains the username you
specified when making the connection.

n DATABASE()

Returns a utf8 string containing the default database name, or NULL if there is no
default database.

DATABASE() → 'sampdb'

n FOUND_ROWS()

Returns the number of rows that a preceding SELECT statement would have
returned without a LIMIT clause. For example, this statement would return a
maximum of 10 rows:

mysql> SELECT * FROM mytbl LIMIT 10;

To determine how many rows the statement would have returned without the
LIMIT clause, do this:

mysql> SELECT SQL_CALC_FOUND_ROWS * FROM mytbl LIMIT 10;

mysql> SELECT FOUND_ROWS();

n DEFAULT(col_name)

The INSERT statement allows you to specify the keyword DEFAULT to indicate ex-
plicitly that you want to insert a column’s default value into a new row. However,
that keyword is not allowable in arbitrary expressions or in other contexts. For ex-
ample, you cannot use it if you want to reset a column to its default value in an
UPDATE statement.The DEFAULT() function can be used for this. Given a column
name, it returns the column’s default value.

UPDATE counts SET counter = DEFAULT(counter)

WHERE max_time > expire_time;

n INET_ATON(str)

Given an IP number represented as a string in dotted-quad notation, returns the
integer representation of the number, or NULL if the argument is not a valid IP
number.

INET_ATON('64.28.67.70') → 1075594054

INET_ATON('255.255.255.255') → 4294967295

INET_ATON('256.255.255.255') → NULL

INET_ATON('www.mysql.com') → NULL

886 Appendix C Operator and Function Reference

n INET_NTOA(n)

Given the integer representation of an IP number, returns the corresponding
dotted-quad representation as a string, or NULL if the value is illegal.

INET_NTOA(1075594054) → '64.28.67.70'

INET_NTOA(2130706433) → '127.0.0.1'

n LAST_INSERT_ID()

LAST_INSERT_ID(expr)

With no argument, returns the AUTO_INCREMENT value that was most recently gen-
erated during the current server session, or 0 if no such value has been generated.
With an argument, the LAST_INSERT_ID() result is the argument value but is
treated the same way as an automatically generated value, which is useful for gener-
ating sequences.

More details can be found in Chapter 3. For both forms of LAST_INSERT_ID(), the
value is maintained by the server on a per-connection basis and cannot be changed
by other clients, even by those that cause their own new automatically generated
values to be created.

n LOAD_FILE(file_name)

Reads the file file_name and returns its contents as a string.The file must be
located on the server, must be specified as an absolute (full) pathname, and must
be world-readable to ensure that you’re not trying to read a protected file. If the
secure_file_priv system variable is non-empty, its value should be a directory
and the file must be located in that directory. Because the file must be on the
server, you must have the FILE privilege. If any of these conditions fail,
LOAD_FILE() returns NULL.

n MASTER_POS_WAIT(log_file,pos[,timeout])

This function is used when testing replication servers.When executed on a slave
server, it blocks until the slave has read and processed events from the master server
up to the given replication coordinates specified by the log_file and pos argu-
ments.The optional timeout value can be given to tell MASTER_POS_WAIT() to
place a limit on the number of seconds the function should wait.A value of 0 or
less is equivalent to no timeout.

MASTER_POS_WAIT() returns the number of log file events it had to wait for to get
to the given replication coordinates. If the slave had already reached the coordi-
nates, the function returns immediately with a value of 0.A return value of -1 indi-
cates that the function timed out, an error occurred, or the master server
information has not been initialized.A return value of NULL indicates that the slave
SQL thread was not running or was stopped while the function was waiting.

887C.2 Functions

n NAME_CONST(name,value)

This function is used internally (for example, to write statements to the binary log).
It returns value, with a column name of name. Both arguments must be constants.
NAME_CONST() was introduced in MySQL 5.0.12.

n ROW_COUNT()

This function operates as an SQL-level version of the mysql_affected_rows() C
API function. It returns the number of rows affected by the previous statement.
This is the number of rows inserted, deleted, or updated.A value of -1 indicates that
the previous statement was a SELECT statement (or some other statement that re-
turned a result set), or resulted in an error.

ROW_COUNT() was introduced in MySQL 5.0.1.
n SCHEMA()

This is a synonym for DATABASE(), introduced in MySQL 5.0.2.
n SESSION_USER()

This function is a synonym for USER().
n SLEEP(seconds)

Pauses for the given number of seconds and returns 0, or returns 1 if it is inter-
rupted.The seconds argument may have a fractional part. SLEEP() was introduced
in MySQL 5.0.12.

n SYSTEM_USER()

This function is a synonym for USER().
n USER()

Returns a utf8 string representing the username that the client specified when
connecting to the MySQL server, and the host from which the client connected.
The return value is a string in 'user_name@host_name' format.The value is a utf8
string; take this into account when passing the value to functions that take multiple
string arguments to avoid triggering a collation-mismatch error.

USER() → 'paul@localhost'

SUBSTRING_INDEX(USER(),'@',1) → 'paul'

SUBSTRING_INDEX(USER(),'@',-1) → 'localhost'

n UUID()

Returns a “universal unique identifier.”The intent is that the return value from one
call to UUID() should differ from the value from any other call. Uniqueness of the
return value is not absolutely guaranteed, but duplicated values should be very
unlikely.

UUID() → '4550868e-3c1f-1027-9cc8-78fa7f8d46b6'

UUID() → 'cbb9ad76-3d10-1027-8c06-349c71608da3'

888 Appendix C Operator and Function Reference

The return value is a five-part utf8 string of hexadecimal digits generated from a
128-bit number.The first four parts should be temporally unique, and the last part
should be spatially unique.The first three parts of the value are derived from a time-
stamp.The fourth part ensures uniqueness for situations in which the sequence of
timestamp might not be monotonic, as happens when time changes for daylight sav-
ing time.The fifth part is an IEEE 802 node number.This might be generated from
a value assumed to be unique to your server host, such as a network interface
address.A 48-bit random number is used instead if no such unique value can be
obtained.

n VERSION()

Returns a utf8 string describing the server version.

VERSION() → '5.1.25-rc-log'

The value consists of a version number, possibly followed by one or more suffixes.
The suffixes may include the following:

n -alpha, -beta, or -rc indicate the stability of the MySQL release. If none of
these is present, the release is General Availability (production quality).

n -debug means that the server is running in debug mode.
n -embedded indicates the embedded server, libmysqld.
n -log means logging is enabled.

D
System, Status, and User

Variable Reference

This appendix describes several types of MySQL variables:

n System variables that provide information about server configuration
n System variables that exist in session-only form per client
n Status variables that provide information about the server’s current operational state
n User variables that you can define, assign values to, and refer to in expressions

Values for variables that represent buffer sizes or lengths generally are given in bytes.
Exceptions are noted as necessary.

Unless otherwise indicated, the variables listed here have been present in MySQL at
least as early as MySQL 5.0.0.Variables that were introduced or that changed in meaning
since then are noted.

D.1 System Variables
System variables provide information about the server’s configuration and capabilities.
Most system variables can be set at server startup time, and many can be modified dy-
namically while the server is running.This information is given in the description for
each variable on the same line as the variable name:

n For variables that can be set at server startup time, you will see the word “startup”
followed either by “set directly” or an option.The words “set directly” mean that
you can set the variable directly on the command line or in an option file by using
an option with the same name as the variable name. (Section F.1.2.2,“Setting
Program Variables,” describes the syntax for doing so.) Otherwise,“startup” is
followed by the option that you use to set the variable. For example, you set the
storage_engine variable by using the --default-storage-engine option.When

890 Appendix D System, Status, and User Variable Reference

an option is given, its meaning can be found in the description for the mysqld pro-
gram in Appendix F,“MySQL Program Reference.”

n For variables that can be modified while the server is running, you will see the
word “runtime” followed by either or both of the words “global” or “session” to in-
dicate whether the variable has a GLOBAL form or SESSION form, or both.

Some system variables exist only in session form.These are described in Section D.2,
“Session-Only System Variables.”

System variables can be displayed by the SHOW VARIABLES statement or by executing
the mysqladmin variables command.You can also display the value of individual vari-
ables by using SELECT @@GLOBAL.var_name for global variables, or SELECT
@@SESSION.var_name or SELECT @@var_name for session variables.As of MySQL 5.1.12,
you can also examine the INFORMATION_SCHEMA tables named GLOBAL_VARIABLES and
SESSION_VARIABLES to obtain system variable information.

For more information about setting system variables at runtime or examining their
values, see Section 12.6.1,“Checking and Setting System Variable Values.”

System variable names are not case sensitive.
Some of the variables described here are present only under certain configurations. For

example, many of those that begin with innodb_ are shown only if the InnoDB storage
engine is available.There are several Falcon-related system variables, but I have not men-
tioned them because the implementation is still somewhat in flux.

n auto_increment_increment (startup: set directly; runtime: global, session)

The amount by which to increment AUTO_INCREMENT values each time the server
generates a new sequence value.The default value is 1; the range of values is 1 to
65,535.This variable was introduced in MySQL 5.0.2.

n auto_increment_offset (startup: set directly; runtime: global, session)

The starting value for AUTO_INCREMENT sequences.The default value is 1; the range
of values is 1 to 65,535.This variable was introduced in MySQL 5.0.2.

n automatic_sp_privileges (startup: set directly; runtime: global)

When this variable is 1 (the default), the server automatically grants you the
EXECUTE and ALTER ROUTINE privileges if necessary when you create a stored rou-
tine, so that you can execute, change, or drop the routine later.The server also re-
vokes those privileges when you drop the routine. If automatic_sp_privileges is
0, automatic privilege granting and revocation does not occur.This variable was
introduced in MySQL 5.0.3.

n back_log (startup: set directly)

The maximum number of pending connection requests that can be queued while
current connections are being processed.

n basedir (startup: set directly)

The pathname to the root directory of the MySQL installation.

891D.1 System Variables

n binlog_cache_size (startup: set directly; runtime: global)

The size of the cache that is used to store SQL statements that are part of a transac-
tion before they are flushed to the binary log. (This occurs only if the transaction is
committed or includes statements that update non-transactional tables. If the trans-
action updates only transactional tables and is rolled back, the statements are
discarded.)

n binlog_format (startup: set directly; runtime: global)

The binary logging format.Values can be STATEMENT, ROW, or (as of 5.1.8) MIXED, for
statement-based, row-based, or mixed logging format.With mixed format, the
server switches between statement- and row-based logging automatically.The de-
fault value as of 5.1.12 is MIXED.This variable was introduced in MySQL 5.1.5, and
can be set at runtime as of 5.1.8.

n bulk_insert_buffer_size (startup: set directly; runtime: global, session)

The size of the cache used to help optimize bulk inserts into MyISAM tables.This
includes LOAD DATA statements, multiple-row INSERT statements, and INSERT INTO
... SELECT statements. Setting the value to zero disables the optimization.

n character_set_client (runtime: global, session)

The character set of statements sent by the client to the server.
n character_set_connection (runtime: global, session)

The character set of the client-server connection.This is used to interpret string lit-
erals (except those that begin with an introducer) and for the character set of
strings that result from number-to-string conversions.

n character_set_database

The character set of the default database, if there is one. If there is no default data-
base (for example, if the client connects without selecting a database), this variable is
set to the value of character_set_server.The value of character_set_database
is set by the server each time you select a different database.

n character_set_filesystem (startup: set directly; runtime: global, session)

The filesystem character set, used to evaluate string literals that indicate filenames,
such as the data file in LOAD DATA statements.The server converts the filename from
the character set named by character_set_client to that named by
character_set_filesystem before accessing the file.The default value is binary
(no conversion).This variable was introduced in MySQL 5.0.19/5.1.6.

n character_set_results (runtime: global, session)

The character set of query results sent by the server to the client.
n character_set_server (startup: set directly; runtime: global, session)

The server’s default character set.

892 Appendix D System, Status, and User Variable Reference

n character_set_system

The system character set. Its value is always utf8.This is the character set used for
metadata such as database, table, and column names. It is also used for functions
such as DATABASE(), CURRENT_USER(), USER(), and VERSION().

n character_sets_dir (startup: set directly)

The directory where character set files are located.
n collation_connection (runtime: global, session)

The connection character set collation.
n collation_database

The database character set collation, if there is one. If there is no default database
(for example, if the client connects without selecting one), this variable is set to the
value of collation_server.The value of collation_database is set by the server
each time you select a different database.

n collation_server (startup: set directly; runtime: global, session)

The server character set collation.
n completion_type (startup: set directly; runtime: global, session)

The completion type for transactions.A value of 0 (the default) leaves COMMIT and
ROLLBACK unaffected.A value of 1 causes them to be equivalent to COMMIT AND
CHAIN and ROLLBACK AND CHAIN.A value of 1 causes them to be equivalent to
COMMIT RELEASE and ROLLBACK RELEASE.With AND CHAIN, when a transaction
completes, the server starts a new one with the same isolation level.With AND
RELEASE, when a transaction completes, the server terminates the connection.This
variable was introduced in MySQL 5.0.3.

n concurrent_insert (startup: set directly; runtime: global)

Whether the server allows INSERT statements on a MyISAM table that has no holes
in the middle of the data file concurrently with active SELECT statements for the
table.Values of 0 or 1 disable or enable this feature.A value of 2 (allowable as of
MySQL 5.0.6) enables concurrent inserts for MyISAM tables regardless of whether
they have with holes in the data file; if so, new rows are added to the end of the
table if it is in use.This variable has a value of 1 by default, but can be disabled at
startup by setting it directly or by using the --skip-concurrent-insert option.

n connect_timeout (startup: set directly; runtime: global)

The number of seconds that mysqld waits for packets during the initial connection
handshake.The default is 10 as of MySQL 5.0.52/5.1.23 and 5 for older versions.

n datadir (startup: set directly)

The pathname to the MySQL data directory.
n date_format

This variable is unused.

893D.1 System Variables

n datetime_format

This variable is unused.
n default_week_format (startup: set directly; runtime: global, session)

This variable indicates the default mode value to use when the WEEK() or
YEARWEEK() function is invoked without the optional mode argument.

n delay_key_write (startup: set directly; runtime: global)

Whether the server respects delayed key writes for MyISAM tables that are created
with the DELAY_KEY_WRITE option.This variable can have three values:

n ON (the default value) tells the server to honor the DELAY_KEY_WRITE option
for tables defined with that option: Key writes are delayed for tables defined
with DELAY_KEY_WRITE=1, but not for tables defined with
DELAY_KEY_WRITE=0.

n OFF means that key writes are never delayed for any table, no matter how it
was defined.

n ALL forces key writes always to be delayed for every table, no matter how it
was defined.

n delayed_insert_limit (startup: set directly; runtime: global)

The number of rows from INSERT DELAYED statements that the delayed-row han-
dler for a table will insert before checking whether any new SELECT statements for
the table have arrived. If any have arrived, the handler suspends the insert operation
to enable retrievals to execute.

n delayed_insert_timeout (startup: set directly; runtime: global)

When a handler for INSERT DELAYED operations finishes inserting queued rows, it
waits this many seconds to see whether any new INSERT DELAYED rows arrive. If
so, it handles them; otherwise, it terminates.

n delayed_queue_size (startup: set directly; runtime: global)

The number of rows that may be queued per table for INSERT DELAYED statements.
If the queue is full, further INSERT DELAYED statements for the table block until
there is room in the queue.

n div_precision_increment (startup: set directly; runtime: global, session)

For division of two exact-value numbers performed with the / operator, this vari-
able indicates how many digits of scale to add. For example, .1/.7 is .14286 or
.1428571 when div_precision_increment has a value of 4 or 6, respectively.The
value can range from 0 to 30 and has a default of 4.This variable was introduced in
MySQL 5.0.6.

n event_scheduler (startup: set directly)

The status of the event scheduler.Values can be OFF, ON, or DISABLED. If the event
scheduler is set to DISABLED at startup, its status cannot be changed at runtime. If

894 Appendix D System, Status, and User Variable Reference

the scheduler is set to either OFF or ON at startup, its status can be changed between
those two values at runtime.This variable was introduced in MySQL 5.1.6.

n expire_logs_days (startup: set directly; runtime: global)

If set to a value other than the default of 0, the server automatically removes binary
log files older than this many days and updates the binary log index file. Expiration
is checked when the server starts up and when it opens a new binary log file.

n flush (startup: use --flush; runtime: global)

A value of ON or OFF indicates whether the server flushes tables after each update.
The default is OFF; use the --flush option on the command line to enable flushing
after updates.

n flush_time (startup: set directly; runtime: global)

If this variable has a non-zero value, tables are closed to flush pending changes to
disk every flush_time seconds. If your system is unreliable and tends to lock up or
restart often, forcing out table changes this way degrades performance but can re-
duce the chance of table corruption or data loss.The default value is 0 for Unix
and 1800 (30 minutes) for Windows.

n ft_boolean_syntax (startup: set directly; runtime: global)

The list of operators that are supported for FULLTEXT searches that use IN BOOLEAN
MODE.

n ft_max_word_len (startup: set directly)

The maximum length of words that can be included in FULLTEXT indexes. Longer
words are ignored. If you change the value of this variable, you should rebuild the
FULLTEXT indexes for any tables that have them.The default value is 84.

n ft_min_word_len (startup: set directly)

The minimum length of words that can be included in FULLTEXT indexes. Shorter
words are ignored. If you change the value of this variable, you should rebuild the
FULLTEXT indexes for any tables that have them.The default value is 4.

n ft_query_expansion_limit (startup: set directly)

This variable is used for full-text searches that are done using the WITH QUERY
EXPANSION clause. It determines the number of “top matches” to use for the second
phase of each search.

n ft_stopword_file (startup: set directly)

The stopword file for FULLTEXT indexes.The default is to use the built-in list of
stopwords.To disable stopwords, set the value to the empty string. If you change the
value of this variable or the contents of the stopword list, you should rebuild the
FULLTEXT indexes for any tables that have them.

895D.1 System Variables

n general_log (startup: set directly; runtime: global)

Whether logging to the general query log is enabled. (If so, the log destinations are
indicated by log_output.) This variable was introduced in MySQL 5.1.12 as a syn-
onym for the log variable.

n general_log_file (runtime: global)

The name of the general query log file, for use if the file logging destination is en-
abled.This variable was introduced in MySQL 5.1.12.

n group_concat_max_len (startup: set directly; runtime: global, session)

The upper limit on the length of values that the GROUP_CONCAT() function should
return (1024 by default).

n have_compress

For the server to be able to implement the COMPRESS() and UNCOMPRESS() func-
tions, it needs the zlib compression library.This variable indicates whether that li-
brary is available. If not, the functions cannot be used.

n have_crypt

For the server to be able to implement the CRYPT() function, it needs the crypt()
system call.This variable indicates whether that call is available. If not, the function
cannot be used.

n have_dynamic_loading

Whether the server supports dynamic plugin loading.This variable was introduced
in MySQL 5.1.10.

n have_engine_name

Each have_engine_name variable (for example, have_innodb) provides information
about the server’s support for a particular storage engine. Not every storage engine
has such a variable. For those that do, a value of YES means that the engine is pres-
ent and can be used and NO means that the engine is not present. Before MySQL
5.1.18, a value of DISABLED indicates that the engine is compiled in but was dis-
abled at server startup.

n have_geometry

YES if spatial data types can be used, NO if not.
n have_openssl

YES or NO to indicate whether the server supports encrypted client connections us-
ing SSL.As of MySQL 5.0.38/5.1.17, have_openssl and have_ssl are synony-
mous.

n have_query_cache

YES or NO to indicate whether the query cache is available.

896 Appendix D System, Status, and User Variable Reference

n have_raid

Always NO. RAID-table support is an older feature that was removed in MySQL
5.0.

n have_rtree_keys

YES or NO to indicate whether RTREE indexes are available for SPATIAL indexes.
n have_ssl

YES or NO to indicate whether the server supports encrypted client connections us-
ing SSL.This variable was introduced in MySQL 5.0.38/5.1.17 as a synonym for
have_openssl.

n have_symlink

This variable has a value of YES or NO, but the meaning is platform dependent. On
Unix, it indicates whether table symbolic linking is supported for MyISAM tables.
On Windows, it indicates whether database symlinking is supported.

n hostname

The server hostname.The MySQL server determines the value when it starts.This
variable was introduced in MySQL 5.0.38/5.1.17.

n init_connect (startup: set directly; runtime: global)

A non-empty value indicates one or more SQL statements separated by semicolons
to be executed for each client that connects to the server.This variable can be used
to modify the initial session environment in which clients begin. init_connect is
ignored for users who have the SUPER privilege, to prevent an incorrect or unwise
statement in the variable value from causing administrative users to be unable to
connect to the server to correct the problem.

n init_file (startup: set directly)

A non-empty value indicates the name of a file containing SQL statements to be
executed by the server when it starts.The file should contain one statement per
line.

n init_slave (startup: set directly; runtime: global)

A non-empty value indicates one or more SQL statements separated by semicolons
to be executed by a slave server each time its SQL thread starts.

n innodb_adaptive_hash_index (startup: set directly)

Enable or disable InnoDB adaptive hash indexes.This variable is enabled by default;
it can be disabled by starting the server with --skip-innodb_adaptive_hash_in-
dex.This variable was introduced in MySQL 5.0.52/5.1.24.

n innodb_additional_mem_pool_size (startup: set directly)

The size of the InnoDB memory pool for storing internal data structures.

897D.1 System Variables

n innodb_autoextend_increment (startup: set directly; runtime: global)

The variable controls the amount in MB by which InnoDB increases the size of an
auto-extending tablespace that has become full.The default is 8, with a maximum
of 1000.

n innodb_buffer_pool_awe_mem_mb (startup: set directly)

This variable is relevant only for 32-bit Windows systems that support Address
Windowing Extensions. Its value should be the size in MB of the InnoDB buffer
pool if it is placed in AWE memory.The maximum value is 63000. If you set this
variable, innodb_buffer_pool_size is the window into the mysqld address space
where InnoDB maps AWE memory.This variable was removed in MySQL 5.1.13.

n innodb_buffer_pool_size (startup: set directly)

The size of the InnoDB cache for buffering table data and indexes.
n innodb_checksums (startup: set directly)

A value of ON or OFF indicates whether InnoDB table checksum calculation is en-
abled.The default is ON.This variable was introduced in MySQL 5.0.3.

n innodb_commit_concurrency (startup: set directly; runtime: global)

How may threads can commit simultaneously.A value of 0 (default) means “no
limit.”This variable was introduced in MySQL 5.0.12.

n innodb_concurrency_tickets (startup: set directly; runtime: global)

When a thread wants to enter InnoDB, it can do so only if the number of threads is
less than the limit set by innodb_thread_concurrency. Otherwise, the thread is
queued until the number of threads drops below the limit.When the thread is al-
lowed to enter, it can then leave and re-enter InnoDB without restriction as many
times as the value of innodb_concurrency_tickets.This variable was introduced
in MySQL 5.0.3.

n innodb_data_file_path (startup: set directly)

The specification for the InnoDB tablespace component files.
n innodb_data_home_dir (startup: set directly)

The pathname to the directory relative to which the InnoDB tablespace compo-
nent files are located. If the value is empty, component filenames are interpreted as
absolute pathnames.

n innodb_doublewrite (startup: set directly)

A value of ON or OFF indicates whether the InnoDB doublewrite buffer is enabled.
The default is ON.This variable was introduced in MySQL 5.0.3.

n innodb_fast_shutdown (startup: set directly; runtime: global)

A value of 0 or 1 indicates whether InnoDB will use its quicker shutdown method
that skips some of the operations that it performs normally.

898 Appendix D System, Status, and User Variable Reference

n innodb_file_io_threads (startup: set directly)

The number of threads used by InnoDB for file I/O. Changing this variable is ef-
fective only for Windows, where an increase from the default of 4 in some cases
improves performance.

n innodb_file_per_table (startup: set directly)

If this variable is set to 0 (the default), InnoDB creates each new table in its shared
tablespace. If the value is set to 1, InnoDB uses individual tablespaces: Each new
table gets its own .ibd file in the database directory where the table contents are
stored.This variable affects only how new tables are created; InnoDB can access ex-
isting tables in the shared tablespace or individual tablespaces regardless of how
innodb_file_per_table is set.

n innodb_flush_log_at_trx_commit (startup: set directly; runtime: global)

This option controls how InnoDB log flushing occurs.The following table shows
the allowable values.

Note that if you do not set the value to 1, InnoDB does not guarantee ACID prop-
erties; up to about a second’s worth of the most recent transactions may be lost if a
crash occurs.

n innodb_flush_method (startup: set directly)

This variable specifies the method that InnoDB uses for flushing files. It applies
only on Unix.The allowable values are fdatasync (use fsync() to flush data and
log files), O_DSYNC (use fsync() to flush data files and O_SYNC to open and flush log
files), or O_DIRECT (use fsync() to flush data and log files and O_DIRECT or
directio() as available to open data files).The default is fdatasync. On Windows,
the value is always async_unbuffered.

n innodb_force_recovery (startup: set directly)

Normally 0, but may be set to a value from 1 to 6 to cause the server to start up af-
ter a crash even if InnoDB recovery fails. For a description of how to use this vari-
able, see Section 14.7.4,“Coping with InnoDB Auto-Recovery Problems.”

n innodb_lock_wait_timeout (startup: set directly)

The number of seconds InnoDB waits for a lock for a transaction. If the lock can-
not be acquired, InnoDB rolls back the transaction.

Value Meaning

0 Write to the log and flush to disk once per second

1 Write to the log and flush to disk at each commit

2 Write to the log at each commit, but flush to disk only once per second

899D.1 System Variables

n innodb_locks_unsafe_for_binlog (startup: set directly)

A value of ON or OFF indicates whether InnoDB’s use of next-key locking for index
searching and scanning is disabled.The default is OFF (that is, next-key locking is
enabled).An InnoDB row lock normally locks the row index record and also pre-
vents other clients from inserting a new index record immediately before the
locked one.This is called “next-key locking” and prevents phantom rows from ap-
pearing. Enabling innodb_locks_unsafe_for_binlog disables next-key locking so
that a row lock locks only the index record and does not prevent insertion of a new
index record before the locked one.This has the following implications:

n Some inserts can proceed that otherwise would be blocked.
n Phantom rows can appear.
n InnoDB guarantees at most an isolation level of READ COMMITTED. Serializ-

ability is not guaranteed.
n As of MySQL 5.0.2, enabling innodb_locks_unsafe_for_binlog causes

InnoDB to lock rows that it examines (as usual), but for DELETE or UPDATE
only retains the locks on rows that actually are to be changed. Locks for other
rows are released after InnoDB determines that it can skip them.This reduces
the likelihood of deadlock.

innodb_locks_unsafe_for_binlog applies only to index searching and scanning,
not to checking of foreign key constraints or duplicate keys.

n innodb_log_arch_dir (startup: set directly)

This variable is unused. It was removed in MySQL 5.1.21.
n innodb_log_archive (startup: set directly)

This variable is unused. It was removed in MySQL 5.1.18.
n innodb_log_buffer_size (startup: set directly)

The size of the InnoDB transaction log buffer.The default is 1MB.Values usually
range from 1MB to 8MB.

n innodb_log_file_size (startup: set directly)

The size of each InnoDB log file.The product of innodb_log_file_size and
innodb_log_files_in_group determines the total InnoDB log size.

n innodb_log_files_in_group (startup: set directly)

The number of log files InnoDB maintains.The product of innodb_log_
file_size and innodb_log_files_in_group determines the total InnoDB
log size.

n innodb_log_group_home_dir (startup: set directly)

The pathname to the directory where InnoDB should write its log files.

n innodb_max_dirty_pages_pct (startup: set directly; runtime: global)

The percentage of dirty pages that InnoDB allows in its buffer pool before it con-
siders it necessary to flush the log to disk.The value should be from 0 to 100.The
default is 90.

n innodb_max_purge_lag (startup: set directly; runtime: global)

InnoDB maintains a purge thread that purges rows to be deleted as a result of
delete or update operations. In cases when small groups of rows are inserted and
deleted at roughly the same rate, it is possible for the purge thread to fall behind in
its operation, resulting in large numbers of to-be-deleted rows taking up space that
otherwise would be freed.The innodb_max_purge_lag variable controls how
much to delay INSERT, UPDATE, and DELETE statements, causing them to lag so that
the purge thread can proceed more efficiently.The default value is 0 (that is, no de-
lay). For non-zero values, the delay is proportional to ((n / innodb_max_purge_

lag) × 10) - 5 milliseconds, where n is the number of transactions that have rows
marked for deletion.

n innodb_mirrored_log_groups (startup: set directly)

The number of InnoDB log file groups to maintain.The value should always be 1.
n innodb_open_files (startup: set directly)

If innodb_file_per_table is set to 1 to enable individual tablespaces, this variable
indicates how many file descriptors InnoDB can use to keep .ibd files open simul-
taneously.The minimum value is 10 and the default is 300. innodb_file_per_
table controls allocation of file descriptors separate from those controlled by
open_files_limit; descriptors used for .ibd files are not used by the table cache.

n innodb_rollback_on_timeout (startup: set directly)

This variable controls what InnoDB does when a transaction times out.With a
value of OFF (the default), InnoDB rolls back only the last statement.With a value
of ON, InnoDB rolls back the entire transaction.This variable was introduced in
MySQL 5.0.32/5.1.15. For older versions, InnoDB rolls back the entire transaction.

n innodb_support_xa (startup: set directly; runtime: global, session)

ON or OFF to indicate whether InnoDB supports two-phase commit in XA transac-
tions.The default is ON but can be set to OFF for better performance if you don’t use
XA transactions.This variable was introduced in MySQL 5.0.3.

n innodb_sync_spin_loops (startup: set directly; runtime: global)

How many times a thread waits for InnoDB to free a mutex before being sus-
pended.This variable was introduced in MySQL 5.0.3.

n innodb_table_locks (startup: set directly; runtime: global, session)

This variable controls how InnoDB handles a LOCK TABLE statement to acquire a
write lock for an InnoDB table when autocommit is disabled.A value of ON (the
default) causes InnoDB to acquire an internal table lock.A value of OFF causes

900 Appendix D System, Status, and User Variable Reference

901D.1 System Variables

InnoDB to wait until no other thread has a lock for the table. Disabling this vari-
able can prevent some deadlocks for applications that use LOCK TABLES with auto-
commit mode disabled.

n innodb_thread_concurrency (startup: set directly; runtime: global)

The limit on the number of threads that InnoDB tries to maintain.This variable
can be set as a global runtime variable as of MySQL 5.0.3.

n innodb_thread_sleep_delay (startup: set directly; runtime: global)

The time in microseconds that InnoDB threads sleep before being placed in the
InnoDB queue.The default value is 10,000 (10 seconds); a value of 0 means “don’t
sleep.”This variable was introduced in MySQL 5.0.3.

n interactive_timeout (startup: set directly; runtime: global, session)

The number of seconds an interactive client connection can remain idle before the
server considers itself free to close it. For non-interactive clients, the value of the
wait_timeout variable is used instead.

n join_buffer_size (startup: set directly; runtime: global, session)

The size of the buffer that is used for joins that are performed without use of in-
dexes and require a table scan.

n keep_files_on_create (startup: set directly; runtime: global, session)

If an explicit DATA DIRECTORY or INDEX DIRECTORY option is given for a CREATE
TABLE statement for a MyISAM table and the server finds an existing data or index
file, respectively, in the named directory, it returns an error.The
keep_files_on_create variable controls how the server handles MyISAM table
creation when no DATA DIRECTORY or INDEX DIRECTORY option specifies where to
place the data or index file. If keep_files_on_create is OFF (the default), and the
server finds an existing .MYD data file or .MYI index file, it overwrites it. If the vari-
able is ON, the server returns an error.This variable was introduced in MySQL
5.0.48/5.1.21.

n key_buffer_size (startup: set directly; runtime: global)

The size of the buffer used for caching index blocks for MyISAM tables.This buffer
is shared among connection-handler threads.

This variable and the other key cache variables (key_cache_age_threshold,
key_cache_block_size, and key_cache_limit) exist as a group and can be ac-
cessed as components of a structured system variable. Multiple key caches can be
created for finer control over key cache use. For more information, see Section
12.7.2,“Configuring the MyISAM Storage Engine.”

n key_cache_age_threshold (startup: set directly; runtime: global)

How long buffers stay unused in the hot sub-chain of the key cache before being
moved to the warm sub-chain. Higher values enable blocks to remain in the hot
sub-chain longer.The default is 300.The minimum value is 100.

n key_cache_block_size (runtime: global)

The block size for the key cache. By default, a block is 1024 bytes.
n key_cache_limit (runtime: global)

If set to the default value of 100, the key cache uses a least recently used strategy for
cache buffer reuse. If set lower than 100, the key cache uses a midpoint insertion
strategy and the variable value is the percentage of the key cache to use for the
warm buffer sub-chain.The value should be from 1 to 100.

n language (startup: set directly)

The language used to display error messages.The value may be either the language
name or the pathname of the directory containing the language files.

n large_files_support

Whether the server was built with support for handling large files.
n large_page_size

The size of large memory pages, if large page support is enabled. Otherwise, the
value is 0.This variable was introduced in MySQL 5.0.3.

n large_pages (startup: use --large-pages)

Whether support for large memory pages is enabled. Large pages are supported
only on Linux.This variable was introduced in MySQL 5.0.3.

n lc_time_names (startup: set directly; runtime: global, session)

The locale for the language used for display of day and month names by the
DATE_FORMAT(), DAYNAME(), and MONTHNAME() functions.The default locale value is
en_US but can be set to other POSIX-style names such as es_AR (Spanish/
Argentina) or zh_HK (Chinese/Hong Kong).This variable was introduced in
MySQL 5.0.25/5.1.12.

n license

The server license type; for example, GPL if the server is running under the terms of
the GPL.

n local_infile (startup: set directly; runtime: global)

Whether LOCAL is allowed for LOAD DATA statements.
n locked_in_memory (startup: use --memlock)

Whether the server is locked in memory.
n log (runtime: global)

Whether query logging is enabled.As of MySQL 5.1.12, this variable and
general_log are synonyms, except that log cannot be set at runtime to enable or
disable logging until MySQL 5.1.23.

n log_bin

Whether the binary log is enabled.

902 Appendix D System, Status, and User Variable Reference

903D.1 System Variables

n log_bin_trust_function_creators (startup: set directly; runtime: global)

Creation or alteration of stored functions requires that you have the CREATE
ROUTINE or ALTER ROUTINE privilege. However, if binary logging is enabled and
log_bin_trust_function_creators is 0 (the default), you must also have the
SUPER privilege and declare that the function is deterministic or does not modify
data.To turn off these extra requirements, set log_bin_trust_function_creators
to 1.This variable was introduced in MySQL 5.0.16. (From MySQL 5.0.6 through
5.0.15, the variable name is log_bin_trust_routine_creators and it also applies
to stored procedures.)

n log_error (startup: set directly)

The name of the error log file. If the value is empty, the server writes error output
to the terminal.

n log_output (startup: use --log-output; runtime: global)

The current set of output destinations for the general query log and slow-query
log, if those logs are enabled.The value is a list of comma-separated destination
names.Allowable destinations are TABLE, FILE and NONE. If present, NONE disables
logging and takes precedence over any other values.This variable was introduced in
MySQL 5.1.6.

The general_log or slow_query_log system variable can be set at runtime to
enable or disable the respective log.The general_log_file or slow_query_log_
file system variable can be set at runtime to change the name of the respective
log file.

n log_queries_not_using_indexes (startup: use --log-queries-not-using-

indexes; runtime: global)

Whether queries that do not use indexes should be logged to the slow-query log.
This variable was introduced in MySQL 5.0.23/5.1.11.

n log_slave_updates (startup: set directly)

For updates that a replication slave server receives from its master’s binary log, this
variable controls whether the slave logs the updates to its own binary log. By de-
fault, slave update logging is disabled but can be enabled to allow a slave to act as a
master to another slave in a chained replication configuration.

n log_slow_queries

Whether the slow-query log is enabled.This variable can be set at runtime to en-
able or disable logging as of MySQL 5.1.23.

n log_warnings (startup: set directly; runtime: global, session)

The logging level for logging non-critical warnings to the error log.A value of 0
disables these warnings and 1 (the default) enables warnings.Values greater than 1
increase the logging level to include information about aborted connections and (as
of MySQL 5.2.6) access-denied errors.

n long_query_time (startup: set directly; runtime: global, session)

Any query taking longer than this value in seconds is considered “slow” and causes
the Slow_queries counter to be incremented. In addition, if the slow-query log is
enabled, the query is written to that log. (As of MySQL 5.1.21, slow-query logging
also takes min_examined_row_limit into account.)

The default value is 10.As of MySQL 5.1.21/6.0.4, the value can include a frac-
tional part in microseconds and the minimum value is 0. (Any fractional part is
logged only if the log destination is a file and not the mysql.slow_log table.) For
older versions, the value must be an integer and the minimum is 1.

n low_priority_updates (startup: set directly; runtime: global, session)

When this variable is set true, updates have a lower priority than retrievals, for stor-
age engines that use table-level locking. Statements that modify table contents
(DELETE, INSERT, REPLACE, UPDATE) wait until no SELECT is active or pending for
the table. SELECT statements that arrive while another is active begin executing im-
mediately rather than waiting for low-priority modification statements. It has the
same effect as specifying the LOW_PRIORITY option for statements that support it,
such as INSERT and UPDATE. For individual INSERT statements, the HIGH_PRIORITY
modifier can be given to cancel the effect of this variable and elevate the insert to
normal priority.

sql_low_priority_updates is a deprecated synonym for low_priority_updates.
n lower_case_file_system

This variable indicates the case sensitivity of filenames for the filesystem that con-
tains the data directory. ON means that names are not case sensitive. (Think of ON as
meaning that lowercase and uppercase versions of a filename are considered the
same.) OFF means that names are case sensitive.

n lower_case_table_names (startup: set directly)

This variable controls how the directory names and filenames corresponding to
database and table names are treated when CREATE DATABASE and CREATE TABLE

statements are issued. It also controls how name comparisons are performed when
executing statements.

n A value of 0 causes names to be created on disk as given in CREATE DATABASE
and CREATE TABLE statements. Name comparisons are case sensitive.This is
the default on systems that have case-sensitive filenames.

n A value of 1 causes names to be forced to lowercase when databases and ta-
bles are created. Name comparisons are not case sensitive.

n A value of 2 causes name lettercase to be preserved, but name comparisons to
be not case sensitive.That is, names are created as given in CREATE statements,
but not compared in case-sensitive fashion.You should use this value only for
filesystems that do not have case-sensitive filenames.

904 Appendix D System, Status, and User Variable Reference

905D.1 System Variables

If lower_case_table_names has not been set explicitly, the server sets
lower_case_table_names to 2 automatically if filenames are not case sensitive on
the filesystem that contains the data directory. Setting lower_case_table_names to
a non-zero value also causes table aliases not to be case sensitive.

n max_allowed_packet (startup: set directly; runtime: global, session)

The maximum size of the buffer used for communication between the server and
the client.The buffer is initially allocated to be net_buffer_length bytes long but
may grow up to max_allowed_packet bytes as necessary.The value also constrains
the maximum size of strings handled within the server.The default and maximum
values for max_allowed_packet are 1MB and 1GB, respectively.

n max_binlog_cache_size (startup: set directly; runtime: global)

The maximum binary log cache size. Statements that make up a transaction are
stored in the binary log cache and then written to the binary log at commit time. If
the transaction exceeds this size, it must be flushed to a temporary disk file.

n max_binlog_size (startup: set directly; runtime: global)

The maximum size of a binary log file. If the current binary log file reaches this
size, the server closes it and begins the next one.The allowable range of values is
4KB to 1GB.The default is 1GB.

max_binlog_size also controls the size of slave server relay log files if
max_relay_log_size is set to 0.

n max_connect_errors (startup: set directly; runtime: global)

The number of failed connections from a host that are allowed before the host is
blocked from further connection attempts.This is done on the basis that someone
may be attempting to break in from that host.The FLUSH HOSTS statement or
mysqladmin flush-hosts command may be used to clear the host cache to
re-enable blocked hosts.

n max_connections (startup: set directly; runtime: global)

The maximum number of simultaneous client connections allowed.The default is
151 as of MySQL 5.1.15 and 100 for older versions.

n max_delayed_threads (startup: set directly; runtime: global, session)

The maximum number of threads that will be created to handle INSERT DELAYED
statements.Any such statements that are received while the maximum number of
handlers is already in use will be treated as non-DELAYED statements.A client can set
the session value to 0 to disable DELAYED inserts for its own connection.

n max_error_count (startup: set directly; runtime: global, session)

The maximum number of error, warning, and note messages to be stored. (Such
events are always counted; this variable controls only how many of the associated
messages are stored and available to SHOW ERRORS and SHOW WARNINGS.)

n max_heap_table_size (startup: set directly; runtime: global, session)

The maximum allowed size of new MEMORY tables. Existing tables are unaf-
fected by changes to this variable unless they are modified with ALTER TABLE or
TRUNCATE TABLE.This variable can be used to help prevent the server from using
excessive amounts of memory.This variable also affects how the server treats inter-
nal memory tables; see the description for tmp_table_size.

n max_insert_delayed_threads (startup: use --max-delayed-threads; runtime:
global, session)

This variable is a synonym for max_delayed_threads.
n max_join_size (startup: set directly; runtime: global, session)

When executing a join, the MySQL optimizer estimates how many row combina-
tions it will need to examine. If the estimate exceeds max_join_size rows, an error
is returned.This can be used if users tend to write indiscriminate SELECT statements
that return an inordinate number of rows.The limit does not apply to query results
stored in the query cache because cached results can be returned without executing
the query again.

This variable is used in combination with the sql_big_selects session-only vari-
able, as discussed in the description for that variable. Setting max_join_size to a
value other than DEFAULT automatically sets sql_big_selects to 0.

sql_max_join_size is a deprecated synonym for max_join_size.
n max_length_for_sort_data (startup: set directly; runtime: global, session)

This variable is used by the query optimizer to determine which type of filesort
operation to perform for ORDER BY operations.

n max_prepared_stmt_count (startup: set directly; runtime: global)

The maximum number of prepared statements that the server can maintain simulta-
neously.The value can be from 0 to 1,000,000; the default is 16,382. Lower values
can be used to limit memory use by the server.This variable was introduced in
MySQL 5.0.21/5.1.10.

n max_relay_log_size (startup: set directly; runtime: global)

The maximum size of a slave server relay log file. If the current relay log file reaches
this size, the server closes it and begins the next one. If the value is 0, the server uses
the value of max_binlog_size to control relay log file sizes.The allowable range of
non-zero values is 4KB to 1GB.The default is 0.

n max_seeks_for_key (startup: set directly; runtime: global, session)

The query optimizer uses this variable when performing key-based lookups. If an
index has low cardinality (few unique values), the optimizer may assume that key
lookups will require many seeks and perform a table scan instead. Setting this vari-
able to a low value tells the optimizer to assume that at most that many index seeks
will be required, which causes it to favor use of the index over a table scan.

906 Appendix D System, Status, and User Variable Reference

907D.1 System Variables

n max_sort_length (startup: set directly; runtime: global, session)

BLOB or TEXT values are sorted using the first max_sort_length bytes of each value.
The default value is 1024. Decreasing the variable value yields shorter comparison
times without loss of accuracy if sorted values are unique within this many bytes. If
sorted values are not unique within this many bytes, increasing this variable enables
them to be better distinguished.

n max_sp_recursion_depth (startup: set directly; runtime: global, session)

The maximum depth to which stored procedures may recurse.This is a limit per
procedure, not across all procedures collectively.The default is 0 (no recursion al-
lowed) and the maximum is 255.This variable was introduced in MySQL 5.0.17.

n max_tmp_tables (startup: set directly; runtime: global, session)

The maximum number of temporary tables a client can have open simultaneously.
This variable currently is unused.

n max_user_connections (startup: set directly; runtime: global, session)

The maximum number of simultaneous client connections allowed to any single
account.The default value is zero, which means “no limit.”The number of per-
account connections is bound in any case by the value of max_connections.

The session value for this variable exists only as of MySQL 5.0.3 and is read-only.
The session value is the same as the global value unless the account row in the user
table has a non-zero MAX_USER_CONNECTIONS value. In that case, the session value is
taken from the account record.

To specify connection limits for specific accounts, use the GRANT statement.
n max_write_lock_count (startup: set directly; runtime: global)

After this many write locks to a table, the server begins to elevate the priority of
statements that are attempting to acquire a read lock for the table.

n min_examined_row_limit (startup: set directly; runtime: global, session)

The minimum number of rows that a query must examine to qualify for logging to
the slow-query log.The default is 0.This variable was introduced in MySQL
5.1.21.

n myisam_block_size (startup: set directly)

The block size for MyISAM table index blocks.
n myisam_data_pointer_size (startup: set directly; runtime: global)

The size in bytes to use for row pointers in MyISAM index files.The value may
range from 2 to 7.The default is 6 as of MySQL 5.0.6 and 4 for older versions.

The pointer size can be influenced for individual tables by specifying the MAX_ROWS
table option.

n myisam_max_sort_file_size (startup: set directly; runtime: global)

MyISAM table index rebuilding for statements such as REPAIR TABLE, ALTER
TABLE, or LOAD DATA can use a temporary file or the key cache.The value of this
variable determines which method is used; if the temporary file would be larger
than this value, the key cache is used instead.

n myisam_recover_options (startup: use --myisam-recover)

The value of the --myisam-recover option that the server was started with to
specify the MyISAM auto-repair mode.

n myisam_repair_threads (startup: set directly; runtime: global, session)

The number of threads to use for creating MyISAM table indexes during repair op-
erations. (Flushing applies only to repairing by sorting, not to repairing using the
key cache.) The default value is 1 for single-threaded repair. Setting the value
higher than 1 for multi-threaded repair should be considered experimental.

n myisam_sort_buffer_size (startup: set directly; runtime: global, session)

The size of the buffer that is allocated to sort an index for MyISAM tables during
operations such as ALTER TABLE, CREATE INDEX, and REPAIR TABLE.

n myisam_stats_method (startup: set directly; runtime: global, session)

Whether the server should consider NULL values equal or distinct when calculating
index key value distribution statistics for MyISAM tables.The value can be
nulls_equal (all NULL values are in the same group) or nulls_unequal (each NULL

value forms a distinct group).This variable was introduced in MySQL 5.0.14. Be-
fore that, statistics calculation is the same as nulls_equal.

n myisam_use_mmap (startup: use --myisam_use_mmap; runtime: global)

ON or OFF (the default) to indicate whether the server uses memory mapping to
read and write MyISAM tables.This variable was introduced in MySQL 5.1.4.

n named_pipe (startup: use --enable-named-pipe)

Whether support for named-pipe connections is enabled. Such connections are
supported only on Windows.

n net_buffer_length (startup: set directly; runtime: global, session)

The initial size of the connection and result buffers used for communication be-
tween the server and the client.This buffer may be expanded up to
max_allowed_packet bytes long.The value may range from 1KB to 1MB; the de-
fault is 16KB.

n net_read_timeout (startup: set directly; runtime: global, session)

The number of seconds to wait for data from a client connection before timing
out.This timeout applies only to TCP/IP connections.

n net_retry_count (startup: set directly; runtime: global, session)

The number of times to retry an interrupted read.

908 Appendix D System, Status, and User Variable Reference

909D.1 System Variables

n net_write_timeout (startup: set directly; runtime: global, session)

The number of seconds to wait while writing a block to a client connection before
timing out.This timeout applies only to TCP/IP connections.

n new (startup: set directly; runtime: global, session)

This variable was used in MySQL 4.0 to causes the server to use certain 4.1 behav-
iors. It is now unused.

n old (startup: set directly)

A compatibility option that enables older behavior for some features. Currently this
causes index hints not to apply to ORDER BY or GROUP BY execution.This variable
was introduced in MySQL 5.1.18.

n old_passwords (startup: set directly; runtime: global, session)

The password hashing algorithm used for user authentication changed in MySQL
4.1. old_passwords indicates whether the server should use the older pre-4.1
hashing algorithm.

n open_files_limit (startup: set directly)

This variable is the number of file descriptors the server will attempt to reserve. If
you set it to a non-zero value at startup time, but the actual value displayed by the
server is smaller than specified, the value indicates the maximum number of file de-
scriptors allowed by the operating system. (In the case that the server displays a
value of zero, it means the operating system didn’t allow mysqld to change the
number of descriptors.) If you don’t set the value at startup or set it to zero, the
server uses the larger of max_connections × 5 and max_connections +
table_cache × 2 as the number of descriptors to reserve. open_files_limit con-
trols allocation of file descriptors separate from those controlled by
innodb_open_files.

n optimizer_prune_level (startup: set directly; runtime: global, session)

The query optimizer examines multiple execution plans to determine the best one.
This variable determines how the optimizer handles intermediate plans. If
optimizer_prune_level is 1 (the default), the optimizer discards intermediate
plans based on estimates of the number of rows they will require to be examined. If
the variable is set to 0, it performs an exhaustive search of all plans.This variable
was introduced in MySQL 5.0.1.

n optimizer_search_depth (startup: set directly; runtime: global, session)

Controls the depth to which the optimizer searches for execution plans.A value of
0 causes the optimizer to pick a reasonable value automatically.The default is to use
the pre-MySQL 5.0 behavior, which is to do an exhaustive search.This variable was
introduced in MySQL 5.0.1.

n pid_file (startup: set directly)

The pathname of the file into which the server writes its process ID number.

n plugin_dir (startup: set directly)

The pathname for the directory where plugins are located.This variable was intro-
duced in MySQL 5.1.2.

n port (startup: set directly)

The number of the TCP/IP port to which the server listens for client connections.
n preload_buffer_size (startup: set directly; runtime: global, session)

This variable determines how large a buffer to allocate when preloading indexes
with the LOAD INDEX statement.

n protocol_version

The version number of the client/server protocol the server is using.
n pseudo_thread_id

This variable is used internally by the server.
n query_alloc_block_size (startup: set directly; runtime: global, session)

The block size for allocation of temporary memory while parsing and executing
statements.

n query_cache_limit (startup: set directly; runtime: global)

The maximum size of cached query results; larger results are not cached.The de-
fault value is 1MB.

n query_cache_min_res_unit (startup: set directly; runtime: global)

The block size for allocation of memory for storing results in the query cache.The
default value is 4KB.

n query_cache_size (startup: set directly; runtime: global)

The amount of memory to use for query result caching. Setting this variable to
zero disables the query cache, even if query_cache_type is not OFF. Conversely,
setting this variable to a non-zero value causes that much memory to be allocated,
even if query_cache_type is OFF.The value should be a multiple of 1024.

n query_cache_type (startup: set directly; runtime: global, session)

The mode of operation of the query cache, if query_cache_size is greater than
zero.The following table shows the allowable values.

910 Appendix D System, Status, and User Variable Reference

If you set the query_cache_type variable in a SET statement, the symbolic values
OFF, ON, and DEMAND can be used as synonyms for 0, 1, and 2.

Mode Meaning

0 Don’t cache query results or retrieve cached results

1 Cache cacheable queries except those that begin with SELECT SQL_NO_CACHE

2 Cache on demand only cacheable queries that begin with SELECT SQL_CACHE

911D.1 System Variables

sql_query_cache_type is a deprecated synonym for query_cache_type.
n query_cache_wlock_invalidate (startup: set directly; runtime: global, session)

When this variable is 0 (the default), clients can retrieve cached query results for a
table even if another client acquires a WRITE lock on the table. Setting this variable
to 1 cause the cached results to be invalidated when a client acquires a WRITE lock,
forcing other clients to wait for the lock to be released.

n query_prealloc_size (startup: set directly; runtime: global, session)

The size of the buffer that is allocated for parsing and executing statements.This
buffer is not freed between statements, unlike blocks allocated under the control of
the query_alloc_block_size variable.

n range_alloc_block_size (startup: set directly; runtime: global, session)

The block size for allocation of memory while performing range optimizations.
n read_buffer_size (startup: set directly; runtime: global, session)

The size of the buffer used by threads that perform sequential table scans.A buffer
is allocated as necessary per client.

n read_only (startup: set directly; runtime: global)

This variable controls whether a slave server operates in read-only fashion for client
connections. By default, read_only is OFF, updates by clients are accepted in the
usual way (that is, they have privileges to do so).When set to ON, updates are al-
lowed only for statements received from the master or issued by clients that have
the SUPER privilege.

As of MySQL 5.1.15, the server enforces additional constraints on use of
read_only:You cannot enable the variable while you hold explicit table locks or
have an outstanding transaction. If you attempt to enable read_only while other
clients hold table locks or have outstanding transactions, your request blocks until
those locks are released and transactions have terminated.While the request is
blocked, other clients block if they attempt to acquire new table locks or begin
transactions.These conditions for blocking do not apply to FLUSH TABLES WITH
READ LOCK, which acquires a global read lock, not a table lock.

n read_rnd_buffer_size (startup: set directly; runtime: global, session)

The size of the buffer used for reading rows in order after a sort.A buffer is allo-
cated as necessary per client.

n relay_log_purge (startup: set directly; runtime: global)

When set to 1 (the default), a slave server removes each relay log file as soon as it is
no longer needed. If set to 0, the relay log files are not removed automatically.

n relay_log_space_limit (startup: set directly)

The maximum allowable combined size of the relay log files.
n rpl_recovery_rank (runtime: global)

This variable is unused.

912 Appendix D System, Status, and User Variable Reference

n secure_auth (startup: set directly; runtime: global)

When set to ON, the server allows connections only for accounts that have the
newer password format introduced in MySQL 4.1.When set to OFF, the server also
allows connections to accounts that have passwords in the older format.The default
is OFF.

n secure_file_priv (startup: set directly)

When set to a directory pathname, the server permits LOAD DATA and SELECT ...
INTO OUTFILE statements and the LOAD_FILE() function only for operations in
that directory.The value is empty by default (no such restriction).This variable was
introduced in MySQL 5.0.38/5.1.17.

n server_id (startup: set directly; runtime: global)

The server’s replication ID number. If 0, the server is not participating in replica-
tion. Otherwise, the value should be an integer from 1 to 232-1.The value must be
different from that of any other replication server that you are using.

n shared_memory (startup: set directly)

If set to ON, the server allows shared-memory connections by clients.The default is
OFF. Shared-memory connections are supported only on Windows.

n shared_memory_base_name (startup: set directly)

The shared-memory name to use for shared-memory connections.The default
name is MYSQL (case sensitive)

n skip_external_locking (startup: set directly)

Whether use of external locking (filesystem locking) is suppressed.
n skip_networking (startup: use --skip-networking)

OFF to enable TCP/IP connections, ON to disable them. In the latter case, clients can
connect from the local host only, using Unix socket connections under Unix or
named pipes or shared memory under Windows.

n skip_show_database (startup: set directly)

When set to OFF (the default), the SHOW DATABASES statement can be used by any
user. It displays all databases if the user has the SHOW DATABASES privilege, or those
databases for which the user has some privilege otherwise.When set to ON, the SHOW
DATABASES statement can be used only by users who have the SHOW DATABASES
privilege, and it displays all databases.

n slave_allow_batching (startup: set directly; runtime: global)

Enable a slave server to batch requests; applies only to MySQL Cluster.This variable
was introduced in MySQL 5.2.5.

n slave_compressed_protocol (startup: set directly; runtime: global)

Whether compression should be used to reduce the amount of traffic sent between
a slave server and its master.This requires that both the master and slave support the
compressed protocol.

913D.1 System Variables

n slave_load_tmpdir (startup: set directly)

The pathname of the directory where the server creates temporary files for LOAD
DATA statements if it is acting as a replication slave.The default value is the value of
the tmpdir system variable.

n slave_net_timeout (startup: set directly; runtime: global)

The number of seconds to wait for data from a master server before timing out.This
timeout applies only toTCP/IP connections.

n slave_skip_errors (startup: use --slave-skip-errors)

The list of errors that a slave server should ignore rather than suspending replication
if they occur. (However, it’s usually better to determine what is causing problems so
that you can resolve them rather than using this option to ignore them.) A value of
all means all errors should be ignored. Otherwise, the value should be a list of one
or more error numbers separated by commas.

n slave_transaction_retries (startup: set directly; runtime: global)

The number of times that a slave should retry a transaction that fails due to dead-
lock or because a storage engine’s timeout has been reached.This variable was in-
troduced in MySQL 5.0.3.

n slow_launch_time (startup: set directly; runtime: global)

The number of seconds that defines “slow” thread creation.Any thread taking
longer to create causes the Slow_launch_threads status counter to be
incremented.

n slow_query_log (startup: set directly; runtime: global)

Whether logging to the slow-query log is enabled. (If so, the log destinations are in-
dicated by log_output.) This variable was introduced in MySQL 5.1.12.The value
can be set at runtime to enable or disable logging as of 5.1.23.

n slow_query_log_file (runtime: global)

The name of the slow-query log file, for use if the file logging destination is en-
abled.This variable was introduced in MySQL 5.1.12.

n socket (startup: set directly)

The pathname to the Unix domain socket, or the name of the named pipe under
Windows.

n sort_buffer_size (startup: set directly; runtime: global, session)

The size of the buffer used by threads for performing sort operations (GROUP BY or
ORDER BY).This buffer is allocated as necessary per client. Normally, if you may
have many clients that do sorting at the same time, it is unwise to make this value
very large (more than 1MB).

914 Appendix D System, Status, and User Variable Reference

n sql_mode (startup: set directly; runtime: global, session)

The server SQL mode.This variable modifies certain aspects of the server’s behav-
ior to cause it to act according to standard SQL, or to be compatible with other
database servers or older MySQL servers.The value should be an empty string to
clear the mode, or a comma-separated list of one or more of the mode values de-
scribed following. Some mode values are simple and enable one behavior. Others
are composite modes that serve as shorthand enabling a set of modes to be specified
more easily. Mode values are not case sensitive.

The term “strict mode” refers to a sql_mode setting that has
STRICT_TRANS_TABLES or STRICT_ALL_TABLES enabled to cause the server to be
strict about data checking. Section 3.3,“How MySQL Handles Invalid Data Values,”
further discusses strict mode and other modes that affect input data handling.

The following list describes the simple SQL mode values:
n ALLOW_INVALID_DATES

In strict mode, suppresses full date validity checking for DATE and DATETIME

values.The only requirements are that the month be in the range from 1 to
12 and the day in the range from 1 to 31. TIMESTAMP values must be valid re-
gardless of whether this mode is enabled.

ALLOW_INVALID_DATES was introduced in MySQL 5.0.2. Prior to 5.0.2, date
handling is performed as though ALLOW_INVALID_DATES is enabled.That is,
date checking is not strict.

n ANSI_QUOTES

Treats the double quote character as a quote character for identifiers such as
database, table, and column names, and not as a string quote character.
(Backticks are allowed for name quoting regardless of whether this mode
is enabled.)

n ERROR_FOR_DIVISION_BY_ZERO

For inserts or updates, division (or modulo) operations with a divisor of zero
normally produce a result of NULL and no warning, even in strict mode. En-
abling ERROR_FOR_DIVISION_BY_ZERO changes this behavior.With strict
mode not enabled, division by zero still produces a result of NULL but a warn-
ing occurs.With strict mode enabled, division by zero during INSERT and
UPDATE statements causes an error and the statement fails.To suppress the er-
ror for inserts or updates and produce a result of NULL and a warning, use
INSERT IGNORE or UPDATE IGNORE.This mode was introduced in MySQL
5.0.2.

n HIGH_NOT_PRECEDENCE

This mode was introduced in MySQL 5.0.2. It changes the precedence of the
NOT operator to be the same as the ! operator, which is the precedence that
NOT had before MySQL 5.0.2.

915D.1 System Variables

n IGNORE_SPACE

Causes the server to ignore spaces between names of built-in functions and
the ‘(’ character that introduces the argument list. Normally, function names
should be followed immediately by the parenthesis with no intervening
spaces.This mode causes function names to be treated as reserved words.

n NO_AUTO_CREATE_USER

Prohibits GRANT statements from creating insecure new accounts. GRANT fails if
it does not include an IDENTIFIED BY clause to provide an account password.
This mode was introduced in MySQL 5.0.2.

n NO_AUTO_VALUE_ON_ZERO

When this mode is not enabled, inserting 0 into an AUTO_INCREMENT column
has the same result as inserting NULL: MySQL generates the next sequence
number and stores it in the column.When this mode is enabled, inserting 0
into an AUTO_INCREMENT column causes 0 to be stored.

n NO_BACKSLASH_ESCAPES

Causes backslash (‘\’) not to be treated as an escape character within strings,
but rather as an ordinary character with no special meaning.This mode was
introduced in MySQL 5.0.1.

n NO_DIR_IN_CREATE

Ignores DATA DIRECTORY and INDEX DIRECTORY table options in CREATE
TABLE and ALTER TABLE statements.

n NO_ENGINE_SUBSTITUTION

This mode determines how the server handles CREATE TABLE or ALTER
TABLE statements that include an ENGINE option for which the specified stor-
age engine to use for the table is not available. (As of MySQL 5.1.12,“not
available” means “not compiled in an not loaded at runtime.” Before 5.1.12, it
means “not compiled in, or compiled in but disabled at startup.”)

If NO_ENGINE_SUBSTITUTION is enabled, the table is not created (or altered) if
the specified engine is not available and an error occurs. If
NO_ENGINE_SUBSTITUTION is disabled, substitution of the default storage en-
gine is allowed if the specified engine is not available. In this case, an error
occurs only if the engine name is known to be illegal; this applies only before
MySQL 5.1.2, when servers know a fixed set of engine names. (As of 5.1.12,
engines can be loaded at runtime, so the set of all legal names cannot be
known.) This mode was introduced in MySQL 5.0.8.

n NO_FIELD_OPTIONS

Makes the output of SHOW CREATE TABLE statements more portable by sup-
pressing inclusion of MySQL-specific column-related options.

916 Appendix D System, Status, and User Variable Reference

n NO_KEY_OPTIONS

Makes the output of SHOW CREATE TABLE statements more portable by sup-
pressing inclusion of MySQL-specific index-related options.

n NO_TABLE_OPTIONS

Makes the output of SHOW CREATE TABLE statements more portable by sup-
pressing inclusion of MySQL-specific table-related options.

n NO_UNSIGNED_SUBTRACTION

By default, subtraction between integer operands results in an unsigned result
if either operand is unsigned.This mode allows signed results, which is com-
patible with the behavior of MySQL prior to version 4.0.

n NO_ZERO_DATE

In strict mode, rejects '0000-00-00' as a valid date. Normally, MySQL allows
“zero” date values to be stored.This mode can be overridden by using
INSERT IGNORE rather than INSERT.This mode was introduced in MySQL
5.0.2.

n NO_ZERO_IN_DATE

In strict mode, rejects dates that have a month or day part of zero. (A zero
year is allowed.) Normally, MySQL allows such date values to be stored. In
non-strict mode or if INSERT IGNORE is used, MySQL stores such dates as
'0000-00-00'.This mode was introduced in MySQL 5.0.2.

n ONLY_FULL_GROUP_BY

Normally, MySQL allows SELECT statements with non-aggregate columns in
the output column list or the HAVING clause that are not named in the GROUP
BY clause. For example:

SELECT a, b, COUNT(*) FROM t GROUP BY a;

The ONLY_FULL_GROUP_BY flag requires non-aggregate output columns (or
HAVING columns) to be named in the GROUP BY:

SELECT a, b, COUNT(*) FROM t GROUP BY a, b;

n PAD_CHAR_TO_FULL_LENGTH

Normally, the server removes trailing spaces from CHAR column values when
it retrieves them.This mode suppresses CHAR column trailing-space removal
so that retrieved values have the full column length.This mode was intro-
duced in MySQL 5.1.20.

n PIPES_AS_CONCAT

Causes || to be treated as a string concatenation operator rather than as logi-
cal OR.

917D.1 System Variables

n REAL_AS_FLOAT

The REAL data type becomes a synonym for FLOAT rather than for DOUBLE.
n STRICT_ALL_TABLES

Enables strict checking of input data values for all storage engines to cause
MySQL to reject most invalid values.This mode was introduced in MySQL
5.0.2. Use TRADITIONAL to be even more strict.

n STRICT_TRANS_TABLES

Enables strict checking of input data values for transactional storage engines
to cause MySQL to reject most invalid values. In addition, enable strict
checking for non-transactional storage engines when that is possible (such as
for single-row INSERT statements).This mode was introduced in MySQL
5.0.2. Use TRADITIONAL to be even more strict.

The following table lists the composite SQL modes and shows the set of modes for
which each one is shorthand.

Composite Mode Constituent Modes

ANSI ANSI_QUOTES, IGNORE_SPACE, PIPES_AS_CONCAT,

REAL_AS_FLOAT

DB2 ANSI_QUOTES, IGNORE_SPACE, NO_FIELD_OPTIONS,

NO_KEY_OPTIONS, NO_TABLE_OPTIONS, PIPES_AS_CONCAT

MAXDB ANSI_QUOTES, IGNORE_SPACE, NO_AUTO_CREATE_USER,

NO_FIELD_OPTIONS, NO_KEY_OPTIONS, NO_TABLE_OPTIONS,

PIPES_AS_CONCAT

MSSQL ANSI_QUOTES, IGNORE_SPACE, NO_FIELD_OPTIONS,

NO_KEY_OPTIONS, NO_TABLE_OPTIONS, PIPES_AS_CONCAT

MYSQL323 HIGH_NOT_PRECEDENCE, NO_FIELD_OPTIONS

MYSQL40 HIGH_NOT_PRECEDENCE, NO_FIELD_OPTIONS

ORACLE ANSI_QUOTES, IGNORE_SPACE, NO_AUTO_CREATE_USER,

NO_FIELD_OPTIONS, NO_KEY_OPTIONS, NO_TABLE_OPTIONS,

PIPES_AS_CONCAT

POSTGRESQL ANSI_QUOTES, IGNORE_SPACE, NO_FIELD_OPTIONS,

NO_KEY_OPTIONS, NO_TABLE_OPTIONS, PIPES_AS_CONCAT

TRADITIONAL ERROR_FOR_DIVISION_BY_ZERO, NO_AUTO_CREATE_USER,

NO_ZERO_DATE, NO_ZERO_IN_DATE, STRICT_ALL_TABLES,

STRICT_TRANS_TABLES

918 Appendix D System, Status, and User Variable Reference

Before MySQL 5.0.3, ANSI also includes ONLY_FULL_GROUP_BY.

TRADITIONAL mode is so called because it enables the modes that cause handling of
input values to be like that of traditional databases that reject invalid data. It’s like
strict mode but includes several additional constraints for even stricter checking.
TRADITIONAL mode was introduced in MySQL 5.0.2.

n sql_select_limit (runtime: global, session)

Specifies the maximum number of rows to return from a SELECT statement.The
presence of an explicit LIMIT clause in a statement takes precedence over this vari-
able.The default value is the maximum number of rows allowed per table.A value
of DEFAULT restores this default if you have changed it.

This variable has no effect within stored routines, or for SELECT operations that do
not return rows to the client (such as subqueries, INSERT INTO ... SELECT, and
CREATE TABLE ... SELECT).

n sql_slave_skip_counter (runtime: global)

If you have the SUPER privilege, you can set this as a GLOBAL variable to a value of n
to tell a slave replication server to skip the next n events received from its master
server.

n ssl_xxx (startup: use --ssl-xxx)

The ssl_xxx variables indicate the values of the corresponding --ssl-xxx options
given to the server at startup. (For example, ssl_ca indicates the value of the
--ssl-ca option.) The value of each variable is the empty string if the correspon-
ding option was not given.The values are NULL if SSL support is not available.These
variables were introduced in MySQL 5.0.23/5.1.11.

n storage_engine (startup: use --default-storage-engine; runtime: global,
session)

The default storage engine to use for tables that are created without an ENGINE =
engine_name option or with an unsupported engine_name value.

n sync_binlog (startup: set directly; runtime: global)

When set to 0 (the default), the server does not flush the binary log to disk.When
set to a positive value n, the server flushes the log after every n writes to the binary
log. In this case, lower values provide greater safety in the event of a crash, but also
affect performance more adversely.

n sync_frm (startup: set directly; runtime: global)

When set to 0, the server does not flush the .frm file for non-temporary tables to
disk when they are created.The default is 1, which does flush the file.

n system_time_zone

The server’s system time zone.The server tries to determine the variable value
when it starts by consulting the system.You can set the TZ environment variable or
specify the --timezone option to mysqld_safe to set the value explicitly.

919D.1 System Variables

n table_cache, table_open_cache (startup: set directly; runtime: global)

The maximum number of tables that can be open.This cache is shared between
threads. table_cache is the original variable name, which was changed to
table_open_cache in MySQL 5.1.3.

n table_definition_cache (startup: set directly; runtime: global)

The number of table definitions (from .frm files) that the server can store in its
definition cache.This variable was introduced in MySQL 5.1.3.

n table_lock_wait_timeout (startup: set directly; runtime: global)

How long in seconds to wait for table-level locks before timing out, for connec-
tions that have open cursors.The default value is 50.This variable was introduced in
MySQL 5.0.10.

n table_type (startup: use --default-storage-engine; runtime: global, session)

This variable is a deprecated synonym for storage_engine; it was removed in
MySQL 5.2.5.

n thread_cache_size (startup: set directly; runtime: global)

The maximum number of threads to maintain in the thread cache.Threads from
clients that disconnect are put in the cache if it’s not already full.This enables new
connections to be serviced by reusing cached threads rather than creating new
threads, as long as threads remain in the cache.The thread cache is used when the
server uses one thread per currently connected client.

n thread_concurrency (startup: set directly)

This variable applies only to Solaris.The value is passed to thr_concurrency() to
provide a hint to the thread manager about how many threads to run
simultaneously.

n thread_handling (startup: set directly)

The thread model that the server uses for handling client connections.The value
can be one-thread (a single connection thread), one-pool-per-connection (one
thread per currently connected client), or (as of MySQL 6.0.4) pool-of-threads
(a fixed size pool of threads that service all connected clients).This variable was in-
troduced in MySQL 5.1.17.

n thread_pool_size (startup: set directly)

The size of the pool of statement-processing threads to be used if the value of
thread_handling is pool-of-threads.The default value is 20.This variable was
introduced in MySQL 6.0.4.

n thread_stack (startup: set directly)

The stack size for each thread.
n time_format

This variable is unused.

920 Appendix D System, Status, and User Variable Reference

n time_zone (startup: use --default-time-zone; runtime: global, session)

The server’s current time zone.A value of SYSTEM indicates that the server is using
the value of the system_time_zone variable.A client can modify the session value
of this variable to set the time zone for its own connection.

n timed_mutexes (startup: use --timed_mutexes; runtime: global)

Whether to collect InnoDB mutex timing information.This variable was intro-
duced in MySQL 5.0.3.

n tmp_table_size (startup: set directly; runtime: global, session)

The maximum number of bytes allowed for internal temporary tables. (Tables that
the server creates automatically while processing statements.) If a temporary table
exceeds the smaller of max_heap_table_size and tmp_table_size, the server
converts it from an internal in-memory table to a MyISAM table on disk. If you
have memory to spare, higher values of this variable allow the server to maintain
larger temporary tables in memory without converting them to on-disk format.

n tmpdir (startup: set directly)

The pathname to the directory where the server creates temporary files.The option
value can be given as a list of directories, to be used in round-robin fashion. Under
Unix, separate directory names by colons; under Windows or NetWare, separate
them by semicolons.

n transaction_alloc_block_size (startup: set directly; runtime: global, session)

The block size for allocation of temporary memory needed for processing state-
ments that are stored as part of a transaction prior to writing the transaction to the
binary log at commit time.

n transaction_prealloc_size (startup: set directly; runtime: global, session)

The size of the buffer that is allocated for processing statements that are part of a
transaction.This buffer is not freed between statements, unlike blocks allocated un-
der the control of the transaction_alloc_block_size variable.

n tx_isolation (startup: use --transaction-isolation; runtime: global, session)

The default transaction isolation level.
n updatable_views_with_limit (startup: set directly; runtime: global, session)

When set to 0 or NO, the server disallows updates (UPDATE or DELETE statements) to
views that do not use a primary key in the underlying table, even if the update con-
tains a LIMIT 1 clause to constrain the update to a single row.When set to 1 or YES
(the default), the update is allowed and the server produces only a warning.This
variable was introduced in MySQL 5.0.2.

n version

The server version.The value consists of a version number, possibly followed by
one or more suffixes.The suffix values are listed in the description of the
VERSION() function in Appendix C,“Operator and Function Reference.”

921D.2 Session-Only System Variables

n version_comment

The value of the --with-comment option specified to configure at the time the
server was built.The default value is "Source distribution" if you don’t specify
any comment at configuration time.

n version_compile_machine

The compilation machine (hardware type).The value is determined during the
configuration process when MySQL is built.

n version_compile_os

The compilation operating system.The value is determined during the configura-
tion process when MySQL is built.

n wait_timeout (startup: set directly; runtime: global, session)

The number of seconds a non-interactive client connection can remain idle before
the server considers itself free to close it. For interactive clients, the value of the
interactive_timeout variable is used instead.This applies only to TCP/IP and
Unix socket file connections.

D.2 Session-Only System Variables
The following list describes system variables that exist in session-only form.That is, each
client gets its own set of these variables when it connects to the server, but there are no
corresponding global variables.A client that sets any of these variables affects server oper-
ation only for itself.

Most of the session-only system variables do not show up in the output from SHOW
VARIABLES, but you can select the value for each with SELECT @@SESSION.var_name or
SELECT @@var_name.

Session variable names are not case sensitive.
n autocommit

The autocommit mode for transaction processing.This is 1 by default, so autocom-
mit is enabled and statements take effect immediately; essentially, each statement is
its own transaction. Setting the value to 0 disables autocommit so that subsequent
statements do not take effect until a commit is performed (either with a COMMIT
statement, or by setting autocommit to 1). Statements in the transaction may be
canceled with ROLLBACK if a commit has not occurred. Setting autocommit to 1 re-
enables autocommit (and implicitly commits any pending transaction).

n big_tables

All internal temporary tables are stored on disk rather than in memory if this is
variable is set to 1. Performance is slower, but SELECT statements that require large
temporary tables will not generate “table full” errors.The default is 0 (hold tempo-
rary tables in memory). Normally you need not set this variable.

922 Appendix D System, Status, and User Variable Reference

sql_big_tables is a deprecated synonym for big_tables.
n error_count

This is a read-only variable that indicates the number of errors generated by the last
statement that can generate errors.

n foreign_key_checks

Setting this variable to 0 or 1 disables or enables foreign key checking for InnoDB
tables.The default is to perform checking. Disabling key checks can be useful, for
example, when restoring a dump file that creates and loads tables in an order differ-
ent from that required by their foreign key relationships.You can re-enable key
checking after loading the tables.

n identity

This is a synonym for the last_insert_id session variable.
n insert_id

Setting this variable specifies the value to be used by the next INSERT statement
when inserting an AUTO_INCREMENT column.This is used for binary log processing.

n last_insert_id

Setting this variable specifies the value to be returned by LAST_INSERT_ID().This
is used for binary log processing.

n sql_auto_is_null

If this is set to 1 (the default), the most recently generated AUTO_INCREMENT value
can be selected using a WHERE clause of the form WHERE col_name IS NULL, where
col_name is the name of the AUTO_INCREMENT column.This feature is used by some
ODBC programs.To disable it, set the variable to 0.

n sql_big_selects

The server uses this variable in conjunction with the max_join_size system vari-
able. If sql_big_selects is set to 1 (the default), the server allows queries that re-
turn result sets of any size. If sql_big_selects is set to 0, the server disallows
queries that are likely to return a large number of rows. In this case, the value of
max_join_size is used when executing a join:The server makes an estimate of the
number of row combinations it will need to examine, and if that value exceeds the
value of max_join_size, the server returns an error rather than executing the
query.

Setting max_join_size to a value other than DEFAULT automatically sets
sql_big_selects to 0.

n sql_buffer_result

Setting this variable to 1 causes the server to use internal temporary tables to hold
results from SELECT statements.The effect is that the server can more quickly re-
lease locks held on the tables from which the results are produced.The default is 0.

923D.2 Session-Only System Variables

n sql_log_bin

Setting this variable to 0 or 1 disables or enables binary logging for the current
client connection.The client must have the SUPER privilege for this statement to
have any effect.This variable has no effect if the server’s binary log is not enabled.

n sql_log_off

Setting this variable to 0 or 1 enables or disables statement logging to the general
query log for the current client connection.The client must have the SUPER privi-
lege for this statement to have any effect.This variable has no effect if the server’s
general log is not enabled.

n sql_log_update

This variable is obsolete as of MySQL 5.0 because the update log has been re-
moved.

n sql_notes

Setting this variable to 0 or 1 (the default) controls whether the server suppresses or
records Note-level warnings.This variable was introduced in MySQL 5.0.3.

n sql_quote_show_create

This variable controls whether to quote identifiers (database, table, column, and in-
dex names) in the output from SHOW CREATE TABLE and SHOW CREATE DATABASE

statements.The default is 1 (use quoting).Turning quoting off by setting the vari-
able to 0 may be useful when producing CREATE TABLE statements for use with
other database servers, or very old MySQL servers that do not understand backtick
quoting. If you turn quoting off, be sure that your tables do not use names that are
reserved words or that contain special characters.

Identifiers are quoted with backtick (‘`’) characters if the ANSI_QUOTES SQL mode
is disabled, and with double quote (‘"’) characters if it is enabled.

n sql_safe_updates

If this variable is set to 1, the server allows UPDATE and DELETE statements only if
the rows to be modified are identified by key values or if a LIMIT clause is used.
The default of 0 enforces no such restriction.

n sql_warnings

If set to 1, MySQL reports warning counts even for single-row inserts.The default
is 0:Warning counts are reported only for INSERT statements that insert multiple
rows.

n timestamp

Setting this variable specifies a TIMESTAMP value for the current connection.This is
used for binary log processing.The timestamp value affects the value returned by
NOW(), but not the value returned by SYSDATE().

924 Appendix D System, Status, and User Variable Reference

n unique_checks

Setting this variable to 0 or 1 disables or enables uniqueness checks for secondary
indexes in InnoDB tables. Disabling these checks can increase performance when
importing data into InnoDB tables, but this should not be done unless you know
that data values do not violate uniqueness requirements.

n warning_count

This is a read-only variable that indicates the number of errors, warnings, and notes
generated by the last statement that can generate such messages.

D.3 Status Variables
Status variables provide information about the server’s current operational state.These
variables can be displayed by the SHOW STATUS statement or by executing the mysqladmin
extended-status command.As of MySQL 5.0.2, the status variables (like system vari-
ables) have global and session-specific values.These represent the sum over all clients and
the value for the current client, respectively. If a variable has only a global value, the same
value is returned for the global and session variables.As of MySQL 5.1.12, you can also
query the INFORMATION_SCHEMA tables named GLOBAL_STATUS and SESSION_STATUS to
obtain status variable information.

For more information about examining status variables at runtime, see Section 12.6.3,
“Checking Status Variable Values.”

Status variable names are not case sensitive.
The more general variables are described in the following list. Separate sections after

that describe sets of variables that are related to each other.These include variables for
statement counters, the InnoDB storage engine, the query cache, and SSL.

n Aborted_clients

The number of client connections aborted due to clients not closing the connec-
tion properly.

n Aborted_connects

The number of attempts to connect to the server that failed.
n Binlog_cache_disk_use

The number of transactions that had to use a temporary disk file because their size
exceeded the value of the binlog_cache_size system variable.

n Binlog_cache_use

The number of transactions that could be held in the binary log cache because
their size did not exceed the value of the binlog_cache_size system variable.

n Bytes_received

The total number of bytes received from all clients.

925D.3 Status Variables

n Bytes_sent

The total number of bytes sent to all clients.
n Com_xxx

The server maintains a set of status variables that serve as counters to indicate the
number of times particular types of statements (commands) have been executed.
There are dozens of such variables, and they all have similar names, so they are not
listed individually here. Each statement counter variable name begins with Com_,
and has a suffix that indicates the type of statement to which the counter corre-
sponds. For example, Com_select and Com_drop_table indicate, respectively, how
many SELECT and DROP TABLE statements the server has executed.

n Compression

Whether traffic sent via the client/server protocol uses compression.This variable
was introduced in MySQL 5.0.16.

n Connections

The number of attempts to connect to the server (both successful and
unsuccessful).

n Created_tmp_disk_tables

The number of on-disk temporary tables created by the server while processing
statements.

n Created_tmp_files

The number of temporary files created by the server.
n Created_tmp_tables

The number of in-memory temporary tables created by the server while processing
statements.

n Delayed_errors

The number of errors that have occurred while processing INSERT DELAYED rows.
n Delayed_insert_threads

The number of INSERT DELAYED handlers.
n Delayed_writes

The number of INSERT DELAYED rows that have been written.
n Flush_commands

The number of FLUSH statements that have been executed.
n Handler_commit

The number of requests to commit a transaction.
n Handler_delete

The number of requests to delete a row from a table.

926 Appendix D System, Status, and User Variable Reference

n Handler_discover

This is used with the NDBCLUSTER storage engine. It indicates how many times
the server asked NDB about a table name and successfully found (discovered) the
table.

n Handler_prepare

The number of prepares for two-phase commits.This variable was introduced in
MySQL 5.0.3.

n Handler_read_first

The number of requests to read the first row from an index.
n Handler_read_key

The number of requests to read a row based on an index value.
n Handler_read_next

The number of requests to read the next row in index order.
n Handler_read_prev

The number of requests to read the previous row in descending index order.
n Handler_read_rnd

The number of requests to read a row based on its position.
n Handler_read_rnd_next

The number of requests to read the next row. If this number is high, you are likely
performing many statements that require full table scans or that are not using in-
dexes properly.

n Handler_rollback

The number of requests to roll back a transaction.
n Handler_savepoint

The number of requests to create a transaction savepoint.This variable was intro-
duced in MySQL 5.0.3.

n Handler_savepoint_rollback

The number of requests to roll back to a transaction savepoint.This variable was in-
troduced in MySQL 5.0.3.

n Handler_update

The number of requests to update a row in a table.
n Handler_write

The number of requests to insert a row in a table.
n Innodb_xxx

See Section D.3.1,“InnoDB Status Variables.”

927D.3 Status Variables

n Key_blocks_not_flushed

The number of blocks in the key cache that have been modified but not yet flushed
to disk.

n Key_blocks_unused

The number of unused blocks in the key cache.
n Key_blocks_used

The maximum number of blocks in the key cache that have ever simultaneously
been in use.

n Key_read_requests

The number of requests to read a block from the key cache.
n Key_reads

The number of reads of index blocks from disk.
n Key_write_requests

The number of requests to write a block to the key cache.
n Key_writes

The number of writes of index blocks to disk.
n Last_query_cost

The query optimizer’s most recent query cost calculation.The value is useful only
for queries that do not use UNION or subqueries.The value if no query cost has yet
been calculated is 0, or -1 before MySQL 5.0.7.As of 5.0.16, the value is set for
queries served using the query cache.This variable was introduced in MySQL
5.0.1.

n Max_used_connections

The maximum number of connections that have ever simultaneously been open.
n Not_flushed_delayed_rows

The number of rows waiting to be written for INSERT DELAYED statements.
n Open_files

The number of open files.
n Open_streams

The number of open streams.A stream is a file opened with fopen(); this applies
only to log files.

n Open_table_definitions

The number of cached .frm files.This variable was introduced in MySQL 5.1.3.
n Open_tables

The number of open tables.This does not count TEMPORARY tables.

928 Appendix D System, Status, and User Variable Reference

n Opened_files

The total number of files that the server has opened. (There may be some storage
engines that do not increment this counter.) This variable was introduced in
MySQL 5.1.21.

n Opened_tables

The total number of tables that the server has opened. If this number is high, it may
be a good idea to increase your table cache size.

n Prepared_stmt_count

The number of prepared statements.This variable was introduced as the
prepared_stmt_count system variable in MySQL 5.0.21/5.1.10 and converted to
the Prepared_stmt_count status variable in 5.0.32/5.1.11.

n Qcache_xxx

See Section D.3.2,“Query Cache Status Variables.”
n Questions

The number of statements that have been received by the server (this includes both
successful and unsuccessful statements).The ratio of Questions to Update yields
the number of statements per second.

n Rpl_status

This variable is not used.
n Select_full_join

The number of “full” joins; that is, joins performed without using indexes.
n Select_full_range_join

The number of joins performed using a range search on a reference table.
n Select_range

The number of joins performed using a range on the first table.
n Select_range_check

The number of joins performed such that a range search must be used to fetch
rows on a secondary table.

n Select_scan

The number of joins performed that used a full scan of the first table.
n Slave_open_temp_tables

The number of temporary tables the slave SQL thread has open.
n Slave_retried_transactions

The number of times that the slave SQL thread has retried transactions.This vari-
able was introduced in MySQL 5.0.4.

929D.3 Status Variables

n Slave_running

Whether the slave I/O and SQL threads both are running.
n Slow_launch_threads

The number of threads that took longer than slow_launch_time seconds to create.
n Slow_queries

The number of queries that look longer than long_query_time seconds to
execute.

n Sort_merge_passes

The number of merge passes performed by the sort algorithm.
n Sort_range

The number of sort operations performed using a range.
n Sort_rows

The number of rows sorted.
n Sort_scan

The number of sort operations performed using a full table scan.
n Ssl_xxx

See Section D.3.3,“SSL Status Variables.”
n Table_locks_immediate

The number of table lock requests that could be satisfied immediately with no
waiting.

n Table_locks_waited

The number of requests for a table lock that could be satisfied only after waiting. If
this value is high, it indicates that you have a lot of contention for table locks.

n Tc_log_max_pages_used

The maximum number of pages that have been used for the transaction coordina-
tor recovery log file.This variable was introduced in MySQL 5.0.3.

n Tc_log_page_size

The page size for the transaction coordinator recovery log file.This variable was in-
troduced in MySQL 5.0.3.

n Tc_log_page_waits

The number of times a two-phase commit had to wait for a free page in the trans-
action coordinator recovery log file.This variable was introduced in MySQL 5.0.3.

n Threads_cached

The number of threads in the thread cache.
n Threads_connected

The number of open connections.

930 Appendix D System, Status, and User Variable Reference

n Threads_created

The total number of threads that have been created to handle client connections.
n Threads_running

The number of threads that are active (not sleeping).
n Uptime

The number of seconds since the server started running.
n Uptime_since_flush_status

The number of seconds since FLUSH STATUS was most recently executed.This vari-
able was introduced in MySQL 5.0.35.This is a feature of MySQL Community
Server only.

D.3.1 InnoDB Status Variables
The following variables display information about the operation of the InnoDB storage
engine. Many of them are available in the output of SHOW ENGINE INNODB STATUS, but
are more easily parsed in the output from SHOW STATUS. Most of these variables were in-
troduced in MySQL 5.0.2; exceptions are so noted.

n Innodb_buffer_pool_pages_data

The number of pages in the InnoDB buffer pool that contain data.This counts
both clean pages that have not been modified and dirty pages that contain modified
data.

n Innodb_buffer_pool_pages_dirty

The number of pages in the InnoDB buffer pool that contain modified data.
n Innodb_buffer_pool_pages_flushed

The number of InnoDB buffer pool pages for which flush requests have been
issued.

n Innodb_buffer_pool_pages_free

The number of free pages in the InnoDB buffer pool.
n Innodb_buffer_pool_pages_latched

The number of pages in the InnoDB buffer pool that are in the process of being
read or written or that for some other reason cannot be flushed and freed for reuse.

n Innodb_buffer_pool_pages_misc

The number of pages in the InnoDB buffer pool that are allocated for internal
operations.

n Innodb_buffer_pool_pages_total

The total number of pages in the InnoDB buffer pool.

931D.3 Status Variables

n Innodb_buffer_pool_read_ahead_rnd

The number of random read-aheads initiated by InnoDB.These occur when
InnoDB must read a large part of a table in non-sequential order.

n Innodb_buffer_pool_read_ahead_seq

The number of sequential read-aheads initiated by InnoDB.These occur when
InnoDB performs sequential full-table scans.

n Innodb_buffer_pool_read_requests

The number of logical read requests issued by InnoDB.
n Innodb_buffer_pool_reads

The number of single-page reads done due to not being able to perform a logical
read from the InnoDB buffer pool.

n Innodb_buffer_pool_wait_free

The number of times InnoDB had to wait for writes to the buffer pool to be
flushed.Writes usually are done in the background, but InnoDB must perform a
wait if no pages are available when it needs to read a page or create a new one.

n Innodb_buffer_pool_write_requests

The number writes to the InnoDB buffer pool.
n Innodb_data_fsyncs

The number of sync-to-disk operations performed by InnoDB.
n Innodb_data_pending_fsyncs

The number of pending InnoDB data sync-to-disk operations.
n Innodb_data_pending_reads

The number of pending InnoDB data-read operations.
n Innodb_data_pending_writes

The number of pending InnoDB data-write operations.
n Innodb_data_read

The number of bytes read by InnoDB.
n Innodb_data_reads

The number of InnoDB data-read operations.
n Innodb_data_writes

The number of InnoDB data-write operations.
n Innodb_data_written

The number of bytes written by InnoDB.
n Innodb_dblwr_pages_written

The number of pages written to the InnoDB doublewrite buffer.

932 Appendix D System, Status, and User Variable Reference

n Innodb_dblwr_writes

The number of writes to the InnoDB doublewrite buffer.
n Innodb_log_waits

The number of times InnoDB had to wait for writes to the log buffer pool to be
flushed.

n Innodb_log_write_requests

The number of requests to write to the InnoDB log file.
n Innodb_log_writes

The number of writes to the InnoDB log file.
n Innodb_os_log_fsyncs

The number of sync-to-disk operations for the InnoDB log file.
n Innodb_os_log_pending_fsyncs

The number of pending sync-to-disk operations for the InnoDB log file.
n Innodb_os_log_pending_writes

The number of pending write operations for the InnoDB log file.
n Innodb_os_log_written

The number of bytes written to the InnoDB log file.
n Innodb_page_size

The compiled-in page size used by InnoDB.This can be used to convert measure-
ments that are counted in page units to byte units.The default value is 16KB.

n Innodb_pages_created

The number of pages created by InnoDB.
n Innodb_pages_read

The number of pages read by InnoDB.
n Innodb_pages_written

The number of pages written by InnoDB.
n Innodb_row_lock_current_waits

The number of row locks that InnoDB is waiting to acquire.This variable was in-
troduced in MySQL 5.0.3.

n Innodb_row_lock_time

The total time in milliseconds spent acquiring InnoDB row locks.This variable was
introduced in MySQL 5.0.3.

n Innodb_row_lock_time_avg

The average time in milliseconds required to acquire an InnoDB row lock.This vari-
able was introduced in MySQL 5.0.3.

933D.3 Status Variables

n Innodb_row_lock_time_max

The maximum time in milliseconds required to acquire an InnoDB row lock.This
variable was introduced in MySQL 5.0.3.

n Innodb_row_lock_waits

The number of times that InnoDB had to wait to acquire a row lock.This variable
was introduced in MySQL 5.0.3.

n Innodb_rows_deleted

The number of rows deleted from InnoDB tables.
n Innodb_rows_inserted

The number of rows inserted into InnoDB tables.
n Innodb_rows_read

The number of rows read from InnoDB tables.
n Innodb_rows_updated

The number of rows updated in InnoDB tables.

D.3.2 Query Cache Status Variables
The following variables display information about the operation of the query cache.

n Qcache_free_blocks

The number of free memory blocks in the query cache.
n Qcache_free_memory

The amount of free memory in the query cache.
n Qcache_hits

The number of query requests that were satisfied by queries held in the cache.
n Qcache_inserts

The number of queries that have ever been registered in the query cache.
n Qcache_lowmem_prunes

The number of cached query results that have been kicked out of the query cache
to make room for newer results.

n Qcache_not_cached

The number of queries that were uncacheable or for which caching was suppressed
with the SQL_NO_CACHE keyword.

n Qcache_queries_in_cache

The number of queries registered in the cache.
n Qcache_total_blocks

The total number of memory blocks in the query cache.

934 Appendix D System, Status, and User Variable Reference

D.3.3 SSL Status Variables
The following variables provide information about the SSL management code. Many of
them reflect the state of the current connection, and will be blank unless the connection
actually is secure.These variables are unavailable unless SSL support actually has been
built into the server.

n Ssl_accept_renegotiates

The number of start renegotiations in server mode.
n Ssl_accepts

The number of started SSL/TLS handshakes in server mode.
n Ssl_callback_cache_hits

The number of sessions successfully retrieved from the external session cache in
server mode.

n Ssl_cipher

The SSL cipher (protocol) for the connection (blank if no cipher is in effect).You
can use this variable to determine whether the connection is encrypted.

n Ssl_cipher_list

The list of available SSL ciphers.
n Ssl_client_connects

The number of started SSL/TLS handshakes in client mode.
n Ssl_connect_renegotiates

The number of start renegotiations in client mode.
n Ssl_ctx_verify_depth

The SSL context verification depth.
n Ssl_ctx_verify_mode

The SSL context verification mode.
n Ssl_default_timeout

The default SSL session timeout.
n Ssl_finished_accepts

The number of successfully established SSL/TLS sessions in server mode.
n Ssl_finished_connects

The number of successfully established SSL/TLS sessions in client mode.
n Ssl_session_cache_hits

The number of SSL sessions found in the session cache.
n Ssl_session_cache_misses

The number of SSL sessions not found in the session cache.

935D.4 User-Defined Variables

n Ssl_session_cache_mode

The type of SSL caching used by the server.
n Ssl_session_cache_overflows

The number of sessions removed from the cache because it was full.
n Ssl_session_cache_size

The number of sessions that can be stored in the SSL session cache.
n Ssl_session_cache_timeouts

The number of sessions that have timed out.
n Ssl_sessions_reused

Whether the session was reused from an earlier session.
n Ssl_used_session_cache_entries

The number of sessions in the session cache.
n Ssl_verify_depth

The SSL verification depth.
n Ssl_verify_mode

The SSL verification mode.
n Ssl_version

The SSL protocol version of the connection.

D.4 User-Defined Variables
User-defined variables (or, more simply,“user variables”) can be assigned values, and you
can refer to those variables in other statements later.

User-defined variable names consist of ‘@’ followed by an identifier and follow rules
similar to those for legal identifiers (see Section 2.2,“MySQL Identifier Syntax and
Naming Rules”). However, a user variable name can contain ‘.’ without needing to be
quoted, unlike identifiers. User variable names are case sensitive before MySQL 5.0, and
not case sensitive thereafter.

User variables can be assigned values with the = or := operators in SET statements or
with the := operator in other statements such as SELECT. Multiple assignments can be
performed in a single statement.

mysql> SET @x = 0, @y = 2;

mysql> SET @color := 'red', @size := 'large';

mysql> SELECT @x, @y, @color, @size;

+------+------+--------+-------+

| @x | @y | @color | @size |

+------+------+--------+-------+

| 0 | 2 | red | large |

+------+------+--------+-------+

936 Appendix D System, Status, and User Variable Reference

mysql> SELECT @count := COUNT(*) FROM member;

+--------------------+

| @count := COUNT(*) |

+--------------------+

| 102 |

+--------------------+

User variables can be assigned integer, decimal, floating-point, string, or NULL values,
and can be assigned from arbitrary expressions, including those that refer to other vari-
ables. If you access a user variable that has not yet been assigned a value explicitly, its value
is NULL.

User variable values do not persist across sessions with the server.That is, values are lost
when a connection terminates.

In SELECT statements that return multiple rows, variable assignments are performed for
each row.The final value is the value assigned for the last row.

String-valued user variables have the same character set and collation as those of the
value they are assigned:

mysql> SET @s = CONVERT('abc' USING latin2) COLLATE latin2_czech_cs;

mysql> SELECT CHARSET(@s), COLLATION(@s);

+-------------+-----------------+

| CHARSET(@s) | COLLATION(@s) |

+-------------+-----------------+

| latin2 | latin2_czech_cs |

+-------------+-----------------+

E
SQL Syntax Reference

This appendix describes the syntax for SQL statements provided by MySQL. It has three
parts:

n SQL statements other than those for compound statements.
n SQL statements that are used for compound statements, which are written using
BEGIN and END and can be used for writing stored programs that are stored on the
server side (functions, procedures, triggers, and events).

n The syntax for writing comments in SQL code. Comments are used to write de-
scriptive text that is ignored by the server, and to hide MySQL-specific keywords
that will be executed by MySQL but ignored by other database servers.

Statement syntax descriptions use the following conventions:

n Square brackets ([]) indicate optional information.
n Vertical bars (|) separate alternative items in a list. If a list is enclosed in square

brackets, one alternative may be chosen. If a list is enclosed in curly brackets ({}),
one alternative must be chosen.

n Ellipsis notation (...) indicates that the term preceding the ellipsis may be repeated.
n n indicates an integer.
n 'str' indicates a string value.A quoted value such as 'file_name' or 'pattern'

indicates a more-specific kind of value such as a filename or a pattern.

Unless otherwise indicated, the statements listed in this appendix have been present in
MySQL at least as early as MySQL 5.0.0. Statements that were introduced or that
changed in meaning since then are noted.

Some statements have become deprecated, are scheduled to be removed, or (in my
opinion) have extremely limited utility, so I have not included them here:

BACKUP TABLE

LOAD DATA FROM MASTER

LOAD TABLE tbl_name FROM MASTER

RESTORE TABLE

938 Appendix E SQL Syntax Reference

SHOW AUTHORS

SHOW CONTRIBUTORS

I have also not covered statements or statement clauses that relate to plugins, user-
defined functions (UDFs), XA transactions, or that are specific to MySQL Cluster.

There are some general synonyms that always hold, so I list them here rather than
every place in which they can be used:

To specify a character set, you can use any of the following formats:

CHARACTER SET charset

CHARSET = charset

CHARSET charset

These synonymous forms can be used in table and column definitions, and in the
CREATE DATABASE and ALTER DATABASE statements.

As of MySQL 5.0.2, SCHEMA and SCHEMAS are synonyms for DATABASE and DATABASES,
respectively, and can freely be substituted in statements anywhere you might use the latter
two keywords. For example, you can create a database with either CREATE DATABASE or
CREATE SCHEMA.

E.1 SQL Statement Syntax (Non-Compound
Statements)
This section describes the syntax and meaning of each of MySQL’s SQL statements, other
than those for writing compound statements (see Section E.2,“Compound Statement
Syntax,” for the latter).A statement fails if you do not have the necessary privileges to
perform it. For example, USE db_name fails if you have no permissions for accessing the
database db_name.

ALTER DATABASE

ALTER DATABASE [db_name] db_attr ...

ALTER DATABASE db_name UPGRADE DATA DIRECTORY NAME

This statement changes database attributes or upgrades the database directory name
encoding. It requires the ALTER privilege for the database.

For the first syntax, the allowable db_attr database attribute values are the same as
those listed in the entry for CREATE DATABASE.The statement applies to the default data-
base if the database name is omitted. If there is no default database, an error occurs.

The UPGRADE DATA DIRECTORY NAME syntax is for use when you upgrade to MySQL
5.1 or later from an older version. It re-encodes the name of the database directory if
necessary to the filesystem encoding currently used by MySQL if the name contains spe-
cial characters.This syntax was introduced in MySQL 5.1.23.

939E.1 SQL Statement Syntax (Non-Compound Statements)

ALTER EVENT

ALTER

[DEFINER = definer_name]

EVENT event_name

[ON SCHEDULE schedule]

[ON COMPLETION [NOT] PRESERVE]

[RENAME TO new_event_name]

[ENABLE | DISABLE [ON SLAVE]]

[COMMENT 'str']

[DO event_stmt]

Alters an existing event to have the given definition.The RENAME TO clause renames
the event.The other clauses are described in the entry for CREATE EVENT.You must have
the EVENT privilege for the database to which the event belogs. (Prior to MySQL 5.1.12,
you must have the SUPER privilege or be the event’s definer.)

ALTER EVENT was introduced in MySQL 5.1.6.

ALTER FUNCTION, ALTER PROCEDURE

ALTER {FUNCTION | PROCEDURE} routine_name [characteristic] ...

characteristic:

[NOT] DETERMINISTIC

| LANGUAGE SQL

| SQL SECURITY {DEFINER | INVOKER}

| COMMENT 'str'

These statements alter the characteristics of stored routines.The characteristics are as
described in the entry for the CREATE FUNCTION and CREATE PROCEDURE statements.

As of MySQL 5.0.3, these statements require the ALTER ROUTINE privilege for the
given routine.

ALTER SERVER

ALTER SERVER server_name OPTIONS (option [, option] ...)

Modifies the definition for the FEDERATED table server named server_name and
updates the corresponding row of the mysql.servers table. Omitted options retain their
previous values.You must have the SUPER privilege.

See the description of CREATE SERVER for the OPTIONS clause allowable values.This
statement was introduced in MySQL 5.1.15.

ALTER TABLE

ALTER [IGNORE] TABLE tbl_name action [, action] ...

ALTER TABLE enables you to rename tables or modify their structure.To use it, specify
the table name along with one or more actions to be performed on the table.The IGNORE

940 Appendix E SQL Syntax Reference

keyword comes into play if the action could produce duplicate key values in a unique in-
dex in the altered table.Without IGNORE, the effect of the ALTER TABLE statement is can-
celed.With IGNORE, the rows that duplicate values for unique key values are deleted.

Except for table renaming operations, ALTER TABLE works by creating from the origi-
nal table a new one that incorporates the changes to be made. If an error occurs, the new
table is discarded and the original remains unchanged. If the operation completes success-
fully, the original table is discarded and replaced by the new one. During the operation,
other clients may read from the original table.Any clients that try to update the table are
blocked until the ALTER TABLE statement completes, at which point the updates are ap-
plied to the new table.

action values specify alteration actions, each of which is performed in turn. Some ac-
tions cannot be combined with other actions, as indicated in the action descriptions.

For index-definition actions that include index_type or index_option clauses, some
storage engines allow you to specify the indexing algorithm or other index definition
modifiers. See the entry for CREATE INDEX for details about which indexing values are al-
lowed in different versions of MySQL. For additional information about index creation,
see Section 2.6.4,“Indexing Tables.”

An action value may be any of the following:

n table_option

Specifies a table option of the kind that may be given in the table_option part of
a CREATE TABLE statement.

ALTER TABLE score ENGINE = MyISAM CHECKSUM = 1;

ALTER TABLE sayings CHARACTER SET utf8;

Any version-specific or storage engine-specific constraints on the availability of a
given table option are as described in the entry for CREATE TABLE. If you attempt
to change a table to use a storage engine that is not available, the effect of the ALTER
TABLE statement is subject to the setting of the NO_ENGINE_SUBSTITUTION SQL
mode. It is not allowable to alter a table to use the MERGE or BLACKHOLE
engines as of MySQL 5.0.23/5.1.11 because that might cause data loss.

The [DEFAULT] CHARACTER SET table option changes the default table character set
but does not convert existing the columns to that character set.To perform the lat-
ter operation, use a CONVERT TO CHARACTER SET action.

ALTER TABLE ignores the DATA DIRECTORY and INDEX DIRECTORY table options.

n ADD [COLUMN] col_name col_definition [FIRST | AFTER col_name]

Adds a column to the table. col_name is the column name. col_definition is the
column definition; it has the same format as that used for the CREATE TABLE state-
ment.The column becomes the first column in the table if the FIRST keyword is
given or is placed after the named column if AFTER col_name is given. If the col-
umn placement is not specified, the column becomes the last column of the table.

941E.1 SQL Statement Syntax (Non-Compound Statements)

ALTER TABLE t ADD id INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY;

ALTER TABLE t ADD id INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY FIRST;

ALTER TABLE t ADD id INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY

AFTER suffix;

n ADD [COLUMN] (create_definition,...)

Adds columns or indexes to the table. Each create_definition is a column or
index definition, in the same format as for CREATE TABLE.

n ADD [CONSTRAINT [name]] FOREIGN KEY [fk_name]

(index_columns) reference_definition

Adds a foreign key definition to a table.This is supported only for InnoDB tables.
The foreign key is based on the columns named in index_columns, which is a list
of one or more columns in the table separated by commas.Any CONSTRAINT name,
if given, is ignored. fk_name is the foreign key ID. If given, it is ignored unless
InnoDB automatically creates an index for the foreign key; in that case, fk_name
becomes the index name. reference_definition defines how the foreign key re-
lates to the parent table.The syntax is as described in the entry for CREATE TABLE.

ALTER TABLE child

ADD FOREIGN KEY (par_id) REFERENCES parent (par_id) ON DELETE CASCADE;

ADD FOREIGN KEY and DROP FOREIGN KEY actions cannot appear in the same
ALTER TABLE statement.

n ADD FULLTEXT [INDEX | KEY] [index_name]

(index_columns) [index_option] ...

Adds a FULLTEXT index to a MyISAM table.The index is based on the columns
named in index_columns, which is a list of one or more non-binary string
columns in the table separated by commas. index_name is specified as for the ADD
INDEX action.

ALTER TABLE poetry ADD FULLTEXT (author,title,stanza);

n ADD {INDEX | KEY} [index_name] [index_type]

(index_columns) [index_option] ...

Adds an index to the table.The index is based on the columns named in
index_columns, which is a list of one or more columns in the table separated by
commas. If the index name index_name is not specified, MySQL chooses a name
automatically based on the name of the first indexed column.

942 Appendix E SQL Syntax Reference

n ADD [CONSTRAINT [name]] PRIMARY KEY [index_type]

(index_columns) [index_option] ...

Adds a primary key on the given columns.The key is given the name PRIMARY.
index_columns is specified as for the ADD INDEX action. Each column must be de-
fined as NOT NULL.An error occurs if a primary key already exists.

ALTER TABLE president ADD PRIMARY KEY (last_name, first_name);

n ADD SPATIAL [INDEX | KEY] [index_name]

(index_columns) [index_option] ...

Adds a SPATIAL index to a MyISAM table.The index is based on the columns
named in index_columns, which is a list of one or more spatial columns in the
table separated by commas. Each column must be defined as NOT NULL. index_name
is specified as for the ADD INDEX action.

ALTER TABLE coordinates ADD SPATIAL (x,y);

n ADD [CONSTRAINT [name]] UNIQUE [INDEX | KEY]

[index_name] [index_type]

(index_columns) [index_option] ...

Adds a unique-valued index to tbl_name. index_name and index_columns are
specified as for the ADD INDEX action.

ALTER TABLE absence ADD UNIQUE id_date (student_id, date);

n ALTER [COLUMN] col_name {SET DEFAULT value | DROP DEFAULT}

Modifies the given column’s default value, either to the specified value, or by drop-
ping the current default value. In the latter case, a new implicit default value might
be assigned, as described in Section 3.2.3,“Specifying Column Default Values.”

ALTER TABLE grade_event ALTER category SET DEFAULT 'Q';

ALTER TABLE grade_event ALTER category DROP DEFAULT;

n CHANGE [COLUMN] old_col_name new_col_name col_definition

[FIRST | AFTER col_name]

Changes a column’s name and definition. old_col_name and new_col_name are the
column’s current and new names, and col_definition is the definition to which
the column should be changed. col_definition is in the same format as that used
for the CREATE TABLE statement, including any column attributes such as NULL, NOT
NULL, and DEFAULT. Note that if you want to change the definition but not the
name, it’s necessary to specify the same name twice. FIRST or AFTER have the same
effect as for ADD COLUMN.

ALTER TABLE student CHANGE name name VARCHAR(40);

ALTER TABLE student CHANGE name student_name CHAR(30) NOT NULL;

943E.1 SQL Statement Syntax (Non-Compound Statements)

n CONVERT TO CHARACTER SET charset [COLLATE collation]

Converts the table default character set and all non-binary character columns in the
table to the given character set. binary converts the columns to the corresponding
binary string data types. DEFAULT converts the table to use the database character
set.The COLLATE clause may be given to specify a collation as well. If COLLATE is
omitted, the default collation for the character set is used.

n DISABLE KEYS

For a MyISAM table, this action disables the updating of non-unique indexes that
normally occurs when the table is changed. ENABLE KEYS can be used to re-enable
index updating.

ALTER TABLE score DISABLE KEYS;

n DISCARD TABLESPACE

This action applies to InnoDB tables that use individual tablespaces. For such a
table, it removes the tbl_name.ibd file that stores the table contents.This action
cannot be used in conjunction with other actions.

n DROP [COLUMN] col_name [RESTRICT | CASCADE]

Removes the given column from the table. If the column is part of any indexes, it is
removed from those indexes. If all columns from an index are removed, the index is
removed as well.

ALTER TABLE president DROP suffix;

The RESTRICT and CASCADE keywords are parsed but ignored and have no effect.

n DROP FOREIGN KEY fk_name

Drops the foreign key definition that has the given name. ADD FOREIGN KEY and
DROP FOREIGN KEY actions cannot appear in the same ALTER TABLE statement.

n DROP {INDEX | KEY} index_name

Removes the given index from the table.

ALTER TABLE member DROP INDEX name;

n DROP PRIMARY KEY

Removes the primary key from the table.An error occurs if there is no primary
key.

ALTER TABLE president DROP PRIMARY KEY;

944 Appendix E SQL Syntax Reference

n ENABLE KEYS

For a MyISAM table, re-enables updating for non-unique indexes that have been
disabled with DISABLE KEYS.

ALTER TABLE score ENABLE KEYS;

n IMPORT TABLESPACE

This action applies to InnoDB tables that use individual tablespaces. For such a
table, it associates the tbl_name.ibd file in the table’s database directory with the
table. (Presumably, the table’s former .ibd file previously had been removed with
DISCARD TABLESPACE.) This action cannot be used in conjunction with other
actions.

n MODIFY [COLUMN] col_name col_definition [FIRST | AFTER col_name]

Changes the definition of a column. col_name names the column to be modified.
The column definition col_definition is given, using the same format for col-
umn definitions as is shown in the entry for the CREATE TABLE statement, including
any column attributes such as NULL, NOT NULL, and DEFAULT. FIRST and AFTER have
the same effect as for ADD COLUMN.

ALTER TABLE student MODIFY name VARCHAR(40) DEFAULT '' NOT NULL;

n ORDER BY col_list

Sorts the rows in the table according to the columns named in col_list, which
should be a list of names or one or more columns in the table separated by com-
mas.The default sort order is ascending.A column name may be followed by ASC
or DESC to specify ascending or descending order explicitly. Sorting a table this way
may improve performance of subsequent queries that retrieve rows in the same or-
der.This is mostly useful for a table that will not be modified afterward, because
rows will not remain in order if the table is modified after performing the ORDER
BY operation.

ALTER TABLE score ORDER BY event_id, student_id;

n RENAME [TO | AS] new_tbl_name

Renames the table tbl_name to new_tbl_name. If you rename an InnoDB table on
which other tables depend for foreign key relationships, InnoDB adjusts the de-
pendencies to point to the renamed table.

ALTER TABLE president RENAME TO prez;

Beginning with MySQL 5.1, ALTER TABLE supports partitioning modifications.The
entry for CREATE TABLE defines the meaning of the partition_scheme and
partition_definition terms used in the following action descriptions.

945E.1 SQL Statement Syntax (Non-Compound Statements)

n partition_scheme

Partitions the table according to the specified partitioning description. If the table is
not partitioned, it becomes partitioned. Otherwise, the new partitioning replaces
the old.

n ADD PARTITION (partition_definition)

Adds a new partition to a partitioned table.

n COALESCE PARTITION n

Causes a partitioned table to have n fewer partitions.This works only for HASH or
KEY partitions. Data in the removed partitions is merged into those remaining.To
remove LIST or RANGE partitions, use DROP PARTITION.

n [DROP | REBUILD] PARTITION partition_name [, partition_name] ...

Causes the specified action to be performed on the named partitions. DROP works
only for LIST or RANGE partitions; data in the dropped partitions is lost.To reduce
the number of HASH or KEY partitions, use COALESCE PARTITION.

n REMOVE PARTITIONING

Removes all partitioning, resulting in an unpartitioned table.This option was intro-
duced in MySQL 5.1.8. (Before 5.1.8, using ALTER TABLE with the ENGINE table
option on a partitioned table removes the partitioning.)

n REORGANIZE PARTITION partition_name [, partition_name] ...

INTO (partition_definition [, partition_definition] ...)

Repartitions the named partitions using the new partitioning definitions.

If any one of the following partitioning options appears in an ALTER TABLE statement,
you cannot use any of the others: partition_scheme, ADD PARTITION, COALESCE
PARTITION, DROP PARTITION, REORGANIZE PARTITION.

ALTER VIEW

ALTER

[ALGORITHM = {MERGE | TEMPTABLE | UNDEFINED}]

[DEFINER = definer_name]

[SQL SECURITY = {DEFINER | INVOKER}]

VIEW view_name [(col_list)] AS select_stmt

[WITH [CASCADED | LOCAL] CHECK OPTION]

Alters an existing view to have the given definition.The various clauses have the same
meanings as described in the entry for CREATE VIEW.

ALTER VIEW requires the CREATE VIEW and DROP privileges for the view and some
privilege for each column used in the SELECT statement that defines the view.As of

946 Appendix E SQL Syntax Reference

MySQL 5.0.52/5.1.23, ALTER VIEW can be used only by the definer or a user that has the
SUPER privilege.

ALTER VIEW as introduced in MySQL 5.0.1.The DEFINER and SQL SECURITY clauses
were introduced in 5.0.16.

ANALYZE TABLE

ANALYZE

[LOCAL | NO_WRITE_TO_BINLOG]

{TABLE | TABLES} tbl_name [, tbl_name] ...

This statement causes MySQL to analyze each of the named tables, storing the distri-
bution of key values present in each table’s indexes. It works for MyISAM and InnoDB
tables and requires SELECT and INSERT privileges on each table.After analysis, the
Cardinality column of the output from SHOW INDEX indicates the approximate number
of distinct values in the indexes. Information from the analysis can be used by the opti-
mizer during subsequent queries to perform certain types of joins more quickly.

Analyzing a table requires a read lock, which prevents that table from being updated
during the operation. If you run ANALYZE TABLE on a table that has already been analyzed
and that has not been changed since, no analysis is performed.

ANALYZE TABLE produces output in the format described in the entry for CHECK TABLE.
If binary logging is enabled, MySQL writes the ANALYZE TABLE statement to the bi-

nary log unless the LOCAL or NO_WRITE_TO_BINLOG option is given.

BEGIN

BEGIN [WORK]

This statement is a synonym for START TRANSACTION; see the entry for that statement.
BEGIN can also be used with END in stored programs to create a compound statement;

see Section E.2,“Compound Statement Syntax.”

CACHE INDEX

CACHE INDEX

tbl_name [[INDEX | KEY] (index_name [, index_name] ...)]

[, tbl_name [[INDEX | KEY] (index_name [, index_name] ...)]] ...

IN cache_name

Sets up an association between one or more MyISAM tables and the named key
cache, which must already exist.You must have the INDEX privilege for each table named
in the statement.The default key cache is named default.The table indexes can be
loaded into the cache later with LOAD INDEX. Currently, the statement associates all in-
dexes in each table with the cache, even though the syntax allows for designating only
certain indexes. Individual-index cache association remains for future implementation.

947E.1 SQL Statement Syntax (Non-Compound Statements)

The following statement caches indexes for the member statement in the key cache
named member_cache:

CACHE INDEX member IN member_cache;

CACHE INDEX produces output in the format described in the entry for CHECK TABLE.
See Section 12.7.2,“Configuring the MyISAM Storage Engine,” for more information

about MyISAM key cache management.

CALL

CALL routine_name([proc_param [, proc_param] ...])

CALL routine_name[()]

Invokes the stored procedure that has the given name.The optional parameter list con-
sists of one or more parameter values separated by commas. If any of these are OUT or
INOUT parameters, the procedure can return values through them.

When the stored routine returns, you can get the rows-affected value for its most re-
cent statement that modifies rows by invoking the ROW_COUNT() function. From C, the
same value can be obtained by calling mysql_affected_rows().

If the procedure takes no arguments, the () following the procedure name is optional
as of MySQL 5.0.30/5.1.13.

CHANGE MASTER

CHANGE MASTER TO option [, option] ...

Changes replication parameters for a slave server, to indicate which master host to use,
how to connect to it, or which logs to use.The parameters are saved in the slave’s
master.info and relay-log.info files, which are used for subsequent slave restarts.

Each option specifies a parameter definition in param = value format, chosen from
the following list:

n MASTER_CONNECT_RETRY = n

The number of seconds to wait between attempts to connect to the master.
n MASTER_HOST = 'host_name'

The host where the master server is running.
n MASTER_LOG_FILE = 'file_name'

The name of the master’s binary log file to use for replication.
n MASTER_LOG_POS = n

The position within the master log file from which to begin or resume replication.
n MASTER_PASSWORD = 'pass_val'

The password to use for connecting to the master server.

948 Appendix E SQL Syntax Reference

n MASTER_PORT = n

The TCP/IP port number to use for connecting to the master server.
n MASTER_SSL = {0 | 1}

MASTER_SSL_CA = 'file_name'

MASTER_SSL_CAPATH = 'dir_name'

MASTER_SSL_CERT = 'file_name'

MASTER_SSL_CIPHER = 'str'

MASTER_SSL_KEY = 'file_name'

MASTER_SSL_VERIFY_SERVER_CERT = {0 | 1}

These options specify parameters for establishing an SSL connection to the master.
They have the same meaning as the corresponding --ssl-xxx options described in
Section F.1.2.1,“Standard SSL Options.”The values are saved to the master.info
file but have no effect unless the slave has SSL support enabled.
MASTER_SSL_VERIFY_SERVER_CERT was introduced in MySQL 5.1.18.

n MASTER_USER = 'user_name'

The username of the account to use for connecting to the master server.
n RELAY_LOG_FILE = 'file_name'

The slave relay log filename.
n RELAY_LOG_POS = n

The current position within the slave relay log.

Parameters that are not specified in the statement maintain their current values, with
the following exception: Changes to MASTER_HOST or MASTER_PORT normally indicate
that you’re switching to a different master server, so if you specify either of those options,
the MASTER_LOG_FILE and MASTER_LOG_POS values are set to the beginning of the mas-
ter’s first binary log file.

You should not mix the MASTER_LOG_FILE and MASTER_LOG_POS options with the
RELAY_LOG_FILE and RELAY_LOG_POS options in the same statement.

The CHANGE MASTER statement deletes any existing relay log files and begins a new
one unless the RELAY_LOG_FILE or RELAY_LOG_POS options are specified.

CHECK TABLE

CHECK {TABLE | TABLES} tbl_name [, tbl_name] ... [option] ...

This statement checks tables for errors. It works with MyISAM and InnoDB tables,
ARCHIVE tables as of MySQL 5.0.16, and CSV tables as of 5.1.19.As of 5.0.2, CHECK
TABLE can also check view definitions for problems such as references to tables that no
longer exist. CHECK TABLE requires the SELECT privilege for each table or view to be
checked.

949E.1 SQL Statement Syntax (Non-Compound Statements)

For MyISAM tables, CHECK TABLE also updates index statistics. For InnoDB tables, the
server terminates after writing a message to the error log if it finds a problem, to prevent
further errors from occurring.

Each option value can be one of the following options. Unless otherwise specified,
these options apply to MyISAM tables, are ignored for InnoDB tables and views, and may
or may not be used by other storage engines.

n CHANGED skips table checking if the table was properly closed and has not been
changed since the last time it was checked.

n EXTENDED performs an extended check that attempts to ensure that the table is fully
consistent.This is the most thorough check available, and consequently the slowest.
For example, it verifies that each key in each index points to a data row.

n FAST checks a table only if it was not properly closed.
n MEDIUM checks the index, scans the data rows for problems, and performs a check-

sum verification.This is the default if no options are given.
n QUICK scans only the indexes and not the data rows.
n FOR UPGRADE determines whether the checked table is compatible with your cur-

rent version of MySQL, so this option is useful after an upgrade. If there is an in-
compatibility, the server runs a full check. If the full check fails, you should attempt
to repair the table.The server updates the table’s .frm file with the current MySQL
version unless there was an incompatibility and the full check failed.This option is
not specific to MyISAM tables. It was introduced in MySQL 5.0.19/5.1.7.

If you are not checking a table with FOR UPGRADE and you don’t specify one of QUICK,
MEDIUM, or EXTENDED when checking a MyISAM table, CHECK TABLE defaults to MEDIUM
if the table has variable-length rows. If it has fixed-length rows, the default is QUICK if you
specify CHANGED or FAST, and MEDIUM otherwise.

CHECK TABLE returns information about the result of the operation. For example:

mysql> CHECK TTABLE t;

+--------+-------+----------+----------+

| Table | Op | Msg_type | Msg_text |

+--------+-------+----------+----------+

| test.t | check | status | OK |

+--------+-------+----------+----------+

ANALYZE TABLE, CACHE INDEX, LOAD INDEX INTO CACHE, OPTIMIZE TABLE, and
REPAIR TABLE also return information in this format. Table indicates the table on which
the operation was performed. Op indicates the type of operation carried out by the state-
ment.The Msg_type and Msg_text columns provide information about the result of the
operation; if this value does not indicate that the table is okay or already up to date, you
should repair it.

950 Appendix E SQL Syntax Reference

CHECKSUM TABLE

CHECKSUM {TABLE | TABLES} tbl_name [, tbl_name] ...

[QUICK | EXTENDED]

Reports a table checksum.

mysql> CHECKSUM TTABLE president;

+------------------+------------+

| Table | Checksum |

+------------------+------------+

| sampdb.president | 3032762697 |

+------------------+------------+

If a table does not exist, the Checksum value is NULL, and (as of MySQL 5.0.3) a warn-
ing is generated.

By default, the statement reports the live checksum if the storage engine supports it.
(A live checksum is one that is updated each time the table is modified.) For MyISAM
tables, you can turn on live checksumming for a table by using the CHECKSUM = 1 option
with CREATE TABLE or ALTER TABLE.

With the QUICK option, the statement reports the live checksum if there is one and
NULL otherwise.With the EXTENDED option, a checksum is calculated by reading the entire
table and then reported.This operation becomes slower as the table size increases.

COMMIT

COMMIT [WORK] [AND [NO] CHAIN] [[NO] RELEASE]

Commits changes made by statements in the current transaction, to record those
changes permanently in the database. COMMIT works only for transaction-safe storage
engines. (For non-transactional storage engines, statements are committed as they are
executed.)

The optional keyword WORK has no effect.The CHAIN and RELEASE clauses affect how
the server handles transaction completion.With AND CHAIN, when a transaction ends, an-
other one begins with the same isolation level.With RELEASE, when a transaction ends,
the server terminates the current connection.Adding NO to either CHAIN or RELEASE
causes a new transaction not to begin or the connection not to terminate, respectively.
The behavior of COMMIT in the absence of these clauses is affected by the setting of the
completion_type system variable. By default, neither CHAIN nor RELEASE is applied.

COMMIT has no effect if autocommit has not been disabled with START TRANSACTION
or by setting the autocommit variable to 0.

Some statements implicitly end any current transaction, as if a COMMIT had been per-
formed, because they cannot be part of a transaction. In general, these tend to be DDL
(data definition language) statements that create, alter, or drop databases or objects in
them, or statements that are lock-related. For example, if you issue any of the following
statements while a transaction is in progress, the server commits the transaction first be-
fore executing the statement:

951E.1 SQL Statement Syntax (Non-Compound Statements)

ALTER TABLE

CREATE INDEX

DROP DATABASE

DROP INDEX

DROP TABLE

LOCK TABLES

RENAME TABLE

SET autocommit = 1 (if not already set to 1)

TRUNCATE TABLE

UNLOCK TABLES (if tables currently are locked)

For a complete list of statements that cause implicit commits in your version of
MySQL, see the MySQL Reference Manual.

The WORK, CHAIN, and RELEASE clauses were introduced in MySQL 5.0.3.

CREATE DATABASE

CREATE DATABASE [IF NOT EXISTS] db_name [db_attr] ...

db_attr:

[DEFAULT] CHARACTER SET [=] charset

| [DEFAULT] COLLATE [=] collation

Creates a database with the given name.The statement fails if you don’t have the
CREATE privilege for the database.Attempts to create a database with a name that already
exists normally result in an error; if the IF NOT EXISTS clause is specified, the database is
not created but no error occurs.

The optional CHARACTER SET and COLLATE attributes may be given after the database
name to specify a default character set and collation for the database.These attributes are
used for tables for which no character set or collation is given explicitly. charset can be a
character set name, or DEFAULT to use the current server character set. collation can be
a collation name, or DEFAULT to use the current server collation.

If neither attribute is given, the server character set and collation are used. If
CHARACTER SET is given without COLLATE, the default collation for the character set is
used. If COLLATE is given without CHARACTER SET, the character set is determined from
the collation. If both CHARACTER SET and COLLATE are used, the collation must be com-
patible with the character set.

MySQL stores database attributes in the db.opt file in the database directory.

CREATE EVENT

CREATE

[DEFINER = definer_name]

EVENT [IF NOT EXISTS] event_name

ON SCHEDULE schedule

[ON COMPLETION [NOT] PRESERVE]

[ENABLE | DISABLE | DISABLE ON SLAVE]

952 Appendix E SQL Syntax Reference

[COMMENT 'str']

[DO event_stmt]

schedule:

AT datetime

| EVERY expr interval [STARTS datetime] [ENDS datetime]

Creates a new event named event_name for the event scheduler.You must have the
EVENT privilege for the database to which the event belogs. By default, the event is cre-
ated in the default database.To create the event in a specific database, give the name in
db_name.event_name format.

The DEFINER clause determines the security context (the account to use for access
checking) when the event executes, as described in Section 4.5,“Security for Stored
Programs and Views.”The default is to use the account for the user who executes the
CREATE EVENT statement.

The ON SCHEDULE clause determines the execution schedule for the event (assuming
that the event scheduler is running). In the various formats for this clause, datetime is a
date and time value.The CURRENT_TIMESTAMP function (or its synonyms) can be used to
represent the current date and time. datetime expressions can use INTERVAL expr in-

terval arithmetic to add or subtract temporal intervals.This syntax is described in the
entry for the DATE_ADD() function in Section C.2.5,“Date and Time Functions.”The
interval value should not use any specifier that involves microseconds.

For ON SCHEDULE, the AT scheduling type sets up an event that executes once at the
specified time.The EVERY scheduling type sets up a repeating event that executes at regu-
lar intervals.The repeat time consists of a quantity and an interval modifier that speci-
fies how to interpret the interval (for example, 5 HOUR or '1:30' MINUTE_SECOND). By
default, the first execution occurs as soon as the event is created and execution occurs
every interval thereafter.The STARTS clause can be used to specify the initial start time.An
ENDS clause, if present, indicates the time at which the event no longer executes. In the ON
SCHEDULE clause, do not use table references or references to stored functions or user-
defined functions.

The DO clause specifies the statement to be executed when the event runs. It should be
a single SQL statement. If you need to use multiple statements, enclose them within
BEGIN and END to form a compound statement. (See Section E.2,“Compound Statement
Syntax.”)

An event that completes its final execution is dropped afterward by default. ON
COMPLETION NOT PRESERVE specifies the same behavior explicitly. ON COMPLETION
PRESERVE causes the event not to be dropped.

The ENABLE and DISABLE options specify that the event status when it is created
should be enabled (run according to schedule) or disabled (do not run).As of MySQL
5.1.18, DISABLE ON SLAVE indicates an event that is enabled on the server where it is cre-
ated but is disabled on any slave to which it replicates.

953E.1 SQL Statement Syntax (Non-Compound Statements)

The value of the sql_mode system variable in effect at event creation time is saved and
used when the event executes.

Events do not take input or produce output.That is, you cannot pass parameters to an
event, and output is discarded for statements such as SELECT which produce a result set
that normally is returned to the client.

CREATE EVENT was introduced in MySQL 5.1.6.The DEFINER clause was introduced
in 5.1.17.

CREATE FUNCTION, CREATE PROCEDURE

CREATE

[DEFINER = definer_name]

FUNCTION routine_name ([func_param [, func_param] ...])

RETURNS type

[characteristic] ...

routine_stmt

CREATE

[DEFINER = definer_name]

PROCEDURE routine_name ([proc_param [, proc_param] ...])

[characteristic] ...

routine_stmt

func_param:

param_name type

proc_param:

[IN | OUT | INOUT] param_name type

characteristic:

[NOT] DETERMINISTIC

| LANGUAGE SQL

| SQL SECURITY {DEFINER | INVOKER}

| COMMENT 'str'

These statements create new stored functions and stored procedures.As of MySQL
5.0.3, you must have the CREATE ROUTINE privilege for the given routine.

By default, the routine is created in the default database.To create the routine in a spe-
cific database, give the name in db_name.routine_name format.There cannot be two
functions or two procedures with the same name in the same database. However, a func-
tion and a procedure can have the same name.

Parameters for functions are defined by giving the function name and its type.The
type is any valid MySQL data type. Parameters supply values to a function when it is in-
voked, but changes to the parameters are not visible to the caller when the function re-
turns. (That is, they are treated as IN parameters.)

954 Appendix E SQL Syntax Reference

For a function, a RETURNS statement must follow the parameter list to indicate the data
type for the return value.

Parameters for procedures also are defined with a name and type, but the name can be
preceded by IN, OUT, or INOUT to indicate that the parameter is for input only, output
only, or both input and output:

n An IN parameter supplies a value to the procedure.The parameter can be modified
inside the procedure, but remains unchanged in the calling program after the proce-
dure terminates.

n An OUT parameter does not supply a value to the procedure. Its initial value inside
the procedure is NULL and it can be modified inside the procedure. Its final value is
visible to the calling program after the procedure terminates.

n An INOUT parameter supplies a value to the procedure and any changes to its value
within the procedure become visible to the caller.

If none of these keywords is given, the default is IN.
One or more characteristic values can be given, separated by spaces:

n DETERMINISTIC, NOT DETERMINISTIC

DETERMINISTIC indicates that a function always produces the same result when
called with the same parameter values. NOT DETERMINISTIC indicates that it might
not. DETERMINISTIC is used by the query optimizer as of MySQL 5.0.44/5.1.21.
Before that, it is not.

n LANGUAGE SQL

Indicates the language of the routine. Currently, this is parsed and ignored. In
MySQL, SQL is the only supported stored routine language, so this directive is un-
needed. However, if you’re thinking about porting your stored routines to another
database system that supports multiple languages, you might want to include a
LANGUAGE directive to specify SQL explicitly.

n SQL SECURITY

This characteristic, together with the DEFINER clause, determines the security con-
text (the account to use for access checking) when the routine executes, as de-
scribed in Section 4.5,“Security for Stored Programs and Views.” If DEFINER is
omitted, the default is to use the account for the user who executes the CREATE
statement. (This is also the policy before MySQL 5.0.20/5.1.8 when DEFINER was
introduced.) As of MySQL 5.0.3, the account against which privileges are checked
must have the EXECUTE privilege for the routine to be able to invoke it.The
EXECUTE and ALTER ROUTINE privileges are granted automatically to the routine
creator. (This behavior can be turned off by disabling the automatic_sp_
privileges system variable.)

955E.1 SQL Statement Syntax (Non-Compound Statements)

n COMMENT

A descriptive comment for the routine.The comment is displayed by the SHOW
CREATE FUNCTION, SHOW CREATE PROCEDURE, SHOW FUNCTION STATUS, and SHOW
PROCEDURE STATUS statements.

routine_stmt is the SQL statement that represents the body of the routine. It should
be a single SQL statement. If you need to use multiple statements, enclose them within
BEGIN and END to form a compound statement. (See Section E.2,“Compound Statement
Syntax.”)

Functions return a value to the caller and thus must have at least one RETURN statement
in the body. However, functions cannot execute statements that produce a result set.

The value of the sql_mode system variable in effect at routine creation time is saved
and used when the routine executes.

CREATE INDEX

CREATE [UNIQUE | FULLTEXT | SPATIAL] INDEX

index_name [index_type]

ON tbl_name (index_columns) [index_option] ...

index_type: USING {BTREE | HASH | RTREE}

index_option:

index_type

| COMMENT 'str'

| KEY_BLOCK_SIZE [=] n

| WITH PARSER parser_name

Adds an index named index_name to the table tbl_name.The index is based on the
columns named in index_columns, which is a list of one or more columns in the table
separated by commas.This statement is handled internally as an ALTER TABLE statement.
See the entry for ALTER TABLE for details. (To create several indexes on a table, it’s prefer-
able to use ALTER TABLE; you can add all the indexes with a single statement, which is
faster than adding them individually.)

The UNIQUE, FULLTEXT, or SPATIAL keywords can be given to indicate a specific kind
of index. If none are given, a non-unique index is created. CREATE INDEX cannot be used
to create a PRIMARY KEY; use ALTER TABLE instead.

FULLTEXT and SPATIAL indexes are allowed only for MyISAM tables. FULLTEXT in-
dexes are allowed only for non-binary string columns (CHAR, VARCHAR, TEXT), and
SPATIAL indexes only for NOT NULL spatial columns.

Some storage engines allow the indexing algorithm to be specified, as denoted by
index_type.The algorithm value can be BTREE for MyISAM and InnoDB tables, either
HASH or BTREE for MEMORY tables, and RTREE for SPATIAL indexes in MyISAM tables.

956 Appendix E SQL Syntax Reference

Before MySQL 5.0.60/5.1.10, the index_type clause, if given, must appear before ON
tbl_name.After that, this position is deprecated and index_type should be given at the
end of the index definition as an index_option value.

In MySQL 5.0 (as of 5.0.60), the only allowable index_option value at the end of an
index definition is index_type (described previously). In MySQL 5.1 (as of 5.1.10), al-
lowable index_option values are index_type or those following:

n COMMENT 'str' provides a descriptive comment for the index (up to 1024 charac-
ters).This option can be used as of MySQL 5.2.4.

n KEY_BLOCK_SIZE [=] n suggests a size in bytes that the storage engine should use
for key blocks in the index.A value of 0 means to use the default size.

n WITH PARSER parser_name is allowable only for FULLTEXT indexes. It names the
parser plugin to use for the index. See the MySQL Reference Manual for details on
parser plugins.

For additional information about index creation, see Section 2.6.4,“Indexing Tables.”

CREATE SERVER

CREATE SERVER server_name

FOREIGN DATA WRAPPER wrapper_name

OPTIONS (option [, option] ...)

option:

USER 'str'

| PASSWORD 'str'

| HOST 'str'

| PORT n

| DATABASE 'str'

| SOCKET 'str'

| OWNER 'str'

The definition of a FEDERATED table that accesses a remote MySQL table must
specify how to connect to the remote server. One way to do this is with a table
CONNECTION option that lists the connection parameters explicitly using this syntax:

CONNECTION =

'mysql://user_name[:password]@host_name[:port_num]/db_name/tbl_name'

An alternative is to use the CREATE SERVER statement, which creates a server definition
as a row that contains connection parameters in the mysql.servers table. CREATE
SERVER requires the SUPER privilege. Once created, the definition can be named in the
CONNECTION option for FEDERATED tables instead of using a connection string. If sev-
eral FEDERATED tables share the same parameters, a server definition can simplify the
table-creation process.

957E.1 SQL Statement Syntax (Non-Compound Statements)

The server_name value is the name of the definition, which is what you refer to in
the CONNECTION option for a FEDERATED table.The option should be given in one of
these formats (in the second case, the remote table name is assumed to be the same as the
local table name):

CONNECTION = 'server_name/remote_table_name'

CONNECTION = 'server_name'

The server name can be up to 64 characters long and is not case sensitive.The scope of
the name is global to the local server and thus must be unique among server definitions
named in the mysql.servers table.

The wrapper_name value should be mysql, either unquoted or quoted as a string.
The OPTIONS clause specifies connection parameters. Each option value must be either

a literal string or number as indicated by the statement syntax description.The default for
a missing string or numeric option is the empty string or 0, respectively. String options
can be up to 64 characters long. Numeric options must be 0 or greater.

The wrapper name and most of the OPTIONS values in a server definition correspond
to the parts of a 'mysql://...' string that specifies connection parameters explicitly.The
OWNER option is stored in the mysql.servers table but currently is not used.

This statement was introduced in MySQL 5.1.15.

CREATE TABLE

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name

{

(create_definition,...) [table_option] ...

[partition_scheme] [trailing_select]

| [(create_definition,...) [table_option] ...

[partition_scheme] trailing_select

| LIKE tbl_name2

| (LIKE tbl_name2)

}

table_option: (see following discussion)

trailing_select:

[IGNORE | REPLACE] [AS] select_stmt

create_definition:

col_name col_definition [reference_definition]

| [CONSTRAINT [name]] PRIMARY KEY

[index_name] [index_type]

(index_columns) [index_option] ...

| [CONSTRAINT [name]] UNIQUE [INDEX | KEY]

[index_name] [index_type]

(index_columns) [index_option] ...

| {INDEX | KEY} [index_name] [index_type]

958 Appendix E SQL Syntax Reference

(index_columns) [index_option] ...

| {FULLTEXT | SPATIAL} [INDEX | KEY]

[index_name] (index_columns) [index_option] ...

| [CONSTRAINT [name]] FOREIGN KEY [fk_name]

(index_columns) [reference_definition]

| CHECK (expr)

col_definition:

data_type

[NOT NULL | NULL] [DEFAULT default_value]

[AUTO_INCREMENT] [PRIMARY KEY] [UNIQUE [KEY]]

[COMMENT 'str']

index_type: (see following discussion)

index_option: (see following discussion)

reference_definition:

REFERENCES tbl_name (index_columns)

[ON DELETE reference_action]

[ON UPDATE reference_action]

[MATCH FULL | MATCH PARTIAL | MATCH SIMPLE]

reference_action:

RESTRICT | CASCADE | SET NULL | NO ACTION | SET DEFAULT

partition_scheme:

PARTITION BY

{

RANGE(expr)

| LIST(expr)

| [LINEAR] HASH(expr)

| [LINEAR] KEY(col_list)

}

[PARTITIONS n]

[SUBPARTITION BY

{

[LINEAR] HASH(expr)

| [LINEAR] KEY(col_list)

}

[SUBPARTITIONS n]

]

[(partition_definition [, partition_definition] ...)]

partition_definition:

PARTITION partition_name

[VALUES {LESS THAN {(expr) | MAXVALUE} | IN (value_list)}]

959E.1 SQL Statement Syntax (Non-Compound Statements)

[partition_option] ...

[(subpartition_definition [, subpartition_definition] ...)]

subpartition_definition:

SUBPARTITION subpartition_name

[partition_option] ...

partition_option: (see following discussion)

The CREATE TABLE statement creates a new table named tbl_name in the default data-
base. If the name is specified as db_name.tbl_name, the table is created in the named
database.The statement requires the CREATE privilege for the table.

Normally, attempts to create a table with a name that already exists result in an error.
No error occurs under two conditions. First, if the IF NOT EXISTS clause is specified, the
table is not created and no error occurs. Second, if TEMPORARY is specified and the original
table is not a temporary table, the new temporary table is created, and the original table
named tbl_name becomes hidden to the client while the temporary table exists.The
original table remains visible to other clients because a temporary table is visible only to
the client that created it.The original table becomes visible again to the current client if
an explicit DROP TABLE is issued for the temporary table, or if the temporary table is re-
named to some other name.You must have the CREATE TEMPORARY TABLE privilege to
create temporary tables.

If the TEMPORARY keyword is given, the table exists only until the current client con-
nection ends (either normally or abnormally), or until a DROP TABLE statement is issued.

The create_definition list names the columns and indexes that you want to create.
The list is optional if you create the table by means of a trailing SELECT statement.
table_option values enable you to specify various properties for the table.
partition_scheme defines partitioning characteristics if table storage is to be partitioned.
If a trailing select_stmt is specified (in the form of an arbitrary SELECT statement), the
table is created using the result set that it returns.A trailing LIKE clause creates the new
table as an empty copy of an existing table.These clauses are described more fully in the
following sections.

Column and index definitions. A create_definition may be a column or index
definition, a FOREIGN KEY clause, or a CHECK clause. CHECK is parsed but ignored. FOREIGN
KEY is treated similarly, except for InnoDB tables.

A column definition col_definition begins with a data type data_type and may be
followed by several optional keywords.The type may be any of the data types listed in
Appendix B,“Data Type Reference.” See that appendix for type-specific attributes that
apply to the columns you want to define. Other optional keywords that may follow the
data type are as follows:

n NULL, NOT NULL

Specifies that the column may or may not contain NULL values. If neither is speci-
fied, NULL is the default.

960 Appendix E SQL Syntax Reference

n DEFAULT default_value

Specifies the default value for the column.This cannot be used for BLOB or TEXT
types, spatial types, or columns with the AUTO_INCREMENT attribute. Except for
TIMESTAMP, a default value must be a constant, specified as a number, a string, or
NULL. For the rules that MySQL uses for assigning a default value if you include no
DEFAULT clause, see Section 3.2.3,“Specifying Column Default Values.”

n AUTO_INCREMENT

This keyword applies only to integer and floating-point data types.An
AUTO_INCREMENT column is special in that when you insert NULL into it, the value
actually inserted is the next value in the column sequence.Typically, this is one
greater than the current maximum value in the column. AUTO_INCREMENT values
start at 1 by default. (Some storage engines allow the initial value to be specified
with an AUTO_INCREMENT table option. See the discussion of table options that fol-
lows.) The column must also be indexed and should be NOT NULL.There can be at
most one AUTO_INCREMENT column per table.

n [PRIMARY] KEY

Specifies that the column is a PRIMARY KEY.A PRIMARY KEY must be NOT NULL.
MySQL adds NOT NULL to the column definition if you omit it.

n UNIQUE [KEY]

Specifies that the column is a UNIQUE index.
n COMMENT 'str'

A descriptive comment for the column.This attribute is displayed by SHOW CREATE
TABLE and SHOW FULL COLUMNS.The comment can contain up to 1024 characters
(255 characters before MySQL 5.2.4).

The PRIMARY KEY, UNIQUE, INDEX, KEY, FULLTEXT, and SPATIAL clauses specify indexes.
PRIMARY KEY and UNIQUE specify indexes that must contain unique values. INDEX and KEY

are synonymous; they specify indexes that may contain duplicate values.The index is
based on the columns named in index_columns, which is a list of one or more columns
in the table separated by commas. If the index name index_name is not specified, MySQL
chooses a name automatically based on the name of the first indexed column.

FULLTEXT and SPATIAL indexes are allowed only for MyISAM tables. FULLTEXT in-
dexes are allowed only for non-binary string columns (CHAR, VARCHAR, TEXT), and
SPATIAL indexes only for NOT NULL spatial columns.

PRIMARY KEY columns must always be NOT NULL; MySQL adds NOT NULL to the defi-
nition of such columns if you omit it.

For index definitions that include index_type or index_option clauses, some storage
engines allow you to specify the indexing algorithm or other index definition modifiers.
See the entry for CREATE INDEX for details about which indexing values are allowed in

961E.1 SQL Statement Syntax (Non-Compound Statements)

different versions of MySQL. For additional information about index creation, see
Section 2.6.4,“Indexing Tables.”

Table options. Each table_option value specifies an additional characteristic of the
table, chosen from the following list. Each option setting applies to all storage engines un-
less otherwise noted.The = in each setting is optional and settings can be separated by
whitespace or commas.

n AUTO_INCREMENT = n

The first AUTO_INCREMENT value to be generated for the table.This option is effec-
tive for MyISAM and MEMORY tables, and for InnoDB tables as of MySQL
5.0.3. For InnoDB tables, the effect is canceled if you restart the server before gen-
erating any AUTO_INCREMENT values.

n AVG_ROW_LENGTH = n

The approximate average row length of your table. For MyISAM tables, MySQL
uses the product of the AVG_ROW_LENGTH and MAX_ROWS values to determine the
maximum data file size.The MyISAM storage engine can use internal row pointers
from 2 to 7 bytes wide.The default pointer width is wide enough to allow tables
up to 256TB. If you require a larger table (and your operating system supports
larger files), the MAX_ROWS and AVG_ROW_LENGTH table options provide information
that allows the MyISAM storage engine to adjust the internal pointer width.A
large product of these values causes the engine to use wider pointers, enabling file
sizes up to 65,536TB. Conversely, a small product allows the engine to use smaller
pointers.This won’t save you much space for a single small table, but the cumulative
savings may be significant if you have many of them.

To size the data pointers directly, set the myisam_data_pointer_size system vari-
able before creating the table.

n [DEFAULT] CHARACTER SET = charset

The table’s default character set. charset may be a character set name, or DEFAULT
to use the database character set.This option determines which character set to use
for character columns that are defined without an explicit character set. In the fol-
lowing example, c1 will be assigned the sjis character set and c2 the ujis charac-
ter set:

CREATE TABLE t

(

c1 CHAR(50) CHARACTER SET sjis,

c2 CHAR(50)

) CHARACTER SET ujis;

This table option also applies to subsequent table modifications made with ALTER

TABLE for character column definition changes that do not name a character set
explicitly.

962 Appendix E SQL Syntax Reference

n CHECKSUM = {0 | 1}

If this option is set to 1, MySQL maintains a live checksum for the table that is up-
dated whenever the table is modified.There is a slight penalty for updates to the
table, but the presence of checksums improves the table checking process. (My-
ISAM tables only.)

n [DEFAULT] COLLATE = collation

The table’s default character set collation. collation may be a collation name, or
DEFAULT to use the default collation of the table character set.

n COMMENT = 'str'

A descriptive comment for the table.This comment is displayed by SHOW CREATE
TABLE and SHOW TABLE STATUS.The comment can contain up to 2048 characters
(60 characters before MySQL 5.2.4).

n CONNECTION = 'connect_str'

The string that specifies how to connect to the remote server for a FEDERATED
table.This option was introduced in MySQL 5.0.13. Older versions should use
COMMENT to specify connect_str.

n DATA DIRECTORY = 'dir_name'

This option is used only for MyISAM tables and only on Unix. It indicates the di-
rectory where the data (.MYD) file should be written. 'dir_name' must be a full
pathname.This option works only if the server is started without the --skip-
symbolic-links option. On some Unix variants, symlinks are not thread-safe and
are disabled by default.

n DELAY_KEY_WRITE = {0 | 1}

If this is set to 1, the key cache is flushed only occasionally for the table, rather than
after each insert operation (MyISAM tables only).This improves performance but
may require that the table be repaired if a crash occurs.

n ENGINE = engine_name

The storage engine to use for the table.The various storage engines are described
in the Section 2.6.1,“Storage Engine Characteristics.”The default engine is My-
ISAM unless the server has been configured otherwise.You can start the server with
a different default engine by using the --default-storage-engine option.The
known engine names can be displayed with the SHOW ENGINES statement. If you at-
tempt to create a table using a storage engine that is not available, the effect of the
statement is subject to the setting of the NO_ENGINE_SUBSTITUTION SQL mode.

n INDEX DIRECTORY = 'dir_name'

This option is like DATA DIRECTORY but indicates the directory where the
index (.MYI) file should be written. It is subject to the same constraints as DATA
DIRECTORY.

963E.1 SQL Statement Syntax (Non-Compound Statements)

n INSERT_METHOD = {NO | FIRST | LAST}

This is used for MERGE tables to specify how to insert rows.A value of NO disal-
lows inserts entirely.Values of FIRST or LAST indicate that rows should be inserted
into the first or last of the MyISAM tables that make up the MERGE table.

n KEY_BLOCK_SIZE = n

A suggested size in bytes that the storage engine should use for key blocks in in-
dexes.A value of 0 means to use the default size.This table default can be overrid-
den by index definitions include their own KEY_BLOCK_SIZE option.This option
was introduced in MySQL 5.1.10.

n MAX_ROWS = n

A hint to the storage engine about the maximum number of rows you plan to store
in the table.The table will be created to allow at least this many rows.The descrip-
tion of the AVG_ROW_LENGTH option indicates how this value is used.

n MIN_ROWS = n

A hint to the storage engine about the minimum number of rows you plan to store
in the table.This option can be used for MEMORY tables to give the MEMORY
storage engine a hint about how to optimize memory usage.

n PACK_KEYS = {0 | 1 | DEFAULT}

This option controls index compression for MyISAM tables, which enables runs of
similar index values to be compressed.The usual effect is an improvement in
retrieval performance but an update penalty.A value of 0 specifies no index
compression.A value of 1 specifies compression for string (CHAR, VARCHAR, BINARY,
VARBINARY) and numeric index values.A value of DEFAULT can be used, which
specifies compression only for long string columns.

n PASSWORD = 'str'

A password for encrypting the table’s format file.This option normally has no
effect; it is enabled only for certain support contract customers.

n ROW_FORMAT =

{DEFAULT | DYNAMIC | FIXED | COMPRESSED | REDUNDANT | COMPACT}

The row storage type. For MyISAM tables, a value of DYNAMIC or FIXED specifies
variable-length or fixed-length row format.A value of COMPRESSED can be set only
by the myisampack program and indicates that the table is compressed and read-
only.

The REDUNDANT and COMPACT formats apply to InnoDB tables. COMPACT format is
used by default as of MySQL 5.0.3.The original format can be specified with
ROW_FORMAT = REDUNDANT.

A storage engine may ignore this option if the specified row format cannot be
used. For example, FIXED cannot be used if the table contains BLOB or TEXT
columns. Use SHOW TABLE STATUS and check the Row_format value to see what
format the storage engine actually chose.

964 Appendix E SQL Syntax Reference

n TYPE = engine_name

This is a deprecated synonym for the ENGINE table option. MySQL recognizes it
but generates a warning until MySQL 5.2.5, at which point it is unavailable.

n UNION = (tbl_list)

This option is used for MERGE tables. It specifies a comma-separated list of the
MyISAM tables that make up the MERGE table.

Trailing SELECT statement. If a select_stmt clause is specified (as a trailing SELECT
statement), the table is created using the contents of the result set returned by the state-
ment. Rows that duplicate values in a unique index are either ignored or replace existing
rows according to whether IGNORE or REPLACE is specified. If neither is specified, the
statement aborts with an error.

Trailing LIKE clause. If a trailing LIKE tbl_name2 clause is given, the table is created
as an empty copy of tbl_name2.You must have the SELECT privilege for tbl_name2.The
copy will include the same column definitions, index definitions, and table options, with
these exceptions:The DATA DIRECTORY and INDEX DIRECTORY table options are not
copied, nor are foreign key definitions.

Foreign key support. The InnoDB storage engine provides foreign key support.A
foreign key in a child table is indicated by FOREIGN KEY, an optional foreign key ID, a list
of the columns that make up the foreign key, and a REFERENCES definition.The ID, if
given, is ignored unless InnoDB automatically creates an index for the foreign key; in that
case, fk_name becomes the index name.The REFERENCES definition names the parent
table and columns to which the foreign key refers, and indicates what to do when a par-
ent table row is deleted.The default actions are to prevent deletes or updates to the parent
or child tables that would compromise referential integrity.The RESTRICT and NO ACTION

actions are the same as specifying no action.The ON DEFAULT and ON UPDATE clauses may
be given to specify explicit actions.The actions that InnoDB implements are CASCADE
(delete or update the corresponding child table rows) and SET NULL (set the foreign key
columns in the corresponding child table rows to NULL).The SET DEFAULT action is not
implemented and InnoDB issues an error.

MATCH clauses in REFERENCE definitions are parsed but ignored. If you specify a foreign
key definition for a storage engine other than InnoDB, the entire definition is ignored.

For further discussion of foreign keys, see Section 2.14,“Foreign Keys and Referential
Integrity.”

Partitioning options. MySQL 5.1 introduces support for table partitioning, a feature
that enables you to define tables for which storage is divided into different sections.The
following discussion provides a brief summary of the syntax for defining table partitions.
See Section 2.6.2.6,“Using Partitioned Tables,” for other discussion and examples, and the
MySQL Reference Manual for additional information.

A partitioning description begins with PARTITION BY and a partitioning function that
computes a value for each table row.This value determines which partition the row is
stored in.The description optionally may also include these components:

965E.1 SQL Statement Syntax (Non-Compound Statements)

n A PARTITIONS n clause to indicate how many partitions the table has. n should be a
positive integer. If this clause is present and any partition_definition clauses are
also present, there must be n such definitions.The maximum number of partitions
is 1024, including subpartitions.

n A description of how to divide partitions into subpartitions.
n A list of partition_definition clauses for the partitions. Each
partition_definition describes the characteristics of a single partition. It pro-
vides a name for the partition, and can include a VALUES clause describing which
partitioning function values map into the partition, other partition options, and a
list of subpartition definitions. Each subpartition_definition clause is similar
but describes a subpartition and cannot contain a VALUES clause or subpartition
definitions.

There are four types of partitioning functions that compute values for assigning table
rows to partitions. In the following descriptions, expr is an expression that refers to one or
more columns in the table, and col_list is a comma-separated list of one or more col-
umn names. Column names can refer only to the table being created, not to other tables.

n RANGE(expr) partitioning associates each partition with a subset of the range of
possible values of expr. It must be used in conjunction with partition definitions
that each include a VALUES LESS THAN clause specifying the integer upper limit on
function values that map into the partition. (NULL values map into the first parti-
tion.) The VALUES clauses for successive partitions should list increasing upper limit
values.The final partition can use MAXVALUES, which applies to all values not ac-
counted for by the preceding partitions.

CREATE TABLE t (income BIGINT, ...)

PARTITION BY RANGE (income)

(

PARTITION p0 VALUES LESS THAN (10000),

PARTITION p1 VALUES LESS THAN (30000),

PARTITION p2 VALUES LESS THAN (75000),

PARTITION p3 VALUES LESS THAN (150000),

PARTITION p4 VALUES LESS THAN MAXVALUE

);

n LIST(expr) partitioning associates each partition with a list of values. It must be
used in conjunction with partition definitions that each include a VALUES IN clause
enumerating a list of integer function values that map into the partition. If expr can
evaluate to NULL, include NULL in one of the VALUES lists.

CREATE TABLE t (id INT NULL, ...)

PARTITION BY LIST(id)

(

PARTITION p0 VALUES IN (1, 2, 3),

PARTITION p1 VALUES IN (4, 5, 6, NULL)

);

966 Appendix E SQL Syntax Reference

n HASH(expr) partitioning associates rows with partitions based on expr values com-
puted from row content.Typically, HASH() partitioning is used with a PARTITIONS n

clause that specifies how many partitions to create. Row assignment is based on the
remainder of dividing expr by n.

CREATE TABLE t (d DATE, ...)

PARTITION BY HASH(TO_DAYS(d))

PARTITIONS 5;

The HASH() partitioning function can be preceded by LINEAR, which changes the
hashing algorithm. One advantage of LINEAR is that certain partition management
operations become more efficient, such as adding or dropping partitions with
ALTER TABLE. However, it is also likely that rows will be less evenly distributed
among partitions than if LINEAR is not used.

n KEY(col_list) partitioning is similar to HASH() partitioning, but you name the
table columns from which to compute the hash value and the server supplies the
hashing function. KEY() can be preceded by LINEAR.

If you include a list of partition definitions for HASH() or KEY() partitioning, the defi-
nitions should not have VALUES clauses. VALUES is used only with RANGE() and LIST().

expr must be deterministic, such that it always produces the same result for a given in-
put. For example, expr can use ABS(), but not RAND(). CREATE TABLE returns an error if
you use a function that is not allowed.

For RANGE() or LIST() partitioning, expr must evaluate to an integer value or NULL.
For HASH(), expr must evaluate to a non-NULL, non-negative integer, so if the expression
references any non-integer column, it must convert the column values to integer. For ex-
ample, if d is a DATE column, you can use TO_DAYS(d) to convert dates to number of days
so that HASH(TO_DAYS(d)) is a valid hash function.

For KEY(), the arguments are column names, but these columns need not have integer
data types.

Each partition_option value specifies an additional characteristic for a partition,
chosen from the following list. (The descriptions use the term “partition” but these op-
tions can also be used in subpartition definitions.) The = in each setting is optional.

n COMMENT = 'str'

A descriptive comment for the partition.
n DATA DIRECTORY = 'dir_name', INDEX DIRECTORY = 'dir_name'

These options are similar to the previously described table options of the same
names.They indicate where to store data or indexes for the partition.The default
location is the database directory for the database that contains the table.

n MAX_ROWS = n, MIN_ROWS = n

These options are hints that indicate the maximum and minimum number of rows
you plan to store in the partition. n should be a positive integer.

967E.1 SQL Statement Syntax (Non-Compound Statements)

n [STORAGE] ENGINE = engine_name

The storage engine to use for the partition. Mixed engines are not supported, so if
you use this clause, you must name the same engine for all partitions.

The following statements demonstrate some ways in which CREATE TABLE can be used:

n Create a table with three columns.The id column is a PRIMARY KEY, and the
last_name and first_name columns are used in a multiple-column index:

CREATE TABLE customer

(

id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,

last_name CHAR(30) NOT NULL,

first_name CHAR(20) NOT NULL,

PRIMARY KEY (id),

INDEX (last_name, first_name)

);

n Create a temporary table and make it a MEMORY table for greater speed:

CREATE TEMPORARY TABLE tmp_table

(id MEDIUMINT NOT NULL UNIQUE, name CHAR(40))

ENGINE = MEMORY;

n Create a table as an empty copy of another table:

CREATE TABLE prez_copy LIKE president;

n Create a table using the contents of another table:

CREATE TABLE prez_copy SELECT * FROM president;

n Create a table using only partial contents of another table:

CREATE TABLE prez_alive SELECT last_name, first_name, birth

FROM president WHERE death IS NULL;

If column definitions are specified for a table that is created and populated by means of
a trailing SELECT statement, the definitions are applied after the table contents have been
inserted into the table. For example, you can define that a selected column should be in-
dexed as a PRIMARY KEY:

CREATE TABLE new_tbl (PRIMARY KEY (a)) SELECT a, b, c FROM old_tbl;

You can specify definitions for the columns in the new table to override the defini-
tions that would be used by default based on the characteristics of the result set:

CREATE TABLE new_tbl

(a INT UNSIGNED NOT NULL AUTO_INCREMENT, b DATE, PRIMARY KEY (a))

SELECT a, b, c FROM old_tbl;

968 Appendix E SQL Syntax Reference

CREATE TRIGGER

CREATE

[DEFINER = definer_name]

TRIGGER trigger_name trigger_time trigger_event

ON tbl_name

FOR EACH ROW trigger_stmt

Associates a trigger with a table, such that when a given event occurs for the table, the
trigger activates and executes the triggered statement. By default, tbl_name is assumed to
be in the default database.To name a table in a specific database, give the name in
db_name.tbl_name format.

As of MySQL 5.1.6, CREATE TRIGGER requires the TRIGGER privilege for the table
with which the trigger is associated. Before 5.1.6, you must have the SUPER privilege.

When the trigger activates, the DEFINER clause determines the security context (the
account to use for access checking), as described in Section 4.5,“Security for Stored
Programs and Views.”The default is to use the account for the user who executes the
CREATE TRIGGER statement. Before MySQL 5.0.17 (when the DEFINER clause was intro-
duced), activation-time privilege checks use the account for the user who executes the
statement that causes trigger activation.The relevant account must have the TRIGGER
privilege for the table (SUPER before MySQL 5.1.6), the SELECT privilege for tbl_name if
the trigger definition refers to any of its columns via NEW or OLD, and the UPDATE privilege
for tbl_name if the trigger definition modifies any of its columns via SET NEW.col_name.
The account must also have any privileges normally required for the statements within
the trigger definition.

The trigger_time value is either BEFORE or AFTER, indicating that the triggered state-
ment should be executed before or after each row processed by the statement that caused
the trigger to be activated.

The trigger_event value should be INSERT, UPDATE, or DELETE to indicate what kind
of statement causes trigger activation.

trigger_stmt is the SQL statement that represents the body of the trigger. It should
be a single SQL statement. If you need to use multiple statements, enclose them within
BEGIN and END to form a compound statement. (See Section E.2,“Compound Statement
Syntax.”)

The syntax OLD.col_name can be used to refer to columns in the old row to be deleted
or updated in a DELETE or UPDATE trigger. Similarly, NEW.col_name can be used to refer to
columns in the new row to be inserted or updated in an INSERT or UPDATE trigger. OLD
and NEW are not case sensitive.

In a BEFORE trigger, you can change the values in the new row by using a SET statement:

SET NEW.col_name = value

The value of the sql_mode system variable in effect at trigger creation time is saved
and used when the trigger executes.

969E.1 SQL Statement Syntax (Non-Compound Statements)

Triggers do not take parameters, and, like stored functions, cannot execute statements
that produce a result set.

CREATE TRIGGER was introduced in MySQL 5.0.2.

CREATE USER

CREATE USER account [IDENTIFIED BY [PASSWORD] 'password']

[, account [IDENTIFIED BY [PASSWORD] 'password']] ...

Creates one or more MySQL accounts. For each account, a row is created in the
mysql.user table with no privileges. It is an error if the account already exists. Name
each account in 'user_name'@'host_name' format, as described in Section 12.4.1.1,
“Specifying Account Names.”

The IDENTIFIED BY clause, if given, assigns a password to the account. Normally, you
omit the PASSWORD keyword and specify the literal value of the password in plain text. Do
not use the PASSWORD() function, in contrast to the way passwords are specified for the
SET PASSWORD statement. In the special case that you want to specify the password hash
value in the format returned by PASSWORD(), precede the value with the keyword
PASSWORD. (This might be the case if you are using the output of SHOW GRANTS to re-create
an account. SHOW GRANTS displays the hashed password value, not the literal password.)

This statement was introduced in MySQL 5.0.2. It requires the global CREATE USER
privilege or the INSERT privilege for the mysql database.

CREATE VIEW

CREATE [OR REPLACE]

[ALGORITHM = {MERGE | TEMPTABLE | UNDEFINED}]

[DEFINER = definer_name]

[SQL SECURITY = {DEFINER | INVOKER}]

VIEW view_name [(col_list)] AS select_stmt

[WITH [CASCADED | LOCAL] CHECK OPTION]

Creates a view. If a view with the same name already exists, an error occurs unless the
OR REPLACE clause is given (in which case, the new view replaces the old one).

col_list, if present, provides names for the columns returned by the view, and there
must be a name for each column. If no col_list is given, the view column names come
from the SELECT statement in the view definition.

select_stmt is a SELECT statement that defines the view. It can refer to tables or
other views.

To create the view, you must have the CREATE VIEW privilege for it, some privilege for
every column selected by select_stmt, and the SELECT privilege for every column re-
ferred to elsewhere in select_stmt.You must also have the DROP privilege for the view if
you use OR REPLACE.

When the view is invoked, the DEFINER and SQL SECURITY clauses determine the se-
curity context (the account to use for access checking), as described in Section 4.5,
“Security for Stored Programs and Views.”The default is to use the account for the user
who executes the CREATE VIEW statement.

970 Appendix E SQL Syntax Reference

The ALGORITHM clause determines how the view is processed. For MERGE, when you is-
sue a statement that references the view, the view definition is merged into the statement.
The resulting statement is executed. For TEMPTABLE, temporary tables are used during the
course of executing the view. For UNDEFINED, the server chooses which algorithm to use.
The default is UNDEFINED.

The WITH CHECK OPTION clause applies to updatable views (views that can be used
with UPDATE or other table-modifying statements to update the underlying table). It al-
lows use of the view to insert or update only those rows in the underlying table for
which the WHERE clause in the SELECT statement is true.The CASCADED and LOCAL key-
words apply in the case that the view definition refers to other views.With CASCADED,
checks cascade to underlying views.With LOCAL, checks are restricted to the current view.
The default is CASCADED if neither is given.

The CREATE VIEW statement was introduced in MySQL 5.0.1.The WITH CHECK
OPTION clause was introduced in MySQL 5.0.2.The DEFINER and SQL SECURITY clauses
were implemented in 5.0.16.

DEALLOCATE PREPARE

{DEALLOCATE | DROP} PREPARE stmt_name

Deallocates a prepared statement named stmt_name that previously was prepared with
PREPARE.After deallocation, the statement cannot be executed again.

DELETE

DELETE [LOW_PRIORITY] [QUICK] [IGNORE] FROM tbl_name

[WHERE where_expr] [ORDER BY ...] [LIMIT n]

DELETE [LOW_PRIORITY] [QUICK] [IGNORE] tbl_name[.*] [, tbl_name[.*]] ...

FROM tbl_refs

[WHERE where_expr]

DELETE [LOW_PRIORITY] [QUICK] [IGNORE] FROM tbl_name[.*] [, tbl_name[.*]] ...

USING tbl_refs

[WHERE where_expr]

The first form of the DELETE statement deletes rows from the table tbl_name.The sec-
ond and third forms can delete rows from multiple tables, or delete rows based on condi-
tions that involve multiple tables.The syntax for tbl_refs is like that for SELECT, except
that you cannot specify a subquery as a table.

The rows deleted are those that match the conditions specified in the WHERE clause:

DELETE FROM score WHERE event_id = 14;

DELETE FROM member WHERE expiration < CURDATE();

If the WHERE clause is omitted, all rows in the table are deleted.

971E.1 SQL Statement Syntax (Non-Compound Statements)

LOW_PRIORITY causes the statement to be deferred until no clients are reading from
the table.This option is effective only for storage engines that use table-level locking, such
as MyISAM, MEMORY, and MERGE.

For MyISAM tables, specifying QUICK may make the statement quicker; the MyISAM
storage engine will not perform its usual index tree leaf merging.

With the IGNORE modifier, errors that occur while rows are being deleted are ignored.
These errors generate warnings instead.

If the LIMIT clause is given, the value n specifies the maximum number of rows that
will be deleted.

With ORDER BY, rows are deleted in the resulting sort order. Combined with LIMIT,
this provides more precise control over which rows are deleted. ORDER BY has same syntax
as for SELECT.

Normally, DELETE returns the number of rows deleted. DELETE with no WHERE clause
will empty the table.This is extremely fast, but a row count of zero may be returned.To
obtain a true count, specify a WHERE clause that matches all rows. For example:

DELETE FROM tbl_name WHERE TRUE;

There is a significant performance penalty for row-by-row deletion, however.
If you don’t need a row count, another way to empty a table is to use TRUNCATE TABLE.
The second and third forms of DELETE allow rows to be deleted from multiple tables at

once.They also enable you to identify the rows to delete based on joins between tables.
Names in the list of tables from which rows are to be deleted may be given as tbl_name
or tbl_name.*; the latter form is supported for ODBC compatibility.

The tbl_refs clause specifies which tables to join for determination of the rows to
delete.This clause may declare aliases for the tables named therein. Other parts of the
statement may refer to but not declare table aliases.

To delete rows in t1 having id values that match those in t2, use the first multiple-
table syntax like this:

DELETE t1 FROM t1 INNER JOIN t2 WHERE t1.id = t2.id;

Or the second syntax like this:

DELETE FROM t1 USING t1 INNER JOIN t2 WHERE t1.id = t2.id;

Multiple-table DELETE statements do not allow ORDER BY or LIMIT clauses.Also, the
WHERE clause cannot include a subquery that selects rows from a table from which row are
deleted.

DESCRIBE

{DESCRIBE | DESC} tbl_name [col_name | 'pattern']

{DESCRIBE | DESC} select_stmt

DESCRIBE with a table name (or view name, as of MySQL 5.0.1) produces the same
kind of output as SHOW COLUMNS. See the SHOW entry for more information.With this

972 Appendix E SQL Syntax Reference

syntax, a trailing column name restricts output to information for the given column.A
trailing string is interpreted as a pattern, as for the LIKE operator, and restricts output to
those columns having names that match the pattern.

n Display output for the last_name column of the president table:

DESCRIBE president last_name;

n Display output for both the last_name and first_name columns of the
president table:

DESCRIBE president '%name';

DESCRIBE with a SELECT statement is a synonym for EXPLAIN. See the EXPLAIN entry
for more information. (DESCRIBE and EXPLAIN actually are completely synonymous in
MySQL, but DESCRIBE is more often used to obtain table descriptions and EXPLAIN to
obtain SELECT statement execution information.)

DO

DO expr [, expr] ...

Evaluates the expressions without returning any results.This makes DO more conven-
ient than SELECT for expression evaluation, because you need not deal with a result set.
For example, DO can be used for setting variables or for invoking functions that you are
interested in primarily for their side effects rather than for their return values.

DO @sidea := 3, @sideb := 4, @sidec := SQRT(@sidea*@sidea+@sideb*+@sideb);

DO RELEASE_LOCK('mylock');

DROP DATABASE

DROP DATABASE [IF EXISTS] db_name

Removes the given database and its contents.The statement fails if the database does
not exist (unless you specify IF EXISTS) or if you don’t have the DROP privilege for it.
The IF EXISTS clause may be specified to suppress the error that normally results if the
database does not exist. In this case, a warning is generated instead.

A database is represented by a directory under the data directory.The server deletes
only files and directories that it can identify as having been created by itself (for example,
.frm files). It does not delete other files and directories. If you have put non-table files in
that directory, those files are not deleted by the DROP DATABASE statement.This results in
failure to remove the database directory and DROP DATABASE fails. In that case, the data-
base will continue to be listed by SHOW DATABASES.To correct this problem, remove any
extraneous files and subdirectories manually, and then issue the DROP DATABASE state-
ment again.

973E.1 SQL Statement Syntax (Non-Compound Statements)

A successful DROP DATABASE returns a row count that indicates the number of tables
and views dropped. (This actually is the number of .frm files removed, which amounts to
the same thing.)

DROP EVENT

DROP EVENT [IF EXISTS] event_name

Removes the given event.The IF EXISTS clause may be specified to suppress the error
that normally results if an event does not exist. In this case, a warning is generated instead.
You must have the EVENT privilege for the database to which the event belogs. (Prior to
MySQL 5.1.12, you must have the SUPER privilege or be the event’s definer.)

DROP EVENT was introduced in MySQL 5.1.6.

DROP FUNCTION, DROP PROCEDURE

DROP {FUNCTION | PROCEDURE} [IF EXISTS] routine_name

Removes the named stored function or stored procedure.
The IF EXISTS clause may be specified to suppress the error that normally results if the

routine does not exist. In this case, a warning is generated instead.
As of MySQL 5.0.3, these statements require the ALTER ROUTINE privilege for the

given routine.

DROP INDEX

DROP INDEX index_name ON tbl_name

Removes the index index_name from the table tbl_name.This statement is handled
internally as an ALTER TABLE DROP INDEX statement. See the entry for ALTER TABLE for
details.To use DROP INDEX to drop a PRIMARY KEY, the index name is PRIMARY, which
must be quoted as an identifier:

DROP INDEX `PRIMARY` ON tbl_name;

DROP SERVER

DROP SERVER [IF EXISTS] server_name

Drops the definition for the FEDERATED table server named server_name by re-
moving the corresponding row from the mysql.servers table.You must have the SUPER
privilege.This statement was introduced in MySQL 5.1.15.

DROP TABLE

DROP [TEMPORARY] {TABLE | TABLES} [IF EXISTS] tbl_name [, tbl_name] ...

[RESTRICT | CASCADE]

Removes each named table from the database to which it belongs.With the
TEMPORARY keyword, drops only TEMPORARY tables.

974 Appendix E SQL Syntax Reference

The IF EXISTS clause may be specified to suppress the error that normally results if a
table does not exist. In this case, a warning is generated instead.

The RESTRICT and CASCADE keywords are parsed but ignored and have no effect.

DROP TRIGGER

DROP TRIGGER [IF EXISTS] db_name.trigger_name

Removes a trigger from the named database. It is necessary to include the database
name.

The IF EXISTS clause may be specified to suppress the error that normally results if the
trigger does not exist. In this case, a warning is generated instead.

If a table has triggers, dropping the table also drops its triggers.
DROP TRIGGER was introduced in MySQL 5.0.2.As of MySQL 5.1.6, it requires the

TRIGGER privilege for the table with which the trigger is associated. Before 5.1.6, you
must have the SUPER privilege.The IF EXISTS clause was introduced in MySQL
5.0.32/5.1.14.

DROP USER

DROP USER account [, account] ...

From MySQL 5.0.2 on, DROP USER removes all grant table rows associated with the ac-
count.This drops the account and any privileges held by it.

Prior to MySQL 5.0.2, DROP USER drops only accounts that have no privileges and re-
moves only the mysql.user table row associated with the account.To fully remove the
account, first use SHOW GRANTS to see what privileges the account has and REVOKE to re-
voke those privileges.Then issue the DROP USER statement.

Name each account in 'user_name'@'host_name ' format, as described in Section
12.4.1.1,“Specifying Account Names.” It is an error if the account does not exist.

DROP USER requires the global CREATE USER privilege or the DELETE privilege for the
mysql database.

DROP USER does not drop any databases or other objects created by the dropped account.

DROP VIEW

DROP VIEW [IF EXISTS] view_name [, view_name] ...

[RESTRICT | CASCADE]

Removes each named view from the database to which it belongs.You must have the
DROP privilege for the view.

The IF EXISTS clause may be specified to suppress the error that normally results if a
view does not exist. In this case, a warning is generated instead.

The RESTRICT and CASCADE keywords are parsed but ignored and have no effect.
DROP VIEW was introduced in MySQL 5.0.1.

975E.1 SQL Statement Syntax (Non-Compound Statements)

EXECUTE

EXECUTE stmt_name [USING @var_name [, @var_name] ...]

Executes a prepared statement named stmt_name that was previously prepared with
PREPARE.The USING clause must be given if the prepared statement contains any place-
holder markers.The clause should provide a comma-separated list of user variables that
provides values for each successive placeholder in the statement.

EXPLAIN

EXPLAIN tbl_name [col_name | 'pattern']

EXPLAIN [EXTENDED | PARTITIONS] select_stmt

The first form of this statement is equivalent to DESCRIBE tbl_name. See the descrip-
tion of the DESCRIBE statement for more information.

The second form of the EXPLAIN statement provides information about the query exe-
cution plan that the MySQL optimizer would generate for processing the SELECT state-
ment following the EXPLAIN keyword.

EXPLAIN SELECT score.* FROM score INNER JOIN grade_event

ON score.event_id = grade_event.event_id AND grade_event.event_id = 14;

The EXTENDED option causes EXPLAIN to produce additional execution plan informa-
tion; use SHOW WARNINGS immediately after EXPLAIN to see this information.The
PARTITIONS option (introduced in MySQL 5.1.5) produces an extra output column con-
taining information about partitions.

If select_stmt includes a subquery in the FROM clause, EXPLAIN must execute the
subquery.This occurs because the optimizer must know what the subquery returns so
that it can determine the execution plan for the outer query.

Output from EXPLAIN consists of one or more rows containing the following columns:
n id

The ID number for the SELECT to which this output row applies.There can be
more than one SELECT if the statement includes subqueries or is a UNION.

n select_type

The type of the SELECT to which this output row applies, as shown in the follow-
ing table.

Type Meaning

SIMPLE A SELECT with no UNION or subquery parts

PRIMARY The outermost or leftmost SELECT

UNION The second or later SELECT in a UNION

DEPENDENT UNION Like UNION, but dependent on an outer query

n table

The table to which the output row refers.
n partitions

The partitions that would be used.This column is displayed only if the PARTITIONS
option is present. For non-partitioned tables, the value is NULL.

n type

The type of join that MySQL will perform.The possible types are, from best to
worst: system, const, eq_ref, ref, ref_or_null, index_merge, unique_subquery,
index_subquery, range, index, and ALL.The better types are more restrictive,
meaning that MySQL has to look at fewer rows from the table when performing
the retrieval.

n possible_keys

The indexes that MySQL considers candidates for finding rows in the table named
in the table column.A value of NULL means that no indexes were found.

n key

The index that MySQL actually will use for finding rows in the table. (There might
be several keys listed here if MySQL uses an index_merge join type, because that
optimization uses several indexes to process the query.) A value of NULL indicates
that no index will be used.

n key_len

How much of the index will be used.This will be less than the full index row
length if MySQL will use a leftmost prefix of the index.

n ref

The values to which MySQL will compare index values.The word const or ‘???’
means the comparison is against a constant; a column name indicates a column-to-
column comparison.

n rows

An estimate of the number of rows from the table that MySQL must examine to
perform the query.The product of the values in this column is an estimate of the
total number of row combinations that must be examined from all tables.

976 Appendix E SQL Syntax Reference

Type Meaning

UNION RESULT The result of a UNION

SUBQUERY The first SELECT in a subquery

DEPENDENT SUBQUERY Like SUBQUERY, but dependent on an outer query

DERIVED A subquery in the FROM clause

977E.1 SQL Statement Syntax (Non-Compound Statements)

n Extra

Other information about the execution plan.The value can be blank or contain
one or more values such as those following:

n Using filesort: Index values need to be written to a file and sorted so that
the associated rows can be retrieved in sorted order.

n Using index: MySQL can retrieve information for the table using only in-
formation in the index without examining the data file.

n Using temporary:A temporary table must be created.
n Using where: Information in the WHERE clause of the SELECT statement is

used for index processing.

Other values might appear in this field that are not listed here; see the MySQL
Reference Manual for the current set of Extra values.

FLUSH

FLUSH [LOCAL | NO_WRITE_TO_BINLOG] option [, option] ...

Flushes various internal caches used by the server. Each option value should be one of
the following items:

n DES_KEY_FILE

Reloads the DES key file used for encryption and decryption by the
DES_ENCRYPT() and DES_DECRYPT() functions.

n HOSTS

Flushes the host cache.
n LOGS

Flushes the log files by closing and reopening them. If the binary log or relay log
are enabled, this causes the next file in the sequence to be opened. For error log-
ging to a file, the old file is renamed to have a suffix of -old.

n MASTER

This has been renamed to RESET MASTER, which should be used instead.
n PRIVILEGES

Reloads the grant tables. If you modify the tables with GRANT or REVOKE, the server
reloads its in-memory copies of the tables automatically. If you modify the tables di-
rectly using statements such as INSERT or UPDATE, it’s necessary to tell the server to
reload them explicitly.Also, this option has the same effect as the USER_RESOURCES
option on account resource management limits.

n QUERY CACHE

Flushes the query cache to defragment it, without removing statements from the
cache. (To clear the cache entirely, use RESET QUERY CACHE.)

n SLAVE

This has been renamed to RESET SLAVE, which should be used instead.
n STATUS

Reinitializes the server status variables.
n {TABLE | TABLES} [tbl_name [, tbl_name] ...]

Without any table names, closes all open tables in the table cache.You can specify
an optional comma-separated list of one or more table names to flush specific tables
rather than the entire table cache.

If the query cache is operational, FLUSH TABLES also flushes the query cache.
n TABLES WITH READ LOCK

Flushes all tables in all databases and then places a global read lock on them, which
is held until you issue an UNLOCK TABLES statement.This statement allows clients to
read tables, but prohibits any changes from being made, which is useful for getting a
backup for your entire server with the guarantee that no tables will change during
the backup period.The disadvantage of doing this, from the client point of view, is
that the period during which updates are disallowed is greater.

n USER_RESOURCES

Resets the per-hour counters for account resource management limits (such as
MAX_QUERIES_PER_HOUR).Accounts that have reached their limits can once again
proceed in their activities.This option does not affect any MAX_USER_CONNECTIONS
limit; it is not a per-hour restriction.

If binary logging is enabled, MySQL writes the FLUSH statement to the binary log un-
less the LOCAL or NO_WRITE_TO_BINLOG option is given.

The FLUSH statement requires the RELOAD privilege.

GRANT

GRANT priv_type [(col_list)] [, priv_type [(col_list)]] ...

ON [TABLE | FUNCTION | PROCEDURE]

{*.* | * | db_name.* | db_name.tbl_name | tbl_name | db_name.routine_name}

TO account [IDENTIFIED BY [PASSWORD] 'password']

[, account [IDENTIFIED BY [PASSWORD] 'password']] ...

[REQUIRE security_options]

[WITH grant_or_resource_options]

The GRANT statement grants access privileges to one or more MySQL accounts.To use
this statement, you must have the GRANT OPTION privilege and you must possess the privi-
leges that you are trying to grant.

978 Appendix E SQL Syntax Reference

979E.1 SQL Statement Syntax (Non-Compound Statements)

Privilege Name Operation Enabled by Privilege

ALTER Alter tables and indexes

ALTER ROUTINE Alter or drop stored functions and procedures

CREATE Create databases and tables

CREATE ROUTINE Create stored functions and procedures

CREATE TEMPORARY TABLES Create temporary tables using the TEMPORARY keyword

CREATE USER Use high-level account-management statements

CREATE VIEW Create views

DELETE Delete rows from tables

DROP Remove databases, tables, and other objects

EVENT Create, drop, or alter events for the event scheduler

EXECUTE Execute stored functions and procedures

FILE Read and write files on the server host

GRANT OPTION Grant the account’s privileges to other accounts

INDEX Create or drop indexes

INSERT Insert new rows into tables

LOCK TABLES Explicitly lock tables with LOCK TABLES statements

PROCESS View information about the threads executing within the
server

REFERENCES Unused (reserved for future use)

RELOAD Reload the grant tables or flush the logs or caches

REPLICATION CLIENT Ask about master and slave server locations

REPLICATION SLAVE Act as a replication slave server

SELECT Retrieve rows from tables

SHOW DATABASES See all database names with SHOW DATABASES

Each priv_type value specifies a privilege to be granted, chosen from the following
table. ALL is used by itself. For the other privileges, you may specify one or more of them
as a comma-separated list. ALL signifies the combination of all the other privileges, except
for GRANT OPTION, which must be granted separately or by adding a WITH GRANT OPTION
clause.

The LOCK TABLES privilege can be exercised only on tables for which you also have
the SELECT privilege, but it enables you to place any kind of lock, not just read locks.

You can always view or kill your own threads.The PROCESS or SUPER privilege enables
you to view or kill, respectively, threads that belong to any account, not just your own.

The CREATE VIEW and SHOW VIEW privileges were introduced in MySQL 5.0.1. ALTER
ROUTINE and CREATE ROUTINE were introduced in MySQL 5.0.3; they apply only to
stored routines, not to user-defined functions (UDFs).Also in MySQL 5.0.3, CREATE
USER was introduced and the EXECUTE privilege became operational. EVENT and TRIGGER

were introduced in MySQL 5.1.6. (Before 5.1.6, SUPER rather than TRIGGER is required to
manipulate triggers.)

The ON clause specifies how widely privileges should be granted, as shown in the fol-
lowing table.

980 Appendix E SQL Syntax Reference

Privilege Specifier Level at Which Privileges Apply

ON *.* Global privileges; all databases, all tables

ON * Global privileges if no default database has been se-
lected; database-level privileges for the default data-
base otherwise

ON db_name.* Database-level privileges; all objects in the named data-
base

ON db_name.tbl_name Table-level privileges; all columns in the named table

ON tbl_name Table-level privileges; all columns in the named table in
the default database

ON db_name.routine_name Privileges for the named routine in the named database

Privilege Name Operation Enabled by Privilege

SHOW VIEW See view definitions with SHOW CREATE VIEW

SHUTDOWN Shut down the server

SUPER Kill threads and perform other supervisory operations

TRIGGER Create or drop triggers

UPDATE Modify table rows

ALL [PRIVILEGES] All operations (except GRANT)

USAGE A special “no privileges” privilege

As of MySQL 5.0.6, to specify explicitly the type of object to which the privileges ap-
ply if there is an ambiguity, you can include a TABLE, FUNCTION, or PROCEDURE keyword
(for example, ON TABLE mydb.mytbl or ON FUNCTION mydb.myfunc).

981E.1 SQL Statement Syntax (Non-Compound Statements)

When you use ALL as a privilege name, it grants only those privileges that are available
at the level for which you are granting privileges. For example, RELOAD is only available as
a global privilege, so it would be granted by GRANT ALL if you specify ON *.*, but not if
you specify ON db_name.*. In the latter case, only these privileges that apply to databases
would be granted. ALL also can be used only when granting global, database, table, or rou-
tine privileges.

USAGE means “no privileges.” It should be used only at the global level.
GRANT OPTION applies to all privileges granted at a given level. For example, you can-

not grant SELECT and INSERT for a given database to an account, but make just one of
them grantable by that account.

When a table is named in the ON clause, a privilege may be made column-specific by
following it with a list of one or more comma-separated column names in a (col_list)

clause. (This applies only for the INSERT, REFERENCES, SELECT, and UPDATE privileges,
which are the only ones that may be granted on a column-specific basis.)

To grant table or column privileges, the table must already exist.
The TO clause specifies one or more accounts to which the privileges should be

granted. Name each account in 'user_name'@'host_name' format, as described in
Section 12.4.1.1,“Specifying Account Names.” Each account name may be followed by
an optional IDENTIFIED BY clause to specify a password.

Database, table, column, and routine names, if quoted, must be quoted using identifier
quoting characters. Usernames and hostnames can be quoted using identifier or string
quoting characters. For example:

GRANT INSERT (`mycol`) ON `test`.`t` TO 'myuser'@'localhost';

The IDENTIFIED BY clause, if given, assigns a password to the account, and has the
same syntax as described in the entry for CREATE USER. If the account already exists and
IDENTIFIED BY is specified, the new password replaces the old one.The existing password
remains unchanged otherwise.

If the named account does not exist, GRANT creates it.To avoid the possibility of GRANT
creating a new account that has no password (and thus is insecure), enable the
NO_AUTO_CREATE_USER SQL mode.This mode is available as of MySQL 5.0.2 and pre-
vents GRANT from creating the account unless an IDENTIFIED BY clause is present.

The REQUIRE clause, if given, enables you to specify that secure connections are to be
used and what kinds of information the client is required to supply.The REQUIRE key-
word may be followed by:

n NONE: Secure connections are not required.
n SSL:A generic connection type; it requires that connections for the account use

SSL.
n X509:The user must supply a valid X509 certificate. In this case, the client can pres-

ent any X509 certificate; it doesn’t matter what its contents are other than that it is
valid.

n One or more of the following options to require that the connection be established
with certain characteristics:

n CIPHER 'str':The connection must be established with 'str' as its encryp-
tion cipher.

n ISSUER 'str':The client certificate must have 'str' as the certificate issuer
value.

n SUBJECT 'str':The client certificate must have 'str' as the certificate sub-
ject value.

If you give more than one of these options, they may optionally be separated by
AND.The order of the options doesn’t matter.

The WITH clause, if given, is used to specify that the account is able to grant other ac-
counts the privileges that it holds itself, and to place limits on the account’s resource con-
sumption.The allowable options are shown in the following list.You may specify more
than one option; their order does not matter.

n GRANT OPTION:This account can grant its own privileges to other accounts, includ-
ing the right to grant privileges.

n MAX_CONNECTIONS_PER_HOUR n:The account can make n connections to the server
per hour.

n MAX_QUERIES_PER_HOUR n:The account can issue n statements per hour.
n MAX_UPDATES_PER_HOUR n:The account can issue n statements that modify data per

hour.
n MAX_USER_CONNECTIONS n:The account can make a maximum of n simultaneous

connections to the server.This option was introduced in MySQL 5.0.3.

For MAX_CONNECTIONS_PER_HOUR, MAX_QUERIES_PER_HOUR, and
MAX_UPDATES_PER_HOUR, a value of 0 means “no limit.” For MAX_USER_CONNECTIONS, a
value of 0 means that the value of the max_user_connections system variable applies.

The following statements demonstrate some ways in which the GRANT statement can
be used. See Section 12.4.2,“Granting Privileges,” for other examples. See Section 13.3,
“Setting Up Secure Connections,” for information on enabling SSL. In each case, no
IDENTIFIER clause is given because it is assumed that the account has already been cre-
ated and assigned a password with CREATE USER.

n Enable paul to access all tables in the sampdb database from any host.The following
two statements are equivalent because omitting the hostname part of an account
identifier is equivalent to specifying % as the hostname:

GRANT ALL ON sampdb.* TO 'paul';

GRANT ALL ON sampdb.* TO 'paul'@'%';

982 Appendix E SQL Syntax Reference

983E.1 SQL Statement Syntax (Non-Compound Statements)

n Grant an account read-only privileges for the tables in the menagerie database.The
lookonly user can connect from any host in the xyz.com domain:

GRANT SELECT ON menagerie.* TO 'lookonly'@'%.xyz.com';

n Grant an account full privileges, but only for the member table in the sampdb data-
base.The member_mgr user can connect from a single host:

GRANT ALL ON sampdb.member TO 'member_mgr'@'boa.snake.net';

n Grant an account superuser privileges, including the ability to grant privileges to
other users.The user must connect from the local host:

GRANT ALL ON *.* TO 'superduper'@'localhost' WITH GRANT OPTION;

n Grant an anonymous user full access to the menagerie database:

GRANT ALL ON menagerie.* TO ''@'localhost';

n Grant an account full access to the privatedb database, but require that connec-
tions be made via SSL with a valid X509 certificate:

GRANT ALL ON privatedb.* TO 'paranoid'@'%.mydomain.com' REQUIRE X509;

n Grant an account limited access such that it can issue only 100 statements per hour,
of which at most 10 may be updates:

GRANT ALL ON test.* TO 'caleb'@'localhost'

WITH MAX_QUERIES_PER_HOUR 100 MAX_UPDATES_PER_HOUR 10;

HANDLER

HANDLER tbl_name OPEN [[AS] alias_name]

HANDLER tbl_name READ

{FIRST | NEXT}

[where_clause] [limit_clause]

HANDLER tbl_name READ index_name

{FIRST | NEXT | PREV | LAST | < | <= | = | => | >} (expr_list)

[where_clause] [limit_clause]

HANDLER tbl_name CLOSE

HANDLER provides a low-level interface to the MyISAM and InnoDB storage engines
that bypasses the optimizer and accesses table contents directly.To access a table through
the HANDLER interface, first use HANDLER ... OPEN to open it.The table remains available
for use until you issue a HANDLER ... CLOSE statement to close it explicitly or until or the
connection terminates.While the table is open, use HANDLER ... READ to access the table’s
contents.

HANDLER provides no protection against concurrent updates. It does not lock the table,
so it’s possible for the table to be modified while HANDLER has it open, and there is no
guarantee that the modifications will be reflected in the rows that you read from the
table.

INSERT

INSERT [DELAYED | LOW_PRIORITY | HIGH_PRIORITY] [IGNORE] [INTO]

tbl_name [(col_list)]

{VALUES|VALUE} (expr [, expr] ...) [, (...)] ...

[ON DUPLICATE KEY UPDATE col_name=expr [, col_name=expr] ...]

INSERT [DELAYED | LOW_PRIORITY | HIGH_PRIORITY] [IGNORE] [INTO]

tbl_name SET col_name=expr [, col_name=expr] ...

[ON DUPLICATE KEY UPDATE col_name=expr [, col_name=expr] ...]

INSERT [LOW_PRIORITY | HIGH_PRIORITY] [IGNORE] [INTO]

tbl_name [(col_list)]

{SELECT ... | (SELECT ...)}

[ON DUPLICATE KEY UPDATE col_name=expr [, col_name=expr] ...]

Inserts rows into an existing table tbl_name and returns the number of rows inserted.
INSERT syntax has three forms.

The first form of INSERT requires a VALUES() list that specifies all values to be in-
serted. If no col_list is given, the VALUES() list must specify one value for each column
in the table. If a col_list is given consisting of one or more comma-separated column
names, one value per column must be specified in the VALUES() list. Columns not named
in the column list are set to their default values. Multiple value lists may be specified, al-
lowing multiple rows to be inserted using a single INSERT statement.

INSERT INTO absence (student_id, date) VALUES(14,'2008-11-03'),(34,NOW());

The col_list and VALUES() list may be empty, which can be used as follows to create
a row for which all columns are set to their default values:

INSERT INTO t () VALUES();

The second form of INSERT inserts columns named in the SET clause to the values
given by the corresponding expressions. Columns not named are set to their default
values.

INSERT INTO absence SET student_id = 14, date = '2008-11-03';

INSERT INTO absence SET student_id = 34, date = NOW();

The word DEFAULT may be used in a VALUES() list or SET clause to set a column to its
default value explicitly without knowing what the default value is. More generally, to re-
fer to a column’s default value in expressions, you can use DEFAULT(col_name).The fol-
lowing statement sets the column i to 0 if its default value is NULL and to 1 otherwise:

INSERT INTO t SET i = IF(DEFAULT(i) IS NULL,1,0);

984 Appendix E SQL Syntax Reference

985E.1 SQL Statement Syntax (Non-Compound Statements)

The third form of INSERT inserts into tbl_name the rows retrieved by the SELECT
statement.The rows must contain as many columns as are in tbl_name, or as many
columns as are named in col_list if a column list is specified.When a column list is
specified, any columns not named in the list are set to their default values.

INSERT INTO score (student_id, score, event_id)

SELECT student_id, 100 AS score, 15 AS event_id FROM student;

You cannot select rows using a subquery from the same table into which you are in-
serting them.

If strict SQL mode is in effect when an INSERT executes, it is an error to omit a col-
umn that has no DEFAULT clause in its definition or to specify its value by using DEFAULT.

If inserting a row would result in a duplicate key value in a unique index, INSERT ter-
minates in error and no more rows are inserted.Adding IGNORE causes such rows not to
be inserted and no error occurs. In strict SQL mode, IGNORE also causes data conversion
errors that otherwise would terminate the statement to be treated as non-fatal warnings.
Columns are set to the nearest legal value in this case.

The ON DUPLICATE KEY UPDATE clause applies for rows that would result in a dupli-
cate-key violation for a unique-valued index.With this clause, the INSERT is converted to
an UPDATE that modifies the column of the existing row using the column assignments
following the UPDATE keyword. If an update did occur, the rows-affected count returned
by INSERT is 2 rather than 1.

The DELAYED, LOW_PRIORITY, and HIGH_PRIORITY options affect execution scheduling:

n DELAYED causes the rows to be placed into a queue for later insertion, and the state-
ment returns immediately so that the client may continue on without waiting.
However, in this case, LAST_INSERT_ID() will not return the AUTO_INCREMENT
value for any AUTO_INCREMENT column in the table. DELAYED inserts work for My-
ISAM, MEMORY,ARCHIVE, and (as of MySQL 5.1.19) BLACKHOLE tables.
DELAYED is ignored for INSERT INTO ... SELECT and INSERT INTO ... ON DUPLICATE
KEY UPDATE.As of MySQL 5.0.42/5.1.19, DELAYED is ignored if mixed with stored
functions or triggers such that an INSERT refers to stored functions that access tables
or triggers or the INSERT is invoked within a stored function or trigger.

n LOW_PRIORITY causes the statement to be deferred until no clients are reading from
the table.

n HIGH_PRIORITY causes the effect of the --low-priority-updates server option to
be canceled for a single statement. (It the server is started with this option, it lowers
the priority of INSERT and other update statements.) HIGH_PRIORITY also prevents
the INSERT from being performed concurrently with SELECT statements if it other-
wise would be.

The LOW_PRIORITY and HIGH_PRIORITY options are effective only for storage en-
gines that use table-level locking, such as MyISAM, MEMORY, and MERGE.

KILL

KILL [CONNECTION | QUERY] thread_id

Kills the server thread with the given thread_id.You must have the SUPER privilege
to kill the thread, unless it is one of your own.The KILL statement allows only a single
ID.The mysqladmin kill command performs the same operation, but allows multiple
thread ID values to be specified on the command line.

The CONNECTION option has the same effect as no option:The thread with the given
ID is terminated. QUERY terminates any statement that the thread is executing, but not the
thread itself.

LOAD DATA

LOAD DATA [LOW_PRIORITY | CONCURRENT] [LOCAL] INFILE 'file_name'

[IGNORE | REPLACE]

INTO TABLE tbl_name

[CHARACTER SET charset]

[field_options] [line_options]

[IGNORE n LINES]

[(col_or_user_var_name, ...)]

[SET col_name = expr, ...]

LOAD DATA reads input records from the file file_name and loads them in bulk into
the table tbl_name.This is faster than using a set of INSERT statements.

LOAD DATA returns an information string that has the following format:

Records: n Deleted: n Skipped: n Warnings: n

If the warning count is non-zero, the SHOW WARNINGS statement shows what the prob-
lems were.

LOW_PRIORITY causes the statement to be deferred until no clients are reading from
the table.This option is effective only for storage engines that use table-level locking, such
as MyISAM, MEMORY, and MERGE.

CONCURRENT applies only for MyISAM tables. If the table has no holes in the middle,
new rows are loaded at the end of the table. In this case, other clients can retrieve from
the table concurrently while rows are being loaded.

Without the LOCAL keyword, the file is read directly by the server on the server host.
In this case, you must have the FILE privilege and the file must either be located in the
database directory of the default database or be world-readable. If LOCAL is specified, the
client reads the file on the client host and sends its contents over the network to the
server. In this case, the FILE privilege is not required. LOCAL can be disabled or enabled
selectively. If it is disabled on the server side, you cannot use it from the client side. If it is
enabled on the server side, but disabled by default on the client side, you’ll need to enable
it explicitly. For example, with the mysql program, you can use the --local-infile flag
to enable the LOCAL capability.

986 Appendix E SQL Syntax Reference

987E.1 SQL Statement Syntax (Non-Compound Statements)

When LOCAL is not specified in the LOAD DATA statement, the server locates the file as
follows:

n If 'file_name' is an absolute pathname, the server looks for the file starting from
the root directory.

n If 'file_name' is a relative pathname, interpretation depends on whether the name
contains a single component. If so, the server looks for the file in the database direc-
tory of the default database. If the filename contains multiple components, the
server looks for the file beginning from the server’s data directory.

If LOCAL is given, filename interpretation is as follows:

n If 'file_name' is an absolute pathname, the client looks for the file starting from
the root directory.

n If 'file_name' is a relative pathname, the client looks for the file beginning from
your current directory.

For Windows, backslashes in filenames may be written either as slashes (‘/’) or as dou-
bled backslashes (‘\\’).

As of MySQL 5.0.19/5.1.6, the filename is evaluated using the character set named by
the character_set_filesystem system variable.

By default, the contents of the file are interpreted using the character set named by the
character_set_database system variable.As of MySQL 5.0.38/5.1.17, you can use the
CHARACTER SET clause to indicate the file’s character set explicitly. (However, it is not pos-
sible to load ucs2, utf18, or utf32 files.)

Rows that duplicate values in a unique index are either ignored or replace existing
rows according to whether IGNORE or REPLACE is specified. If neither is specified, an error
occurs, and any remaining records are ignored. If LOCAL is specified, transmission of the
file cannot be interrupted, so the default behavior is like that of IGNORE if neither
duplicate-handling option is given.

The field_options and line_options clauses indicate the format of the data. (The
options available in these clauses also apply to the corresponding clauses of the SELECT ...
INTO OUTFILE statement.) The two clauses have this syntax:

field_options:

[FIELDS

[TERMINATED BY 'str']

[[OPTIONALLY] ENCLOSED BY 'char']

[ESCAPED BY 'char']]

line_options:

[LINES

[STARTING BY 'str']

[TERMINATED BY 'str']]

The 'str' and 'char' values may include the escape sequences in the following table
to indicate special characters.The sequences should be given in the lettercase shown.

988 Appendix E SQL Syntax Reference

You can also use hexadecimal constants to indicate arbitrary characters. For example,
LINES TERMINATED BY 0x02 indicates that lines are terminated by Control-B (ASCII 2)
characters.

If the FIELDS clause is given, at least one of the TERMINATED BY, ENCLOSED BY, or
ESCAPED BY options must be given. If multiple options are present, they may appear in
any order. Similarly, if the LINES clause is given, at least one of the STARTING BY or
TERMINATED BY options must be given, but if both are present, they may appear in any
order. FIELDS must precede LINES if both are given.

Options for the FIELDS clause are used as follows:

n TERMINATED BY specifies the character or characters that delimit values within a
line.

n ENCLOSED BY specifies a quote character that is stripped from the ends of field val-
ues if it is present.This occurs regardless of whether OPTIONALLY is present. For
output (SELECT ... INTO OUTFILE), the ENCLOSED BY character is used to enclose
field values in output lines. If OPTIONALLY is given, values are quoted only for CHAR
and VARCHAR columns.

To include an instance of the ENCLOSED BY character within an input field value, it
should either be doubled or preceded by the ESCAPED BY character. Otherwise, it will
be interpreted as signifying the end of the field. For output, instances of the
ENCLOSED BY character within field values are preceded by the ESCAPED BY character.

n The ESCAPED BY character specifies how to escape special characters. In the follow-
ing examples, assume that the escape character is backslash (‘\’). For input, the un-
quoted sequence \N (backslash-N) is interpreted as NULL.The \0 sequence
(backslash-ASCII ‘0’) is interpreted as a zero-valued byte. For other escaped charac-
ters, the escape character is stripped off, and the following character is used literally.

Sequence Meaning

\0 NUL (zero-valued byte)

\b Backspace

\n Newline (linefeed)

\r Carriage return

\s Space

\t Tab

\' Single quote

\" Double quote

\\ Backslash

\Z Control-Z (Windows EOF character)

989E.1 SQL Statement Syntax (Non-Compound Statements)

For example, \" is interpreted as a double quote, even if field values are enclosed
within double quotes.

For output, the escape character is used to encode NULL as an unquoted \N se-
quence, and zero-valued bytes as \0. In addition, instances of the ESCAPED BY and
ENCLOSED BY characters are preceded by the escape character, as are the first charac-
ters of the field and line termination strings. If the ESCAPED BY character is empty
(ESCAPED BY ''), no escaping is done. (In this case, NULL is written as NULL, not
\N.) To specify an escape character of ‘\’, double it (ESCAPED BY '\\').

Options for the LINES clause are used as follows:

n The STARTING BY value specifies one or more characters that begin lines. (This
value and everything preceding it on the line is taken as the line beginning.)

n The TERMINATED BY value specifies one or more characters that signify the ends of
lines.

If neither FIELDS nor LINES is given, the defaults are as if you had specified them
like this:

FIELDS

TERMINATED BY '\t'

ENCLOSED BY ''

ESCAPED BY '\\'

LINES

STARTING BY ''

TERMINATED BY '\n'

In other words, fields within a line are tab-delimited without being quoted, backslash
is treated as the escape character, and lines are terminated by newline characters.

If the TERMINATED BY and ENCLOSED BY values for the FIELDS clause are both empty, a
fixed-width row format is used with no delimiters between fields. Column values are read
(or written, for output) using a width large enough for all values in the column. For ex-
ample, VARCHAR(15) and MEDIUMINT columns are read as 15-character and 8-character
fields for input. For output, the columns are written using 15 characters and 8 characters.
NULL values are written as strings of spaces. (Before MySQL 5.0.6, fixed-width interpreta-
tion was based on the display widths of the column data types.)

NULL values in an input data file are indicated by the unquoted sequence \N. If the
FIELDS ENCLOSED BY character is not empty, all non-NULL input values must be quoted
with the enclosed-by character and the unquoted word NULL also will be interpreted as a
NULL value.

If the IGNORE n LINES clause is given, the first n lines of the input are discarded. For
example, if your data file has a row of column headers that you don’t want to read into
the database table, use IGNORE 1 LINES:

LOAD DATA LOCAL INFILE 'mytbl.txt' INTO TABLE mytbl IGNORE 1 LINES;

990 Appendix E SQL Syntax Reference

By default, input lines are assumed to contain one value per column in the table. If a
list consisting of one or more comma-separated column names is given, input lines should
contain a value for each named column. Columns not named in the list are set to their
default values. If an input line is short of the expected number of values, columns for
which values are missing are set to their default values.

If strict SQL mode is in effect when LOAD DATA executes, it is an error for a value to
be missing for a column that has no DEFAULT clause in its definition.

As of MySQL 5.0.3, the list can include column names or user variable names, and a
SET clause can be given to perform additional processing of input values before they are
loaded into the table. For example, the following statement loads the first input column
into col1, ignores the second column, loads the sum of the third and fourth columns into
col2, and uses UUID() to provide a generated value for col3:

LOAD DATA LOCAL INFILE 'mytbl.txt' INTO TABLE mytbl

(col1,@skip,@addend1, @addend2)

SET col2 = @addend1 + @addend2, col3 = UUID();

The SET clause can contain multiple assignment expressions separated by commas.The
left hand side of each assignment must name a table column. User variables are not al-
lowed for fixed-width input format because no column width can be determined. Scalar
subqueries can be used to provide column values except that you cannot use a subquery
to select values from the same table into which you are loading data.

If you have a tab-delimited text file that you created on Windows, you can use the de-
fault column separator, but the lines are probably terminated by carriage return/newline
pairs.To load the file, specify a different line terminator (‘\r’ indicates a carriage return,
and ‘\n’ indicates a newline):

LOAD DATA LOCAL INFILE 'mytbl.txt' INTO TABLE mytbl

LINES TERMINATED BY '\r\n';

You may end up with a malformed row in the database if you load a data file that was
created on Windows by a program that uses the odd MS-DOS convention of putting the
Control-Z character at the end of the file to indicate end-of-file. Either create the file us-
ing a program that doesn’t do this, or delete the row after loading the file.

Files in comma-separated values (CSV) format have commas between fields, and fields
may be quoted with double quotes.Assuming lines have newlines at the end, the LOAD
DATA statement to load such a file looks like this:

LOAD DATA LOCAL INFILE 'mytbl.txt' INTO TABLE mytbl

FIELDS TERMINATED BY ',' ENCLOSED BY '"';

Hexadecimal notation is useful for specifying arbitrary control characters.The follow-
ing statement reads a file for which fields are separated by Control-A (ASCII 1) charac-
ters, and lines are terminated by Control-B (ASCII 2) characters:

LOAD DATA LOCAL INFILE 'mytbl.txt' INTO TABLE mytbl

FIELDS TERMINATED BY 0x01 LINES TERMINATED BY 0x02;

991E.1 SQL Statement Syntax (Non-Compound Statements)

LOAD INDEX INTO CACHE

LOAD INDEX INTO CACHE

tbl_name [[INDEX | KEY] (index_name [, index_name] ...)

[IGNORE LEAVES]]

[, tbl_name [[INDEX | KEY] (index_name [, index_name] ...)]

[IGNORE LEAVES]]...

Loads indexes from each named MyISAM table into the key cache to which the table
is assigned.This is the default key cache unless the table has been assigned to another
cache with the CACHE INDEX statement. By default, all index blocks are loaded.With the
IGNORE LEAVES clause, only non-leaf blocks in the index tree are loaded.

As with the CACHE INDEX statement, the syntax for LOAD INDEX INTO CACHE allows
individual indexes to be specified, but the current implementation is such that all indexes
for a table are loaded.

You must have the INDEX privilege for each table named in the statement.
LOAD INDEX INTO CACHE produces output in the format described in the entry for

CHECK TABLE.
See Section 12.7.2,“Configuring the MyISAM Storage Engine,” for more information

about MyISAM key cache management.

LOCK TABLE

LOCK {TABLE | TABLES}

tbl_name [[AS] alias_name] lock_type

[, tbl_name [[AS] alias_name] lock_type] ...

Obtains a lock on the named tables, waiting if necessary until all locks are acquired.
Each lock_type value must be one of the following:

n READ [LOCAL]

Acquires a read lock.This blocks other clients that want to write to the table, but
allows other clients to read the table.

READ LOCAL is a variation on a READ lock, designed for concurrent insert situations.
It applies only to MyISAM tables that do not have any holes in the middle resulting
from deleted or updated rows. READ LOCAL enables you to lock a table explicitly but
still allow other clients to perform concurrent inserts. (If the table does have holes
in it, the lock is treated as a regular READ lock.)

n [LOW_PRIORITY] WRITE

Acquires a write lock.This blocks all other clients, whether they want to read from
or write to the table.

A LOW_PRIORITY WRITE lock allows other readers to read the table if the request is
waiting for another client that is already reading the table.A request for this type of
lock is not granted until there are no more readers.

992 Appendix E SQL Syntax Reference

LOCK TABLE releases any existing locks that you currently hold.Thus, to lock multiple
tables, you must lock them all using a single LOCK TABLE statement.Any locks that are
held by a client when it terminates are released automatically.While you have acquired
locks with LOCK TABLE, you cannot refer to any not-locked tables.

LOCK TABLE allows an alias to be specified so that you can lock a table under an alias
that you are going to use when referring to the table in a subsequent query. If you refer
to a table multiple times in a query, you must obtain a lock for each instance of the table,
locking aliases as necessary.You must request all the locks in the same statement.

LOCK TABLE student READ, score WRITE, grade_event READ;

LOCK TABLE member READ;

LOCK TABLE t AS t1 READ, t AS t2 READ;

If a transaction is in progress, LOCK TABLE causes an implicit commit.Table locks ac-
quired with LOCK TABLE are released implicitly if you start a transaction with START
TRANSACTION.

OPTIMIZE TABLE

OPTIMIZE [LOCAL | NO_WRITE_TO_BINLOG]

{TABLE | TABLES} tbl_name [, tbl_name] ...

DELETE, REPLACE, and UPDATE statements may result in areas of unused space in a table,
particularly for tables that have variable-length rows.To counter this, OPTIMIZE TABLE per-
forms the following actions for a MyISAM table:

n Defragments the table to eliminate wasted space and reduce the table size.
n Coalesces the contents of variable-rows that have become fragmented into non-

contiguous pieces, so that each row is stored contiguously.
n Sorts the index pages if necessary.
n Updates the internal table statistics.

Issuing an OPTIMIZE TABLE statement is like executing myisamchk with the
--check-only-changed, --quick, --sort-index, and --analyze options. However, with
myisamchk, you must arrange to prevent the server from accessing the table at the same
time.With OPTIMIZE TABLE, the server does the work and takes care of making sure that
other clients do not modify the table while it’s being optimized.

For an InnoDB table, OPTIMIZE TABLE is mapped to ALTER TABLE to update the table
index statistics and free unused space in the clustered index.

As of MySQL 5.0.16, for an ARCHIVE table, OPTIMIZE TABLE performs table analysis
and recompresses the table to reduce the storage required.

OPTIMIZE TABLE requires SELECT and INSERT privileges on each table.
If binary logging is enabled, MySQL writes the OPTIMIZE TABLE statement to the bi-

nary log unless the LOCAL or NO_WRITE_TO_BINLOG option is given.

993E.1 SQL Statement Syntax (Non-Compound Statements)

OPTIMIZE TABLE produces output in the format described in the entry for CHECK
TABLE.

PREPARE

PREPARE stmt_name FROM {'str' | @var_name}

Prepares a statement and assigns it the name stmt_name.The statement can be exe-
cuted later with EXECUTE and deallocated with DEALLOCATE PREPARE. If there was already
a previously prepared statement that has the given name, the previous statement is deallo-
cated before the new statement is prepared. Statement names are not case sensitive.

The statement to be prepared can be given either as a string literal or a user variable.
The set of allowable statements that can be used with PREPARE has expanded over time.
The initial set included CREATE TABLE, DELETE, DO, INSERT, REPLACE, SELECT, SET,
UPDATE, and most variations of SHOW. Other statements have been added; consult the
MySQL Reference Manual for your version of MySQL to see which statements qualify.
PREPARE, EXECUTE, and DEALLOCATE PREPARE cannot be prepared.

The prepared statement can contain ‘?’ characters that serve as placeholder markers.
When you execute the statement later, supply data values to be bound to these placehold-
ers. Placeholders enable you to parameterize the statement so that you can use the same
prepared statement with different data values per execution.

PREPARE, EXECUTE, and DEALLOCATE provide an SQL-level interface to prepared state-
ments.They are not the same as or as efficient as the binary API for prepared statements
that is discussed in Chapter 7,“Writing MySQL Programs Using C,” and Appendix G,
“C API Reference (online)”.

PURGE MASTER LOGS

PURGE {MASTER | BINARY} LOGS {TO 'log_name' | BEFORE 'date'}

Deletes all the binary log files on the server that were generated earlier than the
named file or before the given date (in 'CCYY-MM-DD hh:mm:ss' format), and resets the
binary log index file to list only those log files that remain. Normally, you use this after
running SHOW SLAVE STATUS on each of the master’s slaves to determine which log files
are still in use.This statement requires the SUPER privilege.

The following statement removes binlog.000001 through binlog.000009 (or
whichever of them exist), and causes binlog.000010 to become the first of the remaining
log files:

PURGE MASTER LOGS TO 'binlog.000010';

RELEASE SAVEPOINT

RELEASE SAVEPOINT savepoint_name

Releases the savepoint with the given name from the savepoints for the current trans-
action, or returns an error if the savepoint does not exist. No commit or rollback occurs.
This statement was introduced in MySQL 5.0.3.

994 Appendix E SQL Syntax Reference

RENAME TABLE

RENAME {TABLE | TABLES} tbl_name TO new_tbl_name

[, tbl_name TO new_tbl_name] ...

Renames one or more tables. RENAME TABLE is similar to ALTER TABLE ... RENAME, ex-
cept that it can rename multiple tables, and locks them all during the rename operation.
This is advantageous if you need to perform an “atomic” rename that prevents any of the
tables from being accessed during the operation.

If you rename an InnoDB table on which other tables depend for foreign key relation-
ships, InnoDB adjusts the dependencies to point to the renamed table.

If you rename a MyISAM table that is part of a MERGE table, you must redefine the
MERGE table accordingly.

RENAME TABLE cannot be used for TEMPORARY tables.
As of MySQL 5.0.2, an error occurs if you try to rename a table into another database

if there are triggers for the table.
As of MySQL 5.0.14, RENAME TABLE applies to views unless you try to rename the

view into another database.

RENAME USER

RENAME USER from_account TO to_account

[, from_account TO to_account] ...

Renames one or more MySQL accounts. Each from_account is renamed to the cor-
responding to_account.An error occurs if from_account does not exist or if
to_account already exists. Name each account in 'user_name'@'host_name' format, as
described in Section 12.4.1.1,“Specifying Account Names.”

This statement was introduced in MySQL 5.0.2. It requires the global CREATE USER
privilege or the UPDATE privilege for the mysql database.

RENAME USER does not update privileges held by the original account to apply to the
new account.

REPAIR TABLE

REPAIR [LOCAL | NO_WRITE_TO_BINLOG]

{TABLE | TABLES} tbl_name [, tbl_name] ... [option] ...

This statement performs table repair operations. It works with MyISAM and
ARCHIVE tables, and with CSV tables as of MySQL 5.1.19. REPAIR TABLE requires
SELECT and INSERT privileges on each table.

REPAIR TABLE with no options performs a table repair option like that done by
myisamchk --recover.The following list describes the allowable option values.These
options apply to MyISAM tables; they may or may not be used by other storage engines.

n EXTENDED performs an extended repair that re-creates the indexes.This is similar to
running myisamchk --safe-recover on the tables, except that the repair is per-
formed by the server rather than by an external utility.

995E.1 SQL Statement Syntax (Non-Compound Statements)

n QUICK attempts a quick repair of just the indexes; leaves the data file alone.
n USE_FRM uses the table’s .frm file to reinitialize the index file and to determine how

to interpret the contents of the data file so that the indexes can be rebuilt.This can
be useful if the index has become lost or irrecoverably corrupted. However, it
should be treated as a last resort and should be used only if your current version of
MySQL is the same as that used to create the table; otherwise, you risk further
damage to the table.

If binary logging is enabled, MySQL writes the REPAIR TABLE statement to the binary
log unless the LOCAL or NO_WRITE_TO_BINLOG option is given.

REPAIR TABLE produces output in the format described in the entry for CHECK TABLE.

REPLACE

REPLACE [LOW_PRIORITY | DELAYED] [INTO]

tbl_name [(col_list)]

{VALUES|VALUE} (expr [, expr] ...) [, (...)] ...

REPLACE [LOW_PRIORITY | DELAYED] [INTO]

tbl_name [(col_list)]

{SELECT ... | (SELECT ...)}

REPLACE [LOW_PRIORITY | DELAYED] [INTO]

tbl_name SET col_name=expr [, col_name=expr] ...

The basic action of REPLACE statement is like that of INSERT, with the exception that if a
row to be inserted has a value for a unique index that duplicates the value in a row already
present in the table, the old row is deleted before the new one is inserted. For this reason,
there is no IGNORE clause option in the syntax of REPLACE.Also, REPLACE has no support for
ON DUPLICATE KEY UPDATE. See the description of INSERT for more information.

It’s possible for a REPLACE to delete more than one row if the table contains multiple
unique indexes.This can happen if a new row matches values in several of the unique in-
dexes, in which case all the matching rows are deleted before the new row is inserted.

REPLACE requires the INSERT and DELETE privileges for the table.

RESET

RESET option [, option] ...

The RESET statement is similar to FLUSH in that it affects log or cache information.
option values should be chosen from the following list:

n MASTER deletes the existing binary log files for a replication master server, creates a
new file with the numbering sequence set to 000001, and resets the binary log
index to name just the new file.

996 Appendix E SQL Syntax Reference

n QUERY CACHE clears the query cache and removes any queries currently registered
in it.To defragment the cache without clearing it, use the FLUSH QUERY CACHE
statement instead.

n SLAVE tells the server, if it is acting as a replication slave, to remove any existing re-
lay log files and begin a new relay log, and to forget its replication coordinates (that
is, its current replication binary log filename and position within that file).

RESET requires the RELOAD privilege.

REVOKE

REVOKE priv_type [(col_list)] [, priv_type [(col_list)] ...]

ON [TABLE | FUNCTION | PROCEDURE]

{*.* | * | db_name.* | db_name.tbl_name | tbl_name | db_name.routine_name}

FROM account [, account] ...

REVOKE ALL [PRIVILEGES], GRANT OPTION

FROM account [, account] ...

The REVOKE statement revokes privileges from the named account or accounts. Name
each account in 'user_name'@'host_name' format, as described in Section 12.4.1.1,
“Specifying Account Names.”An error occurs for non-existent accounts.

In the first syntax, the priv_type, col_list, and ON clauses are specified the same way
as for the GRANT statement.To use this statement, you must have the GRANT OPTION privi-
lege and you must possess the privileges that you are trying to revoke.

The second syntax has a fixed privilege list and no ON clause. It revokes all privileges
held by each of the named accounts.The second syntax requires the global CREATE USER
privilege or the UPDATE privilege for the mysql database.

REVOKE does not remove an account’s row from the mysql.user grant table.This
means that the account still can be used to connect to the MySQL server even when all
its privileges have been revoked.To remove the account entirely, use the DROP USER state-
ment (or manually delete the account row from the mysql.user table).

n Revoke privileges that allow the member_mgr user to modify the member table in
the sampdb database:

REVOKE INSERT,DELETE,UPDATE ON sampdb.member

FROM 'member_mgr'@'boa.snake.net';

n Revoke all privileges for a single table in the menagerie database from the anony-
mous user on the local host:

REVOKE ALL ON menagerie.pet FROM ''@'localhost';

n ALL revokes all but the GRANT OPTION privilege.To revoke that privilege as well,
you must do so explicitly:

REVOKE GRANT OPTION ON menagerie.pet FROM ''@'localhost';

997E.1 SQL Statement Syntax (Non-Compound Statements)

n Revoke all privileges held at all levels by superduper@localhost:

REVOKE ALL PRIVILEGES, GRANT OPTION FROM 'superduper'@'localhost';

ROLLBACK

ROLLBACK [WORK] [AND [NO] CHAIN] [[NO] RELEASE]

ROLLBACK [WORK] TO [SAVEPOINT] savepoint_name

Rolls back changes made by statements that are part of the current transaction so that
those changes are forgotten.This works only for transaction-safe storage engines. (For
non-transactional storage engines, statements are committed as they are executed and thus
cannot be rolled back.)

The optional keyword WORK has no effect.The CHAIN and RELEASE clauses have the
same effect as described in the entry for COMMIT.

If the TO SAVEPOINT clause is given, the statement rolls back the current transaction
only to the named savepoint.This clause works for InnoDB or Falcon transactions.

ROLLBACK does nothing if autocommit mode has not been disabled with START
TRANSACTION or by setting the autocommit variable to 0.

The WORK, CHAIN, and RELEASE clauses were introduced in MySQL 5.0.3, and the
SAVEPOINT keyword became optional.

SAVEPOINT

SAVEPOINT savepoint_name

Creates a transaction savepoint with the given name.Any existing savepoint with the
given name is deleted. Statements executed later within the current transaction can be
rolled back to the savepoint with the ROLLBACK TO SAVEPOINT statement.

SELECT

SELECT

[select_option] ...

select_expr [, select_expr] ...

[FROM tbl_refs

[WHERE where_expr]

[GROUP BY {col_name | expr | position} [ASC | DESC], ... [WITH ROLLUP]]

[HAVING where_expr]

[ORDER BY {col_name | expr | position} [ASC | DESC], ...]

[LIMIT {[skip_count,] show_count | show_count OFFSET skip_count}]

[PROCEDURE procedure_name([param_list])]

[

INTO OUTFILE 'file_name' [field_options] [line_options]

| INTO DUMPFILE 'file_name'

| INTO var_name [, var_name] ...

]

998 Appendix E SQL Syntax Reference

[FOR UPDATE | LOCK IN SHARE MODE]]

SELECT normally is used to retrieve rows from one or more tables. However, because
everything in the statement is optional except the SELECT keyword and at least one
select_expr, it’s also possible to write statements that simply evaluate expressions:

SELECT 'one plus one =', 1+1;

For compatibility with database systems that require a FROM clause, MySQL recognizes
the DUAL pseudo-table:

SELECT 'one plus one =', 1+1 FROM DUAL;

A subquery is one SELECT nested within another; examples can be found in Section
2.9,“Performing Multiple-Table Retrievals with Subqueries.” Subqueries also can be used
in the WHERE clause of DELETE and UPDATE statements or with INSERT and REPLACE state-
ments. However, you cannot use a subquery to select from a table that you are modifying.

Each select_option value can be one of the options in the following list:
n ALL, DISTINCT, DISTINCTROW

These keywords control whether duplicate rows are returned. ALL causes all rows to
be returned, which is the default. DISTINCT and DISTINCTROW specify that duplicate
rows should be eliminated from the result set.

n HIGH_PRIORITY

Specifying HIGH_PRIORITY gives the statement a higher priority if it normally
would have to wait. If other statements, such as INSERT or UPDATE, are waiting to
write to tables named in the SELECT because some other client is reading the tables,
HIGH_PRIORITY causes a SELECT statement to be given priority over those write
statements.This should be done only for SELECT statements that you know will ex-
ecute quickly and that must be done immediately, because it slows down execution
of the write statements.This option is effective only for storage engines that use
table-level locking, such as MyISAM, MEMORY, and MERGE.

n SQL_BUFFER_RESULT

Tells the server to buffer the query result in a separate temporary table rather than
keeping the table or tables named in the SELECT locked while waiting for the entire
query result to be sent to the client.This helps the server release the locks sooner,
which gives other clients access to the tables more quickly. However, using this op-
tion also requires more disk space and memory.

n SQL_CACHE, SQL_NO_CACHE

If the query result is cacheable and the query cache is operating in demand mode,
SQL_CACHE causes the result to be cached. SQL_NO_CACHE suppresses any caching of
the query result.

n SQL_CALC_FOUND_ROWS

999E.1 SQL Statement Syntax (Non-Compound Statements)

Normally, the row count from a query that includes a LIMIT clause is the number
of rows actually returned. SQL_CALC_FOUND_ROWS tells the server to determine how
large the query result would be without the LIMIT.This row count can be obtained
by issuing a SELECT FOUND_ROWS() statement following the initial SELECT.

n SQL_BIG_RESULT, SQL_SMALL_RESULT

These keywords provide a hint that the result set will be large or small, which gives
the optimizer information that it can use to process the query more effectively.

n STRAIGHT_JOIN

Forces tables to be joined in the order named in the FROM clause.This option may
be useful if you believe that the optimizer is not making the best choice.

The select_expr expressions list the output columns to be returned, separated by
commas. Columns may be references to table columns or expressions (including scalar
subqueries).Any column may be assigned a column alias using AS alias_name syntax (the
AS keyword is optional).The alias then becomes the column name in the output and may
also be referred to in GROUP BY, ORDER BY, and HAVING clauses. However, you cannot refer
to column aliases in a WHERE clause.

The special notation * means “all columns from the tables named in the FROM clause,”
and tbl_name.* means “all columns from the named table.”

The FROM clause names one or more tables from which rows should be selected.
MySQL supports the following join syntax:

tbl_refs:

tbl_ref [, tbl_ref] ...

tbl_ref:

tbl_factor

| join_tbl

tbl_factor:

tbl_name

| (subquery) [AS] alias_name

| (tbl_refs)

| { OJ tbl_ref LEFT OUTER JOIN tbl_ref ON conditional_expr }

join_tbl:

tbl_ref [INNER | CROSS] JOIN tbl_factor [join_condition]

| tbl_ref STRAIGHT_JOIN tbl_factor [ON conditional_expr]

| tbl_ref {LEFT | RIGHT} [OUTER] JOIN tbl_ref join_condition

| tbl_ref NATURAL [{LEFT | RIGHT} [OUTER]] JOIN tbl_factor

join_condition:

ON conditional_expr

| USING (col_list)

1000 Appendix E SQL Syntax Reference

Each tbl_name may be accompanied by an alias or index hints.That is, the full syntax
for referring to a table actually looks like this:

tbl_name

[[AS] alias_name]

[{USE | IGNORE | FORCE} {INDEX | KEY}

[FOR {JOIN | ORDER BY | GROUP BY}]

(index_list)]

Tables may be assigned aliases in the FROM clause using either tbl_name alias_name or
tbl_name AS alias_name syntax.An alias provides an alternative name by which to refer to
the table columns elsewhere in the query.

It is also allowable to specify a table in the FROM clause by means of a subquery within
parentheses, as long as you provide an alias so that the table can be referred to elsewhere
in the statement:

SELECT * FROM (SELECT 1) AS t;

The USE INDEX, IGNORE INDEX, and FORCE INDEX clauses provide index hints to the
optimizer.They may be helpful in cases where the optimizer doesn’t make the correct
choice about which index to use in a join. USE INDEX tells the optimizer to select an in-
dex only from those named in index_list. IGNORE INDEX tells the optimizer which in-
dexes not to use. FORCE INDEX is like USE INDEX but tells the optimizer to consider table
scans very expensive compared to using the listed indexes.

index_list should name one or more indexes separated by commas (with one excep-
tion to be noted shortly). Each index should be the name of an index from the table, or
the keyword PRIMARY to indicate the table’s PRIMARY KEY.

Before MySQL 5.0.40, index hints apply only to selecting rows and joining tables, not
to processing ORDER BY or GROUP BY clauses. In MySQL 5.0 as of 5.0.40, you can use FOR
JOIN to make that same behavior explicit. In MySQL 5.1 as of 5.1.17, you can use FOR
JOIN that way, and there are several other index hint changes:

n Hints with no FOR clause apply to row selection and joining tables (as before), but
also to processing ORDER BY or GROUP BY clauses.

n The index_list for USE can be empty to indicate “use no indexes.”
n Multiple index hints per tbl_name reference are allowed. However, you cannot use

both USE INDEX and FORCE INDEX for the same reference.

Index hints have no effect for FULLTEXT indexes.

Note
This grammar describes the syntax that is allowable as of MySQL 5.0.12 when several
changes wre made for better compliance with standard SQL. If you are interested in differ-
ences between this syntax that that allowed prior to 5.0.12, see the MySQL Reference
Manual.

1001E.1 SQL Statement Syntax (Non-Compound Statements)

Joins select rows from the named tables as indicated in the following descriptions.The
rows actually returned to the client may be limited by WHERE, HAVING, or LIMIT clauses.

n For a single table named by itself, SELECT retrieves rows from that table.
n If multiple tables are named and separated by commas, SELECT returns all possible

combinations of rows from the tables. Using JOIN, CROSS JOIN, or INNER JOIN is
similar to using a comma if there is no ON or USING clause. STRAIGHT_JOIN is simi-
lar, but forces the optimizer to join the tables in the order that the tables are named.
It may be used if you believe that the optimizer is not making the best choice.

n Unlike the comma operator, joins performed with JOIN, CROSS JOIN, or INNER
JOIN can be specified with an ON or USING() clause to constrain matches between
tables. Matching rows are determined according to the condition specified in the
ON conditional_expr clause or the USING (col_list) clause.
conditional_expr is an expression of the form that may be used in the WHERE

clause. col_list consists of one or more comma-separated column names, each of
which must be a column that occurs in both of the joined tables.

n LEFT JOIN retrieves rows from the joined tables, but forces a row to be generated
for every row in the left table, even if there is no matching row in the right table.
When there is no match, columns from the right table are returned as NULL values.
The ON or USING() clause following the table names is given as for JOIN, CROSS
JOIN, or INNER JOIN. LEFT OUTER JOIN is equivalent to LEFT JOIN. So is the syn-
tax that begins with OJ, which is included for ODBC compatibility.The curly
braces shown for the OJ syntax are not metacharacters; they are literal characters
that must be present in the statement.

n NATURAL LEFT JOIN is equivalent to LEFT JOIN USING (col_list), where
col_list names all the columns that are common to both tables.

n The RIGHT JOIN types are like the corresponding LEFT JOIN types, but with the
table roles reversed.

n The precedence of comma joins is less than that of other join types. Mixing comma
joins with other types may result in “Unknown column” errors. Replacing comma
with INNER JOIN often helps in such cases.

The WHERE clause specifies an expression that is applied to rows selected from the ta-
bles named in the FROM clause. Rows that do not satisfy the criteria given by the expres-
sion are rejected.The result set may be further limited by HAVING and LIMIT clauses.
Column aliases may not be referred to in the WHERE clause.

The GROUP BY and ORDER BY clauses have similar syntax. GROUP BY col_list is used
to group rows of the result set based on the columns named in the list.This clause is used
when you specify summary functions such as COUNT() or MAX() in a select_expr. ORDER
BY col_list indicates that the result set should be sorted based on the named columns.
In either clause, columns may be referred to by column names or aliases, or by position

1002 Appendix E SQL Syntax Reference

within the list of select_expr expressions. Column positions are unsigned integers be-
ginning with 1, but use of column positions is non-standard and deprecated.You can also
use expressions to group or sort by expression results. For example, ORDER BY RAND()

sorts rows in random order.
In a GROUP BY or ORDER BY clause, you can follow any column in the column list with

ASC or DESC to indicate that the column should be sorted in ascending or descending or-
der.The default for each column is ascending if neither keyword is present. Sort order in-
dicators are allowed in GROUP BY clauses because, in MySQL, GROUP BY not only groups
rows, it sorts the results.The output order resulting from GROUP BY is overridden by any
ORDER BY clause that is present.To prevent the implicit ordering that results from GROUP
BY (and thus not incur the sorting overhead), use ORDER BY NULL.

WITH ROLLUP can be used at the end of a GROUP BY clause. It causes the output to in-
clude summary rows for higher level combinations of the grouped columns, plus an over-
all summary at the end.

The HAVING clause specifies a secondary expression that is used to limit rows after they
have satisfied the conditions named by the WHERE clause and after they have been grouped
according to any GROUP BY clause. Rows that do not satisfy the HAVING condition are re-
jected. HAVING is useful for expressions involving summary functions that cannot be tested
in the WHERE clause. However, if a condition is legal in either the WHERE clause or the
HAVING clause, it is preferable to place it in the WHERE clause where it will be subject to
analysis by the optimizer.

The LIMIT clause can be used to select a section of rows from the result set. It takes ei-
ther one or two arguments, which must be integer constants. LIMIT n returns the first n
rows. LIMIT m, n skips the first m rows and returns the next n rows.

PROCEDURE names a procedure to which the data in the result set will be sent before a
result set is returned to the client.The optional parameter list, param_list, is a comma-
separated list of values to pass to the procedure.You can use PROCEDURE ANALYSE() to
obtain information about the characteristics of the data in the columns named in the col-
umn selection list.

The various INTO formats specify an alternative destination for the query result. If you
use an INTO clause, the statement cannot be used as a nested SELECT.An alternative place-
ment for INTO is to specify it earlier in the statement, following the select_expr list.

The result of a SELECT statement may be written into a file file_name using an INTO
OUTFILE 'file_name' clause.The syntax of the field_options and line_options

clauses is the same as for the corresponding clauses of the LOAD DATA statement. See the
LOAD DATA entry for more information.

INTO DUMPFILE 'file_name' is similar to INTO OUTFILE but writes only a single row
and writes the output entirely without interpretation.That is, it writes raw values without
delimiters, quotes, or terminators.This can be useful if you want to write BLOB data such
as an image or other binary data to a file.

For both INTO OUTFILE and INTO DUMPFILE, the location of the file is determined
using the same rules that apply when reading non-LOCAL files with LOAD DATA.You must

1003E.1 SQL Statement Syntax (Non-Compound Statements)

have the FILE privilege, the output file must not already exist, and the file is created by
the server on the server host with a world-accessible mode. Its ownership will be set to
the account used to run the server.As of MySQL 5.0.19/5.1.6, the filename is evaluated
using the character set named by the character_set_filesystem system variable.

INTO followed by a comma-separated list of variable names stores the results of the
SELECT into the variables. Each variable can be either a user-defined variable of the form
@var_name, or, within a stored program, a parameter or local variable.The query must
select a single row of values and must name one variable per output column.

The FOR UPDATE and LOCK IN SHARE MODE clauses place locks on the rows that are
examined during query execution.The locks remain in force until the current transaction
is committed or rolled back.These locking clauses can be useful in multiple-statement
transactions. If you use FOR UPDATE with a table for which the storage engine uses row-
level locks (InnoDB), the examined rows are write-locked for exclusive use. Using LOCK
IN SHARE MODE sets read locks on the rows, enabling other clients to read but not modify
them. Note that if the query optimizer finds no index to use for examining rows, it must
scan (and thus lock) all rows in the table.

The following statements demonstrate some ways in which the SELECT statement can
be used. See Chapter 1,“Getting Started with MySQL,” and Chapter 2,“Using SQL to
Manage Data,” for many other examples.

n Select the entire contents of a table:

SELECT * FROM president;

n Select entire contents, but sort by name:

SELECT * FROM president ORDER BY last_name, first_name;

n Select rows for presidents born on or after '1900-01-01':

SELECT * FROM president WHERE birth >= '1900-01-01';

n Do the same, but sort in birth order:

SELECT * FROM president WHERE birth >= '1900-01-01' ORDER BY birth;

n Determine which states are represented by rows in the member table:

SELECT DISTINCT state FROM member;

n Select rows from member table and write columns as comma-separated values into
a file:

SELECT * INTO OUTFILE '/tmp/member.txt'

FIELDS TERMINATED BY ',' FROM member;

n Select the top five scores for a particular grade event:

SELECT * FROM score WHERE event_id = 9 ORDER BY score DESC LIMIT 5;

1004 Appendix E SQL Syntax Reference

SET

SET [OPTION] assignment [, assignment] ...

assignment: var_name = expr

The SET statement is used to assign values to system variables, user-defined variables,
or stored program local variables.Appendix D,“System, Status, and User Variable Refer-
ence,” provides information about system and user-defined variables. Section E.2.2,
“Declaration Statements,” describes declaration syntax for stored program local variables.
SET also is used for a few miscellaneous settings that are described later in this entry.

Other statements that begin with SET (SET PASSWORD and SET TRANSACTION) are de-
scribed in separate entries later in this appendix.

When SET is used to assign values to variables, var_name in each assignment is the
variable to be assigned a value and expr is the expression that indicates the value to assign
to the variable.The assignment operator in a SET statement can be either = or :=.

SET can be used to assign values to user-defined variables, which are named using
@var_name syntax:

SET @day = CURDATE(), @time = CURTIME();

SET also can assign values to system variables, many of which are dynamic and can be
changed while the server is running. Dynamic system variables exist at two levels. Global
system variables are server-wide and affect all clients. Session system variables (also called
local system variables) are specific to a given client connection only. For variables that ex-
ist at both levels, a given client’s session variables are initialized from the values of the cor-
responding global variables when the client connects. It is necessary to have the SUPER
privilege to modify a global variable, but any client can modify its own session variables.

The syntax for setting system variables has several forms.To set a global variable (for
example, the global sql_mode value), use a statement having either of the following
forms:

SET GLOBAL sql_mode = 'ANSI_QUOTES';

SET @@GLOBAL.sql_mode = 'ANSI_QUOTES';

To set a session variable, substitute the word SESSION for GLOBAL:

SET SESSION sql_mode = 'ANSI_QUOTES';

SET @@SESSION.sql_mode = 'ANSI_QUOTES';

You can also use LOCAL as a synonym for SESSION:

SET LOCAL sql_mode = 'ANSI_QUOTES';

SET @@LOCAL.sql_mode = 'ANSI_QUOTES';

If none of GLOBAL, SESSION, or LOCAL are present, the SET statement modifies the
session-level variable:

SET sql_mode = 'ANSI_QUOTES';

SET @@sql_mode = 'ANSI_QUOTES';

1005E.1 SQL Statement Syntax (Non-Compound Statements)

To check the value of system variables, use the SHOW VARIABLES statement.You can
also retrieve individual system variable values by using SELECT:

SELECT @@GLOBAL.sql_mode, @@SESSION.sql_mode, @@LOCAL.sql_mode;

Section 12.6.1,“Checking and Setting System Variable Values,” further discusses the use
of system variables.

The following list describes miscellaneous settings that can be controlled with SET.
n SET CHARACTER SET {charset | DEFAULT}

Sets the character_set_client and character_set_results session variables to
the named character set, and sets the character_set_connection session variable
to the value of character_set_database.These variables affect conversion of
character data sent to and from the server.A charset value of ucs2, utf18, or
utf32 does not work.

SET CHARACTER SET DEFAULT restores the default character set mapping.
n SET NAMES {charset | 'charset' | DEFAULT}

Sets the character_set_client, character_set_connection, and
character_set_results session variables to the named character set, and sets
collation_connection to the default collation for character_set_connection.
These variables affect conversion of character data sent to and from the server.A
charset value of ucs2, utf18, or utf32 does not work.

SET NAMES DEFAULT restores the default character set mapping.

SET PASSWORD

SET PASSWORD [FOR account] = PASSWORD('pass_val')

SET PASSWORD [FOR account] = OLD_PASSWORD('pass_val')

SET PASSWORD [FOR account] = 'encrypted_pass_val'

SET PASSWORD changes the password for a MySQL account.You can always change
your own password, unless you have connected as an anonymous user.To change the pass-
word for another account, you must have the UPDATE privilege for the mysql database.

With no FOR clause, the statement sets the password for the current account.With a
FOR clause, it sets the password for the named account, which should be given in
'user_name'@'host_name' format, as described in Section 12.4.1.1,“Specifying Account
Names.”

The password value, 'pass_val' should be encrypted using PASSWORD() for standard
encryption or OLD_PASSWORD() for the older (pre-MySQL 4.1) encryption. If you use
neither function, 'encrypted_pass_val' should be given as an already-encrypted pass-
word string.

SET PASSWORD = PASSWORD('secret');

SET PASSWORD FOR 'paul' = PASSWORD('secret');

SET PASSWORD FOR 'paul'@'localhost' = PASSWORD('secret');

SET PASSWORD FOR 'bill'@'%.bigcorp.com' = PASSWORD('old-sneep');

1006 Appendix E SQL Syntax Reference

SET TRANSACTION

SET [GLOBAL | SESSION] TRANSACTION ISOLATION LEVEL level

This statement sets the isolation level for transaction processing:

n With the GLOBAL option, it sets the global (server-wide) isolation level, which be-
comes the default level for all clients that connect thereafter.

n With the SESSION option, it sets the session (client-specific) isolation level, which
becomes the level for subsequent transactions within the current session.

n With neither option, it sets the isolation level only for the next transaction within
the current session.

The SUPER privilege is required to set the global isolation level.Any client can change
its own session or next-transaction isolation level.

The transaction level indicated by level should be one of the following values:
n READ UNCOMMITTED

A transaction can see row modifications made by other transactions even if they
have not been committed.

n READ COMMITTED

A transaction can see row modifications made by other transactions only if they
have been committed.

n REPEATABLE READ

If a transaction performs a given SELECT twice, the result is repeatable.That is, it
gets the same result each time, even if other transactions have changed or inserted
rows in the meantime.

n SERIALIZABLE

This isolation level is similar to REPEATABLE READ but isolates transactions more
completely: Rows selected by one transaction cannot be modified by other transac-
tions until the first transaction completes.This level is supported by InnoDB but
not yet by Falcon.

The SET TRANSACTION statement applies to the InnoDB and Falcon storage engines.
The default isolation level is REPEATABLE READ. Non-transactional storage engines do not
have isolation levels.

Section 2.13.3,“Transaction Isolation,” further discusses transaction isolation and isola-
tion levels.

SHOW

SHOW BINLOG EVENTS

SHOW CHARACTER SET

SHOW COLLATION

1007E.1 SQL Statement Syntax (Non-Compound Statements)

SHOW COLUMNS

SHOW CREATE DATABASE

SHOW CREATE EVENT

SHOW CREATE {FUNCTION | PROCEDURE}

SHOW CREATE TABLE

SHOW CREATE TRIGGER

SHOW CREATE VIEW

SHOW DATABASES

SHOW ENGINE

SHOW ENGINES

SHOW ERRORS

SHOW EVENTS

SHOW {FUNCTION | PROCEDURE} STATUS

SHOW GRANTS

SHOW INDEX

SHOW INNODB STATUS

SHOW {MASTER | BINARY} LOGS

SHOW MASTER STATUS

SHOW MUTEX STATUS

SHOW OPEN TABLES

SHOW PRIVILEGES

SHOW PROCESSLIST

SHOW SLAVE HOSTS

SHOW SLAVE STATUS

SHOW STATUS

SHOW TABLE STATUS

SHOW TABLE TYPES

SHOW TABLES

SHOW TRIGGERS

SHOW VARIABLES

SHOW WARNINGS

The various SHOW statements provide information about databases and objects in them
such as tables or stored programs, or information about server operation. Several of the
statements take an optional FROM db_name clause, enabling you to specify the database for
which information should be shown. If the clause is not present, the default database is
used. In each of the statements that support FROM to specify a table or database name, IN
can be used as a synonym.

Some forms allow an optional LIKE 'pattern' clause to limit output to values that
match the pattern. 'pattern' is interpreted as an SQL pattern and may contain the ‘%’ or
‘_’ wildcard characters.

As of MySQL 5.0.2, INFORMATION_SCHEMA provides another way to obtain database
metadata, and many INFORMATION_SCHEMA tables contain information similar to that dis-
played by SHOW statements. In addition, those SHOW statements that support LIKE
'pattern' can be written with a WHERE clause instead to specify which rows to display.
For more information, see Section 2.7,“Obtaining Database Metadata.”

1008 Appendix E SQL Syntax Reference

SHOW BINLOG EVENTS

SHOW BINLOG EVENTS [IN 'file_name'] [FROM position]

[LIMIT [skip_count,] show_count]

This statement is used on replication master servers to display events in a binary log
file. Events correspond roughly to SQL statements.

The output from this statement includes the following columns:
n Log_name

The binary log filename.
n Pos

The position of the event within the log file.
n Event_type

The type of event, such as Query for a statement that is to be executed.
n Server_id

The ID of the server that logged the event.
n End_log_pos

The position of the next byte after the event in the log file.
n Info

Event information, such as the statement text for a Query event.

This statement requires the REPLICATION SLAVE privilege.

SHOW CHARACTER SET

SHOW CHARACTER SET [LIKE 'pattern' | WHERE where_expr]

Displays a list of the character sets supported by the server.A LIKE clause may be in-
cluded to display information only for character sets with names that match the given
pattern.A WHERE clause restricts output to rows that satisfy the given expression.

The output from SHOW CHARACTER SET includes the following columns:
n Charset

The short character set name.This is the name that can be used in SQL statements.
n Description

A descriptive character set name.
n Default collation

The name of the default collation for the character set.
n Maxlen

The length of the “widest” character in the character set, in bytes. For multi-byte
character sets, this value is greater than one. For non-multi-byte sets, all characters
take a single byte, so the value is one.

1009E.1 SQL Statement Syntax (Non-Compound Statements)

SHOW COLLATION

SHOW COLLATION [LIKE 'pattern' | WHERE where_expr]

Displays a list of available collations for each character set.The LIKE clause may be in-
cluded to display information only for collations with names that match the given pat-
tern.A WHERE clause restricts output to rows that satisfy the given expression.

The output from SHOW COLLATION includes the following columns:
n Collation

The collation name.
n Charset

The name of the character set with which the collation is associated.
n Id

The collation ID number.
n Default

Yes if the collation is the default collation for its character set, blank otherwise.
n Compiled

Yes if the collation is compiled into the server, blank otherwise.
n Sortlen

A cost factor relating to the amount of memory that must be allocated for internal
string conversion operations when the collation is used to sort values.

SHOW COLUMNS

SHOW [FULL] COLUMNS {FROM | IN} tbl_name

[{FROM | IN} db_name] [LIKE 'pattern' | WHERE where_expr]

Displays the columns for the given table (or view, as of MySQL 5.0.1).The output in-
cludes only those columns for which you have some privilege. SHOW FIELDS is a synonym
for SHOW COLUMNS.With the FULL keyword, the statement displays the Collation,
Privilege, and Comment output fields.The LIKE clause may be included to display infor-
mation only for columns with names that match the given pattern.A WHERE clause re-
stricts output to rows that satisfy the given expression.

To specify the database that contains the table, use a FROM db_name clause or write the
table name in db_name.tbl_name format:

SHOW COLUMNS FROM president;

SHOW COLUMNS FROM president FROM sampdb;

SHOW COLUMNS FROM sampdb.president;

The output from SHOW COLUMNS provides the following types of information about
each column in the table:

1010 Appendix E SQL Syntax Reference

n Field

The column name.
n Type

The column data type.This may include type attributes following the type name.
n Collation

The collation name for non-binary string columns, NULL for other columns.The
collation name implies the character set name.This information is displayed only if
you specify the FULL keyword.

n Null

YES if the column can contain NULL values. Otherwise, the value is NO as of MySQL
5.0.3 and blank before that.

n Key

Whether the column is indexed.
n Default

The column’s default value.
n Extra

Extra information about the column. auto_increment is shown here for columns
that have the AUTO_INCREMENT attribute, otherwise the value is blank.

n Privileges

The privileges that you hold for the column.This information is displayed only if
you specify the FULL keyword.

n Comment

The value of any COMMENT attribute in the column definition.This information is
displayed only if you specify the FULL keyword.

SHOW CREATE

SHOW CREATE DATABASE [IF NOT EXISTS] db_name

SHOW CREATE EVENT event_name

SHOW CREATE FUNCTION func_name

SHOW CREATE PROCEDURE proc_name

SHOW CREATE TABLE tbl_name

SHOW CREATE TRIGGER trigger_name

SHOW CREATE VIEW view_name

The SHOW CREATE obj_type statements display the CREATE obj_type statement that
creates the named object. Several of the statements also display other information about
the object such as the sql_mode value in effect when it was created.

For SHOW CREATE DATABASE, if the statement includes an IF NOT EXISTS clause, the
output CREATE DATABASE statement does as well.

1011E.1 SQL Statement Syntax (Non-Compound Statements)

SHOW CREATE VIEW was introduced in MySQL 5.0.1, SHOW CREATE EVENT in MySQL
5.1.6, and SHOW CREATE TRIGGER in MySQL 5.1.21.

SHOW DATABASES

SHOW DATABASES [LIKE 'pattern' | WHERE where_expr]

Displays the databases available on the server host.The LIKE clause may be included to
display information only for databases with names that match the given pattern.A WHERE
clause restricts output to rows that satisfy the given expression.

If you don’t have the SHOW DATABASES privilege, you’ll see only the databases for
which you have some kind of access privilege. If the server was started with the
--skip-show-database option, you’ll see all databases if you have the SHOW DATABASES
privilege and none otherwise.

SHOW ENGINE

SHOW ENGINE engine_name info_type

This statement displays information about storage engines. For InnoDB, these state-
ment variants are supported:

n SHOW ENGINE INNODB STATUS

Displays information about the internal operation of the InnoDB storage engine.
This statement replaces SHOW INNODB STATUS. It requires the PROCESS privilege
(SUPER prior to MySQL 5.1.24).

n SHOW ENGINE INNODB MUTEX

Displays information about InnoDB mutexes.This statement was introduced in
MySQL 5.1.2; it replaces SHOW MUTEX STATUS. It requires the PROCESS privilege
(SUPER prior to MySQL 5.1.24).

SHOW ENGINES

SHOW [STORAGE] ENGINES

Displays the storage engines that the server knows about. For each engine, the output
indicates the support level and provides a brief description of the engine characteristics.

The output from this statement includes the following columns:
n Engine

The storage engine name (MyISAM, InnoDB, and so forth).
n Support

The level of support for the engine: YES for supported, NO for not supported,
DISABLED for supported but disabled at runtime, or DEFAULT to indicate that the
storage engine is the default engine.The default engine is always enabled.

1012 Appendix E SQL Syntax Reference

n Comment

Descriptive text about the storage engine.
n Transactions

Whether the engine supports transactions.
n XA

Whether the engine supports distributed transactions.
n Savepoints

Whether the engine supports partial transaction rollback.

The Transactions, XA, and Savepoints columns were added in MySQL 5.1.2.

SHOW ERRORS

SHOW ERRORS [LIMIT [skip_count,] show_count]

SHOW COUNT(*) ERRORS

SHOW ERRORS is like SHOW WARNINGS but displays only messages that have error sever-
ity. SHOW COUNT(*) ERRORS is like SHOW COUNT(*) WARNINGS but displays the value of
the error_count variable rather than the value of warning_count. See the entry for SHOW
WARNINGS for more information.

SHOW EVENTS

SHOW EVENTS [FROM db_name] [LIKE 'pattern' | WHERE where_expr]

This statement displays information about the events in the default database, or in the
named database if the FROM clause is given.The LIKE clause may be included to display
information only for events with names that match the given pattern.A WHERE clause re-
stricts output to rows that satisfy the given expression.

SHOW EVENTS was introduced in MySQL 5.1.6.

SHOW FUNCTION STATUS, SHOW PROCEDURE STATUS

SHOW {FUNCTION | PROCEDURE} STATUS

[LIKE 'pattern' | WHERE where_expr]

These statements display descriptive information about the stored functions or proce-
dures in the default database.The LIKE clause may be included to display information
only for routines with names that match the given pattern.A WHERE clause restricts output
to rows that satisfy the given expression.

1013E.1 SQL Statement Syntax (Non-Compound Statements)

SHOW GRANTS

SHOW GRANTS [FOR account]

Displays grant information about the specified account, which should be given in
'user_name'@'host_name' format, as described in Section 12.4.1.1,“Specifying Account
Names.”

SHOW GRANTS FOR 'root'@'localhost';

SHOW GRANTS FOR ''@'cobra.snake.net';

You can also use any of the following statements to display the privileges that are
granted to the account that you are connected to the server as:

SHOW GRANTS FOR CURRENT_USER();

SHOW GRANTS FOR CURRENT_USER;

SHOW GRANTS;

As of MySQL 5.0.24/5.1.12, for the SHOW GRANTS formats that display current-user
privileges, the output within a stored procedure that executes with SQL SECURITY
DEFINER context corresponds to the procedure definer rather than its invoker.

SHOW INDEX

SHOW {INDEX | KEY} {FROM | IN} tbl_name [{FROM | IN} db_name]

Displays information about a table’s indexes.To specify the database that contains the
table, use a FROM db_name clause or write the table name in db_name.tbl_name format:

SHOW INDEX FROM score;

SHOW INDEX FROM score FROM sampdb;

SHOW INDEX FROM sampdb.score;

The output from SHOW INDEX includes the following columns:
n Table

The name of the table that contains the index.
n Non_unique

1 if the index can contain duplicate values, 0 if it cannot.
n Key_name

The index name.
n Seq_in_index

The number of the column within the index. Index columns are numbered begin-
ning with 1.

n Column_name

The name of the table column in the index to which the current output row applies.
n Collation

1014 Appendix E SQL Syntax Reference

The column sort order within the index.The values may be A (ascending), D (de-
scending), or NULL (not sorted). Currently, descending keys are not available.

n Cardinality

The approximate number of unique values in the index. myisamchk updates this
value for MyISAM tables when run with the --analyze option.The ANALYZE
TABLE statement updates this value for MyISAM and InnoDB tables. OPTIMIZE
TABLE does so for MyISAM tables.

n Sub_part

The prefix length in bytes, if only a prefix of the column is indexed.This is NULL if
the entire column is indexed.

n Packed

How the key is packed, or NULL if it is not packed.
n Null

YES if the column can contain NULL values, blank otherwise.
n Index_type

The algorithm used to index the column, such as BTREE, FULLTEXT, or HASH.
n Comment

Reserved for internal comments about the index.

SHOW INNODB STATUS

SHOW INNODB STATUS

Displays information about the internal operation of the InnoDB storage engine. It re-
quires the SUPER privilege.This statement is deprecated in favor of SHOW ENGINE INNODB
STATUS.

SHOW MASTER LOGS

SHOW {MASTER | BINARY} LOGS

This statement is used on replication master servers. It displays the names of the binary
log files currently available on the master. It can be useful before issuing a PURGE MASTER
LOGS statement after running SHOW SLAVE STATUS on each of the slaves to determine the
binary log files to which they currently are positioned.

SHOW MASTER STATUS

SHOW MASTER STATUS

This statement is used on replication master servers. It displays information about the
status of the master’s binary log.

1015E.1 SQL Statement Syntax (Non-Compound Statements)

The output from SHOW MASTER STATUS includes the following columns:
n File

The binary log filename.
n Position

The current position at which the server is writing to the file.
n Binlog_Do_DB

A comma-separated list of databases that are explicitly replicated to the binary log
with --binlog-do-db options, blank if no such options were given.

n Binlog_Ignore_DB

A comma-separated list of databases that are explicitly excluded from the binary log
with --binlog-ignore-db options, blank if no such options were given.

SHOW MUTEX STATUS

SHOW MUTEX STATUS

This statement displays information about InnoDB mutexes. It was introduced in
MySQL 5.0.3 and renamed to SHOW ENGINE INNODB MUTEX in MySQL 5.1.

SHOW OPEN TABLES

SHOW OPEN TABLES [{FROM | IN} db_name]

[LIKE 'pattern' | WHERE where_expr]

Displays the list of open non-TEMPORARY tables that are registered in the table cache
and for which you have some privilege.The LIKE clause may be included to display in-
formation only for tables with names that match the given pattern.A WHERE clause re-
stricts output to rows that satisfy the given expression.These clauses were introduced in
MySQL 5.0.12.

The output from SHOW OPEN TABLES includes the following columns:
n Database

The database that contains the table.
n Table

The name of the table.
n In_use

The number of times the table currently is in use.
n Name_locked

Indicates whether the table has a name lock such as is required to use the table
without accessing its contents (for example, for RENAME TABLE).

1016 Appendix E SQL Syntax Reference

SHOW PRIVILEGES

SHOW PRIVILEGES

Displays the privileges that can be granted and information about the purpose of each
one.

The output from SHOW PRIVILEGES includes the following columns:
n Privilege

The privilege name.
n Context

The applicability of the privilege, such as Server Admin (server administration),
Databases, or Tables.

n Comment

A description of the purpose of the privilege.

SHOW PROCESSLIST

SHOW [FULL] PROCESSLIST

Displays information about the currently executing server activity. If you have the
PROCESS privilege, the statement displays all information. Otherwise, it displays informa-
tion only about your own activity.

The output includes the following columns:
n Id

The process ID number for the client.
n User

The username for the account associated with the process.
n Host

The host from which the client is connected.
n db

The default database for the process.
n Command

The type of command being executed.
n Time

The amount of time that the process has been in the current state, in seconds.
n State

Information about what MySQL is doing while processing an SQL statement.The
value may be useful for reporting a problem with MySQL or when asking a question
on the MySQL mailing list about why a process stays in some state for a long time.

1017E.1 SQL Statement Syntax (Non-Compound Statements)

n Info

The statement being executed. By default, the first 100 characters are displayed. If
the FULL keyword is given, the entire statement is displayed.

SHOW SLAVE HOSTS

SHOW SLAVE HOSTS

This statement is used on replication master servers. It displays information about the
slave servers that are currently registered with the master.A slave is not registered unless it
is started with the --report-host option. Even for a registered slave, other conditions
apply for display of certain columns.The Port column value is blank unless the slave is
started with the --report-port option.The User and Password column values are blank
unless the slave is started with the --report-user and --report-password options and
the master is started with the --show-slave-auth-info option.

The output from SHOW SLAVE HOSTS includes the following columns:
n Server_id

The slave server ID.
n Host

The slave host.
n User

The username for the account that the slave used to connect.
n Password

The password for the account that the slave used to connect.
n Port

The port to which the slave is connected.
n Rpl_recovery_rank

The replication recovery rank.
n Master_id

The master server ID.

SHOW SLAVE STATUS

SHOW SLAVE STATUS

This statement is used on slave servers and displays information about the replication
status of the server.The output includes the following columns:

n Slave_IO_State

The state of the slave I/O thread.This is the same value that SHOW PROCESSLIST
will display for the thread.

1018 Appendix E SQL Syntax Reference

n Master_Host

The master hostname or IP number.
n Master_User

The username of the account used for connecting to the master.
n Master_Port

The port number for connecting to the master.
n Connect_Retry

The number of seconds to wait between attempts to connect to the master.
n Master_Log_File

The name of the current master binary log file.
n Read_Master_Log_Pos

The current position within the master binary log file where the slave I/O thread is
reading.

n Relay_Log_File

The name of the current relay log file.
n Relay_Log_Pos

The current position of the slave SQL thread within the relay log file.
n Relay_Master_Log_File

The name of the master binary log file that contains the event most recently exe-
cuted by the SQL thread.

n Slave_IO_Running

Whether the slave I/O thread is running.
n Slave_SQL_Running

Whether the slave SQL thread is running.
n Replicate_Do_DB

A comma-separated list of databases that are explicitly replicated with
--replicate-do-db options, blank if no such options were given.

n Replicate_Ignore_DB

A comma-separated list of databases that are explicitly excluded from replication
with --replicate-ignore-db options, blank if no such options were given.

n Replicate_Do_Table

A comma-separated list of tables that are explicitly replicated with
--replicate-do-table options, blank if no such options were given.

n Replicate_Ignore_Table

A comma-separated list of tables that are explicitly excluded from replication with
--replicate-ignore-table options, blank if no such options were given.

1019E.1 SQL Statement Syntax (Non-Compound Statements)

n Replicate_Wild_Do_Table

A comma-separated list of table patterns that are explicitly replicated with
--replicate-wild-do-table options, blank if no such options were given.

n Replicate_Wild_Ignore_Table

A comma-separated list of table patterns that are explicitly excluded from replication
with --replicate-wild-ignore-table options, blank if no such options were
given.

n Last_Errno

Before MySQL 5.1.20, this is the error number for the last executed statement.As
of 5.1.20, this column is an alias for Last_SQL_Errno.The value is 0 if there was
no error.

n Last_Error

Before MySQL 5.1.20, this is the error msssage for the last executed statement.As
of 5.1.20, this column is an alias for Last_SQL_Error.The value is blank if there
was no error.The server also writes non-empty values to its error log.

n Skip_Counter

The number of events from the master that the slave should skip. (You cause the
slave to skip events by setting its global sql_slave_skip_counter system variable.)

n Exec_Master_Log_Pos

The current position within the master binary log file where the slave SQL thread
is executing.

n Relay_Log_Space

The combined size of the relay log files.
n Until_Condition

The condition specified in an UNTIL clause of a START SLAVE statement to indicate
when the SQL thread should stop reading and executing events:

n None: No UNTIL clause was specified.
n Master:The slave is reading until its SQL thread reaches a specific position in

the master binary log.
n Relay:The slave is reading until its SQL thread reaches a specific position in

its relay log.

If the Until_Condition value is Master or Relay, the Until_Log_File and
Until_Log_Pos column values indicate the filename and position at which the
SQL thread will stop executing.

n Until_Log_File

See the description of Until_Condition.

1020 Appendix E SQL Syntax Reference

n Until_Log_Pos

See the description of Until_Condition.
n Master_SSL_Allowed

Whether SSL is used to connect to the master server: Yes if SSL connections can
be used, No if they cannot, and Ignored if SSL connections are allowed, but the
slave server was not built with SSL support enabled.

n Master_SSL_CA_File

The pathname to the certificate authority file for SSL connections to the master,
blank if none has been specified.

n Master_SSL_CA_Path

The pathname to a directory of trusted certificates to be used for certificate verifi-
cation for SSL connections to the master, blank if none has been specified.

n Master_SSL_Cert

The pathname to the certificate file for SSL connections to the master, blank if
none has been specified.

n Master_SSL_Cipher

A string listing the SSL ciphers that may be used to encrypt traffic sent over SSL
connections to the master, blank if none has been specified.

n Master_SSL_Key

The pathname to the key file for SSL connections to the master, blank if none has
been specified.

n Seconds_Behind_Master

The difference in seconds between the current time and the timestamp recorded in
the master event most recently executed by the slave SQL thread.This value is zero
if the SQL thread has caught up with the I/O thread and is idle, and NULL if no
event has been executed or the slave parameters have been changed with a CHANGE
MASTER or RESET SLAVE statement.

n Last_IO_Errno

The most recent error number for the IO thread.The value is 0 if there was no er-
ror.This column was introduced in MySQL 5.1.20.

n Last_IO_Error

The most recent error message for the IO thread.The value is blank if there was no
error.The server also writes non-empty values to its error log.This column was in-
troduced in MySQL 5.1.20.

n Last_SQL_Errno

Like Last_IO_Errno, but for the SQL thread.This column was introduced in
MySQL 5.1.20.

1021E.1 SQL Statement Syntax (Non-Compound Statements)

n Last_SQL_Error

Like Last_IO_Error, but for the SQL thread.This column was introduced in
MySQL 5.1.20.

SHOW STATUS

SHOW [GLOBAL | SESSION] STATUS [LIKE 'pattern' | WHERE where_expr]

Displays the server’s status variables and their values.These variables provide informa-
tion about the server’s operational state. Section 12.6.3,“Checking Status Variable Values,”
discusses the use of status variables.Appendix D describes each of the status variables.

The LIKE clause may be included to display information only for variables with names
that match the given pattern.A WHERE clause restricts output to rows that satisfy the given
expression.

As of MySQL 5.0.2, the server can display the values of status variables at the global
(server-wide) or session (client-specific) level.These represent the sum over all clients and
the value for the current client, respectively. By default, SHOW displays the session-level
value for any given variable.To display global or session values explicitly, specify a level
indicator:

SHOW GLOBAL VARIABLES;

SHOW SESSION VARIABLES;

If a variable has only a global value, you get the same value for GLOBAL and SESSION.
LOCAL is a synonym for SESSION.

As of MySQL 5.1.12, you can also query the INFORMATION_SCHEMA tables named
GLOBAL_STATUS and SESSION_STATUS to obtain status variable information.

SHOW TABLE STATUS

SHOW TABLE STATUS [{FROM | IN} db_name]

[LIKE 'pattern' | WHERE where_expr]

Displays descriptive information about the tables in a database.The output includes
only those tables for which you have some privilege.The LIKE clause may be included to
display information only for tables with names that match the given pattern.A WHERE
clause restricts output to rows that satisfy the given expression.As of MySQL 5.0.1, this
statement also displays the views in a database, but all columns are NULL except that Name
is the view name and Comment is view.

The output from SHOW TABLE STATUS includes the following columns:
n Name

The table name.
n Engine

The storage engine (MyISAM, InnoDB, and so forth).

1022 Appendix E SQL Syntax Reference

n Version

The version number of the .frm file for the table.
n Row_format

The row storage format. For MyISAM tables, this can be Fixed (fixed-length rows),
Dynamic (variable-length rows), or Compressed (compressed and read-only).As of
MySQL 5.0.3, the format for InnoDB tables can be Redundant (the original for-
mat) or Compact (a newer format that requires less storage).

n Rows

The number of rows in the table. For some storage engines such as InnoDB, this is
an approximate count.

n Avg_row_length

The average number of bytes used by table rows.
n Data_length

The actual size in bytes of the table data file.
n Max_data_length

The maximum size that the table data file can grow to.
n Index_length

The actual size in bytes of the index file.
n Data_free

The number of unused bytes in the data file. If this number is very high, it might be
a good idea to issue an OPTIMIZE TABLE statement for the table to defragment it.

n Auto_increment

The next value that will be generated for an AUTO_INCREMENT column.
n Create_time

The time when the table was created.
n Update_time

The time when the table was most recently modified.
n Check_time

For MyISAM tables, the time at which the table was last checked or repaired by
myisamchk, CHECK TABLE, or REPAIR TABLE.The value is NULL if the table has never
been checked or repaired.

n Collation

The table’s collation.The collation name implies the character set name.
n Checksum

The table checksum value, NULL if one has not been calculated.

1023E.1 SQL Statement Syntax (Non-Compound Statements)

n Create_options

Extra options that were specified as table_option values in the CREATE TABLE
statement that created the table or subsequent ALTER TABLE statements.

n Comment

The text of any comment specified when the table was created. For an InnoDB
table, the Comment value shows foreign key definitions, and prior to MySQL 5.1.24,
it also displays the amount of free space in the InnoDB tablespace in which the
table is stored. (The table might be in the shared tablespace or have its own table-
space.) As of 5.1.24, the free space is displayed as the Data_free value.

SHOW TABLE TYPES

SHOW TABLE TYPES

SHOW TABLE TYPES was the original syntax for the SHOW ENGINES statement. It is still
recognized but is deprecated and its use produces a warning. See the entry for SHOW
ENGINES for a description of the output.

SHOW TABLES

SHOW [FULL] TABLES [{FROM | IN} db_name]

[LIKE 'pattern' | WHERE where_expr]

Displays the names of the non-TEMPORARY tables in a database.The output includes
only those tables for which you have some privilege.The LIKE clause may be included to
display information only for tables with names that match the given pattern.A WHERE

clause restricts output to rows that satisfy the given expression.
Beginning with MySQL 5.0.1, this statement also displays view names.The FULL key-

word may be given as of MySQL 5.0.2 to display for each row whether the name refers
to a table or a view.

The output from this statement includes the following columns:

n Tables_in_db_name

The table or view name.
n Table_type

BASE_TABLE or VIEW to indicate whether the name refers to a table or a view.This
column is displayed only if the FULL keyword is given.

SHOW TRIGGERS

SHOW TRIGGERS [FROM db_name] [LIKE 'pattern' | WHERE where_expr]

This statement displays information about the triggers in the default database, or in the
named database if the FROM clause is given.The LIKE clause may be included to display
information only for triggers from tables with names that match the given pattern.A
WHERE clause restricts output to rows that satisfy the given expression.

1024 Appendix E SQL Syntax Reference

SHOW TRIGGERS was introduced in MySQL 5.0.10. It requires the TRIGGER privilege as
of 5.1.22, and the SUPER privilege before that.

SHOW VARIABLES

SHOW [GLOBAL | SESSION] VARIABLES [LIKE 'pattern' | WHERE where_expr]

Displays a list of system variables and their values.These variables provide information
about the server’s configuration and capabilities. Section 12.6.1,“Checking and Setting
System Variable Values,” discusses the use of system variables.Appendix D describes each
of the system variables.

The LIKE clause may be included to display information only for variables with names
that match the given pattern.A WHERE clause restricts output to rows that satisfy the given
expression.

The server can display the values of system variables at the global (server-wide) or ses-
sion (client-specific) level. By default, SHOW displays the session-level value for any given
variable, or the global value if no session value exists.To display global or session values
explicitly, specify a level indicator:

SHOW GLOBAL VARIABLES;

SHOW SESSION VARIABLES;

LOCAL is a synonym for SESSION. It is also possible to retrieve the values of individual
dynamic variables with SELECT:

SELECT @@GLOBAL.sql_mode, @@SESSION.sql_mode, @@LOCAL.sql_mode;

Using SELECT has the advantage that you can more easily manipulate the query result
in certain contexts.

As of MySQL 5.1.12, you can also examine the INFORMATION_SCHEMA tables named
GLOBAL_VARIABLES and SESSION_VARIABLES to obtain system variable information.

SHOW WARNINGS

SHOW WARNINGS [LIMIT [skip_count,] show_count]

SHOW COUNT(*) WARNINGS

SHOW WARNINGS displays error, warnings, and notes generated by the most recent state-
ment that generates such messages. If that statement executed successfully, SHOW WARNINGS
returns an empty set.

SHOW COUNT(*) WARNINGS displays the value of the warning_count system variable
that counts the number of messages. (A related variable, error_count, counts only er-
rors.) It is possible for the value of warning_count to be larger than the number of mes-
sages displayed by SHOW WARNINGS.The max_error_count system variable limits the
number of messages that can be stored for display by SHOW WARNINGS, but warning_count
counts all messages regardless of whether they are stored.

1025E.1 SQL Statement Syntax (Non-Compound Statements)

The LIMIT clause can be used to restrict the number of rows returned by SHOW
WARNINGS. Its syntax is the same as the LIMIT clause for SELECT.

START SLAVE

START SLAVE [slave_option [, slave_option] ...]

START SLAVE [SQL_THREAD] UNTIL

MASTER_LOG_FILE = 'file_name', MASTER_LOG_POS = position

START SLAVE [SQL_THREAD] UNTIL

RELAY_LOG_FILE = 'file_name', RELAY_LOG_POS = position

This statement, together with STOP SLAVE, controls the operation of replication
threads on a slave server.With no options, START SLAVE initiates and STOP SLAVE termi-
nates both the slave I/O and SQL threads. slave_option values may be specified to indi-
cate which threads to start or stop:

n IO_THREAD

Start or stop the I/O thread that reads events from the master server and stores
them in the relay log.

n SQL_THREAD

Start or stop the SQL thread that reads events from the relay log and executes them.

If no thread or SQL_THREAD is named, an UNTIL clause can be used. Depending on
which pair of log file and position options are named in the clause, the slave runs until its
SQL thread reaches the given position in the master binary log or slave relay log. If the
SQL thread is already running, the server ignores the UNTIL clause and generates a warn-
ing. If the clause includes the SQL_THREAD option, the server starts only the SQL thread;
otherwise, it starts both threads.

START TRANSACTION

START TRANSACTION [WITH CONSISTENT SNAPSHOT]

Begins a transaction by disabling autocommit mode until the next COMMIT or
ROLLBACK statement. Statements executed while autocommit is disabled thus will be com-
mitted or rolled back as a unit.

After the transaction has been committed or rolled back, autocommit mode is restored
to the state it was in prior to START TRANSACTION.To manipulate autocommit mode ex-
plicitly, use SET autocommit.The autocommit variable is described in Appendix D.

The WITH CONSISTENT SNAPSHOT clause can be used to cause the transaction to begin
with a consistent read. For InnoDB, this clause does not change the current isolation
level, so it is effective only if the level is REPEATABLE READ or SERIALIZABLE. For Falcon,
WITH CONSISTENT SNAPSHOT provides a consistent read using the REPEATABLE READ iso-
lation level, regardless of the current level.

1026 Appendix E SQL Syntax Reference

START TRANSACTION implicitly releases any table locks that the client has acquired
with LOCK TABLE but has not yet released. Executing START TRANSACTION while a trans-
action is in progress causes that transaction to be committed implicitly.

STOP SLAVE

STOP SLAVE [slave_option [, slave_option] ...]

This statement, together with START SLAVE, controls the operation of replication
threads on a slave server. See the description of START SLAVE for details.

TRUNCATE

TRUNCATE [TABLE] tbl_name

TRUNCATE TABLE performs a fast truncation of table contents by dropping and re-
creating the table.This is much faster than deleting each row individually.You must have
the DROP privilege as of MySQL 5.1.16, and the DELETE privilege for older versions.

For InnoDB, this statement is implemented as DELETE FROM tbl_name before MySQL
5.0.3.As of 5.0.3, InnoDB implements fast truncation directly.

This statement is not transaction-safe.An error will occur should you issue a TRUNCATE
TABLE statement within a transaction or while you are holding any explicit table locks.

UNION

select_stmt

UNION [DISTINCT | ALL] select_stmt

[UNION [DISTINCT | ALL] select_stmt] ...

[ORDER BY col_list] [LIMIT [skip_count,] show_count]

UNION combines the results of multiple SELECT statements. Each SELECT statement
must produce the same number of columns in its result set.The names of the columns in
the final result are determined by the column names from the first SELECT.The data types
of the columns are determined taking into account all values from the corresponding
columns of the selected tables.

The UNION keyword can be followed by DISTINCT to eliminate duplicate rows or by
ALL to preserve duplicates and return all selected rows.The implicit default is to eliminate
duplicates if neither DISTINCT nor ALL is given.Any DISTINCT union operation (either
explicit or implicit) takes precedence over any ALL union operations to its left:

mysql> SELECT 11 UNION ALL SELECT 2 UNION ALL SELECT 1;

+---+

| 1 |

+---+

| 1 |

| 2 |

| 1 |

+---+

1027E.1 SQL Statement Syntax (Non-Compound Statements)

mysql> SELECT 11 UNION ALL SELECT 2 UNION SELECT 1;

+---+

| 1 |

+---+

| 1 |

| 2 |

+---+

To use ORDER BY and LIMIT clauses with any individual SELECT, enclose each SELECT
within parentheses. (ORDER BY within an individual SELECT is used only if LIMIT is also
present, to determine which rows the LIMIT applies to. It does not affect the order in
which rows appear in the final UNION result.) To apply ORDER BY or LIMIT to the UNION as
a whole, enclose each SELECT within parentheses and add ORDER BY or LIMIT following
the final closing parenthesis. In this case, any columns named in an ORDER BY should refer
to the names of the columns in the first SELECT.

UNLOCK TABLE

UNLOCK {TABLE | TABLES}

This statement releases any table locks being held by the current client.
If a client connection terminates while the client holds table locks, the server releases

them when it closes the connection.
If a client begins a transaction while holding table locks, the server implicitly releases

those locks.

UPDATE

UPDATE [LOW_PRIORITY] [IGNORE] tbl_name

SET col_name=expr [, col_name=expr] ...

[WHERE where_expr] [ORDER BY ...] [LIMIT n]

UPDATE [LOW_PRIORITY] [IGNORE] tbl_refs

SET col_name=expr [, col_name=expr] ...

[WHERE where_expr] [ORDER BY ...] [LIMIT n]

For the first syntax, UPDATE modifies the contents of existing rows in the table
tbl_name.The second UPDATE syntax is like the first, but enables multiple tables to be
named to perform a multiple-table update.The syntax for tbl_refs is like that for
SELECT, except that you cannot specify a subquery as a table.

The rows to be updated are those selected by the expression specified in the WHERE
clause. For those rows that are selected, each column named in the SET clause is set to the
value of the corresponding expression.

UPDATE member SET expiration = NULL, phone = '197-602-4832'

WHERE member_id = 14;

The WHERE clause can include subqueries, but they cannot select from a table that is
being updated.

1028 Appendix E SQL Syntax Reference

If no WHERE clause is given, all rows in the table are updated.
By default, UPDATE returns the number of rows that were updated. However, a row is

not considered as having been updated unless some column value actually changed. Set-
ting a column to the value it already contains is not considered to affect the row. If your
application really needs to have UPDATE return how many rows matched the WHERE clause
regardless of whether the UPDATE actually changed any values, you should specify the
CLIENT_FOUND_ROWS flag when you establish a connection to the server. See the entry for
the mysql_real_connect() function in Appendix G (online).

LOW_PRIORITY causes the statement to be deferred until no clients are reading from
the table.This option is effective only for storage engines that use table-level locking, such
as MyISAM, MEMORY, and MERGE.

If updating a row would result in a duplicate key value in a unique index, UPDATE ter-
minates in error and no more rows are updated.Adding IGNORE causes such rows not to
be updated and no error occurs. In strict mode, IGNORE also causes data conversion errors
that otherwise would terminate the statement to be treated as non-fatal warnings.
Columns are updated to the nearest legal value in this case.

ORDER BY causes rows to be updated according to the resulting sort order.This clause
has the same syntax as for SELECT.

If the LIMIT clause is given, the value n specifies the maximum number of rows to
update.

For a multiple-table UPDATE, the WHERE clause can specify conditions based on a join
between tables, and the SET clause can update columns in multiple tables. For example,
the following statement updates rows in t1 having id values that match those in t2,
copying the quantity values from t2 to t1:

UPDATE t INNER JOIN t2 SET t.quantity = t2.quantity WHERE t.id = t2.id;

USE

USE db_name

Selects db_name to make it the default database (the database for table, view, and stored
program references that include no explicit database name).After a successful USE state-
ment, the server sets the session character_set_database and collation_database

system variables to the database character set and collation.
The USE statement fails if the database doesn’t exist or if you have no privileges for ac-

cessing it.

E.2 Compound Statement Syntax
This section describes the syntax for statements that are used within compound state-
ments, which are written using BEGIN and END and can be used for writing stored pro-
grams that are stored on the server side (functions, procedures, triggers, and events).

Each statement within a program body must be terminated by a semicolon (‘;’) char-
acter. If you use the mysql program to create a stored routine that has a multiple-

1029E.2 Compound Statement Syntax

statement body, you should temporarily redefine the mysql statement delimiter so that
mysql itself does not interpret ‘;’ characters.You can do this with the delimiter com-
mand. Be sure to choose as your delimiter something that does not occur within the
statements that define the routine. For example:

mysql> delimiter $$

mysql> CREATE FFUNCTION myfunc ()

-> RETURNS IINT DETERMINISTIC

-> BEGIN

-> DECLARE ii INT;

-> DECLARE jj INT;

-> SET ii = 2;

-> SET jj = 4;

-> RETURN ii * j;

-> END$

mysql> delimiter ;;

mysql> SELECT mmyfunc();

+----------+

| myfunc() |

+----------+

| 8 |

+----------+

For more information about defining stored programs, see Section 4.1,“Compound
Statements and Statement Delimiters.”

E.2.1 Control Structure Statements
The statements in this section are used to group statements into blocks and provide flow-
control constructs. Each occurrence of stmt_list in the syntax for these statements indi-
cates a list of one or more statements, each terminated by a semicolon character (‘;’).

Some of the constructs can be labeled (BEGIN, LOOP, REPEAT, and WHILE). Labels are
not case sensitive but must follow these rules:

n If a label appears at the beginning of a construct, a label with the same name may
also appear at the end.

n A label may not appear at the end without a matching label at the beginning.

BEGIN ... END

BEGIN [stmt_list] END

label: BEGIN [stmt_list] END [label]

1030 Appendix E SQL Syntax Reference

The BEGIN ... END construct creates a block within which multiple statements can be
grouped. If a stored program body needs to contain more than one statement, they must
be grouped within a BEGIN block.Also, if the program contains any DECLARE statements,
they can appear only at the beginning of a BEGIN block.

CASE

CASE [expr]

WHEN expr1 THEN stmt_list1

[WHEN expr2 THEN stmt_list2] ...

[ELSE stmt_list]

END IF

The CASE statement provides a branching flow-control construct.When the initial ex-
pression, expr, is present, CASE compares it to the expression following each WHEN. For the
first one that is equal, the statement list for the corresponding THEN value is executed.This
is useful for comparing a given value to a set of values.

When the initial expression, expr, is not present, CASE evaluates WHEN expressions. For
the first one that is true, the statement list for the corresponding THEN value is executed.
This is useful for performing non-equality tests or testing arbitrary conditions.

If no WHEN expression matches, the statement list for the ELSE clause is executed, if
there is one.

Note that the CASE statement differs from the CASE operator described in Section
C.2.1,“Comparison Functions.”

IF

IF expr1 THEN stmt_list1

[ELSEIF expr2 THEN stmt_list2] ...

[ELSE stmt_list]

END IF

The IF statement provides a branching flow-control construct. If the expression fol-
lowing the IF keyword is true, the statement list following the initial THEN is executed.
Otherwise, expressions for any following ELSEIF clauses are evaluated. For the first one
that is true, the corresponding statement list is executed. If no expression is true, the state-
ment list for the ELSE clause is executed, if there is one.

Note that the IF statement differs from the IF() function described in Section C.2.1,
“Comparison Functions.”

ITERATE

ITERATE label

The ITERATE statement is used within looping constructs to begin the next iteration
of the loop. It can appear within LOOP, REPEAT, and WHILE.

1031E.2 Compound Statement Syntax

LEAVE

LEAVE label

The LEAVE statement is used to exit a labeled flow-control construct.The statement
must appear within the construct that has the given label.

LOOP

LOOP stmt_list END LOOP

label: LOOP stmt_list END LOOP [label]

This statement sets up an execution loop.The statements within the loop execute re-
peatedly until control is transferred out of the loop.

REPEAT

REPEAT stmt_list UNTIL expr END REPEAT

label: REPEAT stmt_list UNTIL expr END REPEAT [label]

This statement sets up an execution loop.The statements within the loop execute re-
peatedly until the expression expr is true.

RETURN

RETURN expr

The RETURN statement is used only within stored functions (not stored procedures,
triggers, or events).When executed, it terminates execution of the function, and the value
of expr becomes the value returned to the statement that invoked the function.There can
be multiple RETURN statements within a function, but there must be at least one.

WHILE

WHILE expr DO stmt_list END WHILE

label: WHILE expr DO stmt_list END WHILE [label]

This statement sets up an execution loop.The statements within the loop execute re-
peatedly as long as the expression expr is true.

E.2.2 Declaration Statements
The DECLARE statement is used for declaring local variables, conditions, cursors, and
handlers.

DECLARE

DECLARE var_name [, var_name] ... type [DEFAULT value]

1032 Appendix E SQL Syntax Reference

DECLARE condition_name CONDITION FOR named_condition

named_condition: {SQLSTATE [VALUE] sqlstate_value | mysql_errno}

DECLARE cursor_name CURSOR FOR select_stmt

DECLARE handler_type

HANDLER FOR handler_condition [, handler_condition] ...

statement

handler_type: {CONTINUE | EXIT}

handler_condition:

SQLSTATE [VALUE] sqlstate_value

| mysql_errno

| condition_name

| SQLWARNING

| NOT FOUND

| SQLEXCEPTION

Declares local variables, conditions, cursors, and handlers. DECLARE can appear only at the
beginning of a BEGIN block. If multiple declarations occur, they must appear in this order:

1. Variable and condition declarations

2. Cursor declarations

3. Handler declarations

DECLARE followed by a list of comma-separated variables declares local variables for use
within the routine.A local variable is accessible within the BEGIN block where it is de-
clared and any nested blocks, but not in any outer blocks.

A local variable can be initialized in the DECLARE statement with a DEFAULT clause. If
there is no DEFAULT clause, the initial value is NULL.To assign a value to a local variable
later in the routine, use a SET statement or a SELECT ... INTO var_name statement.

DECLARE ... CONDITION creates a name for a condition.The name can be referred to in
a DECLARE ... HANDLER statement. named_condition can be either an SQLSTATE value
represented as a five-character quoted string or a numeric MySQL-specific error number.

DECLARE ... CURSOR declares a cursor to be associated with the given SELECT statement,
which should not contain an INTO clause.The cursor can be opened with an OPEN state-
ment, used with FETCH to retrieve rows, and closed with CLOSE.

DECLARE ... HANDLER associates one or more conditions with a statement to be exe-
cuted when any of the conditions occur.The handler_type value indicates what happens
after the condition statement executes.With CONTINUE, execution continues.With EXIT,
the current BEGIN block terminates.

handler_condition can be any of the following types of values:

1033E.3 Comment Syntax

n An SQLSTATE value represented as a five-character string.The value should not
be '00000' because that represents success, not an error.

n A numeric MySQL-specific error number.The value should not be zero because
that represents success, not an error.

n A named condition previously declared with DECLARE ... CONDITION.
n SQLWARNING, which catches any SQLSTATE value that begins with 01.
n NOT FOUND, which catches any SQLSTATE value that begins with 02.
n SQLEXCEPTION, which catches any SQLSTATE value not caught by SQLEXCEPTION

or NOT FOUND.

E.2.3 Cursor Statements
The statements in this section enable you to open and close cursors, and to use them for
fetching rows while open. Cursors currently are read-only and can be used only to move
forward a row at a time within a result set (that is, they are not scrollable).

CLOSE

CLOSE cursor_name

Closes the given cursor, which must be open.An open cursor is closed automatically
when the BEGIN block within which the cursor was declared ends.

FETCH

FETCH [[NEXT] FROM] cursor_name INTO var_name [, var_name] ...

Fetches the next row from the given cursor into the named variable or variables.The
cursor must be open. If no row is available, an error with an SQLSTATE value of 02000
(No Data) occurs.

OPEN

OPEN cursor_name

Opens the given cursor so that it can be used with FETCH.

E.3 Comment Syntax
MySQL allows you to intersperse comments with your SQL code. Comments can be
useful for documenting statements that you store in files.This section describes how to
write comments in your SQL statements.

The MySQL server understands three types of comments:

n Anything from ‘#’ to the end of the line is treated as a comment.This syntax is the
same as is used in most Unix shells and in many scripting languages, such as Perl,
PHP, or Ruby.

this is a single line comment

n Anything between ‘/*’ and ‘*/’ is treated as a comment.This form of comment
may span multiple lines.The syntax is the same as is used in the C programming
language.

/* this is a single line comment */

/* this

is a multiple line

comment

*/

n You can begin a comment with two dashes and a space (‘-- ’), or two dashes and a
control character such as a newline. Everything from the dashes to the end of the
line is treated as a comment.

--

-- This is a comment

--

The MySQL double-dash comment style is somewhat different from the comment
style of standard SQL, which begins with just two dashes and does not require the space
before any following text. MySQL requires a space after the dashes as an aid for disam-
biguation. Statements with expressions such as 5--7 might be taken as containing a com-
ment starting sequence otherwise. It’s not likely you’d write such an expression as 5-- 7,
so this is a useful heuristic. Still, it is only a heuristic, and you should take care if you im-
port SQL code that contains double-dash comments from other database systems into
MySQL.

The server ignores comments when executing statements, with the exception that it
gives C-style comments that begin with ‘/*!’ special treatment.You can “hide” MySQL-
specific keywords in C-style comments by beginning the comment with ‘/*!’ rather than
with ‘/*’. MySQL looks inside this special type of comment and uses the keywords, but
other database servers will ignore them as part of the comment.This has a portability
benefit, at least for other servers that understand C-style comments: It is possible to write
code that takes advantage of MySQL-specific functions when executed by MySQL but
that can be used with other database servers without modification.The following two
statements are equivalent for database servers other than MySQL, but MySQL will per-
form an INSERT DELAYED operation for the second:

INSERT INTO mytbl (id,date) VALUES(13,'2008-09-28');

INSERT /*! DELAYED */ INTO mytbl (id,date) VALUES(13,'2008-09-28');

1034 Appendix E SQL Syntax Reference

C-style comments can be version-specific. Follow the opening ‘/*!’ sequence with a
five-digit version number and the server will ignore the comment unless it is at least as
recent as the version named.The comment in the following SHOW STATUS statement is ig-
nored unless the server is version 5.0.2 or higher (the server understands the GLOBAL and
SESSION modifiers only as of MySQL 5.0.2):

SHOW /*!50002 GLOBAL */ STATUS;

1035E.3 Comment Syntax

This page intentionally left blank

F
MySQL Program Reference

This appendix provides general information about invoking MySQL programs and de-
scribes in some detail the programs named in the following list. Each program’s section
includes a description of its purpose, its invocation syntax, the options it supports, and a
description of any internal variables it has. Unless otherwise indicated, the program op-
tions and variables listed here are present in MySQL as least as early as MySQL 5.0.0.
Changes made since then are so noted.

n myisamchk

A utility for checking and repairing MyISAM tables, performing key distribution
analysis, and disabling and enabling indexes.

n myisampack

A utility for producing compressed, read-only MyISAM tables.
n mysql

An interactive program with line-editing capabilities for sending SQL statements to
the MySQL server. It can also be used in batch mode to execute statements stored
in a file.

n mysql.server

A script for starting and stopping the MySQL server.
n mysql_config

A utility that displays the proper flags for compiling MySQL-based programs.
n mysql_install_db

A script for initializing the server’s data directory and grant tables.
n mysqladmin

A client for performing administrative operations.
n mysqlbinlog

A program for displaying binary and relay log files in text format.

1038 Appendix F MySQL Program Reference

n mysqlcheck

A program for checking, repairing, optimizing, and analyzing tables.
n mysqld

The MySQL server; this program must be running so that clients have access to the
databases administered by the server.

n mysqld_multi

A script for starting and stopping multiple servers.
n mysqld_safe

A script for starting and monitoring the MySQL server.
n mysqldump

A client for dumping the contents of database tables.
n mysqlhotcopy

A database backup utility.
n mysqlimport

A client for loading bulk data into tables.
n mysqlshow

A client that provides information about databases or tables.
n perror

A utility that displays error code meanings.

Square brackets ([]) in syntax descriptions indicate optional information.

F.1 Displaying a Program’s Help Message
Each program description later in this appendix lists all options that the program cur-
rently understands. If a program doesn’t seem to recognize an option listed in its descrip-
tion, you may have an older version of the program that precedes the addition of the
option.

To get a list of supported options, check the program’s help message, which provides a
quick way to get information from the program itself. For the server (mysqld), invoke it
with the --version and --help options; for other programs, use just --help. For exam-
ple, if you’re not sure how to use mysqlimport, invoke it like this for instructions:

% mysqlimport --help

The -? option is the same as --help, although your shell (command interpreter)
might treat the ‘?’ character as a filename wildcard character:

% mysqlimport -?

mysqlimport: No match.

If that happens to you, try this instead:

% mysqlimport -\?

1039F.2 Specifying Program Options

Some options show up in help messages only under certain circumstances. For exam-
ple, the SSL-related options appear only if MySQL has been compiled with SSL support,
and Windows-only options such as --pipe appear only on Windows systems.

The help message from a MySQL program also displays the locations where the pro-
gram looks by default for option files, and the variables that it supports.

F.2 Specifying Program Options
Most MySQL programs understand several options that affect their operation. Options
may be specified on the command line or in option files. In addition, some options may
be specified by setting environment variables. Options specified on the command line
take precedence over options specified any other way, and options in option files take
precedence over environment variable values.

Most options have both a long (full-word) form and a short (single-letter) form.The
--help and -? options just described are an example of this. Long-form options that are
followed by a value should be given in --name=val or --name val format, where name is
the option name and val is its value. If a short-form option is followed by a value, in
most cases the option and the value may be separated by whitespace. For example, when
you specify a username, -usampadm is equivalent to -u sampadm.The -p (password) op-
tion is an exception; the password value is optional but if given must follow the -p with
no intervening space.

Option names are case sensitive. For example, the myisamchk program supports both
--help and --HELP, and the two options are slightly different.

Option values may or may not be case sensitive. For example, values such as usernames
and passwords are case sensitive, but the value for the --protocol option is not case
sensitive.To make a TCP/IP connection, --protocol=tcp and --protocol=TCP are
equivalent.

Many options are “boolean” and have a value of on or off. Such options have a base
form, and a standard set of related forms are recognized, as shown in the following table.

Option Meaning

--name Base option form; enables the option

--enable-name --enable- prefix; enables the option

--disable-name --disable- prefix; disables the option

--skip-name --skip- prefix; disables the option

--name=1 =1 suffix; enables the option

--name=0 =0 suffix; disables the option

For example, many MySQL client programs enable you to specify that you want to
turn on compression in the client/server protocol. For these programs, you can specify
the --compress option to enable compression, or omit it to not use compression.
However, there are other ways to indicate what you want: --enable-compress and
--compress=1 also enable compression, and --disable-compress, --skip-compress,
and --compress=0 cause compression not to be used.

The formats that explicitly disable an option are especially useful for options that are
on by default. In the case of protocol compression, you can disable it simply by omitting
the --compress option. But that does not work for options that are on by default. For
example, the --quote-names option for mysqldump is enabled by default.You cannot
disable name quoting by omitting the option, but you can do so by specifying any of
--skip-quote-names, --disable-quote-names, or --quote-names=0.

The program descriptions in this appendix use the marker “(boolean)” to signify which
options are subject to the preceding interpretation—that is, options for which the prefixes
and suffixes shown in the table are supported.

When in doubt, check a program’s help message to find out which option forms it
supports (see Section F.1,“Displaying a Program’s Help Message”).

MySQL programs have other standard option-processing features:

n Long options can be shortened to unambiguous prefixes, which can make it easier
to specify options that have very long names. If you specify a prefix that is not long
enough to be unambiguous, the program you invoke will tell you so and list those
options that match the prefix:

% mysql --h

mysql: ambiguous option '--h' (help, html)

n A --loose- prefix is supported to help make it easier to use differing versions of a
program that may not all understand quite the same set of options. For example,
servers from version 4.1 and up understand the --old-passwords option, but older
servers do not. If you specify the option as --loose-old-passwords, any server
from 4.0.2 on will use or ignore the option according to whether or not it under-
stands --old-passwords.With --loose, an option that is not recognized results
only in a warning, not program termination with an error.

n You can set program variables from the command line or in option files by treating
variable names as option names. For more information, see Section F.2.1.2,“Setting
Program Variables.”

n The MySQL server, mysqld, supports a --maximum- prefix for specifying a maxi-
mum value to which user-modifiable variables may be set. For example, the server
enables users to set their sort buffer size by changing the sort_buffer_size

1040 Appendix F MySQL Program Reference

1041F.2 Specifying Program Options

variable. If you want to place a maximum limit of 64MB on the value of this vari-
able, start the server with a --maximum-sort_buffer_size=64M option.

F.2.1 Standard MySQL Program Options
Several options have a standard meaning and most or all MySQL programs interpret
them the same way. Rather than writing out their meanings repeatedly in program de-
scriptions, they are described here once, and the “Standard Options Supported” section
for each program entry indicates which of these options a program understands.That
section lists only long-format names, but programs understand the corresponding short-
format options as well, unless otherwise specified.

The following list describes the standard options.The default values shown are those
that apply unless MySQL has been reconfigured at compile time.

n --character-sets-dir=dir_name

The directory where character set files are stored.
n --compress, -C (boolean)

This option is used only by client programs. It requests the use of compression in
the protocol used for communication between the client and the MySQL server, if
both of them support it.

n --debug=debug_options, -# debug_options

Turns on debugging output.This option has no effect unless MySQL was built
with debugging support enabled.The debug_options string consists of colon-
separated options.A typical value is d:t:o,file_name, which enables debugging,
turns on function call entry and exit tracing, and sends output to the file
file_name.

If you expect to do much debugging, you should examine the DBUG library user
manual for a description of all the options you can use.The manual is located in the
dbug directory in MySQL source distributions.

n --debug-check (boolean)

Checks the use of memory and open files when the program exits.
n --debug-info (boolean)

This is like --debug-check but also displays information about memory and CPU
use.

n --default-character-set=charset

The character set to use as the default.
n --help, -?

Prints a help message and exits. See also Section F.1,“Displaying a Program’s Help
Message.”

n --host=host_name, -h host_name

This option is used only by client programs. It indicates the host to connect to (that
is, the host where the server is running).The default value is localhost.

n --password[=pass_val], -p[pass_val]

This option is used only by client programs. It indicates the password to use when
connecting to the server. If you specify no pass_val after the option name, the
program asks you to enter a password. If you do specify pass_val after -p, it must
immediately follow the option letter with no space in between. In other words, the
short form must be given as -ppass_val, not as -p pass_val.

n --pipe, -W

Specifies use of a named pipe to connect to the server.This option is used only for
client programs running under Windows, and only for connecting to Windows
servers that have named-pipe support enabled.

n --port=port_num, -P port_num

For mysqld, this option specifies the port on which to listen for TCP/IP connec-
tions.The default port number is 3306. For client programs, this is the port number
to use when connecting to the server via TCP/IP.

n --protocol=protocol_type

This option is used only by client programs. It indicates what type of connection to
make to the server.The protocol_type value can be tcp (use TCP/IP), socket
(use a Unix socket file), pipe (use a Windows named pipe), or memory (use shared
memory).The value is not case sensitive.

Some connection types are platform specific or usable only for connecting to a lo-
cal server running on the same host as the client program:

n Socket, named-pipe, and shared-memory connections can be used only for
connecting to a local server.

n Socket connections can be used only on Unix.
n Named-pipe and shared-memory connections can be used only on Windows.
n TCP/IP connections can be used on any platform and can be used to con-

nect to local or remote servers.

The --protocol option can be used in conjunction with other options that pro-
vide information about how to connect to the server:

n For TCP/IP connections, you can use the --host and --port options to
specify the hostname and TCP/IP port number.

n For socket and named-pipe connections, you can use the --socket option
to specify the Unix socket filename on Unix or the named-pipe name on
Windows.

n For shared-memory connections, you can use the --shared-memory-base-
name option to specify the shared-memory name.

1042 Appendix F MySQL Program Reference

1043F.2 Specifying Program Options

n --set-variable var=value, -O var=value

Assigns a value to a program operating parameter. var is the variable name, and
value is the value to assign to it. --set-variable and -O are deprecated. See
Section F.2.1.2,“Setting Program Variables,” for more information.

n --shared-memory-base-name=name

The name of the shared memory to use for shared-memory connections.The de-
fault value is MYSQL.The value is case sensitive.

n --silent, -s

Tells the program to run in silent mode.This doesn’t necessarily mean the program
is completely silent, simply that it produces less output than usual. Some programs
allow this option to be specified multiple times to cause the program to become in-
creasingly silent.

n --socket=file_name, -S file_name

For client programs on Unix, this is the full pathname of the Unix socket file to use
when connecting to the server with a hostname of localhost.The default Unix
socket filename is /tmp/mysql.sock.The pathname is case sensitive if filenames are
case sensitive on the MySQL host. For client programs on Windows, this is the
name of the named pipe to use when connecting to the server via a named pipe.
The default pipe name is MySQL. Pipe names are not case sensitive.

n --user=user_name, -u user_name

For mysqld, this option indicates the name or user ID of the Unix account to be
used for running the server. For this option to be effective, the server must be
started as root so that it can change its user ID to that of the account that you
specify. For client programs, this is the MySQL username to use when connecting
to the server.The default value is your login name under Unix and ODBC under
Windows.

n --verbose, -v

Tells the program to run in verbose mode; the program produces more output than
usual. Some programs allow this option to be specified multiple times to cause the
program to be increasingly verbose.

n --version, -V

This option tells the program to print its version information string and exit.

F.2.1.1 Standard SSL Options
The following options are used for establishing secure connections.They are available
only if MySQL is compiled with SSL support. See Section 13.3,“Setting Up Secure
Connections,” for information on enabling secure connections.

n --ssl (boolean)

Enables SSL connections. --ssl is implied by each of the other SSL options; the
more common use of this option is as --skip-ssl to disallow SSL connections.

n --ssl-ca=file_name

The pathname to the certificate authority file.
n --ssl-capath=dir_name

The pathname to a directory of trusted certificates to be used for certificate
verification.

n --ssl-cert=file_name

The pathname to the certificate file.
n --ssl-cipher=str

A string listing the SSL ciphers that may be used to encrypt traffic sent over the
connection.The value should name one or more cipher types separated by commas.

n --ssl-key=file_name

The pathname to the key file.
n --ssl-verify-server-cert (boolean)

This option applies only to client programs. It tells the client to check the Com-
mon Name value from the certificate received from the server. If this value differs
from the host to which the client connected, the connection attempt is abandoned.
This option was introduced in MySQL 5.0.23/5.1.11.

F.2.1.2 Setting Program Variables
Several MySQL programs have variables (operating parameters) that you can set. One
way to set a variable is by treating its name as an option. For example, to invoke mysql

with the connect_timeout variable set to 10, use this command:

% mysql --connect_timeout=10

This syntax also allows underscores in variable names to be given as dashes, which
makes variable options look more like other options:

% mysql --connect-timeout=10

For variables that represent buffer sizes or lengths, values are in bytes if specified as a
number with no suffix, or can be specified with a suffix of ‘K’,‘M’, or ‘G’, to indicate kilo-
bytes, megabytes, or gigabytes. Suffixes are not case sensitive; you can also use ‘k’,‘m’, or ‘g’.

An older method for setting program variables uses the --set-variable option to set
variables (or its short-form equivalent, -O).The syntax for using these options to set the
connect_timeout variable looks like this:

1044 Appendix F MySQL Program Reference

1045F.2 Specifying Program Options

% mysql --set-variable=connect_timeout=10

% mysql -O connect_timeout=10

--set-variable and -O are deprecated.
Each program’s variables are listed in the program’s description in this appendix, and are

also displayed in the program’s help message (see Section F.1,“Displaying a Program’s Help
Message”).

F.2.2 Option Files
Most MySQL programs support option files.These provide a means for storing program
options so that you don’t have to type them on the command line each time you invoke
a program. For binary distributions, you can find sample option files under the MySQL
installation directory. If you have a source distribution, look in the support-files direc-
tory for the sample files.They have names such as my-huge.cnf, my-large.cnf, and so
forth. (The filename suffix is .ini on Windows.)

Any option specified in an option file can be overridden by explicitly specifying the
option on the command line with a different value.

MySQL programs that support option files look for them in several locations. How-
ever, it is not an error for an option file to be missing.This means you normally must cre-
ate option files yourself. Option files must be text files, so if you create an option file in a
word processor, be sure to save it in plain text format, not in the word processor’s native
document format.

Under Unix, the option files shown in the following table are read in order if they exist.

In addition, if a file is named with the --defaults-extra-file option, it is read just
before ~/.my.cnf. ~ represents the pathname to your home directory.

SYSCONFDIR comes from the --sysconfdir option given to configure at MySQL
build time. Its default value is the etc directory under the installation directory compiled
in to the distribution.This option file location is used as of MySQL 5.0.21/5.1.10, al-
though until 5.0.53/5.1.22, the file named by this location is read last.

Filename Contents

/etc/my.cnf Global options

/etc/mysql/my.cnf Global options (as of MySQL 5.1.15)

SYSCONFDIR/my.cnf Global options

$MYSQL_HOST/my.cnf Server-specific options

~/.my.cnf User-specific options

1046 Appendix F MySQL Program Reference

In addition, if a file named given with the --defaults-extra-file option, it is read
after the others. WINDIR is the pathname to the Windows directory (usually something
like C:\Windows or C:\WinNT). INSTALLDIR is the pathname to the MySQL installation
directory.

Global option files are used by all MySQL programs that are option file-aware. User-
specific files on Unix are read by programs run by that user.An option file in a server’s data
directory is used only by programs from a distribution that was built with that directory as
the default data directory location.The data directory is now a deprecated option file
location.

Windows users should be especially careful about the following issues when using
option files:

n Windows pathnames often contain backslash (‘\’) characters, which are treated as
escape characters by MySQL. For options that take pathname values, backslashes
should be written as slashes (‘/’) or as doubled backslashes (‘\\’).

n On Windows, filenames may be displayed with extensions hidden. If you create an
option file named my.cnf, the name may display as just my. Should you notice that
and attempt to change the name to my.cnf, you may find that the option file no
longer works.The reason is that you actually will have renamed the file from
my.cnf to my.cnf.cnf!

Several options related to option-file processing are standard across most MySQL pro-
grams and have the following meanings; if you use any of them, it must be the first option
on the command line.

n --defaults-extra-file=file_name

Specifies an option file to read in addition to the regular option files.The file is read
after any global and server-specific option files and before the user-specific file.As
of MySQL 5.0.6, the file must exist and be readable or an error occurs.

n --defaults-file=file_name

Specifies the sole file from which to read options. Normally, programs search for
option files in several locations (as described earlier), but if --defaults-file is

Filename Contents

WINDIR\my.ini, WINDIR\my.ini Global options

C:\my.ini, C:\my.cnf Global options

INSTALLDIR\my.ini, INSTALLDIR\my.ini Global options

$MYSQL_HOME is an environment variable that can be set for use by mysqld_safe to a
directory containing a server-specific option file. If it is not set, mysqld_safe tries to set it
automatically to find a my.cnf file in the MySQL installation directory or data directory.

Under Windows, the option files shown in the following table are read in order if
they exist.

1047F.2 Specifying Program Options

specified, only the named file is read.The file must exist and be readable or an error
occurs.

n --defaults-group-suffix=suffix

Reads the option groups with the usual names and also those with the concatena-
tion of the usual names and the given suffix.This option was introduced in MySQL
5.0.10.

n --no-defaults

Suppresses the use of any option files. In addition, this option causes other
option-file-related options such as --defaults-file to be unrecognized.

n --print-defaults

Prints the option values that will be used if you invoke the program with no op-
tions on the command line.This shows the values that will be read from option files
(and environment variables). --print-defaults is useful for verifying proper setup
of an option file. It’s also useful if MySQL programs seem to be using options that
you never specified; you can use --print-defaults to determine whether options
are being read from some option file.

A program’s help message lists the locations where the program looks by default for
option files (see Section F.1,“Displaying a Program’s Help Message”).The default set of
files to read is affected by use of --defaults-file, --defaults-extra-file, or
--no-defaults.

Options in option files are specified in groups (or sections). Here’s an example:

[client]

user=sampadm

password=secret

[mysql]

skip-auto-rehash

[mysqlshow]

status

Group names are written inside square brackets and are not case sensitive.The special
[client] group enables you to specify options that apply to all client programs. Other-
wise, a group name usually corresponds to a specific program name. In the preceding ex-
ample, [mysql] indicates the option group for the mysql client and [mysqlshow]
indicates the option group for mysqlshow.The standard MySQL client programs look at
both the [client] group and the group with the same name as the client name. For ex-
ample, mysql looks at the [client] and [mysql] groups, and mysqlshow looks at the
[client] and [mysqlshow] groups.

Be careful not to put options in the [client] group that really are understood only
by a single client. For example, skip-auto-rehash is specific to mysql. If you put this
option in the [client] group, you will suddenly find that other client programs such as

1048 Appendix F MySQL Program Reference

Sequence Meaning

\b Backspace

\n Newline (linefeed)

\r Carriage return

\s Space

\t Tab

\\ Backslash

mysqlimport no longer work. (They will display an error message followed by a help
message.) Place skip-auto-rehash in a [mysql] group instead.

Any options following a group name are associated with that group.An option file
may contain any number of groups, and groups listed later take precedence over groups
listed earlier. If a given option is found multiple times in the groups a program looks at,
the value listed last is used.

Each option should be specified on a separate line.The first word on the line is the
option name, which must be specified in long-name format without the leading dashes.
For example, to specify compression on the command line, you can use either -C or
--compress, but in an option file, you can use only compress.Any long-format option
supported by a program can be listed in an option file. If the option requires a value, list
the name and value separated by an ‘=’ character.

Consider the following command line:

% mysql --compress --user=sampadm --max_allowed_packet=16M

To specify the same information in an option file using the [mysql] group, do so as
follows:

[mysql]

compress

user=sampadm

max_allowed_packet=16M

You can quote an option value with either single quotes or double quotes.This is use-
ful if the value contains spaces.

Leading spaces in option file lines are ignored. Lines that are empty or that begin with
‘#’ or ‘;’ are treated as comments and ignored.You can also begin a comment in the mid-
dle of a line with a ‘#’ character (but not with a ‘;’ character).

The escape sequences shown in the following table can be used in option file values to
specify special characters.

1049F.2 Specifying Program Options

As of MySQL 5.0.4, option files can include directives that cause other option files to
be read:

n !include file_name

Reads the named option file.
n !includedir dir_name

Reads all option files in the named directory. Option files are identified as those
having an extension of .cnf on Unix or either .ini or .cnf on Windows.The or-
der in which the files are read is undefined.

Included files follow the usual option file syntax. Only options from the option group
that is current at the point of inclusion will be used.

F.2.2.1 Keeping User-Specific Option Files Private
Under Unix, your user-specific option file, ~/.my.cnf, should be owned by you and its
mode should be set to 600 or 400 so that other users cannot read it.You don’t want your
MySQL username and password exposed to anyone other than yourself.To make your
own option file private, issue either of the following commands in your home directory:

% chmod 600 .my.cnf

% chmod go-rwx .my.cnf

F.2.2.2 Using my_print_defaults to Check Options
The my_print_defaults utility is useful for determining what options a program will
read from option files. It searches option files and shows which options are found there
for one or more option groups. For example, the mysql program uses options from the
[client] and [mysql] option groups.To find out which options in your option files ap-
ply to mysql, invoke my_print_defaults like this:

% my_print_defaults client mysql

Similarly, the server mysqld uses options in the [mysqld] and [server] groups.To de-
termine what options are present in option files, use this command:

% my_print_defaults mysqld server

F.2.3 Environment Variables
MySQL programs look at the values of the several environment variables to obtain option
settings. Environment variables have low precedence; option values specified using them
can be overridden by options in an option file or on the command line.

1050 Appendix F MySQL Program Reference

MySQL programs check the following environment variables:
n MYSQL_DEBUG

The options to use when debugging.This variable has no effect unless MySQL
was built with debugging support enabled. Setting MYSQL_DEBUG is like using the
--debug option.

n MYSQL_PWD

The password to use when establishing connections to the MySQL server. Setting
MYSQL_PWD is like using the --password option.

Using the MYSQL_PWD variable to store a password constitutes a security risk because
other users on your system can easily discover its value. For example, the ps utility
shows environment variable settings for other users.

n MYSQL_TCP_PORT

For mysqld, this is the port on which to listen for TCP/IP connections. For client
programs, this is the port number to use when establishing a TCP/IP connection to
the server. Setting MYSQL_TCP_PORT is like using the --port option.

n MYSQL_UNIX_PORT

For mysqld, this is the socket file on which to listen for local connections. For
client programs, this is the pathname of the Unix socket file to use when establish-
ing socket file connections to the server running on localhost. Setting
MYSQL_UNIX_PORT is like using the --socket option.

n TMPDIR

The pathname of the directory in which to create temporary files. Setting this vari-
able is like using the --tmpdir option. However, although myisamchk and mysqld

understand a value containing a list of directories for --tmpdir, do not set TMPDIR
that way: Other non-MySQL programs that do not understand the list-of-
directories convention also use TMPDIR.

n USER

This is the MySQL username to use when connecting to the server.This variable is
used only by client programs running under Windows or NetWare; setting it is like
using the --user option.

The mysql client checks the value of three additional environment variables:
n MYSQL_HISTFILE

On Unix, the name of the file to use for storing command-line history during in-
teractive use.The default value if this variable is not set is $HOME/.mysql_history,
where $HOME is the location of your home directory.

n MYSQL_HOST

The host to connect to when establishing a connection to the MySQL server. Set-
ting this variable is like using the --host option.

1051F.3 myisamchk

n MYSQL_PS1

The string to use instead of mysql> for the primary prompt.The string can contain
the special sequences listed in the section of this appendix that describes the mysql
program.

F.3 myisamchk
The myisamchk utility enables you to check and repair damaged tables, display table in-
formation, perform index key value distribution analysis, and disable or enable indexes.
Chapter 5,“Query Optimization,” provides more information on key analysis and index
disabling. Chapter 14,“Database Maintenance, Backups, and Repair,” provides more in-
formation on table checking and repair.

myisamchk is used for tables that are managed by the MyISAM storage engine.These
tables have data and index filenames with .MYD and .MYI suffixes, respectively. If you tell
myisamchk to operate on a table of the wrong type, it prints a warning message and ig-
nores the table.

Invoke myisamchk with the names of the tables to be checked:

myisamchk [options] tbl_name[.MYI] ...

With no options, myisamchk checks the named tables for errors. Otherwise, it
processes the tables according to the meaning of the specified options. If you perform an
operation that might modify a table, it’s a good idea to make a copy of it first.

A tbl_name argument can be either the name of a table or the name of its index file,
tbl_name.MYI. Using index filenames is convenient if your command interpreter expands
wildcards because you can use a wildcard to specify all index names in a single command.
For example, you can check all the MyISAM tables in the current directory as follows:

% myisamchk *.MYI

myisamchk makes no assumptions about where table files are located. If the files that
you want to use are not in the current directory, you must specify the pathname to them.
Because table files are not assumed to be located under the server’s data directory, you can
copy table files into another directory and operate on the copies rather than the originals.

Many of the operations that myisamchk does can also be performed by issuing SQL
statements to the server.These statements include ANALYZE TABLE, CHECK TABLE,
OPTIMIZE TABLE, and REPAIR TABLE.You can issue these statements directly, or you can
use the mysqlcheck program, which provides a command-line interface to several SQL
table-maintenance statements. In general, it is easier and safer to use these statements or
mysqlcheck rather than myisamchk.

One danger of using myisamchk to perform maintenance on a table is that you must
prevent the server from accessing the table concurrently.This is necessary because the
server and myisamchk both access table files directly. If they are allowed to do so at the
same time, you can destroy the table. If you really want to use myisamchk, be sure to

1052 Appendix F MySQL Program Reference

consult Section 14.1,“Performing Database Maintenance with the Server Running,”
which discusses how to prevent the server from using a table while myisamchk is working
on it.

You must also take special care when using myisamchk for tables that contain
FULLTEXT indexes if both of these conditions are true:

n You are using myisamchk to perform an operation that modifies indexes.These in-
clude analysis and repair operations.

n You are running the server using a non-default value for any of these FULLTEXT-
related system variables: ft_max_word_len, ft_min_word_len, or ft_stopword_
file.

When both of these conditions hold, you must use appropriate options to tell
myisamchk what FULLTEXT parameters to use, because it does not know what values the
server is using. If you do not do this, myisamchk will build FULLTEXT indexes using differ-
ent parameter values than the server expects and FULLTEXT searches will return incorrect
results. Suppose that you run your server using the following non-default option settings
for the minimum word length and stopword file:

[mysqld]

ft_min_word_len=2

ft_stopword_file=/var/mysql/data/my-stopwords

In this case, you must indicate those same values to myisamchk for any index-changing
operation that you perform on tables that contain FULLTEXT indexes.You can do this on
the command line with --ft_min_word_len and --ft_stopword_list options, but it’s
better to record the values in an option file so that you don’t forget to use them. Use an
option group similar to the one used for the server:

[myisamchk]

ft_min_word_len=2

ft_stopword_file=/var/mysql/data/my-stopwords

You can avoid the problem of FULLTEXT parameter mismatch entirely by using SQL
statements such as REPAIR TABLE or ANALYZE TABLE for table maintenance.Then the
server does the index modification, and, because it knows what FULLTEXT parameters it is
using, applies them for maintenance operations on tables that contain FULLTEXT indexes.

F.3.1 Standard Options Supported by myisamchk

--character-sets-dir --set-variable --version

--debug --silent

--help --verbose

The --silent option means that only error messages are printed.The --verbose option
prints more information when given with the --check, --description, or --extend-
check options.The --silent and --verbose options can be specified multiple times for
increased effect.

1053F.3 myisamchk

The standard --help option prints the help message with options grouped by func-
tion. myisamchk also supports --HELP and -H options that display all options in a single
alphabetical list.

F.3.2 Options Specific to myisamchk
Some of these options refer to index numbers. Indexes are numbered beginning with 1.
You can issue a SHOW INDEX statement or use a mysqlshow --keys command to deter-
mine the index numbering for a particular table.The Key_name column in the output lists
indexes in the same order that myisamchk sees them.

n --analyze, -a

Performs key distribution analysis.This can help the server perform index-based
lookups and joins more quickly.To obtain information about key distribution after
the analysis, run myisamchk again with the --description and --verbose options.

n --backup, -B

For options that modify the data (.MYD) file, makes a backup using a filename of the
form tbl_name-time.BAK. time is a number representing a timestamp. myisamchk
creates the backup file in the directory where the table files are located.

n --block-search=n, -b n

Prints out the start of the table row that contains a block starting at block n.This is
for debugging only.

n --check, -c

Checks tables for errors.This is the default action if no options are specified.
n --check-only-changed, -C

Checks tables only if they have not been changed since the last check.
n --correct-checksum

For tables created with the CHECKSUM = 1 option, ensures that the checksum infor-
mation in the table is correct.

n --data-file-length=n, -D n

The maximum length in bytes to which the data file should be allowed to grow
when rebuilding a data file that has become full. (This occurs when a file reaches
the size limit imposed by MySQL or by the file-size constraints of your operating
system. It also occurs when the number of rows reaches the limit imposed by inter-
nal table data structures.) This option is effective only when used with --recover
or --safe-recover.

n --description, -d

Prints descriptive information about the table.

1054 Appendix F MySQL Program Reference

n --extend-check, -e

Performs an extended table check. It should rarely be necessary to use this option
because myisamchk normally finds any errors with one of the less extensive
check modes.

n --fast, -F

Checks tables only if they have not been closed properly.This can occur, for exam-
ple, if the server host machine crashes while mysqld has the tables open, so that
mysqld has no opportunity to close them.

n --force, -f

Forces a table to be checked or repaired even if a temporary file for the table al-
ready exists. Normally, myisamchk simply exits after printing an error message if it
finds a file named tbl_name.TMD, because that might indicate that another instance
of the program is already running. However, the file might also exist because you
killed a previous invocation of myisamchk while it was running, in which case the
file safely can be removed. If you know that to be the case, use --force to tell
myisamchk to run even if the temporary file exists. (Alternatively, remove the tem-
porary file manually.)

If you use --force when checking tables, myisamchk automatically restarts with
--recover for any table found to have problems. In addition, myisamchk updates
the table state in the same way that the --update-state option does.

n --information, -i

Prints statistical information about table contents.
n --keys-used=n, -k n

Used with --recover.The option value n is a bitmask that indicates which indexes
to use.The first index is bit zero. (For example, a value of 6 is binary 110 and indi-
cates that the second and third indexes should be used.) A value of 0 turns off all
indexes, which can be used to improve the performance of INSERT, DELETE, and
UPDATE operations.Turning the indexes back on restores normal indexing behavior
(specify a bitmask that includes an enabled bit for each index).

n --max-record-length=n

Ignores rows that are larger than n bytes if memory cannot be allocated for them.
n --medium-check, -m

Checks a table using a method that is faster than --extend-check, but slightly less
thorough. (The myisamchk help message says that this method finds “only” 99.99%
of all errors.) This check mode should be sufficient for most circumstances.
Medium check mode works by calculating CRC values for the keys in the index
and comparing them with the CRC values calculated from the indexed columns in
the data file.

1055F.3 myisamchk

n --parallel-recover, -p

Performs recovery the same way as for --recover, but rebuild the indexes in paral-
lel using multiple threads.This can be faster than a non-parallel rebuild, but this op-
tion should be considered experimental.

n --quick, -q (boolean)

This option is used in conjunction with --recover for faster repair than when
--recover is used alone.The data file is not touched when both options are given.
To force the program to modify the data file if duplicate key values are found,
specify the --quick option twice.

n --read-only, -T

Causes the table not to be marked as having been checked.
n --recover, -r

Performs a normal recovery operation.This can fix most problems except the oc-
currence of duplicate values in an index that should contain only unique values.

n --safe-recover, -o

Performs recovery using a method that is slower than one used for --recover, but
that can fix a few problems that --recover cannot. --safe-recover also uses less
disk space than --recover.

n --set-auto-increment[=n], -A[n]

Sets the AUTO_INCREMENT counter so that subsequent sequence values start at n (or
at a higher value if the table already contains rows with AUTO_INCREMENT values as
large as n). If no value n is specified, this option sets the next AUTO_INCREMENT value
to one greater than the current maximum value stored in the table.

If n is specified after -A, there must be no intervening space or the value will not be
interpreted correctly.

You can set the AUTO_INCREMENT value for a MyISAM table without using
myisamchk by issuing a statement of the following form:

ALTER TABLE tbl_name AUTO_INCREMENT = n;

n --set-character-set=charset

The character set to use for rebuilding and sorting table index entries.This option
was removed in MySQL 5.0.3 and replaced with --set-collation.

n --set-collation=collation

The collation to use for rebuilding and sorting table index entries. (The collation
name implies the character set name.) This option was introduced in MySQL 5.0.3
and replaces --set-character-set.

n --sort-index, -S

Sorts the index blocks to speed up sequential block reads for subsequent retrievals.

1056 Appendix F MySQL Program Reference

n --sort-records=n, -R n

Sorts data rows according to the order in which rows are listed in index n. Subse-
quent retrievals based on the given index should be faster.The first time you per-
form this operation on a table, it may be very slow because your rows will be
unordered. ALTER TABLE ... ORDER BY accomplishes the same thing as --sort-
records, and normally will be faster.

n --sort-recover, -n

Forces sorted recovery even if the temporary file necessary to perform the opera-
tion would become quite large.

n --start-check-pos=n

The position n at which to begin reading the data file.This option is used only for
debugging.

n --tmpdir=dir_name, -t dir_name

The pathname of the directory to use for temporary files.The default is the value of
the TMPDIR environment variable, or /tmp if that variable is not set.The option
value can be given as a list of directories, to be used in round-robin fashion. Under
Unix, separate directory names by colons; under Windows or NetWare, separate
them by semicolons.

n --unpack, -u

Unpacks a packed table that was packed by myisampack.This option can be used
to convert a compressed read-only table to modifiable form. It cannot be used with
--quick or with --sort-records.

n --update-state, -U

Updates the internal flag that is stored in the table to indicate its state.Tables that
are okay are marked as such, and tables for which an error occurs are marked as in
need of repair. Using this option makes subsequent invocations of myisamchk with
the --check-only-changed option more efficient for tables that are okay.

n --wait, -w

If a table is locked, waits until it is available.Without --wait, myisamchk waits 10
seconds for a lock and then prints an error message if no lock can be obtained.

F.3.3 Variables for myisamchk
The following myisamchk variables can be set using the instructions given in Section
F.2.1.2,“Setting ProgramVariables.”

For tables that contain FULLTEXT indexes, note the caution described in the introduc-
tory myisamchk program description.

1057F.3 myisampack

n decode_bits

The number of bits to use when decoding compressed tables. Larger values may re-
sult in faster operation but will require more memory.The default value of 9 gener-
ally is sufficient.

n ft_max_word_len

The maximum length of words that can be included in FULLTEXT indexes. Longer
words are ignored.The default value is 84.

n ft_min_word_len

The minimum length of words that can be included in FULLTEXT indexes. Shorter
words are ignored.The default value is 4.

n ft_stopword_file

The stopword file for FULLTEXT indexes.There is no default, which means “use the
built-in stopword list.”

n key_buffer_size

The size of the buffer used for index blocks. (This is used for --safe-recover, but
not for --recover or --sort-recover.)The default value is 512KB.

n key_cache_block_size

The size of blocks in the key buffer.The default value is 1MB.
n myisam_block_size

The block size used for index blocks in the .MYI file.The default value is 1MB.
n read_buffer_size

The read buffer size.The default value is 256KB.
n sort_buffer_size

The size of the buffer used for key value sorting operations. (This is used for
--recover or --sort-recover, but not for --safe-recover.)The default value
is 2MB.

n sort_key_blocks

This variable is related to the depth of the B-tree structure used for the index.The
default value is 16; you should not need to change it.

n stats_method

Whether NULL values should be considered equal or distinct for calculating index
key value distribution statistics.The value can be nulls_equal (all NULL values are
in the same group) or nulls_unequal (each NULL value forms a distinct group).
This variable was introduced in MySQL 5.0.14. Before that, statistics calculation is
the same as nulls_equal.

n write_buffer_size

The write buffer size.The default value is 256KB.

1058 Appendix F MySQL Program Reference

F.4 myisampack
The myisampack utility produces compressed, read-only tables. It achieves typical storage
requirement reductions of 40% to 70% while maintaining fast row access. myisampack
packs MyISAM tables and works with all data types.

No special version of the MySQL server is needed to read tables that have been
packed with myisampack.This makes them especially applicable for applications for
which you want to distribute a table containing archival or encyclopedic information that
is read-only and need not be updated. For example, if you are setting up a CD-ROM for
an application that uses the embedded server, you’ll be able to pack more data on the disk
by using compressed MyISAM tables.

Invoke myisampack with the names of the tables to be packed:

myisampack [options] tbl_name ...

A tbl_name argument can be either the name of a table or the name of the index file
for the table. (For MyISAM tables, index files have an extension of .MYI.) The name must
include the pathname to the directory in which the table is located if that is not your
current directory.

myisampack packs data files but does not touch index files, so after using it, you must
update the indexes by running myisamchk --recover --quick.

To convert a packed file to unpacked and modifiable form, use myisamchk --unpack.

F.4.1 Standard Options Supported by myisampack

--character-sets-dir --help --verbose

--debug --silent --version

F.4.2 Options Specific to myisampack
n --backup, -b

Makes a backup of the data file for each tbl_name argument as tbl_name.OLD be-
fore packing it.

n --force, -f

Forces a table to be packed even if the resulting packed file is larger than the origi-
nal or if a temporary file for the table already exists. Normally, myisampack simply
exits after printing an error message if it finds a file named tbl_name.TMD, because
that might indicate that another instance of the program is already running. How-
ever, the file might also exist because you killed a previous invocation of

1059F.5 mysql

myisampack while it was running, in which case the file safely can be removed. If
you know that to be the case, use --force to tell myisampack to pack the table
even if the temporary file exists. (Alternatively, remove the temporary file manually.)

n --join=join_tbl, -j join_tbl

Joins (merges) all the tables named on the command line into a single packed table
named join_tbl.All the tables to be merged must have the same structure. (Col-
umn names, types, and indexes must be identical.) This option is unrelated to
MERGE tables.The operation does not create the .frm file for the output table.
You can create it by copying the .frm file from one of the source tables after
myisampack completes.

n --test, -t

Causes myisampack to run in test mode.A packing test is run, and information is
printed about the results you would obtain if you actually packed the table.

n --tmpdir=dir_name, -T dir_name

The pathname of the directory to use for temporary files.
n --wait, -w (boolean)

Waits and retries if a table is in use. (You should not pack a table if it might be
updated while you’re packing it.)

F.5 mysql
The mysql client program enables you to connect to the server, issue SQL statements, and
view the results.

mysql [options] [db_name]

If you specify a db_name argument, that database becomes the default database for your
session. If you specify no db_name argument, mysql starts with no default database and
you’ll need to either qualify all table references with a database name or issue a USE
db_name statement to specify a default database.

mysql can be run interactively.You can also use it in batch mode to execute statements
that are stored in a file if you redirect the input of the command to read from that file.
For example:

% mysql -u sampadm -p -h cobra.snake.net sampdb < my_sql_file

In interactive mode, when mysql starts, it displays a mysql> prompt to indicate that it’s
waiting for input.To issue a statement, type it in (using multiple lines if necessary) and
then indicate the end of the statement by typing ‘;’ (semicolon) or \g. mysql sends the
statement to the server, displays the results, and then prints another prompt to indicate
that it’s ready for another statement. \G also terminates a statement, but causes statement
results to be displayed vertically (that is, with one column value per output line).

1060 Appendix F MySQL Program Reference

The '> and "> prompts indicate that you’ve begun a single-quoted or double-quoted
string on a previous line and have not yet entered the terminating quote. Similarly, `> in-
dicates an unterminated quoted identifier. /*> indicates that the beginning /* but not the
ending */ of a /*...*/ comment has been seen. Usually, you see these prompts when
you’ve forgotten to terminate a string, identifier, or comment. If that’s the case, to escape
from string-collection mode, enter the appropriate matching quote or comment ending
that is indicated by the prompt, followed by \c to cancel the current statement.

On Unix, when mysql is used in interactive mode, it saves statements in a history file.
The name of this file is $HOME/.mysql_history by default, and it can be specified explic-
itly by setting the MYSQL_HISTFILE environment variable.

Some options suppress use of the history file. Generally, these are options that indicate
non-interactive use of mysql, such as --batch, --html, and --quick.

On systems that support the Readline library, statements can be recalled from the
command history and re-issued, either with or without further editing. Under Windows,
Readline editing capabilities are not available, but Windows itself supports several editing
commands, so they become available to mysql. For information about editing commands
that work with Readline or on Windows, see Section 1.5.2.1,“Using the mysql Input
Line Editor.”

F.5.1 Standard Options Supported by mysql

--character-sets-dir --host --silent

--compress --password --socket

--debug --pipe --user

--debug-check --port --verbose

--debug-info --protocol --version

Prompt Meaning

mysql> Waiting for the first line of a new statement

-> Waiting for the next line of the current statement

'> Waiting for completion of a single-quoted string in the current statement

"> Waiting for completion of a double-quoted string in the current statement

`> Waiting for completion of a quoted identifier in the current statement

/*> Waiting for completion of /* ... */ comment (MySQL 5.0.6 and up)

mysql varies the prompt to indicate what it’s waiting for as you enter input lines, as
shown in the following table.The mysql> prompt is the primary prompt, displayed at the
beginning of each statement.The other prompts are secondary prompts, displayed to ob-
tain additional lines for the current statement.

1061F.5 mysql

--default-character-set --set-variable

--help --shared-memory-base-name

--debug-check is available as of MySQL 5.1.21.
--debug-info has its standard effect as of MySQL 5.1.14. Before that, it also displays

query result metadata; use --column-type-info as of 5.1.14 to display metadata.
mysql also supports the standard SSL options.
--silent and --verbose can be given multiple times for increased effect.
-I is a synonym for --help.

F.5.2 Options Specific to mysql
n --auto-rehash (boolean)

When mysql starts, it can hash database, table, and column names to construct a
data structure that enables fast completion of names.You can type the initial part of
a name when entering a statement and then press Tab. mysql will complete the
name unless it’s ambiguous; press Tab again to see the possible completions.

Name hashing is on by default, although it does not take effect until you have se-
lected a default database. --skip-auto-rehash suppresses hash calculation, which
enables mysql to start up more quickly, particularly if you have many tables.

If hashing has been disabled and you want to use name completion after starting
mysql, you can use the rehash command at the mysql> prompt.

n --auto-vertical-output (boolean)

Uses vertical output style automatically for query results that exceed the terminal
width.This option was introduced in MySQL 6.0.4.

n --batch, -B

Runs in batch mode. mysql displays query results in tab-delimited format (each
row on a separate line with tabs between column values).This is especially conven-
ient for generating output that you want to import into another program, such as a
spreadsheet application. Query results include an initial row of column headings by
default.To suppress these headings, use the --skip-column-names option.

n --column-names (boolean)

Displays column names as column headers in query results. Use --skip-column-

names to suppress display of column names.You can also achieve that effect by speci-
fying the --silent option twice.

n --column-type-info, -m (boolean)

Includes result set metadata with query output.This option was introduced in
MySQL 5.1.14 (-m in 5.1.21.) Use --debug-info to get result set metadata before
5.1.14.

1062 Appendix F MySQL Program Reference

n --comments, -c (boolean)

For statements that contain comments, includes these comments when the state-
ments are sent to the server. By default, comments are stripped (same as specifying
--skip-comments).This option was introduced in MySQL 5.0.52/5.1.23.

n --database=db_name, -D db_name

Specifies the default database.
n --delimiter=str

Sets the statement delimiter.The default delimiter is the semicolon (‘;’).
n --execute=stmt, -e stmt

Executes the statement and quits.You should enclose the statement in quotes to
prevent your shell (command interpreter) from treating it as multiple command-
line arguments. Multiple statements can be given; separate them by semicolons in
the stmt value.

n --force, -f (boolean)

Normally when mysql reads statements from a file, it exits if an error occurs.This
option causes mysql to continue processing statements, regardless of errors.

n --html, -H (boolean)

Produces HTML output.
n --i-am-a-dummy (boolean)

This option is synonymous with --safe-updates.
n --ignore-spaces, -i

Causes the server to ignore spaces between names of built-in functions and the ‘(’
character that introduces the argument list. Normally, function names should be
followed immediately by the parenthesis with no intervening spaces.This option
causes function names to be treated as reserved words.

n --line-numbers (boolean)

Displays line numbers in error messages.This is the default; to suppress line num-
bers, use --skip-line-numbers.

n --local-infile (boolean)

Enables or disables LOAD DATA LOCAL.The LOCAL capability might be present but
disabled by default. If LOAD DATA LOCAL results in an error, try again after invoking
mysql with the --local-infile option.This option can also be used to disable
LOCAL if it is enabled, for example, with --disable-local-infile.

This option is ineffective if the server has been configured to disallow use of LOCAL.
n --named-commands, -G (boolean)

Enables long forms of mysql’s internal commands at the beginning of any input
line. If this capability is disabled with --skip-named-commands, long commands are

1063F.5 mysql

allowed only at the primary prompt and disallowed at the secondary prompts. (That
is, they are disallowed on second and subsequent lines of a multiple-line statement.)

n --no-auto-rehash, -A

This option is deprecated in favor of --skip-auto-rehash. See the description for
--auto-rehash.

n --no-beep, -b (boolean)

Suppresses production of beeps when errors occur.
n --no-named-commands, -g

This option is deprecated. See the description for --named-commands.
n --no-pager

This option is deprecated in favor of --skip-pager. See the description for
--pager.

n --no-tee

This option is deprecated in favor of --skip-tee. See the description for
--tee.

n --one-database, -o

This option is used when updating databases from the contents of a binary log file.
It tells mysql to update only the default database (the database named on the com-
mand line). Updates to other databases are ignored. If no database is named on the
command line, no updates are performed.

n --pager[=program]

The name of a paging program to use for displaying long query results one page at
a time (for example, /bin/more or /bin/less). If program is missing, the paging
program is determined from the value of the PAGER environment variable. Output
paging is unavailable in batch mode, and does not work under Windows. Paging can
be disabled with --skip-pager.

n --prompt=str

Changes the primary prompt from mysql> to the string defined by str.The string
can contain special sequences, as described in Section F.5.5,“mysql Prompt Defini-
tion Sequences.”

n --quick, -q

Normally mysql retrieves the entire result of a query from the server before dis-
playing it.This option causes each row to be displayed as it is retrieved, which uses
much less memory and may allow some large statements to be performed success-
fully that would fail otherwise. However, this option should not be specified for in-
teractive use; if the user pauses the output or suspends mysql, the server continues
to wait, which can interfere with other clients.

1064 Appendix F MySQL Program Reference

n --raw, -r (boolean)

Writes column values without escaping any special characters.This option is used
in conjunction with the --batch option.

n --reconnect (boolean)

Automatically reconnects to the server if the connection is lost. Before MySQL
5.0.3, this option is enabled by default; disable it with --skip-reconnect.

Automatic reconnection can cause problems in some circumstances. For example,
any currently active transaction is rolled back and the values of session variables are
lost without an indication that this has happened.

n --safe-updates, -U (boolean)

This option places some limits on what you can do and can be beneficial for new
MySQL users:

n Updates (statements that modify data) are allowed only if the rows to be mod-
ified are identified by key values or if a LIMIT clause is used.This helps prevent
statements that mistakenly change or wipe out all or large parts of a table.

n Result sets produced by non-join retrievals are limited to one thousand rows
unless a LIMIT clause is used. Retrievals that involve a join are disallowed if
the optimizer estimates that it will need to examine more than one million
rows.This helps prevent unintended generation of very large query results.

These limits can be changed by setting the select_limit and max_join_size

variables.
n --secure-auth (boolean)

Prevents connecting to the server unless it supports the more secure password for-
mat introduced in MySQL 4.1.

n --show-warnings (boolean)

Automatically displays any warnings for each statement.This option was introduced
in MySQL 5.0.6.

n --sigint-ignore (boolean)

Ignores SIGINT signals, typically sent by typing Control-C. Before MySQL 5.0.25,
Control-C causes mysql to exit.As of 5.0.25, Control-C tells mysql to kill the cur-
rent statement. mysql exits if the statement could not be killed or you enter an-
other Control-C before the statement is killed. Using --sigint-ignore prevents
mysql from interpreting Control-C as just described.This option was introduced in
MySQL 5.0.2.

n --skip-column-names, -N

See the description for --column-names.The -N form of this option is deprecated.

1065F.5 mysql

n --skip-line-numbers, -L

See the description for --line-numbers.The -L form of this option is deprecated.
n --table, -t (boolean)

Produces output in tabular format, with values in each row delimited by bars and
lined up vertically.This is the default output format when mysql is not run in
batch mode.

n --tee=file_name

Appends a copy of all output to the named file. Output copying can be disabled
with --skip-tee.This option does not work in batch mode.

n --unbuffered, -n (boolean)

After each statement, flushes the buffer used for communication with the server.
n --vertical, -E

Prints query results vertically—that is, with each row of a query result displayed as a
set of output lines, one column per line. (Each line consists of a column name and
value.) The display for each row is preceded by a line indicating the row number
within the result set.Vertical display format may be useful when a query produces
very long lines.

If this option is not specified, you can enable vertical display format for individual
queries by terminating them with \G rather than with ‘;’ or \g.

n --wait, -w

Waits and retries if a connection to the server cannot be established.
n --xml, -X (boolean)

Produces XML output.

F.5.3 Variables for mysql
The following mysql variables can be set using the instructions given in Section F.2.1.2,
“Setting Program Variables.”

n connect_timeout

The number of seconds to wait before timing out when attempting to connect to
the server.The default value is 0.

n max_allowed_packet

The maximum size of the buffer used for communication between the server and
the client.The default value is 16MB and the maximum is 1GB.

1066 Appendix F MySQL Program Reference

n max_join_size

The row limit on the execution of joins if the --safe-updates option is given.
The server rejects joins for which it believes it will need to examine more than
max_join_size rows.The default value is 1,000,000.

n net_buffer_length

The initial size of the buffer used for communication between the server and the
client.This buffer can be expanded up to max_allowed_packet bytes long.The de-
fault value is 16KB.

n select_limit

The limit on the number of rows returned by SELECT statements if the --safe-

updates option is given.The default value is 1,000.

F.5.4 mysql Commands
In addition to enabling you to send SQL statements to the MySQL server, mysql imple-
ments several other commands internally. Each command must be given on a single line.
Most of the commands have a long form consisting of a word, and a short form consist-
ing of a backslash followed by a single letter. Commands in long form are not case sensi-
tive. Commands in short form must be specified using the lettercase shown in the
following list.A semicolon at the end of the line is unnecessary but allowed for long-form
commands, but should be omitted for short-form commands.

If you have disabled named commands (for example, with the --skip-named-
commands option), long command names are recognized only at the primary mysql>
prompt.

n clear, \c

Clears (cancels) the current statement.The current statement is the one that you are
in the process of typing; this command does not cancel a statement that has already
been sent to the server and for which mysql is displaying output.

n connect [db_name [host_name]], \r [db_name [host_name]]

Connects (or reconnects) to the given database on the given host. If the database
name or hostname is missing, the most recently used values from the current mysql
session are used.

n delimiter str, \d str

Sets the statement delimiter.The default delimiter is the semicolon (‘;’).The stored
program parser recognizes only the semicolon as the statement delimiter, so this
command can be used to redefine the delimiter for mysql while defining a stored
program. For an example, see Section 4.1,“Compound Statements and Statement
Delimiters.”

It’s best to avoid using backslashes in the delimiter because MySQL treats backslash
as an escape character.

1067F.5 mysql

n edit, \e

Edits the current statement. mysql attempts to determine what editor to use by ex-
amining the EDITOR and VISUAL environment variables. If neither variable is set,
mysql uses vi.This option is unavailable under Windows.

n ego, \G

Sends the current statement to the server and displays the result vertically.
n exit

Same as quit.
n go, \g, ;

Sends the current statement to the server and displays the result.
n help, \h, ?, \?

Displays a help message describing the available mysql commands.

If the help tables in the mysql database have been loaded, you can also use help to
get server-side help: Use help contents to get a list of help categories, help
category for help on a particular category, or help keyword for help about the
particular keyword (such as SELECT or UPDATE). For instructions on loading the
help tables, see Section A.4.4.4,“Installing or Upgrading Additional System Tables.”

n nopager, \n

Disables the pager and sends output to the standard output.This command is un-
available under Windows.

n notee, \t

Stops writing to the tee file.
n nowarning, \w

Stops automatically displaying any warnings generated by each statement.This
command was introduced in MySQL 5.0.6.

n pager [program], \P [program]

Sends output through the paging program specified by program, or through the
program specified in the PAGER environment variable, if that variable is set and
program is not given.This command is unavailable under Windows.

n print, \p

Prints the current statement (the text of the statement itself, not the results ob-
tained by executing it).

1068 Appendix F MySQL Program Reference

n prompt [arguments], \R [arguments]

Redefines the primary mysql> prompt. Everything following the first space after
the prompt keyword becomes part of the prompt string, including other spaces.The
string can contain special sequences, as described in Section F.5.5,“mysql Prompt
Definition Sequences.”To revert the prompt to the default, specify prompt or \R
with no arguments.

n quit, \q

Quits mysql.
n rehash, \#

Recalculates the information needed for database, table, and column name comple-
tion. See the description for the --auto-rehash option.

n source file_name, \. file_name

Reads and executes the statements contained in the named file. For Windows file-
names that include backslash (‘\’) pathname separators, double them or specify
them using slash (‘/’) instead.

n status, \s

Retrieves and displays status information from the server.This is useful if you want
to check the server version, default database, whether the connection is secure, and
so forth.

n system command, \! command

Executes command using your default command interpreter.This command is un-
available under Windows.

n tee [file_name], \T [file_name]

Copies output to the end of the named file.
n use db_name, \u db_name

Selects the given database to make it the default database.
n warnings, \W

Automatically displays any warnings generated by each statement.This command
was introduced in MySQL 5.0.6.

F.5.5 mysql Prompt Definition Sequences
The MYSQL_PS1 environment variable, the --prompt option, or the prompt command can
be used to redefine the primary mysql> statement prompt that mysql prints. For exam-
ple, to include the name of the default database in the prompt, use the prompt command
as follows and then select different databases to see how the prompt follows the current
selection:

1069F.5 mysql

Sequence Meaning

\c Current input line number

\d Default database name, or “(none)" if no database is selected

\D Full date and time

\h Current host

\l Current delimiter (as of MySQL 5.0.25/5.1.12)

\m Minute

\o Month number

\O Month name, three letters

\p Current port number, socket filename, named-pipe name, or shared-memory
name

\P am or pm indicator for time values

\r Hour (12-hour time)

\R Hour (24-hour time)

\s Second

\S Semicolon

\t Tab

\u Current username, without hostname

\U Current username, including hostname

% mysql

mysql> prompt \d>_

PROMPT set to '\d>_'

(none)> USE sampdb;

Database changed

sampdb> USE test;

Database changed

test>

The prompt keyword is followed by the prompt definition string.Within the defini-
tion, escape sequences that begin with backslashes indicate special prompt options.The \d
and _ sequences signify the default database name and a space. (If you set the prompt us-
ing the environment variable or the --prompt option, you might find it necessary to
double the backslashes when specifying the prompt string.) The following table shows the
complete list of available options.

1070 Appendix F MySQL Program Reference

F.6 mysql.server
mysql.server starts and stops the mysqld server by invoking mysqld_safe.
mysql.server is a shell script and is available on Unix.

mysql.server understands a command-line argument of start or stop:

mysql.server start

mysql.server stop

Normally, mysql.server is installed in a run-level directory on Unix systems that use
such directories under /etc. (The installed version typically is named mysql rather than
mysql.server.) The system starts the server by invoking the script with an argument of
start at system boot time.The system shuts down the server by invoking the script with
an argument of stop at system shutdown time.The script also can be invoked by hand
with the appropriate argument to start or stop the server.

F.6.1 Options Supported by mysql.server
Support by mysql.server for standard MySQL options is limited. It does not read any
standard options from the command line.Within the [mysql.server] group in option
files, it reads basedir, datadir, and pid-file options and passes them to mysqld_safe.
As of MySQL 5.0.40/5.1.17, an option of service-startup-timeout=n indicates how
long in seconds the script should wait for the server to start.The default value is 900.A
value of 0 means “do not wait” and negative values mean “wait forever.”

Sequence Meaning

\v Server version

\w Weekday name, three letters

\y Year (two-digit)

\Y Year (four-digit)

\' Single quote

\" Double quote

_ Space character

\ Space character (the sequence is backslash-space)

\\ Literal ‘\’

\n Newline (linefeed)

\x Literal ‘x’ for any ‘x’ not otherwise listed

1071F.8 mysql_install_db

F.7 mysql_config
The mysql_config utility is an aid to developing MySQL-based programs written in C.
It can be invoked to obtain the proper flags needed to compile C source files or link in
MySQL libraries:

mysql_config [options]

F.7.1 Options Specific to mysql_config
n --cflags

Displays the include directory flags needed to access MySQL header files and other
C compiler flags that might be necessary.

n --embedded, --embedded-libs

These options are synonyms for --libmysqld-libs.
n --include

Displays the include directory flags needed to access MySQL header files.
n --libmysqld-libs

Displays the library flags needed to link in libmysqld, the embedded server library.
n --libs

Displays the library flags needed to link in the client library.
n --libs_r

Displays the library flags needed to link in the thread-safe client library.
n --plugindir

Displays the default plugin directory.This option was introduced in MySQL
5.1.24/6.0.5.

n --port

Displays the default TCP/IP port number.
n --socket

Displays the default Unix socket file pathname.
n --version

Displays the MySQL version string.

F.8 mysql_install_db
The mysql_install_db script creates the server’s data directory, initializes the mysql
database that contains the grant tables, and creates an empty test database:

mysql_install_db [options]

1072 Appendix F MySQL Program Reference

mysql_install_db populates the grant tables with initial accounts for the root and
anonymous users. See Chapter 12,“General MySQL Administration,” for details on these
accounts and how to secure your installation by establishing passwords.

mysql_install_db is unavailable on Windows, but unnecessary because Windows dis-
tributions include a preinitialized data directory.

F.8.1 Standard Options Supported by mysql_install_db

--help --user

--help is available as of MySQL 5.0.48/5.1.21.
On Unix, the --user option runs the server using the login account of the named

user.This is useful for making sure that any directories and files created by the server are
owned by this user if you run mysql_install_db as the Unix root user.

F.8.2 Options Specific to mysql_install_db
You can use the options mentioned in this section on the command line, and you can set
the values for many of them by placing appropriate entries in the [mysqld] group of an
option file.The script also reads the [mysql_install_db] option group, which is useful
for options such as --ldata and --force that are understood only by mysql_install_db
and not by mysqld.

mysql_install_db passes any unrecognized options to mysqld.

n --basedir=dir_name

The pathname to the MySQL base directory.
n --datadir=dir_name, --ldata=dir_name

The pathname to the MySQL data directory.
n --force

Runs even if the current hostname cannot be determined.The IP number of the
host will be used to create grant table entries instead, which means that to use
client programs, you’ll need to specify the IP number rather than the hostname ex-
cept for connections to localhost.

n --skip-name-resolve

Uses only IP numbers in the grant tables rather than hostnames.This option might
be necessary if you don’t have a working DNS server.

F.9 mysqladmin
The mysqladmin client communicates with the MySQL server to perform a variety of
administrative operations.You can use mysqladmin to obtain information from or control
the operation of the server, set passwords, and create or drop databases:

mysqladmin [options] command ...

1073F.9 mysqladmin

F.9.1 Standard Options Supported by mysqladmin

--character-sets-dir --host --silent

--compress --password --socket

--debug --pipe --user

--debug-check --port --verbose

--debug-info --protocol --version

--default-character-set --set-variable

--help --shared-memory-base-name

--debug-info and --debug-check are available as of MySQL 5.1.14 and 5.1.21,
respectively.

--silent causes mysqladmin to exit silently if it cannot connect to the server.The
--verbose option causes mysqladmin to print more information for a few commands.
mysqladmin also supports the standard SSL options.

F.9.2 Options Specific to mysqladmin
n --count=n, -c n

The number of iterations to make when --sleep is given. If --sleep is given but
--count is not, mysqladmin iterates forever (or until you interrupt it).

n --force, -f (boolean)

This option has two effects. First, it causes mysqladmin not to ask for confirmation
of the drop db_name command. Second, when multiple commands are specified on
the command line, mysqladmin attempts to execute each command even if errors
occur. Normally, mysqladmin exits after the first error.

n --no-beep, -b (boolean)

Suppresses production of beeps when errors occur.This option was introduced in
MySQL 5.1.17.

n --relative, -r (boolean)

Shows the difference between the current and previous values when used with
--sleep. Currently, this option works only with the extended-status command.

n --sleep=n, -i n

Executes the commands named on the command line repeatedly with a delay of n
seconds between each repetition.

n --vertical, -E (boolean)

This option is like --relative, but displays output vertically.
n --wait[=n], -w[n]

The number of times to wait and retry if a connection to the server cannot be es-
tablished.The default value of n is 1 if no value is given. If n is specified after -w,
there must be no intervening space or the value will not be interpreted correctly.

1074 Appendix F MySQL Program Reference

F.9.3 Variables for mysqladmin
The following mysqladmin variables can be set using the instructions given in Section
F..2.1.2,“Setting Program Variables.”

n connect_timeout

The number of seconds to wait before timing out when attempting to connect to
the server.The default value is 43,200.

n shutdown_timeout

For shutdown commands, the number of seconds to wait for a successful shutdown.
The default value is 3,600.

F.9.4 mysqladmin Commands
Following any options on the command line, you can specify one or more of the fol-
lowing commands. Each command name can be shortened to a prefix, as long as the
prefix is unambiguous. For example, processlist can be shortened to process or
proc, but not to p.

Several of these commands have an equivalent SQL statement, as noted in the descrip-
tions. See Appendix E,“SQL Syntax Reference,” for more information about the mean-
ing of these statements.

n create db_name

Creates a new database with the given name.This command is like the CREATE
DATABASE db_name statement.

n debug

Instructs the server to dump debugging information to the error log.
n drop db_name

Removes the database with the given name, and any tables that may be in the data-
base. mysqladmin asks for confirmation of this command unless the --force option
was given.This command is like the DROP DATABASE db_name statement.

n extended-status

Displays the names and values of the server’s status variables.This command is like
the SHOW STATUS statement.

n flush-hosts

Flushes the host cache.This command is like the FLUSH HOSTS statement.
n flush-logs

Flushes (closes and reopens) the log files.This command is like the FLUSH LOGS
statement.

n flush-privileges

Reloads the grant tables.This command is like the FLUSH PRIVILEGES statement.

1075F.9 mysqladmin

n flush-status

Clears the status variables. (This resets several counters to zero.) This command is
like the FLUSH STATUS statement.

n flush-tables

Flushes the table cache.This command is like the FLUSH TABLES statement.
n flush-threads

Flushes the thread cache.
n kill id,id,...

Kills the server threads specified by the given identifier numbers. If you specify
multiple numbers, the ID list should contain no spaces so that it will not be con-
fused for another command following the kill command.To find out what threads
are currently running, use mysqladmin processlist.This command is like issuing
a KILL statement for each thread ID.

n old-password new_password

This command is like the password command except that it causes the password to
be stored in the password-hashing format used prior to MySQL 4.1.

n password new_password

Changes the password for the account that the server authenticates you as when
you connect. (Being able to connect to the server using this account serves as veri-
fication that you know the current password.) The password will be set to
new_password.This command is like the SET PASSWORD statement.

On Unix, you can use either single quotes or double quotes in the mysqladmin
command to quote the password if it contains characters that your command inter-
preter considers special. On Windows, you should use only double quotes.Windows
command interpreters do not recognize single quotes as argument-quoting charac-
ters. If you use any single quotes, they become part of your password!

n ping

Checks whether the MySQL server is running.
n processlist

Displays a list of the currently executing server activity.This command is like the
SHOW PROCESSLIST statement.With the --verbose option, this command is like
SHOW FULL PROCESSLIST.

n refresh

This command flushes the table cache and the grant tables, and closes and reopens
the log files. If the server is a replication master server, the command tells it to
delete the binary log files listed in the binary log index file and to truncate the in-
dex. If the server is a slave server, the command tells it to forget its position in the
master binary log.

1076 Appendix F MySQL Program Reference

n reload

Reloads the grant tables.This command is like the FLUSH PRIVILEGES statement.
n shutdown

Shuts down the server.
n start-slave

Starts a replication slave server.This command is like the START SLAVE statement.
n status

Displays a short status message from the server.
n stop-slave

Stops a replication slave server.This command is like the STOP SLAVE statement.
n variables

Displays the names and values of the server’s variables.This command is like the
SHOW GLOBAL VARIABLES. (There is no support for SHOW SESSION VARIABLES be-
cause that wouldn’t make any sense.)

n version

Retrieves and displays the server version information string.This is the same infor-
mation that is returned by the VERSION() SQL function. (See Appendix C,“Opera-
tor and Function Reference.”)

F.10 mysqlbinlog
The mysqlbinlog program displays the contents of a binary log file in readable format:

mysqlbinlog [options] file_name ...

By default, mysqlbinlog reads local log files directly without connecting to a server. It
is also possible to connect to a server and ask it to send log files over the connection. See
the description for the --read-from-remote-server option.

The format of the binary log has changed from time to time.To avoid compatibility
problems, you may find it necessary to use a version of mysqlbinlog that is at least as re-
cent as your server version.

mysqlbinlog also can read relay log files created by replication slave servers because
the binary and relay logs have the same format.

F.10.1 Standard Options Supported by mysqlbinlog

--character-sets-dir --help --protocol

--debug --host --socket

--debug-check --password --user

--debug-info --port --version

1077F.10 mysqlbinlog

--character-sets-dir is available as of MySQL 5.0.3. --debug-check and --debug-

info are available as of MySQL 5.1.21.

F.10.2 Options Specific to mysqlbinlog
n --base64-output[=value]

Indicates when output should consist of BINLOG statements in base-64-encoded
form.This option was introduced in MySQL 5.1.5 as a boolean option.As of
5.1.24, it takes argument values of auto (use base-64 only when necessary), always,
or never.The default is auto if the option is not given; if given with no argument,
the default is always.

n --database=db_name, -d db_name

Extracts statements from the log file only for the named database.This option works
only when reading local logs.

n --disable-log-bin, -D (boolean)

Includes statements in the output that disable binary logging of the update state-
ments in the log.This prevents the statements from being logged again when they
are re-executed.

n --force-if-open, -F (boolean)

Reads binary log files even if they were not closed properly (or are currently in
use).This option was introduced in MySQL 5.1.15.

n --force-read, -f (boolean)

This option controls what mysqlbinlog does when it reads an event from the bi-
nary log that it is unable to recognize. By default, it stops. If this option is enabled,
mysqlbinlog continues after logging a warning and discarding the event.

n --hexdump, -H (boolean)

Includes a hexadecimal/ASCII event dump in the output.This option was intro-
duced in MySQL 5.0.16.

n --local-load=dir_name, -l dir_name

The directory in which to create to create temporary data files for processing LOAD
DATA LOCAL statements.

n --offset=n, -o n

Skips the first n events in the log file.
n --position=n, -j n

This option is deprecated in favor of --start-position.

1078 Appendix F MySQL Program Reference

n --read-from-remote-server, -R (boolean)

Reads binary log files by making a network connection to a server and asking it to
send the logs over the connection.To do this, use the --read-from-remote-
server option and give the --host, --password, --port, --protocol, --socket,
and --user options as necessary to specify connection parameters.Without
--read-from-remote-server, those options are ignored.

n --result-file=file_name, -r file_name

Writes output to the named file.
n --server-id=n

Dumps only events created by the server with this ID.This option was introduced
in MySQL 5.1.4.

n --set-charset=charset

Includes a SET NAMES statement in the output.This option was introduced in
MySQL 5.0.23/5.1.12.

n --short-form, -s

Shows only the statements that are present in the log; omits any extra information
in the log that is associated with the statements and does not show row-based
events.

n --start-datetime=date_time

Starts reading binary log events beginning with the first event that has a time at or
later than the given date_time value. date_time should be specified in a legal
DATETIME format in the time zone local to the host on which you run
mysqlbinlog. Quote the value if necessary for your command interpreter.

n --start-position=n

Starts reading binary log events at the given position in the first log file named on
the command line.

n --stop-datetime=date_time

Stops reading binary log events beginning with the first event that has a time at or
later than the given date_time value. date_time should be specified in a legal
DATETIME format in the time zone local to the host on which you run
mysqlbinlog. Quote the value if necessary for your command interpreter.

n --stop-position=n

Stops reading binary log events at the given position in the last log file named on
the command line.

n --to-last-log, -R (boolean)

When reading log files from a server (which requires the --read-from-remote-
server option), this option causes binary log files to be read through the last log
file of the server, rather than at the end of the last requested log file. --to-last-log

1079F.11 mysqlcheck

can be used to make sure that you have obtained all binary log information from
the server. (However, if you are sending the events to the same server to be
processed, this can lead to an infinite loop.)

F.10.3 Variables for mysqlbinlog
The following mysqlbinlog variables can be set using the instructions given in Section
F.2.1.2,“Setting Program Variables.”

n open_files_limit

The number of file descriptors to reserve.The default value is 64.

F.11 mysqlcheck
mysqlcheck is a client program for checking and repairing tables. It presents a command-
line interface to the CHECK TABLE, ANALYZE TABLE, OPTIMIZE TABLE, and REPAIR TABLE
statements. It’s somewhat similar to myisamchk, but is used while the server is running
and has some support for non-MyISAM tables. mysqlcheck works by sending administra-
tive SQL statements to the server to be executed.This contrasts with myisamchk, which
operates directly on table files and thus requires either that you coordinate table access
with the server or stop the server.

All mysqlcheck options are supported for MyISAM tables. mysqlcheck also can check
and analyze InnoDB tables.

mysqlcheck can be run in any of three modes:

mysqlcheck [options] db_name [tbl_name] ...

mysqlcheck [options] --databases db_name ...

mysqlcheck [options] --all-databases

In the first case, mysqlcheck checks the named tables in the given database. If no tables
are named, mysqlcheck checks all tables in the database. In the second case, all arguments
are taken as database names and mysqlcheck checks all tables in each one. In the third
case, mysqlcheck checks all tables in all databases.

F.11.1 Standard Options Supported by mysqlcheck

--character-sets-dir --help --shared-memory-base-name

--compress --host --silent

--debug --password --socket

--debug-check --pipe --user

--debug-info --port --verbose

--default-character-set --protocol --version

--debug-check and --debug-info are available as of MySQL 5.1.21.
mysqlcheck also supports the standard SSL options.

1080 Appendix F MySQL Program Reference

F.11.2 Options Specific to mysqlcheck
mysqlcheck supports the following options to control how it processes tables. Following
this list is a description of the equivalences between these options and the SQL statements
to which they correspond.

n --all-databases, -A (boolean)

Processes all tables in all databases.
n --analyze, -a

Performs table analysis by issuing an ANALYZE TABLE statement. (For example, this
analyzes the distribution of key values.) The results of the analysis can help the
query optimizer perform index-based lookups and joins more quickly.

n --all-in-1, -1 (boolean)

Without this option, mysqlcheck issues separate statements for each table.This op-
tion causes mysqlcheck to group tables by database and name all tables within each
database in a single statement.

n --auto-repair (boolean)

If any tables to be checked are found to have problems, runs a second phase to re-
pair them after the check phase has finished.

n --check, -c

Issues a CHECK TABLE statement to check for errors.This is the default action if no
action is specified explicitly.

n --check-only-changed, -C

Checks only tables that have changed since they were last checked or that have not
been closed properly.

n --check-upgrade, -g

Checks whether tables are compatible with your currents version of MySQL and is
useful after an upgrade.With --auto-repair, automatic table repair is attempted if
incompatibilities are found.This option was introduced in MySQL 5.0.19/5.1.7.

n --databases, -B (boolean)

Interprets all arguments as database names and checks all tables in each database.
n --extended, -e (boolean)

Performs an extended table check. If used with --repair, uses a more extensive
but slower repair method than is used for --repair by itself.

n --fast, -F (boolean)

Checks only tables that have not been closed properly.
n --fix-db-names (boolean)

Checks database names and converts them for name-encoding changes that were
made between MySQL 5.0 and 5.1.This option was introduced in MySQL 5.1.7.

1081F.11 mysqlcheck

n --fix-table-names (boolean)

Checks table names and converts them for name-encoding changes that were made
between MySQL 5.0 and 5.1.This option was introduced in MySQL 5.1.7.

n --force, -f (boolean)

Continues execution even if errors occur.
n --medium-check, -m

Performs table checking using a method that is faster than --extended but slightly
less thorough.This check mode should be sufficient for most circumstances.

n --optimize, -o

Performs table optimization by issuing an OPTIMIZE TABLE statement.
n --quick, -q (boolean)

For table checking, this option skips checking links in the data rows. Used with
--repair, this option repairs only the index file and leaves the data file untouched.
Giving this option twice is no different from giving it once, in contrast to
myisamchk, which does behave differently when the option is specified twice.

n --repair, -r

Performs table repair by issuing a REPAIR TABLE statement.This repair mode should
correct most problems except the occurrence of duplicate values in an index that
should contain only unique values.

n --tables

Overrides --databases to cause any following arguments to be interpreted as
table names.

n --use-frm (boolean)

When used with --repair, performs a table repair operation that uses the table’s
.frm file to reinitialize the index file and to determine how to interpret the con-
tents of the data file so that the indexes can be rebuilt.This can be useful if the in-
dex has become lost or irrecoverably corrupted. However, it should be treated as a
last resort and should be used only if your current version of MySQL is the same as
that used to create the table.

n ---write-binlog (boolean)

Writes ANALYZE TABLE, OPTIMIZE TABLE, and REPAIR TABLE statements to the bi-
nary log (which means that they will be sent to replication slaves).This option is
enabled by default; use --skip-write-binlog to disable it.This option was intro-
duced in MySQL 5.1.18.

The following tables show the relationship between mysqlcheck’s options and the
SQL statements that it issues.

1082 Appendix F MySQL Program Reference

For InnoDB tables, all options in the preceding table are treated as --check; InnoDB
does not support different types of checks.

Table analysis options (MyISAM and InnoDB tables only);

Table repair options (MyISAM tables only):

Table optimization options (MyISAM tables only):

Options Corresponding Statement

--repair REPAIR TABLE tbl_list

--repair --quick REPAIR TABLE tbl_list QUICK

--repair --extended REPAIR TABLE tbl_list EXTENDED

--repair --use-frm REPAIR TABLE tbl_list USE_FRM

Option Corresponding Statement

--analyze ANALYZE TABLE tbl_list

Option Corresponding Statement

--optimize OPTIMIZE TABLE tbl_list

Options Corresponding Statement

--check CHECK TABLE tbl_list

--check-only-changed CHECK TABLE tbl_list CHANGED

--extended CHECK TABLE tbl_list EXTENDED

--fast CHECK TABLE tbl_list FAST

--medium-check CHECK TABLE tbl_list MEDIUM

--quick CHECK TABLE tbl_list QUICK

Table checking options (MyISAM and InnoDB tables only):

1083F.12 mysqld

F.12 mysqld
mysqld is the MySQL server. It provides database access to client programs, so it must be
running or clients cannot use databases administered by the server.When mysqld starts, it
opens network interfaces on which to listen and then waits for client connections.
mysqld is multi-threaded and processes each client connection using a separate thread to
provide concurrency among clients. Statements that write to the database are executed
atomically; when the server begins executing such a statement, it will execute no other
statement for the data involved until the current statement has finished. For example, no
two clients can modify the same row in a table at the same time.

The usual invocation sequence is simply the server name followed by any desired
options:

mysqld [options]

On Windows, a server can be installed to run as a service. For example, the server
might be installed to run automatically at system startup time, or removed as a service as
follows:

C:\> C:\mysql\bin\mysqld --install

C:\> mysqld --remove

The install command uses the full pathname to the server. If the server is installed in a
different location, modify the pathname accordingly.The default service name is MySQL.
You can provide a service name following the option:

C:\> C:\mysql\bin\mysqld --install service_name

C:\> mysqld --remove service_name

This enables multiple servers to be run under different service names.With no
service_name argument or a service name of MySQL, the server uses MySQL as the service
name and reads the [mysqld] group from the standard option files.With a service_name
argument different from MySQL, the server uses that name as the service name and reads
the [mysqld] and [service_name] groups from the standard option files.

You can also provide a --defaults-file option following the service name to specify
an additional file of options for the server to read at startup time:

C:\> C:\mysql\bin\mysqld --install service_name --defaults-file=file_name

In this case, the service_name argument is not optional.
The preceding remarks about --install apply to --install-manual as well.

F.12.1 Standard Options Supported by mysqld

--character-sets-dir --port --user

--debug --shared-memory-base-name --verbose

--help --socket

1084 Appendix F MySQL Program Reference

The --help option by itself displays only a brief usage message.To see the full help mes-
sage, use this command:

% mysqld --verbose --help

mysqld also supports the standard SSL options.
Note that although --socket is supported, the corresponding short form (-S) is not.

On Windows, --socket sets the pipe name if the server supports named-pipe
connections.

On Unix, if the --user option is given, it specifies the username or numeric user ID
of the account to use for running the server. In this case, when the server starts, it looks
up the user and group ID values of the account from the password file and then changes
its user and group IDs to match. In this way, the server runs with the privileges associated
with that user, not root privileges. (The server must be started as root for the --user

option to be effective; it will not be able to change its user ID otherwise and a warning is
issued.)

F.12.2 Options Specific to mysqld
The first list of options here describes general options. It is followed by lists of options
specific to Windows, to InnoDB, and to replication.

n --allow-suspicious-udfs (boolean)

Enables the server to load older user-defined functions (UDFs) that might define
only the symbol corresponding to the function name and not any of the related
standard support-routine symbols.This capability is disabled by default as a precau-
tion against loading functions that might not be true UDFs.This option was intro-
duced in MySQL 5.0.3.

n --ansi, -a

Tells the server to use standard SQL behavior for certain types of syntax, rather
than MySQL-specific syntax.This option can be used to make the server more
standards-compliant.

This option is equivalent to using the --sql-mode option with the
REAL_AS_FLOAT, PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, and
ONLY_FULL_GROUP_BY mode values.

n --basedir=dir_name, -b dir_name

The pathname to the MySQL installation directory. Many other pathnames are re-
solved in relation to this directory if they are given as relative pathnames.

n --big-tables

Enables large result sets to be processed by saving all temporary results to disk rather
than by holding them in memory.This avoids most “table full” messages that occur
as a result of having insufficient memory to hold large result sets.This option is un-
necessary now because the server automatically saves results to disk as required.

1085F.12 mysqld

n --bind-address=ip_addr

Binds to the given IP number. Normally, mysqld binds to the default IP number
for the host on which the server is running.This option can be used to select an al-
ternative address to bind to if the host has multiple addresses.

n --bootstrap

This option is used by installation scripts when you first install MySQL.
n --character-set-client-handshake (boolean)

Tells the server to use character set information provided by the client.This option
is enabled by default; --skip-character-set-client-handshake causes the infor-
mation to be ignored, which is the behavior in MySQL 4.0.This option was intro-
duced in MySQL 5.0.13.

n --character-set-filesystem=charset

Sets the character_set_filesystem system variable.This option was introduced
in MySQL 5.0.19/5.1.6.

n --character-set-server=charset, -C charset

The default server character set.
n --chroot=dir_name, -r dir_name

Runs the MySQL server anchored to the given directory as its root directory.
See the chroot() Unix manual page for more information on running in a
chroot()-ed environment.

n --collation-server=collation

The default server collation.
n --concurrent-insert (boolean)

Enables concurrent inserts on MyISAM tables. If a MyISAM table has no holes in
the middle, concurrent inserts add new rows at the end of the table while retrievals
are being performed on the existing rows.This option is enabled by default.To dis-
allow concurrent inserts, use --skip-concurrent-insert.

n --core-file

Causes the server to generate a core file before exiting when a fatal error occurs.
n --datadir=dir_name, -h dir_name

The pathname to the MySQL data directory.
n --default-character-set=charset

This option is deprecated in favor of --character-set-server.
n --default-collation=collation

This option is deprecated in favor of --collation-server.

1086 Appendix F MySQL Program Reference

n --default-storage-engine=engine_name

The default table storage engine to use.The engine_name value should be the
name of one of the storage engines that the server supports, such as MyISAM or
InnoDB. (The value is not case sensitive.) If this option is not specified, the server
uses MyISAM.

n --default-table-type=engine_name

This option is deprecated in favor of --default-storage-engine.
n --default-time-zone=tz_name

Sets the server’s default time zone to tz_name.Time zone values are described in
Section 12.10.1,“Configuring Time Zone Support.”This option sets the
time_zone system variable, not system_time_zone.

n --delay-key-write=val

Sets the mode used by the server for handling delayed key writes for MyISAM
files. val can be ON (delay key writes on a per-table basis, according to any
DELAY_KEY_WRITE value specified when tables were created; this is the default), OFF
(never delay key writes for any MyISAM table), or ALL (delay key writes for all
MyISAM tables). OFF and ALL enforce a policy that is applied regardless of how in-
dividual tables were defined when they were created.

It’s common to run replication slave servers with --delay-key-write=ALL to ob-
tain increased performance for MyISAM tables by delaying key writes no matter
how the tables were created originally.

n --des-key-file=file_name

The name of the file that holds DES keys for the DES_ENCRYPT() and
DES_DECRYPT() functions. For a description of the format of this file, see the entry
for DES_ENCRYPT() in Appendix C.

n --enable-locking

This option is deprecated in favor of --external-locking.
n --enable-pstack (boolean)

Enables symbolic stack printing when an error occurs.
n --exit-info[=n], -T[n]

Causes the server to produce debugging information when it terminates. If n is
specified after -T, there must be no intervening space or the value will not be inter-
preted correctly.

n --external-locking (boolean)

Enables external locking (filesystem locking) for systems such as Linux, where ex-
ternal locking is off by default.

1087F.12 mysqld

External locking is problematic because it doesn’t work reliably on some systems,
and if effective only for operations that just read tables, such as table checking. (See
Section 14.1,“Performing Database Maintenance with the Server Running,” for
more information.)

n --flush

Causes the server to flush all tables to disk after each update.This reduces the risk
of table corruption in the event of a crash but seriously degrades performance.
Thus, it is useful only if you have an unstable system.This option applies only to
MyISAM tables.

n --gdb

Sets up signal handlers that are useful for debugging with gdb.
n --general-log (boolean)

Enables the general log for the logging destinations selected by the --log-output
option, or disables the log if given as --skip-general-log.This option was intro-
duced in MySQL 5.1.12.

n --init-connect=str

Statements to be executed for each client when the client connects.The value
should be one or more SQL statements, separated by semicolons.The statements
are executed only for clients that do not have the SUPER privilege.

n --init-file=file_name

The name of a file of SQL statements to be executed at startup time.A relative file-
name is interpreted starting at the data directory.The file should contain one state-
ment per line.

n --isam (boolean)

This option is obsolete because the ISAM storage engine was removed in MySQL
5.0.The option itself was removed in 5.1.14.

n --language=lang_name, -L lang_name

Displays error messages to clients in the specified language. lang_name is a value
such as english or german, or the full pathname to the directory containing the
language files.

n --large-pages (boolean)

Enables support for large memory pages.This option does not appear unless MySQL
was compiled to allow this feature.This option was introduced in MySQL 5.0.3.

n --lc-time-names=locale_name

The locale for the lc_time_names system variable.This option was introduced in
MySQL 5.0.42/5.1.18.

1088 Appendix F MySQL Program Reference

n --local-infile (boolean)

Enables or disables LOAD DATA LOCAL. Invoke the server with --local-infile or
--disable-local-infile to enable or disable LOCAL on the server side.

n --log[=file_name], -l[file_name]

The general log contains information about client connections and SQL state-
ments.As of MySQL 5.1.6, this option enables the general query log for the log-
ging destinations selected by the --log-output option and optionally specifies a
filename for file logging. Before 5.1.6, this option enables logging to a file. If
file_name is not given, the log filename is HOSTNAME.log in the data directory,
where HOSTNAME is the name of the server host. If file_name is given as a relative
path, it is interpreted starting at the data directory. If file_name is specified after -l,
there must be no intervening space or the value will not be interpreted correctly.

n --log-bin[=file_name]

Enables the binary log. file_name specifies the basename for the binary log files. If
not given, the log filename is HOSTNAME-bin.nnnnnn in the data directory, where
HOSTNAME is the name of the server host and nnnnnn is a sequence number that the
server increments by one each time it opens a new log file. If file_name is given as
a relative path, it is interpreted starting at the data directory.

n --log-bin-index=file_name

Enables the binary log index file. If file_name is not given, the default name is the
same as the basename of the binary log files, with an .index extension. If
file_name is given as a relative path, it is interpreted starting at the data directory.

n --log-error[=file_name]

The error log filename. If file_name is not given, the log filename is
HOSTNAME.err in the data directory, where HOSTNAME is the name of the server
host. If file_name is given as a relative path, it is interpreted starting at the data di-
rectory. If file_name is given as a name that has no extension, mysqld adds an ex-
tension of .err.

n --log-isam[=file_name]

Enables index file logging.This is used only for debugging MyISAM operations. If
you specify no name, the default is myisam.log in the data directory.

n --log-long-format

Writes additional information to the binary log and slow-query log if those logs are
enabled.This option is deprecated. Extra information is now the default for log-
ging, which you can disable with the --log-short-format option.

n --log-output[=destinations]

This option selects which output destinations to use for the general query log and
slow-query log, if those logs are enabled. destinations is a list of comma-
separated destination names.Allowable destinations are TABLE, FILE, and NONE.

1089F.12 mysqld

If present, NONE disables logging and takes precedence over any other values. If this
option is omitted or is given without a value, the default value is FILE (TABLE from
MySQL 5.1.6 through 5.1.20).

--log[=file_name] enables the general query log for the selected output destina-
tions and optionally specifies a filename for file logging.The --general-log or
--skip-general-log option enables or disables the general query log without
specifying a filename.The --log-slow-queries, --slow-query-log, and --skip-
slow-query-log options have similar effects for the slow-query log.

The general_log or slow_query_log system variable can be set at runtime to en-
able or disable the respective log.The general_log_file or slow_query_
log_file system variable can be set at runtime to change the name of the respec-
tive log file.

This option was introduced in MySQL 5.1.6. Before that, the destination is always
logging to a file.

n --log-queries-not-using-indexes (boolean)

If the slow-query log is enabled, this option enables logging of queries to that log
that do not use indexes.

n --log-short-format (boolean)

Writes less information to the binary log and slow-query log if those logs are enabled.
n --log-slow-admin-statements (boolean)

Administrative operations such as those performed by ALTER TABLE or OPTIMIZE
TABLE might be slow, but by default are not logged to the slow-query logs.This op-
tion causes them to be logged if they are slow. It was introduced in MySQL 5.0.8.

n --log-slow-queries[=file_name]

As of MySQL 5.1.6, this option enables the slow-query log for the logging destina-
tions selected by the --log-output option and optionally specifies a filename for
file logging. Before 5.1.6, this option enables logging to a file. If no file is named,
the default name is HOSTNAME-slow.log in the data directory, where HOSTNAME is
the name of the server host. If file_name is given as a relative path, it is interpreted
starting at the data directory.

n --log-tc=file_name

The pathname to the transaction coordinator log file (for XA transactions).This
option is unused. It was introduced in MySQL 5.0.3.

n --log-tc-size=n

The size of the transaction coordinator log file.This option was introduced in
MySQL 5.0.3.

1090 Appendix F MySQL Program Reference

n --log-update[=file_name]

Turns on logging to the update log file.This option is deprecated; the update log
was removed in MySQL 5.0, so --log-update enables the binary log if you haven’t
also given the --log-bin option.

n --log-warnings[=n], -W[n]

Writes certain non-critical warning messages to the error log.This option is on by
default.You can give the option without a value to enable warnings, or with a value
0 or 1 to disable or enable warnings.You can give the option without a value twice
or specify it with a value of 2 to enable logging of aborted connections or (as of
MySQL 5.2.6) access-denied errors. If n is specified after -W, there must be no in-
tervening space or the value will not be interpreted correctly.

n --low-priority-updates (boolean)

Gives updates lower priority than retrievals.
n --memlock (boolean)

Locks the server in memory if possible.This option is effective only systems such as
Solaris that can lock processes in memory, and only if the server is run as root.

n --myisam-recover[=level]

Enables automatic table repair for MyISAM tables.When the server opens a My-
ISAM table, it does a repair if the table is marked as crashed or was not closed prop-
erly when last used. level can be empty to disable recovery or a comma-separated
list of one or more of the following values: BACKUP (create a backup of the table if
the repair will change it), FORCE (force recovery even if more than a row of data
will be lost), QUICK (quick recovery), or DEFAULT (recover without any of the other
special handling; this is the same as specifying the option with no argument at all).

It’s a good idea to use this option if you run the server with the --delay-key-
write option or have MyISAM tables configured to enable delayed index writes.

n --ndbcluster (boolean)

Enables the NDBCLUSTER storage engine. If NDBCLUSTER is compiled in, it
is enabled by default. If you don’t use NDBCLUSTER tables, you can use --skip-
ndbcluster to disable NDBCLUSTER, which saves memory.

n --new, -n

This option was used in MySQL 4.0 to causes the server to use certain 4.1 behav-
iors. It is now unused.

n --old (boolean)

Set the old system variable, which enables older behavior for some features.This
option was introduced in MySQL 5.1.18.

1091F.12 mysqld

n --old-passwords

As of MySQL 4.1, the server supports a more secure password encryption method
than previously. Existing accounts that have passwords encrypted the old way
are still supported, but new passwords are encrypted using the new method.The
--old-passwords option forces the old method to be used even when assigning
new passwords. (This can be useful if you want to be able to downgrade the server
or move the accounts to an older server.)

n --old-style-user-limits (boolean)

MySQL accounts can have limits placed on their activities, as described in Section
12.3.1.5,“Limiting an Account’s Resource Consumption.” Before MySQL 5.0.3,
limits were assessed separately per host from which the account connected if the
account could be used to connect to the server from different hosts.As of 5.0.3,
limits for an account are assessed ignoring which particular host the account con-
nected from, but --old-style-user-limits can be used to enable the old method
of assessing limits.

n --one-thread

Causes the server to run using a single thread.This is used for debugging under
Linux, which normally uses three threads at a minimum.This option is deprecated
in favor of --thread_handling=one-thread as of MySQL 5.1.17.

n --pid-file=file_name

When mysqld starts, it writes its process ID (PID) into a file.This option specifies
the pathname of the PID file.The file may be used by other processes to determine
the server’s process number, typically for purposes of sending a signal to it. For ex-
ample, mysql.server reads the file when it sends a signal to the server to shut
down. If file_name is given as a relative path, it is interpreted starting at the data
directory.This option has no effect for the embedded server.

n --safe-mode

This option is like --skip-new, but disables even more things.You can try it if
MySQL appears to be unstable or if complex statements seem to yield incorrect
results.

n --safe-show-database (boolean)

This option is obsolete. MySQL administrators should use the SHOW DATABASES priv-
ilege to manage access to database names.

n --safe-user-create (boolean)

Disallows account creation by users who do not have INSERT access to the user
grant table.

1092 Appendix F MySQL Program Reference

n --safemalloc-mem-limit=n

Simulates a memory shortage.The value represents the limit on the amount of
memory available for allocation.This option can be used only if the server was built
with the --with-debug=full option at configuration time.

n --secure-auth (boolean)

Prevents clients from connecting unless they use the more secure password format
introduced in MySQL 4.1.

n --secure-file-priv=dir_name

Sets the secure_file_priv system variable, which restricts some file operations to
the named directory.This option was introduced in MySQL 5.0.38/5.1.17.

n --skip-grant-tables (boolean)

Disables use of the grant tables for verifying client connections.This gives any
client full access to do anything. It also disables the CREATE USER, DROP USER,
RENAME USER, GRANT, REVOKE, and SET PASSWORD statements.You can tell the
server to begin using the grant tables again by issuing a FLUSH PRIVILEGES state-
ment or a mysqladmin flush-privileges command, or by restarting it without
--skip-grant-tables.

n --skip-host-cache

Disables use of the hostname cache.
n --skip-locking

This option is deprecated in favor of --skip-external-locking. See the descrip-
tion for --external-locking.

n --skip-name-resolve

Suppresses hostname resolution. If this option is specified, the grant tables must
specify hosts by IP number or as localhost.

n --skip-networking

This option disables TCP/IP connections. Only local clients can connect, and must
do so using a non-TCP/IP interface. Unix clients can connect using a Unix socket
file.Windows clients can connect using shared memory or a named pipe.

n --skip-new

Skips the use of new, possibly unsafe routines.
n --skip-safemalloc

Skips memory allocation checking.This option can be used only if the server was
built with the --with-debug=full option at configuration time.

n --skip-show-database

By default, the SHOW DATABASES statement can be issued by any user. It displays all
databases if the user has the SHOW DATABASES privilege, or those databases for which
the user has some privilege otherwise.With the --skip-show-database option,

1093F.12 mysqld

the SHOW DATABASES statement can be used only by users who have the SHOW
DATABASES privilege, in which case it displays all databases.

n --skip-stack-trace

Skips stack-trace printing when failure occurs.
n --skip-symlink

This option is deprecated in favor of --skip-symbolic-links. See the description
for --symbolic-links.

n --skip-thread-priority

Normally, updates (statements that modify tables) run at a higher priority than
statements that retrieve data. If that is undesirable, this option causes the server not
to give different priorities to different types of statements.

n --slow-query-log (boolean)

Enables the slow-query log for the logging destinations selected by the --log-
output option, or disables the log if given as --skip-slow-query-log.This option
was introduced in MySQL 5.1.12.

n --sql-bin-update-same (boolean)

Yokes together sql_log_bin and sql_log_update so that setting one (with the
SET statement) sets the other as well.This option is obsolete as of MySQL 5.0,
when the update log no longer exists.The binary log should be used instead.

n --sql-mode=mode_list

This option modifies certain aspects of the server’s behavior to cause it to act ac-
cording to standard SQL, or to be compatible with other database servers or older
MySQL servers. mode_list should be a comma-separated list of one or more mode
values, or an empty string to clear the mode.The allowable mode values are given
in the description of the sql_mode system variable in Appendix D,“System, Status,
and User Variable Reference.”

n --symbolic-links (boolean)

For Unix, this option enables symbolic linking for MyISAM table data and index
files (using the DATA DIRECTORY and INDEX DIRECTORY table creation options). For
Windows, it enables symbolic linking of database directories.These techniques are
discussed in Chapter 11,“The MySQL Data Directory.” Database symlinking sup-
port on Windows is enabled by default; use --skip-symbolic-links to disable it.

n --sync-frm (boolean)

Tells the server to synchronize each .frm file to disk when it is created.This option
is enabled by default; use --skip-sync-frm to disable it.

n --sysdate-is-now (boolean)

As of MySQL 5.0.13, SYSDATE() returns the date and time at which it is invoked,
whereas NOW() returns the time at which the statement began executing.

1094 Appendix F MySQL Program Reference

--sysdate-is-now causes SYSDATE() to behave like NOW().This option was intro-
duced in MySQL 5.0.20.

n --tc-heuristic-recover=str

The strategy for recovering from crashed two-phase commits.The value can be
COMMIT or ROLLBACK.This option is unused. It was introduced in MySQL 5.0.3.

n --temp-pool (boolean)

With this option, the server uses a small set of names for temporary files, rather than
creating a unique name for each file.This avoids some caching problems on Linux.
This option is enabled by default; use --skip-temp-pool to disable it.

n --timed_mutexes (boolean)

Causes the server to collect InnoDB mutex timing information.This option was
introduced in MySQL 5.0.3.

n --transaction-isolation=level

Sets the default transaction isolation level.The allowable level values are READ-
UNCOMMITTED, READ-COMMITTED, REPEATABLE-READ, and SERIALIZABLE.

n --tmpdir=dir_name, -t dir_name

The pathname of the directory to use for temporary files.The option value can be
given as a list of directories, to be used in round-robin fashion. Under Unix, sepa-
rate directory names by colons; under Windows or NetWare, separate them by
semicolons.

n --warnings[=n]

This option is deprecated in favor of --log-warnings.

F.12.2.1 Windows Options
The options in this section are available only for servers running under Windows. Ser-
vice names and named-pipe names are not case sensitive. Shared-memory names are case
sensitive.

n --console (boolean)

Displays a console window for error messages.
n --enable-named-pipe (boolean)

For MySQL servers that include named-pipe support, named-pipe connections are
disabled by default.This option enables named-pipe connections.The default pipe
name is MySQL.The name can be changed with the --socket option.

Enabling named pipes may cause problems at server shutdown time.Test your sys-
tem to make sure that this option works properly for you.

n --install [service_name]

Installs the server as a service that runs automatically when Windows starts. If
service_name is not given, the default service is named MySQL.

1095F.12 mysqld

n --install-manual [service_name]

Installs the server as a service that does not run automatically when Windows starts.
You must explicitly start the service yourself. If service_name is not given, the de-
fault service is named MySQL.

n --remove [service_name]

Removes the server as a service. If service_name is not given, the default service is
named MySQL.

n --shared-memory (boolean)

Enables support for shared-memory connections.The default shared-memory name
is MYSQL.The name can be changed with the --shared-memory-base-name option.

n --standalone

Runs the server as a standalone program rather than as a service.

F.12.2.2 InnoDB Options
The options in this section are specific to the InnoDB storage engine.

n --innodb (boolean)

Enables the InnoDB storage engine. If InnoDB is compiled in, it is enabled by
default. If you don’t use InnoDB tables, you can use --skip-innodb to disable
InnoDB, which saves memory.

n --innodb_autoextend_increment=size

If the InnoDB shared tablespace is configured to be auto-extending, this option
controls the increment size for extending it.The value is specified in megabytes.
The default value is 8MB.

n --innodb_data_file_path=filespec_list

The specifications for the InnoDB tablespace component files.The format of the
option value is discussed in Section 12.6.3.1,“Configuring the InnoDBTablespace.”

n --innodb_data_home_dir=dir_name

The pathname to the directory under which the InnoDB tablespace components
are located.

n --innodb_fast_shutdown (boolean)

Speeds up the server shutdown process; the InnoDB storage engine skips some of
the operations that it performs normally.

n --innodb_file_per_table (boolean)

If this option is enabled, InnoDB creates new tables with individual tablespace files.
That is, each InnoDB table has an .ibd tablespace file located in its database direc-
tory.The shared tablespace is used only for the InnoDB data dictionary entry, not
for data or index storage.The option is disabled by default.

1096 Appendix F MySQL Program Reference

n --innodb_log_arch_dir=dir_name

This option is unused, and was removed in MySQL 5.1.21.
n --innodb_log_archive=n

This option is unused.
n --innodb_log_group_home_dir=dir_name

The pathname to the directory where the InnoDB storage engine should write its
log files.

n --innodb_max_dirty_pages_pct=n

The percentage of dirty pages that InnoDB allows in its buffer pool before it con-
siders it necessary to flush the log to disk.Allowable values are from 0 to 100; the
default is 90.

n --innodb_safe_binlog

Following crash recovery by InnoDB, truncates the binary log to the last statement
or transaction that was not rolled back.

n --innodb_status_file (boolean)

Writes SHOW INNODB STATUS information to a file named innodb_status.nnnnnn
in the data directory periodically. nnnnnn is the server process ID number.These
status files are not removed except for clean shutdown. Periodically, you should re-
move those that no longer are needed.

n --innodb_flush_log_at_trx_commit=n

This option has a value of 1 by default, which causes InnoDB log flushing when
transactions are committed so that ACID properties are guaranteed. Setting the op-
tion to 0 reduces the amount of flushing to disk that InnoDB performs. However,
this comes at a somewhat increased potential for losing a few of the most recent
committed transactions if a crash occurs.The following table shows the possible
values.

Value Meaning

0 Write to log once per second and flush to disk

1 Write to log at each commit and flush to disk

2 Write to log at each commit, but flush to disk only once per second

1097F.12 mysqld

F.12.2.3 Replication Options
The options in this section pertain to MySQL’s replication capabilities.

Several replication options with names of the form --master-xxx are not described
here.These were used on slave servers for specifying parameters for connecting to the
master, but became deprecated as of MySQL 5.1 and were removed in 5.2. Instead, spec-
ify the parameters using the CHANGE MASTER statement.

The --report-xxx and --show-slave-auth-info options affect the output of SHOW
SLAVE HOSTS on the master, as described in Appendix E.

n --abort-slave-event-count=n

This option is used by the MySQL test suite for replication testing.
n --binlog-do-db=db_name

Tells a replication master to log updates only for the named database. No other
databases will be replicated.To log updates for multiple databases, repeat the option
once for each database.

n --binlog-ignore-db=db_name

Tells a replication master not to log updates for the named database.To ignore up-
dates for multiple databases, repeat the option once for each database.

Note that use of this option causes the binary log to contain no information that
could be used for recovery of the named database if a crash occurs.To avoid this
problem, use --replicate-ignore-db on the slave server instead.

n --disconnect-slave-event-count=n

This option is used by the MySQL test suite for replication testing.
n --init-rpl-role=val

Indicates the initial replication role; val can be master or slave.This option is used
by the MySQL test suite for replication testing.

n --init-slave=str

For a master replication server, this option specifies statements to be executed for
each slave replication server when the slave connects.The value should be one or
more SQL statements, separated by semicolons.

n --log-slave-updates (boolean)

This option causes a replication slave to log updates that it receives from the master
server to its own binary log. It’s necessary to do this if the slave acts as a master to
another server (that is, if you chain slave servers).

n --master-info-file=file_name

For a replication slave, the name of the file that stores information about the cur-
rent replication state.The contents of this file are the replication coordinates (master
binary log filename and position), master host, username, password, port number,

1098 Appendix F MySQL Program Reference

connection retry interval, and SSL option values.The default name for this file is
master.info in the data directory. If file_name is given as a relative path, it is in-
terpreted starting at the data directory.

n --master-retry-count=n

For a replication slave, the number of times to attempt a connection to a master
server before giving up.

n --max-binlog-dump-events=n

This option is used by the MySQL test suite for replication testing.
n --relay-log=file_name

For a replication slave, this option specifies the basename of the relay log files. (The
slave I/O thread stores updates read from the master in the relay log, and the SQL
thread reads the relay log for statements and executes them.) By default, relay log
filenames are HOSTNAME-relay-bin.nnnnnn in the data directory, where HOSTNAME

is the name of the server host and nnnnnn is a sequence number that the server in-
crements by one each time it opens a new log file.

n --relay-log-index=file_name

For a replication slave, the name of the relay log index file.The default name is
HOSTNAME-relay-bin.index in the data directory, where HOSTNAME is the name of
the server host. If file_name is given as a relative path, it is interpreted starting at
the data directory.

n --relay-log-info-file=file_name

For a replication slave, the name of the relay log information file.The default name
is relay-log.info in the data directory.

n --replicate-do-db=db_name

Tells a replication slave to replicate only the named database.To restrict replication
to a set of databases, repeat the option once for each database.

n --replicate-do-table=db_name.tbl_name

Tells a replication slave to replicate only the given table, which should be named in
db_name.tbl_name format.To restrict replication to a set of tables, repeat the op-
tion once for each table.

n --replicate-ignore-db=db_name

Tells a replication slave not to replicate the named database.To ignore multiple data-
bases, repeat the option once for each database.

n --replicate-ignore-table=db_name.tbl_name

Tells a replication slave not to replicate the named table.To ignore multiple tables,
repeat the option once for each table.

1099F.12 mysqld

n --replicate-rewrite-db=master_db->slave_db

Tells a replication slave to treat one database as another. Updates made to the origi-
nal database master_db on the master server are replicated as updates to the data-
base slave_db on the slave server.The rewrite applies only when master_db is the
default database and only to statements that operate on tables in that database.
When given on the command line, the option value should be enclosed within
quotes to prevent the command interpreter from treating the ‘>’ character as an
output redirection operator.This option can be given multiple times.The server
tries them in order and uses the first rule for which the master_db value matches.

This option is applied before actions specified by other --replicate-xxx options
are tested, so if you use it, those options should use slave_db as the database name.

n --replicate-same-server-id (boolean)

If this option is enabled, the server will not skip replication events that contain its
own server ID.This option is disabled by default to prevent replication loops, but
can be enabled in certain special circumstances.

n --replicate-wild-do-table=pattern

Tells a replication slave to replicate only tables with names that match the given
pattern.To restrict replication to a set of patterns, repeat the option once for each
pattern.

n --replicate-wild-ignore-table=pattern

Tells a replication slave not to replicate tables with names that match the given pat-
tern.To ignore multiple patterns, repeat the option once for each pattern.

n --report-host=host_name

Reports to the master server that the slave server host is host_name.
n --report-password=pass_val

Reports to the master server that the slave server account password is pass_val.
n --report-port=port_num

Reports to the master server that the slave server port is port_num.
n --report-user=user_name

Reports to the master server that the slave server account name is user_name.
n --rpl-recovery-rank=n

This option is not used.
n --server-id=n

The replication server ID value.The value must be in the range from 1 to 232-1 and
it must be unique among communicating replication servers.

1100 Appendix F MySQL Program Reference

n --show-slave-auth-info (boolean)

Causes a master server to display slave server usernames and passwords in the output
of the SHOW SLAVE HOSTS statement.

n --skip-slave-start

Causes the server not to start the slave threads automatically.They must be started
manually by issuing a START SLAVE statement.

n --slave-allow-batching (boolean)

Sets the slave_allow_batching system variable.This option was introduced in
MySQL 5.2.5.

n --slave-load-tmpdir=dir_name

The pathname to the directory used by a slave server for processing LOAD DATA
statements. If this option is not specified, it defaults to the value of --tmpdir.

n --slave-skip-errors=error_list

The list of errors that a slave server should ignore rather than suspending replication
if they occur. (However, it’s usually better to determine what is causing problems so
that you can resolve them rather than using this option to ignore them.) A value of
all means all errors should be ignored. Otherwise, the value should be a list of one
or more error numbers separated by commas.

n --sporadic-binlog-dump-fail (boolean)

This option is used by the MySQL test suite for replication testing.

F.12.3 Variables for mysqld
To see the full help message that displays the system variable values that mysqld will use
by default, use this command:

% mysqld --verbose --help

To see what system variable values the currently executing mysqld is using, use this
command:

% mysqladmin variables

You can also check the current system variable values by issuing a SHOW VARIABLES
statement. Individual system variables are described in Appendix D. System variable values
can be set at startup time using the instructions given in Section F.2.1.2,“Setting Program
Variables.” In addition, many system variables can be modified dynamically; for more in-
formation, see Section 12.5.1,“Setting and Checking System Variable Values,” and the en-
try for the SET statement in Appendix E.

1101F.13 mysqld_multi

F.13 mysqld_multi
The mysqld_multi script makes it easier to run several mysqld servers on a single host. It
enables you to start or stop servers, or determine whether they are running:

mysqld_multi [options] command server_list

command is one of start, stop, or report.The server_list argument indicates
which servers you want to manipulate. For further instructions on using mysqld_multi,
see Section 12.11.4,“Using mysqld_multi for Server Management.”

F.13.1 Standard Options Supported by mysqld_multi

--help --silent --verbose

--password --user --version

--silent and --verbose are available as of MySQL 5.0.2.
mysqld_multi passes the --user and --password option values to mysqladmin when

it needs to stop servers or determine whether they are running.

F.13.2 Options Specific to mysqld_multi
n --config-file=file_name

As of MySQL 5.0.42/5.1.18, this option is deprecated; use the standard
--defaults-extra-file option instead. For earlier versions, this option names the
option file from which to read to obtain options for the servers that mysqld_multi
manipulates; without --config-file, mysqld_multi reads /etc/my.cnf and the
.my.cnf file in your home directory to obtain server options. (mysqld_multi reads
the standard option files for its own options.This option does not change that
behavior.)

n --example

Displays a sample option file that demonstrates option file groups suitable for use
with mysqld_multi.

n --log=file_name

The name of the log file where mysqld_multi should log its actions. Output is ap-
pended to the log if it already exists.The default log file is named
mysqld_multi.log in the data directory.To disable logging, use --no-log.

n --mysqladmin=file_name

The pathname to the mysqladmin binary you want to use.This can be useful if
mysqld_multi cannot find mysqladmin by itself, or if you want to use a particular
version.

n --mysqld=file_name

The pathname to the mysqld binary you want to use.This can be useful if
mysqld_multi cannot find mysqld by itself, or if you want to use a particular

1102 Appendix F MySQL Program Reference

version. It is allowable to specify a pathname to mysqld or mysqld_safe as the
value of this option.

n --no-log

Displays log output rather than writing it to a log file. If you want to see output on
the screen, you must use this option, because the default is to log to a file.

n --tcp-ip

By default, mysqld_multi attempts to connect to a server using a Unix socket file.
This option causes the connection attempt to use TCP/IP instead. It can be useful
when a server is running but its socket file has been removed, in which case the
server will be accessible only via TCP/IP.

F.14 mysqld_safe
mysqld_safe starts the mysqld server and monitors it:

mysqld_safe [options]

If the server dies, mysqld_safe restarts it. mysqld_safe is a shell script and is available
on Unix.There is also a compiled version that can be used on NetWare.

F.14.1 Standard Options Supported by mysqld_safe

--help

--help is available as of MySQL 5.0.3.

F.14.2 Options Specific to mysqld_safe
Options that may be used with mysqld may also be used with mysqld_safe, which sim-
ply passes them to mysqld. In addition, mysqld_safe understands the following options
of its own:

n --basedir=dir_name

The pathname to the MySQL base directory.
n --core-file-size=n

Limits the size of core files to n bytes if the server crashes.
n --datadir=dir_name

The pathname to the MySQL data directory.
n --err-log=file_name

This is the old form of the --log-error option.

1103F.14 mysqld_safe

n --ledir=dir_name

The directory in which to look for the server. (It’s taken to be the location of the
“libexec” directory.)

n --log-error=file_name

The file to use for the error log. Relative names are interpreted with respect to the
directory from which mysqld_safe was invoked. If this option is not specified, the
default error log is HOSTNAME.err in the data directory, where HOSTNAME is the name
of the current host.

n --mysqld=file_name

The path to the mysqld program.
n --mysqld-version=suffix

The value of this option is a suffix string. If the option is given, the suffix is added
to the basename mysqld, with a dash in between, to produce the name of the
server that mysqld_safe should start.

n --open-files=n, --open-files-limit=n

The number of file descriptors that mysqld should reserve.
n --pid-file=file_name

The name of the mysqld process ID file.
n --port=port_num

The port number on which the server should listen for TCP/IP connections.
n --port-open-timeout=n

How long in seconds the server should wait for its TCP/IP port to become avail-
able at startup.The default is 0 (no wait).This option was introduced in MySQL
5.0.19/5.1.5.

n --skip-kill-mysqld

Do not try to kill any currently running mysqld process before starting a new one.
This can be useful if you are running multiple instances of a given mysqld binary. If
is effective only on Linux.

n --skip-syslog

Specifies that error output should not be sent to syslog; a log file is used instead.
The default is to use a log file.This option was introduced in MySQL 5.1.20.

n --socket=file_name

The pathname of the Unix socket file.
n --syslog

Specifies that error output should be sent to syslog, for systems that have the
logger program.This option was introduced in MySQL 5.1.20.

1104 Appendix F MySQL Program Reference

n --syslog-tag=tag

When error output is sent to syslog, messages from mysqld_safe and mysqld are
tagged with the program name as a prefix.The --syslog-tag option modifies the
prefix to be mysqld_safe-tag and mysqld-tag, respectively.This option was intro-
duced in MySQL 5.1.21.

n --timezone=tz_name

Sets the server system time zone to tz_name.This might be useful if the server
doesn’t determine the system time zone automatically.

n --user=user_name, --user=uid

The username or numeric user ID of the account to use for running the server.

F.15 mysqldump
The mysqldump program writes the contents of database tables into text files.These files
can be used for a variety of purposes, such as database backups, moving databases to an-
other server, or setting up a test database based on the contents of an existing database.

By default, output for each dumped table consists of a CREATE TABLE statement that
creates the table, followed by a set of INSERT statements that load the contents of the
table. If the --tab option is given, the table contents are written to a data file as tab-
separated values, one line per row, and the table-creation SQL statement is written to a
separate file.

mysqldump can be run in any of three modes:

mysqldump [options] db_name [tbl_name] ...

mysqldump [options] --databases db_name ...

mysqldump [options] --all-databases

In the first case, mysqldump dumps the named tables in the given database. If no tables
are named, mysqldump dumps all tables in the database. In the second case, all arguments
are taken as database names and mysqldump dumps all tables in each one. In the third case,
mysqldump dumps all tables in all databases. If --databases or --all-databases is used,
the output contains CREATE DATABASE IF EXISTS and USE statements preceding the
statements for the tables in each database.

One common way to use mysqldump is as follows:

% mysqldump db_name > backup_file

The backup file should be imported back into MySQL with mysql rather than with
mysqlimport:

% mysql db_name < backup_file

mysqldump ignores and does not dump the INFORMATION_SCHEMA database, even if you
name it explicitly on the command line.

1105F.15 mysqldump

F.15.1 Standard Options Supported by mysqldump

--character-sets-dir --password --socket

--compress --pipe --user

--debug --port --verbose

--default-character-set --protocol --version

--help --set-variable

--debug-check --host

--debug-info --shared-memory-base-name

--debug-info and --debug-check are available as of MySQL 5.0.32/5.1.14 and 5.1.21,
respectively.

mysqldump also supports the standard SSL options.

F.15.2 Options Specific to mysqldump
The following options control how mysqldump operates. Section F.15.3,“Data Format
Options for mysqldump,” describes options that may be used in conjunction with the
--tab option to indicate the format of data files.

n --add-drop-database (boolean)

Adds a DROP DATABASE IF EXISTS statement before each CREATE DATABASE state-
ment.This option was introduced in MySQL 5.0.7.

n --add-drop-table (boolean)

Adds a DROP TABLE IF EXISTS statement before each CREATE TABLE statement.
n --add-locks (boolean)

Adds LOCK TABLE and UNLOCK TABLE statements around the set of INSERT state-
ments for each table.

n --all, -a (boolean)

This option is deprecated in favor of --create-options.
n --all-databases, -A (boolean)

Dumps all tables in all databases.This option also causes the dump output to in-
clude CREATE DATABASE IF NOT EXISTS and USE statements for each database.

n --all-tablespaces, -Y (boolean)

Dumps all tablespaces.This option was introduced in MySQL 5.1.6.
n --allow-keywords (boolean)

Allows for the creation of column names that are keywords.
n --apply-slave-statements (boolean)

This option is used in conjunction with --dump-slave. It causes the dump output
to include STOP SLAVE before the CHANGE MASTER statement and START SLAVE at
the end.This option was introduced in MySQL 6.0.4.

1106 Appendix F MySQL Program Reference

n --comments, -i (boolean)

Includes additional informational comments in the output, such as the mysqldump
version, which tables each set of INSERT statements applies to, and so forth.This
open is enabled by default; disable it with --skip-comments.

n --compact (boolean)

Generates more concise output that does not include comments, including version-
specific comments that set system variables.This option also enables the --skip-
add-drop-table, --skip-set-charset, --skip-disable-keys, and
--skip-add-locks options.

n --compatible=mode

This option causes mysqldump to modify its output to be compatible with standard
SQL, other database servers, or older versions of MySQL server.The mode value
specifies a compatibility mode. It can be given using one or more of the following
values as a comma-separated list.

Option Compatibility Meaning

ANSI ANSI-compatible

DB2 Compatible with DB2

MAXDB Compatible with MaxDB

MSSQL Compatible with MS SQL Server

MYSQL323 Compatible with MySQL 3.23

MYSQL40 Compatible with MySQL 4.0

ORACLE Compatible with Oracle

POSTRESQL Compatible with PostgreSQL

NO_FIELD_OPTIONS Suppress MySQL-specific column-related options

NO_KEY_OPTIONS Suppress MySQL-specific index-related options

NO_TABLE_OPTIONS Suppress MySQL-specific table-related options

This option has no effect if you connect with mysqldump to a server older than
MySQL 4.1.0.

n --complete-insert, -c (boolean)

Writes INSERT statements that name each column to be inserted.
n --create-options (boolean)

Includes additional information in the CREATE TABLE statements that mysqldump
generates, such as the storage engine, the beginning AUTO_INCREMENT value, and so

1107F.15 mysqldump

forth.This is the information that you can specify using table_option values in
the CREATE TABLE syntax. (See Appendix E.)

This option is enabled by default; use --skip-create-options to disable it.
n --databases, -B (boolean)

Interprets all arguments as database names and dumps all tables in each database.
This option also causes the dump output to include CREATE DATABASE IF NOT
EXISTS and USE statements for each database.

n --delayed-insert (boolean)

Writes INSERT DELAYED statements rather than INSERT statements. If you are load-
ing a dump file for MyISAM tables into another database and you want to mini-
mize the impact of the operation on other statements that may be taking place in
that database, --delayed-insert is helpful for achieving that end.

n --delete-master-logs

Deletes the binary log files on the server and begins a new one by issuing a FLUSH

MASTER statement after generating the dump output. Don’t use this option unless
you’re sure you want the existing binary logs to be wiped out.This option enables
--master-data.

n --disable-keys, -K (boolean)

Adds ALTER TABLE ... DISABLE KEYS and ALTER TABLE ... ENABLE KEYS statements
to the output, to disable updates to non-unique indexes while INSERT statements
are being processed.This speeds up index creation for each MyISAM table by caus-
ing it to happen all at once after the table is loaded.

n --dump-date (boolean)

Adds a comment indicating the dump date to the end of the output.This option
was introduced in MySQL 5.0.52/5.1.23.

n --dump-slave[=n]

This option is like --master-data, but is used for dumping a replication slave
server and produces a CHANGE MASTER statement in the output that indicates the bi-
nary log coordinates of the slave’s master, not those of the slave itself. See the de-
scription of --master-data for a description of how the option argument is used.
The --dump-slave option was introduced in MySQL 6.0.4.

n --events, -E (boolean)

Includes events in the dump output.This option was introduced in MySQL 5.1.8.
n --extended-insert, -e (boolean)

Writes multiple-row INSERT statements.These can be loaded more efficiently than
single-row statements.

1108 Appendix F MySQL Program Reference

n --first-slave, -x (boolean)

This option is deprecated in favor of --lock-all-tables.
n --flush-logs, -F (boolean)

Flushes the server log files before dumping tables. By default, the logs are flushed
for each database to create a checkpoint.This makes it easier to perform restore op-
erations because you know that binary log files created after the checkpoint time
were made after the backup for a given database. In conjunction with --lock-all-
tables or --master-data, the logs are flushed only after all tables have been
locked.This option requires the RELOAD privilege.

n --flush-privileges (boolean)

If the dump includes the mysql database, includes a FLUSH PRIVILEGES in the out-
put after dumping that database.This option was introduced in MySQL
5.0.26/5.1.12.

n --force, -f (boolean)

Continues execution even if errors occur.
n --hex-blob (boolean)

Dumps BINARY, VARBINARY, and BLOB columns as hexadecimal constants. For exam-
ple, with this option, mysqldump writes "MySQL" as 0x4D7953514C.

n --ignore-table=db_name.tbl_name

Skips dump output for the named table.To ignore multiple tables, repeat the option
once for each table.This option was introduced in MySQL 5.0.3.

n --include-master-host-port (boolean)

For the CHANGE MASTER statement in output produced with --dump-slave, in-
cludes MASTER_HOST and MASTER_PORT options that specify the hostname and port
number of the slave’s master.This option was introduced in MySQL 6.0.4.

n --insert-ignore (boolean)

Writes INSERT IGNORE statements rather than INSERT statements.This option was
introduced in MySQL 5.0.6.

n --lock-all-tables, -x (boolean)

Uses FLUSH TABLES WITH READ LOCK to lock all tables across all databases.This op-
tion disables --single-transaction and --lock-tables.

n --lock-tables, -l (boolean)

Uses LOCK TABLES ... READ LOCAL obtain locks for all tables being dumped before
dumping them.This option is good for MyISAM tables because a READ LOCAL lock
enables concurrent inserts to proceed while the dump is in progress. For InnoDB
and Falcon tables, --single-transaction is preferable.

1109F.15 mysqldump

n --log-error=file_name

Writes warning and error messages to the end of the named file.This option was
introduced in MySQL 5.0.42/5.1.18.

n --master-data[=value]

This option helps make a backup that can be used to set up a a slave server.With
this option, mysqldump sends a SHOW MASTER STATUS statement to the server to get
its current binary log filename and position, and uses the results to write a CHANGE
MASTER statement to the output that contains the same filename and position.The
effect is that when you load the dump file into a slave server, it synchronizes the
slave to the proper replication coordinates of the dumped server to begin replicat-
ing at the point when the dump was made.This option has no effect unless the
server has binary logging enabled.

By default, the CHANGE MASTER statement is written in non-commented form.
--master-data takes an optional value to explicitly control commenting of the
statement.A value of 1 produces a non-commented statement, and a value of 2
produces a commented statement.

--master-data requires the RELOAD privilege.This option automatically enables
--lock-all-tables if --single-transaction is not given.

n --no-autocommit (boolean)

Writes the INSERT statements for each table within a transaction.The resulting
output can be loaded more efficiently than executing each statement in autocom-
mit mode.

n --no-create-db, -n (boolean)

Causes CREATE DATABASE statements not to be written. (Normally, these are added
to the output automatically when --databases or --all-databases are used.)

n --no-create-info, -t (boolean)

Causes CREATE TABLE statements not to be written.This is useful if you want to
dump just table data.

n --no-data, -d (boolean)

Causes table data not to be written.This is useful if you want to dump just the
CREATE TABLE statements.

n --no-tablespaces, -y (boolean)

Causes tablespaces not to be dumped.This option was introduced in MySQL
5.1.14.

n --opt

Optimizes table dumping speed and writes a dump file that is optimal for reloading
speed.This option turns on whichever of the following options are present in your

1110 Appendix F MySQL Program Reference

version of mysqldump: --add-drop-table, --add-locks, --create-options,
--disable-keys, --extended-insert, --lock-tables, --quick, and
--set-charset.This option is enabled by default; use --skip-opt to disable it.

n --order-by-primary (boolean)

Dumps table rows in order of the primary key or the first unique index if there is
one.This produces sorted dump output for each table at a cost in performance.

n --quick, -q (boolean)

By default, mysqldump reads the entire contents of a table into memory and then
writes it out.This option causes each row to be written to the output as soon as it
has been read from the server, which is much less memory intensive. However, if
you use this option, you should not suspend mysqldump. Doing so causes the server
to wait, which can interfere with other clients.

n --quote-names, -Q (boolean)

Quotes table and column names by enclosing them within backtick (‘`’) characters.
This is useful if names are reserved words or contain special characters. --quote-
names is enabled by default; use --skip-quote-names to disable it.

n --replace

Writes REPLACE statements rather than INSERT statements.
n --result-file=file_name, -r file_name

Writes output to the named file.This option is intended for Windows, where it
prevents conversion of linefeeds to carriage return/linefeed pairs.

n --routines, -R (boolean)

Includes stored functions and procedures in the dump output.This option was in-
troduced in MySQL 5.0.13.

n --set-charset (boolean)

Writes a SET NAMES charset statement to the output, where charset is utf8 by
default.The character set can be changed using the --default-character-set op-
tion.The --set-charset option is enabled by default; use --skip-set-charset to
disable it.

n --single-transaction (boolean)

This option enables consistent dumps of InnoDB and Falcon tables.The idea is that
all the tables are dumped within a single transaction. mysqldump uses the
REPEATABLE READ transaction isolation level to produce a consistent dump without
causing other clients to block. (For non-transactional tables, changes might still oc-
cur during the dump operation.) This option disables --lock-all-tables.

1111F.15 mysqldump

n --skip-opt

This option has the opposite effect of --opt, which is enabled by default.
n --tab=dump_dir, -T dump_dir

This option causes mysqldump to write two files per table, using dump_dir as the
location for the files.The directory must already exist. For each table tbl_name, a
file dump_dir/tbl_name.txt is written containing the data from the table, and a
file dump_dir/tbl_name.sql is written containing the CREATE TABLE statement for
the table.You must have the FILE privilege to use this option.

By default, data files are written as newline-terminated lines consisting of tab-
separated column values.This format may be changed using the options described
under Section F.15.3,“Data Format Options for mysqldump.”

The effect of the --tab option can be confusing unless you understand exactly
how it works:

n Some of the files are written on the server host and some are written on the
client host. dump_dir is used on the server host for the *.txt files and on the
client host for the *.sql files. If the two hosts are different, the output files
are created on different machines.To avoid any uncertainty about where files
will be written, it is best to run mysqldump on the server host when you use
this option so that all files are created on the same machine.

n The *.txt files will be owned by the account used to run the server, and the
*.sql files will be owned by you.This is a consequence of the fact that the
server itself writes the *.txt files, whereas the CREATE TABLE statements are
sent by the server to mysqldump, which writes the *.sql files.

n --tables

Overrides --databases to cause any following arguments to be interpreted as
table names.

n --triggers (boolean)

Includes triggers in the dump output.Triggers are included by default; to exclude
them, use --skip-triggers.This option was introduced in MySQL 5.0.11.

n --tz-utc (boolean)

Sets the time zone to UTC after connecting to the server and include a SET
TIME_ZONE='+00:00' statement in the output.The effect is to suppress conversion
to and from the local time zone when dumping and reloading data so that
TIMESTAMP values do not change if the reload occurs in a time zone different from
the dump.This option is enabled by default but can be disabled with --skip-tz-
utc.This option was introduced in MySQL 5.0.15.

1112 Appendix F MySQL Program Reference

n --where=where_expr, -w where_expr

Dumps only rows selected by the WHERE condition given by where_expr.You
should enclose the condition in quotes to prevent your command interpreter from
treating it as multiple command-line arguments.

n --xml, -X

Generates output in XML format rather than as a set of SQL statements.

F.15.3 Data Format Options for mysqldump
If you specify the --tab or -T option to generate a separate data file for each table, several
additional options apply.You might need to enclose the option value in appropriate quot-
ing characters.These options are analogous to the data format options for the LOAD DATA
statement. See the entry for LOAD DATA in Appendix E.

n --fields-enclosed-by=char

Specifies that column values should be enclosed within the given character, usually
a quote character.The default is to not enclose column values within anything.This
option precludes the use of --fields-optionally-enclosed-by.

n --fields-escaped-by=char

Specifies the escape character for escaping special characters.The default is no es-
cape character.

n --fields-optionally-enclosed-by=char

Specifies that column values should be enclosed within the given character, usu-
ally a quote character.The character is used for non-numeric columns.The default
is to not enclose column values within anything.This option precludes the use of
--fields-enclosed-by.

n --fields-terminated-by=str

Specifies the column value separation character or characters to use for data files.
By default, values are separated by tab characters.

n --lines-terminated-by=str

Specifies the character or characters to write at the end of output lines.The default
is to write newlines.

F.15.4 Variables for mysqldump
The following mysqldump variables can be set using the instructions given in Section
F.2.1.2,“Setting Program Variables.”

1113F.16 mysqlhotcopy

n max_allowed_packet

The maximum size of the buffer used for communication between the server and
the client.The default value is 24MB and the maximum is 1GB.

n net_buffer_length

The initial size of the buffer used for communication between the server and the
client.This buffer may be expanded up to max_allowed_packet bytes long.The
default value is slightly less than 1MB.

F.16 mysqlhotcopy
The mysqlhotcopy performs efficient backups of databases and tables. It works only for
MyISAM and ARCHIVE tables. mysqlhotcopy is a Perl script. It requires that you have
DBI support installed (not surprising, given that it was originally written by Tim
Bunce, one of the creators of DBI). mysqlhotcopy works on Unix and NetWare, but
not Windows.

mysqlhotcopy connects to the server on the local host. It sends table flushing and
locking statements to the server for each table to be copied, and then copies the table files
to another location to make a backup.This ensures that outstanding table modifications
have been flushed to disk and that the server won’t try to further modify the table while
it is being copied. (Essentially, mysqlhotcopy implements the protocol described in
Section 14.1,“Performing Database Maintenance with the Server Running.”This pro-
tocol serves to tell the server to leave the designated tables alone while you’re working
directly with the table files.)

This program can be invoked in a number of ways.The general invocation syntax is as
follows:

mysqlhotcopy [options] db_name[./regex/] [new_db_name | dir_name]

For example, to make a copy of the database db_name named db_name_copy under the
data directory, use this command:

% mysqlhotcopy [options] db_name

To copy the db_name database to a directory named db_name under the /tmp directory
instead, do this:

% mysqlhotcopy [options] db_name /tmp

More examples are provided in the online documentation, available with this
command:

% perldoc mysqlhotcopy

1114 Appendix F MySQL Program Reference

F.16.1 Standard Options Supported by mysqlhotcopy

--debug --host --port --user

--help --password --socket

The --host option, if given, is intended only for specifying the name of the local host.
Normally, mysqlhotcopy tries to connect to the local server using a Unix socket file. It
connects over TCP/IP instead if you specify the actual hostname or IP number of the
server using the --host option.The --port option may be used in this case to specify a
port number other than the default. For --password, the password value is not optional.

F.16.2 Options Specific to mysqlhotcopy
n --addtodest

Instead of renaming the target directory if it already exists, just adds backup files to it.
n --allowold

If the target directory already exists, renames it by adding a suffix of _old. If the copy
fails, the renamed directory is restored to the original name. If the copy operation
succeeds, the renamed directory is deleted, unless the --keepold option is also
given.

n --checkpoint=db_name.tbl_name

Writes a checkpoint record to the given table, which should have been created in
advance with this structure:

CREATE TABLE tbl_name

(

time_stamp TIMESTAMP NOT NULL,

src VARCHAR(32),

dest VARCHAR(60),

msg VARCHAR(255)

);

src is the source database name, dest is the destination directory pathname, and
msg indicates success or failure of the copy operation.

n --chroot=dir_name

Use this option when mysqld runs in a chroot jail.The directory name is the base
directory of the jail.

n --dryrun, -n

“No execution” mode. mysqlhotcopy reports what actions it would take to per-
form the command, without actually doing them.This is useful for checking
whether mysqlhotcopy will do what you expect, particularly when you’re learning
how to use it.

1115F.16 mysqlhotcopy

n --flushlog

Flushes the logs after all the tables have been locked and before copying them.This
has the effect of checkpointing them to the time of the copy operation.

n --keepold

If the previous target directory exists, renames it by adding a suffix of _old prior to
making a new copy.This option implies --allowold.

n --method=copy_method

The method to use for copying files.A value of cp uses the cp program. Experi-
mental support for an scp method is also available. In this case, the copy_method
value should be the entire scp command to use, and the destination directory must
already exist.The scp method may result in your tables being locked for a much
longer time than a local copy due to the extra time required to copy the files over
the network.To avoid this problem, make the backup locally, and then copy it to
the remote host after mysqlhotcopy finishes.

n --noindices

Causes index files not to be copied. (If you need to use the backup files later to
recover the tables, you can re-create the indexes by using the files with myisamchk
--recover for MyISAM tables.)

n --quiet, -q

Causes the program to produce no output except when errors occur.
n --record_log_pos=db_name.tbl_name

Before copying tables, causes mysqlhotcopy to issue SHOW MASTER STATUS and
SHOW SLAVE STATUS statements and record the results in the given table, which
should have been created in advance with this structure:

CREATE TABLE tbl_name

(

host VARCHAR(60) NOT NULL,

time_stamp TIMESTAMP NOT NULL,

log_file VARCHAR(32) NULL,

log_pos INT NULL,

master_host VARCHAR(60) NULL,

master_log_file VARCHAR(32) NULL,

master_log_pos INT NULL,

PRIMARY KEY (host)

);

The results from SHOW MASTER STATUS are recorded in the log_file and log_pos

columns.This information provides replication coordinates for the binary log; if the
backup host is a replication master server, a slave should begin from these coordi-
nates if it is initialized from the backup files as a slave of the master.The results
from SHOW SLAVE STATUS are recorded in the master_host, master_log_file,

1116 Appendix F MySQL Program Reference

and master_log_pos columns; they can be used if the backup host is a replication
slave server and you want to initialize another slave of the same master from the
backup files.

n --regexp=pattern

Copies all databases having names that match the given regular expression.The final
argument of the command should be the directory where you want to copy the
databases.

n --resetmaster

Resets the binary log by issuing a RESET MASTER statement after all the tables have
been locked and before they are copied.

n --resetslave

Resets the information in the master.info file by issuing a RESET SLAVE state-
ment after all the tables have been locked and before they are copied.

n --suffix=str

This option is used when making a copy of databases into the database directory.
Each new database directory name is the same as the original with the given suf-
fix added.

n --tmpdir=dir_name

The pathname of the directory in which to create temporary files.The default is to
use the directory named by the TMPDIR environment variable, or /tmp if that vari-
able is not set.

F.17 mysqlimport
The mysqlimport client program is a bulk loader for reading the contents of text files
into existing tables. It functions as a command-line interface to the LOAD DATA SQL state-
ment, and is an efficient way to enter rows into tables:

mysqlimport [options] db_name file_name ...

The db_name argument specifies the database that contains the tables into which you
want to load data.The tables to load are determined from the filename arguments. For
each filename, any extension from the first period in the name is stripped off and the re-
maining basename is used as the name of the table into which the file should be loaded.
For example, mysqlimport will load the contents of a file named president.txt into
the president table.

mysqlimport reads data files only. It is not intended for reading SQL-format dump files
produced by mysqldump. Use mysql to read such files instead.

1117F.17 mysqlimport

F.17.1 Standard Options Supported by mysqlimport

--character-sets-dir --help --shared-memory-base-name

--compress --host --silent

--debug --password --socket

--debug-check --pipe --user

--debug-info --port --verbose

--default-character-set --protocol --version

--debug-info and --debug-check are available as of MySQL 5.1.14 and 5.1.21,
respectively.

mysqlimport also supports the standard SSL options.

F.17.2 Options Specific to mysqlimport
The following options control how mysqlimport processes input files. Section F.17.3,
“Data Format Options for mysqlimport,” describes options that may be used to indicate
the format of the data in the input files.

n --columns=col_list

Specifies the list of columns in the table to which columns in the data file corre-
spond.Values in input rows will be loaded into the named columns, and other
columns will be set to their default values. col_list is a list of one or more col-
umn names separated by commas.

n --delete, -d (boolean)

Empties each table before loading any data into it.
n --force, -f (boolean)

Continues loading rows even if errors occur.
n --ignore, -i

When an input row contains a value for a unique key that already exists in the
table, keeps the existing row and discards the input row.The --ignore and
--replace options are mutually exclusive.

n --ignore-lines=n

Ignores the first n lines of the data file.This can be used to skip an initial row of
column labels, for example.

n --local, -L (boolean)

By default, mysqlimport lets the server read the data file, which means that the file
must be located on the server host and that you must have the FILE privilege. Spec-
ifying the --local option tells mysqlimport to read the data file itself and send it
to the server.This is slower but works when you’re running mysqlimport on a dif-
ferent machine than the server host, as well as on the server host even if you don’t
have the FILE privilege.

1118 Appendix F MySQL Program Reference

This option is ineffective if the server has been configured to disallow use of LOAD
DATA LOCAL.

n --lock-tables, -l (boolean)

Locks each table before loading data into it.
n --low-priority (boolean)

Uses the LOW_PRIORITY scheduling modifier to load data into the table.
n --replace, -r (boolean)

When an input row contains a value for a unique key that already exists in the
table, replaces the existing row with the input row.The --ignore and --replace

options are mutually exclusive.
n --use-threads=n

Uses n threads to load files in parallel.This option was introduced in MySQL 5.1.7.

F.17.3 Data Format Options for mysqlimport
By default, mysqlimport assumes that data files contain newline-terminated lines consist-
ing of tab-separated values.The expected format may be altered using the following op-
tions.You might need to enclose the option value in appropriate quoting characters.
These options are analogous to the data format options for the LOAD DATA statement. See
the entry for LOAD DATA in Appendix E.

n --fields-enclosed-by=char

Specifies that column values are enclosed within the given character, usually a
quote character. By default, values are assumed not to be enclosed by any character.
This option precludes the use of --fields-optionally-enclosed-by.

n --fields-escaped-by=char

Specifies the escape character used to escape special characters.The default is no es-
cape character.

n --fields-optionally-enclosed-by=char

Specifies that column values may be enclosed within the given character, usually a
quote character.This option precludes the use of --fields-enclosed-by.

n --fields-terminated-by=str

Specifies the character or characters that separate column values. By default, values
are assumed to be separated by tab characters.

n --lines-terminated-by=str

Specifies the character or characters that terminate input lines. By default, lines are
assumed to be terminated by newline characters.

1119F.18 mysqlshow

F.18 mysqlshow
mysqlshow lists databases, tables within a database, or information about columns or in-
dexes within a table. It acts as a command-line interface to the SHOW SQL statement:

mysqlshow [options] [db_name [tbl_name [col_name]]]

If no database name is specified, mysqlshow lists all databases on the server host. If a
database name but no table name is specified, all tables in the database are listed. If data-
base and table names are specified, but no column name is specified, it lists the columns in
the table. If all the names are specified, mysqlshow shows information about the given
column.

The final argument may contain the ‘%’ and ‘_’ SQL wildcard characters, which are
treated the same way as for the LIKE operator. Output is limited to values that match the
wildcards. If the final argument contains the ‘*’ or ‘?’ shell wildcard characters, they are
treated as ‘%’ and ‘_’, respectively .

F.18.1 Standard Options Supported by mysqlshow

--character-sets-dir --help --shared-memory-base-name

--compress --host --socket

--debug --password --user

--debug-check --pipe --verbose

--debug-info --port --version

--default-character-set --protocol

--debug-info and --debug-check are available as of MySQL 5.1.14 and 5.1.21,
respectively.

The --verbose option causes additional columns to be included in the output (tables
per database, rows per table, and so forth).The option may be given multiple times.

mysqlshow also supports the standard SSL options.

F.18.2 Options Specific to mysqlshow
n --count (boolean)

Includes the number or rows per table in the output. Counting the rows may be
slow for some storage engines.This option was introduced in MySQL 5.0.6.

n --keys, -k (boolean)

Shows information about table indexes in addition to information about table
columns.This option is meaningful only if you specify a table name.

n --status, -i (boolean)

Displays the same kind of table information displayed by the SHOW TABLE STATUS

statement.

F.19 perror
perror displays error messages for error codes:

perror [options] [err_code] ...

You can use it to determine the meaning of errors returned by MySQL programs.

% perror 142

MySQL error: 142 = Unknown character set used

F.19.1 Standard Options Supported by perror

--help --silent --verbose --version

The --silent option causes only the error message and not the code to be displayed.
The default is --verbose, which displays both the code and the message.

--info and -I are synonyms for --help.

1120 Appendix F MySQL Program Reference

G
C API Reference

This appendix describes the C language application programming interface for the
MySQL client library.The API consists of a set of functions for communicating with
MySQL servers and accessing databases, and a set of data types used by those functions.
The client library functions may be classified into the following categories:

n Routines for initializing and terminating the client library
n Connection management routines to establish and terminate connections to the

server
n Error-reporting routines to get error codes and messages
n Construction and execution routines to construct SQL statements and send them

to the server
n Result set processing routines to handle results from statements that return data
n Information routines that provide information about the client, server, protocol

version, and the current connection
n Transaction control routines
n Routines for processing multiple result sets
n Routines for server-side prepared statements
n Administrative routines for controlling server operation
n Thread routines for writing threaded clients
n Routines for generating debugging information

Unless otherwise indicated, the data types and functions listed here have been present in
the client library at least as early as MySQL 5.0.0. Changes made since then are so noted.

The examples in this appendix are only brief code fragments. For complete client pro-
grams and instructions for writing them, see Chapter 7,“Writing MySQL Programs
Using C.”

1122 Appendix G C API Reference

G.1 Compiling and Linking
At the source level, the interface to the C client library is defined in a set of header files.
Generally, MySQL programs include at least the following three files:

#include <my_global.h>

#include <my_sys.h>

#include <mysql.h>

To tell the compiler where to find these files, you might need to specify an
-Ipath_name option, where path_name is the pathname to the directory where the
MySQL header files are installed. For example, if your MySQL header files are installed in
/usr/include/mysql or /usr/local/mysql/include, you can compile a source file
my_func.c by using commands that look something like this:

% gcc -I/usr/include/mysql -c my_func.c

% gcc -I/usr/local/mysql/include -c my_func.c

If you need to access other MySQL header files, they are located in the same directory
as mysql.h. For example, mysql_com.h contains constants and macros for interpreting
query result metadata.The header files errmsg.h and mysqld_error.h contain constants
for error codes. (Note that although you might want to look at mysql_com.h to see what’s
in it, you don’t actually need to include this file explicitly, because mysql.h does so. In-
cluding mysql.h thus gives your program access to the contents of mysql_com.h as well.)

A MySQL program can communicate as a client to a standalone MySQL server using
the regular client/server protocol, or it can use an embedded server that is linked directly
into the program binary. By proper use of the C API mysql_library_init() and
mysql_library_end() initialization and termination routines, a program can be written
so that either server type can be used (see Section G.3.1,“Client Library Initialization and
Termination Routines”).The choice of which type of server to use is determined by
which library you link the program against to produce the executable image:

n A program acts as a client of a standalone server if you link it against the
libmysqlclient library.To link this library into your program, specify
-lmysqlclient on the link command.You’ll probably also need to tell the linker
where to find the library using a -Lpath_name option, where path_name is the
pathname to the directory where the library is installed. For example:

% gcc -o myprog my_main.o my_func.o -L/usr/local/mysql/lib

-lmysqlclient

n A program uses the embedded server if you link it against the libmysqld library.To
link this library into your program, specify -lmysqld on the link command:

% gcc -o myprog my_main.o my_func.o -L/usr/local/mysql/lib -lmysqld

If a link command fails with “unresolved symbol” errors, you’ll need to specify addi-
tional libraries for the linker to search. Common examples include the math library (-lm)
and the zlib library (-lz or -lgz).

1123G.2 C API Data Types

The mysql_config utility provides an easy way to determine the proper header file
directories for compiling or library flags for linking. Invoke it as follows to find out which
flags are appropriate for your system.

n Compilation flags:

% mysql_config --include

-I'/usr/local/mysql/include/mysql'

n Flags for linking a client program:

% mysql_config --libs

-L'/usr/local/mysql/lib/mysql' -lmysqlclient -lz -lcrypt -lnsl -lm

n Flags for linking the embedded server:

% mysql_config --libmysqld-libs

-L'/usr/local/mysql/lib/mysql' -lmysqld -lz -lcrypt -lnsl -lm

The output shown is illustrative, but likely will be different on your system.

G.2 C API Data Types
Data types for the MySQL client library are designed to represent the kinds of informa-
tion you deal with in the course of a session with the server.There are types for the con-
nection itself, for results from a query, for a row within a result, and for metadata
(descriptive information about the columns making up a result).The terms “column” and
“field” are synonymous in the following discussion.

G.2.1 Scalar Data Types
MySQL’s scalar data types represent values such as very large integers, boolean values, and
field or row offsets.

n my_bool

A boolean type, used for the return value of mysql_change_user() and
mysql_thread_init().

n my_ulonglong

A long integer type, used for the return value of functions that return row counts
or other potentially large numbers, such as mysql_affected_rows(),
mysql_num_rows(), and mysql_insert_id().To print a my_ulonglong value, cast
it to unsigned long and use a format of %lu. For example:

printf ("Row count = %lu\n", (unsigned long) mysql_affected_rows

(conn));

The value will not print correctly on some systems if you don’t do this, because
there is no standard for printing long long values with printf(). However, if the
value to be printed might actually exceed the maximum allowed by unsigned

1124 Appendix G C API Reference

long (232-1), %lu won’t work, either.You’ll need to check your printf() documen-
tation to see whether there is some implementation-specific means of printing the
value. For example, a %llu format specifier might be available.

n MYSQL_FIELD_OFFSET

This data type is used by functions such as mysql_field_seek() and
mysql_field_tell() to represent offsets within the set of MYSQL_FIELD structures
for the current result set.

n MYSQL_ROW_OFFSET

This data type is used by functions such as mysql_row_seek() and
mysql_row_tell() to represent offsets within the set of rows for the current
result set.

G.2.2 Non-Scalar Data Types
MySQL’s non-scalar types represent structures or arrays.Any instance of a MYSQL,
MYSQL_RES, or MYSQL_STMT structure should be considered a “black box.”That is, you
should refer only to the structure itself, not to members within the structure.The
MYSQL_ROW, MYSQL_FIELD, MYSQL_BIND, and MYSQL_TIME types do not have the same re-
striction. Each of these structures has members that you can access freely to obtain data
and metadata returned as a result of a query.The MYSQL_BIND and MYSQL_TIME structures
also are used both for transmitting data to the server and receiving results from the server.

n MYSQL

The primary client library type is the MYSQL structure, which is used for connection
handlers.A handler contains information about the state of a connection with a
server.To open a session with the server, initialize a MYSQL structure with
mysql_init() and then pass it to mysql_real_connect().After you’ve established
the connection, use the handler to issue SQL statements, generate result sets, get er-
ror information, and so forth.When you’re done with the connection, pass the han-
dler to mysql_close(), after which you should no longer use it.

n MYSQL_FIELD

The client library uses MYSQL_FIELD structures to represent metadata about the
columns in the result set, one structure per column.The number of MYSQL_FIELD
structures in the set may be determined by calling mysql_num_fields().You can
access successive field structures by calling mysql_fetch_field() or move back
and forth among structures with mysql_field_tell() and mysql_field_seek().

The MYSQL_FIELD structure is useful for presenting or interpreting the contents of
data rows. It looks like this:

typedef struct st_mysql_field {

char *name;

char *org_name;

1125G.2 C API Data Types

char *table;

char *org_table;

char *db;

char *catalog;

char *def;

unsigned long length;

unsigned long max_length;

unsigned int name_length;

unsigned int org_name_length;

unsigned int table_length;

unsigned int org_table_length;

unsigned int db_length;

unsigned int catalog_length;

unsigned int def_length;

unsigned int flags;

unsigned int decimals;

unsigned int charsetnr;

enum enum_field_types type;

} MYSQL_FIELD;

MYSQL_FIELD structure members have the following meanings:
n char *name

The column name, as a null-terminated string. For a column that is calculated
as the result of an expression, name is that expression in string form. If a col-
umn or expression is given an alias, name is the alias name. For example, the
following query results in name values of "mycol", "4*(mycol+1)", "mc", and
"myexpr":

SELECT mycol, 4*(mycol+1), mycol AS mc, 4*(mycol+1) AS myexpr ...

n char *org_name

This member is like name, except that column aliases are ignored.That is,
org_name represents the original column name. For a column that is calcu-
lated as the result of an expression, org_name is an empty string.

n char *table

The name of the table that the column comes from, as a null-terminated
string. For a column selected from a view, table is the view name. If the
table or view was given an alias, table is the alias name. For a column that is
calculated as the result of an expression, table is an empty string. For exam-
ple, if you issue a query like the following, the table name for the first column
is mytbl, whereas the table name for the second column is the empty string:

SELECT mycol, mycol+0 FROM mytbl ...

1126 Appendix G C API Reference

n char *org_table

This member is similar to table, except that table aliases are ignored.That is,
org_table represents the original table name. For a column selected from a
view, table is the underlying table name. For a column that is calculated as
the result of an expression, org_table is an empty string.

n char *db

The database in which the table containing the column is located, as a null-
terminated string. For a column that is calculated as the result of an expres-
sion, db is an empty string.

n char *catalog

The catalog name. Currently, this value is always "def".
n char *def

The default value for the column, as a null-terminated string.This member of
the MYSQL_FIELD structure is set only for result sets obtained by calling
mysql_list_fields() (a deprecated function), and is NULL otherwise.

Default values for table columns also can be obtained by executing a
DESCRIBE tbl_name or SHOW COLUMNS FROM tbl_name statement and exam-
ining the result set.

n unsigned long length

The length of the column, as specified in the CREATE TABLE statement used
to create the table. For a column that is calculated as the result of an expres-
sion, the length is determined from the elements in the expression.

n unsigned long max_length

The length of the longest column value actually present in the result set. For
example, if a string column in a result set contains the values "Bill", "Jack",
and "Belvidere", the value of max_length for the column will be 9.

Result set values are returned as strings, so this length refers to the longest
string representation of the values in the result, even for non-string columns.

Because the max_length value can be determined only after all the rows have
been seen, it is meaningful only for result sets created with
mysql_store_result(). max_length is 0 for result sets created with
mysql_use_result().

n unsigned int name_length, org_name_length, table_length,
org_table_length, db_length, catalog_length, def_length

The lengths of the name, org_name, table, org_table, db, catalog, and def
members, respectively.

n unsigned int flags

The flags member specifies attributes for the columns.Within the flags
value, attributes are represented by individual bits, which may be tested via

1127G.2 C API Data Types

Table G.1 MYSQL_FIELD flags Member Values

flags Value Meaning

AUTO_INCREMENT_FLAG Column has the AUTO_INCREMENT attribute

BINARY_FLAG Column has the BINARY attribute

MULTIPLE_KEY_FLAG Column is a part of a non-unique index

NOT_NULL_FLAG Column cannot contain NULL values

NO_DEFAULT_VALUE_FLAG Column definition has no DEFAULT clause

NUM_FLAG Column is numeric

PRI_KEY_FLAG Column is a part of a PRIMARY KEY

UNIQUE_KEY_FLAG Column is a part of a UNIQUE index

UNSIGNED_FLAG Column has the UNSIGNED attribute

ZEROFILL_FLAG Column has the ZEROFILL attribute

Table G.2 Deprecated MYSQL_FIELD flags Member Values

flags Value Meaning

BLOB_FLAG Column contains BLOB or TEXT values

ENUM_FLAG Column contains ENUM values

the bitmask constants shown in Table G.1. For example, to determine
whether a column's values are UNSIGNED, test the flags value like this:

if (field->flags & UNSIGNED_FLAG)

printf ("%s values are UNSIGNED\n", field->name);

NUM_FLAG is true for columns that have a type of MYSQL_TYPE_DECIMAL,
MYSQL_TYPE_TINY, MYSQL_TYPE_SHORT, MYSQL_TYPE_LONG,
MYSQL_TYPE_FLOAT, MYSQL_TYPE_DOUBLE, MYSQL_TYPE_NULL,
MYSQL_TYPE_TIMESTAMP, MYSQL_TYPE_LONGLONG, MYSQL_TYPE_INT24, or
MYSQL_TYPE_YEAR.

The NO_DEFAULT_VALUE_FLAG is true if there is no DEFAULT clause in the
column definition, except for columns that allow NULL or that have the
AUTO_INCREMENT attribute. Such columns have an implicit default of NULL or
the next sequence value, respectively. NO_DEFAULT_VALUE_FLAG was intro-
duced in MySQL 5.0.2.

A few flags constants indicate column data types rather than column attrib-
utes; they are now deprecated because you should use field->type to deter-
mine the data type.Table G.2 lists these deprecated constants.

Table G.3 MYSQL_FIELD type Member Values

type Value SQL Data Type

MYSQL_TYPE_TINY TINYINT

MYSQL_TYPE_SHORT SMALLINT

MYSQL_TYPE_INT24 MEDIUMINT

MYSQL_TYPE_LONG INT

MYSQL_TYPE_LONGLONG BIGINT

MYSQL_TYPE_DECIMAL DECIMAL, NUMERIC

MYSQL_TYPE_NEWDECIMAL DECIMAL, NUMERIC

MYSQL_TYPE_DOUBLE DOUBLE, REAL

MYSQL_TYPE_FLOAT FLOAT

MYSQL_TYPE_STRING CHAR

MYSQL_TYPE_VAR_STRING VARCHAR

MYSQL_TYPE_BLOB BLOB, TEXT

MYSQL_TYPE_ENUM ENUM

MYSQL_TYPE_SET SET

n unsigned int decimals

The number of decimals for numeric columns, zero for non-numeric
columns. For example, the decimals value is 3 for a DECIMAL(8,3) column,
but 0 for a BLOB column.

n unsigned int charsetnr

The character set/collation number. If you need to distinguish whether a
string column contains binary or non-binary (character) data, charsetnr is
63 for binary strings.

n enum enum_field_types type

The data type. For a column that is calculated as the result of an expression,
the type is determined from the types of the elements in the expression.
For example, if mycol is a VARCHAR(20) column, type is MYSQL_TYPE_
VAR_STRING, whereas type for LENGTH(mycol) is MYSQL_TYPE_LONGLONG.
The possible type values are listed in mysql_com.h and shown in Table G.3.

1128 Appendix G C API Reference

Table G.2 Deprecated MYSQL_FIELD flags Member Values

SET_FLAG Column contains SET values

TIMESTAMP_FLAG Column contains TIMESTAMP values

1129G.2 C API Data Types

Table G.3 MYSQL_FIELD type Member Values

type Value SQL Data Type

MYSQL_TYPE_DATE DATE

MYSQL_TYPE_DATETIME DATETIME

MYSQL_TYPE_TIME TIME

MYSQL_TYPE_TIMESTAMP TIMESTAMP

MYSQL_TYPE_YEAR YEAR

MYSQL_TYPE_GEOMETRY Spatial type

MYSQL_TYPE_BIT BIT

MYSQL_TYPE_NULL NULL

The MYSQL_TYPE_NEWDECIMAL type is returned for DECIMAL or NUMERIC values as of
MySQL 5.0.3. Previously, MYSQL_TYPE_DECIMAL was returned for those types.

MYSQL_TYPE_BIT is available as of MySQL 5.0.3.

n MYSQL_RES

Statements such as SELECT or SHOW that return data to the client do so by means of
a result set, represented as a MYSQL_RES structure.This structure contains informa-
tion about the rows returned by the query.

After a statement generates a result set, you can call API functions to get result data
(the data values in each row of the set) or metadata (information about the result,
such as how many columns there are, their types, their lengths, and so forth).

n MYSQL_ROW

The MYSQL_ROW type contains the values for one row of data, represented as an array
of strings.All values are returned in string form (even numbers), except that if a
value in a row is NULL, it is represented in the MYSQL_ROW structure by a C NULL
pointer.

The number of values in a row is given by mysql_num_fields().The i-th col-
umn value in a row is given by row[i].Values of i range from 0 to
mysql_num_fields(res_set)-1, where res_set is a pointer to a MYSQL_RES re-
sult set.

Note that the MYSQL_ROW type is already a pointer, so you should define a row vari-
able like this:

MYSQL_ROW row; /* correct */

Not like this:

MYSQL_ROW *row; /* incorrect */

Values in a MYSQL_ROW array have a terminating null byte, so non-binary values may
be treated as null-terminated strings. However, data values that may contain binary

1130 Appendix G C API Reference

data might contain null bytes internally and should be treated as counted strings.To
get a pointer to an array that contains the lengths of the values in the row, call
mysql_fetch_lengths() like this:

unsigned long *length;

length = mysql_fetch_lengths (res_set);

The length of the i-th column value in a row is given by length[i]. If the column
value is NULL, the length will be zero.

n MYSQL_STMT

A prepared statement handler.To create a handler, call mysql_stmt_init().This
function returns a pointer to the new handler, which can be used to prepare a state-
ment, execute it, and so on.When you’re done with the handler, pass it to
mysql_stmt_close(), after which the handler should no longer be used.

n MYSQL_BIND

This structure is used with prepared statements and has both input and output
purposes.

For input, MYSQL_BIND structures contain data to be transmitted to the server to be
bound to the parameters of a prepared statement before the statement is executed.
Set up an array of structures, and then bind them to the statement by calling
mysql_stmt_bind_param() before calling mysql_stmt_execute() to execute the
statement.The array must contain one MYSQL_BIND structure per parameter.

Input strings are assumed to be represented in the character set indicated by the
character_set_client system variable. If this differs from the character set of the
column into which the value is stored, conversion into the column character set
occurs on the server side.

For output, after a prepared statement that produces a result set is executed,
MYSQL_BIND structures are used to fetch data values from the result set. Set up an
array of structures, and then bind them to the statement by calling mysql_stmt_
bind_result() before fetching result set rows with mysql_stmt_fetch().The
array must contain one MYSQL_BIND structure per column of the result set.

Output strings are represented in the character set indicated by the
character_set_results system variable.

The MYSQL_BIND structure contains several members, but only some of them should
be considered public.The public members are shown here:

typedef struct st_mysql_bind

{

unsigned long *length;

my_bool *is_null;

void *buffer;

my_bool *error;

1131G.2 C API Data Types

unsigned long buffer_length;

enum enum_field_types buffer_type;

my_bool is_unsigned;

...

} MYSQL_BIND;

One MYSQL_BIND structure should be bound to each parameter of a prepared state-
ment.The following list describes the purpose of each MYSQL_BIND member, for
both input and output.True indicates a non-zero value; false indicates a zero value.

n enum enum_field_types buffer_type

The data type of the C language variable bound to the parameter.This mem-
ber must always be set to a MYSQL_TYPE_XXX value.

For input, this is the type of the variable containing the value that you are
sending to the server.

For output, this is the type of the variable into which you want to receive the
value returned by the server.

Table G.4 andTable G.5 show the buffer_type values that correspond to C
variable data types for input and output, respectively. In both directions, if the C
variable type does not correspond to the SQL type of the value on the server
side, conversion occurs when possible. If the C and SQL types are directly
compatible, no conversion need be performed, which increases performance.

n void *buffer

A pointer to the variable used to send or receive a data value.

For input, this is a pointer to the variable that holds the data value to be sent
to the server.

For output, this is a pointer to the variable where the value returned by the
server should be stored.

buffer is always the address of the storage variable. For numeric types,
buffer points to a scalar variable. For string types, it points to a char buffer.
For temporal types, it points to a MYSQL_TIME structure.The variable type is
indicated by the buffer_type value. If the variable is unsigned, the
is_unsigned value should be set to true.

n unsigned long buffer_length

The actual size in bytes of the buffer pointed to by buffer, both for input
and output.This applies to string types, either binary or non-binary, which
can vary in length, and to output BIT values. For other data types, the buffer
length is always determined by the buffer_type value.

1132 Appendix G C API Reference

n unsigned long *length

A pointer to a variable that indicates the number of bytes in the transferred
data value. Like buffer_length, this member needs to be set only for string
types and output BIT values. For numeric and temporal types, the length is
determined from the data type.

For input, the pointed-to variable should be set to indicate how many bytes
to send to the server.

For output, the pointed-to variable will be set by mysql_stmt_fetch(), and
the return value of that function determines how to interpret the variable
value. If mysql_stmt_fetch() returns 0 (success), *length is the actual
length of the returned data value. If mysql_stmt_fetch() returns
MYSQL_DATA_TRUNCATED, *length is the length the value would have had no
truncation occurred, and the actual length is the minimum of *length and
buffer_length.

n my_bool *is_null

A pointer to a variable that indicates whether the data value corresponds to a
NULL value.

For input, the pointed-to variable should be set true or false to indicate
whether the value being sent to the server is NULL or NOT NULL. Special cases:
If the value bound to this parameter will never be NULL, you can set is_null
to zero rather than to the address of a my_bool variable. If the value will
always be NULL, set buffer_type to MYSQL_TYPE_NULL and the other
MYSQL_BIND members do not matter.

For output, the pointed-to variable will be set true or false to indicate
whether the value returned by the server is NULL or NOT NULL.

n my_bool is_unsigned

A flag that indicates whether the variable pointed to by buffer is an
unsigned C variable, both for input and output.This member need be used
only for C data types that can be unsigned (char and the integer types).

is_unsigned applies to the C variable bound to the MYSQL_BIND structure,
not to the SQL value on the server side.The client library uses is_unsigned
to know whether sign conversion between the C and SQL values must be
done.

n my_bool *error

For output, this is a pointer to a variable that indicates whether a value was
fetched without truncation.After fetching a row, the pointed-to variable is
false if there was no error, and true if there was data truncation such as
for a numeric value that is out of range or a string value that is too long.
Truncation checks are enabled by default, but can be controlled by calling
mysql_options() with the MYSQL_REPORT_DATA_TRUNCATION option.

1133G.2 C API Data Types

Table G.4 Input MYSQL_BIND buffer_type Values

Input C Variable Type buffer_type Value Compatible SQL Value Type

signed char MYSQL_TYPE_TINY TINYINT

short int MYSQL_TYPE_SHORT SMALLINT

int MYSQL_TYPE_LONG INT

long long int MYSQL_TYPE_LONGLONG BIGINT

float MYSQL_TYPE_FLOAT FLOAT

double MYSQL_TYPE_DOUBLE DOUBLE

MYSQL_TIME MYSQL_TYPE_TIME TIME

MYSQL_TIME MYSQL_TYPE_DATE DATE

MYSQL_TIME MYSQL_TYPE_DATETIME DATETIME

MYSQL_TIME MYSQL_TYPE_TIMESTAMP TIMESTAMP

char[] MYSQL_TYPE_STRING TEXT, CHAR, VARCHAR

char[] MYSQL_TYPE_BLOB BLOB, BINARY, VARBINARY

MYSQL_TYPE_NULL NULL

The error member was introduced in MySQL 5.0.3.

Table G.4 shows the buffer_type values to use for C language variables used to
send data values from the server. If the variable is unsigned, you should also set the
is_unsigned value to true. If the SQL value on the server side has the data type
shown in the table, the input value can be used without conversion. For example, if
you use a short int to supply a value for a SMALLINT, no conversion need be
done. If short int supplies a value for a DECIMAL, a conversion is done.

MYSQL_TYPE_STRING and MYSQL_TYPE_BLOB are used for non-binary and binary
strings, respectively.

MYSQL_TYPE_NULL should be used only when an input parameter is always NULL.
Otherwise, set the buffer_type value to one of the other MYSQL_TYPE_XXX values
and set the is_null member appropriately each time you execute the statement to
indicate whether the parameter is NULL.

Table G.5 shows the buffer_type values to use for C language variables used to
receive data values from the server. If the variable is unsigned, you should also set
the is_unsigned value to true. If the C variable used to retrieve the value has the
type shown in the table, the SQL value received from the server can be used with-
out conversion. If you fetch a SMALLINT into a short int, no conversion need be
done. If you fetch it into a char[], the value is converted to string form.

1134 Appendix G C API Reference

Table G.5 Output MYSQL_BIND buffer_type Values

Source SQL Value Type buffer_type Value Compatible C Variable Type

TINYINT MYSQL_TYPE_TINY signed char

SMALLINT MYSQL_TYPE_SHORT short int

MEDIUMINT MYSQL_TYPE_INT24 int

INT MYSQL_TYPE_LONG int

BIGINT MYSQL_TYPE_LONGLONG long long int

FLOAT MYSQL_TYPE_FLOAT float

DOUBLE MYSQL_TYPE_DOUBLE double

DECIMAL MYSQL_TYPE_NEWDECIMAL char[]

YEAR MYSQL_TYPE_SHORT short int

TIME MYSQL_TYPE_TIME MYSQL_TIME

DATE MYSQL_TYPE_DATE MYSQL_TIME

DATETIME MYSQL_TYPE_DATETIME MYSQL_TIME

TIMESTAMP MYSQL_TYPE_TIMESTAMP MYSQL_TIME

CHAR, BINARY MYSQL_TYPE_STRING char[]

VARCHAR, VARBINARY MYSQL_TYPE_VAR_STRING char[]

TINYBLOB, TINYTEXT MYSQL_TYPE_TINY_BLOB char[]

BLOB, TEXT MYSQL_TYPE_BLOB char[]

MEDIUMBLOB, MEDIUMTEXT MYSQL_TYPE_MEDIUM_BLOB char[]

LONGBLOB, LONGTEXT MYSQL_TYPE_LONG_BLOB char[]

BIT MYSQL_TYPE_BIT char[]

DECIMAL and BIT values are returned as strings by default. If you specify a char[]
variable to receive a DECIMAL value, you get the string representation of the numeric
value. If you specify a numeric variable instead, the string will be converted to nu-
meric form. If you want to receive a BIT value as a number, cast it to numeric form
in your query (for example, SELECT my_bit_val+0 ...) and bind an integer vari-
able to the MYSQL_BIND structure.

To distinguish non-binary from binary string columns, use mysql_stmt_result_
metadata() to get the result set metadata and check the column charsetnr mem-
ber.A value of 63 indicates a binary string; anything else indicates a non-binary
string.

n MYSQL_TIME

This structure is used to send temporal values to the server or receive them from
the server.To associate a MYSQL_TIME structure with a MYSQL_BIND structure, set the
buffer member of the MYSQL_BIND to the address of a MYSQL_TIME variable.

1135G.2 C API Data Types

MYSQL_TIME is used for DATETIME, TIMESTAMP, DATE, and TIME types, but the struc-
ture members that do not apply to a given type are ignored. For example, the
month, year, and day members do not apply to TIME values, and the hour, minute,
and second members do not apply to DATE values.

The MYSQL_TIME structure contains several members, but only some of them should
be considered public.The public members are shown here:

typedef struct st_mysql_time

{

unsigned int year;

unsigned int month;

unsigned int day;

unsigned int hour;

unsigned int minute;

unsigned int second;

unsigned long second_part;

my_bool neg;

...

} MYSQL_TIME

The members are used as follows:
n year, month, day

The year, month, and day parts of temporal values that contain a date part.
n hour, minute, second, second_part

The hour, minute, second, and fractional second parts of temporal values that
contain a time part.

n neg

A flag that indicates whether the temporal value contained in the
MYSQL_TIME structure is negative.

G.2.3 Accessor Macros
mysql.h contains a few macros that enable you to test MYSQL_FIELD members more con-
veniently. IS_NUM() tests the type member; the others listed here test the flags member.

n IS_NUM() is true (non-zero) if values in the column have a numeric type:

if (IS_NUM (field->type))

printf ("Field %s is numeric\n", field->name);

n IS_PRI_KEY() is true if the column is part of a PRIMARY KEY:

if (IS_PRI_KEY (field->flags))

printf ("Field %s is part of primary key\n", field->name);

1136 Appendix G C API Reference

n IS_NOT_NULL() is true if the column cannot contain NULL values:

if (IS_NOT_NULL (field->flags))

printf ("Field %s values cannot be NULL\n", field->name);

n IS_BLOB() is true if the column is a BLOB or TEXT. However, this macro tests the
deprecated BLOB_FLAG bit of the flags member, so IS_BLOB() is deprecated as well.

G.3 C API Functions
Client library functions for the C API are described in detail in the following sections,
grouped by category and listed alphabetically within category. Certain parameter names
recur throughout the function descriptions and have the following conventional meanings:

n conn is a pointer to the MYSQL connection handler for a server connection.
n res_set is a pointer to a MYSQL_RES result set structure.
n field is a pointer to a MYSQL_FIELD column information structure.
n row is a MYSQL_ROW data row from a result set.
n row_num is a row number within a result set, from 0 to one less than the number

of rows.
n col_num is a column number within a row of a result set, from 0 to one less than

the number of columns.
n stmt is a handler for a prepared statement.

For brevity, where these parameters are not mentioned in the descriptions of functions
in which they occur, you may assume the meanings just given.

G.3.1 Client Library Initialization and Termination Routines
This section describes routines that initialize and terminate the C API library.There are
actually two such libraries, but the interface to them is the same so that a given program
can use either one depending on which library you link the program against to produce
the executable image:

n libmysqlclient is used for programs that connect to a standalone MySQL server.
n libmysqld is used for programs that include an embedded server in the program

itself.

By using the mysql_library_init() and mysql_library_end() routines within
your program to initialize and terminate the client library, it is possible to use the same
source code to produce a client for a standalone server or one that uses the embedded
server, depending on which library you select at link time. For information about linking
in the appropriate C API library, see Section G.1,“Compiling and Linking.”

1137G.3 C API Functions

n void

mysql_library_end (void);

Terminates the client library.You should call this function after you’re done com-
municating with the server. If the program uses the embedded server library, this
routine shuts down the embedded server.

This routine was introduced in MySQL 5.0.3. Before 5.0.3, you can call
mysql_server_end().

n int

mysql_library_init (int argc, char **argv, char **groups);

Initializes the client library. Returns zero for success and non-zero otherwise.This
function must be called before calling any other mysql_xxx() functions. If the pro-
gram uses the embedded server library, this routine initializes the embedded server.

If the program uses an embedded server, the argc and argv arguments are used like
the standard arguments passed to main() in C programs: argc is the argument
count; if there are none, argc should be zero. Otherwise, argc should be the num-
ber of arguments passed to the server. argv is an array of null-terminated strings
containing the arguments. Note that argv[0] will be ignored.

The groups argument is an array of null-terminated strings indicating which
option file groups the embedded server should read.The final element of the array
should be NULL. If group itself is NULL, the server reads the [server] and
[embedded] option file groups by default. Group names in the groups array
should be given without the surrounding ‘[’ and ‘]’ characters.

This routine was introduced in MySQL 5.0.3. Before 5.0.3, you can call
mysql_server_init().

n void

mysql_server_end (void);

This routine is a synonym for mysql_library_end(), but can be used before
MySQL 5.0.3.

n int

mysql_server_init (int argc, char **argv, char **groups);

This routine is a synonym for mysql_library_init(), but can be used before
MySQL 5.0.3.

G.3.2 Connection Management Routines
These functions enable you to establish and terminate connections to a server, to set op-
tions affecting the way connection establishment occurs, to re-establish connections that
have timed out, and to change aspects of the connection such as the current username or
character set.

1138 Appendix G C API Reference

A typical sequence involves calling mysql_init() to initialize a connection handler,
mysql_real_connect() to establish the connection, and mysql_close() to terminate
the connection when you are done with it. If it’s necessary to indicate special options or
set up an encrypted SSL connection, call mysql_options() or mysql_ssl_set() after
mysql_init() and before mysql_real_connect().

n my_bool

mysql_change_user (MYSQL *conn,

const char *user_name,

const char *password,

const char *db_name);

Changes the user and the default database for the connection specified by conn.
The database becomes the default for table references that do not include a database
specifier. If db_name is NULL, no default database is selected.

mysql_change_user() returns true if the user is allowed to connect to the server
and, if a database was specified, has permission to access the database. Otherwise, the
function fails and the current user and database remain unchanged.

It is faster to use mysql_change_user() to change the current user than to close
the connection and open it again with different parameters.This function can also
be used to implement persistent connections for a program that serves different
users during the course of its execution.

n void

mysql_close (MYSQL *conn);

Closes the connection specified by conn. Call this routine when you are done with
a server session. If the connection handler was allocated automatically by
mysql_init(), mysql_close() deallocates it.

It is unnecessary to call mysql_close() if the attempt to open a connection fails.
However, you might want to do so if mysql_init() allocated the handler, so that it
can be disposed of.

n void

mysql_get_character_set_info (MYSQL *conn,

MY_CHARSET_INFO *cs_info);

Retrieves information about the current client character set. cs_info points to the
MY_CHARSET_INFO structure into which the information should be placed.The
structure looks like this:

typedef struct character_set

{

unsigned int number; /* character set number */

unsigned int state; /* character set state */

const char *csname; /* collation name */

const char *name; /* character set name */

1139G.3 C API Functions

const char *comment; /* comment */

const char *dir; /* character set directory */

unsigned int mbminlen; /* min. length for multibyte strings */

unsigned int mbmaxlen; /* max. length for multibyte strings */

} MY_CHARSET_INFO;

n const char *

mysql_get_ssl_cipher (MYSQL *conn);

Returns a null-terminated string containing the name of the SSL cipher used for
the connection, or NULL if there is no cipher.

This routine was introduced in MySQL 5.0.23/5.1.11.
n MYSQL *

mysql_init (MYSQL *conn);

Initializes a connection handler and returns a pointer to it. If the parameter points
to an existing MYSQL handler structure, mysql_init() initializes it and returns its
address:

MYSQL conn_struct, *conn;

conn = mysql_init (&conn_struct);

If the parameter is NULL, mysql_init() allocates a new handler, initializes it, and re-
turns its address:

MYSQL *conn;

conn = mysql_init (NULL);

The second approach is preferable over the first; letting the client library allocate
and initialize the handler itself avoids problems that may arise with shared libraries
if you upgrade MySQL to a newer version that uses a different internal organiza-
tion for the MYSQL structure.

If mysql_init() fails, it returns NULL.This may happen if mysql_init() cannot al-
locate a new handler.

If mysql_init() allocates the handler, mysql_close() deallocates it automatically
when you close the connection.

n int

mysql_options (MYSQL *conn,

enum mysql_option option,

const void *arg);

This function enables you to tailor connection behavior more precisely than is pos-
sible with mysql_real_connect() alone. Call it after mysql_init() and before
mysql_real_connect().You may call mysql_options() multiple times if you want
to set several options. If you call mysql_options() multiple times to set a given op-
tion, the most recent option value applies.

1140 Appendix G C API Reference

The option argument specifies which connection option you want to set.Addi-
tional information needed to set the option, if any, is specified by the arg argu-
ment, which is always interpreted as a pointer.You can pass an arg value of NULL for
options that require no additional information. (Before MySQL 5.1.18, arg is
declared as const char* rather than const void*.)

mysql_options() returns zero for success and non-zero if the option value is
unknown.

The following options are available.Those indicated as applying to use of an em-
bedded server are ignored if the program is linked against libmysqlclient rather
than libmysqld.

n MYSQL_INIT_COMMAND

Specifies a statement to execute after connecting to the server. arg should
point to a null-terminated string containing the statement.The statement
will be executed after reconnecting as well (for example, if you call
mysql_ping()).Any result set returned by the statement is discarded.

n MYSQL_OPT_COMPRESS

Specifies that the connection should use the compressed client/server proto-
col if the client and server both support it. arg should be NULL.

It is also possible to specify compression when you call
mysql_real_connect().

n MYSQL_OPT_CONNECT_TIMEOUT

Specifies the connection timeout, in seconds. arg should be a pointer to an
unsigned int containing the timeout value.

n MYSQL_OPT_GUESS_CONNECTION

If the program includes an embedded server, this option enables the server
library to choose whether to use the embedded server library or a remote
server. It “guesses” the use of a remote server if the hostname is set and is not
localhost. arg should be NULL.

“Guessing” is the default. MYSQL_OPT_USE_EMBEDDED_CONNECTION or
MYSQL_OPT_USE_REMOTE_CONNECTION may be used to force the type of
connection.

n MYSQL_OPT_LOCAL_INFILE

Enables or disables the use of LOAD DATA LOCAL. arg should be NULL to
disable this capability, or a pointer to an unsigned int that should be zero
or non-zero to disable or enable this capability.Attempts to enable LOAD
DATA LOCAL will be ineffective if the server has been configured to always
disallow it.

1141G.3 C API Functions

n MYSQL_OPT_NAMED_PIPE

Specifies that the connection to the server should use a named pipe. arg
should be NULL.This option is for Windows clients only, and only for connec-
tions to Windows servers with named-pipe support enabled.

n MYSQL_OPT_PROTOCOL

Specifies the protocol to use for connecting to the server, assuming that the
server supports the protocol. arg should point to an unsigned int value
containing the protocol code.The allowable codes are MYSQL_PROTOCOL_
MEMORY (shared memory), MYSQL_PROTOCOL_PIPE (Windows named pipe),
MYSQL_PROTOCOL_SOCKET (Unix socket file), and MYSQL_PROTOCOL_TCP
(TCP/IP).

n MYSQL_OPT_READ_TIMEOUT

The timeout for reading from the server, in seconds.This option applies only
to TCP/IP connections, and only on Windows before MySQL
5.0.25/5.1.12. arg should be a pointer to an unsigned int containing the
timeout value.The effective timeout is three times the option value due to
retries if the initial read fails.

n MYSQL_OPT_RECONNECT

Enables or disables automatic reconnection behavior if the connection goes
down. arg should point to a my_bool that is set true or false.

Automatic reconnect has been the default since MySQL 5.0.3.This option
was introduced in MySQL 5.0.13 to enable control over reconnect behavior.

n MYSQL_OPT_SET_CLIENT_IP

If the program includes an embedded server that has authentication support,
this option causes the server to treat the connection as having originated
from the given IP number given by arg, which should point to the number
specified as a null-terminated string (for example, "192.168.3.12").

n MYSQL_OPT_SSL_VERIFY_SERVER_CERT

Enables or disables verification of the Common Name in the server's certifi-
cate.The value must match the hostname used for connecting to the server
or the connection attempt fails.This helps prevent man-in-the-middle ex-
ploits. arg should point to a my_bool that is set true or false.Verification is
disabled by default.

This option was introduced in MySQL 5.0.23/5.1.11.
n MYSQL_OPT_USE_EMBEDDED_CONNECTION

If the program includes an embedded server, this option tells the server li-
brary to the embedded server library rather than a remote server. arg should
be NULL.

1142 Appendix G C API Reference

n MYSQL_OPT_USE_REMOTE_CONNECTION

If the program includes an embedded server, this option tells the server
library to use a remote server rather than the embedded server library. arg
should be NULL.

n MYSQL_OPT_USE_RESULT

Unused.
n MYSQL_OPT_WRITE_TIMEOUT

The timeout for writing to the server, in seconds.This option applies only to
TCP/IP connections, and only on Windows before MySQL 5.0.25/5.1.12.
arg should be a pointer to an unsigned int containing the timeout value.
The effective timeout is net_retry_count times the option value due to re-
tries if the initial write fails.

n MYSQL_READ_DEFAULT_FILE

Specifies an option file to read for connection parameters, rather than the
usual option files that are searched by default if option files are read. arg
should point to a null-terminated string containing the filename.
Options will be read from the [client] group in the file. If you use also
MYSQL_READ_DEFAULT_GROUP to specify a group name, options from that
group will be read from the file, too.

n MYSQL_READ_DEFAULT_GROUP

Specifies an option file group in which to look for option values. arg should
point to a null-terminated string containing the group name. (Specify the
group name without the surrounding ‘[' and ']’ characters.) The named
group will be read in addition to the [client] group. If you also name a par-
ticular option file with MYSQL_READ_DEFAULT_FILE, options are read from
that file only. Otherwise, the client library looks for the options in the stan-
dard option files.

If you specify neither MYSQL_READ_DEFAULT_FILE nor MYSQL_READ_
DEFAULT_GROUP, no option files are read.

n MYSQL_REPORT_DATA_TRUNCATION

Controls whether to report data truncation errors via the error member of
MYSQL_BIND structures when the binary protocol for prepared statements is
used. arg should be a pointer to a my_bool variable that is zero or non-zero
to disable or enable truncation reporting. Reporting is enabled by default.

MYSQL_REPORT_DATA_TRUNCATION was introduced in MySQL 5.0.3.
n MYSQL_SECURE_AUTH

Controls whether to require secure authentication. arg should be a pointer to
a my_bool variable that is zero or non-zero to allow or disallow connecting

1143G.3 C API Functions

to a server that does not support the more secure password hashing imple-
mented in MySQL 4.1.

n MYSQL_SET_CHARSET_DIR

Specifies the pathname of the directory where character set files are located.
arg should point to a null-terminated string containing the directory path-
name.The directory is on the client host; this option is used when the client
needs to access character sets that aren't compiled into the client library but
for which definition files are available.

n MYSQL_SET_CHARSET_NAME

Indicates the name of the default character set to use. arg should point to a
null-terminated string containing the character set name.

n MYSQL_SHARED_MEMORY_BASE_NAME

Indicates the shared-memory name to use for shared-memory connections.
arg should point to a null-terminated string containing the name.This op-
tion is for Windows clients only, and only for connections to Windows servers
with shared-memory support enabled.

For Windows pathnames that are specified with the MYSQL_READ_DEFAULT_FILE or
MYSQL_SET_CHARSET_DIR options, ‘\’ characters can be given either as ‘/’ or as ‘\\’.

If you use the MYSQL_READ_DEFAULT_FILE or MYSQL_READ_DEFAULT_GROUP options
with mysql_options() to cause mysql_real_connect() to read option files, the
following options are recognized:

character-sets-dir=charset_directory_path

compress

connect-timeout=seconds

database=db_name

debug

default-character-set=charset_name

disable-local-infile

host=host_name

init-command=stmt

interactive-timeout=seconds

local-infile[={0|1}]

max-allowed-packet=size

multi-queries

multi-results

multi-statements

password=your_pass

pipe

port=port_num

protocol=protocol_type

1144 Appendix G C API Reference

report-data-truncation

return-found-rows

secure-auth

shared-memory-base-name=name

socket=socket_name

ssl-ca=file_name

ssl-capath=dir_name

ssl-cert=file_name

ssl-cipher=str

ssl-key=file_name

timeout=seconds

user=user_name

Instances of the host, user, password, database, port or socket options found in
option files are overridden if the corresponding argument to
mysql_real_connect() is non-NULL.

The multi-results option is equivalent to passing CLIENT_MULTI_RESULTS in the
flags argument to mysql_real_connect(). Either multi-queries or multi-
statements is equivalent to passing CLIENT_MULTI_STATEMENTS in the flags argu-
ment to mysql_real_connect() (which also enables CLIENT_MULTI_RESULTS).

timeout is recognized but obsolete; use connect-timeout instead.

The mysql_options() calls in the following example have the effect of setting
connection options so that mysql_real_connect() reads C:\my.ini.extra for
information from the [client] and [mygroup] groups, connects using a named
pipe and a timeout of 10 seconds, and executes a SET NAMES 'utf8' statement
after the connection has been established.

MYSQL *conn;

unsigned int timeout;

if ((conn = mysql_init (NULL)) == NULL)

... deal with error ...

mysql_options (conn, MYSQL_READ_DEFAULT_FILE, "C:/my.ini.extra");

mysql_options (conn, MYSQL_READ_DEFAULT_GROUP, "mygroup");

mysql_options (conn, MYSQL_OPT_NAMED_PIPE, NULL);

timeout = 10;

mysql_options (conn, MYSQL_OPT_CONNECT_TIMEOUT, (char *) &timeout);

mysql_options (conn, MYSQL_INIT_COMMAND, "SET NAMES 'utf8'");

if (mysql_real_connect (conn, ...) == NULL)

... deal with error ...

1145G.3 C API Functions

n int

mysql_ping (MYSQL *conn);

Checks whether the connection indicated by conn is still up. If not, and auto-
reconnect has not been disabled, mysql_ping() reconnects using the same parame-
ters that were used initially to make the connection.Thus, you should not call
mysql_ping() without first successfully having called mysql_real_connect().
Returns zero if the connection was up or was successfully re-established, non-zero
if an error occurred.

n MYSQL *

mysql_real_connect (MYSQL *conn,

const char *host_name,

const char *user_name,

const char *password,

const char *db_name,

unsigned int port_num,

const char *socket_name,

unsigned long flags);

Connects to a server and returns a pointer to the connection handler. conn should
be a pointer to an existing connection handler that has been initialized by
mysql_init().The return value is the address of the handler for a successful con-
nection, or NULL if an error occurred.

If the connection attempt fails, you can pass the conn handler value to
mysql_errno() and mysql_error() to obtain error information. However, you
should not pass the conn value to any other client library routines that assume a
connection has been established successfully.

The remaining arguments indicate how to connect to the server. For arguments
specified as NULL or zero, the value can be supplied by options found in an option
file that mysql_real_connect() reads. (The client can cause
mysql_real_connect() to read option files by calling mysql_options() with the
MYSQL_READ_DEFAULT_FILE or MYSQL_READ_DEFAULT_GROUP options.)

host_name indicates the name of the MySQL server host.Table G.6 shows the con-
nection protocol that the client uses for various host_name values for Unix and
Windows clients.The table applies unless you have called mysql_options() with
the MYSQL_OPT_PROTOCOL option to specify the protocol explicitly.The name
"localhost" is special for Unix systems. It indicates that you want to connect us-
ing a Unix socket rather than a TCP/IP connection.To connect to a server running
on the local host using TCP/IP, pass "127.0.0.1" (a string containing the IP num-
ber of the local host's loopback interface) for the host_name value, rather than pass-
ing the string "localhost".

1146 Appendix G C API Reference

user_name is your MySQL username. If this is NULL, the client library sends a
default name. Under Unix, the default is your login name. Under Windows, the
default is your name as specified in the USER environment variable if that variable is
set and "ODBC" otherwise.

password is your password. If this is NULL, you will be able to connect only if the
password is blank in the user grant table entry that matches your username and the
host from which you are connecting.

db_name is the default database to use. If this is NULL, no default database is selected.

port_num is the port number to use for TCP/IP connections. If this is 0, the default
port number is used.

socket_name is the Unix socket filename to use for connections to "localhost"
under Unix, or the pipe name for named-pipe connections under Windows. If this
is NULL, the default socket or pipe name is used.

The port number and socket filename are used according to the value of
host_name, as described in Table G.6.

The flags value can be one or more of the values shown in the following list, or 0
to specify no options.These options affect the operation of the server.

n CLIENT_COMPRESS

Specifies that the connection should use the compressed client/server proto-
col if the server supports it.

n CLIENT_FOUND_ROWS

Table G.6 Client Connection Protocol by Server Hostname Type

Hostname Unix Connection Windows Connection

Value Protocol Protocol

hostname TCP/IP connection to the
named host

TCP/IP connection to the named host

IP number TCP/IP connection to the
named host

TCP/IP connection to the named host

localhost Unix socket file connection
to the local host

Shared-memory connection (if available) to the
local host, otherwise a TCP/IP connection

127.0.0.1 TCP/IP connection to the
local host

TCP/IP connection to the local host

. (period) Does not apply Named-pipe connection to the local host

NULL Unix socket file connection
to the local host

A named-pipe connection is attempted first be-
fore falling back to TCP/IP

1147G.3 C API Functions

Specifies that for UPDATE statements, the server should return the number of
rows matched rather than the number of rows changed. Use of this option
may hinder the MySQL optimizer and make updates slower.

n CLIENT_IGNORE_SIGPIPE

Prevents the client library from installing a handler for the SIGPIPE signal.
This can be useful for an application that installs its own handler.

n CLIENT_IGNORE_SPACE

Normally, names of built-in functions must be followed immediately by the
parenthesis that begins the argument list, with no intervening spaces.This
option tells the server to all spaces between the function name and the argu-
ment list, which also has the side effect of making all function names re-
served words.

n CLIENT_INTERACTIVE

Identifies the client as an interactive client.This tells the server that it can
close the connection after a number of seconds of client inactivity equal to
the server's interactive_timeout variable value. Normally, the value of the
wait_timeout variable is used.

n CLIENT_LOCAL_FILES

Enables the use of LOAD DATA LOCAL.This will be ineffective if the server has
been configured to always disallow LOAD DATA LOCAL.

n CLIENT_MULTI_RESULTS

Enables multiple result sets to be fetched with the mysql_more_results()
and mysql_next_result() functions.

You must specify this option if the program uses a CALL statement to invoke
any stored procedures that return a result set. Otherwise, an error will occur.

n CLIENT_MULTI_STATEMENTS

Enables multiple-statement execution.When this capability is turned on, you
can send multiple statements to the server in a single string.This option also
enables CLIENT_MULTI_RESULTS so that multiple result sets can be fetched.

n CLIENT_NO_SCHEMA

Disallows db_name.tbl_name.col_name syntax. If you specify this option,
the server allows references only of the forms tbl_name.col_name,
tbl_name, or col_name in statements.

The flag values are bit values, so you can combine them in additive fashion using ei-
ther the | or the + operator. For example, the following expressions are equivalent:

CLIENT_COMPRESS | CLIENT_ODBC

CLIENT_COMPRESS + CLIENT_ODBC

1148 Appendix G C API Reference

mysql_com.h lists other CLIENT_XXX values besides those in the preceding list, but
those are either unused or intended for internal use, so client programs should not
specify them in the flags value.

n int

mysql_select_db (MYSQL *conn, const char *db_name);

Selects the database named by db_name as the default database, which becomes the
default for table references that contain no explicit database specifier. If you do not
have permission to access the database, mysql_select_db() fails.

mysql_select_db() is most useful for changing databases within the course of a
connection. Normally you will specify the initial database to use when you call
mysql_real_connect(), which is faster than calling mysql_select_db() after
connecting.

mysql_select_db() returns zero for success, non-zero for failure.
n int

mysql_set_character_set (MYSQL *conn, const char *cs_name);

Sets the default character set for the connection (as though a SET NAMES statement
had been executed). cs_name points to a string containing the character set name.

mysql_set_character_set() returns zero for success, non-zero for failure.

This routine was introduced in MySQL 5.0.7.
n my_bool

mysql_ssl_set (MYSQL *conn,

const char *key,

const char *cert,

const char *ca,

const char *capath,

const char *cipher);

This function is used for setting up a secure connection over SSL to the MySQL
server. If SSL support is not compiled into the client library, mysql_ssl_set() does
nothing. Otherwise it sets up the information required to establish an encrypted
connection when you call mysql_real_connect(). (In other words, to set up a se-
cure connection, call mysql_ssl_set() first and then mysql_real_connect().)

mysql_ssl_set() always returns 0; any SSL setup errors will result in an error at
the time you call mysql_real_connect().

key is the path to the key file. cert is the path to the certificate file. ca is the path
to the certificate authority file. capath is the path to a directory of trusted certifi-
cates to be used for certificate verification. cipher is a string listing the cipher or
ciphers to use.Any parameter that is unused may be passed as NULL.

1149G.3 C API Functions

For an example that shows how to write a client that can use secure connections,
see Section 7.6,“Writing Clients That Include SSL Support.”

mysql_ssl_set() requires some additional MySQL configuration ahead of time.
See Section 13.3,“Setting Up Secure Connections,” for the necessary background
information.

G.3.3 Error-Reporting Routines
The functions in this section enable you to determine and report the causes of errors.The
possible error codes and messages are listed in the errmsg.h, mysqld_error.h, and
sql_state.h MySQL header files.

n unsigned int

mysql_errno (MYSQL *conn);

Returns an error code for the most recently invoked client library routine that re-
turned a status.The error code is zero if no error occurred and non-zero otherwise.

if (mysql_errno (conn) == 0)

printf ("Everything is okay\n");

else

printf ("Something is wrong!\n");

n const char *

mysql_error (MYSQL *conn);

Returns a null-terminated string that contains an error message for the most re-
cently invoked client library routine that returned a status.The return value is the
empty string if no error occurred (this is the zero-length string "", not a NULL
pointer).Although normally you call mysql_error() after you already know an er-
ror occurred, the return value itself can be used to detect the occurrence of an error:

const char *err = mysql_error (conn);

if (err[0] == '\0') /* empty string? */

printf ("Everything is okay\n");

else

printf ("Something is wrong!\n");

n const char *

mysql_sqlstate (MYSQL *conn);

Returns a null-terminated string that contains an SQLSTATE error code for the
most recently invoked client library routine that returned a status.This code is a
five-character string. SQLSTATE values are taken from the ANSI SQL and ODBC
standards.A value of "00000" means “no error.”A value of "HY000" means “general
error.”This value is used for those MySQL errors that have not yet been assigned
more-specific SQLSTATE codes.

1150 Appendix G C API Reference

if (strcmp (mysql_sqlstate (conn), "00000") == 0)

printf ("Everything is okay\n");

else

printf ("Something is wrong!\n");

G.3.4 Statement Construction and Execution Routines
The functions in this section enable you to send SQL statements to the server.
mysql_hex_string() and mysql_real_escape_string() help you construct statements
by encoding characters that need special treatment. Unless you have enabled multiple-
statement execution as described later in Section G.3.8,“Multiple Result Set Routines,”
each string sent to the server for execution must consist of a single SQL statement, and
should not end with a semicolon character (‘;’) or a \g sequence.‘;’ and \g are conven-
tions of the mysql client program, not of the C client library.

n unsigned long

mysql_hex_string (char *to_str,

const char *from_str,

unsigned long from_len);

Encodes a string that may contain special characters so that it can be used in an
SQL statement.

The buffer to be encoded is specified as a counted string. from_str points to the
buffer, and from_len indicates the number of bytes in it. mysql_hex_string() en-
codes every character in the buffer using two hexadecimal digits, writes the en-
coded result into the buffer pointed to by to_str, and adds a terminating null byte.
to_str must point to an existing buffer that is at least (from_len*2)+1 bytes long.

mysql_hex_string() returns the length of the encoded string, not counting the
terminating null byte.

Here’s an example:

to_len = mysql_hex_string (to_str, "\0\\\'\"\n\r\032", 7);

printf ("to_len = %d, to_str = %s\n", to_len, to_str);

The example produces the following output:

to_len = 14, to_str = 005C27220A0D1A

The encoded string returned by mysql_hex_string() contains no internal null
bytes but is null-terminated, so you can use it with functions such as strlen() or
strcat(). Note that the result value is not by itself legal as a hexadecimal constant
in an SQL statement.To construct a legal constant, you should either add "0x" at
the beginning, or add "X'" at the beginning and "'" at the end.

n int

mysql_query (MYSQL *conn, const char *stmt_str);

1151G.3 C API Functions

Given an SQL statement specified as a null-terminated string, mysql_query() sends
the statement to the server to be executed.The string should not contain binary
data; in particular, it should not contain null bytes, because mysql_query() will in-
terpret the first one as the end of the statement. If your statement does contain bi-
nary data, use mysql_real_query() instead. mysql_real_query() is slightly faster
than mysql_query().

mysql_query() returns zero for success, non-zero for failure.A successful statement
is one that the server accepts as legal and executes without error. Success does not
imply anything about the number of rows affected or returned.

n unsigned long

mysql_real_escape_string (MYSQL *conn,

char *to_str,

const char *from_str,

unsigned long from_len);

Encodes a string that may contain special characters so that it can be used in an
SQL statement, taking into account the current character set when performing
encoding.Table G.7 lists the characters that are considered special and how they
are encoded. (Note that the list does not include the SQL pattern characters, ‘%’
and ‘_’.)

The only characters that MySQL itself requires to be escaped within a string are
the backslash and the quote character that surrounds the string (either ‘'’ or ‘"’).
mysql_real_escape_string() escapes the others to produce strings that are easier
to read and to process in log files.

Table G.7 mysql_real_escape_string() Character Encodings

Special Character Encoding

NUL (zero-valued byte) \0 (backslash-zero)

Backslash \\ (backslash-backslash)

Single quote \' (backslash-single quote)

Double quote \" (backslash-double quote)

Newline \n (backslash-‘n’)

Carriage return \r (backslash-‘r’)

Control-Z \Z (backslash-‘Z’)

1152 Appendix G C API Reference

The buffer to be encoded is specified as a counted string. from_str points to the
buffer, and from_len indicates the number of bytes in it. mysql_real_escape_
string() writes the encoded result into the buffer pointed to by to_str and adds
a terminating null byte. to_str must point to an existing buffer that is at least
(from_len*2)+1 bytes long. (In the worst-case scenario, every character in
from_str might need to be encoded as a two-character sequence, and you also
need room for the terminating null byte.)

mysql_real_escape_string() returns the length of the encoded string, not
counting the terminating null byte.

The resulting encoded string contains no internal null bytes but is null-terminated,
so you can use it with functions such as strlen() or strcat().

When you write literal strings in your program, take care not to confuse the lexical
escape conventions of the C programming language with the encoding done by
mysql_real_escape_string(). Consider the following example source code, and
the output produced by it:

to_len = mysql_real_escape_string (conn, to_str, "\0\\\'\"\n\r\032", 7);

printf ("to_len = %d, to_str = %s\n", to_len, to_str);

The example produces the following output:

to_len = 14, to_str = \0\\\'\"\n\r\Z

The printed value of to_str in the output looks very much like the string speci-
fied as the third argument of the mysql_real_escape_string() call in the original
source code, but is in fact quite different.

n int

mysql_real_query (MYSQL *conn,

const char *stmt_str,

unsigned long length);

Given an SQL statement specified as a counted string, mysql_real_query() sends
the statement to the server to be executed.The statement text is given by
stmt_str, and its length is indicated by length.The string may contain binary
data (including null bytes).

mysql_real_query() returns zero for success, non-zero for failure.A successful
statement is one that the server accepts as legal and executes without error. Success
does not imply anything about the number of rows affected or returned.

G.3.5 Result Set Processing Routines
When a statement produces a result set, the functions in this section enable you to re-
trieve the set and access its contents.The mysql_store_result() and mysql_use_

result() functions create the result set and one or the other must be called before using
any other functions in this section.Table G.8 compares the two functions.

1153G.3 C API Functions

Table G.8 Comparison of mysql_store_result() and mysql_use_result()

mysql_store_result() mysql_use_result()

All rows in the result set are fetched by
mysql_store_result() itself.

mysql_use_result() initializes the
result set, but defers row retrieval to
mysql_fetch_row().

Uses more memory; all rows are buffered on
the client side.

Uses less memory; one row at a time is
stored on the client side.

Slower due to overhead involved in allocating
memory for the entire result set.

Faster because memory need be allocated
only for the current row.

A NULL return from mysql_fetch_row() in-
dicates the end of the result set, not an error.

A NULL return from mysql_fetch_row() in-
dicates the end of the result set or an error,
because communications failure can disrupt
retrieval of the current row.

mysql_num_rows() can be called any time
after mysql_store_result() has been
called.

mysql_num_rows() returns a correct row
count only after all rows have been fetched.

mysql_affected_rows() is a synonym for
mysql_num_rows().

mysql_affected_rows() cannot be used.

Random access to result set rows is possible
with mysql_data_seek(),
mysql_row_seek(), and
mysql_row_tell().

No random access into result set; rows must
be processed in order as returned by the
server. mysql_data_seek(), mysql_row_
seek(), mysql_row_tell() should not be
used.

Tables are read-locked for no longer than nec-
essary to fetch the data rows.

Tables can stay read-locked if the client
pauses in mid-retrieval, locking out other
clients attempting to modify the tables.

The max_length member of result set
MYSQL_FIELD structures is set to the
longest value actually present in the result
set for the columns in the set.

max_length is not set to any meaningful
value, because it cannot be known until all
rows are retrieved.

n my_ulonglong

mysql_affected_rows (MYSQL *conn);

Returns the number of rows changed by the most recent DELETE, INSERT, REPLACE,
or UPDATE statement. For such statements, mysql_affected_rows() may be called
immediately after a successful call to mysql_query() or mysql_real_query().

You can also call this function after issuing a statement that returns rows. In this
case, the function acts the same way as mysql_num_rows() and is subject to the

1154 Appendix G C API Reference

same constraints as that function when the value is meaningful, as well as the addi-
tional constraint that if you use mysql_use_result() to generate the result set,
mysql_affected_rows() is never meaningful.

mysql_affected_rows() returns zero if no statement has been issued, the statement
was a UPDATE that changed no rows, or the statement was of a type that can return
rows but selects none.A return value greater than zero indicates the number of rows
changed (for DELETE, INSERT, REPLACE, UPDATE) or returned (for statements that
return rows).A return value of -1 indicates either an error, or that you (erroneously)
called mysql_affected_rows() after issuing a statement that returns rows but
before actually retrieving the result set. However, because mysql_affected_rows()

returns an unsigned value, you can detect a negative return value only by casting the
result to a signed value before performing the comparison:

if ((long) mysql_affected_rows (conn) == -1)

fprintf (stderr, "Error!\n");

If you have specified that the client should return the number of rows matched for
UPDATE statements, mysql_affected_rows() returns that value rather than the
number of rows actually modified. (MySQL does not update a row if the columns
to be modified are the same as the new values.) This behavior can be selected by
passing CLIENT_FOUND_ROWS in the flags argument to mysql_real_connect().

mysql_real_connect() returns a my_ulonglong value; see the note about printing
values of this type in Section G.2.1,“Scalar Data Types.”

n void

mysql_data_seek (MYSQL_RES *res_set, my_ulonglong row_num);

Seeks to a particular row of the result set.The value of row_num can range from 0
to mysql_num_rows(res_set)-1.The results are unpredictable if row_num is out
of range.

mysql_data_seek() requires that the entire result set has been retrieved into client
memory, so you can use it only if the result set was created by mysql_store_
result(), not by mysql_use_result().

mysql_data_seek() differs from mysql_row_seek(), which takes a row offset
value as returned by mysql_row_tell() rather than a row number.

n MYSQL_FIELD *

mysql_fetch_field (MYSQL_RES *res_set);

Returns a structure containing information (metadata) about a column in the result
set.After you successfully execute a statement that returns rows, the first call to
mysql_fetch_field() returns information about the first column. Subsequent calls
return information about successive columns following the first, or NULL when no
more columns are left.

1155G.3 C API Functions

Related functions are mysql_field_tell() to determine the current column posi-
tion, or mysql_field_seek() to select a particular column to be returned by the
next call to mysql_fetch_field().

The following example seeks to the first MYSQL_FIELD, and then fetches successive
column information structures:

MYSQL_FIELD *field;

unsigned int i;

mysql_field_seek (res_set, 0);

for (i = 0; i < mysql_num_fields (res_set); i++)

{

field = mysql_fetch_field (res_set);

printf ("column %u: name = %s max_length = %lu\n",

i, field->name, field->max_length);

}

n MYSQL_FIELD *

mysql_fetch_fields (MYSQL_RES *res_set);

Returns an array of all column information structures for the result set.These may
be accessed as follows:

MYSQL_FIELD *field;

unsigned int i;

field = mysql_fetch_fields (res_set);

for (i = 0; i < mysql_num_fields (res_set); i++)

{

printf ("column %u: name = %s max_length = %lu\n",

i, field[i].name, field[i].max_length);

}

Compare this to the example shown for mysql_fetch_field(). Note that al-
though both functions return values of the same type, those values are accessed us-
ing slightly different syntax for each function. mysql_fetch_field() returns a
pointer to a single field structure; mysql_fetch_fields() returns a pointer to an
array of field structures.

n MYSQL_FIELD *

mysql_fetch_field_direct (MYSQL_RES *res_set, unsigned int col_num);

Given a column index, returns the information structure for that column.The
value of col_num can range from 0 to mysql_num_fields(res_set)-1.The results
are unpredictable if col_num is out of range.

1156 Appendix G C API Reference

The following example accesses MYSQL_FIELD structures directly:

MYSQL_FIELD *field;

unsigned int i;

for (i = 0; i < mysql_num_fields (res_set); i++)

{

field = mysql_fetch_field_direct (res_set, i);

printf ("column %u: name = %s max_length = %lu\n",

i, field->name, field->max_length);

}

n unsigned long *

mysql_fetch_lengths (MYSQL_RES *res_set);

Returns a pointer to an array of unsigned long values representing the lengths of
the column values in the current row of the result set.You must call mysql_fetch_
lengths() each time you call mysql_fetch_row() or your lengths will be out of
synchrony with your data values.

The length for NULL values is zero, but a zero length does not by itself indicate a
NULL data value.An empty string also has a length of zero, so you must check
whether the data value is a NULL pointer to distinguish between the two cases.

The following example displays lengths and values for the current row, printing the
word “NULL” if the value is NULL:

unsigned long *length;

length = mysql_fetch_lengths (res_set);

for (i = 0; i < mysql_num_fields (res_set); i++)

{

printf ("length is %lu, value is %s\n",

length[i], (row[i] != NULL ? row[i] : "NULL"));

}

n MYSQL_ROW

mysql_fetch_row (MYSQL_RES *res_set);

Returns a pointer to the next row of the result set, represented as an array of strings
(except that NULL column values are represented as NULL pointers).The i-th value
in the row is the i-th member of the value array.Values of i range from 0 to
mysql_num_fields(res_set)-1.

Values for all data types, even numeric types, are returned as strings. If you want to
perform a numeric calculation with a value, you must convert it yourself—for ex-
ample, with atoi(), atof(), or sscanf().

1157G.3 C API Functions

mysql_fetch_row() returns NULL when there are no more rows in the data set. (If
you use mysql_use_result() to initiate a row-by-row result set retrieval,
mysql_fetch_row() also returns NULL if a communications error occurred.)

Data values are null-terminated, but you should not treat values that can contain bi-
nary data as null-terminated strings.Treat them as counted strings instead.To do
this, you will need the column value lengths, which may be obtained by calling
mysql_fetch_lengths().

The following code shows how to loop through a row of data values and deter-
mine whether each value is NULL:

MYSQL_ROW row;

unsigned int i;

while ((row = mysql_fetch_row (res_set)) != NULL)

{

for (i = 0; i < mysql_num_fields (res_set); i++)

{

printf ("column %u: value is %s\n",

i, (row[i] == NULL ? "NULL" : "not NULL"));

}

}

To determine the types of the column values, use the column metadata stored in
the MYSQL_FIELD column information structures, obtained by calling mysql_
fetch_field(), mysql_fetch_fields(), or mysql_fetch_field_direct().

n unsigned int

mysql_field_count (MYSQL *conn);

Returns the number of columns for the most recent statement on the given con-
nection.This function is normally used when mysql_store_result() or
mysql_use_result() return NULL. mysql_field_count() tells you whether a re-
sult set should have been returned.A return value of zero indicates no result set and
no error. (This happens for INSERT and UPDATE statements, for example.) A non-
zero value indicates that columns were expected and that, because none were re-
turned, an error occurred.

The following example illustrates how to use mysql_field_count() for error-
detection purposes:

res_set = mysql_store_result (conn);

if (res_set) /* a result set was returned */

{

/* ... process rows here, and then free result set ... */

mysql_free_result (res_set);

}

1158 Appendix G C API Reference

else /* no result set was returned */

{

/*

* does the lack of a result set mean that the statement didn't

* return one, or that it should have but an error occurred?

*/

if (mysql_field_count (conn) == 0)

{

/*

* statement generated no result set (it was not a SELECT,

* SHOW, DESCRIBE, etc.); just report rows-affected value.

*/

printf ("Number of rows affected: %lu\n",

(unsigned long) mysql_affected_rows (conn));

}

else /* an error occurred */

{

printf ("Problem processing the result set\n");

}

}

n MYSQL_FIELD_OFFSET

mysql_field_seek (MYSQL_RES *res_set, MYSQL_FIELD_OFFSET offset);

Seeks to the column information structure specified by offset.The next call to
mysql_fetch_field() will return the information structure for that column.
offset is not a column index; it is a MYSQL_FIELD_OFFSET value obtained from an
earlier call to mysql_field_tell() or from mysql_field_seek().

To reset to the first column, use an offset value of zero.
n MYSQL_FIELD_OFFSET

mysql_field_tell (MYSQL_RES *res_set);

Returns the current column information structure offset.This value can be passed
to mysql_field_seek().

n void

mysql_free_result (MYSQL_RES *res_set);

Deallocates the memory used by the result set.You must call mysql_free_
result() for each result set you work with.Typically, result sets are generated by
calling mysql_store_result() or mysql_use_result().

For result sets generated by calling mysql_use_result(), mysql_free_result()
automatically fetches and discards any unfetched rows.

1159G.3 C API Functions

n my_ulonglong

mysql_insert_id (MYSQL *conn);

Returns the value stored into an AUTO_INCREMENT column by the most recently ex-
ecuted statement on the given connection.This applies to an automatically gener-
ated AUTO_INCREMENT value or a literal value stored in the column. (This differs
from the LAST_INSERT_ID() SQL function, which returns only automatically gen-
erated values.)

mysql_insert_id() returns zero if no statement has been executed or if the previ-
ous statement did not involve an AUTO_INCREMENT column or did not successfully
insert any rows. (A zero return value is distinct from any valid AUTO_INCREMENT
value because such values are positive.) The value of mysql_insert_id() is unde-
fined if the previous statement produced an error.

You should call mysql_insert_id() immediately after issuing the statement that
involves an AUTO_INCREMENT column. If you issue another statement before calling
mysql_insert_id(), its value may be reset. Note that this behavior differs from
that of the LAST_INSERT_ID() SQL function. mysql_insert_id() is maintained in
the client and is set for each statement.The value of LAST_INSERT_ID() is main-
tained in the server and persists from statement to statement, until you generate an-
other AUTO_INCREMENT value.

The value returned by mysql_insert_id() is connection-specific and is not af-
fected by AUTO_INCREMENT activity on other connections.

mysql_insert_id() returns a my_ulonglong value; see the note about printing
values of this type in Section G.2.1,“Scalar Data Types.”

n unsigned int

mysql_num_fields (MYSQL_RES *res_set);

Returns the number of columns in the result set. mysql_num_fields() is often
used to iterate through the columns of the current row of the set, as illustrated by
the following example:

MYSQL_ROW row;

unsigned int i;

while ((row = mysql_fetch_row (res_set)) != NULL)

{

for (i = 0; i < mysql_num_fields (res_set); i++)

{

/* do something with row[i] here ... */

}

}

1160 Appendix G C API Reference

n my_ulonglong

mysql_num_rows (MYSQL_RES *res_set);

Returns the number of rows in the result set. If you generate the result set with
mysql_store_result(), you can call mysql_num_rows() any time thereafter:

if ((res_set = mysql_store_result (conn)) != NULL)

{

/* mysql_num_rows() can be called now */

}

If you generate the result set with mysql_use_result(), mysql_num_rows()
doesn’t return the correct value until you have fetched all the rows:

if ((res_set = mysql_use_result (conn)) != NULL)

{

/* mysql_num_rows() cannot be called yet */

while ((row = mysql_fetch_row (res_set)) != NULL)

{

/* mysql_num_rows() still cannot be called */

}

/* mysql_num_rows() can be called now */

}

mysql_num_rows() returns a my_ulonglong value; see the note about printing val-
ues of this type in Section G.2.1,“Scalar Data Types.”

n MYSQL_ROW_OFFSET

mysql_row_seek (MYSQL_RES *res_set, MYSQL_ROW_OFFSET offset);

Seeks to a particular row of the result set. mysql_row_seek() is similar to
mysql_data_seek(), but the offset value is not a row number. offset is a
MYSQL_ROW_OFFSET value that must be obtained from a call to mysql_row_tell()
or mysql_row_seek(), or zero to seek to the first row.

mysql_row_seek() returns the previous row offset.

mysql_row_seek() requires that the entire result set has been retrieved into client
memory, so you can use it only if the result set was created by mysql_store_
result(), not by mysql_use_result().

n MYSQL_ROW_OFFSET

mysql_row_tell (MYSQL_RES *res_set);

Returns an offset representing the current row position in the result set.This is not
a row number; the value may be passed only to mysql_row_seek(), not to
mysql_data_seek().

mysql_row_tell() requires that the entire result set has been retrieved into client
memory, so you can use it only if the result set was created by
mysql_store_result(), not by mysql_use_result().

1161G.3 C API Functions

n MYSQL_RES *

mysql_store_result (MYSQL *conn);

Following a successful statement, returns the result set and stores it in the client.
Returns NULL if the statement returns no data or an error occurred.When
mysql_store_result() returns NULL, call mysql_field_count() or one of the
error-reporting functions to determine whether a result set was not expected or
whether an error occurred. See the description of mysql_field_count() for an
example.

When you are done with the result set, pass it to mysql_free_result() to deallo-
cate it.

See the comparison of mysql_store_result() and mysql_use_result() in
Table G.8.

n MYSQL_RES *

mysql_use_result (MYSQL *conn);

Following a successful statement, initiates a result set retrieval but does not retrieve
any data rows itself.You must call mysql_fetch_row() to fetch the rows one by
one. Returns NULL if the statement returns no data or an error occurred.When
mysql_use_result() returns NULL, call mysql_field_count() or one of the
error-reporting functions to determine whether a result set was not expected or
whether an error occurred. See the description of mysql_field_count() for an
example.

When you are done with the result set, pass it to mysql_free_result() to deallo-
cate it.That is all that is necessary to finish statement processing, because
mysql_free_result() automatically retrieves and discards any unfetched rows be-
fore releasing the result set.

See the comparison of mysql_store_result() and mysql_use_result() in
Table G.8.

G.3.6 Information Routines
These functions provide information about the client, server, protocol version, and the
current connection.The values returned by most of these are retrieved from the server at
connect time and stored within the client library.

n const char *

mysql_character_set_name (MYSQL *conn);

Returns a null-terminated string containing the name of the default character set
for the given connection; for example, "latin1".

1162 Appendix G C API Reference

n const char *

mysql_get_client_info (void);

Returns a null-terminated string describing the client library version; for example,
"5.0.60".

n unsigned long

mysql_get_client_version (void);

Returns an integer that indicates the client library version.The format of the return
value is the same as for mysql_get_server_version().

n const char *

mysql_get_host_info (MYSQL *conn);

Returns a null-terminated string describing the given connection, such as
"Localhost via Unix socket", "cobra.snake.net via TCP/IP", ". via named
pipe", or "Shared memory".

n unsigned int

mysql_get_proto_info (MYSQL *conn);

Returns an integer indicating the client/server protocol version used for the given
connection.

n const char *

mysql_get_server_info (MYSQL *conn);

Returns a null-terminated string describing the server version; for example,
"5.0.60-debug-log".The value consists of a version number, possibly followed by
one or more suffixes.The suffix values are listed in the description of the
VERSION() function in Appendix C,“Operator and Function Reference.”

n unsigned long

mysql_get_server_version (void);

Returns an integer that indicates the server version in XYYZZ format, where X, YY,
and ZZ represent the major version, release level, and version within the release
level. For example, if the version is MySQL 5.1.25, this function returns 50125.

n const char *

mysql_info (MYSQL *conn);

Returns a null-terminated string containing information about the effect of the
most recently executed statement of the following types.The string format is given
immediately following each statement:

ALTER TABLE ...

Records: 0 Duplicates: 0 Warnings: 0

INSERT INTO ... SELECT ...

1163G.3 C API Functions

Records: 0 Duplicates: 0 Warnings: 0

INSERT INTO ... VALUES (...),(...),...

Records: 0 Duplicates: 0 Warnings: 0

LOAD DATA ...

Records: 0 Deleted: 0 Skipped: 0 Warnings: 0

UPDATE ...

Rows matched: 0 Changed: 0 Warnings: 0

The numbers will vary according to the particular statement you’ve executed, of
course.

mysql_info() returns non-NULL for INSERT INTO ... VALUES only if the statement
contains more than one value list. For statements not shown in the preceding list,
mysql_info() always returns NULL.

The string returned by mysql_info() is in the language used by the server, so you
can’t necessarily count on being able to parse it by looking for certain words.

n const char *

mysql_stat (MYSQL *conn);

Returns a null-terminated string containing server status information, or NULL if an
error occurred.The format of the string is subject to change. Currently it looks
something like this:

Uptime: 2153150 Threads: 6 Questions: 1306220 Slow queries: 271 Opens: 1260

Flush tables: 1 Open tables: 64 Queries per second avg: 0.607

These values may be interpreted as follows:
n Uptime is the number of seconds the server has been running.
n Threads is the number of threads currently running in the server.
n Questions is the number of statements the server has executed.
n Slow queries is the number of statements that took longer to process than

the time indicated by the server’s long_query_time variable.
n Opens is the number of tables the server has opened.
n Flush tables is the number of FLUSH, REFRESH, and RELOAD statements that

have been executed.
n Open tables is the number of tables the server currently has open.
n Queries per second is the ratio of Questions to Uptime.

Not coincidentally, the information returned by the mysql_stat() function is the
same as that reported by the mysqladmin status command. (mysqladmin itself
invokes this function to get the information.)

1164 Appendix G C API Reference

n unsigned long

mysql_thread_id (MYSQL *conn);

Returns the connection ID that the server associates with the current connection
(the same value returned by the CONNECTION_ID() SQL function).You can use this
value as an identifier for the KILL statement.

Do not invoke mysql_thread_id() until just before you need the value. If you re-
trieve the value and store it, the value may be incorrect when you use it later.This
can happen if your connection goes down and then is re-established (for example,
with mysql_ping()) because the server will assign the new connection a different
identifier.

n unsigned int

mysql_warning_count (MYSQL *conn);

Returns the number of warnings generated by the most recent statement that gen-
erates such messages.

G.3.7 Transaction Control Routines
The functions in this section provide control over transaction processing.

n my_bool

mysql_autocommit (MYSQL *conn, my_bool mode);

Enable autocommit for the current connection if mode is true (non-zero), disables
autocommit otherwise. Returns zero for success and non-zero otherwise.

n my_bool

mysql_commit (MYSQL *conn);

Commits the current transaction. Returns zero for success and non-zero otherwise.
This function is affected by the value of the completion_type system variable as of
MySQL 5.0.3.

n my_bool

mysql_rollback (MYSQL *conn);

Rolls back the current transaction. Returns zero for success and non-zero other-
wise.This function is affected by the value of the completion_type system variable
as of MySQL 5.0.3.

G.3.8 Multiple Result Set Routines
The routines in this section are used when multiple-statement execution capability is en-
abled.To use this capability, specify the CLIENT_MULTI_STATEMENTS flag when you open
the connection with mysql_real_connect().You can also enable multiple-statement exe-
cution for an already-open connection using the mysql_set_server_option() function.

1165G.3 C API Functions

To send the statements to the server to be executed, use mysql_real_query() or
mysql_query().The statements should be sent in a single string, separated by semicolons.

For an example that shows how to use these routines, see Section 7.8,“Using
Multiple-Statement Execution.”

n my_bool

mysql_more_results (MYSQL *conn);

Returns non-zero if more statement results exist to be read and zero otherwise.To
begin processing the next result, you must call mysql_next_result().

n int

mysql_next_result (MYSQL *conn);

Initiates processing for the next result if any exists.After calling this function, you
can process the result as you normally would for single-statement execution.

mysql_next_result() returns 0 if more results are available, -1 if not, and a value
greater than zero if an error occurred.

G.3.9 Prepared Statement Routines
The routines in this section implement the binary client/server protocol that provides
support for the prepared statement API.They are grouped into the following sections:

n Error-reporting routines to get error codes and messages
n Construction and execution routines to construct SQL statements and send them

to the server
n Result set processing routines to handle results from statements that return data

The initial implementation of prepared statements supported only the following state-
ments: CREATE TABLE, DELETE, DO, INSERT, REPLACE, SELECT, SET, UPDATE, and most varia-
tions of SHOW.The list of supported statements was considerably expanded in MySQL 5.1.
See the MySQL Reference Manual for 5.1 for the exact current list.

G.3.9.1 Prepared Statement Error-Reporting Routines
The functions in this section enable you to determine and report the causes of prepared
statement errors.The possible error codes and messages are listed in the errmsg.h,
mysqld_error.h, and sql_state.h MySQL header files.

n unsigned int

mysql_stmt_errno (MYSQL_STMT *stmt);

Returns an error code for the most recently invoked prepared statement routine
that returned a status.The error code is zero if no error occurred and non-zero
otherwise.

1166 Appendix G C API Reference

if (mysql_stmt_errno (stmt) == 0)

printf ("Everything is okay\n");

else

printf ("Something is wrong!\n");

n const char *

mysql_stmt_error (MYSQL_STMT *stmt);

Returns a null-terminated string that contains an error message for the most re-
cently invoked prepared statement routine that returned a status.The return value
is the empty string if no error occurred (this is the zero-length string "", not a
NULL pointer).Although normally you call mysql_stmt_error() after you already
know an error occurred, the return value itself can be used to detect the occur-
rence of an error:

const char *err = mysql_stmt_error (stmt);

if (err[0] == '\0') /* empty string? */

printf ("Everything is okay\n");

else

printf ("Something is wrong!\n");

n const char *

mysql_stmt_sqlstate (MYSQL_STMT *stmt);

Returns a null-terminated string that contains an SQLSTATE error code for the
most recently invoked prepared statement routine that returned a status.This code
is a five-character string. SQLSTATE values are taken from the ANSI SQL and
ODBC standards.A value of "00000" means “no error.”A value of "HY000" means
“general error.”This value is used for those MySQL errors that have not yet been
assigned more-specific SQLSTATE codes.

if (strcmp (mysql_stmt_sqlstate (stmt), "00000") == 0)

printf ("Everything is okay\n");

else

printf ("Something is wrong!\n");

G.3.9.2 Prepared Statement Construction and Execution Routines
The functions in this section enable you to send prepared SQL statements to the server.
Each string must consist of a single SQL statement, and should not end with a semicolon
character (‘;’) or a \g sequence.‘;’ and \g are conventions of the mysql client program,
not of the C client library.

For an example program that demonstrates how to use many of these functions, see
Section 7.9,“Using Server-Side Prepared Statements.”

1167G.3 C API Functions

n my_bool

mysql_stmt_bind_param (MYSQL_STMT *stmt, MYSQL_BIND *bind_array);

Given a prepared statement handler, stmt, the mysql_stmt_bind_param() function
binds a set of data values to the ‘?’ placeholders in the statement. bind_array is the
address of an array of MYSQL_BIND structures.There must be one structure in the ar-
ray for each placeholder in the prepared statement. mysql_stmt_bind_param() re-
turns zero if the bind operation was successful and non-zero otherwise.

n my_bool

mysql_stmt_close (MYSQL_STMT *stmt);

Closes the prepared statement handler and deallocates any resources associated with
it.This includes canceling any results that might be pending for the handler.
mysql_stmt_close() returns zero for success and non-zero otherwise.

After closing a statement handler, do not attempt to use it for further operations.

If the server still has prepared statements that are associated with a given client con-
nection when the connection closes, it discards those statements.

n MYSQL_STMT *

mysql_stmt_init (MYSQL *conn);

Allocates and initializes a MYSQL_STMT handler. Returns a pointer to the handler, or
NULL if the handler could not be allocated.

You should release the handler with mysql_stmt_close() when you are done
with it.

n int

mysql_stmt_execute (MYSQL_STMT *stmt);

Executes the prepared statement associated with the given statement handler. Re-
turns zero if the statement was executed successfully and non-zero otherwise.

Before executing the statement, you must bind data values to it by calling
mysql_stmt_bind_param() if the statement contains any ‘?’ placeholders.

After a successful execution, determine the result of the statement according to
whether it returns a result set. For statements that return no result set, call
mysql_stmt_affected_rows() to determine the number of rows inserted, deleted,
or updated. For statements that return a result set, metadata becomes available and
can be retrieved with mysql_stmt_result_metadata().To fetch the results, use
mysql_stmt_bind_result() to bind result buffers to columns, mysql_stmt_
fetch() to retrieve rows, and mysql_stmt_free_result() to free the result set.

n int

mysql_stmt_prepare (MYSQL_STMT *stmt,

const char *stmt_str,

unsigned long length);

1168 Appendix G C API Reference

Given an SQL statement specified as a counted string, mysql_stmt_prepare()
sends the statement to the server to be prepared for later execution and associates
the statement handler, stmt, with the prepared statement.The statement text is
given by stmt_str, and its length is indicated by length.The string may contain
binary data (including null bytes).

mysql_stmt_prepare() returns zero for success and non-zero for failure.

The statement can contain ‘?’ characters as parameter markers to indicate where
data values should be bound to the statement when it is executed later.

n my_bool

mysql_stmt_reset (MYSQL_STMT *stmt);

Reset the prepared statement handler to the state that it has after calling
mysql_stmt_prepare().

n MYSQL_RES *

mysql_stmt_result_metadata (MYSQL_STMT *stmt);

After a successful call to mysql_stmt_execute(), mysql_stmt_result_
metadata() returns metadata about the columns that result from the statement if it
is one that returns a result set.The return value is a pointer to a MYSQL_RES struc-
ture.The result set structure is similar to that for a non-prepared statement that you
obtain after invoking mysql_store_result(), except that it does not contain any
data.You can obtain information about the columns by passing the structure
pointer to functions that take a MYSQL_RES argument such as mysql_fetch_
field(), mysql_fetch_fields(), and mysql_num_fields().When you are done
with the structure, pass it to mysql_free_result() to dispose of it.

If the prepared statement is not one that returns a result set, mysql_stmt_result_
metadata() returns NULL to indicate that no metadata information is available.

n my_bool

mysql_stmt_send_long_data (MYSQL_STMT *stmt,

unsigned int param_num,

const char *data,

unsigned long length);

This function can be used to send long BLOB or TEXT values a piece at a time.
param_num indicates which parameter the call applies to. It can range from 0 to
mysql_stmt_param_count(stmt)-1. data is a pointer to the buffer containing the
data to send, and length indicates how many bytes to send.

G.3.9.3 Prepared Statement Result Set Processing Routines
When executing a prepared statement produces a result set, the functions in this section
enable you to retrieve the set and access its contents.

1169G.3 C API Functions

For an example program that demonstrates how to use many of these functions, see
Section 7.9,“Using Server-Side Prepared Statements.”

n my_ulonglong

mysql_stmt_affected_rows (MYSQL_STMT *stmt);

This function is the prepared statement equivalent of mysql_affected_rows(), ex-
cept that you call it after invoking mysql_stmt_execute(). For statements that re-
turn no result set, mysql_stmt_affected_rows(), returns the number of rows
inserted, deleted, or updated by executing the statement. For statements that return
a result set, this function acts like mysql_num_rows().

mysql_stmt_affected_rows() returns a my_ulonglong value; see the note about
printing values of this type in Section G.2.1,“Scalar Data Types.”

n my_bool

mysql_stmt_attr_get (MYSQL_STMT *stmt,

enum enum_stmt_attr_type attr_type,

void *attr);

Gets a prepared statement handler attribute. See the description of mysql_stmt_
attr_set() for a description of the allowable attr_type attribute values. attr is a
pointer to a variable into which the attribute value should be written. (Exception:
Before MySQL 5.1.7, pass a pointer to an unsigned int rather than to a my_bool
when getting the STMT_ATTR_UPDATE_MAX_LENGTH attribute.)

my_bool attr;

if (mysql_stmt_attr_get (stmt, STMT_ATTR_UPDATE_MAX_LENGTH, &attr) == 0)

printf ("Attribute gotten successfully\n");

else

printf ("Could not get attribute\n");

mysql_stmt_attr_get() returns zero if the attribute was obtained successfully,
non-zero if the attribute type is unknown.

n my_bool

mysql_stmt_attr_set (MYSQL_STMT *stmt,

enum enum_stmt_attr_type attr_type,

const void *attr);

Sets a prepared statement handler attribute. attr_type indicates which attribute to
set, and attr is a pointer to a variable that contains the value of the attribute.

attr_type may be any of the following values:
n STMT_ATTR_UPDATE_MAX_LENGTH controls whether mysql_stmt_store_
result() calculates the max_length metadata value for result set columns.To
enable or disable this attribute, pass an attr value that points to a my_bool
that is set to true or false. By default, max_length calculation is disabled.

1170 Appendix G C API Reference

n STMT_ATTR_CURSOR_TYPE indicates the type of cursor to use for the statement
when mysql_stmt_execute() is called. arg points to an unsigned long that
can be set to CURSOR_TYPE_NO_CURSOR (which is the default) or
CURSOR_TYPE_READ_ONLY.

n STMT_ATTR_PREFETCH_ROWS indicates now many rows to fetch at a time from
the server when a cursor is used. arg points to an unsigned long that is set
to the number of rows.The value should be at least 1 (which is the default).

The following example enables max_length calculations for result sets:

my_bool attr = 1;

if (mysql_stmt_attr_set (stmt, STMT_ATTR_UPDATE_MAX_LENGTH, &attr) == 0)

printf ("Attribute set successfully\n");

else

printf ("Could not set attribute\n");

mysql_stmt_attr_set() returns zero if the attribute was set successfully, non-zero
if the attribute type is unknown.

n my_bool

mysql_stmt_bind_result (MYSQL_STMT *stmt, MYSQL_BIND *bind_array);

Given a prepared statement handler, stmt, the mysql_stmt_bind_result() func-
tion provides an array of MYSQL_BIND structures to be used for fetching result set
rows. bind_array is the address of an array of MYSQL_BIND structures.There must
be one structure in the array for each column in the result set. Each time you call
mysql_stmt_fetch() to retrieve a result set row, the column values are returned in
the MYSQL_BIND structures. mysql_stmt_bind_result() returns zero if the bind
operation was successful and non-zero otherwise.

You must bind the structures to the result set columns before retrieving rows, and
the buffers pointed to by the structures must be large enough to store the retrieved
values. It is allowable to call mysql_stmt_bind_result() while retrieving a result
set to bind columns to different MYSQL_STMT structures.The most recent bindings
are those used by mysql_stmt_fetch().

n void

mysql_stmt_data_seek (MYSQL_STMT *stmt, my_ulonglong row_num);

Seeks to a particular row of the result set.The value of row_num can range from 0
to mysql_stmt_num_rows(stmt)-1.The results are unpredictable if row_num is out
of range.

mysql_stmt_data_seek() requires that the entire result set has been retrieved into
client memory, so you can use it only if you have called mysql_stmt_store_
result() after executing the statement.

1171G.3 C API Functions

mysql_stmt_data_seek() differs from mysql_stmt_row_seek(), which takes a
row offset value as returned by mysql_stmt_row_tell() rather than a row number.

n unsigned int

mysql_stmt_field_count (MYSQL_STMT *stmt);

This function can be called after invoking mysql_stmt_prepare() with the state-
ment handler. It returns the number of columns in the result set that will be gen-
erated when you execute the statement. If the statement will not produce a result
set (for example, if it is an INSERT or UPDATE), mysql_stmt_field_count() re-
turns zero.

n int

mysql_stmt_fetch (MYSQL_STMT *stmt);

After a successful call to mysql_stmt_execute() to execute a prepared statement
that returns a result set, optionally followed by a call to mysql_stmt_store_
result() to retrieve the result set into client memory, call mysql_stmt_fetch() to
retrieve rows of the result.The buffers into which you want to fetch result columns
first must be bound to MYSQL_BIND structures by calling
mysql_stmt_bind_result().

mysql_stmt_fetch() returns zero if a row was fetched successfully, MYSQL_NO_DATA
if there are no more rows to fetch, and 1 if an error occurred.After a successful
fetch, the column values are available in the MYSQL_BIND structures bound to the
result.

n int

mysql_stmt_fetch_column (MYSQL_STMT *stmt,

MYSQL_BIND *bind,

unsigned int col_num,

unsigned long offset);

This function fetches data for a single column from the current result set row. Re-
turns zero for success and non-zero if an error occurred. bind is a MYSQL_BIND
structure that should be set up to indicate the kind of value to retrieve, the buffer
into which to retrieve it, and the length (amount) of the data to retrieve. col_num
indicates which column to fetch. Its value can range from 0 to
mysql_stmt_field_count(stmt)-1. offset indicates the offset into the column
value at which value retrieval should begin; 0 indicates the start of the value.

n my_bool

mysql_stmt_free_result (MYSQL_STMT *stmt);

Deallocates the memory used by the result set associated with the given statement
handler. Returns zero for success and non-zero otherwise.Any unfetched rows are
discarded.You must call mysql_stmt_free_result() for each result set generated
by the handler.

1172 Appendix G C API Reference

n my_ulonglong

mysql_stmt_insert_id (MYSQL_STMT *stmt);

This function is the prepared-statement equivalent of mysql_insert_id(). It is used
after you call mysql_stmt_execute() to execute a statement that generates an
AUTO_INCREMENT value.

mysql_stmt_insert_id() returns a my_ulonglong value; see the note about print-
ing values of this type in Section G.2.1,“Scalar Data Types.”

n my_ulonglong

mysql_stmt_num_rows (MYSQL_STMT *stmt);

Returns the number of rows in the result set, if you have fetched the result into
client memory by calling mysql_stmt_store_result(). If you have not called
mysql_stmt_store_result(), mysql_stmt_num_rows() returns zero.

mysql_stmt_num_rows() returns a my_ulonglong value; see the note about print-
ing values of this type in Section G.2.1,“Scalar Data Types.”

n int

mysql_stmt_store_result (MYSQL_STMT *stmt);

Normally, result sets produced by executing a prepared statement are unbuffered
and calling mysql_stmt_fetch() fetches rows one at a time from the server. Call-
ing mysql_stmt_store_result() after executing the statement and before fetch-
ing the result set causes the result to be retrieved and buffered in client memory, so
that calls to mysql_stmt_fetch() return rows from the buffered result. Calling
mysql_stmt_store_result() also makes the result set “seekable,” and enables you
to use mysql_stmt_data_seek(), mysql_stmt_row_seek(), and mysql_stmt_row_
tell().These functions operate by positioning the row cursor of a result set
buffered in client memory.

For performance reasons, the max_length value in the result set metadata for each
column is not calculated by default. If you want this value to be calculated when
you call mysql_stmt_store_result(), use the mysql_stmt_set_attr() function
to enable the statement handler’s STMT_ATTR_UPDATE_MAX_LENGTH_FLAG attribute.

You can fetch rows of the result set by calling mysql_stmt_fetch() without calling
mysql_stmt_store_result() first. In this case, rows are retrieved from the server
one by one.

Calling mysql_stmt_store_result() after executing a statement that produces no
result set has no effect.

n unsigned long

mysql_stmt_param_count (MYSQL_STMT *stmt);

After a successful call to mysql_stmt_prepare() to prepare a statement,
mysql_stmt_param_count() returns the number of parameters in the statement
(indicated by ‘?’ placeholders).The return value is zero if there are no placeholders.

1173G.3 C API Functions

n MYSQL_ROW_OFFSET

mysql_stmt_row_seek (MYSQL_STMT *stmt, MYSQL_ROW_OFFSET offset);

Seeks to a particular row of the result set. mysql_stmt_row_seek() is similar to
mysql_stmt_data_seek(), but the offset value is not a row number. offset is a
MYSQL_ROW_OFFSET value that must be obtained from a call to mysql_stmt_row_
tell() or mysql_stmt_row_seek(), or zero to seek to the first row.

mysql_stmt_row_seek() returns the previous row offset.

mysql_stmt_row_seek() requires that the entire result set has been retrieved into
client memory, so you can use it only if you have called mysql_stmt_store_
result() after executing the statement.

n MYSQL_ROW_OFFSET

mysql_stmt_row_tell (MYSQL_STMT *stmt);

Returns an offset representing the current row position in the result set.This is not
a row number; the value may be passed only to mysql_stmt_row_seek(), not to
mysql_stmt_data_seek().

mysql_stmt_row_tell() requires that the entire result set has been retrieved into
client memory, so you can use it only if you have called mysql_stmt_store_
result() after executing the statement.

G.3.10 Administrative Routines
The functions in this section enable you to control aspects of server operation.

n int

mysql_refresh (MYSQL *conn, unsigned int options);

This function is similar in effect to the SQL FLUSH and RESET statements, except
that you can tell the server to flush several kinds of things at once. mysql_
refresh() returns zero for success, non-zero for failure.

The options value should be composed of one or more of the values shown in the
following list.You must have the RELOAD privilege to perform these operations.

n REFRESH_GRANT

Reloads the grant table contents.This is equivalent to issuing a FLUSH
PRIVILEGES statement.

n REFRESH_HOSTS

Flushes the host cache.This is equivalent to issuing a FLUSH HOSTS

statement.

1174 Appendix G C API Reference

n REFRESH_LOG

Flushes the log files by closing and reopening them.This applies to what-
ever logs the server has open, and is equivalent to issuing a FLUSH LOGS

statement.
n REFRESH_MASTER

Tells a replication master server to delete the binary log files listed in the
binary log index file and to truncate the index.This is equivalent to issuing a
RESET MASTER statement.

n REFRESH_SLAVE

Tells a replication slave server to forget its position in the master logs.This is
equivalent to issuing a RESET SLAVE statement.

n REFRESH_STATUS

Reinitializes the status variables to zero.This is equivalent to issuing a FLUSH
STATUS statement.

n REFRESH_TABLES

Closes all open tables.This is equivalent to issuing a FLUSH TABLES statement.
n REFRESH_THREADS

Flushes the thread cache.There is no equivalent SQL statement for this
operation.

The option flags are bit values, so you can combine them in additive fashion using
either the | or the + operator. For example, the following expressions are equivalent:

REFRESH_LOG | REFRESH_TABLES

REFRESH_LOG + REFRESH_TABLES

n int

mysql_set_server_option (MYSQL *conn,

enum enum_mysql_set_option option);

Sets a server option and returns zero if the option was set successfully or non-zero
otherwise. Currently, the only allowable options are MYSQL_OPTION_MULTI_
STATEMENTS_ON or MYSQL_OPTION_MULTI_STATEMENTS_OFF, which enable or dis-
able multi-statement execution capability, respectively.

Enabling multiple-statement execution with MYSQL_OPTION_MULTI_STATEMENTS_ON
does not also enable multiple result sets.This differs from the way that the
CLIENT_MULTI_STATEMENTS option to mysql_real_connect() also enables
CLIENT_MULTI_RESULTS.

1175G.3 C API Functions

n int

mysql_shutdown (MYSQL *conn, enum mysql_enum_shutdown_level level);

Instructs the server to shut down.You must have the SHUTDOWN privilege to do this.
The value of the second argument should be SHUTDOWN_DEFAULT; other shutdown
levels may be implemented eventually.

mysql_shutdown() returns zero for success, and non-zero for failure.

G.3.11 Threaded Client Routines
The routines in this section are used for writing multi-threaded clients.

n void

mysql_thread_end (void);

Frees any thread-specific variables initialized by mysql_thread_init().To avoid
memory leaks, you should call this function explicitly to terminate any threads that
you create.

n my_bool

mysql_thread_init (void);

Initializes thread-specific variables.This function should be called for any thread
you create that will call MySQL functions. In addition, you should call
mysql_thread_end() before terminating the thread.

n unsigned int

mysql_thread_safe (void);

Returns 1 if the client library is thread-safe, 0 otherwise.The value of this function
reflects whether MySQL was configured with the --enable-thread-safe-client
option.

G.3.12 Debugging Routines
These functions enable you to generate debugging information on either the client or
server end of the connection.This requires MySQL to be compiled with debugging sup-
port. (Use the --with-debug option when you configure the MySQL distribution, or
--with-debug=full for more information.The latter option enables safemalloc, a li-
brary that performs extensive memory allocation checking.)

n void

mysql_debug (const char *debug_str);

Performs a DBUG_PUSH operation using the string debug_str.The format of the
string is described in the MySQL Reference Manual.

To use mysql_debug(), the client library must be compiled with debugging support.

1176 Appendix G C API Reference

n int

mysql_dump_debug_info (MYSQL *conn);

Instructs the server to write debugging information to the log.You must have the
SUPER privilege to do this.

mysql_dump_debug_info() returns zero for success, non-zero for failure.

H
Perl DBI API Reference

This appendix describes the Perl DBI application programming interface.The API con-
sists of a set of methods and attributes for communicating with database servers and ac-
cessing databases from Perl scripts.The appendix also describes MySQL-specific
extensions to DBI provided by DBD::mysql, the MySQL database driver.

DBI is currently at version 1.601, although most of the material here applies to earlier
versions as well. I assume here a minimum version of DBI 1.40, which requires at least
Perl 5.6.0 (and 5.6.1 is preferred to 5.6.0). I also assume a minimum version of
DBD::mysql 3.0000_0. Changes in DBI or DBD::mysql behavior introduced after those
minimum versions are noted. For mysql_server_prepare support, it is best to use
DBD::mysql 3.0009 or higher because there were some changes to the default value of
this feature in some of the preceding releases.

To determine your versions of DBI and DBD::mysql, run this program:

#!/usr/bin/perl

dbi-version.pl - display DBI and DBD::mysql versions

use strict;

use warnings;

use DBI;

print "DBI::VERSION: $DBI::VERSION\n";

use DBD::mysql;

print "DBD::mysql::VERSION: $DBD::mysql::VERSION\n";

Some DBI methods and attributes are not discussed here, either because they do not
apply to MySQL or because they are experimental methods that may change as they are
developed or may even be dropped. Some MySQL-specific DBD methods are not dis-
cussed because they are obsolete. If you want more information about new or obsolete
methods, see the DBI documentation or the MySQL DBD documentation, which you
can get by running the following commands:

% perldoc DBI

% perldoc DBI::FAQ

% perldoc DBD::mysql

1178 Appendix H Perl DBI API Reference

Information is also available at http://dbi.perl.org/.
The examples in this appendix are only brief code fragments. For complete client

scripts and instructions for writing them, see Chapter 8,“Writing MySQL Programs
Using Perl DBI.”

H.1 Writing Scripts
Every Perl script that uses the DBI module must include the following line:

use DBI;

It’s normally not necessary to include a use line for a particular DBD-level module
because DBI takes care of activating the proper module when you connect to the server.

Typically, a DBI script opens a connection to a MySQL server using the connect()
method and closes the connection with disconnect().While the connection is open,
SQL statements may be executed.The methods used to do this vary depending on the
type of statement. Non-SELECT statements typically are performed with the do()
method. SELECT statements typically are performed by passing the statement to
prepare(), and then calling execute(), and finally retrieving the result set a row at a
time in a loop that repeatedly invokes a row-fetching method, such as fetchrow_array()
or fetchrow_hashref().

When you execute statements from within a DBI script, each statement string must
consist of a single SQL statement, and should not end with a semicolon character (‘;’) or
a \g sequence.‘;’ and \g are conventions of the mysql client program and are not used
for DBI.

H.2 DBI Methods
The method descriptions here are written in a somewhat different format than is used for
the C functions in Appendix G,“C API Reference,” (online) and for the PHP functions in
Appendix I,“PHP API Reference (online)”. Functions in those appendixes are written in
prototype form, with return value types and parameter types listed explicitly.The descrip-
tions here indicate parameter and return value types using variables, where the leading
character of each variable indicates its type: ‘$’ for a scalar,‘@’ for an array, and ‘%’ for a hash
(associative array). In addition, any parameter listed with a leading ‘\’ signifies a reference
to a variable of the given type, not the variable itself.A variable name suffix of ref indi-
cates that the variable’s value is a reference.

Certain variable names recur throughout this appendix and have the conventional
meanings shown in Table H.1.

http://dbi.perl.org/

1179H.2 DBI Methods

Table H.1 Conventional Perl DBI Variable Names

Name Meaning

$drh A handle to a driver object

$dbh A handle to a database object

$sth A handle to a statement (query) object

$fh A handle to an open file

$h A “generic” handle; the meaning depends on context

$rc The return code from operations that return true or false

$rv The return value from operations that return an integer

$rows The return value from operations that return a row count

$str The return value from operations that return a string

@ary An array representing a list of values

@row_ary An array representing a row of values returned by a query

Many methods accept a hash argument %attr containing attributes that affect the way
the method works.This hash should be passed by reference, which you can do two ways:

n Initialize the contents of the hash value %attr before invoking the method, and
then pass it to the method:

my %attr = (AttrName1 => value1, AttrName2 => value2);
$ret_val = $h->method (..., \%attr);

n Supply an anonymous hash directly in the method invocation:

$ret_val = $h->method (..., {AttrName1 => value1, AttrName2 => value2});

The way in which a method or function is used is indicated by the calling sequence.
DBI-> indicates a DBI class method, DBI:: indicates a DBI function, and $DBI:: indi-
cates a DBI variable. For methods that are called using handles, the handle name indicates
the scope of the method. $dbh-> indicates a database-handle method, $sth-> indicates a
statement-handle method, and $h-> indicates a method that may be called with different
kinds of handles. Optional information is indicated by square brackets ([]). Here’s an ex-
ample calling sequence:

@row_ary = $dbh->selectrow_array ($statement, [\%attr [, @bind_values]]);

This indicates that the selectrow_array() method is called as a database-handle
method, because it’s invoked using $dbh->.The parameters are $statement (a scalar
value), %attr (a hash that should be passed as a reference, as indicated by the leading ‘\’),
and @bind_values (an array).The second and third parameters are optional.The return
value, @row_ary, is an array representing the row of values returned by the method.

1180 Appendix H Perl DBI API Reference

Each method description indicates what the return value is when an error occurs, but
that value is returned on error only if the RaiseError attribute is disabled. If RaiseError
is enabled, the method raises an exception rather than returning, and the script automati-
cally terminates.

In the descriptions that follow, the term “SELECT statement” should be taken to mean a
SELECT statement or any other statement that returns rows, such as DESCRIBE, EXPLAIN, or
SHOW.

H.2.1 DBI Class Methods
The %attr parameter for methods in this section may be used to specify method-process-
ing attributes. (An attribute parameter that is missing or undef means “no attributes.”) For
MySQL, the most important attributes are PrintError, RaiseError, and AutoCommit.
Attributes passed to connect() or connect_cached() become part of the resulting data-
base handle returned by those methods. For example, to turn on automatic script termi-
nation when a DBI error occurs within any method associated with a given database
handle, enable RaiseError when you create the handle:

$dbh = DBI->connect ($data_source, $user_name, $password, {RaiseError => 1});

PrintError, RaiseError, and AutoCommit are discussed in Section H.4,“DBI
Attributes” (online).

n @ary = DBI->available_drivers ([$quiet]);

Returns a list of available DBI drivers.The default value of the optional $quiet pa-
rameter is 0, which causes a warning to be issued if multiple drivers with the same
name are found.To suppress the warning, pass a $quiet value of 1.

n $dbh = DBI->connect ($data_source,

$user_name,

$password

[, \%attr]);

Establishes a connection to a database server and returns a database handle, or
undef if the connection attempt fails.To terminate a successfully established con-
nection, invoke disconnect() using the database handle returned by connect().

$dbh = DBI->connect ("DBI:mysql:sampdb:localhost",

"sampadm", "secret", \%attr)

or die "Could not connect\n";

$dbh->disconnect ();

The data source can be given in several forms.The first part is always DBI:mysql:,
where DBI may be given in any lettercase and the driver name, mysql, must be low-
ercase. Everything after the second colon (which must be present) is interpreted by
the driver, so the syntax described in the following discussion does not necessarily
apply to any driver module other than DBD::mysql.

1181H.2 DBI Methods

Following the second colon, you may also specify a database name and hostname in
the initial part of the data source string:

$data_source = "DBI:mysql:db_name";
$data_source = "DBI:mysql:db_name:host_name";

The database may be specified as db_name or as database=db_name.The hostname
may be specified as host_name or as host=host_name.

Username and Password attributes can be passed in the %attr parameter to specify
the username and password.These attributes take precedence over values passed in
the $user_name and $password parameters.

my %attr = (Username => "sampadm", Password => "secret");

$dbh = DBI->connect ("DBI:mysql:sampdb:localhost",

"someuser", "somepass", \%attr)

or die "Could not connect\n";

Attributes also can be specified in the data source following the driver name, sepa-
rated by commas and enclosed within parentheses.Attributes specified this way take
precedence over those specified in the %attr, $user_name, and $password parame-
ters.

my $dsn = "DBI:mysql(Username=>sampadm,Password=>secret):sampdb:localhost";

$dbh = DBI->connect ($dsn, "someuser", "somepass", \%attr)

or die "Could not connect\n";

Following the initial part of the data source string, you may specify several options
in attribute=value format. Each option setting should be preceded by a semi-
colon. For example:

DBI:mysql:sampdb:localhost;mysql_socket=/tmp/mysql.sock;mysql_compression=1

The MySQL driver understands the following options:
n host=host_name

The host to connect to. For TCP/IP connections, a port number also may
be specified by using host_name:port_num format, or by using the port
attribute.

On Unix systems, connections to the host localhost use Unix domain
sockets by default. (In this case, you may use mysql_socket to specify the
socket filename.) Use host=127.0.0.1 if you want to connect to the local
host using TCP/IP.

On Windows systems, connections to the host “.” connect to the local server
using a named pipe, or TCP/IP if that doesn’t work. (In this case, you may
use mysql_socket to specify the pipe name.)

1182 Appendix H Perl DBI API Reference

n port=port_num

The port number to connect to.This option is ignored for non-TCP/IP
connections (for example, connections to localhost under Unix).

n mysql_client_found_rows=val

The type of row count to return. For UPDATE statements, the MySQL server
can return the number of rows affected (changed), or the number of rows
matched (regardless of whether they were changed). For example, an UPDATE
that selects a row in its WHERE clause but sets row values to their current
values matches the row but does not change it. Disabling mysql_client_
found_rows by setting it to 0 tells the server to return the number of rows
changed. Enabling mysql_client_found_rows by setting it to 1 tells the
server to return the number of rows matched.

By default, mysql_client_found_rows is enabled in DBD::mysql. This differs
from the C client library, for which the default is number of rows changed.

n mysql_compression=1

Requests the use of compression in the protocol used for communication
between the client and the MySQL server, if both of them support it.

n mysql_connect_timeout=seconds

The number of seconds to wait during the connection attempt before timing
out and returning failure.

n mysql_local_infile=val

Controls availability of the LOCAL capability for the LOAD DATA statement.
Setting the option to 1 enables LOCAL if it is disabled in the MySQL client
library by default (as long as the server has not also been configured to
disallow it). Setting the option to 0 disables LOCAL if it is enabled in the
client library.

n mysql_read_default_file=file_name

By default, DBI scripts do not check any MySQL option files for connection
parameters. mysql_read_default_file enables you to specify an option file
to read.The filename should be a full pathname. (Otherwise, it is interpreted
relative to the current directory, and you will get inconsistent results depend-
ing on where the script is run.)

On Unix, if you expect a script to be used by multiple users and you want
each of them to connect using parameters specified in their own option file
(rather than using parameters that you hardwire into the script), specify the
filename as $ENV{HOME}/.my.cnf.The script then will use the .my.cnf file in
the home directory of whatever user happens to be running the script.

Specifying an option filename that includes a drive letter doesn’t work under
Windows, because the colon (‘:’) character that separates the drive letter and

1183H.2 DBI Methods

the following pathname is also used by DBI as a separator within the data
source string. Section 8.2.9,“Specifying Connection Parameters,” describes a
workaround for this problem.

n mysql_read_default_group=group_name

Specifies an option file group in which to look for connection parameters. If
mysql_read_default_group is used without mysql_read_default_file,
the standard option files are read. If both mysql_read_default_group and
mysql_read_default_file are used, only the file named by the latter is read.

The [client] option file group is always read from option files.
mysql_read_default_group enables you to specify a group to be read in
addition to the [client] group. For example, mysql_read_default_
group=dbi specifies that both the [dbi] and [client] groups should be
used. If you want only the [client] group to be read, use mysql_read_
default_group=client.

n mysql_server_prepare=val

Setting this option to 1 enables server-side statement preparation. Setting it to
0 (the default) causes statement preparation to be emulated on the client side.

For information about the version of DBD::mysql needed to use the
mysql_server_prepare option, see the introduction to this appendix.

n mysql_socket=socket_name

Under Unix, this option specifies the pathname of the Unix domain socket
to use for connections to localhost. Under Windows, it indicates a named-
pipe name.This option is ignored for TCP/IP connections (for example,
connections to hosts other than localhost on Unix).

n mysql_ssl=val
mysql_ssl_ca_file=file_name
mysql_ssl_ca_path=dir_name
mysql_ssl_cipher=str
mysql_ssl_client_cert=file_name
mysql_ssl_client_key=file_name

These options are used to establish a secure connection to the server using
SSL. Setting mysql_ssl to 0 disallows use of SSL. If mysql_ssl is not speci-
fied or is set to 1, SSL connections are allowed, using the values of the other
options to specify connection characteristics.Their meanings are the same as
the corresponding arguments of the mysql_ssl_set() function in the C
API. For details, see the entry for that function in Appendix G (online). If
you enable mysql_ssl, you should also specify values for at least the
mysql_ssl_ca_file, mysql_ssl_client_cert, and mysql_ssl_
client_key options.

1184 Appendix H Perl DBI API Reference

These options require SSL support in the MySQL C client library that is
linked into DBD::mysql, and any MySQL server to which you connect must
support SSL connections.

n mysql_use_result=val

This option affects result set retrieval. If the value is 0 (the default),
DBD::mysql uses the mysql_store_result() C API function to retrieve
rows. If the value is 1, DBD::mysql uses mysql_use_result(). See Appendix
G (online) for a discussion of these two functions and how they differ.

If connection parameters are not specified explicitly in the arguments to
connect(), or in any option files that the connection attributes cause to be
read, DBI examines several environment variables to determine which
parameters to use:

n If the data source is undefined or empty, DBI uses the value of the DBI_DSN
variable.

n If the driver name is missing from the data source, DBI uses the value of the
DBI_DRIVER variable.

n If the user_name or password parameters of the connect() call are unde-
fined, DBI uses the values of the DBI_USER and DBI_PASS variables.This does
not occur if the parameters are empty strings. (Use of DBI_PASS is a security
risk, so you shouldn’t use it on multiple-user systems where environment
variable values may be visible to other users by means of system-monitoring
commands.)

DBI uses default values for any connection parameters that remain unknown
after all information sources have been consulted. If the hostname is unspeci-
fied, it defaults to localhost. If the username is unspecified, it defaults to
your login name under Unix and to ODBC under Windows. If the password is
unspecified, there is no default; instead, no password is sent.

n $dbh = DBI->connect_cached ($data_source,

$user_name,

$password

[, \%attr]);

This method is like connect(), except that DBI caches the database handle
internally. If a subsequent call is made to connect_cached() with the same
connection parameters while the connection is still active, DBI returns the
cached handle rather than opening a new connection. If the cached handle is
no longer valid, DBI establishes a new connection, and then caches and
returns the new handle.

1185H.2 DBI Methods

n @ary = DBI->data_sources ($driver_name [, \%attr]);

Returns a list of data sources available through the named driver. For
MySQL, the $driver_name value is "mysql" (it must be lowercase). If
$driver_name is undef or the empty string, DBI checks the value of the
DBI_DRIVER environment variable to get the driver name.You can use the
optional %attr parameter to supply connection parameters.

For many DBI drivers, data_sources() returns an empty or incomplete list.
n $drh = DBI->install_driver ($driver_name);

Activates a DBD-level driver and returns a driver handle for it, or dies with
an error message if the driver cannot be found. For MySQL, the
$driver_name value is "mysql" (it must be lowercase). Normally, it is not
necessary to use this method because DBI activates the proper driver auto-
matically when you invoke the connect() method. However,
install_driver() may be helpful if you’re using the func() method to
perform administrative operations. (See Section H.2.6,“MySQL-Specific
Administrative Methods” (online).)

n %drivers = DBI->installed_drivers ();

Returns a hash of driver name/driver handle pairs for the drivers loaded into
the current process.

installed_drivers() was introduced in DBI 1.49.

H.2.2 Database-Handle Methods
The methods in this section are invoked through a database handle and may be used after
you have obtained such a handle by calling the connect(), connect_cached(), or
clone() method.

The %attr parameter for methods in this section may be used to specify method-
processing attributes. (An attribute parameter of undef means “no attributes.”) For
MySQL, the most important of these attributes are PrintError and RaiseError. For
example, if RaiseError currently is disabled, you can enable it while processing a particu-
lar statement to cause automatic script termination if a DBI error occurs:

$rows = $dbh->do ($statement, {RaiseError => 1});

PrintError and RaiseError are discussed in Section H.4,“DBI Attributes” (online).
n $rc = $dbh->begin_work ();

Turns off autocommit mode by disabling the AutoCommit database-handle attrib-
ute.This enables a transaction to be performed. AutoCommit remains disabled until
the next call to commit()or rollback(), after which it becomes enabled again. Use
of begin_work() differs from disabling the AutoCommit attribute manually; in the
latter case, you must also re-enable AutoCommit manually after committing or
rolling back.

1186 Appendix H Perl DBI API Reference

begin_work() returns true if AutoCommit was disabled successfully, or false it if was
already disabled.

n $dbh2 = $dbh->clone ([\%attr]);

Duplicates the existing connection $dbh and returns a new database handle.The
new connection is made with the same parameters that were used for the original
one.Any attributes given are added to the original attributes.This replaces any orig-
inal attributes that have the same names.

n $rc = $dbh->commit ();

Commits the current transaction if AutoCommit is disabled. If AutoCommit is
enabled, invoking commit() has no effect and results in a warning.

n $rc = $dbh->disconnect ();

Terminates the connection associated with the database handle. If the connection is
still active when the script exits, DBI terminates it automatically but issues a warn-
ing.

The behavior of disconnect() for DBI is undefined with respect to active transac-
tions. For MySQL, the server rolls back any transaction that is active if you discon-
nect without committing. For portability, you should terminate any active
transaction explicitly by invoking commit() or rollback() before calling
disconnect().

n $rows = $dbh->do ($statement

[, \%attr

[, @bind_values]]);

Prepares and executes the statement indicated by $statement.The return value is
the number of rows affected, -1 if the number of rows is unknown, and undef if an
error occurred. If the number of rows affected is zero, the return value is the string
"0E0", which evaluates as zero in numeric contexts but is considered true in
boolean contexts.

do() is used primarily for statements that do not retrieve rows, such as DELETE,
INSERT, or UPDATE.Trying to use do() for a SELECT statement is ineffective; you
don’t get back a statement handle, so you won’t be able to fetch any rows.

Normally, no attributes are passed to do(), so the %attr parameter can be specified
as undef. @bind_values represents a list of values to be bound to placeholders,
which are indicated by ‘?’ characters within the statement string.

If a statement includes no placeholders, you can omit both the %attr parameter
and the value list:

$rows = $dbh->do (
"UPDATE member SET expiration = NOW() WHERE member_id = 39"

);

1187H.2 DBI Methods

If the statement does contain placeholders, the list must contain as many values as
there are placeholders, and must be preceded by the %attr argument. In the fol-
lowing example, the attribute argument is undef and is followed by two data values
to be bound to the two placeholders in the statement string:

$rows = $dbh->do ("UPDATE member SET expiration = ? WHERE member_id = ?",

undef,

"2007-11-30", 39);

n $rv = $dbh->get_info ($info_type);

Returns a characteristic of the DBI or driver implementation.

my $version = $dbh->get_info (18); # get database version

For information about the allowable information types, consult the DBI documen-
tation:

% perldoc DBI

n $rc = $dbh->ping ();

Re-establishes the connection to the server if the connection has timed out. Re-
turns true if the connection was still active or was re-established successfully, false
otherwise.

n $sth = $dbh->prepare ($statement [, \%attr]);

Prepares the statement indicated by $statement for later execution and returns a
statement handle, or undef if an error occurs.The statement handle returned from a
successful invocation of prepare() may be used with execute() to execute the
statement.

n $sth = $dbh->prepare_cached ($statement

[, \%attr

[, $if_active]]);

This method is like prepare(), except that DBI caches the statement handle inter-
nally. If a subsequent call is made to prepare_cached() with the same $statement
and %attr arguments, DBI returns the cached handle rather than creating a new
one.The $if_active argument determines how this method behaves if the cached
handle is still active. If this argument is missing or has a value of 0, DBI calls
finish() and issues a warning before returning the handle. If $if_active is 1,
DBI calls finish() but issues no warning. If $if_active is 2, DBI does not check
whether the handle is active. If $if_active is 3, the cached active handle is re-
moved from the cache and a new handle is prepared and cached.This leaves the ex-
isting handle unchanged but no longer cached.

1188 Appendix H Perl DBI API Reference

n $str = $dbh->quote ($value [, $data_type]);

Processes a string to perform quoting and escaping of characters that are special in
SQL.The resulting string may be used as a data value in a statement without caus-
ing a syntax error when you execute the statement. For example, the string I'm
happy is returned as 'I\'m happy'. If $value is undef, it is returned as the literal
word NULL. Note that the return value includes surrounding quote characters as
necessary, so you should not add extra quotes around it when you insert the value
into a statement string.

Do not use quote() with values that you are going to insert into a statement using
placeholders. DBI quotes such values automatically.

The $data_type parameter is usually unnecessary because MySQL converts string
values in statements to other data types as necessary. $data_type may be specified
as a hint that a value is of a particular type. For example, DBI::SQL_INTEGER indi-
cates that $value represents an integer.

n $str = $dbh->quote_identifier ($name [, $name, ... [, \%attr]]);

Treats the given name as an identifier and returns it as a quoted identifier. For ex-
ample, abc becomes `abc` and a`c becomes `a``c`. If you specify multiple argu-
ments, quote_identifier() quotes each one and joins them with periods in
between.This enables construction of quoted qualified identifiers. For example,
quote_identifier('db','tbl','col') becomes `db`.`tbl`.`col`.

quote_identifier() serves the same function as quote(), but for identifiers such
as database, table, column, index, and alias names rather than for data values.This
method is useful for constructing statements that refer to identifiers containing
spaces or other characters that normally are illegal in names. For example, a table
named my table cannot be used as follows in a statement, because the name con-
tains a space:

SELECT * FROM my table

In MySQL, you can quote the name by enclosing it within backticks:

SELECT * FROM `my table`

To construct this statement in DBI, use quote_identifier():

$stmt = "SELECT * FROM " . $dbh->quote_identifier ("my table");

n $rc = $dbh->rollback ();

Rolls back the current transaction if AutoCommit is disabled. If AutoCommit is en-
abled, invoking rollback() has no effect and results in a warning.

n $ary_ref = $dbh->selectall_arrayref ($statement

[, \%attr

[, @bind_values]]);

1189H.2 DBI Methods

Combines the effect of prepare(), execute(), and fetchall_arrayref() to exe-
cute the statement specified by $statement. If $statement is a handle to a previ-
ously prepared statement, the prepare() step is omitted.The %attr and
@bind_values parameters have similar meanings as for the do() method.

The return value is a reference to an array. Each array element is a reference to an
array containing the values for one row of the result set.The array is empty if the
result set contains no rows.

If an error occurred, selectall_arrayref() returns undef unless a partial result
set already has been fetched. In that case, it returns the rows retrieved to that point.
To determine whether a non-undef return value represents success or failure, check
$dbh->err() or $DBI::err.

n $hash_ref = $dbh->selectall_hashref ($statement,

$key_col

[, \%attr

[, @bind_values]]);

Combines the effect of prepare(), execute(), and fetchall_hashref() to exe-
cute the statement specified by $statement. If $statement is a handle to a previ-
ously prepared statement, the prepare() step is omitted.The %attr and
@bind_values parameters have the same meaning as for the do() method.

The return value is a reference to a hash that contains one element for each row of
the result set. Hash keys are the values of the column indicated by $key_col, which
should be either the name of a column selected by the statement, or a column
number (beginning with 1).Values in the key column should be unique to avoid
loss of rows due to key collisions in the hash.The hash is empty if the result set
contains no rows. Otherwise, the value of each hash element is a reference to a hash
containing one row of the result set, keyed by the names of the columns selected by
the statement.

If an error occurred, selectall_hashref() returns undef unless a partial result set
already has been fetched. In that case, it returns the rows retrieved to that point.To
determine whether a non-undef return value represents success or failure, check
$dbh->err() or $DBI::err.

n $ary_ref = $dbh->selectcol_arrayref ($statement,

[\%attr

[, @bind_values]]);

Combines the effect of prepare(), execute(), and a row-fetching operation to
execute the statement specified by $statement. If $statement is a handle to a pre-
viously prepared statement, the prepare() step is omitted.The %attr and
@bind_values parameters have similar meanings as for the do() method.

The return value is a reference to an array containing the first column from each row.

1190 Appendix H Perl DBI API Reference

If an error occurred, selectcol_arrayref() returns undef unless a partial result
set already has been fetched. In that case, it returns the rows retrieved to that point.
To determine whether a non-undef return value represents success or failure, check
$dbh->err() or $DBI::err.

n @row_ary = $dbh->selectrow_array ($statement

[, \%attr

[, @bind_values]]);

Combines the effect of prepare(), execute(), and fetchrow_array() to execute
the statement specified by $statement. If $statement is a handle to a previously
prepared statement, the prepare() step is omitted.The %attr and @bind_values

parameters have the same meaning as for the do() method.

When called in a list context, selectrow_array() returns an array representing the
values in the first row of the result set, or an empty array if no row was returned or
an error occurred. In a scalar context, selectrow_array() returns one element of
the array, or undef if no row was returned or if an error occurred.Which element is
returned is undefined; see the note about this behavior in the entry for
fetchrow_array().

To distinguish between no row and an error in list context, check $sth->err() or
$DBI::err.A value of zero indicates that no row was returned. However, in the ab-
sence of an error, an undef return value in scalar context may represent either a
NULL column value or that no row was returned.

n $ary_ref = $dbh->selectrow_arrayref ($statement

[, \%attr

[, @bind_values]]);

Combines the effect of prepare(), execute(), and fetchrow_arrayref() to exe-
cute the statement specified by $statement. If $statement is a handle to a previ-
ously prepared statement, the prepare() step is omitted.The %attr and
@bind_values parameters have the same meaning as for the do() method.

The return value is a reference to an array containing the values in the first row of
the result set, or undef if an error occurred.

n $hash_ref = $dbh->selectrow_hashref ($statement

[, \%attr

[, @bind_values]]);

Combines the effect of prepare(), execute(), and fetchrow_hashref() to exe-
cute the statement specified by $statement. If $statement is a handle to a previ-
ously prepared statement, the prepare() step is omitted.The %attr and
@bind_values parameters have the same meaning as for the do() method.

1191H.2 DBI Methods

The return value is a reference to a hash containing the first row of the result set, or
undef if an error occurred.The hash elements are keyed by the names of the
columns selected by the statement.

A number of additional database-handle methods for getting database and table meta-
data have appeared in recent versions of DBI.These include column_info(),
foreign_key_info(), last_insert_id(), primary_key(), primary_key_info(),
statistics_info(), table_info(), tables(), type_info(), and type_info_all(). For
more information about them, consult the DBI documentation:

% perldoc DBI

The level of support for these methods varies among drivers, and some of them are
experimental. For MySQL, you should try them with your version of DBD::mysql to see
which are implemented and what information can be obtained.

H.2.3 Statement-Handle Methods
The methods in this section are invoked through a statement handle, which you obtain by
calling a method such as prepare() or prepare_cached().

n $rc = $sth->bind_col ($col_num, \$var);

Binds a given output column from a SELECT statement to a Perl variable, which
should be passed as a reference. $col_num should be in the range from 1 to the
number of columns selected by the statement. Each time a row is fetched, the vari-
able is updated automatically with the column value.

bind_col() should be called after execute() and before fetching rows.

bind_col() returns false if the column number is not in the range from 1 to the
number of columns selected by the statement.

n $rc = $sth->bind_columns (\$var1, \$var2, ...);

Binds a list of variables to columns returned by a prepared SELECT statement. See
the description of the bind_col() method. Like bind_col(), bind_columns()
should be called after execute() and before fetching rows.

bind_columns() returns false if the number of arguments doesn’t match the num-
ber of columns selected by the statement.

n $rv = $sth->bind_param ($n, $value [, \%attr]);

$rv = $sth->bind_param ($n, $value [, $bind_type]);

Binds a value to a placeholder in a statement string so that the value will be in-
cluded in the statement when it is sent to the server. Placeholders are represented
by ‘?’ characters in the statement string.This method should be called after
prepare() and before execute().

1192 Appendix H Perl DBI API Reference

$n specifies the number of the placeholder to which the value $value should be
bound and should be in the range from 1 to the number of placeholders.To bind a
NULL value, $value should be undef.

The %attr or $bind_type parameter may be supplied as a hint about the type of
the value to be bound.The default is to treat the variable as a VARCHAR, so non-
NULL values are quoted when bound to the statement.This is normally sufficient
because MySQL converts string values in statements to other data types as neces-
sary, but can cause problems in some contexts. For example, any argument to a
LIMIT clause must be an integer.To specify that a value represents an integer, you
can invoke bind_param() in either of the following ways:

$rv = $sth->bind_param ($n, $value, { TYPE => DBI::SQL_INTEGER });

$rv = $sth->bind_param ($n, $value, DBI::SQL_INTEGER);

n $rv = $sth->bind_param_array ($n, $values [, \%attr]);

$rv = $sth->bind_param_array ($n, $values [, $bind_type]);

This function is similar to bind_param(), except that it is intended for use with a
prepared statement to be executed with execute_array().The $values argument
can be either a reference to an array of values, or a single scalar value. For an array
reference, successive values in the array are used for successive executions of the
statement. For a scalar, the value is reused for each execution.

n $rows = $sth->dump_results ([$maxlen

[, $line_sep

[, $field_sep

[, $fh]]]]);

Fetches all rows from the statement handle $sth, formats them by calling the utility
function DBI::neat_list(), and prints them to the given file handle. Returns the
number of rows fetched.

The defaults for the $maxlen, $line_sep, $field_sep, and $fh parameters are 35,
"\n", ", ", and STDOUT.

n $rv = $sth->execute ([@bind_values]);

Executes a prepared statement. For SELECT statements, execute() returns true if
the statement executed successfully, or undef if an error occurred. For non-SELECT
statements, the return value is the number of rows affected, -1 if the number of
rows is unknown, and undef if an error occurred. If the number of rows affected is
zero, the return value is the string "0E0", which evaluates as zero in numeric con-
texts but is considered true in boolean contexts.

The @bind_values parameter has the same meaning as for the do() method.
n $rv = $sth->execute_array (\%attr [, @bind_values]);

Executes a prepared statement multiple times.The number of executions is deter-
mined by the number of values passed via @bind_values, the values bound to the
statement by earlier calls to bind_param_array(), or by the attribute reference.

1193H.2 DBI Methods

n $ary_ref = $sth->fetch ();

fetch() is an alias for fetchrow_arrayref().
n $ary_ref = $sth->fetchall_arrayref ([$slice_ref [, $max_rows]]);

Fetches all rows from the statement handle $sth and returns a reference to an array
that contains one reference for each row fetched.This array is empty if the result set
contains no rows. Otherwise, each element of $ary_ref is a reference to one row
of the result set.The meaning of the row references depends on the type of
$slice_ref argument you pass.With no argument or an array slice argument, each
row reference points to an array of column values.A non-empty array slice should
contain array index numbers to select specific columns. Index numbers begin at 0
because they are Perl array indices. Negative values count back from the end of the
row.Thus, to fetch the first and last columns of each row, do this:

$ary_ref = $sth->fetchall_arrayref ([0, -1]);

With a hash slice argument, each row reference points to a hash of column values,
indexed by the names of the columns you want to retrieve.To specify a hash slice,
column names should be given as hash keys and each key should have a value of 1:

$ary_ref = $sth->fetchall_arrayref ({id => 1, name => 1});

To fetch all columns as a hash, pass an empty hash reference:

$ary_ref = $sth->fetchall_arrayref ({});

The $max_rows argument can be given to limit the number of rows fetched. In this
case, you can continue to call fetchall_arrayref() until it returns no more rows.

If an error occurred, fetchall_arrayref() returns the rows fetched up to the
point of the error. Check $sth->err() or $DBI::err to determine whether an er-
ror occurred.

n $hash_ref = $sth->fetchall_hashref ($key_col);

Fetches the result set and returns a reference to a hash that contains one element
for each row of the result set. Hash keys are the values of the column indicated by
$key_col, which should be either the name of a column selected by the statement,
or a column number (beginning with 1).Values in the key column should be
unique to avoid loss of rows due to key collisions in the hash.The hash is empty if
the result set contains no rows. Otherwise, the value of each hash element is a refer-
ence to a hash containing one row of the result set, keyed by the names of the
columns selected by the statement.

If an error occurred due to an invalid key column argument, fetchall_hashref()
returns undef. Otherwise, it returns the rows fetched up to the point of the error.
To determine whether a non-undef return value represents success or failure, check
$sth->err() or $DBI::err.

1194 Appendix H Perl DBI API Reference

n @ary = $sth->fetchrow_array ();

When called in a list context, fetchrow_array() returns an array containing col-
umn values for the next row of the result set, or an empty array if there are no
more rows or an error occurred.To distinguish between normal exhaustion of the
result set and an error, check $sth->err() or $DBI::err.A value of zero indicates
that you’ve reached the end of the result set without error.

In a scalar context, fetchrow_array() returns one element of the array, or undef if
there are no more rows or an error occurred. However, it is undefined which ele-
ment is returned; you can tell for sure only for statements that select a single col-
umn.Also, an undef return value in the absence of an error is ambiguous; it may
represent either a NULL column value or the end of the result set.

n $ary_ref = $sth->fetchrow_arrayref ();

Returns a reference to an array containing column values for the next row of the
result set, or undef if there are no more rows or an error occurred.

To distinguish between normal exhaustion of the result set and an error, check
$sth->err() or $DBI::err.A value of zero indicates that you’ve reached the end
of the result set without error.

n $hash_ref = $sth->fetchrow_hashref ([$name]);

Returns a reference to a hash containing column values for the next row of the re-
sult set, or undef if there are no more rows or an error occurred. Hash index values
are the column names, and elements of the hash are the column values.

The $name argument may be specified to control hash key lettercase. It defaults to
"NAME" (use column names as specified in the statement).To force hash keys to be
lowercase or uppercase, you can specify a $name value of "NAME_lc" or "NAME_uc"
instead. (Another way to control hash key letter case is with the FetchHashKeyName
attribute, which is discussed in Section H.4,“DBI Attributes” [online].)

To distinguish between normal exhaustion of the result set and an error, check
$sth->err() or $DBI::err.A value of zero indicates that you’ve reached the end
of the result set without error.

n $rc = $sth->finish ();

Frees any resources associated with the statement handle. Normally, you need not
invoke this method yourself, because row-fetching methods invoke it implicitly
when they reach the end of the result set. If you fetch only part of a result set, call-
ing finish() explicitly lets DBI know that you are done fetching data from the
handle.

Calling finish() invalidates statement attributes, and because this method may be
invoked implicitly by row-fetching methods when they detect the end of the result
set, it’s best to access any attributes you need immediately after invoking
execute(), rather than waiting until later.

1195H.2 DBI Methods

n $rv = $sth->rows ();

Returns the number of rows affected by the statement associated with $sth, or -1 if
an error occurred.This method is used primarily for statements such as UPDATE or
DELETE that do not return rows. For SELECT statements, you should not rely on the
rows() method; count the rows as you fetch them instead.

H.2.4 General Handle Methods
The methods in this section are not specific to particular types of handles.They may be
invoked using driver, database, or statement handles.

n $rv = $h->err ();

Returns the numeric error code for the most recently invoked driver operation.
For MySQL, this is the error number returned by the MySQL server.A return
value of 0 or undef indicates that no error occurred.An empty string as the return
value means “success with information,” in which case, errstr() returns the addi-
tional information.

n $str = $h->errstr ();

Returns the string error message for the most recently invoked driver operation.
For MySQL, this is the error message returned by the MySQL server.A return
value of the empty string or undef indicates that no error occurred.

n DBI->trace ($trace_level [, $trace_filename]);

$h->trace ($trace_level [, $trace_filename]);

Sets a trace level.Tracing provides information about DBI operation.The trace level
can be in the range from 0 (off) to 9 (maximum information).Tracing can be en-
abled for all DBI operations within a script by invoking trace as a DBI class
method, or for an individual handle:

DBI->trace (2); # Turn on global script tracing

$sth->trace (2); # Turn on per-handle tracing

To enable tracing on a global level for all DBI scripts that you run, set the
DBI_TRACE environment variable.

Trace output goes to STDERR by default.To direct output to a different file, the
$filename parameter may be supplied. Output is appended to any existing con-
tents of the file; the file is not overwritten.The special filenames STDOUT and
STDERR are understood to stand for the standard output and standard error output,
respectively, which have their conventional meanings.

Each trace call causes output from all traced handles to go to the same file. If a file
is named, all trace output goes there. If no file is named, all trace output goes to
STDERR.

1196 Appendix H Perl DBI API Reference

n DBI->trace_msg ($str [, $min_level]);

$h->trace_msg ($str [, $min_level]);

When called as a class method (DBI->trace_msg()), writes the message in $str to
the trace output if tracing has been enabled at the DBI level.When called as a han-
dle method ($h->trace_msg()), writes the message if the handle is being traced or
if tracing has been enabled at the DBI level.

The $min_level parameter may be supplied to specify that the message should be
written only if the trace level is at least at that level.

H.2.5 MySQL-Specific Administrative Methods
This section describes the func() method that DBI provides as a means of accessing
driver-specific operations directly. Note that func() is not related to the use of stored
procedures. Stored procedure methods currently are not defined by DBI.

n $rc = $drh->func ("createdb", $db_name,
$host_name, $user_name, $password, "admin");

$rc = $drh->func ("dropdb", $db_name,
$host_name, $user_name, $password, "admin");

$rc = $drh->func ("reload",
$host_name, $user_name, $password, "admin");

$rc = $drh->func ("shutdown",
$host_name, $user_name, $password, "admin");

$rc = $dbh->func ("createdb", $db_name, "admin");

$rc = $dbh->func ("dropdb", $db_name, "admin");

$rc = $dbh->func ("reload", "admin");

$rc = $dbh->func ("shutdown", "admin");

The func() method is accessed either through a driver handle or through a data-
base handle.A driver handle is not associated with an open connection, so if you
access func() that way, you must supply arguments for the hostname, username,
and password to enable the method to establish a connection. If you access func()
with a database handle, those arguments are unnecessary.A driver handle may be
obtained, if necessary, as follows:

$drh = DBI->install_driver ("mysql"); # "mysql" must be lowercase

func() understands the following actions:
n createdb

Creates the database named by $db_name.You must have the CREATE privilege
for the database to do this.

n dropdb

Drops (removes) the database named by $db_name.You must have the DROP
privilege for the database to do this.

1197H.3 DBI Utility Functions

n reload

Tells the server to reload the grant tables.This is necessary if you modify the
contents of the grant tables directly using statements such as DELETE, INSERT,
or UPDATE rather than using GRANT or REVOKE.You must have the RELOAD
privilege to use reload.

n shutdown

Shuts down the server.You must have the SHUTDOWN privilege to do this.

Note that the only func() action that cannot be performed through the usual DBI
statement-processing mechanism is shutdown. For the other actions, it is preferable
to issue a CREATE DATABASE, DROP DATABASE, or FLUSH PRIVILEGES statement
rather than invoking func().

H.3 DBI Utility Functions
DBI provides a few utility routines that can be used for testing or printing values.These
functions are invoked as DBI::func_name(), rather than as DBI->func_name().

n @bool = DBI::looks_like_number (@ary);

Takes a list of values and returns an array with one member for each element of the
list. Each member indicates whether the corresponding argument looks like a num-
ber: true if it does, false if it doesn’t, and undef if the argument is undefined or
empty.

n $str = DBI::neat ($value [, $maxlen]);

Returns a string containing a nicely formatted representation of the $value argu-
ment. Strings are returned with surrounding quotes; numbers are not. (But note
that quoted numbers are considered to be strings.) Undefined values are reported as
undef, and unprintable characters are reported as ‘.’ characters. For example, if you
execute the following loop:

for my $val ("a", "3", 3, undef, "\x01\x02")

{

print DBI::neat ($val), "\n";

}

The results look like this:

'a'

'3'

3

undef

'..'

The $maxlen argument controls the maximum length of the result. If the result is
longer than $maxlen, it is shortened to $maxlen-4 characters and "...'" is added.

1198 Appendix H Perl DBI API Reference

If $maxlen is 0, undef, or missing, it defaults to the current value of
$DBI::neat_maxlen, which itself has a default value of 400.

Don’t use neat() for statement construction; if you need to perform quoting or es-
caping of data values to be placed into a statement string, use placeholders or the
quote() method instead.

n $str = DBI::neat_list (\@ary

[, $maxlen

[, $sep]]);

Calls neat() for each element of the list pointed to by the first argument, joins
them with the separator string $sep, and returns the result as a single string.

The $maxlen argument is passed to neat() and thus applies to individual argu-
ments, not to the combined result of the neat() calls.

If $sep is missing, the default is ", ".

H.4 DBI Attributes
DBI provides attribute information at several levels. Most attributes are associated with
database handles or statement handles, but not with both. Some attributes, such as
PrintError and RaiseError, may be associated with either database handles or statement
handles. In general, each handle has its own attributes, but some attributes that hold error
information, such as err and errstr, are dynamic in that they associate with the most re-
cently used handle.

Attributes passed to connect() or connect_cached() become part of the resulting
database handle returned by those methods.

H.4.1 Database-Handle Attributes
The attributes in this section are associated with database handles.

n $dbh->{AutoCommit};

This attribute can be set to true or false to enable or disable transaction autocom-
mit mode.The default is true. Setting AutoCommit to false enables transactions to be
performed, each of which is terminated by calling commit() for a successful trans-
action or rollback() to abort an unsuccessful transaction. See also the description
of the begin_work() database-handle method.

n $dbh->{Statement};

Holds the statement string most recently passed to prepare() through the given
database handle.

1199H.4 DBI Attributes

H.4.2 General Handle Attributes
These attributes may be applied to individual handles or specified in the %attr parameter
to methods that take such a parameter to affect the operation of the method.

n $h->{ChopBlanks};

This attribute can be set to true or false to determine whether row-fetching meth-
ods will chop trailing spaces from character column values. ChopBlanks is false by
default for most database drivers.

n $h->{FetchHashKeyName};

Controls the lettercase used for hash keys in result set rows that are returned by
fetchrow_hashref() or other methods that invoke fetchrow_hashref().The de-
fault value is "NAME" (use column names as specified in the SELECT statement).
Other allowable values are "NAME_lc" or "NAME_uc", which cause column name
hash keys to be forced to lowercase or uppercase.This attribute applies only to data-
base and driver handles.

n $h->{HandleError};

This attribute is used for error processing. It can be set to a reference to a subrou-
tine to be invoked when an error occurs, prior to the usual RaiseError and
PrintError processing. If the subroutine returns true, RaiseError and PrintError

processing is skipped; otherwise, it is performed as usual. (The error routine can of
course terminate the script rather than returning.)

DBI passes three arguments to the error routine:The text of the error message, the
DBI handle being used at the point of occurrence of the error, and the first value
returned by the method that failed.

n $h->{PrintError};

If set true, the occurrence of a DBI-related error causes a warning message to be
printed. PrintError is false by default.This attribute does not affect the value re-
turned by DBI methods when they fail. It determines only whether they print a
message before returning.

n $h->{RaiseError};

If set to true, the occurrence of a DBI-related error causes an exception to be
raised. Normally this causes the script to terminate unless it arranges to catch the
exception. RaiseError is false by default.

n $h->{ShowErrorStatement};

When set to true, messages produced as a result of errors have the relevant state-
ment text appended to them. ShowErrorStatement is false by default.The effect
of this attribute is limited to statement handles and to the prepare() and do()

methods.

1200 Appendix H Perl DBI API Reference

n $h->{TraceLevel};

Sets or gets the trace level for the given handle.This attribute provides an alterna-
tive to the trace() method.

H.4.3 MySQL-Specific Database-Handle Attributes
These attributes are specific to the DBI MySQL driver, DBD::mysql. Most of them cor-
respond to a function in the MySQL C API, as indicated in the attribute descriptions. See
Appendix G (online) for more information about the C functions.

n $rv = $dbh->{mysql_auto_reconnect};

Whether the driver automatically reconnects to the server after the connection
goes down. Normally, auto-reconnect is disabled by default, but will be enabled if
the GATEWAY_INTERFACE or MOD_PERL environment variables are set. If AutoCommit
is disabled, the mysql_auto_reconnect setting is ignored and no reconnects are
attempted.

n $hash_ref = $dbh->{mysql_dbd_stats};

A hash reference containing driver statistics. Currently this hash has two keys,
auto_reconnects_ok and auto_reconnects_failed, indicating the number of
times the driver tried successfully and unsuccessfully to reconnect to the server.

n $rv = $dbh->{mysql_errno};

The most recent error number, like the mysql_errno() C API function.
n $str = $dbh->{mysql_error};

The most recent error string, like the mysql_error() C API function.
n $str = $dbh->{mysql_hostinfo};

A string describing the given connection, like the mysql_get_host_info() C API
function.

n $str = $dbh->{mysql_info};

Information about statements that affect multiple rows, like the mysql_info() C
API function.

n $rv = $dbh->{mysql_insertid};

The AUTO_INCREMENT value that was most recently generated on the connection as-
sociated with $dbh, like the mysql_insert_id() C API function.

n $rv = $dbh->{mysql_protoinfo};

A number indicating the client/server protocol version used for the given connec-
tion, like the mysql_get_proto_info() C API function.

n $rv = $dbh->{mysql_server_prepare};

True if server-side statement preparation is enabled; false if statement preparation is
emulated on the client side.

1201H.4 DBI Attributes

You can assign to this attribute to enable or disable server-side prepared statement
execution for statement handles created from $dbh:

$dbh->{mysql_server_prepare} = 1; # enable server-side preparation

$dbh->{mysql_server_prepare} = 0; # disable server-side preparation

For information about the version of DBD::mysql needed to use the
mysql_server_prepare attribute, see the introduction to this appendix.

n $str = $dbh->{mysql_serverinfo};

A string describing the server version, for example, "5.0.60-debug-log".The
value consists of a version number, possibly followed by one or more suffixes.This
attribute returns the same information as the mysql_get_server_info() C API
function or VERSION() SQL function.The suffix values are listed in the description
for VERSION() in Appendix C,“Operator and Function Reference.”

n $str = $dbh->{mysql_stat};

A string containing server status information, like the mysql_stat() C API
function.

n $rv = $dbh->{mysql_thread_id};

The connection ID for the connection associated with $dbh, like the
mysql_thread_id() C API function or CONNECTION_ID() SQL function.

n $rv = $dbh->{mysql_use_result};

Whether to use the mysql_store_result() or mysql_use_result() C API func-
tion for retrieving result sets. See the description for the corresponding statement-
handle attribute for more information (Section H.4.5,“MySQL-Specific
Statement-Handle Attributes”(online)).

H.4.4 Statement-Handle Attributes
Statement-handle attributes generally apply to SELECT (or SELECT-like) statements and
are not valid until the statement has been passed to prepare() to obtain a statement han-
dle and execute() has been called for that handle. In addition, finish() may invalidate
statement attributes; in general, it is not safe to access them after finish() has been in-
voked (or after reaching the end of a result set, which causes finish() to be invoked
implicitly).

Many statement-handle attributes have a value that is a reference to an array of values,
one value per column selected by the statement.The number of elements in the array is
given by the $sth->{NUM_OF_FIELDS} attribute. For a statement attribute stmt_attr that
is a reference to an array, you can refer to the entire array as @{$sth->{stmt_attr}}, or
loop through the elements in the array like this:

for (my $i = 0; $i < $sth->{NUM_OF_FIELDS}; $i++)

{

1202 Appendix H Perl DBI API Reference

my $value = $sth->{stmt_attr}->[$i];
}

The NAME_hash, NAME_lc_hash, and NAME_uc_hash attributes return a reference to a
hash.You can loop through the hash elements like this:

foreach my $key (keys (%{$sth->{stmt_attr}}))
{

my $value = $sth->{stmt_attr}->{$key};
}

n $ary_ref = $sth->{NAME};

A reference to an array of strings indicating the name of each column.The letter-
case of the names is as specified in the SELECT statement.

n $ary_ref = $sth->{NAME_hash};

A reference to a hash of strings indicating the name of each column.The lettercase
of the names is as specified in the SELECT statement.The value of each hash ele-
ment indicates the position of the corresponding column within result set rows
(beginning with 0).

n $ary_ref = $sth->{NAME_lc};

Like NAME, but the names are returned as lowercase strings.
n $ary_ref = $sth->{NAME_lc_hash};

Like NAME_hash, but the names are returned as lowercase strings.
n $ary_ref = $sth->{NAME_uc};

Like NAME, but the names are returned as uppercase strings.
n $ary_ref = $sth->{NAME_uc_hash};

Like NAME_hash, but the names are returned as uppercase strings.
n $ary_ref = $sth->{NULLABLE};

A reference to an array of values indicating whether each column can be NULL.Val-
ues for each element can be 0 or an empty string (no), 1 (yes), or 2 (unknown).

n $rv = $sth->{NUM_OF_FIELDS};

The number of columns in a result set, or zero for a non-SELECT statement.
n $rv = $sth->{NUM_OF_PARAMS};

The number of placeholders in a prepared statement.
n $ary_ref = $sth->{PRECISION};

A reference to an array of values indicating the precision of each column. DBI uses
“precision” in the ODBC sense, which for MySQL means the maximum width of
the column. For numeric columns, this is the display width. For string columns, it’s
the maximum length of the column, in octets (bytes), not characters.

1203H.4 DBI Attributes

n $ary_ref = $sth->{SCALE};

A reference to an array of values indicating the scale of each column. DBI uses
“scale” in the ODBC sense, which for MySQL means the number of decimal
places for floating-point columns. For other columns where scale is not applicable,
the scale is undef.

n $str = $sth->{Statement};

The text of the statement associated with $sth, as seen by prepare() before any
placeholder substitution takes place.

n $ary_ref = $sth->{TYPE};

A reference to an array of values indicating the numeric type of each column.This
attribute contains portable type numbers.The mysql_type attribute may be ac-
cessed to obtain MySQL-specific type numbers.

H.4.5 MySQL-Specific Statement-Handle Attributes
These attributes are specific to the DBI MySQL driver, DBD::mysql. Most of them
should be considered read-only and should be accessed after invoking execute().The
exception is the mysql_use_result attribute, which should be set after prepare() but
before execute(). See the mysql_use_result description for an example.

n $rv = $sth->{mysql_insertid};

The AUTO_INCREMENT value that was most recently generated on the connection as-
sociated with $sth.

n $ary_ref = $sth->{mysql_is_auto_increment};

A reference to an array of values indicating whether each column is an
AUTO_INCREMENT column.

n $ary_ref = $sth->{mysql_is_blob};

A reference to an array of values indicating whether each column is a BLOB type.
Values in this array are true for the TEXT types as well.

n $ary_ref = $sth->{mysql_is_key};

A reference to an array of values indicating whether each column is part of a key.
n $ary_ref = $sth->{mysql_is_num};

A reference to an array of values indicating whether each column is a numeric
type.

n $ary_ref = $sth->{mysql_is_pri_key};

A reference to an array of values indicating whether each column is part of a
PRIMARY KEY.

1204 Appendix H Perl DBI API Reference

n $ary_ref = $sth->{mysql_length};

This is like the PRECISION attribute.
n $ary_ref = $sth->{mysql_max_length};

A reference to an array of values indicating the actual maximum length of the val-
ues in each column of the result set.

n $rv = $sth->{mysql_server_prepare};

True if server-side statement preparation is enabled, false if statement preparation is
emulated on the client side.

For information about the version of DBD::mysql needed to use the
mysql_server_prepare attribute, see the introduction to this appendix.

n $ary_ref = $sth->{mysql_table};

A reference to an array of values indicating the name of the table from which each
column comes.The table name for a calculated column is the empty string.

n $ary_ref = $sth->{mysql_type};

A reference to an array of values indicating the MySQL-specific type number for
each column in the result set.

n $ary_ref = $sth->{mysql_type_name};

A reference to an array of values indicating the MySQL-specific type name for
each column in the result set.

n $rv = $sth->{mysql_use_result};

Whether to use the mysql_store_result() or mysql_use_result() C API func-
tion for retrieving result sets. By default, mysql_use_result is 0, so DBI::mysql
uses mysql_store_result(). If you set mysql_use_result to 1, DBD::mysql uses
mysql_use_result(). See Appendix G (online) for a discussion of these two
functions and how they differ.

Note that enabling mysql_use_result causes some statement-handle attributes
such as mysql_max_length to become invalid. It also invalidates the use of the
rows() method, although it’s better to count rows when you fetch them anyway.

If you set the mysql_use_result attribute, do so after invoking prepare() and
before invoking execute():

$sth = $dbh->prepare ($stmt_str);

$sth->{mysql_use_result} = 1;

$sth->execute();

Alternatively, do this:

$sth = $dbh->prepare ($stmt_str, { mysql_use_result => 1 });

n $rv = $sth->{mysql_warning_count};

The number of warnings generated during execution of the statement.

1205H.5 DBI Environment Variables

mysql_warning_count was introduced in DBD::mysql 4.004.

H.4.6 Dynamic Attributes
These attributes are associated with the most recently used handle, represented by $h in
the following descriptions.They should be used immediately after invoking whatever
handle method sets them, and before invoking another method that resets them.

n $rv = $DBI::err;

This is the same as calling $h->err().
n $str = $DBI::errstr;

This is the same as calling $h->errstr().
n $rows = $DBI::rows;

This is the same as calling $h->rows().

H.5 DBI Environment Variables
DBI consults several environment variables, listed in Table H.2.All of them except
DBI_TRACE are used by the connect() method. DBI_DRIVER is used by the
data_sources() method, and DBI_TRACE is used by trace().

Table H.2 DBI Environment Variables

Name Meaning

DBI_DRIVER DBD-level driver name ("mysql" for MySQL)

DBI_DSN Data source name

DBI_PASS Password

DBI_TRACE Trace level and/or trace output file

DBI_USER Username

This page intentionally left blank

I
PHP API Reference

This appendix describes the application programming interface for writing PHP scripts
that use the PDO extension to interface with MySQL.The API consists of a set of classes
and methods for communicating with MySQL servers and accessing databases.

The examples in this appendix are only brief code fragments. For complete client
scripts and instructions for writing them, see Chapter 9,“Writing MySQL Programs Using
PHP.” The manual for PHP itself is available at the PHPWeb site, http://www.php.net/.

This appendix refers to PDO constants using the class-constant notation for PHP 5.1
and up (for example, PDO::FETCH_NUM). For PHP 5.0, use global-constant notation in-
stead (for example, PDO_FETCH_NUM).

I.1 Writing PHP Scripts
PHP scripts are plain text files that contain a mixture of PHP code and non-PHP content
such as HTML. PHP interprets the script to produce a Web page to be sent as output to
the client.The non-PHP content is copied to the output without interpretation. PHP
code is interpreted and replaced by whatever output the code produces.

PHP begins interpreting a file in text copy mode.You can switch into and out of PHP
code mode using special tags that signify the beginning and end of PHP code. PHP un-
derstands four types of tags, although some of them must be explicitly enabled if you
want to use them. One way to do this is by turning them on in the PHP initialization file,
php.ini.The location of this file is system dependent; on many Unix systems, it’s found
in /usr/lib or /usr/local/lib. On Windows, look in the PHP installation directory.

PHP understands the following tag styles:

n The default style uses <?php and ?> tags:

<?php print ("Hello, world."); ?>

n Short-open-tag style uses <? and ?> tags:

<? print ("Hello, world."); ?>

http://www.php.net/

1208 Appendix I PHP API Reference

This style also allows <?= and ?> tags as a shortcut for displaying the result of an ex-
pression without using a print statement:

<?= "Hello, world." ?>

Short tags can be enabled with a directive in the PHP initialization file:

short_open_tag = On;

n Active Server Page-compatible style uses <% and %> tags:

<% print ("Hello, world."); %>

This style also allows <%= and %> tags as a shortcut for displaying the result of an ex-
pression without using a print statement:

<%= "Hello, world." %>

ASP-style tags can be enabled with a directive in the PHP initialization file:

asp_tags = On;

n If you use an HTML editor that doesn’t understand the other tags, you can use
<script> and </script> tags:

<script language="php"> print ("Hello, world."); </script>

I.2 PDO Classes
This appendix discusses the following classes from the PDO extension:

n PDO is the primary class.The class constructor is used for connecting to the database
server. It returns a database-handle object that has methods for further interaction
with the server.

n PDOStatement is the statement-handle class, returned by the query() and
prepare() methods of PDO objects.A statement handle provides access to a state-
ment result, such as statement metadata and result set contents.

n PDOException is the PDO error class. Objects of this class support methods for ob-
taining diagnostic information when an exception is thrown due to occurrence of a
PDO error.

I.3 PDO Methods
The following descriptions discuss available PDO methods, organized by the class with
which they are associated. Certain object names recur throughout the method descrip-
tions in this appendix and have the following conventional meanings:

n Database handle methods are called using a $dbh object.The object is obtained by
calling the PDO class constructor, new PDO().

1209I.3 PDO Methods

n Statement handle methods are called using a $sth object, which is returned by
$dbh->prepare() or $dbh->query().

n Exception objects are denoted by $e.

The method descriptions indicate data types for return values and parameters.A type
of mixed indicates that a value might have different data types depending on how the
value is used.

Many methods return a value that indicates success or failure.This value is relevant if
PDO exceptions are not enabled, and should be tested to determine method outcome. If
PDO exceptions are enabled, method errors cause PDO to throw a PDOException,
which can be caught by using a try/catch construct. (See Section I.3.3,“PDOException
Object Methods” (online))

Square brackets ([]) in syntax descriptions indicate optional parameters.When an op-
tional parameter is followed by = value, it indicates that if the parameter is omitted from
a method call, value is its default value.

The examples print messages and query results as plain text for the most part.This is
done to make the code easier to read. However, for scripts intended for execution in a
Web environment, you generally should encode output with htmlspecialchars() if it
may contain characters that are special in HTML, such as ‘<’, ‘>’, or ‘&’.

In the descriptions that follow, the term “SELECT statement” should be taken to mean a
SELECT statement or any other statement that returns rows, such as DESCRIBE, EXPLAIN, or
SHOW.

I.3.1 PDO Class Methods
The PDO class includes methods for operations such as connecting to the database server,
preparing and executing SQL statements, and setting or getting connection attributes.

n PDO

__construct (string $dsn

[, string $username

[, string $password

[, array $options]]])

This is the PDO constructor, which is executed when you invoke new PDO().The
constructor attempts to connect to a database server and returns an object repre-
senting a database handle if the attempt is successful. PHP throws a PDOException
if an error occurs:

try

{

$dbh = new PDO("mysql:host=localhost;dbname=sampdb", "sampadm", "secret");

}

catch (PDOException $e)

{

die ($e->getMessage () . "\n");

1210 Appendix I PHP API Reference

}

To close the connection, set the database handle to NULL:

$dbh = NULL;

The $dsn argument represents the data source name (DSN).The DSN can take sev-
eral forms:

n A driver DSN begins with a driver name and a colon, followed by optional
driver-specific parameters. For MySQL, a driver DSN looks like this:

mysql:host=host_name;dbname=db_name

The host and dbname parameters indicate the host where the MySQL server
is running and the database to select as the default database.The default host
value is localhost. No default database is selected if dbname is omitted.
Other possible parameters are port to specify the TCP/IP port number, and
unix_socket to specify the Unix socket file pathname. If you use
unix_socket, do not use host or port.

n A URI DSN begins with uri: followed by a URI that specifies the location
of a file that contains a driver DSN.The URI can be local or remote.A local
URI looks like this:

uri:file:///usr/local/lib/my-dsn-file

n An alias DSN is a name XXX that associates with a configuration parameter of
pdo.dsn.XXX in the php.ini file. For example, an alias of sampdb associates
with a configuration parameter of pdo.dsn.sampdb, and the value of that pa-
rameter in php.ini should be a driver DSN.

n The $username and $password arguments, if given, are the username and
password of the MySQL account to use.

n The $options array, if given, provides additional connection options that are
not specified in the other arguments. Some of the options shown here are spe-
cific to the MySQL driver. Others are generic and may be supported by other
drivers. For integer-valued options that turn behaviors on or off, pass 1 or 0 to
enable or disable them.

n PDO::ATTR_AUTOCOMMIT (integer value; default enabled)

Enable or disable autocommit mode.
n PDO::ATTR_PERSISTENT (integer value; default disabled)

Enable or disable use of a persistent connection.
n PDO::ATTR_TIMEOUT (integer value; default 300)

For MySQL, the connection timeout in seconds. For other database systems,
this attribute may have a different meaning.

1211I.3 PDO Methods

n PDO::MYSQL_ATTR_DIRECT_QUERY, PDO::ATTR_EMULATE_PREPARES (integer
value; default enabled)

Enable or disable use of direct statements.With direct statements, placeholders
are emulated on the client side before sending queries to the server.

n PDO::MYSQL_ATTR_INIT_COMMAND (string value)

A statement to execute after connecting to the MySQL server, and after any
automatic reconnect.

n PDO::MYSQL_ATTR_LOCAL_INFILE (integer value; default disabled)

Enable or disable LOAD DATA LOCAL. Note that the MySQL server might not
support LOCAL, or PHP safe mode might be in effect. In either case, attempts
to enable LOCAL will be ineffective.

n PDO::MYSQL_ATTR_MAX_BUFFER_SIZE (integer value; default 1MB)

The maximum size in bytes for column values returned by PDO.Truncation
occurs for longer values.

n PDO::MYSQL_ATTR_READ_DEFAULT_FILE (string value)

The option file from which to read options rather than the default file or
files.

n PDO::MYSQL_ATTR_READ_DEFAULT_GROUP (string value)

The group for which to read options from any option files that are read.
n PDO::MYSQL_ATTR_USE_BUFFERED_QUERY (integer value; default enabled)

Enable or disable buffering of query result sets on the client side.When dis-
abled, rows are retrieved from the server one at a time.

n bool

beginTransaction (void)

Disables autocommit mode and starts a transaction. Returns TRUE for success or
FALSE for failure.To end the transaction, call commit() to commit any changes or
rollback() to cancel any changes.

try

{

$dbh->beginTransaction (); # start transaction

$dbh->exec ($stmt1); # execute statements

$dbh->exec ($stmt2);

$dbh->commit (); # commit if successful

}

catch (PDOException $e)

{

roll back if unsuccessful, but use empty

exception handler to catch rollback failure

print ($e->getMessage () . "\n");

try

1212 Appendix I PHP API Reference

{

$dbh->rollback ();

}

catch (PDOException $e) { }

}

n bool

commit (void)

Commits the current transaction and restores the autocommit mode. Returns TRUE
for success or FALSE for failure.

For an example, see the description of beginTransaction().
n string

errorCode (void)

Returns a string containing the five-character SQLSTATE value for the most re-
cent operation on the database handle.A return value equal to PDO::ERR_NONE
("00000") means “no error.”

if (!($sth = $dbh->query ($stmt)))

{

print ("The statement failed.\n");

print ("errorCode: " . $dbh->errorCode () . "\n");

print ("errorInfo: " . join (", ", $dbh->errorInfo ()) . "\n");

}

n array

errorInfo (void)

Returns a three-element array containing error information for the most recent
operation on the database handle.The array values are the SQLSTATE value (the
same value returned by errorCode()) and driver-specific error code and error
message values. For MySQL, the driver-specific values are a numeric code and mes-
sage string.

If the handle operation succeeded, the return value may be a single-element array
containing the SQLSTATE value PDO::ERR_NONE ("00000").

For an example, see the description of errorCode().
n int

exec (string $statement)

Executes the SQL statement passed in the argument and returns the number of af-
fected rows. Returns FALSE or the empty string if an error occurs.

$count = $dbh->exec ("DELETE FROM member WHERE member_id = 149");

printf ("Number of rows deleted: %d\n", $count);

1213I.3 PDO Methods

exec() should be used for statements such as INSERT or DELETE that modify data-
base contents. For statements such as SELECT that produce a result set, use query()
instead.

n mixed

getAttribute (int $attribute)

Returns the value of the specified database-handle attribute, or FALSE for an unsuc-
cessful call.

Section I.3.4,“PDO Constants,” (online) lists some of the available attributes that
can be retrieved with getAttribute().

printf ("Driver name: %s\n",

$dbh->getAttribute (PDO::ATTR_DRIVER_NAME));

printf ("Server info: %s\n",

$dbh->getAttribute (PDO::ATTR_SERVER_INFO));

printf ("Server version: %s\n",

$dbh->getAttribute (PDO::ATTR_SERVER_VERSION));

n array

getAvailableDrivers (void)

Returns an array containing the names of the available PDO drivers.

$drivers = $dbh->getAvailableDrivers ();

printf ("Number of drivers available: %d\n", count ($drivers));

print ("Driver names: " . join (" ", $drivers) . "\n");

getAvailableDrivers() can also be called as a static method without obtaining a
database handle first:

$drivers = PDO::getAvailableDrivers ();

n string

lastInsertId ([string $name])

Returns the most recently generated sequence number.The behavior is driver-
specific. For MySQL, the value is that returned by the mysql_insert_id() C API
function. For some drivers (not MySQL), the $name argument must be given to
specify the name of the sequence object.

$dbh->exec ("INSERT INTO grade_event (date, category)

VALUES('2008-11-01','T')");

printf ("New grade_event ID: %d\n", $dbh->lastInsertId ());

n PDOStatement

prepare (string $statement

[, array $options])

Prepares the SQL statement passed in the first argument and returns a
PDOStatement statement handle to use for further operations on the statement, or

1214 Appendix I PHP API Reference

FALSE if statement preparation fails.To execute the statement, invoke the statement
handle’s execute() method.

$sth = $dbh->prepare ("INSERT INTO absence (student_id, date)

VALUES (?, ?)");

$sth->execute (array (7, "2008-10-01"));

$sth->execute (array (18, "2008-10-03"));

The statement may contain placeholders in either positional or named format. Data
values should be bound to the placeholders before invoking execute() or passed to
execute(). For additional examples, see the descriptions of bindParam() and
bindValue() in Section I.3.2,“PDOStatement Object Methods” (online).

The $options array, if given, specifies key/value pairs for setting attributes of the
statement handle produced by prepare().

n PDOStatement

query (string $statement

[, fetch_mode_option] ...)

Executes the SQL statement passed in the first argument and returns a
PDOStatement statement handle to use for accessing the result set, or FALSE if an
error occurs.

$sth = $dbh->query ("SELECT last_name, first_name FROM president");

while ($row = $sth->fetch ())

printf ("%s %s\n", $row[1], $row[0]);

query() should be used for statements such as SELECT that produce a result set.
For statements such as INSERT or DELETE that modify database contents, use
exec() instead.

Any arguments following the first are treated as arguments to pass to
setFetchMode() for the statement handle returned by query(). See the descrip-
tion of setFetchMode() for the allowable arguments.Alternatively, the fetch mode
can be specified by calling setFetchMode() directly after query() returns, or by
passing a mode to fetch().The fetch mode determines the type of object returned
by fetch().

It is also possible to use the PDOStatement object as an iterator without calling
fetch():

foreach ($sth as $row)

printf ("%s %s\n", $row[1], $row[0]);

n string

quote (string $str

[, int $param_type])

Escapes any special characters in the string passed as the first argument (using the
conventions required by the current driver), adds surrounding quotes, and returns
the resulting string. Returns FALSE if the driver does not support this method.

1215I.3 PDO Methods

$quoted_val1 = $dbh->quote (13);

$quoted_val2 = $dbh->quote ("it's a string");

The second argument may be specified to indicate the data type of the first argu-
ment.The default is PDO::PARAM_STR. See Section I.3.4,“PDO Constants,” (online)
for a list of parameter type values.

quote() doesn’t correctly handle NULL values; it returns an empty string rather than
an unquoted word NULL. If your data values might be NULL, you’re probably better
off to take the approach of using placeholders and binding data values to them.
Then PDO will properly handle any required special processing.

n bool

rollback (void)

Rolls back the current transaction and restores the autocommit mode. Returns
TRUE for success or FALSE for failure.

For an example, see the description of beginTransaction().
n bool

setAttribute (int $attr,

mixed $value)

Sets an attribute for the database handle.The first argument names the attribute and
the second provides its value. Returns TRUE for success or FALSE for failure.

Section I.3.4,“PDO Constants,” (online) lists some of the attributes that can be set
with setAttribute().

$dbh->setAttribute (PDO::ATTR_ERRMODE, PDO::ERRMODE_WARNING);

$dbh->setAttribute (PDO::ATTR_AUTOCOMMIT, true);

I.3.2 PDOStatement Object Methods
A PDOStatement object represents a statement handle returned by the query() or
prepare() database-handle methods. Statement handles have methods for operations
such as executing statements, accessing statement metadata and result set contents, binding
data values to prepared statements, and binding variables to result sets.

n bool

bindColumn (mixed $column,

mixed $var

[, int $type

[, int $len

[, mixed $options]]])

Binds a column of a result set to a PHP variable, so that fetching a row sets the
variable to the column value for the row. (Fetch the rows using a fetch mode of
PDO::FETCH_BOUND.) Returns TRUE for success or FALSE for failure.

1216 Appendix I PHP API Reference

The $column value can be given as a column number (beginning with 1) or col-
umn name (in the lettercase returned by the driver). $var is the PHP variable to
which column values should be bound for each row fetch operation.

$type specifies the data type of the column.The default is PDO::PARAM_STR. See
Section I.3.4,“PDO Constants,” (online) for a list of parameter type values.

The $len and $options values are specified the same way as for bindParam().

$sth = $dbh->query ("SELECT last_name, first_name FROM president");

$sth->bindColumn ("last_name", $l_name); # specify column by name

$sth->bindColumn (2, $f_name); # specify column by position

while ($sth->fetch (PDO::FETCH_BOUND))

printf ("%s %s\n", $f_name, $l_name);

n bool

bindParam (mixed $column,

mixed $var

[, int $type

[, int $len

[, mixed $options]]])

Binds a PHP variable to a placeholder in a prepared statement. Returns TRUE for
success or FALSE for failure.To provide a value for the placeholder, assign it to the
variable before calling execute().

The $column value can be given as a placeholder number (beginning with 1) or a
placeholder name in the statement string (a name preceded by a colon). $var is the
PHP variable to be bound to the placeholder.

$type specifies the data type of the column.The default is PDO::PARAM_STR. See
Section I.3.4,“PDO Constants,” (online) for a list of parameter type values. If a
placeholder is associated with an INOUT stored procedure parameter, OR the type
with PDO::INPUT_OUTPUT (for example, PDO::PARAM_INT|PDO::INPUT_OUTPUT).

$len indicates the length of the data type. If a placeholder is associated with an OUT
stored procedure parameter, you should provide an explicit length.

$options provides data for the driver.

$sth = $dbh->prepare ("INSERT INTO absence (student_id, date)

VALUES (:id, :date)");

$sth->bindParam (":id", $student_id);

$sth->bindParam (":date", $date);

$student_id = 7;

$date = "2008-10-01";

$sth->execute ();

$student_id = 18;

$date = "2008-10-03";

$sth->execute ();

1217I.3 PDO Methods

n bool

bindValue (mixed $column,

mixed $value

[, int $type])

Binds a value to a placeholder in a prepared statement. Returns TRUE for success or
FALSE for failure.The value will be used for the next call to execute().

The $column and $type values are specified the same way as for bindParam().

$sth = $dbh->prepare ("INSERT INTO absence (student_id, date)

VALUES (?, ?)");

$sth->bindValue (1, 7);

$sth->bindValue (2, "2008-10-01");

$sth->execute ();

$sth->bindValue (1, 18);

$sth->bindValue (2, "2008-10-03");

$sth->execute ();

n bool

closeCursor (void)

Releases resources associated with the statement. Returns TRUE for success or FALSE
for failure.This method can be used if you want to execute a statement again but
have not fetched the entire result set currently associated with the statement handle.
(For MySQL, this should not be necessary because the driver retrieves any un-
fetched part of the result set as necessary, but that might not be true for other
drivers.)

n int

columnCount (void)

Returns the number of columns in the result set produced by executing a state-
ment.This value is 0 if the statement has not been executed or did not produce a
result set.

$sth = $dbh->query ("SELECT * FROM president");

printf ("Number of columns in result set: %d\n", $sth->columnCount ());

n string

errorCode (void)

This is similar to errorCode() for PDO objects but applies to operations on
PDOStatement objects.

if (!$sth->execute ())

{

print ("Could not execute statement.\n");

print ("errorCode: " . $sth->errorCode () . "\n");

print ("errorInfo: " . join (", ", $sth->errorInfo ()) . "\n");

}

1218 Appendix I PHP API Reference

n array

errorInfo (void)

This is similar to errorInfo() for PDO objects but applies to operations on
PDOStatement objects.

For an example, see the description of errorCode().
n bool

execute ([array $params])

Executes a prepared statement and returns TRUE for success or FALSE for failure.

If the statement contains placeholders, you should either bind data values to them
before invoking execute(), or else pass the data values as parameters to execute().
For examples, see the descriptions of prepare(), bindParam(), and bindValue().

n mixed

fetch ([int $fetch_mode

[, int $cursor_orientation

[, int $cursor_offset]]])

Returns the next row of the result set, or FALSE if there are no more rows.The row
is returned in the format determined by the statement handle’s fetch mode, or by
the $fetch_mode argument if present.The default fetch mode is PDO::FETCH_BOTH
unless it has been changed by calling setFetchMode() or the statement handle was
obtained by a call to $dbh->query() for which a fetch mode was passed. Section
I.3.4,“PDO Constants,” (online) lists some of the allowable fetch modes.

The $cursor_orientation and $cursor_offset are used to control scrollable
cursors.These two arguments do not apply to MySQL, which does not support
scrollable cursors.

$sth = $dbh->query ("SELECT last_name, first_name FROM president");

while ($row = $sth->fetch ())

printf ("%s %s\n", $row[1], $row[0]);

n array

fetchAll ([int $fetch_mode

[, int $column_index = 0

[, array $constructor_args]]])

Returns any remaining rows of the result set as an array of rows.The fetch mode
for the rows is determined the same way as for fetch().

$sth = $dbh->query ("SELECT last_name, first_name FROM president");

$rows = $sth->fetchAll ();

foreach ($rows as $row)

printf ("%s %s\n", $row[1], $row[0]);

If the fetch mode is PDO::FETCH_COLUMN, fetchAll() returns an array containing
the values from the column of the result set specified by $column_index. Column
numbers begin with 0.

1219I.3 PDO Methods

$sth = $dbh->query ("SELECT last_name, first_name FROM president");

$first_names = $sth->fetchAll (PDO::FETCH_COLUMN, 1);

print (join (", ", $first_names) . "\n");

The $constructor_args argument is used for a custom class constructor. See the
PHP manual for details.

n string

fetchColumn ([int $column_index = 0])

Returns one column from the next row of the result set, or FALSE if there are no
more rows. $column_index specifies which column to return. Column numbers
begin with 0. If you need to fetch multiple columns from each row, do not use this
method.

$sth = $dbh->query ("SELECT COUNT(*) FROM member");

printf ("Number of members: %d\n", $sth->fetchColumn (0));

n mixed

fetchObject ([string $class_name

[, array $constructor_args]])

Returns the next row of the result set as a class instance, or FALSE if there are no
more rows or an error occurs.

$class_name is the name of the resulting class (stdClass if none is given).The
$constructor_args argument is used for a custom class constructor. See the PHP
manual for details.

$sth = $dbh->query ("SELECT last_name, first_name FROM president");

while ($row = $sth->fetchObject ())

printf ("%s %s\n", $row->first_name, $row->last_name);

n mixed

getAttribute (int $attr)

Returns the value of the specified statement-handle attribute, or FALSE for an un-
successful call.There are no MySQL-specific statement attributes, so the MySQL
driver does not support this method.

n mixed

getColumnMeta (int $column_index)

Returns an associative array containing metadata for the specified column of the
result set, or FALSE if no such column exists. $column_index specifies which col-
umn to return. Column numbers begin with 0.

$sth = $dbh->query ("SELECT last_name, first_name FROM president");

var_dump ($sth->getColumnMeta (0));

var_dump ($sth->getColumnMeta (1));

1220 Appendix I PHP API Reference

Name Value

native_type The PHP native type for the column value

flags Flags describing the column attributes

table The table containing the column (empty string for expressions)

name The column name

len The column length

precision The column precision

pdo_type The column type (corresponds to a PDO::PARAM_XXX value)

The information returned by this method is driver dependent.At the time of writ-
ing, the array returned by the MySQL driver contains the values shown in the fol-
lowing table.

n bool

nextRowset (void)

Advances to the next rowset for a statement handle that has multiple rowsets. Re-
turns TRUE for success or FALSE for failure.

Multiple rowsets can be produced by calling a stored procedure that produces mul-
tiple result sets, or by executing a statement string that contains multiple statements
separated by semicolons.This is similar to processing multiple result sets using the C
API (see Section 7.8,“Using Multiple-Statement Execution”).

$sth = $dbh->query ("SELECT last_name, first_name FROM president LIMIT 5;

SELECT 1, 2, 3;

SHOW TABLES");

do

{

$rowset = $sth->fetchAll (PDO::FETCH_NUM);

if ($rowset)

{

$count = 0;

foreach ($rowset as $row)

{

for ($i = 0; $i < sizeof ($row); $i++)

print ($row[$i] . ($i < sizeof ($row) - 1 ? "," : "\n"));

$count++;

}

printf ("Number of rows returned: %d\n\n", $count);

1221I.3 PDO Methods

}

} while ($sth->nextRowset ());

n int

rowCount (void)

Returns the rows-affected count for the statement.This is for use only with state-
ments such as INSERT or DELETE that modify rows.To get a row count for state-
ments such as SELECT that produce a result set, fetch the rows and count them
because rowCount() is not guaranteed to be meaningful.

n bool

setAttribute (int $attr,

mixed $value)

Sets an attribute for the statement handle.The first argument names the attribute
and the second provides its value. Returns TRUE for success or FALSE for failure.
There are no MySQL-specific statement attributes, so the MySQL driver does not
support this method.

n bool

setFetchMode (int $fetch_mode

[, fetch_mode_option] ...)

Sets the row-fetching mode for the statement. Returns TRUE for success or FALSE
for failure.This method affects how rows are returned by methods such as fetch()
and fetchAll() if they are invoked with no explicit fetch-mode argument.

$sth = $dbh->query ("SELECT last_name, first_name FROM president");

$sth->setFetchMode (PDO::FETCH_OBJ);

while ($row = $sth->fetch ())

printf ("%s %s\n", $row->last_name, $row->first_name);

Section I.3.4,“PDO Constants,” (online) describes several of the fetch modes that
may be passed for the $fetch_mode argument.

For some values of $fetch_mode, additional arguments may be passed to
setFetchMode():

n setFetchMode (PDO::FETCH_COLUMN, int $column_index)

Returns a single column from rows of the result set. See the description for
fetchColumn().

n setFetchMode (PDO::FETCH_CLASS, string $class_name,

array $constructor_args)

Returns rows of the result set as a new class instance. See the description for
fetchObject().

n setFetchMode (PDO::FETCH_INTO, object $object)

Returns rows of the result set into an existing class instance, mapping result
set columns onto properties of the object’s class.

I.3.3 PDOException Object Methods
By default, PDO throws an exception only for the PDO constructor (that is, when you call
new PDO() to connect to a database server), and other PDO methods indicate failure by
their return value. If you enable PDO exceptions after connecting, the PDO extension
instead throws exceptions when its methods fail. PDOException objects contain the error
information provided as a result of such exceptions.

To enable PDO exceptions, use the database handle:

$dbh->setAttribute (PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

PDO supports three error mode values:

n PDO::ERRMODE_SILENT: PDO does nothing other than set the error information.
This is the default error mode.

n PDO::ERRMODE_WARNING:This is similar to silent mode, but PDO emits a warning
message in addition to setting the error information.

n PDO::ERRMODE_EXCEPTION: PDO raises an exception after setting the error
information.

If exceptions are enabled, the error information becomes available when an error oc-
curs via the getCode() and getMessage() methods of the exception object.

Exceptions terminate your script by default.To handle them yourself, use try and catch.
In the catch block, you can access the exception’s methods that return error information:

try

{

$sth = $dbh->query ("SELECT * FROM no_such_table");

}

catch (PDOException $e)

{

print ("getCode value: " . $e->getCode() . "\n");

print ("getMessage value: " . $e->getMessage() . "\n");

}

n integer

getCode (void)

Returns a five-character SQLSTATE value containing the error code.A return
value equal to PDO::ERR_NONE ("00000") means “no error.”

n string

getMessage (void)

Returns a string containing the error message.

1222 Appendix I PHP API Reference

1223I.3 PDO Methods

I.3.4 PDO Constants
This section describes some of the constants that can be used with PDO methods, such as
the getAttribute() and setAttribute() methods for database handles.The values
shown are representative only. For a complete list, see the PDO section of the PHP
manual.

General database-handle attributes:
n PDO::ATTR_AUTOCOMMIT

The current autocommit mode.
n PDO::ATTR_DEFAULT_FETCH_MODE

The row-fetching mode. (Available as a database-handle attribute as of PHP 5.2.4.)
n PDO::ATTR_DRIVER_NAME

The PDO driver name.
n PDO::ATTR_ERRMODE

The error-handling mode. For a description of the allowable values, see Section
I.3.3,“PDOException Object Methods” (online).

MySQL-specific database-handle attributes:
n PDO::ATTR_CLIENT_VERSION

A string describing the client library version.
n PDO::ATTR_CONNECTION_STATUS

For MySQL, this indicates how the connection was made.
n PDO::ATTR_SERVER_INFO

A string providing some server activity information.
n PDO::ATTR_SERVER_VERSION

A string describing the server version.

Fetch-mode values that control the form in which result set rows are fetched:
n PDO::FETCH_ASSOC

Return an array with elements accessed by associative index.
n PDO::FETCH_BOTH

Return an array with elements accessed by associative or numeric index.
n PDO::FETCH_BOUND

Return row elements bound to PHP variables by preceding bindColumn() calls.
n PDO::FETCH_CLASS

Return row elements into properties of a new class instance.
n PDO::FETCH_INTO

Return row elements into properties of an existing class instance.

n PDO::FETCH_NUM

Return an array with elements accessed by numeric index.
n PDO::FETCH_OBJ

Return an object with elements accessed as properties.

Parameter-type values:
n PDO::PARAM_BOOL

A boolean parameter.
n PDO::PARAM_INT

An integer parameter.
n PDO::PARAM_NULL

Indicates a SQL NULL value.
n PDO::PARAM_STR

A string parameter.

1224 Appendix I PHP API Reference

Page numbers prefaced by Web: indicate topics
found in the online appendixes accessible
either by registering this book at
informit.com/register or by visiting
www.kitebird.com/mysql-book.

Symbols
<?php...?> tags, 530

\! command (mysql client program), 1068

\# command (mysql client program), 1068

\. command (mysql client program), 1068

\? command (mysql client program), 1067

”0E0” string, 446

-# option, 1041

-1 option (mysqlcheck client program), 1080

-? option, 1038, 1041

=== (identically-equal-to operator),
PHP API, 547

> (greater than) operator, 820

>= (greater than or equal to) operator, 820

< (less than) operator, 819

<= (less than or equal to) operator, 820

? (question mark) as placeholder,
PHP API, 549

; (semicolon), statement terminator, 30

@ operator, suppressing PHP API error
messages, 552

@{$ary_ref} construct, 450

A
-a option

myisamchk utility, 1053, 1055
mysqld, 1084

-A option

mysql client program, 1063
mysqlcheck client program, 1080
mysqldump utility, 1105

--abort-slave-event-count option (mysqld),
1097

www.kitebird.com/mysql-book

Aborted_clients status variable, 924

Aborted_connects status variable, 924

ABS() function, 834

absolute updates, relative updates
versus, 184

access control

administrator responsibilities for, 582
for data directory, 588-589
filesystem access, 699

data directory, access to, 701-702
data directory, locking down,

702-706
option files, locking down, 707-708
types of files to protect, 700-701
Unix socket file, locking down,

706-707
network access, 699, 709

client access control, 719-724
example scenario, 724-728
grant tables, 709, 712-719
grant tables, cautions concerning,

728-731
accessor macros in C API, Web:1135

accounts

initial accounts, setting passwords,
610-615

login accounts, creating, 782
management, 630-631

changing/resetting passwords,
644-645

granting privileges, 634-643
revoking privileges, 643-644
specifying account name, 632-634
specifying hostname, 634
viewing privileges, 643

for server startup
on Unix, 616-621
on Windows, 621-624

setting up, 27-28
unprivileged login accounts, running

server with, 617-618
ACID properties (transactions), 175

ACOS() function, 834

actions in ALTER TABLE statements,
940-944

ADD clause, 940

ADD FOREIGN KEY clause, 941

ADD FULLTEXT clause, 941

ADD INDEX clause, 941

ADD KEY clause, 941

ADD PARTITION clause, 945

ADD PRIMARY KEY clause, 942

ADD SPATIAL clause, 942

ADD UNIQUE clause, 942

--add-drop-database option (mysqldump
utility), 1105

--add-drop-table option (mysqldump utility),
750, 1105

--add-locks option (mysqldump utility),
1105

ADDDATE() function, 853

addition operator, 816

Address Windowing Extensions, 897

ADDTIME() function, 853

--addtodest option (mysqlhotcopy utility),
1114

administration

access control and security
responsibilities, 582

account management, 630-631
changing/resetting passwords,

644-645
granting privileges, 634-643
revoking privileges, 643-644
specifying account name, 632-634
specifying hostname, 634
viewing privileges, 643

backup and replication responsibilities,
582-583

connections, listening for, 629-630
database maintenance responsibilities,

582-583
general responsibilities, 581-582

1226 Aborted_clients status variable

internationalization and
localization, 681

configuring character set support,
684-685

configuring time zone support,
682-683

selecting error message
language, 684

LOAD DATA statement,
enabling/disabling LOCAL
capability, 681

logs, 645
binary log, 650-651
enabling, 646
error log, 648-649
expiration methods, 653-654,

657-659
flushing, 647
general query log, 649
output destinations for, 652-653
relay log, 652
slow-query log, 649-650

multiple servers, 685-688
configuring, 688-690
mysqld_multi script, 691-693
running on Windows, 693-695
specifying startup options, 690-691

regaining server control without
connections, 626

security. See security
server shutdown, 626
server startup

specifying options, 624-626
on Unix, 616-621
on Windows, 621-624

storage engines, 669
system variables, 660

checking status variables, 667-668
checking/setting, 661-665
list of, 665-667

administrative functions in C API,
Web:1173-Web:1175

administrative methods in DBI API for Perl,
Web:1196-Web:1197

administrative privilege columns (grant
tables), 710

administrative privileges, 636, 713-715

administrative-level query optimization,
334-336

hardware optimizations, 339-340
MyISAM key caches, 336-337
query cache, 337-339

advisory locking functions, 875-876

AES_DECRYPT() function, 871

AES_ENCRYPT() function, 872

AFTER triggers, 297, 968

AGAINST() function, 196, 846

age-based replication, 657

aggregate functions, 868

ALGORITHM clause, 970

aliases

case sensitivity, 106
column aliases, 69, 999
for columns in PHP API, 546
shell aliases, 95
table aliases, 1000

ALL keyword, 161-162, 998, 1026

--all option (mysqldump utility), 1105

ALL privilege, 637-638, 981

--all-databases option, 745, 750, 759

mysqlcheck client program, 1080
mysqldump utility, 1105

--all-in-1 option (mysqlcheck client
program), 1080

--all-tablespaces option (mysqldump utility),
1105

allocating statement handlers, 423

ALLOW_INVALID_DATES mode, 254, 914

--allow-keywords option (mysqldump utili-
ty), 1105

--allow-suspicious-udfs option (mysqld),
1084

--allowold option (mysqlhotcopy utility),
1114

ALTER DATABASE statement, 114, 938

ALTER EVENT statement, 939

1227ALTER EVENT statement

ALTER FUNCTION statement, 939

ALTER privilege, 715, 731

ALTER PROCEDURE statement, 939

ALTER ROUTINE privilege, 715, 980

ALTER SERVER statement, 939

ALTER TABLE statement, 138, 141-144, 260,
328, 593, 939, 945

ALTER VIEW statement, 945

altering

databases, 114
table structure, 141-144

--analyze option

myisamchk utility, 1053
mysqlcheck client program, 1080

ANALYZE TABLE statement, 313, 321, 946

analyzing tables, 313

AND logical operator, 62

anonymous accounts, 611

avoiding, 728
deleting, 615

ANSI mode, 102

--ansi option (mysqld), 1084

ANSI_QUOTES mode, 102, 204, 914

ANY operator, subqueries with, 161-162

Apache module, running PHP as, 527

Apache server

installing
on Unix, 790-792
on Windows, 796

obtaining, 778
setting up, 502-503

APIs (application programming interfaces).
See also C API; DBI API for Perl; PHP API

for MySQL programming, 345-347
C API, 347
DBI API for Perl, 347-349
evaluating, 350-357
PHP API, 349

SSL support in, 735
application integration with MySQL

programming, 344-345

application programming interfaces.
See APIs

--apply-slave-statements option (mysql-
dump utility), 1105

approximate-value numeric data types,
203-204, 222-223, 801-802

ARCHIVE storage engine, 120

AREA() function, 881

arithmetic operators, 61-62, 275, 266,
816-817

arrays in PHP API, 534, 554

$ary_ref array reference, 450

AS clause, 69, 999

ASBINARY() function, 879

ASC keyword, 65

ASCII attribute, 240

ASCII() function, 279, 840

ASIN() function, 835

ASTEXT() function, 879

ASWKB() function, 879

ASWKT() function, 879

AT clause, 299

ATAN() function, 835

ATAN2() function, 835

attributes

of date and time data types, 247-248
in DBI API for Perl,Web:1198

database-handle attributes,
Web:1198-Web:1201

dynamic attributes,Web:1205
general handle attributes,

Web:1199-Web:1200
statement-handle attributes,

Web:1201-Web:1205
of numeric data types, 223-225
of string data types, 237-240

authentication for editing U.S. Historical
League member entries, 570-578

auto-extending files, changing to fixed-size
files, 678

1228 ALTER FUNCTION statement

auto-recovery

enabling, 744-745
of InnoDB tables, troubleshooting,

767-768
--auto-rehash option (mysql client pro-

gram), 1061

--auto-repair option (mysqlcheck client
program), 1080

--auto-vertical-output option (mysql client
program), 1061

AutoCommit attribute (DBI API for Perl),
Web:1198

autocommit mode, 176-177

autocommit system variable, 662, 921

automatic type conversion, 316

automatic_sp_privileges system
variable, 890

automating log expiration methods, 658-659

AUTO_INCREMENT attribute, 39, 224,
960-961

adding to tables, 260
effect on data type selection, 286
explained, 254-256
generating sequences without,

262-264
for InnoDB tables, 259
issues concerning, 259-260
for MEMORY tables, 259
for MyISAM tables, 256-258
resequencing columns, 261-262

auto_increment_increment system
variable, 890

auto_increment_offset system variable, 890

available_drivers() method (DBI class),
Web:1180

AVG() function, 81, 868

AVG_ROW_LENGTH option, 125, 961

Axmark, David, 2

B
-B option

myisamchk utility, 1053
mysql client program, 1061-1063
mysqlcheck client program, 1080
mysqldump utility, 1107

-b option

myisampack utility, 1058
mysqladmin utility, 1073
mysqld, 1084

B-tree indexes, 311

--backup option

myisamchk utility, 1053
myisampack utility, 1058

backups, 746, 748

administrator responsibilities for,
582-583

binary backups, creating, 751-754
of binary log files, 652
copying databases using, 755-756
of InnoDB or Falcon tables, 754-755
with mysqldump utility, 1104
with replication slave server, 774-775
text-format backups, creating, 748-751

back_log system variable, 890

bail_out() method (DBI API for Perl), 445

--base64-output option (mysqlbinlog utility),
1077

--basedir option

mysqld, 1084
mysqld_safe shell script, 1102
mysql_install_db shell script, 1072

basedir system variable, 890

Basic Multilingual Plane (BMP), 111

batch files, executing, 98-100

--batch option (mysql client program),
1061

BDMPOLYFROMTEXT() function, 879

BDMPOLYFROMWDB() function, 878

BDPOLYFROMTEXT() function, 879

BDPOLYFROMWKB() function, 878

BEFORE triggers, 297, 968

1229BEFORE triggers

BEGIN statement, 176, 946

BEGIN…END statements, 290, 1030

beginTransaction() method (PDO class),
Web:1211

begin_work() method (DBI database-
handle), Web:1185

BENCHMARK() function, 883

BETWEEN operator, 820

BIGINT data type, 221, 226, 800

--big-tables option (mysqld), 1084

big_tables system variable, 921

BIN() function, 840

BINARY attribute, 240

binary backups, 746

creating, 751-754
of Falcon tables, 755
of InnoDB tables, 754

binary character set, 239

binary client/server protocol (C API),
422-434

binary data

C API, 407-409
printing, 394

BINARY data type, 228-230, 805

binary distributions

installing, 783
obtaining, 779

BINARY keyword, 280

binary log, 600, 645, 650-651

backups and, 747
formats for, 773
re-executing statements from, 765-767

binary log index file, 645, 650-651

BINARY operator, 825

binary portability, 121-122

binary strings, 803-806

non-binary strings versus,
207-211, 227

--bind-address option (mysqld), 1085

bindColumn() method (PDOStatement
object), 546, Web:1215

binding query results (DBI API for Perl), 463

bindParam() method (PDOStatement
object), Web:1216

bindValue() method

PDOStatement object,Web:1217
PHP API, 549

bind_col() method (DBI statement-handle),
464, Web:1191

bind_columns() method (DBI statement-
handle), 464, Web:1191

bind_param() method (DBI statement-
handle), Web:1191

bind_param_array() method (DBI state-
ment-handle), Web:1192

Binlog_cache_disk_use status variable, 924

binlog_cache_size system variable, 891

Binlog_cache_use status variable, 924

--binlog-do-db option (mysqld), 1097

--binlog-format option, 774

binlog_format system variable, 891

--binlog-ignore-db option (mysqld), 773,
1097

BIT data type, 219, 223, 803

bit-field values, 204

bit operators, 267, 275, 823

bitwise AND operator, 823

bitwise negation operator, 823

bitwise OR operator, 823

bitwise XOR operator, 823

BIT_AND() function, 868

BIT_COUNT() function, 884

BIT_LENGTH() function, 884

BIT_OR() function, 868

BIT_XOR() function, 869

BLACKHOLE storage engine, 121

1230 BEGIN statement

BLOB data type, 230-231, 325-326, 806

--block-search option (myisamchk utility),
1053

BMP (Basic Multilingual Plane), 111

Boolean mode searches, 194, 197-199

boolean operators, 824-825

boolean options, 1039

boolean searches, 847

Boolean values, 213

--bootstrap option (mysqld), 1085

BOUNDARY() function, 880

BSD-style systems, server startup, 620

BTREE indexes, 139

bulk_insert_buffer_size system variable, 891

byte strings, 227

Bytes_received status variable, 924

Bytes_sent status variable, 925

C
C API, 346-347, Web:1121

binary data, 407-409
client programs, compiling and link-

ing, 360-363,Web:1122-Web:1123
connection parameters, specifying at

runtime, 371-384
data types,Web:1123

accessor macros,Web:1135
non-scalar data types,

Web:1124-Web:1135
scalar data types,

Web:1123-Web:1124
embedded server library, 416

executable binary for, 419-420
writing applications for, 416-417

encoding strings, 405-407
error handling, 367-370
evaluating, 350-357
example programs, finding, 360

functions,Web:1136
administrative routines,

Web:1173-Web:1175
connection management routines,

Web:1137-Web:1149
debugging routines,Web:1175
error-reporting routines,Web:1149
information routines,

Web:1161-Web:1164
initialization and termination

routines,Web:1136-Web:1137
multiple result set routines,

Web:1164
prepared statement routines,

Web:1165-Web:1173
result set processing routines,

Web:1152-Web:1161
statement construction

and execution routines,
Web:1150-Web:1152

threaded client routines,Web:1175
transaction control routines,

Web:1164
interactive statement-execution sample

program, 409-410
multiple-statement execution,

420-422
PHP dependency on, 528
result set metadata, 400-405
server connections, 363-366, 384-389
server-side prepared statements,

422-434
SQL statement processing, 389-397

mysql_store_result() versus
mysql_use_result(), 398-400

result set handling, 391-394
row-modification statements,

390-391
SSL support, 410-416

\c command (mysql client program), 32,
1066

-C option, 1041

myisamchk utility, 1053
mysqlcheck client program, 1080
mysqld, 1085

1231-C option

-c option

mysql client program, 1062
mysqladmin utility, 1073
mysqldump utility, 1106

C-style comments, 1034

CA (Certificate Authority), 732

CACHE INDEX statement, 673, 946

cache size, increasing, 334-335

caches

key caches, 336-337
query cache, 337-339

caching statements (DBI API for Perl), 462

calculating query results, 68-70

CALL statement, 292-293, 947

calling sequences for DBI API for Perl
methods, Web:1179

cardinality of columns, 308

cartesian product, 152

CASCADE keyword, 974

CASCADED keyword, 970

cascading deletes, 187

CASE operator, 821

case sensitivity

naming conventions and, 60, 595-596
options, 1039
scope column contents, 722
SQL statements, 32, 106-107
string data types, 240

CASE statement, 1030

cast functions, 833-834

cast operators, 825-826

CAST() function, 204, 237, 278, 833

CEILING() function, 835

CENTROID() function, 881

Certificate Authority (CA), 732

certificate files, 732

certificates, 732

--cflags option (mysql_config utility), 1071

CGI scripts

connecting to MySQL Server,
510-512

installing on Apache Web servers,
502-503

CGI.pm module, 501

escaping HTML/URL text, 506
input parameters, 504
object-oriented interface, 503-504
output generation, 504-506
passing parameters to scripts, 507-510

CHAIN clause, 950, 997

CHANGE clause, 142, 942

CHANGE MASTER statement, 771, 947-948

CHANGED option, 949

CHAR data type, 228-229, 807

CHAR() function, 279, 840

character classes, 829

character encoding

for mysql_real_escape_string()
function (C API),Web:1151

in PHP API, 541
CHARACTER_LENGTH() function, 841

CHARACTER SET clause, 108, 113, 237,
240, 951, 987

character set introducers, 209

character set support, configuring, 684-685

character_set_client system variable,
211, 891

--character-set-client-handshake option
(mysqld), 1085

character_set_connection system variable,
211, 891

character_set_database system variable,
211, 891

--character-set-filesystem option (mysqld),
1085

character_set_filesystem system variable,
212, 891

character_set_results system variable,
211, 891

1232 -c option

--character-set-server option (mysqld), 108,
1085

character_set_server system variable,
211, 891

character_set_system system variable,
211, 892

character sets, 107-108, 207, 211

for non-binary string types, 804
specifying, 108-109, 938
system variables for, 211-213
Unicode support, 111-112
viewing current settings, 109-111

--character-sets-dir option, 1041

character_sets_dir system variable, 892

character strings. See non-binary strings

characteristic values in CREATE FUNCTION
statements, 954-955

CHARLENGTH() function, 210

CHARSET clause, 108, 237

_charset operator, 825

CHARSET() function, 209, 279, 841

CHAR_LENGTH() function, 803, 841

CHECK clause, 959

--check option, 761

myisamchk utility, 1053
mysqlcheck client program, 1080

CHECK TABLE statement, 758, 948-949

--check-only-changed option, 745

myisamchk utility, 1053
mysqlcheck client program, 1080

--check-upgrade option (mysqlcheck client
program), 1080

checking tables, 757-758

with CHECK TABLE statement, 758
with myisamchk utility, 760-763
with mysqlcheck utility, 759-760

--checkpoint option (mysqlhotcopy utility),
1114

CHECKSUM table option, 962

CHECKSUM TABLE statement, 950

choosing. See selecting

ChopBlanks attribute (DBI API for Perl),
Web:1199

--chroot option

mysqld, 1085
mysqlhotcopy utility, 1114

CIPHER clause, 734, 982

class methods in DBI API for Perl,
Web:1180-Web:1185

classes (PDO), Web:1208

clear command (mysql client program),
1066

client access control, 719

scope column contents, 720-722
statement access verification, 722-724
user grant table sort order, 724

client libraries

specifying pathname for, 360,
Web:1122

SSL support in, 735
CLIENT_COMPRESS option (mysql_real_

connect() function), Web:1146

CLIENT_FOUND_ROWS option
(mysql_real_connect() function),
Web:1147

CLIENT_IGNORE_SIGPIPE option
(mysql_real_connect() function),
Web:1147

CLIENT_IGNORE_SPACE option
(mysql_real_connect() function),
Web:1147

CLIENT_INTERACTIVE option
(mysql_real_connect() function),
Web:1147

CLIENT_LOCAL_FILES option
(mysql_real_connect() function),
Web:1147

CLIENT_MULTI_RESULTS option
(mysql_real_connect() function), 420,
Web:1147

1233CLIENT_MULTI_RESULTS option

CLIENT_MULTI_STATEMENTS option
(mysql_real_connect() function), 420,
Web:1147

CLIENT_NO_SCHEMA option
(mysql_real_connect() function),
Web:1147

client/server architecture, explained, 24-25

clients, enabling secure connections,
732-734

clone() method (DBI database-handle),
Web:1186

CLOSE statement, 1033

closeCursor() method (PDOStatement
object), Web:1217

closing server connections in PHP API, 533

closing tags in PHP scripts, 530

clustered indexes, 309

COALESCE() function, 841

COALESCE PARTITION clause, 945

code encapsulation in PHP API, 534, 539

COERCIBILITY() function, 841

COLLATE clause, 108, 113, 237-240, 280,
826, 951

COLLATION() function, 209, 280, 841

collation support, configuring, 684-685

collation_connection system variable,
212, 892

collation_database system variable,
211, 892

--collation-server option (mysqld), 108,
1085

collation_server system variable, 211, 892

collations, 207-211

for non-binary string types, 804
specifying, 108-109
system variables for, 211-213
viewing current settings, 109-111

column aliases, 69, 546, 999

column data types, specifying, 142, 217-218

column definitions in CREATE TABLE
statements, 959-961

column identifiers, naming conventions, 217

column names, case sensitivity, 106

column prefixes, indexing, 140

column subqueries, 158

Column_name value (scope column
contents), 721

--column-names option (mysql client
program), 1061

column-specific privileges, 639

--column-type-info option (mysql client
program), 1061

columnCount() method (PDOStatement
object), 544, Web:1217

columns

default values, specifying, 218-219
qualified column references in

joins, 153
renaming, 143

--columns option (mysqlimport client
program), 1117

columns_priv grant table, 710

comma joins, 153, 1001

command editing in mysql client program,
1060

command history (shells), 94-95

command line

PHP scripts from, 531
viewing database metadata, 149-150

command prompt

changes while entering statements, 31
for mysql client program, 1060

command-line arguments, processing,
375-384

commands

for mysql client program, 1066-1068
for mysqladmin utility, 1074-1076

COMMENT characteristic value, 955

COMMENT index option, 956

1234 CLIENT_MULTI_STATEMENTS option

COMMENT keyword, 960

COMMENT partition option, 966

COMMENT table option, 962

comments

in DBI API for Perl, 439
in SQL statements, 1033-1035

--comments option

mysql client program, 1062
mysqldump utility, 1106

commit (transactions), 175

COMMIT statement, 176, 950-951

commit() method

DBI database-handle,Web:1186
PDO class,Web:1212

common member interests for U.S.
Historical League example, finding,
496-497, 521-525

--compact option (mysqldump utility), 1106

--compatible option (mysqldump utility),
1106

comparison expressions, query optimization
and, 314

comparison functions, 831-833

comparison operators, 62, 267, 817-822

relative comparison operators,
subqueries with, 159-160

type conversion, 276
compiled languages, interpreted languages

versus, 352

compiling client programs, 360-363,
Web:1122-Web:1123

complete binary backups, creating, 752

complete result sets, fetching (DBI API for
Perl), 454-456

--complete-insert option (mysqldump
utility), 1106

completion_type system variable, 892

composite indexes, 257, 309

composite SQL modes, 917

compound SQL statements, 1028

control structure statements,
1029-1031

cursor statements, 1033
declaration statements, 1031-1033

compound statements, 290-292

COMPRESS() function, 872

--compress option, 1040-1041

compressing dump files, 749

compression functions, 871-875

Compression status variable, 925

Com_xxx status variable, 925

CONCAT() function, 267, 273, 279, 842

concatenating strings, 267, 824

CONCAT_WS() function, 842

concurrency, 183

concurrent inserts, 332-333

CONCURRENT keyword, 986

--concurrent-insert option (mysqld), 1085

concurrent_insert system variable, 892

--config-file option (mysqld_multi shell
script), 1101

configuration options for storage
engines, 669

configure script, 684

configuring

character set support, 684-685
Falcon storage engine, 680
full-text searches, 200
InnoDB storage engine, 674-680
multiple servers, 688-690
MyISAM storage engine, 671-673
MySQL source distributions, 785-786
PHP, 791
time zone support, 682-683

connect command (mysql client program),
1066

connect() method (DBI class), 439,
464-468, Web:1180-Web:1184

CONNECTION keyword, 134-135, 956, 986

1235CONNECTION keyword

connection management functions (C API),
Web:1137-Web:1149

connection parameters

DBI API for Perl, 439, 464-468
for GRANT statement, 981
in option files, 93-94
for PDO constructor,

Web:1210-Web:1211
specifying at runtime (C API),

371-384
CONNECTION table option, 962

CONNECTION_ID() function, 884

connections. See also server connections

from CGI scripts, 510-512
listening for, 629-630
regaining server control without, 626
secure connections, requiring, 640-

642
SSL-encrypted connections, 731-735
TCP/IP connections to localhost,

Web:1145
Connections status variable, 925

connect_cached() method (DBI class),
Web:1184

connect_timeout system variable, 892

mysql client program, 1065
mysqladmin utility, 1074

console mode, 795

--console option (mysqld), 1094

CONSTRAINT clause, 187

__construct() method (PDO class),
Web:1209-Web:1211

constructors for PDO class, Web:1209-
Web:1211

CONTAINS() function, 882

control of server, regaining without
connections, 626

control structure statements, 1029-1031

CONV() function, 842

CONVERT TO CHARACTER SET clause, 943

CONVERT() function, 210, 274, 279, 834

converting

data types, 272-276
date and time values, 276
testing/forcing type conversion,

277-280
DECIMAL columns to current

format, 222
tables

between storage engines, 143
to four-byte utf8 character set, 112

two-digit years to four-digit years,
249-250

CONVERT_TZ() function, 853

cooperative locking functions, 875

copy/paste, issuing SQL statements via, 98

copying

databases
as backups, 751-754
between servers, 755-756

tables between servers, 122
--core-file option (mysqld), 1085

--core-file-size option (mysqld_safe shell
script), 1102

--correct-checksum option (myisamchk
utility), 1053

correlated subqueries, 163

COS() function, 835

COT() function, 835

--count option

mysqladmin utility, 1073
mysqlshow utility, 1119

COUNT() function, 76, 81, 869

counting rows (DBI API for Perl), 452

CRC32() function, 836

create command (mysqladmin utility), 1074

CREATE DATABASE statement, 33-34, 113,
590, 951

CREATE EVENT statement, 299, 660,
952-953

CREATE FUNCTION statement, 292, 953-955

1236 connection management functions (C API)

CREATE INDEX statement, 138, 328,
955-956

CREATE privilege, 715

CREATE PROCEDURE statement, 292,
953-955

CREATE ROUTINE privilege, 715, 980

CREATE SERVER statement, 956-957

CREATE TABLE statement, 37, 42, 49, 53,
122, 135, 139, 217-218, 592, 680, 967

CREATE TABLESPACE statement, 680

CREATE TEMPORARY TABLES privilege, 715

CREATE TRIGGER statement, 297, 968-969

CREATE USER privilege, 713

CREATE USER statement, 631, 969

CREATE VIEW privilege, 715, 980

CREATE VIEW statement, 969

--create-options option (mysqldump utility),
1106

Created_tmp_disk_tables status
variable, 925

Created_tmp_files status variable, 925

Created_tmp_tables status variable, 925

creating

databases, 113
foreign keys, 187-192
indexes, 137-141
tables, 122-135
temporary tables, 126-127

cron utility, 658

CROSS JOIN keyword, 1001

cross joins, 152

CROSSES() function, 883

CRYPT() function, 722

crypt() system call, 873

CSV storage engine, 121

CSV tables, database directory files for, 592

CURDATE() function, 71, 854

current database, 34

CURRENT_DATE() function, 854

CURRENT_TIME() function, 854

CURRENT_TIMESTAMP constant, 245

CURRENT_TIMESTAMP() function, 245, 854

CURRENT_USER() function, 884

cursor statements, 1033

CURTIME() function, 854

customizing output with MySQL
programming, 342

D
\d command (mysql client program), 1066

-d option

myisamchk utility, 1053
mysqldump utility, 1109
mysqlimport client program, 1117

-D option

mysql client program, 1062
mysqlbinlog utility, 1077

data directory, 581

accessing, 701-702
initializing, 787-788
location of, 586
locking down, 702-706
for multiple servers, 686
permissions

editing, 703-706
viewing, 702-703

relocation of contents, 602
database relocation, 604-606
entire data directory

relocation, 604
InnoDB shared tablespace

relocation, 606
methods of relocation, 602-603
precautions for, 603
status and log file relocation, 607
table relocation, 606
verifying, 603-604

structure of, 587-588
access control, 588-589
database directories, 590

1237data directory

database naming conventions,
593-596

performance, effect on, 597-599
status and log files, 599-602
tables, file operations for, 592-593
tables, file size constraints, 596-597
tables, storage engines for, 590-592
views and triggers, 592

DATA DIRECTORY partition option, 966

DATA DIRECTORY table option, 962

--data-file-length option (myisamchk utility),
1053

data format options

mysqldump utility, 1112
mysqlimport client program, 1118

data quoting, placeholders for (PHP API),
548-550. See also quoting

data recovery. See recovery procedures

data source formats in DBI API for Perl, 440

data source name (DSN), 532, Web:1210

data types, 203

in C API,Web:1123
accessor macros,Web:1135
non-scalar data types,

Web:1124-Web:1135
scalar data types,

Web:1123-Web:1124
changing, 142
date and time data types

ambiguous year values, 249-250
attributes of, 247-248
DATE,TIME, and DATETIME

data types, 38, 243-244
explained, 242-243, 809-811
input formats, 248-249
list of, 216
TIMESTAMP data type, 244-247
YEAR data type, 247

explained, 214-216
numeric data types

approximate-value numeric data
types, 222-223, 801-802

attributes of, 223-225
BIT data type, 223, 803
exact-value numeric data types,

221-222, 799-801
explained, 219-220, 799
INT data type, 52
list of, 215
selecting among, 225-226

query optimization and, 314, 322, 326
selecting among, 280-287
spatial data types

explained, 250-252, 811-812
list of, 216

specifying in table definitions,
217-218

string data types
attributes of, 237-240
BINARY and VARBINARY data

types, 229-230
binary strings, 805-806
BLOB and TEXT data types,

230-231
CHAR and VARCHAR data

types, 38, 228-229
ENUM and SET data types, 50,

231, 237, 809
explained, 226-228, 803-805
list of, 215
non-binary strings, 807-808
selecting among, 240-241

type conversion, 272-276
date and time values, 276
testing/forcing, 277-280

data validation, 342

data values, 203

Boolean values, 213
date and time values, 213
handling invalid values, 252-254
NULL value, 214
numeric values, 203-204
spatial values, 213
string values, 204-207

binary versus non-binary strings,
207-211

1238 data directory

character sets and collations, 207,
211-213

escape sequences, 205-206
data-loading operations, query optimization

in, 326-329

database browser, developing for Web,
513-517

database directories, 113, 590

DATABASE keyword, 938

database maintenance, administrator
responsibilities for, 582-583

database management systems

advantages of, 13-16
porting to MySQL, 4

--database option, 766

mysql client program, 1062
mysqlbinlog utility, 1077

database privileges, list of, 715-716

DATABASE() function, 885

database-handle attributes

DBI API for Perl,Web:1198-
Web:1201

PDO constants,Web:1223
database-handle methods (DBI API for Perl),

Web:1185-Web:1191

database-level privileges, 639

databases

altering, 114
backups, 746
copying between servers, 755-756
creating, 33-34, 113
DBI API for Perl, 347-349
default database

setting, 34
specifying in mysql client program,

1059
dropping, 114
importance of security for, 700
locking for read-only access, 743
metadata, 144

command line, 149-150
INFORMATION_SCHEMA

database, 147-149
SHOW statements, 145-146

moving tables between, 144
naming conventions, 26, 593-596
preventive maintenance, 737
recovery, 764
relocating, 604-606
replication, 768-770

backups with slave server, 774-775
binary logging formats, 773
establishing master-slave

relationship, 770-773
sample database, 17
selecting, 112
terminology, 21

client/server architecture, 24-25
query language terminology, 22
structural terminology, 21-22

DATABASES keyword, 938

--databases option, 750, 759

mysqlcheck client program, 1080
mysqldump utility, 1107

--datadir option, 586

mysqld, 1085
mysqld_safe shell script, 1102
mysql_install_db shell script, 1072

datadir system variable, 586, 892

data_sources() method (DBI class),
Web:1185

date and time data types

ambiguous year values, 249-250
attributes of, 247-248
DATE,TIME, and DATETIME data

types, 38, 243-244
explained, 242-243, 809-811
input formats, 248-249
list of, 216
TIMESTAMP data type, 244-247
YEAR data type, 247

date and time functions, 852-867

date and time values, 213

in query results, 70-73
subtracting, 72
type conversion, 276

1239date and time values

DATE data type, 38, 243-244, 809

DATE() function, 854

DATE_ADD() function, 72, 279, 854

date_format system variable, 892

DATE_FORMAT() function, 213, 856

DATE_SUB() function, 72, 857

DATEDIFF() function, 858

DATETIME data type, 243-244, 810

datetime_format system variable, 893

DAY() function, 858

DAYNAME() function, 858

DAYOFMONTH() function, 71, 858

DAYOFWEEK() function, 858

DAYOFYEAR() function, 90, 859

db grant table, 710

Db value (scope column contents), 721

DBD (database driver) level (DBI API for
Perl), 347

DBI (database interface) level (DBI API for
Perl), 347

DBI API for Perl, 346-349,
Web:1177-Web:1178

attributes,Web:1198
database-handle attributes,

Web:1198-Web:1201
dynamic attributes,Web:1205
general handle attributes,

Web:1199-Web:1200
statement-handle attributes,

Web:1201,Web:1205
comments, 439
connection parameters, 439, 464-468
counting rows fetched, 452
data source formats, 440
DBI scripts,Web:1178
debugging, 468

with print statements, 468-469
with tracing, 469-471

environment variables,Web:1205

error handling, 443-446
evaluating, 350-357
fetching complete result sets, 454-456
fetching single-row results, 452-453
functions,Web:1197-Web:1198
installing

on Unix, 789-790
on Windows, 796

methods,Web:1178-Web:1180
administrative methods,

Web:1196-Web:1197
class methods,Web:1180-Web:1185
database-handle methods,

Web:1185-Web:1191
general handle methods,

Web:1195-Web:1196
statement-handle methods,

Web:1191-Web:1195
NULL values, 442, 456-457
parameter binding, 463
placeholders, 460-463
prepared statements, 462
quoting special characters, 457-460
result set metadata, 471-475
row modification statements, 446-447
row-fetching methods, 448-452
sample script, 437-442
SELECT statements in, 441
software requirements, 435
statement terminators, 441
transactions in, 475-477
U.S. Historical League example

finding common interests,
496-497, 521-525

generating directory, 478-484
generating HTML-formatted

directory, 497-500
sending renewal notices, 484-490
updating member entries, 490-496

undef values in placeholder
arguments, 463

use statements, 439
variable names, 437,Web:1178
variables, declaring, 439

1240 DATE data type

Web application development,
500-501

Apache Web server setup, 502-503
CGI.pm module, escaping

HTML/URL text, 506
CGI.pm module, input

parameters, 504
CGI.pm module, object-oriented

interface, 503-504
CGI.pm module, output

generation, 504-506
CGI.pm module, passing

parameters to scripts, 507-510
connecting to MySQL server,

510-512
database browser, 513-517
FULLTEXT index searches,

524-525
grade-keeping score browser,

517-521
pattern matching searches, 521-524
U.S. Historical League common-

interest searching, 521-525
DBI scripts, Web:1178

DBI_DRIVER environment variable,
Web:1184, Web:1205

DBI_DSN environment variable, 464,
Web:1184, Web:1205

$DBI::err variable, 444

$DBI::errstr variable, 444

DBI_PASS environment variable, 464,
Web:1184, Web:1205

DBI_TRACE environment variable, 470,
Web:1205

DBI_USER environment variable, 464,
Web:1184, Web:1205

DEALLOCATE PREPARE statement, 970

debug command (mysqladmin utility), 1074

--debug-check option, 1041

--debug-info option, 1041

--debug option, 1041

debugging in DBI API for Perl, 468. See also
troubleshooting

with print statements, 468-469
with tracing, 469-471

debugging functions (C API), Web:1175

DECIMAL data type, 219, 221-222, 801

decimal format, 203

declaration statements, 1031-1033

DECLARE statement, 1031-1033

DECLARE…CONDITION statement, 1032

DECLARE…CURSOR statement, 1032

DECLARE…HANDLER statement, 1032

declaring variables in DBI API for Perl, 439

DECODE() function, 872

decode_bits variable (myisamchk utility),
1057

decryption functions, 871-875

DEFAULT attribute, 225, 245

DEFAULT CHARACTER SET table option, 961

DEFAULT clause, 218-219, 1032

DEFAULT COLLATE table option, 962

default column values, specifying, 218-219

default data directory location, 586

default database

setting, 34
specifying in mysql client program,

1059
DEFAULT() function, 885

DEFAULT keyword, 665, 960, 984

default storage engine, changing, 670

--default-character-set option (mysqld),
213, 1041, 1085

--default-collation option (mysqld), 1085

--default-storage-engine option (mysqld),
1086

--default-table-type option (mysqld), 1086

--default-time-zone option (mysqld), 1086

default_week_format system variable, 893

1241default_week_format system variable

--defaults-extra-file option, 1045-1046

--defaults-file option, 1046

--defaults-group-suffix option, 1047

defined() method (DBI API for Perl),
456-457

DEFINER clause, 300, 952, 968-969

defragmenting tables, 324

DEGREES() function, 836

--delay-key-write option (mysqld), 745,
1086

delayed inserts, 255, 331-332

DELAYED keyword, 330-332, 985

--delayed-insert option (mysqldump utility),
1107

Delayed_errors status variable, 925

delayed_insert_limit system variable, 893

Delayed_insert_threads status variable, 925

delayed_insert_timeout system variable, 893

delayed_queue_size system variable,
665, 893

Delayed_writes status variable, 925

delay_key_write system variable, 893

DELAY_KEY_WRITE table option, 327, 962

DELETE privilege, 715

--delete option (mysqlimport client
program), 1117

DELETE statement, 91-93, 970-971

cascading deletes, 187
multiple-table deletes, 173-174

--delete-master-logs option (mysqldump
utility), 1107

deleting. See also removing

all rows individually, 260
anonymous accounts, 615
rows, 91-93

delimiter command (mysql client program),
1029, 1066

--delimiter option (mysql client program),
1062

delimiters, redefining, 291, 1029

dependencies, PHP on C API, 528

deprecated SQL statements, list of, 937

DES_DECRYPT() function, 872

DES_ENCRYPT() function, 872

DES_KEY_FILE flush option, 977

--des-key-file option (mysqld), 1086

DESC keyword, 65

DESCRIBE statement, 40, 145, 971

--description option (myisamchk utility),
1053

DETERMINISTIC characteristic value, 954

development releases, testing, 697

development time, evaluating APIs,
354, 356

DIMENSION() function, 879

directory for U.S. Historical League example

generating, 478-484
generating HTML-formatted

directory, 497-500
directory locations for PHP scripts, 529

dirty reads, 181

DISABLE KEYS clause, 328, 943

--disable-keys option (mysqldump utility),
1107

--disable-log-bin option (mysqlbinlog utility),
1077

disabling

LOCAL capability, 681
options, 1039

DISCARD TABLESPACE clause, 943

disconnect() method (DBI database-handle),
Web:1186

--disconnect-slave-event-count option
(mysqld), 1097

DISJOINT() function, 882

display size for integer values, 221

DISTANCE() function, 883

DISTINCT keyword, 76, 566, 868-869, 998,
1026

1242 --defaults-extra-file option

DISTINCTROW keyword, 998

distributions. See binary distributions

division operator, 817

div_precision_increment system
variable, 893

DO clause, 299, 952, 972

do() method (DBI database-handle),
446-447, Web:1186

DOUBLE data type, 219, 222-223, 226, 802

DOUBLE PRECISION data type, 222

DROP clause, 943

drop command (mysqladmin utility), 1074

DROP DATABASE statement, 114, 590, 972

DROP DEFAULT clause, 942

DROP EVENT statement, 973

DROP FOREIGN KEY clause, 943

DROP FUNCTION statement, 973

DROP INDEX statement, 141, 328, 943, 973

DROP KEY clause, 943

DROP PARTITION clause, 945

DROP PRIMARY KEY clause, 943

DROP privilege, 715

DROP PROCEDURE statement, 973

DROP SERVER statement, 973

DROP TABLE statement, 135-136, 593, 973

DROP TRIGGER statement, 974

DROP USER statement, 615, 631, 974

DROP VIEW statement, 974

dropping

databases, 114
indexes, 141, 328
tables, 135-136

--dryrun option (mysqlhotcopy utility), 1114

DSN (data source name), 532, Web:1210

DUAL pseudo-table, 998

dump files, 748-755

--dump-date option (mysqldump utility),
1107

dump_results() method (DBI statement-
handle), Web:1192

--dump-slave option (mysqldump utility),
1107

duplicate rows in UNION statement
results, 167

dynamic attributes in DBI API for Perl,
Web:1205

E
\e command (mysql client program), 1067

-e option

myisamchk utility, 1054
mysql client program, 1062-1065
mysqlcheck client program, 1080
mysqldump utility, 1107

-E option (mysqladmin utility), 1073

edit command (mysql client program), 1067

editing permissions, 703-706

ego command (mysql client program), 1067

ELSE clause, 1030

ELSEIF clause, 1030

ELT() function, 831

--embedded option (mysql_config utility),
1071

embedded server library, 25

C API, 416
producing executable binary,

419-420
writing embedded server

applications, 416-417
--embedded-libs option (mysql_config

utility), 1071

ENABLE KEYS clause, 328, 944

--enable-locking option (mysqld), 1086

--enable-named-pipe option (mysqld), 1094

--enable-pstack option (mysqld), 1086

enabling

auto-recovery, 744-745
LOCAL capability, 681

1243enabling

logs, 646
options, 1039
secure client connections, 732-734
secure server connections, 732

ENCLOSED BY option, 988

ENCODE() function, 873

encoding strings (C API), 405-407

ENCRYPT() function, 873

encryption

of passwords in user grant table, 722
SSL-encrypted connections, 731-735

encryption functions, 871, 875

ENDPOINT() function, 880

end_html() function (CGI.pm module), 505

ENGINE clause, 50, 123-124, 592, 962

ENUM data type, 50, 228, 231, 237, 809

ENVELOPE() function, 880

environment variables, 1049, 1051

in connect() method (DBI class),
Web:1184

in DBI API for Perl,Web:1205
equality operator, 818

EQUALS() function, 882

err attribute (DBI API for Perl), Web:1205

err() method (DBI handles), Web:1195

--err-log option (mysqld_safe shell script),
1102

error handling, 367

C API, 367-370
DBI API for Perl, 443-446
MySQL programming, 343-344
PHP API, 533, 550-552,Web:1222

error log, 600, 645, 648

on multiple servers, 688
on Unix, 648-649
on Windows, 649

error messages

language, selecting, 684
suppressing in PHP API, 552

error-reporting functions (C API), Web:1149,
Web:1165-Web:1166

errorCode() method

PDO class, 550,Web:1212
PDOStatement object,Web:1217

errorInfo() method

PDO class, 550,Web:1212
PDOStatement object,Web:1218

error_count system variable, 922

ERROR_FOR_DIVISION_BY_ZERO mode,
253, 914

errstr attribute (DBI API for Perl), Web:1205

errstr() method (DBI handles), Web:1195

escape characters, 827

escape sequences, 830

in LOAD DATA statement, 987
in option files, 1048
for strings, 205-206

escape() function (CGI.pm module), 506

ESCAPED BY option, 988

escapeHTML() function (CGI.pm module),
506

escaping HTML/URL text (CGI.pm module),
506

evaluating APIs, 350-357

--event option, 751

EVENT privilege, 716, 980

event scheduler, 298-300

event_scheduler system variable, 893

events, 298-300

--events option (mysqldump utility), 1107

EVERY clause, 299

exact-value numeric data types, 203-204,
219, 221-222, 799-801

example C client programs, finding, 360

example database. See sample database

--example option (mysqld_multi shell
script), 1101

EXAMPLE storage engine, 121

1244 enabling

exceptions. See error handling

exclusive-OR operator, 823

exec() method (PDO class), 543, Web:1212

executable binary for embedded-server
applications, producing, 419-420

--execute option (mysql client program),
1062

EXECUTE privilege, 716

EXECUTE statement, 975

execute() method

DBI statement-handle, 441,Web:1192
PDOStatement object, 543,Web:1218

execute_array() method (DBI statement-
handle), Web:1192

executing

Perl scripts, 436
scripts, 98-100
SQL statements in PDO, 543-547

execution environment, evaluating APIs,
351-352

EXISTS operator, subqueries with, 162

exit command (mysql client program), 1067

--exit-info option (mysqld), 1086

EXP() function, 836

expiration methods of logs, 653-654

automating, 658-659
log replication, 657-658
log rotation, 654-657
log table expiration/rotation, 659

expire_logs_days system variable, 894

EXPLAIN statement, 40, 145, 312-313, 316,
322, 972, 975, 977

explicit data types, 201

explicit type conversion, 272

EXPORT_SET() function, 843

expressions

comparison expressions, query
optimization and, 314

explained, 264-266

NULL values in, 271-272
operators

precedence, 271
types of, 266-270

--extend-check option (myisamchk utility),
761, 1054

EXTENDED option, 949, 975, 994

--extended option (mysqlcheck client
program), 1080

--extended-insert option (mysqldump
utility), 751, 1107

extended-status command (mysqladmin
utility), 1074

EXTERIORRING() function, 881

external locking, 740

external security, 699, 709

client access control, 719
scope column contents, 720-722
statement access verification,

722-724
user grant table sort order, 724

example scenario, 724-728
grant tables

administrative privileges, list of,
713-715

database and table privileges, list of,
715-716

privilege columns, 713
representation of privileges in, 717
resource management columns,

718-719
scope-of-access columns, 712
SSL-related columns, 717-718
structure of, 709-712

grant tables, cautions concerning,
728-731

external support for programming lan-
guages, 356

--external-locking option (mysqld), 1086

EXTRACT() function, 859

EXTRACTVALUE() function, 883

1245EXTRACTVALUE() function

F
-F option

myisamchk utility, 1054
mysqlcheck client program,

1080-1081
mysqldump utility, 1108

-f option

myisampack utility, 1058
mysql client program, 1062
mysqladmin utility, 1073
mysqlbinlog utility, 1077
mysqlimport client program, 1117

Falcon log, 647

Falcon storage engine, 120

auto-recovery, 744
configuring, 680
for multiple servers, 688

Falcon tables

backups of, 754-755
database directory files for, 592
file size constraints, 597

falcon_page_size system variable, 680

falcon_serial_log_dir system variable, 680

FALSE constant, 213

FAST option, 949

--fast option

myisamchk utility, 1054
mysqlcheck client program, 1080

FEDERATED storage engine, 120

FEDERATED tables, 134-135, 592

fetch mode in PDO, setting, 545

FETCH statement, 1033

fetch() method, 448

PHP API, 541
DBI statement-handle,Web:1193
PDOStatement object, 544-545,

Web:1218
fetch-mode values (PDO constants),

Web:1223

fetchAll() method (PDOStatement object),
546, Web:1218

fetchall_arrayref() method (DBI statement-
handle), 455, Web:1193

fetchall_hashref() method (DBI statement-
handle), Web:1193

fetchColumn() method (PDOStatement
object), 544, Web:1219

FetchHashKeyName attribute (DBI API for
Perl), Web:1199

fetching rows (DBI API for Perl), 448-452

complete result sets, 454-456
counting as fetching, 452
single-row results, 452-453

fetchObject() method (PDOStatement
object), Web:1219

fetchrow_array() method (DBI statement-
handle), 442, 448, Web:1194

fetchrow_arrayref() method (DBI statement-
handle), 450, Web:1194

fetchrow_hashref() method (DBI statement-
handle), 450, Web:1194

FIELD() function, 831

fields, hidden fields in PHP API, 568, 570

FIELDS clause, 988

--fields-enclosed-by option

mysqldump utility, 1112
mysqlimport client program, 1118

--fields-escaped-by option

mysqldump utility, 1112
mysqlimport client program, 1118

--fields-optionally-enclosed-by option

mysqldump utility, 1112
mysqlimport client program, 1118

--fields-terminated-by option

mysqldump utility, 1112
mysqlimport client program, 1118

file descriptors, reserving, 909

file operations for tables, 592-593

FILE privilege, 713, 729-730

file size constraints on tables, 596-597

filename suffixes for PHP scripts, 528

filenames, case sensitivity, 106

1246 -F option

files

associated with tables, 117-118
inserting rows from, 56-57
of SQL statements, 33

filesystem access, 699. See also data
directory

option files, locking down, 707-708
types of files to protect, 700-701
Unix socket file, locking down,

706-707
FIND_IN_SET() function, 843

finish() method (DBI statement-handle),
442, 453, Web:1194

--first-slave option (mysqldump utility),
1108

--fix-db-names option (mysqlcheck client
program), 1080

--fix-table-names option (mysqlcheck client
program), 1081

FIXED data type, 221

fixed-length string data types, 228

fixed-point data types, 801

fixed-size files, changing auto-extending files
to, 678

flags. See options

flags member values (MYSQL_FIELD
structure), list of, Web:1127

FLOAT data type, 219, 222-223, 226,
801-802

floating-point data types, 203, 219,
222-223, 801-802

FLOOR() function, 278, 836

flow control with MySQL programming,
343-344

FLUSH HOSTS statement, 905

FLUSH LOGS statement, 647

--flush option (mysqld), 1087

FLUSH PRIVILEGES statement, 614,
628, 723

FLUSH statement, 977-978

flush system variable, 894

FLUSH TABLE statement, 741

FLUSH TABLES statement, 327, 603, 743

FLUSH USER_RESOURCES statement, 643

Flush_commands status variable, 925

flush-hosts command (mysqladmin utility),
1074

flush-logs command (mysqladmin utility),
1074

--flush-logs option (mysqldump utility), 751,
1108

flush-privileges command (mysqladmin
utility), 1074

--flush-privileges option (mysqldump utility),
1108

flush-status command (mysqladmin utility),
1075

flush-tables command (mysqladmin utility),
1075

flush-threads command (mysqladmin utility),
1075

flush_time system variable, 894

flushing

grant tables, 723
indexes, 327-328
logs, 647

--flushlog option (mysqlhotcopy utility),
1115

font tables, 482

FOR clause, 1005

FOR JOIN clause, 1000

FOR UPDATE clause, 1003

FOR UPGRADE option, 949

FORCE INDEX clause, 313, 1000

--force option, 762

myisamchk utility, 1054
myisampack utility, 1058
mysql client program, 1062
mysqladmin utility, 1073
mysqlcheck client program, 1081

1247--force option

mysqldump utility, 1108
mysqlimport client program, 1117
mysql_install_db shell script, 1072

--force-if-open option (mysqlbinlog utility),
1077

--force-read option (mysqlbinlog utility),
1077

forcing type conversion, 277, 280

FOREIGN KEY clause, 52, 187, 959

foreign key support in CREATE TABLE
statements, 964

foreign_key_checks system variable, 922

foreign keys, 50, 185-186

creating, 187-192
explained, 53
referential integrity without, 192-193

forgotten passwords, 627

format files, 117, 762

format specifiers for dates/times, 856

FORMAT() function, 843

format-conversion functions (spatial values),
877-879

formats

for binary logs, 773
for spatial values, 877

formatting, 342

FOUND_ROWS() function, 885

fractions, rounding, 219

FROM clause, 58, 163, 999-1000,
1007-1009

FROM_DAYS() function, 859

FROM_UNIXTIME() function, 859

ft_boolean_syntax system variable, 894

ft_max_word_len system variable, 894,
1057

ft_min_word_len system variable, 894, 1057

ft_query_expansion_limit system
variable, 894

ft_stopword_file system variable, 894, 1057

FULL keyword, 239

full-text searches, 194-195, 846

Boolean mode full-text searches,
197-199

configuring, 200
DBI API for Perl, 524-525
natural language full-text searches,

196-197
query expansion full-text

searches, 199
system variables, 894

FULLTEXT clause, 960, 955

FULLTEXT indexes, 137, 194-195, 1052

func() method (DBI API for Perl),
Web:1196-Web:1197

functions, 830

advisory locking functions, 875-876
in C API,Web:1136

administrative routines,
Web:1173-Web:1175

connection management routines,
Web:1137-Web:1149

debugging routines,Web:1175
error-reporting routines,Web:1149
information routines,

Web:1161-Web:1164
initialization and termination

routines,Web:1136-Web:1137
multiple result set routines,

Web:1164
prepared statement routines,

Web:1165-Web:1173
result set processing routines,

Web:1152-Web:1161
statement construction

and execution routines,
Web:1150-Web:1152

threaded client routines,Web:1175
transaction control routines,

Web:1164
case sensitivity, 106
cast functions, 833-834
comparison functions, 831-833
date and time functions, 852-867
in DBI API for Perl,

Web:1197-Web:1198

1248 --force option

in include files (PHP API), 534-539
miscellaneous functions, 883-888
numeric functions, 834-839
security functions, 871-875
spatial functions, 877

format-conversion functions,
877-879

property functions, 879-881
relationship functions, 882-883

stored functions, 292-295
string functions, 840-852
summary functions, 868-871
XML functions, 883

G
\G command (mysql client program), 31,

1067

-G option (mysql client program), 1062-1063

-g option (mysqlcheck client program), 1080

--gdb option (mysqld), 1087

general handle attributes in DBI API for Perl,
Web:1199-Web:1200

general handle methods in DBI API for Perl,
Web:1195-Web:1196

general query log, 600, 645, 649

--general-log option (mysqld), 1087

general_log system variable, 895

general_log_file system variable, 895

GEOMCOLLFROMTEXT() function, 878

GEOMCOLLFROMWKB() function, 877

geometries. See spatial function

GEOMETRY data type, 812

GEOMETRYCOLLECTION data type, 812

GEOMETRYCOLLECTIONFROMTEXT()
function, 878

GEOMETRYCOLLECTIONFROMWKB()
function, 877

GEOMETRYFROMTEXT() function, 878

GEOMETRYFROMWKB() function, 877

GEOMETRYN() function, 881

GEOMETRYTYPE() function, 880

GEOMFROMTEXT() function, 878

GEOMFROMWKB() function, 877

getAttribute() method

PDO class,Web:1213
PDOStatement object,Web:1219

getAvailableDrivers() method (PDO class),
Web:1213

getCode() method (PDOException object),
551, Web:1222

getColumnMeta() method (PDOStatement
object), Web:1219

GETLOCK() function, 876

getMessage() method (PDOException
object), 551, Web:1222

Getopt module, command-line options, 467

GET_FORMAT() function, 859

get_info() method (DBI database-handle),
Web:1187

GET_LOCK() function, 875-876

GLENGTH() function, 880-881

GLOBAL keyword, 663, 668, 673, 1006

global option files, 1046

global privileges, 638

global variables, 661

displaying value of, 890
setting, 1004

go command (mysql client program), 1067

grade-keeping example

displaying scores in browser, 517-521
entering/editing scores online,

552-565
objectives of, 20
table creation, 42-53

GRANT OPTION privilege, 642, 644, 714,
729, 981-982

GRANT statement, 631, 634, 643, 983

enabling privilege administration, 642
requiring secure connections, 640-642
resource consumption limitations,

642-643

1249GRANT statement

revoking privileges, 644
types of privileges, 636-640
USAGE privilege, 640

grant tables

administrative privileges, list of,
713-715

cautions concerning, 728-731
database and table privileges, list of,

715-716
example scenario, 724-728
flushing, 723
initial account passwords, setting,

610-615
initializing, 787-788
list of, 630
password encryption in, 722
privilege columns, 713
representation of privileges in, 717
resource management columns,

718-719
scope-of-access columns, 712,

720-722
sort order, 724
SSL-related columns, 717-718
structure of, 709-712

GRANT USAGE ON statement, 734

GRANT USAGE statement, 645

granting privileges, 634-643

enabling privilege administration, 642
requiring secure connections, 640-642
resource consumption limitations,

642-643
types of privileges, 636-640
USAGE privilege, 640

greater than (>) operator, 820

greater than or equal to (>=) operator, 820

GREATEST() function, 831

GROUP BY clause, 78, 1001

GROUP_CONCAT() function, 869

group_concat_max_len system variable, 895

grouping operators, 815

groups in option files, 1047

H
\h command (mysql client program), 1067

-h option (mysqld), 1042, 1085

-H option

mysql client program, 1062
mysqlbinlog utility, 1077

handle_options() function, 375-384

HandleError attribute (DBI API for Perl),
Web:1199

handler conditions in DECLARE statements,
1032

HANDLER statement, 983-984

Handler_commit status variable, 925

Handler_delete status variable, 925

Handler_discover status variable, 926

Handler_prepare status variable, 926

Handler_read_first status variable, 926

Handler_read_key status variable, 926

Handler_read_next status variable, 926

Handler_read_prev status variable, 926

Handler_read_rnd status variable, 926

Handler_read_rnd_next status variable, 926

Handler_rollback status variable, 926

Handler_savepoint status variable, 926

Handler_savepoint_rollback status
variable, 926

Handler_update status variable, 926

Handler_write status variable, 926

handles (DBI API for Perl), 437

hardware optimizations, 339-340

hash argument in DBI API for Perl methods,
Web:1179

HASH() function, 966

HASH indexes, 138-139, 310

hash partitioning, 133

have_compress system variable, 895

have_crypt system variable, 895

1250 GRANT statement

have_dynamic_loading system variable, 895

have_engine_name system variable , 895

have_geometry system variable, 895

have_openssl system variable, 895

have_query_cache system variable, 895

have_raid system variable, 896

have_rtree_keys system variable, 896

have_ssl system variable, 896

have_symlink system variable, 896

HAVING clause, 81, 1002

header files

list of, 364
specifying pathname for, 360,

Web:1122
header() function (CGI.pm module), 505

HEAP storage engine, 119

help, 4, 780

help command (mysql client program), 1067

help message for MySQL programs,
1038-1039

--help option, 763, 1038, 1041

HEX() function, 279, 843

--hex-blob option (mysqldump utility), 1108

hexadecimal constants, type conversion
and, 274

hexadecimal format, 203

hexadecimal notation for string values, 206

--hexdump option (mysqlbinlog utility),
1077

hidden fields in PHP API, 568-570

HIGH_NOT_PRECEDENCE SQL mode,
815, 914

HIGH_PRIORITY select option, 330-331,
985, 998

hints

for MySQL query optimizer, 313
in SELECT statements, 1000

Historical League. See U.S. Historical League
example

history file for mysql client program
statements, 1060

history lists (shells), 94-95

history of MySQL, 1

host grant table, 710

--host option, 1042

Host value (scope column contents),
720-721

hostname, specifying

in account names, 634
for server connections, 28

hostname specifiers

patterns in, 728
wildcard characters in, 633

hostname system variable, 896

HOSTS flush option, 977

HOUR() function, 860

HTML

in PHP scripts, 529-531
XHTML versus, 505

--html option (mysql client program), 1062

HTML text, escaping, 506

HTML-formatted directory for U.S. Historical
League example, generating, 497-500

htmlspecialchars() function (PHP API), 541

I
-i option

myisamchk utility, 1054
mysql client program, 1062
mysqladmin utility, 1073
mysqldump utility, 1106
mysqlimport client program, 1117
mysqlshow utility, 1119

--i-am-a-dummy option (mysql client
program), 1062

identically-equal-to operator (===),
PHP API, 547

1251identically-equal-to operator (===)

IDENTIFIED BY clause, 632, 635, 645,
969, 981

identifiers. See naming conventions

identity system variable, 922

IF EXISTS clause, 135, 972-974

IF NOT EXISTS clause, 113, 125, 951, 959

IF statement, 1030

IF() function, 66, 832

IFNULL() function, 832

IGNORE INDEX clause, 313, 1000

IGNORE keyword, 254, 939, 971, 985, 987,
1028

IGNORE LINES clause, 989

--ignore option (mysqlimport client
program), 1117

--ignore-lines option (mysqlimport client
program), 1117

IGNORE_SPACE SQL mode, 830, 915

--ignore-spaces option (mysql client
program), 1062

--ignore-table option (mysqldump utility),
1108

image data (C API), 407-409

implicit data types, 201

implicit default values for columns, 218

implicit type conversion, 272

implicitly committing transactions, 178

IMPORT TABLESPACE clause, 944

IN clause, 954, 1007

IN parameter, 295-296

IN() operator, 63, 160-161, 821

include directives in option files, 1049

include files (PHP API), 534-539

--include option (mysql_config utility), 1071

--include-master-host-port option
(mysqldump utility), 1108

include_path configuration setting
(PHP API), 535

INDEX clause, 960

index definitions in CREATE TABLE state-
ments, 959-961

INDEX DIRECTORY table option, 962

index files, regenerating, 762

index hints in SELECT statements, 1000

INDEX privilege, 716

index types, selecting, 310

indexed sequential access method, 50

indexes. See also indexing

case sensitivity, 106
composite indexes for multiple

sequences, 257
creating, 137-141
dropping, 141
dropping and rebuilding, 328
flushing, 327-328
FULLTEXT indexes, 194-195, 1052
numbering, determining, 1053
storage engine characteristics, 136-137

indexing, 304. See also indexes

analyzing tables, 313
benefits of, 304-307
BLOB and TEXT data types, 230
costs of, 307-308
selecting columns to index, 308-311
synthetic indexes, 325

individual InnoDB tablespaces, 679

INET_ATON() function, 885

INET_NTOA() function, 886

information functions (C API),
Web:1161-Web:1164

--information option (myisamchk utility),
1054

INFORMATION_SCHEMA database, 147-149

initialization functions (C API),
Web:1136-Web:1137

initializing data directory and grant tables,
787-788

--init-connect option (mysqld), 1087

init_connect system variable, 896

1252 IDENTIFIED BY clause

--init-file option (mysqld), 1087

init_file system variable, 896

--init-rpl-role option (mysqld), 1097

--init-slave option (mysqld), 1097

init_slave system variable, 896

INNER JOIN keyword, 1001

inner joins, 84, 152-153

Innobase storage engine. See InnoDB
storage engine

InnoDB auto-recovery, troubleshooting,
767-768

InnoDB Hot Backup, 754

InnoDB log, 647

--innodb option (mysqld), 1095

InnoDB options for mysqld, 1095-1096

InnoDB shared tablespace, relocating, 606

InnoDB storage engine, 119

auto-recovery, 744
configuring, 674-680
foreign key support, 186
for multiple servers, 688
status variables, 930-933
system variables, 896

InnoDB tables

AUTO_INCREMENT attribute
in, 259

backups of, 754-755
checking/repairing, 758
database directory files for, 591
explained, 50
file size constraints, 596
index types, 310
indexing of, 306
removing, 590
table locking and concurrency, 333

innodb_adaptive_hash_index system
variable, 896

innodb_additional_mem_pool_size system
variable, 896

--innodb_autoextend_increment option
(mysqld), 1095

innodb_autoextend_increment system
variable, 676, 897

innodb_buffer_pool_awe_mem_mb system
variable, 897

Innodb_buffer_pool_pages_data status
variable, 930

Innodb_buffer_pool_pages_dirty status
variable, 930

Innodb_buffer_pool_pages_flushed status
variable, 930

Innodb_buffer_pool_pages_free status
variable, 930

Innodb_buffer_pool_pages_latched status
variable, 930

Innodb_buffer_pool_pages_misc status
variable, 930

Innodb_buffer_pool_pages_total status
variable, 930

Innodb_buffer_pool_reads status
variable, 931

Innodb_buffer_pool_read_ahead_rnd status
variable, 931

Innodb_buffer_pool_read_ahead_seq status
variable, 931

Innodb_buffer_pool_read_requests status
variable, 931

innodb_buffer_pool_size system variable,
679, 897

Innodb_buffer_pool_wait_free status
variable, 931

Innodb_buffer_pool_write_requests status
variable, 931

innodb_checksums system variable, 897

innodb_commit_concurrency system
variable, 897

innodb_concurrency_tickets system
variable, 897

--innodb_data_file_path option (mysqld),
1095

innodb_data_file_path system variable,
674, 897

1253innodb_data_file_path system variable

Innodb_data_fsyncs status variable, 931

--innodb_data_home_dir option (mysqld),
1095

innodb_data_home_dir system variable,
674, 897

Innodb_data_pending_fsyncs status
variable, 931

Innodb_data_pending_reads status
variable, 931

Innodb_data_pending_writes status
variable, 931

Innodb_data_read status variable, 931

Innodb_data_reads status variable, 931

Innodb_data_writes status variable, 931

Innodb_data_written status variable, 931

Innodb_dblwr_pages_written status
variable, 931

Innodb_dblwr_writes status variable, 932

innodb_doublewrite system variable, 897

--innodb_fast_shutdown option (mysqld),
1095

innodb_fast_shutdown system variable, 897

innodb_file_io_threads system variable, 898

--innodb_file_per_table option (mysqld),
1095

innodb_file_per_table system variable, 898

--innodb_flush_log_at_trx_commit option
(mysqld), 1096

innodb_flush_log_at_trx_commit system
variable, 898

innodb_flush_method system variable, 898

innodb_force_recovery system variable,
767, 898

innodb_locks_unsafe_for_binlog system
variable, 899

innodb_lock_wait_timeout system
variable, 898

--innodb_log_archive option (mysqld), 1096

innodb_log_archive system variable, 899

--innodb_log_arch_dir option (mysqld),
1096

innodb_log_arch_dir system variable, 899

innodb_log_buffer_size system variable,
679, 899

innodb_log_files_in_group system variable,
680, 899

innodb_log_file_size system variable,
680, 899

--innodb_log_group_home_dir option
(mysqld), 1096

innodb_log_group_home_dir system
variable, 679, 899

Innodb_log_waits status variable, 932

Innodb_log_writes status variable, 932

Innodb_log_write_requests status
variable, 932

--innodb_max_dirty_pages_pct option
(mysqld), 1096

innodb_max_purge_lag system variable, 900

innodb_mirrored_log_groups system
variable, 900

innodb_open_files system variable, 900

Innodb_os_log_fsyncs status variable, 932

Innodb_os_log_pending_fsyncs status
variable, 932

Innodb_os_log_pending_writes status
variable, 932

Innodb_os_log_written status variable, 932

Innodb_pages_created status variable, 932

Innodb_pages_read status variable, 932

Innodb_pages_written status variable, 932

Innodb_page_size status variable, 932

innodb_rollback_on_timeout system
variable, 900

Innodb_rows_deleted status variable, 933

Innodb_rows_inserted status variable, 933

Innodb_rows_read status variable, 933

Innodb_rows_updated status variable, 933

1254 Innodb_data_fsyncs status variable

Innodb_row_lock_current_waits status
variable, 932

Innodb_row_lock_time status variable, 932

Innodb_row_lock_time_avg status
variable, 932

Innodb_row_lock_time_max status
variable, 933

Innodb_row_lock_waits status variable, 933

--innodb_safe_binlog option (mysqld), 1096

--innodb_status_file option (mysqld), 1096

innodb_support_xa system variable, 900

innodb_sync_spin_loops system
variable, 900

innodb_table_locks system variable, 900

innodb_thread_concurrency system
variable, 901

innodb_thread_sleep_delay system
variable, 901

INOUT parameter, 295-296, 954

input buffer_type values (MYSQL_BIND
structure), Web:1133

input formats for date and time data types,
248-249

input generation with MySQL programming,
342

input handling with MySQL programming,
341

input line editor, 96, 98

input parameters

CGI.pm module, 504
in PHP API, 554-555

input validation, 342, 494

INSERT DELAYED statement, 255, 331-332,
665, 893

INSERT privilege, 716

INSERT statement, 54-56, 326, 984-985

INSERT() function, 844

insert_id system variable, 922

--insert-ignore option (mysqldump utility),
1108

INSERT_METHOD table option, 963

inserting rows, 53-57

inserts, concurrent, 332-333

install_driver() method (DBI class),
Web:1185

--install option (mysqld), 1094

--install-manual option (mysqld), 1095

installation packages

installing, 783-786
obtaining, 778-780

installed_drivers() method (DBI class),
Web:1185

installing

Apache server
on Unix, 790-792
on Windows, 796

CGI scripts on Apache Web servers,
502-503

DBI API for Perl
on Unix, 789-790
on Windows, 796

MySQL
on Unix, 780-789
on Windows, 792-796

mysqld, 1083
PHP

on Unix, 790-792
on Windows, 796

sampdb sample database distribution,
777-778

security measures for, 610-616
setting account passwords, 610-615
setting additional server

passwords, 615
INSTR() function, 844

INT data type, 52, 221, 226, 800

INTEGER data type, 221

integer data types, 219, 221-222, 799, 801

integer division operator, 817

integers, decimal versus hexadecimal
format, 203

integration, 344

1255integration

interactive mode for mysql client program,
1059

interactive online quiz for U.S. Historical
League example, creating, 565-570

interactive statement-execution sample
program (C API), 409-410

interactive_timeout system variable, 901

interfaces, PHP with MySQL, 528

INTERIORRING() function, 881

internal format

converting
to Well-Known Binary format, 879
Well-Known Binary format to, 877
to Well-Known Text format, 879
Well-Known Text format to, 878

for spatial values, 877
internal locking, 740

of all databases, 743
of individual tables, 740-743

internal security, 699

data directory, access to, 701-702
data directory, locking down, 702-706
option files, locking down, 707-708
types of files to protect, 700-701
Unix socket file, locking down,

706-707
internationalization, 681

character set support, configuring,
684-685

error message language, selecting, 684
time zone support, configuring,

682-683
interpreted languages, compiled languages

versus, 352

intersection operator, 823

INTERSECTS() function, 882

INTERVAL clause, 854, 858

INTERVAL operator, 279

interval specifiers, 854

INTERVAL() function, 832

INTO clause, 1002-1003

INTO DUMPFILE clause, 1002

INTO OUTFILE clause, 1002

introducer notation, 209

introducers, 825

invalid data values, handling, 252-254

inversion operator, 823

INVOKER keyword, 300

IO_THREAD slave option, 1025

IP numbers, as hostnames, 633

IS FALSE operator, 822

IS NOT NULL operator, 64, 822

IS NULL operator, 64, 822

IS TRUE operator, 822

IS UNKNOWN operator, 822

IS_BLOB() accessor macro (C API),
Web:1136

IS_FREE_LOCK() function, 876

IS_NOT_NULL() accessor macro (C API),
Web:1136

is_null() function (PHP API), 547

IS_NUM() accessor macro (C API),
Web:1135

IS_PRI_KEY() accessor macro (C API),
Web:1135

IS_USED_LOCK() function, 876

ISAM (indexed sequential access
method), 50

ISAM log, 647

--isam option (mysqld), 1087

ISCLOSED() function, 880-881

ISEMPTY() function, 880

ISNULL() function, 833

isolation levels (transactions), 180-182

ISRING() function, 881

isset() function (PHP API), 547

ISSIMPLE() function, 880

ISSUER clause, 734, 982

ITERATE statement, 1030

1256 interactive mode for mysql client program

J–K
-j option

myisampack utility, 1059
mysqlbinlog utility, 1077

JOIN keyword, 1001

--join option (myisampack utility), 1059

joins, 84, 90, 150-151

benefits of indexing for, 306
cross joins, 152
forcing order of, 313
inner joins, 152-153
left and right outer joins, 154-158
qualified column references, 153
query optimization, 315
rewriting subqueries as, 164-165
in SELECT statements, 1001
self-joins, 153

join_buffer_size system variable, 667, 901

-k option

myisamchk utility, 1054
mysqlshow utility, 1119

-K option (mysqldump utility), 1107

keep_files_on_create system variable, 901

--keepold option (mysqlhotcopy utility),
1115

key caches, 336-337, 671

KEY clause, 960

key files, 732

KEY() function, 966

Key_blocks_not_flushed status variable, 927

Key_blocks_unused status variable, 927

Key_blocks_used status variable, 927

KEY_BLOCK_SIZE index option, 956

KEY_BLOCK_SIZE table option, 963

--key_buffer_size option, 763

key_buffer_size system variable, 661,
671-672, 901, 1057

key_cache_age_threshold system variable,
673, 901

key_cache_block_size system variable, 672,
902, 1057

key_cache_limit system variable, 672, 902

Key_reads status variable, 927

Key_read_requests status variable, 927

Key_writes status variable, 927

Key_write_requests status variable, 927

--keys option (mysqlshow utility), 1119

--keys-used option (myisamchk utility),
1054

keywords

case sensitivity, 106
in column definitions, 959

kill command (mysqladmin utility), 1075

KILL statement, 986

L
-L option

mysql client program, 1065
mysqld, 1087
mysqlimport client program,

1117-1118
-l option

mysqlbinlog utility, 1077
mysqldump utility, 1108

labels for control structure statements, 1029

--language option (mysqld), 1087

LANGUAGE SQL characteristic value, 954

language system variable, 902

languages for error messages,
selecting, 684

large_files_support system variable, 902

--large-pages option (mysqld), 1087

large_pages system variable, 902

large_page_size system variable, 902

LAST_DAY() function, 861

last_insert_id system variable, 922

LAST_INSERT_ID() function, 255, 262,
264, 886

1257LAST_INSERT_ID() function

Last_query_cost status variable, 927

lastInsertId() method (PDO class),
Web:1213

--lc-time-names option (mysqld), 1087

lc_time_names system variable, 902

LCASE() function, 844

--ldata option (mysql_install_db shell
script), 1072

League. See U.S. Historical League example

LEAST() function, 833

LEAVE statement, 1031

--ledir option (mysqld_safe shell script),
1103

LEFT JOIN keyword, 1001

left joins, 87, 154-158

LEFT OUTER JOIN keyword, 1001

LEFT() function, 844

leftmost prefixes, 309

length of strings, determining, 210

LENGTH() function, 210, 803, 844

less than (<) operator, 819

less than or equal to (<=) operator, 820

LEVEL clause, 852

libmysqld, 416, 625

producing executable binary, 419-420
writing embedded server applications,

416-417
--libmysqld-libs option (mysql_config utili-

ty), 1071

library files, 534

--libs option (mysql_config utility), 1071

--libs_r option (mysql_config utility), 1071

license system variable, 902

LIKE clause, 145, 662, 668, 959, 964,
1007-1011, 1021, 1024

LIKE operator, 73, 268-269, 315, 826

LIMIT clause, 67-68, 80, 168, 453, 971,
1002, 1025-1028

limiting

query results, 67-68
resource consumption, 642-643

--line-numbers option (mysql client
program), 1062

LINEAR keyword, 966

LINEFROMTEXT() function, 878

LINEFROMWKB() function, 877

LINES clause, 989

--lines-terminated-by option

mysqldump utility, 1112
mysqlimport client program, 1118

LINESTRING data type, 812

LINESTRINGFROMTEXT() function, 878

LINESTRINGFROMWKB() function, 877

linking client programs, 360-363,
Web:1122-Web:1123

Linux RPM distributions, installing, 783-784

Linux variants, server startup, 620

list partitioning, 132

LIST() function, 965

listening for connections, 629-630

LN() function, 836

LOAD DATA LOCAL statement, 326

LOAD DATA statement, 56, 326, 681,
986, 990

LOAD INDEX INTO CACHE statement,
673, 991

load_defaults() function, 372, 375

LOAD_FILE() function, 886

loading data, query optimization in, 326-329

LOCAL capability, enabling/disabling, 681

LOCAL keyword, 56, 663, 970, 986

--local option (mysqlimport client program),
1117

1258 Last_query_cost status variable

--local-infile option

mysql client program, 1062
mysqld, 1088

--local-load option (mysqlbinlog utility),
1077

localhost

as hostname, 633
TCP/IP connections to,Web:1145

localization, 681

character set support, configuring,
684-685

error message language, selecting, 684
time zone support, configuring,

682-683
--localstatedir option, 586

LOCALTIME() function, 861

LOCALTIMESTAMP() function, 861

local_infile system variable, 902

LOCATE() function, 845

LOCK IN SHARE MODE clause, 1003

LOCK TABLE statement, 740, 991-992

LOCK TABLES privilege, 716, 980

LOCK TABLES statement, 183, 330

--lock-all-tables option (mysqldump utility),
751, 1108

--lock-tables option

mysqldump utility, 1108
mysqlimport client program, 1118

locked_in_memory system variable, 902

locking. See also external locking; internal
locking

with advisory locking functions,
875-876

query optimization and, 329-331
changing scheduling priorities, 331
concurrent inserts, 332-333
delayed inserts, 331-332

row-level locking, 712
tables, 183

log files. See logs

--log option

mysqld, 1088
mysqld_multi shell script, 1101

log replication, 657-658

log rotation, 654, 657

log system variable, 902

log tables, 652-653, 659

--log-bin option (mysqld), 1088

--log-bin-index option (mysqld), 1088

log_bin system variable, 902

log_bin_trust_function_creators system
variable, 295, 903

--log-error option

mysqld, 1088
mysqldump utility, 1109
mysqld_safe shell script, 1103

log_error system variable, 903

--log-isam option (mysqld), 1088

--log-long-format option (mysqld), 1088

--log-output option (mysqld), 1088

log_output system variable, 903

--log-queries-not-using-indexes option
(mysqld), 1089

log_queries_not_using_indexes system
variable, 903

--log-short-format option (mysqld), 1089

--log-slave-updates option (mysqld), 1097

log_slave_updates system variable, 903

--log-slow-admin-statements option
(mysqld), 1089

--log-slow-queries option (mysqld), 1089

log_slow_queries system variable, 903

--log-tc option (mysqld), 1089

--log-tc-size option (mysqld), 1089

--log-update option (mysqld), 1090

--log-warnings option (mysqld), 1090

log_warnings system variable, 903

LOG() function, 836

1259LOG() function

LOG2() function, 837

LOG10() function, 837

logical AND operator, 824

logical exclusive-OR operator, 825

logical negation operator, 824

logical operators, 62, 266, 824-825

logical OR operator, 825

login accounts

for multiple servers, 688
for MySQL user, creating, 782
for running server, 617-618

logrotate utility, 656

logs, 645

binary log, 650-651
enabling, 646
error log, 648

on Unix, 648-649
on Windows, 649

expiration methods, 653-654
automating, 658-659
log replication, 657-658
log rotation, 654-657
log table expiration/rotation, 659

flushing, 647
general query log, 649
importance of security for, 700
list of, 599-602
for multiple servers, 687-688
output destinations for, 652-653
relay log, 652
relocating, 607
slow-query log, 649-650

LOGS flush option, 977

long-form options, 1039-1040, 1048

long_query_time system variable, 904

LONGBLOB data type, 230, 806

LONGTEXT data type, 230, 808

looks_like_number() function, Web:1197

LOOP statement, 1031

loops, fetching rows, 448

--loose- option prefix, 1040

--low-priority option (mysqlimport client
program), 1118

--low-priority-updates option (mysqld), 1090

LOWER() function, 211, 845

lower_case_file_system system
variable, 904

lower_case_table_names system
variable, 904

lowercase, forcing, 107

LOW_PRIORITY keyword, 330-331, 971,
985-986, 1028

low_priority_updates system variable, 904

LPAD() function, 845

LTRIM() function, 846

M
-m option

myisamchk utility, 1054
mysqlcheck client program, 1081

Mac OS X systems, server startup, 621

mailing lists, subscribing to, 780

maintenance. See preventive maintenance

MAKEDATE() function, 861

Makefile, creating, 361-363

MAKETIME() function, 861

MAKE_SET() function, 846

management of accounts, 630-631

changing/resetting passwords, 644-645
granting privileges, 634-643
revoking privileges, 643-644
specifying account name, 632-634
specifying hostname, 634
viewing privileges, 643

MASTER option, 977, 995

MASTER_CONNECT_RETRY parameter
definition, 947

--master-data option (mysqldump utility),
1109

MASTER_HOST parameter definition, 947

1260 LOG2() function

--master-info-file option (mysqld), 1097

MASTER_LOG_FILE parameter
definition, 947

MASTER_LOG_POS parameter
definition, 947

MASTER_PASSWORD parameter
definition, 947

MASTER_PORT parameter definition, 948

MASTER_POS_WAIT() function, 886

--master-retry-count option (mysqld), 1098

master-slave replication relationship,
establishing, 770-773

MASTER_SSL parameter definitions, 948

MASTER_USER parameter definition, 948

MATCH operator, 196

MATCH() function, 846

MAX() function, 81, 870

max_allowed_packet system variable, 231,
666, 905

mysql client program, 1065
mysqldump utility, 1113

max_binlog_cache_size system
variable, 905

--max-binlog-dump-events option (mysqld),
1098

max_binlog_size system variable, 905

max_connections system variable, 666, 905

max_connect_errors system variable, 905

MAX_CONNECTIONS_PER_HOUR option, 982

max_delayed_threads system variable, 905

max_error_count system variable, 905

max_heap_table_size system variable, 906

max_insert_delayed_threads system
variable, 906

max_join_size system variable, 906, 922,
1066

max_length_for_sort_data system
variable, 906

max_prepared_stmt_count system
variable, 906

MAX_QUERIES_PER_HOUR option, 982

--max-record-length option (myisamchk
utility), 1054

max_relay_log_size system variable, 906

MAX_ROWS option, 125, 963, 966

max_seeks_for_key system variable, 906

max_sort_length system variable, 231, 907

max_sp_recursion_depth system
variable, 907

max_tmp_tables system variable, 907

MAX_UPDATES_PER_HOUR option, 982

Max_used_connections status variable, 927

MAX_USER_CONNECTIONS option, 982

max_user_connections system variable, 907

max_write_lock_count system variable, 907

--maximum- option prefix, 1040

MBR (minimum bounding rectangle), 882

MBRCONTAINS() function, 882

MBRDISJOINT() function, 882

MBREQUAL() function, 882

MBRINTERSECTS() function, 882

MBROVERLAPS() function, 882

MBRTOUCHES() function, 882

MBRWITHIN() function, 882

MD5() function, 874

measuring strings, 210

MEDIUM option, 949

--medium-check option, 761

myisamchk utility, 1054
mysqlcheck client program, 1081

MEDIUMBLOB data type, 230, 806

MEDIUMINT data type, 221, 226, 800

MEDIUMTEXT data type, 230, 808

member entries for U.S. Historical League
example, updating, 490-496

--memlock option (mysqld), 1090

1261--memlock option (mysqld)

MEMORY storage engine, 119

MEMORY tables

AUTO_INCREMENT attribute
in, 259

database directory files for, 591
index types, 310

MERGE storage engine, 118

MERGE tables, 130-132

database directory files for, 591
file size constraints, 596

metadata

database metadata, 144
command line, 149-150
INFORMATION_SCHEMA

database, 147-149
SHOW statements, 145-146

result set metadata
C API, 400-405
DBI API for Perl, 471-475

metadata sample program, 405

--method option (mysqlhotcopy utility),
1115

methods

in DBI API for Perl,
Web:1178-Web:1180

administrative methods,
Web:1196-Web:1197

class methods,Web:1180-Web:1185
database-handle methods,

Web:1185-Web:1191
general handle methods,

Web:1195-Web:1196
statement-handle methods,

Web:1191-Web:1195
PDO constants,Web:1223-Web:1224
PDO methods,Web:1208-Web:1209

for PDO class,Web:1209-
Web:1215

for PDOException object,
Web:1222

for PDOStatement object,
Web:1215-Web:1221

MICROSECOND() function, 861

MID() function, 847

MIN() function, 81, 870

min_examined_row_limit system
variable, 907

MIN_ROWS option, 125, 963, 966

minimum bounding rectangle (MBR), 882

MINUTE() function, 861

mixed-format binary logging, 773

MLINEFROMTEXT() function, 879

MLINEFROMWKB() function, 878

MOD() function, 837

modes (SQL), 102-103

MODIFY clause, 142, 944

module script language interpreters,
standalone versions versus, 353-354

modules, obtaining, 778

modulo operator, 817

MONTH() function, 71, 861

MONTHNAME() function, 862

moving tables between databases, 144. See
also relocation of data directory content

MPOINTFROMTEXT() function, 879

MPOINTFROMWKB() function, 878

MPOLYFROMTEXT() function, 879

MPOLYFROMWKB() function, 878

MRG_MyISAM storage engine, 115

mSQL, 1

MULTILINESTRING data type, 812

MULTILINESTRINGFROMTEXT() function, 879

MULTILINESTRINGFROMWKB() function, 878

multiple result set functions (C API),
Web:1164

multiple sequences, composite indexes
for, 257

multiple servers, 685-688

configuring, 688-690
mysqld_multi script, 691-693
running on Windows, 693-695
setting passwords, 615
specifying startup options, 690-691

1262 MEMORY storage engine

multiple tables, retrieving information from,
84, 90-91

multiple-row result set processing in
PHP API, 539-547

multiple-statement execution (C API),
420-422

multiple-table deletes, 173-174

multiple-table queries, 306

multiple-table retrievals

with joins, 150-151
cross joins, 152
inner joins, 152-153
left and right outer joins, 154-158
qualified column references, 153
self-joins, 153

with subqueries, 158-159
with ALL and ANY operators,

161-162
correlated subqueries, 163
with EXISTS and NOT EXISTS

operators, 162
in FROM clause, 163
with IN and NOT IN operators,

160-161
with relative comparison operators,

159-160
rewriting as joins, 164-165

with UNION statement, 165, 169
multiple-table updates, 173-174

multiplication operator, 817

MULTIPOINT data type, 812

MULTIPOINTFROMTEXT() function, 879

MULTIPOINTFROMWKB() function, 878

MULTIPOLYGON data type, 812

MULTIPOLYGONFROMTEXT() function, 879

MULTIPOLYGONFROMWKB() function, 878

my_bool data type (C API), Web:1123

my_getopt.h header file, 379

my_global.h header file, 364

MY_INIT() initialization macro, 366

my_print_defaults utility, 1049

my_sys.h header file, 364

my_ulonglong data type (C API), Web:1123

MyISAM storage engine, 118

auto-recovery, 744
configuring, 671-673
system variables, 907

MyISAM tables

AUTO_INCREMENT attribute in,
256-258

checking/repairing, 757-763
database directory files for, 591
explained, 50
file size constraints, 596
index types, 310
indexing of, 305
key caches, 336-337
table locking and concurrency, 333

myisam_block_size system variable, 907,
1057

myisam_data_pointer_size system
variable, 907

myisam_max_sort_file_size system
variable, 908

--myisam-recover option (mysqld), 744,
1090

myisam_recover_options system
variable, 908

myisam_repair_threads system
variable, 908

myisam_sort_buffer_size system
variable, 908

myisam_stats_method system variable, 908

myisam_use_mmap system variable, 908

myisamchk utility, 328, 580, 738-739, 757,
760, 763, 1037, 1051-1052

options, list of, 1053-1056
program variables, list of, 1056-1057
standard options supported, 1052

myisampack utility, 1037, 1058

options, list of, 1058-1059
standard options supported, 1058

1263myisampack utility

mysql, 24, 580, 1037, 1059-1060

avoiding typing in, 95-100
command editing in, 1060
commands for, 1066-1068
default databases, specifying, 1059
MySQL versus, 25
options, list of, 1061-1065
program variables, list of, 1065-1066
prompt definition sequences,

1068-1069
prompts for, 1060
SQL statement execution overview,

30-33
standard options supported, 1061

MySQL

advantages of, 2-4
client/server architecture, 24-25
components of, 580-581
development releases, testing, 697
history of, 1
installing

on Unix, 780-789
on Windows, 792-796

integration with Web servers, 344-345
login accounts, creating, 782
obtaining, 778-780
online resources for information,

11-12
porting database systems to, 4
prerequisites for running, 27-28
pronunciation of, 25
server connections, establishing/

terminating, 28-30, 93-95
software included with, 5
technical support for, 4
updating, 695-696
versions of, 9-10, 780

MySQL AB, 2

MySQL accounts. See accounts

MySQL data directory. See data directory

MySQL driver

connect() options,Web:1181
database-handle attributes,

Web:1200-Web:1201
mysql extension, 528

MySQL programming

APIs for, 345-347. See also C API;
DBI API for Perl; PHP API

C API, 347
DBI API for Perl, 347-349
evaluating, 350-357
PHP API, 349

reasons for learning, 341-345
MySQL programs. See also names of individ-

ual programs (e.g. mysqladmin utility)

help message, 1038-1039
list of, 1037
options

in environment variables,
1049-1051

in option files, 1045-1049
setting program variables as,

1044-1045
specifying, 1039-1041
SSL options, list of, 1043-1044
standard options, list of, 1041-1043

MySQL query optimizer, 311-322

MySQL server. See mysqld

MySQL source distribution, example C client
programs in, 360

MYSQL structure (C API), Web:1124

mysql_affected_rows() function (C API),
390-391, Web:1153

mysql_autocommit() function (C API),
Web:1164

mysql_auto_reconnect attribute (DBI API for
Perl), Web:1200

MYSQL_BIND structure (C API), Web:1130-
Web:1134

mysql_change_user() function (C API),
Web:1138

mysql_character_set_name() function
(C API), Web:1161

mysql_close() function (C API), 365,
Web:1138

mysql_commit() function (C API), Web:1164

mysql_config utility, 361, 1037, 1071

1264 mysql

mysql_data_seek() function (C API),
Web:1154

mysql_dbd_stats attribute (DBI API for Perl),
Web:1200

MYSQL_DEBUG environment variable, 1050

mysql_debug() function (C API), Web:1175

mysql_dump_debug_info() function (C API),
Web:1176

mysql_embed.h header file, 416

mysql_errno attribute (DBI API for Perl),
Web:1200

mysql_errno() function (C API), 368,
Web:1149

mysql_error attribute (DBI API for Perl),
Web:1200

mysql_error() function (C API), 368,
Web:1149

mysql_fetch_field() function (C API), 400,
Web:1154

mysql_fetch_field_direct() function (C API),
Web:1155

mysql_fetch_fields() function (C API),
Web:1155

mysql_fetch_lengths() function (C API), 400,
Web:1156

mysql_fetch_row() function (C API), 391,
Web:1156

MYSQL_FIELD structure (C API), 400,
Web:1124-Web:1129

mysql_field_count() function (C API), 395,
Web:1157

MYSQL_FIELD_OFFSET data type (C API),
Web:1124

mysql_field_seek() function (C API),
Web:1158

mysql_field_tell() function (C API),
Web:1158

mysql_free_result() function (C API), 392,
Web:1158

mysql_get_character_set_info() function
(C API), Web:1138

mysql_get_client_info() function (C API),
Web:1162

mysql_get_client_version() function (C API),
Web:1162

mysql_get_host_info() function (C API),
Web:1162

mysql_get_proto_info() function (C API),
Web:1162

mysql_get_server_info() function (C API),
Web:1162

mysql_get_server_version() function (C API),
Web:1162

mysql_get_ssl_cipher() function (C API),
Web:1139

mysql_hex_string() function (C API),
Web:1150

MYSQL_HISTFILE environment variable,
1050

MYSQL_HOST environment variable, 1050

mysql_hostinfo attribute (DBI API for Perl),
Web:1200

mysql_info attribute (DBI API for Perl),
Web:1200

mysql_info() function (C API), Web:1162

mysql_init() function (C API), 364,
Web:1139

MYSQL_INIT_COMMAND option
(mysql_options() function), Web:1140

mysql_insert_id() function (C API),
Web:1159

mysql_insertid attribute (DBI API for Perl),
Web:1200-Web:1203

mysql_install_db script, 612, 782, 787,
1037, 1071-1072

mysql_is_auto_increment attribute (DBI API
for Perl), Web:1203

mysql_is_blob attribute (DBI API for Perl),
Web:1203

mysql_is_key attribute (DBI API for Perl),
Web:1203

1265mysql_is_key attribute (DBI API for Perl)

mysql_is_num attribute (DBI API for Perl),
Web:1203

mysql_is_pri_key attribute (DBI API for Perl),
Web:1203

mysql_length attribute (DBI API for Perl),
Web:1204

mysql_library_end() function (C API), 366,
417, Web:1137

mysql_library_init() function (C API), 366,
417, Web:1137

mysql_max_length attribute (DBI API for
Perl), Web:1204

mysql_more_results() function (C API), 420,
Web:1165

mysql_next_result() function (C API), 420,
Web:1165

mysql_num_fields() function (C API), 400,
Web:1159

mysql_num_rows() function (C API), 393,
400, Web:1160

MYSQL_OPT_COMPRESS option
(mysql_options() function), Web:1140

MYSQL_OPT_CONNECT_TIMEOUT option
(mysql_options() function), Web:1140

MYSQL_OPT_GUESS_CONNECTION option
(mysql_options() function), Web:1140

MYSQL_OPT_LOCAL_INFILE option
(mysql_options() function), Web:1140

MYSQL_OPT_NAMED_PIPE option
(mysql_options() function), Web:1141

MYSQL_OPT_PROTOCOL option
(mysql_options() function), Web:1141

MYSQL_OPT_READ_TIMEOUT option
(mysql_options() function), Web:1141

MYSQL_OPT_RECONNECT option
(mysql_options() function), Web:1141

MYSQL_OPT_SET_CLIENT_IP option
(mysql_options() function), Web:1141

MYSQL_OPT_SSL_VERIFY_SERVER_CERT
option (mysql_options() function),
Web:1141

MYSQL_OPT_USE_EMBEDDED_CONNECTION
option (mysql_options() function),
Web:1141

MYSQL_OPT_USE_REMOTE_CONNECTION
option (mysql_options() function),
Web:1142

MYSQL_OPT_USE_RESULT option
(mysql_options() function), Web:1142

MYSQL_OPT_WRITE_TIMEOUT option
(mysql_options() function), Web:1142

mysql_options() function (C API), 681,
Web:1139-Web:1144

mysql_ping() function (C API), Web:1145

mysql_protoinfo attribute (DBI API for Perl),
Web:1200

MYSQL_PS1 environment variable, 1051

MYSQL_PWD environment variable, 1050

mysql_query() function (C API), 389,
Web:1151

MYSQL_READ_DEFAULT_FILE option
(mysql_options() function), 465,
Web:1142

MYSQL_READ_DEFAULT_GROUP option
(mysql_options() function), 465,
Web:1142

mysql_real_connect() function (C API), 365,
Web:1145-Web:1148

mysql_real_escape_string() function (C API),
405-409, Web:1151-Web:1152

mysql_real_query() function (C API), 389,
Web:1152

mysql_refresh() function (C API),
Web:1173-Web:1174

MYSQL_REPORT_DATA_TRUNCATION option
(mysql_options() function), Web:1142

MYSQL_RES structure (C API), Web:1129

mysql_rollback() function (C API), Web:1164

MYSQL_ROW structure (C API), Web:1129

MYSQL_ROW_OFFSET data type (C API),
Web:1124

1266 mysql_is_num attribute (DBI API for Perl)

mysql_row_seek() function (C API),
Web:1160

mysql_row_tell() function (C API), Web:1160

MYSQL_SECURE_AUTH option
(mysql_options() function), Web:1142

mysql_select_db() function (C API),
Web:1148

mysql_serverinfo attribute (DBI API for Perl),
Web:1201

mysql_server_end() function (C API),
Web:1137

mysql_server_init() function (C API),
Web:1137

mysql_server_prepare attribute (DBI API for
Perl), Web:1200-Web:1204

mysql_set_character_set() function (C API),
Web:1148

MYSQL_SET_CHARSET_DIR option
(mysql_options() function), Web:1143

MYSQL_SET_CHARSET_NAME option
(mysql_options() function), Web:1143

mysql_set_server_option() function (C API),
Web:1174

MYSQL_SHARED_MEMORY_BASE_NAME
option (mysql_options() function),
Web:1143

mysql_shutdown() function (C API),
Web:1175

mysql_sqlstate() function (C API), 368,
Web:1149

mysql_ssl_set() function (C API), 415,
Web:1148

mysql_stat attribute (DBI API for Perl),
Web:1201

mysql_stat() function (C API), Web:1163

MYSQL_STMT structure (C API), Web:1130

mysql_stmt_affected_rows() function
(C API), 424, Web:1169

mysql_stmt_attr_get() function (C API),
Web:1169

mysql_stmt_attr_set() function (C API),
Web:1169-Web:1170

mysql_stmt_bind_param() function (C API),
424, 430, Web:1167

mysql_stmt_bind_result() function (C API),
424, 434, Web:1170

mysql_stmt_close() function (C API), 424,
434, Web:1167

mysql_stmt_data_seek() function (C API),
Web:1170

mysql_stmt_errno() function (C API),
Web:1165

mysql_stmt_error() function (C API),
Web:1166

mysql_stmt_execute() function, 424, 431,
Web: 1167

mysql_stmt_fetch() function (C API), 424,
434, Web:1171

mysql_stmt_fetch_column() function
(C API), Web:1171

mysql_stmt_field_count() function (C API),
Web:1171

mysql_stmt_free_result() function (C API),
424, 434, Web:1171

mysql_stmt_init() function (C API), 423,
Web:1167

mysql_stmt_insert_id() function (C API),
Web:1172

mysql_stmt_num_rows() function (C API),
424, 434, Web:1172

mysql_stmt_param_count() function (C API),
Web:1172

mysql_stmt_prepare() function (C API), 423,
Web:1168

mysql_stmt_reset() function (C API),
Web:1168

mysql_stmt_result_metadata() function
(C API), 424, Web:1168

mysql_stmt_row_seek() function (C API),
Web:1173

1267mysql_stmt_row_seek() function (C API)

mysql_stmt_row_tell() function (C API),
Web:1173

mysql_stmt_send_long_data() function
(C API), Web:1168

mysql_stmt_sqlstate() function (C API),
Web:1166

mysql_stmt_store_result() function (C API),
424, 434, Web:1172

mysql_store_result() function (C API), 391,
395, Web:1161

mysql_use_result() function (C API)
compared, 398-400,Web:1152

mysql_table attribute (DBI API for Perl),
Web:1204

MYSQL_TCP_PORT environment variable,
1050

mysql_thread_end() function (C API),
Web:1175

mysql_thread_id attribute (DBI API for Perl),
Web:1201

mysql_thread_id() function (C API),
Web:1164

mysql_thread_init() function (C API),
Web:1175

mysql_thread_safe() function (C API),
Web:1175

MYSQL_TIME structure (C API),
Web:1134-Web:1135

mysql_type attribute (DBI API for Perl),
Web:1204

mysql_type_name attribute (DBI API for
Perl), Web:1204

mysql_tzinfo_to_sql utility, 683

MYSQL_UNIX_PORT environment variable,
1050

mysql_upgrade command, 631

mysql_use_result attribute (DBI API for Perl),
Web:1201-Web:1204

mysql_use_result() function (C API), 391,
Web:1161

mysql_store_result() function (C API)
compared, 398-400,Web:1152

mysql_warning_count attribute (DBI API for
Perl), Web:1204

mysql_warning_count() function (C API),
Web:1164

mysql-debug, 794

mysql-log-rotate script, 656

mysql.h header file, 364

$MYSQL_HOME environment variable, 1046

mysql.server script, 580, 619, 625, 1037,
1070

--mysqladmin option (mysqld_multi shell
script), 1101

mysqladmin extended-status command, 924

mysqladmin flush-hosts command, 905

mysqladmin utility, 24, 580, 626, 1037,
1072

commands for, 1074-1076
options, list of, 1073
program variables, list of, 1074
standard options supported, 1073

mysqladmin variables command, 663, 890

mysqlbinlog utility, 650, 765, 767, 1037,
1076

options, list of, 1077-1079
program variables, list of, 1079
standard options supported, 1077

mysqlcheck utility, 580, 745, 759-760,
1038, 1079

options, list of, 1080-1082
standard options supported, 1079

mysqld, 24, 580, 794, 1038, 1083

connecting from CGI scripts, 510-512
data directory access control, 588-589
error log on Unix, 648
installing, 1083

1268 mysql_stmt_row_tell() function (C API)

listening for connections, 629-630
multiple servers, 685-688

configuring, 688-690
mysqld_multi script, 691-693
running on Windows, 693-695
specifying startup options, 690-691

options
InnoDB options, 1095-1096
list of, 1084-1094
replication options, 1097-1100
Windows options, 1094-1095

regaining control without
connections, 626

standard options supported, 1084
starting, 788

specifying options, 624-626
on Unix, 616-621
on Windows, 621-624

stopping, 626
system variables, checking values of,

1100
tuning, 660

--mysqld option

mysqld_multi shell script, 1101
mysqld_safe shell script, 1103

mysqld-debug server, 622

mysqld-nt server, 622, 794

--mysqld-version option (mysqld_safe shell
script), 1103

mysqldump utility, 24, 150, 327, 580, 1038,
1104

advantages/disadvantages of, 746
copying databases using, 755-756
options

data format options, 1112
list of, 1105-1112

program variables, list of, 1112
standard options supported, 1105
text-format backups, creating, 748-751

mysqldumpslow utility, 650

mysqld_multi script, 580, 619, 691-693,
1038, 1101-1102

mysqld_safe script, 580, 619, 625, 648,
1038, 1102-1104

mysqlhotcopy utility, 753-754, 580, 1038,
1113-1116

mysqli extension, 528

mysqlimport client program, 57, 748, 1038,
1116-1118

mysqlnd library, 528

mysqlshow utility, 42, 149, 1038, 1119

N
\n command (mysql client program), 1067

-N option (mysql client program), 1064-1065

-n option

mysqldump utility, 1109
mysqlhotcopy utility, 1114

NAME attribute (DBI API for Perl), Web:1202

NAME_CONST() function, 887

NAME_hash attribute (DBI API for Perl),
Web:1202

NAME_lc attribute (DBI API for Perl),
Web:1202

NAME_lc_hash attribute (DBI API for Perl),
Web:1202

NAME_uc attribute (DBI API for Perl),
Web:1202

NAME_uc_hash attribute (DBI API for Perl),
Web:1202

named pipes, 622, 629, 794

named placeholders in PHP API, 549

--named-commands option (mysql client
program), 1062

named_pipe system variable, 908

naming conventions

for backups, 747
case sensitivity and, 60
for column identifiers, 217

1269naming conventions

for databases, 26, 593-596
for identifiers, 103-106
specifying account name, 632-634
for tables, 26
for variables (DBI API for Perl), 437

natural language mode, 846

natural language searches, 194-197

NATURAL LEFT JOIN keyword, 1001

natural left joins, 156

NDB storage engine, 120

--ndbcluster option (mysqld), 1090

NDBCLUSTER storage engine, 115

neat() function, Web:1197

neat_list() function, Web:1198

nested SELECT statements, 90-91

net_buffer_length system variable, 908

mysql client program, 1066
mysqldump utility, 1113

net_read_timeout system variable, 908

net_retry_count system variable, 908

net_write_timeout system variable, 909

network access, 699, 709

client access control, 719
scope column contents, 720-722
statement access verification,

722-724
user grant table sort order, 724

example scenario, 724-728
grant tables

administrative privileges, list of,
713-715

database and table privileges, list of,
715-716

privilege columns, 713
representation of privileges in, 717
resource management columns,

718-719
scope-of-access columns, 712
SSL-related columns, 717-718
structure of, 709-712

grant tables, cautions concerning,
728-731

network interface options for multiple
servers, 687

NEW keyword, 297, 968

--new option (mysqld), 1090

new system variable, 909

nextRowset() method (PDOStatement
object), Web:1220

NO_AUTO_CREATE_USER SQL mode, 915

--no-auto-rehash option (mysql client
program), 1063

NO_AUTO_VALUE_ON_ZERO SQL mode,
255, 915

--no-autocommit option (mysqldump utili-
ty), 1109

NO_BACKSLASH_ESCAPES SQL mode, 206,
827, 915

--no-beep option

mysql client program, 1063
mysqladmin utility, 1073

--no-create-db option (mysqldump utility),
1109

--no-create-info option (mysqldump utility),
750, 1109

--no-data option (mysqldump utility), 750,
1109

--no-defaults option, 1047

NO_DIR_IN_CREATE SQL mode, 915

NO_ENGINE_SUBSTITUTION SQL mode, 915

NO_FIELD_OPTIONS SQL mode, 915

NO_KEY_OPTIONS SQL mode, 916

--no-log option (mysqld_multi shell script),
1102

--no-named-commands option (mysql client
program), 1063

--no-pager option (mysql client program),
1063

NO_TABLE_OPTIONS SQL mode, 916

--no-tablespaces option (mysqldump
utility), 1109

1270 naming conventions

--no-tee option (mysql client program),
1063

NO_UNSIGNED_SUBTRACTION SQL
mode, 916

NO_ZERO_DATE SQL mode, 253, 916

NO_ZERO_IN_DATE SQL mode, 253, 916

--noindices option (mysqlhotcopy utility),
1115

non-binary strings, 803, 807-808

binary strings versus, 207-211, 227
non-compound SQL statements, list of, 938,

1028

non-scalar data types in C API,
Web:1124-Web:1135

non-transactional tables, mixing with
transactional tables, 185

NONE connection option, 981

nonrepeatable reads, 181

nopager command (mysql client program),
1067

NOT BETWEEN operator, 820

NOT DETERMINISTIC characteristic
value, 954

NOT EXISTS operator, subqueries with, 162

NOT FOUND handler condition, 1033

NOT IN() operator, 160-161, 821

NOT LIKE operator, 73, 826

NOT NULL keyword, 959

NOT REGEXP operator, 827

Not_flushed_delayed_rows status
variable, 927

notee command (mysql client program),
1067

NOW() function, 245, 862

nowarning command (mysql client program),
1067

NUL byte, NULL value versus, 205

null bytes, printing columns with, 394

NULL keyword, 959

NULL values, 214

in AUTO_INCREMENT
columns, 255

checking for
DBI API for Perl, 456-457
PHP API, 547

in DBI API for Perl, 442
explained, 63-64
in expressions, 271-272
NUL byte versus, 205

NULL-safe equality operator, 819

NULLABLE attribute (DBI API for Perl),
Web:1202

NULLIF() function, 833

NUM_OF_FIELDS attribute (DBI API for Perl),
Web:1202

NUM_OF_PARAMS attribute (DBI API for
Perl), Web:1202

numbering of indexes, determining, 1053

NUMERIC data type, 221

numeric data types

approximate-value numeric data types,
222-223, 801-802

attributes of, 223-225
BIT data type, 223, 803
exact-value numeric data types,

221-222, 799-801
explained, 219-220, 799
list of, 215
selecting among, 225-226
unique numbers, 254

numeric functions, 834-839

numeric values, 203

bit-field values, 204
exact-value and approximate-value

numbers, 203-204
NUMGEOMETRIES() function, 881

NUMINTERIORRINGS() function, 881

NUMPOINTS() function, 880

1271NUMPOINTS() function

O
-O option, 1043-1044

-o option

myisamchk utility, 1055
mysql client program, 1063
mysqlbinlog utility, 1077
mysqlcheck client program, 1081

object privilege columns (grant tables), 710

object privileges, 636

object-oriented interface (CGI.pm module),
503-504

OCT() function, 848

OCTET_LENGTH() function, 848

--offset option (mysqlbinlog utility), 1077

OLD keyword, 297, 968

--old option (mysqld), 1090

old system variable, 909

old-password command (mysqladmin utility),
1075

OLD_PASSWORD() function, 874

--old-passwords option (mysqld), 1040,
1091

old_passwords system variable, 909

--old-style-user-limits option (mysqld), 1091

ON clause, 153, 156, 638, 980-981, 996,
1001

ON COMPLETION NOT PRESERVE
clause, 952

ON COMPLETION PRESERVE clause, 952

ON DELETE clause, 187

ON DUPLICATE KEY UPDATE clause, 985

ON SCHEDULE clause, 660, 952

ON UPDATE clause, 188, 245

online documents, 497

online resources for MySQL information,
11-12

ONLY_FULL_GROUP_BY SQL mode, 916

--one-database option (mysql client
program), 1063

--one-thread option (mysqld), 1091

Open Source movement, 1

OPEN statement, 1033

--open-files option (mysqld_safe shell
script), 1103

--open-files-limit option (mysqld_safe shell
script), 1103

Opened_files status variable, 928

Opened_tables status variable, 928

opening server connections in PHP API, 532

opening tags in PHP scripts, 530

Open_files status variable, 927

open_files_limit system variable, 666, 909,
1079

Open_streams status variable, 927

Open_tables status variable, 927

Open_table_definitions status variable, 927

operating systems, database naming
conventions, 593-596

operators, 814

arithmetic operators, 816-817
bit operators, 823
cast operators, 825-826
comparison operators, 817-822
grouping, 815
logical operators, 824-825
pattern-matching operators, 826-830
precedence, 271, 814-815
types of, 266-270

--opt option (mysqldump utility), 749-751,
1109

optimization. See also query optimization;
tuning with system variables

of dump files, 749
with myisamchk utility, 763

--optimize option (mysqlcheck client
program), 1081

OPTIMIZE TABLE statement, 992-993

1272 -O option

optimizer_prune_level system variable, 909

optimizer_search_depth system
variable, 909

option files, 93-94, 1045-1049

for connection parameters, accessing,
372-375

locking down, 707-708
processing command-line arguments,

375-384
option values

CHECK TABLE statements, 949
FLUSH statement, 977-978
REPAIR TABLE statement, 994
RESET statements, 995

option-processing in server connections
(C API), 384-389

options

in environment variables, 1049-1051
in option files, 1045-1049
myisamchk utility, list of, 1053-1056
myisampack utility, list of, 1058-1059
mysql client program, list of,

1061-1065
MySQL driver,Web:1181
mysql_config utility, list of, 1071
mysql_install_db shell script, list of,

1072
mysql_options() function (C API),

Web:1140-Web:1144
mysql_real_connect() function

(C API),Web:1146-Web:1147
mysql_refresh() function (C API),

Web:1173-Web:1174
mysql.server shell script, list of, 1070
mysqladmin utility, list of, 1073
mysqlbinlog utility, list of, 1077-1079
mysqlcheck client program, list of,

1080-1082
mysqld

InnoDB options, 1095-1096
list of, 1084-1094
replication options, 1097-1100
Windows options, 1094-1095

mysqld_multi shell script, list of,
1101-1102

mysqld_safe shell script, list of,
1102-1104

mysqldump utility, 750-751
data format options, 1112
list of, 1105-1112

mysqlhotcopy utility, list of,
1114-1116

mysqlimport client program
data format options, 1118
list of, 1117-1118

mysqlshow utility, list of, 1119
server startup, specifying, 624-626
setting program variables as,

1044-1045
specifying, 1039-1041
SSL options, list of, 1043-1044
standard options

list of, 1041-1043
myisamchk support for, 1052
myisampack support for, 1058
mysql support for, 1061
mysql_install_db support for, 1072
mysqladmin support for, 1073
mysqlbinlog support for, 1077
mysqlcheck support for, 1079
mysqld support for, 1084
mysqld_multi support for, 1101
mysqld_safe support for, 1102
mysqldump support for, 1105
mysqlhotcopy support for, 1114
mysqlimport support for, 1117
mysqlshow support for, 1119
perror support for, 1120

OPTIONS clause, 957

OR logical operator, 63

OR REPLACE clause, 969

ORD() function, 848

ORDER BY clause, 65-66, 79, 157, 168,
869, 944, 971, 1001, 1027-1028

ORDER BY RAND() function, 68

--order-by-primary option (mysqldump
utility), 1110

OUT keyword, 295-296, 954

outer joins, 154-158

1273outer joins

output buffer_type values (MYSQL_BIND
structure), Web:1133

output customization with MySQL
programming, 342

output destinations for logs, 652-653

output of EXPLAIN statement, 975-977

output generation (CGI.pm module),
504-506

over-indexing, avoiding, 310

OVERLAPS() function, 882

overriding MySQL query optimizer, 313

OWNER keyword, 957

P
\p command (mysql client program), 1067

-p option (myisamchk utility), 1042, 1055

PACK_KEYS table option, 963

packages

installing, 783-786
obtaining, 778-780

PAD_CHAR_TO_FULL_LENGTH SQL mode,
241, 916

padding for string types, 241, 804

pager command (mysql client program),
1067

--pager option (mysql client program),
1063

--parallel-recover option (myisamchk utili-
ty), 1055

param() function (CGI.pm module), 504

parameter binding (DBI API for Perl), 463

parameter definitions in CHANGE MASTER
statement, 947-948

parameter types for stored procedures,
295-296

parameter-type values (PDO constants),
Web:1224

parameterizing server-side prepared

statements, 422

parameters

input parameters in PHP API,
554-555

passing to scripts (CGI.pm module),
507-510

parentheses in expressions, 815

partial binary backups, creating, 752-753

PARTITION BY clause, 132, 964

partitioned tables, 132-133

partitioning modifications in ALTER TABLE
statements, 944-945

partitioning options in CREATE TABLE
statements, 964-967

PARTITIONS clause, 965, 975

passing parameters to scripts (CGI.pm
module), 507-510

password command (mysqladmin utility),
1075

--password option, 1042

PASSWORD table option, 963

Password value (scope column
contents), 721

PASSWORD() function, 722, 874

passwords, 576

for additional servers, setting, 615
changing/resetting, 644-645
encryption in user grant table, 722
forgotten, 627
for initial accounts, setting, 610-615
security issues, 375
specifying for server connections, 29
updating, 728

PATH environment variable, setting, 786-787

pathnames

executing Perl scripts, 436
for header files and client library, 360,

Web:1122
pattern matching, 73-74, 268-270

DBI API for Perl, 521-524
type conversion and, 275

1274 output buffer_type values (MYSQL_BIND structure)

pattern-matching operators, 826-830

patterns in hostname specifiers, 728

PDO (PHP Data Objects), 528, 543

error handling, 533, 550-552
multiple-row result set processing,

544-547
prepared statements, 543
server connections, 532
SQL statement execution, 543-547

PDO class, Web:1208-Web:1215

PDO extension

classes,Web:1208
constants,Web:1223-Web:1224
methods,Web:1208-Web:1209

for PDO class,
Web:1209-Web:1215

for PDOException object,
Web:1222

for PDOStatement object,
Web:1215-Web:1221

PDO::ATTR_AUTOCOMMIT constant,
Web:1223

PDO::ATTR_CLIENT_VERSION constant,
Web:1223

PDO::ATTR_CONNECTION_STATUS constant,
Web:1223

PDO::ATTR_DEFAULT_FETCH_MODE constant,
Web:1223

PDO::ATTR_DRIVER_NAME constant,
Web:1223

PDO::ATTR_ERRMODE constant, Web:1223

PDO::ATTR_SERVER_INFO constant,
Web:1223

PDO::ATTR_SERVER_VERSION constant,
Web:1223

PDO::FETCH_ASSOC constant, Web:1223

PDO::FETCH_BOTH constant, Web:1223

PDO::FETCH_BOUND constant, Web:1223

PDO::FETCH_CLASS constant, Web:1223

PDO::FETCH_INTO constant, Web:1223

PDO::FETCH_NUM constant, Web:1224

PDO::FETCH_OBJ constant, Web:1224

PDO::PARAM_BOOL constant, Web:1224

PDO::PARAM_INT constant, Web:1224

PDO::PARAM_NULL constant, Web:1224

PDO::PARAM_STR constant, Web:1224

PDOException class, Web:1208, Web:1222

PDOStatement class, Web:1208,
Web:1215-Web:1221

per-process file descriptor limits, 667

per-table InnoDB tablespaces, 679

performance

data directory structure, effect of,
597-599

evaluating APIs, 352-354
performance optimization. See optimization;

query optimization; tuning with system
variables

PERIOD_ADD() function, 862

PERIOD_DIFF() function, 862

Perl scripts, 436-437. See also
DBI API for Perl

permissions

editing, 703-706
viewing, 702-703

perror utility, 1038, 1120

phantom rows, 181

PHP. See also PHP API; PHP scripts

defined, 527
dependency on C API, 528
installing

on Unix, 790-792
on Windows, 796

interfaces with MySQL, 528
obtaining, 778
running as Apache module, 527

PHP API, 346-349, 543, Web:1207. See also
PHP; PHP scripts

character encoding, 541
error handling, 533, 550-552
evaluating, 350-357

1275PHP API

fetch() method, 541
grade-keeping example, entering/

editing scores online, 552-565
hidden fields, 568-570
include files, 534-539
input parameters, 554-555
NULL values, testing for, 547
PDO classes,Web:1208
PDO constants,Web:1223-Web:1224
PDO methods,Web:1208-Web:1209

for PDO class,
Web:1209-Web:1215

for PDOException object,
Web:1222

for PDOStatement object,
Web:1215-Web:1221

placeholders for data quoting, 548-550
prepared statements, 547-549
query() method, 533
script tag styles,Web:1207-Web:1208
server connections

closing, 533
opening, 532

transactions in, 562
U.S. Historical League example

creating interactive online quiz,
565-570

editing member entries online,
570-578

variables in, 534
PHP Data Objects. See PDO

PHP scripts, 543. See also PHP; PHP API

directory locations for, 529
explained, 529-531
filename suffixes for, 528
multiple-row result set processing,

539-547
opening and closing tags in, 530
sample script, 531-534
standalone PHP scripts, 531

PI() function, 837

PID (process ID) file, 600, 607

--pid-file option

mysqld, 1091

mysqld_safe shell script, 1103
pid_file system variable, 909

ping command (mysqladmin utility), 1075

ping() method (DBI database-handle),
Web:1187

--pipe option, 1042

PIPES_AS_CONCAT SQL mode, 102, 267,
815, 916

placeholder arguments, undef values in
(DBI API for Perl), 463

placeholders

DBI API for Perl, 460-463
PHP API, 548-550

plugin_dir system variable, 910

--plugindir option (mysql_config utility),
1071

POINT data type, 812

POINTFROMTEXT() function, 879

POINTFROMWKB() function, 878

POINTN() function, 880

POINTONSURFACE() function, 881

POLYFROMTEXT() function, 879

POLYFROMWKB() function, 878

POLYGON data type, 812

POLYGONFROMTEXT() function, 879

POLYGONFROMWKB() function, 878

--port option, 1042

mysqld_safe shell script, 1103
mysql_config utility, 1071

port system variable, 910

--port-open-timeout option (mysqld_safe
shell script), 1103

portability

binary portability, 121-122
evaluating APIs, 357

porting database applications to MySQL, 4

POSITION() function, 848

--position option (mysqlbinlog utility), 1077

1276 PHP API

positional placeholders in PHP API, 549

POSIX character class constructions, 829

post-installation steps, 786

data directory and grant tables,
initializing, 787-788

PATH environment variable, setting,
786-787

server, starting, 788
system tables, installing/upgrading,

788-789
POW() function, 837

precedence of operators, 271, 814-815

precision

of decimal numbers, 221
of floating-point numbers, 222

PRECISION attribute (DBI API for Perl),
Web:1202

prefixes

for boolean options, 1039
leftmost prefixes, 309
of strings, indexing, 309

preload_buffer_size system variable, 910

PREPARE statement, 993

prepare() method

DBI database-handle, 441,Web:1187
PDO class, 543,Web:1213
PHP API, 547

prepared statement functions (C API),
Web:1165-Web:1173

prepared statements

C API, 422-434
DBI API for Perl, 462
PDO, 543
PHP API, 547-549

Prepared_stmt_count status variable, 928

prepare_cached() method (DBI database-
handle), Web:1187

preventing server access during
maintenance, 739-740

with database locking, 743

with individual table locking, 740-743
preventive maintenance

auto-recovery, enabling, 744-745
backups, 746-748

binary backups, creating, 751-754
of InnoDB or Falcon tables,

754-755
text-format backups, creating,

748-751
checking/repairing tables, 757-758

CHECK TABLE statement, 758
myisamchk utility, 760-763
mysqlcheck utility, 759-760
REPAIR TABLE statement, 758

copying databases between servers,
755-756

preventing server access during,
739-740

database locking, 743
individual table locking, 740-743

principles of, 737-739
recovery procedures, 763-764

database recovery, 764
InnoDB auto-recovery, 767-768
re-executing binary log file

statements, 765-767
table recovery, 764-765

replication, 768-770
backups with slave server, 774-775
binary logging formats, 773
establishing master-slave

relationship, 770-773
scheduling, 745

PRIMARY KEY clause, 39, 139, 960

PRIMARY KEY indexes, 138

primary keys, unique indexes versus, 191

print command (mysql client program),
1067

print statement (DBI API for Perl), 442,
468-469

--print-defaults option, 1047

PrintError attribute (DBI API for Perl), 443,
Web:1199

1277PrintError attribute (DBI API for Perl)

printf() method (DBI API for Perl), 394, 447

printing binary data, 394

priorities (scheduling), changing, 331

privilege columns (grant tables), 710-713

privilege-level specifiers, 638

privileges, 709

administrative privileges, list of,
713-715

database and table privileges, list of,
715-716

example scenario, 724-728
granting, 634-643

enabling privilege administration,
642

requiring secure connections,
640-642

resource consumption limitations,
642-643

types of privileges, 636-640
USAGE privilege, 640

list of, 979
representation in grant tables, 717
revoking, 643-644
for stored functions/procedures,

294-295
superuser privileges, 728
viewing, 643

PRIVILEGES flush option, 977

PROCEDURE ANALYSE() function, 282, 324

PROCEDURE clause, 1002

procedure parameters in CREATE PROCE-
DURE statements, 954

procedures. See stored procedures

process ID (PID) file, 600, 607

PROCESS privilege, 714, 730, 980

processlist command (mysqladmin utility),
1075

procs_priv grant table, 710

program variables

myisamchk utility, list of, 1056-1057
mysql client program, list of,

1065-1066

mysqladmin utility, list of, 1074
mysqlbinlog utility, list of, 1079
mysqldump utility, list of, 1112
setting, 1044-1045

programs. See MySQL programs

prompt. See command prompt

prompt command (mysql client program),
1068

prompt definition sequences for mysql client
program, 1068-1069

--prompt option (mysql client program),
1063

property functions (spatial values), 879-881

--protocol option, 1042

protocol_version system variable, 910

provisional table creation, 125

pseudo_thread_id system variable, 910

PURGE MASTER LOGS statement, 658, 993

PURGE MASTER statement, 773

Q
\q command (mysql client program), 1068

-q option

myisamchk utility, 1055
mysql client program, 1063
mysqlcheck client program, 1081
mysqlhotcopy utility, 1115

-Q option (mysqldump utility), 1110

Qcache_free_blocks status variable, 933

Qcache_free_memory status variable, 933

Qcache_hits status variable, 933

Qcache_inserts status variable, 933

Qcache_lowmem_prunes status
variable, 933

Qcache_not_cached status variable, 933

Qcache_queries_in_cache status
variable, 933

Qcache_total_blocks status variable, 933

1278 printf() method (DBI API for Perl)

qq{} construct, 458

qualified column references in joins, 153

qualifiers for identifiers, 104

QUARTER() function, 862

query cache, 337-339, 933

QUERY CACHE option, 978, 996

query expansion searches, 194-199

QUERY keyword, 986

query languages. See SQL

query optimization, 303

administrative-level optimization,
334-336

hardware optimizations, 339-340
MyISAM key caches, 336-337
query cache, 337-339

checking with EXPLAIN statement,
316-322

data type selection, 322-326
data-loading operations, 326-329
with indexing, 304

analyzing tables, 313
benefits of, 304-307
costs of, 307-308
selecting columns to index,

308-311
MySQL query optimizer, 311-322
scheduling policy, 329-331

changing priorities of, 331
concurrent inserts, 332-333
delayed inserts, 331-332

query results

binding (DBI API for Perl), 463
calculating, 68-70
creating tables from, 127-130
dates in, 70-73
generating summaries, 75-84
joins, 84-90
limiting, 67-68
pattern matching, 73-74
sorting, 65-66
subqueries, 90-91
user-defined variables in, 74-75

query() method

PDO class, 543-544,Web:1214
PHP API, 533

query_alloc_block_size system variable, 910

query_cache_limit system variable, 910

query_cache_min_res_unit system
variable, 910

query_cache_size system variable, 910

query_cache_type system variable, 910

query_cache_wlock_invalidate system
variable, 911

query_prealloc_size system variable, 911

Questions status variable, 928

QUICK option, 949, 971, 995

--quick option, 761

myisamchk utility, 1055
mysql client program, 1063
mysqlcheck client program, 1081
mysqldump utility, 1110

--quiet option (mysqlhotcopy utility), 1115

quit command (mysql client program), 1068

quizzes, 565-570

QUOTE() function, 848

quote() method

DBI database-handle, 460,Web:1188
PDO class, 548-549,Web:1214

quote_identifier() method (DBI database-
handle), Web:1188

--quote-names option (mysqldump utility),
1040, 1110

quoting special characters (DBI API for Perl),
457-460. See also data quoting

R
\r command (mysql client program), 1066,

1068

-r option

myisamchk utility, 1055-1056
mysql client program, 1064
mysqladmin utility, 1073

1279-r option

mysqlcheck client program, 1081
mysqld, 1085
mysqldump utility, 1110
mysqlimport client program, 1118

-R option (mysqlbinlog utility), 1078

RADIANS() function, 837

RaiseError attribute (DBI API for Perl), 443,
Web:1199

RAND() function, 566, 838

range

data values, selecting data types,
285-286

decimal numbers, 221
numeric data types, 219

range partitioning, 132

RANGE() function, 965

range_alloc_block_size system variable, 911

--raw option (mysql client program), 1064

raw partitions in InnoDB shared
tablespace, 676

RDBMS, defined, 21-22

READ COMMITTED transaction level, 181,
1006

READ locks, 991

READ UNCOMMITTED transaction level, 181,
1006

read_buffer_size system variable, 667, 911,
1057

--read-from-remote-server option
(mysqlbinlog utility), 1078

read-only access

locking databases, 743
locking tables, 740-743

--read-only option (myisamchk utility),
1055

read_only system variable, 911

read_rnd_buffer_size system variable, 911

read/write access, locking tables, 740-743

Readline library, 1060

REAL data type, 222

REAL_AS_DEFAULT SQL mode, 222

REAL_AS_FLOAT SQL mode, 917

REBUILD PARTITION clause, 945

rebuilding indexes, 328

--reconnect option (mysql client program),
1064

--record_log_pos option (mysqlhotcopy
utility), 1115

--recover option (myisamchk utility), 761,
1055

recovery procedures, 763-764

database recovery, 764
InnoDB auto-recovery, 767-768
re-executing binary log file

statements, 765-767
table recovery, 764-765

REFERENCES clause, 187

REFERENCES privilege, 716

referencing include files in PHP API, 537

referential integrity, 50

foreign keys, 185-192
without foreign keys, 192-193

refresh command (mysqladmin utility), 1075

REFRESH_GRANT option (mysql_refresh()
function), Web:1173

REFRESH_HOSTS option (mysql_refresh()
function), Web:1173

REFRESH_LOG option (mysql_refresh()
function), Web:1174

REFRESH_MASTER option (mysql_refresh()
function), Web:1174

REFRESH_SLAVE option (mysql_refresh()
function), Web:1174

REFRESH_STATUS option (mysql_refresh()
function), Web:1174

REFRESH_TABLES option (mysql_refresh()
function), Web:1174

REFRESH_THREADS option (mysql_refresh()
function), Web:1174

REGEXP operator, 268, 270, 315, 827

--regexp option (mysqlhotcopy utility), 1116

1280 -r option

register_globals configuration setting
(PHP API), 555

regular expressions, 270. See also
expressions

rehash command (mysql client program),
1068

RELATED() function, 883

relationship functions (spatial values),
882-883

relative comparison operators, subqueries
with, 159-160

--relative option (mysqladmin utility), 1073

relative updates, absolute updates
versus, 184

relay log, 646, 652, 773

relay log index file, 646, 652

--relay-log option (mysqld), 773, 1098

RELAY_LOG_FILE parameter definition, 948

--relay-log-index option (mysqld), 773, 1098

--relay-log-info-file option (mysqld), 1098

RELAY_LOG_POS parameter definition, 948

relay_log_purge system variable, 911

relay_log_space_limit system variable, 911

RELEASE clause, 950, 997

RELEASE SAVEPOINT statement, 993

RELEASE_LOCK() function, 876

relevance rankings, 846

reload command (mysqladmin utility), 1076

RELOAD privilege, 643, 714, 730

reloading grant tables, 723

relocation of data directory contents, 602

database relocation, 604-606
entire data directory relocation, 604
InnoDB shared tablespace

relocation, 606
methods of relocation, 602-603
precautions for, 603
status and log file relocation, 607
table relocation, 606
verifying, 603-604

--remove option (mysqld), 1095

REMOVE PARTITIONING clause, 945

remove_backslashes() method
(PHP API), 555

removing. See also deleting

InnoDB tables, 590
tables, 593
temporary files, 762

RENAME clause, 144, 944

RENAME TABLE statement, 144, 660, 994

RENAME TO clause, 939

RENAME USER statement, 632, 994

renaming

columns, 143
tables, 144

renewal notices for U.S. Historical League
example, sending, 484, 490

REORGANIZE PARTITION clause, 945

--repair option (mysqlcheck client pro-
gram), 1081

REPAIR TABLE statement, 758, 994

repairing tables, 757-758

myisamchk utility, 760-763
mysqlcheck utility, 759-760
REPAIR TABLE statement, 758

REPEAT statement, 1031

REPEAT() function, 273, 848

REPEATABLE READ transaction level, 181,
1006

REPLACE keyword, 987

--replace option

mysqldump utility, 1110
mysqlimport client program, 1118

REPLACE statement, 995

REPLACE() function, 849

replacing Unix socket file, 627

--replicate-do-db option (mysqld), 1098

--replicate-do-table option (mysqld), 1098

--replicate-ignore-db option (mysqld), 772,
1098

1281--replicate-ignore-db option (mysqld)

--replicate-ignore-table option (mysqld),
1098

--replicate-wild-do-table option (mysqld),
1099

--replicate-rewrite-db option (mysqld), 1099

--replicate-same-server-id option (mysqld),
1099

--replicate-wild-ignore-table option (mysqld),
1099

replication, 768-770

administrator responsibilities for,
582-583

backups with slave server, 774-775
binary logging formats, 773
establishing master-slave relationship,

770-773
of logs, 657-658
of multiple servers, 688

REPLICATION CLIENT privilege, 714

replication options for mysqld, 1097, 1100

REPLICATION SLAVE privilege, 714

--report-host option (mysqld), 1099

--report-password option (mysqld), 1099

--report-port option (mysqld), 1099

--report-user option (mysqld), 1099

REQUIRE clause, 635, 640, 642, 734, 981

requirements for DBI API for Perl, 435

requiring secure connections, 734-735

resequencing AUTO_INCREMENT columns,
261-262

reserving file descriptors, 909

RESET statement, 995

--resetmaster option (mysqlhotcopy utility),
1116

--resetslave option (mysqlhotcopy utility),
1116

resetting sample database, 57-58

resource consumption, limiting, 642-643

resource management columns (user grant
tables), 710, 718-719

RESTRICT keyword, 974

--result-file option

mysqlbinlog utility, 1078
mysqldump utility, 1110

result set metadata (DBI API for Perl),
471, 475

result set processing functions

C API,Web:1152,Web:1161
multiple-row result set processing

(PHP API), 539-547
prepared statements (C API),

Web:1168-Web:1173
result sets

fetching complete result sets (DBI API
for Perl), 454-456

handling (C API), 391-394
metadata (C API), 400-405
mysql_store_result() versus

mysql_use_result(), 398-400
NULL values, testing in PHP API,

547
retrieving

multiple-table retrievals, 150
table information, 58, 91

RETURN statement, 292, 1031

RETURNS clause, 292, 954

REVERSE() function, 849

REVOKE statement, 614, 631, 643-644,
996-997

revoking privileges, 643-644

RIGHT JOIN keyword, 1001

right joins, 154-158

RIGHT() function, 849

rollback (transactions), 175

ROLLBACK statement, 176, 997

rollback() method

DBI database-handle,Web:1188
PDO class,Web:1215

root accounts, 610

rotating log tables, 659

rotating logs, 654-657

1282 --replicate-ignore-table option (mysqld)

ROUND() function, 278, 838

rounding

fractions, 219
numeric data values, 226

Routine_name value (scope column
contents), 721

Routine_type value (scope column
contents), 721

routines. See functions

--routines option (mysqldump utility), 751,
1110

row constructors, 815

row storage formats, selecting for query
optimization, 323

row subqueries, 158

row-based binary logging, 773

ROW_COUNT() function, 887

ROW_FORMAT table option, 963

row-level locking, 712

row-modification statements

C API, 390-391
DBI API for Perl, 446-447
handling in PDO, 543

rowCount() method

PDOStatement object,Web:1221
PHP API, 548

rows

calculated query results, 68-70
deleting individually, 260
deleting/updating, 91-93
fetching (DBI API for Perl), 448-452

complete result sets, 454-456
counting as, 452
single rows, 452-453

inserting, 53-57
limiting query results, 67-68
sorting query results, 65-66

rows attribute (DBI API for Perl), Web:1205

rows() method (DBI statement-handle), 452,
Web:1195

RPAD() function, 849

--rpl-recovery-rank option (mysqld), 1099

rpl_recovery_rank system variable, 911

Rpl_status status variable, 928

RPM distributions, installing, 783-784

RTF format, generating U.S. Historical
League directory, 478-484

RTRIM() function, 849

running multiple servers on Windows,
693-695

runtime

setting system variables, 664-665, 890
specifying connection parameters

(C API), 371-384
storage engine options, 669

S
\s command (mysql client program), 1068

-S option (myisamchk utility), 1043, 1055

-s option (mysqlbinlog utility), 1078

--safe-mode option (mysqld), 1091

--safe-recover option (myisamchk utility),
762, 1055

--safe-show-database option (mysqld),
1091

--safe-updates option (mysql client pro-
gram), 1064

--safe-user-create option (mysqld), 1091

--safemalloc-mem-limit option (mysqld),
1092

sample database, 17

creating, 33-34
grade-keeping example

displaying scores in browser,
517-521

entering/editing scores online,
552-565

objectives of, 20
table creation, 42-53

obtaining and installing, 777-778
resetting, 57-58

1283sample database

tables
deleting/updating rows, 91-93
inserting rows, 53-57
retrieving information, 58, 91

U.S. Historical League example
creating interactive online quiz,

565-570
editing member entries online,

570-578
finding common interests,

496-497, 521-525
generating directory, 478-484
generating HTML-formatted

directory, 497-500
objectives of, 17-20
sending renewal notices, 484-490
table creation, 35-42
updating member entries, 490-496

SAVEPOINT statement, 180, 997

savepoints (transactions), 180

scalar data types in C API,
Web:1123-Web:1124

scalar subqueries, 158

SCALE attribute (DBI API for Perl),
Web:1203

scale of decimal numbers, 221

scheduling

events, 298-300
preventive maintenance, 745

scheduling policy (query optimization),
329-331

changing scheduling priorities, 331
concurrent inserts, 332-333
delayed inserts, 331-332

SCHEMA keyword, 938

SCHEMA() function, 887

SCHEMAS keyword, 938

scientific notation, 203

scope-of-access columns (grant tables),
710-712, 720-722

script language interpreters, standalone
versus module versions, 353-354

scripts, 95

CGI scripts, connecting to MySQL
Server, 510-512

DBI scripts,Web:1178
executing, 98-100
passing parameters to (CGI.pm

module), 507-510
Perl scripts, 436-437
PHP scripts, 528,

Web:1207-Web:1208
search_mode, 846

searches

full-text searches, 194-195, 846
Boolean mode full-text searches,

197-199
configuring, 200
DBI API for Perl, 524-525
natural language full-text searches,

196-197
query expansion full-text

searches, 199
system variables, 894

pattern matching searches (DBI API
for Perl), 521-524

SECOND() function, 863

secondary indexes, 309

secure connections, requiring, 640-642

--secure-auth option

mysql client program, 1064
mysqld, 1092

secure_auth system variable, 912

--secure-file-priv option (mysqld), 1092

secure_file_priv system variable, 912

security

administrator responsibilities for, 582
authentication for editing U.S.

Historical League member entries,
570-578

external security, 699-709
client access control, 719-724
example scenario, 724-728
grant tables, 709-719
grant tables, cautions concerning,

728-731

1284 sample database

internal security, 699
data directory, access to, 701-702
data directory, locking down,

702-706
option files, locking down, 707-708
types of files to protect, 700-701
Unix socket file, locking down,

706-707
new installations, 610-616

setting account passwords, 610-615
setting additional server

passwords, 615
passwords, 644

forgotten, 627
in option files, 375

in PHP API
code encapsulation, 534-539
hidden fields, 570

SSL-encrypted connections, 731-735
for stored programs/views, 300-301
of user-specific option files, 1049

security functions, 871, 875

SEC_TO_TIME() function, 863

select options in SELECT statements,
998-999

SELECT privilege, 716

SELECT statement, 58, 91, 150, 997, 1003

calculated query results, 68-70
dates in query results, 70-73
in DBI API for Perl, 441
generating summaries, 75-84
joins, 84-90
limiting query results, 67-68
pattern matching, 73-74
sorting query results, 65-66
specifying retrieval critieria, 60-63
subqueries, 90-91
syntax of, 150
trailing SELECT statements in

CREATE TABLE statements, 964
user-defined variables, 74-75

Select_full_join status variable, 928

Select_full_range_join status variable, 928

select_limit variable (mysql client program),
1066

Select_range status variable, 928

Select_range_check status variable, 928

Select_scan status variable, 928

selectall_arrayref() method (DBI database-
handle), 456, Web:1189

selectall_hashref() method (DBI database-
handle), Web:1189

selectcol_arrayref() method (DBI database-
handle), Web:1189

selecting, 350

columns to index, 308-311
data types, 280-287, 322-326
databases, 112
default database, 34
error message languages, 684
index types, 310
MySQL versions, 780
numeric data types, 225-226
storage engine availability, 669-670
string data types, 240-241

selectrow_array() method (DBI database-
handle), 453, Web:1190

selectrow_arrayref() method (DBI database-
handle), Web:1190

selectrow_hashref() method (DBI database-
handle), Web:1190

self-joins, 153

semicolon (;), statement terminator, 30

SEPARATOR keyword, 869

sequences, AUTO_INCREMENT attribute

adding to tables, 260
explained, 254-256
generating without AUTO_

INCREMENT, 262-264
for InnoDB tables, 259
issues concerning, 259-260
for MEMORY tables, 259
for MyISAM tables, 256-258
resequencing columns, 261-262

SERIAL data type, 801

1285SERIAL data type

SERIALIZABLE transaction level, 181, 1006

server access, preventing during
maintenance, 739-740

with database locking, 743
with individual table locking, 740-743

server connections

with C API, 363-366
closing in PHP API, 533
establishing/terminating, 28-30, 93-95
opening in PHP API, 532
with option-processing (C API),

384-389
SSL support (C API), 410-416

server shutdown, 626

server startup, 788

setting system variables, 663-664, 889
specifying options, 624-626
on Unix, 616-621
on Windows, 621-624

--server-id option

mysqlbinlog utility, 1078
mysqld, 1099

server_id system variable, 912

server-side prepared statements (C API),
422-434

servers, 580, 588. See also mysqld

copying
databases between, 755-756
tables between, 122

enabling secure connections, 732
listening for connections, 629-630
multiple servers, 685-688

configuring, 688-690
mysqld_multi script, 691-693
running on Windows, 693-695
setting passwords, 615
specifying startup options, 690-691

regaining control without
connections, 626

tuning, 660
SESSION keyword, 663, 668, 1006

session-only system variables, 661, 921-924

displaying value of, 890
setting, 1004

SESSION_USER() function, 887

SET CHARACTER SET statement, 1005

SET data type, 228, 231-237, 809

SET DEFAULT clause, 942

SET GLOBAL statement, 1004

SET LOCAL statement, 1004

SET NAMES statement, 212, 1005

SET PASSWORD statement, 613, 644, 1005

SET SESSION statement, 1004

SET statement, 55, 75, 177, 664, 743, 984,
990, 1004-1005, 1027-1028

SET TRANSACTION statement, 182, 1006

--set-auto-increment option (myisamchk
utility), 1055

--set-character-set option (myisamchk
utility), 1055

--set-charset option

mysqlbinlog utility, 1078
mysqldump utility, 1110

--set-collation option (myisamchk utility),
1055

--set-variable option, 1043-1044

setAttribute() method

PDO class,Web:1215
PDOStatement object,Web:1221

setFetchMode() method (PDOStatement
object), Web:1221

SHA1() function, 874

SHA2() function, 874

shared tablespace, 591

configuring, 674-679
relocating, 606

shared-memory connections, 629

--shared-memory option (mysqld), 1095

--shared-memory-base-name option, 1043

1286 SERIALIZABLE transaction level

shared_memory system variable, 912

shared_memory_base_name system
variable, 912

shells

aliases, 95
command history, 94-95

shift left bit operator, 823

shift right bit operator, 823

--short-form option (mysqlbinlog utility),
1078

short-form options, 1039

SHOW BINLOG EVENTS, 1008

SHOW CHARACTER SET statement, 109,
207, 238, 804, 1008

SHOW COLLATION statement, 109, 207,
238, 804, 1009

SHOW COLUMNS FROM statement, 145

SHOW COLUMNS statement, 1009-1010

SHOW COUNT(*) ERRORS statement, 1012

SHOW COUNT(*) WARNINGS statement,
1024

SHOW CREATE DATABASE statement, 113

SHOW CREATE statements, 1010

SHOW CREATE TABLE statement, 124,
141-142, 145, 238

SHOW DATABASES privilege, 714

SHOW DATABASES statement, 41, 145, 590,
1011

SHOW ENGINE INNODB MUTEX statement,
1011

SHOW ENGINE INNODB STATUS statement,
192, 930, 1011

SHOW ENGINE statement, 1011

SHOW ENGINES statement, 115, 1011

SHOW ERRORS statement, 1012

SHOW EVENTS statement, 1012

SHOW FIELDS statement, 1009

SHOW FULL COLUMNS statement, 41, 239

SHOW FUNCTION STATUS statement, 1012

SHOW GLOBAL VARIABLES statement, 1024

SHOW GRANTS statement, 643, 1013

SHOW INDEX FROM statement, 145

SHOW INDEX statement, 141, 1013-1014

SHOW INNODB STATUS statement, 1014

SHOW MASTER LOGS statement, 1014

SHOW MASTER STATUS statement, 771,
1014-1015

SHOW MUTEX STATUS statement, 1015

SHOW OPEN TABLES statement, 1015

SHOW PRIVILEGES statement, 1016

SHOW PROCEDURE STATUS statement,
1012

SHOW PROCESSLIST statement, 1016-1017

SHOW SESSION VARIABLES statement,
1024

SHOW SLAVE HOSTS statement, 1017

SHOW SLAVE STATUS statement, 658,
772-773, 1017, 1021

SHOW statements, 40, 145-146, 1006-1007

SHOW STATUS statement, 660, 667-668,
924, 1021

SHOW TABLE STATUS statement, 145,
1021-1023

SHOW TABLE TYPES statement, 1023

SHOW TABLES FROM statement, 592

SHOW TABLES statement, 41, 145-146,
1023

SHOW TRIGGERS statement, 1023

SHOW VARIABLES statement, 110, 586,
660, 662, 890, 1024

SHOW VIEW privilege, 716, 980

SHOW WARNINGS statement, 252, 1024

--show-slave-auth-info option (mysqld),
1100

--show-warnings option (mysql client
program), 1064

1287--show-warnings option (mysql client program)

ShowErrorStatement attribute (DBI API for
Perl), Web:1199

shutdown, 626

shutdown command (mysqladmin utility),
1076

SHUTDOWN privilege, 714

shutdown_timeout variable (mysqladmin
utility), 1074

$SIG{__DIE__} signal handler, 444

--sigint-ignore option (mysql client
program), 1064

SIGN() function, 839

SIGNED attribute, 224

--silent option, 1043

SIN() function, 839

single-row results, fetching (DBI API for Perl),
452-453

--single-transaction option (mysqldump
utility), 751, 754, 1110

--skip-column-names option (mysql client
program), 1064

--skip-event option, 751

--skip-extended-insert option, 751

skip_external_locking system variable, 912

--skip-grant-tables option (mysqld), 764,
1092

--skip-host-cache option (mysqld), 1092

--skip-kill-mysqld option (mysqld_safe shell
script), 1103

--skip-line-numbers option (mysql client
program), 1065

--skip-locking option (mysqld), 1092

--skip-name-resolve option

mysqld, 1092
mysql_install_db shell script, 1072

--skip-networking option (mysqld), 764,
1092

skip_networking system variable, 912

--skip-new option (mysqld), 1092

--skip-opt option (mysqldump utility),
749-750, 1111

--skip-routines option, 751

--skip-safemalloc option (mysqld), 1092

--skip-show-database option (mysqld),
1092

skip_show_database system variable, 912

--skip-slave-start option (mysqld), 1100

--skip-stack-trace option (mysqld), 1093

--skip-symlink option (mysqld), 1093

--skip-syslog option (mysqld_safe shell
script), 1103

--skip-thread-priority option (mysqld), 1093

--skip-triggers option, 751

SLAVE option, 978, 996

slave options in START SLAVE statement,
1025

slave server, 770, 774-775

--slave-allow-batching option (mysqld),
1100

slave_allow_batching system variable, 912

slave_compressed_protocol system
variable, 912

--slave-load-tmpdir option (mysqld), 752,
1100

slave_load_tmpdir system variable, 913

slave_net_timeout system variable, 913

Slave_open_temp_tables status
variable, 928

Slave_retried_transactions status
variable, 928

--slave-skip-errors option (mysqld), 1100

slave_skip_errors system variable, 913

slave_transaction_retries system
variable, 913

--sleep option (mysqladmin utility), 1073

SLEEP() function, 887

Slow_launch_threads status variable, 929

slow_launch_time system variable, 913

1288 ShowErrorStatement attribute (DBI API for Perl)

Slow_queries status variable, 929

slow-query log, 311, 645, 649-650

--slow-query-log option (mysqld), 1093

slow_query_log system variable, 913

slow_query_log_file system variable, 913

SMALLINT data type, 221, 800

socket files, 629

locking down, 706-707
replacing, 627

--socket option, 1043

mysqld_safe shell script, 1103
mysql_config utility, 1071

socket system variable, 913

software included with MySQL, 5

software requirements for
DBI API for Perl, 435

SOME operator, 161

sort order for user grant table, 724

--sort_buffer_size option, 763

sort_buffer_size system variable, 667, 913,
1040, 1057

--sort-index option (myisamchk utility),
1055

sort_key_blocks variable (myisamchk utility),
1057

Sort_merge_passes status variable, 929

Sort_range status variable, 929

--sort-records option (myisamchk utility),
1056

--sort-recover option (myisamchk utility),
1056

Sort_rows status variable, 929

Sort_scan status variable, 929

sorting

binary strings, 208
ENUM and SET values, 233-237
non-binary strings, 208
query results, 65-66

SOUNDEX() function, 849

SOUNDS LIKE operator, 850

source command (mysql client program),
1068

source distributions

installing, 784-786
obtaining, 779

SPACE() function, 850

SPATIAL clause, 960

spatial data types

explained, 250-252, 811-812
list of, 216

spatial functions, 877

format-conversion functions, 877-879
property functions, 879-881
relationship functions, 882-883

SPATIAL indexes, 138, 141

SPATIAL keyword, 955

spatial reference ID (SRID), 877

spatial values, 213

format-conversion functions, 877-879
formats for, 877
property functions, 879-881

special characters

encoding strings (C API), 405-407
quoting (DBI API for Perl), 457-460

--sporadic-binlog-dump-fail option (mysqld),
1100

SQL (Structured Query Language)

defined, 22
importance of understanding, 580
pronunciation of, 25

SQL mode, 102-103

composite SQL modes, 917
values, list of, 914

SQL SECURITY clause, 300, 954, 969

SQL statement execution in PDO, 543-547

SQL statements, 937

avoiding typing, 95, 100
in binary log files, re-executing,

765-767
case sensitivity in, 106-107
comment syntax, 1033-1035

1289SQL statements

compound statements, 290-292, 1028
control structure statements,

1029-1031
cursor statements, 1033
declaration statements, 1031-1033

database metadata, viewing, 145-146
databases

altering, 114
creating, 113
dropping, 114
selecting, 112

delimiters, redefining, 291
deprecated statements, 937
execution overview, 30-33
handling, mysql_store_result() versus

mysql_use_result(), 398-400
identifiers, naming conventions,

103-106
indexes

creating, 137-141
dropping, 141

interactive statement-execution sample
program (C API), 409-410

multiple-statement execution (C API),
420-422

multiple-table retrievals, 150
multiple-table updates and deletes,

173-174
non-compound statements, list of,

938, 1028
processing (C API), 389-390, 394-397
server-side prepared statements

(C API), 422-434
synonyms used, 938
syntax description conventions, 937
tables

altering structure, 141-144
creating, 122-135
dropping, 135-136
locking, 183

transactions, 174-182
isolation levels, 180-182
non-transactional alternatives,

182-185
savepoints, 180

views, 169-173
within files, 33

sql_auto_is_null system variable, 922

SQL_BIG_RESULT select option, 999

sql_big_selects system variable, 922

sql_big_tables system variable, 922

--sql-bin-update-same option (mysqld),
1093

SQL_BUFFER_RESULT select option, 998

sql_buffer_result system variable, 922

SQL_CACHE select option, 998

SQL_CALC_FOUND_ROWS select option, 999

sql_log_bin system variable, 923

sql_log_off system variable, 923

sql_log_update system variable, 923

sql_low_priority_updates system
variable, 904

--sql-mode option (mysqld), 103, 1093

sql_mode system variable, 661, 914

sql_notes system variable, 923

SQL_NO_CACHE select option, 998

sql_query_cache_type system variable, 911

sql_quote_show_create system variable, 923

sql_safe_updates system variable, 923

sql_select_limit system variable, 918

sql_slave_skip_counter system variable, 918

SQL_SMALL_RESULT select option, 999

SQL_THREAD slave option, 1025

sql_warnings system variable, 923

SQLEXCEPTION handler condition, 1033

SQLSTATE handler condition, 1033

SQLWARNING handler condition, 1033

SQRT() function, 839

SRID (spatial reference ID), 877

SRID() function, 880

SSL columns (user grant table), 710

SSL connection option, 981

SSL connections, requiring, 640-642

--ssl option, 1044

1290 SQL statements

SSL options, list of, 1043-1044

SSL status variables, 934-935

SSL support (C API), 410-416

Ssl_accepts status variable, 934

Ssl_accept_renegotiates status variable, 934

--ssl-ca option, 1044

Ssl_callback_cache_hits status variable, 934

--ssl-capath option, 1044

--ssl-cert option, 1044

--ssl-cipher option, 1044

Ssl_cipher status variable, 934

Ssl_cipher_list status variable, 934

Ssl_client_connects status variable, 934

Ssl_connect_renegotiates status
variable, 934

Ssl_ctx_verify_depth status variable, 934

Ssl_ctx_verify_mode status variable, 934

Ssl_default_timeout status variable, 934

SSL-encrypted connections, 731-735

Ssl_finished_accepts status variable, 934

Ssl_finished_connects status variable, 934

--ssl-key option, 1044

SSL-related columns (user grant tables),
717-718

Ssl_sessions_reused status variable, 935

Ssl_session_cache_hits status variable, 934

Ssl_session_cache_misses status
variable, 934

Ssl_session_cache_mode status
variable, 935

Ssl_session_cache_overflows status
variable, 935

Ssl_session_cache_size status variable, 935

Ssl_session_cache_timeouts status
variable, 935

Ssl_used_session_cache_entries status
variable, 935

Ssl_verify_depth status variable, 935

Ssl_verify_mode status variable, 935

--ssl-verify-server-cert option, 1044

Ssl_version status variable, 935

ssl_xxx system variable, 918

sslopt-case.h header file, 413

sslopt-longopts.h header file, 411

sslopt-vars.h header file, 413

--standalone option (mysqld), 1095

standalone PHP scripts, 531

standalone script language interpreters,
module versions versus, 353-354

standard program options

list of, 1041-1043
myisamchk support for, 1052
myisampack support for, 1058
mysql support for, 1061
mysql_install_db support for, 1072
mysqladmin support for, 1073
mysqlbinlog support for, 1077
mysqlcheck support for, 1079
mysqld support for, 1084
mysqld_multi support for, 1101
mysqld_safe support for, 1102
mysqldump support for, 1105
mysqlhotcopy support for, 1114
mysqlimport support for, 1117
mysqlshow support for, 1119
perror support for, 1120

START SLAVE statement, 772-773, 1025

START TRANSACTION statement, 176,
1025-1026

--start-check-pos option (myisamchk utili-
ty), 1056

--start-datetime option (mysqlbinlog utility),
767, 1078

start_html() function (CGI.pm module), 505

--start-position option (mysqlbinlog utility),
1078

start-slave command (mysqladmin utility),
1076

STARTING BY option, 989

1291STARTING BY option

STARTPOINT() function, 880

startup, 788

multiple server options, specifying,
690-691

setting system variables, 663-664, 889
specifying options, 624-626
on Unix, 616-621
on Windows, 621-624

statement access verification, 722, 724

Statement attribute (DBI API for Perl),
Web:1198-Web:1203

statement caching (DBI API for Perl), 462

statement construction and execution
functions (C API), Web:1150-Web:1152,
Web:1166-Web:1168

statement handlers, allocating, 423

statement terminators in
DBI API for Perl, 441

statement-based binary logging, 773

statement-handle attributes in
DBI API for Perl, Web:1201-Web:1205

statement-handle methods in
DBI API for Perl, Web:1191-Web:1195

statements, 103, 937. See also
SQL statements

C API
interactive statement-execution

sample program, 409-410
multiple-statement execution,

420-422
processing, 389-390, 394-397
server-side prepared statements,

422-434
handling, mysql_store_result() versus

mysql_use_result(), 398-400
stats_method variable (myisamchk utility),

1057

status command

mysql client program, 1068
mysqladmin utility, 1076

status files

list of, 599-602
relocating, 607

STATUS flush option, 978

--status option (mysqlshow utility), 1119

status variables, 924-930

checking, 667-668
InnoDB status variables, 930-933
query cache status variables, 933
SSL status variables, 934-935

STD() function, 870

STDDEV_POP() function, 871

STDDEV_SAMP() function, 871

sticky bits, setting, 707

STOP SLAVE statement, 773, 1026

stop-slave command (mysqladmin utility),
1076

--stop-datetime option (mysqlbinlog utility),
767, 1078

--stop-position option (mysqlbinlog utility),
1078

stopping MySQL server, 626

STORAGE ENGINE partition option, 967

storage engines, 590, 592

ARCHIVE, 120
binary portability, 121-122
BLACKHOLE, 121
checking availability of, 115-116
converting tables between, 143
CSV, 121
determining for tables, 146
EXAMPLE, 121
Falcon, 120

auto-recovery, 744
configuring, 680

FEDERATED, 120
files associated with tables, 117-118
index characteristics, 136-137
InnoDB, 119

auto-recovery, 744
AUTO_INCREMENT attribute

in, 259
configuring, 674-680
status variables, 930-933
system variables, 896

list of, 114-115

1292 STARTPOINT() function

MEMORY, 119, 259
MERGE, 118
MyISAM, 118

auto-recovery, 744
AUTO_INCREMENT attribute

in, 256-258
configuring, 671-673
system variables, 907

NDB, 120
row storage formats, selecting for

query optimization, 323
selecting availability of, 669-670
specifying, 123-124, 592

storage requirements for numeric data
types, 219

storage_engine system variable, 918

stored functions, 292-295

stored procedures, 292-294

case sensitivity, 106
parameter types, 295-296
privileges for, 294-295

stored programs. See also stored functions;
stored procedures

benefits of, 289
compound statements in, 290-292
defined, 290
events, 298-300
security issues, 300-301
triggers, 296-298

STR_TO_DATE() function, 213, 863

STRAIGHT_JOIN keyword, 313, 999, 1001

STRCMP() function, 833

strict mode, 102, 228, 253-254, 914

STRICT_ALL_TABLES SQL mode, 253, 917

STRICT_TRANS_TABLES SQL mode,
253, 917

string concatenation, 267, 824

string data types

attributes of, 237-240
BINARY and VARBINARY data

types, 229-230
binary strings, 805-806
BLOB and TEXT data types, 230-231

CHAR and VARCHAR data types,
228-229

ENUM and SET data types, 231,
237, 809

explained, 226-228, 803-805
list of, 215
non-binary strings, 807-808
selecting among, 240-241

string functions, 840-852

string values, 204-207

binary versus non-binary strings,
207-211

case sensitivity, 106
character sets and collations, 207,

211-213
escape sequences, 205-206

strings

encoding (C API), 405-407
prefixes of, indexing, 309
quoting special characters (DBI API

for Perl), 457-460
Structured Query Language. See SQL

structured system variables, 665-672

structures, Web:1124-Web:1135

SUBDATE() function, 863

SUBJECT clause, 734

SUBJECT connection option, 982

subqueries, 90-91, 158-159, 998

with ALL and ANY operators,
161-162

correlated subqueries, 163
with EXISTS and NOT EXISTS

operators, 162
in FROM clause, 163
with IN and NOT IN operators,

160-161
query optimization, 315
with relative comparison operators,

159-160
rewriting as joins, 164-165

subscribing to mailing lists, 780

SUBSTR() function, 850

SUBSTRING() function, 850

1293SUBSTRING() function

SUBSTRING_INDEX() function, 850

SUBTIME() function, 863

subtracting dates, 72

subtraction operator, 816

--suffix option (mysqlhotcopy utility), 1116

suffixes, 528

SUM() function, 81, 871

summaries, generating, 75-84

summary functions, 868-871

Sun Microsystems, 2

SUPER privilege, 714, 730, 980

superuser accounts, 611

superuser privileges, 728

support, 4, 780

suppressing error messages in PHP API, 552

switch statement (PHP API), 557

switchboxes, 479

--symbolic-links option (mysqld), 1093

symlinks

in backups, 752
changing permissions on, 706

sync_binlog system variable, 918

--sync-frm option (mysqld), 1093

sync_frm system variable, 918

synonyms for SQL statements, 938

synthetic indexes, 325

--sysconfdir option, 1045

SYSDATE() function, 864

--sysdate-is-now option (mysqld), 1093

syslog, 649

--syslog option (mysqld_safe shell script),
1103

--syslog-tag option (mysqld_safe shell
script), 1104

system command (mysql client program),
1068

system performance, 597

system tables, installing/upgrading, 788-789

System V-style systems, server startup, 620

system variables, 660, 889, 921

for character sets and collations,
211-213

checking status variables, 667-668
checking/setting, 661-665
list of, 665-667
for mysqld, checking values of, 1100
query optimization, 335
session-only system variables, 921-924
setting, 1004
viewing, 586

system_time_zone system variable,
682, 918

SYSTEM_USER() function, 887

T
\t command (mysql client program),

1067-1068

-T option (myisamchk utility), 1055-1056

-t option

myisampack utility, 1059
mysql client program, 1065
mysqld, 1094
mysqldump utility, 1109-1111

--tab option (mysqldump utility), 1111

table aliases, 1000

TABLE flush option, 978

table handlers, 114

table locks, 329

--table option (mysql client program), 1065

table options in CREATE TABLE statements,
961-964

table privileges, list of, 715-716

table subqueries, 158

table_cache system variable, 666, 919

table_definition_cache system variable, 919

table_locks_immediate status variable, 929

1294 SUBSTRING_INDEX()

Table_locks_waited status variable, 929

table_lock_wait_timeout system
variable, 919

Table_name value (scope column
contents), 721

table_open_cache system variable, 666, 919

table_type system variable, 919

tables

adding AUTO_INCREMENT
columns to, 260

altering structure, 141-144
analyzing, 313
checking/repairing, 757-758

CHECK TABLE statement, 758
myisamchk utility, 760-763
mysqlcheck utility, 759-760
REPAIR TABLE statement, 758

converting
between storage engines, 143
to four-byte utf8 character set, 112

copying between servers, 122
creating, 122-135

grade-keeping example, 42-53
specifying data types during,

217-218
U.S. Historical League example,

35-42
creating tables from, 127-130
default column values, specifying,

218-219
defragmenting, 324
deleting/updating rows, 91-93
dropping, 135-136
FEDERATED tables, 134-135
file operations for, 592-593
file size constraints, 596-597
files associated with, 117-118
indexing, 308
inserting rows, 53-57
locking, 183, 740-743
MERGE tables, 130-132
moving between databases, 144
multiple-table retrievals, 150
multiple-table updates and deletes,

173-174

naming conventions, 26
partitioned tables, 132-133
recovery, 764-765
relocating, 606
removing, 593
renaming, 144
retrieving information, 58, 91
storage engines for, 119, 590-592
truncating, 659
views, 169-173

--tables option

mysqlcheck client program, 1081
mysqldump utility, 1111

TABLES WITH READ LOCK flush option, 978

tables_priv grant table, 710

TABLESPACE clause, 680

tablespaces

per-table InnoDB tablespaces, 679
shared tablespace, 591, 674, 679

tag styles for PHP scripts,
Web:1207-Web:1208

TAN() function, 839

tar file binary distributions, installing, 783

--tc-heuristic-recover option (mysqld), 1094

Tc_log_max_pages_used status
variable, 929

Tc_log_page_size status variable, 929

Tc_log_page_waits status variable, 929

--tcp-ip option (mysqld_multi shell script),
1102

TCP/IP connections, 627, 629, Web:1145

TcX, 1

technical support for MySQL, 4, 780

tee command (mysql client program), 1068

--tee option (mysql client program), 1065

--temp-pool option (mysqld), 1094

temporal. See date and time values

temporary files, removing, 762

TEMPORARY keyword, 126-127, 959, 973

temporary tables, creating, 126-127

1295temporary tables, creating

TERMINATED BY option, 988-989

termination functions (C API),
Web:1136-Web:1137

--test option (myisampack utility), 1059

testing

development releases, 697
for NULL values in PHP API, 547
query optimization, 316
type conversion, 277-280

TEXT data type, 230-231, 325-326, 808

text-format backups, 746-751

THEN value, 1030

thread_cache_size system variable, 919

thread_concurrency system variable, 919

thread_handling system variable, 919

thread_pool_size system variable, 919

thread_stack system variable, 919

threaded client functions (C API), Web:1175

Threads_cached status variable, 929

Threads_connected status variable, 929

Threads_created status variable, 930

Threads_running status variable, 930

time and date functions, 852, 867

TIME data type, 243-244, 810

time data types, 216, 242

time values, 213

time zones, 244, 682-683

TIME() function, 864

time_format system variable, 919

TIME_FORMAT() function, 864

TIME_TO_SEC() function, 864

time_zone system variable, 682, 920

--timed-mutexes option (mysqld), 1094

timed_mutexes system variable, 920

TIMEDIFF() function, 864

TIMESTAMP data type, 244, 247, 810

timestamp system variable, 923

TIMESTAMP() function, 864

TIMESTAMPADD() function, 865

TIMESTAMPDIFF() function, 72, 865

--timezone option (mysqld_safe shell
script), 1104

TINYBLOB data type, 230, 805

TINYINT data type, 221, 225, 799

TINYTEXT data type, 230, 807

tmp_table_size system variable, 920

TMPDIR environment variable, 1050

--tmpdir option

myisamchk utility, 1056
myisampack utility, 1059
mysqld, 1094
mysqlhotcopy utility, 1116

tmpdir system variable, 920

TO clause, 981

TO SAVEPOINT clause, 997

TO_DAYS() function, 72, 277, 865

--to-last-log option (mysqlbinlog utility),
1078

tools. See MySQL programs

TOUCHES() function, 882

trace() method (DBI handles), 469,
Web:1195

TraceLevel attribute (DBI API for Perl), 470,
Web:1200

trace_msg() method (DBI handles),
Web:1196

tracing, debugging with (DBI API for Perl),
469, 471

TRADITIONAL SQL mode, 102, 253, 918

trailing LIKE clauses in CREATE TABLE state-
ments, 964

trailing padding in string data types, 241

trailing SELECT statements in CREATE TABLE
statements, 964

transaction control functions (C API),
Web:1164

1296 TERMINATED BY option

transaction levels in SET TRANSACTION
statements, 1006

transaction_alloc_block_size system
variable, 920

--transaction-isolation option (mysqld),
1094

transaction_prealloc_size system
variable, 920

transactional tables, mixing with
non-transactional tables, 185

transactions, 174-179, 950

in binary log, 651
in DBI API for Perl, 475-477
isolation levels, 180-182
non-transactional alternatives, 182-185
in PHP API, 562
savepoints, 180

transferring databases between servers,
755-756

TRIGGER privilege, 716, 980

triggers, 296-298, 592

--triggers option (mysqldump utility), 751,
1111

TRIM() function, 851

troubleshooting, 367, 757. See also
debugging in DBI API for Perl

grant tables
example scenario, 724-728
flushing privileges, 723

InnoDB auto-recovery, 767-768
linking client programs, 361

TRUE constant, 213

TRUNCATE TABLE statement, 260, 659, 762,
1026

TRUNCATE() function, 839

truncating tables, 659

tuning with system variables, 660

checking status variables, 667-668
checking/setting variables, 661-665
list of variables, 665-667

two-digit years, converting to four-digit years,
249-250

tx_isolation system variable, 920

TYPE attribute (DBI API for Perl), Web:1203

type conversion, 272-276

date and time values, 276
testing/forcing, 277-280

type member values (MYSQL_FIELD
structure), list of, Web:1128

TYPE table option, 964

--tz-utc option (mysqldump utility), 1111

U
\u command (mysql client program), 1068

-u option (myisamchk utility), 1043, 1056

-U option (mysql client program), 1064

UCASE() function, 851

ucs2 character set, 111

unary minus operator, 816

--unbuffered option (mysql client program),
1065

UNCOMPRESS() function, 875

UNCOMPRESSED_LENGTH() function, 875

uncorrelated subqueries, 163

undef values in DBI API for Perl, 442, 463

unequality operator, 819

UNHEX() function, 851

UNICODE attribute, 240

Unicode support, 111-112

union operator, 823

UNION statement, 165-169, 1026

UNION table option, 964

UNIQUE clause, 139, 955, 960

unique indexes, 137-138, 191

unique numbers, 254

unique_checks system variable, 924

UNIREG database tool, 1

Unix

error log on, 648-649
installing

1297Unix

Apache and PHP on, 790-792
DBI API for Perl, 789-790
MySQL on, 780-789

option files, read order of, 1045
server startup, 616-621
socket file

locking down, 706-707
replacing, 627

UNIX_TIMESTAMP() function, 865

UNLOCK TABLE statement, 741, 1027

UNLOCK TABLES statement, 183, 330

--unpack option (myisamchk utility), 1056

unprivileged login accounts, running server
with, 617-618

UNSIGNED attribute, 221-223

UNTIL clause, 1025

updatable views, 172

updatable_views_with_limit system
variable, 920

UPDATE privilege, 716

UPDATE statement, 91-93, 1028

changing/resetting passwords, 644
multiple-table updates, 173-174
relative versus absolute updates, 184
setting passwords with, 614

--update-state option (myisamchk utility),
1056

UPDATEXML() function, 883

updating

AUTO_INCREMENT columns, 256
MySQL, 695-696
passwords, 728
rows, 91-93

UPGRADE DATA DIRECTORY NAME
clause, 938

UPPER() function, 211, 851

Uptime status variable, 930

Uptime_since_flush_status status
variable, 930

URL text, escaping, 506

url() function (CGI.pm module), 508

urlencode() function (PHP API), 541

U.S. Historical League example

creating interactive online quiz,
565-570

editing member entries online,
570-578

finding common interests, 496-497,
521-525

generating directory, 478-484
generating HTML-formatted

directory, 497-500
objectives of, 17-20
sending renewal notices, 484-490
table creation, 35-42
updating member entries, 490-496

USAGE privilege, 637-640, 981

usage-based replication, 657

use command (mysql client program), 1068

USE INDEX clause, 313, 1000

USE statement, 34, 112, 439, 1028

USE_FRM option, 995

--use-frm option (mysqlcheck client pro-
gram), 1081

--use-threads option (mysqlimport client
program), 1118

user accounts, 616

USER environment variable, 1050

user grant table, 709

password encryption in, 722
sort order, 724

--user option (mysqld_safe shell script),
1043, 1104

user table, initial accounts in, 611

User value (scope column contents), 721

user variables, 935

USER() function, 887

user-defined variables, 74-75, 935-936

USER_RESOURCES flush option, 978

user-specific option files, 1046-1049

username, specifying for server
connections, 28

1298 Unix

USING BTREE clause, 139

USING() clause, 153-156, 975, 1001

UTC_DATE() function, 866

UTC_TIME() function, 866

UTC_TIMESTAMP() function, 866

utf8 character set, 111

utf8mb3 character set, 111

utf16 character set, 111

utf32 character set, 111

utility functions, Web:1197

UUID() function, 887

V
-v option, 1043

validation, 342, 494

VALUES clause, 54, 965

VALUES() list, 984

VAR_POP() function, 871

VAR_SAMP() function, 871

VARBINARY data type, 229-230, 805

VARCHAR data type, 38, 228-229, 807

variable names in DBI API for Perl,
Web:1178

variable-length string data types, 228

variables, 660

declaring in DBI API for Perl, 439
environment variables, 1049-1051
naming in DBI API for Perl, 437
in PHP API, 534
program variables

myisamchk utility, 1056-1057
mysql client program, 1065-1066
mysqladmin utility, 1074
mysqlbinlog utility, 1079
mysqldump utility, 1112
setting, 1044-1045

status variables, 924-930
InnoDB, 930-933
query cache, 933

SSL, 934-935
system variables, 586, 889, 921

for mysqld, 1100
query optimization, 335
session-only system variables, 921-

924
user-defined variables, 74-75, 935-936

variables command (mysqladmin utility),
1076

VARIANCE() function, 871

--verbose option, 1043

verifying data directory relocation, 603-604

version command (mysqladmin utility), 1076

--version option (mysql_config utility),
1038, 1043, 1071

version system variable, 920

VERSION() function, 888

version_comment system variable, 921

version_compile_machine system
variable, 921

version_compile_os system variable, 921

versions of MySQL, selecting, 780

--vertical option

mysql client program, 1065
mysqladmin utility, 1073

viewing

help message, 1038-1039
permissions, 702-703
privileges, 643
system variables, 586

views, 169, 173

in data directory, 592
security issues, 300-301

W
\w command (mysql client program),

1067-1068

-W option, 1042

-w option

myisamchk utility, 1056
myisampack utility, 1059

1299-w option

mysql client program, 1065
mysqladmin utility, 1073
mysqldump utility, 1112

--wait option

myisamchk utility, 1056
myisampack utility, 1059
mysql client program, 1065
mysqladmin utility, 1073

wait_timeout system variable, 921

warnings command (mysql client program),
1068

--warnings option (mysqld), 1094

warning_count system variable, 924

Web application development with DBI API
for Perl, 500-501

Apache Web server setup, 502-503
CGI.pm module

escaping HTML/URL text, 506
input parameters, 504
object-oriented interface, 503-504
output generating, 504-506
passing parameters to scripts,

507-510
connecting to MySQL server,

510-512
database browser, 513-517
FULLTEXT index searches, 524-525
grade-keeping score browser, 517-521
pattern matching searches, 521-524
U.S. Historical League common-

interest searching, 521-525
Web servers

Apache Web server, setting up,
502-503

integration with MySQL, 344-345
PHP API, 349, 529

Web sites for MySQL information, 11-12

WEEK() function, 866

WEEKDAY() function, 867

WEEKOFYEAR() function, 867

WEIGHT_STRING() function, 851

Well-Known Binary (WKB) format, 251, 877

converting internal format to, 879
converting to internal format, 877

Well-Known Text (WKT) format, 251, 877

converting internal format to, 879
converting to internal format, 878

WHEN expression, 1030

WHERE clause, 60-63, 91-92, 146, 662,
668, 970, 1001-1002, 1007, 1011, 1021,
1024, 1027-1028

WHERE FALSE clause, 475

--where option (mysqldump utility), 1112

WHILE statement, 1031

Widenius, Michael “Monty,” 1

wildcard characters, 73, 268, 826

in Host values (scope column
contents), 720

in hostname specifiers, 633
query optimization, 315

Windows

error log on, 649
installing

Apache and PHP on, 796
DBI API for Perl, 796
MySQL on, 792-796

option files
cautions concerning, 1046
read order of, 1046

running multiple servers on, 693-695
server startup, 621-624

Windows options for mysqld, 1094-1095

WITH CHECK OPTION clause, 970

WITH clause, 635, 642-643, 982

WITH CONSISTENT SNAPSHOT clause, 1025

WITH GRANT OPTION clause, 642, 979

WITH PARSER index option, 956

WITH QUERY EXPANSION search mode, 847

WITH ROLLUP clause, 82, 1002

WITHIN function, 882

1300 -w option

WKB (Well-Known Binary) format, 251, 877

converting internal format to, 879
converting to internal format, 877

WKT (Well-Known Text) format, 251, 877

converting internal format to, 879
converting to internal format, 878

word boundaries, 830

WORK clause, 950, 997

WRITE locks, 991

--write-binlog option (mysqlcheck client
program), 1081

write_buffer_size variable (myisamchk
utility), 1057

X–Z
-X option (mysql client program), 1065

-x option (mysqldump utility), 1108, 1112

X() function, 880

X509 connection option, 981

XHTML, HTML versus, 505

XML functions, 883

--xml option

mysql client program, 1065
mysqldump utility, 1112

XPath, 883

-Y option (mysqldump utility), 1105, 1109

Y() function, 880

YEAR data type, 247, 811

year values, converting two-digit to four-digit,
249-250

YEAR() function, 71

YEARWEEK() function, 867

zero values for date and time data
types, 242

ZEROFILL attribute, 224

1301ZEROFILL attribute

	MySQL
	Table of Contents
	Introduction
	Why Choose MySQL?
	Already Running Another RDBMS?
	Tools Provided with MySQL
	What You Can Expect from This Book
	Road Map to This Book
	Part I: General MySQL Use
	Part II: Using MySQL Programming Interfaces
	Part III: MySQL Administration
	Part IV: Appendixes

	How to Read This Book
	Versions of Software Covered in This Book
	Conventions Used in This Book
	Additional Resources

	I: General MySQL Use
	1 Getting Started with MySQL
	1.1 How MySQL Can Help You
	1.2 A Sample Database
	1.3 Basic Database Terminology
	1.4 A MySQL Tutorial
	1.5 Tips for Interacting with mysql
	1.6 Where to Now?

	2 Using SQL to Manage Data
	2.1 The Server SQL Mode
	2.2 MySQL Identifier Syntax and Naming Rules
	2.3 Case Sensitivity in SQL Statements
	2.4 Character Set Support
	2.5 Selecting, Creating, Dropping, and Altering Databases
	2.6 Creating, Dropping, Indexing, and Altering Tables
	2.7 Obtaining Database Metadata
	2.8 Performing Multiple-Table Retrievals with Joins
	2.9 Performing Multiple-Table Retrievals with Subqueries
	2.10 Performing Multiple-Table Retrievals with UNION
	2.11 Using Views
	2.12 Multiple-Table Deletes and Updates
	2.13 Performing Transactions
	2.14 Foreign Keys and Referential Integrity
	2.15 Using FULLTEXT Searches

	3 Data Types
	3.1 Data Value Categories
	3.2 MySQL Data Types
	3.3 How MySQL Handles Invalid Data Values
	3.4 Working with Sequences
	3.5 Expression Evaluation and Type Conversion
	3.6 Choosing Data Types

	4 Stored Programs
	4.1 Compound Statements and Statement Delimiters
	4.2 Stored Functions and Procedures
	4.3 Triggers
	4.4 Events
	4.5 Security for Stored Programs and Views

	5 Query Optimization
	5.1 Using Indexing
	5.2 The MySQL Query Optimizer
	5.3 Choosing Data Types for Efficient Queries
	5.4 Loading Data Efficiently
	5.5 Scheduling and Locking Issues
	5.6 Administrative-Level Optimizations

	II: Using MySQL Programming Interfaces
	6 Introduction to MySQL Programming
	6.1 Why Write Your Own MySQL Programs?
	6.2 APIs Available for MySQL
	6.3 Choosing an API

	7 Writing MySQL Programs Using C
	7.1 Compiling and Linking Client Programs
	7.2 Connecting to the Server
	7.3 Handling Errors and Processing Command Options
	7.4 Processing SQL Statements
	7.5 An Interactive Statement-Execution Program
	7.6 Writing Clients That Include SSL Support
	7.7 Using the Embedded Server Library
	7.8 Using Multiple-Statement Execution
	7.9 Using Server-Side Prepared Statements

	8 Writing MySQL Programs Using Perl DBI
	8.1 Perl Script Characteristics
	8.2 Perl DBI Overview
	8.3 Putting DBI to Work
	8.4 Using DBI in Web Applications

	9 Writing MySQL Programs Using PHP
	9.1 PHP Overview
	9.2 Putting PHP to Work

	III: MySQL Administration
	10 Introduction to MySQL Administration
	10.1 MySQL Components
	10.2 General MySQL Administration
	10.3 Access Control and Security
	10.4 Database Maintenance, Backups, and Replication

	11 The MySQL Data Directory
	11.1 Location of the Data Directory
	11.2 Structure of the Data Directory
	11.3 Relocating Data Directory Contents

	12 General MySQL Administration
	12.1 Securing a New MySQL Installation
	12.2 Arranging for MySQL Server Startup and Shutdown
	12.3 Controlling How the Server Listens for Connections
	12.4 Managing MySQL User Accounts
	12.5 Maintaining Logs
	12.6 Tuning the Server
	12.7 Storage Engine Configuration
	12.8 Enabling or Disabling LOCAL Capability for LOAD DATA
	12.9 Internationalization and Localization Issues
	12.10 Running Multiple Servers
	12.11 Updating MySQL

	13 Access Control and Security
	13.1 Internal Security: Preventing Unauthorized Filesystem Access
	13.2 External Security: Preventing Unauthorized Network Access
	13.3 Setting Up Secure Connections

	14 Database Maintenance, Backups, and Replication
	14.1 Principles of Preventive Maintenance
	14.2 Performing Database Maintenance with the Server Running
	14.3 General Preventative Maintenance
	14.4 Making Database Backups
	14.5 Copying Databases to Another Server
	14.6 Checking and Repairing Database Tables
	14.7 Using Backups for Data Recovery
	14.8 Setting Up Replication Servers

	IV: Appendixes
	A: Obtaining and Installing Software
	A.1 Obtaining the sampdb Sample Database Distribution
	A.2 Obtaining MySQL and Related Software
	A.3 Choosing a Version of MySQL
	A.4 Installing MySQL on Unix
	A.5 Installing MySQL on Windows

	B: Data Type Reference
	B.1 Numeric Types
	B.2 String Types
	B.3 Date and Time Types
	B.4 Spatial Types

	C: Operator and Function Reference
	C.1 Operators
	C.2 Functions

	D: System, Status, and User Variable Reference
	D.1 System Variables
	D.2 Session-Only System Variables
	D.3 Status Variables
	D.4 User-Defined Variables

	E: SQL Syntax Reference
	E.1 SQL Statement Syntax (Non-Compound Statements)
	E.2 Compound Statement Syntax
	E.3 Comment Syntax

	F: MySQL Program Reference
	F.1 Displaying a Program’s Help Message
	F.2 Specifying Program Options
	F.3 myisamchk
	F.4 myisampack
	F.5 mysql
	F.6 mysql.server
	F.7 mysql_config
	F.8 mysql_install_db
	F.9 mysqladmin
	F.10 mysqlbinlog
	F.11 mysqlcheck
	F.12 mysqld
	F.13 mysqld_multi
	F.14 mysqld_safe
	F.15 mysqldump
	F.16 mysqlhotcopy
	F.17 mysqlimport
	F.18 mysqlshow
	F.19 perror

	G: C API Reference
	G.1 Compiling and Linking
	G.2 C API Data Types
	G.3 C API Functions

	H: Perl DBI API Reference
	H.1 Writing Scripts
	H.2 DBI Methods
	H.3 DBI Utility Functions
	H.4 DBI Attributes
	H.5 DBI Environment Variables

	I: PHP API Reference
	I.1 Writing PHP Scripts
	I.2 PDO Classes
	I.3 PDO Methods

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J–K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X–Z

