
ptg6964689

ptg69646895
HTMLIN

TR
O

D
U

C
IN

G

SECOND
EDITION

BRUCE LAWSON
REMY SHARP

ptg6964689

Introducing HTML5, Second Edition
Bruce Lawson and Remy Sharp

New Riders
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)

Find us on the Web at: www.newriders.com
To report errors, please send a note to errata@peachpit.com

New Riders is an imprint of Peachpit, a division of Pearson Education

Copyright © 2012 by Remy Sharp and Bruce Lawson

Project Editor: Michael J. Nolan
Development Editor: Margaret S. Anderson/Stellarvisions
Technical Editors: Patrick H. Lauke (www.splintered.co.uk),
Robert Nyman (www.robertnyman.com)
Production Editor: Cory Borman
Copyeditor: Gretchen Dykstra
Proofreader: Jan Seymour
Indexer: Joy Dean Lee
Compositor: Danielle Foster
Cover Designer: Aren Howell Straiger
Cover photo: Patrick H. Lauke (splintered.co.uk)

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in
any form by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publisher. For informa-
tion on getting permission for reprints and excerpts, contact permissions@
peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis without war-
ranty. While every precaution has been taken in the preparation of the book,
neither the authors nor Peachpit shall have any liability to any person or
entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the instructions contained in this book or by the com-
puter software and hardware products described in it.

Trademarks
Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and Peachpit was aware of a trademark claim, the designa-
tions appear as requested by the owner of the trademark. All other product
names and services identified throughout this book are used in editorial
fashion only and for the benefit of such companies with no intention of
infringement of the trademark. No such use, or the use of any trade name, is
intended to convey endorsement or other affiliation with this book.

ISBN 13: 978-0-321-78442-1
ISBN 10: 0-321-78442-1

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

www.newriders.com
www.splintered.co.uk
www.robertnyman.com

ptg6964689

ACKNOWLEDGEMENTS
Huge thanks to coauthor-turned-friend Remy Sharp, and friend-
turned-ruthless-tech-editor Patrick Lauke: il miglior fabbro. At
New Riders, Michael Nolan, Margaret Anderson, Gretchen Dyk-
stra, and Jan Seymour deserve medals for their hard work and
their patience.

Thanks to the Opera Developer Relations Team, particularly the
editor of dev.opera.com, Chris Mills, for allowing me to reuse
some materials I wrote for him, Daniel Davis for his descrip-
tion of <ruby>, Shwetank Dixit for checking some drafts, and
David Storey for being so knowledgeable about Web Standards
and generously sharing that knowledge. Big shout to former
team member Henny Swan for her support and lemon cake.
Elsewhere in Opera, the specification team of James Graham,
Lachlan Hunt, Philip Jägenstedt, Anne van Kesteren, and Simon
Pieters checked chapters and answered 45,763 daft questions
with good humour. Nothing in this book is the opinion of Opera
Software ASA.

Ian Hickson has also answered many a question, and my fellow
HTML5 doctors (www.html5doctor.com) have provided much
insight and support.

Many thanks to Richard Ishida for explaining <bdi> to me and
allowing me to reproduce his explanation. Also to Aharon Lanin.
Smoochies to Robin Berjon and the Mozilla Developer Center
who allowed me to quote them.

Thanks to Gez Lemon and mighty Steve Faulkner for advice on
WAI-ARIA. Thanks to Denis Boudreau, Adrian Higginbotham,
Pratik Patel, Gregory J. Rosmaita, and Léonie Watson for screen
reader advice.

Thanks to Stuart Langridge for drinkage, immoral support, and
suggesting the working title “HTML5 Utopia.” Mr. Last Week’s cre-
ative vituperation provided loadsalaffs. Thanks, whoever you are.

Thanks to John Allsopp, Tantek Çelik, Christian Heilmann, John
Foliot, Jeremy Keith, Matt May, and Eric Meyer for conversations
about the future of markup. Silvia Pfeiffer’s blog posts on multi-
media were invaluable to my understanding.

www.html5doctor.com

ptg6964689

AckNowLEdgEMENTSiv

Stu Robson braved IE6 to take the screenshot in Chapter 1,
Terence Eden took the BlackBerry screenshots in Chapter 3,
Julia Gosling took the photo of Remy’s magic HTML5 moustache
in Chapter 4, and Jake Smith provided valuable feedback on
early drafts of my chapters. Lastly, but most importantly, thanks
to the thousands of students, conference attendees, and Twitter
followers for their questions and feedback.

This book is in memory of my grandmothers, Marjorie White-
head, 8 March 1917–28 April 2010, and Elsie Lawson 6 June
1920–20 August 2010.

This book is dedicated to Nongyaw, Marina, and James, without
whom life would be monochrome.

—Bruce Lawson

Über thanks to Bruce who invited me to coauthor this book and
without whom I would have spent the early part of 2010 com-
plaining about the weather instead of writing this book. On that
note, I’d also like to thank Chris Mills for even recommending
me to Bruce.

To Robert Nyman, my technical editor: when I was in need of
someone to challenge my JavaScript, I knew there would always
be a Swede at hand. Thank you for making sure my code was as
sound as it could be. Equally to Patrick Lauke, who also whipped
some of my code, and certainly parts of my English, into shape.

Thanks to the local Brighton cafés, Coffee@33 and Café Délice,
for letting me spend so many hours writing this book and drink-
ing your coffee.

To my local Brighton digital community and new friends who have
managed to keep me both sane and insane over the last few
years of working alone. Thank you to Danny Hope, Josh Russell,
and Anna Debenham for being my extended colleagues.

Thank you to Jeremy Keith for letting me rant and rail over HTML5
and bounce ideas, and for encouraging me to publish my thoughts.
Equal thanks to Jessica for letting us talk tech over beers!

ptg6964689

AckNowLEdgEMENTS v

To the HTML5 Doctors and Rich Clark in particular for invit-
ing me to contribute—and also to the team for publishing such
great material.

To the whole #jquery-ot channel for their help when I needed
to debug, or voice my frustration over a problem, and for being
someplace I could go rather than having to turn to my cats
for JavaScript support.

To the #whatwg channel for their help when I had misinter-
preted the specification and needed to be put back on the right
path. In particular to Anne Van Kesteren, who seemed to always
have the answers I was looking for, perhaps hidden under some
secret rock I’m yet to discover.

To all the conference organisers that invited me to speak, to the
conference goers that came to hear me ramble, to my Twitter
followers that have helped answer my questions and helped
spur me on to completing this book with Bruce: thank you. I’ve
tried my best with the book, and if there’s anything incorrect or
out of date: blame Bruce buy the next edition. ;-)

To my wife, Julie: thank you for supporting me for all these many
years. You’re more than I ever deserved and without you, I hon-
estly would not be the man I am today.

Finally, this book is dedicated to Tia. My girl. I wrote the major-
ity of my part of this book whilst you were on our way to us. I
always imagined that you’d see this book and be proud and
equally embarrassed. That won’t happen now, and even though
you’re gone, you’ll always be with us and never forgotten.

—Remy Sharp

ptg6964689

CONTENTS
Introduction ix

CHAPTER 1 Main Structure 1
The <head> 2

Using new HTML5 structural elements 6

Styling HTML5 with CSS 10

When to use the new HTML5 structural elements 13

What’s the point? 20

Summary 21

CHAPTER 2 Text 23
Structuring main content areas 24

Adding blog posts and comments 30

Working with HTML5 outlines 31

Understanding WAI-ARIA 49

Even more new structures! 53

Redefined elements 65

Global attributes 70

Removed attributes 75

Features not covered in this book 77

Summary 78

CHAPTER 3 Forms 79
We HTML, and now it s us back 80

New input types 80

New attributes 87

<progress>, <meter> elements 94

Putting all this together 95

Backwards compatibility with legacy browsers 99

Styling new form fields and error messages 100

Overriding browser defaults 102

Using JavaScript for DIY validation 104

ptg6964689

coNTENTS vii

Avoiding validation 105

Summary 108

CHAPTER 4 Video and Audio 109
Native multimedia: why, what, and how? 110

Codecs—the horror, the horror 117

Rolling custom controls 123

Multimedia accessibility 136

Synchronising media tracks 139

Summary 142

CHAPTER 5 Canvas 143
Canvas basics 146

Drawing paths 150

Using transformers: pixels in disguise 153

Capturing images 155

Pushing pixels 159

Animating your canvas paintings 163

Summary 168

CHAPTER 6 Data Storage 169
Storage options 170

Web Storage 172

Web SQL Database 184

IndexedDB 195

Summary 205

CHAPTER 7 Offline 207
Pulling the plug: going offline 208

The cache manifest 209

Network and fallback in detail 212

How to serve the manifest 214

The browser-server process 214

applicationCache 217

Debugging tips 219

Using the manifest to detect connectivity 221

Killing the cache 222

Summary 223

ptg6964689

coNTENTSviii

CHAPTER 8 Drag and Drop 225
Getting into drag 226

Interoperability of dragged data 230

How to drag any element 232

Adding custom drag icons 233

Accessibility 234

Summary 236

CHAPTER 9 Geolocation 237
Sticking a pin in your user 238

API methods 240

Summary 248

CHAPTER 10 Messaging and Workers 249
Chit chat with the Messaging API 250

Threading using Web Workers 252

Summary 264

CHAPTER 11 Real Time 265
WebSockets: working with streaming data 266

Server-Sent Events 270

Summary 274

CHAPTER 12 Polyfilling: Patching Old Browsers
to Support HTML5 Today 275
Introducing polyfills 276

Feature detection 277

Detecting properties 278

The undetectables 281

Where to find polyfills 281

A working example with Modernizr 282

Summary 284

And finally... 285

Index 286

ptg6964689

INTRODUCTION
Welcome to the second edition of the Remy & Bruce show. Since
the first edition of this book came out in July 2010, much has
changed: support for HTML5 is much more widespread; Internet
Explorer 9 finally came out; Google Chrome announced it would
drop support for H.264 video; Opera experimented with video
streaming from the user’s webcam via the browser, and HTML5
fever became HTML5 hysteria with any new technique or technol-
ogy being called HTML5 by clients, bosses, and journalists.

All these changes, and more, are discussed in this shiny second
edition. There is a brand new Chapter 12 dealing with the reali-
ties of implementing all the new technologies for old browsers.
And we’ve corrected a few bugs, tweaked some typos, rewritten
some particularly opaque prose, and added at least one joke.

We’re two developers who have been playing with HTML5 since
Christmas 2008—experimenting, participating in the mailing list,
and generally trying to help shape the language as well as learn it.

Because we’re developers, we’re interested in building things.
That’s why this book concentrates on the problems that HTML5
can solve, rather than on an academic investigation of the
language. It’s worth noting, too, that although Bruce works for
Opera Software, which began the proof of concept that eventu-
ally led to HTML5, he’s not part of the specification team there;
his interest is as an author using the language for an accessible,
easy-to-author, interoperable Web.

Who’s this book for?
No knowledge of HTML5 is assumed, but we do expect that
you’re an experienced (X)HTML author, familiar with the con-
cepts of semantic markup. It doesn’t matter whether you’re
more familiar with HTML or XHTML DOCTYPEs, but you should
be happy coding any kind of strict markup.

While you don’t need to be a JavaScript ninja, you should have
an understanding of the increasingly important role it plays in
modern web development, and terms like DOM and API won’t
make you drop this book in terror and run away.

ptg6964689

INTRoducTIoNx

Still here? Good.

What this book isn’t
This is not a reference book. We don’t go through each element
or API in a linear fashion, discussing each fully and then moving
on. The specification does that job in mind-numbing, tear-jerking,
but absolutely essential detail.

What the specification doesn’t try to do is teach you how to use
each element or API or how they work with one another, which
is where this book comes in. We’ll build up examples, discussing
new topics as we go, and return to them later when there are
new things to note.

You’ll also realise, from the title and the fact that you’re comfort-
ably holding this book without requiring a forklift, that this book
is not comprehensive. Explaining a 700-page specification (by
comparison, the first HTML spec was three pages long) in a
medium-sized book would require Tardis-like technology (which
would be cool) or microscopic fonts (which wouldn’t).

What do we mean by HTML5?
This might sound like a silly question, but there is an increasing
tendency amongst standards pundits to lump all exciting new
web technologies into a box labeled HTML5. So, for example,
we’ve seen SVG (Scalable Vector Graphics) referred to as “one
of the HTML5 family of technologies,” even though it’s an inde-
pendent W3C graphics spec that’s ten years old.

Further confusion arises from the fact that the official W3C spec
is something like an amoeba: Bits split off and become their own
specifications, such as Web Sockets or Web Storage (albeit from
the same Working Group, with the same editors).

So what we mean in this book is “HTML5 and related specifica-
tions that came from the WHATWG” (more about this exciting
acronym soon). We’re also bringing a “plus one” to the party—
Geolocation—which has nothing to do with our definition of
HTML5, but which we’ve included for the simple reason that
it’s really cool, we’re excited about it, and it’s part of NEWT:
the New Exciting Web Technologies.

ptg6964689

INTRoducTIoN xi

Who? What? When? Why?
A short history of HTML5

History sections in computer books usually annoy us. You don’t
need to know about ARPANET or the history of HTTP to under-
stand how to write a new language.

Nevertheless, it’s useful to understand how HTML5 came about,
because it will help you understand why some aspects of HTML5
are as they are, and hopefully preempt (or at least soothe) some
of those “WTF? Why did they design it like that?” moments.

How HTML5 nearly never was
In 1998, the W3C decided that they would not continue to
evolve HTML. The future, they believed (and so did your
authors) was XML. So they froze HTML at version 4.01 and
released a specification called XHTML 1.0, which was an XML
version of HTML that required XML syntax rules such as quot-
ing attributes, closing some tags while self-closing others, and
the like. Two flavours were developed (well, actually three, if
you care about HTML Frames, but we hope you don’t because
they’re gone from HTML5). XHTML Transitional was designed to
help people move to the gold standard of XHTML Strict.

This was all tickety-boo—it encouraged a generation of develop-
ers (or at least the professional-standard developers) to think
about valid, well-structured code. However, work then began
on a specification called XHTML 2.0, which was a revolutionary
change to the language, in the sense that it broke backwards-
compatibility in the cause of becoming much more logical and
better-designed.

A small group at Opera, however, was not convinced that XML
was the future for all web authors. Those individuals began
extracurricular work on a proof-of-concept specification that
extended HTML forms without breaking backward-compatibility.
That spec eventually became Web Forms 2.0, and was subse-
quently folded into the HTML5 spec. They were quickly joined
by individuals from Mozilla and this group, led by Ian “Hixie”
Hickson of Opera, continued working on the specification pri-
vately with Apple “cheering from the sidelines” in a small group
that called itself the WHATWG (Web Hypertext Application
Technology Working Group, www.whatwg.org). You can see

www.whatwg.org

ptg6964689

INTRoducTIoNxii

this genesis still in the copyright notice on the WHATWG ver-
sion of the spec “© Copyright 2004–2011 Apple Computer, Inc.,
Mozilla Foundation, and Opera Software ASA (note that you are
licensed to use, reproduce, and create derivative works).”

Hickson moved to Google, where he continued to work full-time
as editor of HTML5 (then called Web Applications 1.0).

In 2006 the W3C decided that they had perhaps been overly
optimistic in expecting the world to move to XML (and, by exten-
sion, XHTML 2.0): “It is necessary to evolve HTML incremen-
tally. The attempt to get the world to switch to XML, including
quotes around attribute values and slashes in empty tags and
namespaces, all at once didn’t work,” said Tim Berners-Lee.

The resurrected HTML Working Group voted to use the WHAT-
WG’s Web Applications spec as the basis for the new version
of HTML, and thus began a curious process whereby the same
spec was developed simultaneously by the W3C (co-chaired
by Sam Ruby of IBM and Chris Wilson of Microsoft, and later by
Ruby, Paul Cotton of Microsoft, and Maciej Stachowiak of Apple),
and the WHATWG, under the continued editorship of Hickson.

In search of the spec

Because the HTML5 specification is being developed by both the W3C and WHATWG, there are different
versions of it. Think of the WHATWG versions as being an incubator group.

The official W3C snapshot is www.w3.org/TR/html5/, while http://dev.w3.org/html5/spec/ is the latest
editor’s draft and liable to change.

The WHATWG has dropped version numbers, so the “5” has gone; it’s just “HTML‚—the living standard.”
Find this at http://whatwg.org/html but beware there are hugely experimental ideas in there. Don’t assume
that because it’s in this document it’s implemented anywhere or even completely thought out yet. This
spec does, however, have useful annotations about implementation status in different browsers.

There’s a one-page version of the complete WHATWG specifications called “Web Applications 1.0” that
incorporates everything from the WHATWG at http://www.whatwg.org/specs/web-apps/current-work/
complete.html but it might kill your browser as it’s massive with many scripts.

A lot of the specification is algorithms really intended for those implementing HTML (browser manufactur-
ers, for example). The spec that we have bookmarked is a useful version for the Web at http://developers.
whatwg.org, which removes all the stuff written for implementers and presents it with attractive CSS,
courtesy of Ben Schwarz. This contains the experimental stuff, too.

Confused? http://wiki.whatwg.org/wiki/FAQ#What_are_the_various_versions_of_the_spec.3F lists and
describes these different versions.

Geolocation is not a WHATWG spec. You can go to http://www.w3.org/TR/geolocation-API/ to find it.

www.w3.org/TR/html5/
http://dev.w3.org/html5/spec/
http://whatwg.org/html
http://www.whatwg.org/specs/web-apps/current-work/complete.html
http://developers.whatwg.org
http://developers.whatwg.org
http://wiki.whatwg.org/wiki/FAQ#What_are_the_various_versions_of_the_spec.3F
http://www.w3.org/TR/geolocation-API/
http://www.whatwg.org/specs/web-apps/current-work/complete.html

ptg6964689

INTRoducTIoN xiii

The process has been highly unusual in several respects.
The first is the extraordinary openness; anyone could join
the WHATWG mailing list and contribute to the spec. Every
email was read by Hickson or the core WHATWG team (which
included such luminaries as the inventor of JavaScript and
Mozilla CTO Brendan Eich, Safari and WebKit Architect David
Hyatt, and inventor of CSS and Opera CTO Håkon Wium Lie).

Good ideas were implemented and bad ideas rejected, regard-
less of who the source was or who they represented, or even
where those ideas were first mooted. Additional good ideas
were adopted from Twitter, blogs, and IRC.

In 2009, the W3C stopped work on XHTML 2.0 and diverted
resources to HTML5 and it was clear that HTML5 had won the
battle of philosophies: purity of design, even if it breaks back-
wards-compatibility, versus pragmatism and “not breaking the
Web.” The fact that the HTML5 working groups consisted of rep-
resentatives from all the browser vendors was also important.
If vendors were unwilling to implement part of the spec (such
as Microsoft’s unwillingness to implement <dialog>, or Mozilla’s
opposition to <bb>) it was dropped. Hickson has said, “The
reality is that the browser vendors have the ultimate veto on
everything in the spec, since if they don’t implement it, the spec
is nothing but a work of fiction.” Many participants found this
highly distasteful: Browser vendors have hijacked “our Web,”
they complained with some justification.

It’s fair to say that the working relationship between W3C and
WHATWG has not been as smooth as it could be. The W3C
operates under a consensus-based approach, whereas Hickson
continued to operate as he had in the WHATWG—as benevolent
dictator (and many will snort at our use of the word benevolent
in this context). It’s certainly the case that Hickson had very firm
ideas of how the language should be developed.

The philosophies behind HTML5
Behind HTML5 is a series of stated design principles
(http://www.w3.org/TR/html-design-principles). There are
three main aims to HTML5:

•	 Specifying current browser behaviours that are
interoperable

•	 Defining error handling for the first time

•	 Evolving the language for easier authoring of web applications

http://www.w3.org/TR/html-design-principles

ptg6964689

INTRoducTIoNxiv

Not breaking existing web pages
Many of our current methods of developing sites and
applications rely on undocumented (or at least unspecified)
features incorporated into browsers over time. For example,
XMLHttpRequest (XHR) powers untold numbers of Ajax-driven
sites. It was invented by Microsoft, and subsequently reverse-
engineered and incorporated into all other browsers, but had
never been specified as a standard (Anne van Kesteren of
Opera finally specified it as part of the WHATWG). Such a vital
part of so many sites left entirely to reverse-engineering! So one
of the first tasks of HTML5 was to document the undocumented,
in order to increase interoperability by leaving less to guesswork
for web authors and implementors of browsers.

It was also necessary to unambiguously define how browsers
and other user agents should deal with invalid markup. This
wasn’t a problem in the XML world; XML specifies “draconian
error handling” in which the browser is required to stop render-
ing if it finds an error. One of the major reasons for the rapid
ubiquity and success of the Web (in our opinion) was that even
bad code had a fighting chance of being rendered by some or
all browsers. The barrier to entry to publishing on the Web was
democratically low, but each browser was free to decide how to
render bad code. Something as simple as

<i>Hello mum!</i>

(note the mismatched closing tags) produces different DOMs in
different browsers. Different DOMs can cause the same CSS to
have a completely different rendering, and they can make writ-
ing JavaScript that runs across browsers much harder than it
needs to be. A consistent DOM is so important to the design of
HTML5 that the language itself is defined in terms of the DOM.

In the interest of greater interoperability, it’s vital that error han-
dling be identical across browsers, thus generating the exact
same DOM even when confronted with broken HTML. In order
for that to happen, it was necessary for someone to specify it.
As we said, the HTML5 specification is well over 700 pages
long, but only 300 or so are relevant to web authors (that’s you
and us); the rest of it is for implementers of browsers, telling
them exactly how to parse markup, even bad markup.

ptg6964689

INTRoducTIoN xv

Web applications
An increasing number of sites on the Web are what we’ll call
web applications; that is, they mimic desktop apps rather than
traditional static text-images-links documents that make up
the majority of the Web. Examples are online word processors,
photo-editing tools, mapping sites, and so on. Heavily powered
by JavaScript, these have pushed HTML 4 to the edge of its
capabilities. HTML5 specifies new DOM APIs for drag and drop,
server-sent events, drawing, video, and the like. These new
interfaces that HTML pages expose to JavaScript via objects in
the DOM make it easier to write such applications using tightly
specified standards rather than barely documented hacks.

Even more important is the need for an open standard (free to
use and free to implement) that can compete with proprietary
standards like Adobe Flash or Microsoft Silverlight. Regardless of
your thoughts on those technologies or companies, we believe
that the Web is too vital a platform for society, commerce, and
communication to be in the hands of one vendor. How differently
would the Renaissance have progressed if Caxton held a patent
and a monopoly on the manufacture of printing presses?

Don’t break the Web
There are exactly umpty-squillion web pages already out there,
and it’s imperative that they continue to render. So HTML5 is
(mostly) a superset of HTML 4 that continues to define how
browsers should deal with legacy markup such as , <cen-
ter>, and other such presentational tags, because millions of web
pages use them. But authors should not use them, as they’re
obsolete. For web authors, semantic markup still rules the day,
although each reader will form her own conclusion as to whether
HTML5 includes enough semantics, or too many elements.

As a bonus, HTML5’s unambiguous parsing rules should ensure
that ancient pages will work interoperably, as the HTML5 parser
will be used for all HTML documents once it’s implemented in
all browsers.

What about XML?
HTML5 is not an XML language (it’s not even an SGML lan-
guage, if that means anything important to you). It must be
served as text/html. If, however, you need to use XML, there is
an XML serialisation called XHTML5. This allows all the same

ptg6964689

INTRoducTIoNxvi

features, but (unsurprisingly) requires a more rigid syntax (if
you’re used to coding XHTML, this is exactly the same as you
already write). It must be well-formed XML and it must be served
with an XML MIME type, even though IE8 and its antecedents
can’t process it (it offers it for downloading rather than render-
ing it). Because of this, we are using HTML rather than XHTML
syntax in this book.

HTML5 support

HTML5 is moving very fast now. The W3C specification went to last call in May 2011, but browsers were
implementing HTML5 support (particularly around the APIs) long before then. That support is going to con-
tinue growing as browsers start rolling out features, so instances where we say “this is only supported in
browser X” will rapidly date—which is a good thing.

New browser features are very exciting and some people have made websites that claim to test browsers’
HTML5 support. Most of them wildly pick and mix specs, checking for HTML5, related WHATWG-derived
specifications such as Web Workers and then, drunk and giddy with buzzwords, throw in WebGL, SVG, the
W3C File API, Media Queries, and some Apple proprietary whizbangs before hyperventilating and going to
bed for a lie-down.

Don’t pay much attention to these sites. Their point systems are arbitrary, their definition of HTML5 mean-
ingless and misleading.

As Patrick Lauke, our technical editor, points out, “HTML5 is not a race. The idea is not that the first
browser to implement all will win the Internet. The whole idea behind the spec work is that all browsers
will support the same feature set consistently.”

If you want to see the current state of support for New Exciting Web Technologies, we recommend
http://caniuse.com by Alexis Deveria.

Let’s get our hands dirty
So that’s your history lesson, with a bit of philosophy thrown in.
It’s why HTML5 sometimes willfully disagrees with other speci-
fications—for backwards-compatibility, it often defines what
browsers actually do, rather than what an RFC document speci-
fies they ought to do. It’s why sometimes HTML5 seems like a
kludge or a compromise—it is. And if that’s the price we have
to pay for an interoperable open Web, then your authors say,
“Viva pragmatism!”

Got your seatbelt on?

Let’s go.

http://caniuse.com

ptg6964689

CHAPTER 1
Main Structure

Bruce Lawson

ALTHougH MucH oF the attention that HTML5 has

received revolves around the new APIs, there is a great

deal to interest markup monkeys as well as JavaScript

junkies. There are 30 new elements with new semantics

that can be used in traditional “static” pages. There is also

a swathe of new form controls that can abolish JavaScript

form validation altogether.

So, let’s get our hands dirty. In this chapter, we’ll transform

the current markup structure of <div>s into a semantic

system. New HTML5 structural elements like <nav>,

<header>, <footer>, <aside>, and <article> designate specific

types of content. We’ll look at how these work, and how

HTML5 documents have an unambiguous outline and

are—arguably—more “semantic.”

ptg6964689

INTRoducINg HTML52

The <head>
First things first: the DOCTYPE:

<!DOCTYPE html>

That’s it. No unwieldy string that even the most prolific web
authors need to cut and paste. No URLs. No version number.
That’s all. It’s not so much an instruction as an incantation: it’s
required by browsers that need the presence of a DOCTYPE to
trigger standards mode, and this is the shortest string that does
this reliably. We’ve written in uppercase so that it’s both HTML
and XML compliant, and suggest you do the same.

Then we need to define the document’s character encoding.
Not doing so can result in an obscure but real security risk (see
http://code.google.com/p/doctype/wiki/ArticleUtf7). This should
be in the first 512 bytes of the document. Unless you can think
of a splendid reason not to use it, we recommend UTF-8 as the
character encoding:

<!DOCTYPE html>
<meta charset=utf-8>

Take a look at that <meta> tag very carefully. Those who are
accustomed to writing XHTML will notice three oddities. The first
is that the <meta> tag is much shorter than the tag we are famil-
iar with—<meta http-equiv=”Content-Type” content=”text/html;
charset=UTF-8”>. This is still possible, but the shorter way is bet-
ter as it’s easier to type and works everywhere already.

You’ll also notice that I haven’t quoted the attribute
charset=”utf-8”. Neither have I self-closed the tag <meta
charset=utf-8 />.

HTML5 is not an XML language, so you don’t need to do those
things. But you can if you prefer. All of these are equally valid
HTML5:

<META CHARSET=UTF-8>
<META CHARSET=UTF-8 />
<META CHARSET=”UTF-8”>
<META CHARSET=”UTF-8” />
<meta charset=utf-8>
<meta charset=utf-8 />
<meTa CHARset=”utf-8”>
<meTa CHARset=”utf-8” />

http://code.google.com/p/doctype/wiki/ArticleUtf7

ptg6964689

cHApTER 1 : MAIN STRucTuRE : THE <HEAd> 3

Pick a style and stick with it

Just because you can use any of the aforementioned syntaxes doesn’t mean you should mix them all up,
however. That would prove a maintenance nightmare, particularly in a large team.

Our advice is to pick a style that works for you and stick with it. It doesn’t matter which you choose; Remy
prefers XHTML syntax while Bruce prefers lowercase, attribute minimisation (so controls rather than
controls=”controls”) and only quoting attributes when it’s necessary, as in adding two classes to an
element—so <div class=important> but <div class=”important logged-in”>. You’ll see both
styles in this book, as we each work as we feel most comfortable and you need to be able to read both.

As a brave new HTML5 author, you’re free to choose—but having chosen, keep to it.

Why such appallingly lax syntax? The answer is simple: browsers
never cared about XHTML syntax if it was sent as text/html—
only the XHTML validator did. Therefore, favouring one form
over the other in HTML5 would be entirely arbitrary, and cause
pages that didn’t follow that format to be invalid, although they
would work perfectly in any browser. So HTML5 is agnostic
about which you use.

While we’re on the subject of appallingly lax syntax rules (from
an XHTML perspective), let’s cheat and, after adding the docu-
ment title, go straight to the content:

<!DOCTYPE html>
<meta charset=utf-8>
<title>Interesting blog</title>
<p>Today I drank coffee for breakfast. 14 hours later,
¬ I went to bed.</p>

If we validate this exhilarating blog, we find that it validates fine,
yet it has no <html> tag, no <head>, and no <body> (Figure 1.1).

FIguRE 1.1 Shockingly, with
no head, body, or HTML tag,
the document validates.

ptg6964689

INTRoducINg HTML54

This is perhaps one of those WTF? moments I mentioned in the
introduction. These three elements are (XHTML authors, are you
sitting down?) entirely optional, because browsers assume them
anyway. A quick glance under the browser hood with Opera
Dragonfly confirms this (Figure 1.2).

Figure 1.3 shows it using the Internet Explorer 6 developer tools.

Because browsers do this, HTML5 doesn’t require these tags.
Nevertheless, omitting these elements from your markup
is likely to confuse your coworkers. Also, if you plan to use
AppCache (see Chapter 7) you’ll need the <html> element in
your markup. It’s also a good place to set the primary language
of the document:

<html lang=en>

A visually-impaired user might come to your website with
screenreading software that reads out the text on a page in a
synthesized voice. When the screenreader meets the string “six”
it will pronounce it very differently if the language of the page is
English or French. Screenreaders can attempt to guess at what
language your content is in, but it’s much better to unambigu-
ously specify it, as I have here.

FIguRE 1.2 Opera Dragonfly
debugger shows that browsers
add the missing elements.

FIguRE 1.3 Internet Explorer
6, like all other browsers, adds
missing elements in the DOM.
(Old versions of IE seem to
swap <title> and <meta>,
however.)

ptg6964689

cHApTER 1 : MAIN STRucTuRE : THE <HEAd> 5

IE8 and below require the <body> element before they will apply
CSS to style new HTML5 elements, so it makes sense to use
this element, too.

So, in the interest of maintainability, we’ll add those optional
elements to make what’s probably the minimum maintainable
HTML5 page:

<!DOCTYPE html>
<html lang=en>
<head>
<meta charset=utf-8>
<title>Interesting blog</title>
</head>
<body>
<p>Today I drank coffee for breakfast. 14 hours later,
¬ I went to bed.</p>
</body>
</html>

Does validation matter anymore?

Given that we have such forgiving syntax, we can omit implied tags like <html>, <head>, and <body>,
and—most importantly—because HTML5 defines a consistent DOM for any bad markup, you might be
asking yourself if validation actually matters anymore. We’ve asked ourselves the same question.

Our opinion is that it’s as important as it’s ever been as a quality assurance tool. But it’s only ever been
a tool, a means to an end—not a goal in itself.

The goal is semantic markup: ensuring that the elements you choose define the meaning of your content
as closely as possible, and don’t describe presentation. It’s possible to have a perfectly valid page made
of nothing but display tables, divs, and spans, which is of no semantic use to anyone, Conversely, a single
unencoded ampersand can make an excellently structured, semantically rich web page invalid, but it’s still
a semantic page.

When we lead development teams, we make passing validation a necessary step before any code review,
let alone before making code live. It’s a great way to ensure that your code really does what you want.
After all, browsers may make a consistent DOM from bad markup but it might not be the DOM you want.

Also, HTML5 parsers aren’t yet everywhere, so ensuring valid pages is absolutely what you should aim for
to ensure predictable CSS and JavaScript behaviours.

We recommend using http://validator.w3.org/ or http://html5.validator.nu. We expect that there will be
further developments in validators, such as options to enforce coding choices—so you can choose to
be warned for not using XHTML syntax, for example, even though that’s not required by the spec. One
such tool that looks pretty good is http://lint.brihten.com, although we can’t verify whether the
validation routines it uses are up-to-date.

http://validator.w3.org/
http://html5.validator.nu
http://lint.brihten.com

ptg6964689

INTRoducINg HTML56

Using new HTML5 structural elements
In 2004, Ian Hickson, the editor of the HTML5 spec, mined
one billion web pages via the Google index, looking to see
what the “real” Web is made of. One of the analyses he subse-
quently published (http://code.google.com/webstats/2005-12/
classes.html) was a list of the most popular class names in those
HTML documents.

More recently, in 2009, the Opera MAMA crawler looked again
at class attributes in 2,148,723 randomly chosen URLs and also
ids given to elements (which the Google dataset didn’t include)
in 1,806,424 URLs. See Table 1.1 and Table 1.2.

TABLE 1.1 Class Names

popuLARITY VALuE FREQuENcY

1 footer 179,528

2 menu 146,673

3 style1 138,308

4 msonormal 123,374

5 text 122,911

6 content 113,951

7 title 91,957

8 style2 89,851

9 header 89,274

10 copyright 86,979

11 button 81,503

12 main 69,620

13 style3 69,349

14 small 68,995

15 nav 68,634

16 clear 68,571

17 search 59,802

18 style4 56,032

19 logo 48,831

20 body 48,052

TABLE 1.2 ID Names

popuLARITY VALuE FREQuENcY

1 footer 288,061

2 content 228,661

3 header 223,726

4 logo 121,352

5 container 119,877

6 main 106,327

7 table1 101,677

8 menu 96,161

9 layer1 93,920

10 autonumber1 77,350

11 search 74,887

12 nav 72,057

13 wrapper 66,730

14 top 66,615

15 table2 57,934

16 layer2 56,823

17 sidebar 52,416

18 image1 48,922

19 banner 44,592

20 navigation 43,664

http://code.google.com/webstats/2005-12/classes.html
http://code.google.com/webstats/2005-12/classes.html

ptg6964689

cHApTER 1 : MAIN STRucTuRE : uSINg NEw HTML5 STRucTuRAL ELEMENTS 7

As you can see, once we remove obviously presentational
classes, we’re left with a good idea of the structures that authors
are trying to use on their pages.

Just as HTML 4 reflects the early Web of scientists and engi-
neers (so there are elements like <kbd>, <samp>, and <var>),
HTML5 reflects the Web as it was during its development: 30
elements are new, many of them inspired by the class and id
names above, because that’s what developers build.

So, while we’re in a pragmatic rather than philosophical mood,
let’s actually use them. Here is a sample blog home page
marked up as we do in HTML 4 using the semantically neutral
<div> element:

<div id=”header”>
 <h1>My interesting life</h1>
</div>
<div id=”sidebar”>
 <h2>Menu</h2>

 Last week
 Archives

</div>
<div class=”post”>
 <h2>Yesterday</h2>
 <p>Today I drank coffee for breakfast. 14 hours later,
 ¬ I went to bed.</p>
</div>
<div class=”post”>
 <h2>Tuesday</h2>
 <p>Ran out of coffee, so had orange juice for breakfast.
 ¬ It was from concentrate.</p>
</div>
<div id=”footer”>
 <p><small> This is copyright by Bruce Sharp. Contact me to
 ¬ negotiate the movie rights.</small></p>
</div>

By applying some simple CSS to it, we’ll style it:

#sidebar {float:left; width:20%;}
.post {float:right; width:79%;}
#footer {clear:both;}

ptg6964689

INTRoducINg HTML58

Diagrammatically, the page looks like Figure 1.4.

div id="header"

div class="post"

div class="post"

div id="footer"

div id=
"side-
bar"

While there is nothing at all wrong with this markup (and it’ll
continue working perfectly well in the new HTML5 world), most
of the structure is entirely unknown to a browser, as the only
real HTML element we can use for these important page land-
marks is the semantically neutral <div> (defined in HTML 4 as
“a generic mechanism for adding structure to documents”).

So, if it displays fine, what’s wrong with this? Why would we
want to use more elements to add more semantics?

It’s possible to imagine a clever browser having a shortcut key
that would jump straight to the page’s navigation. The question
is: How would it know what to jump to? Some authors write <div
class=”menu”>, others use class=”nav” or class=”navigation”
or class=”links” or any number of equivalents in languages
other than English. The Opera MAMA tables above suggest that
menu, nav, sidebar, and navigation could all be synonymous,
but there’s no guarantee; a restaurant website might use <div
class=”menu”> not as navigation but to list the food choices.

HTML5 gives us new elements that unambiguously denote land-
marks in a page. So, we’ll rewrite our page to use some of these
elements:

<header>
 <h1>My interesting life</h1>
</header>
<nav>
 <h2>Menu</h2>

 Last week

FIguRE 1.4 The HTML 4
structure of our blog.

ptg6964689

cHApTER 1 : MAIN STRucTuRE : uSINg NEw HTML5 STRucTuRAL ELEMENTS 9

 Archives

</nav>
<article>
 <h2>Yesterday</h2>
 <p>Today I drank coffee for breakfast. 14 hours later,
 ¬ I went to bed.</p>
</article>
<article>
 <h2>Tuesday</h2>
 <p>Ran out of coffee, so had orange juice for breakfast.
 ¬ It was from concentrate.</p>
</article>

<footer>
 <p><small>This is copyright by Bruce Sharp. Contact me to
 ¬ negotiate the movie rights.</small></p>
</footer>

Diagrammatically, the HTML5 version is shown in Figure 1.5.

header

article

article

footer

nav

Before we look in detail at when to use these new elements and
what they mean, let’s first style the basic structures of the page.

FIguRE 1.5 The HTML5
structure of our blog.

ptg6964689

INTRoducINg HTML510

Why, oh why, is there no <content> element?

It’s easy to see how our hypothetical “jump to nav” shortcut key would work, but a more common require-
ment is to jump straight to the main content area. Some accessibility-minded designers add a “skip links”
link at the very top of the page, to allow screen reader users to bypass navigation items. Wouldn’t it be
great if browsers provided a single keystroke that jumped straight to the main content?

Yet in HTML5 there is no <content> element to jump to, so how would the browser know where the main
content of a page begins?

Actually, it’s simple to determine where it is, using what I call the Scooby Doo algorithm. You always
know that the person behind the ghost mask will be the sinister janitor of the disused theme park, simply
because he’s the only person in the episode who isn’t Fred, Daphne, Velma, Shaggy, or Scooby. Similarly,
the first piece of content that’s not in a <header>, <nav>, <aside>, or <footer> is the beginning of the
main content, regardless of whether it’s contained in an <article>, or <div>, or whether it is a direct
descendent of the <body> element.

This would be useful for screenreader users, and mobile device manufacturers could have the browser
zoom straight in to the central content, for example.

If you’re wishing there were a <content> element as a styling hook, you can use WAI-ARIA and add role=main
to whatever element wraps your main content, which also provides a styling hook via CSS attribute selectors
(not available in IE6), for example, div[role=main] {float:right;} (see Chapter 2 for more on WAI-ARIA).

Styling HTML5 with CSS
In all but one browser, styling these new elements is pretty sim-
ple: You can apply CSS to any arbitrary element, because, as the
spec says, CSS “is a style sheet language that allows authors
and users to attach style . . . to structured documents (e.g.,
HTML documents and XML applications)” and XML applications
can have any elements you want.

Therefore, using CSS we can float <nav>, put borders on
<header> and <footer>, and give margins and padding to
<article> almost as easily as we can with <div>s.

Although you can use the new HTML5 elements now, older
browsers don’t necessarily understand them. They don’t do
anything special with them and they treat them like unknown
elements you make up.

What might surprise you is that, by default, CSS assumes that
elements are display:inline, so if you just set heights and
widths to the structural elements as we do <div>s, it won’t work

ptg6964689

cHApTER 1 : MAIN STRucTuRE : STYLINg HTML5 wITH cSS 11

properly in ye olde browsers until we explicitly tell the browser
that they are display:block. Browsers contain a rudimentary,
built-in style sheet that overrides the default inline styling for
those elements we think of as natively block-level (one such
style sheet can be found at http://www.w3.org/TR/CSS2/
sample.html). Older browsers don’t have rules that define new
HTML elements such as <header>, <nav>, <footer>, <article> as
display:block, so we need to specify this in our CSS. For mod-
ern browsers, our line will be redundant but harmless, acting as
a useful helper for older browsers, which we all know can linger
on well beyond their sell-by dates.

So, to style our HTML5 to match our HTML 4 design, we simply
need the styles

header, nav, footer, article {display:block;}
nav {float:left; width:20%;}
article {float:right; width:79%;}
footer {clear:both;}

And a beautiful HTML5 page is born. Except in one browser.

Styling HTML5 in Internet Explorer 6,7,8
In old (but sadly, not dead) versions of Internet Explorer, CSS is
properly applied to the HTML 4 elements that IE does support,
but any new HTML5 elements that the browser doesn’t know
remain unstyled. This can look . . . unpleasant.

The way to cajole old IE into applying CSS to HTML5 is to poke
it with a sharp JavaScript-shaped stick. Why? This is an inscru-
table secret, and if we told you we’d have to kill you. (Actually,
we don’t know.) If you add the following JavaScript into the head
of the page

<script>
 document.createElement(‘header’);
 document.createElement(‘nav’);
 document.createElement(‘article’);
 document.createElement(‘footer’);
</script>

IE will magically apply styles to those elements, provided that there
is a <body> element in the markup. You need only create each ele-
ment once, no matter how many times it appears on a page.

Remember, HTML5 itself doesn’t require a body element, but
this heady brew of Internet Explorer 8 (and earlier versions),

http://www.w3.org/TR/CSS2/sample.html
http://www.w3.org/TR/CSS2/sample.html

ptg6964689

INTRoducINg HTML512

CSS, HTML5, and JavaScript does. IE9 works like the other
browsers and doesn’t need JavaScript.

Although this JavaScript is unnecessary for other brows-
ers, it won’t cause them any harm. However, you might wish
to give your page a speed optimisation and only download
and execute this script in IE by surrounding it with condi-
tional comments (see http://dev.opera.com/articles/view/
supporting-ie-with-conditional-comments/).

Enabling Script

Alternatively, you can use Remy’s tiny HTML5-enabling script
http://remysharp.com/2009/01/07/html5-enabling-script/ that will per-
form this for all new elements in one fell swoop, and which also includes
Jon Neal’s IE Print Protector (http://www.iecss.com/print-protector) that
ensures that HTML5 elements also appear styled correctly when print-
ing documents in IE.

A user with JavaScript turned off, whether by choice or corpo-
rate security policy, will be able to access your content but will
see a partially styled or unstyled page. This may or may not be
a deal-breaker for you. (A user with ancient IE and no JavaScript
has such a miserable web experience, your website is unlikely
to be the worst they encounter.) Simon Pieters has shown
that, if you know what the DOM looks like, you can style some
HTML5 without JavaScript but it’s not particularly scalable or
maintainable; see “Styling HTML5 markup in IE without script”
at http://blog.whatwg.org/styling-ie-noscript.

Other legacy browser problems
There are other legacy browser problems when styling HTML5.
Older versions of Firefox (prior to version 3) and Camino (before
version 2) had a bug that http://html5doctor.com/how-to-
get-html5-working-in-ie-and-firefox-2/ has dealt with.

We don’t propose to compose an exhaustive list of these
behaviours; they are temporary problems that we expect to
quickly disappear as new browser versions come out and users
upgrade to them.

NoTE The <script>
element no longer requires

you to specify the type of script;
JavaScript is assumed by
default. This works on legacy
browsers also so you can use it
right away.

http://dev.opera.com/articles/view/supporting-ie-with-conditional-comments/
http://dev.opera.com/articles/view/supporting-ie-with-conditional-comments/
http://remysharp.com/2009/01/07/html5-enabling-script/
http://www.iecss.com/print-protector
http://blog.whatwg.org/styling-ie-noscript
http://html5doctor.com/how-toget-html5-working-in-ie-and-firefox-2/
http://html5doctor.com/how-toget-html5-working-in-ie-and-firefox-2/

ptg6964689

cHApTER 1 : MAIN STRucTuRE : wHEN To uSE THE NEw HTML5 STRucTuRAL ELEMENTS 13

When to use the new HTML5
structural elements

We’ve used these elements to mark up our page, and styled
them, and although the use of each might seem to be self-evident
from the names, it’s time to study them in a little more detail.

<header>
In our example above, as on most sites, the header will be the
first element on a page. It contains the title of the site, logos,
links back to the home page, and so on. The spec says:

“The header element represents a group of introductory or navi-
gational aids . . . Note: A header element is intended to usually
contain the section’s heading (an h1–h6 element or an hgroup
element), but this is not required. The header element can also
be used to wrap a section’s table of contents, a search form, or
any relevant logos.”

Let’s dissect this. The first thing to note is that a <header> ele-
ment is not required; in our example above, it’s superfluous as
it surrounds just the <h1>. Its value is that it groups “introductory
or navigational” elements, so here’s a more realistic example:

<header>

 <h1>My interesting blog</h1>
</header>

Many websites have a title and a tagline or subtitle. To mask the
subtitle from the outlining algorithm (so making the main head-
ing and subtitle into one logical unit; see Chapter 2 for more dis-
cussion), the main heading and subtitle can be grouped in the
new <hgroup> element:

<header>

<hgroup>
<h1>My interesting blog</h1>
<h2>Tedium, dullness and monotony</h2>
</hgroup>
</header>

ptg6964689

INTRoducINg HTML514

The header can also contain navigation. This can be very use-
ful for site-wide navigation, especially on template-driven sites
where the whole of the <header> element could come from a
template file. So, for example, the horizontal site-wide navigation
on www.thaicookery.co.uk could be coded as shown. You can
see the result in Figure 1.6.

<header>
 <hgroup>
 <h1>Thai Cookery School</h1>
 <h2>Learn authentic Thai cookery in your own home.</h2>
 </hgroup>
 <nav>

 Home
 Cookery Courses
 Contact

 </nav>
</header>

Of course, it’s not required that the <nav> be in the <header>.
The Thai cookery example could just as easily be marked up
with the main <nav> outside the <header>:

<header>
 <hgroup>
 <h1>Thai Cookery School></h1>
 <h2>Learn authentic Thai cookery in your own home.</h2>
 </hgroup>
</header>
<nav>

FIguRE 1.6 Header for
www.thaicookery.co.uk.

www.thaicookery.co.uk
www.thaicookery.co.uk

ptg6964689

cHApTER 1 : MAIN STRucTuRE : wHEN To uSE THE NEw HTML5 STRucTuRAL ELEMENTS 15

 Home
 Cookery Courses
 Contact

</nav>

It depends largely on whether you believe that site-wide navi-
gation belongs in the site-wide header, and also on pragmatic
considerations about ease of styling. Take, for example, my per-
sonal site, which has a very long site-wide navigation on the left
of the content area, which can be much longer than a post. Put-
ting this <nav> in the <header> would make it very hard to put the
main content in the right place and have a footer, so in this case,
the site-wide navigation is outside the <header>, and is a sibling
child of the <body>, as in this example (Figure 1.7).

Note that currently we’re creating only the main <header> for
the page; there can be multiple <header>s—we’ll come to that in
Chapter 2.

<nav>
The <nav> element is designed to mark up navigation. Naviga-
tion is defined as links around a page (for example, a table of
contents at the top of an article that links to anchor points on
the same page) or within a site. But not every collection of links
is <nav>; a list of sponsored links isn’t <nav>, and neither is a
page of search results, as that is the main content of the page.

FIguRE 1.7 Typical page with
site-wide navigation out of the
main header area.

ptg6964689

INTRoducINg HTML516

To <nav> or not to <nav>?

I was previously guilty of navitis—the urge to surround any links to other parts of a site as <nav>.

I cured myself of it by considering who will benefit from use of the <nav> element. We’ve previously spec-
ulated about a shortcut that would allow an assistive technology user to jump to navigation menus. If there
are dozens of <nav>s, it will make it hard for the user to find the most important ones. So I now advocate
marking up only the most important nav blocks, such as those that are site-wide (or section-wide) or tables
of contents for long pages.

A good rule of thumb is to use a <nav> element if you could imagine the links you’re considering wrapping
having a heading “Navigation” above them. If they are important enough to merit a heading (regardless of
whether the content or design actually requires such a heading), they’re important enough to be <nav>.

As the spec says, “Not all groups of links on a page need to be in a nav element—the element is primarily
intended for sections that consist of major navigation blocks.”

Conversely, the spec suggests that the “legal” links (copyright, contact, freedom of information, privacy
policies, and so on). that are often tucked away in the footer should not be wrapped in a <nav>: “It is com-
mon for footers to have a short list of links to various pages of a site, such as the terms of service, the
home page, and a copyright page. The footer element alone is sufficient for such cases; while a nav ele-
ment can be used in such cases, it is usually unnecessary.”

We advise you to ignore what the spec says—use <nav> for these. Many sites also include a link to acces-
sibility information that explains how to request information in alternate formats, for example. Typically,
people who require such information are those who would benefit the most from user agents that can take
them directly to elements marked up as <nav>.

As with <header>s and <footer>s (and all of the new elements),
you’re not restricted to one <nav> per page. You might very well
have site-wide <nav> in a header, a <nav> which is a table of con-
tents for the current article, and a <nav> below that which links
to other related articles on your site.

The contents of a <nav> element will probably be a list of links,
marked up as an unordered list (which has become a tradition
since Mark Newhouse’s seminal “CSS Design: Taming Lists”
(http://www.alistapart.com/articles/taminglists/) or, in the case of
breadcrumb trails, an ordered list. Note that the <nav> element is
a wrapper; it doesn’t replace the or element but wraps
around it. That way, legacy browsers that don’t understand the
element will just see the list element and list items and behave
themselves just fine.

http://www.alistapart.com/articles/taminglists/

ptg6964689

cHApTER 1 : MAIN STRucTuRE : wHEN To uSE THE NEw HTML5 STRucTuRAL ELEMENTS 17

While it makes sense to use a list (and it gives you more hooks
for CSS), it’s not mandatory. This is perfectly valid:

<nav>
 <p>Home</p>
 <p>About</p>
</nav>

You can include headings for navigation, too:

<nav>
 <h2>Pages</h2>

 About me
 News

 <h2>Categories</h2>

 Happy Pirates
 Angry Pirates

</nav>

Grouping <nav> and other
elements in a sidebar
Many sites have a sidebar that includes multiple blocks of navi-
gation and other non-navigation content. Take, for example, my
personal site www.brucelawson.co.uk (Figure 1.8).

The sidebar on the left of the main content has one nav area
containing sublists for pages, categories, archives, and most
recent comments. In the first edition of this book, I recom-
mended that these be marked up as a series of consecutive
<nav> elements; I’ve changed my mind and now surround the
sublists with one overarching <nav>. (If you have two or more
blocks of important navigation that are not consecutive, by all
means use separate <nav> elements.)

All my main site navigation is contained in an <aside> element
that “can be used for typographical effects like pull quotes or
sidebars, for advertising, for groups of nav elements, and for
other content that is considered separate from the main content
of the page” (http://dev.w3.org/html5/spec/semantics.html#
the-aside-element).

FIguRE 1.8 My blog sidebar,
(once upon a time) mixing
navigation with colophon
information and pictures of
hunks.

NoTE Before you throw
down this book in disgust

at my changing my mind, it’s
important to emphasise that
there is rarely One True Way™ to
mark up content. HTML is a gen-
eral language without a million
elements to cover all eventuali-
ties (it just feels that way
sometimes)!

http://dev.w3.org/html5/spec/semantics.html#the-aside-element
http://dev.w3.org/html5/spec/semantics.html#the-aside-element
www.brucelawson.co.uk

ptg6964689

INTRoducINg HTML518

<aside>
 <nav>
 <h2>Pages</h2>
 ..
 <h2>Categories</h2>
 ..

 <h2>Recent comments</h2>
 ...
</nav>

 <section>
 <h2>blah blah</h2>
 Web hosting by LovelyHost

 <p>Powered by WordPress</p>
 <p>Entries (RSS) and
 ¬ Comments (RSS)</p>
 </section>
</aside>

Note that the “blah blah” section is not marked up as <nav>, as
the link to my web host, a picture of me, and two RSS links don’t
seem to me to be a “section that consist[s] of major navigation
blocks” as the spec defines <nav>. It’s wrapped in a <section> so
that the sidebar headings remain the same level in the outlining
algorithm (see Chapter 2 for more information).

<footer>
The <footer> element is defined in the spec as representing “a
footer for its nearest ancestor sectioning content or sectioning
root element.” (“Sectioning content” includes article, aside, nav,
and section, and “sectioning root elements” are blockquote,
body, details, fieldset, figure, and td.)

Note that, as with the header element, there can be more than
one footer on a page; we’ll revisit that in Chapter 2. For now, we
have just one footer on the page that is a child of the body ele-
ment. As the spec says, “When the nearest ancestor sectioning
content or sectioning root element is the body element, then it
applies to the whole page.”

ptg6964689

cHApTER 1 : MAIN STRucTuRE : wHEN To uSE THE NEw HTML5 STRucTuRAL ELEMENTS 19

The spec continues, “A footer typically contains information
about its section, such as who wrote it, links to related docu-
ments, copyright data, and the like.”

Our footer holds copyright data, which we’re wrapping in a
<small> element, too. <small> has been redefined in HTML5;
previously it was a presentational element, but in HTML5 it has
semantics, representing side comments or small print that “typi-
cally features disclaimers, caveats, legal restrictions, or copy-
rights. Small print is also sometimes used for attribution, or for
satisfying licensing requirements.”

Your site’s footer probably has more than a copyright notice.
You might have links to privacy policies, accessibility information
(why are you hiding that out of the way?), and other such links.
I’d suggest wrapping these in <nav>, despite the spec’s advice
(see previous <nav> section).

The spec says “Some site designs have what is sometimes
referred to as ‘fat footers’—footers that contain a lot of mate-
rial, including images, links to other articles, links to pages for
sending feedback, special offers . . . in some ways, a whole
‘front page’ in the footer.” It suggests a <nav> element, within the
<footer>, to enclose the information.

When tempted to use a “fat footer,” consider whether such links
actually need <nav> at all—navitis can be hard to shake off. Also
ask yourself whether such links are actually part of a <footer> at
all: would it be better as an <aside> of the whole page, a sibling
of <footer>?

<article>
The main content of this blog’s home page contains a few blog
posts. We wrap each one up in an <article> element. <article>
is specified thus: “A self-contained composition in a document,
page, application, or site and that is, in principle, independently
distributable or reusable, e.g., in syndication. This could be a
forum post, a magazine or newspaper article, a blog entry, a
user-submitted comment, an interactive widget or gadget, or
any other independent item of content.”

A blog post, a tutorial, a news story, comic strip, or a video with
its transcript all fit perfectly into this definition. Less intuitively,
this definition also works for individual emails in a web-based

ptg6964689

INTRoducINg HTML520

email client, maps, and reusable web widgets. For <article>
don’t think newspaper article, think article of clothing—a discrete
item. Note that, as with <nav>, the heading is part of the article
itself, so it goes inside the element. Thus

<h1>My article</h1>
<article>
 <p>Blah blah</p>
</article>

is incorrect; it should be

<article>
 <h1>My article</h1>
 <p>Blah blah</p>
</article>

There are many more interesting facets to <article> which
(you’ve guessed it) we’ll look at in the next chapter.

What’s the point?
A very wise friend of mine, Robin Berjon, wrote, “Pretty much
everyone in the Web community agrees that ‘semantics are
yummy, and will get you cookies,’ and that’s probably true. But
once you start digging a little bit further, it becomes clear that
very few people can actually articulate a reason why.

“The general answer is ‘to repurpose content.’ That’s fine on the
surface, but you quickly reach a point where you have to ask,
‘Repurpose to what?’ For instance, if you want to render pages
to a small screen (a form of repurposing) then <nav> or <footer>
tell you that those bits aren’t content, and can be folded away;
but if you’re looking into legal issues digging inside <footer>
with some heuristics won’t help much . . .

“I think HTML should add only elements that either expose
functionality that would be pretty much meaningless otherwise
(e.g., <canvas>) or that provide semantics that help repurpose
for Web browsing uses.” www.alistapart.com/comments/
semanticsinhtml5?page=2#12

As Robin suggests, small screen devices might fold away non-
content areas (or zoom in to the main content areas). A certain
touch or swipe could zoom to nav, or to footer or header. A

www.alistapart.com/comments/semanticsinhtml5?page=2#12
www.alistapart.com/comments/semanticsinhtml5?page=2#12

ptg6964689

cHApTER 1 : MAIN STRucTuRE : SuMMARY 21

search engine could weight links in a footer less highly than
links in a nav bar. There are many future uses that we can’t
guess at—but they all depend on unambiguously assigning
meaning to content, which is the definition of semantic markup.

Summary
In this chapter, we’ve taken our first look at HTML5 and its
DOCTYPE. We’ve structured the main landmarks of a web page
using <header>, <footer>, <nav>, <aside>, and <article>, pro-
viding user agents with more semantics than the meaningless
generic <div> element that was our only option in HTML 4, and
styled the new elements with the magic of CSS.

We’ve seen its forgiving syntax rules such as optional upper-
case/lowercase, quoting and attribute minimisation, omitting
implied elements like head/body, omitting standard stuff like
type=”text/javascript” and type=”text/css” on the <script>,
and <style> tags and we’ve even shown you how to tame the
beast of old IE versions. Not bad for one chapter, eh?

ptg6964689

This page intentionally left blank

ptg6964689

CHAPTER 2
Text

Bruce Lawson

Now THAT You’VE marked up the main page land-

marks with HTML5 and seen how a document’s outline

can be structured, this lesson looks deeper to show how

you can further structure your main content.

To do this, you’ll mark up a typical blog with HTML5.

We’ve chosen a blog because over 70 percent of web

professionals have a blog (www.aneventapart.com/

alasurvey2008), and everyone has seen one. It’s also a

good archetype of modern websites with headers, footers,

sidebars, multiple navigation areas, and a form, whether

it’s a blog, a news site, or a brochure site (with products

instead of news pieces). We’ll then move on to a case

study with a real website to see where you would use the

new structures, followed by a look at new elements and

global attributes.

www.aneventapart.com/alasurvey2008
www.aneventapart.com/alasurvey2008

ptg6964689

INTRoducINg HTML524

Structuring main content areas
Take a look at the main content area of a blog (Figure 2.1).
There may be multiple articles, each containing metadata and
the actual textual content of that article.

Here’s some typical markup (simplified from the default
WordPress theme):

<div class=”post”>
<h2>Memoirs of a Parisian lion-tamer</h2>
<small>January 24th, 2010</small>
 <div class=”entry”>
 <p>Claude Bottom’s poignant autobiography is this
 ¬ summer’s must-read.</p>
 </div>
 <p class=”postmetadata”>Posted in
 ¬ Books category |
 ¬ No Comments</p>
</div>

There is nothing majorly wrong with this markup (although we
would query use in HTML 4 of the presentational <small> ele-
ment for the date). It will work fine in all browsers, but apart from
the heading for the blog post, there is no real structure—just
meaningless <div>s and paragraphs.

FIguRE 2.1 A series of articles
on a typical blog.

ptg6964689

cHApTER 2 : TExT : STRucTuRINg MAIN coNTENT AREAS 25

HTML 4 gives us generic structures to mark up content. <div>,
for example, is just a generic box that tells the browser, “Here’s
some stuff, it all belongs together,” but it doesn’t mean anything;
there’s no semantic value beyond “these belong together.”
Where possible, we’ll replace generic boxes with new HTML5
elements, while still using <div> where there isn’t an appropriate
element, just as we did in HTML 4.

Let’s concentrate on an individual article first. As you saw in
Chapter 1, you can replace the outer <div class=”post”> with
<article>, but you can go further still. The HTML5 <header> and
<footer> elements can be used multiple times on a page, each
time referring to the section it’s in.

The heading and the time of posting are introductory matter and
thus the job for <header>, right? Similarly, the metadata about the
post that is currently in a paragraph with class=”postmetadata” is
better marked up in HTML5 as a <footer>, which the spec says
“typically contains information about its section, such as who
wrote it, links to related documents, copyright data, and the like.”

Diagrammatically, the revised structure is shown in Figure 2.2.

Article text

<article>

heading

<time> (just date)

<footer> (metadata)

<header>

<article>
 <header>
 <h2>Memoirs of a Parisian lion-tamer</h2>
 <time datetime=2010-01-24>January 24th,
 ¬ 2010</time>
 </header>
 <p>Claude Bottom’s poignant autobiography is this
 ¬ summer’s must-read.</p>
 <footer>
 Posted in Books category.
 ¬ No Comments
 </footer>
</article>

Let’s look at this in more detail.

NoTE All quotes describ-
ing the elements, unless

otherwise noted, are from the
HTML5 specification as it read
at the time of writing.

FIguRE 2.2 A single blog
article using new HTML5
structures.

ptg6964689

INTRoducINg HTML526

The <time> element
The new element <time> is used for unambiguously encod-
ing dates and times for machines, while still displaying them in
a human-readable way. The uses of this in web pages aren’t
hard to imagine: a browser could offer to add future events to a
user’s calendar; content aggregators could produce visual time-
lines of events; a Thai-localised browser could offer to transform
dates into Thai Buddhist era dates, which are numerically 543
years greater than their corresponding Western-style years.

The spec says, “The time element represents either a time on a
24-hour clock, or a precise date in the proleptic Gregorian cal-
endar, optionally with a time and a time-zone offset.”

The machine-readable part of the <time> element is usually
encapsulated in the element’s datetime attribute. The content
inside the element is what gets presented to end users.

<time datetime=2009-11-13>13 November 2009</time>
<time datetime=2009-11-13>13th November last
¬ year</time>
<time datetime=2010-11-13>Bruce’s 21st birthday</time>
<time datetime=2010-11-13T020:00Z>8PM on my birthday</time>
<time datetime=20:00>8 PM</time>

If you’re happy to have the machine-readable format visible to
the end user as well, you don’t need to use a separate datetime
attribute. User agents should then simply pick the content of the
element and interpret it:

<time>20:00</time>

Machine-readable dates and times

To be machine-readable, dates must be in the format YYYY-MM-DD and may also include a time, prefixed
with “T” to separate the date and time, in the format HH:MM. Optionally you can append seconds (sepa-
rated from the minutes with a colon). Fractions of a second are allowed after a full stop mark.

As you’ve seen above, you can give a time on the 24-hour clock with no date information.

If you’re giving time and date together, you need to show the time zone: that’s either “Z” for Coordinated
Universal Time (UTC), or an offset from UTC in hours and minutes, prefixed with a plus or minus.

Putting that all together: “1979-10-14T12:00:00.001-04:00” represents one millisecond after noon on Octo-
ber 14, 1979, in Eastern Standard Time during daylight saving time (UTC-4 hours).

ptg6964689

cHApTER 2 : TExT : STRucTuRINg MAIN coNTENT AREAS 27

Reddit.com combines a relative time (“8 hours ago”) as the text
content of the element, with a title attribute showing the human-
readable full time on hover:

<p>Submitted <time title=”Sun Jul 3 02:15:49 2011 GMT”
¬ datetime=”2011-07-03T02:15:49.881631+00:00”>8 hours</time>
¬ ago</p>

The only trouble with <time> is that it must contain a positive
date on the proleptic Gregorian calendar—meaning you can’t
encode a date before the Christian era. Neither can you encode
imprecise dates such as “July 1904.” This seriously limits its use
for sites such as museums, history/encyclopedia pages, or fam-
ily trees, where precise dates may not be known.

A consortium of search engines, Bing, Google, and Yahoo!, has
launched an initiative called schema.org to create and support a
series of common markup patterns. This growing set of schemas
use HTML5 Microdata (see later in this chapter):

“ . . . in ways recognized by major search providers. Search
engines including Bing, Google and Yahoo! rely on this markup
to improve the display of search results, making it easier for
people to find the right web pages (www.schema.org).”

Note that schema.org uses the <time> element to express dates,
but uses the full ISO 8601 date format rather than HTML5’s cut-
down date format, so “2011-09” is a legitimate date, expressing
an unspecified day in September 2011. Similarly, durations can
be specified via a “P” prefix (for period):

<time itemprop=”cookTime” datetime=”PT1H30M”>1.5 hours</time>

As we’ve seen, neither of these schema.org examples have
datetime attributes that will validate as HTML5. This puts
responsible developers in a quandary—should you aim for the
personal karma of valid code, or the tangible business benefits
of helping search engines understand your content?

It’s silly to force developers to choose, so hopefully the Work-
ing Group will see sense and loosen the restrictions on the
<time> element.

The pubdate attribute
The Boolean attribute pubdate indicates that this particular
<time> is the publication date of an <article> or the whole
<body> content.

NoTE As this second
edition goes to press, the

Working Group is discussing
removing <time> from HTML
and, to replace it, magicking up
a more generic—and therefore
less useful—<data> element.
We hope that this won’t happen
but before you use it, please
see www.introducinghtml5.com
to find any errata to this book.
Or look at the spec!

www.schema.org
www.introducinghtml5.com

ptg6964689

INTRoducINg HTML528

You might be wondering why the pubdate attribute is needed
at all. Why not just assume that any <time> element in an
<article>’s <header> is its publication date?

Consider this example:

<article>
 <header>
 <h1>Come to my party on <time datetime=2010-12-01>1
 ¬ December</time></h1>
 <p>Published on <time datetime=2010-06-20 pubdate>20
 ¬ June 2010</time></p>
 </header>
 <p>I’m throwing a party at Dr Einstein’s Cabaret
 ¬ Roller-disco Bierkeller Pizza-parlour-a-gogo. Do come
 ¬ and dance to Rusty Trombone’s Swingin’ Brass Band.
 ¬ (Formal dress and lewd hat required.)</p>
</article>

You’ll see that there are two dates within the <header>: the date
of the actual party and the publication date of the article. The
pubdate attribute is required to remove any ambiguity. And yes,
you are invited—just don’t get drunk this time.

More fun with headers and footers
The main surprise with our article makeover is that each article
can have its own <header> and <footer>. This means that,
in addition to the “main” header and footer on a page, each
article can have its own headers and footers as well. They can
be separately styled with CSS: for instance, body>header and
body>footer target the main headers and footers (assuming that
they’re direct descendants of <body>), whereas article>header
and article>footer target the inner structures.

To include old versions of Internet Explorer, you can take advan-
tage of specificity. Define generic header and footer styles, and
then redefine/override them for article header and article footer:

header {display:block; color:red; text-align:right;}
¬ /*page header */
article header {color:blue; text-align:center;}
¬ /*article header */

Note that so far you’ve introduced no ids or classes as hooks
for CSS.

ptg6964689

cHApTER 2 : TExT : STRucTuRINg MAIN coNTENT AREAS 29

Using multiple <footer>s on the same element
The spec says, “Footers don’t necessarily have to appear at the
end of a section, though they usually do,” and it allows an ele-
ment to have two or more footers. A simplified version of the
example in the spec is

<body>
 <footer>Back to index...</footer>
 <h1>Lorem ipsum</h1>
 <p>Lorem ipsum</p>
 <footer>Back to index...</footer>
</body>

The reason for this is that the elements are supposed to be non-
presentational. If “back to index” is the footer below the article,
and you choose to have another “back to index” above the arti-
cle, too, you should use the same element for the same content,
regardless of where it appears.

Using <blockquote> <footer>s
Very groovily, <blockquote> can have a footer, which is a very
useful way of citing the source in a way that’s unambiguously
associated with the quotation but also nicely presented to your
users (HTML4 has the cite attribute on <blockquote> which in
theory serves this purpose by allowing authors to provide a link
to the original source, but no browsers do anything with it so the
source isn’t displayed anywhere to the user:

<blockquote>
 Thou look’st like antichrist, in that lewd hat.
 <footer>Ananias <cite>Scene 4.3, <a href=”http://
 ¬ www.gutenberg.org/files/4081/4081-h/4081-h.htm”>The
 ¬ Alchemist</cite> (Ben Jonson)</footer>
</blockquote>

Since the first edition of this book, it’s been suggested that using
<footer> inside <blockquote> for attributing the source of the
quotation is wrong, because according to the spec, “Content
inside a blockquote must be quoted from another source,” and
attribution isn’t a quote. However, this seems incorrect; often you
“tidy” quotes by adding ellipses, silently correcting spelling and
such, which isn’t strictly quoting. Also, many web publications
include the attribution inside the quotation, which isn’t allowed
by the spec at the moment (see fellow HTML5 Doctor Oli Stud-
holme’s research at http://oli.jp/2011/blockquote/). Therefore, we
consider that disallowing the use above is a spec bug.

http://oli.jp/2011/blockquote/

ptg6964689

INTRoducINg HTML530

Adding blog posts and comments
So, you have a page with a header, footer, navigation, and
content areas containing several articles (blog posts), each
with its own header and footer. But wait...what is a blog
without comments?

The specification mentions this case, and recommends the use
of nested <article>s: “When article elements are nested, the
inner article elements represent articles that are in principle
related to the contents of the outer article. For instance, a blog
entry on a site that accepts user-submitted comments could
represent the comments as article elements nested within the
article element for the blog entry.”

So let’s do that. Note as well that blog comments are typically
shown in chronological order and have information such as
author’s name and URL—in short, header information. Diagram-
matically it looks like Figure 2.3.

Article text

<article>

heading

<time> (just date)

<article> another comment

<article>

<footer> (metadata)

<header>

<header>
<time> comment date and time

Comment text

The code is as you’d expect, with comments highlighted:

<article>
 <header>
 <h1>Come to my party on <time datetime=
 ¬ 2010-12-01>1 December</time></h1>
 <p>Published on <time datetime=2010-06-20 pubdate>
 ¬ 20 June 2010</time></p>
 </header>

FIguRE 2.3 The structure of
a blog post, with comments as
nested articles.

ptg6964689

cHApTER 2 : TExT : woRkINg wITH HTML5 ouTLINES 31

 <p>I’m throwing a party at Dr Einstein’s Cabaret
 ¬ Roller-disco Bierkeller Pizza-parlour-a-gogo. Do come
 ¬ and dance to Rusty Trombone’s Swingin’ Brass Band.
 ¬ (Formal dress and lewd hat required.)</p>
<footer>Published in the Parrtay!! category by Bruce
¬ </footer>

 <article> <!-- comment -->
 <header>
 Comment from Remy
 ¬ Sharp at <time datetime=”2010-05-01T08:45Z”>
 ¬ 8.45 on 1 May 2010</time>
 </header>
 <p>I’ll be there. I very much enjoy a bit of Rusty
 ¬ Trombone.</p>
 </article> <!-- end comment -->

 <article> <!-- comment -->
 <header>
 Comment from Patrick
 ¬ Lauke at <time datetime=”2010-05-02T10:45Z”>10.45
 ¬ on 2 May 2010</time>
 </header>
 <p>Sorry mate. Am off to Bath to see TubaGirl.</p>
 </article> <!-- end comment -->

</article> <!-- end blogpost -->

Working with HTML5 outlines
Some word processing applications have a function to show you
the outline of a document. For example, Figure 2.4 shows this
chapter in Microsoft Word 2007’s outline view.

FIguRE 2.4 Microsoft Word
2007’s outline view.

ptg6964689

INTRoducINg HTML532

HTML5 has a tightly defined outlining algorithm that allows user
agents to produce a similar outline from a web page. Just as
with a word-processing package, this could be used to give the
user a quick overview of the web page (and, of course, there’s
no reason why the web page shouldn’t actually be a word-
processing application). The other main use for the outlining
algorithm is for syndication: grabbing content and inserting it
somewhere else and ensuring that the destination web page
still has a logical structure.

A word of warning: This section of the chapter is pretty dense,
and it hasn’t been implemented by any browsers yet (although
there is a JavaScript implementation at http://code.google.
com/p/h5o/, which has been wrapped as a Chrome exten-
sion from the same URL, and as an Opera extension at https://
addons.opera.com/addons/extensions/details/html5-outliner/).
You need to understand the concept of the document outline to
know when to use <section>, <aside>, or <div>.

One major departure from HTML 4, and an important concept
to grasp before you proceed, is that certain HTML5 elements—
<article>, <section>, <nav>, and <aside>—are sectioning con-
tent, which begin new sections in the outline. To explain this
concept, let’s take this simple code:

<h1>Hello</h1>
<div>
 <h1>World</h1>
</div>

To illustrate how this algorithm works, I’m using a web-based
utility at http://gsnedders.html5.org/outliner/, as no browser cur-
rently has this logic embedded. The outline this code generates
is as you would expect (Figure 2.5).

Figure 2.6 shows what happens if you change the meaningless
<div> to an <article>, which is sectioning content:

<h1>Hello</h1>
<article>
 <h1>World</h1>
</article>

The presence of sectioning content has shifted its content to be
hierarchically “below” the content that preceded it. Or, to put it
more simply: the <h1> inside the article is a logical <h2> because

1. Hello
2. World

FIguRE 2.5 A simple outline.

1. Hello
 1. World

FIguRE 2.6 A document
outline after <div> is replaced
by <article>.

http://code.google.com/p/h5o/
http://code.google.com/p/h5o/
https://addons.opera.com/addons/extensions/details/html5-outliner/
https://addons.opera.com/addons/extensions/details/html5-outliner/
http://gsnedders.html5.org/outliner/

ptg6964689

cHApTER 2 : TExT : woRkINg wITH HTML5 ouTLINES 33

<article> has started a new section. Using <section>, <nav>, or
<aside> instead of <article> does the same thing, as they are
all sectioning content.

In fact, it doesn’t matter what level of heading you use here;
the outlining algorithm cares about nesting and relative levels,
so this code

<h3>Hello</h3>
<article>
 <h6>World</h6>
</article>

produces exactly the same result as Figure 2.6.

You might be saying, “So what. What’s the use for that?” Well,
firstly, it means you’re not restricted to six levels of headings, as
you are in HTML 4. A heading element nested inside seven lev-
els of <section>, <article>, <nav>, or <aside> (or any combina-
tion of them) becomes a logical <h7> element (however, unless
you’re marking up legal documents or some other horrors, you
should reconsider your content if you need so many levels).

Another advantage is with syndication. Suppose Remy posts an
article:

<article>
 <h1>What I did on my holiday</h1>
 <p>I went to Narnia. I was bitten by a trilobite. Then I
 ¬ came home.</p>
</article>

From TBL ’91 to XHTML 2 to HTML5

All very newfangled, isn’t it? Well, no; the idea that logical headings
should depend on their nesting in <section>s was first floated in 1991
by Sir Tim Berners-Lee himself:

“I would in fact prefer, instead of <H1>, <H2> etc for headings . . .
to have a nestable <SECTION>..</SECTION> element, and a generic
<H>..</H> which at any level within the sections would produce the
required level of heading.”

For some reason this didn’t make it into HTML. It was revived for
XHTML2 and re-revived by HTML5, but without an <h> element—
for backwards-compatibility reasons, <h1> to <h6> are used instead.

ptg6964689

INTRoducINg HTML534

Let’s say you run a large online newspaper and naturally wish to
syndicate this story. When the magic syndication machines slot
it into your template, the resulting code is

<h1>The Monotonous Times</h1>
<section>
 <h2>Breaking news</h2>
 <article>
 <h1>What I did on my holiday</h1>
 <p>I went to Narnia. I was bitten by a trilobite.
 ¬ Then I came home.</p>
 </article>
..
</section>

It’s obvious that “breaking news” is higher in the hierarchy of
headings than the title of Remy’s blog post, but due to a mis-
match between Remy’s template and your template, there’s an
<h2> that is more important than the <h1>.

Checking the outline, however, shows us that everything is as it
should be (Figure 2.7). You clever thing, you.

1. The Monotonous Times
 1. Breaking news
 1. What I did on my holiday

<nav>, <aside>, and untitled sections
A quick word about the outlining tools, as you’ll probably get
into the habit of checking your document outlines as part of
your development process, much as you regularly validate your
code and check it in different browsers.

Generally, if a tool finds sectioning content that has no heading,
it will report it. So this snippet

<article>
 <p>I have no heading</p>
</article>

gives the outline “Untitled Section.” For <section>s and
<article>s, this is a useful warning, as these elements nearly
always begin with a heading.

However, inside <nav> and <aside> it’s perfectly legitimate not
to have a heading. You may want to do it for some <nav> blocks,

FIguRE 2.7 The outlining
algorithm produces the correct
outline in syndication, too.

ptg6964689

cHApTER 2 : TExT : woRkINg wITH HTML5 ouTLINES 35

such as “Most popular posts” or “Recent comments,” but you
probably don’t want a heading on your main site <nav> that just
says “Navigation.”

Therefore, if you see “Untitled Section,” don’t automatically
assume that you should put a heading there. Treat it as a warn-
ing, not an error.

<hgroup>
Sometimes you have a heading and a subheading, or tagline.
Slashdot uses “News for nerds, stuff that matters”; dev.opera
has “Follow the Standards. Break the Rules”; Metafilter is a
“community weblog.” How do you mark up those taglines?
In HTML 4, you could use

<h1>Metafilter</h1>
<p>community weblog</p>

but that doesn’t feel right, as the subtitle feels like it should be
a heading. An alternate method of marking this up could be

<h1>Metafilter</h1>
<h2>community weblog</h2>

but then every header on the site would need to be <h3> to
<h6> as they’re subordinate to the tagline. In HTML5, the subtitle
can be marked up as a heading element but removed from the
document outline, like so:

<hgroup>
 <h1>Metafilter</h1>
 <h2>community weblog</h2>
</hgroup>

This gives the outline shown in Figure 2.8.

The spec for <hgroup> says, “For the purposes of document
summaries, outlines, and the like, the text of hgroup elements
is defined to be the text of the highest-ranked h1–h6 element
descendant of the hgroup element.”

So:

<hgroup>
 <h2>Get the beers in! Here comes</h2>
 <h1>Remy Sharp!</h1>
 </hgroup>

shows the text “Remy Sharp” in the outline, as that’s the highest-
ranking heading element in the group.

NoTE We haven’t used a
<header> element in this

<article>. <header> is a
grouping element that collects
together introductory content;
as you only have headings
already grouped in <hgroup>,
there’s no need for a further
layer of grouping. It wouldn’t be
an error to use it, but it’s super-
fluous in this example.

1. Metafilter

FIguRE 2.8 The outline
shows only “Metafilter” as part
of the outline.

ptg6964689

INTRoducINg HTML536

Sectioning roots
Note that certain elements—<blockquote>, <body>, <details>,
<fieldset>, <figure>, <td>—are said to be sectioning roots, and
can have their own outlines, but the sections and headings
inside these elements do not contribute to the outlines of their
ancestors. This is because, for example, you could quote several
sections of an article in a <blockquote>, but those quoted sec-
tions don’t form part of the overall document outline.

In the following example:

<h1>Unicorns and butterflies</h1>
<nav>
 <h2>Main nav</h2>
...
</nav>
<article>
 <h2>Fairies love rainbows!</h2>
 <p>According to Mr Snuggles the fluffy kitten, fairies
 ¬ like:</p>
 <blockquote>
 <h3>Pretty dainty things</h3>
 <p>Fairies love rainbows, ribbons, and ballet shoes</p>
 <h3>Weaponry</h3>
 <p>Fairies favour Kalashnikovs, flick knives, and
 ¬ depleted uranium missiles</p>
 </blockquote>
</article>

the outline does not include the contents of blockquote:
(Figure 2.9).

1. Unicorns and butterflies
 1. Main nav
 2. Fairies love rainbows!

FIguRE 2.9 The outline
does not include content in a
sectioning root.

ptg6964689

cHApTER 2 : TExT : woRkINg wITH HTML5 ouTLINES 37

Styling headings in HTML5
All this clever stuff presents a challenge to authors of CSS.
Given that

<article><section><h1>...</h1></section></article>
<article><article><h1>...</h1></article></article>
<section><section><h1>...</h1></section></section>
<section><aside><h1>...</h1></aside></section>
<h3>...</h3>

can potentially be the same logical levels, you might wish to
apply the same styling to them. This can lead to gigantic blocks
of rules in your style sheets. There has been some talk of a new
CSS pseudo-class or pseudo-element like :heading(n) (as inter-
nally the browser will “know” what level a heading is from the
outlining algorithm) which would simplify styling:

 :heading(1) {font-size: 2.5em;} / a logical <h1> */
 :heading(2) {font-size: 2em;} / a logical <h2> */

However, at the time of this writing, this is but a wonderful
dream. As a stopgap, Mozilla is experimenting with a new selec-
tor grouping mechanism in Firefox nightlies called :-moz-any()
that allows a form of CSS shorthand—go to http://hacks.mozilla.
org/2010/05/moz-any-selector-grouping/ to learn more.

Perhaps, for this reason, you would be tempted to use only <h1>
elements to simplify styling, and let the outlining algorithm do
the rest. After all, the spec says, “Sections may contain headings
of any rank, but authors are strongly encouraged to either use
only h1 elements, or to use elements of the appropriate rank for
the section’s nesting level.” But you shouldn’t (yet) as it harms
accessibility.

The outlining algorithm
and accessibility
A recent survey by WebAIM showed that 57 percent of screen
reader users use a site’s headings structure as their first method to
find information on a lengthy site. (See the full survey for more vital
information at www.webaim.org/projects/screenreadersurvey3).
These people use the hierarchy of headings both to give them-
selves a mental overview (an outline!) of the document they’re in
and also to navigate through that content. Most screen readers

http://hacks.mozilla.org/2010/05/moz-any-selector-grouping/
http://hacks.mozilla.org/2010/05/moz-any-selector-grouping/
www.webaim.org/projects/screenreadersurvey3

ptg6964689

INTRoducINg HTML538

have keyboard shortcuts that allow users to jump from heading
to heading. For example, the JAWS screen reader (by far the
most used package, according to the survey) uses the H key
to jump from heading to heading, the 1 key to jump to the next
<h1>, the 2 key to go to the next <h2>, and so on.

Currently, no browser builds an internal model of the page struc-
ture based on all the complex rules previously mentioned and
therefore can’t expose this model to any screen reader or assis-
tive technology. So, using only <h1> wrecks the navigability and
therefore hinders the accessibility of your page.

Our advice is again, follow the spec: “Use elements of the
appropriate rank for the section’s nesting level.” That is, ensure
that, in your pages, the hierarchy of headings is correct even
without factoring in new HTML5 elements. It will also make writ-
ing CSS much easier.

In cases when articles are syndicated from one site to the other
and the levels might be out of logical order, a completely unsci-
entific Twitter poll of screen reader users suggested that badly
nested section headers are better than all headings being at the
same level (which is still better than no headings at all).

And, having done your best, wait for the browsers and the
screen readers that sit on top of them to implement the outlining
algorithm. As I said, it’s not an ideal world.

What’s the difference between
<article> and <section>?
This is a question that is regularly asked of us at html5doctor.com.

An article is an independent, stand-alone piece of discrete con-
tent. Think of a blog post, or a news item in a document-based
site. In a web application, an <article> could be individual
emails within an email application or stories in a web-based
feed reader, as each email or story is a component of the appli-
cation and can be independently reused. Think of <article> not
as a newspaper or magazine article, but as a discrete entity like
an article of clothing.

NoTE Watch the excellent
video entitled “Importance

of HTML Headings for Accessi-
bility” (www.youtube.com/
watch?v=AmUPhEVWu_E). The
video shows how a blind acces-
sibility consultant navigates a
page with JAWS. In an ideal
world, it would be compulsory to
watch and understand this video
before you’re allowed to call
yourself a professional designer
or developer. Sadly, it’s not an
ideal world.

www.youtube.com/watch?v=AmUPhEVWu_E
www.youtube.com/watch?v=AmUPhEVWu_E

ptg6964689

cHApTER 2 : TExT : woRkINg wITH HTML5 ouTLINES 39

<article>
Consider this real-world blog/news article:

<article>
<h1>Bruce Lawson Is World’s Sexiest Man</h1>
<p>Legions of lovely ladies voted luscious lothario Lawson
¬ as the World’s Sexiest Man today.</p>
<h2>Second-sexiest man concedes defeat</h2>
<p>Remington Sharp, JavaScript glamourpuss and Brighton
¬ roister-doister, was gracious in defeat. “It’s cool
¬ being the second sexiest man when number one is Awesome
¬ Lawson” he said from his swimming pool-sized jacuzzi full
¬ of supermodels.</p>
</article>

It could be syndicated, either by RSS or other means, and
makes sense without further contextualisation. Just as you can
syndicate partial feeds, a “teaser” article is still an article:

<article>

 <h1>Bruce Lawson is World’s Sexiest Man</h1>
 <p>Legions of lovely
 ¬ ladies voted luscious lothario Lawson as the World’s
 ¬ Sexiest Man today.</p>
 <p>Read more</p>

</article>

“Block-level” links

Note from this example that you can wrap links around “block-level” elements. In the HTML 4 spec, this is
not allowed, so you would probably have links around the heading, the teaser paragraph, and the phrase
“read more” all pointing to the same destination.

However, it turns out that all browsers quite happily (and consistently) allowed links to be placed around vari-
ous block-level elements (with a bit of coaxing—see www.mattwilcox.net/sandbox/html5-block-anchor/test.
html), and it was only the old HTML spec that didn’t allow it, so in HTML5 one link can surround the whole
<article>. As the browsers already handle wrapping links around block-level elements, and there is an
obvious use-case, there was no reason to artificially keep the structure as invalid.

It’s always been a good idea (for accessibility and usability alike) to “front-load” important information
at the start of links. Now, with the possibility of having even larger chunks of content wrapped up as a
link, this is even more important (hat tip, Steve Faulkner—http://www.paciellogroup.com/blog/2011/06/
html5-accessibility-chops-block-links).

www.mattwilcox.net/sandbox/html5-block-anchor/test.html
www.mattwilcox.net/sandbox/html5-block-anchor/test.html
http://www.paciellogroup.com/blog/2011/06/html5-accessibility-chops-block-links
http://www.paciellogroup.com/blog/2011/06/html5-accessibility-chops-block-links

ptg6964689

INTRoducINg HTML540

As you’ve seen, comments on blog posts are <article>s inside
a parent <article>. There are other uses for this nesting besides
comments—for example, a transcript to a video:

<article>
<h1>Stars celebrate Bruce Lawson</h1>
<video>...</video>

<article class=transcript>
<h1>Transcript</h1>
 <p>Supermodel #1: “He’s so hunky!”</p>
 <p>Supermodel #2: “He’s a snogtabulous bundle of gorgeous
 ¬ manhood! And I saw him first, so hands off!”</p>
</article>

</article>

The transcript is complete in itself, even though it’s related to
the video in the outer <article>. Remember: The spec says,
“When article elements are nested, the inner article elements
represent articles that are in principle related to the contents of
the outer article.”

<section>
Compared to <article>, <section> is not “a self-contained
composition in a document, page, application, or site and that
is intended to be independently distributable or reusable.” It’s
either a way of sectioning a page into different subject areas, or
sectioning an article into, well, sections.

Consider this HTML 4 markup—the rules from Remy’s previous
job in an off-Broadway production of The Wizard of Oz:

<h1>Rules for Munchkins</h1>
<h2>Yellow Brick Road</h2>
 <p>It is vital that Dorothy follows it—so no selling
 ¬ bricks as “souvenirs”</p>
<h2>Fan Club uniforms</h2>
 <p>All Munchkins are obliged to wear their “I’m a friend
 ¬ of Dorothy!” t-shirt when representing the club</p>
 <p>Vital caveat about the information above:
 ¬ does not apply on the first Thursday of the month.
 ¬ </p>

NoTE A <section>
generally begins with a

heading that introduces it. An
exception to this might be a
<section> that will have
a heading injected using
JavaScript. If you wouldn’t use a
heading, or you want some
wrapping element purely for
styling purposes you probably
should be using a <div>.

ptg6964689

cHApTER 2 : TExT : woRkINg wITH HTML5 ouTLINES 41

Does the “Vital caveat about the information above” refer to the
whole article, that is, everything under the introductory <h1>, or
does it refer only to the information under the preceding <h2>
(“Fan Club uniforms”)? In HTML 4, that paragraph would fall
under the <h2>, and there’s no easy way to semantically change
this. In HTML5, the <section> element makes its meaning unam-
biguous (which is what we really mean as web developers when
we use the word “semantic”):

<article>
<h1>Rules for Munchkins</h1>

 <section>
 <h2>Yellow Brick Road</h2>
 <p>It is vital that Dorothy follows it—so no selling
 ¬ bricks as “souvenirs”</p>
 </section>

 <section>
 <h2>Fan Club uniforms</h2>
 <p>All Munchkins are obliged to wear their “I’m a friend
 ¬ of Dorothy!” t-shirt when representing the club</p>
 </section>

 <p>Vital caveat about the information above:
 ¬ does not apply on the first Thursday of the month.
 ¬ </p>
</article>

Figure 2.10 illustrates this diagrammatically.

article

Vital caveat

section (Yellow Brick Road)

section (Fan Club uniforms)

FIguRE 2.10 Now you can see
that the vital caveat refers to
the whole <article>.

ptg6964689

INTRoducINg HTML542

If it had been inside the final section element

<article>
...
<section>
 <h2>Fan Club uniforms</h2>
 <p>All Munchkins are obliged to wear their “I’m a friend
 ¬ of Dorothy!” t-shirt when representing the club</p>
 <p>Vital caveat about the information above:
 ¬ does not apply on the first Thursday of the month
 ¬ </p>
 </section>
</article>

it would unambiguously refer to that section alone, as illustrated
in Figure 2.11.

article

section (Yellow Brick Road)

section (Fan Club uniforms)
Vital caveat

It would not have been correct to divide up this article with nested
article elements, as they are not independent discrete entities.

OK. So you’ve seen that you can have <article> inside
<article> and <section> inside <article>. But you can also
have <article> inside <section>. What’s that all about then?

<article> inside <section>
Imagine that your content area is divided into two units: one for
articles about llamas, the other for articles about root vegeta-
bles. That’s my kind of content.

You’re not obliged to mark up your llama articles separately
from your root vegetable articles, but you want to demonstrate
that the two groups are thematically distinct. Perhaps, because
they’re thematically distinct, you want them in separate columns,
or you’ll use CSS and JavaScript to make a tabbed interface.

In HTML 4, you’d use our good but meaningless friend <div>.
In HTML5, you use <section>, which, like <article>, invokes

FIguRE 2.11 The <section>
element removes any
ambiguity.

ptg6964689

cHApTER 2 : TExT : woRkINg wITH HTML5 ouTLINES 43

the HTML5 outlining algorithm (whereas <div> doesn’t, because
it has no special structural meaning).

<section>
<h1>Articles about llamas</h1>

<article>
<h2>The daily llama: Buddhism and South American camelids
¬ </h2>
<p>blah blah</p>
</article>

<article>
<h2>Shh! Do not alarm a llama</h2>
<p>blah blah</p>
</article>

</section>

<section>
<h1>Articles about root vegetables</h1>

<article>
<h2>Carrots: the orange miracle</h2>
<p>blah blah</p>
</article>

<article>
<h2>Eat more Swedes (the vegetables, not the people)</h2>
<p>blah blah</p>
</article>

</section>

Why didn’t you mark the two <section>s up as <article>s instead?
Because, in this example, each <section> is a collection of indepen-
dent entities, each of which could be syndicated—but you wouldn’t
ordinarily syndicate the collection as an individual entity.

Note that a <section> doesn’t need to contain lots of <article>s;
it could be a collection of paragraphs explaining your creative
commons licensing, an author bio, or a copyright notice. In our
example, each article could contain sub-articles or sections, as
explained earlier—or both.

ptg6964689

INTRoducINg HTML544

Estelle Weyl has a good analogy at www.standardista.com/
html5-section-v-article: “Think of a newspaper. The paper
comes in sections. You have the sports section, real estate sec-
tion, maybe home & garden section, etc. Each of those sections,
in turn, has articles in it. And, some of those articles are divided
into sections themselves.

In other words, you can have parent <section>s with nested
<article>s that in turn have one or many <section>s. Not all
pages’ documents need these, but it is perfectly acceptable and
correct to nest this way.”

Case study: www.guardian.co.uk
Let’s continue with the newspaper theme and look at a real
site and work out where you would use the new structures.
Figure 2.12 shows a screenshot from my favourite newspaper,
the Guardian (www.guardian.co.uk). Let’s see how this could
be represented in HTML5.

NoTE All of your which-
structural-element-should-I-

choose conundrums are easily
solved with “The Amazing
HTML5 Doctor Easily Confused
HTML5 Element Flowchart
of Enlightenment!” at
www.html5doctor.com/flowchart.

FIguRE 2.12 The Guardian
homepage.

www.standardista.com/html5-section-v-article
www.standardista.com/html5-section-v-article
www.html5doctor.com/flowchart
www.guardian.co.uk
www.guardian.co.uk

ptg6964689

cHApTER 2 : TExT : woRkINg wITH HTML5 ouTLINES 45

The following is how I would mark up this page; you might
choose different structures, and that’s OK. There’s not necessar-
ily “one true way” of doing this; it depends in part on how you
intend to use the content—will you syndicate it, or pull it out of
a database for display in several different page templates with
a variety of heading hierarchies?

It’s pretty easy to see the branding and introductory matter that
forms the <header>, which also includes two <nav> structures for
site-wide navigation (Figure 2.13).

FIguRE 2.13 The Guardian
homepage’s branding and
introductory matter.

THE guARdIAN’S <header>

I’ve used two separate <nav>s because the top band (“News,
Sport, Comment.”) is site-wide, whereas the second band
(“News, UK, World.”) is section-wide. An alternative structural
approach would be to have a single <nav> in the header,
with the section-wide navigation as a sublist of the site-wide
navigation:

<nav>

News<a>

 News
 UK
 World
 ...

...

</nav>

Immediately below the header is an area with the title “break-
ing news” and a “ticker” of text. Each summary is a link to an
expanded story (Figure 2.14).

BREAkINg NEwS

FIguRE 2.14 The “breaking
news” area of the Guardian
homepage.

ptg6964689

INTRoducINg HTML546

Aside from the JavaScript-controlled ticker effect, this “breaking
news” is simply a list of links to other pages. Therefore, it matches
the <nav> element. Don’t be fooled by the fact that it’s horizontal,
with the heading on the same line; CSS will sort that out:

<nav>
<h2>Breaking news</h2>

 Four schoolchildren injured...
 Terrible thing happens to someone
 ...

</nav>

Although visually this area appears closely tied with the header,
it’s not introductory matter or site-wide navigation. The differ-
ence is subtle, but in my opinion, links to comments, TV, and
sports pages are part of site-wide navigation, while navigating
news stories on a news site is “shortcut navigation” to deeper
content. Therefore, this is a <nav> after, rather than inside, the
<header> element.

There’s more navigation on the right of the main content area
(Figure 2.15).

As you saw in Chapter 1, sidebars are often composed of navi-
gation plus other non-nav stuff. We’re using the <aside> element
to group it all together.

<aside>
 <nav>
 <h2>guardianjobs</h2>
 <form role=search ... > ... </form>

 Upload your CV
 ...

 <h2>Online Dating</h2>

 ...

 ...
 </nav>
<section>
<h2>Sponsored Features</h2>
<section>
</aside>

A SIdEBAR oF
NAVIgATIoN

FIguRE 2.15
A sidebar of
navigation
on the right
side of the
Guardian
homepage.

ptg6964689

cHApTER 2 : TExT : woRkINg wITH HTML5 ouTLINES 47

Our navigation is a single <nav> element containing multiple
unordered lists—each with its own heading (Jobs, Dating, CD
box sets, Today’s paper, and so on), styled with a blue-grey
background and a thick red border-top.

However, contrary to my advice in the first edition of this book,
I haven’t wrapped each list in its own <nav> element, because
my purpose is to help assistive technology users to find naviga-
tion. Lots of individual <nav>s next to each other would probably
make it harder rather than easier for those users. This is specu-
lation, however, and once assistive technologies support <nav>,
this would need to be user-tested.

“Sponsored Features” isn’t inside <nav> as it’s not primary navi-
gation; presumably, its main purpose is to advertise. There’s
nothing to stop us styling its heading the same as the headings
inside the <nav> though, and that’s what the design requires.

Now let’s look at the main content area (Figure 2.16).

FIguRE 2.16 The main
content area of the Guardian
homepage.

MAIN coNTENT AREA

Unsurprisingly for a newspaper site, the main content area
of the Guardian homepage is given over to news articles. It’s
important to notice that there is no overriding heading group-
ing the main articles (such as “top stories”); otherwise you could
wrap the whole thing up in a <section>. Therefore, you just have

NoTE I’ve included a
search form inside the

<nav> (but outside the s);
it seems appropriate to me to
regard a search form as a navi-
gational aid. I’ve also given it the
ARIA role appropriate to its
function.

ptg6964689

INTRoducINg HTML548

a list of <article>s. Because <section> isn’t appropriate here, if
there is a need to wrap all the articles with an element for styl-
ing purposes, you’d use the semantically empty <div> element.

There is one featured article that consists mostly of an image, pre-
sumably because it’s the most striking image available (Figure 2.17).

This remains simply an <article>, although you might need a
class or id to allow special styling.

Below the featured article, you have some sections that aren’t
the top stories; there is less information on the homepage, and
they’re primarily, but not solely, links to other pages. Each has
its own heading (“Best of guardian.co.uk,” “Latest multimedia,”
“What you’re saying”), and then a group of articles. The natural
elements are therefore <article>s within <section>s:

<section>
<h2>Best of guardian.co.uk</h2>
<article>
<h3>Is Britain broken?</h3>
...
</article>

<article>
<h3>Notes and queries</h3>
...
</article>

<article>
<h3>Tech Weekly live: Personal privacy</h3>
...
</article>
...

FIguRE 2.17 The featured
picture.

ptg6964689

cHApTER 2 : TExT : uNdERSTANdINg wAI-ARIA 49

</section>

<section>
<h2>Latest multimedia</h2>
...
</section>

On the website (but not in the screenshot), there are also a cou-
ple more <nav> blocks (“Trending,” “Campaigns and investiga-
tions”) and a “fat footer” that, as we saw in Chapter 1, should be
a couple of page-wide <nav> blocks outside the “real” <footer>
that contains the usual privacy, terms and conditions, and acces-
sibility information.

And there it is, ladies and gentlemen: an HTML5 version of
www.guardian.co.uk. Like any other exercise in markup above
the level of the trivial, there are legitimate differences of opinion.
That’s OK. HTML is a general language, so there aren’t elements
for every specific occasion. Choose the most appropriate ele-
ment for the job and be consistent when marking up similar con-
tent throughout the site.

Understanding WAI-ARIA
The W3C Web Accessibility Initiative’s Accessible Rich Internet
Applications suite (WAI-ARIA) is an independent spec that “plugs
the holes” in HTML 4 (or any other markup language) to help
make web applications and web pages more accessible.

Imagine that you have scripted a slider control. In HTML 4 there
is no native slider, so you just have some HTML elements (an
<input>, some images) with some JavaScript attached to act and
look like a slider. There is no way to tell the operating system
that the role of this widget is a slider and what its current state
and value are. If the operating system doesn’t know that vital
information, assistive technology such as a screen reader can’t
convey it to the user either.

ARIA aims to bridge this situation by introducing a whole series
of new attributes that browsers and assistive technologies can
hook into.

NoTE If you start using
these new ARIA attributes,

you may notice that your
HTML 4 pages won’t validate
anymore. As long as the rest
of your markup is OK, that
doesn’t matter—accessibility
trumps validity. The ARIA attri-
butes won’t cause any kind of
DOM weirdness or cause any
malfunction in browsers—like
with CSS rules, they’re just
ignored if they’re not
understood.

www.guardian.co.uk

ptg6964689

INTRoducINg HTML550

So, using horrible old-school HTML you could—in theory—add
ARIA to

I should be a heading

to make

¬ I should be a heading

This tells the user agent that this text is a heading, level 2. But of
course, this would be nonsense, as HTML already has a perfectly
valid and semantic way of defining this sort of structure with

<h2>I AM a heading</h2>

A developer might forget to bolt on the necessary ARIA attri-
butes, whereas using the correct <h2> element has built-in
“heading-ness” and built-in level so it’s a lot more robust. ARIA
is not a panacea or “get out of jail free” card for developers to
start abusing markup and make everything out of <div>s and
s. Whenever possible, use the correct markup and use
ARIA only in situations where the correct semantics can’t be oth-
erwise expressed (a slider in HTML 4 example, for instance).

The ARIA spec says, “It is expected that, over time, host lan-
guages will evolve to provide semantics for objects that pre-
viously could only be declared with WAI-ARIA. When native
semantics for a given feature become available, it is appropriate
for authors to use the native feature and stop using WAI-ARIA
for that feature.”

So something like HTML5 <nav> shouldn’t need ARIA
role=navigation added to it, because it should (in an ideal
world) have that built-in. However, HTML5 is very new, whereas
ARIA already has some support in assistive technology. So it
shouldn’t hurt to use the built-in element plus the ARIA informa-
tion, and it can only help users who rely on assistive technology.
The HTML5 validator therefore validates ARIA as well as HTML5
(whereas HTML 4 validators report ARIA information as an error
because HTML 4 predates ARIA).

ptg6964689

cHApTER 2 : TExT : uNdERSTANdINg wAI-ARIA 51

ARIA document structure
and landmark roles
WAI-ARIA defines several roles that tell assistive technology
about landmarks and the structure of a document. Some of
these are:

•	 application

•	 article

•	 banner

•	 complementary

•	 contentinfo

•	 document

•	 form

•	 heading

•	 main

•	 navigation

•	 search

Looking at a simple page from an ARIA perspective, you might
see what is shown in Figure 2.18.

Banner

Content

Na
vi
ga
ti
on

Some of these obviously match HTML5 elements, such as
<article>, <form>, <header>, and <nav>.

Others lack an obvious one-to-one correspondence. For exam-
ple, role=banner “typically includes things such as the logo or
identity of the site sponsor, and site-specific search tool. A ban-
ner usually appears at the top of the page and typically spans
the full width.” That initially seems to match HTML5 <header>, but
as you’ve seen, there can be multiple <header>s on a page. So
the “page header” is the only one allowed to have role=banner.

FIguRE 2.18 A simple page
with a header, sidebar, and
main content area and ARIA
roles.

ptg6964689

INTRoducINg HTML552

Similarly, contentinfo is defined as “a large perceivable region
that contains information about the parent document. Examples
of information included in this region of the page are copyrights
and links to privacy statements.” This sounds like <footer>, but
it’s only the “page footer” and not each footer in a page with
multiple footers.

role=main defines the “main content area” of a page. We dis-
cussed in Chapter 1 how that can be algorithmically deduced,
but as assistive technologies can make use of ARIA now, it
makes sense to add this role to the element you’re using to
group your main content. You can even use it as a hook for
CSS in browsers that understand attribute selectors:

div[role=main] {color:red; background-color:yellow;
¬ font-family: “Comic Sans MS”, cursive; ... }

There you have it: accessibility and gorgeous typography in
perfect harmony.

Combining ARIA and HTML5
We recommend that you consider using ARIA where appropri-
ate in addition to HTML5 as a transitional measure to improve
accessibility that won’t harm validation (but see the following
note on screen readers). However, we don’t do that in this book
(as we’re teaching you HTML5, not ARIA). A small polyfill at
http://github.com/yatil/accessifyhtml5.js adds roles to the most
common, generic HTML5 cases, but note that (sadly) it won’t
magically accessify heavy-duty AJAXed web apps.

ARIA resources
There is a useful cross-reference in the spec of HTML5 and
ARIA at http://dev.w3.org/html5/spec/embedded-content-0.
html#annotations-for-assistive-technology-products-aria. Steve
Faulkner of The Paciello Group has a list of ARIA information
that HTML5 doesn’t have built-in at www.paciellogroup.com/
blog/?p=585.

For more information on ARIA in general, see Gez Lemon’s
“Introduction to WAI-ARIA” at http://dev.opera.com/articles/
view/introduction-to-wai-aria/ and follow The Paciello Group’s
blog (www.paciellogroup.com/blog/). Two recommended books
are Universal Design for Web Applications by Wendy Chisholm
and Matt May (O’Reilly) and Designing with Progressive

http://github.com/yatil/accessifyhtml5.js
http://dev.w3.org/html5/spec/embedded-content-0.html#annotations-for-assistive-technology-products-aria
http://dev.w3.org/html5/spec/embedded-content-0.html#annotations-for-assistive-technology-products-aria
www.paciellogroup.com/blog/?p=585
www.paciellogroup.com/blog/?p=585
http://dev.opera.com/articles/view/introduction-to-wai-aria/
http://dev.opera.com/articles/view/introduction-to-wai-aria/
www.paciellogroup.com/blog/

ptg6964689

cHApTER 2 : TExT : EVEN MoRE NEw STRucTuRES! 53

Enhancement: Building the Web that Works for Everyone by
Todd Parker, et al. (New Riders) for useful information on practi-
cal uses of ARIA.

The ARIA spec itself is at www.w3.org/WAI/PF/aria/.

A note on screen readers

Houston, we have a problem.

In 2007, I was concerned that no screen reader vendors were participating in the HTML5 specification
process, so I wrote to the W3C to ask it to invite vendors to join. In 2009, I asked HTML editor Ian Hickson
if any vendors had responded. He replied, “A couple did, but only to say they had little time for the stan-
dards process, which was quite disappointing. Since then, though, Apple has ramped up their efforts on
their built-in Mac OS X screen reader software, and we do get a lot of feedback from Apple. So at least
one screen reader vendor is actively involved.”

A recent test (http://www.accessibleculture.org/research/html5-aria-2011/) shows that older versions of
two widely used commercial screen readers cannot properly process content that is marked up with both
HTML5 and ARIA (oh, the irony) or in <nav> elements inside a <header>. Not all screen readers misbe-
have, however; Apple VoiceOver does not omit content, JAWS 12 fixed bugs in versions 10 and 11, and the
open-source NVDA screen reader (www.nvda-project.org/) speaks all content and allows navigation by
ARIA landmarks.

Personally, I feel that if you are using the specification the right way, it’s not your problem if a browser or
screen reader cannot adequately deal with that content. However, that’s my personal opinion; you might
feel differently, or the legal situation where you are might require you to dumb down your code to accom-
modate those screen readers. Of course, they might fix the bugs by the time you read this book. In the
meantime, it’s your responsibility to know your users and the law in your area.

Even more new structures!
You ain’t seen nothing yet. Actually, that’s untrue: you’ve seen
loads already. So while we’re in the zone, let’s look at other new
elements of HTML5, and some of the changes from HTML 4. We’ll
look at global attributes allowed on any element, as well as wave
“hi” to a few HTML5 features that we won’t cover in this book.

Microdata
Microdata is a way to give extra semantics to your content with-
out using more HTML elements. It’s similar to RDFa and micro-
formats, but is (arguably) simpler.

http://www.accessibleculture.org/research/html5-aria-2011/
www.nvda-project.org/
www.w3.org/WAI/PF/aria/

ptg6964689

INTRoducINg HTML554

HTML5 element categories and content models

HTML 4 divided elements into “block-level” and “inline.” These names are gone from HTML5, as they’re
inherently presentational; they simply reflect the way browsers display them with their default style sheets.
There is nothing inherent to any HTML element that is “block” or “inline.”

By default, CSS defines every element as display:inline until it’s overridden by the browser’s default
style sheet or the gorgeous design that the sublimely talented designer that you are applies to the
markup. (Don’t blush, you know you are; everybody says so.)

In HTML5, we find lots of new content models, including phrasing (broadly equivalent to inline) and
flow (broadly equivalent to block-level). Some elements (<a>, <ins>,) can be both. You’ll also
recognize heading content like <h1>..<h6> and sectioning elements like <article>, <section>,
<nav>, and <aside>.

There’s also embedded (content that imports another resource into the document, or content from another
vocabulary that’s inserted into the document, such as <audio>, <canvas>, <embed>, <iframe>, ,
<math>, <object>, <svg>, and <video>), interactive (<a>, <audio> [if the controls attribute is
present], <button>, <details>, <embed>, <iframe>, and [if the usemap attribute is present],
<input> [if the type attribute is not in the hidden state], <keygen>, <label>, and <menu> [if the type
attribute is in the toolbar state], <object> [if the usemap attribute is present], <select>, <textarea>,
and <video> [if the controls attribute is present]), metadata, and others.

Don’t get hung up on these. They’re pretty intuitive: Apart from the fact that <a> now behaves like <ins>
and and can be “inline” or “block” (to use the old HTML 4 parlance), you won’t notice anything
different from before in terms of styling—particularly if you’re using the HTML5 shiv (http://code.google.
com/p/html5shiv/) to help old browsers along with the new HTML5 elements until their default presenta-
tion is added to the browsers’ style sheets.

Microdata is composed of five attributes that can go on any
HTML element. The most important are itemscope, itemtype,
and itemprop.

itemscope defines the scope of one particular item; it says “this
container is all about one single item.”

Here is a <div> about this very book:

<div itemscope>
I love that Introducing HTML5 by Bruce Lawson and Remy Sharp
¬ (ISBN 0321784421)
</div>

itemtype allows me to specify a vocabulary so a parser or
crawler will know what kind of information I’m marking up (this
must be an absolute URL):

http://code.google.com/p/html5shiv/
http://code.google.com/p/html5shiv/

ptg6964689

cHApTER 2 : TExT : EVEN MoRE NEw STRucTuRES! 55

<div itemscope itemtype=”http://schema.org/Book”>
I love that Introducing HTML5 by Bruce Lawson and Remy Sharp
¬ (ISBN 0321784421)
</div>

Using itemprop I can assign properties to the content:

<div itemscope itemtype=”http://schema.org/Book”>
I love that Introducing HTML5
 by Bruce Lawson and
 Remy Sharp
 (ISBN 0321784421)
</div>

Notice I’ve used the properties name for the book title, isbn for
the ISBN, and author twice, for Bruce and that other guy.

The actual value that gets assigned to itemprop depends
on the element it’s on. It’s generally the text content of the
element, except:

•	 If the element also has an itemscope attribute, the value is
the item created by the element.

•	 If the element is a <meta> element, the value is the value of
the element’s content attribute.

•	 If the element is an <audio>, <embed>, <iframe>, ,
<source>, <track>, or <video> element, the value is the
element’s src attribute, resolved to an absolute URL.

•	 If the element is an <a>, <area>, or <link> element, the value
is the element’s src attribute, resolved to an absolute URL.

•	 If the element is an <object> element, the value is the ele-
ment’s data attribute, resolved to an absolute URL.

•	 If the element is a <time> element with a datetime attribute,
the value is the value of the element’s datetime attribute.

Microdata items can be nested, so I could give details for the
authors using vCard. On the span containing the author name,
we give it an itemprop of author, as that’s its relationship to the
book vocabulary, and we define the span as being a container
“about” an individual, so give it an itemscope and an itemtype
pointing at the hCard vocabulary:

ptg6964689

INTRoducINg HTML556

<div itemscope itemtype=”http://schema.org/Book”>
I love that Introducing HTML5
 By
<span itemprop=”author” itemscope itemtype=
¬ ”http://microformats.org/profile/hcard”>
 Bruce Lawson

and
 <span itemprop=”author” itemscope itemtype=
¬ ”http://microformats.org/profile/hcard”>
 Remy Sharp

 (ISBN 0321784421)
</div>

Microdata is as simple as that for the majority of use-cases.
There are, however, two more attributes that we’ll mention for
completeness.

itemref
Sometimes, you might want to list additional elements for a user
agent to crawl in order to find the name-value pairs of the item,
because those elements aren’t descendents of the element with
the itemscope attribute. On the element with itemscope, you can
list unique, space-separated tokens that are case-sensitive and
correspond to IDs of elements in the same page.

itemid
If you want to, you can use an itemid attribute. This is a globally
unique identifier—not just on your website, but on the whole
Web. It could, for example, be an ISBN or a URL or anything
that you can guarantee to be unique, really. Doing this sprinkles
magical Semantic Web pixie dust all over your website, and
crawlers and content aggregators will “know” that your content
is talking about the same things as my content because they
share the same itemid. (At time of writing, though, the Microdata
vocabularies published by Bing, Google, and Yahoo! on schema.
org don’t use itemid at all.)

If you want to use itemid, you must use a vocabulary that sup-
ports global identifiers:

“The itemid attribute must not be specified on elements that do
not have both an itemscope attribute and an itemtype attribute

NoTE This is a silly micro-
data example as it gives

no further information about our
authors than their names; the
purpose is to demonstrate the
nesting. Much fuller examples
can be found in the spec at
www.whatwg.org/specs/
web-apps/current-work/
multipage/microdata.
html#mdvocabs.

www.whatwg.org/specs/web-apps/current-work/multipage/microdata.html#mdvocabs
www.whatwg.org/specs/web-apps/current-work/multipage/microdata.html#mdvocabs
www.whatwg.org/specs/web-apps/current-work/multipage/microdata.html#mdvocabs
www.whatwg.org/specs/web-apps/current-work/multipage/microdata.html#mdvocabs

ptg6964689

cHApTER 2 : TExT : EVEN MoRE NEw STRucTuRES! 57

specified, and must not be specified on elements with an item-
scope attribute whose itemtype attribute specifies a vocabulary
that does not support global identifiers for items, as defined by
that vocabulary’s specification.”

For more information about Microdata, we recommend

“Extending HTML5—Microdata” by Oli Studholme
http://html5doctor.com/microdata/

“Microdata Tutorial” by Tab Atkins, Jr.
www.xanthir.com/blog/b4570

“Using Multiple Vocabularies in Microdata” by Jeni Tennison
www.jenitennison.com/blog/node/161

The Microdata DOM API
Microdata also has an associated DOM API to manipulate items
and properties which gives the document.getItems() method to
grab a nodelist containing Microdata items on a page. Without
an argument, the method gets all the items on a page, or pass-
ing an itemtype URL returns only items with that itemtype.

At time of writing, only pre-release versions of Opera 12 support
the DOM API.

<aside>
In Chapter 1 you saw <aside> used to mark up sidebars. It rep-
resents “a section of a page that consists of content that is tan-
gentially related to the content around the aside element, and
which could be considered separate from that content. Such
sections are often represented as sidebars in printed typogra-
phy. The element can be used for typographical effects like pull
quotes or sidebars, for advertising, for groups of nav elements,
and for other content that is considered separate from the main
content of the page.”

Using an <aside> inside an <article>, for example, is the right
place for tangentially related information or pull quotes about
that article, but not, we hasten to add, page-wide navigation.

<aside> has an implied ARIA role of note, but can be given
role=”complementary” or (if it surrounds a search form)
role=”search”.

http://html5doctor.com/microdata/
www.xanthir.com/blog/b4570
www.jenitennison.com/blog/node/161

ptg6964689

INTRoducINg HTML558

<bdi>
The spec says that <bdi> “represents a span of text that is to be
isolated from its surroundings for the purposes of bidirectional
text formatting.” Huh? I asked Richard Ishida (@r12a on Twitter—
follow him!), the W3C’s internationalization lead, to explain this
to me, and he was kind enough to write a blog post in response
(http://rishida.net/blog/?p=564), which I have condensed here
with his permission.

The HTML5 specification contains a bunch of new features to
support bidirectional text in web pages. Languages written with
right-to-left scripts—such as Arabic, Hebrew, Persian, Thaana,
Urdu, and so on—commonly mix in words or phrases in English
or some other language that uses a left-to-right script. The result
is called bidirectional or bidi text.

HTML 4.01, coupled with the Unicode Bidirectional algorithm,
already does a pretty good job of managing bidirectional text,
but there are still some problems when dealing with embedded
text from user input or from stored data.

Here’s an example where the names of restaurants are added
to a page from a database. This is the code, with the Hebrew
shown using ASCII:

<p>Aroma - 3 reviews</p>
<p>PURPLE PIZZA - 5 reviews</p>

Figures 2.19 and 2.20 show what you’d expect to see, and what
you’d actually see, respectively.

The problem arises because the browser thinks that the “-5” is
part of the Hebrew text. This is what the Unicode Bidi Algorithm
tells it to do, and usually it is correct. Not here though.

So the question is how to fix it? The trick is to use the <bdi> ele-
ment around the text to isolate it from its surrounding content.
(bdi stands for ”bidi-isolate.”)

<p><bdi>Aroma</bdi> - 3 reviews</p>
<p><bdi>PURPLE PIZZA</bdi> - 5 reviews</p>

The bidi algorithm now treats the Hebrew and “- 5” as separate
chunks of content, and orders those chunks according to the
direction of the overall context (in this instance, from left to right).

FIguRE 2.19 How we’d like
our web page to look.

FIguRE 2.20 How our bidi
page actually looks. Note
the numeral “5” has been
separated from the word
“reviews.” The content is now
unintelligible.

http://rishida.net/blog/?p=564

ptg6964689

cHApTER 2 : TExT : EVEN MoRE NEw STRucTuRES! 59

You’ll notice that the example above has bdi around the name
Aroma too. Of course, you don’t actually need that, but it won’t
do any harm. On the other hand, it means you can write a script
in something like PHP that says:

foreach $restaurant echo “<bdi>”.$restaurant[‘name’].”
¬ </bdi> - %1 reviews”;

This way you can handle any name that comes out of the data-
base, whatever language it is in.

Using the dir attribute with bdi
The dir attribute can be used on the <bdi> element to set the
base direction. With simple strings of text like PURPLE PIZZA you
don’t really need it, however if your <bdi> contains text that is
itself bidirectional you’ll want to indicate the base direction.

Before HTML5, you could only set the dir attribute to ltr or rtl.
The problem is that in a situation like the one described above,
where you are pulling strings from a database or user, you may
not know which of these to use.

That’s why HTML5 has provided a new auto value for the dir
attribute, and bdi comes with that set by default. The auto value
tells the browser to look at the first strongly typed character in
the element and work out from that what the base direction of
the element should be. If it’s a Hebrew (or Arabic, and so on)
character, the element will get a direction of rtl. If it’s, say, a
Latin character, the direction will be ltr.

In rare instances this may not give the desired outcome, but in
the vast majority of cases it should produce the expected result.

Note that this isn’t implemented anywhere yet, but as informa-
tion about it is so scarce, we’ve included it here.

<details>
I’m very fond of the <details> element. It’s cool because it intro-
duces native support for a common behaviour—an expanding/
collapsing area—thereby removing the need for custom Java-
Script (or, something I’ve seen on far too many sites to be funny,
pulling in the full jQuery library).

ptg6964689

INTRoducINg HTML560

<details>
 <summary>Photograph details</summary>
 <p>Photograph taken on <time datetime=2009-12-25>Xmas
 ¬ Day 09</time> with a Canon IXUSi.</p>
 <p><small>Copyright Bruce Lawson,
 ¬ <address>bruce@brucelawson.co.uk</address></small>.</p>
 ¬ </details>

The contents of the descendant <summary> element are focus-
able and act as a control that, when activated by mouse or key-
board, expand or collapse the remainder of the element. If no
<summary> element is found, the browser supplies its own default
control text, such as “details” or a localised version. Browsers
will probably add some kind of icon, such as a down arrow, to
show that the text is “expandable.”

<details> can optionally take the open attribute to ensure that
the element is already open when the page is loaded:

<details open>

At time of writing, <details> is only supported by Google Chrome
12. Use with care though, and test it well, as it has accessibility
problems: it can’t be controlled with a keyboard so requires a
mouse. Hopefully this will be fixed in a future version of Chrome.

<figure>
I’ve always felt a bit semantically grubby when adding a caption
to explain a picture or to give attribution to the photographer,
because the only way to do it has been with text that runs into
surrounding content, with no way to explicitly associate it with
the image. There simply haven’t been any markup constructs for
this before. Perhaps I’m just weird, but that’s why I’m very glad
to see the <figure> element that wraps an image (or a video, or
block of code, or a supporting quotation) and its caption, which
goes in the <figcaption> element:

<figure>
<img src=welcome.jpg
>
<figcaption>
Bruce and Remy welcome questions
<small>Photo © Bruce’s mum</small>
</figcaption>
</figure>

NoTE The <details>
element isn’t restricted to

purely textual markup—it could
be a login form, an explanatory
video, a table of source data for
a graph, or a description of the
structure of a table for those
who use assistive technology,
have learning disabilities, or who
(like me) simply don’t “get”
numbers.

ptg6964689

cHApTER 2 : TExT : EVEN MoRE NEw STRucTuRES! 61

Styling this markup can produce some nice effects (Figure 2.21).

Notice that there is no alt attribute on the image. In the first
edition, I had added a blank alt="", but this was incorrect.

In figures where the figcaption text tells you all you need to
know (“Pippa Middleton and Remy Sharp pose on the red carpet
at the premier of the Jane Austen movie Pride and ECMAScript”),
don’t duplicate this in alt text because duplicated content can
quickly become very annoying. Duplicated content can quickly
become very annoying.

In the first edition, I tried to avoid duplicated content (which can
quickly become very annoying) by also including alt=“” on the
 element. But if an image has empty alt text it is regarded
as having an implied ARIA role=presentation (only there to
enhance presentation). This removes the element from the
page’s accessibility tree (no user agent does this, yet, but that’s
the general plan).

As the image is not purely presentational (if it were, you wouldn’t
mark it up as a figure or give it a caption), you shouldn’t have
empty alt, you should use no alternate text at all, for example.

Steve Faulkner has written a very useful document “HTML5:
Techniques for providing useful text alternatives” (that is a First
Public Working Draft, therefore very, very susceptible to change)
in which he writes:

“Circumstances in which it is not appropriate to use an empty or
null alt attribute: An image is contained within a figure element
and has an associated caption provided using the figcaption
element.” (http://dev.w3.org/html5/alt-techniques/)

FIguRE 2.21 <figure> and
<figcaption> elements with
some CSS3 designer bling.

http://dev.w3.org/html5/alt-techniques/

ptg6964689

INTRoducINg HTML562

On the other hand, you may think that the example above
needs alt text <img src=welcome.jpg alt=”Bruce and Remy
glower menacingly into the camera”> because otherwise the
joke isn’t communicated to a screen reader user.

As an accessibility bonus it’s useful (but not mandatory) to add
ARIA attributes to associate the image with the caption until brows-
ers “understand” the figure element and do this automatically.

When there is no alt text, use aria-labelledby to associate the
id of the figcaption to the img:

<figure>

<figcaption id=figcap219>
Pippa Middleton and Remy Sharp pose on the red carpet at
¬ the premier of the Jane Austen movie <cite>Pride and
¬ ECMAScript</cite>
</figcaption></figure>

If there is alt text, use aria-describedby:

<figure>
<img src=welcome.jpg
alt=”Bruce and Remy glower menacingly into the camera”
aria-describedby=figcap219>
<figcaption id=figcap219>
Bruce and Remy welcome questions
<small>Photo © Bruce’s mum</small>
</figcaption></figure>

HTML5 and alt text on images

There has been much weeping and lamentation in the streets about the fact that, in certain circumstances,
the validator won’t punch you for omitting the alt attribute on (although I will punch anyone refer-
ring to it as “the alt tag”):

•	 The presence of <meta name=generator> makes missing alt conforming.

•	 The presence of title makes missing alt conforming.

•	 The presence of figcaption makes missing alt conforming.

I recommend that 99.99 percent of the time, you should continue to use alt with an image, with purely
decorative images getting empty alt=””. An occasional exception will be as we’ve discussed with images
in <figure>. If the function of the image is exactly expressed in the <figcaption>, use no alt at all. The
other 0.01% is when you’re writing a template for automatically generated web pages that import images
where it’s impossible to get alt, for example, automatically including stills from a live webcam, in which
case use <meta name=generator> in the head.

ptg6964689

cHApTER 2 : TExT : EVEN MoRE NEw STRucTuRES! 63

<mark>
The <mark> element allows you to do the markup equivalent of
using a highlighter pen to bring out some words on a printed
page. It’s not the same as emphasis—for that you use . But
if you had some existing text and wanted to bring something to
the fore that isn’t emphasised in the text, you could use <mark>
and style it to be italics, or with a yellow highlighter-pen back-
ground colour. In print, you’ll often see the phrases “my italics”
or “emphasis added.”

The spec also says, “When used in the main prose of a docu-
ment, it indicates a part of the document that has been high-
lighted due to its likely relevance to the user’s current activity.”

As an illustration, on my own site, I use an adapted version of
Stuart Langridge’s searchhi script (www.kryogenix.org/code/
browser/searchhi/), which checks to see if the referrer to a page
was a search engine and the search terms are in the query string.
If they are, the script walks the DOM and surrounds each instance
of a search term with a <mark> element, which is then styled a
pretty pink. It would have been wrong to wrap these search terms
in or as they’re not emphatic—and this would have
changed the meaning of the content of our page—but are rel-
evant to the user’s current activity: arriving at a page on our site
looking for information about a certain search term.

<ruby>, <rt>, <rp>
The <ruby> element is a useful addition for those writing content
in some Asian languages. Daniel Davis has a very useful article,
“The HTML5 <ruby> element in words of one syllable or less”
(http://my.opera.com/tagawa/blog/the-html5-ruby-element-
in-words-of-one-syllable-or-less), in which he explains how it
works, along with the related <rt> and <rp> tags, in the context
of Japanese (used with kind permission):

Any piece of Japanese text (banner ad, article, legal doc, and so
on) uses a combination of kanji, hiragana, and katakana writing
systems. It is sometimes the case that people reading the text
can’t read the kanji, especially because kanji characters can have
more than one pronunciation. People and place names are one
example of kanji having numerous or irregular pronunciations.

 can be pronounced “nichi,” “hi,” or “ka”

 can be pronounced “hon” or “moto”

 can be pronounced “nihon” or “nippon”

http://my.opera.com/tagawa/blog/the-html5-ruby-elementin-words-of-one-syllable-or-less
http://my.opera.com/tagawa/blog/the-html5-ruby-elementin-words-of-one-syllable-or-less
www.kryogenix.org/code/browser/searchhi/
www.kryogenix.org/code/browser/searchhi/

ptg6964689

INTRoducINg HTML564

To help the reader, sometimes the pronunciation is written
above the kanji using the hiragana alphabet. This is called furig-
ana in Japanese and ruby in English (from the name of the small
5.5 pt type size used for similar sorts of annotations in British
print tradition). It is often used in newspapers and books but not
so much on websites, due to the difficulty of squeezing minia-
ture text above larger text on a single line. The <ruby> element
aims to solve this.

According to the current HTML5 spec, the <ruby> element is an
inline element and is placed around the word or character you’d
like to clarify, like so:

<ruby> </ruby>

By itself this does nothing, so you add the pronunciation either
for each character or, as in this case and our personal prefer-
ence, for the word as a whole. For this, you use the <rt> tag,
meaning ruby text.

<ruby> <rt> </rt></ruby>

You could leave it like that and supporting browsers would show
the hiragana pronunciation above the kanji text, but nonsupport-
ing browsers would ignore the tags and show both the text and
its pronunciation side by side. To solve this, you have another
tag, <rp>, meaning ruby parentheses, which cleverly hides char-
acters (namely parentheses) in supporting browsers. This means
you can write the pronunciation in parentheses, which nonsup-
porting browsers will show, and supporting browsers will con-
tinue to show the pronunciation without parentheses above the
main text (Figure 2.22).

<ruby> <rp>(</rp><rt> </rt><rp>)</rp></ruby>

<wbr>
In Netscape 4 and now standardized by HTML5 to great rejoic-
ing, the <wbr> element tells a browser it may (but is not required
to) insert a line break here if it needs somewhere to break a line.

FIguRE 2.22 In supporting
browsers, ruby text is
shown above main text. In
nonsupporting browsers, ruby
text is shown next to main text
but in parentheses.

ptg6964689

cHApTER 2 : TExT : REdEFINEd ELEMENTS 65

Redefined elements
HTML5 redefines the semantics of some existing elements as
well as adding new ones. Here are a few old friends: some have
radically changed, others have simply finessed their hairstyles.

<address>
As in HTML4, <address> is for contact details of the author, not
as a generic element for postal addresses.

What’s new is that you can have multiple addresses in a docu-
ment, one inside each <article>. Author information associated
with an <article> element does not apply to nested <article>
elements, so a blog post in an <article> can have an <address>
for its author, and each blog comment (which you remember is a
nested <article>) can have the <address> of its commenter.

Now we’re all riders of the Information Superhighway, and we
probably use electronic methods to contact authors, so contact
details can be email address, postal address, or any others.
These can be marked up as a microformat, RDFa, or Microdata
if you wish (Figure 2.23).

<address>

Bruce Lawson, Remy Sharp
</address>

Tangentially, formatting addresses (along with adding line
breaks to poetry, lyrics, and code samples) is one of the few rea-
sons remaining to use the
 element:

<address>
Dunhackin

123 Standards Boulevard

Semantichester

UK

</address>

FIguRE 2.23 An <address>
containing a QR code as
contact details.

ptg6964689

INTRoducINg HTML566

<cite>
In HTML 4, the <cite> element could be used to mark up the
name of a speaker:

As <cite>Harry S. Truman</cite> said,<Q lang=”en-us”>
¬ The buck stops here.</Q>

HTML5 disallows this: “A person’s name is not the title of a work—
even if people call that person a piece of work—and the element
must therefore not be used to mark up people’s names.”

This is bonkers. It makes existing content that conforms to the
rules of HTML 4 nonconforming to the rules of HTML5, although
it will never be flagged as invalid by a validator, as a machine
has no way of knowing that “Harry S. Truman” is a name rather
than the title of a biography called “Harry S. Truman.”

In his article, “Incite a Riot,” <cite>Jeremy Keith</cite> wrote,
“Join me in a campaign of civil disobedience against the unnec-
essarily restrictive, backwards-incompatible change to the
<cite> element (http://24ways.org/2009/incite-a-riot)."

I agree. Use <cite> for names if you want to.

<dl>
In HTML 4, <dl> was a definition list containing a term and one
or more definitions for that term. This was nice and straightfor-
ward, but then the spec got itself all muddy and confused, as it
also mentioned the potential use of <dl> to mark up dialogues,
complete with code examples to that effect. It was regularly
misused to mark up any name and value pairs regardless of
whether one defined the other.

HTML5 widens the element to be “an association list consisting
of zero or more name-value groups . . . Name-value groups may
be terms and definitions, metadata topics and values, or any
other groups of name-value data.” Here’s an example listing the
books in Remy’s collection, using <dt> and <dd> to group title
and author(s).

 <dl>
 <dt>History of French plastic sandals</dt>
 <dd>Phillipe Philloppe</dd>
 <dt>J-Lo’s plastic surgery: a profile</dt>
 <dd>Hugh Jarce</dd>
 <dt>The Orpheus and Eurydice myth</dt>

http://24ways.org/2009/incite-a-riot

ptg6964689

cHApTER 2 : TExT : REdEFINEd ELEMENTS 67

 <dd>Helen Bach</dd>
 <dt>The Proctologist and the Dentist</dt>
 <dd>Ben Dover</dd>
 <dd>Phil McCavity</dd>
 </dl>

, <i>
Use to mark up emphasis of the kind that subtly changes
the meaning of a sentence; if the question is “Did you say you
live in Paris?” the answer might be marked up as

<p>No, my name is Paris. I live in Troy.
¬ Cloth-ears.</p>

If you have relative levels of importance, you can nest
elements to make the contents extra emphatic.

The spec tell us that the <i> element “represents a span of text
in an alternate voice or mood, or otherwise offset from the nor-
mal prose, such as a taxonomic designation, a technical term, an
idiomatic phrase from another language, a thought, a ship name,
or some other prose whose typical typographic presentation is
italicized.”

Here are some examples of <i> where would not be
appropriate:

<p>The <i>Titanic</i> sails at dawn.</p>
<p>The design needs a bit more <i lang=fr>ooh la la</i>.</p>
<p>You, sir, deserve a jolly good kick up the <i>gluteus
maximus</i>!</p>

<hr>
The <hr> element is now media-independent and indicates “a
paragraph-level thematic break.” A commenter on HTML5doc-
tor.com put it nicely: “It’s the markup equivalent of the ‘* * *’ that
is often used in stories and essays.” We were about to write
it off as a historical curiosity when fellow HTML5 Doctor Oli
Studholme wrote, “<hr> is used as a section separator quite fre-
quently in Japanese design. They’re generally hidden via CSS
but visible when viewed on cHTML cell phone browsers, which
only support very basic CSS and don’t get the visual design (and
with it the visual separation of sections).”

ptg6964689

INTRoducINg HTML568

Unless your audience has significant numbers of users of these
phones, we recommend you use sectioning content and head-
ings instead, with CSS for pretty dividers and forget about <hr>.
That way you have less markup, and besides, it’s hard to style
<hr> consistently across browsers.

Our old friend the unordered list hasn’t been redefined, but it
does have two new attributes.

In HTML 4, the start attribute on was deprecated, as it
was deemed presentational. Luckily, HTML5 reverts this wrong
decision. If you want an ordered list to start at line five rather
than line one, use:

<ol start=5>

Something nice that isn’t yet implemented in any browser is the
reversed attribute. Consider the following example:

<h3>Top five dreamy mega-hunks</h3>
<ol reversed>
 Brad Pitt
 George Clooney
 Orlando Bloom
 Remy Sharp
 Bruce Lawson

This creates a list that counts down from five (Mr. Pitt) to one
(me). Sorry, Brad, George, and Orlando—but what do you guys
know about HTML5?

<s>
In HTML 4.01, we had the <strike> and <s> elements to present
some text with a line through it. HTML5 retains <s> to represent
content that is no longer accurate or no longer relevant and that
therefore has been “struck” from the document. You’d use it to
show a pre-special offer price:

<p>Photograph of Remy Sharp in mankini. <s>£100</s>
¬ Now: 12 pence.</p>

ptg6964689

cHApTER 2 : TExT : REdEFINEd ELEMENTS 69

<small>
The <small> element has been completely redefined, from a
generic presentational element to make text appear smaller
to actually representing “small print,” which “typically features
disclaimers, caveats, legal restrictions, or copyrights. Small print
is also sometimes used for attribution, or for satisfying licensing
requirements.”

You might not notice this redefinition, as your browser will prob-
ably render the content in smaller type, just as before. But the
new semantic means that <small> also corresponds to the really
quickly spoken part at the end of radio advertisements, so a
screen reader might mimic that for its default aural rendering.

If the whole page is a “legalese” page, don’t use <small>. In that
case, the legal text is the main content, so there is no need to use
an element to differentiate the legalese. It’s only for short runs of
text. <small> has no bearing on or elements.

,
The element represents strong importance for its con-
tents but, unlike , it does not change the meaning of the
sentence. For example,

<p>Warning! This banana is dangerous.</p>

You can nest strong elements to make them extra-important.

The element “represents a span of text to which attention
is being drawn for utilitarian purposes without conveying any
extra importance and with no implication of an alternate voice
or mood, such as key words in a document abstract, product
names in a review, actionable words in interactive text-driven
software, or an article lede.”

For example:

<p>Remy never forgot his fifth birthday—feasting on
¬ powdered toast and the joy of opening his gift:
¬ a Log from Blammo!.</p>

<u>
The <u> element is another one that used to be presentational but
has now been given a New! Improved! semantic meaning, in what
feels more like a mopping-up exercise than a useful definition.

ptg6964689

INTRoducINg HTML570

The spec says it “represents a span of text with an unarticulated,
though explicitly rendered, non-textual annotation, such as label-
ing the text as being a proper name in Chinese text (a Chinese
proper name mark), or labeling the text as being misspelt.”

Removed elements
Some elements you may know from HTML 4 have been made
completely obsolete in HTML5, such as <applet> (use <embed>
instead), <big>, <blink>, <center>, , and <marquee>. They
will not validate and must not be used by authors. Frames are
gone (but <iframe> remains). Good riddance.

HTML5 browsers must still render these dear departed elements,
of course, as there are plenty of them still out there in the wild.
But you must avoid them as if they were tarantulas, zombies,
man-eating tigers, plutonium sandwiches, or Celine Dion songs.

Global attributes
There are several new global attributes, which can be added to
any element. They are covered in this section.

accesskey
The accesskey attribute allows a developer to specify a key-
board shortcut that activates or focuses the element. It was
added to HTML 4 to promote accessibility. Because of discover-
ability problems, but primarily because most possible combina-
tions conflict with keystrokes in assistive technologies, it was
rarely used.

Because HTML5 is for web applications, and power users like
to use keyboard shortcuts, accesskey isn’t removed from HTML5
and is now allowed on any element.

To prevent clashes with other applications or the browser’s own
keyboard shortcuts, you can now specify a number of alterna-
tives in the accesskey attribute. The spec gives this example:

<input type=”search” name=”q” accesskey=”s 0”>

ptg6964689

cHApTER 2 : TExT : gLoBAL ATTRIBuTES 71

explaining that “the search field is given two possible access
keys, ‘s’ and ‘0’ (in that order). A user agent on a device with a
full keyboard might pick Ctrl+Alt+S as the shortcut key, while a
user agent on a small device with just a numeric keypad might
pick just the plain unadorned key 0.”

contenteditable
Invented by Microsoft, and reverse-engineered and imple-
mented by all other browsers, contenteditable is now officially
part of HTML5.

This adoption of contenteditable means two things for brows-
ers: first, users can edit the contents of elements with this attri-
bute, so the element must be selectable and the browser must
provide a caret to mark the current editing position; second, you
can make the text bold, change the font, add lists, headings,
and so on. contenteditable is a Boolean attribute, so it can be
set to true or false. Although markup capitalisation is irrelevant,
the DOM attribute (if you were to set it programmatically through
JavaScript) requires contentEditable (note the capital E). The
DOM also has isContentEditable to assess whether an element
is editable—since the contentEditable flag could have been
inherited from a parent element.

You can also set document.designMode = ‘on’ (notice, not ‘true’)
to enable the entire document to be editable. This can only be
done using JavaScript—there is no equivalent attribute that can
be written in your HTML.

Finally, any content that is selected (highlighted) by the user can
have a number of commands run against it, such as document.
execCommand(‘bold’). Typical keyboard commands to make text
bold or italic (such as CTRL+B and CTRL+I respectively on Win-
dows/Linux) affect the DOM in the editable element, adding
and <i> around them.

If you want to use contenteditable for some form of CMS, you
will want to save the changes to your server at some point.
There’s no particular API method for doing this, but since your
user’s changes have modified the DOM, you need to send the
innerHTML of the editable element (or entire document if using
designMode) back to the server for saving in your CMS.

ptg6964689

INTRoducINg HTML572

data-* (custom data attributes)
HTML5 allows custom attributes on any element. These can be
used to pass information to local scripts.

Previously, to store custom data in their markup, authors
would do something annoying like use classes: <input
class=”spaceship shields-5 lives-3 energy-75”>. Then your
script would need to waste time grabbing these class names,
such as shields-5, splitting them at a delimiter (a hyphen in this
example) to extract the value—all very hacky and arguably an
abuse of the class attribute, which is intended (according to
HTML 4.01) as a hook for styling or for “general purpose pro-
cessing by user agents.”

In his 2007 book, ppk on JavaScript, Peter-Paul Koch explains
how to do this and why he elected to use custom attributes in
some HTML 4 pages, making the JavaScript leaner and easier to
write but also making the page technically invalid. As it’s much
easier to use data-shields=5 for passing name/value pairs to
scripts, HTML5 legitimises and standardises this useful, real-
world practice and gives us a simple, standardised API to easily
access and manipulate these custom attributes.

When the data-* attributes are fully supported in a browser,
JavaScript can access the properties using element.dataset.foo
(where the data-foo attribute contains the value).

This is currently supported in all browsers except Internet
Explorer, but the polyfill at http://gist.github.com/362081 can
help with that.

Otherwise scripts can access the values via the traditional
get/setAttribute methods. The advantage of the dataset prop-
erty over setAttribute is that it can be enumerated a lot more
easily. Say, for instance, you needed to get all the values stored
in the data-* attributes; using the native functionality the code is
straightforward and as you’d expect (without any optimisation):

var values = [];
for (var key in element.dataset) {
 values.push(element.dataset[key]);
}

However, to do this today, although the code has the same
result, it’s not so accessible to newer developers or folk that are
less savvy with JavaScript and the DOM:

http://gist.github.com/362081

ptg6964689

cHApTER 2 : TExT : gLoBAL ATTRIBuTES 73

 var attributes = el.attributes,
 values = [];
for (var i = 0; i < attributes.length; i++) {
 if (attributes[i].name.indexOf(‘data-’) === 0) {
 values.push(test.attributes[i].nodeValue);
 }
}

When fully implemented in browsers, setting a dataset attribute
automatically sets the content attribute on the element giving
you a shorthand syntax for setting custom data. So instead of
having to do

element.setAttribute(‘data-author’, ‘Remy and Bruce’);

You can simple execute

elemenent.dataset.author = ‘Remy and Bruce’;

This syntax will automatically set the attribute on the DOM node
as well as change the dataset.name property.

draggable
draggable indicates that the element can be dragged using the
drag-and-drop API (see Chapter 8).

hidden
This hidden attribute is analogous to aria-hidden, which tells the
browser that the content of this element shouldn’t be rendered
in any way. It hides the content, but keeps it “in the wings,” so
that, for instance, you could use JavaScript later on to remove
the attribute and cause the element to “pop” into being.

Quoting the specification (rather than attempting to paraphrase
it any further): “The hidden attribute must not be used to hide
content that could legitimately be shown in another presenta-
tion. For example, it is incorrect to use hidden to hide panels in
a tabbed dialog, because the tabbed interface is merely a kind
of overflow presentation—one could equally well just show all
the form controls in one big page with a scrollbar. It is similarly
incorrect to use this attribute to hide content just from one pre-
sentation—if something is marked hidden, it is hidden from all
presentations, including, for instance, screen readers.”

NoTE Custom data attri-
butes are only meant for

passing information to the site’s
own scripts, for which there are
no more appropriate attributes
or elements. The spec says
“These attributes are not
intended for use by software
that is independent of the site
that uses the attributes” and are
therefore not intended to pass
information to crawlers or third-
party parsers. That’s a job for
microformats, Microdata,
or RDFa.

ptg6964689

INTRoducINg HTML574

Even if you know that you’ll be “unhiding” stuff later with some
scripting, you should treat hidden stuff as if it literally wasn’t
there. So don’t add links pointing to content that’s hidden
and don’t tie other elements to it with aria-describedby or
aria-labelledby.

id
You don’t need us to explain what our old chum id is. But now
you can begin the value of id with a digit, just like you always
have been able to do with class. Yay to the max, that’s phat,
as people a quarter of my age probably say.

itemscope, itemprop,
itemtype, itemref, itemid
These attributes are associated with the Microdata specification.

role, aria-*
As you’ve already seen, HTML5 treats WAI-ARIA as legal addi-
tions to the language—meaning they’ll quite happily validate.

spellcheck
This Boolean attribute tells the browser to check the element’s
spelling and grammar—generally, an <input> or <textarea>,
but it could be anything because anything can be set to be
contenteditable. If it’s missing, “the default state indicates that
the element is to act according to a default behavior, possibly
based on the parent element’s own spellcheck state.”

tabindex (=-1)
tabindex is a largely archaic concept that allows you to specify
the order in which elements are focused when the user navi-
gates a page with the keyboard (traditionally using the Tab key,
though some browsers—most notably Opera—may use different
key combinations for this).

This was quite popular when sites were built using deeply
nested layout tables in which the document order of focus-
able elements would often be markedly different from its visual

ptg6964689

cHApTER 2 : TExT : REMoVEd ATTRIBuTES 75

rendering order and logical tab order. Because no one above
the level of WYSIWYG-wielding wannabe has used tables for
layout since Mozart went stegosaurus hunting, nowadays this
is not usually necessary. The default tab order is determined
by the order in which elements appear in your markup, so a
properly ordered and structured document should never require
additional tabbing hints.

However, tabindex does have a useful side effect. Normally, only
links, form elements, and image map areas can be focused via
the keyboard. Adding a tabindex can make other elements also
focusable, so executing a focus() command from JavaScript
would move the browser’s focus to them. However, this would
also make these elements keyboard-focusable, which may not
be desirable.

Using a negative integer (by convention, tabindex=-1) allows the
element to be focused programmatically, “but should not allow
the element to be reached using sequential focus navigation.”

It’s very useful in overcoming a bug in IE whereby, under some
circumstances, elements such as headings that were targets of
in-page links were never focused for screen reader users, leav-
ing the information inaccessible. (See www.juicystudio.com/
article/ie-keyboard-navigation.php for more information.) In
HTML 4, “-1” was an invalid value for the attribute, and the attri-
bute itself was invalid on any element other than form fields and
links. However, as it works in browsers now and it solves a real
problem, HTML5 legalises it everywhere. Yay!

Removed attributes
<table border=...>
Of course, there’s no question that someone like you wouldn’t
use tables to lay out a page, but just in case you are maintain-
ing or tweaking these old-school monsters, there are only two
allowed values for the border attribute: the empty string and
“1”. These simply give a hint to user agents that the table is for
layout. A better way to do this, however, is with the newfangled
ARIA role=presentation, which is interesting as its children don’t
inherit it—so a table can be marked as presentational, but its
contents (a form inside one of the table cells, for instance) does

www.juicystudio.com/article/ie-keyboard-navigation.php
www.juicystudio.com/article/ie-keyboard-navigation.php

ptg6964689

INTRoducINg HTML576

not also get marked as presentational in the eyes of screen-
readers and other ARIA-consuming user agents.

Of course, if you need groovy borders for your data tables, use
CSS. This is really here just for backwards compatibility.

<table summary=...>
Previous versions of HTML had a summary attribute on <table>,
which was not to be rendered visually but was purely “for user
agents rendering to non-visual media such as speech and
Braille.” This is now nonconforming. One reason for this is that
data that can’t be seen can fall out of step with the visual data
that it describes. This might happen when a harassed developer
updates the data in the table and, because the hidden summary
is invisible to a quick visual check, fails to update the summary
as well to correspond with the visible data. An incorrect sum-
mary of the table data is worse than no summary at all.

It’s been argued that it would be better to require user agents
to render table summaries visually, but unfortunately WCAG 1,
the original web accessibility guidelines, required a table sum-
mary, so there are many layout tables with the helpful summary
“This is a layout table” and it’s unlikely that the Web would be
improved by revealing each of those.

It seems to me that if a website has a structure complex enough
that it needs summarising to visually impaired users, non-screen
reader users might also benefit from that information. There-
fore, the spec gives numerous suggestions for presenting this
information visually: surrounding the table, in the table’s caption,
in a <details> element, next to the table in the same <figure>,
next to the table in a <figcaption>, or simply in prose.

The attribute longdesc was a very rarely used attribute on images
that pointed to a separate page which described the image
in detail. It’s been removed from HTML5, largely because few
authors ever used it, and few of those who did authored it
correctly. Nevertheless, it is much beloved by screen reader
users, 60 percent of whom say it’s “somewhat” or “very” useful
(http://webaim.org/projects/screenreadersurvey3/#longdesc)
and no comparable method exists to provide the same form of
extended description, so you’ll need to use other mechanisms
(such as the <details> element) to describe an image.

http://webaim.org/projects/screenreadersurvey3/#longdesc

ptg6964689

cHApTER 2 : TExT : FEATuRES NoT coVEREd IN THIS Book 77

Features not covered in this book
For completeness, here are some of the most interesting fea-
tures of HTML5 that, for reasons of page count or lack of imple-
mentation, aren’t discussed further.

<embed>
Of course <embed> is well-known and has been used for years,
but was always an outlaw element that never validated. But like
that other outlaw, Robin Hood, it was widely supported because
it performed a useful function: It’s the only way to get plugins
such as Flash to work reliably in all browsers, which explains
its overwhelmingly common usage (see 2008 stats at http://
dev.opera.com/articles/view/mama-plug-ins/). Because of this,
there’s no reason to keep it from validating. HTML5 paves that
particular cowpath and finally includes it into the formal lan-
guage specification.

But hang on. Isn’t HTML5 supposed to replace all these plugin-
based technologies? Contrary to the sensationalist headlines of
some journalists, HTML5 won’t magically replace plugins over-
night, and now we can embed them into HTML5 without incur-
ring the wrath of the validator.

<keygen>
This element, which is already well supported in all browsers
other than the big IE elephant in the room, is used in situa-
tions where your form needs to send a public key. Take a look
at http://en.wikipedia.org/wiki/Public_key to learn more about
public-key cryptography.

And if you’re still lost, you don’t actually need this element!

<menu>, <command>
These are exciting elements that allow you to define toolbars or
context menus for your application, with icons and associated
commands that execute scripts when activated. They’re cooler
than a bucket full of Lou Reeds. However, no browser yet sup-
ports them, so we don’t discuss them further.

http://dev.opera.com/articles/view/mama-plug-ins/
http://dev.opera.com/articles/view/mama-plug-ins/
http://en.wikipedia.org/wiki/Public_key

ptg6964689

INTRoducINg HTML578

<style scoped>
The scoped attribute on a style element tells the browser
to apply the styles to the element that the <style scoped>
element is in, and its children. Thus, it is found inside elements
in the document’s <body> rather than only in the <head> where
style elements have hitherto been confined. This allows for
highly localised styling right inside your HTML; for instance, an
<article> that contains a scoped style block can be syndicated
and retain its special styles.

However, no browser supports it yet.

Summary
Phew, that was quite a ride, wasn’t it? You’ve seen a lot of new
structures, new elements, and quite a few changes to existing
elements. If you’ve studied our markup examples carefully, you
also know the favoured weaponry of fairies, so beware if you’re
a goblin or an orc.

HTML5 allows us to mark up common website structures with
dedicated elements, rather than empty <div> or elements.
However, these elements are still completely necessary parts of
the language. Just as with HTML 4, you should use these generic
containers when there are no more appropriate elements—but
now you have a larger arsenal of semantically more meaningful
elements to choose from. You’ve also seen that some of these
new elements have conceptually built-in roles to help assistive
technologies. However, while we’re in this transitional period and
browser (and, more importantly, screen reader/assistive technol-
ogy) support for these built-in roles may still be lacking, you can
(validly and legally) add extra ARIA information.

It probably seems pretty complex, but take my word for it: as
you use these new constructs, they soon become much easier
to understand ... so get stuck in!

ptg6964689

CHAPTER 3
Forms

Bruce Lawson

oNE oF THE problems with HTML 4 forms is that they’re

just dumb fields. Validation is required on the server, of

course, but you have to duplicate it in the user’s browser

with JavaScript to give them the seamless experience

they deserve. Given that almost every web page has

some kind of form—search, comments, sign-up, and so

on—wouldn’t it be great if browsers had built-in validation

for some of the most common data types that we collect?

You guessed it: HTML5 forms provide exactly that.

ptg6964689

INTRoducINg HTML580

We HTML, and now it s us back
HTML5 makes developing forms quicker. There are some nice
goodies like the addition of two HTTP types of form action
(update and delete) to go with the current get and post. But the
coolest features for developers—which will be transparent to
bosses and consumers, but they’ll make our lives much easier—
are new form input types which can give us special UIs and
built-in error reporting.

Eventually, you won’t need JavaScript validation at all for these
fundamental data types, although you can’t mothball your scripts
yet—the new input types degrade gracefully but will need your
JavaScript until the golden future when everyone has an HTML5
browser (or your boss tells you that users of ancient browsers
will just have to put up with server-side-only form checking). In
Chapter 12, we show you a methodology called polyfilling to
ensure that old browsers (and only old browsers) are given a
JavaScript helping hand, while you just code to the standard.

New input types
The new form fields were the genesis of the spec that became
HTML5, and this is where we see the principle of specifying
backwards-compatible extensions to the language in action. The
extensions are largely new values of the type attribute of the
input element. HTML4 specifies that browsers should assume
<input type=text> if you don’t specify a type attribute, or you
use an unknown type. Therefore, legacy browsers that don’t
understand the new extensions will fall back to the default and
allow the user to enter data in a plain text field. This fallback can
be detected in script and polyfilled if required so old browsers
can mimic the new behaviours.

The specification makes no requirements on how browsers
should present the new input types to the user or report errors,
and so on. Different browsers and different devices will present
different user interfaces; compare, for example, the different
ways that a select box is shown in Safari on a desktop and an
iPhone (Figure 3.1).

NoTE These form
enhancements aren’t imple-

mented across the board yet.
Opera has the most extensive
support, followed by the WebKit
browsers and Firefox. At the time
of this writing, Internet Explorer
10 Platform Preview 2 has some
support. Exciting times!

ptg6964689

cHApTER 3 : FoRMS : NEw INpuT TYpES 81

The manner in which the browser reports errors is similarly unde-
fined. Figure 3.2 shows errors generated when a required field
isn’t completed before submission in Opera, Firefox, and Google
Chrome. Below, you can see the same error in the Japanese-
localised Opera. Because the messages are part of the browser,
they are automatically localised, meaning much less work for a
developer and a more usable experience for the consumer.

The email input type
The markup <input type=email> tells the browser that it should
not allow the form to be submitted if the user has not entered
what looks like a valid email address—that is, it doesn’t check
whether the email address exists or not, only whether it’s in a
valid format. As with all input types, the user may submit the form
with this field empty unless the required attribute is present.

The multiple attribute indicates that the value of the field can
be a list of comma-separated, valid email addresses. This does
not require that the user enter a comma-separated list manually;
a browser may choose to pop up a list of the user’s contacts
from his mail client or phone contacts list, with checkboxes and
then construct the comma-separated list behind the scenes.

FIguRE 3.1 The same select
box rendered in Safari/Windows
(left) and Safari/iPhone (right).

FIguRE 3.2 Automatically
generated error messages in
Opera, Firefox, Chrome, and
Japanese Opera (below).

ptg6964689

INTRoducINg HTML582

Currently browsers aren’t this helpful, but because this type is
now unambiguous and machine readable/understandable, the
browser knows what the intention of the author is and can con-
ceivably offer more contextually-relevant UI. For example, the
experimental Firefox Contacts add-on http://mozillalabs.com/
blog/2010/03/contacts-in-the-browser collects contacts from
various sources, which it uses to offer addresses when a user
comes across an <input type=email>. Through the W3C draft
Contacts API (http://dev.w3.org/2009/dap/contacts/), it also
exposes this contact information to website scripts.

The URL input type
<input type=url> causes the browser to ensure that the value
entered in the field is a correct URL. A browser may offer
assistance to the user—for example, Opera automatically pre-
pends “http://” to URLs that don’t have a protocol (that is, the
user didn’t type in http:// or ftp:// or whatever). A URL need
not be a web URL; the page could, for example, be a web-
based HTML editor in which the user may wish to use the tel:
pseudo-protocol.

The date input type
The option <input type=date> is one of my favourites. We’ve all
seen web pages that require the user to enter a date for a flight,
concert ticket, and the like. Because dates are tricky to enter
(is the format DD-MM-YYYY or MM-DD-YYYY or YYYY-MM-DD?),
developers code JavaScript date picker widgets that vary wildly
in appearance, usability, and accessibility between sites.

Using <input type=date> solves this problem by providing a
native datepicker widget that’s rendered directly by the browser.
Opera, for example, pops up a calendar widget (Figure 3.3).

On the BlackBerry browser in BlackBerry Device Software ver-
sion 5.0, the date input control used to implement the date input
field is the same Java component used within the native Black-
Berry calendar app (although it isn’t integrated with the calendar
app). See Figure 3.4.

http://mozillalabs.com/blog/2010/03/contacts-in-the-browser
http://mozillalabs.com/blog/2010/03/contacts-in-the-browser
http://dev.w3.org/2009/dap/contacts/

ptg6964689

cHApTER 3 : FoRMS : NEw INpuT TYpES 83

FIguRE 3.3 Opera renders a
calendar widget.

FIguRE 3.4 <input type=date>
on the BlackBerry browser.

Of course, these are still early days. In the future, though,
it’s conceivable that, beyond simply showing a shiny new
datepicker, the browser could do something far cleverer, and
call up the native calendar app so you could browse dates to
see your prior appointments. The point is that the browser can
now understand what you mean. Previously, date pickers were—
from the perspective of the browser—nothing more than <div>s,
s, and links with lots of JavaScript behaviour attached.
Now the browser knows that you’re in fact entering an actual
time and date and can offer richer controls and integration with
other time/date information.

The time input type
<input type=time> allows input of a time in 24-hour format and
validates it. Once again, the actual user interface is left to the
browser; it could be as simple as entering numbers and throw-
ing an error if the user enters an hour greater than 24 or one
minute greater than 59, or it could be far more elaborate: a
clock face, for example, with draggable hands. The user inter-
face could also allow for entry of a time zone offset.

The datetime input type
Date and time that we’ve just seen can be combined using
<input type=datetime> to validate a precise date and time.
Local date and time works as datetime except that the browser
doesn’t allow the user to add (or change) a time zone offset.

ptg6964689

INTRoducINg HTML584

The month input type
Using <input type=month> allows entry and validation of a
month. Although the month value is stored internally as a number
between 1 and 12, the browser may offer a selection method that
uses the names of the months instead. You could do this with a
select box with 12 options, January to December, but this doesn’t
localise. Using an HTML5 month input type, a French-localisation
of a browser could offer a drop-down with Janvier instead of
January, for example. That’s more work for the browser and less
work for web developers, and that’s the way it should be.

The week input type
<input type=week> allows entry and validation of a week num-
ber. While this could be a simple input field allowing a user to
input a number, it’s more complex in practice: some years have
53 weeks. Therefore, the format is 2010-W07 for the seventh
week in the year 2010.

Opera offers a date picker UI, which populates the input field
with the week number of any selected date rather than the
dates YYYY-MM-DD format (Figure 3.5).

The number input type
Not surprisingly, <input type=number> validates numeric entry.
It is not meant for telephone numbers, as these are often typed
with spaces, brackets, plus signs, hyphens etc; use <input
type=tel> for those.

FIguRE 3.5 Opera’s rendering
of <input type=week>.

ptg6964689

cHApTER 3 : FoRMS : NEw INpuT TYpES 85

It works perfectly with the min, max, and step attributes (see
below). In Opera and Chrome, it is rendered as a spinner con-
trol that will not go beyond the upper and lower limits (if speci-
fied) and which progresses by the increment specified in step,
although a user can also type the value (Figure 3.6). The spin
controls are outside the input area in Opera, and inside the input
area in Chrome. The spec is rightly unprescriptive on the UI of
these new controls.

There’s a nasty gotcha on desktop browsers that don’t offer a
special, numeric-only UI. Currently, typing alphabetic characters
into type=number fields doesn’t throw a validation error in Opera
or Chrome. This seems to me to be highly counter-intuitive
behavior. It’s because the browser doesn’t get as far as validat-
ing the input, as it never even replaces the current value of the
field with the non-numeric characters that you typed. Unfor-
tunately, the UI suggests that you’ve entered alphabetics and
they’ve been accepted.

The range input type
Using <input type=range> renders as a slider. Figure 3.7 shows
it in Chrome.

Previously, sliders needed to be faked by hijacking an input and
using JavaScript and images for the pointers. Because these
were not native in the browser, great care had to be taken—and
extra code written—to ensure keyboard accessibility. Now that
sliders are native to HTML, the responsibility is removed from
the developer, leading to leaner code and greater accessibility
for keyboard users.

See the example in the “Putting all this together” section of this
chapter for more information. It works perfectly with the min, max,
and step attributes (see below).

FIguRE 3.6 Opera (left)
and Chrome (right) rendering
<input type=number>.

FIguRE 3.7 Chrome’s
rendering of <input
type=range>.

ptg6964689

INTRoducINg HTML586

The search input type
This input type, <input type=search>, expects a search term.
In Safari there is also an unspecified proprietary attribute that
adds a history of recent results, using the results=n attribute.
The difference between search and text type is only stylistic,
and in Safari on the Mac, it takes the operating system’s default
rounded-corners style for search—which can nonetheless be
overwritten with some proprietary CSS (hat-tip to Wilfred Nas
for this):

input[type=”search”] {-webkit-appearance: textfield;}

The tel input type
<input type=tel> expects a telephone number. There is no
special validation; it doesn’t even enforce numeric-only input, as
many phone numbers are commonly written with extra charac-
ters, for example +44 (0) 208 123 1234.

As mobile phones “know” their own number, we expect that
most mobile phones will be able to do things like autocom-
pleting these entry fields. None currently do this, although the
iPhone brings up a telephone number input screen (Figure 3.8).

FIguRE 3.8 The iPhone’s
keypad for completing <input
type=tel>.

ptg6964689

cHApTER 3 : FoRMS : NEw ATTRIBuTES 87

The color input type
<input type=color> allows the user to input a colour value via a
picker. So far, it’s only implemented on the BlackBerry (Figure 3.9)
and Opera.

Don’t forget the name attribute!

Just because new client-side validation is built into browsers, don’t forget to give your input fields (and
groups of radio buttons) unique values for the name attribute, because that’s how you access these values
on the server that the form submits to. Older versions of Opera require this before the new HTML5 valida-
tion is performed, as that’s what the spec said at the time.

As older versions of IE can get the id and name tangled up when you do getElementByID, we recom-
mend using the same unique value for the id and name of each field, thereby making your form more
accessible, too:

<label for=f-email>Email address</label>

<input id=f-email name=f-email type=email>

New attributes
As well as new input types, the <input> element has several
new attributes to specify behaviour and constraints: autocom-
plete, min, max, multiple, pattern, and step. There’s also a new
attribute, list, that hooks up with a new element to allow a new
data input method.

The list attribute and <datalist>
The combination of an <input> with a list attribute and a
<datalist> is a combo box—a combination of a drop-down list
and a single-line textbox, that allows users to enter their own
text if they don’t want to choose one of the predefined options.

FIguRE 3.9 <input
type=color> on the
BlackBerry.

ptg6964689

INTRoducINg HTML588

The list is contained in a new <datalist> element, the id of
which is referenced in the value of the list attribute:

 <input id=form-person-title type=text list=mylist>
 <datalist id=mylist>
 <option label=Mr value=Mr>
 <option label=Ms value=Ms>
 <option label=Prof value=”Mad Professor”>
 </datalist>

<datalist> has no rendering of its own, but instead shows up
as values in a select-like field.

The previous example uses type=text to allow free-form input,
but you can use <datalist> with url and email.

Many have asked why the <input>/<datalist> pair isn’t com-
bined into a single new element like <select> is. The answer lies
with backwards compatibility: the <input>/<datalist> pairing
degrades to <input type=text> in legacy browsers, so the user
can at least enter something, and so you can easily fake the full
implementation with JavaScript for those browsers as well.

Jeremy Keith has a good example of this backwards compat-
ibility at http://adactio.com/journal/4272/ (reproduced with his
permission):

<label for=”source”>How did you hear about us?</label>
<datalist id=”sources”>
 <select name=”source”>
 <option>please choose...</option>
 <option value=”Television”>Television</option>
 <option value=”Radio”>Radio</option>
 <option value=”Newspaper”>Newspaper</option>
 <option>Other</option>
 </select>
 If other, please specify:
</datalist>
<input id=”source” name=”source” list=”sources”>

Notice how we’ve wrapped the <option> elements in an addi-
tional <select>, making the contents of the datalist mimic the
markup of an old-school dropdown selection. Browsers that
understand <datalist> will ignore anything other than <option>
elements, so the nested <select> is invisible to them. The text “If
other, please specify” is also ignored. Nonconforming browsers,

http://adactio.com/journal/4272/

ptg6964689

cHApTER 3 : FoRMS : NEw ATTRIBuTES 89

on the other hand, don’t see the <datalist> element, and
will instead fall back to showing what they see as a standard
<select>. They also display the “If other” text and the input field
that the datalist is attached to.

In other words, browsers that understand <datalist> see each
<option> as being part of the datalist, and see nothing else.
Browsers that don’t support <datalist> see each <option> as
being part of a <select> and see the additional text “If other,
please specify,” and the input that is hooked onto the datalist via
the list attribute degrades to a simple text input field (Figure 3.10).

This is an excellent pattern that will become part of your day-to-
day form-coding arsenal—unless the Working Group decides to
take it away from us, see Note!

Like me, this ain’t pretty, but it does work (although not so far in
IE10 Platform Preview 2, where it degrades into the select + input)
and it demonstrates how the new features can degrade gracefully.

The autofocus attribute
The autofocus boolean provides a declarative way to focus a
form control when a page is loaded. Previously, a developer had
to write JavaScript that triggered the control’s focus(). method
onload. Now the browser can do clever things like not actually
focusing the control if the user is already typing elsewhere (a
common problem of old-school JavaScript onload focus scripts).

There should be only one such input field on a page. From a
usability perspective, this attribute should be used with care. We
recommend only using it on pages that have a form field as their
central purpose—a search form page, for example.

FIguRE 3.10 <datalist>
in Opera (top) and gracefully
degrading in Safari (bottom).

NoTE The Working Group
is considering removing

this method of graceful degra-
dation through markup, on the
somewhat shaky grounds that
web authors don’t use it much
and it’s hard to specify and
implement (what to do about
<script> elements inside a
<datalist>?)

If it is removed, we’ll note it on
www.introducinghtml.com and
you’ll have to rely on scripting to
make <datalist> degradable
in older browsers. Which would
be a shame.

www.introducinghtml.com

ptg6964689

INTRoducINg HTML590

The placeholder attribute
A usability trick employed regularly by developers is placing text
in an input field as a hint for the user, removing the text when
the user focuses on the field, and restoring the text when focus
leaves the field. This used to require JavaScript. However, it can
now be done declaratively with the placeholder attribute. The
specification says, “For a longer hint or other advisory text, the
title attribute is more appropriate.”

This is generally rendered in a lighter shade of the input’s font
colour. It can be styled using ::-webkit-input-placeholder,
:-moz-placeholder and -ms-input-placeholder. For future com-
patibility, also add –o-input-placeholder. This is experimental
and not in the official CSS spec.

It’s important to note that placeholder does not replace form
<label>s.

The required attribute
The new required attribute can be used on <textarea> and most
input fields (except when the type attribute is hidden, image, or
some button types such as submit). Modern browsers will not
allow the user to submit the form if required fields are empty
and report an error.

We recommend also adding the ARIA attribute aria-required to
such input fields for assistive technology. (See the discussion of
ARIA in Chapter 2.)

The multiple attribute
<input type=file> is not new in HTML5, but when used in
conjunction with the new multiple attribute, the user can now
upload multiple files:

<input type=file multiple>

This was impossible to do in HTML4, so web authors used Java
applets or Flash to achieve the same effect:

multiple can also be used with other input types: for example,
<input type=email multiple> allows the user to enter comma-
separated email addresses.

ptg6964689

cHApTER 3 : FoRMS : NEw ATTRIBuTES 91

The pattern attribute
Some of the input types mentioned previously—email, number,
url, and so on—are really “baked-in” regular expressions, as the
browser just checks if the values entered look like they should.

Suppose you want to match against a different template? The
pattern attribute allows you to specify a custom regular expres-
sion that the input must match. So, if the user must always enter
a single digit plus three uppercase alphabetic characters, the
regular expression would be one number [0–9] and three letters
[A–Z]{3}, all in uppercase, and the input would be coded

<input pattern=”[0-9][A-Z]{3}” name=part
 ¬ title=”A part number is a digit followed by three
 ¬ uppercase letters.”>

You could also add a placeholder=”1ABC” or something similar
as a short hint.

The specification explains that the regular expressions in the
pattern attribute match the syntax of regular expressions in
JavaScript, except that there’s an implied ^(:? at the beginning
and)$ at the end.

So if you’re accustomed to working with regular expressions,
you’re already familiar with what you need to do. If not, you’ve
got the fun world of regular expressions to explore!

The Internet is littered with JavaScript regular expressions that
match this, that, and the other, so it’s likely that you’ll find what
you’re looking for. However, regular expressions, when kept
simple, are relatively easy to get working.

For example, to match a ZIP code in the format of 99999 or
99999-9999 (assuming the 9s are all kinds of numbers), you
can use:

<input pattern=”[0-9]{5}(\-[0-9]{4})?” title=”A zip code in
¬ the format of 99999 or 99999-9999”>

This regular expression looks for a numerical sequence of five,
with an optional suffix of a dash followed by another sequence
of four numbers.

We could extend this pattern to also validate UK post codes
(using a simplified post code match):

<input required pattern=”[0-9]{5}(\-[0-9]{4})?|[a-zA-Z]
¬ {1,2}\d{1,2}\s?\d[a-zA-Z]{1,2}” name=part title=”A valid
¬ zip code or UK postcode”>

NoTE If regular
expressions scare you

but you want to learn more, or
you’re keen to fuel your regular
expression ninja skills, take a
gander at Steven Levithan’s blog
(http://blog.stevenlevithan.com)
which talks about them almost
exclusively.

http://blog.stevenlevithan.com

ptg6964689

INTRoducINg HTML592

Now our regular expression has become much more compli-
cated and it can be quite tricky to test this pattern on a big form
in a web page. Since the pattern’s regular expression matches
the syntax of a JavaScript regular expression, we can test this
in a browser console such as Firebug or Opera Dragonfly, using
pure JavaScript to determine whether the pattern will work. In
the example below, I’m just testing the UK post code match, and
using the JavaScript test method to experiment. Note that I’ve
also wrapped my tests with the leading ^(:? and trailing)$ as
the HTML5 spec states:

/^(:?[a-zA-Z]{1,2}\d{1,2}\s?\d[a-zA-Z]{1,2})$/.test
¬ (“bn14 8px”)
> true
/^(:?[a-zA-Z]{1,2}\d{1,2}\s?\d[a-zA-Z]{1,2})$/.test
¬ (“bn149 8px”)
> false

Those results are correct, since “bn149” isn’t a legal part of a
post code (or certainly not for this contrived example!). Finally,
it’s worth noting that the pattern attribute is case sensitive, and
since we have no way to switch to case insensitive mode, we
need to match on lowercase and uppercase explicitly in this
example (hence the [a-zA-Z]).

The autocomplete attribute
Most browsers have some kind of autocomplete functionality.
HTML has an autocomplete attribute which lets you control how
this works. Although it’s newly standardized in HTML5, it’s not a
new feature; it was a non-standard feature of IE5.

The default state is for the input to inherit the autocomplete
state of its form owner. Forms have autocomplete on by default.

If the autocomplete attribute of a form element is set to on, the
field is fine for autocompletion.

I’ll quote the wry humour of the specification’s description of the
off state: “The off state indicates either that the control’s input
data is particularly sensitive (for example, the activation code for
a nuclear weapon); or that it is a value that will never be reused
(for example, a one-time-key for a bank login) and the user will
therefore have to explicitly enter the data each time.”

ptg6964689

cHApTER 3 : FoRMS : NEw ATTRIBuTES 93

The min and max attributes
As we’ve seen with <input type=number>, these min and max
attributes constrain the range of values that can be entered in
an input; you can’t submit the form with a number smaller than
min or larger than max. But they can also be used with other
input types—for example, <input type=date min=2010-01-01
max=2010-12-31> will only accept a date that’s in the year 2010.
It’s trivial to make the server write HTML that has a min of today,
so only future days are allowed (for a flight booking site, for
example) or a max of today (for a field collecting date of birth,
for example).

The step attribute
The step attribute controls the level of granularity of input. So
if you want the user to enter a percentage between 0 and 100,
but only to the nearest 5, you can specify

<input type=number mix=0 max=100 step=5>

and the spinner control will increment in steps of 5.

Taking the example of a time control, you can also use step=any.
This allows any time in the day to be selected, with any accu-
racy (for example, thousandth-of-a-second accuracy or more);
normally, time controls are limited to an accuracy of one minute.

<input name=favtime type=time step=any>

The form attribute
Traditionally, form controls all needed to be inside a <form>
element. If, for whatever reason—design, styling, or the like—
authors wanted to have a form somewhere on the page and
some other related controls somewhere else, they would (in the
worst case) wrap the entire page up in a form element.

But—brave new world!—in HTML5, a number of elements
that were previously required to be within a form element
(<button>, <fieldset>, <input>, <label>, <select>, <textarea>,
plus <object> and the new elements like <keygen>, <meter>,
<output>, and <progress>) can now be anywhere on the page
and associated with a form using a form attribute pointing at
the id of its form owner.

ptg6964689

INTRoducINg HTML594

Consider this example:

<form id=foo>
<input type=”text”>
...
</form>
<textarea form=foo></textarea>

The <input> is owned by the form foo, as it is contained within
it and does not have a form attribute overriding that ownership.
The <textarea> is outside the form, but is still owned by it, as its
form attribute points to the id of its form owner.

This gives a lot more flexibility with styling when you want
those elements to appear visually (and structurally) outside the
parent forms.

The form attribute is supported in Opera, Firefox, and Chrome.
As Safari shares a codebase with Chrome, it’s likely to appear
there soon, too. IE has no support currently, and at the time of
writing, none has been announced for IE10.

<progress>, <meter> elements
The <progress> element is used to represent a “progress meter,”
to indicate the completion of a task—downloading a file, for
example. It has two attributes: max, which specifies how much
work the task requires in total, and value, which specifies how
much of the task has been completed. The units are arbitrary
and not specified:

<progress value=5 max=20>5</progress>

In supporting browsers, this is replaced with a progress meter
graphic (Figure 3.11).

<meter> is very similar (many have questioned whether there
needs to be two separate elements at all). The spec says that
<meter> “represents a scalar measurement within a known
range, or a fractional value; for example disk usage, the rel-
evance of a query result, or the fraction of a voting population
to have selected a particular candidate.”

FIguRE 3.11 <progress> in
Chrome (left) and Opera (right).
Chrome’s progress meter is
slightly animated; Opera’s is
static.

ptg6964689

cHApTER 3 : FoRMS : puTTINg ALL THIS TogETHER 95

It takes the following floating-point attributes:

•	 value—the “measured” value shown by meter

•	 min—the lower bound of the range for the meter

•	 low—the point that marks the upper boundary of the “low”
segment of the meter

•	 high—the point that marks the lower boundary of the “high”
segment of the meter

•	 max—the upper bound of the range for the meter

•	 optimum—the point that marks the “optimum” position for
the meter

Only value is required. If min and max are missing, the range 0 to
1 is assumed

Opera and Chrome (the two browsers that support <progress>
and <meter> at the time of this writing) colour the meter differ-
ently if the value is between the low to high values.

In older browsers, the text content of the elements is displayed
as fallback content.

Putting all this together
It’s pretty confusing to work out which attributes go with which
input types when you’re meeting them all at once as we are
here. But it’s actually quite straightforward when you start using
them. For example, you can’t use min and max on a <textarea>,
because that wouldn’t make sense, but you can use required.

A blog comments form
Let’s look at a classic form example that most of us are already
familiar with. Nearly all blogs have a comment section, with
fields for the commenter’s name (required), her email address
(required), URL (optional), and the comment (required). That
would need a fair bit of JavaScript if we were to do our form
validation by hand.

In HTML5, however, we need only use some new form types.
We also add a submit button—currently browsers only show vali-
dation messages when a form is actually submitted.

ptg6964689

INTRoducINg HTML596

<form>
 <label for=form-name>Name</label>
 <input name=form-name id=form-name type=text required>
 <label for=form-email>Email</label>
 <input name=form-email id=form-email type=email required>
 <label for=form-url>URL</label>
 <input name=form-url id=form-url type=url>
 <label for=form-comment>Comment</label>
 <textarea name=form-comment id=form-comment required>
 </textarea>
 <input type=submit>
</form>

Hey, Presto! We now have a sexy comment form that validates
user input...no JavaScript required!

A slider, with scripted output
We’ve seen <input type=range> earlier in this chapter. Notice
that, by default, browsers show the slider, but don’t give any
indication of the minimum, maximum, or current value of the
slider, so let’s code up an example that actually shows the user
the range allowed by the slider by automatically indicating the
minimum and maximum values, and dynamically outputting the
slider’s current value.

The slider will go from 1 to 11, as all good controls should (be
they for guitar amps or otherwise). The step will be 1, which is
the default, so we can omit that attribute:

<input type=range min=1 max=11 name=tap>

To show the user the minimum and maximum values, we
can use generated content (which doesn’t work on sliders in
WebKit browsers):

input[type=range]::before {content: attr(min);}
input[type=range]::after {content: attr(max);}

This will show the values, and style them as defined in CSS.
For example, Figure 3.12 renders

input[type=range]{width:500px; color:red; font-family:
¬ cursive; font-size:2em;}

ptg6964689

cHApTER 3 : FoRMS : puTTINg ALL THIS TogETHER 97

1 11

We’ll echo the current value of the slider with the new output
element.

The <output> element
The <output> element is for showing results of some calculation
or other with script. It can have a form owner, either by being
inside a form or via a form attribute. The new <progress> and
<meter> elements discussed earlier can be similarly associated
with a form to provide feedback to the user.

We tie it to the slider by the name of the slider (name=tap), and
use the oninput event on the containing form. When the output’s
form owner receives input (as the slider is moved), we’ll echo
back the value of that input:

// this example assumes variable output contains the DOM
¬ output element
// and the variable slider contains the DOM input range
¬ element
<form oninput=”output.value=slider.value”>
 <input id=slider type=range min=1 max=5 value=5>
 <output id=output>5</output>
</form>

The actual contents of the output element (in this case, “5”) is
only there as a starting value, to be shown before the slider
is actually changed. In this simple example, we simply put the
“5” in the markup, as it’s the same starting value as the input
type=range. You could, of course, use a script that runs onload
and programmatically prefills the output with the value of its
associated input.

Using WAI-ARIA for transitional accessibility
Although we said that <input type=range> removed responsibil-
ity for accessibility from the developer, that’s true only when
HTML5 is widely supported and assistive technology under-
stands this new type of form input.

FIguRE 3.12 Opera’s
rendering of <input
type=range> with min and
max values generated.

NoTE The first edition
of this book used

onforminput rather than
the oninput event, but
that’s deprecated. Markup
history buffs can read
www.useragentman.com/
blog/2011/05/10/is-onforminput-
deprecated-in-html5-forms-and-
why-should-i-care-anyways/
for more.

www.useragentman.com/blog/2011/05/10/is-onforminputdeprecated-in-html5-forms-andwhy-should-i-care-anyways/
www.useragentman.com/blog/2011/05/10/is-onforminputdeprecated-in-html5-forms-andwhy-should-i-care-anyways/
www.useragentman.com/blog/2011/05/10/is-onforminputdeprecated-in-html5-forms-andwhy-should-i-care-anyways/
www.useragentman.com/blog/2011/05/10/is-onforminputdeprecated-in-html5-forms-andwhy-should-i-care-anyways/

ptg6964689

INTRoducINg HTML598

During this transitional time, if you want to use HTML5 sliders,
add some WAI-ARIA information, which for the time being will
result in some duplication:

 <input id=tap
 name=tap
 type=range
 min=1
 max=11
 value=0
 aria-valuemin=1
 aria-valuemax=11
 aria-valuenow=0>

Update aria-valuenow with JavaScript when the slider position is
changed. In this case, you’ll want to bind to the change event on
the slider; in our example, we’ll just use the onchange attribute.
Unfortunately, we can’t use the property syntax to update the
aria-valuenow value; we have to update the DOM attribute for
the value to update correctly:

 <input id=tap
 name=tap
 type=range
 min=1
 max=11
 value=0
 aria-valuemin=1
 aria-valuemax=11
 aria-valuenow=0
 onchange=”this.setAttribute(‘aria-valuenow’,
 ¬ this.value)”>

This will update the value of the aria-valuenow attribute, and
can be tested if you inspect the element using a DOM inspector.

NoTE In the first edition
of this book, I added a

role=slider attribute to tell
assistive technology how to map
the control to operating system
controls. I was wrong, or at least
premature. In an ideal world of
full browser support (one day,
dear reader, one day), this would
be fine. But for now, don’t do it
declaratively; do it in JavaScript
after seeing if input type=range
is supported. (See the “Back-
wards compatibility with legacy
browsers” section below.) In
browsers that don’t support
type=range, setting it declara-
tively adds a role of slider on a
plain text input which would be
wrong and very confusing to an
assistive technology user.

ptg6964689

cHApTER 3 : FoRMS : BAckwARdS coMpATIBILITY wITH LEgAcY BRowSERS 99

Backwards compatibility
with legacy browsers

The big question is: What can we do for legacy browsers? The
answer is that you don’t retire your pre-existing JavaScript vali-
dation or fancy DHTML datepickers just yet, but you leave them
as a fallback after doing some feature detection.

As we’ve seen before, browsers will fall back to using input
type=text whenever they encounter a type that they don’t sup-
port. So, a legacy browser, faced with input type=email, will sim-
ply change it to an input type=text. This change also happens
in the DOM and, by checking the type of the input, we can pro-
grammatically determine if the browser supports the new fancy
elements, and act accordingly if not.

For instance, to detect whether <input type=email> is supported,
you can make a new <input type=email> with JavaScript, but
don’t add it to the page. Then, interrogate your new element to
find out what its type attribute is. If it’s reported back as “email,”
then the browser supports the new feature—so let it do its work
and don’t bring in any JavaScript validation. If it’s reported back
as “text,” it’s fallen back to the default, indicating that it’s not sup-
ported. So your code should load an alternative validation library,
ideally through a lazy load technique.

var i = document.createElement(“input”);
i.setAttribute(“type”, “email”);
return i.type !== “text”;

You can test attributes, too:

return ‘autofocus’ in document.createElement(“input”);

So what does this buy you? First and foremost, you’re making
your forms usable and accessible, providing easy entry mecha-
nisms like datepickers and validating user input before it even
goes on a roundtrip to the server. Secondly, you’re doing it in a
resource-friendly way, using the browser’s built-in capabilities
(if they already understand client-side validation and the new
html5 types/attributes) or, for legacy browsers, gracefully patch-
ing in support with traditional JavaScript libraries.

See Chapter 12 for a methodology and discussion of how to
shoehorn support into older browsers.

ptg6964689

INTRoducINg HTML5100

Styling new form fields
and error messages

Whenever we present the new intelligent form fields at confer-
ences, someone asks us how to style these new fields and error
messages.

You can do some basic styling on most of the new controls:
fonts, colours, and the like. With some controls, however, using
current CSS is more problematic. For example, with a type=range
slider, what does color refer to and what would background-
color style? What would border-radius affect? How would you
change the colour of the “track” that the slider runs along?

The natural home for adding new CSS hooks for styling form
fields is the enticingly named CSS Basic User Interface Module
(http://www.w3.org/TR/css3-ui/). This has been around since
2004 and—now that browsers have caught up with it—this spec-
ification is being updated by Tantek Çelik.

There already are some useful ideas that you can implement
right now—for example, you can use the :invalid pseudo-class
to style a form field to show that its contents are invalid, so the
user gets that feedback immediately, without having to hit sub-
mit. This CSS styles invalid form fields with a red border, and
valid inputs green:

input:invalid {border:2px solid red;}
input:valid { border: 2px solid green; }

Unfortunately, this presents several usability problems. A
required input, for example, is invalid at page load (because
it’s required but is blank) and therefore the styles will be set,
which is off-putting to the user. An input type=email will be
invalid the moment the user starts typing, until the first charac-
ter after “@” is entered, because until that time it’s not a valid
email address.

The mighty Patrick Lauke (one of this book’s technical editors)
suggests using a combination of :focus, to mitigate the problem
and only show the styling when the user is interacting with that
particular form field:

input:focus:invalid {border:2px solid red;}
input:focus:valid {border: 2px solid green;}

http://www.w3.org/TR/css3-ui/

ptg6964689

cHApTER 3 : FoRMS : STYLINg NEw FoRM FIELdS ANd ERRoR MESSAgES 101

This works, but only for the currently focussed input. We want
something more: we want the invalid fields to be styled differ-
ently only after users have entered some content.

Because of these problems, Firefox uses an alternative pseudo-
class called –moz-ui-invalid which provides a much better
user experience, as the Mozilla Developer Center describes:
“If the control is valid when the user starts interacting with it,
the validity styling is changed only when the user shifts focus
to another control. However, if the user is trying to correct a
previously flagged value, the control shows immediately when
the value becomes valid. Required items have the pseudo-class
applied only if the user changes them or attempts to submit
an unchanged valid value.”

Other pseudo-classes available include :in-range and :out-of-
range and :indeterminate (the latter would apply to a number
input with min/max that is currently empty).

While we wait for a fully specified, properly sanctioned way of
consistently styling all the other things in all browsers, there are
a few vendor-specific tweaks and tricks that can be used. We’ve
already seen Mozilla’s ui-invalid, for example. WebKit offers us
ways in which to style the validation error message bubbles (see
Figure 3.2):

•	 ::-webkit-validation-bubble{}

•	 ::-webkit-validation-bubble-top-outer-arrow{}

•	 ::-webkit-validation-bubble-top-inner-arrow{}

•	 ::-webkit-validation-bubble-message{}

Currently, there aren’t many cross-browser methods of chang-
ing the look and feel of HTML forms. This isn’t necessarily a
bad thing. Your branding people will, of course, lament that
placeholder text isn’t in corporate purple and orange. But it’s a
usability and accessibility win; although it’s tempting to style the
stuffing out of your form fields, whatever your branding people
say, it’s better to leave forms as close to the browser defaults as
possible. A browser’s slider and date pickers will be the same
across different sites, making it much more comprehensible to
users. It’s much better that a date picker on site X looks and
behaves the same as a date picker on site Y or site Z.

And, by using native controls rather than faking sliders and date
pickers with JavaScript, your forms are much more likely to be
accessible to users of assistive technology.

ptg6964689

INTRoducINg HTML5102

Overriding browser defaults
Built-in validation messages are great, but what if you want to
customise these error messages? What if it’s Talk Like a Pirate
Day? Perhaps I want to change all the validation messages to
speak like an angry pirate, too.

It’s possible, with a bit of JavaScript via setCustomValidity.
However, by setting a custom message, it causes the field to
be invalid in the first place, so the workaround is to first set the
custom validity to an empty string—clearing any custom error—
perform a validity check manually in the code, and then set the
custom message so that it’s then presented to the user.

So instead of reading:

humptydumpty is not a legal email address

We’ll change the validation to read the following in “traditional”
pirate speak:

humptydumpty be not a legal email address

The setCustomValidity method allows me to specify my own
validation message:

<!DOCTYPE html>
<title>custom validity</title>
<form>
<input type=email id=foo name=foo>
<input type=submit>
</form>
<script>
var email = document.getElementById(‘foo’);
email.form.onsubmit = function () {
 // reset any previously specified custom validity - let
 ¬ the browser run its validation logic
 email.setCustomValidity(‘’);
 // now, after the browser tested if the value entered is
 ¬ actually an email address, inject custom validation
 ¬ message if the validation turns out false (i.e. it’s
 ¬ not an email address)
 if (!email.validity.valid) {
 email.setCustomValidity(email.value + “ be not a legal
 ¬ email address”);
 }
};
</script>

ptg6964689

cHApTER 3 : FoRMS : oVERRIdINg BRowSER dEFAuLTS 103

Figure 3.13 shows a custom validation message.

Unfortunately, as it stands today, only Opera supports this prop-
erly. In fact, it’s questionable that the submit event should even
fire if the field is invalid. Perhaps we should be listening for the
invalid event on the element? But if we set the custom valid
message, when the error is corrected, the field remains marked
as invalid because we’ve set our custom error. So it runs the
invalid test again, removing the custom error—but at this point
the user has to hit submit twice just to get the form to be sub-
mitted when there was a corrected error.

In fact, the only appropriate way of setting a custom message is,
on every key press to check the validity of the field. Personally, I
find this odd that we would have to poll the input element, but in
a way, it behaves the same way the :invalid CSS pseudo selec-
tor works. So our example from above changes to:

<!DOCTYPE html>
<title>custom validity</title>
<form>
<input type=email id=foo name=foo>
<input type=submit>
</form>
<script>
var email = document.getElementById(‘foo’);
email.oninput = function () {
 // reset any previously specified custom validity - let
 ¬ the browser run its validation logic
 email.setCustomValidity(‘’);
 // now, after the browser tested if the value entered is
 ¬ actually an email address, inject custom validation
 ¬ message if the validation turns out false (i.e. it’s
 ¬ not an email address)
 if (!email.validity.valid) {
 email.setCustomValidity(email.value + “ be not a legal
 ¬ email address”);
 }
};
</script>

FIguRE 3.13 Opera rendering
the default validation message
for email (left) and our custom
“speak like an angry pirate day”
validation (right).

ptg6964689

INTRoducINg HTML5104

However, if the way the custom validation messages work isn’t
your bag, then there is a way to roll your own validation behav-
iour, to make it feel more integral to your application. When we
run setCustomValidity it sets the read-only DOM attribute called
validationMessage. We can use this if we manage validation our-
selves, which we’ll look at in the next section.

Note that if you like single-vendor markup, you can override
the error messages in Firefox using the proprietary
x-moz-errormessage attribute

<input type=email x-moz-errormessage=”Please specify a
¬ valid email address.”>

Using JavaScript for DIY validation
So far we’ve seen how we can use a little JavaScript to custom-
ise the message the user sees when validation errors occur. If
you want to spice things up further, you can use JavaScript to
completely handle all the validation and feedback to the user.

Using the JavaScript Web Forms API, we can control how we
present validation feedback to our visitor, but we can still defer
all the actual validation heavy lifting code to the new forms,
APIs. We can also use the API to determine exactly why a par-
ticular form field failed to validate.

Forcing element validation
All form elements and input elements (including <select> and
<textarea>) include a checkValidity method on the DOM node.
You’d be forgiven for thinking this is the method you’d want to use
to override the browser’s default validation and feedback process.

The checkValidity method returns true or false depending on
the success of the validation checks, but at the same time it’s tell-
ing the browser to run through its checks, and displaying the error
messages if required. If you want to take control of the presenta-
tion of validation feedback, then you don’t want to use this method.

ptg6964689

cHApTER 3 : FoRMS : AVoIdINg VALIdATIoN 105

Element validity
Individual form fields, along with having the checkValidity
method, also have a validity DOM attribute that returns a
ValidityState object. There are a number of state attributes
on the validity object, but the simplest and most important is
the valid attribute. This value can be tested using JavaScript
to drive a bespoke validation feedback system.

If we hook into the submit event handler on our form, we can
manually loop through all the input fields and check the valid-
ity object. But what happens if the field has no validation rules?
You’re in luck: The API provides a willValidate attribute that we
can test to see whether we should or shouldn’t try to validate
this particular field. Here’s a (contrived) example:

var email = document.getElementById(‘email’);
if (email.willValidate) {
 if (!email.validity.valid) {
 alert(“Yarr, ye old email be invalid”);
 }
}

Once you have the individual form field’s validation state,
you could pull in any custom messages set via element.
validationMessage or test the different validity states, which also
include valueMissing, typeMismatch, patternMismatch, tooLong,
rangeUnderflow, rangeOverflow, stepMismatch, and customError.

What’s particularly important is that you disable the native brows-
er’s validation behaviour. By adding the novalidate attribute to
the form element, as you’ll see next, it disables the validation
feedback, but in fact the JavaScript API is still available and you
are still able to check the validity state on the fields. This means
you can have full control of the error feedback process.

Avoiding validation
The last question we need to answer is: What if you want to
submit the form—but you don’t want the browser to validate it?
This is possible, too. But why on earth would you want to do
this? What if you have a multistage registration form, either for
sign-up or for submitting some content? For long forms it could
be useful to split the form into stages (as eBay might do when

NoTE It’s worth noting
that <fieldset> ele-

ments also have the validity
attribute, but they don’t do any-
thing. The validity attribute is
always true. You can also call
the checkValidity method
on fieldsets, but again, nothing
happens in the current browsers
that support custom validation.

ptg6964689

INTRoducINg HTML5106

you’re selling an item). You might even want to allow your visi-
tors to save the state of their submission, even if the form isn’t
currently complete and valid.

There are two levels of control for not validating. This can
apply to the individual input control or to the entire form. The
novalidate attribute can only be set on a form element and
prevents validation for that particular field. As we saw in the
previous section, if you want to disable the native validation
feedback (that is, the little bubbles that appear under the input
elements) but still have the JavaScript API available—which still
returns true or false for the valid states on the fields—then this
bad boy is for you.

The second method, formnovalidate, which is practical and
available today, is allowed on individual input elements and
button elements (though probably only makes sense on
type=”submit” and type=”button”). The formnovalidate attribute
allows the form to be submitted and bypass all the validation
that has been set on the form fields. The following example
snippet of code would allow you to have a save session button
with each fieldset to allow the user to save his progress without
triggering the validation rules from running until he hits the final
submit button:

<form>
 <fieldset>
 <legend>Some bits about you</legend>
 <div>
 <label for=”email”>Email:</label>
 <input id=”email” name=”email” type=”email”
 ¬ required />
 </div>
 <div>
 <label for=”url”>Homepage:</label>
 <input id=”url” type=”url” name=”url” />
 </div>
 <input type=”submit” value=”save session”
 ¬formnovalidate />
 </fieldset>

You could even hook into the save session button to trigger
JavaScript-based validation based on only those fields inside the
fieldset via the HTMLFieldSetElement.elements property (though
this is a new property in the HTML5 spec, so you may have to rely
on fieldset.getElementsByTagName and find all the form fields).

ptg6964689

cHApTER 3 : FoRMS : AVoIdINg VALIdATIoN 107

The “whenever anything
changes” event
One almost insignificant change to the <form> element is a new
event called oninput. In fact, this is a useful event that fires on
the form element when any of the form fields within the form
change. This saves you having to attach lots of onchange han-
dlers to each form control.

For instance, if I were to create a colour picker that gives me
both RGBA and HSLA, typically I would have to hook event lis-
teners to each of the value sliders. By using the oninputchange
event, I’m able to hook a single event listener to the form and
recalculate my RGBA and HSLA values using a single method.

Whether I’m attaching lots of event listeners or just a single one,
the result is very similar. However, this feels a lot cleaner and
better designed, as there’s no duplication of event listeners.

When a slider is changed, it generates the RGBA and HSLA and
update the preview colour. The code listing below is just the
JavaScript required:

form.oninput = function () {
 var i = this.length, values = [], value = 0;
 while (i--, value = this[i].value) {
 if (this[i].type == ‘range’) {
 switch (this[i].name) {
 // alpha_channel is between 0-1
 case ‘alpha_channel’: values.push(value / 100);
 ¬ break;
 // hue is a plain value from 0-360
 case ‘hue’: values.push(value); break;
 // default includes saturation & luminance as a
 ¬ percentage
 default: values.push(value + ‘%’);
 }
 }
 }
 hsla.value = ‘hsla(‘ + values.reverse().join(‘, ‘) + ‘)’;
 preview.style.backgroundColor = hsla.value;
 rgba.value = getComputedStyle(preview, null).
 ¬ backgroundColor;
};

NoTE In the first edition
of this book, we talked

about onforminput, but since
then the event handler has been
deprecated. But fear not, this
section remains valid, because
the very similar oninput event
handler is part of HTML5 and
we can use it in a very similar
way to onforminput.

ptg6964689

INTRoducINg HTML5108

My final colour picker makes use of the range input type, the new
oninput event, and the new output elements to show the value
(though this could easily use .innerHTML). The final result is shown
in Figure 3.14.

What’s particularly important about the oninput event is that
unlike the onchange, which fires only when the element is
blurred (although historically some browsers got this wrong, and
fired during input—strangely this wasn’t IE getting it wrong for
a change!), oninput fires when the user is inputting to the form
and whilst the changes are happening immediately.

Summary
Hopefully you’ve seen that HTML5 forms offer a huge pro-
ductivity boost for developers and a consistent experience
for users. They offer a ton of features right out of the box that
previously would have required a lot of custom coding (such as
form validation, or creating slider controls). Implementation is
at varying, but increasing, levels in Opera, the WebKit browsers
(Safari and Chrome), and beginning in Firefox and IE10. The lack
of implementation in IE9 can be faked with JavaScript, as the
new features are designed to degrade gracefully.

Now, let’s move on to even sexier subjects.

FIguRE 3.14 An HSLA colour
picker using the oninput
event.

ptg6964689

CHAPTER 4
Video and

Audio
Bruce Lawson and Remy Sharp

A LoNg TIME Ago, in a galaxy that feels a very long

way away, multimedia on the Web was limited to tinkling

MIDI tunes and animated GIFs. As bandwidth got faster

and compression technologies improved, MP3 music

supplanted MIDI and real video began to gain ground.

All sorts of proprietary players battled it out—Real Player,

Windows Media, and so on—until one emerged as the

victor in 2005: Adobe Flash, largely because of its ubiq-

uitous plugin and the fact that it was the delivery mecha-

nism of choice for YouTube.

HTML5 provides a competing, open standard for delivery

of multimedia on the Web with its native video and audio

elements and APIs. This chapter largely discusses the

<video> element, as that’s sexier, but most of the markup

and scripting are applicable to <audio> as well.

ptg6964689

INTRoducINg HTML5110

Native multimedia: why, what, and how?
In 2007, Anne van Kesteren wrote to the Working Group:

“Opera has some internal experimental builds with an imple-
mentation of a <video> element. The element exposes a simple
API (for the moment) much like the Audio() object: play(),
pause(), stop(). The idea is that it works like <object> except
that it has special <video> semantics much like has
image semantics.”

While the API has increased in complexity, van Kesteren’s origi-
nal announcement is now implemented in all the major brows-
ers, including Internet Explorer 9.

An obvious companion to a <video> element is an <audio>
element; they share many similar features, so in this chapter
we discuss them together and note only the differences.

<video>: Why do you need
a <video> element?
Previously, if developers wanted to include video in a web
page, they had to make use of the <object> element, which is
a generic container for “foreign objects.” Due to browser incon-
sistencies, they would also need to use the previously invalid
<embed> element and duplicate many parameters. This resulted
in code that looked much like this:

<object width=”425” height=”344”>
<param name=”movie” value=”http://www.youtube.com/
¬ v/9sEI1AUFJKw&hl=en_GB&fs=1&”></param>
<param name=”allowFullScreen”
value=”true”></param>
<param name=”allowscriptaccess”
value=”always”></param>
<embed src=”http://www.youtube.com/
¬ v/9sEI1AUFJKw&hl=en_GB&fs=1&”
type=”application/x-shockwave-flash”
allowscriptaccess=”always”
allowfullscreen=”true” width=”425”
height=”344”></embed>
</object>

ptg6964689

cHApTER 4 : VIdEo ANd AudIo : NATIVE MuLTIMEdIA: wHY, wHAT, ANd How? 111

This code is ugly and ungainly. Worse still is the fact that the
browser has to pass the video off to a third-party plugin; hope
that the user has the correct version of that plugin (or has the
rights to download and install it, and the knowledge of how to
do so); and then hope that the plugin is keyboard accessible—
along with all the other unknowns involved in handing the con-
tent to a third-party application.

Plugins can also be a significant cause of browser instability
and can create worry for less technical users when they are
prompted to download and install newer versions.

Whenever you include a plugin in your pages, you’re reserving
a certain drawing area that the browser delegates to the plugin.
As far as the browser is concerned, the plugin’s area remains a
black box—the browser does not process or interpret anything
that happens there.

Normally, this is not a problem, but issues can arise when your
layout overlaps the plugin’s drawing area. Imagine, for example,
a site that contains a movie but also has JavaScript or CSS-based
drop-down menus that need to unfold over the movie. By default,
the plugin’s drawing area sits on top of the web page, meaning
that these menus will strangely appear behind the movie.

Problems and quirks can also arise if your page has dynamic
layout changes. Resizing the dimensions of the plugin’s drawing
area can sometimes have unforeseen effects—a movie playing in
the plugin may not resize, but instead simply may be cropped or
display extra white space. HTML5 provides a standardised way to
play video directly in the browser, with no plugins required.

One of the major advantages of the HTML5 video element is
that, finally, video is a full-fledged citizen on the Web. It’s no lon-
ger shunted off to the hinterland of <object> or the nonvalidat-
ing <embed> element.

So now, <video> elements can be styled with CSS. They can be
resized on hover using CSS transitions, for example. They can
be tweaked and redisplayed onto <canvas> with JavaScript. Best
of all, the innate hackability that open web standards provide
is opened up. Previously, all your video data was locked away;
your bits were trapped in a box. With HTML5 multimedia, your
bits are free to be manipulated however you want.

NoTE <embed> is finally
standardised in HTML5; it

was never part of any previous
flavour of (X)HTML.

ptg6964689

INTRoducINg HTML5112

What HTML5 multimedia isn’t good for
Regardless of the sensationalist headlines of the tech journalists,
HTML5 won’t “kill” all plugins overnight. There are use-cases for
plugins not covered by the new spec.

Copy protection is one area not dealt with by HTML5—unsurpris-
ingly, given that it’s a standard based on openness. So people
who need digital rights management (DRM) are probably not
going to want to use HTML5 video or audio, as they’ll be as easy
to download to a hard drive as an is now. Some browsers
offer simple context-menu access to the URL of the video, or
even let the user save the video. Developers can view source,
find the reference to the video’s URL, and download it that way.
(Of course, you don’t need us to point out that DRM is a fool’s
errand, anyway. All you do is alienate your honest users while
causing minor inconvenience to dedicated pirates.)

HTML5 can’t give us adaptive streaming either. This is a process
that adjusts the quality of a video delivered to a browser based
on changes to network conditions to ensure the best experi-
ence. It’s being worked on, but it isn’t there yet.

Plugins currently remain the best cross-browser option for
accessing the user’s webcam or microphone and then transmit-
ting video and audio from the user’s machine to a web page
such as Daily Mugshot or Chatroulette, although getUserMedia
and WebRTC are in the cards for Chrome, Opera, and Firefox—
see “Video conferencing, augmented reality” at the end of this
chapter. After shuddering at the unimaginable loneliness that a
world without Chatroulette would represent, consider also the
massive amount of content already out there on the web that
will require plugins to render it for a long time to come.

Anatomy of the video
and audio elements
At its simplest, to include video on a page in HTML5 merely
requires this code:

<video src=turkish.webm></video>

The .webm file extension is used here to point to a WebM-encoded
video.

NoTE If you’re really,
really anxious to do DRM,

check out http://lists.whatwg.
org/htdig.cgi/whatwg-whatwg.
org/2010-July/027051.html for
Henri Sivonen’s suggested
method, which requires no
changes to the spec.

http://lists.whatwg.org/htdig.cgi/whatwg-whatwg.org/2010-July/027051.html
http://lists.whatwg.org/htdig.cgi/whatwg-whatwg.org/2010-July/027051.html
http://lists.whatwg.org/htdig.cgi/whatwg-whatwg.org/2010-July/027051.html

ptg6964689

cHApTER 4 : VIdEo ANd AudIo : NATIVE MuLTIMEdIA: wHY, wHAT, ANd How? 113

Similar to <object>, you can put fallback markup between the
tags for older web browsers that do not support native video. You
should at least supply a link to the video so users can download
it to their hard drives and watch it later on the operating system’s
media player. Figure 4.1 shows this code in a modern browser
and fallback content in a legacy browser.

<h1>Video and legacy browser fallback</h1>
<video src=leverage-a-synergy.webm>
 Download the How to
 ¬ leverage a synergy video
</video>

However, this example won’t actually do anything just yet. All you
can see here is the first frame of the movie. That’s because you
haven’t told the video to play, and you haven’t told the browser
to provide any controls for playing or pausing the video.

autoplay
While you can tell the browser to play the video or audio auto-
matically once the web page is loaded, you almost certainly
shouldn’t, as many users (and particularly those using assistive
technology, such as a screen reader) will find it highly intrusive.
Users on mobile devices probably won’t want you using their
bandwidth without them explicitly asking for the video. Never-
theless, here’s how you do it:

<video src=leverage-a-synergy.webm autoplay>
 <!-- your fallback content here -->
</video>

FIguRE 4.1 HTML5 video in a
modern browser and fallback
content in a legacy browser.

ptg6964689

INTRoducINg HTML5114

controls
Providing controls is approximately 764 percent better than
autoplaying your video. See Figure 4.2. You can use some
simple JavaScript to write your own (more on that later) or you
can tell the browser to provide them automatically:

<video src=leverage-a-synergy.webm controls>
</video>

Naturally, these differ between browsers, as the spec doesn’t
prescribe what the controls should look like or do, but most
browsers don’t reinvent the wheel and instead have stuck to
what has become the general norm for such controls—there’s
a play/pause toggle, a seek bar, and volume control.

Browsers have chosen to visually hide the controls, and only
make them appear when the user hovers or sets focus on the
controls via the keyboard. It’s also possible to move through the
different controls using only the keyboard. This native keyboard
accessibility is already an improvement on plugins, which can be
tricky to tab into from surrounding HTML content.

If the <audio> element has the controls attribute, you’ll see them
on the page. Without the attribute, you can hear the audio but
nothing is rendered visually on the page at all; it is, of course,
there in the DOM and fully controllable via JavaScript and the
new APIs.

NoTE Browsers have
different levels of key-

board accessibility. Firefox’s
native controls are right and left
arrows to skip forward/back (up
and down arrows after tabbing
into the video), but there is no
focus highlight to show where
you are, and so no visual clue.
The controls don’t appear if the
user has JavaScript disabled in
the browser; so although the
contextual menu allows the user
to stop and start the movie,
there is the problem of
discoverability.

Opera’s accessible native con-
trols are always present when
JavaScript is disabled, regard-
less of whether the controls
attribute is specified.

IE9 has good keyboard accessi-
bility. Chrome and Safari appear
to lack keyboard accessibility. We
anticipate increased keyboard
accessibility as manufacturers
iron out teething problems.

FIguRE 4.2 The default
controls in Firefox. (These are
similar in all modern browsers.)

ptg6964689

cHApTER 4 : VIdEo ANd AudIo : NATIVE MuLTIMEdIA: wHY, wHAT, ANd How? 115

poster
The poster attribute points to an image that the browser will use
while the video is downloading, or until the user tells the video
to play. (This attribute is not applicable to <audio>.) It removes
the need for additional tricks like displaying an image and then
removing it via JavaScript when the video is started.

If you don’t use the poster attribute, the browser shows the first
frame of the movie, which may not be the representative image
you want to show.

The behavior varies somewhat on mobile devices. Mobile Safari
does grab the first frame if no poster is specified; Opera Mobile
conserves bandwidth and leaves a blank container.

muted
The muted attribute, a recent addition to the spec (read: “as yet,
very little support”), gives a way to have the multimedia element
muted by default, requiring user action to unmute it. This video
(an advertisement) autoplays, but to avoid annoying users, it does
so without sound, and allows the user to turn the sound on:

<video src=”adverts.cgi?kind=video” controls autoplay loop
¬ muted></video>

height, width
The height and width attributes tell the browser the size of
the video in pixels. (They are not applicable to <audio>.) If you
leave them out, the browser uses the intrinsic width of the video
resource, if that is available. Otherwise it uses the intrinsic width
of the poster frame, if that is available. If neither is available, the
browser defaults to 300 pixels.

If you specify one value but not the other, the browser adjusts
the size of the unspecified dimension to preserve the video’s
aspect ratio.

If you set both width and height to an aspect ratio that doesn’t
match that of the video, the video is not stretched to those
dimensions but is rendered letterboxed inside the video element
of your specified size while retaining the aspect ratio.

ptg6964689

INTRoducINg HTML5116

loop
The loop attribute is another Boolean attribute. As you would
imagine, it loops the media playback. Support is flaky at the
moment, so don’t expect to be able to have a short audio sam-
ple and be able to loop it seamlessly. Support will get better—
browsers as media players is a new phenomenon.

preload
Maybe you’re pretty sure that the user wants to activate the
media (she’s drilled down to it from some navigation, for exam-
ple, or it’s the only reason to be on the page), but you don’t
want to use autoplay. If so, you can suggest that the browser
preload the video so that it begins buffering when the page
loads in the expectation that the user will activate the controls.

<video src=leverage-a-synergy.ogv controls preload>
</video>

There are three spec-defined values for the preload attribute.
If you just say preload, the user agent can decide what to do.
A mobile browser may, for example, default to not preloading
until explicitly told to do so by the user. It’s important to remem-
ber that a web developer can’t control the browser’s behavior:
preload is a hint, not a command. The browser will make its
decision based on the device it’s on, current network conditions,
and other factors.

•	 preload=auto (or just preload)

This is a suggestion to the browser that it should begin
downloading the entire file.

•	 preload=none

This state suggests to the browser that it shouldn’t preload
the resource until the user activates the controls.

•	 preload=metadata

This state suggests to the browser that it should just
prefetch metadata (dimensions, first frame, track list, dura-
tion, and so on) but that it shouldn’t download anything fur-
ther until the user activates the controls.

ptg6964689

cHApTER 4 : VIdEo ANd AudIo : codEcS—THE HoRRoR, THE HoRRoR 117

src
As on an , the src attribute points to audio or video
resource, which the browser will play if it supports the specific
codec/container format. Using a single source file with the src
attribute is really only useful for rapid prototyping or for intranet
sites where you know the user’s browser and which codecs
it supports.

However, because not all browsers can play the same formats,
in production environments you need to have more than one
source file. We’ll cover this in the next section.

Codecs—the horror, the horror
Early drafts of the HTML5 specification mandated that all brows-
ers should have built-in support for multimedia in at least two
codecs: Ogg Vorbis for audio and Ogg Theora for movies. Vor-
bis is a codec used by services like Spotify, among others, and
for audio samples in games like Microsoft Halo.

However, these requirements for default format support were
dropped from the HTML5 spec after Apple and Nokia objected,
so the spec makes no recommendations about codecs at all.
This leaves us with a fragmented situation, with different brows-
ers opting for different formats, based on their ideological and
commercial convictions.

Currently, there are two main container/codec combinations
that developers need to be aware of: the new WebM format
(www.webmproject.org) which is built around the VP8 codec
that Google bought for $104 million and open licensed, and the
ubiquitous MP4 format that contains the royalty-encumbered
H.264 codec. H.264 is royalty-encumbered because, in some
circumstances, you must pay its owners if you post videos that
use that codec. We’re not lawyers so can’t give you guidance on
which circumstances apply to you. Go to www.mpegla.com and
have your people talk to their people’s people.

In our handy cut-out-and-lose chart (Table 4.1), we also include
the Ogg Theora codec for historical reasons—but it’s really
only useful if you want to include support for older versions
of browsers with initial <video> element support like Firefox 3.x
and Opera 10.x.

NoTE So long as the http
endpoint is a streaming

resource on the Web, you can
just point the <video> or
<audio> element at it to
stream the content.

www.webmproject.org
www.mpegla.com

ptg6964689

INTRoducINg HTML5118

TABLE 4.1 Video codec support in modern browsers.

wEBM
(Vp8 codEc)

Mp4
(H.264 codEc)

ogV
(ogg THEoRA
codEc)

Opera Yes No Yes

Firefox Yes No Yes

Chrome Yes Yes—see Note, support
will be discontinued

Yes

IE9 + Yes (but codec must
be installed manually)

Yes No

Safari No Yes No

Marvel at the amazing coincidence that the only two browsers
that support H.264 are members of the organization that col-
lects royalties for using the codec (www.mpegla.com/main/
programs/AVC/Pages/Licensors.aspx).

A similarly fragmented situation exists with audio codecs,
for similar royalty-related reasons (see Table 4.2).

TABLE 4.2 Audio codec support in modern browsers.

.ogg/ .ogV
(VoRBIS codEc)

Mp3 Mp4/ M4A
(AAc codEc)

wAV

Opera Yes No No Yes

Firefox Yes No No Yes

Chrome Yes Yes Yes Yes

IE9 + No Yes Yes No

Safari No Yes Yes Yes

The rule is: provide both a royalty-free WebM and an H.264
video, and both a Vorbis and an MP3 version of your audio, so
that nobody gets locked out of your content. Let’s not repeat the
mistakes of the old “Best viewed in Netscape Navigator” badges
on sites, or we’ll come round and pin a “n00b” badge to your
coat next time you’re polishing your FrontPage CD.

Multiple <source> elements
To do this, you need to encode your multimedia twice: once
as WebM and once as H.264 in the case of video, and in both
Vorbis and MP3 for audio. Then, you tie these separate versions
of the file to the media element.

NoTE At time of writing,
Chrome still supports

H.264 but announced it will be
discontinued. Therefore, assume
it won't be supported.

NoTE It’s possible to
polyfill MP3 support into

Firefox. JSmad (jsmad.org) is a
JavaScript library that decodes
MP3s on the fly and recon-
structs them for output using the
Audio Data API, although we
wonder about performance on
lower-spec devices. Such an API
is out-of-the-scope of this
book—though we’ve included
things like geolocation which
aren’t part of HTML5, single-
vendor APIs are stretching the
definition too far.

www.mpegla.com/main/programs/AVC/Pages/Licensors.aspx
www.mpegla.com/main/programs/AVC/Pages/Licensors.aspx

ptg6964689

cHApTER 4 : VIdEo ANd AudIo : codEcS—THE HoRRoR, THE HoRRoR 119

What’s the “best” codec?

Asking what’s “better” (WebM or MP4) starts an argument that makes debating the merits of Mac or PC
seem like a quiet chat between old friends.

To discuss inherent characteristics, you need to argue about macroblock type in B-frames and six-tap filter-
ing for derivation of half-pel luma sample predictions—for all intents and purposes, “My flux capacitor is
bigger than yours!”

Suffice it to say that for delivering video across the Web, both WebM and MP4 offer good-enough quality
at web-friendly compression. Ogg Theora is less web-friendly.

The real differences are royalty encumbrance and hardware acceleration. Some people need to pay if they
have MP4/H.264 video on their website.

There are many chips that perform hardware decoding of H.264, which is why watching movies on your
mobile phone doesn’t drain the battery in seconds as it would if the video were decoded in software.
At the time of this writing (July 2011, a year after WebM was open sourced), hardware-decoding chips for
WebM are just hitting the market.

Previously, we’ve used the <video src=”...”> syntax to specify
the source for our video. This works fine for a single file, but
how do we tell the browser that there are multiple versions
(using different encoding) available? Instead of using the single
src attribute, you nest separate <source> elements for each
encoding with appropriate type attributes inside the <audio> or
<video> element and let the browser download the format that it
can display. Faced with multiple <source> elements, the browser
will look through them (in source order) and choose the first one
it finds that it thinks it can play (based on the type attribute—
which gives explicit information about the container MIME type
and the codec used—or, missing that, heuristic based on file
extension). Note that in this case we do not provide a src attri-
bute in the media element itself:

1. <video controls>

2. <source src=leverage-a-synergy.mp4 type=’video/mp4;
 ¬ codecs=”avc1.42E01E, mp4a.40.2”’>

3. <source src=leverage-a-synergy.webm type=’video/webm;
 ¬ codecs=”vp8, vorbis”’>

4. <p>Your browser doesn’t support video.

5. Please download the video in <a href=leverage-a-
 ¬ synergy.webm>webM or <a href=leverage-a-
 ¬ synergy.mp4>MP4 format.</p>

6. </video>

ptg6964689

INTRoducINg HTML5120

Line 1 tells the browser that a video is to be inserted and gives it
default controls. Line 2 offers an MP4 version of the video. We’ve
put the mp4 first, because some old versions of Mobile Safari on
the iPad have a bug whereby they only look at the first <source>
element, so that if it isn’t first, it won’t be played. We’re using the
type attribute to tell the browser what kind of container format is
used (by giving the file’s MIME type) and what codec was used for
the encoding of the video and the audio stream. If you miss out
on the type attribute, the browser downloads a small bit of each
file before it figures out that it is unsupported, which wastes band-
width and could delay the media playing.

Notice that we used quotation marks around these parameters—
the spec uses ‘video/mp4; codecs=”avc...”’ (single around the
outside, double around the codec). Some browsers stumble
when it’s the other way around. Line 3 offers the WebM equiva-
lent. The codec strings for H.264 and AAC are more compli-
cated than those for WebM because there are several profiles
for H.264 and AAC, to cater for different categories of devices
and connections. Higher profiles require more CPU to decode,
but they are better compressed and take less bandwidth.

We could also offer an Ogg video here for older versions of
Firefox and Opera, after the WebM version, so those that can
use the higher-quality WebM version pick that up first, and the
older (yet still HTML5 <video> element capable) browsers fall
back to this.

Inside the <video> element is our fallback message, including
links to both formats for browsers that can natively deal with
neither video type but which is probably on top of an operat-
ing system that can deal with one of the formats, so the user
can download the file and watch it in a media player outside
the browser.

OK, so that’s native HTML5 video for users of modern brows-
ers. What about users of legacy browsers—including Internet
Explorer 8 and older?

Video for legacy browsers
Older browsers can’t play native video or audio, bless them. But
if you’re prepared to rely on plugins, you can ensure that users
of older browsers can still experience your content in a way that
is no worse than they currently get.

ptg6964689

cHApTER 4 : VIdEo ANd AudIo : codEcS—THE HoRRoR, THE HoRRoR 121

Remember that the contents of the <video> element can contain
markup, like the text and links in the previous example? Here,
we’ll place an entire Flash video player movie into the fallback
content instead (and of course, we’ll also provide fallback for
those poor users who don’t even have that installed). Luckily,
we don’t need to encode our video in yet another format like
FLV (Flash’s own legacy video container); because Flash (since
version 9) can load MP4 files as external resources, you can
simply point your custom Flash video player movie to the MP4
file. This combination should give you a solid workaround for
Internet Explorer 8 and older versions of other browsers. You
won’t be able to do all the crazy video manipulation stuff we’ll
see later in this chapter, but at least your users will still get to
see your video.

The code for this is as hideous as you’d expect for a transitional
hack, but it works anywhere that Flash Player is installed—which
is almost everywhere. You can see this nifty technique in an
article called “Video for Everybody!” by its inventor, Kroc Camen
(http://camendesign.com/code/video_for_everybody).

Alternatively, you could host the fallback content on a video
hosting site and embed a link to that between the tags of a
video element:

<video controls>

 <source src=leverage-a-synergy.mp4 type=’video/mp4;
 ¬ codecs=”avc1.42E01E, mp4a.40.2”’>
 <source src=leverage-a-synergy.webm type=’video/webm;
 ¬ codecs=”vp8, vorbis”’>
<embed src=”http://www.youtube.com/v/cmtcc94Tv3A&hl=
¬ en_GB&fs=1&rel=0” type=”application/x-shockwave-flash”
¬ allowscriptaccess=”always” allowfullscreen=”true”
¬ width=”425” height=”344”>
</video>

You can use the HTML5 Media Library (http://html5media.info)
to hijack the <video> element and automatically add necessary
fallback by adding one line of JavaScript in the page header.

NoTE The content
between the tags is fall-

back content only for browsers
that do not support the
<video> element at all. A
browser that understands
HTML5 video but can’t play any
of the formats that your code
points to will not display the
“fallback” content between the
tags, but present the user with a
broken video control instead.
This has bitten me on the bot-
tom a few times. Sadly, there is
no video record of that.

http://camendesign.com/code/video_for_everybody
http://html5media.info

ptg6964689

INTRoducINg HTML5122

Encoding royalty-free video and audio

Ideally, you should start the conversion from the source format itself, rather than recompressing an already
compressed version which reduces the quality of the final output. If you already have a web-optimised,
tightly compressed MP4/H.264 version, don’t convert that one to WebM/VP8, but rather go back to your
original footage and recompress that if possible.

For audio, the open-source audio editing software Audacity (http://audacity.sourceforge.net/) has built-in
support for Ogg Vorbis export.

For video conversion, there are a few good choices. For WebM, there are only a few encoders at the
moment, unsurprisingly for such a new codec. See www.webmproject.org/tools/ for the growing list.

For Windows and Mac users we can highly recommend Miro Video Converter (www.mirovideoconverter.
com), which allows you to drag a file into its window for conversion into WebM, Theora, or H.264 opti-
mised for different devices such as iPhone, Android Nexus One, PS2, and so on.

The free VLC (www.videolan.org/vlc/) can convert files on Windows, Mac, and Linux.

For those developers who are not afraid by a bit of command-line work, the open-source FFmpeg library
(http://ffmpeg.org) is the big beast of converters. $ ffmpeg -i video.avi video.webm is all you need.

The conversion process can also be automated and handled server-side. For instance, in a CMS environ-
ment, you may be unable to control the format in which authors upload their files, so you may want to do
compression at the server end. ffmpeg can be installed on a server to bring industrial-strength conversions
of uploaded files (maybe you’re starting your own YouTube killer?).

If you’re worried about storage space and you’re happy to share your media files (audio and video) under
one of the various CC licenses, have a look at the Internet Archive (www.archive.org/create/), which will
convert and host them for you. Just create a password and upload, and then use a <video> element on
your page but link to the source file on their servers.

Another option for third-party conversion and hosting is vid.ly. The free service allows you to upload any
video up to 2GB via the website, after which they will convert it. When your users come to the site, they
will be served a codec their browser understands, even on mobile phones.

Sending differently compressed
videos to handheld devices
Video files tend to be large, and sending very high-quality video
can be wasteful if sent to handheld devices where the small
screen sizes make high quality unnecessary. There’s no point in
sending high-definition video meant for a widescreen monitor
to a handheld device screen, and most users of smartphones
and tablets will gladly compromise a little bit on encoding qual-
ity if it means that the video will actually load over a mobile

http://audacity.sourceforge.net/
www.webmproject.org/tools/
www.mirovideoconverter.com
www.mirovideoconverter.com
www.videolan.org/vlc/
http://ffmpeg.org
www.archive.org/create/

ptg6964689

cHApTER 4 : VIdEo ANd AudIo : RoLLINg cuSToM coNTRoLS 123

connection. Compressing a video down to a size appropriate for
a small screen can save a lot of bandwidth, making your server
and—most importantly—your mobile users happy.

HTML5 allows you to use the media attribute on the <source>
element, which queries the browser to find out screen size (or
number of colours, aspect ratio, and so on) and to send different
files that are optimised for different screen sizes.

This functionality and syntax is borrowed from the CSS Media
Queries specification www.w3.org/TR/css3-mediaqueries but is
part of the markup, as we’re switching source files depending
on device characteristics. In the following example, the browser
is “asked” if it has a min-device-width of 800 px—that is, does it
have a wide screen. If it does, it receives hi-res.webm; if not, it is
sent lo-res.webm:

<video controls>
 <source src=hi-res.webm ... media=”(min-device-width:
 ¬ 800px)”>
 <source src=lo-res.webm>
 ...
</video>

Also note that you should still use the type attribute with codecs
parameters and fallback content previously discussed. We’ve
just omitted those for clarity.

Rolling custom controls
One truly spiffing aspect of the <video> and <audio> media ele-
ments is that they come with a super easy JavaScript API. The
API’s events and methods are the same for both <audio> and
<video>. With that in mind, we’ll stick with the sexier media ele-
ment: the <video> element for our JavaScript discussion.

As you saw at the start of this chapter, Anne van Kesteren has
spoken about the new API and about the new simple methods
such as play(), pause() (there’s no stop method: simply pause
and move to the start), load(), and canPlayType(). In fact, that’s
all the methods on the media element. Everything else is events
and attributes.

Table 4.3 provides a reference list of media attributes, methods,
and events.

NoTE We use min-device-
width rather than min-

width. Mobile browsers (which
vary the reported width of their
viewport to better accommodate
web pages by zooming the
viewport) will then refer to the
nominal width of their physical
screen.

www.w3.org/TR/css3-mediaqueries

ptg6964689

INTRoducINg HTML5124

TABLE 4.3 Media Attributes, Methods, and Events

ATTRIBuTES METHodS EVENTS

error state

error

load()

canPlayType(type)

play()

pause()

addTrack(label, kind, language)

loadstart

progress

suspend

abort

error

emptied

stalled

play

pause

loadedmetadata

loadeddata

waiting

playing

canplay

canplaythrough

seeking

seeked

timeupdate

ended

ratechange

network state

src

currentSrc

networkState

preload

buffered

ready state

readyState

seeking

controls

controls

volume

muted

tracks

tracks

playback state

currentTime

startTime

duration

paused

defaultPlaybackRate

playbackRate

played

seekable

ended

autoplay

loop

width [video only]

height [video only]

videoWidth [video only]

videoHeight [video only]

poster [video only]

ptg6964689

cHApTER 4 : VIdEo ANd AudIo : RoLLINg cuSToM coNTRoLS 125

Using JavaScript and the new media API, you have complete
control over your multimedia—at its simplest, this means that
you can easily create and manage your own video player con-
trols. In our example, we walk you through some of the ways to
control the video element and create a simple set of controls.
Our example won’t blow your mind—it isn’t nearly as sexy as the
<video> element itself (and is a little contrived!)—but you’ll get a
good idea of what’s possible through scripting. The best bit is
that the UI will be all CSS and HTML. So if you want to style it
your own way, it’s easy with just a bit of web standards knowl-
edge—no need to edit an external Flash Player or similar.

Our hand-rolled basic video player controls will have a play/pause
toggle button and allow the user to scrub along the timeline of
the video to skip to a specific section, as shown in Figure 4.3.

Our starting point will be a video with native controls enabled.
We’ll then use JavaScript to strip the native controls and add our
own, so that if JavaScript is disabled, the user still has a way to
control the video as we intended:

<video controls>
 <source src=”leverage-a-synergy.webm” type=”video/webm” />
 <source src=”leverage-a-synergy.mp4” type=”video/mp4” />
 Your browser doesn’t support video.
 Please download the video in <a href=”leverage-a-
 ¬ synergy.webm”>WebM or <a href=”leverage-a-
 ¬ synergy.mp4”>MP4 format.
</video>
<script>
var video = document.getElementsByTagName(‘video’)[0];
video.removeAttribute(‘controls’);
</script>

FIguRE 4.3 Our simple but
custom video player controls.

NoTE Some browsers, in
particular Opera, will show

the native controls even if
JavaScript is disabled; other
browsers, mileage may vary.

ptg6964689

INTRoducINg HTML5126

Play, pause, and toggling playback
Next, we want to be able to play and pause the video from a
custom control. We’ve included a button element that we’re
going to bind a click handler and do the play/pause functionality
from. Throughout my code examples, when I refer to the play
object it will refer to this button element:

<button class=”play” title=”play”>►</button/>

We’re using ►, which is a geometric XML entity that looks
like a play button. Once the button is clicked, we’ll start the
video and switch the value to two pipes using ▐, which
looks (a little) like a pause, as shown in Figure 4.4.

For simplicity, I’ve included the button element as markup, but
as we’re progressively enhancing our video controls, all of
these additional elements (for play, pause, scrubbing, and so on)
should be generated by the JavaScript.

In the play/pause toggle, we have a number of things to do:

1. If the user clicks on the toggle and the video is currently
paused, the video should start playing. If the video has pre-
viously finished, and our playhead is right at the end of the
video, then we also need to reset the current time to 0, that
is, move the playhead back to the start of the video, before
we start playing it.

2. Change the toggle button’s value to show that the next
time the user clicks, it will toggle from pause to play or play
to pause.

3. Finally, we play (or pause) the video:

playButton.addEventListener(‘click’, function () {
 if (video.paused || video.ended) {
 if (video.ended) {
 video.currentTime = 0;
 }
 this.innerHTML = ‘’; // ▐▐ doesn’t
 ¬ need escaping here
 this.title = ‘pause’;
 video.play();
 } else {
 this.innerHTML = ‘’; // ►
 this.title = ‘play’;
 video.pause();
 }
}, false);

FIguRE 4.4 Using XML
entities to represent play and
pause buttons.

ptg6964689

cHApTER 4 : VIdEo ANd AudIo : RoLLINg cuSToM coNTRoLS 127

The problem with this logic is that we’re relying entirely on our
own script to determine the state of the play/pause button. What
if the user was able to pause or play the video via the native
video element controls somehow (some browsers allow the
user to right click and select to play and pause the video)? Also,
when the video comes to the end, the play/pause button would
still show a pause icon. Ultimately, we need our controls always
to relate to the state of the video.

Eventful media elements
The media elements fire a broad range of events: when play-
back starts, when a video has finished loading, if the volume has
changed, and so on. So, getting back to our custom play/pause
button, we strip the part of the script that deals with changing its
visible label:

playButton.addEventListener(‘click’, function () {
 if (video.ended) {
 video.currentTime = 0;
 }
 if (video.paused) {
 video.play();
 } else {
 video.pause();
 }
}, false);

In the simplified code, if the video has ended we reset it, and
then toggle the playback based on its current state. The label
on the control itself is updated by separate (anonymous) func-
tions we’ve hooked straight into the event handlers on our
video element:

video.addEventListener(‘play’, function () {
 play.title = ‘pause’;
 play.innerHTML = ‘’;
}, false);
video.addEventListener(‘pause’, function () {
 play.title = ‘play’;
 play.innerHTML = ‘’;
}, false);
video.addEventListener(‘ended’, function () {
 this.pause();
}, false);

NoTE In these examples,
we’re using the

addEventListener DOM
level 2 API, rather than the
attachEvent, which is specific
to Internet Explorer up to ver-
sion 8. IE9 supports video, but it
thankfully also supports the stan-
dardised addEventListener,
so our code will work there, too.

ptg6964689

INTRoducINg HTML5128

Whenever the video is played, paused, or has reached the end,
the function associated with the relevant event is now fired,
making sure that our control shows the right label.

Now that we’re handling playing and pausing, we want to show
the user how much of the video has downloaded and therefore
how much is playable. This would be the amount of buffered
video available. We also want to catch the event that says how
much video has been played, so we can move our visual slider
to the appropriate location to show how far through the video
we are, as shown in Figure 4.5. Finally, and most importantly,
we need to capture the event that says the video is ready to
be played, that is, there’s enough video data to start watching.

Monitoring download progress
The media element has a “progress” event, which fires once the
media has been fetched but potentially before the media has
been processed. When this event fires, we can read the video.
seekable object, which has a length, start(), and end() method.
We can update our seek bar (shown in Figure 4.5 in the second
frame with the whiter colour) using the following code (where
the buffer variable is the element that shows how much of the
video we can seek and has been downloaded):

video.addEventListener(‘progress’, updateSeekable, false);
function updateSeekable() {
 var endVal = this.seekable && this.seekable.length ?
 ¬ this.seekable.end() : 0;
 buffer.style.width = (100 / (this.duration || 1) *
 ¬ endVal) + ‘%’;
}

FIguRE 4.5 Our custom
video progress bar, including
seekable content and the
current playhead position.

ptg6964689

cHApTER 4 : VIdEo ANd AudIo : RoLLINg cuSToM coNTRoLS 129

The code binds to the progress event, and when it fires, it gets
the percentage of video that can be played back compared to
the length of the video. Note the keyword this refers to the
video element, as that’s the context in which the updateSeekable
function will be executed. The duration attribute is the length of
the media in seconds.

However, there’s some issues with Firefox. In previous versions
the seekable length didn’t match the actual duration, and in the
latest version (5.0.1) seekable seems to be missing altogether.
So to protect ourselves from the seekable time range going a
little awry, we can also listen for the progress event and default
to the duration of the video as backup:

video.addEventListener(‘durationchange’, updateSeekable,
¬ false);
video.addEventListener(‘progress’, updateSeekable, false);
function updateSeekable() {
 buffer.style.width = (100 / (this.duration || 1) *
 (this.seekable && this.seekable.length ? this.seekable.
 ¬ end() : this.duration)) + ‘%’;
}

It’s a bit rubbish that we can’t reliably get the seekable range.
Alternatively we could look to the video.buffered property,
but sadly since we’re only trying to solve a Firefox issue,
this value in Firefox (currently) doesn’t return anything for the
video.buffered.end() method—so it’s not a suitable alternative.

When the media file is ready to play
When your browser first encounters the video (or audio) element
on a page, the media file isn’t ready to be played just yet. The
browser needs to download and then decode the video (or audio)
so it can be played. Once that’s complete, the media element will
fire the canplay event. Typically this is the time you would initialise
your controls and remove any “loading” indicator. So our code to
initialise the controls would typically look like this:

video.addEventListener(‘canplay’, initialiseControls,
¬ false);

Nothing terribly exciting there. The control initialisation enables
the play/pause toggle button and resets the playhead in the
seek bar.

ptg6964689

INTRoducINg HTML5130

However, sometimes this event won’t fire right away (or when
you’re expecting it to). Sometimes the video suspends down-
load because the browser is trying to prevent overwhelming
your system. That can be a headache if you’re expecting the
canplay event, which won’t fire unless you give the media ele-
ment a bit of a kicking. So instead, we’ve started listening for
the loadeddata event. This says that there’s some data that’s
been loaded, though not necessarily all the data. This means
that the metadata is available (height, width, duration, and so on)
and some media content—but not all of it. By allowing the user
to start playing the video at the point in which loadeddata has
fired, browsers like Firefox are forced to go from a suspended
state to downloading the rest of the media content, which lets
them play the whole video.

You may find that in most situations, if you’re doing something
like creating a custom media player UI, you might not need the
actual video data to be loaded—only the metadata. If that’s the
case, there’s also a loadedmetadata event which fires once the
first frame, duration, dimensions, and other metadata is loaded.
This may in fact be all you need for a custom UI.

So the correct point in the event cycle to enable the user inter-
face is the loadedmetadata:

video.addEventListener(‘loadedmetadata’, initialiseControls,
¬ false);

Media loading control: preload

Media elements also support a preload attribute that allows you to
control how much of the media is loaded when the page renders.
By default, this value is set to auto, but you can also set it to none
or metadata. If you set it to none, the user will see either the image
you’ve used for the poster attribute, or nothing at all if you don’t set a
poster. Only when the user tries to play the media will it even request
the media file from your server.

By setting the preload attribute to metadata, the browser will pull
down required metadata about the media. It will also fire the loaded-
metadata event, which is useful if you’re listening for this event to set
up a custom media player UI.

NoTE The events to
do with loading fire in the

following order: loadstart,
durationchange,
loadedmetadata,
loadeddata, progress,
canplay, canplaythrough.

ptg6964689

cHApTER 4 : VIdEo ANd AudIo : RoLLINg cuSToM coNTRoLS 131

A race to play video
Here’s where I tell you that as much as native video and audio
smells of roses, there’s a certain pong coming from somewhere.
That somewhere is a problem in the implementation of the
media element that creates what’s known as a “race condition.”

A race, what now?

In this situation, the race condition is where an expected sequence of
events fires in an unpredicted order. In particular, the events fire before
your event handler code is attached.

The problem is that it’s possible, though not likely, for the
browser to load the media element before you’ve had time to
bind the event listeners.

For example, if you’re using the loadedmetadata event to listen
for when a video is ready so that you can build your own fancy-
pants video player, it’s possible that the native video HTML ele-
ment may trigger the events before your JavaScript has loaded.

Workarounds
There are a few workarounds for this race condition, all of which
would be nice to avoid, but I’m afraid it’s just something we
need to code for defensively.

WORKAROUND #1: HIGH EVENT DELEGATION

In this workaround, we need to attach an event handler on the
window object. This event handler must be above the media ele-
ment. The obvious downside to this approach is that the script
element is above our content, and risks blocking our content
from loading (best practice is to include all script blocks at the
end of the document).

Nonetheless, the HTML5 specification states that media events
should bubble up the DOM all the way to the window object. So
when the loadedmetadata event fires on the window object, we
check where the event originated from, via the target property,
and if that’s our element, we run the setup code. Note that in
the example below, I’m only checking the nodeName of the ele-
ment; you may want to run this code against all audio elements
or you may want to check more properties on the DOM node
to make sure you’ve got the right one.

ptg6964689

INTRoducINg HTML5132

<script>
function audioloaded() {
 // setup the fancy-pants player
}

window.addEventListener(‘loadedmetadata’, function (event) {
 if (event.target.nodeName === ‘AUDIO’) {
 // set this context to the DOM node
 audioloaded.call(event.target);
 }
}, true);

</script>

<audio src=”hanson.mp3”>
 <p>If you can read this, you can’t enjoy the soothing
 ¬ sound of the Hansons.</p>
</audio>

WORKAROUND #2: HIGH AND INLINE

Here’s a similar approach using an inline handler:

<script>
function audioloaded() {
 // setup the fancy-pants player
}
</script>

<audio src=”hanson.mp3” onloadedmetadata=
¬ ”audoloaded.call(this)”>
 <p>If you can read this, you can’t enjoy the soothing
 ¬ sound of the Hansons.</p>
</audio>

Note that in the inline event handler I’m using .call(this) to
set the this keyword to the audio element the event fired upon.
This means it’s easier to reuse the same function later on if
browsers (in years to come) do indeed fix this problem.

By putting the event handler inline, the handler is attached as
soon as the DOM element is constructed, therefore it is in place
before the loadedmetadata event fires.

ptg6964689

cHApTER 4 : VIdEo ANd AudIo : RoLLINg cuSToM coNTRoLS 133

WORKAROUND #3: JAVASCRIPT GENERATED MEDIA

Another workaround is to insert the media using JavaScript.
That way you can create the media element, attach the event
handlers, and then set the source and insert it into the DOM.

Remember: if you do insert the media element using JavaScript,
you need to either insert all the different source elements manu-
ally, or detect the capability of the browser, and insert the src
attribute that the browser supports, for instance WebM/video
for Chrome.

I’m not terribly keen on this solution because it means that
those users without JavaScript don’t get the multimedia at all.
Although a lot of HTML5 is “web applications,” my gut (and
hopefully yours, too) says there’s something fishy about resort-
ing to JavaScript just to get the video events working in a way
that suits our needs. Even if your gut isn’t like mine (quite pos-
sible), big boys’ Google wouldn’t be able to find and index your
amazing video of your cat dancing along to Hanson if JavaScript
was inserting the video. So let’s move right along to workaround
number 4, my favourite approach.

WORKAROUND #4: CHECK THE READYSTATE

Probably the best approach, albeit a little messy (compared
to a simple video and event handler), is to simply check the
readyState of the media element. Both audio and video have
a readyState with the following states:

•	 HAVE_NOTHING = 0;

•	 HAVE_METADATA = 1;

•	 HAVE_CURRENT_DATA = 2;

•	 HAVE_FUTURE_DATA = 3;

•	 HAVE_ENOUGH_DATA = 4;

Therefore if you’re looking to bind to the loadedmetadata event,
you only want to bind if the readyState is 0. If you want to bind
before it has enough data to play, then bind if readyState is less
than 4.

ptg6964689

INTRoducINg HTML5134

Our previous example can be rewritten as:

<audio src=”hanson.mp3”>
 <p>If you can read this, you can’t enjoy the soothing
 ¬ sound of the Hansons.</p>
</audio>

<script>
function audioloaded() {
 // setup the fancy-pants player
}

var audio = document.getElementsByTagName(‘audio’)[0];

if (audio.readyState > 0) {
 audioloaded.call(audio);
} else {
 audio.addEventListener(‘loadedmetadata’, audioloaded,
 ¬ false);
}
</script>

This way our code can sit nicely at the bottom of our document,
and if JavaScript is disabled, the audio is still available. All good
in my book.

Will this race condition ever be fixed?
Technically I can understand that this issue has always existed
in the browser. Think of an image element: if the load event fires
before you can attach your load event handler, then nothing is
going to happen. You might see this if an image is cached and
loads too quickly, or perhaps when you’re working in a develop-
ment environment and the delivery speed is like Superman on
crack—the event doesn’t fire.

Images don’t have ready states, but they do have a complete
property. When the image is being loaded, complete is false.
Once the image is done loading (note this could also result in it
failing to load due to some error), the complete property is true.
So you could, before binding the load event, test the complete
property, and if it’s true, fire the load event handler manually.

Since this logic has existed for a long time for images, I would
expect that this same logic is being applied to the media ele-
ment, and by that same reasoning, technically this isn’t a bug,
as buggy as it may appear to you and me!

ptg6964689

cHApTER 4 : VIdEo ANd AudIo : RoLLINg cuSToM coNTRoLS 135

Fast forward, slow motion, and reverse
The spec provides an attribute, playbackRate. By default, the
assumed playbackRate is 1, meaning normal playback is at the
intrinsic speed of the media file. Increasing this attribute speeds
up the playback; decreasing it slows it down. Negative values
indicate that the video will play in reverse.

Not all browsers support playbackRate yet (only WebKit-based
browsers and IE9 support it right now), so if you need to support
fast forward and rewind, you can hack around this by program-
matically changing currentTime:

function speedup(video, direction) {
 if (direction == undefined) direction = 1; // or -1 for
 ¬ reverse

 if (video.playbackRate != undefined) {
 video.playbackRate = direction == 1 ? 2 : -2;
 } else { // do it manually
 video.setAttribute(‘data-playbackRate’, setInterval
 ¬ ((function playbackRate () {
 video.currentTime += direction;

return playbackRate; // allows us to run the
¬ function once and setInterval
 })(), 500));
 }
}

function playnormal(video) {
 if (video.playbackRate != undefined) {
 video.playbackRate = 1;
 } else { // do it manually
 clearInterval(video.getAttribute(‘data-playbackRate’));
 }
}

As you can see from the previous example, if playbackRate is sup-
ported, you can set positive and negative numbers to control the
direction of playback. In addition to being able to rewind and fast
forward using the playbackRate, you can also use a fraction to
play the media back in slow motion using video.playbackRate = 0.5,
which plays at half the normal rate.

ptg6964689

INTRoducINg HTML5136

Full-screen video
For some time, the spec prohibited full-screen video, but it’s
obviously a useful feature so WebKit did its own proprietary
thing with WebkitEnterFullscreen();. WebKit implemented its API
in a way that could only be triggered by the user initiating the
action; that is, like pop-up windows, they can’t be created unless
the user performs an action like a click. The only alternative to
this bespoke solution by WebKit would be to stretch the video
to the browser window size. Since some browsers have a full-
screen view, it’s possible to watch your favourite video of Bruce
doing a Turkish belly dance in full screen, but it would require
the user to jump through a number of hoops—something we’d
all like to avoid.

In May 2011, WebKit announced it would implement Mozilla’s full-
screen API (https://wiki.mozilla.org/Gecko:FullScreenAPI). This API
allows any element to go full-screen (not only <video>)—you might
want full-screen <canvas> games or video widgets embedded in
a page via an <iframe>. Scripts can also opt in to having alphanu-
meric keyboard input enabled during full-screen view, which means
that you could create your super spiffing platform game using the
<canvas> API and it could run full-screen with full keyboard support.

As Opera likes this approach, too, we should see something
approaching interoperability. Until then, we can continue to fake
full-screen by going full-window by setting the video’s dimen-
sions to equal the window size.

Multimedia accessibility
We’ve talked about the keyboard accessibility of the video ele-
ment, but what about transcripts and captions for multimedia?
After all, there is no alt attribute for video or audio as there is
for . The fallback content between the tags is meant only
for browsers that can’t cope with native video, not for people
whose browsers can display the media but can’t see or hear it
due to disability or situation (for example, being in a noisy envi-
ronment or needing to conserve bandwidth).

There are two methods of attaching synchronized text alter-
natives (captions, subtitles, and so on) to multimedia, called
in-band and out-of-band. In-band means that the text file is
included in the multimedia container; an MP4 file, for example,
is actually a container for H.264 video and AAC audio, and can

https://wiki.mozilla.org/Gecko:FullScreenAPI

ptg6964689

cHApTER 4 : VIdEo ANd AudIo : MuLTIMEdIA AccESSIBILITY 137

hold other metadata files too, such as subtitles. WebM is a con-
tainer (based on the open standard Matroska Media Container
format) that holds VP8 video and Ogg Vorbis audio. Currently,
WebM doesn’t support subtitles, as Google is waiting for the
Working Groups to specify the HTML5 format: “WHATWG/W3C
RFC will release guidance on subtitles and other overlays in
HTML5 <video> in the near future. WebM intends to follow that
guidance”. (Of course, even if the container can contain addi-
tional metadata, it’s still up to the media player or browser to
expose that information to the user.)

Out-of-band text alternatives are those that aren’t inside the
media container but are held in a separate file and associated
with the media file with a child <track> element:

<video controls>
<source src=movie.webm>
<source src=movie.mp4>
<track src=english.vtt kind=captions srclang=en>
<track src=french.vtt kind=captions srclang=fr>
<p>Fallback content here with links to download video
¬ files</p>
</video>

This example associates two caption tracks with the video, one
in English and one in French. Browsers will have some UI mech-
anism to allow the user to select the one she wants (listing any
in-band tracks, too).

The <track> element doesn’t presuppose any particular format,
but the browsers will probably begin by implementing the new
WebVTT format (previously known as WebSRT, as it’s based on
the SRT format) (www.whatwg.org/specs/web-apps/current-work/
multipage/the-video-element.html#webvtt).

This format is still in development by WHATWG, with lots of
feedback from people who really know, such as the BBC, Netflix,
and Google (the organisation with probably the most experience
of subtitling web-delivered video via YouTube). Because it’s still
in flux, we won’t look in-depth at syntax here, as it will probably
be slightly different by the time you read this.

WebVTT is just a UTF-8 encoded text file, which looks like this
at its simplest:

WEBVTT

00:00:11.000 --> 00:00:13.000
Luftputefartøyet mitt er fullt av ål

www.whatwg.org/specs/web-apps/current-work/multipage/the-video-element.html#webvtt
www.whatwg.org/specs/web-apps/current-work/multipage/the-video-element.html#webvtt

ptg6964689

INTRoducINg HTML5138

This puts the subtitle text “Luftputefartøyet mitt er fullt av ål”
over the video starting at 11 seconds from the beginning, and
removes it when the video reaches the 13 second mark (not 13
seconds later).

No browser currently supports WebVTT or <track> but there are
a couple of polyfills available. Julien Villetorte (@delphiki) has
written Playr (www.delphiki.com/html5/playr/), a lightweight
script that adds support for these features to all browsers that
support HTML5 video (Figure 4.6).

WebVTT also allows for bold, italic, and colour text, vertical text
for Asian languages, right-to-left text for languages like Arabic
and Hebrew, ruby annotations (see Chapter 2), and positioning
text from the default positioning (so it doesn’t obscure key text
on the screen, for example), but only if you need these features.

The format is deliberately made to be as simple as possible, and
that’s vital for accessibility: If it’s hard to write, people won’t do it,
and all the APIs in the world won’t help video be accessible if
there are no subtitled videos.

Let’s also note that having plain text isn’t just important for
people with disabilities. Textual transcripts can be spidered by
search engines, pleasing the Search Engine Optimists. And, of
course, text can be selected, copied, pasted, resized, and styled
with CSS, translated by websites, mashed up, and all other kinds
of wonders. As Shakespeare said in Sonnet 155, “If thy text be
selectable/‘tis most delectable.”

FIguRE 4.6 Remy reading
Shakespeare’s Sonnet 155,
with Welsh subtitle displayed
by Playr.

NoTE Scott Wilson’s
VTT Caption Creator

(http://scottbw.wordpress.
com/2011/06/28/creating-
subtitles-and-audio-descriptions-
with-html5-video/) is a utility that
can help author subtitles to be
used as standalone HTML, or a
W3C Widget.

http://scottbw.wordpress.com/2011/06/28/creating-subtitles-and-audio-descriptions-with-html5-video/
http://scottbw.wordpress.com/2011/06/28/creating-subtitles-and-audio-descriptions-with-html5-video/
http://scottbw.wordpress.com/2011/06/28/creating-subtitles-and-audio-descriptions-with-html5-video/
http://scottbw.wordpress.com/2011/06/28/creating-subtitles-and-audio-descriptions-with-html5-video/
www.delphiki.com/html5/playr/

ptg6964689

cHApTER 4 : VIdEo ANd AudIo : SYNcHRoNISINg MEdIA TRAckS 139

Synchronising media tracks
HTML5 will allow for alternative media tracks to be included and
synchronised in a single <audio> or <video> element .

You might, for example, have several videos of a sporting event,
each from different camera angles, and if the user moves to a
different point in one video (or changes the playback rate for
slow motion), she expects all the other videos to play in sync.
Therefore, different media files need to be grouped together.

This could be a boon for accessibility, allowing for sign-language
tracks, audio description tracks, dubbed audio tracks, and similar
additional or alternative tracks to the main audio/video tracks.

MediaElement.js, King of the Polyfills

MediaElement.js (www.mediaelementjs.com) is a plugin developed by John Dyer (http://j.hn), a web devel-
oper for Dallas Theological Seminary.

Making an HTML5 player isn’t rocket surgery. The problem comes when you’re doing real world video and
you need to support older browsers that don’t support native multimedia or browsers that don’t have the
codec you’ve been given.

Most HTML5 players get around this by injecting a completely separate Flash Player. But there are two
problems with this approach. First, you end up with two completely different playback UIs (one in HTML5
and one in Flash) that have to be skinned and styled independently. Secondly, you can’t use HTML5 Media
events like “ended” or “timeupdate” to sync other elements on your page.

MediaElement.js takes a different approach. Instead of offering a bare bones Flash player as a fallback,
it includes a custom player that mimics the entire HTML5 Media API. Flash (or Silverlight, depending on
what the user has installed) renders the media and then bubbles fake HTML5 events up to the browser.
This means that with MediaElement.js, even our old chum IE6 will function as if it supports <video> and
<audio>. John cheekily refers to this as a fall “forward” rather than a fallback.

On mobile systems (Android, iOS, WP7), MediaElement.js just uses the operating system’s UI. On the
desktop, it supports all modern browsers with true HTML5 support and upgrades older browsers. Addition-
ally, it injects support using plugins for unsupported codecs support. This allows it to play MP4, Ogg, and
WebM, as well as WMV and FLV and MP3.

MediaElement.js also supports multilingual subtitles and chapter navigation through <track> elements
using WebVTT, and there are plugins for Wordpress, Drupal, and BlogEngine.net, making them a no-
brainer to deploy and use on those platforms.

A noble runner-up to the crown is LeanBack Player http://dev.mennerich.name/showroom/html5_video/
with WebVTT polyfilling, no dependency on external libraries, and excellent keyboard support.

http://j.hn
www.mediaelementjs.com
http://dev.mennerich.name/showroom/html5_video/

ptg6964689

INTRoducINg HTML5140

This can be accomplished with JavaScript, or declaratively with
a mediagroup attribute on the <audio> or <video> element:

<div>
 <video src=”movie.webm” autoplay controls
 ¬ mediagroup=movie></video>
 <video src=”signing.webm” autoplay
 ¬ mediagroup=movie></video>
 </div>

This is very exciting, and very new, so we won’t look further: the
spec is constantly changing and there are no implementations.

Video conferencing, augmented reality
As we mentioned earlier, accessing a device’s camera and micro-
phone was once available only to web pages via plugins. HTML5
gives us a way to access these devices straight from JavaScript,
using an API called getUserMedia. (You might find it referred to as
the <device> element on older resources. The element itself has
been spec’d away, but the concept has been moved to a pure API.)

An experimental build of Opera Mobile on Android gives us
a glimpse of what will be possible once this feature is widely
available. It connects the camera to a <video> element using
JavaScript by detecting whether getUserMedia is supported and,
if so, setting the stream coming from the camera as the src of
the <video> element:

<!DOCTYPE html>
<h1>Simple web camera display demo</h1>
<video autoplay></video>
<script type=”text/javascript”>
var video = document.getElementsByTagName(‘video’)[0],
 heading = document.getElementsByTagName(‘h1’)[0];

if(navigator.getUserMedia) {
 navigator.getUserMedia(‘video’, successCallback,
 ¬ errorCallback);
 function successCallback(stream) {
 video.src = stream;
 }
 function errorCallback(error) {
 heading.textContent =
 “An error occurred: [CODE “ + error.code + “]”;
 }

NoTE On 25 August 2011,
the American Federal

Communications Commission
released FCC 11-126, ordering
certain TV and video networks
to provide video description for
certain television programming.

Providing descriptions of a pro-
gram’s key visual elements in
natural pauses in the program’s
dialogue is a perfect use of
mediagroup and the associ-
ated API.

NoTE getUserMedia is
a method of the navigator

object according to the spec.
Until the spec settles down,
though, Opera (the only imple-
mentors so far) are putting it on
the opera object.

ptg6964689

cHApTER 4 : VIdEo ANd AudIo : SYNcHRoNISINg MEdIA TRAckS 141

} else {
 heading.textContent =
 “Native web camera streaming is not supported in
 ¬ this browser!”;
}
</script>

Once you’ve done that, you can manipulate the video as you
please. Rich Tibbett wrote a demo that copies the video into
canvas (thereby giving you access to the pixel data), looks at
those pixels to perform facial recognition, and draws a mous-
tache on the face, all in JavaScript (see Figure 4.7).

Norwegian developer Trygve Lie has made demos of getUserMedia
that use Web Sockets (see Chapter 10) to send images from an
Android phone running the experimental Opera Mobile build to a
desktop computer. See https://github.com/trygve-lie/demos-html5-
realtime for the source code and a video demonstrating it.

Obviously, giving websites access to your webcam could create
significant privacy problems, so users will have to opt-in, much
as they have to do with geolocation. But that’s a UI concern
rather than a technical problem.

Taking the concept even further, there is also a Peer-to-Peer API
being developed for HTML, which will allow you to hook up your
camera and microphone to the <video> and <audio> elements
of someone else’s browser, making it possible to do video
conferencing.

FIguRE 4.7 Remy Sharp, with
a magical HTML5 moustache.
(Photo by Julia Gosling)

https://github.com/trygve-lie/demos-html5-realtime
https://github.com/trygve-lie/demos-html5-realtime

ptg6964689

INTRoducINg HTML5142

In May 2011, Google announced WebRTC, an open technology
for voice and video on the Web, based on the HTML5 specifica-
tions. WebRTC uses VP8 (the video codec in WebM) and two
audio codecs optimised for speech with noise and echo can-
cellation, called iLBC, a narrowband voice codec, and iSAC, a
bandwidth-adaptive wideband codec (see http://sites.google.
com/site/webrtc/).

As the project website says, “We expect to see WebRTC support
in Firefox, Opera, and Chrome soon!”

Summary
You’ve seen how HTML5 gives you the first credible alternative
to third-party plugins. The incompatible codec support currently
makes it harder than using plugins to simply embed video in a
page and have it work cross-browser.

On the plus side, because video and audio are now regular ele-
ments natively supported by the browser (rather than a “black
box” plugin) and offer a powerful API, they’re extremely easy
to control via JavaScript. With nothing more than a bit of web
standards knowledge, you can easily build your own custom
controls, or do all sorts of crazy video manipulation with only a
few lines of code. As a safety net for browsers that can’t cope,
we recommend that you also add links to download your video
files outside the <video> element.

There are already a number of ready-made scripts available
that allow you to easily leverage the HTML5 synergies in your
own pages, without having to do all the coding yourself. jPlayer
(www.jplayer.org) is a very liberally licensed jQuery audio player
that degrades to Flash in legacy browsers, can be styled with
CSS, and can be extended to allow playlists. For video, you’ve
already met Playr, MediaElement.js and LeanBack Player which
are my weapons of choice, but many other players exist. There’s
a useful video player comparison chart at http://praegnanz.de/
html5video/.

Accessing video with JavaScript is more than writing new play-
ers. In the next chapter, you’ll learn how to manipulate native
media elements for some truly amazing effects, or at least our
heads bouncing around the screen—and who could conceive
of anything more amazing than that?

http://sites.google.com/site/webrtc/
http://sites.google.com/site/webrtc/
www.jplayer.org
http://praegnanz.de/html5video/
http://praegnanz.de/html5video/

ptg6964689

CHAPTER 5
Canvas

Remy Sharp

IF THE VIdEo ELEMENT is the poster boy of HTML5,

the canvas element is definitely the Han Solo of HTML5.

It’s one of the larger parts of the HTML5 specification, and

in fact the canvas API, the 2D drawing context, has been

split into a separate document, though the canvas element

itself is still part of the official HTML5 spec.

The canvas element provides an API for two-dimensional

drawing—lines, fills, images, text, and so on. The API has

already been used in a huge range of situations, includ-

ing (interactive) backgrounds to websites, navigation ele-

ments, graphing tools, full-fledged applications, games,

and emulators. Who knew Super Mario canvas-based

games would open the eyes of so many developers!

ptg6964689

INTRoducINg HTML5144

If you think back to the days of the version of MS Paint that
came with Windows 95, you can imagine some of the func-
tionality of canvas. In fact, Paint has been replicated using the
canvas element, as shown in Figure 5.1. Applications that aim
to become full-fledged vector drawing suites (Figure 5.2) are
popping up all over the Web (whereas Scalable Vector Graphics
[SVG] would be a better choice—see the “When to use Can-
vas, when to use SVG” sidebar later in this chapter). As these
applications are based on Open Web technology, they work in a
browser on more devices, too. The Harmony application shown
in Figure 5.3 even works on mobile devices, including the
iPhone and Android phones.

The 2D API is large enough that I suspect we’ll see entire books
dedicated to the subject. Since I have only one chapter to talk
about it, I’ll primarily show you the basics. But I’ll also include
some of the funky stuff you can do with the canvas element, like
capturing frames from a video or processing individual pixels
from an image inside the canvas. I’ll even show you how to
export to files ready to be saved to your desktop. And I’ll show
you how to create your first animation, which might even hark
back to the days of BASIC computing.

FIguRE 5.1 MS Paint
replicated using the canvas
element.

ptg6964689

cHApTER 5 : cANVAS 145

FIguRE 5.2 More advanced
drawing applications are
emerging using canvas.

FIguRE 5.3 The canvas
drawing demo Harmony also
works, unmodified, on mobile
browsers.

ptg6964689

INTRoducINg HTML5146

Canvas basics
The hello world of any canvas demo starts with putting the
canvas element on your page. Initially the canvas is completely
invisible and by default it is 300 pixels wide by 150 pixels high:

<!DOCTYPE html>
<title>canvas hello world</title>
<canvas></canvas>

The canvas element is now in place. Use JavaScript to get the
2D context to allow you to draw:

var ctx = document.querySelector(‘canvas’).
¬ getContext(‘2d’);

Now that you have the context, you have access to the full
API to draw as you please. For instance, you can add simple
shapes to your canvas (Figure 5.4):

ctx.fillRect(10, 20, 50, 50);

What about browser support?

Browser support is fairly good for the canvas element; four of the big five browsers support canvas in the
latest versions of the browser (and in fact its support is fairly good in previous versions of the browsers,
too). “What about Internet Explorer?” is the question that is perpetually asked.

For versions of IE that don’t support canvas (IE8 and below), you can shim canvas support in a few ways. The
first is FlashCanvas which looks to be the most promising. It does have to rely on Flash as the backup, but it
should read all the canvas code and translate it for you to a Flash graphics layer: http://flashcanvas.net.

Similarly, there is a method using Silverlight and a library called html5canvas (http://blogs.msdn.com/
delay/archive/2009/08/24/using-one-platform-to-build-another-html-5-s-canvas-tag-implemented-using-
silverlight.aspx); and finally there is a library called excanvas (http://code.google.com/p/explorercanvas/),
which translates the canvas API to Microsoft’s VML.

These libraries don’t cover the entirety of the 2D API, but they do cover most of the commonly used meth-
ods. Several demos show comparisons from examples in the wild. Out of these options, the web commu-
nity appears pretty positive about the FlashCanvas polyfill. It’s just a little ironic to me that we’re relying on
Flash (again) for a technology that’s touted as replacing Flash. But, hey, this is the way of the web.

It’s worth pointing out and being wary that these polyfills won’t have the same performance as native
canvas. Without seeing charts upon charts upon charts, I would expect the FlashCanvas to perform the
best of the lot, but it won’t be a like for like performance, particularly compared to when the browser has
hardware-accellerated canvas rendering as IE9 does.

FIguRE 5.4 A filled rectangle
using the default settings on a
canvas.

http://flashcanvas.net
http://blogs.msdn.com/delay/archive/2009/08/24/using-one-platform-to-build-another-html-5-s-canvas-tag-implemented-usingsilverlight.aspx
http://blogs.msdn.com/delay/archive/2009/08/24/using-one-platform-to-build-another-html-5-s-canvas-tag-implemented-usingsilverlight.aspx
http://blogs.msdn.com/delay/archive/2009/08/24/using-one-platform-to-build-another-html-5-s-canvas-tag-implemented-usingsilverlight.aspx
http://code.google.com/p/explorercanvas/

ptg6964689

cHApTER 5 : cANVAS : cANVAS BASIcS 147

The arguments to fillRect are x, y, width, and height. The x and
y coordinates start in the top left. As shown in Figure 5.4, the
default colour is black. Let’s add some colour and draw an out-
line around the canvas so that the canvas looks like Figure 5.5:

ctx.fillStyle = ‘rgb(0, 255, 0)’;
ctx.fillRect(10, 20, 50, 50); // creates a solid square
ctx.strokeStyle = ‘rgb(0, 182, 0)’;
ctx.lineWidth = 5;
ctx.strokeRect(9, 19, 52, 52); // draws an outline

In the previous code listing, you’re drawing twice on the canvas:
once with fillRect and once with strokeRect. When you’re not
drawing, you’re setting the colour and style of the 2D context
which must happen before the fill or stroke happens, otherwise
the default colour of black is used. Along with CSS colours (for
example, RGB, hex, RGBA, and so on), fillStyle and strokeStyle
also accept gradients and patterns generated using the 2D API.

Painting gradients and patterns
Using the context object, you can generate a linear gradient,
radial gradient, or a pattern fill, which in turn can be used as the
fillStyle on the canvas. Gradients and radial gradients work
similar to CSS gradients, in that you specify a start point and
colour stops for the gradient.

Patterns, on the other hand, allow you to point to an image source
and then specify how the pattern should repeat, again similar to
the repeat process on a CSS background image. What makes
createPattern really interesting is that the image source can be an
image, another canvas, or a video element (though using video as
a source isn’t yet implemented at the time of writing).

Creating a simple gradient is easy and possibly even faster than
starting up Photoshop:

var canvas = document.querySelector(‘canvas’),
 ctx = canvas.getContext(‘2d’),
 gradient = ctx.createLinearGradient(0, 0, 0, canvas.
 ¬ height);
gradient.addColorStop(0, ‘#fff’);
gradient.addColorStop(1, ‘#000’);
ctx.fillStyle = gradient;
ctx.fillRect(0, 0, canvas.width, canvas.height);

FIguRE 5.5 Using fill styles
and rectangle strokes.

NoTE querySelector
and querySelectorAll

are new DOM methods that
accept a CSS selector and return
the elements it matches. Currently
available in all the latest browsers,
querySelector returns the
first DOM node it finds, whereas
querySelectorAll returns a
NodeList object that you’ll need
to iterate over.

ptg6964689

INTRoducINg HTML5148

The code in the previous listing uses the 2D context object to
generate a linear gradient object to which you can then apply
colour stops. The arguments are the starting point of the gra-
dient, x1 and y1, and the endpoint of the gradient, x2 and y2.
In this example, I’m telling the gradient to start in the top left
and finish at the bottom left of the canvas. This creates a gradi-
ent that runs vertically (Figure 5.6).

Radial gradients are very similar, except the createRadialGradient
takes the radius after each coordinate:

var canvas = document.querySelector(‘canvas’),
 ctx = canvas.getContext(‘2d’),
 gradient = ctx.createRadialGradient(canvas.width/2,
 canvas.height/2, 0,
 canvas.width/2, canvas.height/2, 150);
gradient.addColorStop(0, ‘#fff’);
gradient.addColorStop(1, ‘#000’);
ctx.fillStyle = gradient;
ctx.fillRect(0, 0, canvas.width, canvas.width);

The only difference is the kind of gradient that’s created. In this
example, I’ve moved the first point of the gradient to start in the
centre of the canvas starting with a radius of zero. The gradi-
ent uses a radius of 150 pixels, but notice that it also starts in
the same place: canvas.width/2, canvas.height/2. This is so my
example creates a smooth, circular gradient (Figure 5.7).

Patterns are even easier to use. You need a source, and then
you can drop the source element into the createPattern method
and use the result as the fillStyle. The only caveat is that the
element, in the case of images and videos, must have finished
loading to capture the source properly.

To create the effect shown in Figure 5.8 (a tiled image across the
back of the canvas), first stretch the canvas over the size of the
window. Then dynamically create an image and, when it fires the
load event, use the image as the source of a repeating pattern:

var canvas = document.querySelector(‘canvas’),
 img = document.createElement(‘img’),
 ctx = canvas.getContext(‘2d’);
canvas.width = window.innerWidth;
canvas.height = window.innerHeight;
img.onload = function () {

FIguRE 5.6 A vertical
gradient on a canvas element.

FIguRE 5.7 This radial
gradient starts and ends at the
same point, but the ending
radius is much greater, causing
a smooth, circular gradient.

ptg6964689

cHApTER 5 : cANVAS : cANVAS BASIcS 149

 ctx.fillStyle = ctx.createPattern(this, ‘repeat’);
 ctx.fillRect(0, 0, canvas.width, canvas.height);
};
img.src = ‘remysharp_avatar.jpg’;

In this example I’ve created an image on the fly using document.
createElement. Only after the onload event fires do I continue
to build the pattern fill. You need to wait until all the image data
has loaded before you can begin to use it.

Now that the image is loaded, I’m able to set the fillStyle
using createPattern. I’ve used createPattern(this, ‘repeat’),
and this refers to the image that fired the load event, but I
can just as easily use another canvas as the source. The string
‘repeat’ follows the same syntax as CSS background-repeat, in
that repeat-x, repeat-y, and no-repeat also work.

If you use CSS to change the canvas element’s size, this will
simply stretch the canvas. This doesn’t actually do anything to
the pixels in the canvas, only the canvas DOM node as you can
see in Figure 5.9. If you were to draw something to the canvas
and change the canvas element’s height or width property (say
you wanted to change the default 300x150 dimensions) it will
blank out the contents of the canvas, and also reset the state of
your drawing fill styles, stroke styles, line width, and so on. This
effectively does a reset on your canvas, a trick or a problem
depending on your point of view.

FIguRE 5.8 Tiling an
image on a canvas using the
createPattern method.

ptg6964689

INTRoducINg HTML5150

Drawing paths
Within the 2D API is a path API that allows you to move around
the canvas and draw lines or shapes. The contrived example in
Figure 5.10 shows a stick man drawn using the path API.

I won’t take you through all the code used to produce the stick
man, just the highlights so you can see what methods I used. To
draw the stick man, you must specify the x, y coordinates around
the canvas that you want to draw, painstakingly specifying each
individual line. To draw the stick man head, run the following code:

ctx.beginPath();
ctx.arc(100, 50, 30, 0, Math.PI*2, true); // head
ctx.fill();

Getting from degrees to radians

The arc, bezier, and quadratic methods use radians, so if you’re used
to working with degrees, you’ll need to convert them to radians. Here’s
the JavaScript you need to go from degrees to radians:

var radians = degrees * Math.PI / 180;

It’s also common to pass 360 degrees to the drawing methods, which
is simply Math.PI * 2, and equally 180 degrees is Math.PI.

This gives you a solid, filled head. I’ve given the x, y coordinates
of 100, 50, respectively, and a radius of 30 pixels. The next argu-
ments are the start and endpoints in radians. In this example, I want
a complete circle, so I start at zero and end at Math.PI*2, which is
equal to 360 degrees in radians. Finally the sixth argument is the
direction to draw the arc: clockwise or counterclockwise. In this
case it doesn’t matter, but it’s still required.

FIguRE 5.9 When a canvas
stretches after it’s finished
drawing, so do the contents of
the canvas.

FIguRE 5.10 My contrived
stick man drawing using the
path API.

ptg6964689

cHApTER 5 : cANVAS : dRAwINg pATHS 151

Once the head is drawn, I want to draw a face. The eyes
and smile will be in red (well, grey in the figure). When I draw
the facial features, I need to use beginPath again. Figure 5.11
shows what the result would be if I didn’t use beginPath. This
is because the previous arc line I drew would be included in
the final face path, and because I’m starting a new arc for the
mouth, as you’ll see in the following code listing. I could fix the
line joining the edge of the head to the mouth by using moveTo,
which is effectively lifting the pen from the canvas to begin
drawing someplace else, but I don’t want the coloured outline
around the head.

ctx.beginPath();
// draw the smile
ctx.strokeStyle = ‘#c00’;
ctx.lineWidth = 3;
ctx.arc(100, 50, 20, 0, Math.PI, false);
ctx.stroke();

The previous code listing gives me a nice semicircle for the
smile with a new stroke colour and width. For the head I used
fill, but for the face I need to use stroke, which will draw the
line rather than a solid shape. Next the eyes:

ctx.beginPath();
ctx.fillStyle = ‘#c00’;
// start the left eye
ctx.arc(90, 45, 3, 0, Math.PI*2, true);
ctx.fill();
ctx.moveTo(113, 45);
// draw the right eye
ctx.arc(110, 45, 3, 0, Math.PI*2, true);
ctx.fill();
ctx.stroke(); // thicker eyes

I started a new path again, which means I can start drawing the
arc for the eyes without using moveTo (as I did when making the
smile). However, once I filled the arc, creating a solid-looking eye,
I lift the pen with moveTo(113, 45) to draw the right eye. Notice
that I moved to the right by the arc’s first x coordinate plus the
radius value to create a solid line, which ensures that the starting
point of the arc matches where I put the pen down. Finally I use
the stroke method to give the eyes a bit more thickness.

The code goes on to move the drawing point around and finally
end up with an image of our stick man.

FIguRE 5.11 An example of
how a continued path causes
an error in the final drawing.

ptg6964689

INTRoducINg HTML5152

There are other path methods, which are beyond the scope of
this chapter, that you can use for finer control over the lines and
shapes you draw, including quadraticCurveTo, bezierCurveTo,
arcTo, rect, clip, and isPointInPath.

When to use Canvas, when to use SVG

Canvas and SVG are both very good drawing APIs, but for different
reasons, and, as with anything, you want to use the right tool for the
job. SVG is a retained-mode API, and the 2D canvas API is an immedi-
ate-mode API.

SVG is vector based, so it handles scaling much better; canvas pro-
duces a bitmap-based image—it doesn’t scale, it just zooms. SVG
maintains a tree that represents the current state of all the objects
drawn on-screen (similar to the regular DOM tree that represents the
current document). As this tree is available, it makes it a great candi-
date for interactivity because you can bind to specific objects in the
tree and listen for click or touch events and even do easy hit detection
for games. You can write SVG by hand as it’s just XML—and now all
the latest browsers have full support for SVG (except, oddly, Andriod
WebKit browsers) both externally linked and inline alongside HTML5.
But if wrestling XML isn’t your cup of tea, desktop tools such as Adobe
Illustrator and Inkscape can export and import SVG graphics which
makes life a little easier.

If you need some convincing of the almighty awesome power of SVG,
have a look at Raphaël, the JavaScript library by Dmitry Baranovskiy
(http://raphaeljs.com). It uses SVG exclusively and is able to create
some very impressive drawings and animations.

Canvas is effectively an array of pixels that’s very well suited to lots of
animations and highly JavaScript-centric applications. It’s a lower-level
API when compared to SVG, which means that it’s better for when
there isn’t mouse interaction. This is because there’s no tree maintain-
ing the state of the canvas because you can’t hook an event handler
to objects you draw on a canvas—you would have to calculate the
position of the mouse interaction and maintain all the coordinates of
painted objects in memory. Since canvas is JavaScript centric, in your
processing loop you can handle keyboard events on the document
level. Finally, as the canvas is pixel orientated, as illustrated by the
screenshots at the start of this chapter, it’s great for pixel pushing.

Each of these technologies has its strengths and weaknesses. As the
developer, it’s your job to understand the requirements of your appli-
cation and pick the right one. Good luck!

http://raphaeljs.com

ptg6964689

cHApTER 5 : cANVAS : uSINg TRANSFoRMERS: pIxELS IN dISguISE 153

Using transformers: pixels in disguise
As well as being able to move the pen around the canvas
using methods like moveTo and drawing shapes and lines, you
can adjust what happens to the canvas under the pen using
transformations.

Transformation methods include rotation, scaling, transformation,
and translation (all similar to their CSS counterparts).

In Figure 5.12, I’ve drawn a spiral; the aim is to have it rotate in
a circle, giving a quasi-Twilight Zone effect. Ideally I would keep
the function that draws the spiral the same, not changing any
positions, starting points, or anything else. This would keep the
code much easier to manage. So to ensure that the spiral code
remains simple, I can rotate the canvas under the pen, and then
redraw the exact same spiral, except the result is rotated slightly
in one direction.

The rotate method rotates from the top left (0, 0) position by
default. This wouldn’t do at all, and if I rotated the canvas from
this position, the spiral would circulate offscreen, as if it were on
a pendulum. Instead I need to rotate from the centre of the spi-
ral, which I’ll place in the centre of the canvas. Therefore I need
to rotate from the centre of the canvas.

FIguRE 5.12 An animated
spiral going around, and
around, and around.

ptg6964689

INTRoducINg HTML5154

The translate method can help me here. It moves the 0, 0 coor-
dinate to a new position. Figure 5.13 shows that I’ve drawn a dot
and also shows the arguments I passed to translate. Each time
translate runs it sets the new coordinates to 0, 0. Note that
the translate doesn’t rotate or move the canvas in a way that’s
presented to the user; it’s translating the underlying coordinate
system that subsequent drawing functions refer to.

Now to achieve my rotating spiral I need to initialise the can-
vas using translate, and then use setInterval to redraw my
spiral (note that drawSpiral is my own function, rather than a
native method, that draws the path for a spiral with a series of
stroke calls):

ctx.translate(ctx.canvas.width/2, ctx.canvas.height/2);
drawSpiral(); // the complicated magic mathematics

setInterval(function () {
 ctx.clearRect(-ctx.canvas.width/2, -ctx.canvas.height/2,
 ctx.canvas.width, ctx.canvas.height);
 ctx.rotate(Math.PI / 180 * 0.5) // 1/2 a degree
 drawSpiral();
}, 10);

The only caveat I have to deal with is clearing the canvas. I
would normally use clearRect(0, 0, width, height), but since
translate has moved the 0, 0 position to the centre of the can-
vas, I need to manually specify the top left, as seen in the previ-
ous code listing.

FIguRE 5.13 Example of how
translate can move the
origin points of the canvas.

ptg6964689

cHApTER 5 : cANVAS : cApTuRINg IMAgES 155

Capturing images
As well as drawing lines and shapes, you can copy images from
other sources, specifically images, videos, and other canvas
elements. I’ve already shown that you can use images as the
source of a createPattern fill. You can also draw images straight
onto your canvas. You can even crop and manipulate the
images as they’re copied:

var ctx = document.getElementById(‘mycanvas’).
getContext(‘2d’),
 img = new Image();

img.onload = function () {
 ctx.canvas.height = 500;
 ctx.canvas.width = 500;
 ctx.drawImage(this, 10, 10, 100, 100, 0, 0, 500, 500);
};
img.src = ‘bruce-and-remy-promo-pics.jpg’;

The code above is a simple example of how I can dynamically
create an image on the fly, and once it’s loaded I can draw a sec-
tion of it in to my canvas. As we’ll see in a moment you have a
few ways of using the drawImage method, and here what I’ve done
is take a 100x100 pixel crop from 10 pixels left and 10 pixels right,
and stretch it in to the canvas over 500 pixels wide and tall.

Since you can also capture an image from a video element, this
makes for some interesting opportunities. There’s already lots
of demos out in the wild, showing some interesting effects like
dynamically injecting content into video, green screen replace-
ment for video, and facial recognition—all using combinations of
canvas and video, all written in JavaScript.

The capturing and drawing is done entirely through the drawImage
method, which needs a reference to the source (an image, video,
or canvas element), a target position (the top/left coordinates of
where you want to draw the image in your canvas), and a few
optional arguments that allow you to crop and scale the image:

•	 drawImage(image, dx, dy)

•	 drawImage(image, dx, dy, dw, dh)

•	 drawImage(image, sx, sy, sw, sh, dx, dy, dw, dh)

where d is the destination position and s is the source. For
example, if I took Bruce’s synergy video from Chapter 4, and

TIp All 2D drawing con-
texts have a back refer-

ence to the canvas which they
draw against. This means you
don’t have to pass around two
variables to functions, you can
just pass the context and get
the back reference to the can-
vas element if you wanted to
change the height, width, or get
the data url.

ptg6964689

INTRoducINg HTML5156

wanted to run a repeating thumbnail of him bashing the banana
across the top of my website, I could do it by drawing a cropped
and scaled version of the video using the drawImage method.

The components I need are:

•	 A canvas fixed across the top of my site

•	 A hidden video running the synergies video

•	 A way to loop just the bit of the video I want

•	 A method to capture what’s on the video and transfer it to
the canvas

The reason I’m using a hidden video is because this will be the
source for my canvas, but I don’t want it to be seen. I just want
to keep grabbing the video frame and putting it on the canvas.

I just want the part of Bruce smashing the banana with the mal-
let (the part from 0:49 to 0:52), so I need to tell the video to play
only that part. There’s no content attribute I can use to tell it to
start from a particular point, so I’ll just force the currentTime to
second 49. Then on the timeupdate event, I’ll force the currentTime
back to 49 if it goes above 52 seconds. So my time range is
the window of 49 to 52 seconds in the video. Due to some
browsers trying to hold back data and missing support for the
video.seekable property, for this example I’ll use a timer to try
to force the start time:

var jumpTimer = setInterval(function () {
 try {
 // if the data isn’t available, setting currentTime
 ¬ will throw an error
 video.currentTime = start;
 clearInterval(jumpTimer);
 video.play();
 } catch (e) {}
}, 100);

video.addEventListener(‘timeupdate’, function () {
 if (this.currentTime > 52) this.currentTime = 49;
}, false);

The previous code keeps trying to set the video.currentTime
value, but doing so before the video data is ready throws a
JavaScript error. If the error is thrown, the code doesn’t reach
clearInterval. If successful, the setInterval is cleared and the
video is played.

ptg6964689

cHApTER 5 : cANVAS : cApTuRINg IMAgES 157

Now that the video loop is in place, I can start grabbing frames
from the video element. I could use the timeupdate event to
draw the canvas, but I know that the effect doesn’t perform
anywhere nearly as well as if I run the canvas drawing in its own
timer. I could speculate that this is because the browser is trying
to do the hard work to render the video element; separating it in
a timer gives the browser some room to breathe.

Once the loadeddata event fires on the video, I’ll initialise the
canvas so it’s the same width as the window (otherwise our
image would stretch, as you saw in Figure 5.9). Then I’ll mute
the video (to avoid being too annoying!) and calculate the short-
est edge because I want to crop a square from the video and
repeat it across the canvas:

video.addEventListener(‘loadeddata’, function () {
 var size = 78; // thumbnail size
 canvas.width = window.innerWidth;
 video.volume = 0;
 shortestEdge = video.videoHeight > video.videoWidth ?
 video.videoWidth :
 video.videoHeight;

 // kick off our drawing loop
 setInterval(function () {
 for (var i = 0, w = canvas.width; i < w; i += size) {
 // arguments have been broken into multi lines
 ctx.drawImage(
 video,
 (video.videoWidth - shortestEdge)/2, // sx
 (video.videoHeight - shortestEdge)/2, // sy
 shortestEdge, // sw
 shortestEdge, // sh
 i, // dx
 0, // dy
 size, // dh
 size // dy
);
 }
 }, 67); // 67 is approximately 15fps
}, false);

All the magic happens inside the setInterval, which triggers
every 67/1000th of a second (JavaScript measures seconds
by 1000 milliseconds; therefore 1000 milliseconds/15 frames

ptg6964689

INTRoducINg HTML5158

per second = about 67, or approximately 15 fps—equally 25fps
would be 1000/25), which should be good enough for faking
video playback. Once inside the setInterval, I’ll loop over the
width of the canvas, incrementing by the size of the thumbnail
I’m drawing to fill the canvas horizontally.

The mapping for the arguments to the drawImage method is
shown in Figure 5.14.

Using a simple crop for the height and width, and using the
shortest edge, I can then easily scale the crop to the thumbnail
size and let the canvas do all the hard work for me. The result:
Bruce bashing a banana across the top of my site (Figure 5.15).

FIguRE 5.14 A visual
representation of arguments
passed to drawImage.

FIguRE 5.15 An animated
banner across my site using
canvas and video.

ptg6964689

cHApTER 5 : cANVAS : puSHINg pIxELS 159

Pushing pixels
One very cool feature of the canvas API is its ability to inter-
rogate individual pixels, something that isn’t possible with SVG,
which is vector-based, and not really aimed at pixel-level opera-
tions. You can get every pixel from the 2D context object broken
down into four colour channels: red, green, blue, and the alpha
transparency channel (rgba). For example:

var ctx = document.querySelector(‘canvas’).
¬ getContext(‘2d’),
 img = document.createElement(‘img’);

// wait until the image has loaded to read the data
img.onload = function () {
 ctx.drawImage(img, 0, 0);
 var pixels = ctx.getImageData(0, 0, img.width,
 ¬ img.height);
};

The variable pixels is a CanvasPixelArray, which contains the
height, width, and data properties. data is an array of the pixel
data, which is made up as follows

[r1, g1, b1, a1, r2, g2, b2, a2, r3, g3, b3, a3, ...]

where r1, g1, b1, a1 makes up the first pixel, r2, g2, b2, a2
makes up the second pixel, and so on. This means that data.
length is the number of pixels captured from the getImageData
(in the previous example this will be the same size as the image)
multiplied by 4, as there are 4 channels to each pixel. Note that
the pixel arrangement in the CanvasPixelArray is from top-left to
bottom-right, going row by row for the area selected.

Since you have access to this data, you can do pixel-level pro-
cessing. So you could create custom image filters for applica-
tions like the image editors shown in Figure 5.2 or perhaps scan
the image for particular colour ranges or even write a web app
that does facial recognition.

Paul Rouget and Tristan Nitot of Mozilla showed off a demo early
in 2009 (see Figure 5.16) that uses a video drawn onto a canvas
and injects dynamic content on top of it. As each video frame
is drawn on the canvas, the pixel data is read and searched for
a solid block of white (where the pixel is 255, 255, 255), which
is used as an anchor point to draw another visual element on

NoTE To use the source
of another image in the

drawImage method, it must be
served through http (not a local
file system).

ptg6964689

INTRoducINg HTML5160

the canvas. In Figure 5.16, another canvas element has been
dynamically injected. You can play with the demo here: http://
people.mozilla.com/~prouget/demos/DynamicContentInjection/
play.xhtml.

In the following code example, I load an image into the canvas
and invert all the pixels, creating a strange X-ray version of
Bruce and me (Figure 5.17):

var ctx = document.querySelector(‘canvas’).
¬ getContext(‘2d’),
 img = document.createElement(‘img’);

// wait until the image has loaded
img.onload = function () {
 ctx.canvas.width = img.width;
 ctx.canvas.height = img.height;
 ctx.drawImage(img, 0, 0);
 var pixels = ctx.getImageData(0, 0, img.width,
 ¬ img.height);

 for (var i = 0, n = pixels.data.length; i < n; i += 4) {
 pixels.data[i+0] = 255 - pixels.data[i+0]; // red
 pixels.data[i+1] = 255 - pixels.data[i+2]; // green
 pixels.data[i+2] = 255 - pixels.data[i+1]; // blue
 // i + 3 is the alpha channel which we don’t need
 }
 ctx.putImageData(pixels, 0, 0);
};
img.src = ‘authors.jpg’;

FIguRE 5.16 Scanning a
video for bright pixels to inject
dynamic content.

http://people.mozilla.com/~prouget/demos/DynamicContentInjection/play.xhtml
http://people.mozilla.com/~prouget/demos/DynamicContentInjection/play.xhtml
http://people.mozilla.com/~prouget/demos/DynamicContentInjection/play.xhtml

ptg6964689

cHApTER 5 : cANVAS : puSHINg pIxELS 161

In the previous code listing, I wait until the image has loaded
before trying to copy it to the canvas. I draw it into the canvas
and immediately read out the pixel data to invert the image.

In the for loop, I’m using i += 4, which ensures I’m iterating
over each pixel and not the pixel channels. By setting the pixel
bit to 255 minus the current value, I get an inverted colour.

Finally, I put the modified pixels back into the canvas using
putImageData, passing in the CanvasPixelArray object and the
x/y start point.

NoTE For security, the canvas element contains an internal origin-clean
flag that’s set to true by default. This flag will flip to false if an image or

video is used whose origin does not match that of the document that owns the
canvas. The same goes for using a canvas as an image source if it already has
the origin-clean flag set to false. If the flag is false, you won’t be able to use the
getImageData or toDataURL methods. This remains the case even if you
change the size of your canvas or draw on the canvas after the flag is set to false.

FIguRE 5.17 If you were to
X-ray Bruce and Remy, you’d
see they look just as strange.

ptg6964689

INTRoducINg HTML5162

Saving to file
You’ve made the next best thing since sliced bread? Want to
save your beautiful drawing to your desktop? You want to export
it in multiple formats? No problem. Canvas has you covered.

The canvas element (not the 2D context) supports exporting the
current state of the canvas to a data URL.

What’s a data URL?

Most browsers support Base64 encoded assets, such as an image. Web applications like Gmail use
Base64 encoded images in their CSS to reduce the number of requests being made over the wire (even
though it actually makes the CSS file larger as all the image data is embedded). The URL scheme looks
like this:

...

It starts with data, then the mime type, then the encoding, Base64, and then the raw data (which roughly
speaking is 30 percent larger than the source image). This raw data is what’s exported by the canvas ele-
ment, and browsers are able to decode the data in to real assets (sadly, this doesn’t include IE7 or previ-
ous incarnations of IE). In addition, IE8 only supports data URLs up to a length of 32 KB—something to
watch out for!

Exporting is very easy. The canvas has the toDataURL method,
which can be invoked with the format in which you want your
image. Only PNG support is required by the canvas specifica-
tion, but browsers can support other types if they choose. For
example, Safari supports GIF, PNG, and JPG. Trying to get the
data URL for an unsupported TIFF format returns exclusively
the letter A multiple times and no data:<mime-type>. Opera sup-
ports only PNG, but on requesting a JPG or GIF, it still returns
a PNG (ignoring the file format). Old versions of Firefox (on a
Mac) supported only PNG, throwing an error on all other types
(which was a little severe if you ask me). The lesson here is that
once you have your data URL back, ensure that it starts with
data:<your-mime-type> to ensure that they match up and that
you get back the image in the format you asked for.

The following example generates a drawing similar to our hello
world example and immediately saves it to a PNG by redirecting
the browser to the rendered data URL:

ptg6964689

cHApTER 5 : cANVAS : ANIMATINg YouR cANVAS pAINTINgS 163

var ctx = document.querySelector(‘canvas’).
¬ getContext(‘2d’);
ctx.fillStyle = ‘rgb(0, 0, 255)’;
ctx.fillRect(0, 0, ctx.canvas.width, ctx.canvas.height);
ctx.fillStyle = ‘rgb(0, 255, 0)’;
ctx.fillRect(10, 20, 50, 50); // little square
window.location = ctx.canvas.toDataURL(‘image/png’);

Finally, the toDataURL also takes an optional second argument
that is available only if image/jpg has been implemented to
allow you to specify the quality level of the generated image.
This value would be between 0.0 and 1, with 1 being the highest
quality available—but be careful, as this will affect the size of the
final image, and, in our case, the size of the Base64 data string
generated by the toDataURL method.

Animating your canvas paintings
You’ve seen some basic animations using canvas throughout
this chapter, but I wanted to explain some of the concepts in
detail here.

Simple animation is mostly about clearing the current canvas
state and drawing the whole thing again. This is very quick to
do, as the canvas is a native drawing API. I’ll show you a demo
that takes Bruce’s bouncy head and bounces it around the can-
vas area. This example is based on the canvas breakout tutorial
by Bill Mill, but I jazzed it up with Bruce’s mug bouncing instead
of a solid black ball.

The Processing JavaScript Library

As you’ll find out, it’s a blast to navigate around the canvas with a pen
drawing lines and filling shapes, but there are already some libraries
available that make working with the canvas much easier. One such
library is called processing.js (http://processingjs.org/), written by the
author of jQuery, John Resig.

It’s not actually a library designed to ease working with canvas, but it in
fact interprets the Processing language in JavaScript, which is in turn
drawn on the canvas element. In many ways, processing.js is a great
tool for visualisation and abstracts away a lot of the more complicated
drawing and animation procedures in the 2D drawing API.

http://processingjs.org/

ptg6964689

INTRoducINg HTML5164

The code used for Figure 5.18 is relatively simple and breaks
down as follows:

1. Initialise the canvas and objects you want to draw.

2. Clear the canvas.

3. Draw the ball on the canvas.

To add extra spice, I rotate Bruce’s face in circles whilst he bounces
around. So I’ll have to do some rotation on the canvas, too.

Since I’m going to rotate Bruce’s face, I’ll let another canvas
handle that task (so I can keep my main canvas free from rota-
tion and translations). This keeps my tasks simple in that I’m
rotating an image of Bruce in one canvas while I’m working out
the position of his face and drawing in the second.

var ctx = document.querySelector(‘canvas’).
¬ getContext(“2d”),
 ballctx,
 x = 100, // arbitrary start points
 y = 50,
 dx = 2,
 dy = 4,
 width = ctx.canvas.width,
 height = ctx.canvas.height;

// load the image
ballImg = document.createElement(‘img’);
ballImg.src = ‘bruce-ball.png’;

// once loaded, start the ball bouncing
ballImg.onload = function () {
 var ball = document.createElement(‘canvas’);

FIguRE 5.18 While away the
hours whilst you watch Bruce’s
face bounce around a canvas
animation.

ptg6964689

cHApTER 5 : cANVAS : ANIMATINg YouR cANVAS pAINTINgS 165

 ball.height = 50;
 ball.width = 50;

 ballctx = ball.getContext(‘2d’);
 // translate to centre to rotate properly
 ballctx.translate(25, 25);

 setInterval(draw, 10);
};

function draw() {
 ctx.clearRect(0, 0, width, height);

 ballctx.rotate(Math.PI/180*5); // 5 degrees

 // draw at the 0,0 position
 ballctx.drawImage(ballImg, 0, 0, ballImg.width,
 ¬ ballImg.height, -25, -25, 50, 50);

 // copy the rotated source
 ctx.drawImage(ballctx.canvas, x, y);

 if (x + dx > width || x + dx < 0)
 dx = -dx;
 if (y + dy > height || y + dy < 0)
 dy = -dy;

 x += dx;
 y += dy;
}

All the action is happening in the draw function, but only after I’ve
finished setting up. In the setup, the code dynamically creates a
new canvas for the ball but doesn’t put it inside the DOM. This
canvas is then translated so the rotation of Bruce’s face happens
in the centre of the canvas. I can still use the 2D context of this
“unattached” canvas and I explicitly give this canvas a height and
width (otherwise it’s automatically set to 300x150px).

The draw function then runs every 1/100th of a second (10 mil-
liseconds), constantly incrementing the x and y position and
redrawing the ball canvas on the main canvas, but not before
the blanket clearing of the canvas with ctx.clearRect(0, 0,
width, height), which is effectively resetting the entire effect.

So that’s it. Animation. Probably most akin to a flip-book animation.

ptg6964689

INTRoducINg HTML5166

Saving and restoring drawing state
There is a little more hope built into the 2D API: drawing state.
There are two methods on the context object: save and restore,
which manage the current stack of drawing states. The save
method pushes the current state on to the stack, whereas
restore pops from the top of the stack.

Drawing states don’t cover everything you do to the canvas,
but they do include the following:

•	 Transformations

•	 Clipping regions (not covered in this book)

•	 Current values for the following attributes: fillStyle,
font, globalAlpha, globalCompositeOperation, lineCap,
lineJoin, lineWidth, miterLimit, shadowBlur, shadowColor,
shadowOffsetX, shadowOffsetY, strokeStyle, textAlign, and
textBaseline.

For example, the following code snippet from the Mozilla canvas
composition tutorial shows how it would draw 50 stars on a can-
vas in random positions. It sets the position using the translate
method. But at the end of each iteration of the loop, it restores the
original state of the canvas, thus moving the top/left of the canvas
to the real top left, rather than the position of the last translate:

for (var j=1;j<50;j++){
 ctx.save();
 ctx.fillStyle = ‘#fff’;
 ctx.translate(75-Math.floor(Math.random()*150),
 75-Math.floor(Math.random()*150));
 drawStar(ctx,Math.floor(Math.random()*4)+2);
 ctx.restore();
}

Rendering text
canvas allows you to render text and specify fonts, sizes, align-
ment, and baselines. You can also fill text (as normal text might
appear) and stroke text (around the outline). The old Bespin
project was a great example of how custom text rendering can
be used to create a fully functional code editor written entirely
with the canvas API (it’s since been superceded by Ace by the
nice folks at Ajax.org—but their version doesn’t use a canvas).

NoTE Save and restore
do not affect the current

paths or current bitmap on the
canvas (you can’t restore to a
previous state of the image on
the canvas).

ptg6964689

cHApTER 5 : cANVAS : ANIMATINg YouR cANVAS pAINTINgS 167

Drawing text requires the string and coordinates. For example,
to show you how to use translate, I used an annotated canvas
(shown in Figure 5.19 and earlier in Figure 5.13). I used fillText
to annotate the new centre point of the canvas to label the dots
I had placed around the canvas (whose height and width are
hard coded to 300x300 for this example):

function dot(string) {
 ctx.beginPath();
 ctx.arc(0,0,5,0,Math.PI*2,true); // draw circle
 ctx.fill();
 ctx.fillText(string, 5, 10); // render text
}

Now I can translate the canvas and call the dot function, passing
the string I want printed next to the dot:

dot(‘1. no translate’); // show dot
ctx.translate(150, 150);
dot(‘2. (150, 150)’); // show dot
ctx.translate(-100, 20);
dot(‘3. (-100, 20)’); // show dot

By default, the fillText method uses a 10 pixel tall sans serif
as the selected font. You can change this to your own font
style by setting the font property on the context using the
same syntax as CSS fonts (for example, ctx.font = ‘italic 400
12px/2 helvetica neue, sans-serif’). You can even use CSS3
web fonts, provided they’ve been fully loaded before you use
them. When I call fillText, the text rendering uses the same
fillStyle that I set earlier (or uses the canvas default). Equally
strokeText uses the current strokeStyle.

FIguRE 5.19 Using fillText
to annotate a canvas.

ptg6964689

INTRoducINg HTML5168

Accessibility within the canvas element
One reason that canvas is so fast on today’s optimised JIT
JavaScript interpreters is that it keeps no DOM: it really is just
a big bunch of pixels, with no information stored about which
geometric shapes, text, or images have been thrown at them
(compare this to SVG, which does maintain all those as separate
objects in a DOM structure). So, for example, if you need any
kind of collision detection, you need to do all the bookkeeping
yourself. There is no representation of what objects have been
drawn that JavaScript can interrogate.

This also causes difficulty for accessibility. If your games are
keyboard- and mouse-accessible, that goes a long way to meet-
ing the needs of many. But for users with visual impairments,
there is nothing for assistive technology to hook into. Canvas
text is the same: bringing text into canvas means it ceases to
be text and is just pixels. It’s even worse than because at
least that can take alt text. Although the contents of the element
(the text between the canvas tags) can be changed with script
to reflect the canvas text you’re inserting with JavaScript, I’m not
optimistic that developers will do this.

An accessibility task force of the Working Group is looking at
ways to enhance the accessibility of canvas. It’s not impossible:
Flash 5 managed to add accessibility features. However, I rec-
ommend that, for the time being, canvas not be used for user
interfaces or as the only way to communicate information. Fila-
ment Group’s jQuery Visualize plugin is a good example of can-
vas being used to supplement accessible information (see Note).

Summary
The canvas API finally gives developers the ability to dynami-
cally generate and manipulate graphics client-side, directly in
the browser, without the need for plugin-based detours via Flash
and Co. The canvas is especially powerful for pixel-level process-
ing, and I can imagine that canvas-based applications will be push-
ing the boundaries of what we’ve historically seen on the Web.

However, you should be careful to choose the right technology
for the job. Consider SVG before ploughing ahead with your
next Awesome 3.0 app. And watch out for the possible acces-
sibility implications.

NoTE JIT means Just in
Time compilation, a tech-

nique used to improve the run-
time performance of a program.

NoTE Filament Group’s
jQuery Visualize plugin

uses jQuery to inject a canvas
element to a page that graphs
the information from a data table
in the markup. Assistive technol-
ogies have access to the raw
data table, while the information
is supplemented with visual
graphs for sighted users.

ptg6964689

CHAPTER 6
Data Storage

Remy Sharp

dATA SToRAgE IS fundamental in nearly all applications,

web or desktop. This can include storing a unique key to

track page impressions, saving usernames and prefer-

ences, and so on. The list is endless.

Up until now, storing data in a web app required you to

either store it on the server side and create some linking

key between the client and the server—which means your

data is split between locations—or store it in cookies on

the client.

Cookies suck. Not the edible ones, the ones in the

browser. They’re rubbish. There’s a number of issues with

cookies that make them a pain to work with. On starting

any new project that requires cookies, I’ll immediately go

hunting for my cookie JavaScript library. If I can’t find that,

I’ll head over to Peter-Paul Koch’s cookie code, and copy

and paste away.

ptg6964689

INTRoducINg HTML5170

Looking at how cookies work, they’re overly complicated. Setting
a cookie in JavaScript looks like this:

document.cookie = “foo=bar; path=/”;

That’s a session-based cookie. Now, if I want to store something
for longer, I’ll have to set it in the future, and give it a specific
lifetime (and if I want it to persist, I’ll have to keep setting this to
be n days in the future):

document.cookie = “foo=bar; path=/; expires=Tues,
¬ 13 Sept 2010 12:00:00”;

The time format is important too, which only causes more head-
aches. Now, the icing on the horrible-tasting cookie—to delete
a cookie, I need to set the value to blank:

document.cookie = “foo=; path=/”;

In fact, the cookie isn’t really deleted, it’s just had the value
changed and had the expiry set to the current session (that is,
when the browser is shut down). Delete should really mean delete.

Cookies don’t work because they’re a headache. The new
storage specifications completely circumvent this cumbersome
approach to setting, getting, and removing data by offering a
clean API.

Being British though, I feel I need to add a caveat to the “cook-
ies suck” statement. But fear not—it’s only a small caveat. If you
need to share client-side data with the server side, cookies are
the right solution because they append themselves to every
request automatically. If you don’t, then you want a client-side
storage engine. To me, Web Storage evolved as cookies should
have, but Web Storage has even more functionality, hence the
evolution. So with my caveat aside, let’s look at what today’s
browsers have in store for us (pardon the pun)!

Storage options
There are three options when it comes to storing data on the
client side:

•	 Web Storage—supported in all the latest browsers—
http://www.w3.org/TR/webstorage/

•	 Web SQL Database—supported in Opera, Chrome, and Safari—
http://www.w3.org/TR/webdatabase/

NoTE Get Peter-Paul
Koch’s cookie code at

www.quirksmode.org/js/
cookies.html.

http://www.w3.org/TR/webstorage/
http://www.w3.org/TR/webdatabase/
www.quirksmode.org/js/cookies.html
www.quirksmode.org/js/cookies.html

ptg6964689

cHApTER 6 : dATA SToRAgE : SToRAgE opTIoNS 171

•	 IndexedDB—at the time of writing, experimental support
in Chrome 12, Firefox 5, and Internet Explorer 10—
http://www.w3.org/TR/Indexeddb/

Conveniently, the name Web SQL Database instantly gives you
a clue as to how it works: It uses SQL-based syntax to query a
local database. You may think that’s great as you already know
SQL. The small potential issue is that the specification currently
has a stonking great sign notifying readers that the spec is no
longer being maintained. However, as it has such good sup-
port, particularly in the mobile space, I want to show you how
to use the API. In addition, Google uses Web SQL Database in
its mobile version of Gmail, so I’m confident the technology will
remain in browsers for quite some time to come.

IndexedDB’s name is less descriptive, though you’d probably
be able to guess how it works. IndexedDB is a document data
store, akin to today’s popular “NoSQL” databases, like Mon-
goDB. Essentially you have a key and you can store any data
type against that key, rather than having a set number and
type of columns as per traditional SQL databases. Interestingly,
IndexedDB puts events at the core of how you work with the
API. We’ll talk more about that toward the end of the chapter.

Web Storage is a much simpler system in which you associate
a key with a value, compared to the amount of code required
when working with Web SQL Database or IndexedDB. Sup-
port for the Web Storage API is much better than the current
alternatives—but this should change with time leaving us with
a simple storage method (Web Storage) and larger data storage
(IndexedDB as support flushes through to the rest of the brows-
ers). I’ll look at all three of these APIs, how they work, and how
to debug data in each system.

Web Storage typically has a limit of 5 MB (but browsers will
generally ask permission from the users if more than 5 MB is
required, and ask whether they want to allow the website to go
beyond the current default).

On the other side of the fence, the Web SQL Database specifi-
cation doesn’t talk about limits, and it’s up to the author to try to
gauge the total size of the database when it’s created.

Then there’s IndexedDB spec that doesn’t mention limitations
(on the other, other side of the fence?), but it appears as Chrome
has a limit of 5 MB. It’s unclear what the limits are in Firefox and
IE10. I am sure that as this specification gets better support in
the browsers, these limits will be well documented.

http://www.w3.org/TR/Indexeddb/

ptg6964689

INTRoducINg HTML5172

All data is tied to document origins which is made up of the pro-
tocol, plus host, plus port number (which defaults to port 80)—
which means that data on http://remysharp.com cannot access
data on the secure version on https://remysharp.com.

In either case, the browser will throw an exception error if the
API isn’t able to write the data, but I’ll focus on smaller applica-
tions where the data stored is around the 100 KB mark.

Web Storage
In a nutshell, the Web Storage API is cookies on steroids (but do
refer to my caveat previously if this upsets you). One key advan-
tage of this API is that it differentiates between session data and
long-term data. If you set a “session” cookie (that is, one without
expiry data), that data item is available in all windows that have
access to that domain until the browser is shut down. Web Stor-
age, on the other hand, allows you to define a sessionStorage
that really only refers to the particular window/tab the user is
currently in. Once it’s closed, the data disappears, rather than
sticking around until the entire browser is closed.

The storage API offers two types of storage: sessionStorage
and localStorage.

If you create data in sessionStorage, it’s available only to that
window until the window is closed (when the session has
ended). If you opened another window on the same domain, it
wouldn’t have access to that session data. This is useful to avoid
having data from a session “leak” across different windows.

localStorage data is tied to a particular origin and spans all
windows that are open on that domain. If you set some data
on local storage it immediately becomes available on any other
window on the same domain. It also remains available until it’s
explicitly deleted either by the web application or by the user.
Otherwise, you can close your browser, reboot your machine,
come back to it days later, and the data will still be there. Here
you have persistent data without the hassle of cookies, which
require you to reset the expiry again and again.

What makes Web Storage much, much better than cookies is
not only the API but also the event system that comes with it.
I’ll talk about events toward the end of this section.

NoTE When I’m referring
to windows having access,

I’m referring to the window
object. This is usually bound to
a particular origin (protocol +
host + port) and applies to
browser windows and tabs. Just
in case you were confused!

NoTE Cookies on ste-
roids versus regular cook-

ies: IE6 supports only 20
cookies per domain and a maxi-
mum size of 4 KB per cookie.
Web Storage has no maximum
number of items that can be
stored per domain, and it limits
the aggregate size to upwards
of 5 MB.

http://remysharp.com
https://remysharp.com

ptg6964689

cHApTER 6 : dATA SToRAgE : wEB SToRAgE 173

Watch out for Firefox cookie security

Firefox implements slightly different security around access to session and local storage: If cookies are dis-
abled, accessing sessionStorage or localStorage will throw a security error. For this reason, your appli-
cation should check whether it’s able to set cookies before trying to access either of these two storage APIs.

var cookiesEnabled = (function () {
 // the id is our test value
 var id = new Date().getTime();

 // generate a cookie to probe cookie access
 document.cookie = ‘__cookieprobe=’ + id + ‘;path=/’;

 // if the cookie has been set, then we’re good
 return (document.cookie.indexOf(id) !== -1);
})();

This code tries to set a cookie and then immediately read it back again. If it fails to read the cookie, it
means that security is blocking you from writing and therefore you can’t access the sessionStorage
or localStorage. If cookies aren’t enabled, the implications are that reading from sessionStorage or
localStorage will cause a security warning and break your script.

Alternatively, you could just check for Web Storage support with a try/catch and polyfill support (as
explained in Chapter 12 and somewhat later in this chapter) using JavaScript.

The 15-second tutorial
I’m so confident that you’ll understand how to use localStorage
immediately that I’ve included code below, even before I’ve
explained how it all works, and I’m certain you’ll grok the basics
of Web Storage straightaway!

localStorage.superHero = “Remy”;
localStorage.superVillain = “Bruce”;
// some super hero fight occurs
delete localStorage.superVillain;
// the page is reload, browser restarted - we don’t care -
¬ we’re superheroes!
alert(“The world’s baddest badass is: “ +
¬ localStorage.superHero);

Yep, it’s that simple. If you shut down your browser, reboot
your machine, and go back to the same domain where this
data was set, it would all still be there. You could alert out
the localStorage.superHero value and it would give you,
of course, Remy!

ptg6964689

INTRoducINg HTML5174

An overview of the API
Since both sessionStorage and localStorage descend from
the Web Storage API, they have the exact same API (from the
specification):

readonly attribute unsigned long length;
getter DOMString key(in unsigned long index);
getter DOMString getItem(in DOMString key);
setter creator void setItem(in DOMString key, in any data);
deleter void removeItem(in DOMString key);
void clear();

This API makes setting and getting data very easy. The setItem
method simply takes a key and a value. The getItem method
takes the key of the data you want and returns the content,
as shown here:

sessionStorage.setItem(‘twitter’, ‘@rem’);
alert(sessionStorage.getItem(‘twitter’)); // shows @rem

It’s worth making very clear that the getItem method only sup-
ports strings. This is important because it means if you try to
store an object, it actually returns “[Object object].” More impor-
tantly, this means numbers being stored are actually being
returned as strings, which can cause errors in development.

To highlight the possible problems, here’s an example: Let’s say
that Bruce runs a website selling videos of himself parading
as a professor of science. You’ve added a few of these videos
to your shopping basket because you’re keen to learn more
about “synergies.” The total cost of your shopping basket is $12,
and this cost is stored in sessionStorage. When you come to
the checkout page, Bruce has to add $5 in shipping costs. At
an earlier point during your application, $12 was stored in
sessionStorage. This is what your (contrived) code would look like:

sessionStorage.setItem(‘cost’, 12);

// once shipping is added, Bruce’s site tells you the
¬ total cost:
function costWithShipping(shipping) {
 alert(sessionStorage.getItem(‘cost’) + shipping);
}

// then it shows you the cost of the basket plus shipping:
costWithShipping(5);

ptg6964689

cHApTER 6 : dATA SToRAgE : wEB SToRAgE 175

If sessionStorage had stored the value as a number, you would
see an alert box showing 17. Instead, the cost of $12 was saved
as a string. Because JavaScript uses the same method for con-
catenation as it does for addition (for example, the plus symbol),
JavaScript sees this as appending a number to a string—so the
alert box actually shows 125—much more than you’d probably
be willing to pay to watch any video of Bruce! What’s going on
here is type coercion: upon storing the data in the storage API,
the data type is coerced into a string.

Finally, it’s worth noting that if the key doesn’t exist when you
call getItem, the storage API will return null. If you’re planning to
use the storage API to initialise values, which is quite possible,
test for null before proceeding because it can throw a pretty
nasty spanner in the works if you try to treat null as any other
type of object.

Ways to access storage
You’re probably thinking, “Hang on a minute, Remy showed me
how to grok web storage in 15 seconds, but how does all this
getItem, setItem stuff relate?” I’m glad you’re paying attention.
If you look back at the API, you’ll see that getItem, setItem, and
removeItem are a getter, setter, and deleter, respectively. This
means that when we call delete localStorage.superVillain,
JavaScript is making a call to removeItem for us. Of course, if you
spotted that already, good for you. Pat yourself on the back.

An expando is a short and expressive way of getting, setting,
and deleting data out of the storage object, and as both ses-
sionStorage and localStorage descend from the Web Storage
API, they both support this method of accessing the data.

Using our example of storing a Twitter screen name, we can do
the same thing using expandos:

sessionStorage.twitter = ‘@rem’;
alert(sessionStorage.twitter); // shows @rem

Remember the expando method of storing values is also subject
to the “stringifying” of values as we saw in the previous exam-
ple, with Bruce’s video website, because it’s going via the setter
method of setItem.

ptg6964689

INTRoducINg HTML5176

Using the key method
The API also provides the key method, which takes an index
parameter and returns the associated key. This method is useful
to enumerate the data stored in the storage object. For exam-
ple, if you wanted to show all the keys and associated data, you
wouldn’t particularly know what the keys were for each of the
data items, so loop through the length of the storage object and
use the key method to find out:

for (var i = 0; i < sessionStorage.length; i++) {
 alert(sessionStorage.key(i) + ‘=’ +
 ¬ sessionStorage.getItem(sessionStorage.key(i)));
}

Another word of warning: It’s conceivable that you might be
storing some value under the name of “key,” so you might write
some code like the following:

sessionStorage.setItem(‘key’,
¬ ‘27152949302e3bd0d681a6f0548912b9’);

Now there’s a value stored against the name “key,” and we
already had a method called key on the storage object. Alarm
bells are ringing, right?

Some browsers, WebKit specifically, overwrite the key method
with your new value. The knock-on effect is the developer tools
in WebKit make use of the key method to enumerate and display
all the data associated with the storage object—so the “Storage”
view for that storage type (sessionStorage, in our example) will
now be broken until that value has been removed.

Other browsers such as Firefox will keep the key method and
your key value stored separately. Using the expando syntax will
give you the method, and using getItem(‘key’) will give you
the value.

Removing data
There are three ways to remove data from the storage object
programmatically: directly using the deleter, removeItem, and
clear. The removeItem method takes a key, the same key used in
setItem and getItem, and deletes the entry for that particular item.

NoTE I expect that as the
browsers continue to

develop, this kind of bug will be
crushed—but in the meantime,
do your very best to avoid using
names that already exist on the
storage API.

ptg6964689

cHApTER 6 : dATA SToRAgE : wEB SToRAgE 177

Using clear removes all entries, clearing the entire storage
object. For example

sessionStorage.setItem(‘remy’, “Master of the Universe”);
sessionStorage.setItem(‘bruce’, “Master of the Puniverse”);
alert(sessionStorage.length); // shows 2
sessionStorage.removeItem(‘bruce’);
alert(sessionStorage.length); // show 1
sessionStorage.clear();
alert(sessionStorage.length); // shows 0

Storing more than strings
You can work around the stringifying of objects by making use of
JSON. Since JSON uses text to represent a serialised JavaScript
object, we can use this to store objects and convert stored data
back into objects. However, it would require putting a wrapper on
the set and get methods, which (depending on your application)
may not be a problem at all.

All the latest browsers (either nightly or final releases) support
native JSON encoding using the JSON.parse and JSON.stringify
methods. For those browsers that don’t have JSON support,
we can include Douglas Crockford’s JSON library (available at
https://github.com/douglascrockford/JSON-js).

Now you can convert your data storage and retrieval with JSON
as follows:

var videoDetails = {
 author: ‘bruce’,
 description: ‘how to leverage synergies’,
 rating: ‘-2’
};

sessionStorage.setItem(‘videoDetails’, JSON.
stringify(videoDetails));

// later on, as in page reloads later, we can extract the
¬ stored data
var videoDetails = JSON.parse(sessionStorage.getItem
¬ (‘videoDetails’));

NoTE JSON (JavaScript
Object Notation) is a text

based open standard for repre-
senting data. The specification
found at http://json.org is so
simple it actually fits on the back
of a business card!

http://json.org
https://github.com/douglascrockford/JSON-js

ptg6964689

INTRoducINg HTML5178

As I mentioned in the API overview section, if the key doesn’t
exist in the storage object, then it will return null. This isn’t a
problem for the native JSON parsers as JSON.parse(null) returns
null—as you would expect. However, for Douglas Crockford’s
JavaScript version, passing null will throw an error. So if you know
it’s possible that Crockford’s JSON JavaScript library is being
loaded, protect against this error by using the following:

var videoDetails = JSON.parse(sessionStorage.getItem
¬ (‘videoDetails’) || ‘null’);

This ensures that if null is returned from the getItem method,
you pass in a JSON-encoded version of null, and thus the
JavaScript based JSON parser won’t break.

Using debugging tools
Although there’s good support for the Web Storage API, the
debuggers are still maturing. So aside from inspecting the
sessionStorage or the localStorage there are just a few
tools available. Often from the debugging tools, you can
modify keys and values and delete entries.

WEBKIT’S DEVELOPER TOOLS

While I refer to WebKit, in this section I’m covering Safari,
the nightly build of Safari (WebKit) and Google Chrome. Web-
Kit’s developer tools allows us to view the localStorage and
sessionStorage values stored as shown in Figure 6.1.

NoTE To enable the
Developer menu in Safari,

go to Preferences and from the
Advanced tab, check the Show
Developer Menu in the Menu
Bar box. Chrome’s debugger is
available from the “spanner,”
Tools menu, and Developer Tools.

FIguRE 6.1 Chrome’s storage
debugger (Safari has very
nearly the same interface).

ptg6964689

cHApTER 6 : dATA SToRAgE : wEB SToRAgE 179

FIREFOX’S DEBUGGER

Using Firefox’s native JavaScript console you can easily
inspect the storage objects. If you enter “sessionStorage” or
“localStorage” in the console command and execute the code,
the storage object can now be clicked on and its details can be
seen (Figure 6.2).

OPERA DRAGONFLY

Dragonfly comes shipped with Opera, and from the Storage tab
you can access all the data stored in association with the cur-
rent page. In particular, there are separate tabs for Local Storage
and Session Storage to inspect all the data linked with those
data stores (Figure 6.3).

FIguRE 6.2 Firefox’s built in
debugger.

FIguRE 6.3 Opera Dragonfly
debugger to inspect storage.

ptg6964689

INTRoducINg HTML5180

Storage Events
What makes Web Storage particularly unique is that it also
comes with events that notify you of updates to the data store.

The first thing to know is that the storage event doesn’t fire on
the window storing the actual data. It will only fire on the other
windows whose storage is affected.

This means that storage events only fire for sessionStorage on
iframes on the same origin and windows that have been opened
using the pop-up technique of window.open(), as these all share
the same session. Storage events for localStorage fire on all
windows open on the same origin, and we’ll see an example of
how that could be useful.

When the event fires, it also contains all the information about the
data change as you can see from the storage event object below:

StorageEvent {
 readonly DOMString key;
 readonly any oldValue;
 readonly any newValue;
 readonly DOMString url;
 readonly Storage storageArea;
};

Remember that although the specification says it supports “any”
value, it doesn’t. All the browsers (currently) coerce these values
to strings, so you can be sure the oldValue and newValue will
be strings!

The storageArea points to either localStorage or sessionStorage,
obviously depending on where the data was stored.

Syncing windows using storage events
Let’s say we’re building a radio station’s website and the station
had a pop-up player for the radio—but this pop-up only shows
me the current song and some controls. I’m able to select music
from the main window the pop-up came from (or perhaps any
other window that’s on this radio website, as we’ll see shortly).
I’m sure you’ve used these before when you want to listen to
live music, and it’s a decent way to keep the player window
open the whole time.

ptg6964689

cHApTER 6 : dATA SToRAgE : wEB SToRAgE 181

Now we return to the website, and whilst browsing, we decide
that we’d rather listen to Katy Perry and put a swift end to the
live radio stream from Smashie and Nicey. But herein lies the
problem: We’ve hit Play in the main window, but the pop-up
doesn’t now reflect that we’re listening to “I Kissed a Girl.”
Storage events will save this particular website.

We can also use the storage API to work out whether the pop-
up player is open already and avoid playing an audio stream
more than once. (You’d not want Katy Perry competing with
Smashie and Nicey at the same time—heavens no.)

From our main website, we can use the following code to track
the state of the pop-up and in the pop-up code (which will
follow), we listen for the event to say a new song has been
selected, and we update the display.

function popupPlayer() {
 if (!localStorage.playerOpen) {
 // coerced to “true” but when it closes,
 // we’ll remove the value.
 localStorage.playerOpen = true;

 // open popup
 }
}

function play(song) {
 localStorage.currentlyPlaying = song.title;
 // goes off and plays song in some quasi DRM,
 ¬ streaming way
}

function stop() {
 // when the song stops, or the user stops the song
 ¬ manually,
 // we want the popup player to update too
 localStorage.removeItem(‘currentPlaying’);
}

Now in the pop-up, along with the code that plays the audio
stream, we need to listen for the storage event that tells us the
currentPlaying value has changed, and then we can start that
funky new song:

NoTE If you’re young and
not British there’s a good

chance you’ve never heard of
Smashie and Nicey—feel free to
go looking for them on YouTube!

ptg6964689

INTRoducINg HTML5182

function handleStorage(event) {
 event = event || window.event; // support IE8
 if (event.newValue === null) { // it was removed
 stopPlaying();
 } else {
 // start playing and update display
 startPlaying(event.newValue);
 }
}

window.addEventListener(‘storage’, handleStorage, false);
window.attachEvent(‘storage’, handleStorage);

Obviously there are more uses than radio, but the potential of
storage events is the ability for completely separate windows on
your domain to speak to each other, something that in the past
would have been very fiddly indeed.

Fallback options
As the storage API is relatively simple, it’s possible to replicate
its functionality using alternative JavaScript methods, which
could be useful if the storage API is unavailable.

For localStorage, you could use cookies, or for better support
you could use the browser specific userData methods or even a
Flash object. For sessionStorage, you can use a polyfill that makes
use of the name property on the window object. The following list-
ing shows how you could replicate most of sessionStorage’s
functionality (and ensure the data remains locked to the current
window, rather than leaking as cookies would) by manually imple-
menting each of the Storage API methods. Note that the following
code expects that you have JSON support in the browser, either
natively or by loading Douglas Crockford’s library.

if (typeof sessionStorage === ‘undefined’) {
 sessionStorage = (function () {
 var data = window.top.name ? JSON.parse(window.top..
 ¬ name) : {};

 return {
 clear: function () {
 data = {};
 window.top.name = ‘’;
 },

NoTE If you want to find
out about polyfills, head

over to Chapter 12; we’ll wait
here until you’re done.

ptg6964689

cHApTER 6 : dATA SToRAgE : wEB SToRAgE 183

 getItem: function (key) {
 return data[key] || null;
 },
 key: function (i) {
 // not perfect, but works
 var ctr = 0;
 for (var k in data) {
 if (ctr == i) return k
 else ctr++;
 }
 },
 removeItem: function (key) {
 delete data[key];
 window.top.name = JSON.stringify(data);
 },
 setItem: function (key, value) {
 data[key] = value+’’; // forces the value to a
 ¬ string
 window.top.name = JSON.stringify(data);
 }
 };
 })();
}

The problem with implementing sessionStorage manually (as
shown in the previous code listing) is that we don’t have the setters
and getters (or rather IE7 and below doesn’t support setters and
getters and those are really the only widely deployed old brows-
ers that lack native sessionStorage). This means you couldn’t write
sessionStorage.twitter = ‘@rem’. Although technically, the code
would work, it wouldn’t be registered in our storage object properly
and sessionStorage.getItem(‘twitter’) wouldn’t yield a result.
You could get around that particular problem, but most importantly,
refreshing the browser would lose the data.

With this in mind, and depending on what browsers you are target-
ing (that is, whether you would need to provide a manual fallback
to storage), you may want to agree with yourself for safety as to
when you should stick to using the setItem and getItem methods.

ptg6964689

INTRoducINg HTML5184

Web SQL Database
Web SQL Database is another way to store and access data.
As the name implies, this is a real database that you are able
to query and join results. If you’re familiar with SQL, then you
should take like a duck to water with the database API. That
said, if you’re not familiar with SQL, and SQLite in particular, I’m
not going to teach it in this chapter: There are bigger and uglier
books that can do that, and the SQLite website (http://sqlite.org)
is a good starting point.

The specification is a little bit grey around the size limits of
these databases. When you create a new database, you, the
author, get to suggest its estimated maximum size. So you could
estimate 2 MB or you could estimate 20 MB. If you try to create
a database larger than the default storage size in Safari, it
prompts the user to allow the database to go over the default
database size. Both Opera and Chrome simply allow the data-
base to be created, regardless of the size. I strongly suggest
that you err on the side of caution with database sizes; as I said
earlier, browsers limit databases to 5 MB per domain by default.
Now that you’re suitably worried about SQL and database sizes,
one really neat feature of the Web SQL Database API is that all
the methods allow you to pass a callback that will be executed
once the fandango SQL magic has completed. Callbacks are a
common trait of JavaScript libraries such as jQuery. If you’re not
familiar with this syntax, it looks something like this (but don’t
worry, I’ll hold your hand throughout the examples later on):

transaction.executeSql(sql, [], function () {
 // my executed code lives here
});

Due to the nature of the callback system, it also means that the
database API is asynchronous, so you need to be careful when
authoring the JavaScript to deal with the database to ensure
that the sequence of events runs correctly. However, the SQL
statements are queued and run in order in which they were
queued, so this is one slight advantage you have over process-
ing order: you can create tables and know that the table will be
in place before you run queries on the tables.

Put plainly, if you want your code to run after the database
interaction has completed, use the callback. If you don’t need to
wait, and you want your code to continue regardless, continue
after the database API call.

http://sqlite.org

ptg6964689

cHApTER 6 : dATA SToRAgE : wEB SQL dATABASE 185

Be wary of versioning!

The implementations of Web SQL Database support a slightly older version of the Web SQL Database API,
and more specifically the versioning model.

Although the specification describes how you can manage and migrate from different versions of the data-
base, this hasn’t been implemented very well. The model requires you to know the version of the database
on the user’s machine to be able to open it. The problem is that if you have migrated through multiple ver-
sions of your database, there’s no way to determine which version the visiting user is on, and opening the
database with the wrong version number throws an INVALID_STATE_ERROR. You could wrap each of the
open database attempts in a try/catch, but you’d require one for each version of your database, something
that could get very messy after a few years of upgrades.

Using the Web SQL Database API
The typical database API usage involves opening the database
and then executing some SQL. Note that if I were working with
a database on the server side, I would typically close the data-
base connection. This isn’t required with the database API, and
in fact there’s no way to do this. That said, you can open a data-
base multiple times without any adverse effect.

Opening and creating databases
By opening a database for the first time, the database is cre-
ated. You can have only one version of your named database
on the domain at any one time, so if you create version 1.0 you
can’t then open 1.1 without the database version having been
specifically changed by your application. For the rest of this
chapter, I’m going to ignore versioning and stick to one version
only due to the previously stated warning.

var db = openDatabase(‘mydb’, ‘1.0’, ‘My first database’,
¬ 2 * 1024 * 1024);

The latest version of the SQL databases spec includes a fifth
argument to openDatabase, but this isn’t supported in any of the
browsers right now. It offers a callback when the database is
created for the first time. You’ve now created a new database
called “mydb,” version 1.0, with a text description of “My first
database,” and you’ve set the size of the data to 2 MB (this has
to be set in bytes which is why I multiply 2 * 1024 * 1024). To
ensure that the app works and detects support for the Web SQL
Database API, you should also test for database support in the
browser, so wrap the code with the openDatabase test:

ptg6964689

INTRoducINg HTML5186

var db;
if (window.openDatabase) {
 db = openDatabase(‘mydb’, ‘1.0’, ‘My first database’,
 ¬ 2 * 1024 * 1024);
}

It’s as simple as that. Next you need to set up a new table in the
database, which—like all other operations we’ll be doing on this
database—is done through the executeSql method.

Creating tables
When creating tables (or performing any other action on the
database), you must start a database “transaction” and, within
the callback, execute the relevant SQL. The transaction call-
back receives an argument containing the transaction object,
which allows you to run SQL statements and run the executeSql
method (tx in the following example). This is done using the
database object that was returned from openDatabase and by
calling the transaction method:

var db;
if (window.openDatabase) {
 db = openDatabase(‘tweetdb’, ‘1.0’, ‘All my tweets’,
 ¬ 2 * 1024 * 1024);
 db.transaction(function (tx) {
 tx.executeSql(‘CREATE TABLE tweets (id, date, tweet)’);
 });
}

The executeSql method takes four arguments, of which only the
first is required:

1. SQL

2. Arguments to SQL (such as field values)

3. Success callback

4. Error callback

In the previous example, you use only the SQL parameter. Of
course, if the statement to create a table runs and the table
already exists, an error is triggered, but since you’re not catch-
ing it and it doesn’t affect the program flow, in this instance you
don’t care.

ptg6964689

cHApTER 6 : dATA SToRAgE : wEB SQL dATABASE 187

However, the next step of this application is to load the data-
base with tweets from Twitter, and as this has to happen once
the table is in place (because of the asynchronous nature of
the Web SQL Database API), you’ll have to get the tweets in
the “success” callback. Here’s where we run into a problem:
If the table exists, the transaction will fail and won’t trigger the
success callback. The code will run fine the first time around,
but not the second. So to get around this, you’ll say to create
the table only if the table doesn’t exist; this way the success
callback fires if the table is created and if the table already
exists, and the error callback is only called if there’s some
other problem.

var db;
if (window.openDatabase) {
 db = openDatabase(‘tweetdb’, ‘1.0’, ‘All my tweets’,
 ¬ 2 * 1024 * 1024);
 db.transaction(function (tx) {
 tx.executeSql(‘CREATE TABLE IF NOT EXISTS tweets
 ¬ (id, date, tweet)’, [], function () {
 // now go and load the table up with tweets
 });
 });
}

Inserting and querying
Now let’s say you hit Twitter for a search query for all the men-
tions of HTML5, you store all those tweets in your database, and
then you allow the user to select the time range of tweets from
the past 5 minutes, 30 minutes, 2 hours, and then all time. The
time range selection will be radio buttons with click handlers,
and you’ll run your query to show only the tweets from that
time range.

The crux of this application is split between storing the tweets
in your database and showing the tweets depending on the
time range.

Before any of your code runs, you must first create the database
and tweets table, which will include a date column whose type
is integer—which is important, as it will allow you to query the
database later on in your application:

ptg6964689

INTRoducINg HTML5188

function setupDatabase() {
 db = openDatabase(‘tweets’, ‘1.0’, ‘db of tweets’,
 ¬ 2 * 1024 * 1024);
 db.transaction(function (tx) {
 tx.executeSql(‘CREATE TABLE tweets (id unique,
 ¬ screen_name, date integer, text)’);
 });
 getTweets();
}

A few things to note about the code are

1. I’m using a global db variable. (I’m just using a global for the
contrived example; global is generally bad in JavaScript.)

2. I’m telling the tweets database that the id column is
unique. This means if there’s a duplicate INSERT attempt,
the INSERT fails.

3. If the CREATE TABLE fails, it’s fine because it will fail only
when the table already exists, and you’re not doing any-
thing else in that transaction.

4. Once it’s done, I call getTweets, which will make the API
request to Twitter, which will in turn call the storing function.

What if getTweets runs before the table gets created? It doesn’t
matter. That’s because when we get the tweets, a new transac-
tion is created that inserts the new SQL. Since transactions run
in the order they were sent to the database, even if the create
table hasn’t actually run when we’re creating transactions to
insert new rows, we know that it’s queued ahead of the new
rows and will be there all in good time.

The forEach in the following code is a new JavaScript method
available in all the latest browsers, allowing you to loop through
an array. Mozilla’s site provides simple code for implementing
this in browsers that don’t have it natively: https://developer.
mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/
Array/forEach. Once the Twitter API call completes, it will call
saveTweets, which will store each of the tweets:

function saveTweets(tweets) {
 tweets.results.forEach(function (tweet) {
 db.transaction(function (tx) {
 var time = (new Date(Date.parse(tweet.created_at))).
 ¬ getTime();
 tx.executeSql(‘INSERT INTO tweets (id, screen_name,
 ¬ date, text) VALUES (?, ?, ?, ?)’, [tweet.id,
 ¬ tweet.from_user, time / 1000, tweet.text]);

NoTE You’re creating a
new transaction for each

stored tweet. I’ll explain transac-
tions in more detail in the next
section, but by wrapping individ-
ual INSERT statements you’re
ensuring that all the new tweets
are stored, irrespective of
whether you already have these
in the database.

https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Array/forEach

ptg6964689

cHApTER 6 : dATA SToRAgE : wEB SQL dATABASE 189

 // div 1000 to get to seconds
 });
 });
}

The INSERT statement is the most important part, and now you
can see how the field arguments work:

tx.executeSql(‘INSERT INTO tweets (id, screen_name, date,
¬ text) VALUES (?, ?, ?, ?)’, [tweet.id, tweet.from_user,
¬ time / 1000, tweet.text]);

Each “?” in the INSERT statement maps to an item in the array
that is passed in as the second parameter to executeSql. So
the first “?” maps to tweet.id, the second to tweet.from_user,
and so on.

You can also see that I’ve divided the time by 1,000; this is
because JavaScript time is counted in milliseconds, whereas
SQLite wants it to be in whole seconds. This is only important
for your query later on in the code where you show tweets that
are 5 minutes old. This matters because you’re storing dates
as integers, and one second using JavaScript’s getTime method
gives us 1,000, whereas one second using SQLite gives us 1. So
you divide by 1,000 to store seconds rather than milliseconds.

Finally, when the radio buttons are clicked, you call the show
function with the amount of time as the argument:

var tweetEl = document.getElementById(‘tweets’);
function show(amount) {
 db.transaction(function (tx) {
 tx.executeSql(‘SELECT * FROM tweets’ + (amount !=
 ¬ ‘all’ ? ‘ WHERE date > strftime(“%s”, “now”, “-’ +
 ¬ amount + ‘ minutes”)’ : ‘’), [], function
 ¬ (tx, results) {
 var html = [],
 len = results.rows.length;

 for (var i = 0; i < len; i++) {
 html.push(‘’ + results.rows.item(i).text +
 ¬ ‘’);
 }
 tweetEl.innerHTML = html.join(‘’);
 });
 });
}

ptg6964689

INTRoducINg HTML5190

This code may initially look complicated, but there are actually
only a couple of things happening here:

1. Start a new transaction.

2. Run a single SQL statement, whose structure is determined
by whether you want “all” or not.

Loop through the results constructing the HTML, and then set it
to the tweetEl (a element) innerHTML.

There are two states the SQL query can be:

SELECT * FROM tweets

or

SELECT * FROM tweets WHERE date > strftime(“%s”, “now”,
¬ “-5 minutes”)

Where I’ve put -5 minutes, this can change to -30 minutes or
any number that’s passed in to the show function. The strftime
SQLite function is generating the number of seconds from
1-Jan-1970 until “now” minus N minutes. Since the “date” field is
being stored as an integer, you can now grab all the rows that
were tweeted within the last N minutes.

Now you’ve used the third argument to the executeSql method,
the success callback. The success callback receives a transac-
tion object (just as the transaction callback does, so you could
run another executeSql if you wanted), and more importantly,
the result set. The result set contains three attributes:

•	 insertId (set only if you’ve inserted one or more rows)—
I didn’t use this in this example.

•	 rowsAffected—Since this is a SELECT statement, this
value is 0.

•	 rows—This isn’t an array, it’s a collection, that does contain
a length and item getter method. You make use of the rows
object, and run a for loop from 0 to the length of the rows,
and use results.rows.item(i) to get the individual rows.
The individual row is an object representing the different
column names, so results.rows.item(0).screen_name gives
us the screen_name field from the first row.

Finally, once you have looped through all the rows that match,
you can set a element to the HTML you’ve built up. In this
example, the is stored in the variable called tweetEl.

ptg6964689

cHApTER 6 : dATA SToRAgE : wEB SQL dATABASE 191

Here is the complete code including the database support
detection and the click handler code for the radio buttons:

<!DOCTYPE html>
<html lang=”en”>
<head>
<meta charset=utf-8 />
<title>HTML5 tweet time range</title>
<style>
 body { font-family: helvetica, arial;}
</style>
</head>
<body>
 <form>
 <fieldset>
 <legend>Select a time range of recent HTML5 tweets</
 ¬ legend>
 <input type=”radio” value=”5” id=”t5m” name=”timerange”
 ¬ /><label for=”t5m”>5 minutes</label>
 <input type=”radio” value=”30” id=”t30m” name=
 ¬ ”timerange” /><label for=”t30m”>30 minutes</label>
 <input type=”radio” value=”120” id=”t2h” name=
 ¬ ”timerange” /><label for=”t2h”>2 hours</label>
 <input type=”radio” value=”all” id=”tall” name=
 ¬ ”timerange” checked=”checked” /><label for=”tall”>
 ¬ all time</label>
 </fieldset>
 </form>
 <ul id=”tweets”>
<script>
var tweetEl = document.getElementById(‘tweets’);
var db;

function setupDatabase() {
 if (!window.openDatabase) {
 tweetEl.innerHTML = ‘Web SQL Database API is not
 ¬ available in this browser, please try nightly Opera,
 ¬ Webkit or Chrome.’;
 return;
 }
 db = openDatabase(‘tweets’, ‘1.0’, ‘db of tweets’,
 ¬ 2 * 1024 * 1024);

ptg6964689

INTRoducINg HTML5192

 db.transaction(function (tx) {
 tx.executeSql(‘CREATE TABLE tweets (id unique,
 ¬ screen_name, date integer, text)’);
 });
 getTweets();
}

function getTweets() {
 var script = document.createElement(‘script’);
 script.src = ‘http://search.twitter.com/search.
 ¬ json?q=html5 -RT&rpp=100&callback=saveTweets’;
 document.body.appendChild(script);
}

// our Twitter API callback function
function saveTweets(tweets) {
 tweets.results.forEach(function (tweet) {
 db.transaction(function (tx) {
 var time = (new Date(Date.parse(tweet.created_at))).
 ¬ getTime();
 tx.executeSql(‘INSERT INTO tweets (id, screen_name,
 ¬ date, text) VALUES (?, ?, ?, ?)’, [tweet.id,
 ¬ tweet.from_user, time / 1000, tweet.text]);
 ¬ // divide by 1000 to get to seconds
 });
 });
}

function show(amount) {
 db.transaction(function (tx) {
 tx.executeSql(‘SELECT * FROM tweets’ + (amount !=
 ¬ ‘all’ ? ‘ WHERE date > strftime(“%s”, “now”, “-’ +
 ¬ amount + ‘ minutes”)’ : ‘’), [], function
 ¬ (tx, results) {
 var html = [],
 len = results.rows.length;

 for (var i = 0; i < len; i++) {
 html.push(‘’ + results.rows.item(i).text +
 ¬ ‘’);
 }
 tweetEl.innerHTML = html.join(‘’);

ptg6964689

cHApTER 6 : dATA SToRAgE : wEB SQL dATABASE 193

 });
 });
}

// bind the click handlers for the radio buttons
[].forEach.call(document.querySelectorAll(‘input
¬ [type=radio]’), function (el) {
 el.onclick = function () {
 show(this.value);
 }
});

// go!
setupDatabase();

</script>
</body>
</html>

Creating transactions—
and what they’re good for
I’ve skipped over transactions so far. They’re more than meets the
eye. They’re not just the way to run queries; they serve a particu-
larly useful purpose. Transactions are like closed environments
in which you can run your queries. You can run just one query
or a group of queries within a transaction. In fact, you can’t run
a query without being inside a transaction, since the executeSql
method is only available from the SQLTransaction object.

Possibly the most important aspect of transactions is this: If
something fails inside the transaction (vanilla code or SQL state-
ments), then the whole transaction (including any insertion,
modifications, or deletions) is rolled back. This means it’s as if
the whole transaction block of code never happened.

The transaction method takes two arguments. The first is the
content of the transaction; the second, optional, is the error
handler. Below is a contrived example that shows how a failed
transaction gets rolled back:

var db = openDatabase(‘foo’, ‘1.0’, ‘foo’, 1024);
db.transaction(function (tx) {
 tx.executeSql(‘CREATE TABLE foo (id unique, text)’);

ptg6964689

INTRoducINg HTML5194

 tx.executeSql(‘INSERT INTO foo (id, text) VALUES
 ¬ (1, “foobar”)’);
});

db.transaction(function (tx) {
 tx.executeSql(‘DROP TABLE foo’);

 // known to fail - so should rollback the DROP statement
 tx.executeSql(‘INSERT INTO foo (id, text) VALUES
 ¬ (1, “foobar”)’);
}, function (error) {
 // error.message is “no such table: foo”
 alert(‘Rollback triggered, the table “foo” was never
 ¬ dropped due to: ‘ + error.message);
});

db.transaction(function (tx) {
 tx.executeSql(‘SELECT * FROM foo’, [], function (tx,
 ¬ results) {
 alert(‘found ‘ + results.rows.length + ‘ row’);
 }, function (tx, error) {
 // this will never execute
 alert(‘something went wrong: ‘ + error.message);
 });
});

The steps in the previous code are:

1. Start a transaction that creates the table foo and then
inserts a single row.

2. Start a transaction that drops the table foo and then
incorrectly tries to insert a new row in foo.

3. The transaction fails, and rolls back the statements
(that is, it’s as if Step 2 never happened).

4. Start a transaction that selects all the rows from foo
and alerts the number of rows.

5. The SQL query succeeds and shows “found 1 row.”

Transactions are used to ensure that an atomic block of queries
executes and that if any part fails, it rolls back.

ptg6964689

cHApTER 6 : dATA SToRAgE : INdExEddB 195

IndexedDB
IndexedDB was being talked about when the first edition of this
book was published, but there were no implementations at the
time. Today there are only vendor-prefixed implementations at
this point, but I suspect it won’t be long before most, if not all,
browsers support IndexedDB.

IndexedDB is a document object store. It’s like a database, but it
doesn’t come with all SQL and relational database gubbins.

In IndexedDB, you create a new database and give it a name
and a version so you can reopen it later. Then you create an
object store, which is very much like a filing cabinet with indices
that allow you to quickly skim through and find the right docu-
ment. Once the store is ready, you can store any kind of object
against the index you’re filing with. It doesn’t matter what it
contains, and it doesn’t have to have the same properties as the
other objects either. This is where SQL often becomes a prob-
lem. You have a huge table, you need to add one teeny, incon-
spicuous new column, and so begins the pain. You have none of
those woes with IndexedDB.

Using IndexedDB before it’s out of beta

IndexedDB may still be in the vendor-prefix stage by the time you read this chapter.

If that’s the case, you can still use IndexedDB, but you will need to either create forks in your code to han-
dle the different naming convention, or just copy the vendor-prefixed version into the real name:

function importIndexedDB(prefix) {
 var indexedDB = window[prefix + ‘IndexedDB’],
 IDBTransaction = window[prefix + ‘IDBTransaction’];

 if (indexedDB !== undefined) {
 window.indexedDB = indexedDB;
 }
 if (IDBTransaction !== undefined) {
 window.IDBTransaction = IDBTransaction;
 }
}

// try all the vendor prefixes
‘moz webkit o ms’.split(‘ ‘).forEach(function (vendor) {
 importIndexedDB(vendor);
});

ptg6964689

INTRoducINg HTML5196

Creating new IndexedDBs
To kick things off you need to open a new indexed database.
You’ll use the return value to create object stores and handle
any errors, similar to Web SQL Database where you receive a
database object and then open the database.

However, with IndexedDB every process is a request. As with
Web SQL Database, all communication is asynchronous. It’s
common to see the return value called request, so that’s what
we’ll use:

var request = indexedDB.open(‘videos’);

request.onerror = function () {
 console.log(‘failed to open indexedDB’);
};

request.onsuccess = function (event) {
 // handle version control
 // then create a new object store
};

Now that the database is open, assuming there wasn’t an error,
the onsuccess event will fire. Before we can create the new
object store we need to begin by doing two things:

•	 Store the actual database handle, so we can perform trans-
actions to get and store data.

•	 Set the version on the database; if there’s no version, it
means the database has just been created for the first time
(and a version will need to be set as we’ll see in the follow-
ing examples).

The success event handler passes along an event object much
like the event object you’d receive if you were listening for a
click event. Inside this event we find a property called target,
and inside of that is the result. The result contains—as I hope
you’ve guessed—the result of the particular function call. In this
specific case, the event.target.result contains the open data-
base handle to our “video” database.

So the onsuccess handler is updated as such:

var db = null;

request.onsuccess = function (event) {
 // cache a copy of the database handle for the future
 db = event.target.result;

ptg6964689

cHApTER 6 : dATA SToRAgE : INdExEddB 197

 // handle version control
 // then create a new object store
};

request.onerror = function (event) {
 alert(‘Something failed: ‘ + event.target.message);
};

Notice the error handler. In IndexedDB, errors bubble up from
the request up to transaction and up to the database itself. This
means that if an error occurs at any point during any kind of
request, you’ll see this alert box. But remember: Alert boxes are
ugly and are not friends with the browser—particularly when
in production; they make the salesmen angry. Make sure you
change the alert box to something like a beautiful, rounded-
corners message that gracefully handles the error. Now, on to
initialising the database.

Version control
The first thing we do once we’ve opened the database connec-
tion is to handle version control. You can use any string as your
version number, but if you use some logic in how you increment
your versions it might save you a bit of trouble in the future.
Let’s call this application version “0.1.” If we make an upgrade,
we can compare “0.1” (the string), which will be the database
version, against “0.2” which would be our upgraded code. Since
this is the first time any of our code has run, and therefore we’ve
even tried to open a new database, let’s check the version and
if it doesn’t match, set the version and create the object stores.
I should add that this isn’t version control like something like
SVN or Git—if you want to change the number of object stores
in the database, you need to request a version change.

var db = null,
 version = ‘0.1’;

request.onsuccess = function (event) {
 // cache a copy of the database handle for the future
 db = event.target.result;

 // handle version control
 if (version != db.version) {
 // set the version to 0.1
 var verRequest = db.setVersion(version);

ptg6964689

INTRoducINg HTML5198

 verRequest.onsuccess = function (event) {
 // now we’re ready to create the object store!
 };
 verRequest.onerror = function () {
 console.log(‘unable to set the version :(‘);
 };
 }
};

Once the success event fires we can create our new object
stores using the setVersion method.

Creating object stores
Inside the version control success event handler, create new
object stores as follows:

var verRequest = db.setVersion(version);
verRequest.onsuccess = function (event) {
 var store = db.createObjectStore(‘blockbusters’, {
 keyPath: ‘title’,
 autoIncrement: false
 });
 // at this point we would notify our code
 // that the object store is ready
};

For this application we’ve created a single object store, but in our
next version we might choose to add an object store for direc-
tors of the movies in our video database. What’s important in the
createObjectStore method is the options argument we passed.
This tells the object store that there should be an index (used to
retrieve the blockbuster movie) and that its ID should not auto-
matically increment; in fact, the autoIncrement flag is false by
default; I’ve included it simply to show you how it could be used.

When it comes to storing new objects now, I must ensure the
video has a unique title property, which will be indexed by
IndexedDB for fast retrieval later.

Perhaps we’re going to store the director name in the block-
buster video data, and not in a separate object store. In addi-
tion, I want to be able to search by director, so we add another
index to our datastore:

store.createIndex(‘director’, ‘director’, { unique: false });

ptg6964689

cHApTER 6 : dATA SToRAgE : INdExEddB 199

With this we have now given the index a name (the first argu-
ment), and then the name of the property (in our case, ‘director’)
we want indexed when new objects are stored. Finally, we’ll
allow more than one film by the same director by indicating that
we don’t expect the values to be unique.

This all means I can store and easily retrieve a blockbuster entry
looking like this:

{
 title: “Belly Dance Bruce - Final Strike”,
 date: (new Date).getTime(), // released TODAY!
 director: “Bruce Awesome”,
 length: 169, // in minutes
 rating: 10,
 cover: “/images/wobble.jpg”
}

So let’s add some videos to our blockbuster collection.

Adding and putting objects in stores
Okay, “adding and putting.” No doubt you’re thinking: ambigu-
ous! There are two methods for inserting data: add and put. The
first adds new data and requires that the data not exist in the
first place. The second puts an updated object in the store, and
if the object isn’t already stored, it will insert it as new.

For the purpose of our video store database, we’re going to throw
caution to the wind, and just use put. If you’re not feeling as callous
as I am, and there’s a risk of duplicate objects (if, say, the title was
the same but another field was different, it would leave us with two
objects when we’re only expecting one for each title), be sure you
use add and put with appropriate validation and checks.

var video = {
 title: “Belly Dance Bruce - Final Strike”,
 date: (new Date).getTime(),
 director: “Bruce Awesome”,
 length: 169,
 rating: 10,
 cover: “/images/wobble.jpg” },
 READ_WRITE = IDBTransaction.READ_WRITE

var transaction = db.transaction([‘blockbusters’],READ_WRITE),
 store = transaction.objectStore(‘blockbusters’),
 request = store.put(video);

ptg6964689

INTRoducINg HTML5200

This code is actually doing quite a lot on the last three lines,
and if you’re like me, you might think there’s some unnecessary
repetition.

We’re performing three separate tasks, outlined below.

1. Create the transaction
transaction = db.transaction([‘blockbusters’], READ_WRITE)

The first task is to create a new transaction with read and write
permission to the named object stores. A transaction can be
bound to more than one object store, which is why we’re pass-
ing in an array here. In practice I’ve found that I could pass null
or even an empty string in the object store name argument. I’m
not sure that’s valid, or if it should really work, but like I said:
IndexedDB is new and still in vendor-prefix mode, so it’s best to
stick to what the spec suggests.

Also, if we were just planning to execute read operations in the
transaction, we could use IDBTransaction.READ_ONLY.

A day in the short life of a transaction

Transaction objects have a very short lifetime linked to the event loop
in a browser. If you create a transaction and don’t use it and return to
the event loop, the transaction will be dead and unusable.

If, however, you run the request immediately, and if the request is suc-
cessful, you can choose to place a subsequent request on the trans-
action and be safe in the knowledge that it will still be alive. You can
continue to do this so long as you don’t break for the event loop.

If you’ve ever used a setTimeout(fn, 0) in your code, you’ve
released to the event loop—maybe to allow the browser to repaint the
page, maybe for something else.

This is a fairly unique concept that I’ve not seen before, so definitely
experiment with the transaction lifetime. Once you’ve got a good
handle on when it’s alive and when it’s dead, you’ll be able to make
the transaction last longer than a zombie.

ptg6964689

cHApTER 6 : dATA SToRAgE : INdExEddB 201

2. Get a reference to the store
store = transaction.objectStore(‘blockbusters’)

This is where we get a hard fix on the object store we want to
work with, and here we have to name the store. This could be
any of the stores we listed in our transaction. Now, with our ref-
erence to the store, we can perform our actions, like add, put,
and even get, which we’ll see in a moment.

3. Save the data
request = store.put(video)

The request variable will receive a success or error event on
the object. Maybe I care whether it’s been stored, maybe I
want my code to continue and let the spotty 15-year-old clerk
continue adding the pile of Bruce Awesome videos to our data-
base. That’s the nice thing about the asynchronous-ness of
IndexedDB—I can let my website carry on without being inter-
rupted as the data is stored.

Now that you’ve stored some data, what about getting it out?

Whipping it out again
If you’ve followed the process for storing data, the process of
getting data back out is very similar and simple.

We still need to create a transaction. Since we’re only getting
data, we could ask for that transaction to be read-only, but it
doesn’t matter in this case if we use a read/write permission. We
still get the object store, and instead of adding or putting, we get:

var transaction = db.transaction([‘blockbusters’],READ_WRITE),
 store = transaction.objectStore(‘blockbusters’),
 request = store.get(key);

The important part is that the key variable we pass to the get
method is compared against the keyPath we defined when the
object store was created. In our video example, we said that
blockbusters have their key based on the video title.

ptg6964689

INTRoducINg HTML5202

What if you wanted to get all the videos out of the store? Using
the get method won’t cut it. We need to iterate through the
entire data store:

var transaction = db.transaction([‘blockbusters’],READ_WRITE),
 store = transaction.objectStore(‘blockbusters’),
 data = [];

var request = store.openCursor();

request.onsuccess = function (event) {
 var cursor = event.target.result;
 if (cursor) {
 // value is the stored object
 data.push(cursor.value);
 // get the next object
 cursor.continue();
 } else {
 // we’ve got all the data now, call
 // a success callback and pass the
 // data object in.
 }
};

In this code block, we’re opening up our object store as usual,
but instead of executing a get we open a cursor. This allows us
to cycle through each stored object. We could easily use this
process to find all the videos with a rating of five or more stars
by adding a nested check against cusor.value.rating before
pushing the current stored object onto our data array of results.

For example:

function find(filter, callback) {
 // READ_WRITE was declared earlier on in our code
 var transaction = db.transaction([‘blockbusters’],
 ¬ READ_WRITE),
 store = transaction.objectStore(‘blockbusters’),
 data = [];

 var request = store.openCursor();

 request.onsuccess = function (event) {
 var cursor = event.target.result;
 if (cursor) {
 if (filter(cursor.value) === true) {

ptg6964689

cHApTER 6 : dATA SToRAgE : INdExEddB 203

 // value is the stored object
 data.push(cursor.value);
 }
 // get the next object
 cursor.continue();
 } else {
 callback(data);
 }
 };
}

// example usage
find(function (data) {
 return data.rating > 5;
}, function (found) {
 alert(‘Found ‘ + found.length + ‘ videos with a high
 ¬ rating’);
});

Deleting and dropping
data like a hot potato
What if you made a mistake or want to remove data? Maybe
you’ve had complaints about Bruce’s latest film, Banana Smash,
Pink Fury, and you need to delete it.

The process is exactly the same as the get method, except we
call the delete method when passing in the key (note that for
this, you’ll need write permissions too):

var transaction = db.transaction([‘blockbusters’],READ_WRITE),
 store = transaction.objectStore(‘blockbusters’),
 request = store.delete(key);

There’s also a method for clearing an entire object store: clear.
The clear method doesn’t take any arguments and the process,
again, is exactly the same.

There are two more ways of clearing data: deleteObjectStore
and deleteDatabase. The method names are fairly self-explana-
tory, but they’re not as simple to use.

deleteObjectStore can only run from a transaction. The method
sits on the database object (the result of the indexedDB.open
method). However, you can’t delete the object store using a regu-
lar transaction. You can only delete the object store from a set

ptg6964689

INTRoducINg HTML5204

version transaction. Remember earlier on in this section, when I
showed you how to create object stores—the setVersion success
handler is the only time you can both add and remove stores.

Finally, there’s deleteDatabase. As handy as this would be for
debugging, unfortunately it doesn’t appear to be implemented
in any browsers right now. I expect this will change as the speci-
fication matures and isn’t vendor-prefixed, but for the time being
it does make debugging difficult because it’s hard to get back to
the reset position.

Deleting an IndexedDB database in Chrome

There are probably ways of doing this in each browser, but I’ve discovered a way of removing the
database, if you’re happy poking around in Chrome.

Navigate to ~/Library/Application Support/Google/Chrome/Default/IndexedDB on a Mac and
C:\Users\<you>\AppData\Local\Google\Chrome\User Data\Default\IndexedDB\ on Windows 7
(other system paths can be located at http://goo.gl/v702q).

Once you’re in the IndexedDB directory, you can see databases listed by their domain. If you want to
clear that database, make sure Chrome is closed, and just delete that file.

Do so at your own risk though—don’t come running to me when your browser blows up all over your
machine. That said, it’s worked just fine for me so far!

Debugging
Debugging is hard. At the time of writing there are two key
components missing from IndexedDB:

•	 There are no debugging tools. Web SQL Database and
Web Storage both have visual tools in the browser web
inspectors (like ChromeDevTools or Opera Dragonfly). There
are currently none for IndexedDB, making it quite difficult to
debug. It’s not impossible—just tricky!

•	 There’s no way to delete a database. As only Firefox and
Chrome have IndexedDB at this time, and both still have
vendor prefixes, I suspect this is only something that needs
to be added. Since a necessary step during development is
to reset the current state of the application, not being able
to delete the database is fairly limiting. You can get around
this by manually deleting all the object stores and then
resetting the version, but it’s really not the same!

http://goo.gl/v702q

ptg6964689

cHApTER 6 : dATA SToRAgE : SuMMARY 205

However, it’s still early days, and as a developer, the simplicity of
working with IndexedDB has a much nicer feeling than Web SQL
Database—or certainly for this developer it does.

Summary
In this chapter, you learned about three different APIs for storing
data locally in the browser that beat the pants off using cookies.

These storage APIs allow you to store a lot more data than the
traditional cookie and make the associated programming a lot
easier than before. On top of that, the Web Storage API has
really good support in all the latest browsers (and older brows-
ers can be supported using JavaScript).

In this humble author’s opinion, although Web SQL Database
is depreciated, it’ll be here for some time—mostly because
web giant’s like Google use this technology in Gmail and they
make browsers.

However, IndexedDB is very close to stable implementations
and support could well overthrow Web SQL Database alto-
gether. That said, if there’s a limit of only 5 MB in IndexedDB
and there’s no way to increase that—Web Storage has 5 MB too,
and it’s dirt easy to develop with.

Whichever API you choose, it means you can drop the awful and
stale cookies of today!

ptg6964689

This page intentionally left blank

ptg6964689

CHAPTER 7
Offline

Remy Sharp

How MANY TIMES have I been working on a train,

desperately trying to get a 3G connection with my cheap

dongle, and failed to navigate a web application because

we went into a tunnel (and thus lost all connectivity)? A lot,

that’s how many. Computing with no Internet or with a

choppy connection has always been common with mobile

computing, but now you are more likely to be trying to

work in a hosted application. Sometimes, you may sim-

ply chose to go offline, what then? As we become more

mobile with our computers, being able to use a website

outside of reception becomes more and more important.

We’re used to creating web apps that rely absolutely

on the Web. Our websites run in browsers, which are

designed to be a viewport onto the Web. The offline web

applications part of the HTML5 spec takes the “web” out

of “web app.” The browser will manage a local cache so

our application will work without an Internet connection.

ptg6964689

INTRoducINg HTML5208

Pulling the plug: going offline
To work offline, an application need only a manifest telling the
browser what it needs to store in its local cache. The manifest
can be as simple as a list of files and you’ll be done. Once
the browser has stored the cache of assets, CSS, JavaScript,
images, and so on, when the page is reloaded the browser uses
these local assets to drive the website.

Along with telling the browser what to cache, you can also tell
it what not to cache, ensuring that requests to that particular
URL always go via the Web. Finally, HTML5 gives you a way to
manage fallback cases. In the situation where you’re currently
without a connection and you try to access a resource that isn’t
in your local (offline) cache, the fallback can be used to serve
a different resource (which is also cached by the browser). For
example, going to the chat part of your application could fall
back to a page saying this feature is available only whilst online.

The first part of an offline application is down to the manifest,
which tells the browser what to cache (or what not to). The sec-
ond part is in the applicationCache. This object contains meth-
ods to trigger updates and to swap the latest cache into the
browser. It also has events firing off it that the author can use to
notify the user that the application might be upgradable.

What about offline and online events?

Indeed, what about offline events? The HTML5 spec has defined offline events and, in fact, offline events
have been in some browsers for quite a number of years now. The spec defines two events that should
fire on the document: online and offline. There’s still varying support in browsers today, but that’s not
the problem. Currently these events only work as you’d expect in mobile devices (and given that there are
so many mobile devices, it’s fair to say I haven’t tested every mobile device). However on the desktop, the
situation is very different.

These events only fire when the user—yes, that’s right, the user—explicitly sets the browser to Work Offline.
They don’t automatically fire when, for whatever reason, the web connection drops or is reestablished.

To further compound the problem, some browsers (for instance, Chrome and Safari) lack a Work Offline
menu item, so these events will never be triggered. Frankly, this is stupid in my book, which is why I
wouldn’t particularly rely on these events in a production application. One possible alternative is to con-
stantly poll your service to ensure it’s up, and I’ll show you how you can do this using the manifest in the
section below entitled “Using the manifest to detect connectivity.”

NoTE In the context of
the offline spec, the mani-

fest is a list of files that defines
what files should be included for
your offline application.

ptg6964689

cHApTER 7 : oFFLINE : THE cAcHE MANIFEST 209

The cache manifest
The manifest is the thing that tells the browser when and what
to get from its offline cache, from the Web, or to fall back onto
if assets are missing. Once the manifest is loaded or updated,
it triggers an update on the applicationCache object. To tell the
browser to look for a manifest is simple: You add the manifest
attribute to the <html> element, and point it to the file containing
your application’s manifest:

<!DOCTYPE html>
<html lang=”en” manifest=”/time.appcache”>
<!-- my spiffing time app lives here -->
</html>

My example application, in all its glory, will show you the time
on your machine and the time on my server. Not quite as com-
plex as a Google Docs application, but enough to demonstrate
that, when the connection isn’t available, instead of showing the
server time—which it can’t get—it will show you the working app,
but with the server time marked as unavailable. Figure 7.1 shows
the application on first load and when online.

My complete application requires

•	 The application page: index.html in this case

•	 time.js: the code to tick the clock forward

•	 time.css: simple styles for my app

•	 server-time.js: in this example, let’s say this is generated
every minute by my server

Everything, with the exception of the server-time.js file, will
be stored in the manifest. Finally, in addition, I need a file that
will be served up in place of server-time.js if we’re offline.
This will be

•	 fallback-server-time.js: contains a notice about being
offline

FIguRE 7.1 Move over, Google
Apps: Our application tells us
the time!

NoTE With the custom
.appcache file extension,

you will need to use particular
methods to ensure this is served
to the browser correctly, as you’ll
see later in this chapter under
“How to serve the manifest.”

ptg6964689

INTRoducINg HTML5210

Here’s what the contents of my time.appcache look like:

CACHE MANIFEST
index.html
time.js
time.css

FALLBACK:
server-time.js fallback-server-time.js

NETWORK:
*

version 8

The format of the file is important. You’ll see the first line is
CACHE MANIFEST. This tells the browser that what follows is the
source to a manifest file. Within the manifest, files are listed
under categories, also known as namespaces. The default cate-
gory is CACHE, and if it isn’t stated, all the filenames encountered
are put in that category until the browser hits a new category.
So with that in mind, I could have written my file to look like the
following—and it would have the exact same effect:

CACHE MANIFEST

CACHE:
index.html
time.js
time.css

FALLBACK:
server-time.js fallback-server-time.js

NETWORK:
*

version 9

You can repeat a category, too. To append new files to be
included in the cache, include them at the end of the file so the
manifest reads: cache, fallback, cache. This is perfectly valid, too.

FALLBACK tells the browser that if anything matches the URL
on the left, in my case server-time.js, and it’s not in the

NoTE The web page that
includes the manifest (in

the <html> tag) is also implicitly
included in the cache manifest.
For this reason, I recommend
explicitly including the file,
index.html in my case, in the
manifest so you don’t get con-
fused further along in the devel-
opment of your project.

ptg6964689

cHApTER 7 : oFFLINE : THE cAcHE MANIFEST 211

manifest and it can’t be accessed with the existing connection,
then serve up the file specified on the right side, in my case
fallback-server-time.js. The fallback file fallback-server-time.js
is included in the files that are cached by the browser, just as
files are in the CACHE category. We’ll look at the fallback category
in more detail in the next section.

FALLBACK also allows you to use URL paths, so you could use the
following:

FALLBACK:
server-time.js fallback-server-time.js
/ offline.html

This tells the browser that if server-time.js is requested and it’s
unavailable, then serve up fallback-server-time.js. If any other
path is requested, such as /foo.html, and it’s unavailable (either
because you’re offline or it’s not in the cache), the browser will
serve offline.html. This method can be used to easily define an
entire portion of your site to only be available online and redi-
rect the user to offline.html if they try to access a resource while
they’re not connected. Note that giving this rule that is catch-
ing all failed requests, it also means that currently, if an image
URL results in a 404, it will be served offline.html—so you would
need to add multiple sensible rules to your fallback category.

Figure 7.2 shows my time application when the app doesn’t
have connectivity to the site, and the request for server-time.js
falls back to fallback-server-time.js showing an entirely differ-
ent message.

Finally, I’ve included a comment in the file, starting with the
symbol (note that comments must be on their own line, too).
This tells me the version number. This is important to cachebust
the manifest. It’s not that a comment is required, but something in
the manifest file must change. Personally I like to use a comment
or revision number of MD5 hash of all the files in the application.
This change in the manifest file tells the browser to reload the
contents of the offline manifest. Also, you can’t just change the
timestamp on the manifest or any of the assets to force a reload,
but changing anything inside the manifest will force a reload.

NoTE Cachebusting
means to forcefully prevent

the resource from being cached.
In the example of the manifest,
this is achieved by changing its
contents.

FIguRE 7.2 My time
application continues to work
whilst offline, pulling a different
resource for the server-time
JavaScript file.

NoTE Browsers like the
manifest and don’t let go of

their cache easily. Make sure you
include a comment that has a
version number, revision, or time-
stamp that you can change and
force an update to the browser’s
manifest for your domain.

ptg6964689

INTRoducINg HTML5212

In addition to the CACHE and FALLBACK categories, there’s the
NETWORK category, which already has entries associated with it in
our example. This is the whitelist category, and what’s important
about these entries is that they tell the browser that any requests
to any asset that isn’t in our offline cache should go via the Web.

If you’re like me, you’re probably thinking, “Surely that’s the
default?” I’m afraid not. If the browser is viewing a page that’s
running from the AppCache, that is, the page was served up
from the manifest, then all resources on that page must match
some rule in the manifest; otherwise, they fail to load. This
seems odd, but the rule we’ve already added ensures that we’ll
never get burnt by this odd behaviour.

We could include more specific URLs, but by putting the * rule in
it ensures that everything else goes via the Web, and we don’t
end up with any ugly old broken images.

Network and fallback in detail
Providing fallback content
Both with the FALLBACK and the NETWORK namespaces,
there’s no pattern matching support—though you might think
this if you were looking at an example manifest file with a * char-
acter in it; in fact this is a special character that we’ll look at in
the network whitelist section below.

FALLBACK works by specifying a resource location, or a
resource prefix, that is, what the URL starts with. Note that there
are no regexes going on here; it’s just “does it start with....”

When your website is offline, and you’re using the AppCache,
you could direct all the requests to the payment.html page to an
offline version of the page using the following:

FALLBACK
payment.html payment-offline.html

However, if your site requests /money/payment.html this rule will
not match, but we can match on the start of the URL like this:

FALLBACK
/money/ payment-offline.html

Now any request that starts with /money/ for a URL whilst we’re
offline and whilst the URl is unavailable in the cache will have
the payment-offline.html served up instead.

ptg6964689

cHApTER 7 : oFFLINE : NETwoRk ANd FALLBAck IN dETAIL 213

Using the network whitelist
The NETWORK namespace works in a similar way to the
FALLBACK namespace, in that you can specify a full URL to
whitelist, or you can specify a prefix to match against.

There is also a special rule that if the NETWORK rule contains
only a * symbol, then any and all URLs that are requested, that
aren’t in the application cache, will go via the network. You’d
think this would be normal behaviour, but without this flag the
browser is actually unable to make the web request. This is both
true when online and offline. Seems a little batty, right?

It’s as if once the manifest file is in place, the browser is running
all of it’s request routing though that file, and if there’s not a rule
matching the request, the request will fail. This goes for both
local assets to the domain and remote assets. This is the area
that has possibly caught me out the most times—so it’s worth
remembering!

This * character is an open whitelist and it’s important because
it allows any asset that you’ve not accounted for in your mani-
fest to be requested. So if you don’t have this rule and use
something like Google Analytics, the requests made to Google’s
servers that track the usage on your site will fail, because the
manifest is in use, and there’s no cached copy of this request,
nor fallback or network rule to allow the request to be made.

In general, I’d recommend having a final rule that sets the
whitelist as open. This should help during development and
avoid too many debugging headaches:

NETWORK:
/remote/
*

If you’ve also supported Firefox 3.6, you’ll need to include the fol-
lowing two lines which act the same way as the * rule (and I know
this looks like the wildcard rule I said didn’t exist, it just seems
that Firefox made a little mistake along the way—the new versions
of Firefox are all fixed and ignoring these two lines now):

http://*
https://*

These NETWORK rules tell the browser that all requests to any-
thing starting with /remote/ will go via the network, and any other
requests will go via the network (i.e. the web)—and now my
Google Analytics will be correctly tracked if my visitor is online.

ptg6964689

INTRoducINg HTML5214

How to serve the manifest
There’s one last hurdle to jump before you can take your appli-
cation completely offline: You need to serve the manifest file
properly, meaning it must have the extension .appcache and it
must have the right mime type.

If you’re using a common web server like Apache, you need to
add the following to your mime.types file:

text/cache-manifest appcache

There’s multiple ways to serve up the right content type depend-
ing on your server of choice; just ensure the web server is send-
ing the text/cache-manifest file header when you request any file
with the .appcache extension. You can test this by checking the
headers of the file requested using a tool like curl:

curl -I http://mysite.com/time.appcache

That should return (something like) this:

HTTP/1.1 200 OK
Date: Mon, 13 Sep 2010 12:59:30 GMT
Server: Apache/2.2.13 (Unix) mod_ssl/2.2.13 OpenSSL/0.9.8l
¬ DAV/2 PHP/5.3.0
Last-Modified: Tue, 31 Aug 2010 03:11:00 GMT
Accept-Ranges: bytes
Content-Length: 113
Content-Type: text/cache-manifest

Now that your server is sending the right headers, and your
manifest file is ready to be used, pat yourself on the back. Let’s
take a look at it in action.

The browser-server process
When working with the offline applications, it’s useful to under-
stand the communication process between the browser and the
server. If at all possible, I recommend running the following com-
mand on your servers to tail your access logs whilst refreshing
your page using the cache manifest to see exactly what’s being
pulled. It will show you whether the files from your manifest are
actually being requested and served up by your server:

tail -f logs/access_log

NoTE Changing the mime
types on your web server is

beyond the scope of this book,
but your hosting company can
point you in the right direction.

ptg6964689

cHApTER 7 : oFFLINE : THE BRowSER-SERVER pRocESS 215

Watch out for dodgy foxes!

Firefox boasts support for offline applications, but it doesn’t quite work as smoothly as other browsers, and
there are a few important bugs to be aware of. If you’re testing with Firefox, make sure you’re also check-
ing what’s actually being requested from your server by monitoring the server logs. The browser should
always request the manifest on every single visit (or refresh) of your domain. Older versions of Firefox (3.6
and 4) don’t re-request the manifest, meaning that you’re stuck with the manifest and resources that the
browser downloaded the first time, regardless of any changes you may have made! There is hope! You
can tell the browser never to cache the manifest file by adding the following code to your server config or
.htaccess (or similar) file:

<filesMatch ".appcache$">
 Header set Cache-Control "max-age=0, private, no-store, no-cache,
 ¬ must-revalidate"
</filesMatch>

If you’re using mod_expires for Apache, you need to include the following in your httpd.conf:

<IfModule mod_expires.c>
 ExpiresActive on
 ExpiresByType text/cache-manifest “access plus 0 seconds”
</IfModule>

You also send custom headers on requests for .appcache files and send a no-cache header:

Header set Pragma “no-cache”

I will caveat this whole sidebar with the simple fact that Firefox upgrades are moving faster than, well,
a fox that’s on fire. It’s quite possible that by the time you read this, we’ll have Firefox 13 and it won’t be
an issue. It’s also quite possible that when this book is released, Firefox’s latest release won’t have this
issue—but this no-cache rule won’t do any harm—so go ahead and plug it in.

When you visit a web page that makes use of the cache mani-
fest, such as my time example, here is what happens:

1. Browser: requests http://introducinghtml5.com/examples/
ch07/time/

2. Server: returns index.html

3. Browser: parses index.html and requests all the assets in
the page, images, CSS, JS, and the manifest file

4. Server: returns all requested assets

5. Browser: processes the manifest and requests all the items
in the manifest, regardless of whether it’s just requested
them. This could effectively be a double request for your
application if you’re caching all the assets

6. Server: returns the requested manifest assets

http://introducinghtml5.com/examples/ch07/time/
http://introducinghtml5.com/examples/ch07/time/

ptg6964689

INTRoducINg HTML5216

7. Browser: application cache has updated, and triggers an
event stating so.

Now the browser has fully loaded the cache using the files listed
in the manifest. If the manifest hasn’t changed and the browser
is reloaded, here’s what happens:

1. Browser: re-requests http://introducinghtml5.com/
examples/ch07/time/

2. Browser: detects that it has local cache for this page and
serves it locally

3. Browser: parses index.html, and all assets in the local
cache are served locally

4. Browser: requests the manifest file from the server

5. Server: returns a 304 code notifying the browser that the
manifest hasn’t changed.

Once the browser has its cache of assets, it serves them locally
first and then requests the manifest. As shown in Figure 7.3,
Safari is loading all the assets for my time application, but at the
same time I’m monitoring the access log for the app, in which
we can see only time.appcache and server-time.js is being
requested over the connection.

FIguRE 7.3 Safari makes a
request for the app loading
using the local cache and
requesting only the manifest
and server-time from the server.
This time, you re-request the
app—but the manifest has
changed. If the manifest has
changed, the process from
Step 1 through 4 is exactly the
same, but next the browser
needs to reload the cache.

http://introducinghtml5.com/examples/ch07/time/
http://introducinghtml5.com/examples/ch07/time/

ptg6964689

cHApTER 7 : oFFLINE : AppLIcATIoNcAcHE 217

1. Browser: re-requests http://introducinghtml5.com/
examples/ch07/time/

2. Browser: detects that it has local cache for this page and
serves it locally

3. Browser: parses index.html, and all assets in the local
cache are served locally

4. Browser: requests the manifest file from the server

5. Server: returns the updated manifest file

6. Browser: processes the manifest and requests all the
items in the manifest

7. Server: returns the requested manifest assets

8. Browser: application cache has been updated, and triggers
an event stating so.

However, it’s important to know that even though the assets
may have changed, any previously loaded assets will not have
changed (for example, images don’t suddenly change, and
old JavaScript functions haven’t changed). In fact, at this point
in the application’s life, none of the new cache is available.
Only when the page is reloaded will the new cached assets
become available.

We’ll look at how we can get our hands on these new assets
by looking at the applicationCache object.

applicationCache
The applicationCache is the object that notifies you of changes
to the local cache, but also allows you to manually trigger an
update to the cache. Only if the manifest has changed will the
applicationCache receive an event saying it has updated.

In the process list from the previous section, once the browser
has finished loading the cache with the files from the manifest,
the update event fires on the applicationCache. You could use
this event to tell users that the application they’re using has
been upgraded and they should reload the browser window to
get the latest and greatest version of your app. You can do this
using a simple event listener and a notification:

applicationCache.onUpdateReady = function () {
 // the cache manifest has changed, let’s tell the user to

http://introducinghtml5.com/examples/ch07/time/
http://introducinghtml5.com/examples/ch07/time/

ptg6964689

INTRoducINg HTML5218

 // reload to get whiz bang version 2.0
 if (confirm(“Do you want to update to the latest version
 ¬ of this app?”)) {
 // force a refresh if the user agrees
 window.location.reload();
 }
};

However, what if you wanted to tell the user what had changed?
Or even perhaps try to dynamically reload some portion of
the functionality. Strictly speaking, it’s possible, but it might
be tricky depending on your application. Nonetheless, to load
the newly downloaded cache into memory, you can use the
applicationCache.swapCache() method:

applicationCache.onUpdateReady = function () {
 applicationCache.swapCache();

 // the cache manifest has changed, let’s tell the user to
 // reload to get whiz bang version 2.0
 notifyUserOfUpgrade();
};

Although swapping the cache removes the old cache and loads
in the new cache, it doesn’t actually swap images or reload any
code. This happens only if the asset is manually reloaded or the
entire window is reloaded. However, you could force a manual
reload on one of these assets by dynamically creating a new
DOM node for a script or image you wanted to reload.

For example, let’s say that you have a file in your manifest that
has the latest version description in version.js. If the browser
has an upgrade ready (that you detected through the update
ready event), inside the notifyUserOfUpgrade function you’ll load
the version.js file. Loading this file re-executes the JavaScript
that’s inside the version.js file and you’ll be able to show the
user the latest list of changes if he reloads the application.

I think that, generally speaking, the swapCache has very limited
practical use. But the update ready event is very useful to tell
users that they might want to reload the browser to get the
updated application code, a bit like a normal desktop applica-
tion telling us there’s a new upgrade ready to be downloaded.
Except in this case, the upgrade has already been downloaded
behind the scenes for us.

ptg6964689

cHApTER 7 : oFFLINE : dEBuggINg TIpS 219

Debugging tips
No doubt you’re already thinking, “This sounds complicated.” It
is and it isn’t. Once you’re a dab hand at offline apps, it’s easy.
But how do you debug when you have your first run-in with it
not working?

Browser debug tools vary widely, and as much as we’d love all
their tools to work the same, sometimes it’s just easier to add
the debug information to our development process.

Currently the best tool I’ve come across is Google Chrome’s
web inspector, specifically because it reports the progress of the
application caching, but also tells me whether it’s using a local
version or not.

Figure 7.4 is jsconsole.com, which uses the appcache to work
offline. This is the output in Chrome’s web console when we
visit for the first time:

FIguRE 7.4 jsconsole
being loaded for the first
time in Google Chrome,
http://jsconsole.com.

http://jsconsole.com

ptg6964689

INTRoducINg HTML5220

Notice how in Figure 7.5 each asset is being logged and cached.
These can also be seen individually in the resources panel:

When I refresh jsconsole.com after the manifest is loaded, only
the manifest file is requested and the application doesn’t need
updating, as shown in the log in Figure 7.6.

I’m sure the other browsers’ tools will eventually give you
more information (if they haven’t already by the time this
book is printed), but you could also bind to the individual
applicationCache events, like updateReady, and so on, to get
some idea of what your site is doing during start-up.

FIguRE 7.5 Google Chrome’s
resource list for the current
application manifest.

FIguRE 7.6 Google Chrome’s
resource list for the current
application manifest after
refreshing.

ptg6964689

cHApTER 7 : oFFLINE : uSINg THE MANIFEST To dETEcT coNNEcTIVITY 221

Using the manifest to detect connectivity
Part of HTML5 includes a property on the navigator object that
is supposed to tell you if the browser is online or offline, via

navigator.onLine

However, as we’ve already seen when discussing online and
offline events, this property changes only when a user explicitly
sets the browser to work offline (with the exception of some
mobile device browsers). As a developer, what you’d really want
is to detect whether or not the browser can connect to your
application server. A far more reliable way to do this is by using
the cache manifest’s FALLBACK category. By including a FALLBACK
rule in our manifest, you can pull in a piece of JavaScript and
detect whether you’re online or offline.

Your manifest:

CACHE MANIFEST

FALLBACK:
online.js offline.js

online.js contains:

setOnline(true);

offline.js contains:

setOnline(false);

In your application you have a function called testOnline that
dynamically creates a script element that tries to load the
online.js JavaScript file. If it succeeds, the setOnline(true)
code is run. If you are offline, behind the scenes the browser
falls back on the offline.js JavaScript file, which calls
setOnline(false). From there, you might want to trigger the
applicationCache.update():

function testOnline(fn) {
 var script = document.createElement(‘script’)
 script.src = ‘online.js’;

 // alias the setOnline function to the new function
 ¬ that was
 // passed in
 window.setOnline = function (online) {
 document.body.removeChild(script);

ptg6964689

INTRoducINg HTML5222

 fn(online);
 };

 // attaching script node trigger the code to run
 document.body.appendChild(script);
}

testOnline(function (online) {
 if (online) {
 applicationCache.update();
 } else {
 // show users an unobtrusive message that they’re
 ¬ disconnected
 }
});

Killing the cache
As I mentioned earlier in this chapter, the browsers get pretty
sticky with the cache. It’s easy to get stuck in a cycle where you
can’t clear the cache to test a change you’ve made. So far, the
spec has no method to programmatically clear the cache (for
example, you can’t do it from the applicationCache object).

With that in mind, during development I strongly urge you to
avoid using the cache manifest. Make sure your application
development is completely finished, and only then move on to
adding the manifest attribute. That said, once you’ve got the
cache in place, how do you go about clearing it? Manually.

Upgrading to a new cache should be as simple as changing
the contents of the manifest file. As I said before, you can use
a comment that includes a version number or similar.

What if you want to start again, or what if you want to remove the
manifest attribute all together? You’ll only be able to do this dur-
ing development because it requires you to clear the browser’s
cache (and depending on the browser, it’s tucked away in differ-
ent places). This isn’t something you can do programmatically:
only the user of the browser can actively clear their offline cache.

For Safari, you need to empty (or clear) the cache. By cache I
mean anything that’s been stored to help your browsing experi-
ence go faster.

NoTE When you clear the
cache, make sure there

aren’t any windows still open
with your application that uses
the manifest.

ptg6964689

cHApTER 7 : oFFLINE : SuMMARY 223

Safari clears the cache for everything except the particular win-
dow that you have visible, so when you refresh, it’s still got the
cache manifest included. This goes for the iPhone in particular.

For Chrome, you can navigate to chrome://appcache-internals/
where you can specifically remove a cache for a URL.

For Firefox, you need to open Preferences, go to the Advanced
tab, and select the Network tab. From there you can clear indi-
vidual domains’ cache.

For Opera, open Preferences, navigate to Advanced, and select
Storage. From there you can individually remove a URL’s storage.
Although they call this section persistent storage (suggesting
that it refers to localStorage and sessionStorage) there appear
to be extra URL entries with data stored, often in the form of
the domain with a hash at the end, for instance html5demos.
com/$7b8e3c7f. It’s unclear exactly what this is (clearing this last
one empties neither the AppCache nor the localStorage) but to
be on the safe side I’d recommend removing both.

Summary
In the past, websites often failed to work when users weren’t
connected to the Internet. Browsers are now beginning to sup-
port offline use, coupled with the ability to detect whether or not
a browser is currently online or offline (with a few workarounds).
You now know how to make your web apps work, even without
direct web access.

ptg6964689

This page intentionally left blank

ptg6964689

CHAPTER 8
Drag and Drop

Remy Sharp

So wE’VE coME to the black sheep chapter of our

book: drag and drop. It’s not a black sheep in that cool

way, like Darth Vader’s version of the Imperial TIE Fighter;

no, sadly it’s the black sheep you want to leave alone in

a field, and let it do its own thing. Some better men have

even worse things to say about the spec.

So why is it here? Why is it in the HTML5 spec—and yes,

drag and drop actually is part of the real HTML5 spec.

Well, it’s here because Microsoft Internet Explorer added

drag and drop back in 1999 in IE5—yep, that long ago.

Since then, Safari had implemented IE’s API, so Ian Hick-

son, the HTML5 editor, reverse engineered the API, did all

the hard work to understand exactly what was going on

(describing the MSDN documentation as having a “vague

hand-wavy description”), and documented the API.

ptg6964689

INTRoducINg HTML5226

Now we’re in the position where Firefox, Safari, Chrome, and
IE support this API. It’s not a good API—in fact, it’s probably the
worst API—but it’s got some real-world implementations, so it’s
worth understanding what it’s capable of.

Throughout this chapter, you’ll be forgiven for exclaiming “WTF?”
as we wind our way through the rabbit’s warren that is the drag-
and-drop API and look at some of the interesting functionality that
it can bring to your applications. This API, as its name implies,
allows you to drag items and drop them anywhere in the browser.
But this functionality is not limited to the browser. You can drag
elements from the browser to external applications—like another
browser window, or Photoshop, or a text editor—and the applica-
tion can prepare the dragged data so that it’s compatible with the
drop target. This lends itself very well to the idea that HMTL5 is a
web applications spec, and is giving us developers more function-
ality that borrows from desktop computing.

Getting into drag
Let’s start with the absolute minimum required to achieve the
wonder that is dragging and dropping. By default, all links, text
nodes (or selections of text), and image elements are drag-
gable. This means that you don’t have to do anything to tell the
browser that these things can be dragged around the page.

Our simple demo will have a drop zone and a couple of images
that you can drag into the drop zone. And when you drop them,
the image source will appear in the drop zone (Figure 8.1).

NoTE Go to
http://ln.hixie.ch/?start=

1115899732&count=1 to see
details of Hickson’s
investigation.

FIguRE 8.1 All images and
links are draggable by default.
With a little more code, you can
make them droppable too.

http://ln.hixie.ch/?start=1115899732&count=1
http://ln.hixie.ch/?start=1115899732&count=1

ptg6964689

cHApTER 8 : dRAg ANd dRop : gETTINg INTo dRAg 227

Since there’s nothing to be done to the draggable images, you
just need to hook up the drop zone, which requires the follow-
ing event handlers:

1. Drag over: Tells the browser this is an element that accepts
drop data.

2. On drop: Once something has been dropped on the ele-
ment, the browser does something with the dropped data.

I’m explaining the absolute minimum required to achieve drag
and drop, but this minimum method will only work in Safari. I’ll
then walk you through the tweaks required to get it to work in
Firefox, Chrome, and IE.

The other thing worth mentioning is that the specification up on
http://dev.w3.org/html5/spec/editing.html#dnd says that there
are three events you need to handle drag and drop. That isn’t the
case, at least certainly not in practice. You need three events to
get it working in all browsers, except for Firefox and Safari.

Let’s put all these caveats aside for a minute and crack on with
our demo. The following listing is the über-minimalistic source
you need to see the drag-and-drop API in action:

<!DOCTYPE html>
<title>Simple drag demo</title>
<style>#drop { height: 100px; border: 5px solid #ccc; }
¬ </style>

<img src=”http://img.tweetimag.es/i/brucel”
¬ alt=”@brucel” />
<div id=”drop”></div>
<script>
 var drop = document.getElementById(‘drop’);
 drop.ondrop = function (event) {
 this.innerHTML += ‘<p>’ + event.dataTransfer.
 ¬ getData(‘Text’) + ‘</p>’;
 };
 drop.ondragover = function () { return false; };
</script>

I’m using the minimal HTML required just to keep things short.
You can see from the previous code that I’m grabbing a refer-
ence to the div#drop element and then setting two inline event
handlers: ondrop and ondragover.

NoTE As used in this sec-
tion, “drop zone” simply

means a place that a user drops
something. I am not referring to
the recently added W3C attri-
bute dropzone discussed in
the sidebar “Native drop zones”
later in this chapter.

http://dev.w3.org/html5/spec/editing.html#dnd

ptg6964689

INTRoducINg HTML5228

When something is dropped on the drop element, it triggers
the drop event and you’re able to read the event.dataTransfer
object. The default data type is Text, so you can use the getData
method and ask for the Text data type. In the case of an image,
the text will be the source of the image (typically IE gives us
null for the Text data type, but you’ll fix that later). For links, the
href is the set data and for plain text that’s been selected and
dragged, the text itself is the set data.

Here’s where it starts to get a little strange. To tell the browser
that the drop element can accept items being dropped on it,
you need to cancel the dragover event. Since I’m using an
inline event handler (namely ondragover) I can return false.
This prevents the default browser action. What is the default
action? It’s unclear from the spec, but it would be fair to say the
default action would be to leave the object in the control of the
browser. If I were using addEventListener, I would have to use
event.preventDefault().

So that you’re completely clear—because, frankly, it’s not terribly
obvious—here’s a quote from the spec:

“If the drop is to be accepted, then this event (dragover) has to
be canceled.”

So now that you’ve got your first drag and drop working, what
about those tweaks I mentioned? Let’s fix Firefox first; this is
easy. When you drop the image on the drop zone in Firefox, it
actually redirects the browser off to the value of getData(‘Text’)
for you if it looks like a link—that is, image sources and link
hrefs. So that’s easy: In the drop event, you prevent the brows-
er’s default action. If you’re using inline handlers, you’ll return
false, or event.preventDefault(), so our drop handler now
looks like this:

drop.ondrop = function (event) {
 this.innerHTML += ‘<p>’ + event.dataTransfer.getData
 ¬ (‘Text’) + ‘</p>’;
 return false;
};

Now, IE. Getting it working in IE isn’t actually as painful as it
could be. This is most likely because they came up with the
API in the first place. IE doesn’t listen to the dropover event, it
listens for the dropenter event—and it’s this event you need to
cancel for IE to play ball. So let’s add another event handler and

ptg6964689

cHApTER 8 : dRAg ANd dRop : gETTINg INTo dRAg 229

return false, too. Since you’re doing the same thing, I’ve cre-
ated a function to return false:

function cancelEvent() { return false; }
drop.ondragenter = cancelEvent;
drop.ondragover = cancelEvent;

Again, since you’re making it work in IE, IE doesn’t pass in the
event object to our inline handler, so you need to change the
drop event handle to grab the global event object if you didn’t
receive one.

You also need to cancel the event from bubbling up the DOM to
prevent new windows opening. Typically return false should
handle this (as it does in the other browsers), but IE needs a
helping hand with event.cancelBubble=true.

drop.ondrop = function (event) {
 event = event || window.event;
 this.innerHTML += ‘<p>’ + event.dataTransfer.getData
 ¬ (‘Text’) + ‘</p>’;
 event.cancelBubble = true;
 return false;
};

One final issue to fix: When you drop the image in IE or Chrome,
you get “null” as the text in our drop zone. To fix this you need
to set some data under the Text data type once the element
starts to drag, using the dragstart event:

var imgs = document.getElementsByTagName(‘img’),
 i = imgs.length;
while (i--) {
 imgs[i].ondragstart = function (event) {
 event = event || window.event;
 event.dataTransfer.setData(‘Text’, this.getAttribute
 ¬ (‘alt’));
 };
}

Now you can see that I’ve set some data whose type is “Text”
based on the alt attribute on the image. Now when the image
is dropped, and the Text data type is read, you’ll get the Twitter
screen names instead of the image source. This drag-and-drop
demo works in IE5 onwards, Firefox, Chrome, and Safari. More
importantly, it’s the setData method that really shows off the
possibilities of the drag-and-drop model, but equally exposes
some potential issues in the specification.

ptg6964689

INTRoducINg HTML5230

Interoperability of dragged data
By using the setData and getData methods on the dataTransfer
object, we can pass data from elements inside our applica-
tion to other pages of our app, or across browser windows—as
280 Slides has prototyped, when dragging one slide from one
window to another completely separate document (Figure 8.2).
You can also accept or send data to native desktop applications.

Dragging data to other applications
So long as you know what the accepted content types are, you
can set the data type to accept that particular content type. For
example, on a Macintosh, it’s possible to drag text snippets to the
desktop. I can construct my own content, set the content type to
text/plain, and when I drag the text to the desktop, a text snippet
is created with my content (Figure 8.3):

img.ondragstart = function (event) {
 event = event || window.event;
 // here be one long line
 event.dataTransfer.setData(‘text/plain’,
 ‘This is the screen name for ‘ + this.getAttribute
 ¬ (‘data-screen_name’) +
 ‘, whose image can be found here: ‘ + this.src);
};

FIguRE 8.2 An early
prototype of how drag and drop
could work in 280 Slides.

ptg6964689

cHApTER 8 : dRAg ANd dRop : INTERopERABILITY oF dRAggEd dATA 231

One final note about setData: It only accepts strings. This means
you can’t store a “complex” JavaScript object in a content
type. However, there’s an easy enough solution around this:
JSON.stringify.

All the latest browsers ship with native JSON encoding (stringify)
and decoding (parse), so you can stringify our complex object
and set it against a content type. For the older browsers you can
include the JSON library from https://github.com/
douglascrockford/JSON-js which will plug support for
JSON stringify and parse.

Problems with setting drag data
Native desktop applications have had drag and drop for some
time now and have had years to get the APIs right. One huge
advantage that native applications have is that the setting of
data doesn’t actually happen, or execute, when the user starts
dragging. It happens when the user drops.

There is an important reason for this: When you drop, you need
only one content type.

FIguRE 8.3 Dragged content
from my web page creates a
desktop text snippet.

https://github.com/douglascrockford/JSON-js
https://github.com/douglascrockford/JSON-js

ptg6964689

INTRoducINg HTML5232

Having to construct the different content types on the dragstart
event makes you perform possibly unnecessary code execution.
For example, if I were to allow the user to drag a canvas element to
Photoshop, I would want to encode it as a Photoshop-compatible
file and store it in the correct content type. But what if I’m also
supporting other formats along with Photoshop? I’d have to do
all that encoding at the point in which the dragstart event fires,
but the user will, at best, only drop it on a single application. What
if they’re just dragging the element around to play? You’ve still
run all that execution, a huge waste of processing for more com-
plicated applications. If your application is simple, you may not
see any performance issues; but if it’s a full-fledged application,
you need to consider your options. Perhaps you don’t support all
those formats. Perhaps you support only one compatible format.
Perhaps you don’t even support drag and drop.

There are proposals to fix this (along with proposals to scrap the
entire drag-and-drop model and start again), but for the medium
term, this is a problem you’ll have to work around.

How to drag any element
This is where the HTML5 spec added some new content to the
API. Enabling any element to be dragged is incredibly easy. Take
your div and add the new attribute: draggable. For example:

<div draggable=”true”>This element be draggable</div>

Of course I said incredibly easy. Well, it works in Firefox; any
element that has the draggable attribute can now be dragged
around the browser. Of course, since it’s a new addition in
HTML5, it doesn’t come as standard in IE, so forget about it
working there. Perhaps it will work in IE9 or later. More incred-
ible is getting it to work in Safari 4.

Although it’s blindingly simple to enable any element to be
draggable using the draggable attribute, for reasons that are
still beyond this author and many other bloggers, to get any ele-
ment to drag in Safari 4 you need to give it a specific CSS style.
That’s right, to enable a behaviour you need to define a presen-
tational attribute. This has been fixed in Safari 5 so the CSS isn’t
required, but for older Safari versions you’ll need the following
CSS to target elements with the draggable attribute:

[draggable] { -webkit-user-drag: element; }

NoTE In total, there’re
seven drag-and-drop

events. You’ve seen dragenter,
dragover, drop, and
dragstart. The others are
dragend (the complement to
dragstart), dragenter, and
dragleave. The enter and
leave events fire on the drop
zone as the dragged item enters
the element.

ptg6964689

cHApTER 8 : dRAg ANd dRop : AddINg cuSToM dRAg IcoNS 233

Native Drop zones

No, we’re not talking about the place where local parachutists land. There’s a new dropzone attribute
available in the drag-and-drop specification. This can be applied to the area that you want to drop data
onto. The attribute accepts the following values: copy (the default), move, and link which control the
feedback to the dragged item. In addition to the feedback value, you can also include the accepted kinds
of data the drop zone supports. For example:

<div dropzone=”copy s:text/plain f:image/png”> Drop ‘em on my head </div>

This would allow my script to copy any dragged content whose content type was either plain text or a
PNG image. The ‘s:’ stands for string and ‘f:’ stands for file. Currently nothing else is supported in the spec.

I suspect that the idea is to remove the need for the dragover and dragenter shenanigans. However, as
there’s absolutely no current browser support for this feature, I can’t be entirely sure. It’s certainly a move
in the right direction toward enhancing and simplifying the drag and drop API, but until we see it land in a
browser, I’m afraid this is just a glimpse of what drag and drop should be, rather than being useful today!

This uses the CSS attribute selector (the square brackets) to find
all the elements with the draggable property enabled, and then
applies the behaviour to enable the user to drag the element.

Aside from the CSS fudge that you have to add to kick Safari 4
into life, dragging any element isn’t too hard, and it means you
can now create complicated objects in the DOM that the user
can move around and drop into other windows or applications.

Adding custom drag icons
You can add your own custom drag icon when dragging an ele-
ment. On the dragstart event, you can use the setDragImage
method to associate your own image with the cursor at a spe-
cific offset to the regular cursor image.

There is, of course, a small caveat: It doesn’t work in IE, and in
Safari, you can’t override the cursor if dragging text, images, or
links. But we’re optimistic—let’s create our own custom drag icon:

var dragIcon = document.createElement(‘img’);
// set the drag icon to the mini twitter logo
dragIcon.src = ‘http://img.tweetimag.es/i/twitter_m’;
// later in the code...
element.ondragstart = function (event) {
 event.dataTransfer.setDragImage(dragIcon, -10, -10);
 // and do some other interesting stuff with dataTransfer
};

ptg6964689

INTRoducINg HTML5234

The result is a nice little bespoke drag icon that better represents
the data you’re moving around (Figure 8.4). To keep things con-
sistent with the madness that is the Drag and Drop specification,
the coordinate system for the drag image is the inverse of what
you’d expect. Since all (or all that I can think of) web technology
coordinate systems work with the centre point being the top left,
you might think that setting a negative offset would put the drag
image -10 up and -10 left. No, in fact you’d be wrong, obviously...
it actually puts the image 10 below and 10 to the right. Really the
rule of thumb with Drag and Drop is: all bets are off.

Accessibility
If you’ve made it this far undeterred by the warnings and dead
bodies throughout this specification, then hopefully the appli-
cation with drag and drop that you’re implementing will come
under the question of accessibility. Is the drag and drop API
accessible, or can I make it accessible?

Well, as you’d expect with this specification, there’s a good
intention. So yes, the API has been designed with accessibility
in mind. It’s not terribly clear, but the latest thinking is that the
user should be able to control dragging and dropping using the
keyboard copy and paste model.

The process is supposed to be: Navigate to the element you want
to drag, copy to the clipboard using the keyboard shortcuts, and
then navigate to the drop zone, and paste using the keyboard.

FIguRE 8.4 We’ve created
a custom Twitter cursor
when dragging Twitter-related
data around.

ptg6964689

cHApTER 8 : dRAg ANd dRop : AccESSIBILITY 235

As you’ve probably already guessed, no browser has imple-
mented this (yet).

However, you can prepare your drag-and-drop demos by
including ARIA support. You will need to set ARIA attributes
on dragstart to indicate that the element is being dragged.
We also need to now bind to the dragend event to remove the
ARIA attribute. We should also use visual cues to indicate to
the user what elements can be dragged and where they can
be dropped. I’m not going to cover this detail, but Gez Lemon
wrote a detailed article on adding ARIA and general accessibility
to nonnative drag and drop, but the advice also applies to the
native drag and drop provided by this API: http://dev.opera.com/
articles/view/accessible-drag-and-drop/

var drop = document.getElementById(‘drop’),
 boxes = document.getElementsByTagName(‘div’),
 i = boxes.length;

while (i--) {
 if (boxes[i].getAttribute(‘draggable’) != undefined) {
 boxes[i].ondragstart = function (event) {
 event = event || window.event;
 this.setAttribute(‘aria-grabbed’, ‘true’);
 // set the drop targets up for ARIA support
 drop.tabIndex = 0; // for keyboard support
 drop.setAttribute(‘aria-dropeffect’, ‘copy’);

 // then do something fancy with dataTranfer.setData
 };

 boxes[i].ondragend = function () {
 this.setAttribute(‘aria-grabbed’, ‘false’);

 // reset the drop targets
 drop.tabIndex = -1; // for keyboard supportZ
 drop.removeAttribute(‘aria-dropeffect’);
 };

 boxes[i].tabIndex = 0; // for keyboard support
 boxes[i].setAttribute(‘aria-grabbed’, ‘false’);
 }
}

http://dev.opera.com/articles/view/accessible-drag-and-drop/
http://dev.opera.com/articles/view/accessible-drag-and-drop/

ptg6964689

INTRoducINg HTML5236

In the previous code, you’re searching for the divs that have the
draggable attribute. Then you add the ARIA support starting in
the dragstart event. Once the element begins to drag, you set
the aria-grabbed attribute to true, so that an assistive device
can feedback. You’re also now making the drop zone an ele-
ment that can accept keyboard focus using tabIndex = 0 and
finally you’re saying the drop effect should be ‘copy’. You could
mirror the allowedEffect and dropEffect in the native drag and
drop, but for now you’ll remain focused on the ARIA support.

Next, you add the new dragend event handler, and once the ele-
ment is no longer being dragged, you remove the aria-grabbed
attribute and reset the drop zone attributes, that is, no tabIndex
and no dropEffect. Lastly, you initialise the draggable element
by setting the tabIndex and the aria-grabbed flag.

With this code, users can move around your application and
its drag-and-drop components, and their screenreaders (if they
support ARIA) will feed back the current state of the operation.

However—and this is a big however—since no browser has
implemented the keyboard support for native drag and drop,
you will most likely have to consider rolling your own drag and
drop using JavaScript to handle everything—a rather sad ending
to what is a particularly common operation on the Web.

Summary
The drag and drop API isn’t in a great state and can be difficult to
implement across all the browsers your application may support.
In fact, you may have to fall back to an old-school JavaScript-
based solution to drag and drop where the support is lacking.

However, native drag and drop, combined with newer APIs
like the File API (out of the scope of this book, but it allows the
browser to read files directly from within JavaScript, without the
need for any submission and interaction with the server) allows
users to drag files straight into the browser. This functionality is
appearing as beta features in applications such as Gmail, allow-
ing users with browsers that support the bleeding edge drag
and drop API, if there is such a thing, to experience the very lat-
est technology. Beyond browser support, accessibility is another
big hurdle at the moment.

You’ll need to carefully consider whether native drag and drop is
the right choice for your application.

ptg6964689

CHAPTER 9
Geolocation

Remy Sharp

IN THE uk, when red telephone boxes were still a com-

mon sight, inside each box was a printed note indicating

the address you were calling from. This was so that if you

had to call the police or an ambulance you knew where

you were. Of course, this also helped after a hazy Friday

night, calling home for a lift because you didn’t know

where you were. This is the essence of Geolocation—

except without the beer.

The geolocation API has absolutely nothing to do with the

HTML5 specification, and was created by the W3C rather

than the WHATWG. In fact, it was never even part of the

original Web Applications specification (though it does

now reference the HMTL5 specification), but it’s so darn

cool that we had to include it in this book. In actuality, it’s

a key API when it comes to applications and adding some

wicked—yes, wicked—social interaction.

ptg6964689

INTRoducINg HTML5238

The API is incredibly simple to work with, and you can easily
enhance your web apps if they make use of any geo data by
plugging this API into the app and saving users from having to
finger or scroll all over your map to find themselves.

Currently, Internet Explorer 9 and at least the latest and previous
versions of all other browsers have support for the geolocation
API—not a bad state to be in for a bleeding edge technology. In
addition, many smart phones and their mobile browsers support
the geolocation API, including iOS, Andriod’s WebKit, Firefox
Mobile, and Opera Mobile. In addition, if you’re using Open Web
technologies to build native mobile applications, PhoneGap, the
framework for deploying Open Web mobile apps, provides the
geolocation API as well.

Sticking a pin in your user
The geolocation API gives us a way to locate the user’s exact
position. There are already lots of applications that make use
of this API, ranging from mapping, as seen on Google Maps in
Figure 9.1, to location-based social networks such as Gowalla
and Google Buzz.

FIguRE 9.1 Google Maps
detects geolocation support
and adds the “locate me”
functionality.

ptg6964689

cHApTER 9 : gEoLocATIoN : STIckINg A pIN IN YouR uSER 239

The geolocation API offers two methods for getting the geo
information from your user:

1. getCurrentPosition is a one-shot method for grabbing the
user’s current location.

2. watchPosition keeps an eye on the user’s position and
keeps polling at regular intervals to see if that location has
changed. watchPosition mirrors getCurrentPosition’s func-
tionality, but if the user’s position changes, it will also tell
your code. Note that even though watchPosition is polling
your position, it will only call your callback if the position has
changed. To stop watching, or polling, you pass the return
value from watchPosition to clearWatch which we’ll see
later on.

Both getCurrentPosition and watchPosition work asynchro-
nously to ascertain the user’s location. However, if this is the first
time your site has asked the user for their location, the browser
will show some kind of dialog (as we’ll see in a moment) asking
for permission to share their location. If the visitor doesn’t agree
to share their location, the geolocation API will call the error
handler if you’ve provided it with one.

The specification says:

“User agents must not send location information to
websites without the express permission of the user.”

So it’s up to the browser to prompt users to inform them that
we’re trying to grab their current position. Different browsers
handle this in different ways. Firefox, for example, offers a non-
modal, non-blocking alert (Figure 9.2). This means your applica-
tion continues to execute. In fact, currently all desktop browsers
ask for permission the same way, in that it doesn’t prompt the
user with a blocking message.

FIguRE 9.2 Firefox being
asked to share the user’s
location.

ptg6964689

INTRoducINg HTML5240

Mobile browsers, including Mobile Safari and Opera Mobile,
prompt the user with a modal dialog each time a call is made
to the API, stopping all code execution until the user responds
(Figure 9.3). Mobile browsers like Firefox Mobile and WebKit
on Android do not block the page from running, but still clearly
prompt the user for a response.

API methods
The geolocation API exists inside the navigator object and
contains only three methods:

•	 getCurrentPosition

•	 watchPosition

•	 clearWatch

The watchPosition and clearWatch are paired methods. They work
the same way as setInterval, and setTimeout. watchPosition
returns a unique identifier, that can be later cancelled by passing
the value to clearWatch.

FIguRE 9.3 Mobile Safari with
a modal dialog, blocking the
app from continuing.

ptg6964689

cHApTER 9 : gEoLocATIoN : ApI METHodS 241

As I mentioned before, getCurrentPosition and watchPosition
mirror each other and take the same arguments:

•	 success handler

•	 error handler

•	 geolocation options

A simple use of the geolocation API would be to just pass a
success handler to the getCurrentPosition method:

navigator.geolocation.getCurrentPosition(function
¬ (position) {
 alert(‘We found you!’);
 // now do something with the position data
});

Got you: the success handler
If the user permits the browser to share his geolocation and
there’s no other error, the success handler is called, which is the
first argument to getCurrentPosition and watchPosition.

The handler receives a Position object containing two properties:
a coords object (containing coordinate information) and a timestamp.
The coordinates object is where the interesting stuff is sitting.
There are really two grades of data in the position object. The
first grade appears in all the browsers with geolocation support:

•	 readonly attribute double latitude

•	 readonly attribute double longitude

•	 readonly attribute double accuracy

Note that accuracy is the measurement of the coordinates’ accu-
racy in meters. You could use this to show a radius of
accuracy if you were mapping the user’s position.

Although it’s difficult to confirm manually, it’s likely this data
is being provided by the browser vendor’s own service. For
instance, Google has a big database of location data which—
when combined with information about your request, the hard-
ware, your IP, and a bit of black magic—finds your position. This
data simply represents a snapshot of the user’s position, and
doesn’t contain any information that could help you work out their
speed, or direction of travel. We’ll look at the voodoo magic used
to ascertain the visitor’s location at the end of this chapter.

ptg6964689

INTRoducINg HTML5242

Using the coordinate data, you could easily map the user’s
current position on something like a Google map:

if (navigator.geolocation) {
 navigator.geolocation.getCurrentPosition(function
 ¬ (position) {
 var coords = position.coords;
 showMap(coords.latitude, coords.longitude,
 ¬ coords.accuracy);
 });
}

In a lot of applications, it’s likely that the user will be offered
a manual way to set his current position. If the geolocation
method is available, the site may offer the advanced functional-
ity, progressively enhancing the page or the whole experience.
An example can be seen at http://owlsnearyou.com. When visit-
ing the site, if geolocation is available, it reloads the page with
your position loaded (Figure 9.4), showing you where you can
go owl hunting, if that’s the activity that gets you going after a
day of HTML5 development. If geolocation isn’t available, it sim-
ply asks you to enter your location.

FIguRE 9.4 An example of
progressive enhancement using
geolocation.

http://owlsnearyou.com

ptg6964689

cHApTER 9 : gEoLocATIoN : ApI METHodS 243

The second grade of data inside the coordinates object is sup-
ported, but by default most (currently all) desktop browsers will
return null. However, if the device has something like a GPS on
board, the values can be determined, at which point the values
can be null, 0, or a floating point:

•	 readonly attribute double altitude

•	 readonly attribute double altitudeAccuracy

•	 readonly attribute double heading

•	 readonly attribute double speed

We’ll look at how to use this second grade of data next.

Getting your hands on speed
More and more, we’re seeing smartphones, tablets, and note-
books with onboard GPS. On these devices—depending on the
specific web browser and OS integration provided—the geolo-
cation API can provide a lot more information than just a one-off
set of coordinates (latitude, longitude, accuracy)—instead giving
access, through the second-order data, to speed, altitude, and
heading information as well.

In most cases, when you make a simple geolocation request,
you’ll get only the latitude, longitude, and accuracy, and in most
cases this is enough for your application.

However, you can get your hands on the speed, altitude, and
heading through the geolocation API.

In most cases today, you’ll need to tell the API to use highaccuracy
to enable the GPS device. Be aware that using the GPS will
quickly drain the device’s battery, so make sure you’re using the
technology because you need it, not just because you can.

In order to calculate the current speed, the device needs to
average the difference between a series of discrete location
measurements (or something to that effect?). For this reason,
you’ll need to use geolocation.watchPosition and update the
current speed as it comes in:

ptg6964689

INTRoducINg HTML5244

var speedEl = document.getElementById(‘speed’);
navigator.geolocation.watchPosition(function (geodata) {
 var speed = geodata.coords.speed;
 if (speed === null || speed === 0) {
 speedEl.innerHTML = “You’re standing still!”;
 } else {
 // speed is in metres per second
 // multiply by 2.23 to get miles per hour
 speedEl.innerHTML = (speed * 2.23693629) + “Mph”;
 }
}, function () {
 speedEl.innerHTML = “Unable to determine speed :-(“;
}, { enableHighAccuracy: true });

In addition to the speed of the device, you can also get the alti-
tude, altitude accuracy, and heading. If these values aren’t avail-
able—either because of the device or because the geolocation
can’t get that particular piece of data—then the returned value
will be null.

Geo 404: the error handler
The second argument to the getCurrentPosition and watchPosition
methods is the error handler. This is particularly important if you
want to provide some alternative method of location (such as
manually) or you want to notify the user of any errors in getting
his position. The error handler may trigger if the user denies his
position, but it could be that the user has given you permission
and you are now watching his position on a mobile device and
the phone has gone out of reception. This too would cause the
error handler to trigger.

The error handler receives a single argument containing a posi-
tion error object with two properties:

•	 readonly attribute unsigned short code

•	 readonly attribute DOMString message

The code property will be one of the following:

•	 PERMISSION_DENIED (numeric value 1)

•	 POSITION_UNAVAILABLE (numeric value 2)

•	 TIMEOUT (numeric value 3)

ptg6964689

cHApTER 9 : gEoLocATIoN : ApI METHodS 245

The message property is useful for developing and debugging
but wouldn’t be appropriate to show the user. It’s not because
it’s some cryptic rubbish from the GPS onboard chips, but
because it’s bespoke to each browser (as it’s not defined in the
specification), but also because it’s rather computery speak—not
friendly to your visitor. The message property isn’t always avail-
able (as it’s not currently in Firefox 3.6+).

To give you an idea of how the error handler can be used,
here’s a simple example:

if (navigator.geolocation) {
 navigator.geolocation.getCurrentPosition(function
 ¬ (position) {
 var coords = position.coords;
 showMap(coords.latitude, coords.longitude,
 ¬ coords.accuracy);
 }, function (error) {
 var errorTypes = {
 1: ‘Permission denied’,
 2: ‘Position is not available’,
 3: ‘Request timeout’
 };

 alert(errorTypes[error.code] + “: means we can’t
 ¬ determine your position”);
 });
}

If your page uses this code and the user, when prompted,
doesn’t allow the page access to the current location informa-
tion, they’ll receive a stern alert box “Permission denied: means
we can’t determine your position.”

ptg6964689

INTRoducINg HTML5246

The alternative error: on success

When I once visited a page that was supposed to detect my location,
whilst working from home in Brighton on the south coast of England,
the map placed me dead in the centre of London. I checked under
the hood using browser’s web console and could see the accuracy
of the geolocation request was set to 140,000 meters—that’s about
90 miles of inaccuracy; as a radius that’s pretty damn inaccurate! It’s
understandable how the site wasn’t sure exactly where I was. I would
strongly recommend that while developing applications that use
geolocation you also check the accuracy of the success call. If the
accuracy is set to such a large value, it might be worth ignoring the
data altogether, treating it the same as an error, and providing your
normal fallback mechanisms—such as asking the user to enter his
location manually. However, the accuracy is all about context. If your
application was helping me to find the closest hospital, I’d expect it to
be accurate to about city size. If your application was offering a county
view of the current weather system, it would be fine if the accuracy
was to 90 miles—as it still puts me in England.

Configuring the geolocation
Finally, the third argument to both getCurrentPosition and
watchPosition contains the geolocation options. All the geoloca-
tion options are optional, as you’ve seen, and are constructed
as follows:

•	 enableHighAccuracy (Boolean, default false)

•	 timeout (in milliseconds, default infinity [represented by 0])

•	 maximumAge (in milliseconds, default 0)

For example, to request high accuracy and a two-second time-
out, and to never use old geo data, call getCurrentPosition
using the following options (where success and error are pre-
defined functions):

navigator.geolocation.getCurrentPosition(success, error, {
 enableHighAccuracy: true,
 timeout: 2000,
 maximumAge: 0
});

We already encountered enableHighAccuracy—it tells the device
to try to get a more accurate reading on the latitude and longi-
tude—timeout tells the geolocation lookup how long it should

ptg6964689

cHApTER 9 : gEoLocATIoN : ApI METHodS 247

wait before giving up and triggering the error handler. However,
it won’t start counting down if it’s waiting for the user to approve
the request. If it does timeout, the error code is set to 3 (TIME-
OUT). Setting a zero timeout (the current default) tells the browser
to never time out and keep trying.

Finally, maximumAge tells the browser whether or not to use
recently cached position data. If there is a request that is within
the maximumAge (in milliseconds), it is returned instead of request-
ing a new position. maximumAge can also be Infinity, which
tells the browser to always use a cached position. Setting the
maximumAge to zero (the default value) means the browser must
look up a new position on each request.

How it works under the hood: It’s magic

The geolocation API uses a few different techniques in acquiring the
user’s position. It is black magic to most people, including myself, but
it’s worth having an idea of what’s going on under the hood as it will
affect the accuracy of the position data.

GPS is one of the obvious methods for getting position data. More
computing devices, ranging from mobile phones to laptops, are being
fitted out with GPS. Assuming there’s a clear enough line to the GPS
ground station (which picks up readings from satellites to triangulate
the user’s position—yep, more black magic), then you’ll have a very
accurate reading. GPS can also give you altitude, speed, and heading,
which we saw in the second grade of properties in the coordinates
object when the high accuracy option was enabled.

Another method is using network information, which would be typical
if used via a desktop browser such as Firefox. The network information
could use Wi-Fi triangulation and IP addresses to make a best guess at
the user’s location. The developer makes a call to the browser’s geo-
location API, which in turn makes a call to a third-party service such
as Skyhook or Google. Although this may be less accurate than GPS,
it could make for a very good backup as GPS doesn’t work very well
indoors or in high-rise urban locations.

Overall, it’s not terribly important to know what makes geolocation tick,
but if you need to get the high accuracy, be wary of using the more
power-hungry devices such as GPS and of killing your user’s battery.

All in all, it’s some very cool black magic.

ptg6964689

INTRoducINg HTML5248

Summary
If there’s any aspect of geolocation in your application, then
you’d be a fool not to include this amazingly simple API. The
work is virtually zero to implement. Really the work would be in
creating the user interface. What’s particularly important to me
as a developer is that regardless as to how the browser is deter-
mining my user’s location, it will work the same—whether they’re
using a desktop machine, laptop, or mobile phone—the code
remains exactly the same, and easy.

Since IE9 and all other browsers come with geolocation, sup-
port is in a good state. What’s more is that we can use polyfill
techniques to fall back on to JavaScript-based geolocation using
traditional IP lookup services (which you’ll see in the polyfill
chapter towards the end of this book).

Just remember that geolocation should be used to progressively
enhance the page, rather than forcing your user to rely on the
data that comes back from the geo-lookup—as it may not be
accurate enough for your application.

ptg6964689

CHAPTER 10
Messaging

and Workers
Remy Sharp

wEB MESSAgINg ANd wEB woRkERS are different

APIs but all have the same communication API, which is

why I will discuss them together. Only the Messaging API

is part of the official HTML5 spec, but both of these APIs

are valuable additions to any web application.

Messaging allows applications to send messages from

one domain to another, something that Ajax security poli-

cies have long prevented for good reason, but is now

starting to open up with the right security measurements

in place.

ptg6964689

INTRoducINg HTML5250

Browsers are effectively single-threaded applications, in that
when JavaScript is running or perhaps being parsed, the page
isn’t rendering. Equally, when JavaScript is performing a long
and complicated function, the whole browser can be seen to
lock up. What a Web Worker does is introduce a simplified idea
of threads for browsers. A worker allows me to ring-fence a par-
ticular block of code and it will run without affecting the browser
at all in a new, concurrent thread of operation, allowing the main
browser thread to continue uninterrupted.

Chit chat with the Messaging API
I wanted to show you the Messaging API first because the
Web Worker, WebSocket, and Server-Sent Event APIs (the latter
two discussed in the next chapter) all use this common method
of communication. So think of this as your gentle primer on
communication.

The Messaging API has very good support across all brows-
ers—yes, including Internet Explorer (IE)—and offers a simple API
for posting plain text messages from one origin (or domain, to
you and me) to another. For example, if you want to send some
information to a window you have in an iframe, you can do it
using the Messaging API. This will still work if the window is on a
completely different domain than the site hosting the iframe.

Sending messages across domains
If Bruce has a document that wants to communicate with
my document—say either in an iframe or perhaps in a pop-up
window—it needs a reference to the window object (of my docu-
ment) and he can then call the postMessage method to pass
some message to it. The JavaScript in Bruce’s document will
look like this:

var t = document.getElementsByTagName(‘iframe’)[0];
t.contentWindow.postMessage(‘favourite instrument?’,
¬ ‘http://brucelawson.co.uk’);

The target origin being passed to postMessage in the second
argument is required, and it must match the origin of your
contentWindow object (the target window, my document in this
example). If the origins don’t match, a security error will be
thrown, stopping the script from continuing. If the origin isn’t

NoTE The new
XMLHttpRequest Level 2

object (http://www.w3.org/TR/
XMLHttpRequest2/), out of
scope for this book but already
in WebKit and Firefox, supports
cross-domain requests (with the
right level of server security).
It also includes progress events
for monitoring uploads.

http://www.w3.org/TR/XMLHttpRequest2/
http://www.w3.org/TR/XMLHttpRequest2/

ptg6964689

cHApTER 10 : MESSAgINg ANd woRkERS : cHIT cHAT wITH THE MESSAgINg ApI 251

passed in, the JavaScript will throw a syntax error—not helpful,
but something to watch out for if you forget. One last tip: Remem-
ber to wait for the target to finish loading. The target is still a
document that needs to be parsed and loaded. If the browser
hasn’t loaded the document and you try to send it a message, the
JavaScript will fail entirely with a similar syntax error.

My document is being referenced via an iframe on Bruce’s page,
and it contains the following JavaScript:

window.addEventListener(‘message’, function (event) {
 if (event.data == ‘favourite instrument?’) {
 if (event.origin == ‘http://remysharp.com’) {
 event.source.postMessage(‘brand new clarinet’,
 ¬ event.origin);
 } else if (event.origin == ‘http://brucelawson.co.uk’) {
 event.source.postMessage(‘rusty old trombone’,
 ¬ event.origin);
 }
 }
}, false);

My script sets an event listener for messages being passed to
the window. Inside the event object is a data property containing
the message that was sent. Along with the data property, there
are a number of other useful properties sitting inside the event:
origin and source.

The event.origin gives me the domain that the message came
from. I can use this, as I have in the previous code listing, to
determine whether I want to process the message. This is policy
control at a very rudimentary level.

The event.source points back to the window object making the
original call to my document, that is, Bruce’s document. This is
useful to be able to communicate back and forth. Of course,
your onmessage event handler could do a lot more, like make an
Ajax request to the server on the same domain.

What about sending more than strings?
In the examples I’ve shown you so far, I’ve passed only strings in
messages back and forth. What if you want to send more than just
a string? What if you have an object with properties and values?

Well, the good news is the specification describes what’s sup-
posed to happen when a browser has to safely send data from

NoTE This code list uses
addEventListener

rather than onmessage
because previous versions of
Firefox didn’t appear to respond
to onmessage on the window
object. This is best practice
anyway, but it would mean we
also need to hook IE using
attachEvent, which I’ve not
included in my example.

ptg6964689

INTRoducINg HTML5252

one source to another. It describes how to clone the data and
how it should be treated.

However, most browsers don’t support this process. In fact,
most browsers simply coerce the object into a string. That sucks
for you and me. It means that instead of the nicely constructed
object, you’ll get [object Object] in the event.data prop-
erty. In fact, we saw this before in Chapter 6, “Data Storage,”
where we try to store objects in localStorage. So in the same
way we got around the issue with localStorage, you can use
JSON.stringify to convert your JavaScript object into a string,
pass it to postMessage, and then, on the receiving side, convert
it back to a native JavaScript object using JSON.parse.

Using JSON.stringify and JSON.parse will be useful methods for
transferring more complicated objects from window to target,
as we’ll see in the next section on Web Workers (and the next
chapter on WebSockets and Server-Sent Events).

Threading using Web Workers
Web Workers are part of a separate specification to the HTML5
spec, but they are a key feature in building web applications.

A worker is a way of running a discrete block of JavaScript in
a background process to the main browser. This is effectively
a thread. What this means is that the worker runs in the back-
ground without interfering with the main browser thread.

The browser is already responsible for requesting and parsing
files, rendering the view, and executing JavaScript, running the
UI/chrome, and anything that consumes the browser’s process-
ing time causes all other jobs to wait. This is where Web Work-
ers come to the rescue.

Why use a worker?
If you’ve ever written any dodgy JavaScript that goes haywire,
causing your browser to start fuming like it’s about to explode,
then you’ve experienced the single-threadedness of browsers.
Eventually, if the browser’s smart, it’ll give you the option to ter-
minate the dodgy code, something like Figure 10.1.

ptg6964689

cHApTER 10 : MESSAgINg ANd woRkERS : THREAdINg uSINg wEB woRkERS 253

More worrying, though, are the much more subtle issues. Say
you’ve written the latest and greatest web application that does
the most amazing photo manipulation. You’re using all the l33t
skills you learnt from this book—canvas, storage, offline applica-
tions—but when it comes to adding a photo filter, it takes 30
seconds. It’s not the 30 seconds that’s the problem; it’s the fact
that your user can’t do anything in the browser for those 30 sec-
onds. What if your user changed her mind and wanted to cancel
the filter? Obviously this is a situation you want to avoid.

This scenario is perfect for a Web Worker because all the filter
processing can happen in the background, and the main brows-
ing window—and the rest of your web application—is left alone
to continue to be responsive to your visitor’s requests.

Creating and working with workers
You can test for Web Worker support by checking whether or
not the object is undefined:

if (typeof Worker != “undefined”) {
 // do the jazzy stuff
}

Now that we know we’ve got support (Safari, Safari Mobile,
Chrome, Opera, Firefox, and IE10 all support Web Workers)
we can go about creating a new worker:

var worker = new Worker(‘my_worker.js’);

A new worker object is fired up, reads in the my_worker.js
JavaScript file, and is now happily running and ready to be used.

FIguRE 10.1 Some browsers
will interrupt JavaScript that’s
gone wild, and give you the
option to nuke it into space.

ptg6964689

INTRoducINg HTML5254

At this point, you’d be forgiven for thinking that you can call
methods inside the worker from your document, and that data
can be returned from the worker to your document. Poppycock!
No, in fact, to work with a worker, everything must be communi-
cated through posting messages between the worker and your
document. It’s like some scene from Romeo and Juliet, exchang-
ing letters of love between the browser and the worker.

The only way you get can information to the worker is via
postMessage:

worker.postMessage(‘hello worker!’);

Note that the postMessage in the Web Workers, unlike postMessage
in the Messaging API, only requires a single argument. The
only way you can receive information from the worker is via the
onmessage event handler:

worker.onmessage = function (event) {
 alert(‘The worker just sent me this: ‘ + event.data);
};

You should now be recognising the postMessage/onmessage
combination from the Messaging API from earlier in this chapter.
You remember how we can only send and receive strings in the
Messaging API? You won’t be surprised to know, then, that the
Web Workers have the same constraint.

Equally, the code inside the worker must also communicate
using the postMessage/onmessage combo. However, a Web
Worker doesn’t have the same access as your normal docu-
ment: It’s very much sandboxed and has access to only a select
few APIs and functions, as I’ll show you in the next section.

The only other method available to you via the worker object
is terminate, which does exactly what it says on the tin. The
worker ceases to run and the worker object becomes limp and
useless. In particular, you can’t resume the worker; you’d have
to create a brand new one.

What you can do inside a worker
Within a Web Worker you don’t have access to such pleasures as
the DOM. In fact, if you need to do anything with the DOM, you’re
going to have to prepare the work in the worker, and then pass it
to the parent document to do the actual DOM manipulation.

ptg6964689

cHApTER 10 : MESSAgINg ANd woRkERS : THREAdINg uSINg wEB woRkERS 255

However, there are a number of things you can do in a worker
(according to the specification):

•	 postMessage and listen for inbound messages via onmessage

•	 close, to end the current worker

•	 Set event listeners

•	 XMLHttpRequest, for Ajax requests

•	 Timers, such as setTimeout, setInterval, and their clearing
counterparts

•	 All the core JavaScript functions: eval, isNaN, escape, and so on.

•	 Location object, the href of the worker script

•	 WebSockets (which we’ll discuss in the next chapter)

•	 EventSource (also in the next chapter)

•	 Web SQL Databases (only implemented in Safari and Chrome)

•	 IndexedDB

•	 Web Workers

•	 importScripts

The following code is all I need in my_worker.js to communicate
with the document from the earlier code listing:

this.onmessage = function (event) {
 if (event.data == “hello worker!”) {
 postMessage(“hello there, right back at you”);
 } else {
 postMessage(“Can’t you see I’m busy, leave me alone”);
 }
};

It’s useful to know that, in a normal document, this keyword
would refer to the global scope, the window object. Here in the
worker, the global scope is the worker instance. It also means
that the this keyword inside of setTimeout and setInterval
is the worker instance (where this would otherwise be the
window object).

In these examples so far, our worker hasn’t done anything par-
ticularly special. How about a worker that searches for prime
numbers? This requires a super tight loop in JavaScript con-
stantly spinning around looking for values that match a prime.
All this and at the same time allowing your visitor to draw on a

NoTE Currently there are
no Web Worker implemen-

tations that support accessing
IndexedDB, though there are
fixes in the works. In the first
edition of this book, it was Web
SQL Databases that weren’t
supported; since that’s changed,
and the IndexedDB spec is still
fairly new, I’d expect support to
come fairly quickly once
IndexedDB implementations
have settled down.

ptg6964689

INTRoducINg HTML5256

canvas while your app searches for prime numbers? Perhaps a
strange use case, but we have workers to come to your rescue.

The main document will handle starting the worker and drawing
on the canvas. The only code that’s offloaded to the worker is
the prime number searching.

var worker = new Worker(‘prime.js’),
 prime = document.getElementById(‘prime’);
worker.onmessage = function(event) {
 prime.innerHTML = event.data;
};

The page continues to handle mousedown, mousemove, and mouseup
events to draw on a canvas on the page. Inside the prime.js
script we have:

onmessage = function (event) {
 // doesn’t matter what the message is, just start the job
 run();
};

function run() {
 var n = 1;
 search: while (true) {
 n += 1;
 for (var i = 2; i <= Math.sqrt(n); i += 1)
 if (n % i == 0)
 continue search;
 // found a prime!
 postMessage(n);
 }
}

When the prime.js worker receives any message, it starts the
prime number search. When you run this prime number drawing
extravaganza of an application, everything runs smoothly, and
you’re able to create your perfect work of art whilst also search-
ing for primes as seen in Figure 10.2.

ptg6964689

cHApTER 10 : MESSAgINg ANd woRkERS : THREAdINg uSINg wEB woRkERS 257

Matryoshka dolls: workers
inside workers
If you had a watchful eye, you would have spotted that you can
also create new workers from within a worker. Currently, only
Firefox and Opera support this, but it’s part of the spec, so you
should expect that other browsers will be updated to include
this feature.

What this means is that you could spawn one worker, which then
goes and splits its job into lots of delegated little jobs and passes
them to sub-workers. Let’s go back to the example of applying
a complex filter to a photo in your super-sexy online image web
app. To speed up the processing of the image—assuming it made
sense in the filter—you could split the image up into regions and
pass each region of image data to a sub-worker.

As each worker returns, you reduce the pending count and,
once all the workers have finished, the main worker returns the
final processed image data to the parent document. It looks
something like this (I’ve left out some functions from the listing
as this is just to demonstrate the idea):

FIguRE 10.2 Everything you
could ever need: prime number
and drawing executed without
interruption thanks to Web
Workers.

ptg6964689

INTRoducINg HTML5258

var pendingWorkers = 0,
 results = {},
 workingWidth = 100;

onmessage = function (event) {
 var imageData = JSON.parse(event.data),
 worker = null;

 pendingWorkers = getNumberOfWorkers(imageData.width
 ¬ / workingWidth);
 // reset any old results
 results = {};

 for (var i = 0; i < pendingWorkers; i++) {
 worker = new Worker(‘photofilter.js’);
 worker.postMessage(JSON.stringify({
 imageData: imageData,
 x: i * workingWidth,
 width: workingWidth
 }));
 worker.onmessage = storeResult;
 }
};

function storeResult(event) {
 var result = JSON.parse(event.data);

 buildUpImageData(result);

 pendingWorkers--;
 if (pendingWorkers <= 0) {
 postMessage(JSON.stringify(results));
 }
}

When the message is received from the sub-worker, the main
worker above decreases the number of outstanding sub-workers.
Once all the sub-workers have returned their slice of the image
data, the final result is returned to the parent document.

The photofilter.js sub-worker would contain the following
code to process just a small region of the image data:

onmessage = function (event) {
 var data = JSON.parse(event.data);

ptg6964689

cHApTER 10 : MESSAgINg ANd woRkERS : THREAdINg uSINg wEB woRkERS 259

 // perform some amazing feat of image processing
 var imageData = amazingImageProcess(data.imageData,
 ¬ data.x, data.width);
 postMessage(JSON.stringify({
 imageData: imageData,
 x: data.x
 }));

 // self close
 close();
};

Notice also how photofilter.js, once it’s done performing its
task, calls the close() method. This allows the worker to termi-
nate itself, since it’s no longer needed.

Importing scripts and
libraries to your worker
The concept of Web Workers is very much about modularis-
ing a block of code or functionality and running it in a stand-
alone environment (that is, the worker itself). But Web Workers
can also load external JavaScript files and libraries via the
importScripts method.

This is one of the few worker-specific methods. It accepts a list
of URLs and loads them into the worker synchronously. You can
load one script at a time, or you can load multiple scripts from
within the worker:

importScripts(‘xhr.js’);
importScripts(‘prime.js’, ‘number_crunch.js’,
¬ ‘captain_crunch.js’);

Each script is processed one at a time. The script must be on the
same origin as the worker—the same domain, cname, and so on.
The worker then synchronously loads the JavaScript into itself,
returning to continue only once the script has finished processing.

Sharing a load with SharedWorkers
Another type of Web Worker is the SharedWorker, currently sup-
ported only in Chrome, Safari, and Opera. A shared worker is
pretty much like an average Web Worker except that multiple
documents can access the same instance of the worker. This

ptg6964689

INTRoducINg HTML5260

means that if you have several pop-ups or several iframes, all
those documents can access this single shared worker and this
single shared worker will serve all those documents.

This would be useful, for example, for applications like Gmail or
Facebook, where client-side data needs to be maintained, such
as messages for the user, and you have several different win-
dows open.

The worker can access and manage the website’s client-side Web
SQL Databases and IndexedDB (both discussed in Chapter 6).
It can also maintain the connection with the server, handling
all the data that’s coming in and out—perhaps even via a Web-
Socket to the server, as we’ll see in the next chapter—so that
data is handled in real time. The shared worker can then main-
tain all the changes to the client-side messages database and
push all those updates via postMessage to each of the pop-ups,
iframes, and so on.

This means that there’s no chance of data getting out of sync—
or chance of race conditions if each of the pop-ups, iframes,
and so on was individually connecting to the server and trying
to each manage the client side—since the shared worker is the
single point of contact for all of that type of work.

The SharedWorker works slightly differently when it comes to
communication. For starters there’s the concept of ports—this
is an array-like object that contains a reference to each of the
communication channels the shared worker has. Also, if you
bind to the message event using addEventListener, you have
to manually start the worker, which I’ll show you in the following
code sample.

In addition, within the worker the connect event fires when the
SharedWorker is created, which can be used to keep track of
how many connections the worker has to other documents.

The documents creating the SharedWorker contain the
following code:

var worker = new SharedWorker(‘messages.js’);
worker.port.addEventListener(‘message’, function(event) {
 var messages = JSON.parse(event.data);
 showNewMessages(messages);
}, false);
worker.port.start();

ptg6964689

cHApTER 10 : MESSAgINg ANd woRkERS : THREAdINg uSINg wEB woRkERS 261

In the preceding code block, you can see we’re accessing the
worker via the port property. This is how you interact and, in
fact, distinguish between shared and nonshared workers. As the
example binds to the message event using addEventListener,
the worker must be connected manually using the .start()
method. The code wouldn’t need this if it used onmessage.
Next is the messages.js worker:

importScripts(‘xhr.js’);
importScripts(‘database.js’);

var connections = [];

onconnect = function(event) {
 connections.push(event.ports[0]);
}

var xhr = new XHR(‘/get-new-messages’);
xhr.oncomplete = function (messages) {
 database.updateMessages(messages);

 for (var i = 0; i < connections.length; i++) {
 connections[i].postMessage(JSON.stringify(messages));
 }

 xhr.send(); // causes us to loop forever
};
xhr.send();

When a client document connects to the worker, the connect
event is fired, which allows me to capture the connection port.
This is collected through the event.ports[0] reference, even
though there will never be more than one item inside the ports
property. However, the worker reference is inside this, so we
can use this to post messages and receive messages.

As you see in the previous example, when the Ajax oncomplete
function runs, I loop through all the connected ports and send
them each a message of the new email messages that have
come in. This way the connected clients act as dumb terminals,
oblivious to any of the real work going on to store the messages
in the client-side database.

ptg6964689

INTRoducINg HTML5262

Debugging a worker
We’ve gotten to the point in web development where the tools
for debugging are so much better than ten years ago. All the lat-
est browsers come with their own JavaScript debugger (though
Firefox still requires Firebug as a plugin); it’s a haven of debug-
ging when compared to the bad old days of using alert boxes
left, right, and centre.

While with a Web Worker, now you’re working in a sandboxed
environment, so there is no access to the console debuggers.
There’s no native way to do console.log(“who’s the daddy?”) in
a worker. To compound this hurdle, there’s not even an alert box
we can use.

However! There is hope yet. The WebKit folks have kindly
thought about this problem, and in the scripts panel the devel-
oper tools offer a debug checkbox next to Web Workers (in both
Chrome and Safari). This changes how Web Workers actually
run (behind the scenes they’re running in a setTimeout), but it
does mean you can include console.log in your code to help
you debug as seen in Figure 10.3.

FIguRE 10.3 Check the
Debug check box to allow the
developer to run console.log
inside a Web Worker.

ptg6964689

cHApTER 10 : MESSAgINg ANd woRkERS : THREAdINg uSINg wEB woRkERS 263

It’s great that Chrome and Safari have debugging tools, but what
if you want to debug in Firefox, too? You’ll need to create your
own system for posting debug messages. However, as with all
communications from your worker—be it a debug message or
results from a worker’s delegated tasks—you’ll need to have some
agreed language between your workers and your main document
to differentiate between each of those different message types,
and this will depend entirely on your application. For instance,
you could prefix debug messages with the keyword “log:”

importScripts(‘xhr.js’);

var xhr = new XHR(‘/someurl’);
xhr.oncomplete = function (data) {
 log(‘data contains ‘ + data.length + ‘ items’);
};
xhr.send();

function log(msg) {
 postMessage(‘log ‘ + msg);
}

Note that xhr.js is my made-up XMLHttpRequest script that
returns me some JSON data—you’ll have to make your own!

In the main page in the onmessage event, I’ll be looking for
prefixes in messages and actioning them:

var worker = new Worker(‘xhr_thang.js’);
worker.onmessage = function (event) {
 var data = event.data.split(‘ ‘),
 action = data.shift(), // grab the first word
 msg = data.join(‘ ‘); // put the message back
 ¬ together

 if (action == ‘log’) {
 console.log(msg);
 } else {
 // some other action
 }
};

In this example, my agreed grammar is that all messages are
prefixed with an action. This could be log, set, run, or some
other action. What’s important is that I now have a way to
inspect data that’s inside the worker by sending data to my
log function when I’m not testing in Safari or Chrome.

NoTE It’s possible for a
worker to get aborted or

terminated through a method
unknown to your code. If your
worker is being killed off by the
browser for some reason, then
the worker.onerror event is
going to fire. If you’re closing
the worker manually, you’re hav-
ing to do this from within the
worker via .close() so you
have the opportunity to notify
the connected documents that
your worker is closing.

ptg6964689

INTRoducINg HTML5264

It’s also useful to be able to poke around inside a worker, some-
thing I’ve found to be exceptionally useful when experimenting
in JavaScript. In a nonworker environment, I can pop open my
console of choice (Firebug or Dragonfly, for example) and from
within there, I can log out and inspect all the properties on the
window object, the document, and then their properties, just to see
what’s supported and what I can play with. Since a worker is a
closed environment, I need to do this manually. So one of the
online examples for this book includes a console that allows you
to inspect a Web Worker and test code inside the worker and
see what it produces. You can see the worker console at http://
introducinghtml5.com/examples/ch10/echo.html (Figure 10.4).

Summary
There are a number of APIs that use similar messaging tech-
niques—we’ll cover more in the next chapter. Once you’ve got
your head around all the different ways you can communicate
within your web app, you have all the tools at your disposal to
create multi-threaded, multi-window, cross-domain thingamajigs.

Web Workers absolutely provide what has been eagerly
awaited: the ability to run background JavaScript jobs that don’t
lock your user out of a browsing experience. Now that you’ve
seen that it’s easy-peasy, I’m confident your websites will be
safe from the beach ball of death!

FIguRE 10.4 A demo console
to inspect inside a Web Worker.

http://introducinghtml5.com/examples/ch10/echo.html
http://introducinghtml5.com/examples/ch10/echo.html

ptg6964689

CHAPTER 11
Real Time

Remy Sharp

THE REAL-TIME wEB is one of those golden eggs of the

Internet. Very cool when you come across it, but perhaps

quite daunting when it comes to building it. This chapter

will show you the choices of technology and how spec-

tacularly simple the client-side code is.

There are two options to add a real-time aspect to your

web application: Websockets and Server-Sent Events.

WebSockets let you create a connected stream to your

server (for server boffins out there: a TCP connection),

and allow two-way, real-time communication between the

server and the client. The typical hello world app is a chat

client, but the possibilities of use are endless. Sockets go

a long way toward replacing Comet-based code. Comet

uses a variety of—often quite hackish—techniques to

achieve real-time, streaming data from a server.

WebSockets simplify this process on the client side,

as we’ll see later in this chapter.

ptg6964689

INTRoducINg HTML5266

Server-Sent Events, also known as EventSource, push messages
sent in real time from the server to the browser client. These are
perfect for applications that need information from a server with-
out necessarily having to wait for any user interaction or input,
like streaming prices or live chart updates, or live information
that you’re monitoring.

WebSockets: working with streaming data
The WebSockets specification is one of the shiniest new APIs
outside the realm of HTML5, but it’s actually really important
for some of the real-time-based web applications that have
emerged recently.

WebSockets give you a bidirectional connection between your
server and the browser. This connection is also real time and is
permanently open until explicitly closed. This means that when
the server wants to send your client something, that message is
immediately pushed to your browser.

This is what Comet succeeded in doing. Comet created a real-
time connection to your server, but it would do it using a variety
of different hacks. Ultimately, if none of these hacks worked, it
would eventually fall back down to Ajax polling, which would
constantly hit your server and that doesn’t scale up very well.

If you have a socket open, your server can push data to all those
connected sockets, and the server doesn’t have to constantly
respond to inbound Ajax requests. This is the move from polling
to pushing, from reactive to proactive. This is what Comet was
achieving through hacks, and this is what WebSockets achieve
natively in the browser.

Sockets solve latency of
real-time applications
Low latency is a massive benefit of WebSockets. Since your
socket is always open and listening, as soon as data is pushed
from the server, it just has to make its way to your browser, mak-
ing the latency exceptionally low in comparison to something
like an XMLHttpRequest-based Ajax request.

NoTE If the browser
doesn’t natively support

WebSockets, you can fake it
using Flash. Visit https://github.
com/gimite/web-socket-js to
see Hiroshi Ichikawa’s Flash-
based polyfill for WebSockets.

https://github.com/gimite/web-socket-js
https://github.com/gimite/web-socket-js

ptg6964689

cHApTER 11 : REAL TIME : wEBSockETS: woRkINg wITH STREAMINg dATA 267

To take something like Google Wave—the now defunct real-
time web-based email and collaboration tool—as an example,
if you have lots of people all in the same document, and you’re
all typing, you want to send all those keystrokes to all the con-
nected people as soon as the keystrokes happen. However, if
you’re using vanilla Ajax to do that, you would have to create a
new XHR object every time a key is hit, and every one of those
requests will contain all the headers that are sent with a normal
XHR request—like the user agent string, the referrer URL, the
accepted content type, and so on. That’s a lot of data for what
was essentially a single keypress.

With sockets, on the other hand, because the connection is
always open, you need only send the information about the key-
stroke, which would then be disseminated to all the connected
clients via the server, and only that single piece of information
would be sent.

The data sent has gone from Ajax—which will be perhaps
200–300 bytes of data—to a socket connection, which will
be just a few—around 10–20 bytes of data—making our applica-
tion much more responsive, with faster transfer around the con-
nected sessions.

The simple WebSocket API
The WebSocket API is also exceptionally easy to work with. Cur-
rently, browsers only support sending strings (with the exception
of Firefox and Web Workers), which we’ve seen in Chapter 10
with the Messaging API and Web Workers using postMessage
and onmessage. Sockets work in almost exactly the same way.

This means that you can’t (currently) send binary data—but I’d
argue that in the web world we’re used to working with JSON
and it’s not a particularly big deal to encode to JSON as the
messages come in from a socket, since we’re already doing it
for JSON Ajax requests.

The API is limited to the essential methods for creating the con-
nection, sending data down the socket, receiving, and closing
the socket. There’s also an error handler and a state flag, which
tells our app if the socket is currently connecting, open, closing,
or closed. Once you’ve closed a socket, it can’t be reopened, so
you’ll need to create a new socket.

NoTE Regarding the
ws:// server protocol,

writing about how to set up the
server side is beyond the scope
of this book, but there are
already several libraries out
in the wild that can add the
WebSocket protocol to your
existing setup. Using servers
like Node.js, I was able to get a
WebSocket server up and run-
ning in around 20 minutes.
Visit http://remysharp.com/
slicehost-nodejs-websockets/
to see how I documented
the process.

http://remysharp.com/slicehost-nodejs-websockets/
http://remysharp.com/slicehost-nodejs-websockets/

ptg6964689

INTRoducINg HTML5268

Creating a new WebSocket is easy and very much like creating
a new Web Worker. The protocol of the URL must be ws:// but
the rest of the URL can be structured just as you would a normal
URL, to be:

var socket = new WebSocket(‘ws://myserver.com/tweets:
¬ 8080/’);

For this example, I’m going to be listening only to the messages
that come from the tweets URL. Each is a new tweet from
Twitter that my server has been set up to listen for (Figure 11.1).

The messages from the server are being delivered as JSON
messages, forwarded on from Twitter’s streaming API. So when
they come in, I’ll convert the JSON to data and render the tweet
on the screen:

FIguRE 11.1 A streaming
connection showing tweets that
my server was listening for.

ptg6964689

cHApTER 11 : REAL TIME : wEBSockETS: woRkINg wITH STREAMINg dATA 269

socket.onmessage = function(event) {
 var tweetNode = renderTweet(JSON.parse(event.data));
 document.getElementById(‘tweets’).appendChild(tweetNode);
};

Now in as many as four lines of JavaScript (excluding the
renderTweet function, which just massages the incoming parsed
JSON data into a workable HTML fragment to append to the
page), I’ve got streaming real-time tweets on my page.

Doing more than listening with a socket
As I said before, there are more methods available on a socket
than just listening. Since a chat application is the hello world of
Comet, I felt it only fair to show you a simple example of what
chat would look like using WebSockets:

var socket = new WebSocket(“ws://my-chat-server.com:8080/”),
 me = getUsername();

socket.onmessage = function(event) {
 var data = JSON.parse(event.data);
 if (data.action == ‘joined’) {
 initiliseChat();
 } else {
 showNewMessage(data.who, data.text);
 }
};

socket.onclose = function () {
 socket.send(JSON.stringify({
 action: ‘logoff’,
 username: me
 }));
 showDisconnectMsg();
};

socket.onopen = function() {
 socket.send(JSON.stringify({
 action: ‘join’,
 username: me
 }));
};

TIp The URL that you
use for the WebSocket

doesn’t have to be the same ori-
gin as your document. This
means you can connect to serv-
ers from third-party services,
which expands the possibilities
of what can be done.

ptg6964689

INTRoducINg HTML5270

This simple pseudo code shows you how the same techniques
we used in the Message API can help with getting around the
limitations of plain text. The WebSocket API really is as simple
as that. All the negotiation is done out of sight by the browser
for you; all the buffering is done for you (though you can check
the current bufferedAmount on the socket). In fact, the communi-
cation process is even easier than setting up an XHR object!

Server-Sent Events
These are situations where you want to have simple push-based
messages that come from the server. Server-Sent Events are well
suited to applications like real-time price updates, or latest head-
lines, or some real-time, one-way information that needs to get to
the browser. If you instead need real-time, two-way communica-
tion, you want WebSockets as we saw earlier in this chapter.

Server-Sent Events come through the EventSource object.
They’re quite similar to WebSockets in their use. You create a
new EventSource, passing it a URL to connect to. The browser
immediately begins to establish a connection.

The EventSource object has a few simple events:

•	 Open: when the connection has been established

•	 Message: when a new message comes in—the event’s data
property contains the raw message

•	 Error: if something goes wrong

What makes EventSource unique is the way it handles dropped
connections and message tracking.

If the EventSource connection is dropped for any reason, the API
automatically tries to connect. If you use message IDs, when the
EventSource reestablishes its connection it will tell the server
which message ID it last saw. This allows the server (if your
application requires it) to easily send the client the backlog of
messages it missed.

Say for instance you had created a real-time charting application
that tracked every time Bruce mentions his favourite pink cud-
dly toy on Twitter. This charting app will plot Bruce’s sentiment
against the current time—so you know if he’s happy with the
colour, texture, and general feel of the thing or not.

ptg6964689

cHApTER 11 : REAL TIME : SERVER-SENT EVENTS 271

Since the browser just needs to passively receive data from the
server, Server-Sent Events are a good match.

Now let’s assume that while you’re carefully monitoring Bruce’s
adorations on your app, you lose the connection. When you
return online, EventSource will tell the server that the last mes-
sage ID was 69; the server is now up to message ID 78. So the
application on the server realises that you’ve missed a bunch
of messages, and the server will send back all the messages
from 70 onwards. Your client code doesn’t change in any way,
since each of those missing eight messages will just trigger the
message event, and everything will be plotted accordingly.

Here’s an example of said application:

var es = new EventSource(‘/bruces-pink-toy’);

es.onopen = function () {
 initialiseChart();
};

es.onmessage = function (event) {
 var data = JSON.parse(event.data);
 chart.plot(data.time, data.sentiment);
};

Server-Side Events—the server side technology

On the server side, you could use a PHP-based setup (LAMP for
instance), but since Apache (the A in LAMP) doesn’t support persistent
connections very well, it will keep dropping the connection, and the
EventSource will keep on reconnecting automatically. This will effec-
tively result in something more akin to an Ajax polling application.

This isn’t the best way of doing things, but I appreciate that PHP prob-
ably has the lowest barrier of entry for most of us, so knowing that it
can still work is useful. To take real advantage of the EventSource,
you need a persistent connection to the server, and your typical LAMP
setup isn’t going to cut it.

You can, and probably should, opt for an event-based server. Going
into great detail about this is way beyond the scope of this book, but
I’d recommend looking at Node.js (a JavaScript-based server platform)
or something like Twisted for Python.

ptg6964689

INTRoducINg HTML5272

The server needs to keep the connection open to the client,
and it must send the client a header with the mime type
text/event-stream.

The server needs to send new messages as such:

id: 1\n
data: { “semiment”: “like”, “time”: “2011-06-23 16:43:23”
¬ }\n\n

Two new lines indicate the end of the message. If we were
sending just plain sentences (rather than JSON in Bruce’s case),
the API supports sending multiple lines as such:

data: Here’s my first really, really, really long line,
¬ but -\n
data: I’ve not just finished there, I’ve got more to
¬ say.\n\n

data: Since I follow two blank lines, I’m an entirely new
¬ message\n\n

In the example above, only two messages would be sent. Also
notice that I’m not using any IDs either—they’re not mandatory,
but if you want to support the picking up where you dropped off
feature, you’ll want to include the IDs.

A simple EventSource server
What follows is some very simple Node.js code to accept con-
nections to an EventSource-based server and send messages.
Again, it’s beyond the scope of this book to explain the server
logic, but it should give you a starting point. I’ve also simplified
the solution so the server just notifies connected users about
the user agent string of other visitors that are currently con-
nected to the same service. We’ll keep Bruce’s special toy chart-
ing experiment for another day!

/** When they create a new Event Source */
response.writeHead(200, {‘Content-Type’:
¬ ‘text/event-stream’, ‘Cache-Control’: ‘no-cache’});
// get the last event id and coerce to a number
var lastId = req.headers[‘last-event-id’]*1;
if (lastId) {
 for (var i = lastId; i < eventId; i++) {
 response.write(‘data: ‘ + JSON.stringify
 ¬ (history[eventId]) + ‘\nid: ‘ + eventId + ‘\n\n’);

ptg6964689

cHApTER 11 : REAL TIME : SERVER-SENT EVENTS 273

 }
}

// finally cache the response connection
connections.push(response);

/** When a regular web request is received */
connections.forEach(function (response) {
 history[++eventId] = { agent:
 ¬ request.headers[‘user-agent’], time: +new Date };
 response.write(‘data: ‘ + JSON.stringify
 ¬ (history[eventId]) + ‘\nid: ‘ + eventId + ‘\n\n’);
});

My client-side code looks like this:

var es = new EventSource(‘/eventsource’);
es.onmessage = function (event) {
 var data = JSON.parse(event.data);
 log.innerHTML += ‘’ + data.agent +
 ¬ ‘
 connected at ’ +
 ¬ (new Date(data.time)) + ‘’;
};

A very simple application, but behind the scenes all the hard
work happens thanks to real-time, push-based events from
the server.

Implementation support
Support isn’t too bad for EventSource. Chrome, Safari, Firefox,
and Opera handle it just fine, while—at the time of writing, at
least—whether or not IE10 will support EventSource sadly remains
a mystery (but I still have every faith). However, because Event-
Source reverts to polling, it’s very simple to replicate this API to
create a polyfill using JavaScript and Ajax (you can see a few
examples online here: https://github.com/Modernizr/Modernizr/
wiki/HTML5-Cross-browser-Polyfills under “EventSource”).

One thing I’ve noticed is that if you create a new EventSource
during or immediately after the page has loaded, some brows-
ers will keep their “loading throbber” running, making it look
like the page has more to load even when that’s no longer the
case. I’m unclear if this is a bug in the implementations or if it’s
a specially crafted feature to keep us developers on our toes,
but I’ve found that simply waiting for the document to finish

https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-browser-Polyfills
https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-browser-Polyfills

ptg6964689

INTRoducINg HTML5274

loading and then wrapping your EventSource initialisation code
in a setTimeout(init, 10) helps to avoid that unsightly and
nasty throbber.

Summary
This chapter has equipped you with the very best in buzzword
compliancy: real time. At the same time, adding a real-time
dimension to your website could give you the competitive edge,
and now that you’ve seen how easy the JavaScript is, I expect
it’s hard to resist. Obviously there is some server-side hickery
pokery to be done, but once that’s in place, you’ll quickly be
able to attract all those short attention span users. Now go build
something a-maze-zing.

ptg6964689

CHAPTER 12
Polyfilling:
Patching

Old Browsers
to Support

HTML5 Today
Bruce Lawson and

Remy Sharp

So, THANk You for reading this far. By now we’ve prob-

ably whetted your appetite with new structural elements,

piqued your interest with the new APIs, and you’re champ-

ing at the bit to start using all these new cool things. But

Internet Explorer 6, 7, and 8 stand in your way. Not for

long, gentle reader.

ptg6964689

INTRoducINg HTML5276

Introducing polyfills
When you decorate your house, you find cracks or holes in walls
and wooden surfaces that need to be filled so that the surface
is level. To achieve this, you use a white filler paste that gives
you a smooth, level surface upon which you can paint, hang
wallpaper, or otherwise decorate.

This chapter introduces polyfilling, which is a way to fill the holes
in browser support using JavaScript (or any appropriate technol-
ogy such as Flash if it makes sense) to level the playing field.

We’ve seen that the HTML5 shiv allows new HTML5 elements
to be styled in oldie. But what about all the exciting APIs we’ve
introduced?

The method is

•	 Code your page according to the standard APIs and test in
browsers that support all the features you need to use.

•	 Using JavaScript, feature-detect each of the features that
your site requires to work.

•	 If a feature is unavailable in the browser, lazy-load a polyfill
script that fakes support.

•	 Pat yourself on the back and have a cup of tea and a
custard cream.

There is a downside: really creaky browsers might end up load-
ing a lot of scripts, so performance could be terrible. This is a
matter of testing thoroughly.

You might also be somewhat surprised at this hacky approach.
After all, isn’t the point of HTML5 to let us make modern web
apps without hacks and fallbacks? Well, yes, it is. The crucial dif-
ference with the polyfilling method is that new browsers use only
the modern standards, without any hacks. The hacks are only
there to patch up old browsers; this approach has been termed
“regressive enhancement,” because we’re hacking for a dwin-
dling number of old browsers, rather than hacking forever after.

The polyfilling method also means clean code; we code to the
spec in our markup and scripts in the first instance, and only
(optionally) load additional hacks using our off-the-shelf polyfill-
ing scripts. It’s what marketing types call a “win-win situation,”
because they’re not always wrong about everything.

NoTE Shivs vs Shims:
Did Bruce & Remy mean

“shiv”? Yes folks. The HTML5
shiv was coined by John Resig
who later admitted (or realised)
that he really meant shim, but
the name stuck, so now it’s the
HTML5 shiv. It’s a bit stabby, but
it works.

NoTE Just remember that
a polyfill isn't progressive

enhancement—nor does it partic-
ularly support graceful degrada-
tion. A polyfill typically requires
JavaScript in the first place.

ptg6964689

cHApTER 12 : poLYFILLINg: pATcHINg oLd BRowSERS To SuppoRT HTML5 TodAY : FEATuRE dETEcTIoN 277

What makes a polyfill different from the techniques we have
already, like a shim, is this: if you removed the polyfill script, your
code would continue to work, without any changes required in
spite of the polyfill being removed.

Feature detection
Detecting support for a particular technology is the first step in
deciding whether or not your application needs a polyfill. Note
that I say detecting support, rather than just browser sniffing,
declaring that this particular browser is lacking a particular fea-
ture and therefore we’ll fix it using our hack.

With feature detection you’ve future proofed your polyfill. That
way if the user upgrades their browser to one that supports the
required technology, your polyfill sees the native feature is there
and doesn’t run. Equally, the user could still be using the same
old browser, like IE7, but could have installed some super power
extension that gives them all the tasty HTML5 goodness. Any
user agent sniffing would have failed in this instance, whereas
feature detection leaves you feeling smugger than Bruce when
he’s wearing his “I’m smug” t-shirt.

With detecting support in mind, not everything can be detected,
which we’ll come on to.

There are different ways to detect support in browsers, and
often it comes down to the specific technology you’re trying to
support, but the key thing to remember is that if you’re writing a
polyfill, make absolutely sure your feature detection works cor-
rectly in all the browsers you plan to support.

In the majority of cases, though, feature detection is just a matter of
testing whether a function or property exists in the current browser.

ptg6964689

INTRoducINg HTML5278

Detecting properties
For example, along with the document.body shortcut property,
in HTML5 we now have document.head. Not so exciting, but
still useful when you want to inject some script element, for
instance. As this is simply a property, it’s easy to test for its
existence and to set it if it’s not available:

if (document.getElementsByTagName(‘head’)[0] !==
¬ document.head) {
 document.head = document.getElementsByTagName(‘head’)[0];
}

When simplified, it looks like this:

document.head || (document.head =
¬ document.getElementsByTagName(‘head’)[0]);

In our code, we’re testing for document.head, and if it has a
falsey value (in fact, undefined), we explicitly set document.head
to the head element. However, rarely in the wastelands of cross-
browser support is anything that simple. The potential problem
with this code is that if you were to generate an iframe dynami-
cally in JavaScript, its document wouldn’t have the head property
unless you ran this code against it. Not a big problem—we just
rerun the code—but it’s worth bearing in mind (hat tip to Mathias
Bynens for the code, and Lea Verou for flagging iframes).

Another common detection method is to test for the existence
of a particular property in an HTML element. For example, to
test if the browser has native support for the details element,
we create the element and then test if the open property (which
we know is part of the standard details implementation) exists,
so we create this element on the fly, and test if said property
is present:

if (!’open’ in document.createElement(‘details’)) {
 // does not have native support, let’s polyfill it...
}

What we’re asking here is: does the open property exist on the
details element. It doesn’t have to be in the DOM to give us an
accurate reading of true or false.

NoTE A falsy value in
JavaScript is one that

returns false in a test though
doesn’t particularly have to be
the value false. For example,
testing (in an if statement) the
value of an empty string, the
number 0 or the expression 1 - 1
all have falsy values.

ptg6964689

cHApTER 12 : poLYFILLINg: pATcHINg oLd BRowSERS To SuppoRT HTML5 TodAY : dETEcTINg pRopERTIES 279

Detecting new functions
If you don’t know already, in JavaScript, everything is an object
(and there are lots of great books dedicated to this particular
aspect of JavaScript). Since we’re in the browser, the global root
variable is the window object, and functions and methods are
properties on this window object. Because of this, we can test for
new functions, methods, and constructors in the same way as
we did when we were looking for property values.

When I want to test if sessionStorage is available natively in the
browser, I can do:

typeof window.sessionStorage !== ‘undefined’

However, older versions of Firefox (3.x in particular) will throw a
security exception if cookies are disabled for this particular line
of code (as we touch on in Chapter 6). As I want this polyfill to
support old versions of Firefox, rather than throwing exceptions
all over the place, I’ll wrap the test in a try/catch:

var sessionStorageAvailable = (function() {
 try {
 return typeof window.sessionStorage !== ‘undefined’;
 } catch (e) {
 return false;
 }
})();

As we’ve already seen, each property and method you’re aiming
to polyfill will have its own intricacies when testing in the brows-
ers you plan to support. But this is part of web development
which we’re all well and truly used to.

Detecting everything when
JavaScript isn’t your forte
If JavaScript isn’t your bag, there’s still hope for you yet. The
Modernizr project (http://modernizr.com), maintained by Faruk
Ateş, Paul Irish, and Alex Sexton, is a small JavaScript library
that gives you a complete programmatic view of what your
browser does and doesn’t support.

Don’t be confused by the name though; the library won’t mod-
ernise your browser, but it will give you the starting point to eas-
ily detect support for over 40 different new aspects of HTML5
and CSS3. If you wanted to improve your JavaScript, or even

NoTE It’s also worth
mentioning now that Mark

Pilgrim, author of “that other
HTML5 book,” HTML5: Up and
Running, put together an abso-
lutely amazing and possibly near
definitive list of methods to
detect features in browsers.
Go to http://diveintohtml5.org/
everything.html to have a look.

http://diveintohtml5.org/everything.html
http://diveintohtml5.org/everything.html
http://modernizr.com

ptg6964689

INTRoducINg HTML5280

just for the curious, it’s worth popping the hood on Modernizr
as it’s a great way to learn how some features can be detected.
You might find that some places are ugly to look at as browsers
sometimes lie about their support or don’t completely follow
the specifications.

Performance of feature
testing and polyfills
A question that’s usually asked when JavaScript is proposed to
solve a deficiency in the browser is: “What’s the performance?”

Of course, any additional JavaScript that runs in the browser
(even if it’s just a one-liner that tests for the presence of a par-
ticular feature) will have a performance impact. However, when it
comes to real-world use, a very large proportion of feature detec-
tion tests are going to be micro-snippets of code that won’t have
any effect on your application at all. Runtime will be in the milli-
seconds, which we’d say is negligible in most situations.

What you should also remember is that JavaScript engines are
really fast. As the newer and faster browsers are less likely to
need polyfills, extensive patches, or helper scripts—and instead
require only that you run a few tests—there will be little or no
cost for users with modern browsers.

Even for older browsers, which have slower JavaScript engines,
there will still be no significant cost in the feature detection, but
there may be some wait time to load the polyfill. This may be
unavoidable, as we’re trying to drag these old browsers into
today’s world, albeit kicking and screaming.

What’s particularly important is that you don’t polyfill everything
including the kitchen sink (sorry, I couldn’t resist the poor man’s
DIY joke). When you’re including JavaScript to do what the
browser can’t do natively, it will always cost a little bit of perfor-
mance. If you include a lot of redundant functionality that you
won’t make use of, then it’s obviously a waste. Try to include
only what you absolutely need. If you’re building the next Super
Bruce & Super Remy adventure game using canvas, and find
that polyfilling slows IE6 down to a grinding halt and your main
audience is IE6 users: don’t use it! As the developer you need to
make the judgment call as to whether the selected technology
is the right tool for the job.

ptg6964689

cHApTER 12 : poLYFILLINg: pATcHINg oLd BRowSERS To SuppoRT HTML5 TodAY : wHERE To FINd poLYFILLS 281

The undetectables
As we’ve already alluded to, there are definitely nuances in writ-
ing a polyfill for one technology to the next. However, there are
also the black holes, those undetectable technologies.

A simple example of an “undetectable” is a technology that
gives a false positive when tested.

Let’s take, for example, the contenteditable attribute from Chap-
ter 2. If you test for the attribute using the methods we’ve seen
so far, it will tell you that contenteditable is supported, but really
the problem is that on a device like Safari Mobile (pre-iOS 5) the
keyboard doesn’t actually focus to the editable area, so in reality
it’s not supported, regardless of the feature detection test.

It’s hard to say exactly what is and isn’t available to feature test.
So long as you’re testing your polyfill against all the browsers
your site plans to support, you’ll find whether or not the feature
can be truly and reliably detected.

If you’d like a head start on those undetectables and determin-
ing the environments in which they’re undetectable, the Mod-
ernizr project (https://github.com/Modernizr/Modernizr/wiki/
Undetectables) has a page dedicated to those technologies.

If a feature can’t be detected, what’s the solution? Well, it’s
nasty, but one answer could be to browser sniff. It’s an unreli-
able technique because the browser doesn’t always tell the
truth about its version or even its name—even today Microsoft
Internet Explorer claims to be a Mozilla browser! What you
should also be wary of with user agent sniffing is that there are
future browser versions that your code might pick up incorrectly.
It’s a very wobbly ground on which to rely.

Where to find polyfills
As with most JavaScript snippet libraries, polyfills are scattered
around the Web, but Paul Irish, like a superhero flying out of the
deepest, darkest corners of the Web, started a wiki page col-
lecting all the ones he could find (https://github.com/Modernizr/
Modernizr/wiki/HTML5-Cross-Browser-Polyfills). Since this page
is a wiki, it has grown over time with many contributions from
the web development community, including our fine selves, with

https://github.com/Modernizr/Modernizr/wiki/Undetectables
https://github.com/Modernizr/Modernizr/wiki/Undetectables
https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-Browser-Polyfills
https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-Browser-Polyfills

ptg6964689

INTRoducINg HTML5282

polyfills that provide all sorts of solutions ranging from canvas,
SVG, Web Forms, WebSockets, EventSource, details element,
data-* attributes, and many, many more.

In addition, this resource doesn’t just include polyfills, but shims
and other useful libraries as well.

CSS Polyfills

The concept of polyfilling applies to CSS3, also: CSS3Pie (http://
css3pie.com) and IE-CSS3 (http://fetchak.com/ie-css3/) make IE6–8
capable of rendering a few of the most useful CSS3 decoration features.
Meanwhile, selectivizr (http://selectivizr.com) is a JavaScript utility that
emulates CSS3 pseudo-classes and attribute selectors in IE6–8. eCSS-
tender (http://ecsstender.org) is another polyfill. Of course, CSS is never
required for a site to function in the same way an API is—if it is, you’re
doing it very wrong. And please note: CSS3 has nothing to do with
HTML5. Think of this as bonus information, because we love you.

A working example with Modernizr
So now you’re armed to the teeth with feature detection tech-
niques, and you’ve written your amazing polyfill script that will
smooth out the cracks in browsers when people visit your site,
but how do you make it all work?

We’ll show you how to use Modernizr combined with a super
duper useful tool called yepnope (by Alex Sexton and Ralph
Holzmann at http://yepnopejs.com) to firstly detect whether the
browser supports the technology you need, and, if it doesn’t, load
a polyfill and then get on with loading the rest of your application.

Since the nice folks behind Modernizr care so much about you,
yepnope already comes bundled inside Modernizr with the
Modernizr.load method, so you don’t even have to worry
about it.

Let’s say your application is going to use sessionStorage.
You’ve found the sessionStorage polyfill Remy wrote, but it
also requires JSON support, so we’ll need to test for both
sessionStorage and JSON support before our application can
start properly.

http://css3pie.com
http://css3pie.com
http://fetchak.com/ie-css3/
http://selectivizr.com
http://ecsstender.org
http://yepnopejs.com

ptg6964689

cHApTER 12 : poLYFILLINg: pATcHINg oLd BRowSERS To SuppoRT HTML5 TodAY : A woRkINg ExAMpLE wITH ModERNIzR 283

Modernizr.load({
 // first tests
 test: function () {
 return !!window.JSON;
 },
 nope: ‘json2.js’
}, {
 // second tests
 test: Modernizr.sessionStorage,
 nope: ‘sessionStorage.js’
},
// now once we’re all good to go, include app.js
‘app.js’
});

Make sure you’re using a version of Modernizr that you built your-
self. This is easy if you just go to the Modernizr website: select
the pink Production button and build yourself. From here you can
select the features you want to test for. The advantage is that
your visitor downloads less code when visiting your website.

You include the Modernizr JavaScript file, and then the code
above, which simply tells Modernizr to run two tests before
including the app.js file (which would include all your applica-
tion code). Although we’re calling Modernizr, all the testing and
conditional loading is happening in the magic yepnope library.
You don’t have to worry about that; just focus on specifying the
feature tests required before your code gets run.

The first test is checking that JSON is available natively. This isn’t
part of HTML5, but hey, we included geolocation in this book, and
that’s not part of HTML5 either! The point is that you polyfill any
technology if you want to level the playing field. If the test fails—
say the browser is IE7, which doesn’t have JSON natively avail-
able—our code will go ahead and load the json2.js file.

Next, we test for sessionStorage support. Since we chose to
build this version of Modernizr to test for sessionStorage, this
value will be available as either true or false depending on sup-
port. If false, the sessionStorage.js polyfill is loaded (note that
from our example above, it will read the sessionStorage.js file
from the relative path on your domain).

ptg6964689

INTRoducINg HTML5284

Finally, once all tests are complete and all required polyfills are
loaded, the app.js file is loaded and your application can start
up properly, safe in the knowledge that even if it’s running in
a dirty old browser like IE6, it can still use the latest, snazziest
technology like sessionStorage and JSON.

Summary
We’ve seen that it’s possible, and relatively simple, to make
HTML5 apps work in old browsers by performing feature detec-
tion (as by design, most—but sadly not all—HTML5 features can
be programmatically detected) and patching in support with
helper script. However, it’s important to be aware that polyfills
probably won’t perform as well as their native counterparts,
and that older browsers like IE6 will be further slowed down by
their non-performing JavaScript engines. It may well be better in
these cases to avoid polyfilling and provide a completely differ-
ent fallback solution.

ptg6964689

SuMMARY 285

Hopefully, you’ve been enlightened by our brief foray into the
new structures and APIs that you can use.

There are loads more cool but not-yet-implemented things in
the spec that we haven't shown you. For example, you’ll be able
to register the browser as a content handler (registerContent-
Handler) so that clicking a document, photo, or video on your
desktop opens the browser and goes to a web application that
can edit that document, complete with application toolbars (using
<menu> and <command>), all built with HTML5. Awaiting implentation.

Forget the marketing BS of “Web 2.0.” We’re at the beginning
of Web Development 2.0: powerful languages like HTML5, SVG,
and CSS3 will revolutionise the way we build the Web. Browsers
support more and more aspects of these languages, and you
can be certain that further support is being added daily.

But it’s vital that we remember that we are dealing with web
development. The Web is based on URLs and hyperlinks, and it’s
a method to deliver content. If your amazing demo is basically
contentless divs being flown around the screen by JavaScript; or
if your content is text-as-pixels scripted with canvas; if you require
a mouse or a touchscreen; or if you have no links, no content,
and no URLs to bookmark or link to; or if you generate all your
markup from unreadable obfuscated JavaScript, ask yourself: am
I developing for the Web, or am I reinventing DHTML or Flash
intros that just happen to run in the browser instead of a plugin?

Of course, have a play with the new features. Experiment with
the new markup structures, manipulate video on the fly, and
build fun and attractive games and apps that use canvas. By
reading this book, you’re demonstrating that you’re an early
adopter, you’re ahead-of-the-curve, so please set a good exam-
ple for your colleagues: respect those visitors who have older
browsers or assistive technologies.

Thanks for buying this book and sticking with us. Pop by
introducinghtml5.com; all the code (and more) is available.

Bon voyage: Enjoy building incredible things. kthxbai.

 —Bruce Lawson and Remy Sharp
Birmingham, and Brighton, September 2011

AND FINALLY...

ptg6964689

INdEx286

INDEX
attachEvent method, 251

versus addEventListener event, 124
attributes

custom data, 72–73
global, 70–75
removed in HTML5, 75–76

Audacity software, 122
Audio Data API, 118
<audio> element/audio, 54, 110, 112–113. See also

multimedia
attributes, 124
autoplay, 113
controls, 54, 114
loop, 116
muted, 115
playbackRate, 135
preload, 116, 130
src, 116

events, 124, 127–129
methods, 124
addTrack(), 124
canPlayType(), 123–124
load(), 123–124
pause(), 123–124, 126–127
play(), 123–124, 126–127

autocomplete attribute, 92
autofocus attribute, 89
autoplay attribute, 113, 124

B
Baranovskiy, Dmitry, 152
Base64 encoding, 162–163
<bdi> element, 58–59
beginPath method, 150–151
 element, 69
Berjon, Robin, 20
Berners-Lee, Sir Tim, 33
Bespin project, 166
bezierCurveTo method, 152
bidirectional connections, 266
bidirectional text, 58
<big> element, 70
Bing, schema.org, 27
BlackBerry, input types

color, 87
date, 82–83

<blink> element, 70
block-level elements, 39, 54
block-level style sheet, 11
<blockquote> element, 18, 36
<footer> element, 29

A
AAC codec, 118, 120, 136
abort event, 124
accessibility. See also WAI-ARIA

Designing with Progressive Enhancement: Building the
Web that Works for Everyone, 52–53

“Importance of HTML Headings for Accessibility,” 38
“Introduction to WAI-ARIA,” 52
The Paciello Group, 52
Universal Design for Web Applications, 52

accesskey attribute, 70–71
Ace editor, 166
addEventListener method, 228, 251, 261
<address> element, 65
addTrack method, 124
Adkins, Jr., Tab, 57
Adobe Flash, 121, 125

MediaEvent.js plugin, 139
polyfill for WebSockets, 266

<a> element, 54
alt attribute, 62
“The Amazing HTML5 Doctor Easily Confused HTML5

Element Flowchart of Enlightenment!”, 44
animating canvas paintings, 163–166

rendering text, 166–167
saving/restoring drawing states, 166

AppCache, 212, 223
Apple Safari. See Safari
<applet> element, 70
Apple VoiceOver screen reader, 53
applicationCache object, 209, 217–218, 220–222
arcTo method, 152
ARIA (Accessible Rich Internet Applications).

See WAI-ARIA
aria-describedby attribute, 74
aria-grabbed attribute, 236
aria-labelledby attribute, 74
aria-required attribute, 90
ARIA role=presentation attribute, 61, 75
aria-valuemax attribute, 98
aria-valuemin attribute, 98
aria-valuenow attribute, 98
<article> element, 18–20, 54
<footer> element, 28–29
<header> element, 28
links around block-level elements, 39
nesting, 28–29
replacing <div class=”post”>, 25
replacing <div> element, 32
versus <section> element, 38–44

<aside> element, 17–19, 34–35, 54, 57
Ateş, Faruk, 279

ptg6964689

INdEx 287

<body> element, 3–4, 5, 18, 36
border=... attribute, 75–76
browsers. See legacy browsers or specific browsers
buffered attribute, 124
<button> element, 54
Bynens, Mathias, 278

C
CACHE MANIFEST namespace, 210, 221
Camen, Kroc, 121
Camino, legacy problems, 12
canplay event, 124, 130
canplaythrough event, 124, 130
canPlayType method, 123–124
<canvas> element/canvases, 54

2D API, 144, 146
versus SVG (Scalable Vector Graphics), 152

accessibility, 168
animating paintings, 163–166

rendering text, 166–167
saving/restoring drawing states, 166

capturing images, 155–158
drawing paths, 150–152
exporting in multiple formats, 162–163
interrogating individual pixels, 159–161
Open Web technology, 144
painting gradients and patterns, 147–150
transformations, 153–154
vector-drawing programs, 144–145

CanvasPixelArray object, 161
case studies, www.guardian.co.uk, 44–49
caveats, <small> element, 19
<center> element, 70
character encoding, UTF-8, 2
charset=”utf-8” attribute, XHTML and XML versus

HTML5, 2
checkvalidity method, 104
Chisholm, Wendy, 52
Chrome (Google)

audio/video codecs, 118
controls attribute, 114
<details> element, 60
drag and drop, 226–227, 229, 232
EventSource object, 273
forms, 81
Google Docs, 209
IndexedDB, 204
input types

number, 85
range, 85

offline applications, 208, 219–220, 223
outlines, 32
<progress> element, 94–95
schema.org, 27
Web SQL Database, 170–171, 184
Web Storage API, 178
Web Workers, 253, 259, 262–263

<cite> element, 66

classes
attributes, 6, 8
names, Google index research, 6

clearInterval method, 156
clearWatch method, 239–240
clip method, 152
codecs, 117

best, 119
browser support, video and audio, 118
handheld devices, 122–123
royalty-free, 122
<source> element, 118–120

color attribute, 87
Comet WebSockets, 265–266, 269
<command> element, 77
Contacts add-on, Firefox, 82
Contacts API, W3C, 82
contenteditable attribute, 71, 281
<content> element, 10
content models, 54
contentWindow object, 250
controls attribute, 54, 114, 124
cookie library, 169
cookies, 170
Coordinated Universal Time (UTC), 26
coords (coordinates) object, 241–243, 247
copyrights, <small> element, 19
createPattern method, 147–149
createRadialGradient method, 148
Crockford, Douglas, 177–178, 182
CSS (Cascading Style Sheets), 10
<body> element requirement, 11
display:inline, 54
form fields, styling, 100–101
HTML5 elements and content models, 54
:-mox-any() grouping mechanism, 37
polyfills, 282
<video> element, 111

CSS Basic User Interface Module, 100
“CSS Design: Taming Lists,” 16
CSS Media Queries specification, 122
currentSrc attribute, 124
currentTime attribute, 124

D
data-• attribute, 72–73
<datalist> element, with list attribute, 87–89
data storage

cookies, 170
IndexedDB, 171, 195

debugging tools, 204–205
indexed databases, creating, 196–197
object stores, 198–199
object stores, adding/putting objects in, 199–201
object stores, deleting data, 203–204
object store transactions, 201–203
version control, 197–198

options, 170–172

www.guardian.co.uk

ptg6964689

INdEx288

data storage (continued)
persistent storage, 223
Web SQL Database, 170–172, 184

database insertions, 187–193
database queries, 187–193
databases, opening/creating, 185–186
database tables, 186–187
database transactions, 193–194
version control, 185

Web Storage, 170–175
accessing storage, 175–178
debugging tools, 178–179
fallback options, 182–183
storage events, 180–182

dataTransfer object, 228–230
date attribute, 82–83
dates and times, 26–28
datetime attribute, 83
Davis, Daniel, 63
defaultPlaybackRate attribute, 124
definition lists, 66–67
 element, 54
deleteDatabase method, 203–204
deleteObjectStore method, 203
Designing with Progressive Enhancement: Building the

Web that Works for Everyone, 52–53
<details> element, 18, 36, 59–60, 278
<device> element, 140
digital rights management (DRM), 112
dir attribute, 59
disclaimers, <small> element, 19
display:block, 11
display:inline, CSS, 54
<div> element, 7–8

replacing with <article> element, 32
<dl> element, 66–67
DOCTYPE, 2
<!doctype html> tags, 2
document outlines, 31–34
DOM API, Microdata, 57
drag and drop, 226–229

accessibility, 234–236
custom drag icons, 233–234
draggable attribute, 232–233
interoperability of data, 230–232

dragend event, 232
dragenter event, 232–233
draggable attribute, 73
dragleave event, 232
Dragonfly. See Opera/Opera Dragonfly
dragoverevent, 233
dragstart event, 229–236
drawImage method, 155–159
DRM (digital rights management), 112
drop event, 232
dropzone attribute/drop zone, 226–229, 232–236
duration attribute, 124
durationchange event, 130
Dyer, John, 139

E
eCSStender utility, 282
email attribute, 81–82, 99
embedded content models, 54
<embed> element, 54, 70, 77, 110–111
 element, 67
emptied event, 124
ended attribute, 124
ended event, 124
error attribute, 124
error event, 124
EventSource object, 270–274
excanvas library, 146
executeSQL method, 186–194
“Extending HTML5—Microdata,” 57

F
FALLBACK namespace, 210–213, 221
fallback-server-time.js, 209–211
“fat footers,” 19
Faulkner, Steve, 39, 52, 61
FCC 11-126, American Federal Communications

Commission, 140
Federal Communications Commission, U.S, FCC 11-126,

140
FFmpeg library, 122
<fieldset> element, 18, 36, 93, 105–106
<figcaption> element, 60–62
<figure> element, 18, 36, 60–62
Filament Group, 168
File API, 236
fillText method, 167
Firefox (Mozilla)

audio/video, codecs supported, 118, 120
canvas image formats, 162
Contacts add-on, 82
controls attribute, 114
cookie security, 204–205
drag and drop, 226–229, 232
EventSource object, 273
forms, 80–81

psuedo-classes, 101
full-screen API, 136
geolocation, 238–240
IndexedDB, 204–205
legacy problems, 12
messaging, 251
:-mox-any() grouping mechanism, 37
offline applications, 213, 215, 223
seekable attribute, 129
Web Workers, 253, 257, 262–264

Flash (Adobe), 121, 125
MediaElement.js plug-in, 139
polfill for WebSockets, 266

FlashCanvas, 146
flow content models, 54
 element, 70

ptg6964689

INdEx 289

<footer> element, 16, 18–20, 25
<article> element, 28
<blockquote> element, 29

form attribute, 93–94
<form> element/forms

attributes
formvalidate, 106
novalidate, 105–106

form fields
error messages, 101
overriding browser defaults, 102–104
styling, 100–101
validation, avoiding, 105–106
validation, JavaScript, 104–105

<input> element, attributes
autocomplete, 92
autofocus, 89
form, 93–94
list with <datalist> element, 87–89
max, 93, 96–97
min, 93, 96–97
multiple, 90
name, 87
pattern, 91–92
placeholder, 90
required, 90
step, 93
WAI-ARIA, 97–98

<input: focus> element, 100
<input type> element, attributes
color, 87
date, 82–83
datetime, 83
email, 81–82, 99
month, 84
number, 84–85
range, 85, 96–97
search, 86
tel, 86
text, 99
time, 83
url, 82
week, 84

input types, 81–82
<meter> element, 93–95, 97
oninput event, 107–108

versus onchange event, 106–107
versus onforminput event, 107

<output> element, 97
<progress> element, 93–95, 97
sliders, 96–99

formnovalidate method, 106
formvalidate attribute, 106

G
geolocation, 237–238

configuring, 246–247
GPS devices, 243, 245, 247
locating users, 238–240, 247
methods, 240–244

error handler, 244–246

getCurrentPosition method, 239–242, 244–246
getData method, 228–230
getElementByID method, 87
getImageData method, 161
getTime method, 189
getUserMedia API, 140–141
Google Buzz, 238
Google Chrome. See Chrome
Google Maps, 238
Google Wave, 267
Gowalla, 238
GPS devices and geolocation, 243, 245, 247
gradients, 147–150

H
<h-1–h6> elements, 13, 54

replacing with <section> element, 33
H.264 codec, 117–120, 122, 136
Harmomy, 144–145
<head> element, 2–4
<header> element, 13–15, 25, 28
heading content models, 54
height attribute, 115, 124
<hgroup> element, 13, 35
Hickson, Ian, 6, 53, 225–226
hidden attribute, 73–74
Holzmann, Ralph, 282
<hr> element, 67–68
HTML 4

elements removed in HTML5, 70
versus HTML5, 7–8, 11

HTML5
attributes, 6
class names, 6
elements removed from HTML4, 70
versus HTML 4, 7–8, 11
Media Library, 121
offline, 208
shiv, 54, 276
versus XML and XHTML, 2–3

html5canvas library, 146
“The HTML5 <ruby> element in words of one

syllable or less,” 63
“HTML5: Techniques for providing useful text

alternatives,” 61
HTML5: Up and Running, 279
<html> tags

importance, 4–5
optional tags, 3–4
primary language declaration, 4–5

I
id attribute, 74, 87
IDs, names in Google index research, 6
IE (Internet Explorer)
addEventListener event, 127
audio/video codecs, 118
Base64 encoding, 162
<body> element, 5
canvas element, 146

ptg6964689

INdEx290

IE (Internet Explorer) (continued)
canvas image formats, 162
controls attribute, 114
cookies, 172
CSS, 11–12
<datalist> element, 89
drag and drop, 225–229, 232–233
elements, adding missing, 4
forms, 80
geolocation, 238
IndexedDB, 171, 205
input types, search, 86
JavaScript, 11–12
messaging, 251
polyfills, 277, 280–284
Web Storage, 183
Web Workers, 253

<i> element, 67
IE Print Protector, 12
<iframe> element, 54, 70
iLBC codec, 142
image captures, 155–158
 element, 54
alt attribute, 62
longdesc=... attribute, 76

immediate-mode API (2D canvas) versus retained-mode
API (SVG), 152

“Importance of HTML Headings for Accessibility,” 38
importScripts method, 259
in-band/out-of-band methods, synchronized text

attachments, 136–137
“Incite a Riot,” 66
IndexedDB, 171, 195

debugging tools, 204–205
indexed databases, creating, 196–197
object stores, 198–199

adding/putting objects in, 199–201
deleting data, 203–204
transactions, 201–203

version control, 197–198
Web Workers, 255, 260

inline elements, 54
<input> element, attributes
autocomplete, 92
autofocus, 89
form, 93–94
list with <datalist> element, 87–89
max, 93, 96–97
min, 93, 96–97
multiple, 90
name, 87
pattern, 91–92
placeholder, 90
required, 90
step, 93
WAI-ARIA, 97–98

<input: focus> element, 100
<input type> element, attributes
color, 87
date, 82–83
datetime, 83

email, 81–82, 99
month, 84
number, 84–85
range, 85, 96–97
search, 86
tel, 86
text, 99
time, 83
url, 82
week, 84

:in-range pseudo-class, 101
<ins> element, 54
INSERT statements, 188–194
interactive content models, 54
:intermediate pseudo-class, 101
internationalization, 58
Internet Archive, 122
Internet Explorer. See IE
“Introduction to WAI-ARIA,” 52
iOS, geolocation, 238
Irish, Paul, 279, 281
Ishida, Richard, 58
isPointInPath method, 152
itemid attribute, 56–57, 74
itemprop attribute, 55–56, 74
itemref attribute, 56, 74
itemscope attribute, 54, 74
itemtype attribute, 54–55

J
JavaScript
<body> element requirement, 11
IE application of CSS to HTML5, 11–12
IE Print Protector, 12
JSmad library, 118
polyfills, 276–284
ppk on JavaScript, 72
race condition workarounds, 131–134
validation for legacy browsers, 99
Web Forms API, 104–106

JIT (Just in Time compilation), 168
jPlayer, 142
jQuery Visualize, 168
jsconsole.com, 219–220
JSmad library, 118
JSON (JavaScript Object Notation) library, 177–178, 182
stringify and parse functions, 232, 252
WebSockets, 267–269

Just in Time compilation (JIT), 168

K
Keith, Jeremy, 66, 88
<keygen> element, 54, 77, 93
key method, 176
Koch, Peter-Paul, 72, 169–170

ptg6964689

INdEx 291

L
<label> element, 54, 93
LAMP system, 271
Langridge, Stuart, 63
languages

bidirectional text, 58
“The HTML5 <ruby> element in words of one syllable

or less,” 63
<ruby> element, 63

Lauke, Patrick, 100
LeanBack Player, 139
legacy browsers

backwards compatibility, 80, 88, 99
<body> element requirement, 11
multimedia, 120–121
overriding defaults, 102–104
<script> element, JavaScript default, 11
styling HTML5 problems, 12
video/audio problems, 113

legal restrictions, <small> element, 19
Lemon, Gez, 52, 235
Levithan, Steven, 91
Lie, Trygve, 141
linear fills, 147–148
links and block-level elements, 39
list attribute with <datalist> element, 87–89
lists

definition lists, 66–67
ordered/unordered lists, 68
unordered lists, 16, 68

loadeddata event, 124, 130
loadedmetadata event, 124, 130–134
load method, 123–124
loadstart event, 124, 127–130
localStorage object, 172–175, 178–182, 223
longdesc=... attribute, 76
loop attribute, 116, 124

M
machine-readable dates and times, 26
MAMA crawler, Opera, 6
<mark> element, 63
<marquee> element, 70
Matroska Media Container format, 137
max attribute, 93, 96–97
May, Matt, 52
media. See <audio> element; multimedia;

<video> element
MediaElement.js, 139
mediagroup attribute, 140
Media Library, HTML5, 121
<menu> element, 54, 77
messages.js worker, 261
messaging, 250–252
<meta charset=utf-8> tags, 2
metadata content models, 54
<meta> element, swapping with <title> element, 4
<meta name=generator> element, alt attribute, 62
<meta> tags, XHTML and XML versus HTML5, 2–3
<meter> element, 93–95, 97

Microdata
attributes
itemid, 56–57, 74
itemprop, 55–56, 74
itemref, 56, 74
itemscope, 54, 74
itemtype, 54–55, 74

DOM API, 57
resources, 57
specification, 56

“Microdata Tutorial,” 57
Microsoft Internet Explorer. See IE
min attribute, 93, 96–97
Miro Video Converter, 122
Modernizr project, 279–280, 282–283
month attribute, 84
mousedown, mousemove, and mouseup events, 256
moveTo method, 151, 153
:-mox-any() grouping mechanism, 37
Mozilla Firefox. See Firefox
-moz-ui-invalid pseudo-class, 101
MP3/MP4/MP4A formats, 117–122, 136, 139
MS Paint, 144
multimedia. See also <audio> element; <video> element

accessibility, 136–138
attributes
autoplay, 113, 124
buffered, 124
controls, 54, 114, 124
currenSrc, 124
currentTime, 124
defaultPlaybackRate, 124
duration, 124
ended, 124
error, 124
height, 115, 124
loop, 116, 124
mediagroup, 140
muted, 115, 124
networkState, 124
paused, 124
playbackRate, 124, 135
played, 124
poster, 115, 124
preload, 116, 124, 130
readyState, 124
seekable, 124, 128
seeking, 124
src, 116, 124
startTime, 124
tracks, 124
videoHeight, 124
videoWidth, 124
volume, 124
width, 115, 124

codecs, 117
best, 119
browser support, video and audio, 118
handheld devices, 122–123
royalty-free, 122
<source> element, 118–120

ptg6964689

INdEx292

events
abort, 124
attachEvent versus addEventListener, 124
canplay, 124, 130
canplaythrough, 124, 130
durationchange, 130
emptied, 124
ended, 124
error, 124
loadeddata, 124, 130
loadedmetadata, 124, 130–134
loadstart, 124, 127–130
pause, 124
play, 124
playing, 124
progress, 124
ratechange, 124
seeked, 124
seeking, 124
stalled, 124
suspend, 124
timeupdate, 124
waiting, 124

legacy browsers, 120–121
media tracks, synchronizing, 139–140
methods, 124
addTrack(), 124
canPlayType(), 123–124
load(), 123–124
pause(), 123–124, 126–127
play(), 123–124, 126–127

polyfills, 139
shortcomings in HTML5, 112
video conferencing, 140–142
WebRTC, 112, 142

multiple attribute, 90
muted attribute, 115, 124

N
name attribute, 87
Nas, Wilfred, 86
native drop zones, 233
<nav> element, 15–18, 34–35, 54
Neal, Jon, 12
NETWORK namespace, 210, 212–213
networkState attribute, 124
Newhouse, Mark, 16
Nitot, Tristan, 159
Node.js script, 267
novalidate attribute, 105–106
number attribute, 84–85
NVDA (open-source) screen reader, 53

O
<object> element, 54, 93
offline applications, 208
applicationCache object, 209, 217–218, 220–222
browser-server process, 214–217
cache, killing, 222–223

cache manifest, 209–212
manifest, 214

detecting connectivity, 221–222
network whitelist, 212–213

offline events, 208
Ogg Vorbis/Ogg Theora codec, 117–122, 137, 139
OGV codec, 118
 element, 16, 68
onchange event, versus oninput event, 106–107
ondragover event, 227–229
ondrop event, 227–229
onforminput event, versus oninput event, 107
oninput event, 107–108

versus onchange event, 106–107
versus onforminput event, 107

online events, 208
onmessage method, 254, 267
openDatabase method, 185–188
open property, 278
Open Web technologies

canvases, 144
geolocation, 238

Opera/Opera Dragonfly
audio/video

codecs supported, 118, 120
controls attribute, 114
<datalist> element, 89

browsers adding missing elements, 4
canvas image formats, 162
EventSource object, 273
forms, 80–81

calendar widget, 83
custom validation messages, 103

geolocation, 238, 240
getUserMeddia API, 140–141
IndexedDB, 204
input types

number, 85
range, 97
URL, 82
week, 84

Microdata DOM API, 57
offline applications, 223
outlines, 32
poster attribute, 115
<progress> element, 94–95
Web SQL Database, 170–171, 184
Web Storage, 179
Web Workers, 253, 257, 259, 264

options, 170–172
ordered/unordered lists, 68
outlines, 31–34

accessibility, 37–38
web-based utility, 32

out-of-band/in-band methods, synchronized text
attachments, 136–137

:out-of-range pseudo-class, 101
<output> element, 93, 97

ptg6964689

INdEx 293

P
The Paciello Group, 52
Parker, Todd, et al, 53
paths API, 150–152
pattern attribute, 91–92
pattern fills, 147–149
patterns, 147–150
paused attribute, 124
pause event, 124
pause method, 123–124, 126–127
persistent storage, 223
PhoneGap, geolocation, 238
photofilter.js sub-worker, 258–259
phrasing content models, 54
Pieters, Simon, 12
Pilgrim, Mark, 279
pixels on canvases, 159–161
placeholder attribute, 90
playbackRate attribute, 124, 135
played attribute, 124
play event, 124
playing event, 124
play method, 123–124, 126–127
Playr script, 138
polyfills, 275-284

ARIA roles, 52
data-* attributes, 72
EventSource object, 273
feature detection, 277

methods list, 279
Modernizr project, 273, 279–280, 281–283
new functions, 279
performance, 280
properties, 278

FlashCanvas, 146
HTML5 shiv, 276
JavaScript, 276–284
JSmad library, 118
localStorage object, 182
MediaElement.js, 139
MP3 support, 118
resources, 281–282
undetectable technologies, 281
WebSockets, 266
WebVTT, 138–139

Position object, 241
poster attribute, 115, 124
postMessage method, 250–252, 255–263, 267
postMessage/onmessage method, 254
ppk on JavaScript, 72
preload attribute, 116, 124, 130
preventDefault method, 228
prime.js script, 256
processing.js library, 163
<progress> element, 93–95, 97
progress event, 124
pubdate attribute, 27–28
public-key cryptography, 77
putImageData method, 161

Q
quadraticCurveTo method, 152
querySelectorAll method, 147
querySelector method, 147
quotation attribution, 29

R
radial fills, 147–148
range attribute, 85, 96–97
Raphaël JavaScript library, 152
ratechange event, 124
readyState attribute, 124
real-time Web. See Server-Sent Events; WebSockets
rect method, 152
regular expressions, 91–92
removeItem method, 175–177
required attribute, 90
Resig, John, 163, 276
restore method, 166
retained-mode API (SVG) versus immediate-mode API

(2D canvas), 152
role, aria-* attribute, 74
role=main tags, WAI-ARIA, 10
role=slider attribute, 98
Rouget, Paul, 159
<rp> element, 63–64
<rt> element, 63–64
<ruby> element, 63–64

S
Safari (Apple)

audio/video
codecs supported, 118, 120
controls attribute, 114
poster attribute, 115

canvas image formats, 162
contenteditable attribute, 281
drag and drop, 226–227, 229, 232–233
EventSource object, 273
geolocation, 240
offline applications, 208, 216, 222–223
Web SQL Database, 170, 184
Web Storage, 178
Web Workers, 253, 259, 262–263

save method, 166
schema.org, 27
Scooby Doo algorithm, 10
screen readers, 53
<script> element, 11–12

inside <datalist> element, 89
search attribute, 86
Searchhi script, 63
<section> element, 18–19, 54

versus <article> element, 38–44
replacing <h-1–h6> element, 33

sectioning content, 18, 32–34
models, 54

sectioning root elements, 18, 36

ptg6964689

INdEx294

seekable attribute, 124, 128
seeked event, 124
seeking attribute, 124
seeking event, 124
<select> element, 54, 93
selectivizr utility, 282
<s> element, 68
Server-Sent Events, 270–274
server-time.js, 209–211, 216
sessionStorage object, 172–183, 223, 279, 282–283
setCustomValidity method, 102–104
setData method, 229–231
setInterval method, 154, 156–158, 255
setItem method, 174–177, 174–178, 176–177, 183
setOnline method, 221
setTimeout method, 200, 255, 274
Sexton, Alex, 279, 282
SharedWorkers, 259–261
shiv, HTML5, 54
sidebars, 17–18
Silverlight and html5canvas library, 146
single-threaded applications, 250
Sivonen, Henri, 112
<small> element, 19, 24, 69
<source> element, 118–120
spellcheck attribute, 74
src attribute, 116, 124
SRT format, 137
stalled event, 124
startTime attribute, 124
step attribute, 93
storageArea object, 180
storage events, 180
strokeText method, 167
 element, 69
Studholme, Oli, 29, 57, 67
<style> element, scoped attribute, 78
styles, consistent use, 3
style sheets, block-level style sheet, 11
“Styling HTML5 markup in IE without script,” 12
summary=... attribute, 76
suspend event, 124
SVG (Scalable Vector Graphics), 144
<svg> element, 54
syntax, consistent use, 3

T
tabindex attribute, 74–75
<table> element
border=... attribute, 75–76
summary=... attribute, 76

<td> element, 18, 36
tel attribute, 86
Tennison, Jeni, 57
text

bidirectional, 58
“HTML5: Techniques for providing useful text

alternatives,” 61
<textarea> element, 54, 93

text attribute, 99
threads for browsers, 250
Tibbett, Rich, 141
time attribute, 83
<time> element, 26–28
pubdate attribute, 27–28

times and dates, 26–28
timestamp object, 241
timeupdate event, 124
<title> element
alt attribute, 62
swapping with <meta> element, 4

toDataURL method, 161–163
<track> element, 137, 139
tracks attribute, 124
transformations, canvases, 153–154
translate method, 153–154, 165–167
type attribute, 54

U
<u> element, 69–70
 element, 16
Unicode Bidirectional algorithm, 58
Universal Design for Web Applications, 52
unordered lists, 16, 68
url attribute, 82
usemap attribute, 54
userData methods, 182
“Using Multiple Vocabularies in Microdata,” 57
UTC (Coordinated Universal Time), 26
UTF-8 character encoding, 2

V
validation

avoiding, 105–106
<http://html5.validator.nu> tag, 5
<http://lint.brihten.com> tag, 5
<http://validator.w3.org> tag, 5
JavaScript, 104–105
pros and cons, 5

valid attribute, 105
validity attribute, 105
ValidityState object, 105
van Kesteren, Anne, 110, 123
vector-drawing programs, 144–145
Verou, Lea, 278
<video> element/videos, 54, 110–113.

See also multimedia
attributes, 124
download progress, 128–129
events, 124
full-screen, 136
getUserMedia API, 140
methods, 124
playing, 129–130

rates and reverse, 135
race condition workarounds, 131–134
reasons needed, 110–111
video player comparison chart, 142

ptg6964689

INdEx 295

“Video for Everybody!”, 121
videoHeight attribute, 124
videoWidth attribute, 124
vid.ly, 122
Villetorte, Julien, 138
VLC, 122
VoiceOver (Apple) screen reader, 53
volume attribute, 124
VP8 codec, 118, 122, 137, 142
VTT Caption Creator, 138

W
WAI-ARIA (Web Accessibility Initiative’s Accessible

Rich Internet Applications) suite, 49–50.
See also accessibility

attributes, 97–98
aria-describedby, 74
aria-grabbed, 236
aria-labelledby, 74
ARIA role=presentation, 61, 75
aria-valuemax, 98
aria-valuemin, 98
aria-valuenow, 98

document landmarks and structure, 51–52
drag and drop, 234–236
forms, 97–98
HTML5, combining with, 52
“Introduction to WAI-ARIA,” 52
outlines, 37–38
resources, 52–53
role, aria-*, 74
role=main tags, 10
screen readers, 53
W3C specification, 53

waiting event, 124
watchPosition method, 239–241, 243–246
WAV codec, 118
<wbr> element, 64
Web Forms API, JavaScript, 104–106
WebKit browsers

forms, 80
error messages, 101

geolocation, 238, 240
WebkitEnterFullscreen method, 136
Web Storage, 178

key method, 176
Web Workers, 262

WebM codec, 117–120, 122, 133, 137, 139, 142
WebRTC, 112, 142
WebSockets, 266–270
Web SQL Database, 170–172, 184

databases
insertions, 187–193
opening/creating, 185–186
querying, 187–193
tables, 186–187
transactions, 193–194

version control, 185
Web Workers, 255, 260

Web Storage, 170–175
accessing storage, 175–178
debugging tools, 178–179
fallback options, 182–183
storage events, 180–182

WebVTT format, 137–139
Web Workers

IndexedDB, 260
Web SQL Database, 260

Web Workers/workers
creating/working with, 253–254
debugging, 262–264
importing scripts and libraries, 259
IndexedDB, 255
inside activities, 254–257
reasons to use, 252–253
SharedWorkers, 259–261
Web SQL Database, 255
within workers, 257–259

week attribute, 84
Weyl, Estelle, 44
WHATWG, 137
whitelists, 212
width attribute, 115, 124
willValidate attribute, 105
Wilson, Scott, 138
window object, 250–251, 255, 264

X - Z
xhr.js script, 263
XHTML
<http://lint.brihten.com> tag, 5
validation, 5
versus XML and HTML5, 2–3
XMLHttpRequest Level 2 object, 250
XMLHttpRequest object

WebSockets, 266
Web Workers, 263

XML versus HTML5 and XHTML, 2–3
x-moz-errormessage attribute, 104

Yahoo!, schema.org, 27
yepnope tool, 282

ptg6964689

ptg6964689

You love our books and you
love to share them with your colleagues and
friends...why not earn some $$ doing it!

If you have a website, blog or even a Facebook page,
you can start earning money by putting a Peachpit
link on your page.

If a visitor clicks on that link and purchases something
on peachpit.com, you earn commissions* on all sales!

Every sale you bring to our site will earn you a
commission. All you have to do is post an ad and
we’ll take care of the rest.

ApplY And get stArted!
It’s quick and easy to apply.
To learn more go to:
http://www.peachpit.com/affiliates/
*Valid for all books, eBooks and video sales at www.Peachpit.com

Join the
PeachPit
AffiliAte teAm!

	Contents
	Introduction
	CHAPTER 1 Main Structure
	The <head>
	Using new HTML5 structural elements
	Styling HTML5 with CSS
	When to use the new HTML5 structural elements
	What’s the point?
	Summary

	CHAPTER 2 Text
	Structuring main content areas
	Adding blog posts and comments
	Working with HTML5 outlines
	Understanding WAI-ARIA
	Even more new structures!
	Redefined elements
	Global attributes
	Removed attributes
	Features not covered in this book
	Summary

	CHAPTER 3 Forms
	We (Omitted) HTML, and now it (Omitted)s us back
	New input types
	New attributes
	<progress>, <meter> elements
	Putting all this together
	Backwards compatibility with legacy browsers
	Styling new form fields and error messages
	Overriding browser defaults
	Using JavaScript for DIY validation
	Avoiding validation
	Summary

	CHAPTER 4 Video and Audio
	Native multimedia: why, what, and how?
	Codecs—the horror, the horror
	Rolling custom controls
	Multimedia accessibility
	Synchronising media tracks
	Summary

	CHAPTER 5 Canvas
	Canvas basics
	Drawing paths
	Using transformers: pixels in disguise
	Capturing images
	Pushing pixels
	Animating your canvas paintings
	Summary

	CHAPTER 6 Data Storage
	Storage options
	Web Storage
	Web SQL Database
	IndexedDB
	Summary

	CHAPTER 7 Offline
	Pulling the plug: going offline
	The cache manifest
	Network and fallback in detail
	How to serve the manifest
	The browser-server process
	applicationCache
	Debugging tips
	Using the manifest to detect connectivity
	Killing the cache
	Summary

	CHAPTER 8 Drag and Drop
	Getting into drag
	Interoperability of dragged data
	How to drag any element
	Adding custom drag icons
	Accessibility
	Summary

	CHAPTER 9 Geolocation
	Sticking a pin in your user
	API methods
	Summary

	CHAPTER 10 Messaging and Workers
	Chit chat with the Messaging API
	Threading using Web Workers
	Summary

	CHAPTER 11 Real Time
	WebSockets: working with streaming data
	Server-Sent Events
	Summary

	CHAPTER 12 Polyfilling: Patching Old Browsers to Support HTML5 Today
	Introducing polyfills
	Feature detection
	Detecting properties
	The undetectables
	Where to find polyfills
	A working example with Modernizr
	Summary

	And finally...
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Z

