
An Introduction

Sanders Kleinfeld

HTML5 for
Publishers

HTML5 for Publishers

HTML5 for Publishers

Sanders Kleinfeld

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

HTML5 for Publishers
by Sanders Kleinfeld

Copyright © 2011 O’Reilly Media. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Kathleen Meyer Cover Designer: Karen Montgomery

Revision History for the First Edition:
2011-10-06 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449314606 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. HTML5 for Publishers, the image of a meerkat, and related trade dress are trade-
marks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-31460-6
1318009187

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449314606

Table of Contents

Introduction . vii

1. Canvas for Publishers . 1
Drawing on your <canvas> 1
Canvas Graphing Calculator 4
Canvas Finger Painting 10
HTML5 Canvas, EPUB, and Ereader compatibility 17
Bibliography/Additional HTML5 Canvas Resources 19

2. Geolocation for Publishers . 21
A Geolocated Tale 22
HTML5 Geolocation, EPUB, and Ereader Compatibility 27
Bibliography/Additional Resources 27

3. <audio>/<video> for Publishers . 31
A Two-Minute Introduction to the <audio> and <video> Elements 31
An Audio-Enabled Glossary 32
An HTML5 Video About HTML5 Canvas 36
EPUB 3 Media Overlays 37
HTML5 Audio/Video Compatibility in the Browser and Ereaders 38
Bibliography/Additional Resources 39

4. Embedding HTML5 in EPUB . 41
Alternatives to HTML5 and EPUB 42

HTML5 and Mobi 42
HTML5 and Ebook Apps 43

Additional EPUB Resources 43

v

Introduction

HTML5 is revolutionizing the Web, and now it’s coming to your ebook reader! In this
book, I give an overview of three areas of HTML5 that offer great promise to ebook
publishers looking to expand beyond traditional text-and-graphic narratives: Canvas,
Geolocation, and Audio/Video. After a brief tutorial of the HTML markup and Java-
Script code used to implement these features, I transition into some examples that put
HTML5 in action:

• A graphing calculator to display algebraic equations on the Canvas

• A children’s finger-painting application for drawing pictures on the page

• A geolocated work of fiction customized with details about the reader’s current
location

• An audio-enabled glossary that lets you click to hear the pronunciation of each term

• Embedded video content within instructional text to supplement a lesson

All code for the examples is available for download from GitHub. You can also demo
the examples right in your browser by going to examples.oreilly.com.

For each topic area, I also discuss the current status of HTML5 compatibility with major
EPUB reader platforms (for example, iBooks, Nook Color, Adobe Digital Editions). At
the present time, support for HTML5/EPUB 3 is limited, and often quite experimental.
But with the release of the EPUB 3 specification planned for this fall, HTML5 will
officially be a part of the EPUB standard, and ereader support for HTML5’s feature set
should quickly follow suit. In the meantime, if you’re reading the EPUB version of this
book, the examples are embedded directly in the ebook, so you can experiment with
them as your ereader compatibility permits.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

vii

https://github.com/sandersk/HTML5-for-Publishers
http://examples.oreilly.com/0636920022473
http://idpf.org/epub/30

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “HTML5 for Publishers by Sanders Kleinfeld
(O’Reilly). Copyright 2011 O’Reilly Media, Inc, 978-1-4493-1460-6.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

viii | Introduction

mailto:permissions@oreilly.com

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreilly.com/catalog/0636920022473

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Thanks to Brian Sawyer, Kat Meyer, and Joe Wikert for giving me the opportunity to
write this overview on HTML5 for publishers. In researching and compiling this piece,
I relied heavily on a wealth of wonderful resources from O’Reilly Media, as well as some
excellent web references and tutorials; please see the “Bibliography/Additional Re-
sources” sections at the end of each chapter for details and links. In particular, I highly
recommend HTML5 Canvas by Steve Fulton and Jeff Fulton for anyone who wants to

Introduction | ix

http://my.safaribooksonline.com/?portal=oreilly
http://oreilly.com/catalog/0636920022473
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
https://bitly.com/ormhtml5canvas

learn more about Canvas, and the many cited resources by Liza Daly for those looking
to learn more about EPUB development.

And special thanks to Adam Witwer for being a great sounding board, and for gener-
ously helping me set aside time to work on this project.

x | Introduction

CHAPTER 1

Canvas for Publishers

With the <canvas> element, publishers now have the opportunity to embed a dynamic
sketchpad into HTML5 content. The HTML markup for doing so is quie simple:

<canvas id="my_first_canvas" width="200" height="225">
 The content you put here will show up if your rendering engine
 doesn't support the <canvas> element.
</canvas>

The <canvas> element accepts two attributes that specify the dimensions of your draw-
ing area in pixels: width and height. Anything you place within the opening and closing
tags of the element will only be displayed if the rendering engine does not support
<canvas>; this gives you the option of providing fallback content for backward com-
patibility with non-HTML5 environments (see “HTML5 Canvas, EPUB, and Ereader
compatibility” on page 17 for more on compatibility).

And that’s where the HTML starts and ends; it merely sets aside the space within the
HTML document in which to place your graphics. To actually draw on your <can
vas>, you’ll use JavaScript code to interact with the Canvas API, which provides you
with an elegant set of functions for creating lines, arcs, shapes, and text. You also have
access to more advanced graphic-manipulation calls to scale, rotate, or crop your im-
ages.

Drawing on your <canvas>
Let’s draw a smiley face on the canvas we just created above. Here’s a list of the Canvas
API functions we’ll use:

strokeRect(x1, y1, x2, y2)
Draw a rectangular outline from the point (x1, y1) to (x2, y2). Note: by default, the
“origin” of the Canvas (0,0) is its top-left corner, and x- and y-coordinates are
measured to the right and down, respectively.

beginPath()
Start a line drawing.

1

http://www.w3schools.com/html5/tag_canvas.asp
http://en.wikipedia.org/wiki/JavaScript

endPath()
End a line drawing that was started with beginPath().

arc(x, y, arc_radius, angle_radians_beg, angle_radians_end)
Specify an arc, where (x, y) is the center of the circle encompassing the arc,
arc_radius is the radius of this circle, and angle_radians_beg and angle_radi
ans_end indicate the beginning and end of the arc angle in radians.

stroke()
Draw the border of the path specified within beginPath()/endPath(). Note: If you
don’t include the stroke() call, your path will not appear on the canvas.

fill()
Fill in the path specified within beginPath()/endPath().

fillText(your_text, x1, y1)
Add text to the canvas, starting at the point (x1, y1).

We’ll also use the following attributes in conjunction with these properties to specify
colors and styles:

lineWidth
Width of the border of your bath

strokeStyle
Color of the border of your path

fillStyle
Color of the fill (interior) of your path

font
Font and size of your text

And here’s the code that puts it all together:

function drawPicture() {

 my_canvas.strokeRect(0,0,200,225) // to start, draw a border around the canvas

 //draw face
 my_canvas.beginPath();
 my_canvas.arc(100, 100, 75, (Math.PI/180)*0, (Math.PI/180)*360, false); // circle
dimensions
 my_canvas.strokeStyle = "black"; // circle outline is black
 my_canvas.lineWidth = 3; // outline is three pixels wide
 my_canvas.fillStyle = "yellow"; // fill circle with yellow
 my_canvas.stroke(); // draw circle
 my_canvas.fill(); // fill in circle
 my_canvas.closePath();

 // now, draw left eye
 my_canvas.fillStyle = "black"; // switch to black for the fill
 my_canvas.beginPath();
 my_canvas.arc(65, 70, 10, (Math.PI/180)*0, (Math.PI/180)*360, false); // circle
dimensions

2 | Chapter 1: Canvas for Publishers

 my_canvas.stroke(); // draw circle
 my_canvas.fill(); // fill in circle
 my_canvas.closePath();

 // now, draw right eye
 my_canvas.beginPath();
 my_canvas.arc(135, 70, 10, (Math.PI/180)*0, (Math.PI/180)*360, false); // circle
dimensions
 my_canvas.stroke(); // draw circle
 my_canvas.fill(); // fill in circle
 my_canvas.closePath();

 // draw smile
 my_canvas.lineWidth = 6; // switch to six pixels wide for outline
 my_canvas.beginPath();
 my_canvas.arc(99, 120, 35, (Math.PI/180)*0, (Math.PI/180)*-180, false); // semicircle
dimensions
 my_canvas.stroke();
 my_canvas.closePath();

 // Smiley Speaks!
 my_canvas.fillStyle = "black"; // switch to black for text fill
 my_canvas.font = '20px _sans'; // use 20 pixel sans serif font
 my_canvas.fillText ("Hello Canvas!", 45, 200); // write text
}

Figure 1-1 shows the image displayed in the Safari Web browser. Click here to load
this example in your browser, or take a look at the source code in GitHub.

If the functionality of the HTML5 Canvas were limited to the display of static images,
however, its appeal would likely be quite limited. Who wants to write all that JavaScript

Figure 1-1. Hello Canvas!

Drawing on your <canvas> | 3

http://examples.oreilly.com/0636920022473/my_first_canvas/my_first_canvas.html
https://github.com/sandersk/HTML5-for-Publishers/blob/master/my_first_canvas/my_first_canvas.html

code, when you can easily to add images to an HTML document the old-school way
—with an tag!

But all that JavaScript is exactly what makes Canvas so powerful and feature-rich. Be-
cause you can directly manipulate the artwork with code, you can dynamically update
what’s displayed on the <canvas> in real time, and in response to user input. Instead of
an inert smiley face, you can have a smiley face that winks every 18 seconds, or a smiley
face that frowns when you click on it. The possibilities are endless: from games and
jigsaw puzzles, to undulating photo galleries and molecular modeling.

Next, we’ll look at a couple of HTML5 Canvas examples that can be used to enhance
ebook content: a graphing calculator for linear algebraic equations, and a children’s
finger painting app.

Canvas Graphing Calculator
Most first-year algebra curricula contain a unit on graphing on the Cartesian coordinate
plane. Many students intially have some difficulty grasping the concept of representing
algebraic equations visually, as it’s a real paradigm shift from traditional arithmetic.
Graphing calculators, both hardware and software, are helpful tools in the teaching
process, as they allow learners to quickly and efficiently experiment with plotting
equations, so they can understand how changes made in an equation affect the shape
of the graph.

In this section, we’ll use HTML5 Canvas to implement a very basic graphing calculator
for simple linear equations that can be embedded in algebra ebooks. Figure 1-2 displays
the graphing calculator interface we’ll create: a two-dimensional coordinate plane with
x- and y-axes marked in red, and a set of buttons below for graphing linear equations
on the grid.

Here’s the HTML we’ll use to construct the graphing calculator page. Our coordinate
plane will be constructed in the <canvas> element, highlighted in bold:

<html lang="en">
<head>
<title>Graphing Calculator</title>
<script src="modernizr-1.6.min.js" type="text/javascript"></script>
<script src="graph_calc.js" type="text/javascript"/></script>
</head>
<body>
<div>
<h1>Graphing Calculator</h1>
<p style="color: red;">Click a button below the grid to
graph an equation</p>
<canvas id="canvas" width="400" height="400">
 Your browser does not support the HTML 5 Canvas.
</canvas>
<form>
<input type="button" id="y_equals_x" value="y = 1x" style="color: green;"/>
<input type="button" id="y_equals_negative_x" value="y = -1x" style="color: purple;"/>

4 | Chapter 1: Canvas for Publishers

http://www.w3schools.com/tags/tag_img.asp
http://html5games.com/
http://www.raymondhill.net/puzzle-rhill/jigsawpuzzle-rhill.php
http://www.lo2k.net/v7/lab/flickr/index/flickr_id/28791827@N00
http://alteredqualia.com/canvasmol/#Lycopene
http://en.wikipedia.org/wiki/Cartesian_coordinate_system
http://en.wikipedia.org/wiki/Cartesian_coordinate_system

<input type="button" id="y_equals_two_x" value="y = 2x" style="color: blue;"/>
<input type="button" id="y_equals_one_half_x" value="y = 0.5x" style="color: brown"/>
<input type="button" id="reset_grid" value="Reset Grid"/>
</form>
</div>
</body>
</html>

To construct the grid on the <canvas> and graph lines, we’ll make use of a few new
Canvas API functions:

moveTo(x, y)
Move the Canvas “cursor” to the (x, y) location specified. Subsequent drawing
operations you perform will use this location as the starting point.

Figure 1-2. Graphing calculator interface in Safari for Mac

Canvas Graphing Calculator | 5

lineTo(x, y)
Draw a line from the current Canvas “cursor” location to the (x, y) location speci-
fied.

translate(x, y)
Allows you to set a new “origin” for the Canvas, from which x- and y-coordinates
are measured. By default, the Canvas origin is its top-left corner, but to simplify
the graphing calculator code, it will be helpful to relocate the Canvas origin to
coincide with the coordinate-plane origin at the center of the grid.

Here’s the drawGrid() function for creating the coordinate grid on the Canvas:

function drawGrid() {

 var i = 0;
 axis_pos = 1;
 can_width = theCanvas.width; // Get the width of the canvas

 // Loop through and draw horizontal/vertical lines at each eighth of the grid
 // All logic below presumes canvas has square dimensions
 for (i=0;i<=can_width;i+=(can_width)/8)
 {
 if (i == (can_width)/2) // Special handling for horiz/vert axes
 {
 context.lineWidth = 3; // Axes are thicker...
 context.strokeStyle = 'red'; //... and in red
 }
 else
 {
 context.lineWidth = 1;
 context.strokeStyle = 'black';
 }
 // First draw horizontal line
 context.beginPath();
 context.moveTo(i, 0);
 context.lineTo(i, can_width);
 context.stroke();
 context.closePath();
 // Then draw vertical line
 context.beginPath();
 context.moveTo(0, i);
 context.lineTo(can_width, i);
 context.stroke();
 context.closePath();
 }
 // Then add axis number labels
 context.font = '20px _sans';
 context.textBaseline = 'top';
 // Move canvas origin to center of grid
 context.translate(can_width / 2, can_width / 2);
 for (i=-3;i<=3;i++) {
 if (i != 0) { // Skip labeling origin
 // horizontal label
 context.fillText (i, i*(can_width/8) + 5, 5);

6 | Chapter 1: Canvas for Publishers

 // vertical label
 context.fillText (i, 5, -i*(can_width/8));
 }
 }
 // Add bold-italic x- and y labels on the axes, too
 context.font = 'italic bold 20px _sans';
 context.fillText ("x", (can_width/2)-12, 1);
 context.fillText ("y", 4, -(can_width/2));
}

First, we grab the width of the <canvas> element (theCanvas.width), and then we run a
for loop to draw eight evenly spaced horizontal and vertical lines across the grid; the
x- and y-axes are handled specially, bolded and colored red. Then we run one more
for loop to add number labels (from -3 to 3) on both axes. Finally, we add x- and y-
labels to clearly identify the two axes.

Now that the grid is in place, we also need a function that will graph a specified linear
equation on the plane. We’ll create a function called draw_grid_line() that is capable
of plotting any linear equation that can be expressed in the format y = mx, where m is
the slope of the equation. This function will take two parameters: slope and color,
which accepts a valid CSS color value. Here’s the code:

function draw_grid_line (slope, color) {
 if (graph_in_progress == "yes") {
 // Only draw one line at a time
 alert("Another line is being drawn. Please wait until it's complete");
 } else {
 init_x = -(theCanvas.width)/2; // start with x = left edge of grid
 // Note: Must reverse sign y-coordinate, as negative y-coordinates are top half of grid by default,
not bottom
 init_y = -(init_x) * slope // y = mx
 new_x = init_x;
 new_y = init_y;
 var drawLineIntervalId = 0;
 status_message.innerHTML = "Drawing equation y = " + slope + "x";
 graph_in_progress = "yes" // line now being drawn
 drawLineIntervalId = setInterval(do_animation, 33);
 }

 function do_animation () {
 context.lineWidth = 6;
 context.strokeStyle = color;
 context.beginPath();
 context.moveTo(init_x, init_y);
 context.lineTo(new_x, new_y);
 context.stroke();
 context.closePath();
 new_x = new_x + 5
 new_y = -(new_x) * slope
 context.lineTo(new_x, new_y)
 if (new_x == theCanvas.width + 5) {
 clearInterval(drawLineIntervalId); // stop animation when line is complete
 graph_in_progress = "no" // line is now done
 status_message.innerHTML = "Click a button below the grid to graph an

Canvas Graphing Calculator | 7

http://en.wikipedia.org/wiki/Slope
http://www.w3schools.com/cssref/css_colors.asp

equation"
 }
 }
}

First, we check to see if another line is currently being drawn, and only proceed if this
is not the case; this ensures that the function is not called twice simultaneously, since
it is designed to track the coordinates of one line at a time. Then we calculate the initial
x- and y-coordinates for the line (init_x and init_y). For init_x, we start at the left
edge of the grid; since we reset the origin of the Canvas to the center of the grid in the
drawGrid() function, the leftmost x-coordinate is now equal to the negative of one-half
of the canvas width (-(theCanvas.width)/2). Then, we calculate the corresponding
init_y by taking the negative of init_x and multiplying by the slope.

It’s necessary to reverse the sign when calculating the y-coordinate, be-
cause even though we reset the origin of the Canvas to the center of the
grid, y-coordinates are still measured differently on the canvas than on
the traditional Cartesian coordinate plane. On the Cartesian coordinate
plane, y- values go from negative to positive as you travel up the y-axis
from bottom to top, but on the Canvas, they go from negative to positive
as you travel down the y-axis from top to bottom. Flipping the sign on
the y-value resolves this discrepancy.

Once we have the starting point of the line, we can go ahead and trigger the animation
that draws the line on the grid. We update the status message above the graphing
calculator, and then set the graph_in_progress variable to yes to indicate that the line
is now being drawn. Then we call the embedded function do_animation() using the
JavaScript setInterval() method. setInterval allows us to repeatedly call a function
at designated intervals of time, measured in milliseconds. Here, we call do_anima
tion() every 33 milliseconds, which will draw the line at a nice speed.

Each time do_animation() is called, we calculate a new ending point for our line
(new_x and new_y) by increasing the x-coordinate by 5 and calculating the corresponding
y-coordinate by taking the negative of new_x and multiplying by the slope. Then we
draw a line from (init_x, init_y) to (new_x, new_y). As do_animation() is called in suc-
cession, each new line drawn is a little bit longer than the last, which creates the visual
impression that one continuous line is being drawn across the grid.

When the x-coordinate in new_x exceeds the right edge of the Canvas, we call clearIn
terval() to end the animation, and then set graph_in_progress to no and reset the status
message above the calculator, so that draw_grid_line() is now ready to graph another
linear equation when triggered.

All that’s left to code is the initial setup upon page load, and the functionality for the
graphing calculator buttons. Here’s the code that initializes the graphing calculator:

window.addEventListener('load', eventWindowLoaded, false);
function eventWindowLoaded() {

8 | Chapter 1: Canvas for Publishers

http://www.w3schools.com/jsref/met_win_setinterval.asp

 canvasApp();
}

function canvasSupport () {
 return Modernizr.canvas;
}

function canvasApp(){

 if (!canvasSupport()) {
 return;
 } else {
 var theCanvas = document.getElementById('canvas');
 var context = theCanvas.getContext('2d');
 }

 initGraphCalculator();
 var graph_in_progress = "no"

 function initGraphCalculator() {
 drawGrid();
 var y_equals_x_button = document.getElementById("y_equals_x");
 y_equals_x_button.addEventListener('click', y_equals_xPressed, false);
 var y_equals_negative_x_button =
document.getElementById("y_equals_negative_x");
 y_equals_negative_x_button.addEventListener('click',
y_equals_negative_xPressed, false);
 var y_equals_two_x_button = document.getElementById("y_equals_two_x");
 y_equals_two_x_button.addEventListener('click', y_equals_two_xPressed, false);
 var y_equals_one_half_x_button =
document.getElementById("y_equals_one_half_x");
 y_equals_one_half_x_button.addEventListener('click',
y_equals_one_half_xPressed, false);
 var reset_grid_button = document.getElementById("reset_grid");
 reset_grid_button.addEventListener('click', reset_grid_buttonPressed, false);
 status_message = document.getElementById("status_message");
 }

First, when the window finishes loading, we check and see if the user’s environment
supports the <canvas> tag (if not, the code stops executing). Then, drawGrid() is trig-
gered, and event listeners are added to the buttons below the graphing calculator, so
that when the user clicks them, the corresponding functions will be executed:

function y_equals_xPressed(e) {
 draw_grid_line(1, "green");
}

function y_equals_negative_xPressed(e) {
 draw_grid_line(-1, "purple");
}

function y_equals_two_xPressed(e) {
 draw_grid_line(2, "blue");
}

Canvas Graphing Calculator | 9

http://www.w3.org/TR/DOM-Level-2-Events/events.html

function y_equals_one_half_xPressed(e) {
 draw_grid_line(1/2, "brown");
}

function reset_grid_buttonPressed(e) {
 theCanvas.width = theCanvas.width; // Reset grid
 drawGrid();
}

Now, when any of the four equation buttons is clicked, the draw_grid_line() function
is called with the appropriate slope and color values.

When the Reset Grid button is clicked, the width attribute is reset to its current value,
which results in all contents of the <canvas> elements being deleted. Then, the draw
Grid() function is called again to redraw the coordinate plane on the Canvas.

With our code complete, we’re now ready to test out the graphing calculator. Go ahead
and try it out on examples.oreilly.com. Figure 1-3 shows the graphing calculator in
action in the iBooks reader for iPad.

You can also download the full graphing calculator code from GitHub and experiment
with it locally in your Web Browser or ereader.

Canvas Finger Painting
Doing animations on the HTML5 Canvas is cool, but what’s even cooler is letting the
user draw on the Canvas herself. WIth the advent of touchscreen phones, tablets, and
ereaders, this becomes even more compelling, as the user can draw directly on the
screen with her finger, rather than using a mouse or trackpad. In this section, we’ll look
at how to implement a simple “finger painting” app in the Canvas, which would be a
nice fit for a children’s ebook—for example, a story that lets kids draw their own il-
lustrations to accompany the text, or a preschool textbook that uses the finger painting
to teach colors and shapes.

Here’s the HTML we’ll use to construct the Finger Painting page; the <canvas> tag
which will hold the drawing area is higlighted in bold:

<!doctype html>
<html lang="en">
<head>
<title>Finger Painting</title>
<script src="modernizr-1.6.min.js"></script>
<script src="finger_painting.js"></script>
</head>
<body>
<div>
<canvas id="canvas" width="500" height="500">
 Your browser does not support the HTML 5 Canvas.
</canvas>
</div>
<div>

10 | Chapter 1: Canvas for Publishers

http://examples.oreilly.com/0636920022473/graphing_calculator/graphing_calculator.html
https://github.com/sandersk/HTML5-for-Publishers/tree/master/graphing_calculator

<h1>Finger Painting</h1>
<p>Click/tap a color below to select a color, and then drag/swipe on the
 canvas above to draw a picture.</p>
<p>Color selected: Black</p>
<p>
<input type="button" id="Red" style="background-color: red; width: 25px;
height: 25px;"/>
<input type="button" id="Orange" style="background-color: orange; width: 25px;
height: 25px;"/>
<input type="button" id="Yellow" style="background-color: yellow; width: 25px;
height: 25px;"/>

Figure 1-3. Graphing calculator in iBooks

Canvas Finger Painting | 11

<input type="button" id="Green" style="background-color: green; width: 25px;
height: 25px;"/>
<input type="button" id="Blue" style="background-color: blue; width: 25px;
height: 25px;"/>
<input type="button" id="Purple" style="background-color: purple; width: 25px;
height: 25px;"/>
<input type="button" id="Brown" style="background-color: brown; width: 25px;
height: 25px;"/>
<input type="button" id="Black" style="background-color: black; width: 25px;
height: 25px;"/>
<input type="button" id="White" style="background-color: white; width: 25px;
height: 25px;"/>
</p>
<p><input type="button" id="reset_image" value="Reset Drawing"/></p>
</div>
</body>
</html>

Note that the color palette below the Canvas has been implemented using <input>
buttons, which are styled with CSS to be the appropriate color and size. Figure 1-4
displays the page in Chrome for Mac.

Figure 1-4. Finger painting interface in Google Chrome

12 | Chapter 1: Canvas for Publishers

In order for the user to be able to draw on the screen, we’ll need to be able to track his
cursor motions and clicks within the Canvas. We can do so by adding event listeners
to the <canvas> element as follows:

theCanvas.addEventListener('mousedown', mouse_pressed_down, false);
theCanvas.addEventListener('mousemove', mouse_moved, false);
theCanvas.addEventListener('mouseup', mouse_released, false);

Now when a user pressed down on the mouse within the <canvas>, a mousemove event
is triggered in the browser, and our event listener calls the mouse_pressed_down function.
Similarly, when the mouse is moved within the dimensions of the Canvas, the
mouse_moved function is called, and when the mouse button is released, the
mouse_released function is called. Let’s take a look at these three functions:

function mouse_pressed_down (ev) {
 begin_drawing = true;
 context.fillStyle = colorChosen.innerHTML;
}

function mouse_moved (ev) {
 var x, y;
 // Get the mouse position in the canvas
 x = ev.pageX;
 y = ev.pageY;

 if (begin_drawing) {
 context.beginPath();
 context.arc(x, y, 7, (Math.PI/180)*0, (Math.PI/180)*360, false);
 context.fill();
 context.closePath();
 }
}

function mouse_released (ev) {
 begin_drawing = false;
}

The mouse_pressed_down function serves to “turn on” a drawing event on the canvas. It
sets the variable begin_drawing to true, and then sets the fill color to be used to the
current color selected from the color palette.

Then when the mouse_moved function is called (which occurs any time the mouse is
moved somewhere within the Canvas), we get the cursor’s coordinates using the pageX/
pageY properties. We check if the begin_drawing variable is set to true, which means
that the user has the mouse button pressed down, and if so, we draw a circle of the
designated color with a radius of 7 pixels at the cursor location.

As long as the mouse button is held down while the mouse is moved over the Canvas,
the mouse_moved function will be called every single time the cursor location changes,
which means that circles will continue to be drawn as the mouse moves, resulting in
an effect quite similar to the Paintbrush tool in many image-editing applications.

Canvas Finger Painting | 13

When the mouse button is released, the begin_drawing variable is set back to false,
which “turns off” the drawing event. This ensures that drawing occurs only when the
mouse is held down, and not when the mouse is moved over the Canvas without the
button being pressed.

The above code works great on desktop and laptop browsers, where a mouse is used
to interface with screen elements, but what about touchscreen devices like the iPad? In
general, touchscreen browsers do not support mousedown/mousemove/mouseup events, as
there is no mouse button or mouse cursor that they can track; all those features are
replaced with finger taps and swipes. However, WebKit-based browsers support a cor-
responding set of events for tracking finger motions in the browser: touchstart/tou
chend/touchmove. So we can implement the same drawing functionality as above using
a touchmove event listener:

theCanvas.addEventListener('touchmove', touch_move_gesture, false);

And the following touch_move_gesture function:

function touch_move_gesture (ev) {
 // For touchscreen browsers/readers that support touchmove
 var x, y;
 context.beginPath();
 context.fillStyle = colorChosen.innerHTML;
 if(ev.touches.length == 1){
 var touch = ev.touches[0];
 x = touch.pageX;
 y = touch.pageY;
 context.arc(x, y, 7, (Math.PI/180)*0, (Math.PI/180)*360, false);
 context.fill();
 }
}

The touchmove handling for touchscreen devices is actually much sim-
pler than the mouse-based version, because we don’t even need to track
touchstart and touchend events. When dealing with a mouse, we need
to keep track of whether the mouse button is pressed or not when it’s
being moved on the canvas. In the touch version, we know that if the
touchmove event has been triggered, the user has his finger on the screen
and is intending to draw.

And that’s the meat of the finger painting code. All that’s left is the code to initialize
the event listeners, track color palette selections, and implement the Reset Drawing
button functionality. Example 1-1 shows the full JavaScript code for our finger painting
application.

Example 1-1. Finger painting JavaScript code (finger_painting.js)

window.addEventListener('load', eventWindowLoaded, false);
function eventWindowLoaded() {
 canvasApp();

14 | Chapter 1: Canvas for Publishers

http://www.webkit.org/
https://github.com/sandersk/HTML5-for-Publishers/blob/master/finger_painting/finger_painting.js

}

function canvasSupport () {
 return Modernizr.canvas;
}

function canvasApp(){
 if (!canvasSupport()) {
 return;
 }else{
 var theCanvas = document.getElementById('canvas');
 var context = theCanvas.getContext('2d');
 var redButton = document.getElementById("Red");
 var orangeButton = document.getElementById("Orange");
 var yellowButton = document.getElementById("Yellow");
 var greenButton = document.getElementById("Green");
 var blueButton = document.getElementById("Blue");
 var purpleButton = document.getElementById("Purple");
 var brownButton = document.getElementById("Brown");
 var blackButton = document.getElementById("Black");
 var whiteButton = document.getElementById("White");
 var colorChosen = document.getElementById("color_chosen");
 var resetButton = document.getElementById("reset_image");
 redButton.addEventListener('click', colorPressed, false);
 orangeButton.addEventListener('click', colorPressed, false);
 yellowButton.addEventListener('click', colorPressed, false);
 greenButton.addEventListener('click', colorPressed, false);
 blueButton.addEventListener('click', colorPressed, false);
 purpleButton.addEventListener('click', colorPressed, false);
 brownButton.addEventListener('click', colorPressed, false);
 blackButton.addEventListener('click', colorPressed, false);
 whiteButton.addEventListener('click', colorPressed, false);
 resetButton.addEventListener('click', resetPressed, false);
 drawScreen();
 }

 function drawScreen() {
 theCanvas.addEventListener('mousedown', mouse_pressed_down, false);
 theCanvas.addEventListener('mousemove', mouse_moved, false);
 theCanvas.addEventListener('mouseup', mouse_released, false);
 theCanvas.addEventListener('touchmove', touch_move_gesture, false);
 context.fillStyle = 'white';
 context.fillRect(0, 0, theCanvas.width, theCanvas.height);
 context.strokeStyle = '#000000';
 context.strokeRect(1, 1, theCanvas.width-2, theCanvas.height-2);
 }

 // For the mouse_moved event handler.
 var begin_drawing = false;

 function mouse_pressed_down (ev) {
 begin_drawing = true;
 context.fillStyle = colorChosen.innerHTML;
 }

Canvas Finger Painting | 15

 function mouse_moved (ev) {
 var x, y;
 // Get the mouse position in the canvas
 x = ev.pageX;
 y = ev.pageY;

 if (begin_drawing) {
 context.beginPath();
 context.arc(x, y, 7, (Math.PI/180)*0, (Math.PI/180)*360, false);
 context.fill();
 context.closePath();
 }
 }

 function mouse_released (ev) {
 begin_drawing = false;
 }

 function touch_move_gesture (ev) {
 // For touchscreen browsers/readers that support touchmove
 var x, y;
 context.beginPath();
 context.fillStyle = colorChosen.innerHTML;
 if(ev.touches.length == 1){
 var touch = ev.touches[0];
 x = touch.pageX;
 y = touch.pageY;
 context.arc(x, y, 7, (Math.PI/180)*0, (Math.PI/180)*360, false);
 context.fill();
 }
 }

 function colorPressed(e) {
 var color_button_selected = e.target;
 var color_id = color_button_selected.getAttribute('id');
 colorChosen.innerHTML = color_id;
 }

 function resetPressed(e) {
 theCanvas.width = theCanvas.width; // Reset grid
 drawScreen();
 }
}

You can experiment with the Finger Painting app on examples.oreilly.com. Fig-
ure 1-5 shows a completed drawing in the Finger Painting app in the iBooks reader for
iPad.

Pretty cool, right? Although maybe not as impressive as what you can do in some other
touchscreen finger painting apps.

16 | Chapter 1: Canvas for Publishers

http://examples.oreilly.com/0636920022473/finger_painting/finger_painting.html
http://www.hongkiat.com/blog/beautiful-ipad-fingerpaint-piece-de-resistance/
http://www.hongkiat.com/blog/beautiful-ipad-fingerpaint-piece-de-resistance/

HTML5 Canvas, EPUB, and Ereader compatibility
So, as we’ve seen, HTML5 Canvas is incredibly powerful and versatile, but the $64K
question that’s probably in your head is, “Which major ereading devices are currently
compatible with <canvas> content?” Unfortunately, the answer at the time of writing
(September 2011) is “Only one.” Currently, the iBooks reader for iPad/iPhone/iPod
touch is the only major ereader that supports and can render <canvas> content, which
means that if you want to embed <canvas> apps directly in your EPUBs, you’re likely
limiting the audience of your ebook quite significantly. That said, here are a couple

Figure 1-5. Author self-portrait in Finger Painting app in iBooks

HTML5 Canvas, EPUB, and Ereader compatibility | 17

options you may want to consider if you’d like to include Canvas apps in your EPUB,
but want to mitigate the incompatibility with other EPUB readers (e.g., Nook, Sony
Reader, Adobe Digital Editions):

• Include fallback content within your <canvas> elements that will be displayed if the
user’s ereader doesn’t have Canvas support (see the beginning of this chapter for
more details). This way, while readers won’t be able to use the app, you can display
text, images, etc., that can potentially convey some of the same information that
would have been displayed on the Canvas.

• Instead of (or in addition to) just embedding your Canvas apps directly in the
EPUB, consider hosting them on the Web and linking to them from your EPUB,
so that readers can access them from a traditional Desktop or mobile web browser.
Many modern hardware ereaders (again, iBooks, but also the Nook Color) have
built-in web browsers, so even if the ereader software itself doesn’t support can
vas, the web browser may. Additionally, readers viewing your EPUB on a desktop/
laptop machine (say, in Adobe Digital Editions) can click on your link and run the
Canvas app in Firefox or Chrome. The one downside of this approach is that read-
ers will obviously still need Internet access in order to access the app.

Testing for HTML5 Compatibility with Modernizr
You may have noticed that the preceding <canvas> examples in this chapter included
a script called modernizr-1.6.min.js in the HTML:

<script src="modernizr-1.6.min.js" type="text/javascript"></script>

Modernizr is a free JavaScript library that is widely used across the Web to test browser
compatibility with HTML5 and CSS3 features. Specifically, it provides the following
functions for testing the features covered in this book:

Modernizr.canvas
Tests for HTML5 Canvas support

Modernizr.geolocation
Tests for Geolocation API support

Modernizr.audio
Tests for HTML5 audio support. It can also test specifically for support
for .m4a, .mp3, .ogg, and .wav file formats.

Modernizr.video
Tests for HTML5 video support. It can also test specifically for support for H.
264 .mp4, .ogg, and .webm file formats.

It’s good practice to use a library like Modernizr to do compatibility testing for HTML5
features, so that you can provide fallbacks in your JavaScript code in the event the user’s
browser does not have support for the requisite HTML5 elements. However, note that
many ereaders do not supoort scripting via JavaScript, so when adding HTML5 to
ebook content, don’t rely solely on Modernizr to provide your fallbacks. Your best bet

18 | Chapter 1: Canvas for Publishers

http://www.modernizr.com/
http://en.wikipedia.org/wiki/H.264/MPEG-4_AVC
http://en.wikipedia.org/wiki/H.264/MPEG-4_AVC

is to use Modernizr in conjunction with fallback content included directly in your
HTML5 elements.

Longer-term, it’s likely we’ll start seeing more widespread support of HTML5 Canvas
in ereaders within the next 6–12 months. HTML5 support is an integral part of the
EPUB 3 specification being released by the IDPF (International Digital Publishing Fo-
rum) this fall. Under EPUB 3, content documents must use HTML5 syntax, which
means EPUB 3–compliant reading systems must support the <canvas> tag. That said,
the spec also currently says that “EPUB Reading System support for scripting is op-
tional,” which means that ereaders are not required to support the JavaScript code that
drives your Canvas applications. That said, in order to offer the full benefits of HTML5
and EPUB 3, I think it’s a safe bet that most touchscreen, non-eInk EPUB ereaders will
be providing full Canvas support in the near future, if for no other reason than to stay
competitive with iBooks in offering publishers a platform for delivering rich interactive
ebook content.

Bibliography/Additional HTML5 Canvas Resources
Here are some additional resources I highly recommend for learning more about Can-
vas:

HTML5 Canvas by Steve Fulton and Jeff Fulton (O’Reilly Media)
A great introduction to HTML5 Canvas for beginners, and an even better reference
book for advanced JavaScript programmers. This book covers everything from
simple Canvas animations to advanced physics-based movement, and shows you
how to design simple drawing apps and advanced arcade games alike.

Canvas Pocket Reference by David Flanagan (O’Reilly Media)
Excellent mini-reference guide to the complete Canvas API.

Client-side Graphics with HTML5 Canvases: An O’Reilly Breakdown by David Griffiths
(O’Reilly Media)

Video tutorial on HTML5 Canvas. Learn how to build a retro arcade game.

Creating an HTML5 canvas painting application by Mihai Sucan
If you’re interested in building an HTML5 canvas painting application of your own,
you may want to check out this cool tutorial.

Touching and Gesturing on the iPhone by nroberts
The best tutorial I found online on touch events for WebKit browsers. If you have
a mobile touchscreen browser, definitely check out this demo.

Bibliography/Additional HTML5 Canvas Resources | 19

http://idpf.org/epub/30
http://idpf.org/
http://idpf.org/
http://idpf.org/epub/30/spec/epub30-contentdocs.html#sec-xhtml
http://idpf.org/epub/30/spec/epub30-contentdocs.html#sec-scripted-content-rs-reqs
http://idpf.org/epub/30/spec/epub30-contentdocs.html#sec-scripted-content-rs-reqs
http://bitly.com/ormhtml5canvas
http://bit.ly/canvaspr
http://bit.ly/html5canvasvideo
http://dev.opera.com/articles/view/html5-canvas-painting/
http://www.sitepen.com/blog/2008/07/10/touching-and-gesturing-on-the-iphone/
http://o.sitepen.com/labs/code/iphone/events.html

CHAPTER 2

Geolocation for Publishers

Location-based web sites have become so commonplace that we frequently take their
functionality for granted. Type Starbucks into your Google search bar, and you’ll get a
list of numerous store locations within your immediate vicinity, without you even
needing to specify a town or city. Flickr’s map page has a “Find my location” button
that will show you pictures taken in areas near you. And if you want to geotag your
blog entris, WordPress has a plugin for that.

With the advent of HTML5, building geolocation functionality into web content has
become incredibly easy, thanks to the release of the Geolocation API, which provides
a standardized mechanism across all major web browsers for querying and receiving
user location data.

Obtaining location data via the web browser requires just one line of JavaScript code
to your script:

navigator.geolocation.getCurrentPosition(callback_function);

Where callback_function is the function that will be called by the browser when it
completes its attempt to retrieve location data. Not every browser supports the geolo-
cation API, however, and geolocation services are not available at all times in all loca-
tions, so you’ll probably want to build in a bit more error handling—for example:

if (Modernizr.geolocation) {
 navigator.geolocation.getCurrentPosition(callback_function, throw_error);
} else {
 alert('Your browser/ereader does not support geolocation. Sorry.');
}

function throw_error(position) {
 alert('Unable to geolocate you. Sorry.');
}

The Geolocation API returns to two properties that contain location data to your call-
back function: position.coords.latitude, which contains the user’s latitude, and posi
tion.coords.longitude, which contains his longitude. That’s neat, but unless your

21

http://www.flickr.com/map/
http://wordpress.org/extend/plugins/geolocation/
http://www.w3.org/TR/geolocation-API/

users are geography savants, the values (35.046872, -90.024971) probably mean far
less to you than 3734 Elvis Presley Blvd, Memphis, TN.

Luckily, there are many great web services out there that will translate latitude/longi-
tude coordinates into information far more transparent and valuable to humans: ad-
dresses, street maps, weather data, and more. Google Maps has a set of APIs availa-
ble for obtaining location data and embedding maps right in your HTML documents,
and in the next section, we’ll query the GeoNames database to add real-time geo-
graphical data to a work of fiction.

A Geolocated Tale
Wouldn’t it be great if authors could tailor their short stories, novels, and poems to the
hometown, state, and country of each and every one of their readers? Instead of The
Merchant of Venice, you could have The Merchant of Dallas, or The Merchant of Yonk-
ers. Whether you find the idea enthralling or a bit appalling, the Geolocation API makes
it possible.

To illustrate what’s feasible on a smaller scale, we’ll take the introduction to a short
story, and geolocate it with details about the reader’s current location. We’ll start with
some skeleton paragraphs that include placeholders for street address, city name, and
current temperature—styled in bold red for emphasis. Example 2-1 shows the HTML,
and Figure 2-1 shows it displayed in Safari for Mac:

Example 2-1. HTML for our story skeleton

<!doctype html>
<html lang="en">
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8"/>
<title>A Geolocated Tale</title>
<script src="modernizr-1.6.min.js"></script>
<script src="geolocation-story.js"></script>
<script src="jquery-1.6.2.min.js"></script>
<style media="screen" type="text/css">
body {
 margin: 10px 5px 10px 5px;
}

em {
 font-weight: bold;
 font-style: normal;
 color: red;
}
</style>
</head>
<body>
<h1>A Geolocated Tale</h1>
<p>It was your typical <em id="weather_temp">LOADING
 TEMPERATURE°F day in <em id="city">LOADING CITY NAME when

22 | Chapter 2: Geolocation for Publishers

http://www.nationalgeographic.com/geographybee/past_winners.html
http://code.google.com/apis/maps/index.html
http://code.google.com/apis/maps/index.html
http://www.geonames.org/

Muffin Bukowski was roused from decadent slumber by the
ear-throttling shriek of an unidentified avian trespassing on the
grounds of her otherwise-serene home, clearly violating Section I,
Article 246 of her condo documents.</p>

<p>Groggily stumbling to her bedroom window, Muffin peered
through the pristine glass out at <em id="street_address">LOADING STREET
NAME.</p>

<p>“Are my eyes deceiving me?” Muffin muttered as she lightly
 rapped her knuckles against her forehead, unable to process the
 miraculous scene unfolding before her...</p>
</body>
</html>

Now, we’ll need some JavaScript code to do the following:

1. Query the Geolocation API for the reader’s latitude and longitude

2. Use the latitude and longitude values to then query the GeoNames database for
the reader’s current temperature, and fill in the corresponding placeholder in the
story.

3. Use the latititude and longitude values to query GeoNames for the reader’s street
address and city, and again fill in the corresponding placeholders.

GeoNames has several dozen web services available for getting different types of geo-
graphical data. For our example, we can use their extendedFindNearby service to get
street-address and city data, and their findNearByWeather service to get the temperate
data. For most of their web services, GeoNames makes data available in both XML and
JSON formats, but in the case of extendedFindNearby, only XML data is available. So,
to make things simple, we’ll query both services for XML. And to make things even

Figure 2-1. Our skeleton story in Safari

A Geolocated Tale | 23

http://www.geonames.org/export/ws-overview.html
http://www.geonames.org/export/web-services.html#extendedFindNearby
http://www.geonames.org/export/JSON-webservices.html#findNearByWeatherJSON
http://www.w3schools.com/xml/xml_whatis.asp
http://www.json.org/

easier, we’ll use the jQuery JavaScript library to help us interface with GeoNames and
update our HTML placeholders (jQuery offers a set of convenience functions that
greatly simplify both these tasks).

The code for Step 1 should look familiar:

window.addEventListener('load', eventWindowLoaded, false);

function eventWindowLoaded() {
 get_location();

 function get_location() {
 if (Modernizr.geolocation) {
 navigator.geolocation.getCurrentPosition(geolocate_story, throw_error);
 } else {
 alert('Your browser/ereader does not support geolocation. Sorry.');
 }

 function throw_error(position) {
 alert('Unable to geolocate you. Sorry.');
 }
}

As we saw in the beginning of the chapter, this code calls the getCurrentPosition()
function to obtain latitude/longitude, with some error handling in place in case the
user’s environment doesn’t support geolocation, or the geolocation attempt fails. This
time, however, if geolocation succeeds, we’ll call the geolocate_story() function to
perform Steps 2 and 3.

In Step 2, we query GeoNames for temperature info:

function geolocate_story(position) {
 var geo_lat = position.coords.latitude;
 var geo_long = position.coords.longitude;
 // Get weather information
 $.ajax({
 type: 'GET',
 url: 'http://ws.geonames.org/findNearByWeatherXML?lat=' + geo_lat + '&lng=' +
geo_long,
 dataType: 'xml',
 success: function (weather_resp, xmlstatus) {
 var temperature_celsius = $(weather_resp).find("temperature").text();
 if (temperature_celsius != "") {
 // Weather temp data given in Celsius; convert to Fahrenheit, because I'm American
 var temperature_fahrenheit = 9/5*temperature_celsius + 32;
 $('#weather_temp').text(temperature_fahrenheit);
 } else {
 $('#weather_temp').text("TEMP NOT FOUND");
 }
 },
 error: function (xhr, status, error) {
 alert(error);
 $('#weather_temp').text("TEMP NOT FOUND");
 }
 })

24 | Chapter 2: Geolocation for Publishers

http://jquery.com/
http://jquery.com/

The geolocate_story() function receives the latitude and longitude data in position,
which is passed to it from the Geolocation API, and then we store that data in
geo_lat and geo_long, respectively. To interface with GeoNames, we call jQuery’s
$.ajax() function, which lets us set up an XML query with the following parameters:

type: 'GET'
Specifies that we’ll make a HTTP GET request (as opposed to a POST request),
which is compatible with the GeoNames API

url: 'http://ws.geonames.org/findNearByWeatherXML?lat=' + geo_lat + '&lng=' +
geo_long

Specifies the URL to be queried. For the findNearByWeather service, the URL is
http://ws.geonames.org/findNearByWeatherXML, followed by the lat parameter
for latitude and the lng parameter for longitude, where we supply the geo_lat and
geo_long values we got from the Geolocation API.

datatype: 'xml'
GeoNames is going to return XML to us, so this tells the $.ajax() function to parse
the incoming data accordingly

success: ...
Specifies what to do if our API call is successful; here, we’ll call a function to process
the weather data, which performs the following three steps

1. Grabs the value of the <temperature> element in the XML returned from Ge-
oNames ($(weather_resp).find("temperature").text();)

2. If the temperature value is present, converts it from Celsius to Fahrenheit (var
temperature_fahrenheit = 9/5*temperature_celsius + 32;)

3. Updates the weather_temp in the HTML with the Fahrenheit tempera-
ture ($('#weather_temp').text(temperature_fahrenheit);), or if no tempera-
ture value was returned, inserts the text “TEMP NOT FOUND”

error: ...
Specifies what to do if our API call fails; here, we’ll call a function that updates the
weather_temp in the HTML with the text “TEMP NOT FOUND” ($
('#weather_temp').text("TEMP NOT FOUND");)

In Step 3 we again query the GeoNames API in similar fashion, but this time we get the
user’s location data (street address and city):

// Get full location information
$.ajax({
 type: 'GET',
 url: 'http://ws.geonames.org/extendedFindNearby?lat=' + geo_lat + '&lng=' +
geo_long,
 dataType: 'xml',
 success: function (loc_resp, xmlstatus) {
 var city_name = $(loc_resp).find("placename").text();
 if (city_name != "") {
 $('#city').text(city_name);
 } else {

A Geolocated Tale | 25

http://www.cs.tut.fi/~jkorpela/forms/methods.html
http://ws.geonames.org/findNearByWeatherXML

 $('#city').text("CITY NOT FOUND");
 }
 var street_address = $(loc_resp).find("streetNumber").text() + " " + $
(loc_resp).find("street").text();
 if (street_address != "") {
 $('#street_address').text(street_address);
 } else {
 $('#street_address').text("ADDRESS NOT FOUND");
 }
 },
 error: function (xhr, status, error) {
 alert(error);
 $('#city').text("CITY NOT FOUND");
 $('#street_address').text("ADDRESS NOT FOUND");
 }
})

Most of the $.ajax() parameters are identical to those for the temperature query. For
the url parameter, we substitute in the extendedFindNearby URL, which is http://ws
.geonames.org/extendedFindNearby. For our success function, we get the values for the
placename (typically corresponds to city), streetNumber, and street elements in the
XML from GeoNames, and update the corresponding s in the HTML. For our
error function, we update the s with boilerplate “NOT FOUND” text.

Figure 2-2 shows what the final story looks like, post-geolocation, if you happen to be
visiting O’Reilly Media’s Cambridge, Massachusetts, office on a warm, late-summer
day.

Try loading the story in your own browser, and see what the text looks like. You can
also download the full code from GitHub.

Figure 2-2. A Geolocated tale

26 | Chapter 2: Geolocation for Publishers

http://ws.geonames.org/extendedFindNearby
http://ws.geonames.org/extendedFindNearby
http://examples.oreilly.com/0636920022473/geolocation/geolocation_example.html
https://github.com/sandersk/HTML5-for-Publishers/tree/master/geolocation

HTML5 Geolocation, EPUB, and Ereader Compatibility
As with HTML5 Canvas, Geolocation support is not yet widespread in EPUB readers.
At the time of writing (September 2011) , among the major ereaders, iBooks is again
the only one that supports the Geolocation API.

However, it’s important here to draw a distinction between “supports the Geolocation
API” and “supports querying geolocation web services (like GeoNames).” While
iBooks can query the Geolocation API and will return the user’s latitude/longitude
coordinates, it does not support the necessary XMLHttpRequest functionality for querying
Internet web services, throwing an ABORT_ERR: XMLHttpRequest Exception 102 error (see
Figure 2-3)

So at this time, it’s not possible to embed our Geolocated Tale in an EPUB and have it
successfully render in iBooks. However, you can instead post the story on the Web,
and link to it within your EPUB (Mobile Safari on iPhone/iPod/iPad will indeed render
the story successfully).

That said, it’s still a bit disappointing that geolocation support really isn’t available in
ereaders at the present time. And what’s even more unfortunate is that because the
Geolocation API is not technically part of the HTML5 specification (it’s its own separate
W3C spec), it’s also not technically a requirement of the EPUB 3 spec that ereaders
support the Geolocation API. And of course, geolocation support is arguably much
more controversial than support for Canvas, due to very legitimate concerns regarding
security and privacy.

Also potentially a bit controversial is whether the use of geolocation services in EPUB
runs counter to the specifications of the format, which maintain that all resources in-
cluded directly in the book content need to be embedded directly in the EPUB file, and
referenced in the EPUB’s manifest. The philosophy here is that whether the user is
online or offline, they should be able to access and view all the book content; a lack of
Internet access should not cripple the reading experience. Does a geolocated work of
fiction violate this precept? The answer to this question is a bit subjective, and likely
depends on how integral a role geolocation plays in the book content, the type of fall-
backs that are in place, etc.

Regardless, we’ve already reached a point on the Web where geolocation functionality
is omnipresent and often taken for granted. So it seems likely that EPUB content cre-
ators and ereader developers alike will be strongly motivated to move toward a future
that allows for geolocation-enhanced ebooks. The potential inherent in geolocated
travel and restaurant guides alone seems huge, not to mention the opportunites for
more avant-garde experimentation.

Bibliography/Additional Resources
Here’s a list of additional Geolocation resources you may find useful:

Bibliography/Additional Resources | 27

http://idpf.org/epub/30
http://arstechnica.com/tech-policy/news/2011/06/bipartisan-bill-would-end-governments-warrantless-gps-tracking.ars
http://idpf.org/epub/30/spec/epub30-publications.html#sec-manifest-elem
http://en.wikipedia.org/wiki/Location-based_game

HTML5 Geolocation by Anthony T. Holdener III
Great primer that covers both how geolocation technology works, and provides
many examples of how to harness it in your HTML5 applications

Who’s using the W3C Geolocation API?
Nice guide to which prominent websites are using the Geolocation API, their pri-
vacy policies, and whether users gets a heads-up that they are being geolocated

Figure 2-3. Geolocation XMLHttpRequest Exception 102 error in iBooks

28 | Chapter 2: Geolocation for Publishers

http://bitly.com/html5geolocation
http://npdoty.name/location/services

Geo-aware ebook demo by Liza Daly
Cutting-edge geolocation ebook demo in which the book’s text adapts as the user’s
location changes.

Bibliography/Additional Resources | 29

http://blog.threepress.org/2010/06/08/geo-aware-ebook-demo/

CHAPTER 3

<audio>/<video> for Publishers

One of the most exciting features of HTML5 is that it offers native support for audio
and video content. On the Web, this means that reliance on browser plugins in order
faciliate display of multimedia content is becoming a thing of the past. On the ereader
side, HTML5 and EPUB 3 open the door to embedding this same multimedia content
directly within an ebook. Let’s take a quick look at HTML5’s new <audio> and
<video> elements.

A Two-Minute Introduction to the <audio> and <video>
Elements
The standard HTML5 <audio> element looks like this:

<audio id="new_slang">
<source src="new_slang.wav" type="audio/wav"/>
<source src="new_slang.mp3" type="audio/mp3"/>
<source src="new_slang.ogg" type="audio/ogg"/>
(Sorry, <audio> element not supported in your
 browser/ereader, so you will not be able to listen to
 this song.)
</audio>

The <audio> element serves as a container, which contains a series of <source> elements
that reference your audio files (src attribute) in whichever formats you have available
(type attribute). If you only have one format available, you can abbreviate the markup
as follows:

<audio id="new_slang" src="new_slang.wav">No song for you!</audio>

However, current best practice is to provide audio in multiple audio formats—usually
WAV, MP3, and Ogg—in order to ensure compatibility across the range of HTML5
audio–compliant browsers and ereaders (see “HTML5 Audio/Video Compatibility in
the Browser and Ereaders” on page 38).

31

http://get.adobe.com/flashplayer/
http://www.w3schools.com/html5/tag_audio.asp
http://en.wikipedia.org/wiki/WAV
http://en.wikipedia.org/wiki/MP3
http://en.wikipedia.org/wiki/Ogg

The <audio> element also accepts a handful of optional boolean attributes for custom-
izing playback: controls, which displays a standard set of audio playback control but-
tons for the user; autoplay, which makes the audio play automatically, as soon as it’s
been loaded; and loop, which makes the audio repeat over and over and over...

<audio id="new_slang" src="new_slang.wav" controls autoplay loop>No song for you!</
audio>

Note that HTML5 permits boolean attributes to be supplied without a corresponding
value (e.g., controls instead of controls="true"), but at the present time, for better
compatibility in ereaders that are expecting XHTML content, I recommend including
attribute values:

<audio id="new_slang" src="new_slang.wav" controls="true" autoplay="true"
loop="true">No song for you!</audio>

Note that the value of the attribute is immaterial: its mere presence is always equivalent
to true and triggers its functionality. So, somewhat counterintuitively, both con
trols="true" and controls="false" (or controls="whatever") will all trigger the play-
back buttons to be displayed. If you don’t want playback buttons, don’t include the
controls attribute.

The standard HTML5 <video> element is structured similarly to <audio>:

<video id="dancing_pony" width="300" height="300">
<source src="dancing_pony.mp4" type="video/mp4"/>
<source src="dancing_pony.ogg" type="video/ogg"/>
(Sorry, <audio> element not supported in your
 browser/ereader, so you will not be able to listen to
 this song.)</video>

The width and height attributes on the <video> element specify the dimensions of the
video. Additionally, <video> also supports the same boolean controls, autoplay, and
loop attributes as <audio>, as well as the same shorthand markup if you only have one
video format:

<video id="dancing_pony" width="300" height="300" src="dancing_pony.mp4"
controls="true" autoplay="true" loop="true">
No pony for you!
</video>

Also, as with <audio>, browser/ereader compatibility varies for different video formats.
Encoding video in both MPEG-4 and Ogg formats is a safe bet (see “HTML5 Audio/
Video Compatibility in the Browser and Ereaders” on page 38 for more details). In
the following sections, we’ll look at a couple of simple demos of audio and video in
action.

An Audio-Enabled Glossary
One great use of HTML5 audio element is to add supplemental text-to-speech func-
tionality to your book content. In this example, we’ll add audio functionality to a glos-

32 | Chapter 3: <audio>/<video> for Publishers

http://www.whatwg.org/specs/web-apps/current-work/#boolean-attributes
http://www.w3schools.com/html5/tag_video.asp
http://en.wikipedia.org/wiki/MPEG-4

say so that you can click/tap a button to hear the pronunciation of each term. We’ll
use the <audio> element to embed the sound bytes, and JavaScript to control the audio
playback. Example 3-1 shows the HTML for our glossary, which defines a few terms
ebook publishers will likely be familiar with; <audio> elements are highlighted in bold.

Example 3-1. Audio-enabled glossary HTML

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Digital Publishing Mini-Glossary</title>
<script src="modernizr-1.6.min.js"></script>
<script src="glossary.js"></script>
<style media="screen" type="text/css">
dl {
 width: 400px;
}

dt {
 padding-top: 10px;
 padding-bottom: 5px;
 font-style: italic;
 color: red;
}

dd {
 margin-left: 1.5em;
}

.play-button {
 font-style: normal;
 color: blue;
 padding: 3px;
 border:2px solid;
 border-radius:6px;
 border-color: black;
 background-color: gray;
}

dt .play-button {
 margin-left: 6px;
}
</style>
</head>
<body>
<h1>Digital Publishing Mini-Glossary</h1>
<p>Click the ▶ button to hear the
 pronunciation of a term</p>
<!--Audio content -->
<audio id="epub">
<source src="audio/epub.wav" type="audio/wav"/>
<source src="audio/epub.mp3" type="audio/mp3"/>
<source src="audio/epub.ogg" type="audio/ogg"/>
(Sorry, <audio> element not supported in your

An Audio-Enabled Glossary | 33

 browser/ereader.)
</audio>
<audio id="mobi">
<source src="audio/mobi.wav" type="audio/wav"/>
<source src="audio/mobi.mp3" type="audio/mp3"/>
<source src="audio/mobi.ogg" type="audio/ogg"/>
</audio>
<audio id="pdf">
<source src="audio/pdf.wav" type="audio/wav"/>
<source src="audio/pdf.mp3" type="audio/mp3"/>
<source src="audio/pdf.ogg" type="audio/ogg"/>
</audio>
<div class="glossary">
<dl>
<dt>EPUB <input type="submit" class="play-button" id="epub_button" value="▶"/></dt>
<dd>An open standard for reflowable ebook content created and maintained by the International Digital Publishing Forum
 (IDPF) based on HTML, CSS, and XML technologies. Version 3.0 of
 EPUB will support HTML5.</dd>
<dt>Mobipocket <input type="submit" class="play-button" id="mobi_button" value="▶"/
></dt>
<dd>A proprietary standard for reflowable ebook content developed by Mobipocket SA,
 and used by Amazon on its hardware and software Kindle
 platforms.</dd>
<dt>Portable Document Format (PDF) <input type="submit" class="play-button"
id="pdf_button" value="▶"/></dt>
<dd>An open standard for page-based (non-reflowable) electronic documents created by Adobe
Systems
 that has been in use since the 1990s. Many ereader devices support
 PDF files, as well as EPUB or Mobi.</dd>
</dl>
</div>
</body>
</html>

Each glossary term is followed by an <input> button styled with CSS to resemble a play
button. Figure 3-1 shows the glossary displayed in iBooks for iPad.

Next, we’ll write some JavaScript that initiates the audio playback when one of the
<input> buttons is clicked. Example 3-2 shows the code.

Example 3-2. Glossary JavaScript

window.addEventListener('load', eventWindowLoaded, false);

function eventWindowLoaded() {
 if (audio_support()) {
 set_up_audio();
 }
}

function audio_support () {
 return Modernizr.audio;
}

34 | Chapter 3: <audio>/<video> for Publishers

function set_up_audio() {
 var epub_audio = document.getElementById("epub");
 var mobi_audio = document.getElementById("mobi");
 var pdf_audio = document.getElementById("pdf");
 // Add play button functionality
 var epub_play_button = document.getElementById("epub_button");
 var mobi_play_button = document.getElementById("mobi_button");
 var pdf_play_button = document.getElementById("pdf_button");
 epub_play_button.addEventListener("click", play_epub, false);
 mobi_play_button.addEventListener("click", play_mobi, false);

Figure 3-1. Audio-enabled glossary in iBooks

An Audio-Enabled Glossary | 35

 pdf_play_button.addEventListener("click", play_pdf, false);
 function play_epub() {
 epub_audio.play();
 }
 function play_mobi() {
 mobi_audio.play();
 }
 function play_pdf() {
 pdf_audio.play();
 }
}

As we’ve seen in previous examples, event listeners are used to track when each of the
terms’ play buttons is clicked, and call the corresponding play_format function. The
one piece of audio-specific code is the play() method (highlighted in bold above) called
on each of the <audio> elements. As you’d expect, this triggers the playback of the audio.

Try loading the glossary in your browser to hear the terms spoken aloud in all their
glory. You can also download the code and audio media from GitHub.

An HTML5 Video About HTML5 Canvas
Chapter 1 gave an overview of the HTML Canvas and many of its applications, but
wouldn’t it have been cool if we had also included a video illustrating the Canvas in
action? Well, now we know how to do that with the <video> element. Example 3-3
shows an HTML5 page that includes a clip from O’Reilly’s Client-side Graphics with
HTML5 Canvases demoing an Canvas adaptation of the arcade game Asteroids.

Example 3-3. Native HTML5 video content

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>HTML5 Video Illustrating HTML5 Canvas</title>
</head>
<body>
<h1>HTML5 Video Illustrating HTML5 Canvas</h1>
<p>Check out this excerpt from Client-side Graphics
with HTML5 Canvases showing the retro arcade game Asteroids implemented
using HTML5 Canvas.</p>
<video id="asteroids_video" width="480" height="270" controls="true">
<source src="video/html5_asteroids.mp4" type="video/mp4"/>
<source src="video/html5_asteroids.ogg" type="video/ogg"/>
(Sorry, <video> element not supported in your
 browser/ereader, so you will not be able to watch this video.)
</video>
</body>
</html>

36 | Chapter 3: <audio>/<video> for Publishers

http://examples.oreilly.com/0636920022473/glossary/glossary.html
https://github.com/sandersk/HTML5-for-Publishers/tree/master/glossary
http://shop.oreilly.com/product/0636920016502.do
http://shop.oreilly.com/product/0636920016502.do
http://en.wikipedia.org/wiki/Asteroids_(video_game)

Note the width and height values specified in order to set the dimensions of the video,
and the addition of controls attribute to give the user access to the traditional video-
player buttons for controlling playback. For increased web browser compatibility, two
video files are made available: one in MPEG-4 format and one in Ogg format.

If you’re planning to embed <video> content in EPUB, however, at this
time, I’d recommend limiting video files to MP4 format, which is cur-
rently supported by both iBooks and NOOK Color. Ogg files are not
supported by either of these ereaders, and may interfere with video dis-
play.

Additionally, when embedding video in EPUB, you may want to opti-
mize for file size, as large video files can quickly bloat your EPUB docu-
ment—another good reason to stick with just one video format.

Take a look at the video clip in your browser. The code and video clips are available
for download in GitHub.

EPUB 3 Media Overlays
The preceding examples are well suited to situations in which you want to intersperse
audio and video throughout your content, but what if you want to incorporate more
comprehensive functionality—say, provide an audio track for an entire book? For cases
like these, EPUB 3 provides a specification for media overlay documents that allows
you to sync audio with text:

Books featuring synchronized audio narration are found in mainstream e-books, educa-
tional tools and e-books formatted for persons with print disabilities. In EPUB 3, these
types of books are created by using Media Overlay Documents to describe the timing for
the pre-recorded audio narration and how it relates to the EPUB Content Document
markup. The file format for Media Overlays is defined as a subset of SMIL, a W3C
recommendation for representing synchronized multimedia information in XML.

The Media Overlays feature is designed to be transparent to EPUB Reading Systems that
do snot support the feature. The inclusion of Media Overlays in an EPUB Publication
has no impact on the ability of Media Overlay-unaware Reading Systems to render that
Publication as a “regular” EPUB Publication.

Although future versions of this specification may incorporate support for video media
(e.g., synchronized text/sign-language books), this version supports only synchronizing
audio media with the EPUB Content Document.*

As stated above media overlays are currently limited only to audio content (no support
for syncing video to text at the present time), and furthermore, support for overlays is
optional, so EPUB 3–compliant ereaders are allowed to ignore them.

* From 8 September 2011 draft of “EPUB Media Overlays 3.0” specification: http://idpf.org/epub/30/spec/
epub30-mediaoverlays.html#sec-overlays-introduction

EPUB 3 Media Overlays | 37

http://examples.oreilly.com/0636920022473/video/video.html
https://github.com/sandersk/HTML5-for-Publishers/tree/master/video
http://idpf.org/epub/30/spec/epub30-mediaoverlays.html
http://idpf.org/epub/30/spec/epub30-mediaoverlays.html#refSMIL
http://idpf.org/epub/30/spec/epub30-mediaoverlays.html#sec-overlays-introduction
http://idpf.org/epub/30/spec/epub30-mediaoverlays.html#sec-overlays-introduction

To sync audio with text using media overlays, you make use of Media Overlay Docu-
ments, which are based on the Synchronized Multimedia Integration Language (SMIL)
standard, an XML vocabulary for multimedia content. Media Overlay Documents are
structured as a series of <par> elements that map text in the HTML content documents
to the appropriate portion of corresponding audio files. For example:

<par id="hamlet_act_3_scene_1">
 <text src="act3_scene_1.xhtml#to_be_or_not_to_be"/>
 <audio src="to_be_or_not_to_be.mp3" clipBegin="0s clipEnd="45s"/>
</par>

Full details and sample Media Overlay Document structure can be found here in the
spec. Details on how to incorporate Media Overlay documents into the EPUB 3 package
document are also covered here.

HTML5 Audio/Video Compatibility in the Browser and Ereaders
HTML5 Audio/Video is currently supported across most major Web browsers (in-
cluding Firefox, Safari, Google Chrome, and even [finally!] Internet Exporer), the spe-
cific audio/video formats supported vary from platform to platform, as the HTML5
spec itself is currently format-agnostic. Wikipedia has some nice tables tracking the
current status of HTML5 audio and video support across the different browsers, but
here’s a quick summary of audio formats you should supply to ensure good compati-
bilty:

• HTML5 Audio: WAV, MP3, Ogg

• HTML5 Video: H.264 MPEG-4, Ogg

On EPUB ereaders, HTML5 audio/video support is more widespread than support for
either Canvas or Geolocation, but is still limited to a few platforms. Here’s a rundown
of formats supported by HTML5 Audio/Video–compliant ereaders:

iBooks (v.1.1.1 and higher) for iPhone/iPod/iPad
Video: MP4 (H.264)

Audio: MP3, AAC, WAV

NOOK Color
Video: “3gp, 3g2, mp4, m4v; MPEG-4 Simple Profile up to 854x480; H.263 up to
352x288; H.264 Baseline profile up to 854x480”†

Audio: MP3, WAV, Ogg

Ibis Reader
Video: MP4 (H.264)

† From the Nook Color FAQs: http://www.barnesandnoble.com/u/nookcolor-support-beyond-ebooks/
379002553/

38 | Chapter 3: <audio>/<video> for Publishers

http://www.w3.org/TR/SMIL/
http://www.w3.org/TR/SMIL/
http://idpf.org/epub/30/spec/epub30-mediaoverlays.html#sec-media-overlays-structure
http://idpf.org/epub/30/spec/epub30-mediaoverlays.html#sec-media-overlays-structure
http://en.wikipedia.org/wiki/Html5_audio#Audio_format_support
http://en.wikipedia.org/wiki/HTML5_video#Table
http://en.wikipedia.org/wiki/H.264/MPEG-4_AVC
http://www.barnesandnoble.com/u/nookcolor-support-beyond-ebooks/379002553/
http://www.ibisreader.com/
http://www.barnesandnoble.com/u/nookcolor-support-beyond-ebooks/379002553/
http://www.barnesandnoble.com/u/nookcolor-support-beyond-ebooks/379002553/

Adobe Digital Editions does not support HTML5 audio/video, but does
support the embedding of Flash video in EPUB documents; see Liza
Daly’s tutorial, “Using Flash video in ePub,” for details.

Bibliography/Additional Resources
If you’re interested in learning more about HTML5 Audio and Video, you may be
interested in some of these resources:

HTML5 Media by Shelley Powers (O’Reilly Media)
A comprehensive look at incorporating audio/video content in HTML5 docu-
ments, converting media files to different formats, styling media with CSS, and
advanced scripting with JavaScript,

Native Video in HTML5: An O’Reilly Breakdown by David Griffiths (O’Reilly Media)
Nice series of video tutorials on HTML5 video

HTML5 Canvas by Steve Fulton and Jeff Fulton (O’Reilly Media)
Chapter 6 of HTML5 Canvas, “Mixing HTML5 and Canvas,” shows how to
“draw” video content on the Canvas, and take advantage of the Canvas API to
manipulate video in exciting ways.

“Jaraoke” by Randall A. Gordon
A slick implementation of karaoke using HTML5 audio

jPlayer’s “HTML5 <audio> and Audio() Support Tester”
Test your Web browser’s audio format support.

Bibliography/Additional Resources | 39

http://www.adobe.com/products/digitaleditions/
http://blog.threepress.org/2009/11/14/using-flash-video-in-epub/
http://bitly.com/html5media
http://bit.ly/ormhtml5video
http://bitly.com/ormhtml5canvas
http://randallagordon.com/jaraoke/
http://www.jplayer.org/HTML5.Audio.Support/

CHAPTER 4

Embedding HTML5 in EPUB

Thus far, we’ve built several HTML5 applications well suited to be embeded in ebooks.
Now we’ll take a look at how to structure and embed this HTML5 content in an EPUB.

An EPUB document (both EPUB 2.01 and EPUB 3.0) is a ZIP archive comprising five
main components:

• A mimetype document containing the text application/epub+zip, which identifies
the document as an EPUB

• A set of HTML content documents and referenced media files that contain all the
book content

• A Package Document (often referred to as the OPF file), which contains a <mani
fest> that lists all the resources in the document and a <spine> that specifies the
proper sequencing of the HTML content

• A META-INF directory containing a container.xml file that identifies the location
of the Package Document and, optionally, an encryption.xml file that holds en-
cryption info if your EPUB will contain DRM

• A Table of Contents document (in EPUB 2.01, a NCX file; in EPUB 3, a Navigation
Document)

A detailed discussion/tutorial on constructing EPUB documents is be-
yond the scope of this book, but see “Additional EPUB Resour-
ces” on page 43 at the end of the chapter for some great articles that
provide more guidance.

Embedding HTML5 content within an EPUB is done in the same fashion as any other
HTML content; just add the file to your EPUB zip, and reference it in the OPF file.
However, one important caveat is that many ereaders (most notably, iBooks) will not
successfully parse HTML5 content unless the standard XHTML namespace is included
on the <html> tag as follows:

41

http://en.wikipedia.org/wiki/ZIP_(file_format)
http://idpf.org/epub/30/spec/epub30-publications.html#sec-package-documents
http://idpf.org/epub/30/spec/epub30-ocf.html#sec-container-metainf
http://idpf.org/epub/30/spec/epub30-ocf.html#sec-container-metainf-container.xml
http://idpf.org/epub/30/spec/epub30-ocf.html#sec-container-metainf-encryption.xml
http://idpf.org/epub/20/spec/OPF_2.0.1_draft.htm#Section2.4.1
http://idpf.org/epub/30/spec/epub30-contentdocs.html#sec-xhtml-nav
http://idpf.org/epub/30/spec/epub30-contentdocs.html#sec-xhtml-nav

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
Exciting HTML5 content goes here...
</html>

So be careful not to leave out the declaration highlighted in bold above. Also, any and
all resources referenced in your HTML content need to be listed in the OPF <mani
fest>. Here’s a sample manifest <item> for an external JavaScript file:

<item id="modernizr" href="modernizr-1.6.min.js" media-type="text/javascript"/>

Here’s an <item> for an MP3 audio file:

<item id="rem_song" href="losing_my_religion.mp3" media-type="audio/mp3"/>

And here’s an <item> for an MP4 video:

<item id="teen_vampires" href="new_moon.mp4" media-type="video/mp4"/>

The media-type attribute should contain the appropriate MIME MEDIA type for the
file format; you can find a list of MIME types at http://www.iana.org/assignments/media
-types/index.html

Alternatives to HTML5 and EPUB
As an open standard widely supported by nearly all major ereader devices (with one
notable exception), EPUB is an excellent option for doing HTML5 ebook development,
especially once the EPUB 3.0 specification is formally adopted. However, if you’re
interested in adding multimedia and interactivity to your ebook content, but don’t want
to go the HTML5/EPUB 3 route, here are some other options.

HTML5 and Mobi
If you’re interested in making your ebook content available on Amazon’s Kindle hard-
ware and software platforms, EPUB is not an option. Kindle devices support only the
proprietary Mobipocket (Mobi) format. Amazon provides a tool called Kindlegen for
converting EPUB to Mobi, but Kindlegen and the Kindle’s HTML and CSS support in
Mobi is generally less robust than that in EPUB.

However, Kindle does now support embedded audio and video in Mobi content via
the HTML5 <audio> and <video> tags. Per Version 1.8 of the Amazon Kindle Publishing
Guidelines, videos in .mp4, .mpg, .ps, and .ts formats are accepted. Audio files must be
in .mp3 format. See pages 22–28 of the guidelines for more details on content and
metadata requirements.

42 | Chapter 4: Embedding HTML5 in EPUB

http://www.iana.org/assignments/media-types/index.html
http://www.iana.org/assignments/media-types/index.html
https://kindle.amazon.com/
http://en.wikipedia.org/wiki/Mobipocket
http://www.amazon.com/gp/feature.html?ie=UTF8&docId=1000234621
http://www.google.com/url?sa=t&source=web&cd=1&sqi=2&ved=0CDAQFjAA&url=http%3A%2F%2Fkindlegen.s3.amazonaws.com%2FAmazonKindlePublishingGuidelines.pdf&ei=_YV2TuzjMcb40gHWvKClDQ&usg=AFQjCNHCeowXw-ksD1k1v6q69SMCY_-DQA&sig2=mJF2f2nKa0b9A3UHwTEYbg
http://www.google.com/url?sa=t&source=web&cd=1&sqi=2&ved=0CDAQFjAA&url=http%3A%2F%2Fkindlegen.s3.amazonaws.com%2FAmazonKindlePublishingGuidelines.pdf&ei=_YV2TuzjMcb40gHWvKClDQ&usg=AFQjCNHCeowXw-ksD1k1v6q69SMCY_-DQA&sig2=mJF2f2nKa0b9A3UHwTEYbg

HTML5 and Ebook Apps
If instead of EPUB, you’re interested in making ebook apps, you may want to look into
PhoneGap. PhoneGap allows you to write your application using HTML5, CSS, and
JavaScript, and then deploy as an app for multiple platforms, including Apple iOS,
Android, BlackBerry, and WebOS. In addition to fully supporting HTML5, PhoneGap
has APIs for accessing and controlling many common smartphone features, including
the camera, accelerometer, and compass. PhoneGap makes use of Apple’s Xcode in-
frastructure, and thus requires an Intel-based Mac. Check out their Getting Started
guide for detailed information on how to get up and running.

You may also be interested in looking into the Baker ebook framework, a lighter-weight
alternative to PhoneGap designed expressly for the release of interactive ebook content
to Apple IOS devices. For more information, see Baker’s tutorial on compiling an ebook
app and releasing to Apple’s App Store.

Additional EPUB Resources
If you’re interested in learning more about EPUB, here are some additional resources
to check out:

What is EPUB 3? by Matt Garrish
A comprehensive overview of the new EPUB 3 specification and what it offers
publishers

IDPF EPUB 3.0 Specification
The official EPUB 3.0 specification. An absolute must-read if you’re planning on
creating EPUB 3.0 files

“Build a digital book with EPUB” by Liza Daly
Comprehensive instructions on how to construct an EPUB file. This tutorial is
EPUB 2–specific, but the majority of the content is still applicable under EPUB 3
(consult the 3.0 spec for more information on the Navigation Document, which
replaces the NCX TOC)

“Creating epub files” by Bob Ducharme
Additional discussion on some of the nuances of EPUB creation and validation.
Pay extra attention to the discussion of how to properly zip up your EPUB archives,
which is a bit less straightforward than you might expect.

EpubCheck
The definitive tool for validating your EPUB files. A development build of epub-
check for validating EPUB 3.0 documents was recently released

Additional EPUB Resources | 43

http://www.phonegap.com/
http://www.phonegap.com/about/features
http://developer.apple.com/xcode/
http://wiki.phonegap.com/w/page/39991939/Getting-Started-with-PhoneGap-iOS-using-Xcode-4-%28Template-Version%29
http://wiki.phonegap.com/w/page/39991939/Getting-Started-with-PhoneGap-iOS-using-Xcode-4-%28Template-Version%29
http://bakerframework.com/
http://bakerframework.com/tutorials/basic
http://bit.ly/whatisepub3
http://idpf.org/epub/30
http://www.ibm.com/developerworks/xml/tutorials/x-epubtut/section3.html
http://idpf.org/epub/30/spec/epub30-contentdocs.html#sec-xhtml-nav
http://www.snee.com/bobdc.blog/2008/03/creating-epub-files.html
http://code.google.com/p/epubcheck/
http://code.google.com/p/epubcheck/downloads/list?can=2&q=Build-Development

About the Author
Sanders Kleinfeld has been employed at O’Reilly Media since 2004 and has held a
variety of positions, including roles on O’Reilly’s Production, Editorial, and Tools
teams. Currently, he works as a Publishing Technologies Specialist, maintaining O’Re-
illy’s XML-based toolchain for generating EPUB and Mobi formats of both frontlist
and backlist titles. He also helps coordinate O’Reilly’s digital distribution efforts to
electronic sales channels, and is currently assisting in R&D efforts surrounding HTML5
and EPUB 3, helping to develop next-generation ebook content for O’Reilly and its
publishing partners. In his spare time, Sanders loves to read, but primarily print books.

	Table of Contents
	Introduction
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Canvas for Publishers
	Drawing on your <canvas>
	Canvas Graphing Calculator
	Canvas Finger Painting
	HTML5 Canvas, EPUB, and Ereader compatibility
	Bibliography/Additional HTML5 Canvas Resources

	Chapter 2. Geolocation for Publishers
	A Geolocated Tale
	HTML5 Geolocation, EPUB, and Ereader Compatibility
	Bibliography/Additional Resources

	Chapter 3. <audio>/<video> for Publishers
	A Two-Minute Introduction to the <audio> and <video> Elements
	An Audio-Enabled Glossary
	An HTML5 Video About HTML5 Canvas
	EPUB 3 Media Overlays
	HTML5 Audio/Video Compatibility in the Browser and Ereaders
	Bibliography/Additional Resources

	Chapter 4. Embedding HTML5 in EPUB
	Alternatives to HTML5 and EPUB
	HTML5 and Mobi
	HTML5 and Ebook Apps

	Additional EPUB Resources

