

Using the HTML5 Filesystem API

Using the HTML5 Filesystem API

Eric Bidelman

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Using the HTML5 Filesystem API
by Eric Bidelman

Copyright © 2011 Eric Bidelman. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Meghan Blanchette
Proofreader: O’Reilly Production Services

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
July 2011: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Using the HTML5 Filesystem API, the image of a Russian greyhound, and related
trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-30945-9

[LSI]

1311183257

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

Table of Contents

Preface . vii

1. Introduction . 1
Use Cases 1
Security Considerations 3
Browser Support 3

A Cautionary Tale 3

2. Storage and Quota . 5
Storage Types 5

Temporary Storage 6
Persistent Storage 6
Unlimited Storage 7

Quota Management API 8
Requesting More Storage 8
Checking Current Usage 9

3. Getting Started . 11
Opening a Filesystem 11
Handling Errors 13

4. Working with Files . 15
The FileEntry 15
Creating a File 16
Reading a File by Name 17
Writing to a File 18

Appending Data to a File 19
Importing Files 20

Using <input type=“file”> 21
Using HTML5 Drag and Drop 22
Using XMLHttpRequest 24

v

Using Copy and Paste 27
Removing Files 28

5. Working with Directories . 31
The DirectoryEntry 31
Creating Directories 32

Subdirectories 33
Reading the Contents of a Directory 34
Removing Directories 36

Recursively Removing a Directory 36

6. Copying, Renaming, and Moving Entries . 37
Copying a File or Directory 37
Moving a File or Directory 39
Renaming a File or Directory 40

7. Using Files . 43
Filesystem URLs 43

Summary 45
Blob URLs 45

Summary 49
Data URLs 49

Summary 50

8. The Synchronous API . 53
Introduction 53
Opening a Filesystem 53
Working with Files and Directories 54
Handling Errors 54
Examples 54

Fetching All Entries in the Filesystem 55
Downloading Files Using XHR2 56

vi | Table of Contents

Preface

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does

vii

require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Using the HTML5 Filesystem API by Eric
Bidelman (O’Reilly). Copyright 2011 Eric Bidelman, 978-1-449-30945-9.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9781449309459

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

viii | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.oreilly.com/catalog/9781449309459
mailto:bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | ix

http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Introduction

As we move from an offline world to a completely online world, we’re demanding more
from the Web, and more from web applications. Browser implementers are adding
richer APIs by the day to support complex use cases. APIs for things like real-time
communication, graphics, and client-side (offline) storage.

One area where the Web has lacked for some time is file I/O. Interacting with binary
data and organizing that data into a meaningful hierarchy of folders is something desk-
top software has been capable of for decades. How amazing would it be if web apps
could do the same? The lack of true filesystem access has hindered web applications
from moving forward. For example, how can a photo gallery work offline without being
able to save images locally? The answer is it can’t! We need something more powerful.

The HTML5 File API: Directories and System aims to fill this void. The specification
defines a means for web applications to read, create, navigate, and write to a sandboxed
section of the user’s local filesystem. The entirety of the Filesystem API can be broken
down into a number of different related specifications:

• Reading and manipulating files: File/Blob, FileList, FileReader

• Creating and writing: BlobBuilder, FileWriter

• Directories and filesystem access: DirectoryReader, FileEntry/DirectoryEntry,
LocalFileSystem

The specification defines two versions (asynchronous and synchronous) of the same
API. The asynchronous API is useful for normal applications and prevents blocking UI
actions. The synchronous API is reserved for use in Web Workers.

Use Cases
HTML5 has several storage options available. The Filesystem API is different in that it
aims to satisfy client-side storage use cases not well served by databases such as In-
dexedDB or WebSQL DB. Generally, these are applications that deal with large binary

1

http://dev.w3.org/2009/dap/file-system/file-dir-sys.html

blobs and share data with applications outside of the context of the browser. The spec-
ification lists several use cases worth highlighting:

• Persistent uploader

— When a file or directory is selected for upload, it copies the files into a local
sandbox and uploads a chunk at a time.

— Uploads can be restarted after browser crashes, network interruptions, etc.

• Video game, music, or other apps with lots of media assets

— It downloads one or several large tarballs, and expands them locally into a di-
rectory structure.

— The same download works on any operating system.

— It can manage prefetching just the next-to-be-needed assets in the background,
so going to the next game level or activating a new feature doesn’t require waiting
for a download.

— It uses those assets directly from its local cache, by direct file reads or by handing
local URIs to image or video tags, WebGL asset loaders, etc.

— The files may be of arbitrary binary format.

— On the server side, a compressed tarball is often much smaller than a collection
of separately compressed files. Also, one tarball instead of a 1,000 little files
involves fewer seeks.

• Audio/Photo editor with offline access or local cache for speed

— The data blobs are potentially quite large, and are read-write.

— It might want to do partial writes to files (overwriting just the ID3/EXIF tags,
for example).

— The ability to organize project files by creating directories is important.

— Edited files should be accessible by client-side applications (iTunes, Picasa).

• Offline video viewer

— It downloads large files (>1 GB) for later viewing.

— It needs efficient seek and streaming.

— It should be able to hand a URI to the video tag.

— It should enable access to partly downloaded files (for example, to let you watch
the first episode of the DVD even if your download didn’t complete before you
got on the plane.)

— It should be able to pull a single episode out of the middle of a download and
give just that to the video tag.

• Offline web mail client

— Downloads attachments and stores them locally.

— Caches user-selected attachments for later upload.

2 | Chapter 1: Introduction

— Needs to be able to refer to cached attachments and image thumbnails for dis-
play and upload.

— Should be able to trigger the UA’s download manager just as if talking to a server.

— Should be able to upload an email with attachments as a multipart post, rather
than sending a file at a time in an XHR.

Security Considerations
The HTML5 Filesystem API can be used to read and write data to parts of the user’s
hard drive. Because of this privileged access, there are a number of security and privacy
issues that have been considered in the API’s design. A few are listed below:

• Local disk usage and IO bandwidth—this is mitigated in part through quota lim-
itations. See Chapter 2, Storage and Quota.

• Leakage or erasure of private data—this is mitigated by limiting the scope of the
HTML5 filesystem to a chroot-like, origin-specific sandbox. Applications cannot
access another domain/origin’s filesystem.

• Storing malicious executables or illegal data on a user’s system—with any down-
load there is a risk. The API mitigates against malicious executables by restricting
file creation/rename to nonexecutable extensions, and by making sure the execute
bit is not set on any file created or modified via the API.

Browser Support
At the time of writing, Google Chrome is the only browser to implement the Filesystem
API. Version 8 of the browser was the first to see a partial implementation, but the
majority of the API was later completed in version 11. In Chrome 13, a Chapter 2,
Storage and Quota API was added to give applications a way to request addition space
for storing data.

A Cautionary Tale
Before we dive in, I want to remind you that this book covers a working implementation
of an evolving specification, a spec that has yet to be finalized by the World Wide Web
Consortium (W3C). Take my word of caution and realize that until the spec is final,
portions of the API could change.

Browser Support | 3

CHAPTER 2

Storage and Quota

The HTML5 Filesystem API gives applications the facility to write and store actual files
in JavaScript. That is amazing, but with great power comes great responsibility. Web-
sites now have the potential to store large amounts of binary data on a user’s system.
It is important that applications do not abuse such a gift by, for example, eating up
large amounts of disk space without the user’s knowledge or consent. The last thing
users want is to have 20 GB of data stored on their system just by visiting a URL.

At the time of writing, Chrome has a limited UI settings page for users to manage the
storage space for applications that save data on their behalf. It is accessible via Prefer-
ences→Under the Hood→All Cookies and Site Data (or by opening chrome://settings/
cookies). Users can only delete data from this menu. As a result of this limited UI, write
operations (such as creating a folder and writing to a file) require an application to ask
for the estimated size, in bytes, they expect to use. The same practice is true for other
offline storage APIs, like WebSQL DB, where one opens a database with a particular
size:

var db = window.openDatabase(
 'MyDB', // dbName
 '1.0', // version
 'test database', // description
 2 * 1024 * 1024, // estimatedSize in bytes (2MB)
 function(db) {} // optional creationCallback
);

Storage Types
A normal web application can request storage space under two classifications: tempo-
rary or persistent. In addition to these types, Chrome Extensions and hosted web ap-
plications listed in the Chrome Web Store have a third option: unlimited storage.

5

Temporary Storage
Temporary storage is easiest to obtain. In fact, you don’t even need to request it. By
default, origins are given a modest amount of temporary storage, meaning they can use
temporary storage without special permissions or the browser prompting the user to
take some action. Temporary storage is perfect for things like caching.

In Google Chrome 13, the HTML5 Filesystem and the WebSQL DB share a pool of
disk space that sites can collectively consume. A single site can consume up to 20% of
the pool. As usage of the temporary pool approaches the limit for the pool as a whole
(1 GB), least recently used data will be reclaimed. Eventually, Application Cache and
IndexedDB will also share in this temporary pool. Such a unified quota system also
means there is no longer a 5 MB limit imposed on WebSQL DB.

When the browser deletes temporary data it deletes all the data stored
for the origin. This guarantees data won’t be corrupt in an unexpected
way.

Properties of temporary storage:

• Browser does not prompt the user on first use.

• Apps are granted a reasonable amount of temporary storage by default.

• Data is not guaranteed to still exist. It might be deleted at the browser’s discretion
when the local disk’s available space.

Persistent Storage
Persistent storage is just that, persistent. Data saved using this option is available on
subsequent accesses to the same filesystem. Keep in mind, though, that even persistent
data can be deleted manually by the user (either through a browser settings page or
through direct filesystem operations on the OS). So the data you save is never 100%
guaranteed to be there.

A key difference from temporary storage is that the browser asks the user for permission
before allocating persistent storage space. In Chrome, this displays as an info bar (see
Figure 2-1).

6 | Chapter 2: Storage and Quota

Figure 2-1. The browser prompts the user when persistent storage is requested

Because user intervention is involved in this storage option, apps are granted zero per-
sistent quota by default. Any attempts to store more data than the granted quota will
fail with QUOTA_EXCEEDED_ERR.

Properties of PERSISTENT storage:

• Browser prompts the user if additional space is requested.

• Apps are granted zero quota by default.

• If more storage space is needed, it can be requested. There is no fixed size storage
pool.

• Data is guaranteed to be available on subsequent accesses.

Unlimited Storage
Unlimited storage is a unique option to Chrome Extensions and Apps listed in the
Chrome Web Store (either hosted or installed). Using the unlimitedStorage permission
in the .manifest file, one can bypass the restricts of temporary and persistent storage.
Think of unlimited storage as persistent storage, but without a user prompt and max-
imum cap.

Properties of unlimitedStorage:

• Exclusive to Chrome Apps and Extensions.

• Unlimited quota is granted with no user prompts (except at installation time).

• No need to request more storage when more is needed.

Chrome can be run with an --unlimited-quota-for-files flag, which
also allows unlimited storage. However, flags are temporary and should
only be used for testing purposes. Running your primary browser with
this flag gives free reign to an application, allowing it to store as much
data on your hard drive as it wants. You should only use --unlimited-
quota-for-files during testing.

Storage Types | 7

http://code.google.com/chrome/extensions/manifest.html

Quota Management API
Chrome 13 added a quota management API to give applications a tool for requesting,
managing, and most importantly, querying the current amount of storage their origin
is taking up. The API is exposed as a new global object, webkitStorageInfo:

window.webkitStorageInfo

The quota API is prefixed because it is not standardized yet. It has two methods:

queryUsageAndQuota (type, opt_successCallback, opt_errorCallback);

type
The type of storage to return the current usage for. Possible values are TEMPO
RARY or PERSISTENT.

opt_successCallback
An optional two parameter callback. The parameters are the current number
of bytes the app is using and current quota, also in bytes.

opt_errorCallback
An optional error callback.

requestQuota (type, size, opt_successCallback, opt_errorCallback);

type
Whether the new/additional storage should be persistent or temporary. Pos-
sible values are TEMPORARY or PERSISTENT.

opt_successCallback
An optional callback passed the granted quota in bytes.

opt_errorCallback
An optional error callback.

Requesting More Storage
To request new or additional storage space, call requestQuota() with the type of storage,
size, and a success callback. As explained in the previous section, the browser prompts
the user with a permission bar when PERSISTENT storage is requested. If the size passed
to requestQuota() is less than the app’s current allocation, no prompt is shown. The
current quota is kept. If your app is requesting additional space (e.g., the new size is
larger than the app’s existing quota), the user will be reprompted to accept that change.
If the request is for TEMPORARY storage, again, no prompt will appear but other data may
be evicted at the browsers discretion.

The following example requests 2 MB of PERSISTENT storage:

window.webkitStorageInfo.requestQuota(PERSISTENT, 2*1024*1024, function(bytes) {
 console.log('Granted ' + bytes + ' bytes in persistent storage');
}, function(e) {
 console.log('Error', e);
});

8 | Chapter 2: Storage and Quota

Checking Current Usage
To query the current storage usage and quota of an application, call queryUsageAnd
Quota() with the type of storage you’re interested in checking and a success callback.
This method returns two things to your callback, the number of bytes being used, and
the total quota for the storage type in question.

For example, if example.com wanted to check the percentage of TEMPORARY storage it is
using, it could run:

window.webkitStorageInfo.queryUsageAndQuota(TEMPORARY, function(usage, quota) {
 console.log('Using: ' + (usage / quota) * 100 + '% of temporary storage');
}, function(e) {
 console.log('Error', e);
});

The usage reported by the quota API might not precisely match the size that was re-
quested using requestQuota() or the actual size of the stored data on disk. The dis-
crepancy comes from each storage type needing some extra bytes to store meta data.
There may also be some time lag until updates are reflected to the quota API.

Quota Management API | 9

CHAPTER 3

Getting Started

Opening a Filesystem
A web application obtains access to the HTML5 Filesystem by requesting a LocalFile
System object using a global method, window.requestFileSystem():

window.requestFileSystem(type, size, successCallback, opt_errorCallback)

This method is currently vendor prefixed as window.webkitRequestFile
System.

Its parameters are described below:

type
Whether the storage should be persistent. Possible values are TEMPORARY or PERSIS
TENT. Data stored using TEMPORARY can be removed at the browser’s discretion (for
example if more space is needed). PERSISTENT storage cannot cleared unless ex-
plicitly authorized by the user or the application.

size
An indicator of how much storage space, in bytes, the application expects to need.

successCallback
A callback function that is called when the user agent successfully provides a file-
system. Its argument is a FileSystem object.

opt_errorCallback
An optional callback function which is called when an error occurs, or the request
for a filesystem is denied. Its argument is a FileError object.

Calling window.requestFileSystem() for the first time creates a new sandboxed storage
space for the app and origin that requested it. A filesystem is restricted to a single
application and cannot access another application’s stored data. This also means that

11

an application cannot read/write files to an arbitrary folder on the user’s hard drive
(such as My Pictures or My Documents). Each filesystem is isolated.

Example 3-1. Requesting a filesystem temporary storage

var onError = function(fs) {
 console.log('There was an error');
};

var onFS = function(fs) {
 console.log('Opened filesystem: ' + fs.name);
};

window.requestFileSystem(window.TEMPORARY, 5*1024*1024 /*5MB*/, onFs, onError);

If all goes well, the success callback (onFS) is called and passed a FileSystem object
containing two properties:

name
A unique name for the filesystem, assigned by the browser

root
A read-only DirectoryEntry representing the root of the filesystem

The FileSystem object is your gateway to the entire API. Once you have a reference,
it’s worth caching it in a global variable or class property. You’ll use it all over the place.

Things get a bit more complicated when using persistent storage with the filesystem.
The previous chapter explained that applications are granted zero persistent quota by
default. As a result, you need to request some persistent quota before opening the
filesystem. That might mean simply wrapping the call to window.requestFileSystem()
in the requestQuota() callback.

Example 3-2. Requesting a filesystem with persistent storage

const SIZE = 5*1024*1024; /*5MB*/
const TYPE = PERSISTENT;

window.webkitStorageInfo.requestQuota(TYPE, SIZE, function(grantedBytes) {
 window.requestFileSystem(TYPE, grantedBytes, onFs, onError);
}, function(e) {
 console.log('Error', e);
});

After the user grants permission to use persistent storage, your app is allocated the
amount of quota it requested. There’s no need to ask for more quota until space be-
comes an issue. When that point comes, the best way to recover is to attempt the write
operation, catch the QUOTA_EXCEEDED_ERR in the error callback, and request more per-
sistent storage using requestQuota(). Don’t worry if none of that makes sense now. It
will in the next chapter, Chapter 4, Working with Files.

12 | Chapter 3: Getting Started

Handling Errors
Error callbacks are optional arguments to the API’s methods. However, it is always a
good idea to catch errors for users, as there are a number of places where things can go
wrong. For example, if you run out of quota, write access to the filesystem is denied,
or a disk I/O operation fails.

Error callbacks are passed FileError objects, which contain a code corresponding to
the type of error that occurred. The code can be compared to the enum constants in
FileError.

Example 3-3. Generic error handler

function onError(err) {
 var msg = 'Error: ';

 switch (err.code) {
 case FileError.NOT_FOUND_ERR:
 msg += 'File or directory not found';
 break;
 case FileError.SECURITY_ERR:
 msg += 'Insecure or disallowed operation';
 break;
 case FileError.ABORT_ERR:
 msg += 'Operation aborted';
 break;
 case FileError.NOT_READABLE_ERR:
 msg += 'File or directory not readable';
 break;
 case FileError.ENCODING_ERR:
 msg += 'Invalid encoding';
 break;
 case FileError.NO_MODIFICATION_ALLOWED_ERR:
 msg += 'Cannot modify file or directory';
 break;
 case FileError.INVALID_STATE_ERR:
 msg += 'Invalid state';
 break;
 case FileError.SYNTAX_ERR:
 msg += 'Invalid line-ending specifier';
 break;
 case FileError.INVALID_MODIFICATION_ERR:
 msg += 'Invalid modification';
 break;
 case FileError.QUOTA_EXCEEDED_ERR:
 msg += 'Storage quota exceeded';
 break;
 case FileError.TYPE_MISMATCH_ERR:
 msg += 'Invalid filetype';
 break;
 case FileError.PATH_EXISTS_ERR:
 msg += 'File or directory already exists at specified path';
 break;
 default:

Handling Errors | 13

 msg += 'Unknown Error';
 break;
 };

 console.log(msg);
}

Instead of comparing directly to the FileError constants, you may want
to extend its prototype with a name attribute that translates error codes
to their mnemonic key:

FileError.prototype.__defineGetter__('name', function() {
 var keys = Object.keys(FileError);
 for (var i = 0, key; key = keys[i]; ++i) {
 if (FileError[key] == this.code) {
 return key;
 }
 }
 return 'Unknown Error';
});

function onError(err) {
 console.log(err.name);
 // e.g., 'QUOTA_EXCEEDED_ERR', 'NOT_READABLE_ERR', etc.
}

14 | Chapter 3: Getting Started

CHAPTER 4

Working with Files

The FileEntry
Files in the sandboxed filesystem are represented by the FileEntry interface. A FileEn
try contains the types of properties and methods one would expect from a standard
filesystem.

Properties

isFile
Boolean. True if the entry is a file.

isDirectory
Boolean. True if the entry is a directory.

name
DOMString. The name of the entry, excluding the path leading to it.

fullPath
DOMString. The full absolute path from the root to the entry.

filesystem
FileSystem. The filesystem on which the entry resides.

Methods

getMetadata (successCallback, opt_errorCallback)
Look up metadata about this entry.

moveTo (parentDirEntry, opt_newName, opt_successCallback, opt_errorCallback)
Move an entry to a different location on the filesystem.

copyTo (parentDirEntry, opt_newName, opt_successCallback, opt_errorCallback)
Copies an entry to a different parent on the filesystem. Directory copies are always
recursive. It is an error to copy a directory inside itself or to copy it into its parent
if a new name is not provided.

toURL ();
Returns a filesystem: URL that can be used to identify this file. See Chapter 7.

15

remove (successCallback, opt_errorCallback)
Deletes a file or directory. It is an error to attempt to delete the root directory of a
filesystem or a directory that is not empty.

getParent (successCallback, opt_errorCallback)
Return the parent DirectoryEntry containing this entry. If this entry is the root
directory, its parent is itself.

createWriter (successCallback, opt_errorCallback)
Creates a new FileWriter (See “Writing to a File” on page 18) which can be used
to write content to this FileEntry.

file (successCallback, opt_errorCallback)
Returns a File representing the FileEntry to the success callback.

To better understand FileEntry, the rest of this chapter contains code recipes for per-
forming common tasks.

Creating a File
After “Opening a Filesystem” on page 11, the FileSystem that is passed to the success
callback contains the root DirectoryEntry (as fs.root). To look up or create a file in
this directory, call its getFile(), passing the name of the file to create.

For example, the following code creates an empty file called log.txt in the root
directory.

Example 4-1. Creating a file and printing its last modified time

function onFs(fs) {

 fs.root.getFile('log.txt', {create: true, exclusive: true},
 function(fileEntry) {
 // fileEntry.isFile === true
 // fileEntry.name == 'log.txt'
 // fileEntry.fullPath == '/log.txt'

 fileEntry.getMetaData(function(md) {
 console.log(md.modificationTime.toDateString());
 }, onError);

 },
 onError
);
}

window.requestFileSystem(TEMPORARY, 1024*1024 /*1MB*/, onFs, onError);

16 | Chapter 4: Working with Files

The first argument to getFile() can be an absolute or relative path, but it must be valid.
For instance, it is an error to attempt to create a file whose immediate parent does not
exist. The second argument is an object literal describing the function’s behavior if the
file does not exist. In this example, create: true creates the file if it doesn’t exist and
throws an error if it does (exclusive: true). Otherwise if create: false, the file is
simply fetched and returned. By itself, the exclusive option has no effect. In either case,
the file contents are not overwritten. We’re simply obtaining a reference entry to the
file in question.

Reading a File by Name
Calling getFile() only retrieves a FileEntry. It does not return the contents of a file.
For that, we need a File object and the FileReader API. To obtain a File, call FileEn
try.file(). Its first argument is a success callback which is passed the file, and its
second is an error callback.

The following code retrieves the file named log.txt. Its contents are read into memory
as text using the FileReader API, and the result is appended to the DOM as a new
<textarea>. If log.txt does not exist, an error is thrown.

Example 4-2. Reading a text file

function onFs(fs) {

 fs.root.getFile('log.txt', {}, function(fileEntry) {

 // Obtain the File object representing the FileEntry.
 // Use FileReader to read its contents.
 fileEntry.file(function(file) {
 var reader = new FileReader();

 reader.onloadend = function(e) {
 var textarea = document.createElement('textarea');
 textarea = this.result;
 document.body.appendChild(textarea);
 };

 reader.readAsText(file); // Read the file as plaintext.
 }, onError);

 }, onError);

}

window.requestFileSystem(TEMPORARY, 1024*1024 /*1MB*/, onFs, onError);

Reading a File by Name | 17

Writing to a File
The API exposes the FileWriter interface for writing content to a FileEntry.

Properties

position
Integer. The byte offset at which the next write will occur. For example, a newly-
created FileWriter has position set to 0.

length
Integer. The length of the file.

error
FileError. The last error that occurred.

readyState
One of 3 states: INIT, WRITING, DONE.

Methods

abort ()
Aborts a write operation in progress. If readyState is DONE or INIT, an INVA
LID_STATE_ERR exception is thrown.

write (blob)
Writes the supplied data to the file, starting at the offset given by position. The
argument can be a Blob or File object.

seek (offset)
Sets the file position at which the next write occurs. The argument is a byte offset
into the file. If offset > length, length is used instead. If offset is < 0, position is set
back from the end of the file.

truncate (size)
Changes the length of the file to a new size. Shortening the file discards any data
beyond the new length. Extending it beyond the current length zero-pads the ex-
isting data up to the new length.

Events

onabort
Called when an in-progress write operation is cancelled.

onerror
Called when an error occurs.

onprogress
Called periodically as data is being written.

onwrite
Called when the write operation has successfully completed.

18 | Chapter 4: Working with Files

http://dev.w3.org/2009/dap/file-system/file-writer.html

onwritestart
Called just before writing is about to start.

onwriteend
Called when the write is complete, whether successful or not.

The following code creates an empty file called log.txt in a subfolder, /temp. If the file
already exists, it is simple retrieved. The text “Lorem Ipsum” is written to it by con-
structing a new Blob using the BlobBuilder API, and handing it off to File
Writer.write(). Event handlers are set up to monitor error and writeend events.

Example 4-3. Writing text to a file

function onFs(fs) {

 fs.root.getFile('/temp/log.txt', {create: true}, function(fileEntry) {

 // Create a FileWriter object for our FileEntry.
 fileEntry.createWriter(function(fileWriter) {

 fileWriter.onwrite = function(e) {
 console.log('Write completed.');
 };

 fileWriter.onerror = function(e) {
 console.log('Write failed: ' + e.toString());
 };

 var bb = new BlobBuilder(); // Create a new Blob on-the-fly.
 bb.append('Lorem Ipsum');

 fileWriter.write(bb.getBlob('text/plain'));

 }, onError);

 }, onError);

}

window.requestFileSystem(TEMPORARY, 1024*1024 /*1MB*/, onFs, onError);

The BlobBuilder API has been vendor prefixed in Firefox 6 and Chrome:

window.BlobBuilder = window.BlobBuilder || window.WebKitBlob
Builder || window.MozBlobBuilder;

If the folder /temp did not exist in the filesystem, an error is thrown.

Appending Data to a File
Appending data onto an existing file is trivial with FileWriter. We can reposition the
writer to the end of the file using seek(). Seek takes a byte offset as an argument, setting

Writing to a File | 19

http://dev.w3.org/2009/dap/file-system/file-writer.html#idl-def-BlobBuilder

the file writer’s position to that offset. If the offset is greater than the file’s length, the
current length is used instead. If offset is < 0, position is set back from the end of the file.

As an example, the following snippet appends a timestamp to the end of a log file. An
error is thrown if the file does not yet exist.

Example 4-4. Logging a timestamp

window.BlobBuilder = window.BlobBuilder || window.WebKitBlobBuilder ||
 window.MozBlobBuilder;

function append(fs, filePath, blob) {
 fs.root.getFile(filePath, {create: false}, function(fileEntry) {

 // Create a FileWriter object for our FileEntry.
 fileEntry.createWriter(function(fileWriter) {

 fileWriter.seek(fileWriter.length); // Start write position at EOF.
 fileWriter.write(bb.getBlob('text/plain'));

 }, onError);

 }, onError);
}

function onFs(fs) {
 var bb = new BlobBuilder();
 bb.append((new Date()).toISOString() + '\n');

 append(fs, 'log.txt', bb.getBlob('text/plain'));
}

window.requestFileSystem(TEMPORARY, 1024*1024 /*1MB*/, onFs, onError);

Importing Files
For security reasons, the HTML5 Filesystem API does not allow applications to write
data outside of their sandbox. As a result of this restriction, applications cannot share
filesystems and they cannot read or write files to arbitrary folders on the user’s hard
drive, such as their My Pictures or My Music folder. This leaves developers in a bit of
a predicament. How does one import files into a web application if the application
cannot access the user’s full hard drive with all of their precious files?

There are four techniques to import data into the filesystem:

• Use <input type=“file”>. The user selects files from a location on their machine
and the application duplicates those files into the app’s HTML5 filesystem.

• Use HTML5 drag and drop. Some browsers support dragging in files from the
desktop to the browser tab. Again, the selected files would be duplicated into the
HTML5 filesystem.

20 | Chapter 4: Working with Files

• Use XMLHttpRequest. New properties in XMLHttpRequest 2 make it trivial to fetch
remote binary data, then store that data locally using the HTML5 filesystem.

• Using copy and paste events. Apps can read clipboard information that contains
file data.

Using <input type=“file”>
The first (and most common) way to import files into an app is to repurpose our old
friend <input type=“file”>. I say repurpose because we’re not interested in uploading
form data—the typical usage of a file input. Instead, we can utilize the browser’s native
file picker, prompt users to select files, and save those selections into our app.

The following example allows users to select multiple files using <input type="file"
multiple> and creates copies of those files in the app’s sandboxed filesystem.

Example 4-5. Duplicating user-selected files

<input type="file" id="myfile" multiple />

// Creates a file if it doesn't exist.
// Throws an error if a file already exists with the same name.

var writeFile = function(parentDirectory, file) {
 parentDirectory.getFile(file.name, {create: true, exclusive: true},
 function(fileEntry) {

 fileEntry.createWriter(function(fileWriter) {
 fileWriter.write(file);
 }, onError);

 },
 onError
);
};

document.querySelector("input[type='file']").onchange = function(e) {
 var files = this.files;

 window.requestFileSystem(TEMPORARY, 1024*1024 /*1MB*/, function(fs) {
 for (var i = 0, file; file = files[i]; ++i){
 writeFile(fs.root, file);
 }
 }, onError);
};

As noted in the comment, FileWriter.write() accepts a Blob or File. This is because
File inherits from Blob, and therefore, all files are blobs. The reverse is not true.

Consider allowing users to import an entire folder using <input type="file" webkidir
ectory>. By including this attribute, the browser allows users to select a folder and
recursively read all the files in it. The result is a FileList of every file in the folder.

Importing Files | 21

http://dev.w3.org/2006/webapi/XMLHttpRequest-2/

Example 4-6. Importing a directory

<input type="file" id="myfile" webkitdirectory />

// Creates a file if it doesn't exist.
// Throw an error if a file already exists with the same name.

var writeFile = function(parentDirectory, file) {
 parentDirectory.getFile(file.name, {create: true, exclusive: true},
 function(fileEntry) {

 // Write the file. write() can take a File or Blob.
 fileEntry.createWriter(function(fileWriter) {
 fileWriter.write(file);
 }, onError);

 },
 onError
);
};

document.querySelector("#myfile").onchange = function(e) {
 for (var i = 0, f; f = e.target.files[i]; ++i) {
 console.log(f.webkitRelativePath);
 }
};

What’s not shown in the above example is the writing of each file to the proper direc-
tory. Creating folders is covered in the next chapter.

Using HTML5 Drag and Drop
The second method for importing files is to use HTML5 drag and drop. Some people
love it. Some people hate it. But whether or not you’re a fan of HTML5’s drag and drop
design, it is here to stay. That said, one really nice thing drag and drop gives us is a
familiar way for users to import data into our web applications.

Chrome, Safari 5, and Firefox 4 extend HTML5 drag and drop events by allowing files
to be dragged in from the desktop to the browser window. In fact, the process for setting
up event listeners to handle dropped file(s) is exactly the same as handling other types
of content. The only difference is the way the files are accessed in the drop handler.
Typically, dropped data is read from the event’s dataTransfer property (as dataTrans
fer.getData()). However, when handling files, data is read from dataTransfer.files.
If that looks suspiciously familiar, it should be! This is the drag and drop equivalent of
the previous example using <input type="file">.

The following example allows users to drag in files from the desktop. On the
dragenter and dragleave events, the class “dropping” is toggled to give the user a visual
indication a drop can occur.

22 | Chapter 4: Working with Files

http://dev.w3.org/html5/spec-author-view/dnd.html

Example 4-7. Importing files using drag and drop from the desktop

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Drag and drop files</title>
<style>
.dropping {
 background: -webkit-repeating-radial-gradient(white, #fc0 5px);
 background: -moz-repeating-radial-gradient(white, #fc0 5px);
 background: -ms-repeating-radial-gradient(white, #fc0 5px);
 background: -o-repeating-radial-gradient(white, #fc0 5px);
 background: repeating-radial-gradient(white, #fc0 5px);
}
</style>
</head>
<body>

<p>Drag files in from your desktop. They will be added to the filesystem.</p>

<script>
window.requestFileSystem = window.requestFileSystem ||
 window.webkiRequestFileSystem;

/**
 * Class to handle drag and drop events on an element.
 *
 * @param {string} selector A CSS selector for an element to attach drag and
 * drop events to.
 * @param {function(FileList)} onDropCallback A callback passed the list of
 * files that were dropped.
 * @constructor
 */
function DnDFileController(selector, onDropCallback) {
 var el_ = document.querySelector(selector);

 this.dragenter = function(e) {
 e.stopPropagation();
 e.preventDefault();

 // Give a visual indication this element is a drop target.
 el_.classList.add('dropping');
 };

 this.dragover = function(e) {
 e.stopPropagation();
 e.preventDefault();
 };

 this.dragleave = function(e) {
 e.stopPropagation();
 e.preventDefault();
 el_.classList.remove('dropping');
 };

Importing Files | 23

 this.drop = function(e) {
 e.stopPropagation();
 e.preventDefault();

 el_.classList.remove('dropping');

 onDropCallback(e.dataTransfer.files);
 };

 el_.addEventListener('dragenter', this.dragenter, false);
 el_.addEventListener('dragover', this.dragover, false);
 el_.addEventListener('dragleave', this.dragleave, false);
 el_.addEventListener('drop', this.drop, false);
};

var FS = null; // Cache the FileSystem object for later use.

// Allow dropping onto the entire page.
var controller = new DnDFileController('body', function(files) {
 [].forEach.call(files, function(file, i) {
 // See Example 4-5 for the defintion of writeFile().
 writeFile(FS.root, file);
 });
});

(function openFS() {
 window.requestFileSystem(TEMPORARY, 1024*1024 /*1MB*/, function(fs) {
 FS = fs;
 }, onError);
})();
</script>
</body>
</html>

Using XMLHttpRequest
A third way to import data is to use XMLHttpRequest to fetch remote files. The difference
between this method and the first two methods is that this option requires data to
already exist somewhere in the cloud. In most cases that’s not a problem. As web
developers, we have learned to deal with remote data and encounter it all the time.

Many of the enhancements put into XMLHttpRequest Level 2 are designed for better
interoperability with binary data, blobs, and files. This is really good news for web
developers. It means we can put an end to crazy string manipulation and error-prone
character code hacks in our applications. As an example of what I mean, here is one
well-known trick to fetch an image as a binary string.

Example 4-8. Old way to fetch a binary file

var xhr = new XMLHttpRequest();
xhr.open('GET', '/path/to/image.png', true);

// Hack to pass bytes through unprocessed.

24 | Chapter 4: Working with Files

http://dev.w3.org/2006/webapi/XMLHttpRequest-2/

xhr.overrideMimeType('text/plain; charset=x-user-defined');

xhr.onreadystatechange = function(e) {
 if (this.readyState == 4 && this.status == 200) {
 var binStr = this.responseText;
 for (var i = 0, len = binStr.length; i < len; ++i) {
 var c = binStr.charCodeAt(i); // or String.fromCharCode()
 var byte = c & 0xff; // byte at offset i
 ...
 }
 }
};

xhr.send(null);

While this technique works, what you actually get back in the responseText is not a
binary blob. It is a binary string representing the image file. We’re tricking the server
into passing the data back, unprocessed. Even though this little gem works, I’m going
to call it black magic and advise against it. Any time you resort to character code hacks
and string manipulation for coercing data into a desirable format, that’s a problem.
Instead, XMLHttpRequest now exposes responseType and response properties to inform
the browser what format to return data in:

xhr.responseType
After opening a new request but before sending it, set xhr.responseType to “text”,
“arraybuffer”, “blob”, or “document”, depending on your data needs. Setting
xhr.responseType='' or omitting altogether defaults the response to “text” (i.e.,
xhr.responseText === xhr.response).

xhr.response
After a successful request, the xhr.response contains the requested data as a DOM
String, ArrayBuffer, Blob, or Document, according to what xhr.responseType was
set to.

With these new tools, we can clean up the previous example by reworking how the
data is fetched. This time, the image is downloaded as an ArrayBuffer instead of a binary
string, then handed over to the BlobBuilder API to create a Blob.

Example 4-9. Fetch an image file as a blob and write it to the filesystem

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Fetch + write an image to the HTML5 filesystem</title>
</head>
<body>
<script>
// Take care of vendor prefixes.
window.BlobBuilder = window.BlobBuilder || window.WebKitBlobBuilder ||
 window.MozBlobBuilder;
window.requestFileSystem = window.requestFileSystem ||

Importing Files | 25

 window.webkitRequestFileSystem;

var onError = function(e) {
 console.log('There was an error', e);
};

/**
 * Writes a Blob to the filesystem.
 *
 * @param {DirectoryEntry} dir The directory to write the blob into.
 * @param {Blob} blob The data to write.
 * @param {string} fileName A name for the file.
 * @param {function(ProgressEvent)} opt_callback An optional callback.
 * Invoked when the write completes.
 */

var writeBlob = function(dir, blob, fileName, opt_callback) {
 dir.getFile(fileName, {create: true, exclusive: true}, function(fileEntry) {

 fileEntry.createWriter(function(writer) {
 if (opt_callback) {
 writer.onwrite = opt_callback;
 }
 writer.write(blob);
 }, onError);

 }, onError);
};

/**
 * Fetches a file by URL and writes it to the filesystem.
 *
 * @param {string} url The url the resource resides under.
 * @param {string} mimeType The content type of the file.
 */
var downloadImage = function(url, mimeType) {
 var xhr = new XMLHttpRequest();
 xhr.open('GET', url, true);
 xhr.responseType = 'arraybuffer';

 xhr.onload = function(e) {
 if (this.status == 200) {
 var bb = new BlobBuilder();
 bb.append(xhr.response); // Note: not xhr.responseText

 var parts = url.split('/');
 var fileName = parts[parts.length - 1];

 window.requestFileSystem(TEMPORARY, 1024*1024*5 /*5MB*/, function(fs) {
 var onWrite = function(evt) {
 console.log('Write completed.');
 };

 // Write file to the root directory.
 writeBlob(fs.root, bb.getBlob(mimeType), fileName, onWrite);

26 | Chapter 4: Working with Files

 }, onError);
 }
 };

 xhr.send(null);
};

if (window.requestFileSystem && window.BlobBuilder) {
 downloadImage('/path/to/image.png', 'image/png');
}
</script>
</body>
</html>

Using Copy and Paste
A final way to import files involves pasting files in your application. This is done by
setting up and onpaste handler on the document body and iterating through the event’s
clipboardData items. Each item has a “kind” and “type” property. Checking the “kind”
property can be used to verify whether or not a pasted item is a file. If item.kind ==
“file”, then the item is indeed a file.

The following example sets up an onpaste listener on the page, allowing users to paste
in .pngs. The images/items are then read as Blobs using getAsFile(), and written into
the filesystem.

Example 4-10. Pasting a file into an application and saving it to the filesystem

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Pasting a file into an application and saving it to the filesystem</title>
</head>
<body>
<p>
 Copy an image from the Web (right-click > Copy Image), click in this window,
 and paste it in.
</p>
<script>
// Take care of vendor prefixes.
window.requestFileSystem = window.requestFileSystem ||
 window.webkiRequestFileSystem;
window.URL = window.URL || window.webkitURL;

var onError = function(e) {
 console.log('There was an error', e);
};

/**
 * Writes a Blob to the filesystem.
 *
 * @param {DirectoryEntry} dir The directory to write the blob into.

Importing Files | 27

 * @param {Blob} blob The data to write.
 * @param {string} fileName A name for the file.
 * @param {function(ProgressEvent)} opt_callback An optional callback.
 * Invoked when the write completes.
 */
var writeBlob = function(dir, blob, fileName, opt_callback) {
 dir.getFile(fileName, {create: true}, function(fileEntry) {

 fileEntry.createWriter(function(writer) {
 if (opt_callback) {
 writer.onwrite = opt_callback;
 }
 writer.write(blob);
 }, onError);

 }, onError);
};

// Setup onpaste handler to catch dropped .png files.
document.body.onpaste = function(e) {
 var items = e.clipboardData.items;
 for (var i = 0; i < items.length; ++i) {
 if (items[i].kind == 'file' && items[i].type == 'image/png') {
 var blob = items[i].getAsFile();

 writeBlob(FS.root, blob, 'MyPastedImage', function(e) {
 console.log('Write completed.');
 });
 }
 }
};

va FS; // cache the FileSystem object for later.
window.requestFileSystem(TEMPORARY, 1024*1024 /*1MB*/, function(fs) {
 FS = fs;
}, onError);
</script>
</body>
</html>

Removing Files
To remove a file from the filesystem, call entry.remove(). The first argument to this
method is a zero-parameter callback function, which is called when the file is success-
fully deleted. The second is an optional error callback if any errors occur.

Example 4-11. Removing a file by name

window.requestFileSystem(TEMPORARY, 1024*1024 /*1MB*/, function(fs) {
 fs.root.getFile('log.txt', {}, function(fileEntry) {

 fileEntry.remove(function() {
 console.log('File removed.');

28 | Chapter 4: Working with Files

 }, onError);

 }, onError);
}, onError);

Removing Files | 29

CHAPTER 5

Working with Directories

The DirectoryEntry
Directories in the sandboxed filesystem are represented by the DirectoryEntry inter-
face. A DirectoryEntry contains many of the properties and methods found in FileEn
try. Both inherit from a generic entry interface. However, it includes additional method
for working with directories.

Properties

isFile
Boolean. True if the entry is a file.

isDirectory
Boolean. True if the entry is a directory.

name
DOMString. The name of the directory, excluding the path leading to it.

fullPath
DOMString. The full absolute path from the root to the directory.

filesystem
FileSystem. The filesystem on which the directory resides.

Methods

getMetadata (successCallback, opt_errorCallback)
Looks up metadata about this directory.

moveTo (parentDirEntry, opt_newName, opt_successCallback, opt_errorCallback)
Moves the directory to a different location on the filesystem.

copyTo (parentDirEntry, opt_newName, opt_successCallback, opt_errorCallback)
Copies the directory to a different parent on the filesystem. Directory copies are
always recursive. It is an error to copy a directory inside itself or to copy it into its
parent if a new name is not provided.

31

toURL ();
Returns a filesystem: URL that can be used to identify this directory. See
Chapter 7.

remove (successCallback, opt_errorCallback)
Deletes a file or directory. It is an error to attempt to delete the root directory of a
filesystem or a directory that is not empty.

getParent (successCallback, opt_errorCallback)
Returns the parent DirectoryEntry containing this directory. If this directory is the
root directory, its parent is itself.

createReader ()
Creates a new DirectoryReader to read entries relative to this DirectoryEntry.

getFile (path, optionsObj, opt_successCallback, opt_errorCallback)
Creates or looks up a FileEntry. The first argument is a path representing and
absolute or relative path from this directory. The second argument is an object
literal describing the behavior of this method if the file does not exist. If create:
true and exclusive: true, and error is thrown if the file already exists at path. If
create: true and exclusive: false, the file will be created. If it already exists, no
error will be thrown. Lastly, if create: false the file is returned if it exists, and an
error is thrown if it does not. When fetching a file, the exclusive flag is ignored. If
success, a FileEntry in returned in the callback.

getDirectory (path, optionsObj, opt_successCallback, opt_errorCallback)
Creates or looks up a DirectoryEntry. The semantics of this method are the same
as getFile(), with the difference being a DirectoryEntry is passed to the success
callback.

removeRecursively (successCallback, opt_errorCallback)
Recursively deletes this directory and all of its contents. An error is thrown if you
try to remove the root directory of a filesystem. If an error occurs while this method
is in progress, some of the directory’s contents might not be deleted.

To better understand DirectoryEntry, the rest of this chapter contains code recipes for
performing common tasks.

Creating Directories
A Filesystem API wouldn’t be much of a Filesystem API if it did not support custom
folder hierarchies. You can create or fetch a directory using DirectoryEntry.getDirec
tory(). Its semantics are exactly the same as FileEntry.getFile(), which was described
in the previous chapter. The first parameter is a string representing an absolute or
relative path of the directory to interact with. For example, the following code creates
a directory named MyPictures in the root directory.

32 | Chapter 5: Working with Directories

Example 5-1. Creating a folder

function onFs(fs) {

 fs.root.getDirectory('MyPictures', {create: true}, function(dirEntry) {

 // dirEntry.isFile === false
 // dirEntry.isDirectory === true
 // dirEntry.name == 'MyPictures'
 // dirEntry.fullPath == '/MyPictures'

 }, onError);

}

window.requestFileSystem(TEMPORARY, 1024*1024 /*1MB*/, onFs, onError);

Subdirectories
In most cases, creating a subfolder is straightforward because its parent folder will
already exists. The process becomes somewhat more involved when trying to create a
full path all in one shot (think mkdir -p /one/two/three on UNIX). The API throws an
error if you try to create a directory whose immediate parent does not exist. The solution
is to create each directory sequentially; something that is rather tricky to do with an
asynchronous API.

The following example creates a new hierarchy (music/genres/jazz) by recursively add-
ing each path after its parent folder has been created.

Example 5-2. Creating subfolders

function createDir(parentDir, folders) {
 // Throw out './' or '/' and move on to prevent something like '/foo/.//bar'.
 if (folders[0] == '.' || folders[0] == '') {
 folders = folders.slice(1);
 }

 parentDir.getDirectory(folders[0], {create: true}, function(dirEntry) {
 // Recursively add the new subfolder (if we still have another to create).
 if (folders.length) {
 // Use the the created directory as the new parentDir. Process next path.
 createDir(dirEntry, folders.slice(1));
 }
 }, onError);
}

const PATH = 'music/genres/jazz/';

window.requestFileSystem(TEMPORARY, 1024*1024 /*1MB*/, function(fs) {
 createDir(fs.root, PATH.split('/')); // fs.root is a DirectoryEntry.
}, onError);

Creating Directories | 33

Once music/genres/jazz is in place, it becomes very simple to create files under it. We
can now pass a full path to getDirectory() to create files or folders under the jazz
directory:

const FILE_PATH = '/music/genres/jazz/song.mp3';
window.requestFileSystem(TEMPORARY, 1024*1024 /*1MB*/, function(fs) {
 fs.root.getFile(FILE_PATH, {create: true}, function(fileEntry) {
 ...
 }, onError);
}, onError);

Alternatively, if we had the DirectoryEntry representing the jazz folder, the previous
example becomes:

window.requestFileSystem(TEMPORARY, 1024*1024 /*1MB*/, function(fs) {
 jazzFolder.getFile('song.mp3', {create: true}, function(fileEntry) {
 ...
 }, onError);
}, onError);

Reading the Contents of a Directory
The API exposes a DirectoryReader interface for reading the entries in a directory.

Methods

readEntries (successCallback, opt_errorCallback)
Returns a list of entries in this directory. This method must be called until an empty
array is returned.

To list all the files and folders in a DirectoryEntry, first create a DirectoryReader (a
synchronous operation):

var reader = directoryEntry.createReader();

Next, call readEntries(). The API makes no guarantees that all of a entries are returned
in a single call to readEntries(). You must continue to call readEntries() until no more
results are returned. The following example demonstrates this.

Example 5-3. Listing the entries in a directory

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Listing the entries in a directory</title>
</head>
<body>

<ul id="filelist">

<script>
// Take care of vendor prefixes.
window.requestFileSystem = window.requestFileSystem ||

34 | Chapter 5: Working with Directories

http://dev.w3.org/2009/dap/file-system/file-dir-sys.html#the-directoryreader-interface

 window.webkiRequestFileSystem;

/**
 * Returns an Array from a NodeList or other array-like object.
 *
 * @param {NodeList} list An array-like object to transform into an array.
 * @return {Array} The list as an array.
 */
function toArray(list) {
 return Array.prototype.slice.call(list || [], 0);
}

/**
 * Renders a list of file/folder entries.
 *
 * @param {Array<FileEntry|DirectoryEntry>} entries A list of file/folders.
 */
function listResults(entries) {
 // Use a document fragment. Will cause only one reflow on append :)
 var fragment = document.createDocumentFragment();

 entries.forEach(function(entry, i) {
 var img = entry.isDirectory ? '' :
 '';
 var li = document.createElement('li');
 li.innerHTML = [img, '', entry.name, ''].join('');
 fragment.appendChild(li);
 });

 document.querySelector('#filelist').appendChild(fragment);
}

window.requestFileSystem(TEMPORARY, 1024*1024 /*1MB*/, function(fs) {

 var dirReader = fs.root.createReader();
 var entries = [];

 // Call the reader.readEntries() until no more results are returned.
 var readEntries = function() {
 dirReader.readEntries(function(results) {
 // If no more results are returned, we're done.
 if (!results.length) {
 // Sort list by name of entry.
 entries.sort(function(a, b) {
 return a.name < b.name ? -1 :
 b.name < a.name ? 1 : 0;
 });

 listResults(entries); // Render the list.

 } else {
 // Add in these results to the current list.
 entries = entries.concat(toArray(results));
 readEntries();
 }

Reading the Contents of a Directory | 35

 }, onError);
 };

 readEntries(); // Start reading the directory.
}, onError);
</script>
</body>
</html>

Removing Directories
There are two ways to remove a DirectoryEntry from the filesystem, remove() and
removeRecursively().

The first method has the same semantics as FileEntry.remove(), taking an optional
callback on successful deletion. However, if you attempt to delete a directory that is
not empty, the API throws an error. Making the analogy to UNIX, the same error occurs
when calling rmdir on a nonempty folder:

dirEntry.remove(function() {
 console.log('Directory removed.');
}, onError);

Recursively Removing a Directory
There are certain situations when you just want to nuke an entire folder, regardless of
what it contains. This is where DirectoryEntry.removeRecursively() comes in handy.
If you have a pesky directory that contains data, removeRecursively() recursively de-
letes the directory and all of its contents. If an error occurs while this method is in
progress, some of the directory’s contents might not be deleted. Be sure to catch that
case in your error callback and retry the deletion.

The following snippet fetches the directory music and recursively removes it and all the
entries it contains:

window.requestFileSystem(TEMPORARY, 1024*1024 /*1MB*/, function(fs) {
 fs.root.getDirectory('/misc/music', {}, function(dirEntry) {

 dirEntry.removeRecursively(function() {
 console.log('Directory removed.');
 }, onError);

 }, onError);
}, onError);

Both of the remove methods throw an error if you try to remove the root
directory in the filesystem (e.g., fs.root).

36 | Chapter 5: Working with Directories

CHAPTER 6

Copying, Renaming, and
Moving Entries

FileEntry and DirectoryEntry share common API calls for common tasks such as
copying, renaming, and moving an entry. This chapter covers these operations in a
generic way, but the concepts can be applied to either entry type.

Copying a File or Directory
Copying a file or folder to a different location on the filesystem is possible with
copyTo(). By design, copying a folder is recursive, while files are simply duplicated:

entry.copyTo(parentDirEntry, opt_newName, opt_successCallback, opt_errorCallback);

The first parameter is a DirectoryEntry, the parent folder to move the entry into. The
second argument is an optional new name to give the copied entry. The third and fourth
parameters are our usual suspects, a success and error callback.

Attempting to copy an entry in an illegal way can result in an error. Two
common errors are trying to copy an entry inside itself and trying to
copy an entry in the same folder without specifying a new name.

As an example usage, the following snippet copies the file me.png from one directory
to another.

Example 6-1. Copying a file to a different folder

/**
 * Copies a file to a different folder.
 *
 * @param {DirectoryEntry} cwd The current working directory.
 * @param {string} srcFile A relative path from the cwd to a file.
 * @param {string} dest A relative path of the destination directory.
 */
function copyFile(cwd, srcFile, dest) {

37

 cwd.getFile(srcFile, {}, function(fileEntry) {

 cwd.getDirectory(dest, {}, function(dirEntry) {
 fileEntry.copyTo(dirEntry);
 }, onError);

 }, onError);
}

window.requestFileSystem(TEMPORARY, 1024*1024 /*1MB*/, function(fs) {
 copyFile(fs.root, '/folder1/me.png', 'folder2/mypics/');
}, onError);

Instead, let’s say you wanted to duplicate the file in its current location. One way to do
that would be to fetch the source file, lookup its parent directory, and pass in a new
name to copyTo().

Example 6-2. Duplicating a file in its current folder

/**
 * Duplicates a file in it's current folder.
 *
 * @param {DirectoryEntry} cwd The current working directory.
 * @param {string} src Relative path from the cwd to a file.
 * @param {string} newName A name for the duplicated file.
 */
function duplicate(cwd, src, newName) {
 cwd.getFile(src, {}, function(fileEntry) {
 fileEntry.getParent(function(destDir) {
 fileEntry.copyTo(destDir, newName, function(copy) {
 console.log(fileEntry.name + ' duplicated as ' + copy.name);
 }, onError);
 }, onError);
 }, onError);
}

window.requestFileSystem(TEMPORARY, 1024*1024 /*1MB*/, function(fs) {
 duplicate(fs.root, 'pics/me.png', 'you.png');
}, onError);

Remember, folders are always copied recursively. There is no way to prevent that de-
fault behavior.

Taking convenience to the max, we can create a generic utility method that handles
both file and directory copies. Said convenience doesn’t come for free, however. The
solution requires a nested getFile()/getDirectory() combination and an asynchro-
nous nightmare of trial and error.

Example 6-3. Copy utility that handles file and folders

/**
 * Copies a file or directory.
 *
 * @param {DirectoryEntry} cwd The current working directory.

38 | Chapter 6: Copying, Renaming, and Moving Entries

 * @param {string} src Relative path to the file/directory to copy.
 * @param {string} dest Relative path to the destination directory.
 * @param {string=} opt_newName An optional name for the copied entry.
 */
function copy(cwd, src, dest, opt_newName) {

 var myCopyTo = function(srcEntry, destEntry, opt_newName) {
 var newName = opt_newName || null;

 srcEntry.copyTo(destEntry, newName, function(copy) {
 console.log(srcEntry.fullPath + ' copied to ' + copy.fullPath);
 }, onError);
 };

 cwd.getDirectory(dest, {}, function(destDir) {

 // First, try src as a file.
 cwd.getFile(src, {}, function(srcFileEntry) {
 myCopyTo(srcFileEntry, destDir, opt_newName);
 }, function(e) {
 if (e.code == FileError.TYPE_MISMATCH_ERR) { // src is actually a dir.
 cwd.getDirectory(src, {}, function(srcDirEntry) {
 myCopyTo(srcDirEntry, destDir, opt_newName);
 }, onError);
 } else {
 onError(e); // Other type of error. Pass through e to our error handler.
 }
 });

 }, onError);
}

window.requestFileSystem(TEMPORARY, 1024*1024 /*1MB*/, function(fs) {
 // '/pics/me.png' copied to '/pics/memories/me.png'
 copy(fs.root, '/pics/me.png', 'pics/memories/');
}, onError);

Moving a File or Directory
After mastering copyTo(), moving an entry will look like a rerun. The method for mov-
ing a file or folder is, you guessed it, moveTo():

entry.moveTo(parentDir, opt_newName, opt_successCallback, opt_errorCallback);

The signature for moveTo() is the same as copyTo(). The first parameter is a directory
to move the entry to, the second is an optional new name, and the last two are callbacks.
If a new name isn’t provided, the file or directory’s original name is preserved.

The following example moves me.png (located in the root directory) to a folder named
newfolder.

Moving a File or Directory | 39

Example 6-4. Moving a file to a different directory

/**
 * Moves a file to a different directory.
 *
 * @param {FileSystem} fs The filesystem.
 * @param {string} srcPath Path to a file, relative to the root folder.
 * @param {string} destPath A directory path, relative to the root,
 * to move the file into.
 */
function move(fs, srcPath, destPath) {
 fs.root.getFile(srcPath, {}, function(fileEntry) {

 fs.root.getDirectory(destPath, {}, function(dirEntry) {
 fileEntry.moveTo(dirEntry);
 }, onError);

 }, onError);
}

window.requestFileSystem(TEMPORARY, 1024*1024 /*1MB*/, function(fs) {
 move(fs, '/me.png', 'newfolder/');
}, onError);

Notice that there are no callbacks passed to the move() helper. While this is perfectly
acceptable, a real application would want to deal with any errors. Otherwise, erroneous
operations fail silently.

Renaming a File or Directory
When moving a file or directory, you have the option to rename. moveTo() accepts an
optional new name as its second parameter. However, sometimes you may want to
rename an entry, leaving it in its current directory. moveTo() is somewhat deceptive in
that way. The same method is used for both moving and renaming.

Here is an example of renaming a directory.

Example 6-5. Renaming a directory

**
 * Moves a file to a different directory.
 *
 * @param {DirectoryEntry} cwd The current working directory.
 * @param {string} srcDir Path to a directory, relative to the cwd.
 * @param {function(DirectoryEntry)=} opt_successCallback An optional
 * success callback passed the updated directory.
 */
function rename(cwd, srcDir, newName, opt_successCallback) {
 cwd.getDirectory(srcDir, {}, function(dirEntry) {
 fileEntry.moveTo(cwd, newName, opt_successCallback);
 }, onError);
}

40 | Chapter 6: Copying, Renaming, and Moving Entries

window.requestFileSystem(TEMPORARY, 1024*1024 /*1MB*/, function(fs) {
 rename(fs.root, '/media/photos', 'pics', function(entry) {
 console.log(entry.name + ' was moved successfully');
));
}, onError);

Renaming a File or Directory | 41

CHAPTER 7

Using Files

Chapter 4 focused on common operations for working with files such as reading, writ-
ing, and removing files. It did not discuss in detail the ways in which an application
can utilize a file residing in its filesystem. However, in most scenarios, you do not need
to read the contents of a file in order to use it.

Filesystem URLs
Perhaps the easiest way to use a file is to reference it by URL. The HTML5 Filesystem
API exposes a new type of URL scheme, filesystem:. The structure of a filesystem URL
is as follows:

filesystem:<ORIGIN>/<STORAGE_TYPE>/<FILENAME>

The format is the scheme, filesystem:, followed by the application’s origin, the storage
type the filesystem was requested with, and finally, the full path of the file or folder as
it resides on the filesystem. For example, if your application lived at http://www.example
.com/myapp and used PERSISTENT storage, the filesystem URL to the root folder would
be: filesystem:http://www.example/temporary/.

So why are filesystem URLs handy? They’re useful because they can be used anywhere
a normal URL can be used. For example, you could cache a .js file and later use that
file’s URL to fill a script.src on demand. You could do the same with a .html file, but
instead populate an iframe.src. Lastly, you could display an image by setting its src
to a filesystem URL.

Currently in Chrome, filesystem URLs are guessable—one can be constructed man-
ually by knowing the proper format. This might not always be the case and other
browser implementations might choose a different format as the specification becomes
standardized. For these reasons, the API contains methods for obtaining and resolving
these URLs.

43

To obtain a filesystem URL for a FileEntry or DirectoryEntry, call to its toURL()
method:

var img = document.createElement('img');
img.src = fileEntry.toURL();
// e.g. 'filesystem:http://www.example/temporary/path/to/file.png'
document.body.appendChild(img);

Chrome currently does not have a dedicated UI for browsing the files
stored in a filesystem. Even the Developer Tools do not expose this data
in the Resources tab. To view your filesystem for debugging purposes,
open a browser tab to the root folder:

fs.root.toURL() (e.g., filesystem:http://www.example/temporary/)

Given one of these URLs, the global method resolveLocalFileSystemURL() will get you
back to FileEntry or DirectoryEntry object. It takes a filesystem URL, success callback,
and error callback:

const URL = 'filesystem:http://www.example/temporary/path/to/file.png';

window.resolveLocalFileSystemURL(URL, function(entry) {
 // entry.isFile === true
}, onError);

This method is currently prefixed as window.webkitResolveLocalFile
SystemURL().

Now that we have a new way of referencing files and folders, let’s revisit Example 6-3
from Chapter 6. Before we used entry.getFile() and entry.getDirectory() to lookup
the file and destination folder entries. This time we’ll use resolveLocalFileSystemURL().

Example 7-1. Copy utility from Example 6-3, but using resolveLocalFileSystemURL()

/**
 * Copies a file or directory.
 *
 * @param {DirectoryEntry} cwd The current working directory.
 * @param {string} src Relative path to the file/directory to copy.
 * @param {string} dest Relative path to the destination directory.
 * @param {string=} opt_newName An optional name for the copied entry.
 */
function copy(cwd, src, dest, opt_newName) {
 window.resolveLocalFileSystemURL = window.resolveLocalFileSystemURL ||
 window.webkitResolveLocalFileSystemURL;

 // e.g. "filesystem:http://example.com/temporary/"
 var baseFsUrl = cwd.filesystem.root.toURL();

 window.resolveLocalFileSystemURL(baseFsUrl + dest, function(destDir) {

44 | Chapter 7: Using Files

http://code.google.com/chrome/devtools/docs/overview.html

 if (!destDir.isDirectory) {
 throw 'Oops! ' + destDir.name + ' is not a directory!';
 }
 window.resolveLocalFileSystemURL(baseFsUrl + src, function(entry) {
 entry.copyTo(destDir, opt_newName || null, function(copy) {
 console.log(entry.fullPath + ' copied to ' + copy.fullPath);
 }, onError);
 }, onError);
 }, onError);
}

window.requestFileSystem(TEMPORARY, 1024*1024 /*1MB*/, function(fs) {
 // '/pics/me.png' copied to '/pics/memories/me.png'
 copy(fs.root, '/pics/me.png', 'pics/memories/');

 // '/pics/me.png' copied to '/pics/memories/you.png'
 // copy(fs.root, '/pics/me.png', 'pics/memories/', 'you.png');

 // '/pics/' copied to '/pics2/'
 // copy(fs.root, '/pics/', '/', 'pics2');
}, onError);

As you can tell, the code cleans up nicely. Most importantly, we’re no longer abusing
error callbacks by trying to recover from calling the wrong get method on src.

Summary
Pros:

• Persistent URL to a resource in the filesystem.

• Can be used as a src or href attribute.

• Can construct manually.

Cons:

• File must be stored in the filesystem.

Blob URLs
Another way to use a File is to create a blob URL, also referred to as an object URL.
This approach lets you create a unique handle to a File or Blob object. The structure
of a blob URL is as follow:

blob:<ORIGIN>/<UNIQUE_RANDOM_STR>

The format is the scheme, blob:, followed by the application’s origin, and a random
string generated by the browser. Since these URLs are generated by the browser, it is
not possible to manually construct a blob URL. For example, if your application lived
at http://www.example.com/myapp a blob URL generated for a particular File might

Blob URLs | 45

look like blob:http://www.example/d8c2c85e-ab1b. Generating a second might look to-
tally different: blob:http://www.example/zbebf235e-s1b.

Create a blob URL from a file-like object using window.URL.createObjectURL():

var blobUrl = window.URL.createObjectURL(file);

In WebKit and Chrome, this method is currently prefixed:

window.webkitURL.createObjectURL()

It’s important to remember that the browser creates a memory reference to the file/blob
on every call to window.URL.createObjectURL(). The result is a unique string that lasts
for the lifetime of the application (e.g., until the document is unloaded). However, if
an application uses many blob URLs dynamically, it’s a good idea to release any refer-
ences that are no longer needed. You can explicitly revoke a blob URL by calling
window.URL.revokeObjectURL():

window.URL.revokeObjectURL(blobUrl);

This method is currently prefixed as window.webkitURL.revokeObjec
tURL()in Webkit and Chrome.

Chrome has a nice about page for viewing outstanding blob URLs,
which you can access at: chrome://blob-internals/.

The following example fetches all entries in the root directory, filters out the image
files, and uses window.URL.createObjectURL() to render the images.

Example 7-2. Using Blob URLs to view images in the filesystem

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Using Blob URLs to view images in the filesystem.</title>
</head>
<body>
<script>
// Take care of vendor prefixes.
window.requestFileSystem = window.requestFileSystem ||
 window.webkiRequestFileSystem;
window.URL = window.URL || window.webkitURL;

function toArray(list) {
 return Array.prototype.slice.call(list || [], 0);

46 | Chapter 7: Using Files

}

function renderImages(fs) {

 var dirReader = fs.root.createReader(); // Create reader for root directory.
 var entries = [];

 // Call the reader.readEntries() until no more results are returned.
 var readEntries = function() {
 dirReader.readEntries(function(results) {

 if (!results.length) { // We're done. No more results.

 entries.forEach(function(entry, i) {
 if (entry.isFile) {
 entry.file(function(file) {

 if (file.type.match(/image.*/)) { // We only care about images.

 var img = document.createElement('img');
 img.onload = function(e) {
 window.URL.revokeObjectURL(this.src); // Clean up.
 };
 img.src = window.URL.createObjectURL(file);

 document.body.append(img);
 }

 }, onError);
 }
 });

 } else {
 // Add in these results to the current list.
 entries = entries.concat(toArray(results));
 readEntries();
 }
 }, onError);
 };

 readEntries(); // Start reading the directory.
}

window.requestFileSystem(TEMPORARY, 1024*1024 /*1MB*/, renderImages, onError);
</script>
</body>
</html>

You’re not limited to passing a File to window.URL.createObjectURL(). It also accepts
Blob data. Using the BlobBuilder API, one can programmatically create a “file”, then
reference it via a URL. For example, this snippet creates a stylesheet programmatically
and adds it to the page:

window.URL = window.URL || window.webkitURL;
window.BlobBuilder = window.BlobBuilder || window.WebKitBlobBuilder ||

Blob URLs | 47

 window.MozBlobBuilder;

var bb = new BlobBuilder();
bb.append('body { background-color: red; }');

var link = document.createElement('link');
link.rel = 'stylesheet';
link.href = window.URL.createObjectURL(bb.getBlob('text/css'));

document.head.appendChild(link);

One clever use of this trick is to create an “inline” Web Worker. Normally workers are
initialized by an external script (e.g., var worker = new Worker('task.js')). The file
has to live somewhere on the server and requires a network request to fetch. Instead,
let’s dynamically create the file from code living on the same HTML page as the main
app logic—a single page multithreaded app!

Example 7-3. Inline Web Worker thanks to blob URLs

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <title>Inline Web Worker</title>
</head>
<body>
 <script id="worker1" type="javascript/worker">
 // This script won't be parsed by the JS engine because its
 // type is not text/javascript.
 self.onmessage = function(e) {
 self.postMessage('Hi from worker');
 };
 // Rest of your worker code goes here.
 </script>
 <script>
 // Take care of prefixes.
 window.URL = window.URL || window.webkitURL;
 window.BlobBuilder = window.BlobBuilder || window.WebKitBlobBuilder ||
 window.MozBlobBuilder;

 var bb = new BlobBuilder();
 bb.append(document.querySelector('[type="javascript/worker"]').textContent);

 var worker = new Worker(window.URL.createObjectURL(bb.getBlob()));

 worker.onmessage = function(e) {
 console.log('Received: ' + e.data);
 }

 worker.postMessage(); // Start the worker.
 </script>
</body>
</html>

48 | Chapter 7: Using Files

When using this trick, always remember to change the type attribute of the inline
<script>, otherwise the browser will stop the parser and interpret the code as normal
JavaScript.

Summary
Pros:

• Temporary (and unique) URL handle to the content.

• Can be used as a src or href attribute.

Cons:

• Cannot construct manually.

• Doesn’t come for free. Use window.URL.revokeObjectURL() to release memory
references.

Data URLs
My final technique for using a file is to encode its content in a data URL. Many devel-
opers are familiar with data URLs. Out of the three URL types covered in this chapter,
they are by far the most supported. All the major browsers support data URLs, includ-
ing IE8 and up. If you’re not familiar with a data URL, the structure is as follows:

data:<mimetype>[;base64],<data>

The format is the scheme, data:, followed by a mimetype string such as “image/jpeg”,
“;base64” if the data is base64 encoded, and the data content.

Data URLs are a bit different than the other URL types discussed earlier in this chapter.
With filesystem URLs, content is referenced by a URL the browser understands and
for blob URLs, a handle to the content is created with window.URL.createObjectURL().
The key difference in a data URL is that the content itself is encoded in the URL. Both
filesystem and blob URLs reference content. Data URLs are the content. They are also
browser agnostic. A nice property that comes from these facts is that data URLs can be
shared. For example, I can send friends a data URL and they can open that content in
the browser. The same isn’t true with the other URLs.

Many people use data URLs as background images in stylesheets or for small sprite
images because it saves an HTTP request. Data URLs can also be used directly in src
and href attributes:

var link = document.createElement('link');
link.rel = 'stylesheet';
link.href = 'data:text/css,body { background: red; }');

document.head.appendChild(link);

Data URLs | 49

If you’re working with a binary string (e.g., the result of a FileR
eader.readAsBinaryString()), use the browser’s native window.btoa()
to base64 encode that content for a data URL:

var audio = document.createElement('audio');
audio.src = 'data:audio/ogg;base64,' + window.btoa(binaryStr);

document.body.appendChild(audio);

Lastly, data URLs also show up in the FileReader API. To read a file as data URL, call
readAsDataURL().

Example 7-4. Reading a file as a data URL

function readAsDataURL(fileEntry) {

 if (!fileEntry.isFile) {
 alert('Not a file!');
 }

 fileEntry.file(function(file) {

 var reader = new FileReader();

 reader.onerror - function(e) {
 console.log('Oops!', e);
 };

 reader.onload = function(e) {
 var img = document.createElement('img');
 img.title = file.name;
 img.alt = file.name;
 img.src = e.target.result;

 document.body.appendChild(img);
 };

 reader.readAsDataURL(file); // Read in the file as a data URL.

 }, onError);
}

window.resolveLocalFileSystemURL(
 'filesystem:http://www.example/temporary/path/to/image.png',
 readAsDataURL, onError);

Summary
Pros:

• Persistent. URL contains the content.

• Can be used as a src or href attribute.

50 | Chapter 7: Using Files

• Can construct manually.

• Saves 1 less HTTP request.

Cons:

• Not separately cached, so data is downloaded every time.

• Base64 encoding binary data adds a 33% overhead to the file size. Some browser
impose restrictions to the size of data URLs.

• Have to read an entire file into memory to create a data URL from it.

If you ever need a quick code editor during a presentation, use a data
URL as your IDE! Open this in a new tab:

data:text/html,<pre contenteditable
 style='font:30pt;height:70%;border:1px solid #ccc;'></pre>

Data URLs | 51

CHAPTER 8

The Synchronous API

Introduction
The HTML5 Filesystem API includes a synchronous version that, for the most part, is
exactly the same as its asynchronous cousin. The methods, properties, features, and
functionality will be familiar. The major deviations are:

• The synchronous API can only be used within a Web Worker context. The asyn-
chronous API can be used in and out of a worker.

• Callbacks are out. API methods now return values.

• The global methods on the window object (requestFileSystem() and resolveLocal
FileSystemURL()) are renamed as requestFileSystemSync() and resolveLocalFile
SystemSyncURL() and members of the worker’s global scope.

The two APIs are the same, save these few exceptions. Because there is not much new
to cover, this chapter won’t cover the synchronous API in great detail. I’ll only highlight
the exceptions to the asynchronous API and provide a few examples to make things
clear.

Opening a Filesystem
A web application obtains access to the synchronous filesystem by requesting a Local
FileSystemSync object from within a web worker. The requestFileSystemSync() is ex-
posed to the worker’s global scope:

var fs = requestFileSystemSync(TEMPORARY, 1024*1024 /*1MB*/);

This method is currently vendor prefixed as webkitRequestFileSystem
Sync.

53

The reader should note two things about this call: the new return value and the absence
of success and error callbacks.

Working with Files and Directories
The synchronous filesystem has a getFile() and getDirectory() which return a Fil
eEntrySync and DirectoryEntrySync, respectively.

For example, the following code creates an empty file called “log.txt” in the root
directory.

Example 8-1. Creating a file

var fileEntry = fs.root.getFile('log.txt', {create: true});

The following creates a new directory in the root folder.

Example 8-2. Creating a directory

var dirEntry = fs.root.getDirectory('mydir', {create: true});

Handling Errors
The lack of error callbacks in the synchronous world makes dealing with problems
tricky. Add to that the complexity of debugging in a web worker, and you’ll be pulling
out your hair in no time. One thing that you can do to make life easier is wrap all of
the relevant worker code in a try/catch. If any errors occur, forward it to the main app
using postMessage().

Example 8-3. Error handling in a worker

function onError(e) {
 postMessage('ERROR: ' + e.toString());
}

try {
 // Error thrown if "log.txt" already exists.
 var fileEntry = fs.root.getFile('log.txt', {create: true, exclusive: true});
} catch (e) {
 onError(e);
}

Examples
This section contains two full examples that you may find useful. Feel free to incorpo-
rate them into your own projects.

54 | Chapter 8: The Synchronous API

Fetching All Entries in the Filesystem
Some may argue that the synchronous API is much cleaner. Fewer callbacks are nice
and they certainly make things more readable. The real disadvantage of the synchro-
nous filesystem is due to the limitations of web workers.

For security reasons, data between an app and a web worker thread is never shared. It
is copied to and from the worker using the postMessage() API. As such, only primitive
types (Array, Number, Boolean, …) can be passed using postMessage(). Unfortunately,
this means that FileEntrySync and DirectoryEntrySync are not included in the list. They
are not serializable types.

One option for getting entries back to the main app is to return a filesystem: URL
instead of the entry itself. Since these URLs are just strings, it is very easy for the main
app to use a filesystem: URL as it sees fit.

Example 8-4. Fetching all entries and passing them back to the main app (worker.js)

self.requestFileSystemSync = self.webkitRequestFileSystemSync ||
 self.requestFileSystemSync;

var paths = [];

function getAllEntries(dirReader) {

 var entries = dirReader.readEntries();

 for (var i = 0, entry; entry = entries[i]; ++i) {
 paths.push(entry.toURL());

 // If this is a directory, we have more traversing to do.
 if (entry.isDirectory) {
 getAllEntries(entry.createReader());
 }
 }
}

function onError(e) {
 postMessage('ERROR: ' + e.toString());
}

self.onmessage = function(e) {
 var data = e.data;

 // Ignore everything else accept the 'list' command.
 if (!data.cmd || data.cmd != 'list') {
 return;
 }

 try {
 var fs = requestFileSystemSync(TEMPORARY, 1024*1024 /*1MB*/);

 getAllEntries(fs.root.createReader());

Examples | 55

 self.postMessage({entries: paths});

 } catch (e) {
 onError(e);
 }
};

Main app:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta http-equiv="X-UA-Compatible" content="chrome=1">
<title>Listing filesystem entries using the synchronous API</title>
</head>
<body>
<script>
 var worker = new Worker('worker.js');
 worker.onmessage = function(e) {
 console.log(e.data.entries);
 }
 worker.postMessage({'cmd': 'list'});
</script>
</body>
</html>

Downloading Files Using XHR2
A common use case for using web workers is to download a bunch of files using XHR2,
and write those files to the HTML5 filesystem. A perfect task for a worker thread!

The following example only fetches and writes one file, but you can image expanding
it to download a set of files.

Example 8-5. Downloading files using XHR2 (downloader.js)

self.requestFileSystemSync = self.webkitRequestFileSystemSync ||
 self.requestFileSystemSync;
self.BlobBuilder = self.WebKitBlobBuilder || self.MozBlobBuilder ||
 self.BlobBuilder;

function makeRequest(url) {
 try {
 var xhr = new XMLHttpRequest();
 xhr.open('GET', url, false); // Synchronous
 xhr.responseType = 'arraybuffer';
 xhr.send();
 return xhr.response;
 } catch(e) {
 return "XHR Error " + e.toString();
 }
}

56 | Chapter 8: The Synchronous API

function onError(e) {
 postMessage('ERROR: ' + e.toString());
}

onmessage = function(e) {
 var data = e.data;

 // Make sure we have the right parameters.
 if (!data.fileName || !data.url || !data.type) {
 return;
 }

 try {
 var fs = requestFileSystemSync(TEMPORARY, 1024*1024 /*1MB*/);

 postMessage('Got file system.');

 var fileEntry = fs.root.getFile(data.fileName, {create: true});

 postMessage('Got file handle.');

 var writer = fileEntry.createWriter();
 writer.onerror = onError;
 writer.onwrite = function(e) {
 postMessage('Write complete!');
 postMessage(fileEntry.toURL());
 };

 var bb = new BlobBuilder();
 bb.append(makeRequest(data.url)); // Append the arrayBuffer XHR response.

 postMessage('Begin writing');

 writer.write(bb.getBlob(data.type))

 } catch (e) {
 onError(e);
 }
};

Main app:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta http-equiv="X-UA-Compatible" content="chrome=1">
<title>Download files using a XHR2, a worker, and saving to filesystem</title>
</head>
<body>
<script>
 var worker = new Worker('downloader.js');
 worker.onmessage = function(e) {
 console.log(e.data);
 }
 worker.postMessage(

Examples | 57

 {fileName: 'GoogleLogo', url: 'google_logo.png', type: 'image/png'});
</script>
</body>
</html>

58 | Chapter 8: The Synchronous API

About the Author
Eric Bidelman is a Senior Developer Programs Engineer on the Google Chrome team,
and one of the core contributors to html5rocks.com. His mission is to spread HTML5
goodness by educating developers worldwide. Eric previously worked on Google Docs,
Sites, Health, and OAuth APIs. Prior to Google, Eric worked as a software engineer at
the University of Michigan where he designed rich web applications and APIs for the
university’s 19 libraries. Eric holds a B.S.E in Computer Engineering and a B.S.E in
Electrical Engineering from the University of Michigan, Ann Arbor. He can be found
on Twitter at @ebidel.

Colophon
The animal on the cover of Using the HTML5 Filesystem API is a Russian greyhound.

The cover image is from J. G. Wood’s Animate Creation. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad Con-
densed; and the code font is LucasFont’s TheSansMonoCondensed.

	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Chapter 1. Introduction
	Use Cases
	Security Considerations
	Browser Support
	A Cautionary Tale

	Chapter 2. Storage and Quota
	Storage Types
	Temporary Storage
	Persistent Storage
	Unlimited Storage

	Quota Management API
	Requesting More Storage
	Checking Current Usage

	Chapter 3. Getting Started
	Opening a Filesystem
	Handling Errors

	Chapter 4. Working with Files
	The FileEntry
	Creating a File
	Reading a File by Name
	Writing to a File
	Appending Data to a File

	Importing Files
	Using <input type=“file”>
	Using HTML5 Drag and Drop
	Using XMLHttpRequest
	Using Copy and Paste

	Removing Files

	Chapter 5. Working with Directories
	The DirectoryEntry
	Creating Directories
	Subdirectories

	Reading the Contents of a Directory
	Removing Directories
	Recursively Removing a Directory

	Chapter 6. Copying, Renaming, and Moving
 Entries
	Copying a File or Directory
	Moving a File or Directory
	Renaming a File or Directory

	Chapter 7. Using Files
	Filesystem URLs
	Summary

	Blob URLs
	Summary

	Data URLs
	Summary

	Chapter 8. The Synchronous API
	Introduction
	Opening a Filesystem
	Working with Files and Directories
	Handling Errors
	Examples
	Fetching All Entries in the Filesystem
	Downloading Files Using XHR2

