

HTML5 Canvas
Cookbook

Over 80 recipes to revolutionize the web experience with
HTML5 Canvas

Eric Rowell

BIRMINGHAM - MUMBAI

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

HTML5 Canvas Cookbook

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: November 2011

Production Reference: 1171111

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-136-9

www.packtpub.com

Cover Image by Sujay Gawand (sujay0000@gmail.com)

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Credits

Author
Eric Rowell

Reviewers
Kevin Roast

Rokesh Jankie

Ian Pollock

Denis Samoilov

Alika Jain

Acquisition Editor
Wilson D'souza

Development Editor
Maitreya Bhakal

Technical Editor
Sakina Kaydawala

Project Coordinator
Shubhanjan Chatterjee

Proofreader
Joanna McMahon

Indexer
Monica Ajmera Mehta

Graphics
Valentina D'silva

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

About the Author

Eric Rowell is a professional frontend web developer and entrepreneur who is fascinated
with the web industry, business, technology, and how they fit together. He's the founder and
chief editor of http://www.Html5CanvasTutorials.com, an HTML5 canvas resource
that's designed to complement the recipes in this book, and is also the creator of the
KineticJS library, a lightweight JavaScript library that extends the 2D context by enabling
canvas interactivity for desktop and mobile applications. When he's not building software, he
loves spending time with his beautiful wife, Andie, and his spunky little dog, Koda. If you're
feeling social, you can follow him on Twitter at @ericdrowell.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

http://www.Html5CanvasTutorials.com

About the Reviewers

Kevin Roast is a frontend software developer with 12 years professional experience and
a lifelong interest in computers and computer graphics. He has developed web software for
several companies including his current employer Alfresco Software Ltd. He is very excited by
the prospect of the HTML5 standardization of the Web, the progress of web-browser software
in recent years and the bright future of HTML5 canvas development. He was co-author of a
book called Professional Alfresco: Practical Solutions for Enterprise Content Management.

Rokesh Jankie graduated in 1998 with a Masters degree in Computer Science from
Leiden University, The Netherlands. His field of specialization was Algorithms and NP-complete
problems. Scheduling problems can be NP-complete and that's the area which he focused
on. After that he started working for Leiden University, ORTEC Consultants, Ponte Vecchio
and then Qualogy. At Qualogy, he used what he experienced so far to set up a product.
Qualogy works in the field of Oracle and Java technology. With the current set of technologies,
interesting products can be delivered, for example QAFE (see http://www.qafe.com for
more info).

The company he works for now specializes in Oracle and Java technology. As the Head of the
product development department his focus is on the future of web application development.
They are using modern technologies (HTML5, Google APIs, GWT, Java) and have close contact
with some excellent people at Google to make things work.

I'm very honored and grateful that I was contacted to review this book and
to Shubhanjan Chatterjee for giving me the opportunity. It feels good to be
part of the next big thing on the Web (HTML5) in this way. The future of web
applications looks very promising.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

http://www.qafe.com/

Ian Pollock is an artist and educator. He holds a Master of Fine Arts in New Genre, and is
currently completing a Master of Education in Instructional Design.

Since 1998, Ian has been teaching undergraduate and graduate classes in the US and the
Middle East in media fine arts, web and graphic design, photography, as well as audio and
video production.

His other experience includes building industry advisory boards, facilitating quality assurance
procedures in academic programs, and coordinating system-wide learning objectives and
curriculum alignment for courses across 11 campuses.

He currently advises as the director for education and social engagement at Illume Magazine
Foundation.

His interests include digital media, fine art, citizen journalism, activism, social learning
strategies, connectivist learning, social capacity building, web design and development, ux/
uix, video and audio production, government 2.0, education 2.0, and curriculum development.

Ian currently teaches at the University of San Francisco and the CSU Eastbay.

I would like to extend my gratitude to Robert Frager, Ramona Manhein, and
Kemal Guler, and all my loving friends, without whose care and support it
would be difficult to accomplish anything in this world. I would also like to
thank my students, who have forced me to become a deeper thinker and
a more caring educator, and whose enthusiasm for art and technology
inspires me every day.

Denis Samoilov is a web developer at HeBS Digital. Denis lives in Tallinn, Estonia with
his girlfriend Natasha. He got involved in web development and design about ten years ago
working on small projects. After finishing high school he decided to study Informatics in Tallinn
Technical University. For two years, he has been working as SQA engineer, after that he tried
himself as web designer, but found that web development is more interesting area for him.

I would like to thank my girlfriend Natasha for her support on those busy
evenings and always being able to put a smile on my face, my colleagues
Vladimir Sobolev for invaluable advices and Tim Sklyarov for providing
designs of the most interesting award wining and challenging projects,
Shubhanjan Chatterjee for providing me opportunity to review this book,
also I would like to thank my parents, because without them I wouldn't be
where I am today.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Alika Jain has extensive experience in the design and development of web applications for
industries. She is skilled in frontend programming.

She has sound knowledge of technologies including HTML, XHTML, CSS, jQuery, JavaScript,
and the Creative Adobe Suite.

I couldn't do this without the support of my family, but it is two special
people's time to shine—Gulshan Modi (my father) and Parveen Jain (my
husband).

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of
free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. Here,
you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today
and view nine entirely free books. Simply use your login credentials for immediate access.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface 1

What this book covers 1
What you need for this book 3
Who this book is for 3
What is HTML5 Canvas 3

Chapter 1: Getting Started with Paths and Text 7
Introduction 7
Drawing a line 8
Drawing an arc 11
Drawing a Quadratic curve 13
Drawing a Bezier curve 15
Drawing a zigzag 16
Drawing a spiral 18
Working with text 20
Drawing 3D text with shadows 22
Unlocking the power of fractals: Drawing a haunted tree 24

Chapter 2: Shape Drawing and Composites 27
Introduction 27
Drawing a rectangle 28
Drawing a circle 30
Working with custom shapes and fill styles 32
Fun with Bezier curves: drawing a cloud 35
Drawing transparent shapes 37
Working with the context state stack to save and restore styles 38
Working with composite operations 41
Creating patterns with loops: drawing a gear 47
Randomizing shape properties: drawing a field of flowers 50
Creating custom shape functions: playing card suits 53
Putting it all together: drawing a jet 59

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

ii

Table of Contents

Chapter 3: Working with Images and Videos 67
Introduction 67
Drawing an image 68
Cropping an image 69
Copying and pasting sections of the canvas 72
Working with video 74
Getting image data 76
Introduction to pixel manipulation: inverting image colors 79
Inverting video colors 81
Converting image colors to grayscale 83
Converting a canvas drawing into a data URL 85
Saving a canvas drawing as an image 87
Loading the canvas with a data URL 89
Creating a pixelated image focus 90

Chapter 4: Mastering Transformations 95
Introduction 95
Translating the canvas context 96
Rotating the canvas context 97
Scaling the canvas context 99
Creating a mirror transform 101
Creating a custom transform 102
Shearing the canvas context 104
Handling multiple transforms with the state stack 106
Transforming a circle into an oval 108
Rotating an image 110
Drawing a simple logo and randomizing its position, rotation, and scale 112

Chapter 5: Bringing the Canvas to Life with Animation 115
Introduction 115
Creating an Animation class 116
Creating a linear motion 120
Creating acceleration 122
Creating oscillation 125
Oscillating a bubble 127
Swinging a pendulum 130
Animating mechanical gears 133
Animating a clock 138
Simulating particle physics 142
Creating microscopic life forms 146
Stressing the canvas and displaying the FPS 151

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

iii

Table of Contents

Chapter 6: Interacting with the Canvas: Attaching Event Listeners to
Shapes and Regions 157

Introduction 158
Creating an Events class 158
Working with canvas mouse coordinates 167
Attaching mouse event listeners to regions 169
Attaching touch event listeners to regions on a mobile device 172
Attaching event listeners to images 176
Dragging-and-dropping shapes 180
Dragging-and-dropping images 183
Creating an image magnifier 186
Creating a drawing application 192

Chapter 7: Creating Graphs and Charts 201
Introduction 201
Creating a pie chart 202
Creating a bar chart 208
Graphing equations 215
Plotting data points with a line chart 221

Chapter 8: Saving the World with Game Development 229
Introduction 229
Creating sprite sheets for the heroes and enemies 232
Creating level images and boundary maps 234
Creating an Actor class for the hero and enemies 238
Creating a Level class 243
Creating a Health Bar class 246
Creating a Controller class 247
Creating a Model class 252
Creating a View class 262
Setting up the HTML document and starting the game 267

Chapter 9: Introducing WebGL 269
Introduction 269
Creating a WebGL wrapper to simplify the WebGL API 270
Creating a triangular plane 284
Rotating a triangular plane in 3D space 286
Creating a rotating cube 289
Adding textures and lighting 293
Creating a 3D world that you can explore 300

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

iv

Table of Contents

Appendix A: Detecting Canvas Support 315
Appendix B: Canvas Security 319
Appendix C: Additional Topics 321

Canvas vs. CSS3 transitions and animations 321
Canvas performance on mobile devices 322

Index 323

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Preface
The HTML5 canvas is revolutionizing graphics and visualizations on the Web. Powered
by JavaScript, the HTML5 Canvas API enables web developers to create visualizations
and animations right in the browser without Flash. Although the HTML5 Canvas is quickly
becoming the standard for online graphics and interactivity, many developers fail to exercise
all of the features that this powerful technology has to offer.

The HTML5 Canvas Cookbook begins by covering the basics of the HTML5 Canvas API
and then progresses by providing advanced techniques for handling features not directly
supported by the API such as animation and canvas interactivity. It winds up by providing
detailed templates for a few of the most common HTML5 canvas applications—data
visualization, game development, and 3D modeling. It will acquaint you with interesting
topics such as fractals, animation, physics, color models, and matrix mathematics.

By the end of this book, you will have a solid understanding of the HTML5 canvas API and a
toolbox of techniques for creating any type of HTML5 canvas application, limited only by the
extent of your imagination.

What this book covers
Chapter 1, Getting Started with Paths and Text, begins by covering the basics of
sub-path drawing and then moves on to more advanced path drawing techniques by
exploring algorithms to draw zigzags and spirals. Next, the chapter dives into text
drawing and then completes with an exploration of fractals.

Chapter 2, Shape Drawing and Composites, begins by covering the basics of shape drawing
and also shows you how to use color fills, gradient fills, and patterns. Next, the chapter takes
an in-depth look at transparencies and composite operations, and then provides recipes
for drawing more complex shapes such as clouds, gears, flowers, card suits, and even a full
vector-style jet complete with layers and shading.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Preface

2

Chapter 3, Working with Images and Videos, covers the basics of image and video handling,
shows you how to copy-and-paste sections of the canvas, and covers different types of pixel
manipulation. The chapter also shows you how to convert images into data URLs, save a
canvas drawing as an image, and load a canvas with a data URL. Finally, the chapter ends
with a pixilated image focus algorithm that can be used to focus and blur images dynamically
with pixel manipulation.

Chapter 4, Mastering Transformations, explores what’s possible with canvas transformations,
including translations, scaling, rotations, mirror transforms, and free-form transformations. In
addition, the chapter also explores the canvas state stack in detail.

Chapter 5, Bringing the Canvas to Life with Animation, begins by constructing an Animation
class to handle an animation stage, and shows you how to create a linear motion, a quadratic
motion, and an oscillating motion. Next, it covers some more complex animations such as the
oscillation of a soap bubble, a swinging pendulum, and rotating mechanical gears. Finally, the
chapter ends with a recipe for creating your own particle physics simulator, and also provides a
recipe for creating hundreds of microscopic organisms inside the canvas to stress performance.

Chapter 6, Interacting with the Canvas: Attaching Event Listeners to Shapes and Regions,
begins by constructing an Events class which extends the canvas API by providing a means
for attaching event listeners to shapes and regions on the canvas. Next, the chapter covers
techniques for getting the canvas mouse coordinates, detecting region events, detecting image
events, detecting mobile touch events, and drag-and-drop. The chapter ends by providing a
recipe for creating an image magnifier and another recipe for creating a drawing application.

Chapter 7, Creating Graphs and Charts, provides production-ready graph and chart classes,
including a pie chart, a bar chart, an equation grapher, and a line chart.

Chapter 8, Saving the World with Game Development, gets you started with canvas game
development by showing you how to create an entire side-scroller game called Canvas Hero.
The chapter shows you how to create sprite sheets, create levels and boundary maps, create
classes to handle the hero, the bad guys, the level, and the hero’s health, and also shows you
how to structure the game engine using an MVC (model view controller) design pattern.

Chapter 9, Introducing WebGL, begins by constructing a WebGL wrapper class to simplify the
WebGL API. The chapter introduces WebGL by showing you how to create a 3D plane
and a rotating cube, and also shows you how to add textures and lighting to your models.
The chapter ends by showing you how to create an entire 3D world that you can explore in
first person.

Appendices A, B, and C discuss other special topics such as canvas support detection,
security, canvas vs. CSS3 transitions and animations, and the performance of canvas
applications on mobile devices.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Preface

3

What you need for this book
All you need to get started with HTML5 canvas is a modern browser such as Google Chrome,
Firefox, Safari, Opera, or IE9, and a simple text editor such as notepad.

Who this book is for
This book is geared towards web developers who are familiar with HTML and JavaScript. It is
written for both beginners and seasoned HTML5 developers with a good working knowledge of
JavaScript.

What is HTML5 Canvas
Canvas was originally created by Apple in 2004 to implement Dashboard widgets and to
power graphics in the Safari browser, and was later adopted by Firefox, Opera, and Google
Chrome. Today, canvas is a part of the new HTML5 specification for next generation web
technologies.

The HTML5 canvas is an HTML tag that you can embed inside an HTML document for the
purpose of drawing graphics with JavaScript. Since the HTML5 canvas is a bitmap, every pixel
drawn onto the canvas overrides pixels beneath it.

Here is the base template for all of the 2D HTML5 Canvas recipes for this book:

<!DOCTYPE HTML>
<html>
 <head>
 <script>
 window.onload = function(){
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");

 // draw stuff here
 };
 </script>
 </head>
 <body>
 <canvas id="myCanvas" width="578" height="200">
 </canvas>
 </body>
</html>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Preface

4

Notice that the canvas element is embedded inside the body of the HTML document, and is
defined with an id, a width, and a height. JavaScript uses the id to reference the canvas
tag, and the width and height are used to define the size of the drawing area. Once the
canvas tag has been accessed with document.getElementById(), we can then define a
2D context with:

var context = canvas.getContext("2d");

Although most of this book covers the 2D context, the final chapter, Chapter 9, uses a 3D
context to render 3D graphics with WebGL.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Define the Events constructor."

A block of code is set as follows:

var Events = function(canvasId){
 this.canvas = document.getElementById(canvasId);
 this.context = this.canvas.getContext("2d");
 this.stage = undefined;
 this.listening = false;
};

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

var Events = function(canvasId){
 this.canvas = document.getElementById(canvasId);
 this.context = this.canvas.getContext("2d");
 this.stage = undefined;
 this.listening = false;
};

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "It writes out the text Hello
Logo! at the origin."

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Preface

5

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles that
you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code for this book
You can run the demos and download the resources for this book from
www.html5canvastutorials.com/cookbook, or you can download the example code
files for all Packt books you have purchased from your account at http://www.PacktPub.
com. If you purchased this book elsewhere, you can visit http://www.PacktPub.com/
support and register to have the files e-mailed directly to you.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.PacktPub.com/support

Preface

6

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/support, selecting your book, clicking on the errata
submission form link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded on our website, or added to any
list of existing errata, under the Errata section of that title. Any existing errata can be viewed by
selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

mailto:copyright@packtpub.com

1
Getting Started with

Paths and Text

In this chapter, we will cover:

 f Drawing a line

 f Drawing an arc

 f Drawing a Quadratic curve

 f Drawing a Bezier curve

 f Drawing a zigzag

 f Drawing a spiral

 f Working with text

 f Drawing 3D text with shadows

 f Unlocking the power of fractals: Drawing a haunted tree

Introduction
This chapter is designed to demonstrate the fundamental capabilities of the HTML5 canvas by
providing a series of progressively complex tasks. The HTML5 canvas API provides the basic
tools necessary to draw and style different types of sub paths including lines, arcs, Quadratic
curves, and Bezier curves, as well as a means for creating paths by connecting sub paths.
The API also provides great support for text drawing with several styling properties. Let's
get started!

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Getting Started with Paths and Text

8

Drawing a line
When learning how to draw with the HTML5 canvas for the first time, most people are
interested in drawing the most basic and rudimentary element of the canvas. This recipe
will show you how to do just that by drawing a simple straight line.

How to do it...
Follow these steps to draw a diagonal line:

1. Define a 2D canvas context and set the line style:
window.onload = function(){
 // get the canvas DOM element by its ID
 var canvas = document.getElementById("myCanvas");
 // declare a 2-d context using the getContext() method of the
 // canvas object
 var context = canvas.getContext("2d");

 // set the line width to 10 pixels
 context.lineWidth = 10;
 // set the line color to blue
 context.strokeStyle = "blue";

2. Position the canvas context and draw the line:
 // position the drawing cursor
 context.moveTo(50, canvas.height - 50);
 // draw the line
 context.lineTo(canvas.width - 50, 50);
 // make the line visible with the stroke color
 context.stroke();
};

3. Embed the canvas tag inside the body of the HTML document:
<canvas id="myCanvas" width="600" height="250" style="border:1px
solid black;">
</canvas>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 1

9

Downloading the example code
You can run the demos and download the resources for this book from
www.html5canvastutorials.com/cookbook or you can download the
example code files for all Packt books you have purchased from your account
at http://www.PacktPub.com. If you purchased this book elsewhere, you
can visit http://www.PacktPub.com/support and register to have the
files e-mailed directly to you.

How it works...
As you can see from the preceding code, we need to wait for the page to load before trying
to access the canvas tag by its ID. We can accomplish this with the window.onload
initializer. Once the page loads, we can access the canvas DOM element with document.
getElementById() and we can define a 2D canvas context by passing 2d into the
getContext() method of the canvas object. As we will see in the last two chapters, we can
also define 3D contexts by passing in other contexts such as webgl, experimental-webgl,
and others.

When drawing a particular element, such as a path, sub path, or shape, it's important to
understand that styles can be set at any time, either before or after the element is drawn,
but that the style must be applied immediately after the element is drawn for it to take effect,
We can set the width of our line with the lineWidth property, and we can set the line color
with the strokeStyle property. Think of this behavior like the steps that we would take if we
were to draw something onto a piece of paper. Before we started to draw, we would choose a
colored marker (strokeStyle) with a certain tip thickness (lineWidth).

Now that we have our marker in hand, so to speak, we can position it onto the canvas using
the moveTo() method:

context.moveTo(x,y);

Think of the canvas context as a drawing cursor. The moveTo() method creates a new sub
path for the given point. The coordinates in the top-left corner of the canvas are (0,0), and the
coordinates in the bottom-right corner are (canvas width, canvas height).

Once we have positioned our drawing cursor, we can draw the line using the lineTo()
method by defining the coordinates of the line's end point:

context.lineTo(x,y);

Finally, to make the line visible, we can use the stroke() method. Unless, otherwise
specified, the default stroke color is black.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Getting Started with Paths and Text

10

To summarize, here's the typical drawing procedure we should follow when drawing lines with
the HTML5 canvas API:

1. Style your line (like choosing a colored marker with a specific tip thickness).

2. Position the canvas context using moveTo() (like placing the marker onto a piece
of paper).

3. Draw the line with lineTo().

4. Make the line visible using stroke().

There's more...
HTML5 canvas lines can also have one of three varying line caps, including butt, round, and
square. The line cap style can be set using the lineCap property of the canvas context.
Unless otherwise specified, the line cap style is defaulted to butt. The following diagram shows
three lines, each with varying line cap styles. The top line is using the default butt line cap, the
middle line is using the round line cap, and the bottom line is using a square line cap:

Notice that the middle and bottom lines are slightly longer than the top line, even though all of
the line widths are equal. This is because the round line cap and the square line cap increase
the length of a line by an amount equal to the width of the line. For example, if our line is 200
px long and 10 px wide, and we use a round or square line cap style, the resulting line will be
210 px long because each cap adds 5 px to the line length.

See also...
 f Drawing a zigzag

 f Putting it all together: Drawing a jet in Chapter 2

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 1

11

Drawing an arc
When drawing with the HTML5 canvas, it's sometimes necessary to draw perfect arcs. If you're
interested in drawing happy rainbows, smiley faces, or diagrams, this recipe would be a good
start for your endeavor.

How to do it...
Follow these steps to draw a simple arc:

1. Define a 2D canvas context and set the arc style:
window.onload = function(){
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");
 context.lineWidth = 15;
 context.strokeStyle = "black"; // line color

2. Draw the arc:
context.arc(canvas.width / 2, canvas.height / 2 + 40, 80, 1.1 *
Math.PI, 1.9 * Math.PI, false);
 context.stroke();
};

3. Embed the canvas tag inside the body of the HTML document:
<canvas id="myCanvas" width="600" height="250" style="border:1px
solid black;">
</canvas>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Getting Started with Paths and Text

12

How it works...
We can create an HTML5 arc with the arc() method which is defined by a section of the
circumference of an imaginary circle. Take a look at the following diagram:

ra
d
iu

s

center point

ending anglestarting angle

0

���

�

����

The imaginary circle is defined by a center point and a radius. The circumference section
is defined by a starting angle, an ending angle, and whether or not the arc is drawn
counter-clockwise:

context.arc(centerX,centerY, radius, startingAngle,
 endingAngle,counterclockwise);

Notice that the angles start with 0π at the right of the circle and move clockwise to 3π/2, π,
π/2, and then back to 0. For this recipe, we've used 1.1π as the starting angle and 1.9π as the
ending angle. This means that the starting angle is just slightly above center on the left side of
the imaginary circle, and the ending angle is just slightly above center on the right side of the
imaginary circle.

There's more...
The values for the starting angle and the ending angle do not necessarily have to lie within
0π and 2π. In fact, the starting angle and ending angle can be any real number because the
angles can overlap themselves as they travel around the circle.

For example, let's say that we define our starting angle as 3π. This is equivalent to one full
revolution around the circle (2π) and another half revolution around the circle (1π). In other
words, 3π is equivalent to 1π. As another example, - 3π is also equivalent to 1π because the
angle travels one and a half revolutions counter-clockwise around the circle, ending up at 1π.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 1

13

Another method for creating arcs with the HTML5 canvas is to make use of the arcTo()
method. The resulting arc from the arcTo() method is defined by the context point, a control
point, an ending point, and a radius:

context.arcTo(controlPointX1, controlPointY1, endingPointX,
endingPointY, radius);

Unlike the arc() method, which positions an arc by its center point, the arcTo() method is
dependent on the context point, similar to the lineTo() method. The arcTo() method is
most commonly used when creating rounded corners for paths or shapes.

See also...
 f Drawing a circle in Chapter 2

 f Animating mechanical gears in Chapter 5

 f Animating a clock in Chapter 5

Drawing a Quadratic curve
In this recipe, we'll learn how to draw a Quadratic curve. Quadratic curves provide much more
flexibility and natural curvatures compared to its cousin, the arc, and are an excellent tool for
creating custom shapes.

How to do it...
Follow these steps to draw a Quadratic curve:

1. Define a 2D canvas context and set the curve style:
window.onload = function(){
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");

 context.lineWidth = 10;
 context.strokeStyle = "black"; // line color

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Getting Started with Paths and Text

14

2. Position the canvas context and draw the Quadratic curve:
context.moveTo(100, canvas.height - 50);
 context.quadraticCurveTo(canvas.width / 2, -50, canvas.width
- 100, canvas.height - 50);
 context.stroke();
};

3. Embed the canvas tag inside the body of the HTML document:
<canvas id="myCanvas" width="600" height="250" style="border:1px
solid black;">
</canvas>

How it works...
HTML5 Quadratic curves are defined by the context point, a control point, and an
ending point:

 context.quadraticCurveTo(controlX, controlY, endingPointX,
endingPointY);

Take a look at the following diagram:

The curvature of a Quadratic curve is defined by three characteristic tangents. The first part of
the curve is tangential to an imaginary line that starts with the context point and ends with the
control point. The peak of the curve is tangential to an imaginary line that starts with midpoint
1 and ends with midpoint 2. Finally, the last part of the curve is tangential to an imaginary line
that starts with the control point and ends with the ending point.

See also...
 f Putting it all together: Drawing a jet, in Chapter 2

 f Unlocking the power of fractals: Drawing a haunted tree

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 1

15

Drawing a Bezier curve
If Quadratic curves don't meet your needs, the Bezier curve might do the trick. Also known
as cubic curves, the Bezier curve is the most advanced curvature available with the HTML5
canvas API.

How to do it...
Follow these steps to draw an arbitrary Bezier curve:

1. Define a 2D canvas context and set the curve style:
window.onload = function(){
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");

 context.lineWidth = 10;
 context.strokeStyle = "black"; // line color
 context.moveTo(180, 130);

2. Position the canvas context and draw the Bezier curve:
context.bezierCurveTo(150, 10, 420, 10, 420, 180);
 context.stroke();
};

3. Embed the canvas tag inside the body of the HTML document:
<canvas id="myCanvas" width="600" height="250" style="border:1px
solid black;">
</canvas>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Getting Started with Paths and Text

16

How it works...
HTML5 canvas Bezier curves are defined by the context point, two control points, and an
ending point. The additional control point gives us much more control over its curvature
compared to Quadratic curves:

 context.bezierCurveTo(controlPointX1, controlPointY1,
 controlPointX2, controlPointY2,
 endingPointX, endingPointY);

Take a look at the following diagram:

Unlike Quadratic curves, which are defined by three characteristic tangents, the Bezier
curve is defined by five characteristic tangents. The first part of the curve is tangential to an
imaginary line that starts with the context point and ends with the first control point. The next
part of the curve is tangential to the imaginary line that starts with midpoint 1 and ends with
midpoint 3. The peak of the curve is tangential to the imaginary line that starts with midpoint
2 and ends with midpoint 4. The fourth part of the curve is tangential to the imaginary line
that starts with midpoint 3 and ends with midpoint 5. Finally, the last part of the curve is
tangential to the imaginary line that starts with the second control point and ends with the
ending point.

See also...
 f Randomizing shape properties: Drawing a field of flowers in Chapter 2

 f Putting it all together: Drawing a jet in Chapter 2

Drawing a zigzag
In this recipe, we'll introduce path drawing by iteratively connecting line subpaths to draw a
zigzag path.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 1

17

How to do it...
Follow these steps to draw a zigzag path:

1. Define a 2D canvas context and initialize the zigzag parameters:
window.onload = function(){
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");

 var startX = 85;
 var startY = 70;
 var zigzagSpacing = 60;

2. Define the zigzag style and begin the path:
context.lineWidth = 10;
 context.strokeStyle = "#0096FF"; // blue-ish color
 context.beginPath();
 context.moveTo(startX, startY);

3. Draw seven connecting zigzag lines and then make the zigzag path visible with
stroke():
// draw seven lines
 for (var n = 0; n < 7; n++) {
 var x = startX + ((n + 1) * zigzagSpacing);
 var y;

 if (n % 2 == 0) { // if n is even...
 y = startY + 100;
 }
 else { // if n is odd...
 y = startY;
 }

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Getting Started with Paths and Text

18

 context.lineTo(x, y);
 }

 context.stroke();
};

4. Embed the canvas tag inside the body of the HTML document:
<canvas id="myCanvas" width="600" height="250" style="border:1px
solid black;">
</canvas>

How it works...
To draw a zigzag, we can connect alternating diagonal lines to form a path. Programmatically,
this can be achieved by setting up a loop that draws diagonal lines moving upwards and to the
right on odd iterations, and downwards and to the right on even iterations.

The key thing to pay attention to in this recipe is the beginPath() method. This method
essentially declares that a path is being drawn, such that the end of each line sub path
defines the beginning of the next sub path. Without using the beginPath() method, we
would have to tediously position the canvas context using moveTo() for each line segment
while ensuring that the ending points of the previous line segment match the starting point of
the current line segment. As we will see in the next chapter, the beginPath() method is also
a required step for creating shapes.

Line join styles
Notice how the connection between each line segment comes to a sharp point. This is
because the line join style of the HTML5 canvas path is defaulted to miter. Alternatively,
we could also set the line join style to round or bevel with the lineJoin property of the
canvas context.

If your line segments are fairly thin and don't connect at steep angles, it can be somewhat
difficult to distinguish different line join styles. Typically, different line join styles are more
noticeable when the path thickness exceeds 5 px and the angle between line sub paths is
relatively small.

Drawing a spiral
Caution, this recipe may induce hypnosis. In this recipe, we'll draw a spiral by connecting a
series of short lines to form a spiral path.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 1

19

How to do it...
Follow these steps to draw a centered spiral:

1. Define a 2D canvas context and initialize the spiral parameters:
window.onload = function(){
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");

 var radius = 0;
 var angle = 0;

2. Set the spiral style:
context.lineWidth = 10;
 context.strokeStyle = "#0096FF"; // blue-ish color
 context.beginPath();
 context.moveTo(canvas.width / 2, canvas.height / 2);

3. Rotate about the center of the canvas three times (50 iterations per full revolution)
while increasing the radius by 0.75 for each iteration and draw a line segment to the
current point from the previous point with lineTo(). Finally, make the spiral visible
with stroke():
for (var n = 0; n < 150; n++) {
 radius += 0.75;
 // make a complete circle every 50 iterations
 angle += (Math.PI * 2) / 50;
 var x = canvas.width / 2 + radius * Math.cos(angle);
 var y = canvas.height / 2 + radius * Math.sin(angle);
 context.lineTo(x, y);
 }

 context.stroke();
};

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Getting Started with Paths and Text

20

4. Embed the canvas tag inside the body of the HTML document:
<canvas id="myCanvas" width="600" height="250" style="border:1px
solid black;">
</canvas>

How it works...
To draw a spiral with HTML5 canvas, we can place our drawing cursor in the center of the
canvas, iteratively increase the radius and angle about the center, and then draw a super
short line from the previous point to the current point. Another way to think about it is to
imagine yourself as a kid standing on a sidewalk with a piece of colored chalk. Bend down
and put the chalk on the sidewalk, and then start turning in a circle (not too fast, though,
unless you want to get dizzy and fall over). As you spin around, move the piece of chalk
outward away from you. After a few revolutions, you'll have drawn a neat little spiral.

Working with text
Almost all applications require some sort of text to effectively communicate something to the
user. This recipe will show you how to draw a simple text string with an optimistic welcoming.

How to do it...
Follow these steps to write text on the canvas:

1. Define a 2D canvas context and set the text style:
window.onload = function(){
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");

 context.font = "40pt Calibri";
 context.fillStyle = "black";

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 1

21

2. Horizontally and vertically align the text, and then draw it:
// align text horizontally center
 context.textAlign = "center";
 // align text vertically center
 context.textBaseline = "middle";
 context.fillText("Hello World!", canvas.width / 2, 120);
};

3. Embed the canvas tag inside the body of the HTML document:
<canvas id="myCanvas" width="600" height="250" style="border:1px
solid black;">
</canvas>

How it works...
To draw text with the HTML5 canvas, we can define the font style and size with the font
property, the font color with the fillStyle property, the horizontal text alignment with the
textAlign property, and the vertical text alignment with the textBaseline property.
The textAlign property can be set to left, center, or right, and the textBaseline
property can be set to top, hanging, middle, alphabetic, ideographic, or bottom.
Unless otherwise specified, the textAlign property is defaulted to left, and the
textBaseline property is defaulted to alphabetic.

There's more...
In addition to fillText(), the HTML5 canvas API also supports strokeText():

 context.strokeText("Hello World!", x, y);

This method will color the perimeter of the text instead of filling it. To set both the fill and
stroke for HTML canvas text, you can use both the fillText() and the strokeText()
methods together. It's good practice to use the fillText() method before the
strokeText() method in order to render the stroke thickness correctly.

See also...
 f Drawing 3D text with shadows

 f Creating a mirror transform in Chapter 4

 f Drawing a simple logo and randomizing its position, rotation, and scale in Chapter 4

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Getting Started with Paths and Text

22

Drawing 3D text with shadows
If 2D text doesn't get you jazzed, you might consider drawing 3D text instead. Although the
HTML5 canvas API doesn't directly provide us with a means for creating 3D text, we can
certainly create a custom draw3dText() method using the existing API.

How to do it...
Follow these steps to create 3D text:

1. Set the canvas context and the text style:
 window.onload = function(){
 canvas = document.getElementById("myCanvas");
 context = canvas.getContext("2d");

 context.font = "40pt Calibri";
 context.fillStyle = "black";

2. Align and draw the 3D text:
// align text horizontally center
 context.textAlign = "center";
 // align text vertically center
 context.textBaseline = "middle";
 draw3dText(context, "Hello 3D World!", canvas.width / 2, 120,
5);
};

3. Define the draw3dText() function that draws multiple text layers and adds
a shadow:
function draw3dText(context, text, x, y, textDepth){
 var n;

 // draw bottom layers

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 1

23

 for (n = 0; n < textDepth; n++) {
 context.fillText(text, x - n, y - n);
 }

 // draw top layer with shadow casting over
 // bottom layers
 context.fillStyle = "#5E97FF";
 context.shadowColor = "black";
 context.shadowBlur = 10;
 context.shadowOffsetX = textDepth + 2;
 context.shadowOffsetY = textDepth + 2;
 context.fillText(text, x - n, y - n);
}

4. Embed the canvas tag inside the body of the HTML document:
<canvas id="myCanvas" width="600" height="250" style="border:1px
solid black;">
</canvas>

How it works...
To draw 3D text with the HTML5 canvas, we can stack multiple layers of the same text on
top of one another to create the illusion of depth. In this recipe, we've set the text depth to
five, which means that our custom draw3dText() method layers five instances of "Hello
3D World!" on top of one another. We can color these layers black to create the illusion of
darkness beneath our text.

Next, we can add a colored top layer to portray a forward-facing surface. Finally, we
can apply a soft shadow beneath the text by setting the shadowColor, shadowBlur,
shadowOffsetX, and shadowOffsetY properties of the canvas context. As we'll see in
later recipes, these properties aren't limited to text and can also be applied to sub paths,
paths, and shapes.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Getting Started with Paths and Text

24

Unlocking the power of fractals: Drawing a
haunted tree

First thing's first—what are fractals? If you don't already know, fractals are the awesome result
when you mix mathematics with art, and can be found in all sorts of patterns that make up
life. Algorithmically, a fractal is based on an equation that undergoes recursion. In this recipe,
we'll create an organic-looking tree by drawing a trunk which forks into two branches, and then
draw two more branches that stem from the branches we just drew. After twelve iterations,
we'll end up with an elaborate, seemingly chaotic mesh of branches and twigs.

How to do it...
Follow these steps to draw a tree using fractals:

1. Create a recursive function that draws a single branch that forks out into two
branches, and then recursively calls itself to draw another two branches from the end
points of the forked branches:
function drawBranches(context, startX, startY, trunkWidth, level){
 if (level < 12) {
 var changeX = 100 / (level + 1);
 var changeY = 200 / (level + 1);

 var topRightX = startX + Math.random() * changeX;
 var topRightY = startY - Math.random() * changeY;

 var topLeftX = startX - Math.random() * changeX;
 var topLeftY = startY - Math.random() * changeY;

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 1

25

 // draw right branch
 context.beginPath();
 context.moveTo(startX + trunkWidth / 4, startY);
 context.quadraticCurveTo(startX + trunkWidth / 4, startY
- trunkWidth, topRightX, topRightY);
 context.lineWidth = trunkWidth;
 context.lineCap = "round";
 context.stroke();

 // draw left branch
 context.beginPath();
 context.moveTo(startX - trunkWidth / 4, startY);
 context.quadraticCurveTo(startX - trunkWidth / 4, startY -
 trunkWidth, topLeftX, topLeftY);
 context.lineWidth = trunkWidth;
 context.lineCap = "round";
 context.stroke();

 drawBranches(context, topRightX, topRightY, trunkWidth *
0.7, level + 1);
 drawBranches(context, topLeftX, topLeftY, trunkWidth *
0.7, level + 1);
 }
}

2. Initialize the canvas context and begin drawing the tree fractal by calling
drawBranches():
window.onload = function(){
 canvas = document.getElementById("myCanvas");
 context = canvas.getContext("2d");

 drawBranches(context, canvas.width / 2, canvas.height, 50, 0);
};

3. Embed the canvas tag inside the body of the HTML document:
<canvas id="myCanvas" width="600" height="500" style="border:1px
solid black;">
</canvas>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Getting Started with Paths and Text

26

How it works...
To create a tree using fractals, we need to design the recursive function that defines the
mathematical nature of a tree. If you take a moment and study a tree (they are quite beautiful
if you think about it), you'll notice that each branch forks into smaller branches. In turn, those
branches fork into even smaller branches, and so on. This means that our recursive function
should draw a single branch that forks into two branches, and then recursively calls itself to
draw another two branches that stem from the two branches we just drew.

Now that we have a plan for creating our fractal, we can implement it using the HTML5 canvas
API. The easiest way to draw a branch that forks into two branches is by drawing two Quadratic
curves that bend outwards from one another.

If we were to use the exact same drawing procedure for each iteration, our tree would be
perfectly symmetrical and quite uninteresting. To help make our tree look more natural, we
can introduce random variables that offset the ending points of each branch.

There's more...
The fun thing about this recipe is that every tree is different. If you code this one up for
yourself and continuously refresh your browser, you'll see that every tree formation is
completely unique. You might also be interested in tweaking the branch-drawing algorithm
to create different kinds of trees, or even draw leaves at the tips of the smallest branches.

Some other great examples of fractals can be found in sea shells, snowflakes, feathers, plant
life, crystals, mountains, rivers, and lightning.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

2
Shape Drawing and

Composites

In this chapter, we will cover:

 f Drawing a rectangle

 f Drawing a circle

 f Working with custom shapes and fill styles

 f Fun with Bezier curves: drawing a cloud

 f Drawing transparent shapes

 f Working with the context state stack to save and restore styles

 f Working with composite operations

 f Creating patterns with loops: drawing a gear

 f Randomizing shape properties: drawing a field of flowers

 f Creating custom shape functions: playing card suits

 f Putting it all together: drawing a jet

Introduction
In Chapter 1, Getting Started with Paths and Text, we learned how to draw sub paths such as
lines, arcs, Quadratic curves, and Bezier curves, and then we learned how to connect them
together to form paths. In this chapter, we'll focus on basic and advanced shape drawing
techniques such as drawing rectangles and circles, drawing custom shapes, filling shapes,
working with composites, and drawing pictures. Let's get started!

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Shape Drawing and Composites

28

Drawing a rectangle
In this recipe, we'll learn how to draw the only built-in shape provided by the HTML5 canvas
API, a rectangle. As unexciting as a rectangle might seem, many applications use them in one
way or another, so you might as well get acquainted.

How to do it...
Follow these steps to draw a simple rectangle centered on the canvas:

1. Define a 2D canvas context:
window.onload = function(){
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");

2. Draw a rectangle using the rect() method, set the color fill with the fillStyle
property, and then fill the shape with the fill() method:
 context.rect(canvas.width / 2 - 100, canvas.height / 2 - 50,
200, 100);
 context.fillStyle = "#8ED6FF";
 context.fill();
 context.lineWidth = 5;
 context.strokeStyle = "black";
 context.stroke();
};

3. Embed the canvas tag inside the body of the HTML document:
<canvas id="myCanvas" width="600" height="250" style="border:1px
solid black;">
</canvas>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 2

29

How it works...
As you can see from the preceding code, we can draw a simple rectangle by using the
rect() method:

context.rect(x,y,width,height);

The rect() method draws a rectangle at the position x,y, and defines its size with width
and height. Another key thing to pay attention to in this recipe is the usage of fillStyle
and fill(). Similar to strokeStyle and stroke(), we can assign a fill color using the
fillStyle method and fill the shape using fill().

Notice that we used fill() before stroke(). If we were to stroke a shape
before filling it, the fill style would actually overlay half of the stroke style,
effectively halving the line width style set with lineWidth. As a result, it's
good practice to use fill() before using stroke().

There's more...
In addition to the rect() method, there are two additional methods that we can use to draw
a rectangle and also apply styling with one line of code, the fillRect() method and the
strokeRect() method.

The fillRect() method
If we intend to fill a rectangle after drawing it with rect(), we might consider both drawing
the rectangle and filling it with a single method using fillRect():

context.fillRect(x,y,width,height);

The fillRect() method is equivalent to using the rect() method followed by fill().
When using this method, you'll need to define the fill style prior to calling it.

The strokeRect() method
In addition to the fillRect() method, we can draw a rectangle and stroke it with a single
method using the strokeRect() method:

context.strokeRect(x,y,width,height);

The strokeRect() method is equivalent to using the rect() method followed by
stroke(). Similar to fillRect(), you'll need to define the stroke style prior to calling
this method.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Shape Drawing and Composites

30

Unfortunately, the HTML5 canvas API does not support a method that both
fills and strokes a rectangle. Personally, I like to use the rect() method
and apply stroke styles and fills as needed using stroke() and fill()
because it's more consistent with custom shape drawing. However, if you're
wanting to apply both a stroke and fill to a rectangle while using one of these
short-hand methods, it's good practice to use fillRect() followed by
stroke(). If you were to use strokeRect() followed by fill(), you
would overlay the stroke style by the fill, halving the stroke line width.

See also...
 f Creating a linear motion in Chapter 5

 f Detecting region events in Chapter 6

 f Creating a bar chart in Chapter 7

Drawing a circle
Although the HTML5 canvas API doesn't support a circle method, we can certainly create one
by drawing a fully enclosed arc.

How to do it...
Follow these steps to draw a circle centered on the canvas:

1. Define a 2D canvas context:
window.onload = function(){
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 2

31

2. Create a circle using the arc() method, set the color fill using the fillStyle
property, and then fill the shape with the fill() method:
 context.arc(canvas.width / 2, canvas.height / 2, 70, 0, 2 *
Math.PI, false);
 context.fillStyle = "#8ED6FF";
 context.fill();
 context.lineWidth = 5;
 context.strokeStyle = "black";
 context.stroke();
};

3. Embed the canvas tag inside the body of the HTML document:
<canvas id="myCanvas" width="600" height="250" style="border:1px
solid black;">
</canvas>

How it works...
As you might recall from Chapter 1, we can create an arc using the arc() method which
draws a section of a circle defined by a starting angle and an ending angle. If, however, we
define the difference between the starting angle and ending angle as 360 degrees (2π), we
will have effectively drawn a complete circle:

context.arc(centerX, centerY, radius, 0, 2 * Math.PI, false);

See also...
 f Creating patterns with loops: drawing a gear

 f Transforming a circle into an oval in Chapter 4

 f Swinging a pendulum in Chapter 5

 f Simulating particle physics in Chapter 5

 f Animating a clock in Chapter 5

 f Detecting region events in Chapter 6

 f Creating a pie chart in Chapter 7

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Shape Drawing and Composites

32

Working with custom shapes and fill styles
In this recipe, we'll draw four triangles and then fill each one with a different fill style. The fill
styles available with the HTML5 canvas API are color fills, linear gradients, radial gradients,
and patterns.

How to do it...
Follow these steps to draw four triangles, one with a color fill, one with a linear gradient fill,
one with a radial gradient fill, and one with a pattern fill:

1. Create a simple function that draws a triangle:
function drawTriangle(context, x, y, triangleWidth,
triangleHeight, fillStyle){
 context.beginPath();
 context.moveTo(x, y);
 context.lineTo(x + triangleWidth / 2, y + triangleHeight);
 context.lineTo(x - triangleWidth / 2, y + triangleHeight);
 context.closePath();
 context.fillStyle = fillStyle;
 context.fill();
}

2. Define a 2D canvas context and set the height, width, and y position of our triangles:
window.onload = function(){
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");

 var grd;
 var triangleWidth = 150;
 var triangleHeight = 150;
 var triangleY = canvas.height / 2 - triangleWidth / 2;

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 2

33

3. Draw a triangle using a color fill:
 // color fill (left)
 drawTriangle(context, canvas.width * 1 / 5, triangleY,
triangleWidth, triangleHeight, "blue");

4. Draw a triangle using a linear gradient fill:
 // linear gradient fill (second from left)
 grd = context.createLinearGradient(canvas.width * 2 / 5,
triangleY, canvas.width * 2 / 5, triangleY + triangleHeight);
 grd.addColorStop(0, "#8ED6FF"); // light blue
 grd.addColorStop(1, "#004CB3"); // dark blue
 drawTriangle(context, canvas.width * 2 / 5, triangleY,
triangleWidth, triangleHeight, grd);

5. Draw a triangle using a radial gradient fill:
 // radial gradient fill (second from right)
 var centerX = (canvas.width * 3 / 5 +
 (canvas.width * 3 / 5 - triangleWidth / 2) +
 (canvas.width * 3 / 5 + triangleWidth / 2)) / 3;

 var centerY = (triangleY +
 (triangleY + triangleHeight) +
 (triangleY + triangleHeight)) / 3;

 grd = context.createRadialGradient(centerX, centerY, 10,
centerX, centerY, 100);
 grd.addColorStop(0, "red");
 grd.addColorStop(0.17, "orange");
 grd.addColorStop(0.33, "yellow");
 grd.addColorStop(0.5, "green");
 grd.addColorStop(0.666, "blue");
 grd.addColorStop(1, "violet");
 drawTriangle(context, canvas.width * 3 / 5, triangleY,
triangleWidth, triangleHeight, grd);

6. Draw a triangle using a pattern fill:
 // pattern fill (right)
 var imageObj = new Image();
 imageObj.onload = function(){
 var pattern = context.createPattern(imageObj, "repeat");
 drawTriangle(context, canvas.width * 4 / 5, triangleY,
triangleWidth, triangleHeight, pattern);
 };
 imageObj.src = "wood-pattern.png";
};

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Shape Drawing and Composites

34

7. Embed the canvas tag inside the body of the HTML document:
<canvas id="myCanvas" width="600" height="250" style="border:1px
solid black;">
</canvas>

How it works...
As you might recall from Chapter 1, we can start a new path with the beginPath() method,
place our drawing cursor using moveTo(), and then draw consecutive sub paths to form a
path. We can add one more step to this procedure by closing our path with the closePath()
method of the canvas context to create a shape:

context.closePath();

This method essentially tells the canvas context to complete the current path by connecting
the last point in the path with the start point of the path.

In the drawTriangle() method, we can begin a new path using beginPath(), position the
drawing cursor using moveTo(), draw two sides of the triangle using lineTo(), and then
complete the third side of the triangle with closePath().

As you can see from the preceding screenshot, the second triangle from the left is filled with
a linear gradient. Linear gradients can be created with the createLinearGradient()
method of the canvas context, which is defined by a start point and an end point:

var grd=context.createLinearGradient(startX,startY,endX,endY);

Next, we can set the colors of the gradient using the addColorStop() method which
assigns a color value at an offset position along the gradient line from 0 to 1:

grd.addColorStop(offset,color);

Colors assigned with an offset value of 0 will be positioned at the starting point of the linear
gradient, and colors assigned with an offset value of 1 will be positioned at the end point
of the linear gradient. In this example, we've positioned a light blue color at the top of the
triangle and a dark blue color at the bottom of the triangle.

Next up, let's cover radial gradients. The second triangle from the right is filled with a
radial gradient composed of six different colors. Radial gradients can be created using the
createRadialGradient() method of the canvas context, which requires a starting point,
a start radius, an end point, and an end radius:

var grd=context.createRadialGradient(startX,startY,

 startRadius,endX,endY,endRadius);

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 2

35

Radial gradients are defined by two imaginary circles. The first imaginary circle is defined by
startX, startY, and startRadius. The second imaginary circle is defined by endX, endY,
and endRadius. Similarly to linear gradients, we can position colors along the radial gradient
line using the addColorStop() method of the canvas context.

Finally, the fourth type of fill style available with the HTML5 canvas API is patterns. We can
create a pattern object using the createPattern() method of the canvas context, which
requires an image object and a repeat option:

var pattern=context.createPattern(imageObj, repeatOption);

The repeatOption can take one of the four options, repeat, repeat-x, repeat-y, and
no-repeat. Unless otherwise specified, the repeatOption is defaulted to repeat. We'll
cover images more in depth in Chapter 3, Working with Images and Videos.

See also...
 f Putting it all together: drawing a jet

Fun with Bezier curves: drawing a cloud
In this recipe, we will learn how to draw a custom shape by connecting a series of Bezier curve
sub paths to create a fluffy cloud.

How to do it...
Follow these steps to draw a fluffy cloud in the center of the canvas:

1. Define a 2D canvas context:
window.onload = function(){
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Shape Drawing and Composites

36

2. Draw a cloud by connecting six Bezier curves:
 var startX = 200;
 var startY = 100;

 // draw cloud shape
 context.beginPath();
 context.moveTo(startX, startY);
 context.bezierCurveTo(startX - 40, startY + 20, startX - 40,
startY + 70, startX + 60, startY + 70);
 context.bezierCurveTo(startX + 80, startY + 100, startX + 150,
startY + 100, startX + 170, startY + 70);
 context.bezierCurveTo(startX + 250, startY + 70, startX + 250,
startY + 40, startX + 220, startY + 20);
 context.bezierCurveTo(startX + 260, startY - 40, startX + 200,
startY - 50, startX + 170, startY - 30);
 context.bezierCurveTo(startX + 150, startY - 75, startX + 80,
startY - 60, startX + 80, startY - 30);
 context.bezierCurveTo(startX + 30, startY - 75, startX - 20,
startY - 60, startX, startY);
 context.closePath();

3. Define a radial gradient with the createRadialGradient() method and fill the
shape with the gradient:
 //add a radial gradient
 var grdCenterX = 260;
 var grdCenterY = 80;
 var grd = context.createRadialGradient(grdCenterX, grdCenterY,
10, grdCenterX, grdCenterY, 200);
 grd.addColorStop(0, "#8ED6FF"); // light blue
 grd.addColorStop(1, "#004CB3"); // dark blue
 context.fillStyle = grd;
 context.fill();

4. Set the line width and stroke the cloud:
 // set the line width and stroke color
 context.lineWidth = 5;
 context.strokeStyle = "#0000ff";
 context.stroke();
};

5. Embed the canvas tag inside the body of the HTML document:
<canvas id="myCanvas" width="600" height="250" style="border:1px
solid black;">
</canvas>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 2

37

How it works...
To draw a fluffy cloud using the HTML5 canvas API, we can connect several Bezier curves to
form the perimeter of the cloud shape. To create the illusion of a bulbous surface, we can
create a radial gradient using the createRadialGradient() method, set the gradient
colors and offsets using the addColorStop() method, set the radial gradient as the fill style
using fillStyle, and then apply the gradient using fill().

Drawing transparent shapes
For applications that require shape layering, it's often desirable to work with transparencies.
In this recipe, we will learn how to set shape transparencies using the global alpha composite.

How to do it...
Follow these steps to draw a transparent circle on top of an opaque square:

1. Define a 2D canvas context:
window.onload = function(){
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");

2. Draw a rectangle:
 // draw rectangle
 context.beginPath();
 context.rect(240, 30, 130, 130);
 context.fillStyle = "blue";
 context.fill();

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Shape Drawing and Composites

38

3. Set the global alpha of the canvas using the globalAlpha property and draw
a circle:
 // draw circle
 context.globalAlpha = 0.5; // set global alpha
 context.beginPath();
 context.arc(359, 150, 70, 0, 2 * Math.PI, false);
 context.fillStyle = "red";
 context.fill();
};

4. Embed the canvas tag inside the body of the HTML document:
<canvas id="myCanvas" width="600" height="250" style="border:1px
solid black;">
</canvas>

How it works...
To set the opacity of a shape using the HTML5 canvas API, we can use the
globalAlpha property:

context.globalAlpha=[value]

The globalAlpha property accepts any real number between 0 and 1. We can set the
globalAlpha property to 1 to make shapes fully opaque, and we can set the globalAlpha
property to 0 to make shapes fully transparent.

Working with the context state stack to
save and restore styles

When creating more complex HTML5 canvas applications, you'll find yourself needing a way to
revert back to previous style combinations so that you don't have to set and reset dozens of
style properties at different points in the drawing process. Fortunately, the HTML5 canvas API
provides us with access to the context state stack which allows us to save and restore context
states. In this recipe, we'll demonstrate how the state stack works by saving the context state,
setting the global alpha, drawing a transparent circle, restoring the state stack to the state
before we set the global alpha, and then drawing an opaque square. Let's take a look!

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 2

39

Getting ready...
Before we cover the canvas state stack, it's imperative that you understand how a stack data
structure works (if you already do, you can skip to the How it works section).

A stack data structure is a last in, first out (LIFO) structure. Stacks have three major
operations – push, pop, and stack top. When an element is pushed onto the stack, it gets
added to the top of the stack. When the stack is popped, the top element is removed from
the stack. The stack top operation simply returns the element at the top of the stack.

Take a look at the preceding diagram, which represents the state of a stack throughout
multiple actions. In step 1, we start out with a stack containing one element, element "a". In
step 2, the "b" element is pushed onto the stack. In step 3, the "c" element is pushed onto the
stack. In step 4, we pop the stack, which removes the last element pushed onto the stack.
Since element "c" was at the top of the stack, it's the element that's removed. In step 5, we
again pop the stack, which removes the last element pushed onto the stack. Since element
"b" was at the top of the stack, it's the element that's removed.

As we will see in the next section, stacks are a wonderful data structure for saving states as
they change over time, and then restoring them by popping the stack.

How to do it...
Follow these steps to draw an opaque square on top of a transparent circle:

1. Define a 2D canvas context:
window.onload = function(){
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");

2. Draw a rectangle:
 // draw rectangle
 context.beginPath();
 context.rect(150, 30, 130, 130);
 context.fillStyle = "blue";
 context.fill();

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Shape Drawing and Composites

40

3. Save the context state with save(), set the global alpha of the canvas using the
globalAlpha property, draw a circle, and then restore the canvas state with
restore():
 // wrap circle drawing code with save-restore combination
 context.save();
 context.globalAlpha = 0.5; // set global alpha
 context.beginPath();
 context.arc(canvas.width / 2, canvas.height / 2, 70, 0, 2 *
Math.PI, false);
 context.fillStyle = "red";
 context.fill();
 context.restore();

4. Draw another rectangle (which will be opaque) to show that the context state has
been restored to the state before the global alpha property was set:
 // draw another rectangle
 context.beginPath();
 context.rect(canvas.width - (150 + 130), canvas.height - (30 +
130), 130, 130);
 context.fillStyle = "green";
 context.fill();
};

5. Embed the canvas tag inside the body of the HTML document:
<canvas id="myCanvas" width="600" height="250" style="border:1px
solid black;">
</canvas>

How it works...
As you can see in the preceding code, by wrapping the circle drawing code with a save-restore
combination, we are essentially encapsulating any styles that we use between the save()
method and the restore() method such that they don't affect the shapes drawn afterwards.
Save-restore combinations can be thought of as a way to induce style scoping, similar to the
way that a function induces variable scope in JavaScript. Although you might be saying "Well
that sounds like a complicated way to set the globalAlpha back to 1!" Hold on partner. In the
real world, you'll typically be dealing with lots of different combinations of styles for different
sections of code. In this type of scenario, save-restore combinations are a life-saver. Writing
complex HTML5 canvas applications without save-restore combinations is a lot like building
a complex web application with one big block of JavaScript code using nothing but global
variables. Yikes!

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 2

41

There's more...
As we'll see in Chapter 4, Mastering Transformations, another common usage of the state
stack is to save and restore transformation states.

See also...
 f Handling multiple transforms with the state stack in Chapter 4

Working with composite operations
In this recipe, we'll explore composite operations by creating a table of each variation.
Composite operations are particularly useful for creating complex shapes, drawing shapes
underneath other shapes instead of on top of them, and creating other interesting effects.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Shape Drawing and Composites

42

Getting ready...
The following is a description for each possible composite operation available with the HTML5
canvas API, where the red circle represents the source (S) and the blue square represents the
destination (D). To further develop your understanding of composite operations, it helps to
look at the corresponding operation while reading each description:

Operation Description
source-atop (S atop D) Display the source image wherever both images are

opaque. Display the destination image wherever the
destination image is opaque but the source image is
transparent. Display transparency elsewhere.

source-in (S in D) Display the source image wherever both the source image
and destination image are opaque. Display transparency
elsewhere.

source-out (S out D) Display the source image wherever the source image is
opaque and the destination image is transparent. Display
transparency elsewhere.

source-over (S over D, default) Display the source image wherever the source image is
opaque. Display the destination image elsewhere.

destination-atop (S atop D) Display the destination image wherever both images are
opaque. Display the source image wherever the source
image is opaque but the destination image is transparent.
Display transparency elsewhere.

destination-in (S in D) Display the destination image wherever both the
destination image and source image are opaque. Display
transparency elsewhere.

destination -out (S out D) Display the destination image wherever the destination
image is opaque and the source image is transparent.
Display transparency elsewhere.

destination -over (S over D) Display the destination image wherever the destination
image is opaque. Display the destination image
elsewhere.

lighter (S plus D) Display the sum of the source image and destination image.
xor (S xor D) Exclusive OR of the source image and destination image.
copy (D is ignored) Display the source image instead of the destination image.

At the time of writing, dealing with composite operations is quite tricky because each of the
five major browsers—Chrome, Firefox, Safari, Opera, and IE9—handle composite operations
differently. Rather than showing you a chart of currently supported composite operations by
browser at the time of writing, you should instead go online and search for something like
"canvas composite operation support by browser" to see the current support for each
browser if you intend on using them.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 2

43

How to do it...
Follow these steps to create a live table of composite operations:

1. Define styles for the canvases and text displays:
/* select the div child element of the body */
body > div {
 width: 680px;
 height: 430px;
 border: 1px solid black;
 float: left;
 overflow: hidden;
}

canvas {
 float: left;
 margin-top: 30px;
}

div {
 font-size: 11px;
 font-family: verdana;
 height: 15px;
 float: left;
 width: 160px;
}

/* select the 1st, 5th, and 9th label div */
body > div > div:nth-of-type(4n+1) {
 margin-left: 40px;
}

2. Define the sizes and relative distances of each square and circle:
window.onload = function(){
 var squareWidth = 55;
 var circleRadius = 35;
 var rectCircleDistX = 50;
 var rectCircleDistY = 50;

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Shape Drawing and Composites

44

3. Build an array of composite operations:
 // define an array of composite operations
 var operationArray = [];
 operationArray.push("source-atop"); // 0
 operationArray.push("source-in"); // 1
 operationArray.push("source-out"); // 2
 operationArray.push("source-over"); // 3
 operationArray.push("destination-atop"); // 4
 operationArray.push("destination-in"); // 5
 operationArray.push("destination-out"); // 6
 operationArray.push("destination-over"); // 7
 operationArray.push("lighter"); // 8
 operationArray.push("xor"); // 9
 operationArray.push("copy"); // 10

4. Perform each operation and draw the result on the corresponding canvas:
 // draw each of the eleven operations
 for (var n = 0; n < operationArray.length; n++) {
 var thisOperation = operationArray[n];
 var canvas = document.getElementById(thisOperation);
 var context = canvas.getContext("2d");

 // draw rectangle
 context.beginPath();
 context.rect(40, 0, squareWidth, squareWidth);
 context.fillStyle = "blue";
 context.fill();

 // set the global composite operation
 context.globalCompositeOperation = thisOperation;

 // draw circle
 context.beginPath();
 context.arc(40 + rectCircleDistX, rectCircleDistY,
circleRadius, 0, 2 * Math.PI, false);
 context.fillStyle = "red";
 context.fill();
 }
};

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 2

45

5. Embed a canvas tag for each operation inside the body of the HTML document:
<body>
 <div>
 <canvas id="source-atop" width="160" height="90">
 </canvas>
 <canvas id="source-in" width="160" height="90">
 </canvas>
 <canvas id="source-out" width="160" height="90">
 </canvas>
 <canvas id="source-over" width="160" height="90">
 </canvas>
 <div>
 source-atop
 </div>
 <div>
 source-in
 </div>
 <div>
 source-out
 </div>
 <div>
 source-over
 </div>
 <canvas id="destination-atop" width="160" height="90">
 </canvas>
 <canvas id="destination-in" width="160" height="90">
 </canvas>
 <canvas id="destination-out" width="160" height="90">
 </canvas>
 <canvas id="destination-over" width="160" height="90">
 </canvas>
 <div>
 destination-atop
 </div>
 <div>
 destination-in
 </div>
 <div>
 destination-out
 </div>
 <div>
 destination-over
 </div>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Shape Drawing and Composites

46

 <canvas id="lighter" width="160" height="90">
 </canvas>
 <canvas id="xor" width="160" height="90">
 </canvas>
 <canvas id="copy" width="160" height="90">
 </canvas>
 <canvas width="160" height="90">
 </canvas>
 <div>
 lighter
 </div>
 <div>
 xor
 </div>
 <div>
 copy
 </div>
 </div>
</body>

How it works...
We can set a composite operation by using the globalCompositeOperation property of
the canvas context:

context.globalCompositeOperation=[value];

The globalCompositeOperaton property accepts one of the eleven values, including
source-atop, source-in, source-out, source-over, destination-atop,
destination-in, destination-out, destination-over, lighter, xor, and copy.
Source refers to everything drawn on the canvas after the operation, and destination
refers to everything drawn on the canvas before the operation. Unless otherwise specified, the
default composite operation is set to source-over, which basically means that each time
something is drawn on the canvas, it's drawn on top of the stuff already there.

We can create an array for each composite operation and then loop through each one to draw
the result onto the corresponding canvas. For each iteration, we can draw a square, set the
composite operation, and then draw a circle.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 2

47

Creating patterns with loops: drawing a gear
In this recipe, we'll create a mechanical gear by iteratively drawing a radial zigzag to form teeth
and then drawing circles to form the body of the gear.

How to do it...
Follow these steps to draw a gear centered on the canvas:

1. Define a 2D canvas context and set the gear properties:
window.onload = function(){
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");

 // gear position
 var centerX = canvas.width / 2;
 var centerY = canvas.height / 2;

 // radius of the teeth tips
 var outerRadius = 95;

 // radius of the teeth intersections
 var innerRadius = 50;

 // radius of the gear without the teeth
 var midRadius = innerRadius * 1.6;

 // radius of the hole
 var holeRadius = 10;

 // num points is the number of points that are required
 // to make the gear teeth. The number of teeth on the gear
 // are equal to half of the number of points. In this recipe,
 // we will use 50 points which corresponds to 25 gear teeth.
 var numPoints = 50;

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Shape Drawing and Composites

48

2. Draw the gear teeth:
 // draw gear teeth
 context.beginPath();
 // we can set the lineJoinproperty to bevel so that the tips
 // of the gear teeth are flat and don't come to a sharp point
 context.lineJoin = "bevel";

 // loop through the number of points to create the gear shape
 for (var n = 0; n < numPoints; n++) {
 var radius = null;

 // draw tip of teeth on even iterations
 if (n % 2 == 0) {
 radius = outerRadius;
 }
 // draw teeth connection which lies somewhere between
 // the gear center and gear radius
 else {
 radius = innerRadius;
 }

 var theta = ((Math.PI * 2) / numPoints) * (n + 1);
 var x = (radius * Math.sin(theta)) + centerX;
 var y = (radius * Math.cos(theta)) + centerY;

 // if first iteration, use moveTo() to position
 // the drawing cursor
 if (n == 0) {
 context.moveTo(x, y);
 }
 // if any other iteration, use lineTo() to connect sub paths
 else {
 context.lineTo(x, y);
 }
 }

 context.closePath();

 // define the line width and stroke color
 context.lineWidth = 5;
 context.strokeStyle = "#004CB3";
 context.stroke();

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 2

49

3. Draw the gear body:
 // draw gear body
 context.beginPath();
 context.arc(centerX, centerY, midRadius, 0, 2 * Math.PI,
false);

 // create a linear gradient
 var grd = context.createLinearGradient(230, 0, 370, 200);
 grd.addColorStop(0, "#8ED6FF"); // light blue
 grd.addColorStop(1, "#004CB3"); // dark blue
 context.fillStyle = grd;
 context.fill();
 context.lineWidth = 5;
 context.strokeStyle = "#004CB3";
 context.stroke();

4. Draw the gear hole:
 // draw gear hole
 context.beginPath();
 context.arc(centerX, centerY, holeRadius, 0, 2 * Math.PI,
false);
 context.fillStyle = "white";
 context.fill();
 context.strokeStyle = "#004CB3";
 context.stroke();
};

5. Embed the canvas tag inside the body of the HTML document:
<canvas id="myCanvas" width="600" height="250" style="border:1px
solid black;">
</canvas>

How it works...
To draw a gear with the HTML5 canvas, we can start by drawing the teeth around the gear.
One way to draw teeth around a gear is to draw a radial zigzag pattern with beveled line joins.
One great example of a radial zigzag is a star, which has five points along an imaginary inner
circle, and five more points along an imaginary outer circle. To create a star, we can set up a
loop with 10 iterations, one iteration for each point. For even iterations, we can draw a point
along the outer circle, and for odd iterations we can draw a point along the inner circle. Since
our star would have 10 points, each point would be separated by (2π / 10) radians.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Shape Drawing and Composites

50

You might be asking yourself "What does a star have to do with gear teeth?". If we extend this
logic to draw a zigzag shape of say 50 points instead of 10, we'll have effectively created a
gear with 25 wedged teeth.

Once the gear teeth are taken care of, we can draw a circle and apply a linear gradient
using the createLinearGradient() method, and then draw a smaller circle for the
hole of the gear.

See also...
 f Animating mechanical gears in Chapter 5

Randomizing shape properties: drawing a
field of flowers

In this recipe, we'll embrace our inner hippie by creating a field of colorful flowers.

How to do it...
Follow these steps to draw randomized flowers all over the canvas:

1. Define the constructor of a Flower object:
// define Flower constructor
function Flower(context, centerX, centerY, radius, numPetals,
color){
 this.context = context;
 this.centerX = centerX;
 this.centerY = centerY;
 this.radius = radius;
 this.numPetals = numPetals;
 this.color = color;
}

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 2

51

2. Define a draw method of the Flower object that creates flower petals with a for
loop and then draws a yellow center:
// Define Flower draw method
Flower.prototype.draw = function(){
 var context = this.context;
 context.beginPath();

 // draw petals
 for (var n = 0; n < this.numPetals; n++) {
 var theta1 = ((Math.PI * 2) / this.numPetals) * (n + 1);
 var theta2 = ((Math.PI * 2) / this.numPetals) * (n);

 var x1 = (this.radius * Math.sin(theta1)) + this.centerX;
 var y1 = (this.radius * Math.cos(theta1)) + this.centerY;
 var x2 = (this.radius * Math.sin(theta2)) + this.centerX;
 var y2 = (this.radius * Math.cos(theta2)) + this.centerY;

 context.moveTo(this.centerX, this.centerY);
 context.bezierCurveTo(x1, y1, x2, y2, this.centerX, this.
centerY);
 }

 context.closePath();
 context.fillStyle = this.color;
 context.fill();

 // draw yellow center
 context.beginPath();
 context.arc(this.centerX, this.centerY, this.radius / 5, 0, 2
* Math.PI, false);
 context.fillStyle = "yellow";
 context.fill();
};

3. Set the 2D canvas context:
window.onload = function(){
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Shape Drawing and Composites

52

4. Create a green gradation for the background:
 // create a green gradation for background
 context.beginPath();
 context.rect(0, 0, canvas.width, canvas.height);
 var grd = context.createLinearGradient(0, 0, canvas.width,
canvas.height);
 grd.addColorStop(0, "#1EDE70"); // light green
 grd.addColorStop(1, "#00A747"); // dark green
 context.fillStyle = grd;
 context.fill();

5. Create an array of flower colors:
 // define an array of colors
 var colorArray = [];
 colorArray.push("red"); // 0
 colorArray.push("orange"); // 1
 colorArray.push("blue"); // 2
 colorArray.push("purple"); // 3

6. Create a loop that generates flowers with a random position, size, and color:
 // define number of flowers
 var numFlowers = 50;

 // draw randomly placed flowers
 for (var n = 0; n < numFlowers; n++) {
 var centerX = Math.random() * canvas.width;
 var centerY = Math.random() * canvas.height;
 var radius = (Math.random() * 25) + 25;
 var colorIndex = Math.round(Math.random() * (colorArray.
length - 1));

 var thisFlower = new Flower(context, centerX, centerY,
radius, 5, colorArray[colorIndex]);
 thisFlower.draw();
 }
};

7. Embed the canvas tag inside the body of the HTML document:
<canvas id="myCanvas" width="600" height="250" style="border:1px
solid black;">
</canvas>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 2

53

How it works...
This recipe is all about randomizing object properties and drawing the results on the screen
using HTML5 canvas. The idea is to create a bunch of flowers with varying positions, sizes,
and colors.

To help aid us in creating a field of flowers, it's useful to create a Flower class that defines
the properties of a flower and a method for drawing the flower. For this recipe, I've kept the
number of petals constant, although you can certainly experiment with a varying number of
petals for each flower on your own.

Drawing a flower is actually quite similar to our previous recipe, Creating patterns with loops:
drawing a gear, only this time, we'll be drawing petals around a circle instead of zigzags. I've
found that the easiest way to draw a petal with HTML5 canvas is to draw a Bezier curve whose
starting point is connected to its ending point. The starting and ending points of the Bezier
curve are at the center of the flower, and the control points are defined with each iteration in
the draw() method of the Flower class.

Once our Flower class is set up and ready to go, we can create a loop that instantiates
random Flower objects with each iteration and then render them with the draw() method.

If you try out this recipe for yourself, you'll see that the flowers are completely randomized
each time you refresh the screen.

Creating custom shape functions: playing
card suits

If a royal flush gets your adrenaline going, then this one's for you. In this recipe, we'll create
drawing functions for the spade, heart, club, and diamond suits.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Shape Drawing and Composites

54

How to do it...
Follow these steps to draw a spade, heart, club, and diamond suit:

1. Define the drawSpade() function which draws a spade with four Bezier curves, two
quadratic curves, and one straight line:
function drawSpade(context, x, y, width, height){
 context.save();
 var bottomWidth = width * 0.7;
 var topHeight = height * 0.7;
 var bottomHeight = height * 0.3;

 context.beginPath();
 context.moveTo(x, y);

 // top left of spade
 context.bezierCurveTo(
 x, y + topHeight / 2, // control point 1
 x - width / 2, y + topHeight / 2, // control point 2
 x - width / 2, y + topHeight // end point
);

 // bottom left of spade
 context.bezierCurveTo(
 x - width / 2, y + topHeight * 1.3, // control point 1
 x, y + topHeight * 1.3, // control point 2
 x, y + topHeight // end point
);

 // bottom right of spade
 context.bezierCurveTo(
 x, y + topHeight * 1.3, // control point 1
 x + width / 2, y + topHeight * 1.3, // control point 2
 x + width / 2, y + topHeight // end point
);

 // top right of spade
 context.bezierCurveTo(
 x + width / 2, y + topHeight / 2, // control point 1
 x, y + topHeight / 2, // control point 2
 x, y // end point
);

 context.closePath();

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 2

55

 context.fill();

 // bottom of spade
 context.beginPath();
 context.moveTo(x, y + topHeight);
 context.quadraticCurveTo(
 x, y + topHeight + bottomHeight, // control point
 x - bottomWidth / 2, y + topHeight + bottomHeight // end
point
);
 context.lineTo(x + bottomWidth / 2, y + topHeight +
bottomHeight);
 context.quadraticCurveTo(
 x, y + topHeight + bottomHeight, // control point
 x, y + topHeight // end point
);
 context.closePath();
 context.fillStyle = "black";
 context.fill();
 context.restore();
}

2. Define the drawHeart() function which draws a heart with four Bezier curves:
function drawHeart(context, x, y, width, height){
 context.save();
 context.beginPath();
 var topCurveHeight = height * 0.3;
 context.moveTo(x, y + topCurveHeight);
 // top left curve
 context.bezierCurveTo(
 x, y,
 x - width / 2, y,
 x - width / 2, y + topCurveHeight
);

 // bottom left curve
 context.bezierCurveTo(
 x - width / 2, y + (height + topCurveHeight) / 2,
 x, y + (height + topCurveHeight) / 2,
 x, y + height
);

 // bottom right curve
 context.bezierCurveTo(

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Shape Drawing and Composites

56

 x, y + (height + topCurveHeight) / 2,
 x + width / 2, y + (height + topCurveHeight) / 2,
 x + width / 2, y + topCurveHeight
);

 // top right curve
 context.bezierCurveTo(
 x + width / 2, y,
 x, y,
 x, y + topCurveHeight
);

 context.closePath();
 context.fillStyle = "red";
 context.fill();
 context.restore();

}

3. Define the drawClub() function which draws a club with four circles, two quadratic
curves, and one straight line:
function drawClub(context, x, y, width, height){
 context.save();
 var circleRadius = width * 0.3;
 var bottomWidth = width * 0.5;
 var bottomHeight = height * 0.35;
 context.fillStyle = "black";

 // top circle
 context.beginPath();
 context.arc(
 x, y + circleRadius + (height * 0.05),
 circleRadius, 0, 2 * Math.PI, false
);
 context.fill();

 // bottom right circle
 context.beginPath();
 context.arc(
 x + circleRadius, y + (height * 0.6),
 circleRadius, 0, 2 * Math.PI, false
);
 context.fill();

 // bottom left circle

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 2

57

 context.beginPath();
 context.arc(
 x - circleRadius, y + (height * 0.6),
 circleRadius, 0, 2 * Math.PI, false
);
 context.fill();

 // center filler circle
 context.beginPath();
 context.arc(
 x, y + (height * 0.5),
 circleRadius / 2, 0, 2 * Math.PI, false
);
 context.fill();

 // bottom of club
 context.moveTo(x, y + (height * 0.6));
 context.quadraticCurveTo(
 x, y + height,
 x - bottomWidth / 2, y + height
);
 context.lineTo(x + bottomWidth / 2, y + height);
 context.quadraticCurveTo(
 x, y + height,
 x, y + (height * 0.6)
);
 context.closePath();
 context.fill();
 context.restore();
}

4. Define the drawDiamond() function which draws a diamond with four straight lines:
function drawDiamond(context, x, y, width, height){
 context.save();
 context.beginPath();
 context.moveTo(x, y);

 // top left edge
 context.lineTo(x - width / 2, y + height / 2);

 // bottom left edge
 context.lineTo(x, y + height);

 // bottom right edge

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Shape Drawing and Composites

58

 context.lineTo(x + width / 2, y + height / 2);

 // closing the path automatically creates
 // the top right edge
 context.closePath();

 context.fillStyle = "red";
 context.fill();
 context.restore();
}

5. When the page loads, define the canvas context and then use the four drawing
functions to render a spade, a heart, a club, and a diamond:
window.onload = function(){
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");

 drawSpade(context, canvas.width * 0.2, 70, 75, 100);
 drawHeart(context, canvas.width * 0.4, 70, 75, 100);
 drawClub(context, canvas.width * 0.6, 70, 75, 100);
 drawDiamond(context, canvas.width * 0.8, 70, 75, 100);
};

6. Embed the canvas tag inside the body of the HTML document:
<canvas id="myCanvas" width="600" height="250" style="border:1px
solid black;">
</canvas>

How it works...
This recipe demonstrates how any shape can be drawn by combining the four major types
of sub paths provided by the HTML5 canvas: straight lines, arcs, Quadratic curves, and
Bezier curves.

To draw a spade, we can connect four Bezier curves to form the top portion, and we can use
two Quadratic curves and a straight line to form the bottom portion. To draw a heart, we can
connect four Bezier curves in much the same way that we created the spade, except that the
point of the shape is on the bottom instead of the top. To create a club, we can draw three
circles using arcs for the top portion, and similar to the spade, we can use two Quadratic
curves and a straight line to form the bottom portion. Finally, to draw a diamond, we can
simply connect four straight lines.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 2

59

Putting it all together: drawing a jet
In this recipe, we'll push the limits of the HTML5 canvas drawing API by drawing a vector-style
jet using lines, curves, shapes, colors, linear gradients, and radial gradients.

How to do it...
Follow these steps to draw a vector-style jet:

1. Define a 2D canvas context and set the line join style:
window.onload = function(){
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");
 var grd;

 context.lineJoin = "round";

2. Draw the right tail wing:
 // outline right tail wing
 context.beginPath();
 context.moveTo(248, 60); //13
 context.lineTo(262, 45); // 12
 context.lineTo(285, 56); //11
 context.lineTo(284, 59); // 10
 context.lineTo(276, 91); // 9
 context.closePath();
 context.fillStyle = "#495AFE";
 context.fill();
 context.lineWidth = 4;
 context.stroke();

 // right tail wing detail
 context.beginPath();

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Shape Drawing and Composites

60

 context.moveTo(281, 54); // 10
 context.lineTo(273, 84); // 9
 context.closePath();
 context.lineWidth = 2;
 context.stroke();

3. Draw the right wing:
 // outline right wing
 context.beginPath();
 context.moveTo(425, 159);
 context.lineTo(449, 91); // 4
 context.lineTo(447, 83); // 5
 context.lineTo(408, 67); // 6
 context.lineTo(343, 132); // 7
 context.fillStyle = "#495AFE";
 context.fill();
 context.lineWidth = 4;
 context.stroke();

 // right wing detail
 context.beginPath();
 context.moveTo(420, 158);
 context.lineTo(447, 83); // 4
 context.lineWidth = 2;
 context.stroke();

 context.beginPath();
 context.moveTo(439, 102);
 context.lineTo(395, 81);
 context.lineWidth = 2;
 context.stroke();

4. Draw the body and top of the tail:
 // outline body
 context.beginPath();
 context.moveTo(541, 300); // 1
 context.quadraticCurveTo(529, 252, 490, 228); // 2
 context.quadraticCurveTo(487, 160, 303, 123); // 3

 // outline tail
 context.lineTo(213, 20); // 14
 context.lineTo(207, 22); // 15
 context.bezierCurveTo(208, 164, 255, 207, 412, 271); // 27
 context.lineTo(427, 271); // 28

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 2

61

 context.quadraticCurveTo(470, 296, 541, 300); // 1
 context.closePath();
 grd = context.createLinearGradient(304, 246, 345, 155);
 grd.addColorStop(0, "#000E91"); // dark blue
 grd.addColorStop(1, "#495AFE"); // light blue
 context.fillStyle = grd;
 context.fill();
 context.lineWidth = 4;
 context.stroke();

 // tail detail
 context.beginPath();
 context.moveTo(297, 124);
 context.lineTo(207, 22);
 context.lineWidth = 2;
 context.stroke();

5. Draw the left tail wing:
 // outline left tail wing
 context.beginPath();
 context.moveTo(303, 121); // 8
 context.lineTo(297, 125); // 8
 context.lineTo(255, 104);
 context.lineWidth = 2;
 context.stroke();

 context.beginPath();
 context.moveTo(212, 80);
 context.lineTo(140, 85); // 18
 context.lineTo(138, 91); // 19
 context.lineTo(156, 105); // 20
 context.lineTo(254, 104);
 context.lineTo(254, 100);
 context.lineWidth = 4;
 context.fillStyle = "#495AFE";
 context.fill();
 context.stroke();

 // left tail wing detail
 context.beginPath();
 context.moveTo(140, 86); // 18
 context.lineTo(156, 100); // 20
 context.lineTo(254, 100);
 context.lineTo(209, 77);
 context.lineWidth = 2;
 context.stroke();

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Shape Drawing and Composites

62

6. Draw the left wing:
 // outline left wing
 context.beginPath();
 context.moveTo(262, 166); // 22
 context.lineTo(98, 208); // 23
 context.lineTo(96, 215); // 24
 context.lineTo(136, 245); // 25
 context.lineTo(339, 218);
 context.lineTo(339, 215);
 context.closePath();
 context.fillStyle = "#495AFE";
 context.fill();
 context.lineWidth = 4;
 context.stroke();

 // left wing detail
 context.beginPath();
 context.moveTo(98, 210);
 context.lineTo(136, 240); // 25
 context.lineTo(339, 213);
 context.lineWidth = 2;
 context.stroke();

 context.beginPath();
 context.moveTo(165, 235);
 context.lineTo(123, 203);
 context.lineWidth = 2;
 context.stroke();

7. Draw the side detail:
 // side detail
 context.beginPath();
 context.moveTo(427, 271);
 context.lineTo(423, 221);
 context.quadraticCurveTo(372, 175, 310, 155);
 context.lineWidth = 4;
 context.stroke();

8. Draw the nose detail:
 // nose detail
 context.beginPath();
 context.moveTo(475, 288);
 context.quadraticCurveTo(476, 256, 509, 243);
 context.quadraticCurveTo(533, 268, 541, 300); // 1

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 2

63

 context.quadraticCurveTo(501, 300, 475, 288);
 grd = context.createLinearGradient(491, 301, 530, 263);
 grd.addColorStop(0, "#9D0000"); // dark red
 grd.addColorStop(1, "#FF0000"); // light red
 context.fillStyle = grd;
 context.fill();
 context.lineWidth = 4;
 context.stroke();

 context.beginPath();
 context.moveTo(480, 293);
 context.quadraticCurveTo(480, 256, 513, 246);
 context.lineWidth = 2;
 context.stroke();

9. Draw the cockpit:
 // cockpit detail
 context.beginPath();
 context.moveTo(442, 169);
 context.quadraticCurveTo(419, 176, 415, 200);
 context.quadraticCurveTo(483, 250, 490, 228);
 context.quadraticCurveTo(480, 186, 439, 170);
 context.lineWidth = 4;
 context.stroke();
 grd = context.createRadialGradient(473, 200, 20, 473, 200, 70);
 grd.addColorStop(0, "#E1E7FF"); // dark gray
 grd.addColorStop(1, "#737784"); // light gray
 context.fillStyle = grd;
 context.fill();

 context.beginPath();
 context.moveTo(448, 173);
 context.quadraticCurveTo(425, 176, 420, 204);
 context.lineWidth = 2;
 context.stroke();

 context.beginPath();
 context.moveTo(470, 186);
 context.quadraticCurveTo(445, 190, 440, 220);
 context.lineWidth = 2;
 context.stroke();

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Shape Drawing and Composites

64

10. Draw the intake:
 // intake outline
 context.beginPath();
 context.moveTo(420, 265);
 context.lineTo(416, 223);
 context.bezierCurveTo(384, 224, 399, 270, 420, 265);
 context.closePath();
 context.fillStyle = "#001975";
 context.fill();
 context.lineWidth = 4;
 context.stroke();

 context.beginPath();
 context.moveTo(420, 265);
 context.lineTo(402, 253);
 context.lineWidth = 2;
 context.stroke();

 context.beginPath();
 context.moveTo(404, 203);
 context.bezierCurveTo(364, 204, 379, 265, 394, 263);
 context.lineWidth = 2;
 context.stroke();
};

11. Embed the canvas tag inside the body of the HTML document:
<canvas id="myCanvas" width="650" height="350" style="border:1px
solid black;">
</canvas>

How it works...
This recipe combines the use of lines, Quadratic curves, Bezier curves, paths, shapes, solid
fills, linear gradients, and radial gradients. Although it's true that the HTML5 canvas is quite
rudimentary, it does provide everything that we need to make great drawings, including a
vector-style jet.

To draw a jet with the HTML5 canvas, we can start by drawing a jet in Adobe Photoshop or
some other image editor with a drawing area size equal to the size of our canvas, which in
this case is 650 x 350 pixels. Next, we can use our cursor to find the major points that form
the jet shape by hovering over the end points of each line in our drawing and recording the x,
y coordinates. With these coordinates in hand, we can draw the major outline of the jet with a
line width of 4, and we can go back and fill in the finer details of the jet using a line width of 2.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 2

65

It's good practice to draw the portions of the drawing farthest away from the
viewer first because each shape that you draw on the canvas will overlap the
previous shapes. If you take a look at the preceding code, you'll notice that
the right wing was drawn first, followed by the body of the jet, followed by the
left wing. This is because the right wing is farthest from the viewer while the
left wing is closest to the viewer.

Once the line drawing is complete, we can fill in the jet with solid colors, add a linear gradient
to the body, and add a radial gradient to the cockpit to give the drawing some depth. Finally,
we can add a bold red gradation to the nose of the plane, preparing it for take-off and
inspiring our imagination.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

3
Working with Images

and Videos

In this chapter, we will cover:

 f Drawing an image

 f Cropping an image

 f Copying and pasting sections of the canvas

 f Working with video

 f Getting image data

 f Introduction to pixel manipulation: inverting image colors

 f Inverting video colors

 f Converting image colors to grayscale

 f Converting a canvas drawing into a data URL

 f Saving a canvas drawing as an image

 f Loading the canvas with a data URL

 f Creating a pixelated image focus

Introduction
This chapter focuses on yet another very exciting topic of the HTML5 canvas, images and
videos. Along with providing basic functionality for positioning, sizing, and cropping images
and videos, the HTML5 canvas API also allows us to access and modify the color and
transparency of each pixel for both mediums. Let's get started!

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Working with Images and Videos

68

Drawing an image
Let's jump right in by drawing a simple image. In this recipe, we'll learn how to load an image
and draw it somewhere on the canvas.

Follow these steps to draw an image in the center of the canvas:

How to do it...
1. Define the canvas context:

window.onload = function(){
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");

2. Create an image object, set the onload property to a function that draws the image,
and then set the source of the image:
 var imageObj = new Image();
 imageObj.onload = function(){
 var destX = canvas.width / 2 - this.width / 2;
 var destY = canvas.height / 2 - this.height / 2;

 context.drawImage(this, destX, destY);
 };
 imageObj.src = "jet_300x214.jpg";
};

3. Embed the canvas tag inside the body of the HTML document:
<canvas id="myCanvas" width="600" height="250" style="border:1px
solid black;">
</canvas>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 3

69

How it works...
To draw an image, we first need to create an image object using new Image(). Notice that
we've set the onload property of the image object before defining the source of the image.

It's good practice to define what we want to do with the image when it loads
before setting its source. Theoretically, if we were to define the source of the
image before we define the onload property; the image could possibly load
before the definition is complete (although, it's very unlikely).

The key method in this recipe is the drawImage() method:

context.drawImage(imageObj,destX,destY);

Where imageObj is the image object, and destX and destY is where we want to position
the image.

There's more...
In addition to defining an image position with destX and destY, we can also add two
additional parameters, destWidth and destHeight to define the size of our image:

context.drawImage(imageObj,destX,destY,destWidth,destHeight);

For the most part, it's a good idea to stay away from resizing an image with the drawImage()
method, simply because the quality of the scaled image will be noticeably reduced, similar to
the result when we resize an image with the width and height properties of an HTML image
element. If image quality is something you're concerned about (why on earth wouldn't you
be?), it's usually best to work with thumbnail images alongside bigger images if you're creating
an application that needs scaled images. If, on the other hand, your application dynamically
shrinks and expands images, using the drawImage() method with destWidth and
destHeight to scale images is a perfectly acceptable approach.

Cropping an image
In this recipe, we'll crop out a section of an image and then draw the result onto the canvas.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Working with Images and Videos

70

Follow these steps to crop out a section of an image and draw the result onto the canvas.

How to do it...
1. Define the canvas context:

window.onload = function(){
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");

2. Create an image object, set the onload property to a function that crops the image,
and then set the source of the image:
 var imageObj = new Image();
 imageObj.onload = function(){
 // source rectangular area
 var sourceX = 550;
 var sourceY = 300;
 var sourceWidth = 300;
 var sourceHeight = 214;

 // destination image size and position
 var destWidth = sourceWidth;
 var destHeight = sourceHeight;
 var destX = canvas.width / 2 - destWidth / 2;
 var destY = canvas.height / 2 - destHeight / 2;

 context.drawImage(this, sourceX, sourceY, sourceWidth,
sourceHeight, destX, destY, destWidth, destHeight);
 };
 imageObj.src = "jet_1000x714.jpg";
};

3. Embed the canvas tag inside the body of the HTML document:
<canvas id="myCanvas" width="600" height="250" style="border:1px
solid black;">
</canvas>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 3

71

How it works...
In the last recipe, we discussed two different ways that we can use the drawImage() method
to draw images on the canvas. In the first case, we can pass an image object and a position
to simply draw an image at the given position. In the second case, we can pass an image
object, a position, and a size to draw an image at the given position with the given size.
Additionally, we can also add six more parameters to the drawImage() method if we
wanted to crop an image:

Context.drawImage(imageObj,sourceX,sourceY,sourceWidth, sourceHight,
sourceHeight,sourceHeight, destX, destY, destWidth, destHeight);

Take a look at the following diagram:

As you can see, sourceX and sourceY refer to the top-left corner of the cropped region
in the source image. sourceWidth and sourceHeight refer to the width and height of
the cropped image from the source. destX and destY refer to the position of the cropped
image on the canvas, and destWidth and destHeight refer to the width and height of the
resulting cropped image.

If you don't intend to scale a cropped image, then destWidth equals
sourceWidth and destHeight equals sourceHeight.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Working with Images and Videos

72

Copying and pasting sections of the canvas
In this recipe, we'll cover yet another interesting usage of the drawImage() method—copying
sections of the canvas. First, we'll draw a spade in the center of the canvas, then we'll copy
the right side of the spade and then paste it to the left, and then we'll copy the left side of the
spade and then paste it to the right.

Follow these steps to draw a spade in the center of the canvas and then copy-and-paste
sections of the shape back onto the canvas:

How to do it...
1. Define the canvas context:

window.onload = function(){
 // drawing canvas and context
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");

2. Draw a spade in the center of the canvas using the drawSpade() function that we
created in Chapter 2, Shape Drawing and Composites:
 // draw spade
 var spadeX = canvas.width / 2;
 var spadeY = 20;
 var spadeWidth = 140;
 var spadeHeight = 200;

 // draw spade in center of canvas
 drawSpade(context, spadeX, spadeY, spadeWidth, spadeHeight);

3. Copy the right half of the spade and then paste it on the canvas to the left of the
spade using the drawImage() method:
 context.drawImage(
 canvas,
 spadeX, // source x
 spadeY, // source y
 spadeWidth / 2, // source width

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 3

73

 spadeHeight, // source height
 spadeX - spadeWidth, // dest x
 spadeY, // dest y
 spadeWidth / 2, // dest width
 spadeHeight // dest height
);

4. Copy the left half of the spade and then paste it on the canvas to the right of the
spade using the drawImage() method:
 context.drawImage(
 canvas,
 spadeX - spadeWidth / 2, // source x
 spadeY, // source y
 spadeWidth / 2, // source width
 spadeHeight, // source height
 spadeX + spadeWidth / 2, // dest x
 spadeY, // dest y
 spadeWidth / 2, // dest width
 spadeHeight // dest height
);
};

5. Embed the canvas inside the body of the HTML document:
<canvas id="myCanvas" width="600" height="250" style="border:1px
solid black;">
</canvas>

How it works...
To copy a section of the canvas, we can pass the canvas object to the drawImage() method
instead of an image object:

Context.drawImage(canvas,sourceX,sourceY,sourceWidth, sourceHight, sou
rceHeight,sourceHeight, destX, destY, destWidth, destHeight);

As we'll see in the next recipe, not only can we copy sections of an image or a canvas with
drawImage(), we can also copy sections of HTML5 video.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Working with Images and Videos

74

Working with video
Although the HTML5 canvas API doesn't provide a direct method for drawing videos on the
canvas like it does for images, we can certainly work with videos by capturing frames from a
hidden video tag and then copying them onto the canvas with a loop.

Getting ready...
Before we get started, let's talk about the supported HTML5 video formats for each browser.
At the time of writing, the video format war continues to rage on, in which all of the major
browsers—Chrome, Firefox, Opera, Safari, and IE—continue to drop and add support for
different video formats. To make things worse, each time a major browser adds or drops
support for a particular video format, developers have to once again re-formulate the minimal
set of video formats that's required for their applications to work across all browsers.

At the time of writing, the three major video formats are Ogg Theora, H.264, and WebM.
For the video recipes in this chapter, we'll be using a combination of Ogg Theora and H.264.
When working with video, it's strongly advised that you do a search online to see what the
current status is for video support as it is a subject to change at any moment.

There's more! Once you've decided which video formats to support, you'll probably need
a video format converter to convert the video file that you have on hand to other video
formats. One great option for converting video formats is the Miro Video Converter, which
supports video format conversions for just about any video format including Ogg Theora,
H.264, or WebM formats.

Miro Video Converter is probably the most common video converter available at the time of
writing, although you can certainly use any other video format converter of your liking. You can
download Miro Video Converter from: http://www.mirovideoconverter.com/.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 3

75

Follow these steps to draw a video onto the canvas:

How to do it...
1. Create a cross-browser method that requests an animation frame:

window.requestAnimFrame = (function(callback){
 return window.requestAnimationFrame ||
 window.webkitRequestAnimationFrame ||
 window.mozRequestAnimationFrame ||
 window.oRequestAnimationFrame ||
 window.msRequestAnimationFrame ||
 function(callback){
 window.setTimeout(callback, 1000 / 60);
 };
})();

2. Define the drawFrame() function which copies the current video frame, pastes
it onto the canvas using the drawImage() method, and then requests a new
animation frame to draw the next frame:
function drawFrame(context, video){
 context.drawImage(video, 0, 0);
 requestAnimFrame(function(){
 drawFrame(context, video);
 });
}

3. Define the canvas context, get the video tag, and draw the first video frame:
window.onload = function(){
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");
 var video = document.getElementById("myVideo");
 drawFrame(context, video);
};

4. Embed the canvas and the video tag inside the body of the HTML document:
<video id="myVideo" autoplay="true" loop="true"
style="display:none;">
 <source src="BigBuckBunny_640x360.ogv" type="video/ogg"/
><source src="BigBuckBunny_640x360.mp4" type="video/mp4"/>
</video>
<canvas id="myCanvas" width="600" height="360" style="border:1px
solid black;">
</canvas>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Working with Images and Videos

76

How it works...
To draw a video on an HTML5 canvas, we first need to embed a hidden video tag in the HTML
document. In this recipe, and in future video recipes, I've used the Ogg Theora and H.264
(mp4) video formats.

Next, when the page loads, we can use our cross-browser requestAnimFrame() method
to capture the video frames as fast as the browser will allow and then draw them onto
the canvas.

Getting image data
Now that we know how to draw images and videos, let's try accessing the image data to see
what kind of properties we can play with.

WARNING: This recipe must run on a web server due to security
constraints with the getImageData() method.

Getting ready...
Before we get started working with image data, it's important that we cover canvas security
and the RGBA color space.

So why is canvas security important with respect to accessing image data? Simply put, in
order to access image data, we need to use the getImateData() method of the canvas
context which will throw a SECURITY_ERR exception if we try accessing image data from an
image residing on a non-web server file system, or if we try accessing image data from an
image on a different domain. In other words, if you're going to try out these demos for
yourself, they won't work if your files reside on your local file system. You'll need to run the
rest of the recipes in this chapter on a web server.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 3

77

Next, since pixel manipulation is all about altering the RGB values of pixels, we should
probably cover the RGB color model and the RGBA color space while we're at it. RGB
represents the red, green, and blue components of a pixel's color. Each component is an
integer between 0 and 255, where 0 represents no color and 255 represents full color.
RGB values are often times represented as follows:

rgb(red,green,blue)

Here are some common color values represented with the RGB color model:

rgb(0,0,0) = black
rgb(255,255,255) = white
rgb(255,0,0) = red
rgb(0,255,0) = green
rgb(0,0,255) = blue
rgb(255,255,0) = yellow
rgb(255,0,255) = magenta
rgb(0,255,255) = cyan

In addition to RGB, pixels can also have an alpha channel which refers to its opacity. An alpha
channel of 0 is a fully transparent pixel, and an alpha channel of 255 is a fully opaque pixel.
RGBA color space simply refers to the RGB color model (RGB) plus the alpha channel (A).

Be careful not to confuse the alpha channel range of HTML5 canvas pixels,
which are integers 0 to 255, and the alpha channel range of CSS colors,
which are decimals 0.0 to 1.0.

Follow these steps to write out the image data properties of an image:

How to do it...
1. Define a canvas context:

window.onload = function(){
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");

2. Create an image object, set the onload property to a function which draws
the image:
 var imageObj = new Image();
 imageObj.onload = function(){
 var sourceWidth = this.width;
 var sourceHeight = this.height;
 var destX = canvas.width / 2 - sourceWidth / 2;
 var destY = canvas.height / 2 - sourceHeight / 2;
 var sourceX = destX;

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Working with Images and Videos

78

 var sourceY = destY;

 // draw image on canvas
 context.drawImage(this, destX, destY);

3. Get the image data, write out its properties, and then set the source of the image
object outside of the onload definition:
 // get image data from the rectangular area
 // of the canvas containing the image
 var imageData = context.getImageData(sourceX, sourceY,
sourceWidth, sourceHeight);
 var data = imageData.data;

 // write out the image data properties
 var str = "width=" + imageData.width + ", height=" +
imageData.height + ", data length=" + data.length;
 context.font = "12pt Calibri";
 context.fillText(str, 4, 14);
 };
 imageObj.src = "jet_300x214.jpg";
};

4. Embed the canvas tag into the body of the HTML document:
<canvas id="myCanvas" width="600" height="250" style="border:1px
solid black;">
</canvas>

How it works...
The idea behind this recipe is to draw an image, get its image data, and then write out the
image data properties to the screen. As you can see from the preceding code, we can get the
image data using the getImageData() method of the canvas context:

context.getImageData(sourceX,sourceY,sourceWidth,sourceHeight);

Notice that the getImageData() method only works with the canvas context and not the
image object itself. As a result, in order to get image data, we must first draw an image onto
the canvas and then use getImageData() method of the canvas context.

The ImageData object contains three properties: width, height, and data. As you can see
from the screenshot in the beginning of this recipe, our ImageData object contains a width
property of 300, a height property of 214, and a data property which is an array of pixel
information, which in this case has a length of 256,800 elements. The key to the ImageData
object, in all honesty, is the data property. The data property contains the RGBA information
for each pixel in our image. Since our image is made up of 300 * 214 = 64,200 pixels, the
length of this array is 4 * 64,200 = 256,800 elements.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 3

79

Introduction to pixel manipulation: inverting
image colors

Now that we know how to access image data, including the RGBA for every pixel in an image
or video, our next step is to explore the possibilities of pixel manipulation. In this recipe, we'll
invert the colors of an image by inverting the color of each pixel.

WARNING: This recipe must be run on a web server due to security
constraints with the getImageData() method.

Follow these steps to invert the colors of an image:

How to do it...
1. Define the canvas context:

window.onload = function(){
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");

2. Create an image object and set the onload property to a function that draws the
image and gets the image data:
 var imageObj = new Image();
 imageObj.onload = function(){
 var sourceWidth = this.width;
 var sourceHeight = this.height;
 var sourceX = canvas.width / 2 - sourceWidth / 2;
 var sourceY = canvas.height / 2 - sourceHeight / 2;
 var destX = sourceX;
 var destY = sourceY;

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Working with Images and Videos

80

 context.drawImage(this, destX, destY);

 var imageData = context.getImageData(sourceX, sourceY,
sourceWidth, sourceHeight);
 var data = imageData.data;

3. Loop through all of the pixels in the image and invert the colors:
 for (var i = 0; i < data.length; i += 4) {
 data[i] = 255 - data[i]; // red
 data[i + 1] = 255 - data[i + 1]; // green
 data[i + 2] = 255 - data[i + 2]; // blue
 // i+3 is alpha (the fourth element)
 }

4. Overwrite the original image with the manipulated image, and then set the source of
the image outside of the onload definition:
 // overwrite original image with
 // new image data
 context.putImageData(imageData, destX, destY);
 };
 imageObj.src = "jet_300x214.jpg";
};

5. Embed the canvas tag into the body of the HTML document:
<canvas id="myCanvas" width="600" height="250" style="border:1px
solid black;">
</canvas>

How it works...
To invert the color of an image using HTML5 canvas, we can simply loop through all of the
pixels in an image and then invert each pixel using a color inverting algorithm. Don't worry it's
easier than it sounds. To invert a pixel's color, we can invert each of its RGB components by
subtracting each value from 255 as follows:

data[i] = 255 - data[i]; // red
data[i+1] = 255 - data[i+1]; // green
data[i+2] = 255 - data[i+2]; // blue

Once the pixels have been updated, we can redraw the image using the putImageData()
method of the canvas context:

context.putImageData(imageData, destX, destY);

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 3

81

This method basically allows us to draw an image using image data instead of a source image
with the drawImage() method.

Inverting video colors
The purpose of this recipe is to demonstrate how to perform pixel manipulations on videos
in much the same way as we did with images. In this recipe, we'll invert the colors of a short
video clip.

WARNING: This recipe must be run on a web server due to security
constraints with the getImageData() method.

Follow these steps to invert the colors of a video:

How to do it...
1. Create a cross-browser method that requests an animation frame:

window.requestAnimFrame = (function(callback){
 return window.requestAnimationFrame ||
 window.webkitRequestAnimationFrame ||
 window.mozRequestAnimationFrame ||
 window.oRequestAnimationFrame ||
 window.msRequestAnimationFrame ||
 function(callback){
 window.setTimeout(callback, 1000 / 60);
 };
})();

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Working with Images and Videos

82

2. Define the drawFrame() function that captures the current video frame, inverts the
colors, draws the frame on the canvas, and then requests a new animation frame:
function drawFrame(canvas, context, video){
 context.drawImage(video, 0, 0);

 var imageData = context.getImageData(0, 0, canvas.width,
canvas.height);
 var data = imageData.data;

 for (var i = 0; i < data.length; i += 4) {
 data[i] = 255 - data[i]; // red
 data[i + 1] = 255 - data[i + 1]; // green
 data[i + 2] = 255 - data[i + 2]; // blue
 // i+3 is alpha (the fourth element)
 }

 // overwrite original image
 context.putImageData(imageData, 0, 0);

 requestAnimFrame(function(){
 drawFrame(canvas, context, video);
 });
}

3. Define the canvas context, get the video tag, and draw the first animation frame:
window.onload = function(){
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");
 var video = document.getElementById("myVideo");
 drawFrame(canvas, context, video);
};

4. Embed the video and canvas element into the body of the HTML document:
<video id="myVideo" autoplay="true" loop="true"
style="display:none;">
 <source src="BigBuckBunny_640x360.ogv" type="video/ogg"/
><source src="BigBuckBunny_640x360.mp4" type="video/mp4"/>
</video>
<canvas id="myCanvas" width="640" height="360" style="border:1px
solid black;">
</canvas>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 3

83

How it works...
Similarly to the previous recipe, we can perform pixel manipulations on video in much the
same way that we did with images because the getImageData() method gets the image
data from the canvas context regardless of how the context was rendered. In this recipe, we
can simply invert the color of each pixel on the canvas for each video frame provided by the
requestAnimFrame() method.

Converting image colors to grayscale
In this recipe, we'll explore another common pixel manipulation algorithm, converting colors
to grayscale.

WARNING: This recipe must be ran on a web server due to security constraints
with the getImageData() method.

Follow these steps to convert the colors of an image to grayscale:

How to do it...
1. Define the canvas context:

window.onload = function(){
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");

2. Create an image object and set the onload property to a function that draws the
image and gets the image data:
 var imageObj = new Image();
 imageObj.onload = function(){
 var sourceWidth = this.width;

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Working with Images and Videos

84

 var sourceHeight = this.height;
 var destX = canvas.width / 2 - sourceWidth / 2;
 var destY = canvas.height / 2 - sourceHeight / 2;
 var sourceX = destX;
 var sourceY = destY;

 context.drawImage(this, destX, destY);

 var imageData = context.getImageData(sourceX, sourceY,
sourceWidth, sourceHeight);
 var data = imageData.data;

3. Loop through the pixels in the image and convert the colors to grayscale using the
equation for brightness:
 for (var i = 0; i < data.length; i += 4) {
 var brightness = 0.34 * data[i] + 0.5 * data[i + 1] +
0.16 * data[i + 2];

 data[i] = brightness; // red
 data[i + 1] = brightness; // green
 data[i + 2] = brightness; // blue
 // i+3 is alpha (the fourth element)
 }

4. Overwrite the original image with the manipulated image and then set the image
source after the onload definition:
 // overwrite original image
 context.putImageData(imageData, destX, destY);
 };
 imageObj.src = "jet_300x214.jpg";
};

5. Embed the canvas element inside the body of the HTML document:
<canvas id="myCanvas" width="600" height="250" style="border:1px
solid black;">
</canvas>

How it works...
To convert an RGB color into a gradation of gray, we need to obtain the brightness of the color.
We can use the equation of brightness to obtain the grayscale value of a colored pixel. This
equation is based on the fact that humans are most sensitive to green light, followed by red
light, and are least sensitive to blue light:

Brightness = 0.34 * R + 0.5 * G + 0.16 * B

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 3

85

To account for physiological effects, notice that we've added more weight to the green
value (most sensitive) followed by the red value (less sensitive) followed by the blue value
(least sensitive).

With this equation in hand, we can simply loop through all of the pixels in our image, calculate
the perceived brightness, assign this value to each of the RGB values, and then re-draw the
image onto the canvas.

Converting a canvas drawing into a data
URL

In addition to image data, we can also extract an image data URL which is basically just a
very long text string containing encoded information about the canvas image. Data URLs
are extremely handy if we want to save the canvas drawing in local storage or in an offline
database. In this recipe, we'll draw a cloud shape, get its data URL, and then insert it into
the HTML page so that we can see what it looks like.

Follow these steps to convert a canvas drawing into a data URL:

How to do it...
1. Define the canvas context and draw a cloud shape:

window.onload = function(){
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");

 var startX = 200;
 var startY = 100;

 // draw cloud shape
 context.beginPath();
 context.moveTo(startX, startY);
 context.bezierCurveTo(startX - 40, startY + 20, startX - 40,
startY + 70, startX + 60, startY + 70);
 context.bezierCurveTo(startX + 80, startY + 100, startX + 150,
startY + 100, startX + 170, startY + 70);
 context.bezierCurveTo(startX + 250, startY + 70, startX + 250,
startY + 40, startX + 220, startY + 20);
 context.bezierCurveTo(startX + 260, startY - 40, startX + 200,
startY - 50, startX + 170, startY - 30);
 context.bezierCurveTo(startX + 150, startY - 75, startX + 80,
startY - 60, startX + 80, startY - 30);
 context.bezierCurveTo(startX + 30, startY - 75, startX - 20,
startY - 60, startX, startY);

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Working with Images and Videos

86

 context.closePath();

 context.lineWidth = 5;
 context.fillStyle = "#8ED6FF";
 context.fill();
 context.strokeStyle = "#0000ff";
 context.stroke();

2. Get the data URL of the canvas using the toDataURL() method of the
canvas object:
 // save canvas image as data url (png format by default)
 var dataURL = canvas.toDataURL();

3. Insert the (long) data URL into a <p> tag so that we can see it:
 // insert url into the HTML document so we can see it
 document.getElementById("dataURL").innerHTML = "dataURL:</
b> " + dataURL;
};

4. Embed the canvas tag inside the body of the HTML document and create a <p> tag
which will be used to store the data URL:
<canvas id="myCanvas" width="600" height="250" style="border:1px
solid black;">
</canvas>
<p id="dataURL" style="width:600px;word-wrap: break-word;">
</p>

How it works...
The key to this recipe is the toDataURL() method which converts a canvas drawing into a
data URL:

var dataURL = canvas.toDataURL();

When running this demo, you'll see a very long data URL that looks something like this:


AAAD6CAYAAAB9LTkQAAAgAElEQVR4Xu3dXbAUxd3H8f+5i09
VrEjuDlRFBSvoo1ETD/HmEcQIXskRc6FViaA+N7woRlNJUDQm4
kueeiS+INz4wEGfilwocLxSUASvDMf4XokpQbFKuAtYSdWT3PXz
/885C3t2Z3dndntme3q+W7UehN2e7k/3sj96enpGhAcCCCCAAAI
IIICAV4ERr6VRGAIIIIAAAggggIAQsBgECCCAAAIIIICAZwECl
mdQikMAAQQQQAABBAhYjAEEEEAAAQQQQMCzAAHLMyjFIYAAAgg
ggAACBCzGAAIIIIAAAggg4FmAgOUZlOIQQAABBBBAAAECFmMAA
QQQQAABBBDwLEDA8gxKcQgggAACCCCAAAGLMYAAAggggAACCHgWI

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 3

87

GB5BqU4BBBAAAEEEECAgMUYQAABBBBAAAEEPAsQsDyDUhwCCCCAA
AIIIEDAYgwggAACCCCAAAKeBQhYnkEpDgEEEEAAAQQQIGAxBhBAA
AEEEEAAAc8CBCzPoBSHAAIIIIAAAggQsBgDCCCAAAIIIICAZwECl
mdQikMAAQQQQAABBAhYjAEEEEAAAQQQQMCzAAHLMyjFIYAAAgggg
AACBCzGAAIIIIAAAggg4FmAgOUZlOIQQAABBBBAAAECFmMAAQQQQ
AABBBDwLEDA8gxKcQgggAACCCCAAAGLMYAAAggggAACCHgWIGB5
BqU4BBBAAAEEEECAgMUYQAABBBBAAAEEPAsQsDyDUhwCCCCAAAI
IIEDAYgwggAACCCCAAAKeBQhYnkEpDgEEEEAAAQQQIGAxBhBAAA
EEEEAAAc8CBCzPoBSHAAIIIIAAAggQsBgDCCCAAAIIIICAZwECl
mdQikMAAQQQQAABBAhYjAEEEEAAAQQQQMCzAAHLMyj

What you're looking at here is just a small snippet of the entire data URL. The important
part to pay attention to in the URL is the very beginning, which starts with data:image/
png;base64. This means that the data URL is a PNG image which is represented by a base
64 encoding.

Unlike image data, which is a native array of pixel data, an image data URL is special because
it's a string that can be stored with local storage, or it can be passed to a web server to
be saved in an offline database. In other words, image data is useful for inspecting and
manipulating each individual pixel that makes up an image, while image data URLs are
intended to be used for storing the canvas drawing and to be passed between the client
and server.

Saving a canvas drawing as an image
In addition to saving the canvas drawing in local storage or in an offline database, we can also
use an image data URL to save the canvas drawing as an image so that a user can then save
it to their local computer. In this recipe, we'll get the image data URL of the canvas drawing
and then set it to the source of an image object so that a user can right click and download
the image as a PNG.

Follow these steps to save a canvas drawing as an image:

How to do it...
1. Define the canvas context and draw a cloud shape:

window.onload = function(){
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");

 // draw cloud
 context.beginPath(); // begin custom shape
 context.moveTo(170, 80);
 context.bezierCurveTo(130, 100, 130, 150, 230, 150);

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Working with Images and Videos

88

 context.bezierCurveTo(250, 180, 320, 180, 340, 150);
 context.bezierCurveTo(420, 150, 420, 120, 390, 100);
 context.bezierCurveTo(430, 40, 370, 30, 340, 50);
 context.bezierCurveTo(320, 5, 250, 20, 250, 50);
 context.bezierCurveTo(200, 5, 150, 20, 170, 80);
 context.closePath(); // complete custom shape
 context.lineWidth = 5;
 context.fillStyle = "#8ED6FF";
 context.fill();
 context.strokeStyle = "#0000ff";
 context.stroke();

2. Get the data URL:
 // save canvas image as data url (png format by default)
 var dataURL = canvas.toDataURL();

3. Set the source of an image tag to the data URL so that a user can download it:
 // set canvasImg image src to dataURL
 // so it can be saved as an image
 document.getElementById("canvasImg").src = dataURL;
};

4. Embed the canvas tag in the body of the HTML document and add an image tag
which will contain the canvas drawing:
<canvas id="myCanvas" width="578" height="200">
</canvas>
<p>
 Image:
</p>

How it works...
After drawing something on the canvas, we can create an image that the user can save by
getting the image data URL using the toDataURL() method, and then setting the source of
an image object to the data URL. Once the image has loaded (which is nearly instantaneous
because the image is being loaded directly and doesn't have to make a request to a web
server), the user can right click on the image to save it to their local computer.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 3

89

Loading the canvas with a data URL
To load the canvas with a data URL, we can extend the previous recipe by creating an
image object with the data URL and then drawing it on the canvas using our good friend
drawImage(). In this recipe, we'll make a simple Ajax call to get the data URL from a text
file and then use the URL to draw the image on the canvas. In the real world of course, you'll
probably be fetching the image data URL from local storage or by calling a data service.

Follow these steps to load a canvas drawing with a data URL:

How to do it...
1. Define the loadCanvas() function which takes a data URL as input, defines a

canvas context, creates a new image using the data URL, and then draws the image
onto the canvas once it has loaded:
function loadCanvas(dataURL){
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");

 // load image from data url
 var imageObj = new Image();
 imageObj.onload = function(){
 context.drawImage(this, 0, 0);
 };

 imageObj.src = dataURL;
}

2. Make an AJAX call to get a data URL stored on your server, and then call
loadCanvas() with the response text when the response is received:
window.onload = function(){
 // make ajax call to get image data url
 var request = new XMLHttpRequest();
 request.open("GET", "dataURL.txt", true);
 request.onreadystatechange = function(){
 if (request.readyState == 4) {
 if (request.status == 200) { // successful response
 loadCanvas(request.responseText);
 }
 }
 };
 request.send(null);
};

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Working with Images and Videos

90

3. Embed the canvas tag inside the body of the HTML document:
<canvas id="myCanvas" width="600" height="250" style="border:1px
solid black;">
</canvas>

How it works...
To get the image data URL from a web server, we can set up an AJAX call (Asynchronous
JavaScript and XML) to make a request to a web server and get the data URL as a response.
When we get a status code of 200, which means that the request and response was
successful, we can get the image data URL from request.responseText, and then pass
it to the loadCanvas() function. This function will then create a new image object, set its
source to the data URL, and then draw the image onto the canvas once it has loaded.

Creating a pixelated image focus
Looking for a fancy way to focus an image? How about a pixelated image focus? In this recipe,
we'll explore the art of image pixelation by looping through an algorithm that pixelates an
image less and less until it's completely focused.

WARNING: This recipe must be run on a web server due to security
constraints with the getImageData() method.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 3

91

Follow these steps to create a pixilation function that slowly focuses an image:

How to do it...
1. Define the focusImage() function which de-pixelates an image based on a

pixilation value:
function focusImage(canvas, context, imageObj, pixelation){
 var sourceWidth = imageObj.width;
 var sourceHeight = imageObj.height;
 var sourceX = canvas.width / 2 - sourceWidth / 2;
 var sourceY = canvas.height / 2 - sourceHeight / 2;
 var destX = sourceX;
 var destY = sourceY;

 var imageData = context.getImageData(sourceX, sourceY,
sourceWidth, sourceHeight);
 var data = imageData.data;

 for (var y = 0; y < sourceHeight; y += pixelation) {
 for (var x = 0; x < sourceWidth; x += pixelation) {
 // get the color components of the sample pixel
 var red = data[((sourceWidth * y) + x) * 4];
 var green = data[((sourceWidth * y) + x) * 4 + 1];
 var blue = data[((sourceWidth * y) + x) * 4 + 2];

 // overwrite pixels in a square below and to
 // the right of the sample pixel, whos width and
 // height are equal to the pixelation amount
 for (var n = 0; n < pixelation; n++) {
 for (var m = 0; m < pixelation; m++) {
 if (x + m < sourceWidth) {
 data[((sourceWidth * (y + n)) + (x + m)) *
4] = red;
 data[((sourceWidth * (y + n)) + (x + m)) *
4 + 1] = green;
 data[((sourceWidth * (y + n)) + (x + m)) *
4 + 2] = blue;
 }
 }
 }
 }
 }

 // overwrite original image
 context.putImageData(imageData, destX, destY);
}

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Working with Images and Videos

92

2. Define the canvas context, fps value that determines how fast or slow the image
focuses, the corresponding time interval, and the initial pixilation amount:
window.onload = function(){
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");
 var fps = 20; // frames / second
 var timeInterval = 1000 / fps; // milliseconds

 // define initial pixelation. The higher the value,
 // the more pixelated the image is. The image is
 // perfectly focused when pixelation = 1;
 var pixelation = 40;

3. Create a new image object, set the onload property to a function that creates a
timed loop that calls the focusImage() function and decrements the pixilation
value for each call until the image is focused, and then set the image source outside
of the onload definition:
 var imageObj = new Image();
 imageObj.onload = function(){
 var sourceWidth = imageObj.width;
 var sourceHeight = imageObj.height;
 var destX = canvas.width / 2 - sourceWidth / 2;
 var destY = canvas.height / 2 - sourceHeight / 2;

 var intervalId = setInterval(function(){
 context.drawImage(imageObj, destX, destY);

 if (pixelation < 1) {
 clearInterval(intervalId);
 }
 else {
 focusImage(canvas, context, imageObj, pixelation--
);
 }
 }, timeInterval);
 };
 imageObj.src = "jet_300x214.jpg";
};

4. Embed the canvas tag into the body of the HTML document:
<canvas id="myCanvas" width="600" height="250" style="border:1px
solid black;">
</canvas>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 3

93

How it works...
Before jumping into the pixelation algorithm, let's define pixelation. Pixelation of an image
occurs when the human eye can detect the individual pixels that make up the image. Old
school video game graphics and small images that have been enlarged are good examples of
pixilation. In layman terms, if we define pixilation as a condition in which the pixels that make
up the image are visible, this simply means that the pixels themselves are fairly large. In fact,
the larger the pixels are, the more pixelated the image becomes. We can use this observation
to create a pixilation algorithm.

To create an algorithm that pixelates an image, we can take color samples of the image and
then draw oversized pixels in its place. As pixels need to be square, we can construct pixel
sizes of 1 x 1 (standard pixel size), 2 x 2, 3 x 3, 4 x 4, and so on. The larger the pixels are, the
more pixelated the image will look.

Until now, our recipes have simply looped through all of the pixels in the data property and
converted them with a simple algorithm, without paying much attention to which pixels are
being updated. In this recipe, however, we'll need to inspect sample pixels by looking at
specific areas in the image based on x,y coordinates. We can use the following equations to
pick out the RGBA components of a pixel based on the x, y coordinates:

var red = data[((sourceWidth * y) + x) * 4];
var green = data[((sourceWidth * y) + x) * 4 + 1];
var blue = data[((sourceWidth * y) + x) * 4 + 2];

With these equations in hand, we can use setInterval() to render a series of pixelated
images over time, in which each successive pixelated image is less pixelated than the previous
image, until the pixilation value equals 0 and the image is restored to its original state.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

4
Mastering

Transformations

In this chapter, we will cover:

 f Translating the canvas context

 f Rotating the canvas context

 f Scaling the canvas context

 f Creating a mirror transform

 f Creating custom transforms

 f Shearing the canvas context

 f Handling multiple transforms with the state stack

 f Transforming a circle into an oval

 f Rotating an image

 f Drawing a simple logo and randomizing its position, rotation, and scale

Introduction
This chapter will reveal the power of canvas transformations, which can drastically simplify
complex drawings and provide new functionality that we wouldn't have had otherwise. Until
now, we've been positioning elements on the screen directly with x and y coordinates. This can
quickly become a problem if you've worked out the coordinates for each point of a complex
drawing, and then later decide that the entire drawing needs to be repositioned, rotated, or
scaled. Canvas transforms solve this problem by enabling the developer to translate, rotate,
and scale entire sections of the canvas without having to rework the coordinates of each point
that make up a drawing. In addition, canvas transforms also enable the developer to rotate
and scale images and text, which isn't possible without transforms. Let's get started!

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Mastering Transformations

96

Translating the canvas context
In this recipe, we'll learn how to perform the most basic and commonly used transformation
available with the HTML5 canvas API—translation. If you're unfamiliar with transformation
terminologies, "translation" is just a fancy way of saying "move". In this case, we'll be moving
the context to a new location on the canvas.

How to do it...
Follow these steps to draw a translated rectangle moved to the center of the canvas:

1. Define the canvas context and the dimensions for the rectangle:
window.onload = function(){
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");

 var rectWidth = 150;
 var rectHeight = 75;

2. Translate the context to the center of the canvas:
 // translate context to center of canvas
 context.translate(canvas.width / 2, canvas.height / 2);

3. Draw a rectangle whose center lies on the top-left corner of the translated
canvas context:
 context.fillStyle = "blue";
 context.fillRect(-rectWidth / 2, -rectHeight / 2, rectWidth,
rectHeight);
};

4. Embed the canvas tag inside the body of the HTML document:
<canvas id="myCanvas" width="600" height="250" style="border:1px
solid black;">
</canvas>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 4

97

How it works...
Here's how it works!

The idea behind HTML5 canvas transformations is to transform the canvas context in some
way and then draw onto the canvas. In this recipe, we've translated the canvas context such
that the top-left corner of the context has moved to the center of the canvas:

context.translate(tx,ty);

The tx parameter corresponds to the horizontal translation, and the ty parameter
corresponds to the vertical translation. Once the context has been transformed, we can
draw a rectangle centered on the top-left corner of the canvas context. The end result is a
translated rectangle that's been moved to the center of the canvas.

Rotating the canvas context
The next type of transformation available with the HTML5 canvas API, and quite arguably the
handiest, is the rotation transform. In this recipe, we'll first position the canvas context with a
translation transform, and then we'll rotate the context with rotate() method.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Mastering Transformations

98

How to do it...
Follow these steps to draw a rotated rectangle:

1. Define the canvas context and the dimensions for the rectangle:
window.onload = function(){
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");

 var rectWidth = 150;
 var rectHeight = 75;

2. Translate the canvas context and then rotate it by 45 degrees:
 // translate context to center of canvas
 context.translate(canvas.width / 2, canvas.height / 2);

 // rotate context 45 degrees clockwise
 context.rotate(Math.PI / 4);

3. Draw the rectangle:
 context.fillStyle = "blue";
 context.fillRect(-rectWidth / 2, -rectHeight / 2, rectWidth,
rectHeight);
};

4. Embed the canvas tag inside the body of the HTML document:
<canvas id="myCanvas" width="600" height="250" style="border:1px
solid black;">
</canvas>

How it works...
Here's how it works!

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 4

99

To position and rotate the rectangle, we can translate the canvas context to the center of the
canvas as we did in the previous recipe, and then we can rotate the canvas context using the
rotation transform, which rotates the context about the top-left corner of the context:

canvas.rotate(theta);

The parameter theta is in radians, and the transform rotates the context clockwise. Once the
context has been translated and rotated, we can then draw the rectangle centered on the
top-left corner of the context. The end result is a rotated rectangle centered on the canvas.

Notice that we've achieved this result by chaining two different transforms,
a translation and a rotation. Each of the three transformations provided by
the HTML5 canvas API apply a transformation matrix to the current state. For
example, if we applied three translations one after another that moved the
canvas context 10 pixels to the right, the net result would be a translation 30
pixels to the right.

If we had wanted to rotate the rectangle about a different point, say the bottom-right corner
of the rectangle, we could simply draw the bottom-right corner of the rectangle at the origin of
the canvas context.

Translations and rotations are the most common transformation chains used when creating
complex HTML5 canvas drawings. As we'll see in the next chapter, rotations are exceptionally
useful when animating shapes that spin about an axis.

See also...
 f Swinging a pendulum in Chapter 5

 f Animating mechanical gears in Chapter 5

 f Animating a clock in Chapter 5

Scaling the canvas context
In addition to translations and rotations, the HTML5 canvas API also provides us with a means
for scaling the canvas context. In this recipe, we'll scale down the height of the canvas context
using the scale() method.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Mastering Transformations

100

How to do it...
Follow these steps to draw a scaled rectangle:

1. Define the canvas context and the dimensions for the rectangle:
window.onload = function(){
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");

 var rectWidth = 150;
 var rectHeight = 75;

2. Translate the canvas context and then scale the canvas context height by 50%:
 // translate context to center of canvas
 context.translate(canvas.width / 2, canvas.height / 2);

 // scale down canvas height by half
 context.scale(1, 0.5);

3. Draw a rectangle whose center lies on the top-left corner of the canvas context:
 context.fillStyle = "blue";
 context.fillRect(-rectWidth / 2, -rectHeight / 2, rectWidth,
rectHeight);
};

4. Embed the canvas tag inside the body of the HTML document:
<canvas id="myCanvas" width="600" height="250" style="border:1px
solid black;">
</canvas>

How it works...
To scale the canvas context, we can simply use the scale transform:

context.scale(sx,sy);

In the context's default state, the sx and sy parameters are normalized to 1 and 1. As you
might expect, the sx parameter corresponds to the horizontal scale, and the sy parameter
corresponds to the vertical scale.

In this recipe, we've shrunk the vertical context by 50% by setting the sy parameter to a value
of 0.5. If we assign sy to a value greater than 1, on the other hand, the context will stretch
vertically. As we will see in the next recipe, if we assign negative values to either the sx or sy
values, we will end up inverting the canvas context either horizontally or vertically, creating a
mirror transform.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 4

101

See also...
 f Oscillating a bubble in Chapter 5

Creating a mirror transform
Another interesting use of the scale transformation is its ability to mirror the canvas context
vertically or horizontally. In this recipe, we'll mirror the canvas context horizontally, and then
write out some backwards text.

How to do it...
Follow these steps to write text backwards:

1. Define the canvas context:
window.onload = function(){
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");

2. Translate the canvas context and then flip the context horizontally using a
negative x value:
 // translate context to center of canvas
 context.translate(canvas.width / 2, canvas.height / 2);

 // flip context horizontally
 context.scale(-1, 1);

3. Write "Hello World!":
 context.font = "30pt Calibri";
 context.textAlign = "center";
 context.fillStyle = "blue";
 context.fillText("Hello World!", 0, 0);
};

4. Embed the canvas tag into the body of the HTML document:
<canvas id="myCanvas" width="600" height="250" style="border:1px
solid black;">
</canvas>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Mastering Transformations

102

How it works...
To create a mirror transform using the HTML5 canvas API, we can assign a negative value to
sx or sy when using the scale method of the canvas context:

context.scale(-sx,-sy);

In this recipe, we've translated the canvas context to the center of the canvas, and then
inverted the context horizontally by applying a –sx value with the scale() transform.

Creating a custom transform
If you're looking to perform a custom transformation other than a translation, scale, or
rotation, the HTML5 canvas API also provides a method which allows us to define a custom
transformation matrix that can be applied to the current context. In this recipe, we'll manually
create a translational transform to demonstrate how the transform() method works.

How to do it...
Follow these steps to perform a custom transform:

1. Define the canvas context and the dimensions for our rectangle:
window.onload = function(){
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");

 var rectWidth = 150;
 var rectHeight = 75;

2. Apply a custom transform by manually translating the canvas context:
 // translation matrix:
 // 1 0 tx
 // 0 1 ty
 // 0 0 1
 var tx = canvas.width / 2;
 var ty = canvas.height / 2;

 // apply custom transform
 context.transform(1, 0, 0, 1, tx, ty);

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 4

103

3. Draw the rectangle:
 context.fillStyle = "blue";
 context.fillRect(-rectWidth / 2, -rectHeight / 2, rectWidth,
rectHeight);
};

4. Embed the canvas element into the body of the HTML document:
<canvas id="myCanvas" width="600" height="250" style="border:1px
solid black;">
</canvas>

How it works...
In this recipe, we've created a custom translation transform by applying a custom
translation transformation matrix to the context state. A transformation matrix is simply a
2-dimensional matrix that can be used to transform the current matrix into a new one. Custom
transformations can be applied to the context state using the transform() method of the
canvas context:

context.transform(a,b,c,d,e,f);

Where the parameters a, b, c, d, e, and f correspond to the following components of a
transformation matrix:

Here, x' and y' are the new matrix x and y components after applying the transformation.
The transformation matrix for a translation transform looks as follows:

Where tx is the horizontal translation, and ty is the vertical translation.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Mastering Transformations

104

There's more...
In addition to the transform() method, which applies a transformation matrix to the current
context state, we can also set the transformation matrix using the setTransform() method
of the canvas context:

context.setTransform(a,b,c,d,e,f);

This method can be useful if you want to directly set the transformation matrix of the context
with a formulated transformation matrix, instead of obtaining the same result through a series
of transformations.

Shearing the canvas context
In this recipe, we'll use what we've learned from the transform() method of the canvas
context to create a custom shear transformation to skew the canvas context horizontally.

How to do it...
Follow these steps to draw a sheared rectangle:

1. Define the canvas context and the dimensions for the rectangle:
window.onload = function(){
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");

 var rectWidth = 150;
 var rectHeight = 75;

2. Translate the canvas context and then apply a custom shear transform to the context:
 // shear matrix:
 // 1 sx 0
 // sy 1 0
 // 0 0 1

 var sx = 0.75; // 0.75 horizontal shear
 var sy = 0; // no vertical shear

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 4

105

 // translate context to center of canvas
 context.translate(canvas.width / 2, canvas.height / 2);

 // apply custom transform
 context.transform(1, sy, sx, 1, 0, 0);

3. Draw the rectangle:
 context.fillStyle = "blue";
 context.fillRect(-rectWidth / 2, -rectHeight / 2, rectWidth,
rectHeight);
};

4. Embed the canvas element inside the body of the HTML document:
<canvas id="myCanvas" width="600" height="250" style="border:1px
solid black;">
</canvas>

How it works...
To shear the canvas context, we can apply the following transformation matrix:

We can use the transform() method with the following parameters:

context.transform(1,sy,sx,1,0,0);

The more we increase the value of sx, the greater the context is sheared horizontally. The
more we increase the value of sy, the greater the context is sheared vertically.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Mastering Transformations

106

Handling multiple transforms with the state
stack

Now that we have a good handle on transformations with the HTML5 canvas API, we're now in
a position to further explore the canvas state stack and see what it can do for us with respect
to transformations. In Chapter 2, Shape Drawing and Composites, we covered the state stack,
a very powerful yet sometimes overlooked property of the canvas API. Although the canvas
state stack can help with managing styling, it's most common usage is to save and restore
transformation states. In this recipe, we'll perform multiple transformations while saving the
canvas state between each transformation, and then draw a sequence of rectangles after
restoring each state to see the effects.

How to do it...
Follow these steps to construct a state stack with four different states and then draw a
rectangle after popping each state:

1. Define the canvas context and the dimensions for our rectangle:
window.onload = function(){
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");

 var rectWidth = 150;
 var rectHeight = 75;

2. Push the current transformation state, the default state, onto the state stack, and
translate the context:
 context.save(); // save state 1
 context.translate(canvas.width / 2, canvas.height / 2);

3. Push the current transformation state, the translated state, onto the stack, and rotate
the context:
 context.save(); // save state 2
 context.rotate(Math.PI / 4);

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 4

107

4. Push the current transformation state, the translated and rotated state, onto the
stack, and scale the context:
 context.save(); // save state 3
 context.scale(2, 2);

5. Draw a blue rectangle:
 // draw the rectangle
 context.fillStyle = "blue";
 context.fillRect(-rectWidth / 2, -rectHeight / 2, rectWidth,
rectHeight);

6. Restore the previous state from the state stack by popping off the current state, and
then draw a red rectangle:
 context.restore(); // restore state 3
 context.fillStyle = "red";
 context.fillRect(-rectWidth / 2, -rectHeight / 2, rectWidth,
rectHeight);

7. Restore the previous state from the state stack by popping off the current state, and
then draw a yellow rectangle:
 context.restore(); // restore state 2
 context.fillStyle = "yellow";
 context.fillRect(-rectWidth / 2, -rectHeight / 2, rectWidth,
rectHeight);

8. Restore the previous state from the state stack by popping off the current state, and
then draw a green rectangle:
 context.restore(); // restore state 1
 context.fillStyle = "green";
 context.fillRect(-rectWidth / 2, -rectHeight / 2, rectWidth,
rectHeight);
};

9. Embed the canvas tag into the body of the HTML document:
<canvas id="myCanvas" width="600" height="250" style="border:1px
solid black;">
</canvas>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Mastering Transformations

108

How it works...
This recipe performs a series of three transformations, a translation, a rotation, and a scale
transform, while pushing each transformation state onto the state stack with the save()
operation. When the blue rectangle is drawn, it's centered, rotated, and scaled. At this point,
the state stack has four states (from bottom to top):

1. Default state

2. Translated state

3. Translated and rotated state

4. Current state (translated, rotated, and scaled state)

After the blue rectangle is drawn, we use the restore() method to pop off the top state in
the state stack, and restore the canvas context to the third state, in which the canvas context
is translated and rotated. The red rectangle is drawn, and you can see that it's been translated
and rotated, but not scaled. Next, we use the restore() method once again to pop off the
top state in the state stack, and restore the second state, in which the canvas context is
merely translated. We then draw a yellow rectangle, which is indeed just translated. Finally,
we call the restore() method one last time to pop off the top state in the state stack, and
return us to the default state. When we draw the green rectangle, it appears at the origin,
because no transformation has been applied.

Using the state stack, we can jump between transformation states so
that we don't have to constantly reset the state back to its default state
and then translate each element separately. In addition, we can also use
save-restore combinations to encapsulate transformations for a small
piece of code without affecting shapes drawn afterwards.

Transforming a circle into an oval
One of the most common applications of the scale transform is to stretch a circle horizontally
or vertically to create an oval. In this recipe, we'll create an oval by translating the canvas
context, stretching it horizontally, and then drawing a circle.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 4

109

How to do it...
Follow these steps to draw an oval:

1. Define a canvas context:
window.onload = function(){
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");

2. Push the current transformation state, which is the default state, onto the
state stack:
 context.save(); // save state

3. Define the dimensions of the circle:
 var centerX = 0;
 var centerY = 0;
 var radius = 50;

4. Translate the canvas context to the center of the canvas, and then scale the context
width to stretch it outwards:
 context.translate(canvas.width / 2, canvas.height / 2);
 context.scale(2, 1);

5. Draw the circle:
 context.beginPath();
 context.arc(centerX, centerY, radius, 0, 2 * Math.PI, false);

6. Restore the previous transformation state, which was the default state, and also pop
off the current transformation state from the state stack:
 context.restore(); // restore original state

7. Apply styling to the oval:
 context.fillStyle = "#8ED6FF";
 context.fill();
 context.lineWidth = 5;
 context.strokeStyle = "black";
 context.stroke();
};

8. Embed the canvas tag into the body of the HTML document:
<canvas id="myCanvas" width="600" height="250" style="border:1px
solid black;">
</canvas>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Mastering Transformations

110

How it works...
To draw an oval using the HTML5 canvas API, we can simply translate the context to its
desired position with the translate() method, stretch the context either vertically or
horizontally with the scale() method, and then draw the circle. In this recipe, we've
stretched the canvas context horizontally to create an oval that's twice as wide as it is tall.

As we want to apply a stroke style to the oval, we can use a save-restore combination to
encapsulate the transformations used to create the oval so that they don't affect the styling of
the oval afterwards.

If you try this recipe out for yourself, and you remove the save() and restore() methods,
you'll find that the thickness of the line at the top and bottom of the oval is 5 pixels, and the
thickness of the line on the sides of the oval is 10 pixels, because the stroke style has also
been stretched horizontally along with the circle.

See also...
 f Oscillating a bubble in Chapter 5

Rotating an image
In this recipe, we'll rotate an image by translating and rotating the canvas context, and then
drawing an image on the transformed context.

How to do it...
Follow these steps to rotate an image:

1. Define a canvas context:
window.onload = function(){
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 4

111

2. Create a new image object and set its onload property:
 var imageObj = new Image();
 imageObj.onload = function(){

3. When the image loads, translate the context to the center of the canvas, rotate the
context by 45 degrees counter-clockwise, and then draw the image:
 // translate context to center of canvas
 context.translate(canvas.width / 2, canvas.height / 2);

 // rotate context by 45 degrees counter clockwise
 context.rotate(-1 * Math.PI / 4);
 context.drawImage(this, -1 * imageObj.width / 2, -1 *
imageObj.height / 2);
 };

4. Set the source of the image:
 imageObj.src = "jet_300x214.jpg";
};

5. Embed the canvas tag inside the body of the HTML document:
<canvas id="myCanvas" width="600" height="250" style="border:1px
solid black;">
</canvas>

How it works...
To rotate an image, we can simply position the canvas context with the translate()
method, rotate the context with the rotate() method, and then draw the image with the
drawImage() method.

There's more...
It's also worth noting that in addition to rotating an image, another common transform used
with images is the mirror transform. To mirror an image, we could have translated the context
to the desired position, inverted the context horizontally with scale(-1,1) or inverted the
context vertically with scale(1,-1), and then drawn the image using drawImage().

See also...
 f Creating a mirror transform recipe

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Mastering Transformations

112

Drawing a simple logo and randomizing its
position, rotation, and scale

The purpose of this recipe is to demonstrate the practical use of transformations by
transforming a complex shape. In this case, our complex shape will be a logo, which is just
some text with a couple of wavy lines below it. Transformations are exceedingly useful when
we want to translate, rotate, or scale complex shapes. It's very common for developers to
create functions that draw something complicated at the origin, and then use transforms to
move it somewhere on the screen. In this recipe, we'll draw five randomly positioned, rotated,
and scaled logos on the screen.

How to do it...
Follow these steps to draw five randomly positioned, rotated, and scaled logos:

1. Define the drawLogo() function which draws a simple logo by writing out text and
drawing two waves below it:
function drawLogo(context){
 // draw Hello Logo! text
 context.beginPath();
 context.font = "10pt Calibri";
 context.textAlign = "center";
 context.textBaseline = "middle";
 context.fillStyle = "blue";
 context.fillText("Hello Logo!", 0, 0);
 context.closePath();

 // define style for both waves
 context.lineWidth = 2;
 context.strokeStyle = "blue";

 // draw top wave

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 4

113

 context.beginPath();
 context.moveTo(-30, 10);
 context.bezierCurveTo(-5, 5, 5, 15, 30, 10);
 context.stroke();

 // draw bottom wave
 context.beginPath();
 context.moveTo(-30, 15);
 context.bezierCurveTo(-5, 10, 5, 20, 30, 15);
 context.stroke();
}

2. Define the getRandomX() function that returns a random X value between 0 and
the canvas width:
function getRandomX(canvas){
 return Math.round(Math.random() * canvas.width);
}

3. Define the getRandomY() function that returns a random Y value between 0 and
the canvas height:
function getRandomY(canvas){
 return Math.round(Math.random() * canvas.height);
}

4. Define the getRandomSize() function that returns a random size between 0 and 5:
function getRandomSize(){
 return Math.round(Math.random() * 5);
}

5. Define the getRandomAngle() function that returns a random angle between 0
and 2π:
function getRandomAngle(){
 return Math.random() * Math.PI * 2;
}

6. Define the canvas context:
window.onload = function(){
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");

7. Create a loop that draws five randomly positioned, rotated, and scaled logos:
 // draw 5 randomly transformed logos
 for (var n = 0; n < 5; n++) {
 context.save();

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Mastering Transformations

114

 // translate to random position
 context.translate(getRandomX(canvas), getRandomY(canvas));

 // rotate by random angle
 context.rotate(getRandomAngle());

 // scale by random size
 var randSize = getRandomSize();
 context.scale(randSize, randSize);

 // draw logo
 drawLogo(context);
 context.restore();
 }
};

8. Embed the canvas tag inside the body of the HTML document:
<canvas id="myCanvas" width="600" height="250" style="border:1px
solid black;">
</canvas>

How it works...
Firstly, to draw our simple logo, we can create a function called drawLogo() that writes out
the text Hello Logo! at the origin and then draws two wavy lines using the bezierCurveTo()
method for each wave.

Next, to draw five randomly positioned, rotated, and scaled logos, we can create a few utility
functions that return random values for the position, rotation, and scale, and then create
a for loop that uses a save-restore combination for each iteration to induce state scope,
perform the three transformations, and then draw the logo with the drawLogo() method. If
you try out this recipe for yourself, you'll see that each of the five logos are positioned, rotated,
and scaled differently each time you refresh the screen.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

5
Bringing the Canvas

to Life with Animation

In this chapter, we will cover:

 f Creating an Animation class

 f Creating a linear motion

 f Creating an acceleration

 f Creating an oscillation

 f Oscillating a bubble

 f Swinging a pendulum

 f Animating mechanical gears

 f Animating a clock

 f Simulating particle physics

 f Creating microscopic life forms

 f Stressing the canvas and displaying the FPS

Introduction
In the first half of this book, we covered the fundamental capabilities of the HTML5 canvas,
including path drawing, shape drawing, working with images and video, and transformations.
This chapter focuses on animation, which is not a part of the HTML5 canvas API. Although
the API doesn't provide us with animation functionality, we can certainly create an Animation
class that can be used to support animation projects. We'll cover the essential types of motion
including linear motion, accelerations, and oscillations, and we'll use what we've learned to
create some really awesome demos. Let's get started!

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Bringing the Canvas to Life with Animation

116

Creating an Animation class
As the HTML5 canvas API doesn't provide methods for animation, we'll have to create our own
Animation class for handling an animation stage. This recipe will cover the basics of animation
and provide an Animation class for all of our future animation projects.

Getting ready...
As browsers and computer hardware are not created equally, it's important to understand
that the optimal FPS (Frames Per Second) value for each animation varies depending on the
browser, the computer's hardware, and the animation's algorithm. Therefore, it would be quite
difficult for a developer to figure out what the best FPS value is for each user. Fortunately,
browsers are now implementing a requestAnimationFrame method of the window object
which can automatically determine the best FPS for animations (thank goodness). As we'll see
later in this chapter, a typical FPS value for a smooth animation is somewhere between 40
and 60 frames per second.

Take a look at the preceding diagram. To create an animation, we first need to initialize the
objects on our stage. We can refer to the canvas as a "stage" because the objects in the
canvas that will be moving can be seen as "actors" on the stage. Moreover, the stage analogy
provides us with a sense that stuff is happening in the canvas, instead of just sitting there.
Once our objects are initialized, we can start an animation loop that updates the stage, clears
the canvas, redraws the stage, and then request a new animation frame.

As this behavior can define any type of animation, it makes a lot of sense for us to create an
Animation class that handles these steps for us under the covers.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 5

117

How to do it...
Follow these steps to create an Animation class which will support the animation recipes in
this chapter:

1. Define the Animation constructor and create a cross-browser
requestAnimationFrame method:
var Animation = function(canvasId){
 this.canvas = document.getElementById(canvasId);
 this.context = this.canvas.getContext("2d");
 this.t = 0;
 this.timeInterval = 0;
 this.startTime = 0;
 this.lastTime = 0;
 this.frame = 0;
 this.animating = false;

 // provided by Paul Irish
 window.requestAnimFrame = (function(callback){
 return window.requestAnimationFrame ||
 window.webkitRequestAnimationFrame ||
 window.mozRequestAnimationFrame ||
 window.oRequestAnimationFrame ||
 window.msRequestAnimationFrame ||
 function(callback){
 window.setTimeout(callback, 1000 / 60);
 };
 })();
};

2. Define the getContext() method:
Animation.prototype.getContext = function(){
 return this.context;
};

3. Define the getCanvas() method:
Animation.prototype.getCanvas = function(){
 return this.canvas;
};

4. Define the clear() method which clears the canvas:
Animation.prototype.clear = function(){
 this.context.clearRect(0, 0, this.canvas.width, this.canvas.
height);
};

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Bringing the Canvas to Life with Animation

118

5. Define the setStage() method that sets the stage() function. This function will
execute for each animation frame:
Animation.prototype.setStage = function(func){
 this.stage = func;
};

6. Define the isAnimating() method:
Animation.prototype.isAnimating = function(){
 return this.animating;
};

7. Define the getFrame() method that returns the frame number:
Animation.prototype.getFrame = function(){
 return this.frame;
};

8. Define the start() method that starts the animation:
Animation.prototype.start = function(){
 this.animating = true;
 var date = new Date();
 this.startTime = date.getTime();
 this.lastTime = this.startTime;

 if (this.stage !== undefined) {
 this.stage();
 }

 this.animationLoop();
};

9. Define the stop() method that stops the animation:
Animation.prototype.stop = function(){
 this.animating = false;
};

10. Define the getTimeInterval() method that returns the time in milliseconds
between the last frame and the current frame:
Animation.prototype.getTimeInterval = function(){
 return this.timeInterval;
};

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 5

119

11. Define the getTime() method that returns the time in milliseconds that the
animation has been running:
Animation.prototype.getTime = function(){
 return this.t;
};

12. Define the getFps() method that returns the current FPS of the animation:
Animation.prototype.getFps = function(){
 return this.timeInterval > 0 ? 1000 / this.timeInterval : 0;
};

13. Define the animationLoop() method that handles the animation loop:
Animation.prototype.animationLoop = function(){
 var that = this;

 this.frame++;
 var date = new Date();
 var thisTime = date.getTime();
 this.timeInterval = thisTime - this.lastTime;
 this.t += this.timeInterval;
 this.lastTime = thisTime;

 if (this.stage !== undefined) {
 this.stage();
 }

 if (this.animating) {
 requestAnimFrame(function(){
 that.animationLoop();
 });
 }
};

How it works...
The idea of the Animation class is to simplify our animation projects by encapsulating and
hiding all of the logic that animations require, such as providing the time interval between
frames, handling the animation loop, and clearing the canvas.

The key to the Animation class is inside the Animation constructor, where we set the
requestAnimFrame method of the window object. This method acts as a cross-browser
implementation of the requestAnimationFrame, which allows the user's browser to decide
what the optimal FPS of the animation should be. The FPS is completely dynamic and will
change throughout the animation.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Bringing the Canvas to Life with Animation

120

Our Animation class also provides some handy methods such as getTimeInterval(),
which returns the number of milliseconds since the last animation frame, the getTime()
method which returns the number of milliseconds the animation has ran since it was started,
a start() method which starts the animation, a stop() method which stops the animation,
and a clear() method which clears the canvas.

Now that we have a working Animation class ready for prime time, the rest of the animations
in this chapter, and your future animation projects as well, will be a piece of cake.

Creating a linear motion
In this recipe, we'll try out our Animation class by creating a simple linear motion animation
by moving a box from the left of the canvas to the right of the canvas:

How to do it...
Follow these steps to move a box from one side of the canvas to the other:

1. Link to the Animation class:
<head>
 <script src="animation.js">
 </script>

2. Instantiate an Animation object and get the canvas context:
 <script>
 window.onload = function(){
 var anim = new Animation("myCanvas");
 var canvas = anim.getCanvas();
 var context = anim.getContext();

3. Define the box's linear speed and create a box object that contains the box's position
and size:
 var linearSpeed = 100; // pixels / second
 var box = {
 x: 0,
 y: canvas.height / 2 - 25,
 width: 100,
 height: 50
 };

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 5

121

4. Set the stage() function, which updates the box's position, clears the canvas, and
draws the box:
 anim.setStage(function(){
 // update
 var linearDistEachFrame = linearSpeed * this.
getTimeInterval() / 1000;

 if (box.x < canvas.width - box.width) {
 box.x += linearDistEachFrame;
 }
 else {
 anim.stop();
 }

 // clear
 this.clear();

 // draw
 context.beginPath();
 context.fillStyle = "blue";
 context.fillRect(box.x, box.y, box.width, box.height);
 });

5. Start the animation:
 anim.start();
 };
 </script>
</head>

6. Embed the canvas inside the body of the HTML document:
<body>
 <canvas id="myCanvas" width="600" height="250"
style="border:1px solid black;">
 </canvas>

</body>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Bringing the Canvas to Life with Animation

122

How it works...
To create a simple linear motion, first we need to instantiate a new Animation object, and
then get the canvas and context. Next, we can define the speed of the box, which for this
recipe we've set to 100 pixels / second, and we can create a box object that contains the
box's position and size.

Now that our box has been initialized, we can define the stage() function which will be
executed within the animation loop. For each animation loop, we can update the position of
the box by first calculating the distance that the box moved between the last frame and the
current frame, and then update the box's x position by adding the distance that it travelled.
Once the box reaches the edge of the canvas, we can stop the animation by calling stop().

Finally, once the stage() function has been defined, we can start the animation with the
start() method.

See also...
 f Drawing a rectangle in Chapter 2

Creating acceleration
Now that we have a handle on the basics of animation, let's try something a little bit more
complex by accelerating a box downwards due to the force of gravity.

How to do it...
Follow these steps to draw a box at the top of the canvas which falls downward due to the
force of gravity:

1. Link to the Animation class:
<head>
 <script src="animation.js">
 </script>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 5

123

2. Instantiate an Animation object and get the canvas context:
 <script>
 window.onload = function(){
 var anim = new Animation("myCanvas");
 var canvas = anim.getCanvas();
 var context = anim.getContext();

3. Define gravity and create a box object that contains the box's position, x and y
velocity, and size:
 var gravity = 2; // pixels / second^2
 var box = {
 x: canvas.width / 2 - 50,
 y: 0,
 vx: 0,
 vy: 0,
 width: 100,
 height: 50
 };

4. Set the stage() function which updates the box, clears the canvas, and draws
the box:
 anim.setStage(function(){
 // update
 if (this.getTime() > 1000) {
 var speedIncrementEachFrame = gravity * anim.
getTimeInterval() / 1000; // pixels / second
 box.vy += speedIncrementEachFrame;
 box.y += box.vy * this.getTimeInterval();

 if (box.y > canvas.height - box.height) {
 box.y = canvas.height - box.height;
 this.stop();
 }
 }

 // clear
 this.clear();

 // draw
 context.beginPath();
 context.fillStyle = "blue";
 context.fillRect(box.x, box.y, box.width, box.
height);
 });

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Bringing the Canvas to Life with Animation

124

5. Start the animation:
 anim.start();
 };
 </script>
</head>

6. Embed the canvas inside the body of the HTML document:
<body>
 <canvas id="myCanvas" width="600" height="250"
style="border:1px solid black;">
 </canvas>
</body>

How it works...
To create an acceleration, we can increment the velocity of the box, update the position of the
box with the new velocity, clear the canvas, and then draw the box.

We can calculate the new y velocity of the box for each frame by adding the change in velocity
due to gravity, which is set to 2 pixels / second^2:

var speedIncrementEachFrame = gravity * anim.getTimeInterval() / 1000;
// pixels / second
box.vy += speedIncrementEachFrame;

Next, we can calculate the new y position of the box by adding the distance that it travelled
since the last frame:

box.y += box.vy * this.getTimeInterval();

In other words, the change in y position is equal to the box's velocity multiplied by the change
in time (the time interval).

Finally, we can add a condition that checks to see if the box has reached the bottom of the
canvas, and if it has, we can then stop the animation with the stop() method.

Accelerations are particularly useful when applying forces to an object
or particle. Some examples of applied forces include gravity, air
resistance, damping, floor friction, and electromagnetic forces. For really
intensive animations that require a lot of physics, you might consider
looking for an open source vector library to help handle velocities and
accelerations in both the x and y direction.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 5

125

See also...
 f Drawing a rectangle in Chapter 2

Creating oscillation
In this recipe, we'll explore the third major type of motion—oscillation. Some good examples of
oscillations are a bouncing weight attached to a spring, an oscillating bubble, or a pendulum
that swings back and forth.

How to do it...
Follow these steps to oscillate a box back and forth:

1. Link to the Animation class:
<head>
 <script src="animation.js">
 </script>

2. Instantiate an Animation object and get the canvas context:
 <script>
 window.onload = function(){
 var anim = new Animation("myCanvas");
 var canvas = anim.getCanvas();
 var context = anim.getContext();

3. Create a box object that contains the box's position and size:
 var box = {
 x: 250,
 y: canvas.height / 2 - 25,
 width: 100,
 height: 50
 };

4. Define the parameters required for the harmonic oscillation equation:
 var centerX = canvas.width / 2 - box.width / 2;
 var amplitude = 150; // pixels
 var period = 2000; // ms

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Bringing the Canvas to Life with Animation

126

5. Set the stage() function which updates the box's position based on the harmonic
oscillation equation, clears the canvas, and then draws the box:
 anim.setStage(function(){
 // update
 box.x = amplitude * Math.sin(anim.getTime() * 2 * Math.PI
/ period) + centerX;

 // clear
 this.clear();

 // draw
 context.beginPath();
 context.rect(box.x, box.y, box.width, box.height);
 context.fillStyle = "blue";
 context.fill();
 });

6. Start the animation:
 anim.start();
 };
 </script>
</head>

7. Embed the canvas inside the body of the HTML document:
<body>
 <canvas id="myCanvas" width="600" height="250"
style="border:1px solid black;">
 </canvas>
</body>

How it works...
Once the page loads, we can instantiate a new Animation object and then get the canvas
and context.

Next, we can create a box object which defines the box's position and size, and then define
the variables required for the equation of harmonic oscillation:

x(t) = A * sin (t * 2π / T + Φ) + x0

For this recipe, we've set the amplitude A to 150, the period T to 2 seconds, and the offset x0
and the phase difference Φ to 0.

For each animation frame, we can leverage the equation for harmonic oscillation to update
the box's position, clear the canvas, and then draw the box using the rect() method.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 5

127

Finally, we can start the animation using the start() method.

See also...
 f Drawing a rectangle in Chapter 2

Oscillating a bubble
In this recipe, we'll create a life-like oscillating bubble using the principles of harmonic
oscillation and canvas transformations.

How to do it...
Follow these steps to create a life-like oscillating bubble floating in the air:

1. Link to the Animation class:
<head>
 <script src="animation.js">
 </script>

2. Instantiate an Animation object and get the canvas context:
 <script>
 window.onload = function(){
 // instantiate new animation object
 var anim = new Animation("myCanvas");
 var context = anim.getContext();
 var canvas = anim.getCanvas();

3. Set the stage() function which updates the width and height scale of the bubble,
clears the canvas, scales the canvas context, and then draws the bubble:
 anim.setStage(function(){
 // update
 var widthScale = Math.sin(this.getTime() / 200) *
0.1 + 0.9;

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Bringing the Canvas to Life with Animation

128

 var heightScale = -1 * Math.sin(this.getTime() /
200) * 0.1 + 0.9;

 // clear
 this.clear();

 //draw
 context.beginPath();
 context.save();
 context.translate(canvas.width / 2, canvas.height
/ 2);
 context.scale(widthScale, heightScale);
 context.arc(0, 0, 65, 0, 2 * Math.PI, false);
 context.restore();
 context.fillStyle = "#8ED6FF";
 context.fill();
 context.lineWidth = 2;
 context.strokeStyle = "#555";
 context.stroke();

 context.beginPath();
 context.save();
 context.translate(canvas.width / 2, canvas.height
/ 2);
 context.scale(widthScale, heightScale);
 context.arc(-30, -30, 15, 0, 2 * Math.PI, false);
 context.restore();
 context.fillStyle = "white";
 context.fill();
 });

4. Start the animation:
 anim.start();
 };
 </script>
</head>

5. Embed the canvas tag inside the body of the HTML document:
<body>
 <canvas id="myCanvas" width="600" height="250"
style="border:1px solid black;">
 </canvas>
</body>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 5

129

How it works...
Before we talk about oscillating a bubble, it's a good idea to first cover how we can use canvas
transformations to stretch the bubble in both the x and y direction. To draw a bubble that has
been stretched horizontally, we can translate the context to the center of the canvas, scale
the context horizontally, and then draw a bubble. To draw a bubble that has been stretched
vertically, we can translate it to the center of the canvas, scale the context vertically, and then
draw the bubble.

In order to oscillate the bubble, we need to alternate which direction the canvas is scaled in
such a way that the horizontal scale and the vertical scale always equals a constant, which in
our case is 1.8, so that the volume of the bubble remains constant. Once this relationship is
in place, we can use the equation of harmonic oscillation to oscillate both the x and y scale of
the bubble.

When the page first loads, we can instantiate a new Animation object and get the canvas
and context. Next, we can set the stage() function which is responsible for updating the
bubble, clearing the canvas, and then drawing the bubble for each animation frame. To
update the bubble for each frame, we can calculate the horizontal and vertical scale of the
bubble by using the equation of harmonic oscillation. Next, we can clear the canvas, and then
draw the bubble using the arc() method.

Finally, once the stage() function has been set, we can start the animation with the
start() method.

See also...
 f Drawing a circle in Chapter 2

 f Scaling the canvas context in Chapter 4

 f Transforming a circle into an oval in Chapter 4

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Bringing the Canvas to Life with Animation

130

Swinging a pendulum
Unlike the bubble recipe, whose width and height oscillate as a function of time, in this recipe
we'll create a pendulum whose angle oscillates as a function of time.

How to do it...
Follow these steps to swing a pendulum back and forth:

1. Link to the Animation class:
<head>
 <script src="animation.js">
 </script>

2. Instantiate a new Animation object and get the canvas context:
 <script>
 window.onload = function(){
 var anim = new Animation("myCanvas");
 var canvas = anim.getCanvas();
 var context = anim.getContext();

3. Define the properties of the pendulum:
 var amplitude = Math.PI / 4; // 45 degrees
 var period = 4000; // ms
 var theta = 0;
 var pendulumLength = 250;
 var pendulumWidth = 10;
 var rotationPointX = canvas.width / 2;
 var rotationPointY = 20;

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 5

131

4. Set the stage() function which updates the angle of the pendulum, clears the
canvas, and then draws the pendulum:
 anim.setStage(function(){
 // update
 theta = (amplitude * Math.sin((2 * Math.PI * this.
getTime()) / period)) + Math.PI / 2;

 // clear
 this.clear();

 // draw top circle
 context.beginPath();
 context.arc(rotationPointX, rotationPointY, 15, 0,
2 * Math.PI, false);
 context.fillStyle = "#888";
 context.fill();

 // draw top inner circle
 context.beginPath();
 context.arc(rotationPointX, rotationPointY, 10, 0,
2 * Math.PI, false);
 context.fillStyle = "black";
 context.fill();

 // draw shaft
 context.beginPath();
 var endPointX = rotationPointX + (pendulumLength *
Math.cos(theta));
 var endPointY = rotationPointY + (pendulumLength *
Math.sin(theta));
 context.beginPath();
 context.moveTo(rotationPointX, rotationPointY);
 context.lineTo(endPointX, endPointY);
 context.lineWidth = pendulumWidth;
 context.lineCap = "round";
 context.strokeStyle = "#555";
 context.stroke();

 // draw bottom circle
 context.beginPath();
 context.arc(endPointX, endPointY, 40, 0, 2 * Math.
PI, false);
 var grd = context.createLinearGradient(endPointX -
50, endPointY - 50, endPointX + 50, endPointY + 50);

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Bringing the Canvas to Life with Animation

132

 grd.addColorStop(0, "#444");
 grd.addColorStop(0.5, "white");
 grd.addColorStop(1, "#444");
 context.fillStyle = grd;
 context.fill();
 });

5. Start the animation:
 anim.start();
 };
 </script>
</head>

6. Embed the canvas inside the body of the HTML document:
<body>
 <canvas id="myCanvas" width="600" height="330"
style="border:1px solid black;">
 </canvas>
</body>

How it works...
When the page loads, we can instantiate a new Animation object and then get the canvas and
context. Next, we can define the properties of our pendulum, including the angular amplitude,
the period, the initial angle theta, the pendulum length, width, and the center of rotation.

Once our pendulum has been initialized, we can set the stage() function which will update
the pendulum angle with the equation of harmonic oscillation, clear the canvas, and then
immediately redraw the pendulum.

We can create a pendulum by drawing a couple of circles at the rotation point, drawing a thick
line from the rotation point to the weight of the pendulum to form the shaft, and then drawing
a big circle at the end of the line that has a nice diagonal gray gradient to create the illusion of
a polished surface.

Once the stage() function has been set, we can start the animation with the
start() method.

See also...
 f Drawing a line in Chapter 1

 f Drawing a circle in Chapter 2

 f Working with custom shapes and fill styles in Chapter 2

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 5

133

Animating mechanical gears
For the mechanics and engineers out there, this one's for you. In this recipe, we'll create a
system of interconnected rotating gears.

How to do it...
Follow these steps to animate a system of interconnected gears:

1. Link to the Animation class:
<head>
 <script src="animation.js">
 </script>

2. Define the constructor for the Gear class:
 <script>
 function Gear(config){
 this.x = config.x;
 this.y = config.y;
 this.outerRadius = config.outerRadius;
 this.innerRadius = config.innerRadius;
 this.holeRadius = config.holeRadius;
 this.numTeeth = config.numTeeth;
 this.theta = config.theta;
 this.thetaSpeed = config.thetaSpeed;
 this.lightColor = config.lightColor;
 this.darkColor = config.darkColor;
 this.clockwise = config.clockwise;
 this.midRadius = config.outerRadius - 10;
 }

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Bringing the Canvas to Life with Animation

134

3. Define the draw method of the Gear class which draws a gear object:
 Gear.prototype.draw = function(context){
 context.save();
 context.translate(this.x, this.y);
 context.rotate(this.theta);

 // draw gear teeth
 context.beginPath();
 // we can set the lineJoin property to bevel so that
the tips
 // of the gear teeth are flat and don't come to a
sharp point
 context.lineJoin = "bevel";

 // loop through the number of points to create the
gear shape
 var numPoints = this.numTeeth * 2;
 for (var n = 0; n < numPoints; n++) {
 var radius = null;

 // draw tip of teeth on even iterations
 if (n % 2 == 0) {
 radius = this.outerRadius;
 }
 // draw teeth connection which lies somewhere
between
 // the gear center and gear radius
 else {
 radius = this.innerRadius;
 }

 var theta = ((Math.PI * 2) / numPoints) * (n + 1);
 var x = (radius * Math.sin(theta));
 var y = (radius * Math.cos(theta));

 // if first iteration, use moveTo() to position
 // the drawing cursor
 if (n == 0) {
 context.moveTo(x, y);
 }
 // if any other iteration, use lineTo() to connect
sub paths
 else {
 context.lineTo(x, y);

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 5

135

 }
 }

 context.closePath();

 // define the line width and stroke color
 context.lineWidth = 5;
 context.strokeStyle = this.darkColor;
 context.stroke();

 // draw gear body
 context.beginPath();
 context.arc(0, 0, this.midRadius, 0, 2 * Math.PI,
false);

 // create a linear gradient
 var grd = context.createLinearGradient(-1 * this.
outerRadius / 2, -1 * this.outerRadius / 2, this.outerRadius / 2,
this.outerRadius / 2);
 grd.addColorStop(0, this.lightColor);
 grd.addColorStop(1, this.darkColor);
 context.fillStyle = grd;
 context.fill();
 context.lineWidth = 5;
 context.strokeStyle = this.darkColor;
 context.stroke();

 // draw gear hole
 context.beginPath();
 context.arc(0, 0, this.holeRadius, 0, 2 * Math.PI,
false);
 context.fillStyle = "white";
 context.fill();
 context.strokeStyle = this.darkColor;
 context.stroke();
 context.restore();
 };

4. Instantiate an Animation object and get the canvas context:
 window.onload = function(){
 var anim = new Animation("myCanvas");
 var canvas = anim.getCanvas();
 var context = anim.getContext();

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Bringing the Canvas to Life with Animation

136

5. Build an array of gear objects:
 var gears = [];

 // add blue gear
 gears.push(new Gear({
 x: 270,
 y: 105,
 outerRadius: 90,
 innerRadius: 50,
 holeRadius: 10,
 numTeeth: 24,
 theta: 0,
 thetaSpeed: 1 / 1000,
 lightColor: "#B1CCFF",
 darkColor: "#3959CC",
 clockwise: false
 }));

 // add red gear
 gears.push(new Gear({
 x: 372,
 y: 190,
 outerRadius: 50,
 innerRadius: 15,
 holeRadius: 10,
 numTeeth: 12,
 theta: 0.14,
 thetaSpeed: 2 / 1000,
 lightColor: "#FF9E9D",
 darkColor: "#AD0825",
 clockwise: true
 }));

 // add orange gear
 gears.push(new Gear({
 x: 422,
 y: 142,
 outerRadius: 28,
 innerRadius: 5,
 holeRadius: 7,
 numTeeth: 6,
 theta: 0.35,
 thetaSpeed: 4 / 1000,
 lightColor: "#FFDD87",
 darkColor: "#D25D00",
 clockwise: false
 }));

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 5

137

6. Set the stage() function which updates the rotation of each gear, clears the canvas,
and then draws the gears:
 anim.setStage(function(){
 // update
 for (var i = 0; i < gears.length; i++) {
 var gear = gears[i];
 var thetaIncrement = gear.thetaSpeed * this.
getTimeInterval();
 gear.theta += gear.clockwise ? thetaIncrement
: -1 * thetaIncrement;
 }

 // clear
 this.clear();

 // draw
 for (var i = 0; i < gears.length; i++) {
 gears[i].draw(context);
 }
 });

7. Start the animation:
 anim.start();
 };
 </script>
</head>

8. Embed the canvas inside the body of the HTML document:
<body>
 <canvas id="myCanvas" width="600" height="250"
style="border:1px solid black;">
 </canvas>
</body>

How it works...
To create a system of rotating gears, we can reuse the gear drawing procedure from Chapter 2
and create a Gear class that has some additional properties such as number of teeth, color,
theta, and theta speed. theta defines the angular position of the gear and thetaSpeed
defines the angular speed of the gear. We can also add a clockwise property to the Gear
class that defines the direction of the gear rotation.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Bringing the Canvas to Life with Animation

138

Once the page loads, we can instantiate a new Animation object and get the canvas and
context. Next, we can initialize some gears by instantiating Gear objects and pushing them
onto the gears array. Now that our stage is initialized, we can set the stage() function which
will update the angle of each gear, clear the canvas, and then draw each of the gears using
the draw() method of the Gear class.

Now that the stage() function has been set, we can start the animation with the
start() method.

See also...
 f Drawing a circle in Chapter 2

 f Creating patterns with loops: drawing a gear in Chapter 2

Animating a clock
For those of you who slip into a trance when you're developing cool projects, where time
seems to melt away, this one's for you. In this recipe, we'll create a nifty animated clock to
remind us of the real-world time outside of cyber space.

How to do it...
Follow these steps to animate the hour, minute, and second hands on a clock:

1. Link to the Animation class:
<head>
 <script src="animation.js">
 </script>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 5

139

2. Instantiate an Animation object, get the canvas context, and define the
clock radius:
 <script>
 window.onload = function(){
 var anim = new Animation("myCanvas");
 var canvas = anim.getCanvas();
 var context = anim.getContext();
 var clockRadius = 75;

3. Set the stage() function which gets the current time, calculates the angle for the
hour hand, minute hand, and second hand, clears the canvas, and then draws
the clock:
 anim.setStage(function(){

 // update
 var date = new Date();
 var hours = date.getHours();
 var minutes = date.getMinutes();
 var seconds = date.getSeconds();

 hours = hours > 12 ? hours - 12 : hours;

 var hour = hours + minutes / 60;
 var minute = minutes + seconds / 60;

 // clear
 this.clear();

 // draw
 var context = anim.getContext();
 context.save();
 context.translate(canvas.width / 2, canvas.height
/ 2);

 // draw clock body
 context.beginPath();
 context.arc(0, 0, clockRadius, 0, Math.PI * 2,
true);

 var grd = context.createLinearGradient(-
clockRadius, -clockRadius, clockRadius, clockRadius);
 grd.addColorStop(0, "#F8FCFF"); // light blue
 grd.addColorStop(1, "#A1CCEE"); // dark blue
 context.fillStyle = grd;

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Bringing the Canvas to Life with Animation

140

 context.fill();

 // draw numbers
 context.font = "16pt Calibri";
 context.fillStyle = "#024F8C";
 context.textAlign = "center";
 context.textBaseline = "middle";
 for (var n = 1; n <= 12; n++) {
 var theta = (n - 3) * (Math.PI * 2) / 12;
 var x = clockRadius * 0.8 * Math.cos(theta);
 var y = clockRadius * 0.8 * Math.sin(theta);
 context.fillText(n, x, y);
 }

 context.save();

 // apply drop shadow
 context.shadowColor = "#bbbbbb";
 context.shadowBlur = 5;
 context.shadowOffsetX = 1;
 context.shadowOffsetY = 1;

 // draw clock rim
 context.lineWidth = 3;
 context.strokeStyle = "#005EA8";
 context.stroke();

 context.restore();

 // draw hour hand
 context.save();
 var theta = (hour - 3) * 2 * Math.PI / 12;
 context.rotate(theta);
 context.beginPath();
 context.moveTo(-10, -4);
 context.lineTo(-10, 4);
 context.lineTo(clockRadius * 0.6, 1);
 context.lineTo(clockRadius * 0.6, -1);
 context.fill();
 context.restore();

 // minute hand
 context.save();
 var theta = (minute - 15) * 2 * Math.PI / 60;

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 5

141

 context.rotate(theta);
 context.beginPath();
 context.moveTo(-10, -3);
 context.lineTo(-10, 3);
 context.lineTo(clockRadius * 0.9, 1);
 context.lineTo(clockRadius * 0.9, -1);
 context.fill();
 context.restore();

 // second hand
 context.save();
 var theta = (seconds - 15) * 2 * Math.PI / 60;
 context.rotate(theta);
 context.beginPath();
 context.moveTo(-10, -2);
 context.lineTo(-10, 2);
 context.lineTo(clockRadius * 0.8, 1);
 context.lineTo(clockRadius * 0.8, -1);
 context.fillStyle = "red";
 context.fill();
 context.restore();

 context.restore();
 });

4. Start the animation:
 anim.start();
 };
 </script>
</head>

5. Embed the canvas inside the body of the HTML document:
<body>
 <canvas id="myCanvas" width="600" height="250"
style="border:1px solid black;">
 </canvas>
</body>

 How it works...
When the page loads, we can instantiate a new Animation object and then get the canvas
and context. Next, we can start defining the stage() function which is responsible for
updating the clock, clearing the canvas, and then drawing the clock for each animation loop.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Bringing the Canvas to Life with Animation

142

In the update portion of the code, we can instantiate a new Date() object and then get the
hours, minutes, and seconds. Next, we can adjust the hour and minute to represent a 12-hour
time (AM and PM).

After clearing the canvas, we can begin drawing the clock:

 f Translate the canvas context to the center of the canvas with the translate()
method

 f Draw the body with the arc() method

 f Create a loop that draws the numbers of the clock around the edge with the
fillText() method

 f Apply a drop shadow with the shadowOffsetX and shadowOffsetY properties

 f Draw the clock rim by stroking the circle with stroke()

 f Draw each of the clock hands by rotating the canvas context and then drawing a thin
trapezoid whose thickest end resides at the center.

Finally, once the stage() function has been set, we can start the animation with the
start() method.

See also...
 f Working with text in Chapter 1

 f Drawing a circle in Chapter 2

 f Working with custom shapes and fill styles in Chapter 2

Simulating particle physics
Now that we've covered the basics of classical physics, let's put it all together. In this recipe,
we'll simulate particle physics by modeling gravity, boundary conditions, collision damping,
and floor friction.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 5

143

How to do it...
Follow these steps to launch a particle inside the canvas and observe it's projectile path as it
bounces on the walls, gradually falls down to the floor due to gravity, and then slows to a stop
due to floor friction:

1. Link to the Animation class:
<head>
 <script src="animation.js">
 </script>

2. Define the applyPhysics() function which takes a particle as input and updates
its position and velocity based on physics variables such as gravity, collision damping,
and floor friction:
 function applyPhysics(anim, particle){
 // physics globals
 var gravity = 1500; // pixels / second^2
 var collisionDamper = 0.8; // 80% velocity lost when
collision occurs
 var floorFriction = 100; // pixels / second^2
 var timeInterval = anim.getTimeInterval();
 var canvas = anim.getCanvas();

 // gravity
 particle.vy += gravity * timeInterval / 1000;

 // position
 particle.y += particle.vy * timeInterval / 1000;
 particle.x += particle.vx * timeInterval / 1000;

 // floor condition
 if (particle.y > (canvas.height - particle.radius)) {
 particle.y = canvas.height - particle.radius;
 particle.vy *= -1;
 particle.vy *= collisionDamper;
 }

 // floor friction
 if (particle.y == canvas.height - particle.radius) {
 if (particle.vx > 0.1) {
 particle.vx -= floorFriction * timeInterval /
1000;
 }
 else if (particle.vx < -0.1) {

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Bringing the Canvas to Life with Animation

144

 particle.vx += floorFriction * timeInterval /
1000;
 }
 else {
 particle.vx = 0;
 }
 }

 // ceiling condition
 if (particle.y < (particle.radius)) {
 particle.y = particle.radius;
 particle.vy *= -1;
 particle.vy *= collisionDamper;
 }

 // right wall condition
 if (particle.x > (canvas.width - particle.radius)) {
 particle.x = canvas.width - particle.radius;
 particle.vx *= -1;
 particle.vx *= collisionDamper;
 }

 // left wall condition
 if (particle.x < (particle.radius)) {
 particle.x = particle.radius;
 particle.vx *= -1;
 particle.vx *= collisionDamper;
 }
 }

3. Instantiate a new Animation object and get the canvas context:
 window.onload = function(){
 var anim = new Animation("myCanvas");
 var canvas = anim.getCanvas();
 var context = anim.getContext();

4. Initialize a particle object with a position, x and y velocity, and radius:
 var particle = {
 x: 10,
 y: canvas.height - 10,
 vx: 600, // px / second
 vy: -900, // px / second
 radius: 10
 };

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 5

145

5. Set the stage() function which updates the particle by passing it to the
applyPhysics() function, clears the canvas, and then draws the particle:
 anim.setStage(function(){
 // update
 applyPhysics(this, particle);

 // clear
 this.clear();

 // draw
 context.beginPath();
 context.arc(particle.x, particle.y, particle.
radius, 0, 2 * Math.PI, false);
 context.fillStyle = "blue";
 context.fill();
 });

6. Start the animation:
 anim.start();
 };
 </script>
</head>

7. Embed the canvas tag inside the body of the HTML document:
<body>
 <canvas id="myCanvas" width="600" height="250"
style="border:1px solid black;">
 </canvas>
</body>

How it works...
To simulate particle physics, we need to handle the particle's x and y position and the
particle's velocity in both the x and y direction for each frame. The key to understanding
particle physics simulations is to remember that the movement of the particle in the system
is based on the sum of all the forces acting on the particle. In our case, gravity will be pulling
the particle downwards, collisions against the walls, ceiling, and floor will reduce the particle's
velocity according to the collision damper constant, and floor friction will reduce the particle's
horizontal speed when it rolls on the floor.

To start off, when the page loads we can instantiate a new Animation object and then get
the canvas and context. Next, we can initialize a particle with a position, initial velocity, and
size. Now that we've initialized the actors on the stage (the particle), we can set the stage()
function which will update the particle, clear the canvas, and then draw the particle for each
animation frame.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Bringing the Canvas to Life with Animation

146

The update logic happens inside the applyPhysics() function, which is passed a reference
to the Animation object, and also the particle object. The applyPhysics() function
walks through a list of conditions that updates the particle's position and velocity.

After the applyPhysics() function has been called and the particle has been updated, we
can clear the canvas and then draw the particle by drawing a simple circle whose radius is
equal to the radius of the particle.

Finally, once the stage() function has been set, we can start the animation with the
start() method.

There's more...
If you really wanted to get fancy, you could even add additional forces such as air resistance.
As a general rule of thumb, the more forces that you add to a particle simulation, the more
life-like it becomes. You can play around with different initial positions and velocities to see
different projectile paths.

See also...
 f Drawing a circle in Chapter 2

Creating microscopic life forms
Have you ever seen microscopic life forms in a microscope and observed how they wiggle
around? This recipe is inspired by the alien-like world of micro-organisms. In this recipe,
we'll create 100 random microbes and let them loose in the canvas.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 5

147

How to do it...
Follow these steps to create wiggling microbes moving inside the canvas:

1. Link to the Animation class:
<head>
 <script src="animation.js">
 </script>

2. Define the getRandColor() function that returns a random color:
 <script>
 function getRandColor(){
 var colors = ["red", "orange", "yellow", "green",
"blue", "violet"];
 return colors[Math.floor(Math.random() * colors.
length)];
 }

3. Define the getRandTheta() function that returns a random theta:
 function getRandTheta(){
 return Math.random() * 2 * Math.PI;
 }

4. Define the updateMicrobes() function that updates microbe objects by adding
a new head segment with a randomly generated angle to each microbe, and then
removing the tail segment:
 function updateMicrobes(anim, microbes){
 var canvas = anim.getCanvas();
 var angleVariance = 0.2;

 for (var i = 0; i < microbes.length; i++) {
 var microbe = microbes[i];
 var angles = microbe.angles;

 /*
 * good numNewSegmentsPerFrame values:
 * 60fps -> 1
 * 10fps -> 10
 *
 * for a linear relationship, we can use the equation:
 * n = mf + b, where n = numNewSegmentsPerFrame and f =
FPS
 * solving for m and b, we have:
 * n = (-0.18)f + 11.8
 */

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Bringing the Canvas to Life with Animation

148

 var numNewSegmentsPerFrame = Math.round(-0.18 *
anim.getFps() + 11.8);

 for (var n = 0; n < numNewSegmentsPerFrame; n++) {
 // create first angle if no angles
 if (angles.length == 0) {
 microbe.headX = canvas.width / 2;
 microbe.headY = canvas.height / 2;
 angles.push(getRandTheta());
 }

 var headX = microbe.headX;
 var headY = microbe.headY;
 var headAngle = angles[angles.length - 1];

 // create new head angle
 var dist = anim.getTimeInterval() / (10 *
numNewSegmentsPerFrame);
 // increase new head angle by an amount equal
to
 // -0.1 to 0.1
 var newHeadAngle = headAngle + ((angleVariance
/ 2) - Math.random() * angleVariance);
 var newHeadX = headX + dist * Math.
cos(newHeadAngle);
 var newHeadY = headY + dist * Math.
sin(newHeadAngle);

 // change direction if collision occurs
 if (newHeadX >= canvas.width || newHeadX <= 0
|| newHeadY >= canvas.height || newHeadY <= 0) {
 newHeadAngle += Math.PI / 2;
 newHeadX = headX + dist * Math.
cos(newHeadAngle);
 newHeadY = headY + dist * Math.
sin(newHeadAngle);
 }

 microbe.headX = newHeadX;
 microbe.headY = newHeadY;
 angles.push(newHeadAngle);

 // remove tail angle
 if (angles.length > 20) {
 angles.shift();
 }
 }
 }
 }

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 5

149

5. Define the drawMicrobes() function that draws all of the microbes:
 function drawMicrobes(anim, microbes){
 var segmentLength = 2; // px
 var context = anim.getContext();

 for (var i = 0; i < microbes.length; i++) {
 var microbe = microbes[i];

 var angles = microbe.angles;
 context.beginPath();
 context.moveTo(microbe.headX, microbe.headY);

 var x = microbe.headX;
 var y = microbe.headY;

 // start with the head and end with the tail
 for (var n = angles.length - 1; n >= 0; n--) {
 var angle = angles[n];

 x -= segmentLength * Math.cos(angle);
 y -= segmentLength * Math.sin(angle);
 context.lineTo(x, y);
 }

 context.lineWidth = 10;
 context.lineCap = "round";
 context.lineJoin = "round";
 context.strokeStyle = microbe.color;
 context.stroke();
 }
 }

6. Instantiate an Animation object and get the canvas context:
 window.onload = function(){
 var anim = new Animation("myCanvas");
 var canvas = anim.getCanvas();
 var context = anim.getContext();

7. Initialize 100 microbes:
 // init microbes
 var microbes = [];
 for (var n = 0; n < 100; n++) {
 // each microbe will be an array of angles
 microbes[n] = {
 headX: 0,
 headY: 0,
 angles: [],
 color: getRandColor()
 };
 }

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Bringing the Canvas to Life with Animation

150

8. Set the stage() function that updates the microbes by calling the
updateMicrobes() function, clears the canvas, and then draws the
microbes by calling the drawMicrobes() function:
 anim.setStage(function(){
 // update
 updateMicrobes(this, microbes);

 // clear
 this.clear();

 // draw
 drawMicrobes(this, microbes);
 });

9. Start the animation:
 anim.start();
 };
 </script>
</head>

10. Embed the canvas inside the body of the HTML document:
<body>
 <canvas id="myCanvas" width="600" height="250"
style="border:1px solid black;">
 </canvas>
</body>

How it works...
To create a micro-organism, we can draw a series of connected segments to create a short
snake-like creature. We can represent a micro-organism as an object containing a head
position and an array of angles. These angles represent the angle between segments.

This recipe initializes 100 randomized micro-organisms and positions them in the
center of the canvas. Our stage() function contains the updateMicrobes() and
drawMicrobes() function.

The updateMicrobes() function loops through all of the microbe objects, adds a new head
segment, and removes the tail segment for each microbe. In this way, the segments of each
microbe will wiggle as they move across the canvas. When the head of a microbe hits the
edge of the canvas, its angle will be increased by 90 degrees so that it bounces back into
the canvas area.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 5

151

The drawMicrobes() function loops through all of the microbe objects, positions the
drawing cursor at the head for each microbe, and then draws 20 line segments according to
the angle of each segment.

See also...
 f Drawing a spiral in Chapter 1

 f Creating a drawing application in Chapter 6

Stressing the canvas and displaying the FPS
After seeing the last recipe, you might be thinking "Is there a limit to how many microbes
we can animate?" The straightforward answer to this question is yes. As the 2D context of
the HTML5 canvas is not hardware-accelerated, and as our animations are driven purely
by JavaScript, there is definitely a point where the browser will start to choke if it's working
overtime. To illustrate this, we can draw the FPS of our animation and observe the relationship
between the number of microbes on the screen and the FPS value.

How to do it...
Follow these steps to stress the canvas and display the FPS:

1. Link to the Animation class:
<head>
 <script src="animation.js">
 </script>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Bringing the Canvas to Life with Animation

152

2. Define the drawFps() function that draws the FPS value in the top-right corner of
the canvas:
 function drawFps(anim, fps){
 var canvas = anim.getCanvas();
 var context = anim.getContext();

 context.fillStyle = "black";
 context.fillRect(canvas.width - 100, 0, 100, 30);

 context.font = "18pt Calibri";
 context.fillStyle = "white";
 context.fillText("fps: " + fps.toFixed(1), canvas.
width - 93, 22);
 }

3. Define the getRandColor() function that returns a random color:
 <script>
 function getRandColor(){
 var colors = ["red", "orange", "yellow", "green",
"blue", "violet"];
 return colors[Math.floor(Math.random() * colors.
length)];
 }

4. Define the getRandTheta() function that returns a random theta:
 function getRandTheta(){
 return Math.random() * 2 * Math.PI;
 }

5. Define the updateMicrobes() function that updates microbe objects by adding
a new head segment with a randomly generated angle to each microbe and then
removing the tail segment:
 function updateMicrobes(anim, microbes){
 var canvas = anim.getCanvas();
 var angleVariance = 0.2;

 for (var i = 0; i < microbes.length; i++) {
 var microbe = microbes[i];
 var angles = microbe.angles;

 /*
 * good numNewSegmentsPerFrame values:
 * 60fps -> 1
 * 10fps -> 10

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 5

153

 *
 * for a linear relationship, we can use the
equation:
 * n = mf + b, where n = numNewSegmentsPerFrame and f
= FPS
 * solving for m and b, we have:
 * n = (-0.18)f + 11.8
 */

 var numNewSegmentsPerFrame = Math.round(-0.18 *
anim.getFps() + 11.8);

 for (var n = 0; n < numNewSegmentsPerFrame; n++) {
 // create first angle if no angles
 if (angles.length == 0) {
 microbe.headX = canvas.width / 2;
 microbe.headY = canvas.height / 2;
 angles.push(getRandTheta());
 }

 var headX = microbe.headX;
 var headY = microbe.headY;
 var headAngle = angles[angles.length - 1];

 // create new head angle
 var dist = anim.getTimeInterval() / (10 *
numNewSegmentsPerFrame);
 // increase new head angle by an amount equal
to
 // -0.1 to 0.1
 var newHeadAngle = headAngle + ((angleVariance
/ 2) - Math.random() * angleVariance);
 var newHeadX = headX + dist * Math.
cos(newHeadAngle);
 var newHeadY = headY + dist * Math.
sin(newHeadAngle);

 // change direction if collision occurs
 if (newHeadX >= canvas.width || newHeadX <= 0
|| newHeadY >= canvas.height || newHeadY <= 0) {
 newHeadAngle += Math.PI / 2;
 newHeadX = headX + dist * Math.
cos(newHeadAngle);
 newHeadY = headY + dist * Math.
sin(newHeadAngle);

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Bringing the Canvas to Life with Animation

154

 }

 microbe.headX = newHeadX;
 microbe.headY = newHeadY;
 angles.push(newHeadAngle);

 // remove tail angle
 if (angles.length > 20) {
 angles.shift();
 }
 }
 }
 }

6. Define the drawMicrobes() function that draws all of the microbes:
 function drawMicrobes(anim, microbes){
 var segmentLength = 2; // px
 var context = anim.getContext();

 for (var i = 0; i < microbes.length; i++) {
 var microbe = microbes[i];

 var angles = microbe.angles;
 context.beginPath();
 context.moveTo(microbe.headX, microbe.headY);

 var x = microbe.headX;
 var y = microbe.headY;

 // start with the head and end with the tail
 for (var n = angles.length - 1; n >= 0; n--) {
 var angle = angles[n];

 x -= segmentLength * Math.cos(angle);
 y -= segmentLength * Math.sin(angle);
 context.lineTo(x, y);
 }

 context.lineWidth = 10;
 context.lineCap = "round";
 context.lineJoin = "round";
 context.strokeStyle = microbe.color;
 context.stroke();
 }
 }

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 5

155

7. Instantiate an Animation object and get the canvas context:
 window.onload = function(){
 var anim = new Animation("myCanvas");
 var canvas = anim.getCanvas();
 var context = anim.getContext();

8. Initialize 1,500 microbes:
 // init microbes
 var microbes = [];
 for (var n = 0; n < 1500; n++) {
 // each microbe will be an array of angles
 microbes[n] = {
 headX: 0,
 headY: 0,
 angles: [],
 color: getRandColor()
 };
 }

9. Set the stage() function which updates the microbes, updates the FPS value every
10 frames, clears the canvas, and then draws the microbes and the FPS value:
 var fps = 0;

 anim.setStage(function(){
 // update
 updateMicrobes(this, microbes);

 if (anim.getFrame() % 10 == 0) {
 fps = anim.getFps();
 }

 // clear
 this.clear();

 // draw
 drawMicrobes(this, microbes);
 drawFps(this, fps);
 });

10. Start the animation:
 anim.start();
 };
 </script>
</head>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Bringing the Canvas to Life with Animation

156

11. Embed the canvas inside the body of the HTML document:
<body>
 <canvas id="myCanvas" width="600" height="250"
style="border:1px solid black;">
 </canvas>
</body>

How it works...
To draw the FPS of the animation, we can create the drawFps() function that takes in an
FPS value as input, draws a black box in the upper-right corner of the canvas, and then writes
out the FPS value. To avoid updating the FPS too frequently, we can store a copy of the FPS
value in the variable FPS, and update it every 10 frames. In this way, the FPS will update, at
the most, six times per second.

To stress the canvas, we can simply initialize more microbes. In this recipe, we've initialized
1,500 microbes. If you try out the code for yourself, you can play with different numbers to see
how the FPS is affected.

There's more...
As mentioned earlier, a typical animation should run at about 40 to 60 FPS. If the FPS drops
below 30, you'll start to notice a slight lag in the animation. When testing in Google Chrome
on a 32-bit Windows 7 machine with a 2.2 GHz AMD processor and 2 GB of RAM (yes I know,
I need to upgrade), I was seeing about 5 FPS when animating 1,500 microbes. It doesn't look
bad, but it's not great. When animating 2,000 microbes or more, the animation starts to look
unacceptably choppy.

Almost all of the animations that we've created with the 2D context perform great on
desktops and laptops. However, if you find yourself in a situation where your animations are
computationally expensive enough that they aren't performing well in the 2D context, you
might consider using WebGL instead (we'll cover WebGL in Chapter 9, Introduction to WebGL).
Unlike the 2D context, WebGL leverages hardware acceleration. At the time of writing, the 2D
context in all of the major browsers does not utilize hardware acceleration. Using WebGL does
come at a cost, however, because it's much more difficult to develop and maintain WebGL
animations than it is to create 2D context animations.

See also...
 f Working with text in Chapter 1

 f Drawing a spiral in Chapter 1

 f Creating a drawing application in Chapter 6

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

6
Interacting with the

Canvas: Attaching
Event Listeners to

Shapes and Regions

In this chapter, we will cover:

 f Creating an Events class

 f Working with canvas mouse coordinates

 f Attaching mouse event listeners to regions

 f Attaching touch event listeners to regions on a mobile device

 f Attaching event listeners to images

 f Dragging-and-dropping shapes

 f Dragging-and-dropping images

 f Creating an image magnifier

 f Creating a drawing application

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Interacting with the Canvas: Attaching Event Listeners to Shapes and Regions

158

Introduction
So far, we've learned how to draw on the canvas, work with images and video, and create fluid
animations. This chapter focuses on canvas interactivity. Until now, all of our canvas projects
have been very unresponsive and disengaged from the user. Although the HTML5 canvas API
doesn't provide us with a means for attaching event listeners to shapes and regions, we can
certainly achieve this functionality by extending the API. According to the HTML5 specification,
once a shape is drawn, we have no access to it as an object like we do with DOM elements
in an HTML document. Until the HTML5 canvas specification includes methods for attaching
event listeners to shapes and regions, (hopefully it will some day), we'll need to construct
our own Events class which will enable us to do so. Our class will enable us to attach event
listeners to regions which wrap one or more shapes, similar to attaching event listeners to
DOM elements.

This is quite a powerful notion because it enables us to draw shapes in the canvas that
users can interact with. Our Events class will support mousedown, mouseup, mouseover,
mouseout, mousemove, touchstart, touchend, and touchmove events.

Although most of the recipes in this chapter utilize mouse events, they can
also be modified to support mobile touch events by replacing mousedown
with touchstart, mouseup with touchend, and mousemove with
touchmove.

Let's get started!

Creating an Events class
Similar to Chapter 5, Bringing the Canvas to Life with Animation, where we created a
custom class to handle animations, in this chapter we'll create a custom class to handle
canvas events.

As canvas shapes are not accessible as objects (bummer!), there's nothing for us to attach
event listeners to like we would with a div element as follows:

document.getElementById("foo").addEventListener("mouseup", function()
{
 // do stuff
}, false);

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 6

159

So what can we do? If we follow the pattern of the canvas API, in which the beginning of a
shape is defined with beginPath(), and the end of the shape is defined by closePath(),
we can extend this idea one step further by introducing the concept of regions, which
encapsulate multiple shapes. Furthermore, it would be really nice if we could add event
listeners to a region in a similar manner that we add event listeners to DOM elements
as follows:

this.addRegionEventListener("mouseup", function() {
 // do stuff
});

The goal of the Events class is to do just that by extending the canvas API to support canvas
events by introducing regions which can be attached with desktop event listeners such as
mousedown, mouseup, mouseover, mouseout, and mousemove, and also mobile event
listeners such as touchstart, touchend, and touchmove.

Rather than typing out the Events class by hand, you may consider
downloading the class from the online resources for this book at
www.html5canvastutorials.com/cookbook.

How to do it...
Follow these steps to create an Events class which will enable us to attach event listeners to
shapes and regions on the canvas:

1. Define the Events constructor:
var Events = function(canvasId){
 this.canvas = document.getElementById(canvasId);
 this.context = this.canvas.getContext("2d");
 this.stage = undefined;
 this.listening = false;

 // desktop flags
 this.mousePos = null;
 this.mouseDown = false;
 this.mouseUp = false;
 this.mouseOver = false;
 this.mouseMove = false;

 // mobile flags
 this.touchPos = null;
 this.touchStart = false;
 this.touchMove = false;
 this.touchEnd = false;

 // Region Events
 this.currentRegion = null;

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Interacting with the Canvas: Attaching Event Listeners to Shapes and Regions

160

 this.regionIndex = 0;
 this.lastRegionIndex = -1;
 this.mouseOverRegionIndex = -1;
};

2. Define the getContext() method which returns the canvas context:
Events.prototype.getContext = function(){
 return this.context;
};

3. Define the getCanvas() method which returns the canvas DOM element:
Events.prototype.getCanvas = function(){
 return this.canvas;
};

4. Define the clear() method which clears the canvas:
Events.prototype.clear = function(){
 this.context.clearRect(0, 0, this.canvas.width, this.canvas.
height);
};

5. Define the getCanvasPos() method which returns the canvas position:
Events.prototype.getCanvasPos = function(){
 var obj = this.getCanvas();
 var top = 0;
 var left = 0;
 while (obj.tagName != "BODY") {
 top += obj.offsetTop;
 left += obj.offsetLeft;
 obj = obj.offsetParent;
 }
 return {
 top: top,
 left: left
 };
};

6. Define the setStage() method which sets the stage() function:
Events.prototype.setStage = function(func){
 this.stage = func;
 this.listen();
};

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 6

161

7. Define the reset() method which sets the mouse position and the touch position,
resets the region index, calls the stage() function, and then resets the event flags:
Events.prototype.reset = function(evt){
 if (!evt) {
 evt = window.event;
 }

 this.setMousePosition(evt);
 this.setTouchPosition(evt);
 this.regionIndex = 0;

 if (this.stage !== undefined) {
 this.stage();
 }

 // desktop flags
 this.mouseOver = false;
 this.mouseMove = false;
 this.mouseDown = false;
 this.mouseUp = false;

 // mobile touch flags
 this.touchStart = false;
 this.touchMove = false;
 this.touchEnd = false;
};

8. Define the listen() method which adds event listeners to the canvas element:
Events.prototype.listen = function(){
 var that = this;

 if (this.stage !== undefined) {
 this.stage();
 }

 // desktop events
 this.canvas.addEventListener("mousedown", function(evt){
 that.mouseDown = true;
 that.reset(evt);
 }, false);

 this.canvas.addEventListener("mousemove", function(evt){
 that.reset(evt);

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Interacting with the Canvas: Attaching Event Listeners to Shapes and Regions

162

 }, false);

 this.canvas.addEventListener("mouseup", function(evt){
 that.mouseUp = true;
 that.reset(evt);
 }, false);

 this.canvas.addEventListener("mouseover", function(evt){
 that.reset(evt);
 }, false);

 this.canvas.addEventListener("mouseout", function(evt){
 that.mousePos = null;
 }, false);

 // mobile events
 this.canvas.addEventListener("touchstart", function(evt){
 evt.preventDefault();
 that.touchStart = true;
 that.reset(evt);
 }, false);

 this.canvas.addEventListener("touchmove", function(evt){
 evt.preventDefault();
 that.reset(evt);
 }, false);

 this.canvas.addEventListener("touchend", function(evt){
 evt.preventDefault();
 that.touchEnd = true;
 that.reset(evt);
 }, false);
};

9. Define the getMousePos() method which returns the mouse position for
desktop applications:
Events.prototype.getMousePos = function(evt){
 return this.mousePos;
};

10. Define the getTouchPos() method which returns the touch position for
mobile applications:
Events.prototype.getTouchPos = function(evt){
 return this.touchPos;
};

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 6

163

11. Define the setMousePos() method which sets the mouse position:
Events.prototype.setMousePosition = function(evt){
 var mouseX = evt.clientX - this.getCanvasPos().left + window.
pageXOffset;
 var mouseY = evt.clientY - this.getCanvasPos().top + window.
pageYOffset;
 this.mousePos = {
 x: mouseX,
 y: mouseY
 };
};

12. Define the setTouchPos() method which sets the touch position:
Events.prototype.setTouchPosition = function(evt){
 if (evt.touches !== undefined && evt.touches.length == 1) { //
Only deal with one finger
 var touch = evt.touches[0]; // Get the information for
finger #1
 var touchX = touch.pageX - this.getCanvasPos().left +
window.pageXOffset;
 var touchY = touch.pageY - this.getCanvasPos().top +
window.pageYOffset;

 this.touchPos = {
 x: touchX,
 y: touchY
 };
 }
};

13. Define the beginRegion() method which is used to define a new region:
Events.prototype.beginRegion = function(){
 this.currentRegion = {};
 this.regionIndex++;
};

14. Define the addRegionEventListener() method which is used to add an event
listener to a region:
Events.prototype.addRegionEventListener = function(type, func){
 var event = (type.indexOf('touch') == -1) ? 'on' + type :
type;
 this.currentRegion[event] = func;
};

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Interacting with the Canvas: Attaching Event Listeners to Shapes and Regions

164

15. Define the closeRegion() method which is used to close a region and determine if
an event has occurred with respect to the current region:

Events.prototype.closeRegion = function(){
 var pos = this.touchPos || this.mousePos;

 if (pos !== null && this.context.isPointInPath(pos.x, pos.y))
{
 if (this.lastRegionIndex != this.regionIndex) {
 this.lastRegionIndex = this.regionIndex;
 }

 // handle onmousedown
 if (this.mouseDown && this.currentRegion.onmousedown !==
undefined) {
 this.currentRegion.onmousedown();
 this.mouseDown = false;
 }

 // handle onmouseup
 else if (this.mouseUp && this.currentRegion.onmouseup !==
undefined) {
 this.currentRegion.onmouseup();
 this.mouseUp = false;
 }

 // handle onmouseover
 else if (!this.mouseOver && this.regionIndex != this.
mouseOverRegionIndex && this.currentRegion.onmouseover !==
undefined) {
 this.currentRegion.onmouseover();
 this.mouseOver = true;
 this.mouseOverRegionIndex = this.regionIndex;
 }

 // handle onmousemove
 else if (!this.mouseMove && this.currentRegion.onmousemove
!== undefined) {
 this.currentRegion.onmousemove();
 this.mouseMove = true;
 }

 // handle touchstart
 if (this.touchStart && this.currentRegion.touchstart !==
undefined) {
 this.currentRegion.touchstart();

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 6

165

 this.touchStart = false;
 }

 // handle touchend
 if (this.touchEnd && this.currentRegion.touchend !==
undefined) {
 this.currentRegion.touchend();
 this.touchEnd = false;
 }

 // handle touchmove
 if (!this.touchMove && this.currentRegion.touchmove !==
undefined) {
 this.currentRegion.touchmove();
 this.touchMove = true;
 }

 }
 else if (this.regionIndex == this.lastRegionIndex) {
 this.lastRegionIndex = -1;
 this.mouseOverRegionIndex = -1;

 // handle mouseout condition
 if (this.currentRegion.onmouseout !== undefined) {
 this.currentRegion.onmouseout();
 }
 }
};

How it works...
Even though the HTML5 canvas API doesn't provide a way for us to easily handle event
listeners, it does provide one key method that will make it possible:

context.isPointInPath(x,y);

The isPointInPath() method returns true if the given coordinates reside within any path
drawn on the canvas. As the canvas is a bitmap, the concept of layers and shapes has no
meaning here, so we'll have to figure out a way to leverage the isPointInPath() method
for determining whether or not a given coordinate, in particular the mouse coordinates,
resides within a specific region of the canvas. Once we can detect whether or not the mouse
cursor is on top of a particular region, we can add additional logic to handle mouseover,
mousemove, mouseout, mousedown, mouseup, touchstart, touchend, and
touchmove events.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Interacting with the Canvas: Attaching Event Listeners to Shapes and Regions

166

Before getting in any deeper, let's make up an example and formulate a procedure for
simulating region events, and then use what we've learned to lay out the methods we'll need
to create the Events class. Let's say that we want to draw a triangle, a rectangle, and a circle
on the canvas, and then we want to alert some text when the user places their cursor over the
circle. We could first draw the triangle, and then see whether the mouse coordinates reside
within the current path using isPointInPath(). If the method returns false, we know that
the mouse cursor is somewhere outside of the triangle. Next, we could draw the rectangle,
and again check whether the mouse coordinates reside within any path, which at this point
includes the triangle and the rectangle. If isPointInPath() still returns false, we now know
that the mouse cursor is somewhere outside of the triangle and the rectangle. Finally, we can
draw the circle, and once again check whether the mouse coordinates reside within any path
on the canvas, which now includes the triangle, rectangle, and circle. If the method returns
true, then the mouse is indeed over the circle. If it returns false, then the mouse cursor is
somewhere outside the triangle, rectangle, and circle.

Of course, this only works if we assume that the cursor is already positioned somewhere
on the canvas before the elements are actually drawn. The only way that we can detect
whether the mouse cursor is on top of an element after the cursor has moved is to redraw
our elements each time an event is triggered, and then check whether the mouse coordinates
exist within a shape after drawing each element. We can accomplish this by defining the
stage() function with the setStage() method of the Events class.

Next, we need a way to define the beginning and the end of a region. We can create a
beginRegion() method which defines a new Region object. The Region object can have
eight properties: mouseover, mouseout, mousemove, mousedown, mouseup, touchstart,
touchend, and touchmove, all of which are user-defined functions. Next, we can create a
method called addRegionEventListener() which can be used to attach region events
which require an event type and the function to be called when the event occurs. Since we
have a method that begins a new region, we also need to create a closeRegion() method.
This method contains most of the logic required to determine if one of the eight events has
occurred. Finally, we can create a listen() method which adds event listeners to the canvas
element in order to appropriately handle the region events.

The Events class described in this recipe works by defining regions with the beginRegion()
and closeRegion() methods, and then redrawing the regions each time an event is
triggered in order to detect which which region the event belongs to. The advantage of this
approach is that it's easy to implement and that we only need one canvas element.

Although, this approach works beautifully for canvas applications that have a reasonable
number of regions with attached event listeners, it may not be the best approach for
applications using a large number of regions. Applications that require thousands of regions,
each with their own event listeners, may run into performance issues due to the number of
shapes being redrawn each time the mouse moves.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 6

167

For such applications, a more complex approach can be used by assigning each region its own
canvas and then stacking the canvases on top of each other so that the regions don't have
to be redrawn each time an event is triggered. One great example of this approach is the
KineticJS library (http://www.kineticjs.com).

Working with canvas mouse coordinates
To get our feet wet with the Events class, we'll keep it simple by getting the mouse
coordinates of the cursor using the getMousePos() method from the Events class and
then displaying it in the top-left corner of the canvas. The getMousePos() method returns
the mouse coordinates relative to the canvas, which takes into account the offset position of
the canvas relative to the page, and also the scroll position of the page.

How to do it...
Follow these steps to get the canvas mouse coordinates and display them in the upper-left
corner of the canvas each time the mouse cursor moves:

1. Link to the Events class:
<script src="events.js">
</script>

2. Define the writeMessage() function which writes out a message:
<script>
 function writeMessage(context, message){
 context.font = "18pt Calibri";
 context.fillStyle = "black";
 context.fillText(message, 10, 25);
 }

3. Instantiate a new Events object and get the canvas and context:
 window.onload = function(){
 var events = new Events("myCanvas");
 var canvas = events.getCanvas();
 var context = events.getContext();

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Interacting with the Canvas: Attaching Event Listeners to Shapes and Regions

168

4. When the user mouses out of the canvas, clear the canvas and then write out the
message "Mouseover me!":
 canvas.addEventListener("mouseout", function(){
 events.clear();
 writeMessage(context, "Mouseover me!");
 }, false);

5. When the user moves his/her mouse in the canvas, clear the canvas, and then write
out the mouse position:
 canvas.addEventListener("mousemove", function(){
 var mousePos = events.getMousePos();
 events.clear();

 if (mousePos !== null) {
 message = "Mouse position: " + mousePos.x + "," +
mousePos.y;
 writeMessage(context, message);
 }
 }, false);

6. Start listening for events:
 // if we don't set the stage function,
 // we'll have to manually start listening for events
 events.listen();

7. Write the initial message before the user begins:
 writeMessage(context, "Mouseover me!");
 };
</script>

8. Embed the canvas inside the body of the HTML document:
<canvas id="myCanvas" width="600" height="250" style="border:1px
solid black;">
</canvas>

How it works...
Once the page loads, we can instantiate an Events object so that we have access to the
getMousePos() method. Next, we can attach a mouseout event listener to the canvas
object which sets the event display to "Mouseover me!", and also attach a mousemove event
listener to the canvas object that gets the mouse position using the getMousePos()
method and then writes out the coordinates. Finally, we can start listening for events using
the listen() method.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 6

169

Attaching mouse event listeners to regions
In this recipe, we'll get to the meat of the Events class by defining regions and adding event
listeners to them. We'll draw a triangle, attach a mouseout and mousemove event listener
to it, we'll draw a rectangle with no event listeners, and finally we'll draw a circle and attach
a mouseover, mouseout, mousedown, and mouseup event listener to try out each of the
different desktop event listeners supported by the Events class.

How to do it...
Follow these steps to draw a triangle, a rectangle, and a circle, and then attach mouse event
listeners to each shape:

1. Link to the Events class:
<script src="events.js">
</script>

2. Define the writeMessage() function which writes out a message:
<script>
 function writeMessage(context, message){
 context.font = "18pt Calibri";
 context.fillStyle = "black";
 context.fillText(message, 10, 25);
 }

3. Instantiate a new Events object and get the canvas and context:
 window.onload = function(){
 var events = new Events("myCanvas");
 var canvas = events.getCanvas();
 var context = events.getContext();
 var message = "";

4. Begin defining the stage() function which starts by clearing the canvas:
 events.setStage(function(){
 this.clear();

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Interacting with the Canvas: Attaching Event Listeners to Shapes and Regions

170

5. Begin a new region with beginRegion() and then draw a blue triangle:
 // draw blue triangle
 this.beginRegion();
 context.beginPath();
 context.lineWidth = 4;
 context.strokeStyle = "black";
 context.fillStyle = "#00D2FF";
 context.moveTo(50, 50);
 context.lineTo(180, 80);
 context.lineTo(80, 170);
 context.closePath();
 context.fill();
 context.stroke();

6. Add mousemove and mouseout event listeners to the triangle and close the region
with closeRegion():
 this.addRegionEventListener("mousemove", function(){
 var mousePos = events.getMousePos();
 var mouseX = mousePos.x - 50;
 var mouseY = mousePos.y - 50;
 message = "Triangle mouse Position: " + mouseX +
"," + mouseY;
 });

 this.addRegionEventListener("mouseout", function(){
 message = "Mouseout blue triangle!";
 });

 this.closeRegion();

7. Draw a yellow rectangle with no event listeners:
 // draw yellow rectangle
 // this is an example of a shape
 // with no event listeners
 context.beginPath();
 context.lineWidth = 4;
 context.strokeStyle = "black";
 context.fillStyle = "yellow";
 context.rect(200, 65, 150, 75);
 context.fill();
 context.stroke();

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 6

171

8. Begin a new region and draw a red circle:
 // draw red circle
 this.beginRegion();
 context.beginPath();
 context.arc(450, canvas.height / 2, 70, 0, Math.PI *
2, true);
 context.fillStyle = "red";
 context.fill();
 context.stroke();

9. Attach mousedown, mouseup, mouseover, and mouseout event listeners to the
circle, and close the region:
 this.addRegionEventListener("mousedown", function(){
 message = "Mousedown red circle!";
 });
 this.addRegionEventListener("mouseup", function(){
 message = "Mouseup red circle!";
 });
 this.addRegionEventListener("mouseover", function(){
 message = "Mouseover red circle!";
 });
 this.addRegionEventListener("mouseout", function(){
 message = "Mouseout red circle!";
 });

 this.closeRegion();

10. Write out a message:
 writeMessage(context, message);
 });

 // since we set the draw stage function, the listen()
 // method is automatically called for us
 };
</script>

11. Embed the canvas inside the body of the HTML document:
<canvas id="myCanvas" width="600" height="250" style="border:1px
solid black;">
</canvas>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Interacting with the Canvas: Attaching Event Listeners to Shapes and Regions

172

How it works...
To attach events to the three shapes in this recipe, we first need to initialize an Events
object and then set the stage() function. Inside the stage() function, we can define
a new region using beginRegion(), draw the blue triangle, attach events using
addRegionEventListener(), and then close the region using closeRegion(). Next,
we can draw the yellow rectangle without defining a region because we aren't attaching any
events to it. Finally, we can define a second region, draw the red circle, attach event listeners,
and then close the region, completing the stage() function definition.

See also...
 f Drawing a rectangle in Chapter 2

 f Drawing a circle in Chapter 2

 f Working with custom shapes and fill styles in Chapter 2

 f Attaching touch event listeners to regions on a mobile device

Attaching touch event listeners to regions
on a mobile device

For those of you crying "What about mobile devices? Desktops and laptops are a thing of the
past!" – this recipe is just for you. As Internet surfers migrate away from their giant tethered
desktops and begin consuming Internet content from mobile devices, it's becoming more
evident every day that the future of the Web, including canvas, will reside mostly in the
mobile space.

Unlike web applications running on desktops and laptops, where user interactions are
detected using the mouse from mousedown, mouseup, mouseover, mouseout, and
mousemove events, web applications running on mobile devices are interacted with
touch events from touchstart, touchend, and touchmove events.

In this recipe, we'll create a mobile version of the previous recipe by adding touch event
listeners to the triangle and circle.

As mentioned earlier, any of the recipes in this chapter could be modified to support mobile
devices by adding touch event listeners.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 6

173

How to do it...
Follow these steps to draw a triangle, a rectangle, and a circle, and then attach mobile touch
events to each shape:

1. Add a viewport meta tag inside the header tag to set the mobile device width, set the
initial scale, and disable user scaling:
<meta name="viewport" content="width=device-width, initial-
scale=0.552, user-scalable=no"/>

2. Link to the Events class:
<script src="events.js">
</script>

3. Define the writeMessage() function which writes out a message:
<script>
 function writeMessage(context, message){
 context.font = "18pt Calibri";
 context.fillStyle = "black";
 context.fillText(message, 10, 25);
 }

4. Instantiate a new Events object and get the canvas and context:
 window.onload = function(){
 var events = new Events("myCanvas");
 var canvas = events.getCanvas();
 var context = events.getContext();
 var message = "";

5. Begin defining the sStage() function which starts by clearing the canvas:
 events.setStage(function(){
 this.clear();

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Interacting with the Canvas: Attaching Event Listeners to Shapes and Regions

174

6. Begin a new region with beginRegion() and then draw a blue triangle:
 // draw blue triangle
 this.beginRegion();
 context.beginPath();
 context.lineWidth = 4;
 context.strokeStyle = "black";
 context.fillStyle = "#00D2FF";
 context.moveTo(50, 50);
 context.lineTo(180, 80);
 context.lineTo(80, 170);
 context.closePath();
 context.fill();
 context.stroke();

7. Add the touchmove event listener to the triangle and close the region with
closeRegion():
 this.addRegionEventListener("touchmove", function(){
 var touchPos = events.getTouchPos();

 if (touchPos !== null) {
 var touchX = touchPos.x - 20;
 var touchY = touchPos.y - 50;

 message = "Triangle touch position: " +
 touchX + "," + touchY;
 }
 });

 this.closeRegion();

8. Draw a yellow rectangle with no event listeners:
 // draw yellow rectangle
 // this is an example of a shape
 // with no event listeners
 context.beginPath();
 context.lineWidth = 4;
 context.strokeStyle = "black";
 context.fillStyle = "yellow";
 context.rect(200, 65, 150, 75);
 context.fill();
 context.stroke();

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 6

175

9. Begin a new region and draw a red circle:
 // draw red circle
 this.beginRegion();
 context.beginPath();
 context.arc(450, canvas.height / 2, 70, 0, Math.PI *
2, true);
 context.fillStyle = "red";
 context.fill();
 context.stroke();

10. Attach touchstart and touchend event listeners to the circle and close the region:
 this.addRegionEventListener("touchstart", function(){
 message = "Touchstart red circle!";
 });

 this.addRegionEventListener("touchend", function(){
 message = "Touchend red circle!";
 });

 this.closeRegion();

11. Write out a message:
 writeMessage(context, message);
 });

 // since we set the draw stage function, the listen()
 // method is automatically called for us
 };
</script>

12. Embed the canvas inside the body of the HTML document:
<canvas id="myCanvas" width="600" height="250" style="border:1px
solid black;">
</canvas>

How it works...
Similar to the previous recipe, in this recipe we'll attach event listeners to the triangle and the
circle, except this time we'll attach touch event listeners so that the demo can be run on a
mobile device.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Interacting with the Canvas: Attaching Event Listeners to Shapes and Regions

176

Touch events on mobile devices are actually quite simple, and work in much the same way
as desktop events. The mobile equivalent of mousedown is touchstart, the equivalent of
mouseup is touchend, and the equivalent of mousemove is touchmove. As mobile devices
can't detect if your finger is hovering over a region, mobile devices don't have an equivalent for
mouseover or mouseout, I wouldn't be surprised if sometime in the future mobile devices
could detect when fingers are close to the screen but not quite touching it.

To show the touch coordinates for the blue triangle, we can use the touchmove event listener,
and to detect when the red circle is being touched or released, we can use the touchstart
and touchend events.

See also...
 f Drawing a rectangle in Chapter 2

 f Drawing a circle in Chapter 2

 f Working with custom shapes and fill styles in Chapter 2

 f Attaching mouse event listeners to regions

Attaching event listeners to images
In this recipe, we'll attach event listeners to images. As we can only attach event listeners to
paths with our Events class, and as images drawn on the canvas aren't classified as paths,
we can create a rectangular region that overlays an image in order to attach event listeners to
the rectangular region, and consequently attach event listeners to the image.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 6

177

How to do it...
Follow these steps to draw two different images and then attach mouseover, mouseout,
mousedown, and mouseup event listeners to them:

1. Link to the Events class:
<script src="events.js">
</script>

2. Define the writeMessage() function which writes out a message:
<script>
 function writeMessage(context, message){
 context.font = "18pt Calibri";
 context.fillStyle = "black";
 context.fillText(message, 10, 25);
 }

3. Create an image loader that loads a set of images and then calls a callback
function whenever all of the images have loaded:
 /*
 * loads the images and then calls the callback function
 * with a hash of image objects when the images have loaded
 */
 function loadImages(sources, callback){
 var loadedImages = 0;
 var numImages = 0;
 var images = {};
 // get num of sources
 for (var src in sources) {
 numImages++;
 }
 // load images
 for (var src in sources) {
 images[src] = new Image();
 images[src].onload = function(){
 // call callback function() when images
 // have loaded
 if (++loadedImages >= numImages) {
 callback(images);
 }
 };
 images[src].src = sources[src];
 }
 }

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Interacting with the Canvas: Attaching Event Listeners to Shapes and Regions

178

4. Define the drawImages() function which instantiates a new Events object and
begins defining the stage() function:
 function drawImages(images){
 var events = new Events("myCanvas");
 var canvas = events.getCanvas();
 var context = events.getContext();
 var message = "";

 events.setStage(function(){
 this.clear();

5. Begin a new region, draw the left image, define a rectangular region that represents
the image path, attach event listeners to the rectangular region, and then close the
region. Repeat these steps for the right image as well, and then write out a message:
 this.beginRegion();

 context.drawImage(images.challengerImg, 50, 70, 240,
143);
 // draw rectangular region for image
 context.beginPath();
 context.rect(50, 70, 240, 143);
 context.closePath();

 this.addRegionEventListener("mouseover", function(){
 message = "Dodge Challenger mouseover!";
 });
 this.addRegionEventListener("mouseout", function(){
 message = "Dodge Challenger mouseout!";
 });
 this.addRegionEventListener("mousedown", function(){
 message = "Dodge Challenger mousedown!";
 });
 this.addRegionEventListener("mouseup", function(){
 message = "Dodge Challenger mouseup!";
 });
 this.closeRegion();

 this.beginRegion();
 context.drawImage(images.cobraImg, 350, 50, 200, 150);
 // draw rectangular region for image
 context.beginPath();
 context.rect(350, 50, 200, 150);
 context.closePath();

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 6

179

 this.addRegionEventListener("mouseover", function(){
 message = "AC Cobra mouseover!";
 });
 this.addRegionEventListener("mouseout", function(){
 message = "AC Cobra mouseout!";
 });
 this.addRegionEventListener("mousedown", function(){
 message = "AC Cobra mousedown!";
 });
 this.addRegionEventListener("mouseup", function(){
 message = "AC Cobra mouseup!";
 });
 this.closeRegion();

 writeMessage(context, message);
 });
 }

6. When the page loads create a hash of image sources and then pass it off to the
loadImages() function:
 window.onload = function(){
 var sources = {
 challengerImg: "challenger.jpg",
 cobraImg: "cobra.jpg"
 };

 loadImages(sources, drawImages);
 };
</script>

7. Embed the canvas inside the body of the HTML document:
<canvas id="myCanvas" width="600" height="250" style="border:1px
solid black;">
</canvas>

How it works...
Once the page loads, we can use an image loader function to load two images. When
both images have loaded, the drawImages() function is called and an Events object is
instantiated. Inside the stage() function, we can begin a new region with beginRegion(),
draw the first image, draw a rectangular path to define the image path, attach events using
addRegionEventListener(), and then close the region. Next, we can repeat this process
to create the second image with its own set of event listeners.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Interacting with the Canvas: Attaching Event Listeners to Shapes and Regions

180

See also...
 f Drawing an image in Chapter 3

Dragging-and-dropping shapes
In this recipe, we'll tackle the holy grail of event listeners—drag-and-drop. Without the Events
class or some other lightweight JavaScript library, drag-and-drop operations can be quite
cumbersome to develop. We can use the Events class to attach a mouseover, mousedown,
mousemove, mouseup, and mouseout event listener to the rectangle to handle different
phases of the drag-and-drop operation.

How to do it...
Follow these steps to drag-and-drop a rectangle:

1. Link to the Events class:
<script src="events.js">
</script>

2. Define the writeMessage() function which writes out a message:
<script>
 function writeMessage(context, message){
 context.font = "18pt Calibri";
 context.fillStyle = "black";
 context.fillText(message, 10, 25);
 }

3. When the page loads, instantiate a new Events object, define the starting position
of the rectangle that will be dragged-and-dropped, and define draggingRect,
draggingRectOffsetX, and draggingRectOffsetY for the drag-and-drop
operation:
 window.onload = function(){
 events = new Events("myCanvas");
 var canvas = events.getCanvas();

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 6

181

 var context = events.getContext();

 var rectX = canvas.width / 2 - 50;
 var rectY = canvas.height / 2 - 25;
 var draggingRect = false;
 var draggingRectOffsetX = 0;
 var draggingRectOffsetY = 0;

4. For the stage() function, begin by setting the coordinates of the rectangle based on
the coordinates of the mouse if the draggingRect Boolean is true:
 events.setStage(function(){
 // get the mouse position
 var mousePos = this.getMousePos();

 if (draggingRect) {
 rectX = mousePos.x - draggingRectOffsetX;
 rectY = mousePos.y - draggingRectOffsetY;
 }

5. Clear the canvas, write out a message, begin a new region, draw the rectangle, attach
events, and then close the region:
 // clear the canvas
 this.clear();

 writeMessage(context, "Drag and drop the box...");

 this.beginRegion();

 // draw the box
 context.beginPath();
 context.rect(rectX, rectY, 100, 50);
 context.lineWidth = 4;
 context.strokeStyle = "black";
 context.fillStyle = "#00D2FF";
 context.fill();
 context.stroke();
 context.closePath();

 // attach event listeners
 this.addRegionEventListener("mousedown", function(){
 draggingRect = true;
 var mousePos = events.getMousePos();

 draggingRectOffsetX = mousePos.x - rectX;

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Interacting with the Canvas: Attaching Event Listeners to Shapes and Regions

182

 draggingRectOffsetY = mousePos.y - rectY;
 });
 this.addRegionEventListener("mouseup", function(){
 draggingRect = false;
 });
 this.addRegionEventListener("mouseover", function(){
 document.body.style.cursor = "pointer";
 });
 this.addRegionEventListener("mouseout", function(){
 document.body.style.cursor = "default";
 });

 this.closeRegion();
 });
 };
</script>

6. Embed the canvas inside the body of the HTML document:
<canvas id="myCanvas" width="600" height="250" style="border:1px
solid black;">
</canvas>

How it works...
Drag-and-drop is handled with three phases:

1. Detect a mousedown event over a shape which begins the operation

2. Position the shape according to the mouse coordinates using the mousemove
event listener

3. Drop the shape when the mouse button is released (mouseup)

Inside the stage() function, we can set the position of the rectangle relative to the
position of the mouse if the draggingRect Boolean is true. We can then begin a new
region with beginRegion(), draw the rectangle, and then attach event listeners using the
addRegionEventListener() method. We can add a mousedown event listener that sets
the draggingRect Boolean to true, and then calculates the draggingRectOffsetX and
draggingRectOffsetY variables which account for the position offset between the mouse
and the top-left corner of the rectangle. Next, we can add a mouseup event listener that sets
the draggingRect Boolean to false, completing the drag-and-drop operation. We can also
attach a mouseover event listener to turn the cursor into a hand to show that the element
can be interacted with, and we can also attach a mouseout event listener to restore the
cursor image back to the default pointer to indicate that the mouse cursor is no longer
over the element.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 6

183

See also...
 f Dragging-and-dropping images

Dragging-and-dropping images
This recipe essentially combines the concepts from the previous two recipes to demonstrate
how we can drag-and-drop an image.

How to do it...
Follow these steps to drag-and-drop an image:

1. Link to the Events class:
<script src="events.js">
</script>

2. Define the writeMessage() function which writes out a message:
<script>
 function writeMessage(context, message){
 context.font = "18pt Calibri";
 context.fillStyle = "black";
 context.fillText(message, 10, 25);
 }

3. Define the drawImage() function which begins by instantiating a new Event
s object and setting the initial position of the rectangular region that overlays
the image:
 function drawImage(challengerImg){
 var events = new Events("myCanvas");
 var canvas = events.getCanvas();
 var context = events.getContext();

 var rectX = canvas.width / 2 - challengerImg.width / 2;
 var rectY = canvas.height / 2 - challengerImg.height / 2;
 var draggingRect = false;
 var draggingRectOffsetX = 0;
 var draggingRectOffsetY = 0;

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Interacting with the Canvas: Attaching Event Listeners to Shapes and Regions

184

4. Define the stage() function which begins by setting the position of the image based
on the coordinates of the mouse if the draggingRect Boolean is true:
 events.setStage(function(){
 var mousePos = this.getMousePos();

 if (draggingRect) {
 rectX = mousePos.x - draggingRectOffsetX;
 rectY = mousePos.y - draggingRectOffsetY;
 }

5. Clear the canvas and write out a message:
 // clear the canvas
 this.clear();
 writeMessage(context, "Drag and drop the car...");

6. Begin a new region, draw the image, draw a rectangular region to define the image
path, attach event listeners, and close the region:
 this.beginRegion();
 context.drawImage(challengerImg, rectX, rectY,
challengerImg.width, challengerImg.height);
 // draw rectangular region for image
 context.beginPath();
 context.rect(rectX, rectY, challengerImg.width,
challengerImg.height);
 context.closePath();

 this.addRegionEventListener("mousedown", function(){
 draggingRect = true;
 var mousePos = events.getMousePos();

 draggingRectOffsetX = mousePos.x - rectX;
 draggingRectOffsetY = mousePos.y - rectY;
 });
 this.addRegionEventListener("mouseup", function(){
 draggingRect = false;
 });
 this.addRegionEventListener("mouseover", function(){
 document.body.style.cursor = "pointer";
 });
 this.addRegionEventListener("mouseout", function(){
 document.body.style.cursor = "default";
 });

 this.closeRegion();
 });
 }

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 6

185

7. When the page loads, load the image and then call the drawImage() function:
 window.onload = function(){
 // load image
 challengerImg = new Image();
 challengerImg.onload = function(){
 drawImage(this);
 };
 challengerImg.src = "challenger.jpg";
 };
</script>

8. Embed the canvas inside the body of the HTML document:
<canvas id="myCanvas" width="600" height="250" style="border:1px
solid black;">
</canvas>

How it works...
To drag-and-drop an image, we can draw an invisible rectangular path on top of the image to
provide a path for the image, and we can attach the mousedown, mouseup, and mousemove
events similar to the previous recipe to handle the three phases of drag-and-drop.

When the user drags-and-drops an image, he/she is essentially dragging and dropping both
the image and its corresponding rectangular path.

See also...
 f Drawing an image in Chapter 3

 f Dragging-and-dropping shapes

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Interacting with the Canvas: Attaching Event Listeners to Shapes and Regions

186

Creating an image magnifier
In this recipe, we'll create a really neat image magnifier by cropping out a section of a large
image based on the mouse coordinates of a small image and then displaying the result on top
of the small image.

How to do it...
Follow these steps to create an image magnifier that renders a magnified portion of an image
when the user mouses over it:

1. Link to the Events class:
<script src="events.js">
</script>

2. Create an image loader that will load the small and large image and then call a
callback function when the images have loaded:
<script>
 /*
 * loads the images and then calls the callback function
 * with a hash of image objects when the images have loaded
 */
 function loadImages(sources, callback){
 var loadedImages = 0;
 var numImages = 0;
 var images = {};
 // get num of sources
 for (var src in sources) {
 numImages++;
 }
 // load images
 for (var src in sources) {
 images[src] = new Image();

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 6

187

 images[src].onload = function(){
 // call callback function when images
 // have loaded
 if (++loadedImages >= numImages) {
 callback(images);
 }
 };
 images[src].src = sources[src];
 }
 }

3. Define the drawMagnifier() function which draws the magnified image:
 function drawMagnifier(config){
 var context = config.context;
 var images = config.images;
 var mousePos = config.mousePos;
 var imageX = config.imageX;
 var imageY = config.imageY;
 var magWidth = config.magWidth;
 var magHeight = config.magHeight;
 var smallWidth = config.smallWidth;
 var smallHeight = config.smallHeight;
 var largeWidth = config.largeWidth;
 var largeHeight = config.largeHeight;

 /*
 * sourceX and sourceY assume that the rectangle we are
 * cropping out of the large image exists within the large
 * image. We'll have to make some adjustments for the
 * cases where the magnifier goes past the edges of the
 * large image
 */
 var sourceX = ((mousePos.x - imageX) *
 largeWidth / smallWidth) - magWidth / 2;
 var sourceY = ((mousePos.y - imageY) *
 largeHeight / smallHeight) - magHeight / 2;
 var destX = mousePos.x - magWidth / 2;
 var destY = mousePos.y - magHeight / 2;
 var viewWidth = magWidth;
 var viewHeight = magHeight;
 var viewX = destX;
 var viewY = destY;
 var drawMagImage = true;

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Interacting with the Canvas: Attaching Event Listeners to Shapes and Regions

188

 // boundary checks and adjustments for cases
 // where the magnifyer goes past the edges of the large
image
 if (sourceX < 0) {
 if (sourceX > -1 * magWidth) {
 var diffX = -1 * sourceX;
 viewX += diffX;
 viewWidth -= diffX;
 sourceX = 0;
 }
 else {
 drawMagImage = false;
 }
 }

 if (sourceX > largeWidth - magWidth) {
 if (sourceX < largeWidth) {
 viewWidth = largeWidth - sourceX;
 }
 else {
 drawMagImage = false;
 }
 }

 if (sourceY < 0) {
 if (sourceY > -1 * magHeight) {
 var diffY = -1 * sourceY;
 viewY += diffY;
 viewHeight -= diffY;
 sourceY = 0;
 }
 else {
 drawMagImage = false;
 }
 }

 if (sourceY > largeHeight - magHeight) {
 if (sourceY < largeHeight) {
 viewHeight = largeHeight - sourceY;
 }
 else {
 drawMagImage = false;
 }
 }

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 6

189

 // draw white magnifier background
 context.beginPath();
 context.fillStyle = "white";
 context.fillRect(destX, destY, magWidth, magHeight);

 // draw image
 if (drawMagImage) {
 context.beginPath();
 context.drawImage(images.cobraLargeImg, sourceX,
sourceY, viewWidth, viewHeight, viewX, viewY, viewWidth,
viewHeight);
 }

 // draw magnifier border
 context.beginPath();
 context.lineWidth = 2;
 context.strokeStyle = "black";
 context.strokeRect(destX, destY, magWidth, magHeight);
 }

4. Define the drawImages() function which begins by instantiating a new Events
object and defines the magnifier properties:
 function drawImages(images){
 var events = new Events("myCanvas");
 var canvas = events.getCanvas();
 var context = events.getContext();

 // define magnifier dependencies
 var imageX = canvas.width / 2 - images.cobraSmallImg.width
/ 2;
 var imageY = canvas.height / 2 - images.cobraSmallImg.
height / 2;
 var magWidth = 200;
 var magHeight = 150;
 var smallWidth = images.cobraSmallImg.width;
 var smallHeight = images.cobraSmallImg.height;
 var largeWidth = images.cobraLargeImg.width;
 var largeHeight = images.cobraLargeImg.height;

5. Set the stage() function which draws the small image and then calls
drawMagnifier() to draw the magnified image:
 events.setStage(function(){
 var mousePos = events.getMousePos();
 this.clear();

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Interacting with the Canvas: Attaching Event Listeners to Shapes and Regions

190

 context.drawImage(images.cobraSmallImg, imageX,
imageY, smallWidth, smallHeight);
 // draw border around image
 context.beginPath();
 context.lineWidth = 2;
 context.strokeStyle = "black";
 context.strokeRect(imageX, imageY, smallWidth,
smallHeight);
 context.closePath();

 if (mousePos !== null) {
 drawMagnifier({
 context: context,
 images: images,
 mousePos: mousePos,
 imageX: imageX,
 imageY: imageY,
 magWidth: magWidth,
 magHeight: magHeight,
 smallWidth: smallWidth,
 smallHeight: smallHeight,
 largeWidth: largeWidth,
 largeHeight: largeHeight
 });
 }
 });

6. Add an event listener to the canvas element which redraws the stage if the user
mouses out of the canvas in order to remove the magnified image:
 canvas.addEventListener("mouseout", function(){
 events.stage();
 }, false);
 }

7. When the page loads, build a hash of image sources, and pass it on to the image
loader function:
 window.onload = function(){
 var sources = {
 cobraSmallImg: "cobra_280x210.jpg",
 cobraLargeImg: "cobra_800x600.jpg"
 };

 loadImages(sources, drawImages);
 };
</script>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 6

191

8. Embed the canvas inside the body of the HTML document.
<canvas id="myCanvas" width="600" height="250" style="border:1px
solid black;">
</canvas>

How it works...
To create an image magnifier, we'll need two images, one small and one large. The small
image will be the image that's always visible on the canvas, and the large image will be used
as a buffer image to draw the magnifier. Once the page loads, and both images are loaded, we
can instantiate an Events object and begin defining the stage() function.

After drawing the small image centered on the canvas, we can draw the magnified image by
calculating the sourceX, sourceY, destX, and destY parameters of the drawImage()
method which will crop out the magnified section of the large image, and then display the
result on top of the smaller image.

To get sourceX and sourceY, we can get the mouse coordinates relative to the small image
by taking the difference between the mouse position and the position of the top-left corner of
the small image, and then we can get the corresponding coordinates for the large image by
multiplying the result by the magnification (which is the large image width divided by the small
width), and then subtracting half the size of the magnified window:

 var sourceX = ((mousePos.x - imageX) * largeWidth /
smallWidth) - magWidth / 2;
 var sourceY = ((mousePos.y - imageY) * largeHeight /
smallHeight) - magHeight / 2;

To center the magnified image on the mouse cursor, we can set destX equal to the x position
of the mouse offset by half the magnifier width, and we can set destY equal to the y position
of the mouse offset by half the magnifier height:

var destX = mousePos.x - magWidth / 2;

var destY = mousePos.y - magHeight / 2;

See also...
 f Drawing an image in Chapter 3

 f Cropping an image in Chapter 3

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Interacting with the Canvas: Attaching Event Listeners to Shapes and Regions

192

Creating a drawing application
In this recipe, we'll create a nifty drawing application so users can draw pictures right in
the browser.

How to do it...
Follow these steps to create a simple drawing application:

1. Style the toolbar, inputs, and buttons:
 <style>
 canvas {
 border: 1px solid black;
 font-family: “Helvetica Neue”, “Arial”,
 “Lucida Grande”, “Lucida Sans Unicode”,
 “Microsoft YaHei”, sans-serif;
 font-size: 13px;
 line-height: 1.5;
 color: #474747;
 }

 #toolbar {
 width: 590px;
 border: 1px solid black;
 border-bottom: 0px;
 padding: 5px;
 background-color: #f8f8f8;
 }

 input[type = ‘text’] {
 width: 30px;
 margin: 0px 5px 0px 5px;
 }

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 6

193

 label {
 margin-left: 40px;
 }

 label:first-of-type {
 margin-left: 0px;
 }

 input[type = ‘button’] {
 float: right;
 }

 #colorSquare {
 position: relative;
 display: inline-block;
 width: 20px;
 height: 20px;
 background-color: blue;
 top: 4px;
 }
 </style>

2. Link to the Events class:
<script src=”events.js”>
</script>

3. Define the addPoint() function which adds a point to the points array:
 <script>
 function addPoint(events, points){
 var context = events.getContext();
 var drawingPos = events.getMousePos();

 if (drawingPos !== null) {
 points.push(drawingPos);
 }
 }

4. Define the drawPath() function which clears the canvas, redraws the canvas
drawing before the path was started, and then draws the drawing path using the
points in the points array:
 function drawPath(canvas, points, canvasImg){
 var context = canvas.getContext(“2d”);

 // clear canvas

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Interacting with the Canvas: Attaching Event Listeners to Shapes and Regions

194

 context.clearRect(0, 0, canvas.width, canvas.
height);

 // redraw canvas before path
 context.drawImage(canvasImg, 0, 0, canvas.width,
canvas.height);

 // draw patch
 context.beginPath();
 context.lineTo(points[0].x, points[0].y);
 for (var n = 1; n < points.length; n++) {
 var point = points[n];
 context.lineTo(point.x, point.y);
 }
 context.stroke();
 }

5. Define the updateColorSquare() function which updates the color of the toolbar
color square:
 function updateColorSquare(){
 var red = document.getElementById(“red”).value;
 var green = document.getElementById(“green”).
value;
 var blue = document.getElementById(“blue”).value;

 var colorSquare = document.
getElementById(“colorSquare”);
 colorSquare.style.backgroundColor = “rgb(“ + red +
“,” + green + “,” + blue + “)”;
 }

6. Define the getCanvasImg() method which returns an image object of the
canvas drawing:
 function getCanvasImg(canvas){
 var img = new Image();
 img.src = canvas.toDataURL();
 return img;
 }

7. When the page loads, instantiate a new Events object, define the isMouseDown
flag, get the canvas image, and initialize the drawing color, and size:
 window.onload = function(){
 var events = new Events(“myCanvas”);
 var canvas = events.getCanvas();
 var context = events.getContext();

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 6

195

 var isMouseDown = false;
 var canvasImg = getCanvasImg(canvas);
 var points = [];

 // initialize drawing params
 var red = document.getElementById(“red”).value;
 var green = document.getElementById(“green”).
value;
 var blue = document.getElementById(“blue”).value;
 var size = document.getElementById(“size”).value;

8. Update the color square whenever a new color input is entered:
 // attach listeners
 document.getElementById(“red”).
addEventListener(“keyup”, function(evt){
 updateColorSquare();
 }, false);

 document.getElementById(“green”).
addEventListener(“keyup”, function(evt){
 updateColorSquare();
 }, false);

 document.getElementById(“blue”).
addEventListener(“keyup”, function(evt){
 updateColorSquare();
 }, false);

9. Clear the canvas when the clear button is pressed:
 document.getElementById(“clearButton”).
addEventListener(“click”, function(evt){
 events.clear();
 points = [];
 canvasImg = getCanvasImg(canvas);
 }, false);

10. When the Save button is pressed, convert the canvas drawing into a data URL and
open the drawing as an image in a new window:
 document.getElementById(“saveButton”).
addEventListener(“click”, function(evt){
 // open new window with saved image so user
 // can right click and save to their computer
 window.open(canvas.toDataURL());
 }, false);

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Interacting with the Canvas: Attaching Event Listeners to Shapes and Regions

196

11. When the user mousedowns on the canvas, get the drawing position, color, and
size, set the path style, add the first point to the points array, and then set the
isMouseDown flag to true:
 canvas.addEventListener(“mousedown”, function(){
 var drawingPos = events.getMousePos();

 // update drawing params
 red = document.getElementById(“red”).value;
 green = document.getElementById(“green”).
value;
 blue = document.getElementById(“blue”).value;
 size = document.getElementById(“size”).value;

 // start drawing path
 context.strokeStyle = “rgb(“ + red + “,” +
green + “,” + blue + “)”;
 context.lineWidth = size;
 context.lineJoin = “round”;
 context.lineCap = “round”;
 addPoint(events, points);
 isMouseDown = true;
 }, false);

12. When the user mouseups from the canvas, set the isMouseDown flag to false, draw
the path, and then save the current image drawing:
 canvas.addEventListener(“mouseup”, function(){
 isMouseDown = false;
 if (points.length > 0) {
 drawPath(this, points, canvasImg);
 // reset points
 points = [];
 }
 canvasImg = getCanvasImg(this);
 }, false);

13. When the user’s mouse leaves the canvas, simulate a mouseup event:
 canvas.addEventListener(“mouseout”, function(){
 if (document.createEvent) {
 var evt = document.
createEvent(‘MouseEvents’);
 evt.initEvent(“mouseup”, true, false);
 this.dispatchEvent(evt);
 }
 else {

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 6

197

 this.fireEvent(“onmouseup”);
 }
 }, false);

14. Set the stage() function which continuously adds new points to the current drawing
path if the mouse is down and moving:
 events.setStage(function(){
 if (isMouseDown) {
 addPoint(this, points);
 drawPath(canvas, points, canvasImg);
 }
 });
 };
 </script>

15. Construct the toolbar and add the canvas element:
 <body>
 <div id=”toolbar”>
 <label>
 Color
 </label>
 R: <input type=”text” id=”red” maxlength=”3”
class=”short” value=”0”>G: <input type=”text” id=”green”
maxlength=”3” class=”short” value=”0”>B: <input type=”text”
id=”blue” maxlength=”3” class=”short” value=”255”>
 <div id=”colorSquare”>
 </div>
 <label>
 Size:
 </label>
 <input type=”text” id=”size” maxlength=”3”
class=”short” value=”20”>px<input type=”button” id=”clearButton”
value=”Clear”><input type=”button” id=”saveButton” value=”Save”>
 </div>
 <canvas id=”myCanvas” width=”600” height=”250”>
 </canvas>
 </body>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Interacting with the Canvas: Attaching Event Listeners to Shapes and Regions

198

How it works...
Drawing applications typically have the following core features:

 f A mousedown event starts a drawing path, and a mouseup event ends a
drawing path

 f Line widths can be set

 f Colors can be set

 f The drawing can be cleared

 f The drawing can be saved

Of course, if you wanted to create a Photoshop or Gimp-like drawing application on the Web,
there are hundreds of other features you could add, but here we are nailing down just the
basics to get started.

The first bullet in the preceding list is clearly the most important – we need to figure out a way
that users can draw lines on the screen. The most straight forward way to do this is to follow
these steps:

1. When the user mousedowns somewhere on the canvas, set the path style and add
the mouse position coordinate to an array of points to define the beginning point of
the drawing path.

2. When the user moves the mouse, get the mouse position and add another point to
the array of points, and then redraw the path with the new point.

3. When the user mouseups, set a flag indicating that the path is and save the current
drawing image to be used with the next drawing path.

To keep things simple, we can let the user set the line width with a text input, and we can let
the user set the color with three text inputs (the red, green, and blue components of a color).

Finally, we can create a clear button that clears the canvas with the clear() method of the
Events object, and we can create a save button that converts the canvas drawing into a
data URL using the to DataURL() method of the canvas context, and then opens a new
window with the data URL. From there, the user can right-click on the image to save it to
their computer.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 6

199

There's more...
Here are some more ideas if you're creating a more complex drawing application:

 f Until the color picker input is supported by all of the major browsers, you could create
a custom color picker widget that lets users choose a color graphically instead of
inputting the red, green, and blue components of the color that they want

 f You could create a slider bar using the HTML5 range input for the paint brush size

 f You could create layer support by dynamically creating a new canvas element for
each layer. Similar to Photoshop and Gimp, you could provide an ability to delete
layers and merge layers

 f If your application supports layering, you could also add an opacity control for
each layer

 f You could enhance the save feature by saving the drawing in local storage or in an
offline database (see Converting a canvas drawing into a data URL in Chapter 3)

 f Provide pre-built drawing shapes such as lines, rectangles, and circles

 f Allow shapes to be scaled and rotated

 f Allow users to import images into their drawings

 f The list goes on...

Hopefully this recipe further sparks your interest in canvas and gets you thinking about other
possibilities. I think it's safe to say that someone will eventually create a full-blown image
editing web application powered entirely by canvas and give Adobe a run for their money.
Maybe it will be you!

See also...
 f Drawing a spiral in Chapter 1

 f Converting a canvas drawing into a data URL in Chapter 3

 f Saving a canvas drawing as an image in Chapter 3

 f Working with canvas mouse coordinates

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

7
Creating Graphs

and Charts

In this chapter, we will cover:

 f Creating a pie chart

 f Creating a bar chart

 f Graphing equations

 f Plotting data points with a line chart

Introduction
By now you may have noticed that Chapters 1 to 4 cover HTML5 canvas basics, Chapters 5
and 6 cover advanced topics, while Chapters 7 and 8 cover real life implementations. After
all, what good is it to learn about the canvas if we aren't able to produce something useful?
This chapter focuses on doing just that by creating some real life canvas applications by
creating a pie chart, a bar chart, graphs, and a line chart. In contrast to the previous chapters,
this chapter contains only four recipes because each recipe provides a complete, easily
configurable, and production-ready product. Let's get started!

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating Graphs and Charts

202

Creating a pie chart
Pie charts are probably one of the most common data visualizations because they quickly
give users a sense of the relative weights of data elements. In this recipe, we'll create a
configurable Pie Chart class that takes in an array of data elements and produces a pie chart.
Furthermore, we'll construct the Pie Chart drawing methods in such a way that the pie chart
and label automatically fills up as much of the canvas as possible.

How to do it...
Follow these steps to create a Pie Chart class that can automatically position and size a pie
chart and a legend from an array of data:

1. Define the constructor for the PieChart class which draws the pie chart:
/*
 * PieChart constructor
 */
function PieChart(canvasId, data){
 // user defined properties
 this.canvas = document.getElementById(canvasId);
 this.data = data;

 // constants
 this.padding = 10;
 this.legendBorder = 2;
 this.pieBorder = 5;
 this.colorLabelSize = 20;
 this.borderColor = "#555";
 this.shadowColor = "#777";
 this.shadowBlur = 10;
 this.shadowX = 2;

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 7

203

 this.shadowY = 2;
 this.font = "16pt Calibri";

 // relationships
 this.context = this.canvas.getContext("2d");
 this.legendWidth = this.getLegendWidth();
 this.legendX = this.canvas.width - this.legendWidth;
 this.legendY = this.padding;
 this.pieAreaWidth = (this.canvas.width - this.legendWidth);
 this.pieAreaHeight = this.canvas.height;
 this.pieX = this.pieAreaWidth / 2;
 this.pieY = this.pieAreaHeight / 2;
 this.pieRadius = (Math.min(this.pieAreaWidth,
 this.pieAreaHeight) / 2) - (this.padding);

 // draw pie chart
 this.drawPieBorder();
 this.drawSlices();
 this.drawLegend();
}

2. Define the getLegendWidth() method which returns the width of the legend by
taking into account the text length of the longest label:
/*
 * gets the legend width based on the size
 * of the label text
 */
PieChart.prototype.getLegendWidth = function(){
 /*
 * loop through all labels and determine which
 * label is the longest. Use this information
 * to determine the label width
 */
 this.context.font = this.font;
 var labelWidth = 0;

 for (var n = 0; n < this.data.length; n++) {
 var label = this.data[n].label;
 labelWidth = Math.max(labelWidth, this.context.
measureText(label).width);
 }

 return labelWidth + (this.padding * 2) + this.legendBorder +
this.colorLabelSize;
};

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating Graphs and Charts

204

3. Define the drawPieBorder() method which draws a border around the pie chart:
PieChart.prototype.drawPieBorder = function(){
 var context = this.context;
 context.save();
 context.fillStyle = "white";
 context.shadowColor = this.shadowColor;
 context.shadowBlur = this.shadowBlur;
 context.shadowOffsetX = this.shadowX;
 context.shadowOffsetY = this.shadowY;
 context.beginPath();
 context.arc(this.pieX, this.pieY, this.pieRadius + this.
pieBorder, 0, Math.PI * 2, false);
 context.fill();
 context.closePath();
 context.restore();
};

4. Define the drawSlices() method which loops over the data and draws a slice of
the pie for each data element:
/*
 * draws the slices for the pie chart
 */
PieChart.prototype.drawSlices = function(){
 var context = this.context;
 context.save();
 var total = this.getTotalValue();
 var startAngle = 0;
 for (var n = 0; n < this.data.length; n++) {
 var slice = this.data[n];

 // draw slice
 var sliceAngle = 2 * Math.PI * slice.value / total;
 var endAngle = startAngle + sliceAngle;

 context.beginPath();
 context.moveTo(this.pieX, this.pieY);
 context.arc(this.pieX, this.pieY, this.pieRadius,
startAngle, endAngle, false);
 context.fillStyle = slice.color;
 context.fill();
 context.closePath();
 startAngle = endAngle;
 }
 context.restore();
};

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 7

205

5. Define the getTotalValue() method which is used to get the sum of the
data values:
/*
 * gets the total value of the labels by looping through
 * the data and adding up each value
 */
PieChart.prototype.getTotalValue = function(){
 var data = this.data;
 var total = 0;

 for (var n = 0; n < data.length; n++) {
 total += data[n].value;
 }

 return total;
};

6. Define the drawLegend() method which draws a legend:
/*
 * draws the legend
 */
PieChart.prototype.drawLegend = function(){
 var context = this.context;
 context.save();
 var labelX = this.legendX;
 var labelY = this.legendY;

 context.strokeStyle = "black";
 context.lineWidth = this.legendBorder;
 context.font = this.font;
 context.textBaseline = "middle";

 for (var n = 0; n < this.data.length; n++) {
 var slice = this.data[n];

 // draw legend label
 context.beginPath();
 context.rect(labelX, labelY, this.colorLabelSize, this.
colorLabelSize);
 context.closePath();
 context.fillStyle = slice.color;
 context.fill();
 context.stroke();

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating Graphs and Charts

206

 context.fillStyle = "black";
 context.fillText(slice.label, labelX + this.colorLabelSize
+ this.padding, labelY + this.colorLabelSize / 2);

 labelY += this.colorLabelSize + this.padding;
 }
 context.restore();
};

7. When the page loads, build the data and instantiate a PieChart object:
window.onload = function(){
 var data = [{
 label: "Eating",
 value: 2,
 color: "red"
 }, {
 label: "Working",
 value: 8,
 color: "blue"
 }, {
 label: "Sleeping",
 value: 8,
 color: "green"
 }, {
 label: "Errands",
 value: 2,
 color: "yellow"
 }, {
 label: "Entertainment",
 value: 4,
 color: "violet"
 }];

 new PieChart("myCanvas", data);
};

8. Embed the canvas tag inside the body of the HTML document:
<canvas id="myCanvas" width="600" height="300" style="border:1px
solid black;">
</canvas>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 7

207

See also...
 f Drawing an arc in Chapter 1

 f Working with text in Chapter 1

 f Drawing a rectangle in Chapter 2

How it works...
Before diving into how the code works, let's first take a step back and think about what a
PieChart object should do. As a developer, we would need to pass in the canvas ID so the
object knows where to draw, and also an array of data elements so it knows what to draw.

The PieChart element is rendered with the drawSlices() and drawPieBorder()
methods. The drawSlices() method performs these steps:

1. Loops through the data elements.

2. Calculates the angle of each data value by multiplying 2π by the value fraction of the
total value.

3. Draws an arc using the arc() method for each slice.

4. Fills each slice with the data element color.

Once the pie chart is rendered, we can draw the legend with the drawLegend() method.
This method performs these steps:

1. Loops through the data elements.

2. Draws a box using rect() for each element.

3. Strokes and fills each box with the data element color using stroke() and fill().

4. Writes the corresponding label using fillText() for each element.

Once the page loads, we can create an array of data elements that identify our daily activities
with the corresponding number of hours for each activity and then instantiate a new PieChart
object by passing in the data array.

In this recipe, we've created artificial data by hard coding an array of data
elements. In real life, however, it's more likely that our data will be provided
via JSON or XML, for example.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating Graphs and Charts

208

Creating a bar chart
Right behind pie charts, bar charts are another popular tool for visualizing data. In this recipe,
we'll create a configurable Bar Chart class that takes in an array of data elements and creates
a simple bar chart. We'll reuse the data structure from the previous recipe to compare the
results. Like the Pie Chart class, the bar chart drawing methods also automatically scale the
chart to fill up the canvas.

How to do it...
Follow these steps to create a Bar Chart class that can automatically position and size a bar
chart from an array of data:

1. Define the BarChart constructor which draws the chart:
/*
 * BarChart constructor
 */
function BarChart(config){
 // user defined properties
 this.canvas = document.getElementById(config.canvasId);
 this.data = config.data;
 this.color = config.color;
 this.barWidth = config.barWidth;
 this.gridLineIncrement = config.gridLineIncrement;
 /*
 * adjust max value to highest possible value divisible
 * by the grid line increment value and less than
 * the requested max value

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 7

209

 */
 this.maxValue = config.maxValue - Math.floor(config.maxValue %
this.gridLineIncrement);
 this.minValue = config.minValue;

 // constants
 this.font = "12pt Calibri";
 this.axisColor = "#555";
 this.gridColor = "#aaa";
 this.padding = 10;

 // relationships
 this.context = this.canvas.getContext("2d");
 this.range = this.maxValue - this.minValue;
 this.numGridLines = this.numGridLines = Math.round(this.range
/ this.gridLineIncrement);
 this.longestValueWidth = this.getLongestValueWidth();
 this.x = this.padding + this.longestValueWidth;
 this.y = this.padding * 2;
 this.width = this.canvas.width - (this.longestValueWidth +
this.padding * 2);
 this.height = this.canvas.height - (this.getLabelAreaHeight()
+ this.padding * 4);

 // draw bar chart
 this.drawGridlines();
 this.drawYAxis();
 this.drawXAxis();
 this.drawBars();
 this.drawYVAlues();
 this.drawXLabels();
}

2. Define the getLabelAreaHeight() method which determines the label area
height (the labels below the x axis):
/*
 * gets the label height by finding the max label width and
 * using trig to figure out the projected height since
 * the text will be rotated by 45 degrees
 */
BarChart.prototype.getLabelAreaHeight = function(){
 this.context.font = this.font;
 var maxLabelWidth = 0;

 /*

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating Graphs and Charts

210

 * loop through all labels and determine which
 * label is the longest. Use this information
 * to determine the label width
 */
 for (var n = 0; n < this.data.length; n++) {
 var label = this.data[n].label;
 maxLabelWidth = Math.max(maxLabelWidth, this.context.
measureText(label).width);
 }

 /*
 * return y component of the labelWidth which
 * is at a 45 degree angle:
 *
 * a^2 + b^2 = c^2
 * a = b
 * c = labelWidth
 * a = height component of right triangle
 * solve for a
 */
 return Math.round(maxLabelWidth / Math.sqrt(2));
};

3. Define the getLongestValueWidth() method which returns the longest value
text width:
BarChart.prototype.getLongestValueWidth = function(){
 this.context.font = this.font;
 var longestValueWidth = 0;
 for (var n = 0; n <= this.numGridLines; n++) {
 var value = this.maxValue - (n * this.gridLineIncrement);
 longestValueWidth = Math.max(longestValueWidth, this.
context.measureText(value).width);

 }
 return longestValueWidth;
};

4. Define the drawXLabels() method which draws the x axis labels:
BarChart.prototype.drawXLabels = function(){
 var context = this.context;
 context.save();
 var data = this.data;
 var barSpacing = this.width / data.length;

 for (var n = 0; n < data.length; n++) {

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 7

211

 var label = data[n].label;
 context.save();
 context.translate(this.x + ((n + 1 / 2) * barSpacing),
this.y + this.height + 10);
 context.rotate(-1 * Math.PI / 4); // rotate 45 degrees
 context.font = this.font;
 context.fillStyle = "black";
 context.textAlign = "right";
 context.textBaseline = "middle";
 context.fillText(label, 0, 0);
 context.restore();
 }
 context.restore();
};

5. Define the drawYValues() method which draws the y axis values:
BarChart.prototype.drawYVAlues = function(){
 var context = this.context;
 context.save();
 context.font = this.font;
 context.fillStyle = "black";
 context.textAlign = "right";
 context.textBaseline = "middle";

 for (var n = 0; n <= this.numGridLines; n++) {
 var value = this.maxValue - (n * this.gridLineIncrement);
 var thisY = (n * this.height / this.numGridLines) +
this.y;
 context.fillText(value, this.x - 5, thisY);
 }

 context.restore();
};

6. Define the drawBars() method which loops through all of the data elements and
draws a bar for each one:
BarChart.prototype.drawBars = function(){
 var context = this.context;
 context.save();
 var data = this.data;
 var barSpacing = this.width / data.length;
 var unitHeight = this.height / this.range;

 for (var n = 0; n < data.length; n++) {
 var bar = data[n];

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating Graphs and Charts

212

 var barHeight = (data[n].value - this.minValue) *
unitHeight;

 /*
 * if bar height is less than zero, this means that its
 * value is less than the min value. Since we don't want
to draw
 * bars below the x-axis, only draw bars whose height is
greater
 * than zero
 */
 if (barHeight > 0) {
 context.save();
 context.translate(Math.round(this.x + ((n + 1 / 2) *
barSpacing)), Math.round(this.y + this.height));
 /*
 * for convenience, we can draw the bars upside down
 * starting at the x-axis and then flip
 * them back into the correct orientation using
 * scale(1, -1). This is a great example of how
 * transformations can help reduce computations
 */
 context.scale(1, -1);

 context.beginPath();
 context.rect(-this.barWidth / 2, 0, this.barWidth,
barHeight);
 context.fillStyle = this.color;
 context.fill();
 context.restore();
 }
 }
 context.restore();
};

7. Define the drawGridlines() method which draws horizontal gridlines on the
bar chart:
BarChart.prototype.drawGridlines = function(){
 var context = this.context;
 context.save();
 context.strokeStyle = this.gridColor;
 context.lineWidth = 2;

 // draw y axis grid lines
 for (var n = 0; n < this.numGridLines; n++) {

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 7

213

 var y = (n * this.height / this.numGridLines) + this.y;
 context.beginPath();
 context.moveTo(this.x, y);
 context.lineTo(this.x + this.width, y);
 context.stroke();
 }
 context.restore();
};

8. Define the drawXAxis() method which draws the x axis:
BarChart.prototype.drawXAxis = function(){
 var context = this.context;
 context.save();
 context.beginPath();
 context.moveTo(this.x, this.y + this.height);
 context.lineTo(this.x + this.width, this.y + this.height);
 context.strokeStyle = this.axisColor;
 context.lineWidth = 2;
 context.stroke();
 context.restore();
};

9. Define the drawYAxis() method which draws the y axis:
BarChart.prototype.drawYAxis = function(){
 var context = this.context;
 context.save();
 context.beginPath();
 context.moveTo(this.x, this.y);
 context.lineTo(this.x, this.height + this.y);
 context.strokeStyle = this.axisColor;
 context.lineWidth = 2;
 context.stroke();
 context.restore();
};

10. When the page loads, build the data and instantiate a new BarChart object:
window.onload = function(){
 var data = [{
 label: "Eating",
 value: 2
 }, {
 label: "Working",
 value: 8
 }, {

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating Graphs and Charts

214

 label: "Sleeping",
 value: 8
 }, {
 label: "Errands",
 value: 2
 }, {
 label: "Entertainment",
 value: 4
 }];

 new BarChart({
 canvasId: "myCanvas",
 data: data,
 color: "blue",
 barWidth: 50,
 minValue: 0,
 maxValue: 10,
 gridLineIncrement: 2
 });
};

11. Embed the canvas inside the body of the HTML document:
<canvas id="myCanvas" width="600" height="300" style="border:1px
solid black;">
</canvas>

How it works...
In contrast to a pie chart, a bar chart will need a bit more configuration to make it truly
generic. For our implementation of the BarChart class, we'll need to pass in the canvas
id, an array of data elements, the bar colors, the bar widths, the grid line increment which
is the number of units between grid lines, the max value and the min value. The BarChart
constructor uses six methods to render the bar chart—drawGridlines(), drawYAxis(),
drawXAxis(), drawBars(), drawYValues(), and drawXLabels().

The key to the BarChart class is the drawBars() method that iterates over all of the data
elements, and then draws a rectangle for each one. The easiest way to draw each bar is to
first invert the context vertically (so that positive values of y go up and not down), position the
cursor on the x axis, and then draw a rectangle downwards whose height is equal to the value
of the data element. As the context is inverted vertically, the bar will actually rise upwards.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 7

215

See also...
 f Working with text in Chapter 1

 f Drawing a rectangle in Chapter 2

 f Translating the canvas context in Chapter 4

 f Rotating the canvas context in Chapter 4

 f Creating a mirror transform in Chapter 4

Graphing equations
In this recipe, we'll create a configurable Graph class that draws the x and y axis with tick
marks and values, and then we'll construct a method called drawEquation() that allows us
to graph f(x) functions. We'll instantiate a Graph object and then draw a sine wave, a parabolic
equation, and a linear equation.

How to do it...
Follow these steps to create a Graph class that can draw an x and y axis with values, and also
graph multiple f(x) equations:

1. Define the constructor for the Graph class that draws the x and y axis:
function Graph(config){
 // user defined properties
 this.canvas = document.getElementById(config.canvasId);
 this.minX = config.minX;
 this.minY = config.minY;
 this.maxX = config.maxX;
 this.maxY = config.maxY;
 this.unitsPerTick = config.unitsPerTick;

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating Graphs and Charts

216

 // constants
 this.axisColor = "#aaa";
 this.font = "8pt Calibri";
 this.tickSize = 20;

 // relationships
 this.context = this.canvas.getContext("2d");
 this.rangeX = this.maxX - this.minX;
 this.rangeY = this.maxY - this.minY;
 this.unitX = this.canvas.width / this.rangeX;
 this.unitY = this.canvas.height / this.rangeY;
 this.centerY = Math.round(Math.abs(this.minY / this.rangeY) *
this.canvas.height);
 this.centerX = Math.round(Math.abs(this.minX / this.rangeX) *
this.canvas.width);
 this.iteration = (this.maxX - this.minX) / 1000;
 this.scaleX = this.canvas.width / this.rangeX;
 this.scaleY = this.canvas.height / this.rangeY;

 // draw x and y axis
 this.drawXAxis();
 this.drawYAxis();
}

2. Define the drawXAxis() method which draws the x axis:
Graph.prototype.drawXAxis = function(){
 var context = this.context;
 context.save();
 context.beginPath();
 context.moveTo(0, this.centerY);
 context.lineTo(this.canvas.width, this.centerY);
 context.strokeStyle = this.axisColor;
 context.lineWidth = 2;
 context.stroke();

 // draw tick marks
 var xPosIncrement = this.unitsPerTick * this.unitX;
 var xPos, unit;
 context.font = this.font;
 context.textAlign = "center";
 context.textBaseline = "top";

 // draw left tick marks
 xPos = this.centerX - xPosIncrement;

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 7

217

 unit = -1 * this.unitsPerTick;
 while (xPos > 0) {
 context.moveTo(xPos, this.centerY - this.tickSize / 2);
 context.lineTo(xPos, this.centerY + this.tickSize / 2);
 context.stroke();
 context.fillText(unit, xPos, this.centerY + this.tickSize
/ 2 + 3);
 unit -= this.unitsPerTick;
 xPos = Math.round(xPos - xPosIncrement);
 }
 // draw right tick marks
 xPos = this.centerX + xPosIncrement;
 unit = this.unitsPerTick;
 while (xPos < this.canvas.width) {
 context.moveTo(xPos, this.centerY - this.tickSize / 2);
 context.lineTo(xPos, this.centerY + this.tickSize / 2);
 context.stroke();
 context.fillText(unit, xPos, this.centerY + this.tickSize
/ 2 + 3);
 unit += this.unitsPerTick;
 xPos = Math.round(xPos + xPosIncrement);
 }
 context.restore();
};

3. Define the drawYAxis() method which draws the y axis:
Graph.prototype.drawYAxis = function(){
 var context = this.context;
 context.save();
 context.beginPath();
 context.moveTo(this.centerX, 0);
 context.lineTo(this.centerX, this.canvas.height);
 context.strokeStyle = this.axisColor;
 context.lineWidth = 2;
 context.stroke();

 // draw tick marks
 var yPosIncrement = this.unitsPerTick * this.unitY;
 var yPos, unit;
 context.font = this.font;
 context.textAlign = "right";
 context.textBaseline = "middle";

 // draw top tick marks

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating Graphs and Charts

218

 yPos = this.centerY - yPosIncrement;
 unit = this.unitsPerTick;
 while (yPos > 0) {
 context.moveTo(this.centerX - this.tickSize / 2, yPos);
 context.lineTo(this.centerX + this.tickSize / 2, yPos);
 context.stroke();
 context.fillText(unit, this.centerX - this.tickSize / 2 -
3, yPos);
 unit += this.unitsPerTick;
 yPos = Math.round(yPos - yPosIncrement);
 }

 // draw bottom tick marks
 yPos = this.centerY + yPosIncrement;
 unit = -1 * this.unitsPerTick;
 while (yPos < this.canvas.height) {
 context.moveTo(this.centerX - this.tickSize / 2, yPos);
 context.lineTo(this.centerX + this.tickSize / 2, yPos);
 context.stroke();
 context.fillText(unit, this.centerX - this.tickSize / 2 -
3, yPos);
 unit -= this.unitsPerTick;
 yPos = Math.round(yPos + yPosIncrement);
 }
 context.restore();
};

4. Define the drawEquation() method which takes in a function f(x) and then draws
the equation by looping through incremental values of x from minX to maxX:
Graph.prototype.drawEquation = function(equation, color,
thickness){
 var context = this.context;
 context.save();
 context.save();
 this.transformContext();

 context.beginPath();
 context.moveTo(this.minX, equation(this.minX));

 for (var x = this.minX + this.iteration; x <= this.maxX; x +=
this.iteration) {
 context.lineTo(x, equation(x));
 }

 context.restore();

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 7

219

 context.lineJoin = "round";
 context.lineWidth = thickness;
 context.strokeStyle = color;
 context.stroke();
 context.restore();
};

5. Define the transformContext() method which translates the context to the center
of the graph, stretches the graph to fit the canvas, and then inverts the y axis:
Graph.prototype.transformContext = function(){
 var context = this.context;

 // move context to center of canvas
 this.context.translate(this.centerX, this.centerY);

 /*
 * stretch grid to fit the canvas window, and
 * invert the y scale so that increments
 * as you move upwards
 */
 context.scale(this.scaleX, -this.scaleY);
};

6. When the page loads, instantiate a new Graph object, and then draw three equations
using the drawEquation() method:
window.onload = function(){
 var myGraph = new Graph({
 canvasId: "myCanvas",
 minX: -10,
 minY: -10,
 maxX: 10,
 maxY: 10,
 unitsPerTick: 1
 });

 myGraph.drawEquation(function(x){
 return 5 * Math.sin(x);
 }, "green", 3);

 myGraph.drawEquation(function(x){
 return x * x;
 }, "blue", 3);

 myGraph.drawEquation(function(x){
 return 1 * x;
 }, "red", 3);
};

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating Graphs and Charts

220

7. Embed the canvas inside the body of the HTML document:
<canvas id="myCanvas" width="600" height="300" style="border:1px
solid black;">
</canvas>

How it works...
Our Graph class only requires six parameters, the canvasId, minX, minY, maxX, maxY, and
unitsPerTick. When instantiated, it draws the x axis with the drawXAxis() method and
the y axis with the drawYAxis() method.

The real gem of the Graph object is the drawEquation() method that takes in an equation
f(x), a line color, and a line thickness. Although the method is relatively short (about 20 lines
of code), it's actually quite powerful. Here's how it works:

1. First, call the transformContext() method which positions the canvas context,
scales the context to fit the canvas, and inverts the y axis with the scale() method
by multiplying the y component by -1. This makes the drawing process much simpler
because increasing y values will go upwards and not downwards (remember that by
default, y increases as you move downwards).

2. Once the canvas context has been prepared, use the equation function to
determine the y value when x equals minX, that is, f(minX).

3. Move the drawing cursor with moveTo().

4. With a for loop, slightly increment the x value and determine the corresponding y
value using the equation f(x) for each iteration.

5. Draw a line from the last point to the current point with lineTo().

6. Continue looping until x equals maxX.

As the lines drawn are extremely small with each iteration, they are invisible to the human eye,
resulting in the illusion of smooth curves.

When the page loads, we can instantiate a new Graph object, and then graph a
green sine wave, a blue parabolic equation, and a red linear equation by calling the
drawEquation() method.

See also...
 f Drawing a line in Chapter 1
 f Working with text in Chapter 1
 f Translating the canvas context in Chapter 4
 f Scaling the canvas context in Chapter 4
 f Creating a mirror transform in Chapter 4

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 7

221

Plotting data points with a line chart
If you've ever taken a science class, you're probably familiar with generating line charts based
on a set of data for your experiments. Line charts are probably one of the most useful data
visualizations when communicating data trends. In this recipe, we'll create a configurable Line
Chart class which takes in an array of data elements and plots each point while connecting
the points with line segments.

How to do it...
Follow these steps to create a Line Chart class that can automatically position and size a line
chart from an array of data:

1. Define the constructor for the LineChart class that draws the x and y axis:
function LineChart(config){
 // user defined properties
 this.canvas = document.getElementById(config.canvasId);
 this.minX = config.minX;
 this.minY = config.minY;
 this.maxX = config.maxX;
 this.maxY = config.maxY;
 this.unitsPerTickX = config.unitsPerTickX;
 this.unitsPerTickY = config.unitsPerTickY;

 // constants
 this.padding = 10;
 this.tickSize = 10;
 this.axisColor = "#555";
 this.pointRadius = 5;

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating Graphs and Charts

222

 this.font = "12pt Calibri";
 /*
 * measureText does not provide a text height
 * metric, so we'll have to hardcode a text height
 * value
 */
 this.fontHeight = 12;
 // relationships
 this.context = this.canvas.getContext("2d");
 this.rangeX = this.maxX - this.minY;
 this.rangeY = this.maxY - this.minY;
 this.numXTicks = Math.round(this.rangeX / this.unitsPerTickX);
 this.numYTicks = Math.round(this.rangeY / this.unitsPerTickY);
 this.x = this.getLongestValueWidth() + this.padding * 2;
 this.y = this.padding * 2;
 this.width = this.canvas.width - this.x - this.padding * 2;
 this.height = this.canvas.height - this.y - this.padding -
this.fontHeight;
 this.scaleX = this.width / this.rangeX;
 this.scaleY = this.height / this.rangeY;

 // draw x y axis and tick marks
 this.drawXAxis();
 this.drawYAxis();
}

2. Define the getLongestValueWidth() method which returns the length in pixels of
the longest value text:
LineChart.prototype.getLongestValueWidth = function(){
 this.context.font = this.font;
 var longestValueWidth = 0;
 for (var n = 0; n <= this.numYTicks; n++) {
 var value = this.maxY - (n * this.unitsPerTickY);
 longestValueWidth = Math.max(longestValueWidth, this.
context.measureText(value).width);
 }
 return longestValueWidth;
};

3. Define the drawXAxis() method which draws the x axis and the labels:
LineChart.prototype.drawXAxis = function(){
 var context = this.context;
 context.save();
 context.beginPath();
 context.moveTo(this.x, this.y + this.height);

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 7

223

 context.lineTo(this.x + this.width, this.y + this.height);
 context.strokeStyle = this.axisColor;
 context.lineWidth = 2;
 context.stroke();

 // draw tick marks
 for (var n = 0; n < this.numXTicks; n++) {
 context.beginPath();
 context.moveTo((n + 1) * this.width / this.numXTicks +
this.x, this.y + this.height);
 context.lineTo((n + 1) * this.width / this.numXTicks +
this.x, this.y + this.height - this.tickSize);
 context.stroke();
 }

 // draw labels
 context.font = this.font;
 context.fillStyle = "black";
 context.textAlign = "center";
 context.textBaseline = "middle";

 for (var n = 0; n < this.numXTicks; n++) {
 var label = Math.round((n + 1) * this.maxX / this.
numXTicks);
 context.save();
 context.translate((n + 1) * this.width / this.numXTicks +
this.x, this.y + this.height + this.padding);
 context.fillText(label, 0, 0);
 context.restore();
 }
 context.restore();
};

4. Define the drawYAxis() method which draws the y axis and the values:
LineChart.prototype.drawYAxis = function(){
 var context = this.context;
 context.save();
 context.save();
 context.beginPath();
 context.moveTo(this.x, this.y);
 context.lineTo(this.x, this.y + this.height);
 context.strokeStyle = this.axisColor;
 context.lineWidth = 2;
 context.stroke();
 context.restore();

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating Graphs and Charts

224

 // draw tick marks
 for (var n = 0; n < this.numYTicks; n++) {
 context.beginPath();
 context.moveTo(this.x, n * this.height / this.numYTicks +
this.y);
 context.lineTo(this.x + this.tickSize, n * this.height /
this.numYTicks + this.y);
 context.stroke();
 }

 // draw values
 context.font = this.font;
 context.fillStyle = "black";
 context.textAlign = "right";
 context.textBaseline = "middle";

 for (var n = 0; n < this.numYTicks; n++) {
 var value = Math.round(this.maxY - n * this.maxY / this.
numYTicks);
 context.save();
 context.translate(this.x - this.padding, n * this.height /
this.numYTicks + this.y);
 context.fillText(value, 0, 0);
 context.restore();
 }
 context.restore();
};

5. Define the drawLine() method which loops through the data points and draws line
segments connecting each data point:
LineChart.prototype.drawLine = function(data, color, width){
 var context = this.context;
 context.save();
 this.transformContext();
 context.lineWidth = width;
 context.strokeStyle = color;
 context.fillStyle = color;
 context.beginPath();
 context.moveTo(data[0].x * this.scaleX, data[0].y * this.
scaleY);

 for (var n = 0; n < data.length; n++) {
 var point = data[n];

 // draw segment

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 7

225

 context.lineTo(point.x * this.scaleX, point.y * this.
scaleY);
 context.stroke();
 context.closePath();
 context.beginPath();
 context.arc(point.x * this.scaleX, point.y * this.scaleY,
this.pointRadius, 0, 2 * Math.PI, false);
 context.fill();
 context.closePath();

 // position for next segment
 context.beginPath();
 context.moveTo(point.x * this.scaleX, point.y * this.
scaleY);
 }
 context.restore();
};

6. Define the transformContext() method which translates the context and then
inverts the context vertically:
LineChart.prototype.transformContext = function(){
 var context = this.context;

 // move context to center of canvas
 this.context.translate(this.x, this.y + this.height);

 // invert the y scale so that that increments
 // as you move upwards
 context.scale(1, -1);
};

7. When the page loads, instantiate a LineChart object, create a data set for the blue
line, plot the line using drawLine(), define another data set for the red line, and
then plot the red line:
window.onload = function(){
 var myLineChart = new LineChart({
 canvasId: "myCanvas",
 minX: 0,
 minY: 0,
 maxX: 140,
 maxY: 100,
 unitsPerTickX: 10,
 unitsPerTickY: 10
 });

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Creating Graphs and Charts

226

 var data = [{
 x: 0,
 y: 0
 }, {
 x: 20,
 y: 10
 }, {
 x: 40,
 y: 15
 }, {
 x: 60,
 y: 40
 }, {
 x: 80,
 y: 60
 }, {
 x: 100,
 y: 50
 }, {
 x: 120,
 y: 85
 }, {
 x: 140,
 y: 100
 }];

 myLineChart.drawLine(data, "blue", 3);

 var data = [{
 x: 20,
 y: 85
 }, {
 x: 40,
 y: 75
 }, {
 x: 60,
 y: 75
 }, {
 x: 80,
 y: 45
 }, {
 x: 100,
 y: 65
 }, {

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 7

227

 x: 120,
 y: 40
 }, {
 x: 140,
 y: 35
 }];

 myLineChart.drawLine(data, "red", 3);
};

8. Embed the canvas inside the body of the HTML document:
<canvas id="myCanvas" width="600" height="300" style="border:1px
solid black;">
</canvas>

How it works...
To start off, we'll need to configure the LineChart object with seven properties, including the
canvasId, minX, minY, maxX, maxY, unitsPerTickX, and unitsPerTickY. When the
LineChart object is instantiated, we'll render the x axis and the y axis.

Most of the interesting stuff happens in the drawLine() method, which requires an array of
data elements, a line color, and a line thickness. Here's how it works:

1. Use transformContext() to translate, scale, and invert the context.

2. Position the drawing cursor at the first data point from the data array with the
moveTo() method.

3. Loop through all of the data elements, draw a line from the previous point to
the current point, and then draw a small circle at the current position using the
arc() method.

Once the page loads, we can instantiate the LineChart object, create an array of data points
for the blue line, draw the line using the drawLine() method, create another array of data
points for the red line, and then draw the red line.

See also...
 f Drawing a line in Chapter 1

 f Working with text in Chapter 1

 f Drawing a circle in Chapter 2

 f Translating the canvas context in Chapter 4

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

8
Saving the World with

Game Development

In this chapter, we will cover:

 f Creating sprite sheets for the hero and enemies
 f Creating level images and boundary maps
 f Creating an Actor class for the hero and enemies
 f Creating a Level class
 f Creating a Health Bar class
 f Creating a Controller class
 f Creating a Model class
 f Creating a View class
 f Setting up the HTML document and starting the game

Introduction
I wouldn't be surprised if some of you bought this book solely for this chapter—after all, what
fun is it to master the HTML5 canvas without being able to create your own video games? Of
all the chapters in this book, this chapter was by far my favorite (with the next chapter being a
close second). We might not actually be able to save the world with game development, but it
sure is fun to create our own virtual worlds and save those instead. In this chapter, we're going
to pull all of our new found knowledge together to create Canvas Hero, a side-scroller action
game starring the Canvas Hero, who can run, jump, levitate, and punch through a futuristic
world full of menacing bad guys. Here are some of the features of the game:

 f The hero can run left, run right, jump, and punch to attack

 f The level will look futuristic

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Saving the World with Game Development

230

 f The level will be full of enemies running around looking for trouble

 f The level will have a foreground image that moves to the left and to the right as the
player moves, and will also have a stationary background image to create depth

 f The player can jump high enough to jump over bad guys and avoid getting punched

 f When either the player or the enemies are hit, they will flash white to show that they
have sustained damage

 f Gravity will act on the player at all times

 f The player cannot fall through the floor, run through walls, or jump through the ceiling

 f Although the hero can jump very high, there will be strategically placed levitation
pods throughout the level to give the player a vertical boost so that he can reach
high-up platforms

 f The game is over when the player's health drops to zero or if the player falls into
a hole

 f The player wins the game when all of the bad guys have been defeated

And here are a few screenshots to give you an idea of what the game will look like when
we're done:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 8

231

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Saving the World with Game Development

232

The first two recipes of this chapter cover techniques for creating the sprite sheets for the hero
and bad guys as well as the level image and boundary map image. The next three recipes
cover steps for creating classes for the hero, bad guys, level, and health bar objects. Recipes
after that cover the MVC (model, view, controller) architecture of the game, and the last
recipe will cover the HTML markup. Let's get started!

Creating sprite sheets for the heroes and
enemies

Sprite sheets are image files that contain snapshots of different motions for different players
and enemies that will appear in the game. Sprite sheets are an alternative to working with
dozens or hundreds of individual images which can impact the initial loading time and also
become a nightmare for graphic artists to maintain. Canvas Hero contains a sprite sheet for
the hero, a sprite sheet for the bad guys, and also a set of white sprite sheets used when
either the hero or the bad guys sustain damage.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 8

233

Getting ready...
Before we get started, it's worth noting that even the most talented of game artists can spend
more time creating game graphics than the time it takes to code a game, which is something
that's often times overlooked. For Canvas Hero, we can make life easier for ourselves by
downloading some sprites from my favorite sprite resource, http://www.spriters-
resource.com, which is a free website containing a huge collection of sprite sheets and
level images of classic old-school games.

How to do it
Once we find suitable sprite sheets for the hero and the bad guys, we can crop out the sprites
we need and then put together a sprite sheet using Adobe Photoshop, Gimp, or some other
image editing software. Here's the finished hero sprite sheet:

As you can see, the hero sprite sheet contains four motions, one for standing, one for jumping,
one for running, and one for punching (from top to bottom). When creating a sprite sheet,
it's important that all of the sprite images fit inside a defined sprite size. For Canvas Hero,
each sprite image fits inside a square that's 144 x 144 px. We should also ensure that each
sprite image is facing the same direction because we can programmatically flip these images
horizontally when we want to render a sprite that's facing the other direction.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

http://www.spriters-resource.com
http://www.spriters-resource.com

Saving the World with Game Development

234

Likewise, we can use this same process to create a sprite sheet for the bad guys as well:

You'll notice that the bad guy sprite sheet is much simpler than the hero sprite sheet, simply
because their movements are limited to running around and fighting (they never stand still or
jump). For consistency, we can make the bad guy sprites 144 x 144 px as well.

Creating level images and boundary maps
Now that we have sprite sheets for the hero and the bad guys, it's time to create a virtual
world for them to live in. In Canvas Hero, our virtual world will be a single level that moves left
and right as the player moves through it, which will contain walls, a ceiling, a floor, platforms,
and holes. In this recipe, we'll go over the steps for making a level image as well as a
boundary map image that graphically contains information about the bounds of the
level and also identifies special zones with different colors.

How to do it...
To create the level image for Canvas Hero, we can use some prebuilt graphics downloaded
from http://www.spriters-resource.com and add in new platforms, holes, and
levitators using Photoshop, Gimp, or some other image editor of your choice. To keep the level
somewhat small in size, we can create a foreground level image that's 6944 x 600 px. The
canvas, which is 900 x 600 px, will act as a viewing window to the level. Here's a snapshot of
a portion of the level which contains a transparent foreground and a couple of levitator pods:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

http://www.spriters-resource.com
http://www.spriters-resource.com

Chapter 8

235

Next, we can create a background image to create the illusion of depth. Here's the finished
background image for Canvas Hero:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Saving the World with Game Development

236

And here's how the foreground and background images look together:

Once we have the foreground and background images completed, our next step is to create
a boundary map. A boundary map is a graphical way to bound the player inside certain areas
and also define special zones.

To create the boundary map for Canvas Hero, we can start with a black background
juxtaposed on top of the level image, and then draw magenta rectangles where the actors
can run freely, and also add cyan rectangles to represent levitation zones. Keeping the
background image a solid color helps reduce the boundary map image size and cuts down
on the image loading time. The following image is a section of the boundary map that
corresponds to the preceding image:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 8

237

How it works...
To better understand how boundary maps work, let's walk through the player's steps as he
navigates through the preceding screen from left to right. Also keep in mind that the player's
x ,y position is in the center of the sprite image which is about level with the hero's hip:

 f Starting from the left, notice that the magenta portion, RGB (255, 0, 255), of the
boundary map is extremely thin (only about 10 px or so). This region corresponds to
the small space that the player can reside beneath the low hanging ceiling above
his head. If the player were to jump while in this region, his vertical ascent would
be prevented.

 f Once the hero walks past the low hanging ceiling, he'll come up to a levitation pod.
Notice that there is plenty of vertical magenta space for him to jump upwards and
into the levitation zone, which is cyan, RGB (0, 255, 255).

 f Once the player is inside of a cyan zone, he'll begin to float upwards until he can
reach the platform in the middle of the screen.

 f When the player is on the platform, the ceiling is right above his head which prevents
him from jumping.

 f The player can continue walking to the right and then fall off the platform towards
the ground.

 f Once on the ground, the player can jump into a second levitation zone identified by
the cyan rectangle, which boosts him up onto the next platform.

There's more...
There's more to it!

Boundary map alternative
If you'd rather not use a boundary map to define the level boundaries, you might consider
constructing a large array of boundary points that define zones in space where the player
can reside. The downside of this approach is that as the levels become large and complex,
maintenance of the array can be quite time consuming. Additionally, this method can incur
a significant performance overhead by constantly looping through the array and performing
boundary calculations for each animation frame.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Saving the World with Game Development

238

Level image alternatives
To keep this chapter as simple as possible, we chose to create the level with one large image.
This image, unfortunately, is the main bottleneck when loading the game. Although the other
images are small in size, including the boundary map, the level image is about 1.6 MB and
can take a few seconds to load. If your levels are large, or you're simply trying to make the
game load as fast as possible, you might consider one of these alternatives:

 f Lazy Loader—A lazy loader will request sections of the level based on the player's
location such that only the visible and surrounding blocks of a level are downloaded
rather than downloading the entire level image at once. The upside of this approach
is an improved initial loading time, and the downside of this approach is that you
have to programmatically manage which sections of the level are downloaded at
which times.

 f Tiled Layout—A tiled layout is a level that's constructed from tile images. In other
words, you could create small tiled images (say 30 x 30 px) that make up the textures
for the floor, the walls, the ceilings, the levitator pods, and so on, and then use those
images to build the level. The upside of this approach is that there's virtually no
loading time since the images are so small, and the downside is that the levels can
start to look a little redundant and uninteresting .

Creating an Actor class for the hero and
enemies

Now that we have all the main images set up and ready to go, it's time for the fun part (at
least in my opinion) as we bring our virtual world to life with JavaScript and HTML5 canvas.
Our first order of business is to create an Actor class which contains properties and methods
for both the hero and the bad guys. In other words, both the hero and the bad guys will be
instances of the Actor class. The Actor class will be responsible for directing the actors with
methods such as moveRight() and moveLeft(), and is also responsible for rendering the
actors by animating them with sprite sheets.

How to do it...
Follow these steps to create an Actor class which can be used to instantiate the hero or the
bad guys:

1. Define the Actor constructor:
/*
 * Actor class should have no knowledge
 * of the Level or HealthBar classes to
 * keep it decoupled
 */
function Actor(config){

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 8

239

 this.controller = config.controller;
 this.normalSpriteSheet = config.normalSpriteSheet;
 this.hitSpriteSheet = config.hitSpriteSheet;
 this.x = config.x; // absolute x
 this.y = config.y; // absolute y
 this.playerSpeed = config.playerSpeed; // px / s
 this.motions = config.motions;
 this.startMotion = config.startMotion;
 this.facingRight = config.facingRight;
 this.moving = config.moving;
 this.spriteInterval = config.spriteInterval; // ms
 this.maxHealth = config.maxHealth;
 this.attackRange = config.attackRange;
 this.minAttackInterval = config.minAttackInterval;

 this.SPRITE_SIZE = 144;
 this.FADE_RATE = 1; // full fade in 1s
 this.spriteSheet = this.normalSpriteSheet;
 this.vx = 0;
 this.vy = 0;
 this.spriteSeq = 0;
 this.motion = this.startMotion;
 this.lastMotion = this.motion;
 this.airborne = false;
 this.attacking = false;
 this.canAttack = true;
 this.health = this.maxHealth;
 this.alive = true;
 this.opacity = 1;
 this.timeSinceLastSpriteFrame = 0;
}

2. Define the attack() method which triggers an attack:
Actor.prototype.attack = function(){
 this.attacking = true;
 this.canAttack = false;
 var that = this;
 setTimeout(function(){
 that.canAttack = true;
 }, this.minAttackInterval);
};

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Saving the World with Game Development

240

3. Define the stop() method which stops the actor from moving:
Actor.prototype.stop = function(){
 this.moving = false;
};

4. Define the isFacingRight() method:
Actor.prototype.isFacingRight = function(){
 return this.facingRight;
};

5. Define the moveRight() method:
Actor.prototype.moveRight = function(){
 this.moving = true;
 this.facingRight = true;
};

6. Define the moveLeft() method:
Actor.prototype.moveLeft = function(){
 this.moving = true;
 this.facingRight = false;
};

7. Define the jump() method which triggers the actor to jump:
Actor.prototype.jump = function(){
 if (!this.airborne) {
 this.airborne = true;
 this.vy = -1;
 }
};

8. Define the draw() method:
Actor.prototype.draw = function(pos){
 var context = this.controller.view.context;
 var sourceX = this.spriteSeq * this.SPRITE_SIZE;
 var sourceY = this.motion.index * this.SPRITE_SIZE;

 context.save();
 context.translate(pos.x, pos.y);

 if (this.facingRight) {
 context.translate(this.SPRITE_SIZE, 0);
 context.scale(-1, 1);
 }

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 8

241

 context.globalAlpha = this.opacity;
 context.drawImage(this.spriteSheet, sourceX, sourceY, this.
SPRITE_SIZE, this.SPRITE_SIZE, 0, 0, this.SPRITE_SIZE, this.
SPRITE_SIZE);
 context.restore();
};

9. Define the fade() method which fades the actor when he's defeated:
Actor.prototype.fade = function(){
 var opacityChange = this.controller.anim.getTimeInterval() *
this.FADE_RATE / 1000;
 this.opacity -= opacityChange;
 if (this.opacity < 0) {
 this.opacity = 0;
 }
};

10. Define the updateSpriteMotion() method:
Actor.prototype.updateSpriteMotion = function(){
 // if attack sequence has finished, set attacking = false
 if (this.attacking && this.spriteSeq == this.motion.numSprites
- 1) {
 this.attacking = false;
 }

 if (this.attacking) {
 this.motion = this.motions.ATTACKING;
 }
 else {
 if (this.airborne) {
 this.motion = this.motions.AIRBORNE;
 }
 else {
 this.vy = 0;
 if (this.moving) {
 this.motion = this.motions.RUNNING;
 }
 else {
 this.motion = this.motions.STANDING;
 }
 }
 }
};

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Saving the World with Game Development

242

11. Define the updateSpriteSeqNum() method which increments or resets the sprite
sequence number for each sprite interval:
Actor.prototype.updateSpriteSeqNum = function() {
 var anim = this.controller.anim;
 this.timeSinceLastSpriteFrame += anim.getTimeInterval();

 if (this.timeSinceLastSpriteFrame > this.spriteInterval) {
 if (this.spriteSeq < this.motion.numSprites - 1) {
 this.spriteSeq++;
 }
 else {
 if (this.motion.loop) {
 this.spriteSeq = 0;
 }
 }

 this.timeSinceLastSpriteFrame = 0;
 }

 if (this.motion != this.lastMotion) {
 this.spriteSeq = 0;
 this.lastMotion = this.motion;
 }
};

12. Define the damage() method which decrements the actor's health and sets
the sprite sheet to the hit sprite sheet, causing the actor to flash white for a
brief moment:
Actor.prototype.damage = function(){
 this.health = this.health <= 0 ? 0 : this.health - 1;

 this.spriteSheet = this.hitSpriteSheet;
 var that = this;
 setTimeout(function(){
 that.spriteSheet = that.normalSpriteSheet;
 }, 200);
};

13. Define the getCenter() method which returns the position of the center of
the actor:
Actor.prototype.getCenter = function(){
 return {
 x: Math.round(this.x) + this.SPRITE_SIZE / 2,
 y: Math.round(this.y) + this.SPRITE_SIZE / 2
 };
};

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 8

243

How it works...
The idea of the Actor class is to create a class that can be used to instantiate both the
hero and the bad guys. It includes methods for controlling the actor, such as moveRight(),
moveLeft(), jump(), and attack(), that either the game engine can call or a human
player can call. The game engine will use these methods to control the bad guys, and a
human player will use these methods to control the hero by pressing keys on the keyboard.

In addition to controls, the Actor class also manages the sprite animation by updating the
sprite motion with the updateSpriteMotion() method and also increments or cycles the
sprite sequence number with the updateSpriteSeqNum() method.

Finally, the draw() method picks out the sprite image corresponding to the actor's motion,
flips the image horizontally if the actor is facing to the right, and then draws the actor on the
screen using the drawImage() method of the canvas context.

See also...
 f Cropping an image in Chapter 3

 f Translating the canvas context in Chapter 4

 f Creating a mirror transform in Chapter 4

Creating a Level class
In this recipe, we'll create a Level class which will be used to render the level and provide an
API to the boundary map.

How to do it...
Follow these steps to create a Level class:

1. Define the Level constructor:
/*
 * Level class should have no knowledge
 * of the Actor or HealthBar classes to
 * keep it decoupled
 */
function Level(config){
 this.controller = config.controller;
 this.x = config.x;
 this.y = config.y;
 this.leftBounds = config.leftBounds;
 this.rightBounds = config.rightBounds;
 this.boundsData = null;

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Saving the World with Game Development

244

 this.GRAVITY = 3; // px / second^2
 this.MID_RGB_COMPONENT_VALUE = 128;
 this.LEVEL_WIDTH = 6944;

 this.setBoundsData();
}

2. Define the setBoundsData() method which extracts the zone data from the
boundary map image:
Level.prototype.setBoundsData = function(){
 var controller = this.controller;
 var canvas = controller.view.canvas;
 var context = controller.view.context;
 canvas.width = 6944;
 context.drawImage(controller.images.levelBounds, 0, 0);
 imageData = context.getImageData(0, 0, 6944, 600);
 this.boundsData = imageData.data;
 canvas.width = 900;
};

3. Define the draw() method which draws the background image and the level image:
Level.prototype.draw = function(){
 var context = this.controller.view.context;
 context.drawImage(this.controller.images.background, 0, 0);
 context.drawImage(this.controller.images.level, this.x,
this.y);
};

4. Define the getZoneInfo() method which returns zone information about a point in
the boundary map:
Level.prototype.getZoneInfo = function(pos){
 var x = pos.x;
 var y = pos.y;
 var red = this.boundsData[((this.LEVEL_WIDTH * y) + x) * 4];
 var green = this.boundsData[((this.LEVEL_WIDTH * y) + x) * 4 +
1];
 var blue = this.boundsData[((this.LEVEL_WIDTH * y) + x) * 4 +
2];

 var inBounds = false;
 var levitating = false;

 /*
 * COLOR KEY

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 8

245

 *
 * PINK: 255 0 255
 * CYAN: 0 255 255
 *
 * COLOR NOTATION
 *
 * PINK: player is in bounds and can jump
 * CYAN: player is in bounds and is levitating
 */
 var mid = this.MID_RGB_COMPONENT_VALUE;
 if ((red > mid && green < mid && blue > mid) || (red < mid &&
green > mid && blue > mid)) {
 inBounds = true;
 }
 if (red < mid && green > mid && blue > mid) {
 levitating = true;
 }

 return {
 inBounds: inBounds,
 levitating: levitating
 };
};

How it works...
Most of the heavy lifting in the Level class is done in the setBoundsData() method and
the getZoneInfo() method. The setBoundsData() method takes the boundary map
image and converts it into an array of pixel data using the getImageData() method of the
canvas context. The getZoneInfo() method is used to access a point in the boundary map
and then return the corresponding zone information.

For Canvas Hero, the zone information object contains two flags: inBounds and
levitating. If the corresponding pixel in the boundary map is cyan, then this point
corresponds to a zone that's in bounds and is also inside a levitation zone. If the
corresponding pixel in the boundary map is magenta, then this point corresponds to a zone
that's in bounds but not in a levitation zone. Finally, if the corresponding pixel in the boundary
map is black, this means that the point is not in bounds or in a levitation zone.

See also...
 f Drawing an image in Chapter 3

 f Getting image data in Chapter 3

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Saving the World with Game Development

246

Creating a Health Bar class
In this recipe, we'll create a Health Bar class which is used to update and render the hero's
health display.

How to do it...
Follow these steps to create a health bar class:

1. Define the HealthBar constructor:
/*
 * HealthBar class should have no knowledge
 * of the Actor or Level classes to
 * keep it decoupled
 */
function HealthBar(config){
 this.controller = config.controller;
 this.maxHealth = config.maxHealth;
 this.x = config.x;
 this.y = config.y;
 this.maxWidth = config.maxWidth;
 this.height = config.height;

 this.health = this.maxHealth;
}

2. Define the setHealth() method which sets the health value:
HealthBar.prototype.setHealth = function(health){
 this.health = health;
};

3. Define the draw() method which draws the health bar:
HealthBar.prototype.draw = function(){
 var context = this.controller.view.context;
 context.beginPath();
 context.rect(this.x, this.y, this.maxWidth, this.height);
 context.fillStyle = "black";
 context.fill();
 context.closePath();

 context.beginPath();
 var width = this.maxWidth * this.health / this.maxHealth;
 context.rect(this.x, this.y, width, this.height);

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 8

247

 context.fillStyle = "red";
 context.fill();
 context.closePath();
};

How it works...
The HealthBar object has a simple constructor that initializes the position and size of the
health bar, and it also contains two methods, setHealth() and draw(). The setHealth()
method sets the health property of the HealthBar object, and the draw() method draws
the health bar using the rect() method of the canvas context.

Creating a Controller class
Now that we have all of the images and classes for the objects in the game, our next order of
business is to build the game engine. Canvas Hero is built with a standard MVC architecture,
which separates the data, the presentation, and the control methods. In this recipe, we'll
create a Controller class which is responsible for instantiating the model and view, initializing
the game, controlling the game state, and managing keyboard events.

How to do it...
Follow these steps to create the controller for Canvas Hero:

1. Define the Controller constructor:
/*
 * Game controller
 *
 * The controller is responsible for instantiating
 * the view and the model, initializing the game,
 * controlling the game state, and managing keyboard events
 */
function Controller(canvasId){
 this.imageSources = {
 levelBounds: "img/level_bounds.png",
 level: "img/level.png",
 heroSprites: "img/hero_sprites.png",
 heroHitSprites: "img/hero_hit_sprites.png",
 badGuySprites: "img/bad_guy_sprites.png",
 badGuyHitSprites: "img/bad_guy_hit_sprites.png",
 background: "img/background.png",
 readyScreen: "img/readyScreen.png",
 gameoverScreen: "img/gameoverScreen.png",

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Saving the World with Game Development

248

 winScreen: "img/winScreen.png"
 };
 this.images = {};

 this.states = {
 INIT: "INIT",
 READY: "READY",
 PLAYING: "PLAYING",
 WON: "WON",
 GAMEOVER: "GAMEOVER"
 };

 this.keys = {
 ENTER: 13,
 UP: 38,
 LEFT: 37,
 RIGHT: 39,
 A: 65
 };

 this.anim = new Animation(canvasId);
 this.state = this.states.INIT;
 this.model = new Model(this);
 this.view = new View(this);
 this.avgFps = 0;
 this.leftKeyup = true;
 this.rightKeyup = true;
 this.addKeyboardListeners();
 this.loadImages();
}

2. Define the loadImages() method which loads all of the game images and then
calls initGame() when they've all loaded:
Controller.prototype.loadImages = function(){
 /*
 * we need to load the loading image first
 * so go ahead and insert it into the dom
 * and them load the rest of the images
 */
 this.view.canvas.style.background = "url('img/loadingScreen.
png')";

 var that = this;
 var loadedImages = 0;

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 8

249

 var numImages = 0;
 for (var src in this.imageSources) {
 numImages++;
 }
 for (var src in this.imageSources) {
 this.images[src] = new Image();
 this.images[src].onload = function(){
 if (++loadedImages >= numImages) {
 that.initGame();
 }
 };
 this.images[src].src = this.imageSources[src];
 }
};

3. Define the addKeyboardListeners() method which attaches keyboard event
listeners to the game:
Controller.prototype.addKeyboardListeners = function(){
 var that = this;
 document.onkeydown = function(evt){
 that.handleKeydown(evt);
 };
 document.onkeyup = function(evt){
 that.handleKeyup(evt);
 };
};

4. Define the handleKeyUp() method which is fired when a key is released:
Controller.prototype.handleKeyup = function(evt){
 keycode = ((evt.which) || (evt.keyCode));

 switch (keycode) {
 case this.keys.LEFT:
 this.leftKeyup = true;
 if (this.leftKeyup && this.rightKeyup) {
 this.model.hero.stop();
 }
 break;

 case this.keys.UP:
 break;

 case this.keys.RIGHT:
 this.rightKeyup = true;

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Saving the World with Game Development

250

 if (this.leftKeyup && this.rightKeyup) {
 this.model.hero.stop();
 }
 break;
 }
};

5. Define the handleKeyDown() method which is fired when a key is pressed down:
Controller.prototype.handleKeydown = function(evt){
 var that = this;
 keycode = ((evt.which) || (evt.keyCode));
 switch (keycode) {
 case this.keys.ENTER: // enter
 if (this.state == this.states.READY) {
 this.state = this.states.PLAYING;
 // start animation
 this.anim.start();
 }
 else if (this.state == this.states.GAMEOVER || this.
state == this.states.WON) {
 this.resetGame();
 this.state = this.states.PLAYING;
 }
 break;
 case this.keys.LEFT:
 this.leftKeyup = false;
 this.model.hero.moveLeft();
 break;

 case this.keys.UP:
 this.model.hero.jump();
 break;

 case this.keys.RIGHT:
 this.rightKeyup = false;
 this.model.hero.moveRight();
 break;

 case this.keys.A: // attack
 var model = this.model;
 var hero = model.hero;
 hero.attack();
 setTimeout(function(){
 for (var n = 0; n < model.badGuys.length; n++) {

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 8

251

 (function(){
 var badGuy = model.badGuys[n];
 if (model.nearby(hero, badGuy)
 && ((badGuy.x - hero.x > 0 && hero.isFacingRight())
|| (hero.x - badGuy.x > 0 && !hero.isFacingRight()))) {
 badGuy.damage();
 }
 })();
 }
 }, 200);
 break;
 }
};

6. Define the initGame() method which initializes the game:
Controller.prototype.initGame = function(){
 var model = this.model;
 var view = this.view;
 model.initLevel();
 model.initHero();
 model.initBadGuys();
 model.initHealthBar();

 // set stage method
 this.anim.setStage(function(){
 model.updateStage();
 view.stage();
 });

 // game is now ready to play
 this.state = this.states.READY;
 view.drawScreen(this.images.readyScreen);
};

7. Define the resetGame() method which resets the game by reinitializing the
game objects:
Controller.prototype.resetGame = function(){
 var model = this.model;
 model.level = null;
 model.hero = null;
 model.healthBar = null;
 model.badGuys = [];

 model.initLevel();

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Saving the World with Game Development

252

 model.initHero();
 model.initBadGuys();
 model.initHealthBar();
};

How it works...
The most important role of a game controller is to control the flow of the game through game
states. In Canvas Hero, the first game state is the loading state. This is the state where the
player can read about how to play the game as the game loads. Once the game has finished
loading, the controller is responsible for changing the game state to the ready state. While in
this state, the game waits for the user to press enter to continue. Once the user presses enter,
the controller now changes the game state to the play game state.

At this moment, the actual game begins and the user has full control over the hero. If the
player's health drops to zero, or if the player falls into a hole, the controller will change the
game state to the game over state. If, on the other hand, the player succeeds in defeating all
of the enemies, the controller changes the game state to the win state, congratulating the
hero on his awesome feat. Take a look at the following state machine:

In addition to controlling the game state, the controller is also responsible for managing
keyboard events. The keyboard events are attached with the addKeyboardListeners()
method.

Creating a Model class
In this recipe, we'll create a Model class which is responsible for initializing and updating the
hero, the bad guys, the level, and the health bar. These objects can be seen as the "data" of
our game.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 8

253

How to do it...
Follow these steps to create the model for Canvas Hero:

1. Define the Model constructor:
/*
 * Game model
 *
 * The model is responsible for initializing and
 * updating the hero, level, bad guys, and health bar
 */
function Model(controller){
 this.controller = controller;
 this.healthBar = null;
 this.hero = null;
 this.level = null;
 this.badGuys = []; // array of bad guys
 this.heroCanvasPos = {};
}

2. Define the removeDefeatedBadGuys() method which loops through the bad guy
array and then removes the ones that are no longer alive:
Model.prototype.removeDefeatedBadGuys = function(){
 for (var n = 0; n < this.badGuys.length; n++) {
 var badGuy = this.badGuys[n];
 if (!badGuy.alive && badGuy.opacity == 0) {
 this.badGuys.splice(n, 1);
 }
 }
};

3. Define the updateBadGuys() method:
Model.prototype.updateBadGuys = function(){
 var that = this;
 for (var n = 0; n < this.badGuys.length; n++) {
 var badGuy = this.badGuys[n];
 if (badGuy.alive
 && this.hero.alive
 && !badGuy.attacking
 && badGuy.canAttack
 && this.nearby(this.hero, badGuy)
 && ((badGuy.x - this.hero.x > 0 && !badGuy.isFacingRight())
|| (this.hero.x - badGuy.x > 0 && badGuy.isFacingRight()))) {
 badGuy.attack();

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Saving the World with Game Development

254

 setTimeout(function(){
 that.hero.damage();
 }, 200);
 }
 this.updateActor(badGuy);
 }
};

4. Define the updateStage() method which updates all of the game objects for each
animation frame:
Model.prototype.updateStage = function(){
 var controller = this.controller;
 var canvas = controller.view.canvas;
 if (controller.state == controller.states.PLAYING) {
 this.removeDefeatedBadGuys();

 // if hero dies then set state to GAMEOVER
 if (!this.hero.alive && controller.state == controller.
states.PLAYING) {
 controller.state = controller.states.GAMEOVER;
 }

 // if all bad guys defeated, change state to WON
 if (this.badGuys.length == 0) {
 controller.state = controller.states.WON;
 }

 // move bad guys around
 this.moveBadGuys();

 // update level position
 this.updateLevel();

 /*
 * update bad guys and also see
 * if they can attack the hero
 */
 this.updateBadGuys();

 // update hero
 var oldHeroX = this.hero.x;
 this.updateActor(this.hero);
 this.updateHeroCanvasPos(oldHeroX);

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 8

255

 // update health bar
 this.healthBar.setHealth(this.hero.health);

 // if hero falls into a hole set health to zero
 if (this.hero.y > canvas.height - this.hero.spriteSize * 2
/ 3) {
 this.hero.health = 0;
 }

 // update avg fps
 var anim = controller.anim;
 if (anim.getFrame() % 20 == 0) {
 this.controller.avgFps = Math.round(anim.getFps() *
10) / 10;
 }
 }
};

5. Define the initHealthBar() method which initializes the health bar:
Model.prototype.initHealthBar = function(){
 this.healthBar = new HealthBar({
 controller: this.controller,
 maxHealth: this.hero.maxHealth,
 x: 10,
 y: 10,
 maxWidth: 150,
 height: 20
 });
};

6. Define the initLevel() method which initializes the level:
Model.prototype.initLevel = function(){
 this.level = new Level({
 controller: this.controller,
 x: 0,
 y: 0,
 leftBounds: 100,
 rightBounds: 500
 });
};

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Saving the World with Game Development

256

7. Define the initHero() method which initializes the hero:
 Model.prototype.initHero = function(){

 // initialize Hero
 var heroMotions = {
 STANDING: {
 index: 0,
 numSprites: 5,
 loop: true
 },
 AIRBORNE: {
 index: 1,
 numSprites: 5,
 loop: false
 },
 RUNNING: {
 index: 2,
 numSprites: 6,
 loop: true
 },
 ATTACKING: {
 index: 3,
 numSprites: 5,
 loop: false
 }
 };

 this.hero = new Actor({
 controller: this.controller,
 normalSpriteSheet: this.controller.images.heroSprites,
 hitSpriteSheet: this.controller.images.heroHitSprites,
 x: 30,
 y: 381,
 playerSpeed: 300,
 motions: heroMotions,
 startMotion: heroMotions.STANDING,
 facingRight: true,
 moving: false,
 spriteInterval: 90,
 maxHealth: 3,
 attackRange: 100,
 minAttackInterval: 200
 });

 this.heroCanvasPos = {

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 8

257

 x: this.hero.x,
 y: this.hero.y
 };
};

8. Define the initBadGuys() method which initializes an array of bad guys:
Model.prototype.initBadGuys = function(){
 // notice that AIRBORNE and RUNNING
 // both use the same sprite animation
 var badGuyMotions = {
 RUNNING: {
 index: 0,
 numSprites: 6,
 loop: true
 },
 AIRBORNE: {
 index: 0,
 numSprites: 4,
 loop: false
 },
 ATTACKING: {
 index: 1,
 numSprites: 4,
 loop: false
 }
 };

 var badGuyStartConfig = [{
 x: 600,
 facingRight: true
 }, {
 x: 1460,
 facingRight: true
 }, {
 x: 2602,
 facingRight: true
 }, {
 x: 3000,
 facingRight: true
 }, {
 x: 6402,
 facingRight: true
 }, {
 x: 6602,

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Saving the World with Game Development

258

 facingRight: true
 }];

 for (var n = 0; n < badGuyStartConfig.length; n++) {
 this.badGuys.push(new Actor({
 controller: this.controller,
 normalSpriteSheet: this.controller.images.
badGuySprites,
 hitSpriteSheet: this.controller.images.
badGuyHitSprites,
 x: badGuyStartConfig[n].x,
 y: 381,
 playerSpeed: 100,
 motions: badGuyMotions,
 startMotion: badGuyMotions.RUNNING,
 facingRight: badGuyStartConfig[n].facingRight,
 moving: true,
 spriteInterval: 160,
 maxHealth: 3,
 attackRange: 100,
 minAttackInterval: 2000
 }));
 }
};

9. Define the moveBadGuys() method which serves as a simple AI engine:
Model.prototype.moveBadGuys = function(){
 var level = this.level;
 for (var n = 0; n < this.badGuys.length; n++) {
 var badGuy = this.badGuys[n];

 if (badGuy.alive) {
 if (badGuy.isFacingRight()) {
 badGuy.x += 5;
 if (!level.getZoneInfo(badGuy.getCenter()).
inBounds) {
 badGuy.facingRight = false;
 }
 badGuy.x -= 5;
 }

 else {
 badGuy.x -= 5;
 if (!level.getZoneInfo(badGuy.getCenter()).
inBounds) {

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 8

259

 badGuy.facingRight = true;
 }
 badGuy.x += 5;
 }
 }
 }
};

10. Define the updateLevel() method:
Model.prototype.updateLevel = function(){
 var hero = this.hero;
 var level = this.level;
 level.x = -hero.x + this.heroCanvasPos.x;
};

11. Define the updateHeroCanvasPos() method which updates the position of the
hero relative to the canvas:
Model.prototype.updateHeroCanvasPos = function(oldHeroX){
 this.heroCanvasPos.y = this.hero.y;
 var heroDiffX = this.hero.x - oldHeroX;
 var newHeroCanvasPosX = this.heroCanvasPos.x + heroDiffX;
 // if moving right and not past right bounds
 if (heroDiffX > 0 && newHeroCanvasPosX < this.level.
rightBounds) {
 this.heroCanvasPos.x += heroDiffX;
 }
 // if moving left and not past left bounds
 if (heroDiffX < 0 && newHeroCanvasPosX > this.level.
leftBounds) {
 this.heroCanvasPos.x += heroDiffX;
 }

 if (this.hero.x < this.level.leftBounds) {
 this.heroCanvasPos.x = this.hero.x;
 }
};

12. Define the updateActor() method:
Model.prototype.updateActor = function(actor){
 if (actor.alive) {
 if (actor.health <= 0 || actor.y + actor.SPRITE_SIZE >
this.controller.view.canvas.height) {
 actor.alive = false;
 }
 else {

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Saving the World with Game Development

260

 this.updateActorVY(actor);
 this.updateActorY(actor);
 this.updateActorX(actor);

 actor.updateSpriteMotion();
 actor.updateSpriteSeqNum();
 }
 }
 else {
 if (actor.opacity > 0) {
 actor.fade();
 }
 }
};

13. Define the updateActorVY() method which uses the downward force of gravity and
the upward force of the levitation pods to update the vertical velocity of an actor:
Model.prototype.updateActorVY = function(actor) {
 var anim = this.controller.anim;
 var level = this.level;

 // apply gravity (+y)
 var gravity = this.controller.model.level.GRAVITY;
 var speedIncrementEachFrame = gravity * anim.getTimeInterval()
/ 1000; // pixels / second
 actor.vy += speedIncrementEachFrame;

 // apply levitation (-y)
 if (level.getZoneInfo(actor.getCenter()).levitating) {
 actor.vy = (65 - actor.y) / 200;
 }
};

14. Define the updateActorY() method which updates the y position of the actor
based on his vertical velocity:
Model.prototype.updateActorY = function(actor) {
 var anim = this.controller.anim;
 var level = this.level;
 var oldY = actor.y;
 actor.y += actor.vy * anim.getTimeInterval();

 if (level.getZoneInfo(actor.getCenter()).inBounds) {
 actor.airborne = true;
 }

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 8

261

 else {
 actor.y = oldY;

 // handle case where player has fallen to the ground
 // if vy is less than zero, this means the player has just
 // hit the ceiling, in which case we can simply leave
 // this.y as oldY to prevent the player from going
 // past the ceiling
 if (actor.vy > 0) {
 while (level.getZoneInfo(actor.getCenter()).inBounds)
 {
 actor.y++;
 }
 actor.y--;
 actor.vy = 0;
 actor.airborne = false;
 }
 }
};

15. Define the updateActorX() method which updates the actor's x position:
Model.prototype.updateActorX = function(actor) {
 var anim = this.controller.anim;
 var level = this.level;
 var oldX = actor.x;
 var changeX = actor.playerSpeed * (anim.getTimeInterval() /
1000);
 if (actor.moving) {
 actor.facingRight ? actor.x += changeX : actor.x -=
changeX;
 }

 if (!level.getZoneInfo(actor.getCenter()).inBounds) {
 actor.x = oldX;

 while (level.getZoneInfo(actor.getCenter()).inBounds) {
 actor.facingRight ? actor.x++ : actor.x--;
 }

 // reposition to nearest placement in bounds
 actor.facingRight ? actor.x-- : actor.x++;
 }
};

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Saving the World with Game Development

262

16. Define the nearby() method which determines whether or not two actors are near
each other:
Model.prototype.nearby = function(actor1, actor2){
 return (Math.abs(actor1.x - actor2.x) < actor1.attackRange)
 && Math.abs(actor1.y - actor2.y) < 30;
};

How it works...
In an MVC architecture, the model is considered to be the "meat" of the architecture, because
it represents the data layer. As Canvas Hero is a game, our data consists of the hero, bad
guys, the level, and the health bar objects. Each of these objects contain properties which
must be updated and accessed during each animation frame.

The model for Canvas Hero has three key responsibilities:

 f Initializing the game objects
 f Updating the game objects
 f Handling the bad guy AI

Quite arguably, the most interesting method in our model is the moveBadGuys() method.
This method can be thought of as the "AI" for our game engine. I've put the "AI" in quotes
because in all honesty, the bad guys in Canvas Hero are pretty dumb. The moveBadGuys()
method loops through all of the bad guy objects, determines whether they are close to a wall
using the getZoneInfo() method of the Level object, and then changes their direction if
they're about to run into one.

There's more...
If you're wanting to create a more challenging game, you might consider beefing up
the moveBadGuys() method by giving the bad guys an ability to jump or even use the
levitation pods.

See also...
 f Creating an Animation class in Chapter 5

Creating a View class
In this recipe, we'll create the View class, which is the simplest of the three MVC classes. The
View class is responsible for drawing state screen images and also renders each animation
frame by calling the draw() method for the level, each of the bad guys, the hero, and the
health bar. In addition, the View class also renders a handy FPS display in the top-right corner
of the screen so we can see how well the game is performing.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 8

263

How to do it...
Follow these steps to create the view for Canvas Hero:

1. Define the View constructor:
/*
 * Game view
 *
 * The view has access to the canvas context
 * and is responsible for the drawing logic
 */
function View(controller){
 this.controller = controller;
 this.canvas = controller.anim.getCanvas();
 this.context = controller.anim.getContext();
}

2. Define the drawScreen() method which draws the loading, ready, game over, or win
state screen:
View.prototype.drawScreen = function(screenImg){
 this.context.drawImage(screenImg, 0, 0, this.canvas.width,
this.canvas.height);
};

3. Define the drawBadGuys() method which draws the bad guys:
View.prototype.drawBadGuys = function() {
 var controller = this.controller;
 var model = controller.model;
 for (var n = 0; n < model.badGuys.length; n++) {
 var badGuy = model.badGuys[n];
 var offsetPos = {
 x: badGuy.x + model.level.x,
 y: badGuy.y + model.level.y
 };
 badGuy.draw(offsetPos);
 }
};

4. Define the drawFps() method which draws the FPS value of the game in the top-
right corner of the screen so that we can see how well the game is performing:
View.prototype.drawFps = function() {
 var context = this.context;
 context.fillStyle = "black";
 context.fillRect(this.canvas.width - 100, 0, 100, 30);

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Saving the World with Game Development

264

 context.font = "18pt Calibri";
 context.fillStyle = "white";
 context.fillText("fps: " + this.controller.avgFps.toFixed(1),
this.canvas.width - 93, 22);
};

5. Define the stage() method which draws all of the objects on the screen:
View.prototype.stage = function(){
 var controller = this.controller;
 var model = controller.model;
 if (controller.state == controller.states.PLAYING ||
controller.state == controller.states.GAMEOVER || controller.state
== controller.states.WON) {
 model.level.draw();
 this.drawBadGuys();
 model.hero.draw(model.heroCanvasPos);
 model.healthBar.draw();

 // draw screen overlay
 if (controller.state == controller.states.GAMEOVER) {
 this.drawScreen(controller.images.gameoverScreen);
 }
 else if (controller.state == controller.states.WON) {
 this.drawScreen(controller.images.winScreen);
 }

 this.drawFps();
 }
 else if (controller.state == controller.states.READY) {
 this.drawScreen(controller.images.readyScreen);
 }
};

How it works...
As mentioned earlier, the main responsibility of the View class is to draw state screens and
draw the game screen. Canvas Hero has four different state screens:

 f Loading state

 f Ready state

 f Game over state

 f Win state

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 8

265

Whenever the game state changes and a state screen is needed, the controller calls the
drawScreen() method of the View object. Here's a screenshot for each of the game
state screens:

Loading state:

Ready state:

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Saving the World with Game Development

266

Game over state:

Win state:

See also...
 f Stressing the canvas and displaying the FPS in Chapter 5

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 8

267

Setting up the HTML document and starting
the game

Now that we have all of the pieces for our game, including the graphics, the classes for the
actors, the level, the health bar, and a completed game engine, it's time to tie it all together
by setting up the HTML document and starting the game.

How to do it...
Follow these steps to set up the HTML document and start the game:

1. Link to the JavaScript files:
</style>
<script src="animation.js">
</script>
<script src="Controller.js">
</script>
<script src="Model.js">
</script>
<script src="View.js">
</script>
<script src="Level.js">
</script>
<script src="Actor.js">
</script>
<script src="HealthBar.js">
</script>

2. Initialize the controller:
<script>
 window.onload = function(){
 new Controller("myCanvas");
 };
</script>

3. Embed the canvas inside the body of the HTML document:
<canvas id="myCanvas" width="900" height="600">
</canvas>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Saving the World with Game Development

268

How it works...
As you can see, the HTML markup is quite simple. It's purpose is purely to link to required
JavaScript files, embed the canvas tag, and initialize the controller. The controller initializes
the model and the view. The model initializes the hero, the bad guys, the level, and the health
bar. Once the images have loaded and the game state is changed to the ready state, the
player presses the enter key and the game begins.

There's more...
You're now ready to play the game and save the world! If you initialized the hero and the bad
guys with a health of three units as defined in the model recipe, the hero can take up to three
hits before game over, and each of the bad guys require three hits to be defeated. I've found
that it's easiest to defeat the bad guys by jumping over them and repeatedly hitting them in
the back until they're toast (cheap I know, but it works). It's also really fun to jump into the
levitator pods and float in the air for a while, wait for just the right moment, and attack a bad
guy from above like a ninja.

If you use this chapter as a foundation for your own side-scroller game, here are some other
features that you might consider adding:

 f Sound effects for jumping, landing, and punching using the HTML5 audio tag

 f Pause feature that freezes the game until it's resumed

 f Timer and top scores

 f More levels, enemies, and bosses

 f Power-ups

 f An option to save the game state with HTML5 local storage or by saving the state in
an online database

 f Anything else you can imagine

See also...
 f Creating an Animation class in Chapter 5

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

9
Introducing WebGL

In this chapter, we will cover:

 f Creating a WebGL wrapper to simplify the WebGL API

 f Creating a triangular plane

 f Rotating a triangular plane in 3D space

 f Creating a rotating cube

 f Adding textures and lighting

 f Creating a 3D world that you can explore

Introduction
Originally, when I first started writing this book, I had intended on only covering the 2D context of
the HTML5 canvas (I strongly believe that most people who use canvas will be working with this
context). I had also originally intended on covering techniques for rendering 3D shapes in the 2D
context using 3D projection methods and vector operations. People were already busy creating
some pretty incredible 3D JavaScript libraries for the 2D context, including Kevin Roast's K3D
library (one of the reviewers of this book), and also Dean McNamee's Pre3d library.

As I neared writing this chapter, WebGL—a true 3D context—began to dominate 3D canvas
demos across the Web. WebGL stands for Web-Based Graphics Library, and it's based on
OpenGL ES 2.0 which provides an API for 3D graphics. Because WebGL leverages hardware
acceleration by pushing buffers directly onto the graphics card to render 3D models, it
performs much better than its 2D context, 3D projection library counterparts. Moreover, it
exposes years of work already done with OpenGL. As you've probably already figured out by
now, I decided to cover WebGL instead of covering 3D projection libraries with the 2D context
because I very much believe that WebGL will be the standard for 3D applications in the near
future. WebGL is of particular interest for people who want to create 3D games or 3D models
on the Web.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Introducing WebGL

270

This chapter will get you started with the basics of WebGL by covering concepts such as
buffers, shaders, perspective and model-view matrices, normals, textures, lighting, camera
handling, and much more. Let's get started!

Creating a WebGL wrapper to simplify the
WebGL API

If you've already looked ahead and peeked at the code for this recipe, and you're not very
familiar with OpenGL or WebGL, you're probably feeling pretty overwhelmed, and for good
reason. WebGL, although extremely powerful, has quite a steep learning curve when diving
into it for the first time. Frankly speaking, it takes many lines of code to perform simple tasks.
Therefore, I've found it extremely convenient to work with a WebGL wrapper that essentially
shrink wraps blocks of tedious code into simple methods. This recipe provides steps for
creating a simple WebGL wrapper that will be used for all of the recipes in this chapter.
Let's get started!

As the WebGL wrapper is quite complex, you might consider grabbing
the WebGL wrapper code from the online resources for this book at
http://www.html5canvastutorials.com/cookbook/.

How to do it...
Follow these steps to create a WebGL wrapper object to simplify the WebGL API, or go to
http://www.html5canvastutorials.com/cookbook and download WebGL.js from
the resources section:

1. Begin defining the WebGL constructor by initializing the canvas context and defining
the animation properties:
var WebGL = function(canvasId){
 this.canvas = document.getElementById(canvasId);
 this.context = this.canvas.getContext("experimental-webgl");
 this.stage = undefined;

 // Animation
 this.t = 0;
 this.timeInterval = 0;
 this.startTime = 0;
 this.lastTime = 0;
 this.frame = 0;
 this.animating = false;

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

http://www.html5canvastutorials.com/cookbook and download WebGL.js

Chapter 9

271

2. Use Paul Irish's requestAnimFrame shim to create a cross-browser
requestAnimationFrame function which enables the browser to handle
the FPS for our animations:
 // provided by Paul Irish
 window.requestAnimFrame = (function(callback){
 return window.requestAnimationFrame ||
 window.webkitRequestAnimationFrame ||
 window.mozRequestAnimationFrame ||
 window.oRequestAnimationFrame ||
 window.msRequestAnimationFrame ||
 function(callback){
 window.setTimeout(callback, 1000 / 60);
 };
 })();

3. As Brandon Jones's glMatrix uses global variables, we can encapsulate them so
that the variables can't be altered outside of the wrapper:
 /*
 * encapsulte mat3, mat4, and vec3 from
 * glMatrix globals
 */
 this.mat3 = mat3;
 this.mat4 = mat4;
 this.vec3 = vec3;

4. Define shader type constants and initialize the model-view matrix, the perspective
matrix, and the viewport dimensions:
 // shader type constants
 this.BLUE_COLOR = "BLUE_COLOR";
 this.VARYING_COLOR = "VARYING_COLOR";
 this.TEXTURE = "TEXTURE";
 this.TEXTURE_DIRECTIONAL_LIGHTING =
 "TEXTURE_DIRECTIONAL_LIGHTING";

 this.shaderProgram = null;
 this.mvMatrix = this.mat4.create();
 this.pMatrix = this.mat4.create();
 this.mvMatrixStack = [];
 this.context.viewportWidth = this.canvas.width;
 this.context.viewportHeight = this.canvas.height;

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Introducing WebGL

272

5. Enable the depth test:
 // init depth test
 this.context.enable(this.context.DEPTH_TEST);
};

6. Define getter methods for the context and canvas attributes:
WebGL.prototype.getContext = function(){
 return this.context;
};

WebGL.prototype.getCanvas = function(){
 return this.canvas;
};

7. Define a clear() method which clears the WebGL viewport:
WebGL.prototype.clear = function(){
 this.context.viewport(0, 0, this.context.viewportWidth, this.
context.viewportHeight);
 this.context.clear(this.context.COLOR_BUFFER_BIT | this.
context.DEPTH_BUFFER_BIT);
};

8. Define the setStage() method:
WebGL.prototype.setStage = function(func){
 this.stage = func;
};

9. Define the isAnimating() method which returns whether or not the animation
is running:
WebGL.prototype.isAnimating = function(){
 return this.animating;
};

10. Define the getFrame() method which returns the current frame number:
WebGL.prototype.getFrame = function(){

 return this.frame;

};

11. Define the start() method which starts the animation:
WebGL.prototype.start = function(){
 this.animating = true;
 var date = new Date();
 this.startTime = date.getTime();

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 9

273

 this.lastTime = this.startTime;

 if (this.stage !== undefined) {
 this.stage();
 }

 this.animationLoop();
};

12. Define the stopAnimation() method which stops the animation:
WebGL.prototype.stopAnimation = function(){
 this.animating = false;
};

13. Define the getTimeInterval() method which returns the time in milliseconds that
has passed since the last frame was rendered:
WebGL.prototype.getTimeInterval = function(){
 return this.timeInterval;
};

14. Define the getTime() method which returns the number of milliseconds that have
passed since the animation was started:
WebGL.prototype.getTime = function(){
 return this.t;
};

15. Define the getFps() method which returns the current FPS value determined by
the browser:
WebGL.prototype.getFps = function(){
 return this.timeInterval > 0 ? 1000 / this.timeInterval : 0;
};

16. Define the animationLoop() method which is responsible for updating the
animation properties, drawing the stage, and requesting a new animation frame:
WebGL.prototype.animationLoop = function(){
 var that = this;

 this.frame++;
 var date = new Date();
 var thisTime = date.getTime();
 this.timeInterval = thisTime - this.lastTime;
 this.t += this.timeInterval;
 this.lastTime = thisTime;

 if (this.stage !== undefined) {

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Introducing WebGL

274

 this.stage();
 }

 if (this.animating) {
 requestAnimFrame(function(){
 that.animationLoop();
 });
 }
};

17. Define the save() method which saves the model-view matrix state by pushing the
current state onto the model-view matrix stack:
WebGL.prototype.save = function(){
 var copy = this.mat4.create();
 this.mat4.set(this.mvMatrix, copy);
 this.mvMatrixStack.push(copy);
};

18. Define the restore() method which restores the previous model-view state:
WebGL.prototype.restore = function(){
 if (this.mvMatrixStack.length == 0) {
 throw "Invalid popMatrix!";
 }
 this.mvMatrix = this.mvMatrixStack.pop();
};

19. Define the getFragmentShaderGLSL() method which gets GLSL (GL Shader
Language) fragment code based on the shader type argument. Essentially, this
method contains four different stand alone GLSL fragment shader programs that are
selected with a case statement:
WebGL.prototype.getFragmentShaderGLSL = function(shaderType){
 switch (shaderType) {
 case this.BLUE_COLOR:
 return "#ifdef GL_ES\n" +
 "precision highp float;\n" +
 "#endif\n" +
 "void main(void) {\n" +
 "gl_FragColor = vec4(0.0, 0.0, 1.0, 1.0);\n" +
 "}";
 case this.VARYING_COLOR:
 return "#ifdef GL_ES\n" +
 "precision highp float;\n" +
 "#endif\n" +
 "varying vec4 vColor;\n" +

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 9

275

 "void main(void) {\n" +
 "gl_FragColor = vColor;\n" +
 "}";
 case this.TEXTURE:
 return "#ifdef GL_ES\n" +
 "precision highp float;\n" +
 "#endif\n" +
 "varying vec2 vTextureCoord;\n" +
 "uniform sampler2D uSampler;\n" +
 "void main(void) {\n" +
 "gl_FragColor = texture2D(uSampler,
 vec2(vTextureCoord.s, vTextureCoord.t));\n" +
 "}";
 case this.TEXTURE_DIRECTIONAL_LIGHTING:
 return "#ifdef GL_ES\n" +
 "precision highp float;\n" +
 "#endif\n" +
 "varying vec2 vTextureCoord;\n" +
 "varying vec3 vLightWeighting;\n" +
 "uniform sampler2D uSampler;\n" +
 "void main(void) {\n" +
 "vec4 textureColor = texture2D(uSampler,
vec2(vTextureCoord.s, vTextureCoord.t));\n" +
 "gl_FragColor = vec4(textureColor.rgb *
vLightWeighting, textureColor.a);\n" +
 "}";
 }
};

20. Define the getVertexShaderGLSL() method which gets GLSL vertex code based
on the shader type argument:
WebGL.prototype.getVertexShaderGLSL = function(shaderType){
 switch (shaderType) {
 case this.BLUE_COLOR:
 return "attribute vec3 aVertexPosition;\n" +
 "uniform mat4 uMVMatrix;\n" +
 "uniform mat4 uPMatrix;\n" +
 "void main(void) {\n" +
 "gl_Position = uPMatrix * uMVMatrix *
 vec4(aVertexPosition, 1.0);\n" +
 "}";
 case this.VARYING_COLOR:
 return "attribute vec3 aVertexPosition;\n" +
 "attribute vec4 aVertexColor;\n" +
 "uniform mat4 uMVMatrix;\n" +

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Introducing WebGL

276

 "uniform mat4 uPMatrix;\n" +
 "varying vec4 vColor;\n" +
 "void main(void) {\n" +
 "gl_Position = uPMatrix * uMVMatrix *
 vec4(aVertexPosition, 1.0);\n" +
 "vColor = aVertexColor;\n" +
 "}";
 case this.TEXTURE:
 return "attribute vec3 aVertexPosition;\n" +
 "attribute vec2 aTextureCoord;\n" +
 "uniform mat4 uMVMatrix;\n" +
 "uniform mat4 uPMatrix;\n" +
 "varying vec2 vTextureCoord;\n" +
 "void main(void) {\n" +
 "gl_Position = uPMatrix * uMVMatrix *
 vec4(aVertexPosition, 1.0);\n" +
 "vTextureCoord = aTextureCoord;\n" +
 "}";
 case this.TEXTURE_DIRECTIONAL_LIGHTING:
 return "attribute vec3 aVertexPosition;\n" +
 "attribute vec3 aVertexNormal;\n" +
 "attribute vec2 aTextureCoord;\n" +
 "uniform mat4 uMVMatrix;\n" +
 "uniform mat4 uPMatrix;\n" +
 "uniform mat3 uNMatrix;\n" +
 "uniform vec3 uAmbientColor;\n" +
 "uniform vec3 uLightingDirection;\n" +
 "uniform vec3 uDirectionalColor;\n" +
 "uniform bool uUseLighting;\n" +
 "varying vec2 vTextureCoord;\n" +
 "varying vec3 vLightWeighting;\n" +
 "void main(void) {\n" +
 "gl_Position = uPMatrix * uMVMatrix *
 vec4(aVertexPosition, 1.0);\n" +
 "vTextureCoord = aTextureCoord;\n" +
 "if (!uUseLighting) {\n" +
 "vLightWeighting = vec3(1.0, 1.0, 1.0);\n" +
 "} else {\n" +
 "vec3 transformedNormal = uNMatrix * aVertexNormal;\n" +
 "float directionalLightWeighting =
max(dot(transformedNormal, uLightingDirection), 0.0);\n" +
 "vLightWeighting = uAmbientColor + uDirectionalColor *
directionalLightWeighting;\n" +
 "}\n" +
 "}";
 }
};

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 9

277

21. Define the initShaders() method which initializes the appropriate shaders based
on the shader type argument:
WebGL.prototype.initShaders = function(shaderType){
 this.initPositionShader();

 switch (shaderType) {
 case this.VARYING_COLOR:
 this.initColorShader();
 break;
 case this.TEXTURE:
 this.initTextureShader();
 break;
 case this.TEXTURE_DIRECTIONAL_LIGHTING:
 this.initTextureShader();
 this.initNormalShader();
 this.initLightingShader();
 break;
 }
};

22. Define the setShaderProgram() method which sets the shader program based on
the shader type argument:
WebGL.prototype.setShaderProgram = function(shaderType){
 var fragmentGLSL = this.getFragmentShaderGLSL(shaderType);
 var vertexGLSL = this.getVertexShaderGLSL(shaderType);

 var fragmentShader = this.context.createShader(this.context.
FRAGMENT_SHADER);
 this.context.shaderSource(fragmentShader, fragmentGLSL);
 this.context.compileShader(fragmentShader);

 var vertexShader = this.context.createShader(this.context.
VERTEX_SHADER);
 this.context.shaderSource(vertexShader, vertexGLSL);
 this.context.compileShader(vertexShader);

 this.shaderProgram = this.context.createProgram();
 this.context.attachShader(this.shaderProgram, vertexShader);
 this.context.attachShader(this.shaderProgram, fragmentShader);
 this.context.linkProgram(this.shaderProgram);

 if (!this.context.getProgramParameter(this.shaderProgram,
this.context.LINK_STATUS)) {
 alert("Could not initialize shaders");

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Introducing WebGL

278

 }

 this.context.useProgram(this.shaderProgram);

 // once shader program is loaded, it's time to init the
shaders
 this.initShaders(shaderType);
};

23. Define the perspective() method which wraps the glMatrix perspective()
method that operates on the perspective matrix:
WebGL.prototype.perspective = function(viewAngle, minDist,
maxDist){
 this.mat4.perspective(viewAngle, this.context.viewportWidth /
this.context.viewportHeight, minDist, maxDist, this.pMatrix);
};

24. Define the identity() method which wraps the glMatrix identity() method that
operates on the model-view matrix:
WebGL.prototype.identity = function(){
 this.mat4.identity(this.mvMatrix);
};

25. Define the translate() method which wraps the glMatrix translate() method
that operates on the model-view matrix:
WebGL.prototype.translate = function(x, y, z){
 this.mat4.translate(this.mvMatrix, [x, y, z]);
};

26. Define the rotate() method which wraps the glMatrix rotate() method that
operates on the model-view matrix:
WebGL.prototype.rotate = function(angle, x, y, z){
 this.mat4.rotate(this.mvMatrix, angle, [x, y, z]);
};

27. Define the initPositionShader() method which initializes the position shader to
be used with position buffers:
WebGL.prototype.initPositionShader = function(){
 this.shaderProgram.vertexPositionAttribute = this.context.
getAttribLocation(this.shaderProgram, "aVertexPosition");
 this.context.enableVertexAttribArray(this.shaderProgram.
vertexPositionAttribute);
 this.shaderProgram.pMatrixUniform = this.context.
getUniformLocation(this.shaderProgram, "uPMatrix");
 this.shaderProgram.mvMatrixUniform = this.context.
getUniformLocation(this.shaderProgram, "uMVMatrix");
};

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 9

279

28. Define the initColorShader() method which initializes the color shader to be
used with color buffers:
WebGL.prototype.initColorShader = function(){
 this.shaderProgram.vertexColorAttribute = this.context.
getAttribLocation(this.shaderProgram, "aVertexColor");
 this.context.enableVertexAttribArray(this.shaderProgram.
vertexColorAttribute);
};

29. Define the initTextureShader() method which initializes the texture shader to
be used with texture buffers:
WebGL.prototype.initTextureShader = function(){
 this.shaderProgram.textureCoordAttribute = this.context.
getAttribLocation(this.shaderProgram, "aTextureCoord");
 this.context.enableVertexAttribArray(this.shaderProgram.
textureCoordAttribute);
 this.shaderProgram.samplerUniform = this.context.
getUniformLocation(this.shaderProgram, "uSampler");
};

30. Define the initNormalShader() method which initializes the normal shader to be
used with normal buffers:
WebGL.prototype.initNormalShader = function(){
 this.shaderProgram.vertexNormalAttribute = this.context.
getAttribLocation(this.shaderProgram, "aVertexNormal");
 this.context.enableVertexAttribArray(this.shaderProgram.
vertexNormalAttribute);
 this.shaderProgram.nMatrixUniform = this.context.
getUniformLocation(this.shaderProgram, "uNMatrix");
};

31. Define the initLightingShader() method which initializes ambient and
directional lighting shaders:
WebGL.prototype.initLightingShader = function(){
 this.shaderProgram.useLightingUniform = this.context.
getUniformLocation(this.shaderProgram, "uUseLighting");
 this.shaderProgram.ambientColorUniform = this.context.
getUniformLocation(this.shaderProgram, "uAmbientColor");
 this.shaderProgram.lightingDirectionUniform = this.context.
getUniformLocation(this.shaderProgram, "uLightingDirection");
 this.shaderProgram.directionalColorUniform = this.context.
getUniformLocation(this.shaderProgram, "uDirectionalColor");
};

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Introducing WebGL

280

32. Define the initTexture() method which wraps the WebGL API code necessary to
initialize a WebGL texture object:
WebGL.prototype.initTexture = function(texture){
 this.context.pixelStorei(this.context.UNPACK_FLIP_Y_WEBGL,
true);
 this.context.bindTexture(this.context.TEXTURE_2D, texture);
 this.context.texImage2D(this.context.TEXTURE_2D, 0, this.
context.RGBA, this.context.RGBA, this.context.UNSIGNED_BYTE,
texture.image);
 this.context.texParameteri(this.context.TEXTURE_2D, this.
context.TEXTURE_MAG_FILTER, this.context.NEAREST);
 this.context.texParameteri(this.context.TEXTURE_2D, this.
context.TEXTURE_MIN_FILTER, this.context.LINEAR_MIPMAP_NEAREST);
 this.context.generateMipmap(this.context.TEXTURE_2D);
 this.context.bindTexture(this.context.TEXTURE_2D, null);
};

33. Define the createArrayBuffer() method which wraps the WebGL API code
necessary to create an array buffer:
WebGL.prototype.createArrayBuffer = function(vertices){
 var buffer = this.context.createBuffer();
 buffer.numElements = vertices.length;
 this.context.bindBuffer(this.context.ARRAY_BUFFER, buffer);
 this.context.bufferData(this.context.ARRAY_BUFFER, new
 Float32Array(vertices), this.context.STATIC_DRAW);
 return buffer;
};

34. Define the createElementArrayBuffer() method which wraps the WebGL API
code necessary to create an element array buffer:
WebGL.prototype.createElementArrayBuffer = function(vertices){
 var buffer = this.context.createBuffer();
 buffer.numElements = vertices.length;
 this.context.bindBuffer(this.context.ELEMENT_ARRAY_BUFFER,
 buffer);
 this.context.bufferData(this.context.ELEMENT_ARRAY_BUFFER, new
 Uint16Array(vertices), this.context.STATIC_DRAW);
 return buffer;
};

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 9

281

35. Define the pushPositionBuffer() method which pushes a position buffer onto
the graphics card:
WebGL.prototype.pushPositionBuffer = function(buffers){
 this.context.bindBuffer(this.context.ARRAY_BUFFER,
 buffers.positionBuffer);
 this.context.vertexAttribPointer(this.shaderProgram.
vertexPositionAttribute, 3, this.context.FLOAT, false, 0, 0);
};

36. Define the pushColorBuffer() method which pushes a color buffer onto the
graphics card:
WebGL.prototype.pushColorBuffer = function(buffers){
 this.context.bindBuffer(this.context.ARRAY_BUFFER,
 buffers.colorBuffer);
 this.context.vertexAttribPointer(this.shaderProgram.
vertexColorAttribute, 4, this.context.FLOAT, false, 0, 0);
};

37. Define the pushTextureBuffer() method which pushes a texture buffer onto the
graphics card:
WebGL.prototype.pushTextureBuffer = function(buffers, texture){
 this.context.bindBuffer(this.context.ARRAY_BUFFER,
 buffers.textureBuffer);
 this.context.vertexAttribPointer(this.shaderProgram.
textureCoordAttribute, 2, this.context.FLOAT, false, 0, 0);
 this.context.activeTexture(this.context.TEXTURE0);
 this.context.bindTexture(this.context.TEXTURE_2D, texture);
 this.context.uniform1i(this.shaderProgram.samplerUniform, 0);
};

38. Define the pushIndexBuffer() method which pushes an index buffer onto the
graphics card:
WebGL.prototype.pushIndexBuffer = function(buffers){
 this.context.bindBuffer(this.context.ELEMENT_ARRAY_BUFFER,
buffers.indexBuffer);
};

39. Define the pushNormalBuffer() method which pushes a normal buffer onto the
graphics card:
WebGL.prototype.pushNormalBuffer = function(buffers){
 this.context.bindBuffer(this.context.ARRAY_BUFFER, buffers.
normalBuffer);
 this.context.vertexAttribPointer(this.shaderProgram.
vertexNormalAttribute, 3, this.context.FLOAT, false, 0, 0);
};

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Introducing WebGL

282

40. Define the setMatrixUniforms() method which wraps the WebGL API code
required to set the matrix uniforms:
WebGL.prototype.setMatrixUniforms = function(){
 this.context.uniformMatrix4fv(this.shaderProgram.
pMatrixUniform, false, this.pMatrix);
 this.context.uniformMatrix4fv(this.shaderProgram.
mvMatrixUniform, false, this.mvMatrix);

 var normalMatrix = this.mat3.create();
 this.mat4.toInverseMat3(this.mvMatrix, normalMatrix);
 this.mat3.transpose(normalMatrix);
 this.context.uniformMatrix3fv(this.shaderProgram.
nMatrixUniform, false, normalMatrix);
};

41. Define the drawElements() method which wraps the WebGL API code that draws
non-triangular position buffers based on the index buffer:
WebGL.prototype.drawElements = function(buffers){
 this.setMatrixUniforms();

 // draw elements
 this.context.drawElements(this.context.TRIANGLES, buffers.
indexBuffer.numElements, this.context.UNSIGNED_SHORT, 0);
};

42. Define the drawArrays() method which wraps the WebGL API code required to
draw triangular position buffers:
WebGL.prototype.drawArrays = function(buffers){
 this.setMatrixUniforms();

 // draw arrays
 this.context.drawArrays(this.context.TRIANGLES, 0, buffers.
positionBuffer.numElements / 3);
};

43. Define the enableLighting() method which wraps the WebGL API code required
to enable lighting:
WebGL.prototype.enableLighting = function(){
 this.context.uniform1i(this.shaderProgram.useLightingUniform,
 true);
};

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 9

283

44. Define the setAmbientLighting() method which wraps the WebGL API code
required for setting ambient lighting:
WebGL.prototype.setAmbientLighting = function(red, green, blue){
 this.context.uniform3f(this.shaderProgram.ambientColorUniform,
 parseFloat(red), parseFloat(green), parseFloat(blue));
};

45. Define the setDirectionalLighting() method which wraps the WebGL API code
required for setting directional lighting:

WebGL.prototype.setDirectionalLighting = function(x, y, z, red,
green, blue){
 // directional lighting
 var lightingDirection = [x, y, z];
 var adjustedLD = this.vec3.create();
 this.vec3.normalize(lightingDirection, adjustedLD);
 this.vec3.scale(adjustedLD, -1);
 this.context.uniform3fv(this.shaderProgram.
lightingDirectionUniform, adjustedLD);

 // directional color
 this.context.uniform3f(this.shaderProgram.
directionalColorUniform, parseFloat(red), parseFloat(green),
parseFloat(blue));
};

How it works...
The idea of the WebGL wrapper object is to handle some of the things that the
WebGL API doesn't provide and to wrap tedious blocks of code that are required to
do straightforward things.

There are two major components of WebGL that aren't built into the API—matrix
transformation math and shader programs. In this chapter, we'll be using a handy matrix
library built specifically for WebGL by Brandon Jones, called glMatrix, to handle all of the
vector operations. As for the missing support for shader programs, our WebGL wrapper object
includes pre-built GLSL shader programs. Shader programs are written in GLSL, which is
short for OpenGL Shading Language, and is used to programmatically define how vertices
and fragments should be rendered. Vertex shaders operate on every vertex that makes up the
shape of our 3D models, and fragment shaders operate on every fragment which is produced
by rasterization. To use shader programs , we'll actually have to pass in strings of GLSL code
into the WebGL API.

In addition to the wrapper methods, the WebGL wrapper object also includes the animation
methods that we put together in Chapter 5, Bringing the Canvas to Life with Animation.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Introducing WebGL

284

The majority of the remaining methods in our WebGL wrapper object simply wrap blocks of
code necessary to push buffers onto the graphics card and then draw the result. In the next
five recipes, we'll dive deeper into each of these buffer types, including position buffers, color
buffers, index buffers, texture buffers, and normal buffers.

There's more...
For a more in-depth exploration of WebGL and OpenGL, check out these two awesome
resources:

 f http://learningwebgl.com/

 f http://nehe.gamedev.net/

See also...
 f Appendix A, Detecting Canvas Support

Creating a triangular plane
Now that we have our WebGL wrapper set up, let's create our first WebGL application by
drawing a simple triangle on the screen. It will serve as a good foundation for the typical
steps that are required to create more complex 3D models. In this recipe, we'll introduce the
concept of position buffers, which are simply arrays of vertices used to define the position and
shape of a 3D model.

How to do it...
Follow these steps to render a 2D triangle with WebGL:

1. Link to the glMatrix library and the WebGL wrapper:
<script type="text/javascript" src="glMatrix-1.0.1.min.js">
</script>
<script type="text/javascript" src="WebGL.js">
</script>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

http://learningwebgl.com/blog/
http://learningwebgl.com/blog/
http://nehe.gamedev.net/
http://nehe.gamedev.net/

Chapter 9

285

2. Define the initBuffers() function which initializes the position buffers for
our triangle:
 function initBuffers(gl){
 var triangleBuffers = {};
 triangleBuffers.positionBuffer = gl.createArrayBuffer([
 0, 1, 0,
 -1, -1, 0,
 1, -1, 0
]);
 return triangleBuffers;
 }

3. Define the stage() function which sets the perspective matrix, sets the model-view
matrix to the identity matrix, translates the model-view matrix back -5 units in the
z direction, pushes the position buffer onto the graphics card, and then draws the
triangle using drawArrays():
 function stage(gl, triangleBuffers){
 gl.clear();
 // set field of view at 45 degrees
 // set viewing range between 0.1 and 100.0 units away.
 gl.perspective(45, 0.1, 100.0);
 gl.identity();

 // translate model-view matrix
 gl.translate(0, 0, -5);

 gl.pushPositionBuffer(triangleBuffers);
 gl.drawArrays(triangleBuffers);
 }

4. When the page loads, create a new instance of the WebGL wrapper object, set the
shader program to "BLUE_COLOR", initialize the triangle buffers, and then draw
the stage:
 window.onload = function(){
 var gl = new WebGL("myCanvas", "experimental-webgl");
 gl.setShaderProgram("BLUE_COLOR");
 var triangleBuffers = initBuffers(gl);
 stage(gl, triangleBuffers);
 };

5. Embed the canvas tag inside the body of the HTML document:
 <canvas id="myCanvas" width="600" height="250"
 style="border:1px solid black;"></canvas>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Introducing WebGL

286

How it works...
When the loads, the first thing we need to do is to initialize the WebGL wrapper object using
the experimental-webgl context. At the time of writing, the experimental-webgl
context is the only canvas context that's supported across all of the major browsers that
support WebGL, including Google Chrome, Firefox, and Safari.

Next, we can set the shader program to "BLUE_COLOR", which will use a pre-built GLSL
program to render blue vertices and fragments. Once the shader program is set, we need to
initialize our buffers. Buffers are an array of vertices that are used to define our 3D models.
For this recipe, we'll only be using a position buffer, which defines the vertex positions of our
triangle. In future recipes, we'll introduce other buffer types, including index buffers, texture
buffers, and normal buffers. For this recipe, the position buffer contains nine elements which
represent three vertices (each vertex has an x, y, and z component).

Once the triangle buffers have been initialized, we can draw the stage. The stage() function
first clears the canvas and then sets the perspective matrix. The perspective() method
of our WebGL wrapper object takes in three parameters, a viewing angle, a minimum visible
distance, and a maximum visible distance. In this recipe, we've set the minimum visible
distance to 0.1 units, and the maximum visible distance to 100 units. Any objects closer than
0.1 units will be invisible, and any objects further than 100 units will also be invisible. If our
stage were to contain a lot of complex models spread throughout space, then having a large
maximum visible distance could potentially cause performance problems because too much
is being rendered on the screen at once.

Next, we can set the model-view matrix to the identity matrix using the identity() function,
and then translate the model-view matrix to (0, 0, -5). This means that we've simply moved our
model -5 units in the z direction which is 5 units away from the user.

Finally, we can push the position buffer onto the graphics card using the
pushPositionBuffer() method and then draw the triangle using drawArrays().

Rotating a triangular plane in 3D space
Now that we can draw a 2D triangle in 3D space, let's try spinning it about the y-axis using the
animation methods we added to the WebGL wrapper object.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 9

287

How to do it...
Follow these steps to rotate a triangle about the y-axis with WebGL:

1. Link to the glMatrix library and the WebGL wrapper:
<script type="text/javascript" src="glMatrix-1.0.1.min.js">
</script>
<script type="text/javascript" src="WebGL.js">
</script>

2. Define the initBuffers() function which initializes the position buffers for
our triangle:
 function initBuffers(gl){
 var triangleBuffers = {};
 triangleBuffers.positionBuffer = gl.createArrayBuffer([
 0, 1, 0,
 -1, -1, 0,
 1, -1, 0
]);

 return triangleBuffers;
 }

3. Define the stage() function which sets the perspective, sets the model-view matrix
to the identity matrix, translates the triangle, rotates the triangle about the y-axis,
pushes the position buffer onto the graphics card, and draws the triangle using
drawArrays():
 function stage(gl, triangleBuffers, angle){
 // set field of view at 45 degrees
 // set viewing range between 0.1 and 100.0 units away.
 gl.perspective(45, 0.1, 100.0);
 gl.identity();

 // translate model-view matrix
 gl.translate(0, 0, -5);
 // rotate model-view matrix about y-axis
 gl.rotate(angle, 0, 1, 0);

 gl.pushPositionBuffer(triangleBuffers);
 gl.drawArrays(triangleBuffers);
 }

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Introducing WebGL

288

4. When the page loads, initialize the WebGL wrapper object, set the shader program,
initialize the buffers, set the stage function for the animation, and then start
the animation:
 window.onload = function(){
 var gl = new WebGL("myCanvas", "experimental-webgl");
 gl.setShaderProgram("BLUE_COLOR");
 var triangleBuffers = initBuffers(gl);
 var angle = 0;

 gl.setStage(function(){
 // update angle
 var angularVelocity = Math.PI / 2; // radians / second
 var angleEachFrame = angularVelocity *
gl.getTimeInterval() / 1000;
 angle += angleEachFrame;

 this.clear();

 stage(gl, triangleBuffers, angle);
 });
 gl.start();
 };

5. Embed the canvas tag inside the body of the HTML document:
 <canvas id="myCanvas" width="600" height="250"
 style="border:1px solid black;"></canvas>

How it works...
To rotate our triangle about the y-axis, we first need to set up an animation stage by setting
the stage() function of the WebGL wrapper object (similar to what we did in Chapter 5 with
the Animation object), and then start the animation with start(). For each animation
frame, we can increase the angle of the triangle about the y-axis by rotating the model-view
matrix with the rotate() method.

See also...
 f Creating an Animation class in Chapter 5

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 9

289

Creating a rotating cube
Okay, now the fun really begins. In this recipe, we'll create a rotating 3D cube with
differently colored faces. To do so, we'll introduce two new kinds of buffers—color buffers
and index buffers.

How to do it...
Follow these steps to create a rotating cube with WebGL:

1. Link to the glMatrix library and the WebGL wrapper:
<script type="text/javascript" src="glMatrix-1.0.1.min.js">
</script>
<script type="text/javascript" src="WebGL.js">
</script>

2. Define the initBuffers() function which initializes the position buffers, color
buffers, and the index buffers for our cube:
 function initBuffers(gl){
 var cubeBuffers = {}
 cubeBuffers.positionBuffer = gl.createArrayBuffer([
 // Front face
 -1, -1, 1,
 1, -1, 1,
 1, 1, 1,
 -1, 1, 1,

 // Back face
 -1, -1, -1,
 -1, 1, -1,
 1, 1, -1,
 1, -1, -1,

 // Top face
 -1, 1, -1,

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Introducing WebGL

290

 -1, 1, 1,
 1, 1, 1,
 1, 1, -1,

 // Bottom face
 -1, -1, -1,
 1, -1, -1,
 1, -1, 1,
 -1, -1, 1,

 // Right face
 1, -1, -1,
 1, 1, -1,
 1, 1, 1,
 1, -1, 1,

 // Left face
 -1, -1, -1,
 -1, -1, 1,
 -1, 1, 1,
 -1, 1, -1
]);

 // build color Vertices
 var colors = [
 [1, 0, 1, 1], // Front face - Pink
 [0, 1, 0, 1], // Back face - Green
 [0, 0, 1, 1], // Top face - Blue
 [0, 1, 1, 1], // Bottom face - Turquoise
 [1, 1, 0, 1], // Right face - Yellow
 [1, 0, 0, 1] // Left face - Red
];

 var colorVertices = [];

 for (var n in colors) {
 var color = colors[n];
 for (var i=0; i < 4; i++) {
 colorVertices = colorVertices.concat(color);
 }
 }

 cubeBuffers.colorBuffer = gl.createArrayBuffer(colorVertic
es);

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 9

291

 cubeBuffers.indexBuffer = gl.createElementArrayBuffer([
 0, 1, 2, 0, 2, 3, // Front face
 4, 5, 6, 4, 6, 7, // Back face
 8, 9, 10, 8, 10, 11, // Top face
 12, 13, 14, 12, 14, 15, // Bottom face
 16, 17, 18, 16, 18, 19, // Right face
 20, 21, 22, 20, 22, 23 // Left face
]);

 return cubeBuffers;
 }

3. Define the stage() function which sets the perspective, sets the model-view matrix
to the identity matrix, translates the cube, rotates the cube, pushes the position
buffer, the color buffer, and the index buffer onto the graphics card, and finally draws
the cube using drawElements() since the faces of our model
aren't triangular:
 function stage(gl, cubeBuffers, angle){
 // set field of view at 45 degrees
 // set viewing range between 0.1 and 100.0 units away.
 gl.perspective(45, 0.1, 100);
 gl.identity();

 // translate model-view matrix
 gl.translate(0, 0, -5);
 // rotate model-view matrix about x-axis (tilt box
downwards)
 gl.rotate(Math.PI * 0.15, 1, 0, 0);
 // rotate model-view matrix about y-axis
 gl.rotate(angle, 0, 1, 0);

 gl.pushPositionBuffer(cubeBuffers);
 gl.pushColorBuffer(cubeBuffers);
 gl.pushIndexBuffer(cubeBuffers);
 gl.drawElements(cubeBuffers);
 }

4. When the page loads, initialize the WebGL wrapper object, set the shader program to
"VARYING_COLOR" as the color of each face is variable and dependent on the color
buffers, initialize the buffers, set the stage function for the animation, and then start
the animation:
 window.onload = function(){
 var gl = new WebGL("myCanvas", "experimental-webgl");
 gl.setShaderProgram("VARYING_COLOR");
 var cubeBuffers = initBuffers(gl);

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Introducing WebGL

292

 var angle = 0;
 gl.setStage(function(){
 // update angle
 var angularVelocity = Math.PI / 4; // radians / second
 var angleEachFrame = angularVelocity * this.
getTimeInterval() / 1000;
 angle += angleEachFrame;

 this.clear();

 stage(this, cubeBuffers, angle);
 });
 gl.start();
 };

5. Embed the canvas tag inside the body of the HTML document:
 <canvas id="myCanvas" width="600" height="250"
 style="border:1px solid black;"></canvas>

How it works...
This recipe introduces the concept of index buffers and color buffers. In the previous two
recipes, we created a triangular plane because models with triangular faces are the easiest
to implement with WebGL because only one buffer is required—the position buffer. When we
want to create a 3D model with non-triangular faces, such as a cube, it's a bit more complex
because we need a way to represent the cube as a set of triangular faces. We can accomplish
this by creating an index buffer that maps triangles to the vertices of the position buffer.

Take a look at the index buffer vertices in the proceeding code. You'll notice that the first six
elements are [0, 1, 2, 0, 2, 3]. The first three elements, [0, 1, 2] refer to the 0th,
1st, and 2nd vertices of the position buffer, which form a triangle that covers half of the front
face of the cube. The second set of elements, [0, 2, 3] correspond to the 0th, 2nd, and
3rd vertices of the position buffer and form a second triangle that covers the other half of the
front face of the cube. Together, these two triangles form a solid face for the front face of the
cube. When the index buffer is complete, it will contain a mapping of position buffer vertices
that form triangular faces that cover the six faces of the cube.

In addition to index buffers, this recipe also requires the use of color buffers. Color buffers are
used to define the colors of model faces. In this recipe, the color buffer will define six different
colors for the six faces of our cube. Similar to index buffers, color buffers are used to map a
color to each vertex in the position buffer. Each color is defined by four elements, [red, green,
blue, alpha]. As defined by the position buffer, our cube is made up of six faces, each with four
vertices. Therefore, our color buffer array should contain (6 faces) * (4 vertices per face) *
(4 elements per color) = 96 elements.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 9

293

Once we have our position buffer, color buffer, and index buffer defined, all that's left for us
to do is to push each buffer onto the graphics card and render the model. Unlike the previous
two recipes where we used the drawArrays() method to directly render the triangle, in this
recipe we'll have to use the drawElements() method because our model is made up of non-
triangular faces and requires an index buffer to map triangular faces to the square faces of
our model.

See also...
 f Creating an Animation class in Chapter 5

Adding textures and lighting
Now that we know how to create a simple 3D model using position buffers and index buffers,
let's make a wooden crate by wrapping our model with a crate texture and then adding some
ambient and directional lighting to create shaded surfaces. This recipe introduces texture
buffers to create textures and normal buffers which are required to handle lighting effects.

How to do it...
Follow these steps to create a rotating crate with lighting in WebGL:

1. Link to the glMatrix library and the WebGL wrapper:
<script type="text/javascript" src="glMatrix-1.0.1.min.js">
</script>
<script type="text/javascript" src="WebGL.js">
</script>

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Introducing WebGL

294

2. Define the initBuffers() function which initializes the position buffer, normal
buffer, texture buffer, and the index buffer for our cube:
 function initBuffers(gl){
 var cubeBuffers = {};
 cubeBuffers.positionBuffer = gl.createArrayBuffer([
 // Front face
 -1, -1, 1,
 1, -1, 1,
 1, 1, 1,
 -1, 1, 1,

 // Back face
 -1, -1, -1,
 -1, 1, -1,
 1, 1, -1,
 1, -1, -1,

 // Top face
 -1, 1, -1,
 -1, 1, 1,
 1, 1, 1,
 1, 1, -1,

 // Bottom face
 -1, -1, -1,
 1, -1, -1,
 1, -1, 1,
 -1, -1, 1,

 // Right face
 1, -1, -1,
 1, 1, -1,
 1, 1, 1,
 1, -1, 1,

 // Left face
 -1, -1, -1,
 -1, -1, 1,
 -1, 1, 1,
 -1, 1, -1
]);

 cubeBuffers.normalBuffer = gl.createArrayBuffer([
 // Front face

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 9

295

 0, 0, 1,
 0, 0, 1,
 0, 0, 1,
 0, 0, 1,

 // Back face
 0, 0, -1,
 0, 0, -1,
 0, 0, -1,
 0, 0, -1,

 // Top face
 0, 1, 0,
 0, 1, 0,
 0, 1, 0,
 0, 1, 0,

 // Bottom face
 0, -1, 0,
 0, -1, 0,
 0, -1, 0,
 0, -1, 0,

 // Right face
 1, 0, 0,
 1, 0, 0,
 1, 0, 0,
 1, 0, 0,

 // Left face
 -1, 0, 0,
 -1, 0, 0,
 -1, 0, 0,
 -1, 0, 0
]);

 cubeBuffers.textureBuffer = gl.createArrayBuffer([
 // Front face
 0, 0,
 1, 0,
 1, 1,
 0, 1,

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Introducing WebGL

296

 // Back face
 1, 0,
 1, 1,
 0, 1,
 0, 0,

 // Top face
 0, 1,
 0, 0,
 1, 0,
 1, 1,

 // Bottom face
 1, 1,
 0, 1,
 0, 0,
 1, 0,

 // Right face
 1, 0,
 1, 1,
 0, 1,
 0, 0,

 // Left face
 0, 0,
 1, 0,
 1, 1,
 0, 1
]);

 cubeBuffers.indexBuffer = gl.createElementArrayBuffer([
 0, 1, 2, 0, 2, 3, // Front face
 4, 5, 6, 4, 6, 7, // Back face
 8, 9, 10, 8, 10, 11, // Top face
 12, 13, 14, 12, 14, 15, // Bottom face
 16, 17, 18, 16, 18, 19, // Right face
 20, 21, 22, 20, 22, 23 // Left face
]);

 return cubeBuffers;
 }

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 9

297

3. Define the stage() function which sets the perspective, sets the model-view matrix
to the identity matrix, translates the cube, rotates the cube, enables lighting, sets the
ambient lighting, sets the directional lighting, pushes the position buffer, the normal
buffer, the texture buffer, and the index buffer onto the graphics card, and finally
draws the cube using drawElements():
 function stage(gl, cubeBuffers, crateTexture, angle){
 // set field of view at 45 degrees
 // set viewing range between 0.1 and 100 units away.
 gl.perspective(45, 0.1, 100.0);
 gl.identity();

 // translate model-view matrix
 gl.translate(0, 0.0, -5);
 // rotate model-view matrix about x-axis (tilt box
 downwards)
 gl.rotate(Math.PI * 0.15, 1, 0, 0);
 // rotate model-view matrix about y-axis
 gl.rotate(angle, 0, 1, 0);

 // enable lighting
 gl.enableLighting();
 gl.setAmbientLighting(0.5, 0.5, 0.5);
 gl.setDirectionalLighting(-0.25, -0.25, -1, 0.8, 0.8,
 0.8);

 gl.pushPositionBuffer(cubeBuffers);
 gl.pushNormalBuffer(cubeBuffers);
 gl.pushTextureBuffer(cubeBuffers, crateTexture);
 gl.pushIndexBuffer(cubeBuffers);
 gl.drawElements(cubeBuffers);
 }

4. Define the init() method which initializes the crate texture, sets the the stage()
function, and starts the animation:
 function init(gl, crateTexture){
 var cubeBuffers = initBuffers(gl);
 var angle = 0;
 gl.initTexture(crateTexture);
 gl.setStage(function(){
 // update angle
 var angularVelocity = Math.PI / 4; // radians / second
 var angleEachFrame = angularVelocity *
 this.getTimeInterval() / 1000;
 angle += angleEachFrame;

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Introducing WebGL

298

 this.clear();

 stage(this, cubeBuffers, crateTexture, angle);
 });
 gl.start();
 }

5. Define the loadTexture() function which creates a new texture object, creates a
new image object, initializes the texture and starts the animation once the texture
image has loaded:
 function loadTexture(gl){
 var crateTexture = gl.getContext().createTexture();
 crateTexture.image = new Image();

 crateTexture.image.onload = function(){
 init(gl, crateTexture);
 };
 crateTexture.image.src = "crate.jpg";
 }

6. When the page loads, initialize the WebGL wrapper object, set the shader program to
"TEXTURE_DIRECTIONAL_LIGHTING", and load the texture:
 window.onload = function(){
 var gl = new WebGL("myCanvas", "experimental-webgl");
 gl.setShaderProgram("TEXTURE_DIRECTIONAL_LIGHTING");
 loadTexture(gl);
 };

7. Embed the canvas tag inside the body of the HTML document:
 <canvas id="myCanvas" width="600" height="250"
 style="border:1px solid black;"></canvas>

How it works...
This recipe introduces the concept of texture buffers and normal buffers. Texture buffers
allow us to define the orientation and scale of a texture image for each face of a 3D model. To
define the texture buffer of our wooden crate, we need to map the four corners of the texture
image to the four corners of each face of the cube.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 9

299

In order to handle lighting effects with WebGL, we need to define the normals of the faces
that make up our cube with normal buffers. Normals are vectors that are perpendicular to a
surface. For example, the normal of a floor points straight up, and the normal of the ceiling
points straight down. Once our normals have been defined, we are now in a position to set up
ambient and directional lighting.

Although there are many other kinds of lighting effects that can be achieved with WebGL, this
recipe focuses on the two most common—ambient and directional lighting, which can be used
together or independently:

 f Ambient lighting refers to the general lighting of a room or world, and is defined with
RGB. A room with an ambient lighting value of [0,0,0] would be completely dark,
and a room with an ambient lighting value of [1,1,1] would be completely lit. Also,
if we had a room with an ambient lighting value of [1,0,0] for example, the room
would be illuminated with a red light.

 f Directional lighting causes the faces of 3D models that are facing towards the light
to be lighter, and the faces of 3D models that are facing away from the light to be
darker. Directional lighting is typically used to simulate very strong light sources that
are far away, such as the sun.

To use both textures and directional lighting, we can set the shader program to TEXTURE_
DIRECTIONAL_LIGHTING with the setShaderProgram() method and we can enable
lighting with the enableLighting() method. Finally, we can set the ambient lighting of our
world with the setAmbientLighting() method and set the directional lighting using the
setDirectionalLighting() method.

See also...
 f Creating an Animation class in Chapter 5

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Introducing WebGL

300

Creating a 3D world that you can explore
Now that we know how to create some basic 3D models with textures and lighting, we are
now in a position to create our own 3D world. In this recipe, we'll create three sets of buffers—
cube buffers, wall buffers, and floor buffers. We can use the cube buffers to render randomly
placed crates throughout our world, the wall buffers to create four walls, and the floor buffers
to create a floor and a ceiling (we can reuse the floor buffers for the ceiling buffers since they
are the same shape). Next, we'll add keyboard event listeners to the document so that we can
explore the world with the arrow keys and the mouse. Let's get started!

How to do it...
Follow these steps to create a 3D world full of randomly placed crates that you can explore
with the keyboard and mouse in WebGL:

1. Link to the glMatrix library and the WebGL wrapper:
<script type="text/javascript" src="glMatrix-1.0.1.min.js">
</script>
<script type="text/javascript" src="WebGL.js">
</script>

2. Define the Controller constructor which initializes the view, the WebGL wrapper
object, and the model, attaches keyboard event listeners, and loads the world
textures:
 /*************************************
 * Controller
 */

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 9

301

 function Controller(){
 this.view = new View(this);
 this.gl = new WebGL("myCanvas");
 this.gl.setShaderProgram("TEXTURE_DIRECTIONAL_LIGHTING");
 this.model = new Model(this);

 this.attachListeners();

 var sources = {
 crate: "crate.jpg",
 metalFloor: "metalFloor.jpg",
 metalWall: "metalWall.jpg",
 ceiling: "ceiling.jpg"
 };

 this.mouseDownPos = null;
 this.mouseDownPitch = 0;
 this.mouseDownYaw = 0;

 var that = this;
 this.loadTextures(sources, function(){
 that.gl.setStage(function(){
 that.view.stage();
 });

 that.gl.start();
 });
 }

3. Define the loadTextures() method which loads the world textures:
 Controller.prototype.loadTextures = function(sources,
callback){
 var gl = this.gl;
 var context = gl.getContext();
 var textures = this.model.textures;
 var loadedImages = 0;
 var numImages = 0;
 for (var src in sources) {
 // anonymous function to induce scope
 (function(){
 var key = src;
 numImages++;
 textures[key] = context.createTexture();
 textures[key].image = new Image();

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Introducing WebGL

302

 textures[key].image.onload = function(){
 gl.initTexture(textures[key]);
 if (++loadedImages >= numImages) {
 callback();
 }
 };

 textures[key].image.src = sources[key];
 })();
 }
 };

4. Define the getMousePos() method which gets the mouse position:
 Controller.prototype.getMousePos = function(evt){
 return {
 x: evt.clientX,
 y: evt.clientY
 };
 };

5. Define the handleMouseDown() method which captures the start mouse position,
camera pitch, and camera yaw:
 Controller.prototype.handleMouseDown = function(evt){
 var camera = this.model.camera;
 this.mouseDownPos = this.getMousePos(evt);
 this.mouseDownPitch = camera.pitch;
 this.mouseDownYaw = camera.yaw;
 };

6. Define the handleMouseMove() method which updates the camera:
 Controller.prototype.handleMouseMove = function(evt){
 var mouseDownPos = this.mouseDownPos;
 var gl = this.gl;
 if (mouseDownPos !== null) {
 var mousePos = this.getMousePos(evt);

 // update pitch
 var yDiff = mousePos.y - mouseDownPos.y;
 this.model.camera.pitch = this.mouseDownPitch + yDiff
/ gl.getCanvas().height;

 // update yaw
 var xDiff = mousePos.x - mouseDownPos.x;
 this.model.camera.yaw = this.mouseDownYaw + xDiff /
gl.getCanvas().width;
 }
 };

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 9

303

7. Define the handleKeyDown() method which controls the user movement through
the world:
 Controller.prototype.handleKeyDown = function(evt){
 var keycode = ((evt.which) || (evt.keyCode));
 var model = this.model;
 switch (keycode) {
 case 37:
 // left key
 model.sideMovement = model.LEFT;
 break;
 case 38:
 // up key
 model.straightMovement = model.FORWARD;
 break;
 case 39:
 // right key
 model.sideMovement = model.RIGHT;
 break;
 case 40:
 // down key
 model.straightMovement = model.BACKWARD;
 break;
 }
 };

8. Define the handleKeyUp() method which sets the user side movement to STILL if
the left or right arrow key has been released, and sets the user straight movement to
STILL if the up or down arrow key has been released:
 Controller.prototype.handleKeyUp = function(evt){
 var keycode = ((evt.which) || (evt.keyCode));
 var model = this.model;
 switch (keycode) {
 case 37:
 // left key
 model.sideMovement = model.STILL;
 break;
 case 38:
 // up key
 model.straightMovement = model.STILL;
 break;
 case 39:
 // right key
 model.sideMovement = model.STILL;
 break;

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Introducing WebGL

304

 case 40:
 // down key
 model.straightMovement = model.STILL;
 break;
 }
 };

9. Define the attachListeners() method which attaches listeners to the canvas
and document:
 Controller.prototype.attachListeners = function(){
 var gl = this.gl;
 var that = this;
 gl.getCanvas().addEventListener("mousedown", function(evt)
{
 that.handleMouseDown(evt);
 }, false);

 gl.getCanvas().addEventListener("mousemove", function(evt)
{
 that.handleMouseMove(evt);
 }, false);

 document.addEventListener("mouseup", function(evt){
 that.mouseDownPos = null;
 }, false);

 document.addEventListener("mouseout", function(evt){
 // same as mouseup functionality
 that.mouseDownPos = null;
 }, false);

 document.addEventListener("keydown", function(evt){
 that.handleKeyDown(evt);
 }, false);

 document.addEventListener("keyup", function(evt){
 that.handleKeyUp(evt);
 }, false);
 };

10. Define the Model constructor which initializes the camera and the buffers for the
crates, the floor, and the wall:
 /*************************************
 * Model
 */
 function Model(controller){

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 9

305

 this.controller = controller;
 this.cubeBuffers = {};
 this.floorBuffers = {};
 this.wallBuffers = {};
 this.angle = 0;
 this.textures = {};
 this.cratePositions = [];

 // movements
 this.STILL = "STILL";
 this.FORWARD = "FORWARD";
 this.BACKWARD = "BACKWARD";
 this.LEFT = "LEFT";
 this.RIGHT = "RIGHT";

 // camera
 this.camera = {
 x: 0,
 y: 1.5,
 z: 5,
 pitch: 0,
 yaw: 0
 };

 this.straightMovement = this.STILL;
 this.sideMovement = this.STILL;
 this.speed = 8; // units per second
 this.initBuffers();
 this.initCratePositions();
 }

11. Define the initCratePositions() method which generates 20 crates with
random positions in the world and also randomly stacks crates:
 Model.prototype.initCratePositions = function(){
 var crateRange = 45;
 // randomize 20 floor crates
 for (var n = 0; n < 20; n++) {
 var cratePos = {};
 cratePos.x = (Math.random() * crateRange * 2) -
 crateRange;
 cratePos.y = 0;
 cratePos.z = (Math.random() * crateRange * 2) -
 crateRange;
 cratePos.rotationY = Math.random() * Math.PI * 2;

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Introducing WebGL

306

 this.cratePositions.push(cratePos);

 if (Math.round(Math.random() * 3) == 3) {
 var stackedCratePosition = {};
 stackedCratePosition.x = cratePos.x;
 stackedCratePosition.y = 2.01;
 stackedCratePosition.z = cratePos.z;
 stackedCratePosition.rotationY = cratePos.
rotationY + ((Math.random() * Math.PI / 8) - Math.PI / 16);
 this.cratePositions.push(stackedCratePosition);
 }
 }
 };

12. Define the initCubeBuffers() method which initializes the cube buffers for
the crates:
 Model.prototype.initCubeBuffers = function(){
 var gl = this.controller.gl;
 this.cubeBuffers.positionBuffer = gl.createArrayBuffer([
 -1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, // Front face
 -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, // Back
 face
 -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, // Top face
 -1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, // Bottom
 face
 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, // Right face
 -1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, -1 // Left
 face
]);

 this.cubeBuffers.normalBuffer = gl.createArrayBuffer([
 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, // Front face
 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, // Back face
 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, // Top face
 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, // Bottom face
 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, // Right face
 -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0 // Left face
]);

 this.cubeBuffers.textureBuffer = gl.createArrayBuffer([
 0, 0, 1, 0, 1, 1, 0, 1, // Front face
 1, 0, 1, 1, 0, 1, 0, 0, // Back face
 0, 1, 0, 0, 1, 0, 1, 1, // Top face
 1, 1, 0, 1, 0, 0, 1, 0, // Bottom face
 1, 0, 1, 1, 0, 1, 0, 0, // Right face

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 9

307

 0, 0, 1, 0, 1, 1, 0, 1 // Left face
]);

 this.cubeBuffers.indexBuffer =
gl.createElementArrayBuffer([
 0, 1, 2, 0, 2, 3, // Front face
 4, 5, 6, 4, 6, 7, // Back face
 8, 9, 10, 8, 10, 11, // Top face
 12, 13, 14, 12, 14, 15, // Bottom face
 16, 17, 18, 16, 18, 19, // Right face
 20, 21, 22, 20, 22, 23 // Left face
]);
 };

13. Define the initFloorBuffers() method which initializes the floor buffers (these
buffers will be used for the ceiling as well):
 Model.prototype.initFloorBuffers = function(){
 var gl = this.controller.gl;
 this.floorBuffers.positionBuffer = gl.createArrayBuffer([
 -50, 0, -50, -50, 0, 50, 50, 0, 50, 50, 0, -50
]);

 this.floorBuffers.textureBuffer = gl.createArrayBuffer([
 0, 25, 0, 0, 25, 0, 25, 25
]);

 this.floorBuffers.indexBuffer =
gl.createElementArrayBuffer([
 0, 1, 2, 0, 2, 3
]);

 // floor normal points upwards
 this.floorBuffers.normalBuffer = gl.createArrayBuffer([
 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0
]);
 };

14. Define the initWallBuffers() method which initializes the wall buffers:
 Model.prototype.initWallBuffers = function(){
 var gl = this.controller.gl;
 this.wallBuffers.positionBuffer = gl.createArrayBuffer([
 -50, 5, 0, 50, 5, 0, 50, -5, 0, -50, -5, 0
]);

 this.wallBuffers.textureBuffer = gl.createArrayBuffer([

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Introducing WebGL

308

 0, 0, 25, 0, 25, 1.5, 0, 1.5
]);

 this.wallBuffers.indexBuffer =
gl.createElementArrayBuffer([
 0, 1, 2, 0, 2, 3
]);

 // floor normal points upwards
 this.wallBuffers.normalBuffer = gl.createArrayBuffer([
 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1
]);
 };

15. Define the initBuffers() method which initializes the cube, floor, and
wall buffers:
 Model.prototype.initBuffers = function(){
 this.initCubeBuffers();
 this.initFloorBuffers();
 this.initWallBuffers();
 };

16. Define the updateCameraPos() method which is used to update the camera
position for each animation frame:
 Model.prototype.updateCameraPos = function(){
 var gl = this.controller.gl;
 if (this.straightMovement != this.STILL) {
 var direction = this.straightMovement == this.FORWARD
? -1 : 1;
 var distEachFrame = direction * this.speed *
gl.getTimeInterval() / 1000;
 this.camera.z += distEachFrame * Math.cos(this.camera.
yaw);
 this.camera.x += distEachFrame * Math.sin(this.camera.
yaw);
 }

 if (this.sideMovement != this.STILL) {
 var direction = this.sideMovement == this.RIGHT ? 1 :
-1;
 var distEachFrame = direction * this.speed *
gl.getTimeInterval() / 1000;
 this.camera.z += distEachFrame * Math.cos(this.camera.
yaw + Math.PI / 2);

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 9

309

 this.camera.x += distEachFrame * Math.sin(this.camera.
yaw + Math.PI / 2);
 }
 };

17. Define the View constructor which sets the canvas dimensions:
 /*************************************
 * View
 */
 function View(controller){
 this.controller = controller;
 this.canvas = document.getElementById("myCanvas");
 this.canvas.width = window.innerWidth;
 this.canvas.height = window.innerHeight;
 }

18. Define the drawFloor() method which draws the floor:
 View.prototype.drawFloor = function(){
 var controller = this.controller;
 var gl = controller.gl;
 var model = controller.model;
 var floorBuffers = model.floorBuffers;

 gl.save();
 gl.translate(0, -1.1, 0);
 gl.pushPositionBuffer(floorBuffers);
 gl.pushNormalBuffer(floorBuffers);
 gl.pushTextureBuffer(floorBuffers,
 model.textures.metalFloor);
 gl.pushIndexBuffer(floorBuffers);
 gl.drawElements(floorBuffers);
 gl.restore();
 };

19. Define the drawCeiling() method which draws the ceiling:
 View.prototype.drawCeiling = function(){
 var controller = this.controller;
 var gl = controller.gl;
 var model = controller.model;
 var floorBuffers = model.floorBuffers;

 gl.save();
 gl.translate(0, 8.9, 0);
 // use floor buffers with ceiling texture
 gl.pushPositionBuffer(floorBuffers);

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Introducing WebGL

310

 gl.pushNormalBuffer(floorBuffers);
 gl.pushTextureBuffer(floorBuffers,
 model.textures.ceiling);
 gl.pushIndexBuffer(floorBuffers);
 gl.drawElements(floorBuffers);
 gl.restore();
 };

20. Define the drawCrates() method which draws the crates:
 View.prototype.drawCrates = function(){
 var controller = this.controller;
 var gl = controller.gl;
 var model = controller.model;
 var cubeBuffers = model.cubeBuffers;

 for (var n = 0; n < model.cratePositions.length; n++) {
 gl.save();
 var cratePos = model.cratePositions[n];
 gl.translate(cratePos.x, cratePos.y, cratePos.z);
 gl.rotate(cratePos.rotationY, 0, 1, 0);
 gl.pushPositionBuffer(cubeBuffers);
 gl.pushNormalBuffer(cubeBuffers);
 gl.pushTextureBuffer(cubeBuffers,
 model.textures.crate);
 gl.pushIndexBuffer(cubeBuffers);
 gl.drawElements(cubeBuffers);
 gl.restore();
 }
 };

21. Define the drawWalls() method which draws the walls:
 View.prototype.drawWalls = function(){
 var controller = this.controller;
 var gl = controller.gl;
 var model = controller.model;
 var wallBuffers = model.wallBuffers;
 var metalWallTexture = model.textures.metalWall;

 gl.save();
 gl.translate(0, 3.9, -50);
 gl.pushPositionBuffer(wallBuffers);
 gl.pushNormalBuffer(wallBuffers);
 gl.pushTextureBuffer(wallBuffers, metalWallTexture);
 gl.pushIndexBuffer(wallBuffers);

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 9

311

 gl.drawElements(wallBuffers);
 gl.restore();

 gl.save();
 gl.translate(0, 3.9, 50);
 gl.rotate(Math.PI, 0, 1, 0);
 gl.pushPositionBuffer(wallBuffers);
 gl.pushNormalBuffer(wallBuffers);
 gl.pushTextureBuffer(wallBuffers, metalWallTexture);
 gl.pushIndexBuffer(wallBuffers);
 gl.drawElements(wallBuffers);
 gl.restore();

 gl.save();
 gl.translate(50, 3.9, 0);
 gl.rotate(Math.PI * 1.5, 0, 1, 0);
 gl.pushPositionBuffer(wallBuffers);
 gl.pushNormalBuffer(wallBuffers);
 gl.pushTextureBuffer(wallBuffers, metalWallTexture);
 gl.pushIndexBuffer(wallBuffers);
 gl.drawElements(wallBuffers);
 gl.restore();

 gl.save();
 gl.translate(-50, 3.9, 0);
 gl.rotate(Math.PI / 2, 0, 1, 0);
 gl.pushPositionBuffer(wallBuffers);
 gl.pushNormalBuffer(wallBuffers);
 gl.pushTextureBuffer(wallBuffers, metalWallTexture);
 gl.pushIndexBuffer(wallBuffers);
 gl.drawElements(wallBuffers);
 gl.restore();
 };

22. Define the stage() method which updates the camera position, clears the canvas,
positions the world relative to the camera position, and then draws the floor, the
walls, the ceiling, and the crates:
 View.prototype.stage = function(){
 var controller = this.controller;
 var gl = controller.gl;
 var model = controller.model;
 var view = controller.view;
 var camera = model.camera;
 model.updateCameraPos();

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Introducing WebGL

312

 gl.clear();

 // set field of view at 45 degrees
 // set viewing range between 0.1 and 100 units away.
 gl.perspective(45, 0.1, 150.0);
 gl.identity();

 gl.rotate(-camera.pitch, 1, 0, 0);
 gl.rotate(-camera.yaw, 0, 1, 0);
 gl.translate(-camera.x, -camera.y, -camera.z);

 // enable lighting
 gl.enableLighting();
 gl.setAmbientLighting(0.5, 0.5, 0.5);
 gl.setDirectionalLighting(-0.25, -0.25, -1, 0.8, 0.8,
 0.8);

 view.drawFloor();
 view.drawWalls();
 view.drawCeiling();
 view.drawCrates();
 };

23. When the page loads, initialize the Controller:
 window.onload = function(){
 new Controller();
 };

24. Embed the canvas tag inside the body of the HTML document:
 <canvas id="myCanvas" width="" height="">
 </canvas>

How it works...
This recipe uses an MVC (model, view, controller) design pattern to separate the drawing logic
from the data logic.

The Controller class is responsible for directing the model and the view, and also manages
user actions. It handles arrow key events with the handleKeyDown() and handleKeyUp()
methods, and it also handles screen dragging with the handleMouseDown() and
handleMouseMove() methods. In addition, the controller is also responsible for
pre-loading all of the textures before the simulation begins.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Chapter 9

313

Next, the model is responsible for handling all of the data-setting logic. The data for our
simulation includes the cube, floor, and wall buffers, the textures, the crate positions, the
camera position, pitch, and yaw, and also the user movements. The crate positions are
initialized with the initCratePositions() method, the buffers for the world are initialized
with the initCubeBuffers(), initFloorBuffers(), and the initWallBuffers()
methods, and the camera position, pitch, and yaw is updated with the updateCameraPos()
method.

Finally, the view is responsible for rendering the 3D world using the model data. Buffers
are pushed to the graphics card and rendered with the drawFloor(), drawCeiling(),
drawCrates(), and the drawWalls() methods. For each animation frame, the stage()
method is called which updates the camera position, clears the canvas, sets the lighting, and
draws the scene with the aforementioned drawing methods.

There's more...
Here are some more ideas if you want to extend this recipe:

 f Add boundary conditions so that the player can't run through crates and walls

 f Enable the player to jump, and perhaps even jump on top of crates

 f Create doorways to other rooms

 f Create staircases so that the player can explore other floors

 f Add walking sounds with the HTML5 canvas audio tag

Now that you're able to create 3D models with textures and lighting and put them together to
form segments of a 3D world, the only thing standing between you and a real-life Tron is your
own imagination. Have fun!

 See also...
 f Creating an Animation class in Chapter 5

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

A
Detecting Canvas

Support

Canvas fallback content
As all the browsers do not support canvas, it's a good idea to provide fallback content so that
the users know that something isn't working correctly in the event that their browser of choice
does not support canvas. The simplest and most straightforward technique for handling
browsers that don't support canvas is to add fallback content inside of the canvas tag.
Typically, this content will be text or an image that tells the user that their outdated browser
doesn't support canvas, followed by a suggestion for downloading a browser developed in
this decade. Users who are using a browser that does support canvas will not see the
inner content:

<canvas id="myCanvas" width="578" height="250">
 Yikes! Your browser doesn't support canvas. Try using
Google Chrome or Firefox instead.
</canvas>

Canvas fallback content isn't always the best solution. For example, if the browser doesn't
support canvas, you might want to alert an error message, redirect the user to a different URL,
or even use a Flash version of the application as a fallback. The easiest way to detect whether
the browser supports canvas is to create a dummy canvas element and then check whether
we can execute the getContext method:

function isCanvasSupported(){
 return !!document.createElement('canvas').getContext;
 }

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Detecting Canvas Support

316

When the page loads, we can call the isCanvasSupported() function to determine
whether or not the browser supports canvas and then appropriately handle the result.

This function uses one of my favorite JavaScript tricks, the double-not trick (!!), which
determines whether or not the getContext method successfully executes. The first not of
the double-not coerces the data type into a Boolean. As the act of coercing the data type
yields the opposite result that we want, we can add a second not (!!) to flip the result back.
The double-not trick is a super convenient way of checking whether or not a piece of code
successfully executes, and in my opinion is much more elegant than wrapping a line of code
with a try/catch block.

Detecting available WebGL contexts
If your canvas application leverages WebGL, you might also want to know which contexts the
browser supports so that you can successfully initialize a WebGL application.

At the time of writing, there are five major contexts:

•	 2D

•	 webgl

•	 experimental-webgl

•	 moz-webgl

•	 webkit-3d

All of the major browsers including Google Chrome, Firefox, Safari, Opera, and IE9 support
the 2D context. However, when it comes to WebGL support, it's a completely different story.
At the time of writing, Google Chrome and Safari support the experimental-webgl and
the webkit-3d contexts, Firefox supports the experimental-webgl and the moz-webgl
contexts, and IE9 does not support any form of WebGL.

To see this for yourself, you can create a function called getCanvasSupport() which loops
through all of the possible contexts and uses the double-not trick to determine which contexts
are available:

function getCanvasSupport(){
 // initialize return object
 var returnObj = {
 canvas: false,
 webgl: false,
 context_2d: false,
 context_webgl: false,
 context_experimental_webgl: false,
 context_moz_webgl: false,
 context_webkit_3d: false
 };

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Appendix A

317

 // check if canvas is supported
 if (!!document.createElement('canvas').getContext) {
 returnObj.canvas = true;
 }

 // check if WebGL rendering context is supported
 if (window.WebGLRenderingContext) {
 returnObj.webgl = true;
 }

 // check specific contexts
 var contextMapping = {
 context_2d: "2d",
 context_webgl: "webgl",
 context_experimental_webgl: "experimental-webgl",
 context_moz_webgl: "moz-webgl",
 context_webkit_3d: "webkit-3d"
 };

 for (var key in contextMapping) {
 try {
 if (!!document.createElement('canvas').getContext(contextM
apping[key])) {
 returnObj[key] = true;
 }
 }
 catch (e) {
 }
 }

 return returnObj;
}

function showSupport(obj){
 var str = "";

 str += "-- General Support --
";
 str += "canvas: " + (obj.canvas ? "YES" : "NO") + "
";
 str += "webgl: " + (obj.webgl ? "YES" : "NO") + "
";

 str += "
-- Successfully Initialized Contexts --
";
 str += "2d: " + (obj.context_2d ? "YES" : "NO") + "
";
 str += "webgl: " + (obj.context_webgl ? "YES" : "NO") + "
";

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Detecting Canvas Support

318

 str += "experimental-webgl: " + (obj.context_experimental_webgl ?
"YES" : "NO") + "
";
 str += "moz-webgl: " + (obj.context_moz_webgl ? "YES" : "NO") +
"
";
 str += "webkit-3d: " + (obj.context_webkit_3d ? "YES" : "NO") +
"
";

 document.write(str);
}

window.onload = function(){
 showSupport(getCanvasSupport());
};

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

B
Canvas Security

In order to protect pixel data of images, videos, and canvases on your website, the
HTML5 canvas specification has safeguards in place to prevent scripts from other domains
from accessing these media, manipulating them, and then creating new images, videos,
or canvases.

Before anything is drawn on the canvas, the canvas tag has an origin-clean flag that's set to
true. This basically means that the canvas is "clean". If you draw an image onto the canvas
that's hosted on the same domain as the code running it, the origin-clean flag remains true.
If, however, you draw an image onto the canvas that's hosted on another domain, the
origin-clean flag is set to false and the canvas is now "dirty".

According to the HTML5 canvas specification, the canvas is considered dirty the moment any
of these actions occur:

 f The element's 2D context's drawImage() method is called with an
HTMLImageElement or an HTMLVideoElement whose origin is not the
same as that of the Document object that owns the canvas element.

•	 The element's 2D context's drawImage() method is called with an
HTMLCanvasElement whose origin-clean flag is false.

•	 The element's 2D context's fillStyle attribute is set to a CanvasPattern object
that was created from an HTMLImageElement or an HTMLVideoElement whose
origin was not the same as that of the Document object that owns the canvas
element when the pattern was created.

•	 The element's 2D context's fillStyle attribute is set to a CanvasPattern object
that was created from an HTMLCanvasElement whose origin-clean flag was false
when the pattern was created.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Canvas Security

320

•	 The element's 2D context's strokeStyle attribute is set to a CanvasPattern
object that was created from an HTMLImageElement or an HTMLVideoElement
whose origin was not the same as that of the Document object that owns the canvas
element when the pattern was created.

•	 The element's 2D context's strokeStyle attribute is set to a CanvasPattern
object that was created from an HTMLCanvasElement whose origin-clean flag was
false when the pattern was created.

 f The element's 2D context's fillText() or strokeText() methods are invoked
and consider using a font that has an origin that is not the same as that of the
Document object that owns the canvas element. (The font doesn't even have to be
used; all that matters is whether the font was considered for any of the glyphs drawn.)

In addition, if you perform any of these actions on your local computer (not a web server), the
origin-clean flag will automatically be set to false because the resources will be perceived to
have come from a different origin.

Next, according to the specification, a SECURITY_ERR exception will be thrown if any of these
actions occur with a dirty canvas:

•	 The toDataURL() method is called

•	 The getImageData() method is called

•	 The measureText() method is used with a font whose origin is not the same as the
Document object

Although the canvas security specification was created with good intentions, it may cause
us more of a headache than it's worth. As an example, let's say that you wanted to create a
drawing application that hooks into the Flickr API to pull in images from the public domain
to add to your drawings. If you wanted your application to be able to save that drawing as
an image using the toDataURL() method, or if you wanted your application to have fancy
pixel manipulation algorithms using the getImageData() method, you're in some trouble.
Performing these actions on a dirty canvas will throw a JavaScript error and prevent your
application from working correctly.

One way to circumvent this problem is by creating a proxy that obtains images from another
domain and then passes it back to the client, making it look as if the image came from your
domain. If you've ever worked with cross-domain AJAX applications, you'll feel right at home.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

C
Additional Topics

Canvas vs. CSS3 transitions and animations
In addition to the canvas, the HTML5 specification has also introduced two exciting additions
to the CSS3 specification—Transitions and Animations.

Transitions enable developers to create simple animations that can change DOM element
styles over a defined period of time. For example, if you mouse over a button and you want
it to gradually fade to a different color within one second, you could use a CSS3 transition.

Animations enable developers to create more complex animations by defining specified key
frames which can be thought of as a series of linked transitions. For example, if you wanted to
animate a DIV element by moving it up, then left, then down, then back to its original position,
you could use a CSS3 animation and define a key frame for each point along the path.

So, here's where people get hung up. When should you use canvas and when should you
use CSS3 for animations? If you're a seasoned developer, I'm sure you know that the correct
answer is "it depends". As a general rule of thumb, it's good practice to use CSS3 transitions
and animations if you're animating DOM nodes, or if the animations are simple and well
defined. If, on the other hand, you're animating something more complex such as a physics
simulator or an online game, it would probably make more sense to use canvas.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Additional Topics

322

Canvas performance on mobile devices
As the mobile and tablet markets continue to eat away at the traditional desktop and laptop
markets, it's important to address the role of canvas in the mobile space. At the time of
writing, canvas animations perform very poorly on nearly all mobile devices simply because
they don't have powerful enough CPUs to handle it. Tablets typically have much better
performance. There's good news though. In addition to software improvements and more
powerful CPUs, mobile devices and tablets are pushing harder than ever to better leverage
hardware acceleration, helping animations to run more smoothly. If you're considering
building a graphically intensive web application that makes heavy use of canvas animations,
make sure that you do a little bit of research upfront to find out the current state of canvas
animation performance on the leading mobile devices if you plan on making it mobile friendly.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Index
Symbols
2D context 316
3D text

creating, steps 22
drawing, with shadows 22
working 23

3D world, WebGL application
attachListeners() method 304
Controller constructor 300
creating 300
creating, steps 300
drawCeiling() method 309, 313
drawCrates() method 310, 313
drawFloor() method 309, 313
stage() method 311, 313
drawWalls() method 310, 313
getMousePos() method 302
handleKeyDown() method 303, 312
handleKeyUp() method 303, 312
handleMouseDown() method 302, 312
handleMouseMove() method 302, 312
initBuffers() method 308
initCratePositions() method 305, 313
initCubeBuffers() method 306, 313
initFloorBuffers() method 307, 313
initWallBuffers() method 307, 313
loadTextures() method 301
Model constructor 304
updateCameraPos() method 308, 313
View constructor 309

A
acceleration

creating 122
creating, steps 122

working 124, 125
actor class

creating, for enemies 238-242
creating, for heroes 238-242

addColorStop() method 34, 35
addKeyboardListeners() method 249
addRegionEventListener() method 163, 182
ambient lighting 299
Animation class

about 119, 120
creating 116
creating, steps 117-119
working 119, 120

Animation constructor 117, 119
animationLoop() method 119, 273
Animation object 126, 288
applyPhysics() function 145
arc

drawing 11
drawing, steps 11
working 12, 13

arc() method 12, 13, 31, 129, 207
arcTo() method 13
attachListeners() method 304
attack() method 239

B
bar chart

about 208
creating, steps 208-213
working 214

BarChart class 214
BarChart constructor 208, 214
beginPath() method 18, 34, 159
beginRegion() method 163, 166

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

324

Bezier curve
drawing 15
drawing, steps 15
used, for drawing cloud 35-37
working 16

bezierCurveTo() method 114
boundary maps

alternative 237
creating 234-237

bubble, oscillating
life-like oscillating bubble, creating 127-129

C
canvas

clean declaration, factors 319
dirty declaration, factors 319, 320
drawing, converting into data URL 85-87
loading, with data URL 89
performance, on mobile devices 322
sections, copying 72, 73
sections, pasting 72, 73
stressing 151-156
vs, CSS3 transitions and animations 321

canvas context
rotated rectangle drawing, steps 98
rotating 97
scaled rectangle drawing, steps 100
scaling 99, 100
sheared rectangle drawing, steps 104
shearing 104
shearing, steps 105
translating 96
translating, steps 96, 97
working 97, 98

canvas drawing
converting, into data URL 85-87
saving, as image 87, 88

canvas mouse coordinates
getting, steps 167, 168
working 168
working with 167

CanvasPattern object 320
case statement 274
circle

drawing 30
drawing, steps 30, 31

transforming, into oval 108
clear() method 117, 160, 272
clock

animating 138
animating, steps 138-141

closePath() method 34, 159
closeRegion() method 164, 166, 170
cloud

drawing, bezier curves used 35-37
composite operations

copy (D is ignored) 42
destination-atop (S atop D) 42
destination-in (S in D) 42
destination -out (S out D) 42
destination -over (S over D) 42
lighter (S plus D) 42
live table, creating 43-46
setting, globalCompositeOperation property

used 46
source-atop (S atop D) 42
source-in (S in D) 42
source-out (S out D) 42
source-over (S over D, default) 42
working with 41, 42
xor (S xor D) 42

context state stack
opaque square, drawing on transparent circle

39, 40
working with 38, 39

controller class
creating, steps 247-251

Controller constructor 300
copy (D is ignored) 42
createArrayBuffer() method 280
createElementArrayBuffer() method 280
createLinearGradient() method 34, 50
createPattern() method 35
createRaidalGradient() method 34, 37
CSS3 transitions and animations

vs, canvas 321
custom shape functions

card suits, playing 53, 58
creating 53, 58

custom shapes
working, steps 32-35

custom transform
creating 102

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

325

performing, steps 102, 103
working 103, 104

D
damage() method 242
data points

plotting, with line chart 221-227
data property 78
data URL

canvas drawing, converting into 85-87
canvas, loading 89

destination-atop (S atop D) 42
destination-in (S in D) 42
destination -out (S out D) 42
destination -over (S over D) 42
directional lighting 299
draw3dText function 22
draw3dText() method 22
drawArrays() method 282, 285, 293
drawBadGuys() method 263
drawBars() method 211, 214
drawCeiling() method 309, 313
drawCrates() method 310, 313
drawElements() method 282, 291, 293
drawEquation() method 215, 218-220
drawFloor() method 309, 313
drawFps() method 263
drawFrame() function 75, 82
drawGridlines() method 212
drawImage() method 69-75, 81, 111, 243,

319
drawImages() function 178
drawing application

creating 192
features 198

drawLegend() method 205, 207
drawLine() method 224, 227
drawLogo() function 112, 114
drawLogo() method 114
drawMagnifier() method 189
draw() method 53, 240, 243-247, 262
drawMicrobes() function 149, 151
drawPieBorder() method 204
drawScreen() method 263, 265
drawSlices() method 204, 207
drawSpade() function 72

stage() function 118, 129, 138, 161, 166,
179, 285, 287, 291

stage() method 264, 311, 313
drawWalls() method 310, 313
drawXAxis() method 213, 216, 222
drawXLabels() method 210
drawYAxis() method 213, 217, 220, 223
drawYValues() method 211

E
enableLighting() method 282, 299
enemies

actor class, creating 238-242
sprite sheets, creating for 232-234

equations
graphing 215
graphing, steps 215-219
working 220

event listeners
attaching, to images 176-179

events class
creating 158
creating, steps 159-164
working 165, 166

Events class 166
experimental-webgl context 286, 316

F
fade() method 241
fillRect() method 29
fillStyle attribute 319
fillStyle method 29
fillStyle property 21, 31
fill styles

working, steps 32-35
Flower object 53
focusImage() function 91, 92
FPS

displaying 151-156
FPS (Frames Per Second) value 116
fractals

about 24
used, for drawing trees 24, 25
working 26

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

326

G
game

developing 229, 230
Gear class 133, 137
getCanvas() method 117, 160
getCanvasPos() method 160
getCanvasSupport function 316
getCenter() method 242
getContext() method 9, 117, 160, 315
getFps() method 119, 273
getFragmentShaderGLSL() method 274
getFrame() method 118, 272
getImageData() method 78, 79, 83, 90
getLabelAreaHeight() method 209
getLegendWidth() method 203
getLongestValueWidth() method 210, 222
getMousePos() method 162, 167, 168, 302
getRandColor() function 152
getRandomAngle() function 113
getRandomX() function 113
getRandomY() function 113
getRandTheta() function 152
getTimeInterval() method 118, 273
getTime() method 119, 273
getTotalValue() method 205
getTouchPos() method 162
getVertexShaderGLSL() method 275
getZoneInfo() method 244, 245, 262
glMatrix library 284, 287, 289
globalAlpha property 38
globalCompositeOperaton property 46

H
handleKeyDown() method 250, 303, 312
handleKeyUp() method 249, 303, 312
handleMouseDown() method 302, 312
handleMouseMove() method 302, 312
health bar class

creating, steps 246, 247
HealthBar constructor 246
HealthBar object 247
heroes

actor class, creating 238-242
sprite sheets, creating for 232-234

HTML5 canvas specification
CanvasPattern object 320

clean declaration, factors 319
dirty declaration, factors 319, 320
drawImage() method 319
fillStyle attribute 319
getImageData() method 320
measureText() method 320
strokeStyle attribute 320
toDataURL() method 320

HTML document
game, starting 267, 268
setting up 267, 268

I
identity() function 286
identity() method 278
image

canvas drawing, saving as 87, 88
cropping 69
cropping, steps 70, 71
dragging 183-185
drawing 68
drawing, steps 68
dropping 183-185
event listeners, attaching 176-179
rotating 110
rotating, steps 110, 111
working 69, 71, 111

image colors
converting, to gray scale 83-85

image data
getting 76
getting, steps 77, 78
working 78

image magnifier
creating 186
creating, steps 186-191

initBadGuys() method 257
initBuffers() function 285, 287, 289, 294
initBuffers() method 308
initColorShader() method 279
initCratePositions() method 305, 313
initCubeBuffers() method 306, 313
initFloorBuffers() method 307, 313
initGame() method 248, 251
initHealthBar() method 255
initLevel() method 255

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

327

initLightingShader() method 279
init() method 297
initNormalShader() method 279
initPositionShader() method 278
initShaders() method 277
initTexture() method 280
initTextureShader() method 279
initWallBuffers() method 307, 313
isAnimating() method 118, 272
isCanvasSupported() function 316
isFacingRight() method 240
isPointInPath() method 165

J
jet

drawing 59
drawing, steps 59-65

jump() method 240

L
last in, first out (LIFO) 39
level class

creating, steps 243-245
Level constructor 243
level images

alternative 238
level images, alternatives

lazy loader 238
titled layout 238

levels
creating 234-237

lighter (S plus D) 42
lighting, WebGL application

adding 293, 297
ambient lighting 299
directional lighting 299
stage() function 297
effects 299
enableLighting() method 299
initBuffers() function 294
init() method 297
loadTexture() function 298
setDirectionalLighting() method 299
setShaderProgram() method 299

line
about 8

drawing, steps 8
working 9, 10

linear motion
creating 120
creating, steps 120-122

lineCap property 10
line chart

data points, plotting with 221-227
LineChart class 221
LineChart object 225, 227
lineJoin property 18
lineTo() method 9, 13
lineWidth property 9
listen() method 161, 166
loadCanvas() function 89, 90
loadImages() function 179
loadImages() method 248
loadTexture() function 298
loadTextures() method 301
logo

designing 112-114
position, randomizing 112-114
rotation, randomizing 112-114
scale, randomizing 112-114

M
measureText() method 320
mechanical gears

animating 133
animating, steps 133, 137
working 137

methods
addColorStop() method 34, 35
addKeyboardListeners() method 249
addRegionEventListener() method 163, 182
animationLoop() method 119, 273
arc() method 12, 13, 31, 129, 207
arcTo() method 13
attachListeners() method 304
attack() method 239
beginPath() method 18
beginRegion() method 163, 166
bezierCurveTo() method 114
clear() method 117, 160, 272
closePath() method 34
closeRegion() method 164, 166

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

328

createArrayBuffer() method 280
createElementArrayBuffer() method 280
createLinearGradient() method 34, 50
createPattern() method 35
createRadialGradient() method 34, 37
damage() method 242
draw3dText() method 22
drawArrays() method 282, 293
drawBadGuys() method 263
drawBars() method 211, 214
drawCeiling() method 309, 313
drawCrates() method 310, 313
drawElements() method 282, 293
drawEquation() method 215, 218-220
drawFloor() method 309, 313
drawFps() method 263
drawGridlines() method 212
drawImage() method 69-75, 81, 111, 243,

319
drawLegend() method 205, 207
drawLine() method 224, 227
drawLogo() method 114
drawMagnifier() method 189
draw() method 53, 240, 243-247, 262
drawPieBorder() method 204
drawScreen() method 263, 265
drawSlices() method 204, 207
drawWalls() method 310, 313
drawXAxis() method 213, 216, 222
drawXLabels() method 210
drawYAxis() method 213, 217, 220, 223
drawYValues() method 211
enableLighting() method 282, 299
fade() method 241
fillRect() method 29
fillStyle method 29
getCanvas() method 117, 160
getCanvasPos() method 160
getCenter() method 242
getContext() method 9, 117, 160, 315
getFps() method 119, 273
getFragmentShaderGLSL() method 274
getFrame() method 118, 272
getImageData() method 78, 79, 83, 90, 320
getImateData() method 76
getLabelAreaHeight() method 209

getLegendWidth() method 203
getLongestValueWidth() method 210, 222
getMousePos() method 162, 167, 168, 302
getTimeInterval() method 118, 273
getTime() method 119, 273
getTotalValue() method 205
getTouchPos() method 162
getVertexShaderGLSL() method 275
getZoneInfo() method 244, 245, 262
handleKeyDown() method 250, 303, 312
handleKeyUp() method 249, 303, 312
handleMouseDown() method 302, 312
handleMouseMove() method 302, 312
identiy() method 278
initBadGuys() method 257
initBuffers() method 308
initColorShader() method 279
initCratePositions() method 305, 313
initCubeBuffers() method 306, 313
initFloorBuffers() method 307, 313
initGame() method 248, 251
initHealthBar() method 255
initLevel() method 255
initLightingShader() method 279
init() method 297
initNormalShader() method 279
initPositionShader() method 278
initShaders() method 277
initTexture() method 280
initTextureShader() method 279
initWallBuffers() method 307, 313
isAnimating() method 118, 272
isFacingRight() method 240
isPointInPath() method 165
jump() method 240
lineTo() method 9, 13
listen() method 161, 166
loadImages() method 248
loadTextures() method 301
measureText() method 320
moveBadGuys() method 258, 262
moveLeft() method 238, 240
moveRight() method 238, 240
moveTo() method 9, 227
perspective() method 278, 286

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

329

pushColorBuffer() method 281
pushIndexBuffer() method 281
pushNormalBuffer() method 281
pushPositionBuffer() method 281, 286
pushTextureBuffer() method 281
putImageData() method 80
rect() method 29, 127, 247
removeDefeatedBadGuys() method 253
requestAnimationFrame method 116, 117
requestAnimFrame() method 76, 83 119
resetGame() method 251
reset() method 161
restore() method 40, 108, 110, 274
rotate() method 111, 278, 288
save() method 40, 110, 274
scale() method 99, 110
setAmbientLighting() method 283
setBoundsData() method 244, 245
setDirectionalLighting() method 283, 299
setStage() method 118, 160, 166, 272
setHealth() method 246, 247
setMatrixUniforms() method 282
setMousePos() method 163
setShaderProgram() method 277, 299
setTouchPos() method 163
setTransform() method 104
stage() method 264, 311, 313
start() method 118, 122, 272
stopAnimation() method 273
stop() method 118, 124, 240
stroke() method 9
strokeRect() method 29
strokeText() method 21
toDataURL() method 88, 320
transformContext() method 219, 220, 225
transform() method 102-105
translate() method 110, 142, 278
updateActor() method 259
updateActorVY() method 260
updateActorX() method 261
updateActorY() method 260
updateBadGuys() method 253
updateCameraPos() method 308, 313
updateHeroCanvasPos() method 259
updateLevel() method 259

updateSpriteMotion() method 241, 243
updateSpriteSeqNum() method 242, 243
updateStage() method 254

microscopic life forms
creating 146
creating, steps 147-150
working 150, 151

mirror transform
backwards text writing, steps 101
creating 101

mobile device
canvas, performance on 322
touch event listeners, attaching to regions

172-176
model class

creating, steps 253-262
Model constructor 304
mouse event listeners

attaching, to regions 169-172
mouseout event listener 168, 180
mouseup event listeners 177
moveBadGuys() method 258, 262
moveLeft() method 238, 240
moveRight() method 238, 240
moveTo() method 9, 227
moz-webgl context 316
multiple transforms

handling, with state stack 106-108
MVC (model, view, controller) architecture

232

N
nearby() method 262

O
onload property 69, 79, 92, 111
oscillation

bubble, oscillating 127
creating 125
creating, steps 125
working 126

oval
circle, transforming into 108
drawing, HTML5 canvas API used 110
drawing, steps 109

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

330

P
particle physics

simulating 142
simulating, steps 143-146
working 145, 146

patterns
creating, with loops 47-50
gear, drawing 47-50

pendulum
swinging 130
swinging, steps 130-132

perspective() method 278, 286
pie chart

about 202
creating, steps 202-206
working 207

PieChart class 202
PieChart element 207
PieChart object 206, 207
pixelated image focus

creating 90
creating, steps 91, 92
working 93

pixel manipulation
steps 79, 80
working 80, 81

pushColorBuffer() method 281
pushIndexBuffer() method 281
pushNormalBuffer() method 281
pushPositionBuffer() method 281, 286
pushTextureBuffer() method 281
putImageData() method 80

Q
Quadratic curve

drawing 13
drawing, steps 13, 14
working 14

R
rectangle

drawing 28
drawing, steps 28, 29
fillRect() method 29
strokeRect() method 29, 30

rect() method 29, 127, 247
regions

mouse event listeners, attaching 169
touch event listeners, attaching on mobile

devices 172-176
removeDefeatedBadGuys() method 253
requestAnimationFrame function 271
requestAnimationFrame method 116, 117
requestAnimFrame method 76, 119
requestAnimFrame() method 83
resetGame() method 251
reset() method 161
restore() method 40, 108, 110, 274
rotate() method 111, 278, 288
rotate() transformation 97
rotating cube, WebGL application

creating 289
creating, steps 289, 291
drawArrays() method 293
drawElements() method 291, 293
stage() function 291
glMatrix library 289
initBuffers() function 289
working 292

S
save() method 40, 110, 274
save() operation 108
scale() method 99, 110
sections, canvas

copying 72, 73
pasting 72, 73

setAmbientLighting() method 283
setBoundsData() method 244, 245
setDirectionalLighting() method 283, 299
setStage() method 118, 160, 166, 272
setHealth() method 246, 247
setMatrixUniforms() method 282
setMousePos() method 163
setShaderProgram() method 277, 299
setTouchPos() method 163
setTransform() method 104
shadowOffsetY properties 23
shadows

3D text, drawing with 22

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

331

transform() method 102-105
translate() method 110, 142, 278
transparent shapes

drawing 37
drawing, steps 37, 38

triangular plane, WebGL application
Animation object 288
creating 284
creating, steps 284, 285
drawArrays() 285
stage() function 285-288
experimental-webgl context 286
glMatrix library 284, 287
identity() function 286
initBuffers() function 285, 287
perspective() method 286
pushPositionBuffer() method 286
rotate() method 288
rotating, in 3D space 286
rotating, steps 287
working 286

try/catch block 316
tx parameter 97
ty parameter 97

U
updateActor() method 259
updateActorVY() method 260
updateActorX() method 261
updateActorY() method 260
updateBadGuys() method 253
updateCameraPos() method 308, 313
updateHeroCanvasPos() method 259
updateLevel() method 259
updateMicrobes() function 150, 152
updateSpriteMotion() method 241, 243
updateSpriteSeqNum() method 242, 243
updateStage() method 254

V
video

drawing 76
working with 74, 75

video colors
importing 81

shape properties
randomized flowers, drawing 50-53
randomizing 50
working 53

shapes
dragging 180-182
dropping 180-182

source-atop (S atop D) 42
source-in (S in D) 42
source-out (S out D) 42
source-over (S over D, default) 42
spiral

drawing 18
drawing, steps 19, 20
working 20

sprite sheets
creating, for enemies 232-234
creating, for heroes 232-234

start() method 118, 122, 272
state back

multiple transforms, handling 106-108
stopAnimation() method 273
stop() method 118, 124, 240
stroke() method 9
strokeRect() method 29
strokeStyle attribute 320
strokeStyle property 9
strokeText() method 21
sx parameter 100
sy parameter 100

T
text

working 21
working with 20
writing on canvas, steps 20

textBaseline property 21
textures, WebGL application

adding 293, 297
theta parameter 99
toDataURL() method 88, 320
touch event listeners

attaching, to regions on mobile device
172-176

touchmove event listener 174
transformContext() method 219, 220, 225

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

importing, steps 81-83
working 83

view class
creating, steps 263-266

View constructor 309

W
Web-Based Graphics Library. See WebGL
WebGL

about 269
wrapper, creating 270

WebGL application
3D world, creating 300
lighting, adding 293, 297
rotating cube, creating 289
textures, adding 293, 297
triangular plane, creating 284
triangular plane, rotating 286
WebGL wrapper, creating 270

WebGL contexts
2D context 316
detecting 316
experimental-webgl context 316
getCanvasSupport fucntion 316
moz-webgl context 316
webgl context 316
webkit-3d context 316

WebGL wrapper
animationLoop() method 273
case statement 274
clear() method 272
createArrayBuffer() method 280
createElementArrayBuffer() method 280
creating 270
creating, steps 270-276, 282, 283
drawArrays() method 282
drawElements() method 282
enableLighting() method 282
getFps() method 273
getFragmentShaderGLSL() method 274
getFrame() method 272
getTimeInterval() method 273
getTime() method 273
getVertexShaderGLSL() method 275
identiy() method 278
initColorShader() method 279

initLightingShader() method 279
initNormalShader() method 279
initPositionShader() method 278
initShaders() method 277
initTexture() method 280
initTextureShader() method 279
isAnimating() method 272
perspective() method 278
pushColorBuffer() method 281
pushIndexBuffer() method 281
pushNormalBuffer() method 281
pushPositionBuffer() method 281
pushTextureBuffer() method 281
requestAnimationFrame function 271
restore() method 274
rotate() method 278
save() method 274
setAmbientLighting() method 283
setDirectionalLighting() method 283
setStage() method 272
setMatrixUniforms() method 282
setShaderProgram() method 277
start() method 272
stop() method 273
translate method 278
translate() method 278
working 283, 284

webkit-3d context 316
writeMessage() function 167, 169, 173,

180-183

X
xor (S xor D) 42

Z
zigzag

zigzagdrawing 16
zigzagdrawing, steps 17, 18
zigzagline join styles 18
zigzagworking 18

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

Thank you for buying
HTML5 Canvas Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

HTML5 Multimedia
Development Cookbook
ISBN: 978-1-84969-104-8 Paperback: 288 pages

Recipes for practical, real-world HTML5 multimedia
driven development

1. Use HTML5 to enhance JavaScript functionality.
Display videos dynamically and create movable
ads using JQuery

2. Set up the canvas environment, process shapes
dynamically and create interactive visualizations

3. Enhance accessibility by testing browser support,
providing alternative site views and displaying
alternate content for non supported browsers

HTML5 Games Development
by Example: Beginner’s Guide
ISBN: 978-1-84969-126-0 Paperback: 352 pages

Create six fun games using the latest HTML5, Canvas,
CSS, and JavaScript techniques

1. Learn HTML5 game development by building six
fun example projects

2. Full, clear explanations of all the essential
techniques

3. Covers puzzle games, action games, multiplayer,
and Box 2D physics

4. Use the Canvas with multiple layers and sprite
sheets for rich graphical games

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

HTML5 Mobile Development
Cookbook
ISBN: 978-1-84969-196-3 Paperback: 358 pages

Recipes for building fast, responsive HTML5 mobile
websites for iPhone 5, Android, Windows Phone and
Blackberry

1. Solve your cross platform development issues
by implementing device and content adaptation
recipes

2. Maximum action, minimum theory allowing you to
dive straight into HTML5 mobile web development

3. Incorporate HTML5-rich media and geo-location
into your mobile websites

Dreamweaver CS5.5 Mobile
and Web Development with
HTML5, CSS3, and jQuery
ISBN: 978-1-84969-158-1 Paperback: 284 pages

Harness the cutting edge features of Dreamweaver for
mobile and web development

1. Create web pages in Dreamweaver using the
latest technology and approach

2. Add multimedia and interactivity to your websites

3. Optimize your websites for a wide range
of platforms and build mobile apps with
Dreamweaver

4. A practical guide filled with many examples for
making the best use of Dreamweaver's latest
features

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by REKHA NADENDLA on 2nd December 2011

375 N STEPHANIE ST SUITE 1411, HENDERSON, 89014

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	What is HTML5 Canvas

	Chapter 1: Getting Started with Paths and Text
	Introduction
	Drawing a line
	Drawing an arc
	Drawing a Quadratic curve
	Drawing a Bezier curve
	Drawing a zigzag
	Drawing a spiral
	Working with text
	Drawing 3D text with shadows
	Unlocking the power of fractals: Drawing a haunted tree

	Chapter 2: Shape Drawing and Composites
	Introduction
	Drawing a rectangle
	Drawing a circle
	Working with custom shapes and fill styles
	Fun with Bezier curves: drawing a cloud
	Drawing transparent shapes
	Working with the context state stack to save and restore styles
	Working with composite operations
	Creating patterns with loops: drawing a gear
	Randomizing shape properties: drawing a field of flowers
	Creating custom shape functions: playing card suits
	Putting it all together: drawing a jet

	Chapter 3: Working with Images and Videos
	Introduction
	Drawing an image
	Cropping an image
	Copying and pasting sections of the canvas
	Working with video
	Getting image data
	Introduction to pixel manipulation: inverting image colors
	Inverting video colors
	Converting image colors to grayscale
	Converting a canvas drawing into a data URL
	Saving a canvas drawing as an image
	Loading the canvas with a data URL
	Creating a pixelated image focus

	Chapter 4: Mastering Transformations
	Introduction
	Translating the canvas context
	Rotating the canvas context
	Scaling the canvas context
	Creating a mirror transform
	Creating a custom transform
	Shearing the canvas context
	Handling multiple transforms with the state stack
	Transforming a circle into an oval
	Rotating an image
	Drawing a simple logo and randomizing its position, rotation, and scale

	Chapter 5: Bringing the Canvas to Life with Animation
	Introduction
	Creating an Animation class
	Creating a linear motion
	Creating acceleration
	Creating oscillation
	Oscillating a bubble
	Swinging a pendulum
	Animating mechanical gears
	Animating a clock
	Simulating particle physics
	Creating microscopic life forms
	Stressing the canvas and displaying the FPS

	Chapter 6: Interacting with the Canvas: Attaching Event Listeners to Shapes and Regions
	Introduction
	Creating an Events class
	Working with canvas mouse coordinates
	Attaching mouse event listeners to regions
	Attaching touch event listeners to regions on a mobile device
	Attaching event listeners to images
	Dragging-and-dropping shapes
	Dragging-and-dropping images
	Creating an image magnifier
	Creating a drawing application

	Chapter 7: Creating Graphs and Charts
	Introduction
	Creating a pie chart
	Creating a bar chart
	Graphing equations
	Plotting data points with a line chart

	Chapter 8: Saving the World with Game Development
	Introduction
	Creating sprite sheets for the heroes and enemies
	Creating level images and boundary maps
	Creating an Actor class for the hero and enemies
	Creating a Level class
	Creating a Health Bar class
	Creating a Controller class
	Creating a Model class
	Creating a View class
	Setting up the HTML document and starting the game

	Chapter 9: Introducing WebGL
	Introduction
	Creating a WebGL wrapper to simplify the WebGL API
	Creating a triangular plane
	Rotating a triangular plane in 3D space
	Creating a rotating cube
	Adding textures and lighting
	Creating a 3D world that you can explore

	Appendix A: Detecting Canvas Support
	Appendix B: Canvas Security
	Appendix C: Additional Topics
	Canvas vs. CSS3 transitions and animations
	Canvas performance on mobile devices

	Index

