

Pro Apache Ant

■ ■ ■

Matthew Moodie

Moodie_559-9Front.fm Page i Tuesday, October 11, 2005 6:14 AM

Pro Apache Ant

Copyright © 2006 by Matthew Moodie

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-559-9

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Steve Anglin
Technical Reviewer: Carsten Ziegeler
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, Jason Gilmore,

Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser
Project Manager: Beth Christmas
Copy Edit Manager: Nicole LeClerc
Copy Editor: Kim Wimpsett
Assistant Production Director: Kari Brooks-Copony
Production Editor: Laura Cheu
Compositor: Susan Glinert
Proofreader: Kim Burton
Indexer: Carol Burbo
Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.

Moodie_559-9Front.fm Page ii Tuesday, October 11, 2005 6:14 AM

To Laura

Moodie_559-9Front.fm Page iii Tuesday, October 11, 2005 6:14 AM

Moodie_559-9Front.fm Page iv Tuesday, October 11, 2005 6:14 AM

v

Contents at a Glance

About the Author . xiii

About the Technical Reviewer . xv

Acknowledgments . xvii

■CHAPTER 1 Introducing Ant . 1

■CHAPTER 2 Installing Ant . 11

■CHAPTER 3 Using Ant . 33

■CHAPTER 4 Examining Ant’s Types . 77

■CHAPTER 5 Building a Project . 99

■CHAPTER 6 Deploying an Application . 131

■CHAPTER 7 Running an Application . 169

■CHAPTER 8 Testing an Application . 187

■CHAPTER 9 Using Ant in Large Projects . 209

■CHAPTER 10 Writing Custom Tasks . 225

■CHAPTER 11 Extending Ant . 269

■CHAPTER 12 Using the Ant API . 293

■INDEX . 313

Moodie_559-9Front.fm Page v Tuesday, October 11, 2005 6:14 AM

Moodie_559-9Front.fm Page vi Tuesday, October 11, 2005 6:14 AM

vii

Contents

About the Author . xiii

About the Technical Reviewer . xv

Acknowledgments . xvii

■CHAPTER 1 Introducing Ant . 1

Organizing Complex Projects . 1
Compiling Simple Projects . 1

Compiling Larger Projects . 2

Introducing the Build Tools . 5

Introducing make . 7

Introducing Ant . 8
Introducing Ant Targets and Tasks . 8

Summary . 9

■CHAPTER 2 Installing Ant . 11

Installing a Binary Ant Distribution . 11

Downloading a Binary Distribution . 11

Unpacking the Binary Distribution . 13

Verifying the Download . 14

Using PGP to Verify the Binary Distribution . 14

Using MD5 and SHA1 to Verify the Download 19

Installing a Source Ant Distribution . 22

Downloading a Source Distribution . 22

Using CVS to Obtain a Source Distribution. 26

Building the Ant Source Distribution with the Build Script 26

Taking Final Steps After Installation . 28

Setting %ANT_HOME% on Windows . 28

Setting $ANT_HOME on Unix. 29

Contents

Moodie_559-9Front.fm Page vii Tuesday, October 11, 2005 6:14 AM

d10c55b52b1f8994064c85cd755fb5a9

viii ■C O N T E N T S

Examining the Ant Distribution . 29

Looking at the bin Directory . 30

Looking at the docs Directory . 30

Looking at the etc Directory . 30

Looking at the lib Directory . 31

Upgrading Ant . 31

Summary . 31

■CHAPTER 3 Using Ant . 33

Running Ant from the Command Line . 33

Introducing Ant’s Build File Syntax . 35

Examining the Project Element . 35

Examining the Target Element . 37

Working with Properties . 40

Using Built-in Properties . 42

Setting Properties in the Build File . 44

Setting Properties in Property Files . 48

Summarizing the Property Task . 54

Setting Properties at the Command Line . 56

Examining Property Precedence . 56

Using Properties to Control a Build . 59

Using the Available Task . 61

Using the Uptodate Task . 63

Using the Condition Task . 64

Working with Property Sets . 72

Using Pathlike Structures . 73

Setting a Pathlike Structure . 73

Setting a Classpath Pathlike Structure . 74

Summary . 75

■CHAPTER 4 Examining Ant’s Types . 77

Using Directory-Based Types . 77

Using Pattern Sets . 78

Working with Directory Sets . 83

Working with File Sets . 85

Working with Class File Sets . 96

Working with File Lists . 97

Working with Zip File Sets . 97

Summary . 98

Moodie_559-9Front.fm Page viii Tuesday, October 11, 2005 6:14 AM

■C O N T E N T S ix

■CHAPTER 5 Building a Project . 99

Introducing the Example Application . 99

Introducing the Shared Code . 100

Introducing the Third-Party Libraries . 101

Introducing the Stand-Alone Application . 102

Introducing the Web Application . 103

Introducing the Final Directory Structure . 103

Compiling Java Applications with Ant . 104

Setting Up a Working Environment . 104

Adding Third-Party Libraries to the Build . 111

Assembling the Project . 121

Manipulating File Location . 122

Creating the JAR Files . 125

Creating WAR Files . 126

Building the Example Application . 128

Summary . 128

■CHAPTER 6 Deploying an Application . 131

Building Documentation Bundles . 131

Creating Javadocs . 132

Finishing the Bundle . 136

Writing Ant Documentation . 137

Creating Zip and Tar Files . 138

Zipping the Application. 140

Tarring the Application . 147

Using the Zip and Tar Build Paths. 156

Distributing the Application . 156

Placing the Application on an FTP Server . 156

Distributing the Application via E-mail . 161

Deploying a Web Application . 163

Summary . 167

■CHAPTER 7 Running an Application . 169

Using SQL . 169

Running Java Applications . 172

Running the Stand-Alone Client . 175

Redirecting Output . 176

Moodie_559-9Front.fm Page ix Tuesday, October 11, 2005 6:14 AM

x ■C O N T E N T S

Running Native Programs . 179

Starting Tomcat with Ant . 181

Creating PGP Hashes with Ant . 183

Summary . 185

■CHAPTER 8 Testing an Application . 187

Testing by Instantiation . 187

Testing with JUnit . 188

Installing the Testing Frameworks . 188

Organizing the Test File Structure . 189

Initializing the Testing Environment . 190

Compiling the Test Classes . 191

Testing the Application. 192

Testing Code Conventions . 203

Using the <checkstyle> Task . 205

Transforming XML to HTML. 206

Summary . 207

■CHAPTER 9 Using Ant in Large Projects . 209

Using Master Build Files and Ant Delegation . 210

Moving Ant Tasks to Subordinate Build Files . 211

Preparing for the Move. 212

Moving the Third-Party Build Targets. 212

Moving the Shared Build Targets . 215

Moving the Application-Specific Build Targets 215

Moving the Packaging Targets . 216

Moving the Test Targets . 217

Changing the Master Build File . 218

Running Individual Subordinate Targets . 222

Summary . 223

■CHAPTER 10 Writing Custom Tasks . 225

Examining Custom Tasks . 225

Introducing the Custom Task Life Cycle. 226

Introducing the Custom Task API . 227

Working with Nested Elements in Tasks . 243

Writing an addXXX() Method . 246

Writing an addConfiguredXXX() Method . 250

Moodie_559-9Front.fm Page x Tuesday, October 11, 2005 6:14 AM

■C O N T E N T S xi

Writing a createXXX() Method . 252

Choosing Which Method to Use . 255

Writing Example Custom Tasks . 255

Providing Usage Information . 255

Extending the <javadoc> Task . 257

Using an antlib File . 263

Using Third-Party Custom Tasks . 266

Summary . 268

■CHAPTER 11 Extending Ant . 269

Logging Ant Builds . 269

Sending E-mail Confirmations. 271

Using XML Logs . 271

Using a Log4j Logger . 272

Writing Your Own Listener . 281

Writing Your Own Logger . 283

Using the Ant-Contrib Performance Listener 286

Using Mappers . 287

Using Identity Mappers . 287

Using Flatten Mappers . 287

Using Merge Mappers . 288

Using Glob Mappers . 288

Using Regexp Mappers . 290

Using Chained Mappers . 291

Summary . 291

■CHAPTER 12 Using the Ant API . 293

Designing a Class to Use the Ant API . 293

Working with the Task Life Cycle . 294

Choosing a Task . 294

Writing a Usage Check . 296

Using a Task . 299

Adding Loggers and Listeners. 301

Writing a Batch Copy Class . 308

Summary . 311

■INDEX . 313

Moodie_559-9Front.fm Page xi Tuesday, October 11, 2005 6:14 AM

Moodie_559-9Front.fm Page xii Tuesday, October 11, 2005 6:14 AM

xiii

About the Author

■MATTHEW MOODIE is a native of southwest Scotland and is a graduate of the University of Edin-
burgh, where he obtained a master’s degree in linguistics and artificial intelligence.

Matthew enjoys a life of fun in Glasgow, Scotland. He is a keen novice gardener with a
house full of plants.

Moodie_559-9Front.fm Page xiii Tuesday, October 11, 2005 6:14 AM

Moodie_559-9Front.fm Page xiv Tuesday, October 11, 2005 6:14 AM

d10c55b52b1f8994064c85cd755fb5a9

xv

About the Technical Reviewer

■CARSTEN ZIEGELER is a member of the Apache Software Foundation and is involved in various
open-source communities such as Cocoon, Excalibur, Portals, Ant, and Maven. In paid life,
Carsten is the chief architect of the Open Source Group at S&N AG in Paderborn, Germany. The
focus is on middleware functionality such as web frameworks, component and service-based
architectures, and portal solutions and technologies. Carsten is a well-known speaker at open-
source conferences such as ApacheCon.

Moodie_559-9Front.fm Page xv Tuesday, October 11, 2005 6:14 AM

Moodie_559-9Front.fm Page xvi Tuesday, October 11, 2005 6:14 AM

xvii

Acknowledgments

I would like to thank Laura for her love, friendship and cakes.
Love to Mum, Valla, Alexandra, Harcus, Angus, Uncle Andrew, Granny, Grandpa and

Howard. A great big thank you to Andrew, Brian, Katy, Lindsey, Mad, Paul, Sally and Disco
Robot Craig for more good times. Life would be pretty grey without you all.

Thanks to Billy, Dave, Pete, Broon, Stuart and Mark for your friendship over all these years.
It’s been 20 years, give or take, and it’s been great.

Moodie_559-9Front.fm Page xvii Tuesday, October 11, 2005 6:14 AM

Moodie_559-9Front.fm Page xviii Tuesday, October 11, 2005 6:14 AM

1

■ ■ ■

C H A P T E R 1

Introducing Ant

In this first chapter, I will give you an overview of Ant so that even someone who has never
come across it before will be up to speed on what Ant is, why it was created, and why it is such
a useful tool. To start, I will deal with the history of complex programming projects and the
evolution of build tools.

By looking at the history of build tools, it should become clear why the creators of Ant
produced a new build tool. Placing the Ant project in context will be a useful exercise.

Organizing Complex Projects
To see why a build tool is necessary in most, if not all, projects, consider a typical project. You
begin by writing your code, in whatever language is appropriate, and then you compile it as
you proceed. As the project expands, this becomes a much more difficult job, especially if your
code depends on many outside libraries. If this is the case, you may find yourself with large
search paths for each compilation.

Compiling Simple Projects
The next logical step is to record the location of the code and any outside libraries and use this
information in some kind of script. For example, a Java project may have the following javac
command:

javac -classpath ./dist/antBook.jar;%CATALINA_HOME%\common\lib\➥

mysql-connector-java-3.0.11-stable-bin.jar;➥

%CATALINA_HOME%\common\lib\servlet-api.jar;➥

%CATALINA_HOME%\common\lib\jsp-api.jar org\mwrm\plants\client*.java

While this is not as complicated as some compilations, it is complex enough that you run
the risk of omitting or misspelling some of the JAR files in the classpath.

■Note I am assuming a blank CLASSPATH variable here because that is, in general, good practice, though
adding the JAR files to the classpath would solve this problem in this instance. This kind of fix is pretty
unwieldy because either you have to specify the CLASSPATH variable every session, which replicates the
problems described, or you have to modify the existing variable when you introduce or change a library, which
means you have to start a new command-line session to reflect the update.

Moodie_559-9C01.fm Page 1 Wednesday, September 28, 2005 8:06 AM

2 C H A P T E R 1 ■ I N T R O D U C I N G A N T

The simplest solution is to include the javac command in a script, such as a Windows
batch file, a Unix shell script, or a Perl script, and run the script from the command line. This
allows you to specify the correct libraries at each invocation of the javac command.

Now you have a script that you can use to compile a single class in the project. You can of
course generalize the command to compile a whole package at once. If you have more than
one package, then you can add more javac commands as needed, as is the case with commands
to package the project. This can quickly build up into a large script that you can reuse for each
compilation of the project. You can include any command from your operating system in the
script, which can make it a powerful tool when working with a project with multiple packages
and libraries.

Compiling Larger Projects
The previous situation is no bad place to be if you are working on a small- to medium-sized
project by yourself. You have control over the directory structure and the script, and build
times are quick because of the project’s size. A point will come in most projects, however,
where one of these factors makes a script unworkable.

Using a Common Format

You will undoubtedly have written your automation script in the scripting language of your
choice, which may not be the language other people working on the project are using. While
this may not be a consideration in some projects, it is amazing how often a small project that
scratches a personal itch becomes a major project that scratches a lot of itches. Ant, of course,
is one such example, as are Perl and any number of open-source projects. Therefore, you should
always assume that someone other than you will want to compile your project at some point.

If everyone is using a different technique for automating their section of the project, this
makes it difficult to centralize the compiling and packaging process. Ideally, the lead developer
runs a single script that performs all the required tasks before a project is ready to distribute to
users or clients.

The project leader may even want to distribute the application as part of this process. If
this is the case, the script should employ some automated testing to ensure that the project
team releases a working application. The script is getting larger and larger as the project increases
in complexity.

As you can appreciate, the larger and more serious a project becomes, the larger the need
for an automated process becomes. In many stages of the process, human error can lead to
delays or unusable code. Testing is absolutely necessary before a project is released to its users.
Leaving the testing to a developer when the pressure is on, a deadline is looming, and a product
has to ship will inevitably lead to problems. A common format for the script becomes more
necessary to integrate all the stages of development.

Compiling Only New and Changed Files

Large projects have, by definition, a large number of classes, each of which may have depen-
dencies on a number of outside libraries. As a project grows, the compilation time inevitably
grows with it, eventually to the stage where a complex Java application can take up to an hour
and an operating system, such as Windows 2000, can take eight hours on the most powerful
hardware money can buy.

Moodie_559-9C01.fm Page 2 Wednesday, September 28, 2005 8:06 AM

C H A P T E R 1 ■ I N T R O D U C I N G A N T 3

With this in mind, consider what happens when you change the application in some way,
for example, by making a bug fix or adding functionality. The changes are unlikely to warrant a
recompilation of the entire project, though this is unavoidable when using a script. It is possible
to work around this to a certain extent by breaking the compilation into logical, named chunks
within the script and calling only the chunk with the changed code.

Problems will still exist if the chunk itself is large or if a large number of chunks contain
changed code. This also assumes the person building the project knows which pieces of the
application have changed, which is again a problem in a large application written by a number
of people where the number of changes could be large.

Controlling the Project

On a small project, you have control of the script and the structure of the project, so you have
a good overview of where everything is in the directory hierarchy. This allows you to change the
directory structure to suit your development style and the type of scripting you are using.

On larger projects, you will not necessarily have this control, so keeping the script up-to-
date and usable becomes increasingly difficult. Large scripts used by many people can easily
degenerate into a mess of unmaintainable gibberish.

Reflecting on the Project’s Life Cycle

In the preceding sections, I hinted at certain aspects of a project’s life cycle to demonstrate
some of the deficiencies of scripting. However, it will now be useful to go through a detailed
project life cycle to explain the final problem with scripts. The following describes the process
of building the example project for this book. You will see the details of this application in later
chapters, but these details are not necessary for understanding the project’s life cycle.

1. Obtain the source code from the archive or repository.

2. Create a directory structure to hold the source code and the resultant binaries. This typi-
cally includes a temporary or scratch directory where you carry out the intermediate
stages. You may also want to move any outside libraries into this directory structure for
ease of access. The example application uses two libraries that you can download in
source form and compile if you want to use the latest version. Otherwise, you can use
precompiled binaries.

3. Configure the script to suit your environment. This is necessary here because someone
else has written the source code. Their directory hierarchy may not be the same as
yours. For instance, third-party libraries could be in different places on each system
(usr/local/java/tomcat5/common/lib/servlet-api.jar versus usr/local/java/
jakarta-tomcat-5.5.9/common/lib/servlet-api.jar, for example). In fact, someone
else might not have been working on the same operating system. You should make sure
any paths are correct and that the script references any outside resources properly. As
described, this may be more difficult if the script is in a format with which you are not
familiar. You may even find that the script will not run on your operating system because
it was written in an incompatible scripting language, so you will have to convert it to
one your operating system understands.

4. Compile the source code with your configured script.

Moodie_559-9C01.fm Page 3 Wednesday, September 28, 2005 8:06 AM

d10c55b52b1f8994064c85cd755fb5a9

4 C H A P T E R 1 ■ I N T R O D U C I N G A N T

5. Package the binary files into libraries for the users. You can distribute the example
application as a JAR file for command-line access or a WAR file for use on a servlet con-
tainer. In this step, you may be adding image and configuration files to the distribution.
If your application requires outside libraries to run, you may also be adding them to the
package. The web application version of the example application can include the third-
party libraries mentioned previously so that it is a discrete package. Alternatively, you
can let the administrator of the servlet container place the third-party libraries in an
appropriate location.

6. Unit test the application with appropriate criteria. Ideally, you would use a testing
framework with predefined test cases. If you are responsible for the code and the project is
still at a development stage, then performance testing may be appropriate once unit
testing has finished. You should test the application on a test server and not a production
server.

7. Create the documentation bundle. This should include README files and instructions on
how to install and use the application. The documentation could be simple text files or
could be sophisticated HTML pages that you have generated using a standard process
such as the javadoc utility. If you are distributing the documentation as a web appli-
cation, which is an option with the example application, you should create a WAR file.
Another option is an archive that the user can expand in their file system.

8. Package the entire distribution, which includes the packaged binaries and the docu-
mentation bundle. At this stage, you have to consider who you will be sending the
application to and tailor the package accordingly. This may mean you have to produce
more than one package. For example, Windows users prefer a *.zip file, and Unix users
prefer a *.tar.gz or *.bz2 archive.

9. Provide the application to your users. You can achieve this in a number of ways, including
using e-mail, using FTP, copying and pasting onto a web server, or hot deploying onto a
running web server.

10. Clean up the directory structure. When you have finished with the scrap directory and
the third-party libraries, you may want to remove them from your file system. The scratch
directory created in step 2 may no longer be necessary, and you could remove it if this is
the case. Should you want to do a clean build every time, you will definitely want to do
this. The example application gives you this option.

This is quite a list of actions to perform before an application is ready for your users. You
should note that the example application is not a complicated application in any way, and
many applications require you to execute more steps or perform more actions within steps.

The serial nature of the previous list belies some of the complicated dependencies and
relationships within a build process. For example, you cannot package the application unless
you have compiled the code and successfully built the documentation bundle.

The different processes outlined previously are not naturally linear because the build
process can follow many paths. Figure 1-1 shows a simplified section of the build process that
ignores the various choices for binary packages (JAR, WAR, *.zip, *.tar.gz, and so on). Path (a)
compiles, tests, and documents only the web application. Path (b) compiles, tests, and docu-
ments only the client. Path (c) compiles, tests, and documents both versions of the application.
The vertical lines delineate the discrete steps mentioned in the previous discussion.

Moodie_559-9C01.fm Page 4 Wednesday, September 28, 2005 8:06 AM

C H A P T E R 1 ■ I N T R O D U C I N G A N T 5

Figure 1-1. An example build process

A custom build script cannot adequately describe the complexities within a build process.
Describing a build process helps you as the builder and maintainer, helps other people who
may be building and maintaining the project in the future, and helps other people who may
need an overview of a large project.

Figure 1-1 also shows another reason you may not want to perform every step in a build
process every time you run it. Take, for example, an instance where you want to create a new
version of only the client for your users. In this case, you would follow path (b) from Figure 1-1
and would not want to perform any of the steps in path (a). A linear script either would force
you to do all the steps in a build process every time or would force you to encode the compli-
cated logic of dependencies into the script.

Introducing the Build Tools
Having seen a number of problems inherent in the build process and how scripts can alleviate
only some of them, you probably understand why scripts are not really a satisfactory answer.
They can become unwieldy, hard to maintain, and unhelpful when you begin to deal with
larger, complex projects. It was for this reason that many developers began working with build
tools, of which Ant is a fairly recent example.

Build tools rely on build files that describe the project and the dependencies and relation-
ships within it. Each discrete step in the build process has its own entry in the build file so that
it plugs into the build process without affecting other steps in the build process. This allows
you to change one step in the process without affecting any of the other steps.

Having a common build tool also means people who want to work on and maintain the
project can get started straightaway. If a project did not use a build tool, then new contributors
could take days to master the build/run process, thus losing valuable development time. Unifying
the process makes collaboration much easier.

As a result of using the build file as a description of the build process, a build tool can
examine the current state of the build’s environment and act accordingly by comparing the
two. For example, a build tool will examine the timestamp of a source file that it is about to
compile. If that timestamp is later than the timestamp of the compiled version of the file, then
the build tool will not compile that file and will move to the next stage in the process. This test
is equally applicable to files and directories, where the build tool checks the timestamp of the
original version of a file against that of the copied version in the scratch directory of a build area.

Moodie_559-9C01.fm Page 5 Wednesday, September 28, 2005 8:06 AM

6 C H A P T E R 1 ■ I N T R O D U C I N G A N T

The description of the process allows the build tool to determine in what order it should
perform tasks and create a running order from the many possible paths through the build
process (refer to Figure 1-1). The inherent dependencies built into the description ensure that
all the relevant steps take place throughout a build. Listing 1-1 shows a pseudo–build file
describing the situation in Figure 1-1.

Listing 1-1. Pseudocode Showing the Dependencies Described in Figure 1-1

web-compile:
 javac Web.java

client-compile:
 javac Client.java

web-test:
 depends="web-compile"
 web-test01
 web-test02

client-test:
 depends="client-compile"
 client-test01
 client-test02

web-docs:
 depends="web-test"
 javadoc web

client-docs:
 depends="client-test"
 javadoc client

path-a:
 depends="web-docs"
 echo "Path (a) completed"

path-b:
 depends="client-docs"
 echo "Path (b) completed"

path-c:
 depends="web-compile, client-compile, ➥

 web-test, client-test, web-docs, client-docs"
 echo "Path (c) completed"

This shows how a build file can define different paths depending on how you want to build
the application. Each named section, when called, executes the code it contains and then
returns to the main build process. If a section depends on another, the build process must

Moodie_559-9C01.fm Page 6 Wednesday, September 28, 2005 8:06 AM

C H A P T E R 1 ■ I N T R O D U C I N G A N T 7

successfully run the named section before it can continue. If you wanted to run only one
section, you would supply its name to the build process.

> build path-b
Path (b) completed

The path-b section tells the build process to run the client-docs section before executing
it. The client-docs section in turn tells the build process to run the client-test section, and so
on. You could of course use the code in Listing 1-2 to simplify the build file.

Listing 1-2. A Simplified path-c Section

path-c:
 depends="path-a, path-b"
 echo "Path (c) completed"

While this is not the situation you see in Figure 1-1, it is equally valid as a build path. The
ease with which you can make this change compared to changing complicated build logic in a
script shows the advantage of using a build tool.

Introducing make
make is one of the most widely used build tools for software products and is popular in the
open-source movement. If you have ever downloaded the source bundle of an open-source
project and installed it, you have used a version of make.

■Note Java-based projects are the exception to this, as Ant is better suited to Java projects and the developers
are likely to be familiar with the way it works.

make executes the commands listed in the build file via the operating system’s shell. On
Unix systems, you can specify the shell you want make to use; on Windows, it uses the standard
command line. A number of versions of make exist, one of which is available from the GNU
Project (www.gnu.org/software/make/).

While make is an excellent tool and many users have no problems with it, it does suffer from
a few drawbacks, most of which drove Ant’s creator to produce a new build tool.

All versions of make should conform to the IEEE standard 1003.2-1992 (POSIX.2). However,
many extend this standard, and no two versions of make are the same. This means writing portable
build files that will work on any system is much harder than it should be, because you are never
sure which version of make your users will be using. This returns to the problem of different
application developers using different scripting styles, as discussed previously. If you are sending
the source bundle to your users so they can build it themselves, the problem becomes more acute.

Portability across versions of make is an important consideration but so is portability across
operating systems. make is a standard tool on Unix systems but is unfamiliar to most Windows
users. If you are confident all your users will be building the application and they will be building
it on a Unix system, then you can assume that make will be readily available. However, if some of

Moodie_559-9C01.fm Page 7 Wednesday, September 28, 2005 8:06 AM

8 C H A P T E R 1 ■ I N T R O D U C I N G A N T

your users are on Windows, you cannot assume make will be available or that your users will
have experience configuring make build files.

The syntax of make’s build files, while defined by the 1003.2-1992 standard, is a new syntax
to learn, with all the frustrations and idiosyncrasies that implies. For example, each command
within a make section must be preceded by a tab, only a tab, and nothing but a tab. If you include a
space before or after the tab, the command will not work, and your build process will break.
You cannot totally escape this problem with build tools (Ant has its own idiosyncrasies, as you
will see), but you can alleviate it in some ways.

Introducing Ant
Ant is a Java-based build tool from the Apache project that was originally bundled with early
versions of Tomcat. Its creator had become dissatisfied with make as a way of building Tomcat
from source and developed a tool to make his life easier. Ant was designed to fix the problems
with make described previously and so mirrored the portability aims of Java.

As is the case with all the best projects, a tool created for a simple, specific fix was generalized
and put to use on other problems. In Ant’s case, the tool for building Tomcat was acquisitioned by
people working on other Jakarta products when they realized how useful it could be. Ant use
spread from this group with the official launch of Tomcat, and now Ant is the standard build
tool for Apache Java projects, though many non-Apache Java projects also use it.

Ant is written in Java and so requires no further modifications as long as the target operating
system has a JVM written for it. As such, you can write an Ant build file with the knowledge that it
will function in a similar way, no matter which operating system the user runs Ant on. There-
fore, by harnessing Java’s portability, Ant overcomes the portability problems that can hamper
make and its ilk.

To solve the problem of learning a new format, you write Ant’s build files in XML. In this
case, XML carries at least two advantages. First, it is a well-known format, so many people are
comfortable with using it and can pick up new vocabularies quickly. The syntax of an XML
document never changes, and a well-formed Ant build file is easy to write if you have never
written one before. Second, XML is a portable, open standard, which means you can be sure
that it can be used on every platform on which Ant is available.

For those of you familiar with Tomcat, Ant’s build file resembles a Tomcat server.xml file
in that each XML element represents a Java class and each XML attribute corresponds to an
attribute in the underlying Java class. This approach means there is no DTD with which you
can validate build files, because an element can have different attributes depending on where
it is in a build file; specifically, in Ant this usually means the parent element determines what
attributes are permissible in the child element.

Ant does come with a facility you can use to create a partial DTD, though its caveat emptor
is that the user applies this DTD with the knowledge that it is not a complete or useful DTD.

Introducing Ant Targets and Tasks
Each named section of the build process in Ant is called a target, and each target contains a
number of tasks. These tasks correspond to the command-line calls described in the previous
sections and are represented by XML elements. Listing 1-3 shows a quick example of a Java
compilation.

Moodie_559-9C01.fm Page 8 Wednesday, September 28, 2005 8:06 AM

C H A P T E R 1 ■ I N T R O D U C I N G A N T 9

Listing 1-3. A Simple Ant Build File

<project name="Example Application Build" default="default" basedir=".">

 <!-- Compile the stand-alone application -->
 <target name="default">
 <javac srcdir="./src" destdir="build"/>
 <echo message="Application compiled"/>
 </target>

</project>

The <project> element is the root element of every Ant build file and sets the default target
for this build project. In this case, Ant executes the default target, which tells it to compile the
code in the src directory and place it in the build directory. Once it has done this, it echoes a
message to standard out to inform the user that everything went as planned.

Ant’s tasks are split into three categories: core, optional, and custom. Core tasks are those
tasks that the Ant development team supports and actively develops. The team has given a
commitment to look after these tasks, improve them, and correct any bugs found by Ant users.

Optional tasks are bundled with Ant and depend on libraries that do not belong to the Ant
project (core tasks have no such dependences), and they come bundled as part of the Ant distribu-
tion, as do the libraries, so you can still use them in your projects.

If the tasks that come bundled with Ant do not give you the options you want, you have
two choices. First, you can use Ant to run a command-line tool if one exists that does what you
want to do. Second, you can write your own task, which simply means you would write a Java
class that implements the desired behavior. You can then use this custom task in future projects
and distribute it.

Writing a custom task has the same advantages that Ant has over other build tools in that
your new task can go wherever Ant can. If your project demanded a step that was possible only
at the command line on Windows, then you could not build it on Unix unless you wrote a
custom task. Java and Ant are portable; Windows tools aren’t necessarily so.

Summary
This chapter provided a quick introduction to building software projects, automating the build
process, using build tools, using make, and using Ant. It is simply a taster for the rest of the book,
where you will see the practicalities of using Ant.

Build tools have helped many programmers over the years. Though they may not allow
you to write your code any faster, they do take some of the pain out of turning that code into
working software.

The next chapter describes how to obtain Ant and install it.

Moodie_559-9C01.fm Page 9 Wednesday, September 28, 2005 8:06 AM

Moodie_559-9C01.fm Page 10 Wednesday, September 28, 2005 8:06 AM

d10c55b52b1f8994064c85cd755fb5a9

11

■ ■ ■

C H A P T E R 2

Installing Ant

The previous chapter described what Ant is and the reasons for its development. Therefore,
it is now time to install Ant. Ant is available in binary form as compiled Java classes that you
download to your computer and store in your file system. This form of distribution provides
you with the latest stable build of Ant, so you can be confident that it has been well tested and
that any new features will be stable. You can also obtain the latest build of Ant as a binary distri-
bution, which is available as a nightly build.

If, however, you want to build Ant from source, you can. You have two options if you want
to install it from source: the latest stable build, which corresponds to the stable binary build,
and a nightly build, which you can download or retrieve from a CVS repository.

The binary installation is straightforward, so I will cover that first. Then, I will explain how
to install Ant from source. This is a useful exercise because it means you can have the latest
version of Ant if you should so desire and because the Ant project’s build file gives a good over-
view of the Ant project’s build structure. Recall that one of the properties of a build file is that it
describes the structure of a project’s build process and as such is a useful aid for examining
a project.

Installing a Binary Ant Distribution
Binary distributions of Ant come as archive files that you can extract to your file system. Ant is
a top-level Apache project, so you can download the binary files from ant.apache.org.

Downloading a Binary Distribution
Once you are on the Ant home page (ant.apache.org), click the Binary Distributions link on the
left side. Figure 2-1 shows the binary download page.

The download script will have selected an appropriate mirror for you to use, which, unless
you have strong objections, should be fine.

Moodie_559-9C02.fm Page 11 Wednesday, September 28, 2005 8:09 AM

12 C H A P T E R 2 ■ I N S T A L L I N G A N T

Figure 2-1. The Ant binary download screen

Downloading a Stable Build

As shown in Figure 2-2, the next section of the binary download page contains links to the latest
stable version of Ant. This version has been tested and verified. Any new features are stable and
will not exhibit unpredictable behavior, so you can be confident this version will work as expected.

Figure 2-2. The Current Release of Ant section of the binary download page

Moodie_559-9C02.fm Page 12 Wednesday, September 28, 2005 8:09 AM

C H A P T E R 2 ■ I N S T A L L I N G A N T 13

Select the form of archive you want to download. In general, Windows users should down-
load the *.zip archive, and Unix users should choose whichever of *.tar.gz or *.tar.bz2 they
prefer. As the download page says, you should use a GNU-compatible version of tar to unpack
the archive because some of the filenames are longer than 100 characters long.

Downloading a Nightly Build

If you want the latest features, some of which won’t be available in the stable build, you may
want to download a nightly build. Figure 2-3 shows the Nightly Builds section of the binary
download page, along with a section that allows you to download older versions of Ant.

Figure 2-3. The Nightly Builds section of the binary download page

If you click the “nightly builds” link, this will take you to the nightly builds directory of the
Apache server. To download the latest build, click the link that represents the newest version of
Ant. Each link is in the form YYYYMMDD so that you can choose the appropriate directory to browse.
Navigate to the bin directory, and choose which type of archive to download. In this case, the
choice is between *.zip and *.tar.gz. Again, you should use a GNU-compatible version of tar
to extract the *.tar.gz archive.

Verifying the Binary Distribution

Once you have downloaded the binary distribution, it is good practice to verify it has not been
compromised. You can do this with the Pretty Good Privacy (PGP) application or the MD5 or
SHA1 algorithms. This process is described in the “Using PGP to Verify the Binary Distribution”
section.

Unpacking the Binary Distribution
Once you have the binary distribution, extract the archive to your file system. Windows users
can use WinZip or similar to extract the *.zip file; Unix users should use a GNU-compatible
tar with options appropriate to the compression format.

If you downloaded the *.tar.gz file, navigate to the directory where the archive is, and run
the following:

> tar -xzf apache-ant-bin.tar.gz

This will extract the file to the current directory.

Moodie_559-9C02.fm Page 13 Wednesday, September 28, 2005 8:09 AM

14 C H A P T E R 2 ■ I N S T A L L I N G A N T

If you downloaded the *.tar.bz2 file, navigate to the directory where the archive is, and
run the following:

> tar -xjf apache-ant-bin.tar.bz2

This will extract the file to the current directory.

Verifying the Download
Once you have downloaded the file, it is good practice to verify that it has not been compromised.
You can do this by using the PGP application or the MD5 or SHA1 algorithms.

Using PGP to Verify the Binary Distribution
PGP is a cryptographic suite written to ensure privacy over networks. It uses a public key encryption
to ensure that only the intended recipient can read the messages you send. However, this is not
how you will use it for verifying the download.

In this case, you will be using PGP as an authentication mechanism. Authentication allows
you to compare information to see whether it is identical to the original information. The two
main uses for authentication are checking passwords and verifying downloads. The principles
are similar, though I will describe only download verification here.

When a file is ready for download, the file’s owner can create a digital signature using PGP
and their private key. In other words, PGP encrypts the file using the private key, and you can
then decrypt it using the corresponding public key. However, this is not the whole story, because
simply encrypting large zipped files would mean twice the amount of data to be downloaded
and slow decrypting at the other end.

To solve this, PGP creates a message digest, otherwise known as a hash, from the file. This
message digest is a fixed length of characters, no matter how large the file is, and the chances
of a file having the same message digest as another are incredibly small. This character string
varies in length depending on the algorithm used, but will be something like 160 characters
long. PGP encrypts this message digest using the private key, which results in a small file.

When you download a file and ask PGP to verify it, PGP creates a digest of it and decrypts
the original message digest. It then compares the two to verify that they are digests of the same file.

A successful verification means that the creator of the public key created the digest in the
first place, because only this public key can decrypt the message digest as encrypted by the
corresponding private key.

Figure 2-4 shows how PGP verifies a file once you have downloaded it.
The signature was created when the file was created and should be obtained from the

source. This allows you to check that files hosted on a mirror have not been compromised. In
the case of Ant, you should obtain the public key and signature files from the main Ant web site;
the next sections explain the details of this.

Moodie_559-9C02.fm Page 14 Wednesday, September 28, 2005 8:09 AM

C H A P T E R 2 ■ I N S T A L L I N G A N T 15

Figure 2-4. Verifying a file has not been tampered with

Obtaining PGP

The short history of PGP is fairly lively. As a result of governmental restrictions on cryptographic
exports, the original PGP code was not available outside the United States. However, printed
versions of the code were exported in books set in OCR font. As such, the code was obtained
and compiled, becoming PGPi in the rest of the world.

Export restrictions have eased somewhat since the original release of PGP, and it is now
much easier to obtain the code. Readers using Windows and Mac can obtain a GUI version of
PGP from www.pgp.com. This site also has source downloads for all the major platforms,
command-line tools included.

Readers in the United States or Canada can also visit the MIT site for PGP at web.mit.edu/
network/pgp.html for binary and source distributions without the corporate razzle-dazzle.

Readers in parts more exotic can obtain PGPi from www.pgpi.org. This site contains many
versions and options of PGP for many platforms. The main download index is at www.pgpi.org/
products/pgp/versions/freeware/. Select your operating system and then the version you require.

As things stand, all readers should choose a version of PGP that runs on the command line.
This makes it easy to automate verification, and you will also be able to follow along with the
verification process used in this book.

Downloading the Keys and the Signature

Once you have installed PGP, download the Ant public key from www.apache.org/dist/ant/
KEYS and the signature that corresponds to your Ant distribution. This will be an *.asc file.
Figure 2-5 shows the file required for a Unix *.tar.gz binary distribution. The KEYS file will also
be in your Ant distribution’s base directory, though you should use the one from the Ant web
site in preference to this one.

Moodie_559-9C02.fm Page 15 Wednesday, September 28, 2005 8:09 AM

16 C H A P T E R 2 ■ I N S T A L L I N G A N T

Figure 2-5. A signature file for verifying a binary Ant distribution

If you have downloaded a stable build, the PGP link next to the download link allows you
to download the *.asc file appropriate to your distribution, as shown earlier in Figure 2-2. You
can verify a nightly build using digests only (covered in the “Using MD5 and SHA1 to Verify the
Download” section). However, nightly builds come directly from Apache, so you should put
the same trust in Ant’s nightly build downloads as you put in Ant’s signatures.

■Caution This form of verification is only as secure as the source of the keys and signature. The keys you
download from the Apache web site will be not be trusted as far as PGP is concerned, because they will not
come with trusted introductions. In other words, the keys and signature on the Ant web site are just as likely
to be at risk as the file you are downloading from a mirror site. Bear this in mind during the following discussion.

Using PGP

The first step is to add the Ant public keys to your PGP key ring. (Excuse the casual use of new
terms in this section, but if you’d like to know more about PGP, the manual is excellent and the
web sites listed earlier can also help you.)

Moodie_559-9C02.fm Page 16 Wednesday, September 28, 2005 8:09 AM

C H A P T E R 2 ■ I N S T A L L I N G A N T 17

The following command adds the keys in the KEYS file to your PGP key ring:

> pgp -ka KEYS

To verify that the keys are on your key ring, run the following:

> pgp -kv

The Ant developers who have added public keys will be listed. Now that you have added
the public keys, you can use them to verify the signature of the download. Run the following,
where the *.asc file corresponds to the download:

> pgp apache-ant-bin.zip.asc

This will read the signature, find that the signature is not actually attached to a file, and
then read in the file that corresponds to the signature file, minus the .asc section. The result of
running the previous command is as follows:

Pretty Good Privacy(tm) Version 6.5.8
(c) 1999 Network Associates Inc.
Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Export of this software may be restricted by the U.S. government.

File 'apache-ant-bin.zip.asc' has signature, but with no text.
Text is assumed to be in file 'apache-ant-bin.zip'.
Good signature from user "User Name <user@ant.com>".
Signature made 2004/07/16 08:00 GMT

WARNING: Because this public key is not certified with a trusted
signature, it is not known with high confidence that this public key
actually belongs to: "User Name <user@ant.com>".

Here you can see that PGP has assumed that the file the signature verifies is
apache-ant-bin.zip. It verifies that the signature is correct and states when it was signed. You
may be warned that the TZ environment variable is not set. This won’t affect the verification
process, but if this extra warning bothers you, add the TZ variable as specified in the PGP manual.

The most worrying thing about this output is that PGP does not trust this signature because the
public key associated with it has not come from a trusted, signed source. If you will be working
with Ant a lot, or if you just want to trust the Ant keys for completeness, you can sign the keys
yourself. This will convince PGP that they are from a trusted source.

The first step is to create a private-public key of your own, if you do not already have one.
Run the following, and fill in the details as appropriate:

> pgp -kg

You now have a private key that you can use to sign the keys and a public key you can give
to others. To verify that you have added a key, run the key view command again:

> pgp -kv

Moodie_559-9C02.fm Page 17 Wednesday, September 28, 2005 8:09 AM

d10c55b52b1f8994064c85cd755fb5a9

18 C H A P T E R 2 ■ I N S T A L L I N G A N T

Your new key will be shown in the list with the Ant keys and will be marked as the default
key for signing, like so:

RSA 2048 0xF1964537 2005/03/28 *** DEFAULT SIGNING KEY ***
 Matthew Moodie <matt@moodie.com>

To sign a key, run the following:

> pgp -ks

You will be asked for the ID of the user whose key you want to sign. You do not have to
enter the whole name, because PGP will find the nearest ID to the string you enter and present
you with the full version. You will be presented with the following warning to ensure that you
know the provenance of the key you are about to sign:

READ CAREFULLY: Based on your own direct first-hand knowledge,
are you absolutely certain that you are prepared to solemnly certify
that the above public key actually belongs to the user specified
by the above user ID (y/N)? y

If you enter y, you will be prompted for the password you specified when you created your
private key. Now that you have signed a key, PGP will allow you to use it to verify signatures.
Run the verification command again.

> pgp apache-ant-bin.zip.asc

This time there will be no warning.

Pretty Good Privacy(tm) Version 6.5.8
(c) 1999 Network Associates Inc.
Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Export of this software may be restricted by the U.S. government.

File 'apache-ant-bin.zip.asc' has signature, but with no text.
Text is assumed to be in file 'apache-ant-bin.zip'.
Good signature from user "User Name <user@ant.com>".
Signature made 2004/07/16 08:00 GMT

You can see who has signed the keys in your key ring with the following command:

> pgp -kc

Moodie_559-9C02.fm Page 18 Wednesday, September 28, 2005 8:09 AM

C H A P T E R 2 ■ I N S T A L L I N G A N T 19

The second part of this long output shows a list of keys, each of which starts with the key
ID. Below each user ID is the ID of the signers of that key.

* 0xF1964537 ultimate complete Matthew Moodie <matt@moodie.com>
c ultimate Matthew Moodie <matt@moodie.com>

In this case, I am the only person who has signed my public key. The Ant keys will have a
number of signers. However, PGP will not trust anyone except you as a key signer, which is
another reason why PGP doesn’t trust any of the keys on your key ring.

If you want a third party’s key to sign other keys, you can change its trust level with the
following command:

> pgp -ke <username>

You will be given another warning and asked what level of trust you would like to assign to
this key.

Make a determination in your own mind whether this key actually
belongs to the person whom you think it belongs to, based on available
evidence. If you think it does, then based on your estimate of
that person's integrity and competence in key management, answer
the following question:

Would you trust "User Name <user@ant.com>"
to act as an introducer and certify other people's public keys to you?
(1=I don't know (default). 2=No. 3=Usually. 4=Yes, always.) ?

If you choose 4, this user can act as a signatory to other public keys, though you must have
signed their key initially so that PGP trusts them in the first place. You can see how the layers of
trust are built up and how important it is to trust the initial source of any key you receive.

Using MD5 and SHA1 to Verify the Download
MD5 and SHA1 are message digest algorithms that you can use to verify the integrity of a down-
load. I covered message digests previously with reference to digital signatures, so I will go
straight into the verification process.

The md5/md5sum and sha1/sha1sum tools are installed as standard on Unix; Windows users
can obtain md5 by following one of the links at the bottom of the Ant download page, as shown
in Figure 2-6. One of the links is www.fourmilab.ch/md5/. The best way for Windows users to use
SHA1 digests is to download fsum from www.slavasoft.com/fsum/.

Moodie_559-9C02.fm Page 19 Wednesday, September 28, 2005 8:09 AM

20 C H A P T E R 2 ■ I N S T A L L I N G A N T

Figure 2-6. You can obtain the md5 tool from the links at the bottom of the page.

You run the md5 tool at the command line, and when you are verifying a download, you
provide it with a 32-character MD5 hash.

If you have downloaded a stable build, the MD5 link next to the download link allows you
to download the *.md5 file appropriate to your distribution, as shown earlier in Figure 2-2. You
can also verify a nightly build using MD5.

The *.md5 file contains the message digest of the downloaded file, and you should provide
this value to the -c option of md5, followed by the filename of the download.

> md5 -ce74b9bf7297b4d7883d84d88cf6601fc apache-ant-src.zip.md5

Unfortunately, this will not provide any output to the screen. If the test was successful,
meaning the hash’s value corresponded to the hash of the file, the return code is 0. If the test
failed, the return code is 1.

To produce some human-readable output, you must write a script to verify the output of the
test. Listing 2-1 shows a Windows batch file that tests the MD5 hash against the hash of the file.

Listing 2-1. md5script.bat: Tests the Integrity of a Download

@echo off

md5 -c%1 %2

IF NOT errorlevel 1 GOTO valid
echo Signature not valid.
GOTO end

Moodie_559-9C02.fm Page 20 Wednesday, September 28, 2005 8:09 AM

C H A P T E R 2 ■ I N S T A L L I N G A N T 21

:valid
echo Signature valid.

:end

To use this batch file, run the following command:

> md5script e74b9bf7297b4d7883d84d88cf6601fc apache-ant-src.zip

A successful test will result in the following:

Signature valid.

Listing 2-2 shows a Unix bash shell script that tests the MD5 hash against the hash of
the file.

Listing 2-2. md5script.sh: Tests the Integrity of a Download

if md5 -c$1 $2
then
 echo Signature valid.
else
 echo Signature valid.
fi

To use this script, run the following command:

> md5script e74b9bf7297b4d7883d84d88cf6601fc apache-ant-src.zip

A successful test will result in the following:

Signature valid.

The procedure for sha1 is similar; just remember to use the sha1 utility on the *.sha1 file
instead of md5 on the *.md5 file.

However, if you want to use fsum on Windows to check an SHA1 digest, the procedure is
slightly more complicated. First, you have to edit the *.sha1 file as follows:

94ed9d65bc38246384af1078d546566fde050b2d ?SHA1*apache-ant-bin.zip

The change is to add ?SHA*filename after the SHA1 hash. This tells fsum which file was used
to generate the hash. It will then calculate the hash of this file and compare it to the hash in the
file. The relevant command is as follows:

> fsum -sha1 -c apache-ant-bin.zip.sha1

Moodie_559-9C02.fm Page 21 Wednesday, September 28, 2005 8:09 AM

22 C H A P T E R 2 ■ I N S T A L L I N G A N T

SlavaSoft Optimizing Checksum Utility - fsum 2.51
Implemented using SlavaSoft QuickHash Library <www.slavasoft.com>
Copyright (C) SlavaSoft Inc. 1999-2004. All rights reserved.

OK SHA1 apache-ant-bin.zip

The test passed in this case. If the test failed, you wouldn’t see any output after the fsum
copyright lines.

Installing a Source Ant Distribution
You can install Ant from source in a number of ways, depending on your personal preference.
If you want the latest milestone build, then you have to download it from the Ant web site
(ant.apache.org). However, if you want to try the latest version of Ant, then you can download
a nightly build from the web site or obtain it from the Ant CVS repository. This allows you to
work with the latest features of Ant that might not be available in the stable release. Nightly
builds also contain the latest bug fixes.

■Note Installing Ant from source is just as easy on Windows as it is on Unix, mainly because of Java’s
cross-platform properties. The only nonstandard Windows tool described is cvs, though you can obtain it
easily. You’ll find the details in the following relevant section.

The next section will describe how you can use the Ant web site to obtain a source distri-
bution, be it a stable build or a nightly build. After that, I will describe how to use CVS to obtain
a nightly build.

Downloading a Source Distribution
Once you are on the Ant home page, click the Source Distributions link on the left side. Figure 2-7
shows the source download page.

The download script will have selected an appropriate mirror for you to use, which, unless
you have strong objections, should be fine.

Moodie_559-9C02.fm Page 22 Wednesday, September 28, 2005 8:09 AM

C H A P T E R 2 ■ I N S T A L L I N G A N T 23

Figure 2-7. The Ant source download screen

Downloading a Stable Build

As shown in Figure 2-8, the next section of the source download page contains links to the
latest stable version of Ant. This version has been tested and verified. Any new features are
stable and will not exhibit unpredictable behavior, so you can be confident that this version
will work as expected.

Figure 2-8. The Current Release of Ant section of the source download page

Moodie_559-9C02.fm Page 23 Wednesday, September 28, 2005 8:09 AM

24 C H A P T E R 2 ■ I N S T A L L I N G A N T

Select the form of archive you want to download. In general, Windows users should down-
load the *.zip archive, and Unix users should choose whichever of *.tar.gz or *.tar.bz2 they
prefer. As the download page says, you should use a GNU-compatible version of tar to unpack
the archive because some of the filenames are longer than 100 characters long.

Downloading a Nightly Build

If you want the latest features, some of which won’t be available in the stable build, you may
want to download a nightly build. Figure 2-9 shows the Nightly Builds section of the source
download page, along with a section that allows you to download older versions of Ant.

Figure 2-9. The Nightly Builds section of the source download page

If you click the link, this will take you to the nightly builds directory of the Apache server.
To download the latest build, click the link that represents the newest version of Ant. Each link
is in the form YYYYMMDD so that you can choose the appropriate directory to browse. Navigate to
the src directory, and choose which type of archive to download. In this case, the choice is
between *.zip and *.tar.gz. Again, you should use a GNU-compatible version of tar to extract
the *.tar.gz archive.

Downloading a CVS Snapshot

If you do not have CVS installed on your system, you can still download nightly snapshots of
the CVS repository via the Ant CVS repository web site. These distributions are likely to be more
unstable than both nightly and milestone builds.

Click the CVS Repositories link on the Ant web site, and you will see the CVS Repositories
section of the web site, as shown in Figure 2-10.

This page gives you instructions on how to obtain the latest source code using CVS, which
you will see in the “Using CVS to Obtain a Source Distribution” section. For now, click the link
to cvs.apache.org/snapshots/ant/. You should see a list of the latest snapshots of the CVS tree,
as shown in Figure 2-11.

Moodie_559-9C02.fm Page 24 Wednesday, September 28, 2005 8:09 AM

d10c55b52b1f8994064c85cd755fb5a9

C H A P T E R 2 ■ I N S T A L L I N G A N T 25

Figure 2-10. The CVS Repositories section of the Ant web site

Figure 2-11. CVS nightly snapshots on the Apache server

Moodie_559-9C02.fm Page 25 Wednesday, September 28, 2005 8:09 AM

26 C H A P T E R 2 ■ I N S T A L L I N G A N T

These are all *.tar.gz files, though this shouldn’t be a problem even for Windows users
because WinZip, for example, can cope with these kind of archives without any problems.

Verifying the Source Distribution

It is good practice to verify the source bundle has not been interfered with once you have
downloaded it. You can do this with the PGP application or the MD5 or SHA1 algorithms.
This process is covered in the previous “Verifying the Download” section.

Using CVS to Obtain a Source Distribution
Using CVS to obtain a source distribution is painless. Most Unix systems have the cvs tool
installed by default. Windows users can obtain it from www.cvshome.org.

The code obtained from the CVS repository is likely to be more unstable than a nightly
build and certainly more unstable than a stable milestone build.

The following command logs you into the Apache CVS repository. When asked for the
password, enter anoncvs.

> cvs -d :pserver:anoncvs@cvs.apache.org:/home/cvspublic login
password: anoncvs

If you log in successfully, you won’t see a confirmation. Now that you have established a
connection with the server, you can check out the Ant source code. Run the following to down-
load the source to the current directory:

> cvs -d :pserver:anoncvs@cvs.apache.org:/home/cvspublic checkout ant

cvs will display its progress to the console, which allows you to see the various files and
directories that are being downloaded.

Building the Ant Source Distribution with the Build Script
Now that you have the source distribution on your file system, you can build Ant. If you are
installing Ant for the first time, you will have to use the build script (build.bat on Windows and
build.sh on Unix). If you have a distribution of Ant already, then you can use the build.xml
build file. The “Upgrading Ant” section covers the latter situation.

Installing Ant from source for the first time presents an interesting problem: if you don’t
have a build tool, how do you build Ant? To solve this problem, the Ant source distribution
comes with a build script that compiles the source distribution.

Run the build script appropriate for your system as follows:

> build

This will first compile the core Ant classes from source, before using them to build the
rest of the distribution. This happens in two stages. First, the build script calls the bootstrap
script, which in turn compiles the bare minimum of Ant classes required and then calls
org.apache.tools.ant.Main to build the core of the Ant distribution. Listing 2-3 shows the
important part of build.xml that creates the bootstrap build.

Moodie_559-9C02.fm Page 26 Wednesday, September 28, 2005 8:09 AM

C H A P T E R 2 ■ I N S T A L L I N G A N T 27

Listing 2-3. The bootstrap Target from build.xml

<target name="bootstrap" description="--> creates a bootstrap build">
 <antcall inheritAll="false" target="dist-lite">
 <param name="dist.dir" value="${bootstrap.dir}"/>
 </antcall>
</target>

While this may not mean much just now, a quick discussion of this will show how the Ant
build process first builds the minimum bootstrap distribution and then builds the main distri-
bution. The bootstrap target uses the <antcall> element to call the dist-lite target, but it
overrides the dist.dir property for the duration of the call. This ensures that the bootstrap
build is placed in a scratch bootstrap area away from the main distribution. Listing 2-4 shows
the relevant line from the Windows bootstrap script.

Listing 2-4. The bootstrap Script Calls the Main Ant Class to Build the Bootstrap Build

"%JAVA%" %ANT_OPTS% org.apache.tools.ant.Main ➥

-emacs %ANT_CMD_LINE_ARGS% bootstrap

The bootstrap argument at the end causes Ant to run the bootstrap target listed in Listing 2-4.
The final bootstrap build is placed in the bootstrap directory. The JAR files required to build the
main Ant distribution are placed in bootstrap/lib, and the scripts are placed in bootstrap/bin.

In the second stage, the build script calls the bootstrap/bin/ant script, which runs the
default Ant task in build.xml using the line shown in Listing 2-5.

Listing 2-5. bootstrap/bin/ant.bat Calls Ant’s Default Target

"%_JAVACMD%" %ANT_OPTS% -classpath "%ANT_HOME%\lib\ant-launcher.jar" ➥

"-Dant.home=%ANT_HOME%" org.apache.tools.ant.launch.Launcher ➥

%ANT_ARGS% %ANT_CMD_LINE_ARGS%

The default target for the Ant build is main, and this target simply calls the dist-lite target.
However, this time the dist.dir property is set to the final distribution directory that will
contain the Ant distribution. Listing 2-6 shows the relevant details.

Listing 2-6. The Targets That Build the Main Ant Distribution

<project name="apache-ant" default="main" basedir=".">

 <property name="dist.dir" value="dist"/>

 <target name="main"
 description="--> creates a minimum distribution in ./dist"
 depends="dist-lite"/>

</project>

Moodie_559-9C02.fm Page 27 Wednesday, September 28, 2005 8:09 AM

28 C H A P T E R 2 ■ I N S T A L L I N G A N T

In this case, the dist-lite target builds the main Ant distribution and places it in the dist
directory, as specified by the dist.dir property. The dist directory contains the bin and lib
subdirectories, which form the Ant distribution. The dist directory is your ANT_HOME, unless
you copy the files to another location.

Taking Final Steps After Installation
The final step of installation is to set the ANT_HOME environment variable. This allows Ant to find
the classes that it depends on, which means you can run it from anywhere on your file system.

Setting %ANT_HOME% on Windows
To set %ANT_HOME% on Windows, open Start ➤ Settings ➤ Control Panel ➤ System. Click the
Advanced tab, and select Environment Variables. You will then see the Environment Variables
dialog box, as shown in Figure 2-12.

Figure 2-12. The Windows Environment Variables dialog box

If you want to add the environment variable just for you, click the New button under the
User Variables for User section. Alternatively, if you want every user on your system to have
access to it, click the New button under the System Variables section. Whichever you choose,
enter the details of your Ant distribution, as shown in Figure 2-13.

Moodie_559-9C02.fm Page 28 Wednesday, September 28, 2005 8:09 AM

C H A P T E R 2 ■ I N S T A L L I N G A N T 29

Figure 2-13. Adding %ANT_HOME% as a system environment variable

Click OK, and close down the system application. To test that you have successfully added
the variable, run the following at the command line:

> echo %ANT_HOME%

This should display the name of the directory that you specified. To run Ant, you can use
the %ANT_HOME% variable like so to test the installation:

> %ANT_HOME%\bin\ant -version

For more flexibility, you can add the Ant %ANT_HOME%\bin directory to your %PATH% environ-
ment variable using the system application, just as you added the %ANT_HOME% variable. This
means you can call the ant command from any directory like so:

> ant -version

If these commands do not display the version number of Ant you installed, check the value
of %ANT_HOME% and that the %ANT_HOME%\bin\ant file is accessible.

Setting $ANT_HOME on Unix
To add the $ANT_HOME environment variable, use the following command (in bash):

ANT_HOME=/usr/java/apache-ant
export ANT_HOME

You can also add these commands to ~/.bashrc or /etc/profile, or you can create a shell
file, antEnv.sh, and place it in /etc/profile.d. The /etc/profile directory will run this file
automatically at boot time to make the $ANT_HOME variable available to all users.

Examining the Ant Distribution
The Ant distribution is fairly simple and contains four directories: bin, docs, etc, and lib. The
ANT_HOME directory also contains a number of files, most of which are licenses, though KEYS,
README, welcome.html, and WHATSNEW are worth an explanation.

• KEYS: This file contains the public keys associated with the Ant project. See the “Verifying
the Download” section for more details.

• README: This is a quick introduction to Ant with details of what it is and what it does.

Moodie_559-9C02.fm Page 29 Wednesday, September 28, 2005 8:09 AM

30 C H A P T E R 2 ■ I N S T A L L I N G A N T

• welcome.html: This is a fuller, more well-rounded version of README. It contains a fair bit
of useful information, including what is new in this release of Ant. You should read this
when you do a significant upgrade to see what new features are in the new version.

• WHATSNEW: This is a change log that describes the changes, new features, and bug fixes
that have been made over a number of Ant versions, starting with the change from Ant
1.1 to Ant 1.2.

Looking at the bin Directory
The bin directory contains scripts for Unix and Windows that run Ant. The ant.* and antRun.*
scripts have the same functions on both platforms, though the *.cmd scripts are slightly different.

Understanding the ant Scripts

The ant.* script runs the main Ant class and starts the build process. It takes a number of
command-line parameters, all of which I will discuss in the next chapter. The ant.cmd script is
a Windows NT script that calls the other *.cmd files to perform the same tasks as the other ant.*
scripts.

Understanding the antRun Scripts

The antRun.* script runs an OS-specific command. The <exec> Ant task uses it to access system
tools that may be required during a build. Its first argument is the directory from where the
command should be run, and the other arguments are arguments to this command. For example:

> antRun . echo "Hello, world."
"Hello, world."

This runs the echo command from the current directory with the string "Hello, world." as
the input to the command.

Understanding the runant Scripts

The runant.* scripts are Perl and Python scripts that run Ant, just as the ant.* scripts do. If you
want, you could use them as CGI scripts; however, as the scripts point out, this would be some-
what daft.

Looking at the docs Directory
The docs directory contains an offline version of the Ant manual. The pages are mainly HTML,
with the exception of a PDF task reference document.

Looking at the etc Directory
The etc directory contains a number of XSL transformation documents that some Ant tasks use
to transform their results. For example, the JUnit test tasks are designed to test the results of the
build process, and they use the XSL documents in this directory to form result documents.

Moodie_559-9C02.fm Page 30 Wednesday, September 28, 2005 8:09 AM

C H A P T E R 2 ■ I N S T A L L I N G A N T 31

Looking at the lib Directory
The lib directory contains the huge number of JAR files that Ant needs to do its work. Some of
them are part of the Ant project itself, and others are from different Jakarta projects, such as
Jakarta ORO and Jakarta Bean Scripting Framework, and from different Apache projects, such
as the Apache Log4j logging framework and the Xerces XML processor.

The lib directory is in Ant’s classpath, and you must copy any third-party or custom task
JAR files into this directory for Ant to be able to use them.

Upgrading Ant
If the Ant developers release a new version of Ant, it is a fairly straightforward task to upgrade.
The instructions in the installation sections apply to any new release. The most important task
to remember is to reset the value of the ANT_HOME environment variable. Once you have
installed a new version of Ant, you must point to the new location using this variable.

You should also remember to add the Ant directory to your path, should you want to run
Ant from anywhere on your file system. If you do this, ensure that the old version of Ant is no
longer in the path, because this may lead to unforeseen problems when you try to use the new
version.

One final issue to consider is whether you have added any functionality beyond the core and
optional tasks. For example, to hot-deploy web applications on a running Tomcat server, you
must have the Tomcat deployment tasks in Ant’s classpath. This means the catalina-ant.jar file
must be in the ANT_HOME/lib directory. Therefore, you must ensure it is copied into your new
version of Ant, along with any other custom JAR files you use.

Once you have successfully installed and tested the new version, you can delete the old
distribution to avoid confusion in the future. Should you need to refer to an older version,
Apache maintains an archive at archive.apache.org/dist/ant/. You can also get there via the
Ant download page.

Summary
This chapter covered how to install Ant in a number of ways. You can install a stable version of
Ant that comes as a package of compiled Java classes, or you can compile the classes yourself.
Both techniques provide you with a robust release of Ant that has been through extensive tests,
so you can be sure of its reliability.

If you want to work with new features and the latest version of Ant, you can obtain nightly
builds or newly written CVS snapshots of the code. These allow you to test the features of Ant
that have not made it into the stable releases.

You also looked at download verification and the issues surrounding it. You have two ways
to verify an Ant download: PGP and MD5/SHA1. PGP is the more robust of the two, but
requires a fair amount of effort to set up if you do not already have it on your system.

The next chapter gets into the details of build file syntax and how to run Ant from the
command line.

Moodie_559-9C02.fm Page 31 Wednesday, September 28, 2005 8:09 AM

d10c55b52b1f8994064c85cd755fb5a9

Moodie_559-9C02.fm Page 32 Wednesday, September 28, 2005 8:09 AM

33

■ ■ ■

C H A P T E R 3

Using Ant

Now that you have installed Ant, you are ready to start using it. However, Ant is nothing
without its build files. You must provide Ant with a description of the project before you can
start to build the project. With this in mind, in this chapter you’ll look at the syntax of build
files, with a quick refresher on XML just in case.

You write Ant’s build files in an XML dialect that is fairly simple, yet can’t be captured in a
DTD. As mentioned in a previous chapter, a Java class implements each XML element in Ant’s
build file, which means the attributes can change depending on the underlying Java class. The
attributes of nested elements can also change depending on which element contains them.

This chapter will cover running Ant from the command line and the basics of build files.
This discussion will include those XML elements in a build file that are not tasks and the <property>
task, mainly because it is such an important task that it is integral to almost any build file.

Running Ant from the Command Line
The usual method of running Ant is to use the ant shell script supplied in ANT_HOME/bin. If you
plan to use Ant a lot, it is a good idea to place this directory on your path or place a shortcut to
the script in a directory that is on your path.

The ant script has a number of options at the command line. You can see what these are
by running ant -h. The basic syntax is as follows:

ant [options] [target [target2 [target3] ...]]

The list of targets tells Ant which targets to execute in the build file. (I’ll discuss targets in
the “Examining the Target Element” section.) Table 3-1 describes the options.

Table 3-1. Ant’s Command-Line Options

Option Description

-help, -h Displays the help message.

-projecthelp, -p Prints help information that describes the targets in the project
build file.

-version Prints version information.

Moodie_559-9C03.fm Page 33 Wednesday, September 28, 2005 8:15 AM

34 C H A P T E R 3 ■ U S I N G A N T

-diagnostics Prints information that you can use to diagnose problems. This
includes the JAR files and system properties that Ant is using.

-quiet, -q Suppresses most visible output that Ant produces. This does not
apply to print commands that are part of the build.

-verbose, -v Prints all possible output that Ant produces.

-debug, -d Prints debugging information. You can configure the <echo> task
with levels of output to help with debugging.

-emacs, -e Strips all unnecessary trimmings from visible output. For example,
when a task executes, Ant usually displays the task type. If you set
this option, Ant will not display this information.

-lib <path> Specifies a path to search for JARs and classes, in addition to your
classpath and Ant’s two default directories (see the discussion
after this table).

-logfile <file>
-l <file>

Sets the log file for this build.

-logger <classname> Sets the class that does the logging for this build. Chapter 11
covers logging.

-listener <classname> Adds a project listener. Chapter 11 covers listeners.

-noinput Disables interactive input. Chapter 6 covers this topic.

-buildfile <file>
 -file <file>
 -f <file>

Specifies the build file to use for this build. The value of <file> can
be an absolute path or a path relative to the current directory. The
default is a file called build.xml in the current directory.

-D<property>=<value> Sets the value of property <property> to <value>. I will discuss
properties in the “Working with Properties” section.

-keep-going, -k Forces Ant to execute every target that does not depend on a failed
target. This ensures that at least part of the build was successful.

-propertyfile <name> Loads all the properties from specified property file. (I will cover
property files in the “Working with Properties” section.) -Dproperties
take precedence if there is a clash.

-inputhandler <class> Sets the class that will handle input requests. This is an implemen-
tation of the org.apache.tools.ant.input.InputHandler interface.
Chapter 6 covers this topic.

-find <file>
-s <file>

Tells Ant to search for the specified build file toward the root of
the file system and use it. This allows you to run a build on a
project from deep within its directory hierarchy.

-nice number Sets a value for niceness for the main Ant thread: 1 (lowest) to 10
(highest). 5 is the default.

-nouserlib Tells Ant to run without using JAR files from ${user.home}/.ant/
lib (see the paragraph that follows this table).

-noclasspath Tells Ant to run without using your classpath.

Table 3-1. Ant’s Command-Line Options (Continued)

Option Description

Moodie_559-9C03.fm Page 34 Wednesday, September 28, 2005 8:15 AM

C H A P T E R 3 ■ U S I N G A N T 35

By default, Ant’s classpath is built from the system classpath, from the path set with -lib,
from the ${user.home}/.ant/lib directory, and from the ANT_HOME/lib directory. The system
classpath, represented by the CLASSPATH environment variable, is passed to Ant as transparent
input to -lib. Ant looks through these directories and loads any classes and JARs, which means
you don’t have to specify each JAR’s name.

${user.home}/.ant/lib varies depending on your operating system. On Unix it maps to a
user’s “home” directory; on Windows it varies depending on version. Windows 2000, for example,
uses C:\Documents and Settings\username.

You can run Ant without any of these options. In this case, it will look for a build file in the
current directory and run the default target.

Ant has three environment variables that you can use to set its default behavior.

• ANT_ARGS is a list of the arguments described in Table 3-1. Set this variable to include
those options you use frequently.

• ANT_OPTS is a list of arguments that you want to pass to the JVM that will run Ant.

• JAVACMD is the absolute path to the Java executable you want Ant to use.

Introducing Ant’s Build File Syntax
The XML specification allows you to describe data in a structured form. As such, it is an extremely
effective format for build files, which, as you are now aware, describe the structure of the
project build process.

Examining the Project Element
Each XML document must be well formed, meaning it must have a root element that contains
all other elements and each element must be closed by a closing element or must be a stand-
alone, self-closing element. The root element of every Ant build file is the <project> element,
so every Ant build file must contain the lines shown in Listing 3-1 at a bare minimum.

Listing 3-1. The Minimum Requirements for a Build File

<?xml version="1.0"?>

<project>

</project>

If you want to use a DTD, you can generate an incomplete DTD using the <antstructure>
task, or you can find a working example at www.sdv.fr/pages/casa/html/ant-dtd.en.html. The
incomplete DTD may be enough for some purposes, but if you want to use an IDE to edit build
files and add appropriate elements in the appropriate place, you will need to use the more
complete version.

Moodie_559-9C03.fm Page 35 Wednesday, September 28, 2005 8:15 AM

36 C H A P T E R 3 ■ U S I N G A N T

■Note The Eclipse IDE (www.eclipse.org) has a useful Ant build file editor.

Listing 3-2 shows a build file that creates the incomplete DTD.

Listing 3-2. Generating an Incomplete DTD

<?xml version="1.0"?>

<project>
 <antstructure output="./project.dtd"/>
</project>

To run Ant and create the DTD, execute the ant command at the command line, as follows:

> ant

Ant will process the build file and create the DTD. You can now add a reference to the DTD
in your build file, as shown in Listing 3-3.

Listing 3-3. A Build File with a DTD Declaration

<?xml version="1.0"?>
<!DOCTYPE project PUBLIC "-//ANT//DTD project//EN" "project.dtd">

<project>

</project>

This is also how you add the complete DTD if you have downloaded it. If you eventually
add new custom tasks or third-party tasks to your build files, you will have to extend this DTD.
All in all, you may find it more straightforward to not work with DTDs, and you’ll find that few
source bundles come with DTD declarations. For example, the Ant distribution does not use a
DTD.

Ant will always run any tasks that you set as child elements of <project>, which means
every run of the project will include these tasks. If you want to control which tasks Ant runs, or
you want to group related build steps (and you do), then you need to use targets, as defined by
the <target> element. <target> elements are child elements of <project>, and you place tasks
inside them so that you have more control over your builds. You can set a target as a default so
that Ant will run it if you do not specify a target at the command line. To do so, use the <project>
element’s default attribute.

You set the base directory of the current build with the <project> element’s basedir attribute.
If you do not specify a default directory, the default is the parent directory of the build.xml file.

Moodie_559-9C03.fm Page 36 Wednesday, September 28, 2005 8:15 AM

C H A P T E R 3 ■ U S I N G A N T 37

Lastly, you can give the project a name, which is useful as a description. Listing 3-4 shows
all these attributes.

Listing 3-4. Setting a Project Name, a Base Directory, and a Default Target

<?xml version="1.0"?>
<project name="Apache Ant Book Project"
 basedir="."
 default="build-dtd">

 <target name="build-dtd">
 <antstructure output="./project.dtd"/>
 </target>

</project>

If you call ant with no arguments, it will run the build-dtd target and create the
project.dtd file.

Examining the Target Element
A target is a collection of Ant tasks that you want to run as a unit. Each target should represent
a discrete step of your build process and no more. It’s possible that a target could be a small
part of a large step, but you should make sure it is a discrete unit and it does not finish another
task’s business or leave unfinished business for another task. For example, an initialization
target usually creates all the scratch directories for the build. You do not want to let the initial-
ization target create some directories and then create some more common directories with the
compilation target. Keeping a build file cohesive is important—for your sanity if nothing else.

The <target> element is the XML representation of a target in the build file. As already
mentioned, it is a child element of <project>. It also can contain as many task elements as are
required. When Ant calls a target, each of these tasks runs in turn until they all complete or one
fails. You can chain targets together so that one target will not execute until another has completed
all its tasks successfully. By setting these dependencies, you can start to build a description of
the build process.

The <target> element’s only mandatory attribute is name. The name allows you to call the
target from the command line (see the “Running Ant from the Command Line” section) or
from within the build file. You can accomplish the latter with the <project> element’s default
attribute or with certain tasks (more on this in Chapter 9).

You can provide the target with a description using the description attribute, and Ant uses
this description when you call it with the -projecthelp option. In this case, Ant will display only
the names and descriptions of targets that have descriptions. Ant is assuming that if it isn’t
important enough to have a description, it isn’t important enough to be shown as a major target
that you would want to run.

If none of the targets has a description, you will see something like this:

Moodie_559-9C03.fm Page 37 Wednesday, September 28, 2005 8:15 AM

38 C H A P T E R 3 ■ U S I N G A N T

> ant -projecthelp

Buildfile: build.xml

Main targets:

Other targets:

 build-dtd
 build.path
 build.path.unix
 path.namespace
 properties.built-in
 properties.custom
 properties.environment
 properties.localfile
 properties.localfile.env
 properties.localfile.prefix
 properties.resourcefile
 properties.url

If you add a description, such as the one shown in Listing 3-5, then only that target will be
displayed.

Listing 3-5. Adding a Description to a Target

<target name="build-dtd" description="Create an Ant DTD">
 <antstructure output="./project.dtd"/>
</target>

Now if you run the -projecthelp command again, Ant will display only this target:

> ant -projecthelp

Buildfile: build.xml

Main targets:

 build-dtd Create an Ant DTD

To run this target, execute the following in the same directory as the build file:

> ant build-dtd

Moodie_559-9C03.fm Page 38 Wednesday, September 28, 2005 8:15 AM

d10c55b52b1f8994064c85cd755fb5a9

C H A P T E R 3 ■ U S I N G A N T 39

The <description> element adds a master description to a build file if you use it as a child
element of <project>.

<description>
 Apache Ant book example project. The main targets are listed below.
</description>

You may use more than one <description> element if you want. Each one will print
its message above the target descriptions. Here’s the relevant ant command to display the
descriptions you have added:

> ant -projecthelp

Buildfile: build.xml

 Apache Ant book example project. The main targets are listed below.

Main targets:

 build-dtd Create an Ant DTD

If you want Ant to always run one target before running another one, such as an initialization
target before a compilation target, then you need to specify the name of the first target you
want to run in the second target’s depends attribute, as shown in Listing 3-6.

Listing 3-6. Setting a Dependency

<?xml version="1.0"?>

<project name="Apache Ant Project" basedir="." default="build-dtd">

 <target name="pre-dtd">
 ...
 </target>

 <target name="build-dtd" depends="pre-dtd"
 description="Create an Ant DTD">
 <antstructure output="./project.dtd"/>
 </target>

</project>

In this example, the build-dtd target depends on the pre-dtd target. Once pre-dtd finishes
successfully, build-dtd runs any tasks that it contains. Here’s the result of running Ant with the
default target:

Moodie_559-9C03.fm Page 39 Wednesday, September 28, 2005 8:15 AM

40 C H A P T E R 3 ■ U S I N G A N T

Buildfile: build.xml

pre-dtd:

build-dtd:

BUILD SUCCESSFUL
Total time: 6 seconds

You can set as many target names in depends as you want by separating each name with a
comma. Ant works through them one at a time until they all succeed or one fails.

The <target> element has more attributes, but these use properties, which I haven’t
covered yet. I’ll do so now.

Working with Properties
While you write an Ant build file in XML, Ant has a few tricks up its sleeve to make the build file
as flexible as possible. This is particularly important when working with platform-independent
build files. Hard-coding directory paths and filenames is not a good idea in any area of program-
ming, and you should attempt to avoid it in your source code. If this is the case, you don’t want
to undo all your careful work by hard-coding values into your build files.

Ant has a number of ways for you to make your build files portable and easily maintain-
able. The first three I will describe allow you to specify properties that can easily be changed
from build to build, which allows you to configure the build for the local environment. The
fourth technique allows you to incorporate certain conditions in your build files so that different
results are obtained depending on the local environment.

■Note The first three techniques are by far the most common, but you may find conditional processing
useful. You should at this stage, however, form the opinion that you can treat Ant as a scripting tool. It does
not do much more than simple conditions, such as if...then constructs, and does not handle errors. Of
course, extensions to Ant have been written to overcome some of these perceived problems, and it is up to
you whether you think you need them. I will provide pointers to extensions at the appropriate stages in this book.

Before learning about the techniques, you will look at the Ant concept of properties. Ant
tasks use Ant properties to set attribute values at run time, which means the values of those
attributes are not hard-coded.

Moodie_559-9C03.fm Page 40 Wednesday, September 28, 2005 8:15 AM

C H A P T E R 3 ■ U S I N G A N T 41

■Note The ${} notation used by Ant means “display the value of this property.” Remember this when using
some of the property-checking techniques described in this chapter. It is quite easy to forget that you want to
specify the name of the property rather than its value.

You may want to set the base directory of the build at run time to allow for changes in
directory structure. To do so, you have to place a property marker in the basedir attribute of
the <project> element, as shown in Listing 3-7.

Listing 3-7. A Property Marker in the <project> Element

<?xml version="1.0"?>
<project basedir="${base.dir}">

</project>

The ${base.dir} string inserts the value of the base.dir property at run time. If the base.dir
property has not been set, Ant uses the literal string. This may or may not be a problem depending
on the situation. For example, many build files use properties to set the locations of scratch and
distribution directories. Before you run Ant, you are expected to set these properties in one of
the ways described next. If you do not, you may end up with a directory structure like Figure 3-1.

Figure 3-1. Directory structure when properties are not set

This is not a problem in the case of a build, because the directory names will remain
constant throughout the build and you will be removing the scratch directory structure once
you have finished the build anyway.

You may have a problem if the name of a JAR or WAR file must be set as a property or if you
are referencing an existing directory in your build file. In the latter case, the build will fail if your
source directory is called src and you are using a property called src.dir, because Ant will look
for a directory called ${src.dir} if the src.dir property is not set.

So, properties provide a standard build file that can be configured easily, removing the
need for hard-coded strings. You should ensure that your properties are logically named so
that other people can quickly and easily get an idea of how your project works when you are not
there. You may even find that you benefit if you return to a project after a long break.

Moodie_559-9C03.fm Page 41 Wednesday, September 28, 2005 8:15 AM

42 C H A P T E R 3 ■ U S I N G A N T

Naming properties as you would name Java packages is a good convention to use. For
example, all properties that are associated with the initialization stage of the build could be
prefixed init., while those associated with the compilation stage could be prefixed build..
This separates them into discrete bundles and makes maintaining each build stage that much
easier.

Using Built-in Properties
Ant provides you with certain built-in properties that you may find useful during your build
process. They mainly provide information about the version of Ant and Java you are using and
the current project, the latter of which you can use to set other paths in the project.

■Note The built-in properties described in the following two sections have the common naming convention
analogous to Java packages that I advocated previously. As such, you may want to avoid using the prefixes
these properties use when naming your own properties.

Accessing Ant’s Built-in Properties

Table 3-2 describes the five built-in Ant properties.

These properties are unique to Ant and are shown in Listing 3-8. The <echo> task will display
the specified message to standard out and is a good way to demonstrate the substitution that
occurs when you use properties.

Table 3-2. Ant’s Built-in Properties

Property Description

ant.file The absolute path to the current build file.

ant.java.version The version of Java that Ant uses.

ant.project.name The name of the project as set in the <project> element’s name
attribute. If you have not set this attribute, Ant will substitute the
literal string ${ant.project.name}.

ant.version The version of this Ant installation. This is not just the version
number and includes information such as the compilation date.

basedir The base directory for this build, as defined in the basedir attribute of
the <project> element. If you do not set this attribute, Ant uses the
current directory.

Moodie_559-9C03.fm Page 42 Wednesday, September 28, 2005 8:15 AM

C H A P T E R 3 ■ U S I N G A N T 43

Listing 3-8. Displaying Ant’s Built-in Properties

<?xml version="1.0"?>

<project name="Apache Ant Properties Project" basedir=".">

 <target name="properties.built-in">
 <echo message="The base directory: ${basedir}"/>
 <echo message="This file: ${ant.file}"/>
 <echo message="Ant version: ${ant.version}"/>
 <echo message="Project name: ${ant.project.name}"/>
 <echo message="Java version: ${ant.java.version}"/>
 </target>
</project>

Run the properties.built-in target, and you should see something like the following:

properties.built-in:
 [echo] The base directory: C:\AntBook
 [echo] This file: C:\AntBook\build.xml
 [echo] Ant version: Apache Ant version 1.6.3beta1 compiled on March 31 2005
 [echo] Project name: Apache Ant Properties Project
 [echo] Java version: 1.4

To see the substitution that Ant uses for the ant.project.name property, remove the name
property from the <project> element. You will see something like the following when you run Ant:

[echo] Project name: ${ant.project.name}

Accessing System Properties

Ant also gives you access to the Java system properties as if you had called java.lang.System.
getProperties(). This can, for example, allow you to build platform-specific paths and directory
hierarchies. Listing 3-9 shows an example of this.

Listing 3-9. Building a Platform-Specific Path

 <target name="build.path">
 <echo message="File: ${basedir}${file.separator}build.xml"/>
 <echo message="Path: ${basedir}${file.separator}build.xml ➥

${path.separator}${basedir}${file.separator}build.properties"/>
 </target>

Moodie_559-9C03.fm Page 43 Wednesday, September 28, 2005 8:15 AM

44 C H A P T E R 3 ■ U S I N G A N T

This is quite a handful, so it should be noted that you don’t always have to work with plat-
form-specific file and path separators. You may have to worry about separators if you build a
path of any kind to pass to a command-line tool, because Ant treats the raw path you build as
a string and does not do any substitutions.

On the other hand, when you build a path with any of Ant’s tasks, Ant is quite happy to
convert the separators into ones appropriate for the operating system on which it is running.
Ant will also do the conversion if you pass the string that you have built to its tasks. Therefore,
you could rewrite the previous listing, as shown in Listing 3-10, if you intend to use the path
only with Ant tasks. The major problem with separators comes when you are using property
files, which are covered in the “Setting Properties in Property Files” section.

Listing 3-10. Building a Platform-Specific Path with Unix-Style File Separators

<target name="build.path.unix">
 <echo message="File: ${basedir}/build.xml"/>
 <echo message="Path: ${basedir}/build.xml;➥

 ${basedir}/build.properties"/>
</target>

Don’t worry if the display shows a mixture of file separators. Ant is still treating these as
strings. To see how Ant does the conversion, see the discussion of the refid attribute in the
“Using a Reference” section.

■Note The Ant manual comes with a complete list of system properties for your reference, along with a
description of each. They may come up in later discussions in this book and will be explained at those times.

Setting Properties in the Build File
The first method of providing custom properties is with <property> elements in an Ant build
file. Unlike the <project> and <target> elements, the <property> element is defined as a task.
This means you can include <property> elements inside a target so that properties can be set
conditionally, depending on certain conditions or depending on which target has been
selected.

You can also set properties at the beginning of a build file so that they apply to the entire
build. This means you can set important constant values in a central location so that they are
easy to find and change, should the project change. You should remember that properties set
inside a target override any properties set at the project level. Naming again comes into this,
and you should consider whether your target-level properties should be identified as such by
using a prefix to avoid confusion and possible namespace clashes.

■Note Properties set in a target are available to targets that depend on it, as well as to targets that it calls
(more on this in Chapter 9).

Moodie_559-9C03.fm Page 44 Wednesday, September 28, 2005 8:15 AM

C H A P T E R 3 ■ U S I N G A N T 45

Using a Name-Value Pair

The simplest and most obvious use of the <property> task is to set a property using a name-
value pair, as shown in Listing 3-11.

Listing 3-11. Setting a Property with a Name-Value Pair

<target name="properties.custom">
 <property name="build.no" value="1.1"/>
 <echo message="Build no. = ${build.no}"/>
</target>

You can set the value of a property to the value of another property. This can be useful if
you will be referencing a verbose built-in property multiple times, much like Listing 3-9 did.
This is as simple as placing a property marker in the value attribute of a <property> task, as
shown in Listing 3-12.

Listing 3-12. Setting a Property to the Value of Another Property

<target name="properties.custom">
 <property name="fs" value="${file.separator}"/>
 <property name="ps" value="${path.separator}"/>

 <echo message="File: ${basedir}${fs}build.xml"/>
 <echo message="Path: ${basedir}${fs}build.xml${ps}➥

 ${basedir}${fs}build.properties"/>
</target>

The fs and ps properties are set to the values of the file.separator and path.separator
properties, respectively.

Using a File Location

The name property has two other potential partners you can use to set a property. The first is
location, which you can use to set the value of a property to the location of a file. If you supply
a relative path, Ant will expand the path to make it absolute and then store it as the value of the
property. If you provide an absolute name, Ant will store it as is, though with the path separa-
tors adjusted for the platform as appropriate. Listing 3-13 shows how to set a property to a
filename using a relative path.

Listing 3-13. Setting a Property to a Filename Using a Relative Path

<target name="properties.custom">
 <property name="project.dtd" location="project.dtd"/>
 <echo message="Location of project.dtd: ${project.dtd}"/>
</target>

This will display something like the following, showing that Ant has expanded the relative
path to an absolute path:

Moodie_559-9C03.fm Page 45 Wednesday, September 28, 2005 8:15 AM

d10c55b52b1f8994064c85cd755fb5a9

46 C H A P T E R 3 ■ U S I N G A N T

[echo] Location of project.dtd: C:\AntBook\project.dtd

You can see how this is an important tool to have if your build file will be working with files
on a number of operating systems, especially when building paths. If you want to ensure that
the files you reference are indeed the files you think they are, you should use this technique.
That way, different setups on different systems will not interfere with your build.

Using a Reference

The second partner to name is refid, which is a reference to an object defined elsewhere in the file.
The reference allows you to reuse chunks of the build file (termed an object in this case) so that
common classpaths and paths can be shared among targets. Many tasks have a refid attribute,
and they all perform similar tasks. In the case of the <property> task, the refid attribute assigns
the value of the referenced object to the property named with the name attribute. There is no
point in assigning anything other than a pathlike structure in this case because you won’t be
able to use any other kind of reference once it has been stored in the property. The “Using
Pathlike Structures” section covers pathlike structures.

Listing 3-14 shows that a path will be converted into the appropriate path for the current
operating system. In this case, the path is a Unix-style path. If you are working on a Unix
system, substitute the Windows path to see the example in action.

Listing 3-14. Ant Converts a String into the Appropriate Path

<target name="properties.custom">
 <!-- Windows users should leave this line uncommented -->
 <property name="build.path"
 value="${basedir}/build.xml:${basedir}/build.properties"/>

 <!-- Unix users should remove the above line
 and uncomment the below line -->
 <!--
 <property name="build.path"
 value="${basedir}\build.xml;${basedir}\build.properties"/>
 -->

 <path id="build.path.id">
 <pathelement path="${build.path}"/>
 </path>

 <property name="build.path.property" refid="build.path.id"/>

 <!-- The converted string that Ant uses as a path -->
 <echo message="Converted string: ${build.path.property}"/>

 <!-- The unconverted string, which Ant treats as a string -->
 <echo message="Path: ${build.path}"/>
</target>

Moodie_559-9C03.fm Page 46 Wednesday, September 28, 2005 8:15 AM

C H A P T E R 3 ■ U S I N G A N T 47

The original build.path variable is a string property with Unix-style file and path separators (or
Windows-style ones if you have changed the file on Unix). In this code, you create a path with
a reference called build.path.id and pass the value of the build.path property into it. Ant
converts this string to the local operating system format before storing it as a reference. Remember,
this is not the same as a property, so you create a new property called build.path.property so
that you can see the new, converted value of the path. In other words, the <echo> task does not
support the refid property and so cannot display the contents of a reference, which in this case
you want to do.

The result should be like this:

properties.custom:
 [echo] Converted string: C:\AntBook\build.xml;
 C:\AntBook\1stApp\build.properties
 [echo] Path: C:\AntBook\1stApp/build.xml:
 C:\AntBook/build.properties

This is proof that Ant does the conversion: the unconverted path still contains the Unix-
style path separator and has a mixture of file separators.

Accessing Environment Variables

The final technique available to you when setting properties in the build file is using the
environment attribute of the <property> element. You should use this attribute by itself only
and not in combination with any of the other techniques supplied. Ant won’t let you use the
environment attribute with any of the attributes described previously and doesn’t guarantee
results when used with any of the attributes described in the next section.

The environment attribute gives you access to the operating system’s environment variables so
that you can use them in your build process. For example, you may want to add a note about
which architecture the build was carried out on or use the system classpath as the classpath
when Ant compiles the Java classes.

The value you set in the environment attribute is the prefix you must use when referencing
an environment variable in the build file. So, if you set the value of environment to env, you
would reference the system classpath using ${env.CLASSPATH}. Ant is case-sensitive in this
case, even if the host operating system is not.

Listing 3-15 shows how to access system environment variables.

Listing 3-15. Gaining Access to the System’s Environment Variables

<target name="properties.environment">
 <property environment="env"/>
 <echo message="Built on: ${env.OS} ${env.PROCESSOR_ARCHITECTURE}"/>
 <echo message="ANT_HOME: ${env.ant_home}"/>
</target>

If you run this example, you will see something like the following, depending on your
operating system:

Moodie_559-9C03.fm Page 47 Wednesday, September 28, 2005 8:15 AM

48 C H A P T E R 3 ■ U S I N G A N T

properties.environment:
 [echo] Built on: Windows_NT x86
 [echo] ANT_HOME: ${env.ant_home}

Ant has not read the value of ANT_HOME because it is looking for an environment variable
called ant_home.

The <property> task has other attributes, but you use them to load properties from a file
rather than to set properties in the build file. The next section shows how to deal with these
attributes.

Setting Properties in Property Files
Setting properties in the build file is a useful technique when you are working with common
code repositories or servers. For example, if you have one CVS repository for all your code, you
should set its value in the build file and discourage developers from changing it. In other words,
setting properties in the build file is an excellent way of centralizing common, constant infor-
mation and should be seen as such.

You can use properties for more than that, however. Not every piece of information in a
build process is a constant value on every machine that the build file could possibly be run on.
Users or developers may store third-party JAR files in different places to you and to other people
who are likely to use the build file. Test servers may have different URLs depending on location
because testing tends to occur on a local level, behind firewalls, and so on.

You will still have to use properties in situations like these, but you cannot specify these
values in advance. The best way to work with localized information is to distribute a properties
file with the names of the attributes and example values, which local users can change to suit
their setup. Ant can then load these properties during the build. In addition to separating
constants from local properties, properties files are easier to edit and more compact than their
<property> task equivalents, as you will see next.

The most common technique is for developers and users to make a copy of the master
properties file (build.properties.default), name it build.properties, and place it in the
base directory. You must then make sure you import the build.properties file before the
build.properties.default file. This means that local settings override the defaults (more on
this in the “Examining Property Precedence” section). Another technique is to encourage
developers and users to copy the build.properties file to their “home” directory and use the
${user.home} system property to reference its new location. This file then takes precedence
over the default file.

You can of course set all your properties in a properties file if you want to enforce absolute
centralization.

■Note You’ll look at the <property> attribute that imports the file after the discussion on property files.
For now, assume that the properties are loaded in any examples.

Moodie_559-9C03.fm Page 48 Wednesday, September 28, 2005 8:15 AM

C H A P T E R 3 ■ U S I N G A N T 49

Writing a Property File

Ant property files must conform to the same format as Java property files, as used by the
java.util.Properties class. This means all characters must be in ISO 8859-1 format, and if
they are not, you can use the native2ascii tool that comes with the Java distribution to convert
the file.

Each property is represented by a name-value pair, separated with an equals sign, and
comments are delimited with a hash character, as shown in Listing 3-16.

Listing 3-16. The Basic Syntax of a Properties File

A comment is indicated by a hash mark
property.name=property.value

You can load a property file and, thus, the properties it contains in three ways: from a local
file using a filename, from a URL, and from a file located on Ant’s classpath.

One particularly nice feature of Ant property files is in-file property expansion. This
feature means you can use properties set in a file to build the values of other properties set in
that file. You can use this technique to your advantage in a number of situations, including
building classpaths from third-party JARs and setting server names, both of which are shown
in Listing 3-17.

Listing 3-17. In-File Property Expansion in a Property File

server.name=localhost
server.port=8080
server.scheme=http
server.manager.name=manager

server.url=${server.scheme}://${server.name}:${server.port}/➥

${server.manager.name}/

j2ee.jar=${env.J2EE_HOME}/lib/j2ee.jar
jsp.jar=${env.CATALINA_HOME}/common/lib/jsp-api.jar
servlet.jar=${env.CATALINA_HOME}/common/lib/servlet-api.jar
mysql.jar=${env.CATALINA_HOME}/common/lib/mysql.jar

build.classpath=${mysql.jar};${j2ee.jar};${jsp.jar};${servlet.jar}

The server.url and build.classpath properties are constructed from other properties in
the properties file. Ant will import the properties and resolve them before running the build, so
order is not important in the property file. However, order is important in the build file. When
Ant imports the properties from the property file, it does so as part of the build sequence as set
by you. Any properties you set before the import are available when the import occurs and so
can be used to resolve property values. Any properties you set after the import are not available
for resolving.

Moodie_559-9C03.fm Page 49 Wednesday, September 28, 2005 8:15 AM

50 C H A P T E R 3 ■ U S I N G A N T

■Caution Windows users cannot use back slashes in path names in property files, though back slashes
are allowed in build files. This is consistent with ISO 8859-1, which uses back slashes as escape characters.
If you use any back slashes, Ant will strip them out, leaving you with a horrible agglutinated mass. You have
two options: you can use forward slashes as described or escape your back slashes with another back slash,
like so: \\.

This process has implications for the property file shown in Listing 3-17. The four properties
that hold the path to a JAR file depend on environment variables, and these are available only
if you use the following before you import the property file:

<property environment="env"/>

Figure 3-2 shows the process. You can see how no environment variables are available in
the process on the right, so the in-file expansion does not happen.

Figure 3-2. In-file expansion and property loading order

This is really just an extension of the behavior you saw when I discussed the ant.project.
name property in the “Accessing Ant’s Built-in Properties” section. If the property is not set,
then Ant will treat the property marker as a string.

To ensure that you do not rely on outside properties, you can set all the required informa-
tion in the property file, as shown in Listing 3-18.

Listing 3-18. Removing the Need for Environment Variables

j2ee.home=C:/j2ee
catalina.home=C:/jakarta-tomcat

j2ee.jar=${j2ee.home}/lib/j2ee.jar
jsp.jar=${catalina.home}/common/lib/jsp-api.jar
servlet.jar=${catalina.home}/common/lib/servlet-api.jar
mysql.jar=${catalina.home}/common/lib/mysql.jar

build.classpath=${mysql.jar};${j2ee.jar};${jsp.jar};${servlet.jar}

Moodie_559-9C03.fm Page 50 Wednesday, September 28, 2005 8:15 AM

C H A P T E R 3 ■ U S I N G A N T 51

This keeps the property file internally consistent, which aids any maintenance you may
undertake. However, this does not solve the problem if you still need to use environment variables,
but want to ensure they are always loaded.

As mentioned, Windows users should be careful when specifying paths, such as in the
value for j2ee.home. If you do not take this precaution, Ant will remove the back slash when you
build a path. Here’s what the path would look like after you have built it using in-file expansion:

[echo] Build classpath: C:j2ee/lib/j2ee.jar;

Notice the missing back slash. Now, if you feed this into a <path>, Ant will treat the colon
as a Unix-style path separator followed by a back slash. It will then treat your path as two paths
relative to the current basedir and expand them as follows, accounting for the local operating
system:

[echo] Build classpath converted: C:\AntBook\ch03\C;
 C:\AntBook\ch03\j2ee\lib\j2ee.jar

One way to use environment variables and keep the property file internally consistent is to
remove the “home” settings from the property file and use environment variable references in
the build file. Listing 3-19 shows the new property file portion.

Listing 3-19. Removing References to Application “Home” Directories

j2ee.home=C:/j2ee
catalina.home=C:/jakarta-tomcat

j2ee.jar=lib/j2ee.jar
jsp.jar=common/lib/jsp-api.jar
servlet.jar=common/lib/servlet-api.jar
mysql.jar=common/lib/mysql.jar

Remove the build.classpath property
build.classpath=${mysql.jar};${j2ee.jar};${jsp.jar};${servlet.jar}

The consequences of this change are that you now can’t build the classpath in the prop-
erty file and must remember to append the environment variables in the build file. Listing 3-20
shows the new build file segment (assuming you have loaded the properties).

Listing 3-20. Building the Classpath in the Build File with Environment Variables

<property environment="env"/>
<path id="build.classpath.id">
 <pathelement path="${env.J2EE_HOME}/${j2ee.jar}"/>
 <pathelement path="${env.CATALINA_HOME}/${jsp.jar}"/>
 <pathelement path="${env.CATALINA_HOME}/${servlet.jar}"/>
 <pathelement path="${env.CATALINA_HOME}/${mysql.jar}"/>
</path>

Moodie_559-9C03.fm Page 51 Wednesday, September 28, 2005 8:15 AM

52 C H A P T E R 3 ■ U S I N G A N T

Your choice of technique largely depends on whether you need environment variables. If
you do, then you should really use the final technique described. If not, then filling in values, as
shown in Listing 3-18, is the best option. Grouping “home” directories in one section of the
property file adds to the centralization and maintainability of the file.

Loading Properties from a Local File

It is usual to provide a properties file with any source distribution, and most build projects will
have a local properties file on the file system. If you are providing a local build file, you should
provide a README or some other kind of information pointing to the settings in the properties file.

If you want to use a local property file, then you must specify its location with the file
attribute of the <property> task. Listing 3-21 shows how to load the file from Listing 3-18 (the
one that uses “home” directory properties).

Listing 3-21. Loading a Local Property File

<target name="properties.localfile">

 <property file="build.properties"/>

 <path id="build.classpath.id">
 <pathelement path="${build.classpath}"/>
 </path>

 <property name="build.classpath.property" refid="build.classpath.id"/>

 <echo message="Server URL: ${server.url}"/>
 <echo message="Build classpath: ${build.classpath}"/>
 <echo message="Build classpath converted: ${build.classpath.property}"/>
</target>

As mentioned previously, Ant properties are subject to namespace rules such as variables
in programming, so there is a chance imported properties listed in a property file may conflict
with properties that have already been set in the build file. To avoid this, you can append a
prefix to the properties that you know come from the property file. To specify the prefix, add a
prefix attribute in conjunction with the file attribute, as shown in Listing 3-22.

Listing 3-22. Adding a Prefix to Imported Properties

<target name="properties.localfile.prefix">

 <property file="build.properties" prefix="imported"/>

 <path id="build.classpath.id">
 <pathelement path="${imported.build.classpath}"/>
 </path>

 <property name="build.classpath.property" refid="build.classpath.id"/>

Moodie_559-9C03.fm Page 52 Wednesday, September 28, 2005 8:15 AM

d10c55b52b1f8994064c85cd755fb5a9

C H A P T E R 3 ■ U S I N G A N T 53

 <echo message="Server URL: ${imported.server.url}"/>
 <echo message="Build classpath: ${imported.build.classpath}"/>
 <echo message="Build classpath converted: ${build.classpath.property}"/>
</target>

Ant will add a period after the prefix without you having to specify that it should do so.
You can also load a property file that is located on your classpath (the one you used to run

Ant). The resource attribute has the same function as the file attribute when you use it as you
used the file attribute in the two previous examples, except that Ant searches your classpath
for it and not Ant’s base directory. Therefore, if you substitute the resource attribute for the
file attribute and the current directory is in your classpath, you will not see any change in
functionality. You can also use the prefix attribute with the resource attribute to manage
property names.

resource also allows you to search a custom classpath to find a properties file using the
classpath attribute or the classpathref attribute. classpath accepts a standard classpath and
will convert the string into one that is appropriate for the local operating system. You can also
specify a classpath with a nested <classpath> element, which performs the same operation as
the classpath attribute. Listing 3-23 shows both of these techniques.

Listing 3-23. Setting a Classpath Where a Properties File Is Located

<target name="properties.resourcefile">

 <!--
 <property resource="build.res.properties" classpath="./lib"/>
 -->

 <property resource="build.res.properties">
 <classpath path="./lib"/>
 </property>

 <path id="build.classpath.id">
 <pathelement path="${build.classpath}"/>
 </path>

 <property name="build.classpath.property" refid="build.classpath.id"/>

 <echo message="Server URL: ${server.url}"/>
 <echo message="Build classpath: ${build.classpath}"/>
 <echo message="Build classpath converted: ${build.classpath.property}"/>
</target>

If you have a project classpath defined in an earlier <path> structure, then you can refer-
ence this by using the classpathref attribute instead of the classpath attribute.

<property resource="build.res.properties"
 classpathref="project.classpath"/>

Moodie_559-9C03.fm Page 53 Wednesday, September 28, 2005 8:15 AM

54 C H A P T E R 3 ■ U S I N G A N T

Using a resource means that you can maintain some control over the property file if you
want. For example, you could set it to read-only before placing it on the classpath. This ensures
that Ant can use the properties it contains, but that users can’t overwrite them.

■Note If you load more than one property file, the order of loading determines which properties have precedence.
If a property has already been loaded in a previous file, it is ignored if it is loaded in a subsequent file.

Loading Properties from a Remote File

If you like the sound of maintaining control over your property files or want to distribute them
to various locations where the build will be taking place, then you can store them on a web
server and get Ant to retrieve the properties from there. To retrieve properties from a remote
file, set the value of the url property to the location of the property file. (This always requires a
network connection.) You can also use the prefix attribute if you want. Listing 3-24 shows this
technique.

Listing 3-24. Retrieving Properties from a Remote File

<target name="properties.url">

 <property url="http://localhost:8080/antBook/properties/build.properties"/>

 <path id="build.classpath.id">
 <pathelement path="${build.classpath}"/>
 </path>

 <property name="build.classpath.property" refid="build.classpath.id"/>

 <echo message="Server URL: ${server.url}"/>
 <echo message="Build classpath: ${build.classpath}"/>
 <echo message="Build classpath converted: ${build.classpath.property}"/>
</target>

Summarizing the Property Task
Table 3-3 summarizes the commands discussed previously and shows which ones are mutually
exclusive. None of these attributes is required, though you must specify one of environment,
file, name, resource, or url.

Moodie_559-9C03.fm Page 54 Wednesday, September 28, 2005 8:15 AM

C H A P T E R 3 ■ U S I N G A N T 55

Table 3-3. The <property> Task’s Attributes

Attribute Description Restrictions

classpath Ant uses this classpath to search
for the file named in resource. You
can specify a classpath with a nested
<classpath> element as well.

Valid only with the resource
attribute. Only one of classpath
and classpathref may be used.

classpathref Ant uses this classpath to search for
the file named in resource. It refers
to a path set earlier in the file using
a <path> element.

Valid only with the resource
element. Only one of classpath and
classpathref must be used.

environment The prefix to use when referencing
the operating system’s environ-
ment variables.

Only one of environment, file,
resource, or url may be used in a
particular <property> task. May not
be used if name is used.

file A property file that contains the
properties you want to load.

Only one of environment, file,
resource, or url may be used in a
particular <property> task. May not
be used if name is used.

location The value of the property is set to
the absolute filename of this file.
You can specify a relative filename,
and Ant will expand it and store
the value.

Used with name. Only one of
location, value, or refid may be
used with name. May not be used
with any other attributes.

name The name of the property to set. May not be used with environment,
file, resource, or url.

prefix The prefix to add to imported
properties. Ant adds a period after
the prefix.

May be used only with file, resource,
or url.

refid A reference to an object defined
earlier in the file.

Used with name. Only one of location,
value, or refid may be used with
name. May not be used with any other
attributes.

resource A file that Ant will look for on the
current classpath. The classpath
can be set with the classpath or
classpathref attributes.

Only one of environment, file,
resource, or url may be used in a
particular <property> task. May not
be used if name is used.

url A URL where you have placed a
property file that contains the
properties you want to load.

Only one of environment, file,
resource, or url may be used in a
particular <property> task. May not
be used if name is used.

value The value you want to assign to
the property.

Used with name. Only one of location,
value, or refid may be used with
name. May not be used with any
other attributes.

Moodie_559-9C03.fm Page 55 Wednesday, September 28, 2005 8:15 AM

56 C H A P T E R 3 ■ U S I N G A N T

Setting Properties at the Command Line
The final way to set properties is at the command line. You can specify individual properties
using the -Dproperty=value syntax, or you can load the properties from a property file using the
-propertyfile option. As noted at the beginning of the chapter, the -Dproperty=value syntax
takes precedence. In fact, -Dproperty=value takes precedence over all property values in the
build. For example, if you wanted to override the server name because the main development
server is down, you can run the following:

> ant -Dserver.name=remotehost properties.localfile

[echo] Server URL: http://remotehost:8080/manager/

This has overridden the value imported from a property file that was loaded in the build file.
The property to supply at the command line does not have to be set in the build file. In

some cases, you may want to specify a property’s value at the command line only; the best
example of this is when you want to supply a username and password for a server or a database.
A build file is not a very secure location for sensitive information, such as passwords, because
it is written in plain, human-readable text.

Being able to supply passwords at the command line significantly improves your security,
though you should remember that the command may still reside in your shell’s history for
anyone to see. Physical access to your terminal should be just as important as electronic access.

Examining Property Precedence
As mentioned, properties set at the command line override any properties in the build file,
including those imported from a properties file. I’ve also touched on how loading a property
file overrides properties set in the build file and any properties that are loaded subsequently.
The precedence picture is almost complete, though remember this general rule:

Properties that are defined first take precedence.

Therefore, those defined at the command line have the highest precedence because they
are defined before the build file is read. After this, the order of <property> tags is important. The
first <property> tag has precedence over the second, and so on. Here are the contents of the
build.properties file:

property.example=Local File
property.file.example=build.properties

And here’s the build.properties.default file:

property.example=Default File
property.file.example=build.properties.default

Listing 3-25 shows an example that demonstrates precedence.

Moodie_559-9C03.fm Page 56 Wednesday, September 28, 2005 8:15 AM

C H A P T E R 3 ■ U S I N G A N T 57

Listing 3-25. Targets That Demonstrate Property Precedence

<?xml version="1.0"?>

<project name="Apache Ant Properties Project" basedir="." default="print-file">

 <property name="property.example" value="Global"/>
 <property file="build.properties"/>
 <property file="build.properties.local"/>

 <target name="print-global">
 <echo message="In print-global"/>
 <echo message="The value of property.example is: ${property.example}"/>
 </target>

 <target name="print-target" depends="print-global">
 <property name="property.example" value="Target"/>

 <echo message="In print-target"/>
 <echo message="The value of property.example is: ${property.example}"/>
 </target>

 <target name="print-file" depends="print-target">
 <property name="property.file.example" value="build.xml"/>

 <echo message="In print-file"/>
 <echo>
 The value of property.file.example is: ${property.file.example}
 </echo>
 </target>

</project>

If you run this example, here’s what happens:

> ant

Buildfile: build.xml

print-global:
 [echo] In print-global
 [echo] The value of property.example is: Global

print-target:
 [echo] In print-target
 [echo] The value of property.example is: Global

Moodie_559-9C03.fm Page 57 Wednesday, September 28, 2005 8:15 AM

58 C H A P T E R 3 ■ U S I N G A N T

print-file:
 [echo] In print-file
 [echo]
 [echo] The value of property.file.example is: build.properties
 [echo]

BUILD SUCCESSFUL
Total time: 1 second

You can see how the property.example value that you set in the first <property> element
overrides the values in the two property files and the value set in the print-target target. This is
because you set it first. Also note how the value of property.file.example from build.properties
overrides the other settings because you define it before any other instances of this property.

Now move the <property> elements around like this:

<property file="build.properties"/>
<property file="build.properties.default"/>
<property name="property.example" value="Global"/>

Here’s the result of running the build again:

Buildfile: build.xml

print-global:
 [echo] In print-global
 [echo] The value of property.example is: Local File

print-target:
 [echo] In print-target
 [echo] The value of property.example is: Local File

print-file:
 [echo] In print-file
 [echo]
 [echo] The value of property.file.example is: build.properties
 [echo]

BUILD SUCCESSFUL
Total time: 1 second

Moodie_559-9C03.fm Page 58 Wednesday, September 28, 2005 8:15 AM

C H A P T E R 3 ■ U S I N G A N T 59

This time the value from the local properties file is used. Now, run the build with command-
line properties like so:

> ant -Dproperty.file.example=command-line

Buildfile: build.xml

print-global:
 [echo] In print-global
 [echo] The value of property.example is: Local File

print-target:
 [echo] In print-target
 [echo] The value of property.example is: Local File

print-file:
 [echo] In print-file
 [echo]
 [echo] The value of property.file.example is: command-line
 [echo]

BUILD SUCCESSFUL
Total time: 1 second

Now the command-line property has taken precedence.

Using Properties to Control a Build
Any builds can become complex to match a complex project. However, you might not always
want to execute every part of a build, or you may want to execute only certain parts if a condi-
tion is true (or false for that matter). You can of course create a build sequence using target
dependencies, which means you can chain targets together. Using this mechanism, you can
even integrate conditions that cause the build process to fork and create a different distribution.
For example, the sample application that appears later in the book has a stand-alone Java
client and a web-based interface, though they share database connection code. The build
process for these two sections of the application starts with the common code before splitting,
depending on which one you are building.

Figure 3-3 shows this situation.

Moodie_559-9C03.fm Page 59 Wednesday, September 28, 2005 8:15 AM

d10c55b52b1f8994064c85cd755fb5a9

60 C H A P T E R 3 ■ U S I N G A N T

Figure 3-3. A forking build process

This build process is a simple enough one to model using dependences. In this case, you
would simply set the depends attribute of the stand-alone target to the name of the target that
builds the common code. The same is true of the web application target.

An alternative is to use the final two <target> element attributes: if and unless. These
affect whether a target runs and depend on properties. Setting if to the name of a property
means that if the property is set, then the target should run. Setting unless to the name of a
property means that the target should run unless that property is set. It does not matter what
value the property has, as long as it is set. null doesn’t exist in Ant.

■Note The value set in the if and unless attributes should be the name of a property, not the value a
property contains. Do not use the ${} notation unless you really mean to set the name of a property as the
value of another property.

if overrides unless if they have the same property as a value, though you’ll have absolutely
no reason to want to do this. You should also be aware that these settings do not affect the
running of any targets listed in the depends attribute, should it be specified. These are iterated
over as normal, and it is only when they all succeed that Ant checks the if and unless attributes
of this target.

Application builds are not always as simple as this, however. For example, you might want
to obtain and build the third-party libraries only if you do not already have them. This means
Ant will have to check whether a certain file exists in the build directory structure; if the file

Moodie_559-9C03.fm Page 60 Wednesday, September 28, 2005 8:15 AM

C H A P T E R 3 ■ U S I N G A N T 61

exists, Ant will skip the first two steps in Figure 3-3. This brings you to the first of the build
control elements: <available>.

Using the Available Task
The <available> task sets the value of a property if a resource exists when you run the build
process. This allows you to check for libraries and other files so that the build can proceed
without any errors. It also means you can avoid unnecessary steps if the files you need are
already available to Ant.

The default value of the property is true, which is enough for the purposes of the if and
unless attributes, which check to see whether a property is set. In other words, they don’t care
what the value is. If, however, you want to set a different value, you can. For example, you may
want to set the name of the resultant JAR file to a certain value depending on whether it contains
newly built third-party libraries or whether it uses existing, older libraries. The value to append
to the filename could be the value of the property set using the <available> task.

The available element has a number of attributes, each of which is described in Table 3-4.

Table 3-4. The Attributes of the <available> Task

Attribute Description

classname The Java class for which to look. You can set a classpath with the
classpath or classpathref attribute. You must specify one and only
one of the classname, the file, or the resource attribute.

classpath The classpath that Ant will use when working with the classname or
resource attribute. The default is the build’s classpath. Any directo-
ries or JARs that you specify in this attribute are appended to the
build classpath.

classpathref The reference ID of a classpath that you have defined earlier in the
build process.

file The name of a file for which to look. You must specify one and only
one of the classname, the file, or the resource attribute.

filepath The path to use when looking for the file specified in the file
attribute. The default is the base directory of the build.

ignoresystemclasses If you set this to true, the search will ignore Ant’s internal classes and
will use the classpath specified only as part of this <available>
element. The default is false.

property The name of the property you want to set. This attribute is required.

resource The name of a resource for which to look. This resource should be
located within the JVM. You must specify one and only one of the
classname, the file, or the resource attribute.

type Set this attribute to file if you want Ant to search for a file. Set it to
dir if you want Ant to search for a directory. If you do not set this
attribute, Ant will search for both.

value The value that this property will take if Ant finds the searched-for item.
The default is true.

Moodie_559-9C03.fm Page 61 Wednesday, September 28, 2005 8:15 AM

62 C H A P T E R 3 ■ U S I N G A N T

You can also specify the classpath and filepath elements as nested <classpath> and
<filepath> elements, which means you can use reference IDs should you so want.

Listing 3-26 shows an example where Ant checks whether you already have a version of the
JSTL. If you don’t, Ant retrieves a copy of the source and builds it.

Listing 3-26. Using the <available> Element to Check for the Existence of Third-Party Files

<?xml version="1.0"?>

<project name="Apache Ant Available Project" basedir="."
 default="build-jstl">

 <property name="jstl.src" value="./src/jstl"/>
 <property name="jstl.jar" value="./lib/jstl.jar"/>

 <available property="jstl.src.exists" file="${jstl.src}"/>
 <available property="jstl.jar.exists" file="${jstl.jar}"/>

 <target name="checkout-jstl" unless="jstl.src.exists">
 <echo message="Checking out ${jstl.jar}"/>
 ...
 </target>

 <target name="build-jstl" depends="checkout-jstl" unless="jstl.jar.exists">
 <echo message="Building ${jstl.jar}"/>
 ...
 </target>

</project>

The build-jstl target depends on the checkout-jstl target, so the latter will execute first.
This target will execute only if the <available> task has not found the source distribution of the
JSTL. If it has, you have no need to download the source from the server. Even if an existing
source distribution is found and Ant does not run the tasks contained in checkout-jstl, this
counts as a successful target completion, so Ant tries to run build-jstl, safe in the knowledge
that the source code is present.

Here Ant runs the build only if the JSTL binaries are not present, following a check by the
second <available> task. If the binaries are not present, Ant uses the source code found or
downloaded in the earlier step.

The following shows how to use the filepath attribute to replace the paths in the properties:

<property name="jstl.src" value="jstl"/>
<property name="jstl.jar" value="jstl.jar"/>

<available property="jstl.src.exists" file="${jstl.src}" filepath="./src"/>
<available property="jstl.jar.exists" file="${jstl.jar}" filepath="./lib"/>

Moodie_559-9C03.fm Page 62 Wednesday, September 28, 2005 8:15 AM

C H A P T E R 3 ■ U S I N G A N T 63

This all assumes you want to download the source code of the JSTL in the first place. If you
do not want to use the source code at any point, you won’t have to get involved in this kind of
checking and will just use the binary distribution.

Using the Uptodate Task
The <uptodate> task follows in the same vein as the <available> task in that it checks the status
of files in the build and sets a property as appropriate. In this case, if a set of source files was
modified after the set of files you are interested in working with, the <uptodate> element will set
the property to true. You can then use the if and unless attributes of a target to control compi-
lation and copying tasks, for example. As you can see, this task complements the <available>
task well, which allows you to remove a certain amount of redundancy from your projects.

Ant does these kinds of checks as part of its task functionality. For example, when you are
copying files, Ant will copy only those files that have changed. However, it still must spend time
checking each file before deciding which files to copy. In large projects, this could take a long
time. One way to cut down on this processing time is to use one sample file as the check for
whether it is worth copying the whole project or just a section.

Table 3-5 shows the attributes of this task, though you may specify certain nested elements
if you need to work with sets of files.

So, the srcfile attribute holds the original file, and you use the <uptodate> task to check
whether the targetfile is more recent (that is, more up-to-date) than the source file. If it is
more recent, the property is set.

The <srcfiles> nested elements are file sets and have the same attributes. Listing 3-27
shows how to set a file set and then use it later as part of an <uptodate> check.

Table 3-5. The Attributes of the <uptodate> Task

Attribute Description

property The name of the property you want to set. This attribute is required.

srcfile Ant will compare this file’s timestamp with the timestamp of the file
specified in the targetfile attribute. If this file’s timestamp is earlier
than the timestamp of the file named in targetfile, Ant will set the
property. This attribute is required unless you specify a nested
<srcfiles> element.

targetfile If this file’s timestamp is later than the timestamp of the file specified
in srcfile, Ant will set the property. This attribute is required unless
you specify a nested <mapper> element.

value The value that this property will take if the timestamp of the file speci-
fied in srcfile is later than the timestamp of the file specified in
targetfile. The default is true.

Moodie_559-9C03.fm Page 63 Wednesday, September 28, 2005 8:15 AM

64 C H A P T E R 3 ■ U S I N G A N T

Listing 3-27. Using a File Set As Part of an <uptodate> Check

<fileset dir="." id="uptodate.id">
 <include name="src/jstl/One.java"/>
</fileset>

<uptodate property="uptodate" targetfile="./One.java">
 <srcfiles refid="uptodate.id"/>
</uptodate>

<target name="compile" if="uptodate">
 <echo message="File changed: ${uptodate}"/>
</target>

The file that makes up the file set with the uptodate.id ID is the source file you want to
check. If it has changed more recently than the file specified in the targetfile attribute of
<uptodate>, then the property is not set and the compile target will not run. If the targetfile
file is more recent than the source file, then the compile target will run.

Listing 3-28 shows this example using a nested <mapper> element.

Listing 3-28. Using a File Set and Mapper As Part of an <uptodate> Check

<fileset dir="." id="uptodate.id">
 <include name="src/jstl/One.java"/>
</fileset>

<uptodate property="uptodate">
 <srcfiles refid="uptodate.id"/>
 <mapper type="merge" to="./One.java"/>
</uptodate>

<target name="compile" if="uptodate">
 <echo message="File changed: ${uptodate}"/>
</target>

Here you’ve just transferred the value of the targetfile attribute to the to attribute of the
mapper. This is actually what happens behind the scenes in Listing 3-27, because if you specify
nested <srcfiles> elements and a targetfile attribute, Ant uses a merge mapper anyway.

Using the Condition Task
The <condition> task is like the if construct in programming and is described as a generaliza-
tion of the two tasks described previously. This is true, and you can replicate the functionality
of the <available> and <uptodate> tasks using the <condition> task if you want.

Table 3-6 describes the attributes of the <condition> task.

Moodie_559-9C03.fm Page 64 Wednesday, September 28, 2005 8:15 AM

C H A P T E R 3 ■ U S I N G A N T 65

Using the Condition Task As an Available or Uptodate Task

The first example, shown in Listing 3-29, is a reworking of the <available> and <uptodate>
examples from before, using the nested <available> and <uptodate> elements. These take the
same attributes as before, except for property and value.

Listing 3-29. Using the <condition> Task Instead of the <available> and <uptodate> Tasks

<fileset dir="." id="uptodate.id">
 <include name="src/jstl/One.java"/>
</fileset>

<property name="jstl.src" value="jstl"/>
<property name="jstl.jar" value="jstl.jar"/>

<condition property="jstl.src.exists">
 <available file="${jstl.src}" filepath="./src"/>
</condition>

<condition property="jstl.jar.exists">
 <available file="${jstl.jar}" filepath="./lib"/>
</condition>

<condition property="uptodate">
 <uptodate>
 <srcfiles refid="uptodate.id"/>
 <mapper type="merge" to="./One.java"/>
 </uptodate>
</condition>

<target name="checkout-jstl" unless="jstl.src.exists">
 <echo message="Checking out ${jstl.jar}"/>
</target>

Table 3-6. The Attributes of the <condition> Task

Attribute Description

else If the nested condition is not matched, Ant will set the value of the property
to this value. If you do not specify this attribute, then the property is not set.

property The name of the property you want to set. This attribute is required.

value The value that this property will take if the nested condition is matched. The
default is true.

Moodie_559-9C03.fm Page 65 Wednesday, September 28, 2005 8:15 AM

66 C H A P T E R 3 ■ U S I N G A N T

<target name="build-jstl" depends="checkout-jstl" unless="jstl.jar.exists">
 <echo message="Building ${jstl.jar}"/>
</target>

<target name="compile" if="uptodate">
 <echo message="File changed: ${uptodate}"/>
</target>

Using the <os> Test

If you are working with a project that needs to check the operating system on which it is built
and carry out actions appropriately, then you can use the <os> nested element. Table 3-7 shows
the attributes of the <os> element, which you can combine to create a specific test. As a result,
none of these attributes is required.

For arch, name, and version, Ant calls the appropriate line in the following and compares
the value with that specified in the attribute:

System.getProperty("os.arch");
System.getProperty("os.name");
System.getProperty("os.version");

So, for the Windows 2000 machine that this book was written on, here are the appropriate
values:

os.arch = x86
os.name = Windows 2000
os.version = 5.0

The family attribute allows you to be much broader in your scope and test against oper-
ating systems that are pretty similar to each other. You don’t necessarily have to care which
version of Windows or Unix is running and so don’t need to research the exact values that the
previous lines of code would return.

Table 3-7. The Attributes of the <os> Element

Attribute Description

arch The architecture of the operating system for which you are testing.

family The operating system’s broad family. The possible values for this are listed after
the table.

name The name of the operating system for which you are testing.

version The version of the operating system for which you are testing.

Moodie_559-9C03.fm Page 66 Wednesday, September 28, 2005 8:15 AM

d10c55b52b1f8994064c85cd755fb5a9

C H A P T E R 3 ■ U S I N G A N T 67

Table 3-8 lists the possible values for the family attribute.

Listing 3-30 shows the family attribute in action.

Listing 3-30. Using the <os> Element’s family Attribute to Test the Operating System

<condition property="is.windows">
 <os family="windows"/>
</condition>

<condition property="is.unix">
 <os family="unix"/>
</condition>

<target name="do-windows" if="is.windows">
 <echo message="This is Windows"/>
</target>

<target name="do-unix" if="is.unix">
 <echo message="This is Unix"/>
</target>

Table 3-8. Possible Values for the family Attribute of the <os> Nested Element

Value Description

dos Matches all Microsoft DOS–based operating systems. This includes all versions
of Windows and OS/2.

mac Matches all Apple Macintosh operating systems.

netware Matches Novell NetWare.

openvms Matches OpenVMS.

os/2 Matches OS/2.

os/400 Matches OS/400.

tandem Matches Hewlett-Packard’s NonStop Kernel. This operating system used to be
called Tandem.

unix Matches all Unix-style operating systems. This includes Linux and the Mac
Unix-style operating systems.

win9x Matches Windows 95 and Windows 98.

windows Matches all versions of Windows.

z/os Matches z/OS and OS/390.

Moodie_559-9C03.fm Page 67 Wednesday, September 28, 2005 8:15 AM

68 C H A P T E R 3 ■ U S I N G A N T

Using the <equals> Test

The <equals> nested element tests two strings to see if they are equal. This is a classic example
of if functionality, and you can use it to check the values of properties or filenames. Table 3-9
shows the attributes of the <equals> element.

Using the <isset> Test

The <isset> element tests whether a property has been set in this project. You may find this
test most useful when used in conjunction with other tests (you’ll see how to do this in the
“Using Logical Operators” section). For example, you may want to test to see whether a command-
line property has been set and that a certain file exists and then run a target only if this is the case.

Table 3-10 shows the attribute of the <isset> element.

Using the <istrue> and <isfalse> Tests

The <istrue> and <isfalse> tests are related to and extend the <isset> test, but check that the
value of the property is true or false, respectively. Ant also considers yes and on to equal true
and considers no and off to equal false, so these values also satisfy these tests. <istrue> and
<isfalse> share the attribute shown in Table 3-11, though they produce opposite effects.

Table 3-9. The Attributes of the <equals> Element

Attribute Description

arg1 The first string to test. This attribute is required.

arg2 The second string to test. This attribute is required.

casesensitive Set this to true to make the test case-sensitive. The default is true.

trim Set this to true to trim any whitespace from the strings. The default
is false.

Table 3-10. The Attribute of the <isset> Element

Attribute Description

property The property to test. If it does not exist, the test fails. This attribute is required.

Table 3-11. The Common Attribute of the <istrue> and <isfalse> Elements

Attribute Description

value The value to test. You can specify a property value using the usual ${} syntax or a
constant to ensure the test always passes or fails, depending on your requirements.

Moodie_559-9C03.fm Page 68 Wednesday, September 28, 2005 8:15 AM

C H A P T E R 3 ■ U S I N G A N T 69

Using the <isreference> Test

The <isreference> test checks whether the given ID is indeed a valid reference. You can also
check whether this ID refers to a certain type of Ant structure.

Table 3-12 shows the attribute of the <isreference> element.

The value of the type attribute should correspond to the name of the element that represents
the Ant type. Listing 3-31 shows an example that tests for a file set.

Listing 3-31. A File Set Reference Is Tested Using the <isreference> Test

<condition property="is.fileset">
 <isreference refid="uptodate.id" type="fileset"/>
</condition>

<target name="fileset-prepare">
 <echo message="Value of is.fileset = ${is.fileset}"/>
</target>

The value of the <isreference> element’s type attribute is set to fileset, which corresponds
to the name of the element that represents a file set: <fileset>. So, the is.fileset property is
set only if the uptodate.id reference ID refers to a file set. If you omit the type attribute, the
property will be set if the uptodate.id reference ID is a valid ID. The type does not matter.

Using the <isfileselected> Test

The <isfileselected> test succeeds if a given file matches all the conditions specified as nested
selectors (covered in Chapter 4). Use it as you would a file set. Table 3-13 shows the attributes
of the <isfileselected> element.

Table 3-12. The Attributes of the <isreference> Element

Attribute Description

refid The ID of the reference you want to test. This attribute is required.

type The Ant type of the reference. If you do not specify this attribute, any type
is considered.

Table 3-13. The Attributes of the <isfileselected> Element

Attribute Description

basedir The root of the directory structure to search. The default is the project’s
base directory.

file The file you are checking. This attribute is required.

Moodie_559-9C03.fm Page 69 Wednesday, September 28, 2005 8:15 AM

70 C H A P T E R 3 ■ U S I N G A N T

Using the <checksum> Test

This is identical to the <checksum> task described in Chapter 6, and I will cover the details then.
You use this test to check that a file matches the checksum supplied as part of a download.
You’ll see this process when you examine the <modified> selector in Chapter 4.

Using the <http> Test

The <http> test checks that a web server provides a valid response and sets the property if this
is the case. This allows you to check whether a server is listening to requests before you begin a
download from it.

Table 3-14 shows the attributes of the <http> element.

Using the <socket> Test

The <socket> test checks that a process is listening at the specified server and port. Again, you
can use this to check that you can run a target that requires this to be the case.

Table 3-15 shows the attributes of the <socket> element.

Using the <filesmatch> Test

The <filesmatch> test checks whether two files are identical. The test follows three distinct
steps, and as soon as a file fails one of these steps, the whole test fails. The steps are as follows:

1. Do both files exist? If one does not exist, the test fails.

2. Do both files have the same filename? If not, the test fails.

3. Are the files the same size? If not, the test fails.

4. Do both files have the same number of bytes in the same sequence? If not, the test fails.

As you can see, the first three steps are there to stop the test getting as far as a byte-for-byte
check if at all possible, because that can become a costly operation for large files.

Table 3-14. The Attributes of the <http> Element

Attribute Description

errorsBeginAt The lowest HTTP response code that indicates there was an error as
far as this test is concerned. The default is 400.

url The URL of the server to query. This attribute is required.

Table 3-15. The Attributes of the <socket> Element

Attribute Description

port The port to which you want to connect. This attribute is required.

server The server to which you want to connect. This can be the hostname as
defined under DNS, or it can be an IP address. This attribute is required.

Moodie_559-9C03.fm Page 70 Wednesday, September 28, 2005 8:15 AM

C H A P T E R 3 ■ U S I N G A N T 71

Table 3-16 shows the attributes of the <filesmatch> element.

Using the <contains> Test

The <contains> attribute represents another classic if function: checking whether a string
contains another string. Table 3-17 shows the attributes of the <contains> element.

Using the <length> Test

The <length> test checks the length of a string or a file. It is actually a task in its own right, but
you can place it as a nested element of <condition> to use it as a test. This extends the function-
ality of the task in some ways, but reduces it in others. Table 3-18 shows the attributes of the
<length> element.

Table 3-16. The Attributes of the <filesmatch> Element

Attribute Description

file1 The first file in the test. This attribute is required.

file2 The second file in the test. This attribute is required.

Table 3-17. The Attributes of the <contains> Element

Attribute Description

casesensitive Set this to true to ensure that this check is case-sensitive. The default
is true.

string The larger string in which you want to search. This attribute is required.

substring The substring for which you want to search. This attribute is required.

Table 3-18. The Attributes of the <length> Element

Attribute Description

file The name of the file to test. You must specify one and only one of the
following: a file attribute, a string attribute, or a nested file set.

length The length you will be using as a comparison. This attribute is required.

string The string to test. You must specify one and only one of the following: a file
attribute, a string attribute, or a nested file set.

trim Set this to true to remove whitespace from the string specified in string. This
attribute is ignored if you specify a file attribute or a nested file set. The
default is false.

when The possible values are equal, greater, and less. The key to this attribute is to
say, “Pass this test when the file/string is equal to/greater than/less than the
length.” The default is equal.

Moodie_559-9C03.fm Page 71 Wednesday, September 28, 2005 8:15 AM

72 C H A P T E R 3 ■ U S I N G A N T

Using Logical Operators

As befits an implementation of the if programming construct, you can specify logical condi-
tions that apply to all the previous tests. The three logical operators are <not>, <and>, and <or>.

The <not> element does not accept any attributes and takes exactly one child element,
which may be any of the child elements of <condition>. That means this child element can
contain other child elements should you want it to do so. For example, <not> can contain an
<and> element that contains other conditions. The <not> element reverses the evaluation of the
element it contains.

The <and> element does not accept any attributes and can take any number of child elements.
These child elements can be any child element of <condition>, which of course means you can
specify an <and> child element. The <and> element evaluates to true only if all its child elements
evaluate to true, and it evaluates them in the order you specify them. Once a child element
evaluates to false, the test ends, and the parent <and> element evaluates to false.

This has important ramifications if your <and> element contains resource-intensive checks,
such as a byte-for-byte check using a <filesmatch> condition. You should always order your
nested conditions starting with the least intensive checks to ensure that you do not waste
processing time. It would be no fun to pass a byte-for-byte check and then fail an <isset>
check. It’s much better to do the checks the other way around.

The <or> element is even simpler than the <and> element. It does not accept any attributes
and can take any number of child elements. Again, these child elements can be any valid child
element of <condition>. In this case, the <or> element evaluates them in order and evaluates to
true as soon as one of the child elements does. The subsequent child elements are not evaluated
at all. Again, placing the least resource-intensive conditions first ensures that you do not
perform an undue amount of processing when running a build.

Working with Property Sets
You can group properties for ease of use. You create a property set using a <propertyset>
element and set its ID so you can use it later in your project. A property set acts upon the
existing properties in a project and includes and excludes them depending on any patterns you
set (patterns are covered in detail in Chapter 4).

The <propertyset> element has two attributes and one child element. Table 3-19 shows
the attributes.

You specify the selection criteria with nested <propertyref> elements (as well as nested
<propertyset> elements). In this case, the containing <propertyset> element includes all those

Table 3-19. The Attributes of the <propertyset> Element

Attribute Description

dynamic Tells Ant whether to recalculate the property set every time it is used. The
default is true.

negate Setting this attribute to true will reverse the selection of properties. In other
words, only properties that don’t match the nested criteria will be selected. The
default is false.

Moodie_559-9C03.fm Page 72 Wednesday, September 28, 2005 8:15 AM

C H A P T E R 3 ■ U S I N G A N T 73

properties that match the values in the <propertyref> elements. The <propertyref> element
has the attributes shown in Table 3-20, though you may specify only one of these at a time.

You can specify one mapper to change the property keys (see Chapter 11 for the details
of mappers).

Using Pathlike Structures
Large projects usually have large numbers of files and directories; you will want to treat many
of these as a group. For example, you may want to copy all the files with a certain extension into
another directory, while ignoring all the other files.

You may also want to work with the same group of files or directories on more than one
occasion during a build. For example, you may want to set a classpath for the project and use it
in all your compilation tasks.

Ant deals with groups of files and directories using pathlike structures, many specialized
forms of which are described in the next chapter. However, the two basic elements that use
pathlike structures, <path> and <classpath>, are relevant to this chapter and are useful additions
to the discussion.

Setting a Pathlike Structure
A pathlike structure is a reusable collection of files or directories that has a unique ID so that
whenever you want to use it, you supply its reference ID. You can apply this to a number of
situations; one example is as a constant value that you supply to compilation tasks. If you have
a set location where you store all your libraries and classes, be they Java or C, then you store the
value in a pathlike structure, which you then reference in the compilation steps of the build. In
other words, the pathlike structure is acting as your classpath for the purpose of the compilation.
You can use this technique to set search paths of all kinds; the “Setting Properties in Property
Files” section provides some examples.

Another way you can use pathlike structures is when you want to perform multiple opera-
tions on the same group of files or directories. For example, you may want to confirm that a set
of files exists before checking that the files are well-formed XML. Once you have done this, you
may want to then transform this XML into HTML using an XSLT style sheet. By grouping these

Table 3-20. The Attributes of the <propertyref> Element

Attribute Description

builtin Setting this to all will include all Ant’s built-in properties. Setting it to system
will include all the system properties. Setting it to commandline will include any
properties that were supplied at the command line.

name The property set will select this property only.

prefix The property set will select properties that begin with this prefix.

regex The property set will select properties that match this regular expression.

Moodie_559-9C03.fm Page 73 Wednesday, September 28, 2005 8:15 AM

d10c55b52b1f8994064c85cd755fb5a9

74 C H A P T E R 3 ■ U S I N G A N T

files as a pathlike structure, you can reference them using the unique ID, rather than using
their filenames each time.

Both cases implement the spirit of reusability to lighten the maintenance load significantly.
Centralizing groups of files and directories before carrying out operations with them or on
them is extremely useful, which makes pathlike structures indispensable.

Just like any other reusable object, pathlike structures have scope. If you define a pathlike
structure at the top level of your build file, that is, as a child element of <project>, then it is
available to the whole build file. However, if you define it as a child element of a <target> element,
it is available only in that target, in targets that depend on this target, and in any targets called
by that target (see the <ant> and <antcall> tasks and Chapter 9).

Listing 3-32 shows a few examples of setting a pathlike structure. The <path> element can
contain any number of <pathelement> and <path> child elements. You can use the id attribute
of the <path> element to refer to the entire pathlike structure in subsequent pathlike structures
or in tasks.

Listing 3-32. Building Pathlike Structures

<property environment="env"/>

<path id="build.path.id">
 <pathelement path="${env.ANT_HOME}/lib/ant.jar"/>
</path>

<!-- A short-form version of the above -->
<path id="build.path.id" path="${env.ANT_HOME}/lib/ant.jar"/>

<path id="build.path.complete">
 <path refid="build.path.id"/>
 <pathelement path="${env.ANT_HOME}/lib/mysql.jar"/>
</path>

The first two pathlike structures are the same, and you can refer to them using the
build.path.id reference. Note the distinction with properties: you cannot obtain the value
of a reference by wrapping it in ${} markers as you would for a property.

When you use a <path> element as a child of another path, it is usually to include a reference to
an existing pathlike structure, as is the case in Listing 3-32. Here you use the refid attribute to
substitute the value of the existing pathlike structure. Using the id attribute does not make
sense here because the built path will be available under the ID of the parent <path> element.
In the previous example, the second <path> element builds a new pathlike structure from the
build.path.id pathlike structure and ANT_HOME/lib/mysql.jar. You can now refer to this path-
like structure by using build.path.complete.

Setting a Classpath Pathlike Structure
Certain tasks take a classpath as a <classpath> child element. The <classpath> element is anal-
ogous to the <path> element, except that it cannot appear as a child element of <project> or
<target>, it cannot contain child <classpath> elements, and it cannot be given a reference ID.

Moodie_559-9C03.fm Page 74 Wednesday, September 28, 2005 8:15 AM

C H A P T E R 3 ■ U S I N G A N T 75

The <classpath> element can contain a child <path> element, which you would use in the
same way as the <path> child element in Listing 3-32. If you simply want to use an existing
pathlike structure as a classpath pathlike structure, use the refid attribute. Listing 3-33 shows
a number of classpath pathlike structures.

Listing 3-33. Using an Existing Pathlike Structure As a Classpath

<property environment="env"/>
<parenttask>
 <classpath>
 <pathelement path="${env.ANT_HOME}/lib/ant.jar"/>
 </classpath>
</parenttask>

<parenttask>
 <!-- A short-form version of the above -->
 <classpath path="${env.ANT_HOME}/lib/ant.jar"/>
</parenttask>

<parenttask>
 <classpath>
 <path refid="build.path.id"/>
 <pathelement path="${env.ANT_HOME}/lib/mysql.jar"/>
 </classpath>
<parenttask>

<parenttask>
 <classpath refid="build.path.id"/>
</parenttask>

All of these, bar the last example, are analogous to the <path> elements shown in the
previous section. The major difference is that <classpath> elements must be the child elements
of a containing task.

Summary
This chapter began with a look at Ant’s command-line options. These allow you to customize
and tweak Ant’s functionality to a great extent. One of the most powerful options at the command
line is the ability to specify property values and override the values of properties set within the file.

The rest of the chapter was dedicated to the basics of build files, which included the main
nontask elements and property files. The main message to retain from this chapter is that you
should endeavor to write the best build files you can. This means you will have to use many
techniques borrowed from the world of coding. Ant allows you to reuse helpful pieces of the
build file to cut down on redundancy and repetition and lets you import property values from

Moodie_559-9C03.fm Page 75 Wednesday, September 28, 2005 8:15 AM

76 C H A P T E R 3 ■ U S I N G A N T

a number of places. Both techniques lead to a loss of redundancy and an increase in centraliza-
tion and maintainability. The more you group important configuration information in one
place, the easier it is to maintain.

Ideally, you will get to a point where it is only the property file that changes when you send
out the project, and not the build file.

Moodie_559-9C03.fm Page 76 Wednesday, September 28, 2005 8:15 AM

77

■ ■ ■

C H A P T E R 4

Examining Ant’s Types

In the previous chapter, you saw how to run Ant and call targets within a build file. The build
file is where you describe the structure of the project and how Ant should work with it, meaning
it is the core of all your work with Ant. This chapter continues the examination of the build file,
as does the next chapter, and explores the final set of nontask XML elements available to you.

Many Ant tasks require information of one kind or another. This information can be direc-
tory structures, filenames, property values, and much more. Providing this information is not
what tasks are designed for; if nothing else, their name suggests action, movement, or activity,
not passively sitting and holding information. They require information, and without it they
cannot function. They are the verbs of the Ant universe.

Ant types are the placeholders for the information that Ant tasks require, and you specify
them using nested XML elements. You can specify many of them as child elements of a number
of Ant tasks, while others are quite specific in scope. Much of the information that Ant requires
is directory and file structure, but you can also use Ant types to provide information on regular
expressions and locations to redirect input.

As part of their role as information providers, Ant types are widely used as part of the path-
like structures you saw in the previous chapter. They extend the power and flexibility of
pathlike structures, allowing you to work with a huge number of directory and file combinations.
This aspect of Ant types is the main topic of this chapter, mainly because this is what you will
be using Ant types for most of the time. With that in mind, let’s look at these directory-based
types.

Using Directory-Based Types
Ant works with the existing directory structure of your projects and performs operations on the
files it contains. As I’ve mentioned on a number of occasions, the build file is a description of
the project. Now that it is time to discuss Ant types, you will see how exactly to describe the
project to Ant.

As is the case with many other aspects of Ant, the mechanism you use to work with files
and directories is very flexible. For example, you can specify individual files, individual direc-
tories, groups of files, groups of directories, groups of files that exclude certain other files at run
time, or any combination of these. If you want to work with a certain collection of files or direc-
tories, Ant will have the functionality to do it.

Moodie_559-9C04.fm Page 77 Tuesday, September 27, 2005 9:31 AM

78 C H A P T E R 4 ■ E X A M I N I N G A N T ’ S T Y P E S

Using Pattern Sets
The base element that governs the use of many of the other directory-based types is the pattern
set. A pattern set is a collection of patterns that Ant can use and reuse in tasks that perform
operations on files. The fundamental concept in pattern sets, and most of the directory-based
types described next, is the pattern.

Using Patterns

When working with files and directories, you will often find that you want to include only
certain files or exclude others from the Ant task you are running. By specifying a pattern for
each set of includes or excludes, you can cover the entire group rather than listing every single
file. Patterns follow the common wildcard convention used for matching filenames that you
will be familiar with, though Ant adds another useful feature to match multiple directories.
Table 4-1 summarizes this simple convention.

These patterns are relative to the base directory of the task that contains the pattern. This
can of course shift, depending on whether the task is using the project-level base directory or is
using another base directory because of a child Ant type. You can also combine the two character
patterns with other characters into one string. You cannot use the ** operator in the same
pattern segment as the other characters because it expands the entire directory structure and
is not a true pattern-matching operator. For example, lib/?** is not a valid pattern, but lib/?/** is.
In the latter case, Ant splits the pattern into segments because of the file separator. The distinc-
tion between these operators will become clear as you work through some examples.

First, ?.jsp matches A.jsp, B.jsp, and C.jsp, but not .jsp or index.jsp. The latter two file-
names do not have a single character and a single character only before the .jsp extension, so
the pattern does not match. The first three filenames do, so the pattern matches.

Second, the * wildcard will match with any combination, so *.jsp matches every one of
the filenames used in the previous example. Each one of them has zero or more characters
followed by .jsp. These operators will be fairly familiar and are widely used in a number of
operating system tools, but it is the ** operator that makes Ant shine. One characteristic of the
pattern-matching operators is that they match on a per-directory basis. This means that once
Ant has matched a directory, it moves onto the next directory in the string. Consequently, an *
at the end of a pattern will match only those files or directories that are in the final directory of
the pattern. In other words, it does not move down through the directory structure matching
everything.

Take the following directory structure as an example. The names in bold are files.

Table 4-1. Wildcard Characters Used in Ant Patterns

Character Description

? Matches a single character and a single character only.

* Matches zero or more characters.

** Matches zero or more directories if used as a directory name in a pattern.
Matches any file if used as a filename in a pattern.

Moodie_559-9C04.fm Page 78 Tuesday, September 27, 2005 9:31 AM

C H A P T E R 4 ■ E X A M I N I N G A N T ’ S T Y P E S 79

.
 /lib
 /java
 One.java
 Two.java
 /native
 one.c
 two.c

The pattern lib/* will match the java and the native directories, but not the files they
contain. Any operations using this pattern will affect the directories, which may lead to unex-
pected results if this is not what you intend. For example, if you attempt to copy lib using this
pattern, you will copy the lib directory and the two subdirectories (and only those two subdi-
rectories). You will end up with the lib directory and two empty subdirectories called java and
native at their destination. This may be what you want, but then again it may not, so you must
be careful when setting patterns like these.

Using the pattern-matching operators in combination is fairly simple. For example, emacs
backup files have a tilde added to the end of their filename, which allows you to locate them
and remove them from the file system when the time comes to clean up the file system or
distribute your code. To match them and no other files, you could use src/*.java?, which
would match all files with a .java extension in the src directory modified by emacs. However,
any .java~ files in subdirectories of src will not match this pattern.

■Note The pattern-matching operators look only for files deeper in the directory structure than Ant’s
basedir. This means you cannot use the .. directory name that represents the parent directory, because
the parent directory is not scanned. If you include this directory name in your pattern, Ant will not match
anything.

The ** operator is not a pattern-matching operator; rather, you use it to match paths and
files in the file system. So, to give a basic example, ** will match everything from Ant’s basedir
upward, including all filenames. You can also specify this using a bit of Ant shorthand, like so:
/. Any path ending in a \ or a / where a pattern is appropriate will be taken to mean ** or /**.

As an example, let’s return to the directory structure. The ** operator can help you match
all the files in subfolders of lib where the * operator could not. To match all subfolders and
their contents, you would use lib/**. This pattern tells Ant to look in the lib folder and then
move down the directory hierarchy until it reaches the end of every branch. Copying using this
pattern will give you the directory hierarchy shown previously.

You can see from this example that the * operator, when used to match files and directories
without modification, represents a single layer in the directory hierarchy at the point of refer-
ence, while the ** operator represents the entire directory hierarchy from the point of reference
down.

You can of course limit the ** operator by adding file separators to the pattern, which
will break the pattern into segments. Ant treats the ** operator in the same way as the pattern-
matching operators in this respect, in that it completes every match for a pattern segment up

Moodie_559-9C04.fm Page 79 Tuesday, September 27, 2005 9:31 AM

80 C H A P T E R 4 ■ E X A M I N I N G A N T ’ S T Y P E S

to the file separator before trying to match the next pattern segment. For example, src/**/
java/* will match paths such as src/web/java/PhotoServlet.java, src/client/java/
PhotoClient.java, and src/web/jsp/precompiled/java/Photo.jsp.class. It will not match
src/web/jsp/precompiled/java/org/apache/jsp/Photo.jsp.class. The section after the java
directory in the latter case does not match the /* pattern segment.

Setting Patterns

Patterns are powerful things but are no use by themselves. They are simply pieces of informa-
tion that you have to give to Ant to use, and in that respect, they are an integral part of the Ant
types. You will find that every one of the types described in this chapter can use them.

As was noted earlier, the usual way to include a pattern in an Ant type is through a pattern
set. This Ant type collects as many patterns as you want and uses them to specify which patterns
you want to include in an operation and which ones you want to exclude from an operation.

To specify a pattern set, include a <patternset> element in your build file. You can set
global pattern sets that many tasks and types in your project can reference, just as you could
with paths (see Chapter 3). As you will see throughout the rest of the chapter, pathlike structures
can use Ant types to build paths for use by tasks and as such use patterns and pattern sets
extensively.

Using Includes and Excludes

The <patternset> element has four attributes, each of which you can use to manage the files
and directories included in the task that uses the pattern. Table 4-2 shows these attributes. You
can also use nested elements to specify these values (more on this later in this section).

Ant processes all the includes first and then applies the excludes to this list. Therefore,
excludes always take precedence. One common error is to exclude everything and then include
only the files you want by placing the include pattern after the exclude pattern like so:

Table 4-2. Attributes of the <patternset> Element

Attribute Description

excludes A list of patterns separated by commas or spaces. If a file matches any of
these patterns, it is excluded from any task using this pattern. If you do not
use this attribute, then no files are excluded. Note that Ant has a number of
default exclude patterns, such as excluding CVS and Subversion repositories.
These are described in the “Working with Default Excludes” section.

excludesfile A file that specifies patterns to be used as for the excludes attribute. Each
line in the file is a pattern. Only one file may be listed. If you want to use
more than one file, insert <excludesfile> child elements.

includes A list of patterns separated by commas or spaces. If a file matches any of
these patterns, it is included in any task using this pattern. If you do not use
this attribute, then all files are included.

includesfile A file that specifies patterns to be used as for the includes attribute. Each line
in the file is a pattern. Only one file may be listed. If you want to use more
than one file, insert <includesfile> child elements.

Moodie_559-9C04.fm Page 80 Tuesday, September 27, 2005 9:31 AM

d10c55b52b1f8994064c85cd755fb5a9

C H A P T E R 4 ■ E X A M I N I N G A N T ’ S T Y P E S 81

<patternset excludes="**" includes="*.java"/>

Ordering the patterns in this way does not alter the way Ant processes them, and in this
case you have excluded all the files in the project, regardless of what the includes attribute
says. The includes mechanism implicitly excludes everything that does not match any of the
includes patterns, so you have no need to specify any excludes, unless you want to modify the
included set in a way that is not possible to do with the includes attribute (or the <include>
element, as discussed in a moment).

The best way to approach it is to use the excludes mechanism as a refinement of your
includes. As noted, this is how the mechanism works behind the scenes, so there’s no point in
trying to do anything else.

The nested elements have names that are analogous to those of the attributes listed in
Table 4-2—that is, <exclude>, <excludesfile>, <include>, and <includesfile>—and share the
attributes shown in Table 4-3. Note the singular versus plural distinction in the pattern attributes
and elements. This is because the attributes can take a list of patterns, while the elements
specify only one pattern.

You can use as many of these elements as you like in a <patternset> element. In the rest of the
chapter, you will see that these child elements also appear as child elements of other Ant types.

These elements adhere to the same rules as noted for the attributes. You can build a set of
includes and excludes with a combination of attributes and elements. For example, any patterns
you specify in an includes attribute are added to the patterns used in a nested <include> element.

Here’s an example of these nested elements:

<patternset id="src.files">
 <include name="${src}/**"/>
 <include name="build.*"/>
</patternset>

This pattern set includes all the files in the source tree and any file that matches the build.*
pattern.

Working with Default Excludes

Ant will exclude a number of file and directory types by default. These include, for example,
backup files or directories that make up a section of a CVS repository. It is assumed that you will
not want to include them in any directory-based operation, because they are not functional files.

Table 4-3. The Common Attributes of <exclude>, <excludesfile>, <include>, and
<includesfile>

Attribute Description

name The pattern to use in the case of <exclude> and <include> or the name of the file
to use in the case of <excludesfile> and <includesfile>. This attribute does not
take a list of patterns, so Ant expects only a single pattern here.

if Only use this pattern or read the file if this property is set.

unless Only use this pattern or read the file if this property is not set.

Moodie_559-9C04.fm Page 81 Tuesday, September 27, 2005 9:31 AM

82 C H A P T E R 4 ■ E X A M I N I N G A N T ’ S T Y P E S

In other words, you do not want to compile them, copy them, or package them in a zip file. The
downside is that you cannot delete them by default, though you can remove directories that
contain them. You can, however, override this default behavior should you want to work with
these default excludes. You can delete the directory patterns, such as **/CVS, by default.

The default exclude patterns are as follows:

**/*~
**/#*#
**/.#*
**/%*%
**/._*
**/CVS
/CVS/
**/.cvsignore
**/SCCS
/SCCS/
**/vssver.scc
**/.svn
/.svn/
**/.DS_Store

So, Ant will ignore files and directories that match these patterns, unless you are deleting
a directory, in which case it will remove the directory and any files and subdirectories, regard-
less of whether they match any of these patterns.

The first example will be the one from the previous section where you wanted to copy the
lib folder and its contents to a new location. Here’s the directory structure again as a reminder:

.
 /lib
 /java
 One.java
 Two.java
 /native
 one.c
 two.c

Recall that the lib/* pattern copied the lib directory and the two subdirectories, but not
the contents of the subdirectories. If you were to use the ** operator instead, meaning the pattern
would be lib/**, Ant would recurse through the entire directory structure from the lib directory
down, copying anything that it finds (minus any default excludes, of course).

Listing 4-1 shows the pattern sets for this example.

Moodie_559-9C04.fm Page 82 Tuesday, September 27, 2005 9:31 AM

C H A P T E R 4 ■ E X A M I N I N G A N T ’ S T Y P E S 83

Listing 4-1. Pattern Sets Demonstration, Contrasting the * and ** Patterns

<patternset id="pattern.id.one.star">
 <include name="lib/*"/>
</patternset>

<patternset id="pattern.id.two.star">
 <include name="lib/**"/>
</patternset>

The resulting directory structures are therefore as follows:

.
 /onestar
 /lib
 /java
 /native

 /twostar
 /lib
 /java
 One.java
 Two.java
 /native
 one.c
 two.c

To use a pattern set, you must include it as a child element of one of the directory-based
types, though, as you have seen, you can declare them at a project level and give them a refer-
ence ID. Some of these directory types are implicit pattern sets and so support the four child
elements discussed previously (<exclude>, <excludesfile>, <include>, and <includesfile>)
and the <patternset> element’s attributes in addition to their own.

Working with Directory Sets
A directory set is a collection of directories on which you want to perform an Ant operation. It is
important to note that not every Ant task that works with directories uses directory sets, so you
may find it more convenient to use file sets instead (described in the next section), even for
those tasks that support directory sets. If an Ant task has different behavior when using a directory
set, the difference will be noted in the section where that task is described.

You specify a directory set with the <dirset> element, which either you can place as a child
element of <project> and give an ID, or you can use as a child element of a task. Not all tasks
that use directory sets can accept them as child elements and may accept only references to
them. Table 4-4 describes those tasks that can use a directory set and how you specify one.

Moodie_559-9C04.fm Page 83 Tuesday, September 27, 2005 9:31 AM

84 C H A P T E R 4 ■ E X A M I N I N G A N T ’ S T Y P E S

When you specify a <dirset> element, whether as a child element of <project> or as a
child element of an appropriate task, it takes the <exclude>, <excludesfile>, <include>, and
<includesfile> child elements and the excludes, excludesfile, includes, and includesfile
attributes just as if it were a pattern set, in addition to those shown in Table 4-5.

Table 4-4. Ant Tasks That Can Use Directory Sets

Task Type Description

apply Core task Applies a command to the directories in the direc-
tory set. You specify a <dirset> child element for
this task (since Ant 1.6).

chmod Core task Modifies the permissions on the directories in the
directory set. You specify a <dirset> child element
for this task (since Ant 1.6).

javadoc Core task Creates Javadocs from the source files supplied.
Directories supplied create package names in the
Javadocs. You specify the directory set using the
<packageset> child element. This element has a
refid attribute that you can use to reference
directory sets that you have previously defined.

pathconvert Core task Converts the path of the directory set into an OS-
specific path. You must define a directory set else-
where and use a reference to it with this task’s
refid attribute.

subant Core task Runs sub-builds. You specify a <dirset> child
element for this task.

attrib Optional task Sets attributes for the directories in the directory
set (the files contained within are not affected).
This is a Windows-only task. You specify a
<dirset> child element for this task.

chgrp Optional task Changes the group membership of the directories
in the directory set (the files contained within are
not affected). This is a Unix-only task. You specify
a <dirset> child element for this task.

chown Optional task Changes the owner of the directories in the directory
set (the files contained within are not affected).
This is a Unix-only task. You specify a <dirset>
child element for this task.

Table 4-5. The Attributes of the <dirset> Element

Attribute Description

casesensitive Sets whether case is important in this directory set. To turn it on, use any
of true, yes, or on; to turn it off, use any of false, no, or off. The default
is true.

dir The root directory of this directory set. This attribute is required.

followsymlinks Sets whether Ant will include files linked symbolically. The default is true.

Moodie_559-9C04.fm Page 84 Tuesday, September 27, 2005 9:31 AM

C H A P T E R 4 ■ E X A M I N I N G A N T ’ S T Y P E S 85

Listing 4-2 shows the same directory set twice, the first time using an explicit pattern set
and the second time using an implicit pattern set. You can then refer to them by the ID specified
by the id attribute.

Listing 4-2. The Same Directory Set Using First an Explicit Pattern Set, Followed by an Implicit
Pattern Set

<dirset dir="." id="explicit">
 <patternset>
 <include name="lib/**"/>
 </patternset>
</dirset>
<dirset dir="." id="implicit">
 <include name="lib/**"/>
</dirset>

You can then reuse these directory sets in other directory sets within your build file, just as
shown here:

<dirset refid="explicit"/>
<dirset refid="implicit"/>

Working with File Sets
File sets are much more general collections than directory sets, in that they group files and
directories, while directory sets group only directories. They are also more flexible because
they allow you to specify all sorts of additional conditions on the files to include and exclude
from an operation.

You specify a file set using the <fileset> element, which either you can place as a child
element of <project> and give an ID or you can use as a child element of a task.

When you specify a <fileset> element, whether as a child element of <project> or as a
child element of an appropriate task, it takes the <exclude>, <excludesfile>, <include>, and
<includesfile> child elements and the excludes, excludesfile, includes, and includesfile
attributes just as if it were a pattern set, in addition to those shown in Table 4-6.

Table 4-6. The Attributes of the <fileset> Element

Attribute Description

casesensitive Sets whether case is important in this file set. To turn it on, use any of true,
yes, or on; to turn it off, use any of false, no, or off. The default is true.

defaultexcludes Sets whether this file set should use the default excludes (as described
previously). Valid values are yes and no. The default is yes, meaning that
Ant will use the default excludes.

dir The root directory of this file set. You must specify one of dir or file.

file A single file that will make up this file set. You must specify one of dir or file.

followsymlinks Sets whether Ant will include files linked symbolically. The default is true.

Moodie_559-9C04.fm Page 85 Tuesday, September 27, 2005 9:31 AM

86 C H A P T E R 4 ■ E X A M I N I N G A N T ’ S T Y P E S

Any patterns you use with a file set will apply the containing task to all the files and direc-
tories included and none of the ones excluded. Listing 4-3 shows how to create a file set that
does not use the default excludes.

Listing 4-3. A File Set That Turns Off the Default Excludes

<fileset dir="." defaultexcludes="no">
 <include name="lib/java/*.java?"/>
</fileset>

This file set is also an implicit pattern set. As mentioned, a file set is a more general version
of a directory set, and you can use one in all the tasks where you can use a directory set and
many more besides. The other difference is their ability to contain selectors.

Using Selectors

Sometimes it is not enough to exclude or include files using criteria based on their names. For
example, you may want Ant to move older versions of your project’s distribution to an archive
three months after their release before creating any more distributions. The best way to do this
would be to select by date and not by version numbers or filenames, because that slows down
the automation process.

Selectors are Ant’s mechanism for selecting files and directories using criteria other than
filenames. To specify a selector, you place it inside a selector container. The <fileset> element
is a special selector container in that it can contain any number of other selector containers
except another <fileset> element. It acts like an <and> selector container (covered in the next
section), which means that all its child selectors must match for a file to be included. In other
words, as soon as a file fails to match any of the nested selectors, Ant discounts it. This is an
analogue to patterns, where a file must match all the include patterns to be included.

If you want to configure a projectwide selector for reuse, you can specify a <selector>
element as a child element of <project>. This selector container can contain only one selector,
which may be another container, and you must give it an ID so that you can reference it later in
the project build. It also accepts if and unless attributes that work in the same way as with the
include/exclude mechanism explained earlier in the chapter.

The <selector> tag is not restricted to being a child element of <project>, and you can use
it within other selector containers to conditionally include files based on whether a property is
set. The following builds a file set only if the two.stars property is set. (The <filename> element
is explained next, but it includes the files specified by the pattern.)

<fileset dir=".">
 <selector if="two.stars">
 <filename name="lib/**"/>
 </selector>
</fileset>

Moodie_559-9C04.fm Page 86 Tuesday, September 27, 2005 9:31 AM

C H A P T E R 4 ■ E X A M I N I N G A N T ’ S T Y P E S 87

Using the Contains Selector

The <contains> selector includes only those files that contain the text specified by the text
attribute. Table 4-7 describes the attributes of this element.

Here’s an example that includes all the source files for a project, but only if they are
covered by the Apache License:

<fileset id="javadoc" dir="${src}">
 <include name="shared/**"/>
 <include name="stand-alone/**"/>
 <include name="web/java/**"/>
 <contains text="Licensed under the Apache License"/>
</fileset>

Using the Date Selector

The <date> selector allows you to select files that were last modified during a specified time
period. This time period can be a period before the specified date/time, a period after the specified
date/time, or an exact match of the specified date/time. Table 4-8 describes the attributes of
this element.

Table 4-7. The Attributes of the <contains> Element

Attribute Description

casesensitive Sets whether case is important in this search. The default is true.

ignorewhitespace Tells Ant whether to ignore whitespace in the searched-for string. The
default is false.

text The text for which to search. If a file contains this text, it is included. This
attribute is required.

Table 4-8. The Attributes of the <date> Element

Attribute Description

checkdirs Sets whether Ant should check the date of modification on directories. The
default is false.

datetime The date/time that forms the upper or lower boundary of the selector. The
default format is MM/DD/YYYY HH:MM {AM | PM}, though you can specify
another pattern with the pattern attribute. You must specify only one of
the datetime or millis attributes.

granularity The margin of error to use when checking the modification time, measured
in milliseconds. The default is 0 on non-DOS systems and 2000 on DOS
systems.

Moodie_559-9C04.fm Page 87 Tuesday, September 27, 2005 9:31 AM

d10c55b52b1f8994064c85cd755fb5a9

88 C H A P T E R 4 ■ E X A M I N I N G A N T ’ S T Y P E S

The following example includes all the HTML documentation of a project, but only if it is
older than the date, which is specified in British format:

<fileset dir="${src.shared}/docs">
 <include name="*.html"/>
 <date datetime="01/02/2005" pattern="DD/MM/YYYY"/>
</fileset>

Using the Depend Selector

The <depend> selector selects files only if they have been modified after their namesakes in
another location. This allows you to select only those files that have been updated in a new
release of a project, for example.

You can nest mappers within this selector, though an identity mapper is used by default.
(Chapter 11 covers mappers.) Table 4-9 shows the attributes of this selector.

To use this selector, you specify a file set as normal and then use the targetdir attribute to
tell Ant the location of the older distribution that it should compare with.

millis The number of milliseconds since 1.1.1970 that forms the upper or lower
boundary of the selector. You must specify only one of the datetime or
millis attributes.

pattern A date format compatible with the Java SimpleDate class to use with the
datetime attribute. The default is MM/DD/YYYY HH:MM {AM | PM}.

when Sets whether the time given in datetime or millis is the upper limit of the
time period or the lower limit. If you want the time period to end with
this date/time, set the value to before, meaning any file modified before this
date/time is included. If you want the time period to start with this date/time,
set the value to after, meaning any file modified after this date/time is
included. If you want to include only files that were modified at this exact
date/time, then set the value to equal, which is the default.

Table 4-9. The Attributes of the <depend> Element

Attribute Description

granularity The margin of error to use when checking the modification time, measured in
milliseconds. The default is 0 on non-DOS systems and 2000 on DOS systems.

targetdir The base directory where Ant will begin its search for the older files. This
attribute is required.

Table 4-8. The Attributes of the <date> Element (Continued)

Attribute Description

Moodie_559-9C04.fm Page 88 Tuesday, September 27, 2005 9:31 AM

C H A P T E R 4 ■ E X A M I N I N G A N T ’ S T Y P E S 89

<fileset id="javadoc" dir="${src}">
 <exclude name="*/conf/**"/>
 <exclude name="*/docs/*"/>
 <include name="shared/**"/>
 <include name="stand-alone/**"/>
 <include name="web/java/**"/>
 <depend targetdir="${docs}/api"/>
</fileset>

Here you include a number of files from across a project, but only if they are newer than
those in the ${docs}/api directory.

Using the Depth Selector

The <depth> selector lets you choose files from a portion of the project’s directory hierarchy,
depending on the depth of nesting. Table 4-10 shows the attributes of this selector.

Here’s an example that includes files only from the number of directories specified by the
user at the command line:

<fileset dir="${docs.all.dir}">
 <patternset refid="docs.all"/>
 <depth max="${user.depth}"/>
</fileset>

Using the Different Selector

The <different> selector selects files only if they are different from their namesakes in another
location. The criteria are as follows:

• If there is no file in the specified location, the file is different and is selected.

• If the files are different lengths, they are different.

• If you set the ignoreFileTimes attribute to false, then different timestamps will cause
files to be different.

• If you set the ignoreContents attribute to false, Ant checks the files byte for byte.

Table 4-10. The Attributes of the <depth> Element

Attribute Description

max The maximum number of directory levels that Ant will search. Files in deeper
levels will not be included. The default is no limit.

min The minimum number of directory levels that Ant will search. Files in higher levels
will not be included. The default is no limit.

Moodie_559-9C04.fm Page 89 Tuesday, September 27, 2005 9:31 AM

90 C H A P T E R 4 ■ E X A M I N I N G A N T ’ S T Y P E S

Table 4-11 shows the attributes of this selector.

The following uses all the documentation in a project, but only if it is different from the
existing built Javadocs:

<fileset dir="${docs.all.dir}">
 <patternset refid="docs.all"/>
 <different targetdir="${docs}/api" ignoreFileTimes="false"/>
</fileset>

Using the Filename Selector

The <filename> selector is an include/exclude mechanism; however, unlike the <include>
and <exclude> tags of pattern set fame, you can combine it with other selectors using selector
containers. In other words, the <filename> selector selects files based on a pattern.

Table 4-12 shows the attributes of this selector.

The following two file sets match the opposite files from each other:

Table 4-11. The Attributes of the <different> Element

Attribute Description

granularity The margin of error to use when checking the modification time, measured
in milliseconds. The default is 0 on non-DOS systems and 2000 on DOS
systems.

ignoreContents Tells Ant whether to carry out a byte-for-byte check. The default is false.

ignoreFileTimes Tells Ant whether to check file timestamps. The default is true.

targetdir The base directory where Ant will begin its search for the files to compare.
This attribute is required.

Table 4-12. The Attributes of the <filename> Element

Attribute Description

casesensitive Sets whether case is important in this search. The default is true.

name A pattern that Ant will use when searching for files. Any that match will
be selected (or not, depending on the value of the negate attribute). This
attribute is required.

negate Reverses the selection decision if set to true. Therefore, if you set this to true
and a file matches the pattern set in name, it is not selected. The default is
false.

Moodie_559-9C04.fm Page 90 Tuesday, September 27, 2005 9:31 AM

C H A P T E R 4 ■ E X A M I N I N G A N T ’ S T Y P E S 91

<fileset dir="${build}/build-mysql-jdbc">
 <filename name="mysql-connector*/*.jar" negate="true"/>
</fileset>

<fileset dir="${build}/build-mysql-jdbc">
 <include name="mysql-connector*/*.jar"/>
</fileset>

Using the Present Selector

The <present> selector selects files that have a namesake (or not, depending on the setting) in
a target directory, and for this reason it is case-sensitive. You can nest mappers within this
selector, though an identity mapper is used by default. (Chapter 11 covers mappers.) Table 4-13
shows the attributes of this selector.

The following uses all the documentation in a project, but only if corresponding built Javadocs
aren’t present in ${docs}/api:

<fileset dir="${docs.all.dir}">
 <patternset refid="docs.all"/>
 <present targetdir="${docs}/api" present="srconly"/>
</fileset>

Using the Containsregexp Selector

The <containsregexp> selector selects only those files that contain text matching a specified
regular expression. It has only one attribute (see Table 4-14).

Here’s an example that includes all the source files for a project, but only if they are covered by
the Apache License (though we are taking British spelling into account just in case):

Table 4-13. The Attributes of the <filename> Element

Attribute Description

present Tells Ant whether to select a file if it has a namesake or whether to select a file if
it doesn’t have a namesake. Set this attribute to both to require that the file have
a namesake or to srconly to require that it be a unique file. The default is srconly.

targetdir The base directory where Ant will begin its search for the files to compare. This
attribute is required.

Table 4-14. The Attribute of the <containsregexp> Element

Attribute Description

expression The regular expression to be used as a test. This attribute is required.

Moodie_559-9C04.fm Page 91 Tuesday, September 27, 2005 9:31 AM

92 C H A P T E R 4 ■ E X A M I N I N G A N T ’ S T Y P E S

<fileset id="javadoc" dir="${src}">
 <include name="shared/**"/>
 <include name="stand-alone/**"/>
 <include name="web/java/**"/>
 <containsregexp expression="Licensed under the Apache Licen[sc]e"/>
</fileset>

Using the Size Selector

The <size> selector places a limit on file size. Ant will not select any files that do not conform
to this limit. Table 4-15 shows the attributes of this selector.

Here you select only certain JAR files and only if they are smaller than 1 gigabyte:

<fileset dir="${httpunit.home}/jars">
 <include name="*.jar"/>
 <exclude name="junit.jar"/>
 <size value="1" units="Gi" when="less"/>
</fileset>

Using the Type Selector

The <type> selector allows you to select either files or directories, excluding the other type. You
would usually use this in conjunction with another selector in a selector container, so I will
cover it there. Table 4-16 shows the attribute of this selector.

Table 4-15. The Attributes of the <size> Element

Attribute Description

units The units of the value attribute. k, M, and G represent multiples of 1,000; Ki, Mi, and
Gi represent multiples of 1,024. The default is no units, which means the value
attribute represents bytes.

value The size of file that should be selected or not, depending on the value of the when
attribute. If you do not set the units attribute, this value is in bytes. This attribute
is required.

when Sets whether the size is the upper limit or the lower limit. If you want to include
files smaller than the size, set the value to less, meaning any file smaller than value
is included. If you want to include files larger than the size, set the value to more,
meaning any file larger than value is included. If you want to include only files with
this exact size, then set the value to equal. The default is less.

Table 4-16. The Attribute of the <type> Element

Attribute Description

type This value can either be dir or be file. This attribute is required.

Moodie_559-9C04.fm Page 92 Tuesday, September 27, 2005 9:31 AM

C H A P T E R 4 ■ E X A M I N I N G A N T ’ S T Y P E S 93

Using the Modified Selector

The <modified> selector is a much more complicated selector than the others already described,
mainly because it gives you so many options and is so flexible. In essence, it uses a hash from a
previous version, which it stores in a cache, and a hash of the current file to see if it has been
altered.

As things stand, the cache is a simple property file that follows a key-value format.

file's absolute file name=hash

Here’s an example cache file:

#Mon May 09 12:40:24 BST 2005
C\:\\AntBook\\ch04\\lib\\intext.txt=8653d5c7898950016e5d019df6815626
C\:\\AntBook\\ch04\\lib\\6.2.txt=777d45bbbcdf50d49c42c70ad7acf5fe

If a file was not in the cache, it passes the test, and the selector selects it and adds its hash
to the cache for future use if you have specified that option in the selector.

The process that this selector uses to compare files is as follows:

• It obtains the absolute path for the current file.

• It obtains the cached digest from the cache, using the file’s absolute path as the key (as
shown previously).

• It obtains the digest of the current file using the configured algorithm.

• It compares the two digests with the configured comparator.

• It updates the cache if needed and if you requested as such.

• It selects the file if the comparison result indicates it has been modified.

The <modified> element takes the attributes shown in Table 4-17.

Table 4-17. The Attributes of the <modified> Element

Attribute Description

algorithm Sets the type of algorithm you want Ant to use when computing the digest.
Setting this to hashvalue tells Ant to read the content of the file into a String
and use String.hashValue() to compute a hash. This value is then stored.
Setting this to digest tells Ant to use the java.security.MessageDigest to
compute the value. You can set the specific message digest algorithm with a
nested <param> element. The default is digest, which means Ant will create
an MD5 hash if you don’t use any <param> elements.

cache Sets the type of cache to be used. Unless you have created a custom selector,
the only option is a cache file as shown previously. The only valid value is
propertyfile, which is the default. The location of the cache file is set with
a nested <param> element. It is a file called cache.properties in the base
directory of this build by default.

comparator Sets the type of comparator. A value of equal is a straight object compar-
ison, while a value of rule is a java.text.RuleBasedCollator comparison.
The default is equal.

Moodie_559-9C04.fm Page 93 Tuesday, September 27, 2005 9:31 AM

94 C H A P T E R 4 ■ E X A M I N I N G A N T ’ S T Y P E S

You can specify each of these with a nested <param> element of the following form:

<param name="PARAM_NAME" value="VALUE"/>

<!-- An example -->
<param name="update" value="false"/>

In addition, you can change some other values with nested <param> elements. Table 4-18
shows the values for the <param> element’s name attribute and what values the value attribute
can take.

For example, if you want to use SHA and store the cache in a nondefault file, you could use
the following:

<modified>
 <param name="cache.cachefile" value="custom.properties"/>
 <param name="algorithm.algorithm" value="SHA"/>
</modified>

Using Selector Containers

I have mentioned selector containers a few times, and now it’s time to look at them. You will
often find occasions where one selector is not enough and you want to select on a number of
criteria, and this is where selector containers come in. They combine selectors and select only
those files from the combination that meet their own criteria.

You have already seen the <selector> container, so let’s move on to the others. Table 4-19
describes them and the attributes they can take.

seldirs Sets whether directories should be selected. The default is true.

update Sets whether Ant updates the cache when values differ. The default is true.

Table 4-18. Using the <param> Element’s name Attribute

Value of the name Attribute Possible Values for the value Attribute

algorithm.algorithm MD5 or SHA. MD5 is the default.

algorithm.provider The name of the provider. The default is null.

cache.cachefile The name of the cache file. cache.properties in the base
directory of this build is the default.

Table 4-17. The Attributes of the <modified> Element (Continued)

Attribute Description

Moodie_559-9C04.fm Page 94 Tuesday, September 27, 2005 9:31 AM

d10c55b52b1f8994064c85cd755fb5a9

C H A P T E R 4 ■ E X A M I N I N G A N T ’ S T Y P E S 95

So, to return to the <type> selector, the following example includes only files in the
${src.web}/pages directory that have been modified:

<fileset dir="${src.web}/pages">
 <and>
 <modified>
 <param name="cache.cachefile" value="custom.properties"/>
 <param name="algorithm.algorithm" value="SHA"/>
 </modified>
 <type type="file"/>
 </and>
</fileset>

Now this example will include all files that are covered by the Apache License or the GPL:

<fileset id="javadoc" dir="${src}">
 <include name="shared/**"/>
 <include name="stand-alone/**"/>
 <include name="web/java/**"/>
 <or>
 <containsregexp expression="Licensed under the Apache Licen[sc]e"/>
 <containsregexp expression="GNU GENERAL PUBLIC LICEN[SC]E"/>
 </or>
</fileset>

Of course, you may not want to include any open-source files at all.

Table 4-19. Selector Containers

Container Attributes Description

<and> Any file that is selected matches every selector
contained by the <and> element.

<majority> allowtie (default true) Any file that is selected matches the majority of
the selectors contained by the <majority>
element. The allowtie attribute resolves ties.

<none> A file is selected only if it does not match any of
the selectors contained by the <none> element.

<not> This container can hold only one other selector
and reverses the decision.

<or> Any file that is selected matches one selector
contained by the <or> element.

Moodie_559-9C04.fm Page 95 Tuesday, September 27, 2005 9:31 AM

96 C H A P T E R 4 ■ E X A M I N I N G A N T ’ S T Y P E S

 <fileset id="javadoc" dir="${src}">
 <include name="shared/**"/>
 <include name="stand-alone/**"/>
 <include name="web/java/**"/>
 <none>
 <containsregexp expression="Licensed under the Apache Licen[sc]e"/>
 <containsregexp expression="GNU GENERAL PUBLIC LICEN[SC]E"/>
 </none>
</fileset>

Implicit File Sets

Ant allows you to specify implicit file sets (much like implicit pattern sets). These are always
directory-based tasks and will be noted in the appropriate section.

Working with Class File Sets
Class file sets are specialized file sets that add class files if they depend on a specified base class
(the specified class is also included). You can then use this file set to create a zip or JAR file of
classes for use later. With all related files collected together, you can be sure that the complete
application is assembled and ready to go. It is usual to set an ID for a class file set and use it
elsewhere in the build file.

To use class file sets, you have to have the Jakarta Byte Code Engineering Library (BCEL)
classes, available from jakarta.apache.org/bcel/, in Ant’s classpath. The easiest way to do this
is to copy the bcel.jar file into the ANT_HOME/lib directory. You can of course also supply the
path to this file using the -lib command-line option.

A class file set is represented by the <classfileset> element, which has one attribute in
addition to the usual file set attributes, as shown in Table 4-20.

The nested elements of <classfileset> are <root> and <rootfileset>. The <root> element
has a required attribute called classname, as shown in the next example:

<classfileset id="zip.classes.id" dir="${build.stand-alone}">
 <root classname="org.mwrm.client.Client"/>
</classfileset>

This snippet creates a class file set based on the org.mwrm.client.Client class. In other
words, this file and only those files on which it depends will be part of this class file set.

Table 4-20. The Attribute of the <classfileset> Element

Attribute Description

rootclass The name of the class that forms the base of this class file set. The default is
null. This attribute is not required because you can specify a root class with
nested elements (see the following discussion).

Moodie_559-9C04.fm Page 96 Tuesday, September 27, 2005 9:31 AM

C H A P T E R 4 ■ E X A M I N I N G A N T ’ S T Y P E S 97

The next example uses the <rootfileset> element, which is itself a file set of class files. The
BCEL functionality will expect class files in this case and will exclude any nonclass files auto-
matically, so ensure your patterns match class files.

<classfileset id="zip.classes.id" dir="${build.stand-alone}">
 <rootfileset dir="${build.stand-alone}"
 includes="org/mwrm/**/*.class"/>
</classfileset>

This example uses the entire project as the base for the class file set and includes all the
class files and any other files on which they depend.

Working with File Lists
From the previous discussion, you can see that file sets are filters that exclude or include files
according to a number of criteria. Those criteria are set in patterns or selectors, which can of
course select individual files, though those files must exist. If you want to work with files that
may or may not exist, then you need to use a file list.

File lists do not support pattern matching, so you must specify filenames. If you use a wild-
card, you must use it literally. The <filelist> element takes the attributes shown in Table 4-21.

You can nest a <file> element to specify a file. The following shows how you can use both
approaches to include the same file:

<filelist dir="lib/java" files="One.java"/>

<filelist dir="lib/java">
 <file name="One.java"/>
</filelist>

Working with Zip File Sets
When you want to zip a collection of files using Ant, you can use a file set to build the collection.
However, Ant also comes with zip file sets, which have extra functionality that adds more power
and flexibility to the zip process. They are a special type of file set and take the same attributes
as a file set, in addition to the attributes shown in Table 4-22.

Table 4-21. The Attributes of the <filelist> Element

Attribute Description

dir The base directory. This attribute is required.

files A comma- or whitespace-delimited list of files to include in this file list.
This attribute is required unless you specify a nested <file> element.

Moodie_559-9C04.fm Page 97 Tuesday, September 27, 2005 9:31 AM

98 C H A P T E R 4 ■ E X A M I N I N G A N T ’ S T Y P E S

You can use the <zipfileset> element as a child element of the four tasks that create
archives (<zip>, <war>, <jar>, and <ear>).

Summary
In this chapter, you looked at ways to pass information to Ant so that it can perform actions
based on that information. Many of the build file elements described are information aggregators
that group file and directory names according to patterns. In other words, they collect informa-
tion on the files and directories you want to use. Once this information has been gathered, Ant
passes it to the tasks so that they can carry out their functions.

You can select files in many ways; the first way you looked at was patterns. Ant uses the
standard wildcard characters (* and ?) and introduces the ** operator that tells Ant to expand
directory structures. These operators are powerful in combination and make working with files
much easier.

Ant provides you with a set selectors that you can use to further refine your selection
criteria. They allow you to select files and directories based on physical properties, such as size
and date of modification, rather than just on name.

Table 4-22. The Attributes of the <zipfileset> Element

Attribute Description

dirmode A three-digit octal string that specifies the user, group, and other modes for
directories. This works only on Unix systems. The default is 755.

filemode A three-digit octal string that specifies the user, group, and other modes for
files. This works only on Unix systems. The default is 644.

fullpath If this zip file set represents a single file, this attribute sets its location in the
archive. This attribute and prefix are mutually exclusive.

prefix If this zip file set represents a collection of files, the files are all prefixes with
the value of this attribute. This attribute and fullpath are mutually exclusive.

src A zip file whose contents will be extracted and added to this zip file set. This
attribute and dir are mutually exclusive.

Moodie_559-9C04.fm Page 98 Tuesday, September 27, 2005 9:31 AM

99

■ ■ ■

C H A P T E R 5

Building a Project

The first four chapters in this book dealt with setting up and installing Ant, as well as the basic
building blocks of a project’s build file. Now it’s time to work with an example project to
demonstrate some of the major Ant tasks. The example application will also serve as a template
for organizing other projects. This is of course only one way of doing it. As long as your projects
are organized sensibly, you can carry out the same project build steps.

Many project teams split their projects into pieces that logically belong together. For
example, an application may have a GUI as well as a web interface. In this case, the project
team would place the core functionality that deals with the database into one section, and they
would place GUI code and web interface code in two other, separate sections. This allows the
separation of functionality and effort. In other words, everyone knows exactly where the
boundaries are in the code and where the boundaries are in responsibility.

Ant is particularly useful in this regard because, as I’ve said before, it is designed to model
the project structure. You can easily separate project sections in an Ant build file. This kind of
organization makes your projects easier to manage, and you’ll find that you can also conceptu-
alize them better.

This chapter will deal with the initial stages of the project where you take the raw building
blocks of an application and turn them into a packaged application for distribution or imme-
diate use. You’ll see how a project is organized along the lines of functionality, how Java code
is compiled, and how other files are added to a distributable package.

Introducing the Example Application
The example application is a database-backed application that users can access with a command-
line Java client or a JSP/servlet web application. This will allow you to work with the core database-
access code and other common functionality while using two separate front-end interfaces. You
could quite easily implement a GUI for this application as well. The application also includes
documentation that you have to package with the appropriate distribution.

The application is simple, but it uses a wide range of features so you can get used to adding
many kinds of components to a project. For example, it uses a stand-alone Java class with a
main() method as the command-line client, JSP tag files, servlets, plain HTML, Java property
files, and third-party open-source software. The main instructive point is the separation of
functionality.

Moodie_559-9C05.fm Page 99 Friday, September 30, 2005 8:01 AM

100 C H A P T E R 5 ■ B U I L D I N G A P R O J E C T

Introducing the Shared Code
The command-line client and the web interface share a few classes. One shared class contains
the database-access code that connects to the database and pulls data from it. This class then
passes the data to whichever client class instantiated it. By doing this, you centralize any SQL
statements and database connection code so that all releases of the application behave in the
same way. Figure 5-1 shows this simple abstraction.

Figure 5-1. Both interfaces use a common data-access object.

You can see how the build process for both sides of the project will need to include the
database layer shown here. In fact, Figure 5-1 describes the build process extremely well. The
command-line client depends on the data-access code, so the target that builds the command-
line client should depend on the target that builds the data-access object. The same goes for
the web interface.

The two strands of the application also share a class that holds search choice constants.
This means each client can offer the search options to users in an application-specific way,
while using a common nomenclature underneath. For example, should a user want to order
the results alphabetically, they would pass a command-line option to the command-line
client, but would select a link or a drop-down box in the web interface. Once the application
has divined which option the user has chosen, it sends the choice to the data-access layer,
which also has access to the common choices. In other words, they all speak the same
language. Figure 5-2 shows this new set of relationships.

Moodie_559-9C05.fm Page 100 Friday, September 30, 2005 8:01 AM

C H A P T E R 5 ■ B U I L D I N G A P R O JE C T 101

Figure 5-2. Each component uses a set of constants to abstract the search choice.

The final part of the shared code is a Java properties file that contains database connection
information. The application uses JDBC to connect to the database, so providing the database
driver and URL with a properties file is easy.

To start organizing the code, you need a src directory to store all your application’s code.
The first division you are going to use is, as you’ve just seen, shared code. Therefore, the shared
child directory will contain the code that is common to all the incarnations of the application.

src/
 shared/
 conf/
 database.properties
 java/
 org/
 mwrm/
 shared Java classes

Introducing the Third-Party Libraries
The application uses third-party libraries from the Jakarta Project and MySQL. You can deal
with third-party libraries in two ways: the first is to download a stable build manually and
standardize the version across all those involved in a project. The second way of dealing with
third-party libraries is to download the latest source files and compile them so that you have
the latest, most up-to-date version of the software. This is an optional step, and you can easily
factor it into the build process, as shown in Figure 5-3. I’ll come back to this in the “Adding
Third-Party Libraries to the Build” section.

Moodie_559-9C05.fm Page 101 Friday, September 30, 2005 8:01 AM

d10c55b52b1f8994064c85cd755fb5a9

102 C H A P T E R 5 ■ B U I L D I N G A P R O J E C T

Figure 5-3. Adding third-party libraries to a build

Introducing the Stand-Alone Application
The stand-alone application is a command-line client that uses the data-access abstraction
layer to connect to the database so that it can obtain data to display to the console. It takes a
number of command-line options and displays the results according to the user’s choice. It
prints usage information if the user supplies invalid options.

To separate it from the shared code, place it in the following directory structure:

src/
 stand-alone/
 java/
 org/
 mwrm/
 stand-alone client

Moodie_559-9C05.fm Page 102 Friday, September 30, 2005 8:01 AM

C H A P T E R 5 ■ B U I L D I N G A P R O JE C T 103

Introducing the Web Application
The web application is the most complicated of the three divisions. It uses plain HTML, JSP
pages, servlets, and tags to provide a rich web interface to the database. Each of these compo-
nents will be in separate locations, and you’ll bring them together when you build the web
application.

Simple HTML, JSP pages, and tags guide the user through the application, though a servlet
carries out the work of processing the data from the database and providing it for the JSP pages.
Essentially, it performs similar work to the stand-alone client, meaning it takes the choice made by
the user and obtains the relevant data from the database. Instead of displaying the data, however,
the servlet places it in the session so that the rest of the web application has access to it.

Here’s the structure of the web application project:

src/
 web/
 conf/
 web.xml
 images/
 java/
 org/
 mwrm/
 servlet classes
 pages/
 HTML pages
 JSP pages
 tags/
 tag files

Introducing the Final Directory Structure
Now that you’ve separated the three sections of code, the final directory structure looks
as follows:

src/
 shared/
 conf/
 database.properties
 java/
 org/
 mwrm/
 shared Java classes
 stand-alone/
 java/
 org/
 mwrm/
 stand-alone client

Moodie_559-9C05.fm Page 103 Friday, September 30, 2005 8:01 AM

104 C H A P T E R 5 ■ B U I L D I N G A P R O J E C T

 web/
 conf/
 web.xml
 images/
 java/
 org/
 mwrm/
 servlet classes
 pages/
 HTML pages
 JSP pages
 tags/
 tag files

In addition to these directories, you’ll need other directories at the same level as src. These
will help you organize the project when you run the build.

• build: This is a scratch directory where you will assemble all the code before running the
final packaging steps.

• dist: When you have built and packaged the application, you will place it in here prior to
distribution or deployment.

• lib: You will place third-party libraries in this folder so you can include them in a
distribution.

Compiling Java Applications with Ant
Ant provides you with the <javac> task so that you can compile Java source code into Java
classes. However, before you look into that, you should be aware of a number of preliminary
considerations, the first of which is setting up your working environment. This involves setting
global properties in a properties file and creating scratch directories so that you have space to
work without potentially disrupting the source code.

Setting Up a Working Environment
To begin, you need to create a build.properties file in the root directory of the build (that is,
the one that contains the src directory). You will import the properties from here into the build
to ease the maintenance burden of the project. You need to set the names of your top-level
directories. Every path in the build file will build on these directories and are in turn properties.
By making every path in the build file a property, you centralize the most important parts of the
build into one location where you can look after them. If one section of the path changes, then
you will have to change only one property in the properties file.

To compile the web portion of the application, you’ll need to use the Servlet API and so
should include a reference to it in the properties file. This JAR file is included with Tomcat, but
if you are using another servlet container, you will have to change this value or download it
from www.ibiblio.org/maven/servletapi/jars/. I’ll cover downloading this as part of the build
later in the “Compiling the Source” section.

Moodie_559-9C05.fm Page 104 Friday, September 30, 2005 8:01 AM

C H A P T E R 5 ■ B U I L D I N G A P R O JE C T 105

Listing 5-1 shows what you have so far. Note how each subdirectory is built from another
property and how the name of the JAR and WAR files is set here too.

Listing 5-1. The Names of the Directories in build.properties

The source directory that contains the code
src=src

Subdirectory properties
src.shared.root=${src}/shared
src.shared.java=${src.shared.root}/java
src.shared.docs=${src.shared.root}/docs
src.shared.conf=${src.shared.root}/conf

src.stand-alone.root=${src}/stand-alone
src.stand-alone.java=${src.stand-alone.root}/java
src.stand-alone.docs=${src.stand-alone.root}/docs

src.web.root=${src}/web
src.web.java=${src.web.root}/java
src.web.docs=${src.web.root}/docs
src.web.pages=${src.web.root}/pages
src.web.tags=${src.web.root}/tags
src.web.conf=${src.web.root}/conf

The scratch directory
build=build

build.stand-alone.root=${build}/stand-alone

build.web.root=${build}/web
build.web.web-inf=${build.web.root}/WEB-INF
build.web.classes=${build.web.web-inf}/classes
build.web.tags=${build.web.web-inf}/tags
build.web.lib=${build.web.web-inf}/lib

The final destination of our project files
dist=dist

The location of third-party JAR files
lib=lib

This name will be appended to the JAR and WAR files
appName=antBook
appName.jar=${dist}/${appName}.jar
appName.war=${dist}/${appName}.war

Moodie_559-9C05.fm Page 105 Friday, September 30, 2005 8:01 AM

106 C H A P T E R 5 ■ B U I L D I N G A P R O J E C T

The Tomcat home directory
catalina.home=C:\\jakarta-tomcat-5.5.9
servlet24.jar=${catalina.home}/common/lib/servlet-api.jar
Use the following line if using Ant to download the JAR
#servlet24.jar=${lib}/servlet-api.jar

Now that you have the properties ready, you can include them in your project’s build.xml
file, as shown in Listing 5-2.

Listing 5-2. Including the Properties in build.xml

<?xml version="1.0"?>

<project name="Example Application Build" default="build-both" basedir=".">

 <property file="build.properties"/>
 </project>

This should be familiar to you from Chapter 3. Now it’s time to actually use the properties.

Creating Directories

The src directory is the only top-level directory you can assume exists, because you want to
leave open the option of downloading fresh JARs for the lib directory. The others are necessarily
absent from the first build, so the upshot is you want to create build, dist, and lib.

Ant’s directory-creation task is called <mkdir>; Table 5-1 lists its single attribute.

Listing 5-3 shows the dir target that will create the necessary directories.

Listing 5-3. The <mkdir> Task Creates the Directory Structure

<!-- Create the working directories -->
<target name="dir" description="Create the working directories">
 <echo message="Creating the working directories"/>
 <mkdir dir="${build.stand-alone.root}"/>
 <mkdir dir="${build.web.classes}"/>
 <mkdir dir="${dist}"/>
 <mkdir dir="${lib}"/>
</target>

Table 5-1. The <mkdir> Task’s Attribute

Attribute Description

dir The name of the directory to create, which is either relative to the base directory of
this build or an absolute path. This attribute is required.

Moodie_559-9C05.fm Page 106 Friday, September 30, 2005 8:01 AM

C H A P T E R 5 ■ B U I L D I N G A P R O JE C T 107

The first <mkdir> task creates the build directory as well as the stand-alone directory it
contains. The recursive nature of the <mkdir> task saves you a lot of effort and allows you to
create large directory structures in only a few steps. The second <mkdir> task shows this in
action as well.

Compiling the Source

Now that you have the directory structure in place, it’s time to build the application. Ant’s Java
compilation task is <javac>, and it’s as flexible as the javac command is at the command line.
You’ll keep the stand-alone application in its own target because it allows you to compile just
the stand-alone application, should you want. This follows the project structure shown in
Figures 5-1 and 5-2 and means you can include it in more than one project build path. For
example, you may sometimes want to build it for testing, but not for distribution.

The <javac> task has the attributes shown in Table 5-2 (as well as the attributes of a file set,
as detailed in Table 4-6 in Chapter 4), and many of them will be familiar from the command
line. You can specify most of the attributes that take paths as nested elements as well.

Table 5-2. The <mkdir> Task’s Attribute

Attribute Description

bootclasspath The boot classpath to use for this compilation. The default is the
system boot classpath.

bootclasspathref A reference ID to a path that you have defined elsewhere in the build file.

classpath The classpath for this compilation. As with all Java applications, the
classpath is an important issue to understand. More details follow this
table. The default is the system classpath plus Ant’s classpath
(ANT_HOME/lib and the -lib command-line option).

classpathref A reference ID to a path that you have defined elsewhere in the build file.

compiler The compiler implementation to use. If you do not set this attribute,
Ant will use the value of the build.compiler property, if set.

debug Sets the javac -g flag and can be used in combination with debuglevel.
This attribute makes sense only if your compiler supports debugging.
The default is false, which sends -g:none to the compiler.

debuglevel Sets the keywords to be appended to the -g command, if it is sent. If
debug is set to false, this attribute is ignored. You specify either none or
a comma-separated list of lines, vars, and source. The default is an
empty string (that is, nothing is appended to the -g option).

depend Tells the compiler to track dependencies, if it supports this feature.
The default is false.

deprecation Tells Ant whether to compile with deprecation information. The default
is false.

destdir The directory where you want Ant to place the compiled class files. The
default is the same location as the source files, just as it is for javac at
the command line.

encoding The encoding of the source files. The default depends on your system.

Moodie_559-9C05.fm Page 107 Friday, September 30, 2005 8:01 AM

108 C H A P T E R 5 ■ B U I L D I N G A P R O J E C T

excludes The excludes list for this compilation, where each entry is separated
from the next one with a space or a comma. You may use wildcards.
The default is to omit nothing except the default excludes.

excludesfile The name of the file that contains the exclude patterns. The default is
not to use a file.

executable The full path to the javac executable should you set fork to true. The
default is the executable of the JVM that is running Ant.

extdirs A list of the directories that contain installed extensions. The default is
the system extension setting.

failonerror Tells Ant whether to carry on with the build if there was a compilation
error. The default is true.

fork Tells Ant to compile the classes with an external JDK compiler. The
default is false.

includeAntRuntime Tells Ant to add its runtime libraries to the classpath. The default is true.

includeJavaRuntime Tells Ant to add the Java run-time libraries to the classpath. The
default is false.

includes The includes list for this compilation, where each entry is separated
from the next one with a space or a comma. You may use wildcards.
The default is *.java.

includesfile The name of the file that contains the include patterns. The default is
to not use a file.

listfiles Tells Ant to list the files that it is compiling, rather than just the
number of files. The default is false.

memoryInitialSize The initial size for the external JVM should you set fork to true.
Ignored if you do not.

memoryMaximumSize The maximum amount of memory to be used by the external JVM
should you set fork to true. Ignored if you do not.

nowarn Tells Ant whether to send the -nowarn option to the compiler. The
default is false.

optimize Tells Ant whether to compile the source with optimization. The default
is false.

source The value of the -source command-line option. The default value
depends on your own VM, and some will ignore it. You will know best
as to what the value of this attribute should be.

sourcepath The source path for this compilation. The default is the value of srcdir
or any nested <src> elements.

sourcepathref A reference ID to a path that you have defined elsewhere in the build file.

srcdir The base directory of the Java source code. All paths used in the
<javac> task are relative to this directory. This attribute is required.

Table 5-2. The <mkdir> Task’s Attribute (Continued)

Attribute Description

Moodie_559-9C05.fm Page 108 Friday, September 30, 2005 8:01 AM

d10c55b52b1f8994064c85cd755fb5a9

C H A P T E R 5 ■ B U I L D I N G A P R O JE C T 109

Whether you set these attributes depends on your project and how you would have compiled
it at the command line. If you have certain compiler and JVM version concerns for your project
and want to know more, the best place to look is the <javac> task’s documentation.

If you are using JDK 1.3 or greater on Windows, unforked compilation will lock files in the
classpath, so you can’t move or delete them later in the build. If this is part of your build plan,
set fork to true.

The <javac> task can also have the following child elements, some of which can replace
their corresponding attributes:

<bootclasspath>
<classpath>
<exclude>
<extdirs>
<include>
<patternset>
<sourcepath>
<src>

<bootclasspath>, <classpath>, <extdirs>, <patternset>, <sourcepath>, and <src> are
pathlike structures (see Chapter 4 for details on this type of structure) and can take references
to other paths defined elsewhere in the build file.

■Note The <javac> task uses the system classpath, Ant’s own classpath (the contents of ANT_HOME/lib
and the values supplied with the -lib command-line option), and any custom classpath you supply as an
argument or nested element.

This is a good point to add the master build classpath that contains all the JAR files for
compiling and running the application. Listing 5-4 shows the <path> element that sets the
master classpath. You’ll see the jsp20.jar property when you compile the JSTL source code.

tempdir The location of a temporary directory that Ant should use in the build.
Ant uses it only if you set fork to true and the length of the command-
line arguments exceeds 4 kilobytes.

target The version of Java for which these files will be compiled. The default
value depends on your own VM. You will know best as to what the value
of this attribute should be. If you are using JVM 1.4 or greater, you should
note that your classes won’t work in a 1.1 JVM.

verbose Tells the compiler to be more verbose. The default is false.

Table 5-2. The <mkdir> Task’s Attribute (Continued)

Attribute Description

Moodie_559-9C05.fm Page 109 Friday, September 30, 2005 8:01 AM

110 C H A P T E R 5 ■ B U I L D I N G A P R O J E C T

Listing 5-4. Building the Master Classpath with a <path> Element

<!-- ################################### -->
<!-- The master build classpath -->
<!-- ################################### -->

<path id="build.classpath">
 <pathelement location="${servlet24.jar}"/>
 <pathelement location="${jsp20.jar}"/>
 <pathelement location="${mysql.jar}"/>
 <pathelement path="${appName.jar}"/>
</path>

Listing 5-5 shows the <javac> task that you will use to compile the stand-alone application.
Note how the shared code is compiled first.

Listing 5-5. The <javac> Task Compiles the Stand-Alone Application

<!-- ########################### -->
<!-- The stand-alone application -->
<!-- ########################### -->

<!-- Compile the stand-alone application -->
<target name="compile-stand-alone" depends="dir"
 description="Compile stand-alone application">
 <echo message="Compiling the stand-alone application"/>
 <javac srcdir="${src.shared.java}" destdir="${build.stand-alone.root}"/>
 <javac srcdir="${src.stand-alone.java}"
 destdir="${build.stand-alone.root}"/>
 </target>

The sample web application has a similar compilation, though it requires the servlet
classes to be in the classpath. As such, Listing 5-6 shows the variants of <javac> that you can
use to compile the web application.

Listing 5-6. The <javac> Task Compiles the Web Application

<!-- ########################### -->
<!-- The web application -->
<!-- ########################### -->

<!-- Compile the web application -->
<target name="compile-web" depends="dir" description="Compile web application">
 <echo message="Compiling the web application"/>
 <javac destdir="${build.web.classes}">
 <src path="${src.shared.java}"/>

Moodie_559-9C05.fm Page 110 Friday, September 30, 2005 8:01 AM

C H A P T E R 5 ■ B U I L D I N G A P R O JE C T 111

 </javac>
 <javac srcdir="${src.web.java}" destdir="${build.web.classes}">
 <classpath refid="build.classpath"/>
 </javac>
</target>

Recall that you built the servlet24.jar property from the catalina.home property in the
property file because I assumed you have access to Tomcat. If you wanted to download the JAR
file in the build, you could use the target in Listing 5-7 and add it to the depends attribute of the
compile-web target. Remember to change the servlet24.jar property as well.

Listing 5-7. Downloading the Servlet JAR File with the <get> Task

<!-- ######################## -->
<!-- Download the servlet JAR -->
<!-- ######################## -->

<!-- Download the servlet JAR -->
<target name="download-servlet-jar" depends="dir"
 description="Download the servlet JAR">
 <echo message="Downloading the servlet JAR"/>

 <get src="http://www.ibiblio.org/maven/servletapi/jars/servletapi-2.4.jar"
 dest="${servlet24.jar}"
 verbose="true"/>
</target>

The <get> task is straightforward. The src attribute is the file you want to download, and
the dest attribute is its name in your file system. These are the only two required attributes. The
verbose attribute is set to false by default, though here you should see the details of the down-
load for the sake of instruction. You can also take advantage of HTTP BASIC authentication
with the username and password attributes, though you should set these only at the command
line and not as properties or as hard-coded values in the file.

Now that you have compiled the code and placed the class files in the scratch directory, it’s
time to assemble the other parts of the project before you package them for distribution.

Adding Third-Party Libraries to the Build
If you are using third-party libraries in a build, you may want to build them at the same time as
the main project, assuming the source code is available. However, building third-party libraries
is not an important step when you are using a set, stable version of a third-party library to ensure
standard behavior across a project team. You don’t need to build the libraries from source
during every run of the build, because you can set up a build path to do this, as the case may be.

Figure 5-4 shows a simple build path that allows you to choose between using the existing
library in your base directory’s lib directory and using a freshly downloaded source bundle.

Moodie_559-9C05.fm Page 111 Friday, September 30, 2005 8:01 AM

112 C H A P T E R 5 ■ B U I L D I N G A P R O J E C T

Figure 5-4. Choosing between downloading source code and using preexisting binaries

You can make this kind of choice in three ways: using properties, using the <antcall> task
in a target, or using the depends attribute of <target>. This kind of choice is not unique to
downloading third-party source code; you can apply it to many other situations. For example,
you may want to exclude the documentation from some project builds, but not others.

The example project uses two third-party libraries: the MySQL JDBC connector and the
JSTL tag library. You can obtain these easily as binary JAR files, but you can also get the latest
CVS snapshot. The <cvs> task checks out source from a CVS repository and places it in your file
system. Table 5-3 shows its attributes.

Table 5-3. The <cvs> Task’s Attributes

Attribute Description

append Tells Ant whether it should append output messages to the file specified
in output or error. The default is false.

command The CVS command to execute, though you can add to this with, for
example, the package attribute, as in Listing 5-9. The default is checkout.

compression If you set this to true, it is equivalent to setting the compressionlevel
to 3. The default is false.

compressionlevel Valid values are 1–9. If you set it to anything else, it’s equivalent to
setting compression to false. Ignored if compression is set to false,
and its default is 3 if compression is set to true.

cvsRoot The root of the CVS repository you are querying. The default is null.

cvsRsh The remote shell to use. The default is null.

Moodie_559-9C05.fm Page 112 Friday, September 30, 2005 8:01 AM

C H A P T E R 5 ■ B U I L D I N G A P R O JE C T 113

All the following sections will require the property definitions in Listing 5-8.

Listing 5-8. The CVS Homes of the Third-Party Libraries

<!-- CVSROOT for the JSTL -->
<property name="cvsroot"
 value=":pserver:anoncvs@cvs.apache.org:/home/cvspublic" />

<!-- CVSROOT for the MySQL connector -->
<property name="mysql.cvsroot"
 value=":pserver:anonymous@cvs.sourceforge.net:/cvsroot/mmmysql" />

These are the login details for the CVS repositories of the third-party libraries. The actual
targets for obtaining the source and compiling it won’t change. Listing 5-9 shows the targets for
obtaining the source code.

date Tells Ant to check out the most recent files, as long as their modifica-
tion times are not later than this date.

dest The directory where you want to place the source code that is checked
out of the repository. The default is your project’s base directory.

error The file where you want to direct error messages. The default is the Ant
log (set at MSG_WARN).

failonerror Tells Ant whether to carry on with the build if there was a CVS error.
The default is false.

noexec Tells Ant to make a report and not to change any files. The default is false.

output The file where you want to direct output. The default is the Ant log (set
at MSG_INFO).

package The name of the package you want to check out of the CVS repository.
The default is null.

passfile The file where you have stored the CVS passwords, if any. The default
is ~/.cvspass.

port The port of the CVS server. The default is 2401.

quiet Tells Ant to suppress information messages during the CVS process.
The default is false.

reallyquiet Tells Ant to not print any messages at all during the CVS process. The
default is false.

tag The tag of the package you want to check out of the CVS repository. The
default is null.

Table 5-3. The <cvs> Task’s Attributes

Attribute Description

Moodie_559-9C05.fm Page 113 Friday, September 30, 2005 8:01 AM

114 C H A P T E R 5 ■ B U I L D I N G A P R O J E C T

Listing 5-9. The Targets for Obtaining the JSTL and the MySQL Connector Source

<!-- Update or check out required sources from CVS for the JSTL -->
<target name="checkout-jstl" depends="dir"
 description="Update or check out required sources
 from CVS for the JSTL">

 <echo message="Checking out the required JSTL sources from CVS"/>

 <cvs cvsroot="${cvsroot}" quiet="true"
 command="checkout -P ${jstl.build}"
 dest="${build}" compression="true" />

</target>
<!-- Update or check out required sources from CVS for the MySQL connector -->
<target name="checkout-mysql-connector" depends="dir"
 description="Update or check out required sources
 from CVS for the MySQL connector">

 <echo message="Checking out the required sources from CVS
 for the MySQL connector" />

 <cvs cvsroot="${mysql.cvsroot}" quiet="true"
 command="checkout" package="${mysql.build}"
 dest="${build}" compression="true" />

</target>

The task for the JSTL CVS contains the command checkout -P ${jstl.build}, and the
MySQL CVS task builds the command using the package attribute.

You need to define some more properties in build.properties. The MySQL connector
source comes with its own build file and uses a number of properties of its own. However, to
finish the job you need three more, as shown in Listing 5-10. (You’ll use mysql.name in the
compilation process.) The JSTL build requires a few more properties, also shown in Listing 5-10.
The JSP classes are taken from Tomcat, but if you have not installed Tomcat, you can get the
JAR file from www.ibiblio.org/maven/jspapi/jars/.

Listing 5-10. Properties for Obtaining and Building the Third-Party Libraries

Required for the JSTL build
jsp20.jar=${catalina.home}/common/lib/jsp-api.jar
Use the following line if using Ant to download the JAR
#jsp20.jar=${lib}/jsp-api.jar
jstl.build=jakarta-taglibs/standard
library.src=src
examples.src=examples
doc.src=doc
build.library=${build}

Moodie_559-9C05.fm Page 114 Friday, September 30, 2005 8:01 AM

C H A P T E R 5 ■ B U I L D I N G A P R O JE C T 115

Required for the MySQL connector build
mysql.build=mm.mysql-2
mysql.name=mysql-connector
mysql.jar=${lib}/${mysql.name}-bin.jar

You can modify the download-servlet-jar target from Listing 5-7 to download the JSP JAR
file if you want, as shown in Listing 5-11.

Listing 5-11. Downloading the JSP JAR File with the <get> Task

<!-- ######################## -->
<!-- Download the JSP JAR -->
<!-- ######################## -->

<!-- Download the JSP JAR -->
<target name="download-jsp-jar" depends="dir"
 description="Download the JSP JAR">
 <echo message="Downloading the JSP JAR"/>

 <get src="http://www.ibiblio.org/maven/jspapi/jars/jsp-api-2.0.jar"
 dest="${jsp20.jar}"
 verbose="true"/>
</target>

You can now run these two targets and obtain the source code of the JSTL and the MySQL
JDBC connector. Once you have the source, you can build them. Luckily, both are based on
Java and come with their own Ant build files for seamless integration into your project.

To use another project’s build file in your own project, you use the <ant> task. This task will
run the default target of the target project, but it can also run a specific target if you want. In the
case of this sample project, you want to pass all the properties to the new builds because you
want to customize them to your own requirements. (The JSTL build also requires certain prop-
erties before it will build successfully.) You can disable property sharing like this if you are
worried about naming clashes (by setting the inheritAll attribute to false). Naming clashes
will occur because the properties from the calling project override those in the called project.

The <ant> task can have nested <property> elements, which Ant always passes to the called
project, no matter what settings you have. These will override any properties in the called file
just as if they were buildwide properties.

■Note Properties passed to Ant at the command line are always passed to the called project. They will even
overwrite the nested <property> elements.

Table 5-4 shows the attributes of the <ant> task.

Moodie_559-9C05.fm Page 115 Friday, September 30, 2005 8:01 AM

d10c55b52b1f8994064c85cd755fb5a9

116 C H A P T E R 5 ■ B U I L D I N G A P R O J E C T

So, calling another project’s build file is extremely easy. The hardest part of it is working
out which properties you need to customize or supply for the called project to build. If you are
calling one of your own projects, that shouldn’t be a problem because they will mostly be in
place to start. Third-party libraries require a bit more investigation (as shown by the properties
the JSTL build requires, as listed in Table 5-4).

Listing 5-12 shows the two <ant> tasks that build the third-party libraries and the tasks that
copy them to your lib directory. (I’ll discuss the <copy> task in the “Assembling the Project”
section.)

Listing 5-12. The Targets for Building the JSTL and the MySQL Connector

<!-- Build the JSTL from source -->
<target name="build-jstl" depends="checkout-jstl"
 description="Build the JSTL from source">
 <echo message="Building the JSTL from source"/>

 <ant antfile="build.xml" dir="${build}/${jstl.build}"/>

 <copy todir="${lib}">
 <fileset dir="${build}/${jstl.build}/${build}/lib">
 <include name="*.jar"/>
 </fileset>
 </copy>
</target>

<!-- Build the MySQL connector from source -->
<target name="build-mysql-connector" depends="checkout-mysql-connector"
 description="Build the MySQL connector from source">
 <echo message="Building the MySQL connector from source"/>

Table 5-4. The <ant> Task’s Attributes

Attribute Description

antfile The name of the build file to use, which is relative to the directory specified
in the dir attribute. The default is build.xml.

dir The base directory for the project you are calling. It should contain the file
you specify in the antfile attribute. The default is the calling project’s base
directory.

inheritAll Tells Ant whether to pass properties to the called project. The default is true.

inheritRefs Tells Ant whether to pass references to the called project. The default is false.

output The file where you want to direct output (set at MSG_INFO). The default is null.

target The name of the target you want to call in the called project. The default is
the called project’s default target.

Moodie_559-9C05.fm Page 116 Friday, September 30, 2005 8:01 AM

C H A P T E R 5 ■ B U I L D I N G A P R O JE C T 117

 <!-- The MySQL connector file needs this directory to exist -->
 <!-- Therefore we need to create it -->
 <mkdir dir="${build}/dist-mysql-jdbc"/>

 <ant antfile="build.xml" dir="${build}/${mysql.build}"/>

 <copy tofile="${mysql.jar}">
 <fileset dir="${build}/build-mysql-jdbc">
 <include name="mysql-connector*/*.jar"/>
 </fileset>
 </copy>
</target>

Both <ant> tasks call the appropriate build.xml file located in the directory you down-
loaded, as defined by the jstl.build and mysql.build properties. As noted, some research into
the properties of the third-party libraries was required before you could run the build. Similar
research was required before you could use the <copy> task to move the JAR files into the lib
directory. As you can see, the location of the JARs is not common to both libraries, so you had
to use different patterns to locate them.

The MySQL connector uses a version number in the names of its directories and JAR files,
so you have to remove any dependencies on this naming convention. The wildcard characters
are perfect for this. The JSTL isn’t so complicated but has two binary JARs, both of which you
must copy.

Using Properties to Decide

The if and unless attributes of <target> allow you to control whether a target will execute,
depending on the presence or absence of a named property (see Chapter 3). Therefore, you can
force Ant to skip steps in the build process by providing properties at the command line with
the -D option. So, instead of the forked build path shown in Figure 5-3, you will have a linear
build path that ignores some steps, depending on your choice of properties.

The compile-stand-alone target is the end of the stand-alone application’s linear build
path, so it must depend on the build-mysql-connector target, which in turn depends on
the checkout-mysql-connector target. Therefore, you must change the depends attribute of
compile-stand-alone as follows:

<target name="compile-stand-alone" depends="build-mysql-connector"
 description="Compile stand-alone application">

The same applies to the compile-web target, but it also needs the JSTL:

<target name="compile-web" depends="build-jstl, build-mysql-connector"
 description="Compile web application">

Now, when you run Ant on each of these targets, you will always run the download and
build targets as well. To control this, you need to use properties at the command line. Listing 5-13
shows the if attributes of the targets that download and build the third-party libraries.

Moodie_559-9C05.fm Page 117 Friday, September 30, 2005 8:01 AM

118 C H A P T E R 5 ■ B U I L D I N G A P R O J E C T

Listing 5-13. The if Attribute Determines Whether a Target Runs

<target name="checkout-jstl" depends="dir" if="jstl"
 description="Update or check out required sources
 from CVS for the JSTL">
</target>

<target name="build-jstl" depends="checkout-jstl" if="jstl"
 description="Build the JSTL from source">
</target>

<target name="checkout-mysql-connector" depends="dir" if="mysql"
 description="Update or check out required sources
 from CVS for the MySQL connector">
</target>

<target name="build-mysql-connector" depends="checkout-mysql-connector"
 if="mysql" description="Build the MySQL connector from source">
</target>

Now, if you set the mysql property at the command line, the MySQL-specific targets will
run. The same goes for the jstl property.

> ant -Djstl=true -Dmysql=true compile-web

If you don’t set them, Ant will not run the targets.

Using the <antcall> Task

The <antcall> task is similar to the <ant> task, except that it calls a target in the current project’s
build file. This is a useful technique when you have a forked build process. You cannot use
<antcall> outside a target, though you won’t have reason to do so. It has the attributes shown
in Table 5-5.

To use <antcall> to control the build, place an <antcall> task for each target you want to
call in a master target, as shown in Listing 5-14.

Table 5-5. The <antcall> Task’s Attributes

Attribute Description

inheritAll Tells Ant whether to pass properties to the called project. The default is true.

inheritRefs Tells Ant whether to pass references to the called project. The default is false.

target The name of the target you want Ant to run. This attribute is required.

Moodie_559-9C05.fm Page 118 Friday, September 30, 2005 8:01 AM

C H A P T E R 5 ■ B U I L D I N G A P R O JE C T 119

Listing 5-14. Using <antcall> to Control a Project

<target name="stand-alone-complete"
 description="Compile stand-alone application,
 using CVS version of the MySQL connector">
 <echo message="Compiling stand-alone application,
 using CVS versions of the MySQL connector"/>
 <antcall target="build-mysql-connector"/>
 <antcall target="package-stand-alone"/>
</target>

<target name="web-complete"
 description="Compile web application,
 using CVS versions of the MySQL connector and the JSTL">
 <echo message="Compiling web application,
 using CVS versions of the MySQL connector and the JSTL"/>
 <antcall target="build-mysql-connector"/>
 <antcall target="build-jstl"/>
 <antcall target="package-web"/>
</target>

To build the third-party libraries as well as the application, you just need to run the
following:

> ant stand-alone-complete
> ant web-complete

If you want to build just the application, run the following:

> ant package-stand-alone
> ant package-web

To increase the build functionality, you can add a master target that will run these commands
for you if you want to build the stand-alone application at the same time as the web application.
Listing 5-15 shows how to do this.

Listing 5-15. Master Targets for Building Both Applications

<!-- ## -->
<!-- Targets that work with both applications -->
<!-- ## -->

<target name="build-both"
 description="Compile both applications,
 without CVS versions of the MySQL connector and the JSTL">
 <echo message="Compiling both applications,
 without CVS versions of the MySQL connector and the JSTL"/>
 <antcall target="package-stand-alone"/>
 <antcall target="package-web"/>
</target>

Moodie_559-9C05.fm Page 119 Friday, September 30, 2005 8:01 AM

120 C H A P T E R 5 ■ B U I L D I N G A P R O J E C T

<target name="build-all"
 description="Compile both applications,
 using CVS versions of the MySQL connector and the JSTL">
 <echo message="Compiling both applications,
 using CVS versions of the MySQL connector and the JSTL"/>
 <antcall target="stand-alone-complete"/>
 <antcall target="web-complete"/>
</target>

You can quite easily extend this structure of <antcall> tasks to cover as many permutations
as you like.

Using Dependencies

The third method for choosing which targets to run is the depends attribute of the <target>
element. The principle behind this technique is similar to that of the <antcall> task. However,
instead of grouping <antcall> elements, you specify target names in a master target’s depends
attribute.

In the example build file, this means you will replace every <antcall> with a setting in the
target’s depends attribute. Compare Listing 5-16 with Listings 5-14 and 5-15.

Listing 5-16. Using the depends Attribute to Control a Build

<target name="stand-alone-complete"
 depends="build-mysql-connector, package-stand-alone"
 description="Compile stand-alone application,
 using CVS version of the MySQL connector">
 <echo message="Compiling stand-alone application,
 using CVS versions of the MySQL connector"/>
</target>

<target name="web-complete"
 depends="build-mysql-connector, build-jstl, package-web"
 description="Compile web application,
 using CVS versions of the MySQL connector and the JSTL">
 <echo message="Compiled web application,
 using CVS versions of the MySQL connector and the JSTL"/>
</target>

<!-- ## -->
<!-- Targets that work with both applications -->
<!-- ## -->

Moodie_559-9C05.fm Page 120 Friday, September 30, 2005 8:01 AM

C H A P T E R 5 ■ B U I L D I N G A P R O JE C T 121

<target name="build-both"
 depends="package-stand-alone, package-web"
 description="Compile both applications,
 without CVS versions of the MySQL connector and the JSTL">
 <echo message="Compiled both applications,
 without CVS versions of the MySQL connector and the JSTL"/>
</target>

<target name="build-all"
 depends="stand-alone-complete, web-complete"
 description="Compile both applications,
 using CVS versions of the MySQL connector and the JSTL">
 <echo message="Compiled both applications,
 using CVS versions of the MySQL connector and the JSTL"/>
</target>

So, when you run the build-all target, Ant calls stand-alone-complete, which calls
build-mysql-connector, which calls checkout-mysql-connector, which calls dir. If the last three
targets complete their tasks, stand-alone-complete calls package-stand-alone, which calls
compile-stand-alone. The dir target has already completed successfully, so the compile-stand-
alone target runs. If it and package-stand-alone complete successfully, half the targets in the
build-all target’s depends attribute have completed successfully. Ant then calls web-complete,
and the process goes much like the one described for stand-alone-complete.

Choosing Which Technique to Use

The depends attribute is the usual method for controlling the flow of a project. Its advantages
include performance, with dependencies being up to six times faster than <antcall> tasks.
Another advantage of depends attributes is that they group all the dependencies in one place
right at the top of a target in a location that is useful to a casual reader. If you use properties, it
may not be clear that you are using them to control the whole build unless you document thor-
oughly. Even then, users may not even read the build file and will try to run the build without
setting any properties.

You should use depends attributes as much as possible if your project is confined to a single
build file. It is a more maintainable technique because of its centralized nature and unambig-
uous meaning. If your build is split between files (as described in Chapter 9), then you have no
choice but to use <antcall> tasks, though you should still try to minimize them.

Assembling the Project
Many, many ways of assembling a project for distribution exist, and Ant covers each one. The
first step is to collect every piece of the project. Once you have done that, you can then choose
which method of packaging, if any, you are going to use. For example, you may have source
distributions as tarballs or zip files, binary distributions as JAR files, and local test copies as
unpackaged directories. Your source distributions may be released daily, while the binary
distributions may go out only when there is a major revision, so you want to build this flexibility
into your build process.

Moodie_559-9C05.fm Page 121 Friday, September 30, 2005 8:01 AM

122 C H A P T E R 5 ■ B U I L D I N G A P R O J E C T

Manipulating File Location
Ant has the full range of directory- and file-manipulation tasks that you would expect of an
operating system, so you can do anything in a build process that you can do at the command
line. These tasks take full advantage of Ant’s pattern-matching capabilities, as well as heavily
used pathlike structures.

You have already seen the <copy> task when you used it to move the third-party libraries to
your lib directory. Table 5-6 shows the attributes of this task. It can also take nested <fileset>,
<mapper>, <filterset>, and <filterchain> elements.

Table 5-6. The <copy> Task’s Attributes

Attribute Description

enablemultiplemappings If you have specified a <mapper> nested element, this attribute
tells Ant to process all the possible mappings for the source
path; otherwise it will process only the first file or directory. The
default is false.

encoding The encoding of the source files. The default is the JVM’s default
encoding.

failonerror Tells Ant whether to carry on with the build if there was a copy
error. The default is true.

file The name of the file to copy. This attribute is required unless
you nest <fileset> elements.

filtering Tells Ant whether to use the project’s global filters. It will always
use nested <filterset> elements, regardless of its setting. The
default is false.

flatten Tells Ant whether to copy all the files into the directory specified
by todir, ignoring the source directory hierarchy. The default is
false.

granularity The number of milliseconds that Ant should allow either way
when it is deciding whether a file is out-of-date. The default is
2000 on DOS-based operating systems. It is 0 on all other systems.

includeEmptyDirs Tells Ant whether to include empty directories in the copy. The
default is true.

outputencoding The encoding that Ant should use for the copied files. The
default is the value of encoding if you have set it or the JVM’s
default if not.

overwrite Tells Ant whether to overwrite existing files at the destination,
even if they are newer than the files you are copying. The default
is false.

preservelastmodified Tells Ant to maintain the last modified time of the files you are
copying. The default is false.

todir The name of the directory to which you are copying. You must
specify one of todir and tofile. I discuss the rules governing
the two after this table.

Moodie_559-9C05.fm Page 122 Friday, September 30, 2005 8:01 AM

d10c55b52b1f8994064c85cd755fb5a9

C H A P T E R 5 ■ B U I L D I N G A P R O JE C T 123

The general rule with the todir and tofile attributes is that if more than one file is to be
copied, you must use the todir attribute. For example, more than one file will be copied if you
use the file attribute and a <fileset> nested element or if a file set contains more than one file
(if the file set contains a single file, you may use tofile). If only one file is to be copied, you can
use whichever attribute you want. The tofile attribute will rename the file, while todir won’t.

The stand-alone application is almost all in place by this point, but it still requires the Java
properties file. Listing 5-17 shows the <copy> task that copies it into the working directory.
There’s more to this target, but that will wait until the “Creating JAR Files” section.

Listing 5-17. Copying the Java Properties File Using the <copy> Task

<!-- Package the stand-alone application -->
<target name="package-stand-alone" depends="compile-stand-alone"
 description="Package the stand-alone application">
 ...
 <copy file="${database.properties}" todir="${build.stand-alone.root}"/>
 ...
</target>

The web application has more files to work with, so a few more <copy> tasks exist, as shown
in Listing 5-18.

Listing 5-18. Copying the Web Application’s Web Pages and Configuration Files

<!-- Copy the web pages and configuration files -->
<target name="copy-web" depends="compile-web" description="Copy the web files">
 <echo message="Copying the web pages and configuration files"/>
 <copy todir="${build.web.root}">
 <fileset dir="${src.web.pages}"/>
 </copy>
 <!-- Copy the tags -->
 <copy todir="${build.web.tags}">
 <fileset dir="${src.web.tags}"/>
 </copy>
 <copy todir="${build.web.web-inf}">
 <fileset dir="${src.web.conf}">
 <include name="*.tld"/>
 </fileset>
 </copy>

tofile The name of the file to which you are copying. You must specify
one of todir and tofile. I discuss the rules governing the two
after this table.

verbose Tells Ant to list the files as it copies them. The default is false.

Table 5-6. The <copy> Task’s Attributes

Attribute Description

Moodie_559-9C05.fm Page 123 Friday, September 30, 2005 8:01 AM

124 C H A P T E R 5 ■ B U I L D I N G A P R O J E C T

 <!-- Copy the JAR files -->
 <copy todir="${build.web.lib}">
 <fileset dir="${lib}"/>
 </copy>
 <!-- Copy the properties file -->
 <copy file="${database.properties}" todir="${build.web.classes}"/>
 <!-- No need to copy web.xml, as the WAR task does this for us -->
</target>

These tasks are straightforward, though the final comment is worth discussing. When you
create the WAR file of this web application in a moment, you will use the <war> task, which will
pick up the web.xml file and place it in the WAR for you. If you wanted to use the expanded web
application, then you would have to remember to copy the web.xml file into the expanded
directory structure. It is also possible to assemble the entire WAR file in the <war> task, though
you’ll need zip file sets for this. You’ll see zip file sets in the next chapter, so I’ll defer this version
of the <war> task until then.

One target that all Ant projects should have is a clean target. This will typically remove the
working directories and remove any other unnecessary files. To do this, it will use the <delete>
task, the attributes of which are shown in Table 5-7. (The deprecated attributes are not included,
because they are replaced by nested file sets.) You can nest file sets in this task as well, and if
you do, empty directories will be ignored by default (see the includeemptydirs attribute).

The example project uses a clean target, as shown in Listing 5-19.

Table 5-7. The <delete> Task’s Attributes

Attribute Description

deleteonexit Tells Ant to use the File.deleteOnExit() method to delete the file when
the JVM terminates. The default is false.

dir The name of the directory to delete. All its subdirectories are deleted as
well. You must specify one of dir or file or supply a nested file set.

failonerror Tells Ant whether to carry on with the build if there was an error. Is not
used when quiet is set to true. The default is true.

file The name of the file to delete. You must specify one of dir or file or
supply a nested file set.

includeemptydirs Tells Ant to delete empty directories if they match the pattern specified
in a nested file set. The default is false.

quiet This attribute is not quite the same as the quiet attribute of other tasks,
and if set to true, it sets failonerror to false. If you set this to true, Ant does
not display any error messages if a file or directory does not exist or can’t be
deleted, and the task continues processing. However, the -verbose and
-debug command-line options override this attribute. The default is false.

verbose Tells Ant to list the files as it deletes them. The default is false.

Moodie_559-9C05.fm Page 124 Friday, September 30, 2005 8:01 AM

C H A P T E R 5 ■ B U I L D I N G A P R O JE C T 125

Listing 5-19. The clean Target Removes the Working Directories

<target name="clean" description="Clean up the working directories">
 <echo message="Cleaning up"/>
 <delete dir="${build}"/>
</target>

Creating the JAR Files
Once you have assembled all the Java files you want to package into a JAR, you are ready to use
the <jar> task. It has all the functionality of the jar command at the command line, so you will
probably be familiar with what it does. Table 5-8 shows its attributes. You can use nested
<metainf>, <manifest>, and <indexjars> elements.

Table 5-8. The <jar> Task’s Attributes

Attribute Description

basedir The directory that will form the root of the resultant JAR file. The default
is the base directory of the project.

compress Tells Ant to compress the files as it adds them to the JAR file. If
keepcompression is set to true, this applies to the entire archive, not
just to the files you are adding. The default is true.

defaultexcludes Tells Ant to use the default excludes (see Chapter 4). The default is true.

destfile The name of the JAR file you want to create. This attribute is required.

duplicate Tells Ant what to do if duplicate files are found. You can specify add,
preserve, or fail. The default is add.

encoding The encoding to use for filenames in the archive. The default is UTF8.

excludes The excludes list for this task, where each entry is separated from the
next one with a space or a comma. You may use wildcards. The default
is to omit nothing except the default excludes.

excludesfile The name of the file that contains the exclude patterns. The default is
not to use a file.

filesetmanifest Tells Ant how to react when it encounters a manifest file in a nested
file set. skip ignores the file, merge tells Ant to merge the manifests, and
mergewithoutmain merges the files without the main sections. The
default is skip.

filesonly Tells Ant to store only file entries. The default is false.

includes The includes list for this task, where each entry is separated from the
next one with a space or a comma. You may use wildcards. The default
is all files.

includesfile The name of the file that contains the include patterns. The default is
not to use a file.

index Tells Ant to create an index list to speed class loading (JDK 1.3 and
greater). Only this JAR will be included in the list, unless you add
nested <indexjars> elements. The default is false.

Moodie_559-9C05.fm Page 125 Friday, September 30, 2005 8:01 AM

126 C H A P T E R 5 ■ B U I L D I N G A P R O J E C T

Listing 5-20 shows the full version of the package-stand-alone target.

Listing 5-20. The package-stand-alone Target Creates the Stand-Alone Application’s JAR File

<!-- Package the stand-alone application -->
<target name="package-stand-alone" depends="compile-stand-alone"
 description="Package the stand-alone application">
 <echo message="Creating the stand-alone JAR file"/>
 <copy file="${database.properties}" todir="${build.stand-alone.root}"/>
 <jar destfile="${appName.jar}" basedir="${build.stand-alone.root}"/>
</target>

Creating WAR Files
Creating WAR files is usually the same as creating JAR files, because they share everything
except the file extension. However, the <war> task has some unique attributes and nested
elements. Table 5-9 shows the attributes.

keepcompression Tells Ant to keep the original compression of the files you are adding.
The default is false.

manifest The name of the manifest file to use. It can be a manifest file in the file
system or the name of a JAR file that contains the manifest you want to
use. This JAR file must be specified in a nested file set and should
contain a manifest at META-INF/MANIFEST.MF. The default is null.

manifestencoding The encoding to use when reading the manifest. The default is the
operating system’s default.

roundup Tells Ant to round up file modification times to the next even number
of seconds. If you don’t do this, the times will be rounded down in the
JAR file. This means the JAR file will seem out-of-date when you run
the target again. The default is true.

update Tells Ant to overwrite files in the JAR file. The default is false.

whenempty Tells Ant what to do if no files match. You can specify fail, create, or
skip. The default is skip.

Table 5-9. The <war> Task’s Attributes

Attribute Description

basedir The directory that will form the root of the resultant WAR file. The
default is the base directory of the project.

compress Tells Ant to compress the files as it adds them to the WAR file. If
keepcompression is set to true, this applies to the entire archive, not
just to the files you are adding. The default is true.

Table 5-8. The <jar> Task’s Attributes (Continued)

Attribute Description

Moodie_559-9C05.fm Page 126 Friday, September 30, 2005 8:01 AM

C H A P T E R 5 ■ B U I L D I N G A P R O JE C T 127

You can nest <classes>, <lib>, <metainf>, and <webinf> directories, which specify a file set
that represents the files to be added to the WEB-INF/classes, WEB-INF/lib, META-INF, and WEB-
INF directories, respectively. This means you can build the WAR file from disparate sources in
the project’s directory hierarchy, though the <webinf> element ignores any web.xml files contained
in its file set. You’ll see more of these nested elements in the next chapter once you have learned
about zip file sets, which means you can build the WAR in one step without having to copy any
files.

In the example application, however, most of the files already exist in the correct locations.
Listing 5-21 shows how you build the WAR file for this application. Note the webxml attribute,
which picks the web.xml file out and places it in the WAR.

defaultexcludes Tells Ant to use the default excludes (see Chapter 4). The default is true.

destfile The name of the WAR file you want to create. This attribute is
required.

duplicate Tells Ant what to do if duplicate files are found. You can specify add,
preserve, or fail. The default is add.

encoding The encoding to use for filenames in the archive. The default is UTF8.

excludes The excludes list for this task, where each entry is separated from the
next one with a space or a comma. You may use wildcards. The
default is to omit nothing except the default excludes.

excludesfile The name of the file that contains the exclude patterns. The default
is to not use a file.

filesonly Tells Ant to store only file entries. The default is false.

includes The includes list for this task, where each entry is separated from the
next one with a space or a comma. You may use wildcards. The
default is all files.

includesfile The name of the file that contains the include patterns. The default
is to not use a file.

keepcompression Tells Ant to keep the original compression of the files you are
adding. The default is false.

manifest The name of the manifest file to use. The default is null.

roundup Tells Ant to round up file modification times to the next even
number of seconds. If you don’t do this, the times will be rounded
down in the WAR file. This means that the WAR file will seem out-of-
date when you run the target again. If you do round up, you will
have problems precompiling JSP pages, because they will always
seem newer than the precompiled versions. The default is true.

update Tells Ant to overwrite files in the WAR file. The default is false.

webxml The location of the web.xml file for this web application. This attribute
is required, unless you set update to true.

Table 5-9. The <war> Task’s Attributes

Attribute Description

Moodie_559-9C05.fm Page 127 Friday, September 30, 2005 8:01 AM

128 C H A P T E R 5 ■ B U I L D I N G A P R O J E C T

Listing 5-21. The <war> Task Assembles the Web Application’s WAR File

<!-- Build the WAR file -->
<target name="package-web" depends="copy-web" description="Build the WAR">
 <echo message="Building the WAR file"/>
 <war destfile="${appName.war}" basedir="${build.web.root}"
 webxml="${src.web.conf}/web.xml"/>
</target>

Building the Example Application
The final step in building both parts of the application is to link the packaging steps with depends
attributes (or properties or <antcall> tasks, as per your preferences). The package-stand-alone and
package-web targets don’t download and build the third-party libraries, so you need to provide
targets that do every step in the project build. Listing 5-22 shows the updated versions of
stand-alone-complete and web-complete.

Listing 5-22. The Updated Versions of stand-alone-complete and web-complete

<target name="stand-alone-complete"
 depends="build-mysql-connector, package-stand-alone"
 description="Compile stand-alone application,
 using CVS version of the MySQL connector">
 <echo message="Compiling stand-alone application,
 using CVS versions of the MySQL connector"/>
</target>

<target name="web-complete"
 depends="build-mysql-connector, build-jstl, package-web"
 description="Compile web application,
 using CVS versions of the MySQL connector and the JSTL">
 <echo message="Compiling web application,
 using CVS versions of the MySQL connector and the JSTL"/>
</target>

Summary
In this chapter, you went through the processes that make up the main project build. You
considered different techniques of structuring a build process and how to control which parts
of the process run and which don’t. This included using properties to selectively run targets, as
well as the <antcall> task and the depends attribute of <target>, both of which are used in the
same way.

You set up the example application’s directory structure so that you could see these tech-
niques on a project that has multiple applications within it. In this example, you have shared
database-access code, a stand-alone application, and a web interface. These interfaces use
third-party libraries for accessing the MySQL database and using the JSTL tag library. You saw

Moodie_559-9C05.fm Page 128 Friday, September 30, 2005 8:01 AM

C H A P T E R 5 ■ B U I L D I N G A P R O JE C T 129

how to check out the most recent version of these libraries from a CVS repository and the issues
to watch for when working with third-party Ant builds.

This chapter did not include deploying or distributing the application, which I will cover in the
next chapter, but did include creating JAR and WAR files of the binaries. You will also create
packages of the source and include documentation in larger distributions in the next chapter.

Moodie_559-9C05.fm Page 129 Friday, September 30, 2005 8:01 AM

d10c55b52b1f8994064c85cd755fb5a9

Moodie_559-9C05.fm Page 130 Friday, September 30, 2005 8:01 AM

131

■ ■ ■

C H A P T E R 6

Deploying an Application

In the previous chapter, you examined how to build a project and place the binaries in JAR and
WAR files. In this chapter, you will learn how to package an application in a distributable
bundle, including the binaries, the documentation, and any appropriate licenses. (These may
be included in a source JAR or WAR already, but you should include them just to ensure the
entire bundle is covered.) Once you have a packaged distribution, you need to get it to your
users. In the case of web applications, this may be as easy as hot deploying a WAR file to the
web server, though other options include using FTP, using e-mail, and copying the distribution
across a network.

Deployment choice of course depends on what kind of application it is and who the users
are. Open-source projects are commonly placed in public places (CVS repositories, FTP servers,
and web servers) for general download, while internal projects are placed in similar internal
places or distributed directly to users. Source distributions are different again, in that internal
projects may not even need a source distribution, though all distributions gain from including
documentation.

In this chapter, you will create various distributions for your application that include zip
and tar files for the documentation, source code, stand-alone application, web application,
and entire binary distribution. Once you have these distributions, and you have digests for
users to verify their integrity, you will distribute them via FTP and e-mail. You’ll also see a few
ways to deploy web applications.

Building Documentation Bundles
Adequate—or, even better, excellent—documentation is a must for any project, large or small,
complicated or simple. This extends throughout the project, which means you should document
your Ant setup as well as the rest of the project. Projects change hands, and just as undocu-
mented code is an unfair legacy to pass on to the next maintainer/developer, undocumented
build processes can impede progress on a project. Remember, the next maintainer/developer
might be you in three months when you return to the project with hazy memories of code and
build processes.

The documentation for Java projects, Ant build documentation aside, falls broadly into
two categories: Javadocs and general documentation about the project. Javadocs should be
part of your commenting regime in your source code, and you should keep them up to date as
the code changes. The general documentation includes README files, licenses (if appropriate),

Moodie_559-9C06.fm Page 131 Tuesday, September 27, 2005 9:34 AM

132 C H A P T E R 6 ■ D E P L O Y I N G A N A P P L I C A T I O N

HTML manual pages, or Linux man entries. The HTML manual could be a copy of the web pages
that provide download, build, and usage instructions, as well as links to the Javadocs.

■Note The usual structure of documentation bundles is <basedir>/docs/api. This is the convention
that this chapter will follow.

Creating Javadocs
The javadoc command-line tool is a useful method for building Java API documentation and is
one with which you are no doubt familiar. It takes a huge number of options at the command
line, and you will know best which ones apply to your Javadoc generation. Suffice it to say that
Ant gives you options to replicate any functionality with its <javadoc> task, though, in this case,
you won’t see an entire table of its attributes. The table would be far too long and cumbersome
for this discussion, so you should refer to ant.apache.org/manual/CoreTasks/javadoc.html for
the entire list of attributes.

■Note Sun has a tutorial on working with Javadocs at java.sun.com/j2se/javadoc/.

One great advantage of the <javadoc> task in Ant is that it makes combining packages from
disparate locations easy. This is lucky because many projects have source files in different
sections of the project. The example project is like this—it has a pool of shared code, as well as
code for the web interface and the stand-alone client. Generating Javadocs that combine all
these pieces of code is as simple as combining them in a single file set. The <javadoc> task then
works on them all and creates a projectwide Javadoc bundle.

The example application has Javadoc comments throughout it. Listing 6-1 shows the
properties used in the Javadoc build.

Listing 6-1. Properties for the Javadoc Build

The directory where the docs will go
docs=${build}/docs

Properties for customizing the Javadoc build
javadoc.doctitle=Welcome to the example application
javadoc.windowtitle=The example application
javadoc.j2se.version=1.5.0
javadoc.j2ee.version=1.4

Centralizing this kind of data means that your Javadocs will have a unified feel and that
you can make changes easily and painlessly. You will place javadoc.doctitle and javadoc.
windowtitle in the appropriate attributes and nested elements to customize the resultant HTML.

Moodie_559-9C06.fm Page 132 Tuesday, September 27, 2005 9:34 AM

C H A P T E R 6 ■ D E P L O Y I N G A N A P P L I C A T I O N 133

The Javadoc version information will help you link to Javadoc information outside the applica-
tion so your users can quickly navigate to the information they require.

You may need to use the same file set for a number of Javadoc operations, so let’s create a
referenced file set to help with reusability. Listing 6-2 shows this file set.

Listing 6-2. The Javadoc File Set

 <!-- ################################### -->
 <!-- Javadoc file sets -->
 <!-- ################################### -->

 <fileset id="javadoc" dir="${src}">
 <exclude name="*/conf/**"/>
 <exclude name="*/docs/*"/>
 <include name="shared/**"/>
 <include name="stand-alone/**"/>
 <include name="web/java/**"/>
 </fileset>

Listing 6-3 shows the <javadoc> task that builds the example application’s Javadocs. You
will do this only if your documentation is older than your source code. Unfortunately, the
<javadoc> task does not check whether a file has changed since the last build, so you have to do
it in this case. You’ll use your documentation packages (covered in the “Creating Zip and Tar
Files” section) as the reference point for the documentation. If your source code or hand-
written documentation is newer than both packages, then you need new Javadocs. If it’s not,
then you can use the existing Javadocs. All the documentation targets will execute only if the
docs.notRequired property is empty.

Listing 6-3. Creating Javadocs for the Example Application

 <!-- ## -->
 <!-- Building the documentation bundle -->
 <!-- ## -->

 <!-- Checking that the documentation is up to date -->
 <target name="check-docs"
 description="Check that the documentation is up to date">
 <echo message="Checking that the documentation is up to date"/>
 <condition property="docs.notRequired">
 <and>
 <uptodate targetfile="${dist}/${appName}-${package.docs}.zip">
 <srcfiles dir="${src}" includes="**"/>
 </uptodate>
 <uptodate targetfile="${dist}/${appName}-${package.docs}.tar.gz">
 <srcfiles dir="${src}" includes="**"/>
 </uptodate>
 </and>
 </condition>
 </target>

Moodie_559-9C06.fm Page 133 Tuesday, September 27, 2005 9:34 AM

134 C H A P T E R 6 ■ D E P L O Y I N G A N A P P L I C A T I O N

 <!-- Generate Javadocs for the application -->
 <target name="javadocs" depends="dir,check-docs"
 description="Generate Javadocs for the application"
 unless="docs.notRequired">
 <echo message="Generating Javadocs for the application"/>
 <javadoc destdir="${docs}/api" windowtitle="${javadoc.windowtitle}">
 <fileset refid="javadoc"/>
 <doctitle>
 ${javadoc.doctitle}
 </doctitle>
 <classpath refid="build.classpath"/>
 <link href="http://java.sun.com/j2se/${javadoc.j2se.version}/docs/api"/>
 <link href="http://java.sun.com/j2ee/${javadoc.j2ee.version}/docs/api"/>
 </javadoc>
 </target>

Here you create a file set including all the Java sources and excluding the configuration
files in any conf directories and the documentation in the docs directory (which are part of the
javadoc file set you defined in Listing 6-2). The destdir attribute is required, points to the
directory that will contain the Javadocs, and corresponds to the -d command-line option. The
windowtitle attribute corresponds to the -windowtitle command-line option, which sets the
<title> tag in each HTML Javadocs page.

The <doctitle> nested element corresponds to the -doctitle command-line option, which
sets the <h1> title of the Javadoc overview page. You can also specify this as a doctitle attribute.

The <classpath> nested element allows the Javadoc process to find classes outside the file
set so that it can maintain object-oriented relationships. For example, servlets in the example
application extend javax.servlet.http.HttpServlet, which should be represented in the
Javadocs.

The final two nested elements are <link> elements that tell Ant to incorporate links to the
Javadoc information on Sun’s Java web site. This means readers of the documentation can
click links to see details of those objects that are not part of the application. In this case, you
have classes from the core Java distribution (J2SE) and the Servlet specification (part of J2EE).
The only way to link to two sets of Javadocs in this way is to use the <link> nested element. If
you had only one set of Javadocs to link to, you could use the <javadoc> task’s link attribute
instead.

If you aren’t sure you have access to online documentation when building the Javadocs,
then you have the option to use offline documentation instead. This scenario may occur if raw
source code is given out to users, who will be required to build the entire distribution from
scratch. You have two options here:

• Building the Javadocs with external links using offline package-list files to provide
package structure

• Linking to offline documentation

The first method has the advantage that, should a user gain access to online documenta-
tion, their Javadocs will instantly be up to date. The disadvantage is that they will have links in
their Javadocs to files they can’t access. You should ensure that the local package-list files are
up to date as well, because using old package definitions may lead to errors when connecting

Moodie_559-9C06.fm Page 134 Tuesday, September 27, 2005 9:34 AM

C H A P T E R 6 ■ D E P L O Y I N G A N A P P L I C A T I O N 135

to the online version. Deprecated code documentation should be maintained, but you should
not count on it being available forever.

The second method has the advantage that the user will instantly have access to descrip-
tions of all the objects used in the project. The disadvantage is that these descriptions may not
be as fresh as those in the online documentation.

All this is really a Javadoc discussion rather than an Ant discussion, but it is pertinent in the
context of a build process. You can change your Javadoc target to work in both ways. Listing 6-4
shows the properties that you’ll require for the following examples.

Listing 6-4. Properties for Working with Offline Documentation

javadoc.j2se.offline=C:/j2sdk1.5.0/docs/api
javadoc.j2ee.offline=C:/j2eesdk1.4/docs/apidocs

These two properties correspond to the root of the J2SE and J2EE Javadocs, respectively.
Listing 6-5 shows how to implement the first method that you saw previously.

Listing 6-5. Working with Offline package-list Files and Online Javadocs

 <!-- Generate Javadocs for the application,
 using offline package-list files -->
 <target name="javadocs-offline" depends="dir,check-docs"
 description="Generate Javadocs for the application,
 using offline package-list files"
 unless="docs.notRequired">
 <echo message="Generating Javadocs for the application,
 using offline package-list files"/>
 <javadoc destdir="${docs}/api" windowtitle="${javadoc.windowtitle}">
 <fileset refid="javadoc"/>
 <doctitle>
 ${javadoc.doctitle}
 </doctitle>
 <classpath refid="build.classpath"/>
 <link href="http://java.sun.com/j2se/${javadoc.j2se.version}/docs/api"
 offline="true" packagelistLoc="${javadoc.j2se.offline}"/>
 <link href="http://java.sun.com/j2ee/${javadoc.j2ee.version}/docs/api"
 offline="true" packagelistLoc="${javadoc.j2ee.offline}"/>
 </javadoc>
 </target>

The bold lines introduce <link> elements that work with offline files. The offline attribute
specifies whether offline files can be used if Ant cannot contact the resource in href. If you set
offline to true, you can specify the location of the package-list files in the packagelistLoc
attribute. The resulting <a> element’s href attribute of the object or method is filled with the URL in
the <link> element’s href attribute, using the package structure found at packagelistLoc. This
means Ant can create the entire Javadoc bundle without having to reference any online material.

To use only local files in the resulting <a> element’s href attribute, you can use the two
properties that represent the local files instead of the URL to the online documentation. This is

Moodie_559-9C06.fm Page 135 Tuesday, September 27, 2005 9:34 AM

136 C H A P T E R 6 ■ D E P L O Y I N G A N A P P L I C A T I O N

the most pessimistic approach, where you say that the user of the Javadocs will never be able
to read the online documentation. Listing 6-6 shows the relevant <link> elements.

Listing 6-6. Working with Offline Documentation

 <!-- Generate Javadocs for the application,
 using offline package-list files -->
 <target name="javadocs-offline" depends="dir,check-docs"
 description="Generate Javadocs for the application,
 using offline package-list files"
 unless="docs.notRequired">
 <echo message="Generating Javadocs for the application,
 using offline package-list files"/>
 <javadoc destdir="${docs}/api" windowtitle="${javadoc.windowtitle}">
 <fileset refid="javadoc"/>
 <doctitle>
 ${javadoc.doctitle}
 </doctitle>
 <classpath refid="build.classpath"/>
 <link href="${javadoc.j2se.offline}" resolveLink="true"/>
 <link href="${javadoc.j2ee.offline}" resolveLink="true"/>
 </javadoc>
 </target>

You need to set the resolveLink attribute to true so that Ant does not treat the value of
href as a relative path. You want it to realize that it is an absolute path and pass this to the
javadoc command.

Finishing the Bundle
Once you have created the Javadocs for the distribution, you need to add your other documen-
tation to it, if you have any. At the bare minimum, a project will at least have a README with
installation and usage instructions. It may also have a license and HTML documentation that
explains the project in more detail.

Adding the other documentation is a simple matter of copying the files from their location in
the source tree into the working directory. This final directory should be the docs directory that
contains the api directory. Listing 6-7 shows the <copy> tasks for this example’s documentation.

Listing 6-7. Assembling the Documentation

 <!-- Assemble the documentation -->
 <target name="docs" depends="javadocs"
 description="Assemble the documentation" unless="docs.notRequired">
 <echo message="Assembling the documentation"/>
 <copy todir="${docs}">
 <fileset dir="${src.shared.docs}">
 <include name="*.html"/>
 </fileset>

Moodie_559-9C06.fm Page 136 Tuesday, September 27, 2005 9:34 AM

d10c55b52b1f8994064c85cd755fb5a9

C H A P T E R 6 ■ D E P L O Y I N G A N A P P L I C A T I O N 137

 </copy>
 <copy todir="${docs}/stand-alone">
 <fileset dir="${src.stand-alone.docs}">
 <include name="*.html"/>
 </fileset>
 </copy>
 <copy todir="${docs}/web">
 <fileset dir="${src.web.docs}">
 <include name="*.html"/>
 </fileset>
 </copy>
 </target>

Now that you have all the documentation together, you can create distribution bundles.
However, I’ll finish the discussion of documentation by showing how to document the Ant
build process for a project.

Writing Ant Documentation
As mentioned previously, documenting the build file and process is an invaluable part of the
process. You can document the process in four ways:

• XML comments in the build file

• The description attribute of the <target> element

• The <echo> task

• A README or HTML description

The only time someone will see the XML comments in the build file is when they browse
through the build file to make changes or examine the build process. If appropriate, you should
make these comments fit this kind of audience. This may not always apply, but sometimes a
person who is working with and changing a build file needs to know more than someone who
just runs the build process. Thinking of XML comments as notes to your future self is a good
way of looking at things. You can also use XML comments to divide the build file into logical
segments, as you have done in the example application. Large, conspicuous XML comments
delineate the shared code’s targets from the stand-alone code’s targets and also from the web
code’s targets.

Ant will show the message left in the description attribute of the <target> element when
a user invokes the -projecthelp command-line option. Those targets with no description do
not appear as a result of this command. You can use this to your advantage if there are targets
within a build file that are part of a complex build path and should not be invoked on their own.
Think of these targets in the same light as private methods in your class files, in that you have
designed them so that only internal methods may call them. A user can of course open the
build file to see all the targets inside, but complex build files don’t lend themselves to casual
browsing by curious users. Give out only the information that they require in the form of
description attributes and README files.

The <echo> task is a great way of informing users (and yourself) of which step in the build
process Ant has reached and what it is trying to achieve. Use this as a form of reassurance that

Moodie_559-9C06.fm Page 137 Tuesday, September 27, 2005 9:34 AM

138 C H A P T E R 6 ■ D E P L O Y I N G A N A P P L I C A T I O N

things are going as planned. If you run many unsupervised builds, you may not need to bother
with this or with the description method of documentation. As always, it comes down to your
requirements.

Providing a verbose set of README files or HTML pages with instructions on the build (perhaps
including the results of a -projecthelp run) will give everybody a head start when using the
build file. This can be a detailed breakdown of all the targets and what is required to be in place
before a user can run the build. This should include detailed descriptions of all the properties
in any *.properties files that come with the build and any properties that can be supplied at
the command line. (Usernames and passwords are particularly important in this regard.)

■Note Chapter 10 includes a custom task that will display usage information for the current build and is
designed so that it is the default target of a build. This means a user gets information on the build process by
simply running ant, instead of potentially starting a lengthy build they may not want.

Creating Zip and Tar Files
Your choice of compressed file will largely depend on the target operating system. Windows
users will prefer zip files, though most Windows systems can handle tar.gz files as well. If your
preferred compression method is bzip2, you are certainly cutting down on the Windows users
who will be able to open the file.

■Note You can get bzip2 from www.bzip.org/downloads.html. It’s available in source form or as binaries
for some systems (Windows included). You won’t need the binaries to use the Ant tasks, though you may need
them to examine the results.

The example project will be available as *.zip files and *.tar.gz files, so you will have to
keep things as centralized and uniform as possible. To that end, Listing 6-8 shows some prop-
erties for the properties file that you will use to name distribution bundles.

Listing 6-8. Properties for Naming Distribution Bundles

package.stand-alone=stand-alone
package.web=web
package.docs=docs

You will see more properties in Listing 6-9, but you’ll set them in build.xml because they
are not designed to be changed by the user, whereas you should expect that users may want to
change filenames in the project.

One of the important things to consider when using zip files and tar files for the same
things is that Ant’s <zip> task can have nested <fileset> elements, but its <tar> task cannot
and instead uses nested <tarfileset> elements. While these are extended file sets, they cannot

Moodie_559-9C06.fm Page 138 Tuesday, September 27, 2005 9:34 AM

C H A P T E R 6 ■ D E P L O Y I N G A N A P P L I C A T I O N 139

take refid attributes to link them to predefined file sets. This means you cannot centralize lists
of files as file sets and must use pattern sets instead. In turn, this means you have to centralize
the dir attribute that the nested <fileset> and <tarfileset> elements will take.

Another difference between <zip> and <tar> is that <zip> takes nested <zipfileset>
elements that are much more powerful and useful than <tarfileset> elements and allow you
to do more when bundling the application. For example, <zipfileset> elements can incorpo-
rate the contents of existing zip files into the zip file that <zip> is building. This means you can
reuse targets much as you do in other parts of the build process. In other words, you can build
a zip file of the documentation in one target and then run that target every time you want to
create that zip file, even if it is to add its contents to a larger zip file.

<tar>, on the other hand, cannot do this, so you must repeat lines and lines of <tar> tasks
to replicate functionality that may already be present in another target. You’ll see more of this
as the example develops.

<zipfileset> elements do not suffer from the same weaknesses as <tarfileset> elements
in that they can reference predefined <fileset> elements. Therefore, you can quickly and
easily use any of the <zipfileset> element’s functionality (described in a moment) to zip any
set of files in the build process.

All this does not mean you cannot use the <tar> task, because it is useful in its place. If you
are distributing to users with a Unix or Linux system, *.tar.gz files are the standard, and tar in
combination with gzip creates smaller files than the zip algorithm.

Listing 6-9 shows the centralized properties and pattern sets for the parallel packaging
processes. The presence of the <tar> task means you have to use pattern sets and properties.

Listing 6-9. Centralized Properties and Pattern Sets for Bundling the Application

 <!-- ### -->
 <!-- Properties and pattern sets for the packaging targets -->
 <!-- ### -->

 <!-- The value of each property in this section is the setting -->
 <!-- for the 'dir' attribute of file sets and tar file sets -->

 <!-- Property and pattern set for the documentation -->
 <property name="docs.all.dir" value="${build}"/>
 <!-- Tar file sets cannot use file sets, so we must use a pattern set -->
 <patternset id="docs.all">
 <include name="docs/**"/>
 </patternset>

 <!-- Property and pattern set for the license and README -->
 <property name="docs.misc.dir" value="${src}/shared/docs"/>
 <!-- Tar file sets cannot use file sets, so we must use a pattern set -->
 <patternset id="docs.misc">
 <include name="README"/>
 <include name="LICENSE"/>
 </patternset>

Moodie_559-9C06.fm Page 139 Tuesday, September 27, 2005 9:34 AM

140 C H A P T E R 6 ■ D E P L O Y I N G A N A P P L I C A T I O N

 <!-- Property and pattern set for the source, -->
 <!-- build.xml, and build.properties -->
 <property name="src.files.dir" value="."/>
 <!-- Tar file sets cannot use file sets, so we must use a pattern set -->
 <patternset id="src.files">
 <include name="${src}/**"/>
 <include name="build.*"/>
 </patternset>

 <!-- Pattern set for the binary JAR -->
 <!-- Nothing else is needed because the directory that contains it -->
 <!-- is already in the ${dist} property and it's used in a zip file set -->
 <!-- as well as a tar file set -->
 <patternset id="bin.jar">
 <include name="*.jar"/>
 </patternset>

 <!-- Pattern set for the binary WAR -->
 <!-- Nothing else is needed because the directory that contains it -->
 <!-- is already in the ${dist} property and it's used in a zip file set -->
 <!-- as well as a tar file set -->
 <patternset id="bin.war">
 <include name="*.war"/>
 </patternset>

You’ll use all these properties and pattern sets later, but it should be fairly clear what they do.
The <zip> and <tar> tasks are compression tasks at heart and so are fairly similar to the

<jar> and <war> tasks you saw in Chapter 5. The main difference is the <zipfileset> and
<tarfileset> nested elements, which add more functionality than simple compression.

You’ll bundle the application using <zip> and <tar>, though when users extract the files
contained within, they should see no difference in structure between the two. This means you
have to have properties common to both stages of the build process (as discussed previously).

Zipping the Application
The <zip> task is the most powerful compression task in Ant’s armory. Its main strength is its
ability to include the contents of other zip files in the zip file it is currently building. As mentioned,
you can then place modular sections of zip instructions in targets that you can execute at
different stages of the build. In addition, you can add the whole range of file sets and pattern
sets to a <zip> task, which means you have a flexible mechanism.

Table 6-1 shows the <zip> task’s attributes. Deprecated attributes are not included.

Moodie_559-9C06.fm Page 140 Tuesday, September 27, 2005 9:34 AM

C H A P T E R 6 ■ D E P L O Y I N G A N A P P L I C A T I O N 141

Table 6-1. The <zip> Task’s Attributes

Attribute Description

basedir The directory from which to zip the target files. The default is the base
directory of the project.

comment The comment to store as part of the zip file. The default is blank.

compress Tells Ant to compress the files as it adds them to the zip file. If
keepcompression is set to true, this applies to the entire archive, not just
to the files you are adding. The default is true.

defaultexcludes Tells Ant to use the default excludes (see Chapter 4). The default is true.

destfile The name of the zip file you want to create. This attribute is required.

duplicate Tells Ant what to do if duplicate files are found. You can specify add,
preserve, or fail. The default is add.

encoding The encoding to use for filenames in the archive. The default is the
platform’s default encoding.

excludes The excludes list for this task, where each entry is separated from the
next one with a space or a comma. You may use wildcards. The default
is to omit nothing except the default excludes.

excludesfile The name of the file that contains the exclude patterns. The default is
to not use a file.

filesonly Tells Ant to store only file entries. The default is false.

includes The includes list for this task, where each entry is separated from the
next one with a space or a comma. You may use wildcards. The default
is all files.

includesfile The name of the file that contains the include patterns. The default is
to not use a file.

keepcompression Tells Ant to keep the original compression of the files you are adding.
The default is false.

roundup Tells Ant to round up file modification times to the next even number
of seconds. If you don’t do this, the times will be rounded down in the
zip file. This means the zip file will seem out of date when you run the
target again. The default is true.

update Tells Ant to overwrite files in the zip file. The default is false, which
means Ant will add only newer files. If you have set roundup to true (the
default), newer here means newer than two seconds.

whenempty Tells Ant what to do if no files match. You can specify fail, create, or
skip. The default is skip.

Moodie_559-9C06.fm Page 141 Tuesday, September 27, 2005 9:34 AM

142 C H A P T E R 6 ■ D E P L O Y I N G A N A P P L I C A T I O N

Most of this should be familiar from the JAR and WAR tasks. The difference comes when
you add a <zipfileset> nested element. This useful nested element takes all the attributes of a
file set, including a refid to another <fileset> or <zipfileset>. Table 6-2 shows its unique
attributes.

You can also nest <zipgroupfileset> elements in the <zip> element. This allows you to
include files from large numbers of zip files at once because this element represents a file set of
zip files. This is in contrast to the <zipfileset> element, which can include the contents of a
single zip file or a file set of uncompressed files. You will use a <zipgroupfileset> element as
part of the following bundling process.

Here are the files you will create:

• antBook-docs.zip

• antBook-docs.tar.gz

• antBook-src.zip

• antBook-src.tar.gz

• antBook-stand-alone-bin.zip

• antBook-stand-alone-bin.tar.gz

• antBook-web-bin.zip

• antBook-web-bin.tar.gz

Table 6-2. The <zipfileset> Element’s Attributes

Attribute Description

dirmode A three-digit octal string that sets user, group, and other modes of the
included directories once they are inside the archive. The default is 755.
See www.computerhope.com/unix/uchmod.htm for information on numeric
permissions.

filemode A three-digit octal string that sets user, group, and other modes of the
included files once they are inside the archive. The default is 644.

fullpath The path and filename that the included file will have when Ant adds it to the
archive. This is analogous to the tofile attribute of the <copy> task and can
be used only if this zip file set contains a single file. The default is blank.

prefix The prefix to add to all files in this zip file set when Ant adds them to the
archive. For example, prefix=lib gives antBook.jar the path lib/
antBook.jar when it is added to the archive. The default is blank.

src The name of a zip file that contains files to include in the zip file being
created. The contents of the file are included, not the file itself. To include
the file, use the usual file set attributes. You can include and exclude
patterns from the source archive with the usual file set attributes and
nested elements. The default is blank.

Moodie_559-9C06.fm Page 142 Tuesday, September 27, 2005 9:34 AM

C H A P T E R 6 ■ D E P L O Y I N G A N A P P L I C A T I O N 143

• antBook-bin.zip

• antBook-bin.tar.gz

Their names are pretty straightforward. The final two files contain the entire binary
distribution.

Bundling the Source and Documentation

In this example, you will take advantage of the cumulative nature of the <zip> task by bundling
each part of the application separately in different targets and including the contents of the
resultant zip file as appropriate. For example, you will zip the documentation in one target and
the source distribution in another, where you will combine the results of the first target into the
final zip file. Listing 6-10 shows the two targets.

Listing 6-10. Targets That Zip the Documentation and the Source Code

 <!-- ## -->
 <!-- Zip the distribution -->
 <!-- ## -->

 <!-- Zip the documentation -->
 <target name="zip-docs" depends="docs" description="Zip the documentation">
 <echo message="Zipping the documentation"/>
 <zip destfile="${dist}/${appName}-${package.docs}.zip">
 <!-- Include the documentation -->
 <fileset dir="${docs.all.dir}">
 <patternset refid="docs.all"/>
 </fileset>
 <!-- Include the license and the README -->
 <fileset dir="${docs.misc.dir}">
 <patternset refid="docs.misc"/>
 </fileset>
 </zip>
 </target>

 <!-- Zip the source and documentation together -->
 <target name="zip-src" depends="zip-docs"
 description="Zip the source and documentation together">
 <echo message="Zipping the source and documentation together"/>
 <zip destfile="${dist}/${appName}-src.zip">
 <!-- Include the source code and the build files -->
 <zipfileset src="${dist}/${appName}-${package.docs}.zip"/>
 <fileset dir="${src.files.dir}">
 <patternset refid="src.files"/>
 </fileset>
 </zip>
 </target>

Moodie_559-9C06.fm Page 143 Tuesday, September 27, 2005 9:34 AM

d10c55b52b1f8994064c85cd755fb5a9

144 C H A P T E R 6 ■ D E P L O Y I N G A N A P P L I C A T I O N

The zip-docs target didn’t have a call for <zipfileset> elements, so this code just used
normal file sets. If you call zip-src, Ant will first run zip-docs, zip the documentation, and then
place it in a zip file called dist/antBook-docs.zip. The tar example in the “Tarring the Application”
section will also use the pattern sets in this target.

The <zipfileset> element in zip-src adds the files from dist/antBook-docs.zip to the
<zip> task, and the file set adds the source code and build files. You now have two zip files in
dist, which is a product of the cumulative approach you are taking. This is no bad thing, as
projects often require documentation bundles.

Creating Digests for Distributions

When you downloaded and installed Ant in Chapter 2, you saw how to use message digests to
confirm the integrity of a download. If you are offering your application for public consump-
tion, or even to selected people, on a web site or FTP server, you might consider creating your
own message digests to accompany your files.

Ant’s <checksum> task allows you to create a message digest for your files using any algorithm
your Java Cryptography Extension (JCE) provides. In fact, you can specify any JCE using the
provider attribute. For the purposes of this chapter, you’ll look only at the default JCE and the
MD5 and SHA algorithms, mainly because that’s how Ant’s distributions are presented (I’ll call
SHA SHA1 from now on for consistency with Ant’s distributions.) Creating a PGP signature
requires you to run the pgp executable, so I’ll cover that in the next chapter when I discuss how
to run native programs.

The <checksum> task has a number of complicated attributes, many of which are concerned
with verifying data integrity. I won’t cover these here; rather, you’ll see examples of the attributes
that produce digests. Listing 6-11 shows modified versions of the zip-docs and zip-src targets
that create digests of the files.

Listing 6-11. Creating Digests of the Zip Files

 <!-- Zip the documentation -->
 <target name="zip-docs" depends="docs" description="Zip the documentation">
 <echo message="Zipping the documentation"/>
 <zip destfile="${dist}/${appName}-${package.docs}.zip">
 <!-- Include the documentation -->
 <fileset dir="${docs.all.dir}">
 <patternset refid="docs.all"/>
 </fileset>
 <!-- Include the license and the README -->
 <fileset dir="${docs.misc.dir}">
 <patternset refid="docs.misc"/>
 </fileset>
 </zip>
 <checksum file="${dist}/${appName}-${package.docs}.zip"
 forceOverwrite="true"/>
 <checksum file="${dist}/${appName}-${package.docs}.zip" forceOverwrite="true"
 algorithm="SHA1"/>
 </target>

Moodie_559-9C06.fm Page 144 Tuesday, September 27, 2005 9:34 AM

C H A P T E R 6 ■ D E P L O Y I N G A N A P P L I C A T I O N 145

 <!-- Zip the source and documentation together -->
 <target name="zip-src" depends="zip-docs"
 description="Zip the source and documentation together">
 <echo message="Zipping the source and documentation together"/>
 <zip destfile="${dist}/${appName}-src.zip">
 <!-- Include the source code and the build files -->
 <zipfileset src="${dist}/${appName}-${package.docs}.zip"/>
 <fileset dir="${src.files.dir}">
 <patternset refid="src.files"/>
 </fileset>
 </zip>
 <checksum file="${dist}/${appName}-src.zip" forceOverwrite="true"/>
 <checksum file="${dist}/${appName}-src.zip" forceOverwrite="true"
 algorithm="SHA1"/>
 </target>

The file attribute is the file you want to make a digest of, which will also provide the basis
for the resulting digest file. The general rule is filename.extension.algorithm. This means the
antBook-docs.zip file MD5 digest will be called antBook-docs.zip.MD5, and its SHA1 digest will
be called antBook-docs.zip.SHA1. You can change the final extension from the algorithm name
by setting the fileext attribute to something else. The forceOverwrite attribute makes sure the
digest file is up to date.

The default algorithm is MD5, though you can set others with the algorithm attribute. In
this code, you’ve set it to SHA1 (a synonym for SHA, which you can also use). Now when you
upload the zip files, you can include your digests along with them.

Bundling Binaries and Documentation

When you bundle binaries for distribution, you want them to include documentation. You can
easily accomplish this, because the zip-docs target already creates a documentation bundle
that you can include in a <zip> task. The first target shown in Listing 6-12 also includes the
binary files that the package-stand-alone target creates, as well as the MySQL database connector.
The second target includes the results of the package-web target, though you don’t need to
include JARs because they are inside the WAR file.

Listing 6-12. Targets That Zip the Documentation and Binary Distributions

 <!-- Zip the binary stand-alone distribution with the documentation -->
 <target name="zip-bin-stand-alone" depends="package-stand-alone,zip-docs"
 description="Zip the binary stand-alone distribution
 with the documentation">
 <echo message="Zipping the binary stand-alone distribution
 with the documentation"/>
 <zip destfile="${dist}/${appName}-${package.stand-alone}-bin.zip">
 <!-- Include the documentation -->
 <zipfileset src="${dist}/${appName}-${package.docs}.zip"/>

Moodie_559-9C06.fm Page 145 Tuesday, September 27, 2005 9:34 AM

146 C H A P T E R 6 ■ D E P L O Y I N G A N A P P L I C A T I O N

 <!-- Include the binary JAR files -->
 <zipfileset dir="${dist}" prefix="lib">
 <patternset refid="bin.jar"/>
 </zipfileset>
 <fileset dir=".">
 <include name="${mysql.jar}"/>
 </fileset>
 </zip>
 <checksum file="${dist}/${appName}-${package.stand-alone}-bin.zip"
 forceOverwrite="true"/>
 <checksum file="${dist}/${appName}-${package.stand-alone}-bin.zip"
 forceOverwrite="true" algorithm="SHA1"/>
 </target>

 <!-- Zip the binary web distribution with the documentation -->
 <target name="zip-bin-web" depends="package-web,zip-docs"
 description="Zip the binary web distribution with the documentation">
 <echo message="Zipping the binary web distribution with the documentation"/>
 <zip destfile="${dist}/${appName}-${package.web}-bin.zip">
 <!-- Include the documentation -->
 <zipfileset src="${dist}/${appName}-${package.docs}.zip"/>
 <!-- Include the binary WAR files -->
 <fileset dir="${dist}">
 <patternset refid="bin.war"/>
 </fileset>
 </zip>
 <checksum file="${dist}/${appName}-${package.web}-bin.zip"
 forceOverwrite="true"/>
 <checksum file="${dist}/${appName}-${package.web}-bin.zip"
 forceOverwrite="true" algorithm="SHA1"/>
 </target>

The zip-bin-web target doesn’t hold anything new. However, the zip-bin-stand-alone
target contains a <zipfileset> element that uses the prefix attribute. This allows you to place
the stand-alone application’s JAR file in the lib directory once a user decompresses the archive.

You can now build an entire binary distribution from the results of these two targets. They
both produce zip files, which means you can use a <zipgroupfileset> element to merge their
contents into one zip file. Listing 6-13 shows the relevant target.

Listing 6-13. Bundling the Entire Binary Distribution

 <!-- Zip the binary distribution with the documentation -->
 <target name="zip-bin" depends="zip-bin-stand-alone,zip-bin-web"
 description="Zip the binary distribution with the documentation">
 <echo message="Zipping the binary distribution with the documentation"/>
 <zip destfile="${dist}/${appName}-bin.zip"
 duplicate="preserve" update="true">
 <zipgroupfileset dir="${dist}" includes="*.zip"/>

Moodie_559-9C06.fm Page 146 Tuesday, September 27, 2005 9:34 AM

C H A P T E R 6 ■ D E P L O Y I N G A N A P P L I C A T I O N 147

 </zip>
 <checksum file="${dist}/${appName}-bin.zip" forceOverwrite="true"/>
 <checksum file="${dist}/${appName}-bin.zip" forceOverwrite="true"
 algorithm="SHA1"/>
 </target>

So, here you include all the files contained in the zip files that the other targets created. To
make sure the files exist, you set the depends attribute of the <target> element to run the previous
targets. In this case you will have duplicates, but you can be fairly sure that the previous targets
created the newest files possible, so you keep only one copy in the zip file by setting duplicate
to preserve and setting update to true.

Bundling the Entire Distribution

The final step is to bundle the entire distribution. This is extremely easy because of the cumu-
lative nature of the <zip> tasks you have used. Listing 6-14 shows how.

Listing 6-14. Bundling the Entire Distribution

 <!-- Zip the binary and source distributions -->
 <target name="zip-all" depends="zip-src,zip-bin"
 description="Zip the binary and source distributions">
 <echo message="Zipped the binary and source distributions"/>
 </target>

Tarring the Application
Using the <tar> task is not quite as easy or efficient as using the <zip> task, but you will have to
use it if you are distributing to Linux or Unix users. It has a lot of features that help you when
you are building distributions for those platforms that do not apply to Windows distributions,
and its compression algorithms are better than the <zip> task’s. Table 6-3 shows its attributes.

Table 6-3. The <tar> Task’s Attributes

Attribute Description

basedir The directory from which to tar the target files. The default is the
base directory of the project.

compression The method of compression to use, if any. This can be none, gzip, or
bzip2. The default is none.

defaultexcludes Tells Ant to use the default excludes (see Chapter 4). The default
is true.

destfile The name of the tar file you want to create. This attribute is required.

excludes The excludes list for this task, where each entry is separated from the
next one with a space or a comma. You may use wildcards. The
default is to omit nothing except the default excludes.

excludesfile The name of the file that contains the exclude patterns. The default is
not to use a file.

Moodie_559-9C06.fm Page 147 Tuesday, September 27, 2005 9:34 AM

148 C H A P T E R 6 ■ D E P L O Y I N G A N A P P L I C A T I O N

It is the compression and longfile attributes that make this such a useful task for creating
distributions that will go to Unix systems. Another nice feature from this point of view is the
nested <tarfileset> element, though it does suffer from the drawbacks discussed previously.
Table 6-4 shows its elements.

includes The includes list for this task, where each entry is separated from the
next one with a space or a comma. You may use wildcards. The default
is all files.

includesfile The name of the file that contains the include patterns. The default is
not to use a file.

longfile Tells Ant how to handle files that have names longer than 100 characters.
You can use this to provide backward compatibility to early versions
of tar. Options for backward compatibility are truncate, which cuts
the filename down to 100 characters; fail, which stops the tar process
if a filename is too long; and omit, which leaves out files that have long
filenames. Setting any of these options means you will get predictable
results when a user untars the archive. Other options are gnu, which
makes a GNU tar-compatible tar file that may be untarred properly
only by GNU tar, and warn, which does the same as gnu but warns you
when it encounters a long filename. The default is warn.

Table 6-4. The <tarfileset> Nested Element’s Attributes

Attribute Description

dirmode A three-digit octal string that sets user, group, and other modes of
the included directories once they are inside the archive. The
default is 755.

fullpath The path and filename that the included file will have when Ant
adds it to the archive. This is analogous to the tofile attribute of
the <copy> task and can be used only if this tar file set contains a
single file. The default is blank.

gid The GID for the tar entry. This is an integer. The default is null.

group The group name for the tar entry. Note that this is not the same as
the GID. The default is blank.

mode A three-digit octal string that sets user, group, and other modes of the
included files once they are inside the archive. The default is 644.

prefix The prefix to add to all files in this tar file set when Ant adds them to
the archive. For example, prefix=lib gives antBook.jar the path lib/
antBook.jar when it is added to the archive. The default is blank.

preserveLeadingSlashes Tells Ant to preserve leading slashes in filenames. The default is false.

uid The UID for the tar entry. This is an integer. The default is null.

username The username for the tar entry. Note that this is not the same as the
UID. The default is blank.

Table 6-3. The <tar> Task’s Attributes (Continued)

Attribute Description

Moodie_559-9C06.fm Page 148 Tuesday, September 27, 2005 9:34 AM

C H A P T E R 6 ■ D E P L O Y I N G A N A P P L I C A T I O N 149

This replicates a lot of the functionality of the <zipfileset> element but does not allow
you to include files from other tar files. The compensation is the user and group functionality
that you can implement.

Bundling the Source and Documentation

Without the cumulative nature of the <zip> task, you will build monolithic targets that create
tar files from scratch every time and without any reusable targets. Listing 6-15 shows how the
tar-src target builds an extra <tar> task onto the <tar> tasks in the tar-docs target. However,
note how they use the same pattern sets and properties as the previous <zip> tasks.

Listing 6-15. Targets That Tar the Documentation and the Source Code

 <!-- ## -->
 <!-- Tar and gz the distribution -->
 <!-- ## -->

 <!-- Tar the documentation -->
 <target name="tar-docs" depends="docs" description="Tar the documentation">
 <echo message="Tarring the documentation"/>
 <tar destfile="${dist}/${appName}-${package.docs}.tar.gz" compression="gzip">
 <!-- Include the documentation -->
 <tarfileset dir="${docs.all.dir}">
 <patternset refid="docs.all"/>
 </tarfileset>
 <!-- Include the license and the README -->
 <tarfileset dir="${docs.misc.dir}">
 <patternset refid="docs.misc"/>
 </tarfileset>
 </tar>
 <checksum file="${dist}/${appName}-${package.docs}.tar.gz"
 forceOverwrite="true"/>
 <checksum file="${dist}/${appName}-${package.docs}.tar.gz"
 forceOverwrite="true" algorithm="SHA1"/>
 </target>

 <!-- Tar the source and documentation together -->
 <target name="tar-src" depends="tar-docs"
 description="Tar the documentation">
 <echo message="Tarring the documentation"/>
 <tar destfile="${dist}/${appName}-src.tar.gz" compression="gzip">
 <!-- Include the documentation -->
 <tarfileset dir="${docs.all.dir}">
 <patternset refid="docs.all"/>

Moodie_559-9C06.fm Page 149 Tuesday, September 27, 2005 9:34 AM

150 C H A P T E R 6 ■ D E P L O Y I N G A N A P P L I C A T I O N

 </tarfileset>
 <!-- Include the license and the README -->
 <tarfileset dir="${docs.misc.dir}">
 <patternset refid="docs.misc"/>
 </tarfileset>
 <!-- Include the source code and the build files -->
 <tarfileset dir="${src.files.dir}">
 <patternset refid="src.files"/>
 </tarfileset>
 </tar>
 <checksum file="${dist}/${appName}-src.tar.gz" forceOverwrite="true"/>
 <checksum file="${dist}/${appName}-src.tar.gz" forceOverwrite="true"
 algorithm="SHA1"/>
 </target>

To replicate the cumulative nature of the zip process, in this code you set the depends
attribute of tar-src to point to tar-docs. To combine the compression with the bundle, you set
the compression attribute of the <tar> task to gzip.

Bundling Binaries and Documentation

To bundle the binaries with the documentation, you need to add more steps to the list of <tar>
tasks from tar-docs. In addition, you need to run the tar-docs target to achieve the cumulative
effect of a documentation distribution, as well as a binary distribution that contains documen-
tation. Listing 6-16 shows the new targets. The highlighted lines are new and build on tar-docs.

Listing 6-16. Targets That Tar the Documentation and Binary Distributions

 <!-- Tar the binary stand-alone distribution with the documentation -->
 <target name="tar-bin-stand-alone" depends="package-stand-alone,tar-docs"
 description="Tar the binary stand-alone distribution
 with the documentation">
 <echo message="Tarring the binary stand-alone distribution
 with the documentation"/>
 <tar destfile="${dist}/${appName}-${package.stand-alone}-bin.tar.gz"
 compression="gzip">
 <!-- Include the documentation -->
 <tarfileset dir="${docs.all.dir}">
 <patternset refid="docs.all"/>
 </tarfileset>
 <!-- Include the license and the README -->
 <tarfileset dir="${docs.misc.dir}">
 <patternset refid="docs.misc"/>

Moodie_559-9C06.fm Page 150 Tuesday, September 27, 2005 9:34 AM

d10c55b52b1f8994064c85cd755fb5a9

C H A P T E R 6 ■ D E P L O Y I N G A N A P P L I C A T I O N 151

 </tarfileset>
 <!-- Include the binary JAR files -->
 <tarfileset dir="${dist}" prefix="lib">
 <patternset refid="bin.jar"/>
 </tarfileset>
 <tarfileset dir=".">
 <include name="${mysql.jar}"/>
 </tarfileset>
 </tar>
 <checksum file="${dist}/${appName}-${package.stand-alone}-bin.tar.gz"
 forceOverwrite="true"/>
 <checksum file="${dist}/${appName}-${package.stand-alone}-bin.tar.gz"
 forceOverwrite="true" algorithm="SHA1"/>
 </target>

 <!-- Tar the binary web distribution with the documentation -->
 <target name="tar-bin-web" depends="package-web,tar-docs"
 description="Tar the binary web distribution with the documentation">
 <echo message="Tarring the binary web distribution
 with the documentation"/>
 <tar destfile="${dist}/${appName}-${package.web}-bin.tar.gz"
 compression="gzip">
 <!-- Include the documentation -->
 <tarfileset dir="${docs.all.dir}">
 <patternset refid="docs.all"/>
 </tarfileset>
 <!-- Include the license and the README -->
 <tarfileset dir="${docs.misc.dir}">
 <patternset refid="docs.misc"/>
 </tarfileset>
 <!-- Include the binary WAR files -->
 <tarfileset dir="${dist}">
 <patternset refid="bin.war"/>
 </tarfileset>
 </tar>
 <checksum file="${dist}/${appName}-${package.web}-bin.tar.gz"
 forceOverwrite="true"/>
 <checksum file="${dist}/${appName}-${package.web}-bin.tar.gz"
 forceOverwrite="true" algorithm="SHA1"/>
 </target>

You have replicated the prefix trick from the <zip> task example here by setting the prefix
attribute of the first <tarfileset> element in tar-bin-stand-alone to lib. You now have to
package the entire binary distribution, as shown in Listing 6-17. This target is a combination of
almost all the <tarfileset> elements you have written so far, which is a good illustration of the
weakness of the <tar> task.

Moodie_559-9C06.fm Page 151 Tuesday, September 27, 2005 9:34 AM

152 C H A P T E R 6 ■ D E P L O Y I N G A N A P P L I C A T I O N

Listing 6-17. Bundling the Entire Binary Distribution

 <!-- Tar the binary distribution with the documentation -->
 <target name="tar-bin" depends="tar-bin-stand-alone,tar-bin-web"
 description="Tar the binary distribution with the documentation">
 <echo message="Tarring the binary distribution with the documentation"/>
 <tar destfile="${dist}/${appName}-bin.tar.gz" compression="gzip">
 <!-- Include the documentation -->
 <tarfileset dir="${docs.all.dir}">
 <patternset refid="docs.all"/>
 </tarfileset>
 <!-- Include the license and the README -->
 <tarfileset dir="${docs.misc.dir}">
 <patternset refid="docs.misc"/>
 </tarfileset>
 <!-- Include the source code and the build files -->
 <tarfileset dir="${src.files.dir}">
 <patternset refid="src.files"/>
 </tarfileset>
 <!-- Include the binary JAR files -->
 <tarfileset dir="${dist}" prefix="lib">
 <patternset refid="bin.jar"/>
 </tarfileset>
 <tarfileset dir=".">
 <include name="${mysql.jar}"/>
 </tarfileset>
 <!-- Include the binary WAR files -->
 <tarfileset dir="${dist}">
 <patternset refid="bin.war"/>
 </tarfileset>
 </tar>
 <checksum file="${dist}/${appName}-bin.tar.gz" forceOverwrite="true"/>
 <checksum file="${dist}/${appName}-bin.tar.gz" forceOverwrite="true"
 algorithm="SHA1"/>
 </target>

An alternative solution to this problem takes advantage of the fact that each tar file is a
repackaged version of the corresponding zip file. In this case, you will expand the zip file to a
temporary location, such as /tmp, and then tar the expanded version. This is analogous to the
way <zipfileset> elements allow you to add the contents of zip files to other zip files.

First, you need to specify the temporary directory as a property in the property file, like so:

tmp=C:/TEMP/antBook
#tmp=/tmp/antBook

Then you need to use the <unzip> task to extract the data from the zip files. Table 6-5 shows
its attributes. This is a special task in that you can use it as <unjar>, <untar>, and <unwar> as
well, with the attributes as described in the table.

Moodie_559-9C06.fm Page 152 Tuesday, September 27, 2005 9:34 AM

C H A P T E R 6 ■ D E P L O Y I N G A N A P P L I C A T I O N 153

Listing 6-18 shows the <unzip> task in action on the binary distribution of the web applica-
tion. It unzips the binary zip file (created by zip-bin-web via the depends attribute) into a
directory under ${tmp}. You should be careful to specify separate directories for each unzip
target to ensure distributions aren’t mixed up.

Listing 6-18. Using the <unzip> Task to Help Create Tar Files

 <!-- ### -->
 <!-- Tasks that use the zip files to construct tar files -->
 <!-- ### -->

 <!-- Tar the binary web distribution with the documentation -->
 <target name="tar-bin-web-new" depends="package-web,tar-docs,zip-bin-web"
 description="Tar the binary web distribution with the documentation">
 <echo message="Tarring the binary web distribution with the documentation"/>
 <unzip src="${dist}/${appName}-${package.web}-bin.zip" dest="${tmp}/web"/>
 <tar destfile="${dist}/${appName}-${package.web}-bin.tar.gz"
 compression="gzip">
 <tarfileset dir="${tmp}/web"/>
 </tar>
 <checksum file="${dist}/${appName}-${package.web}-bin.tar.gz"
 forceOverwrite="true"/>
 <checksum file="${dist}/${appName}-${package.web}-bin.tar.gz"
 forceOverwrite="true" algorithm="SHA1"/>
 </target>

You could of course remove everything from the ${tmp} directory prior to running the
<unzip> task to ensure separation. Listing 6-19 shows the new target that will package the
entire binary distribution, with a <delete> task added as contrast to Listing 6-18.

Table 6-5. The <unjar>, <untar>, <unwar>, and <unzip> Tasks’ Attributes

Attribute Description

compression The compression method that was used on the archive you are unpacking.
The possible values are none, gzip, and bzip2. The default is none. This
attribute is applicable only to the <untar> incarnation of this task.

dest The destination directory for the files you are extracting. The attribute
is required.

encoding The encoding to use for filenames in the archive. You can specify
native-encoding to use the platform’s default encoding. The default is UTF8.
This attribute is not applicable to the <untar> incarnation of this task.

overwrite Tells Ant whether to overwrite files in the destination directory, even if they
are newer than the archive’s. The default is true.

src The archive you want to expand. This attribute is required unless you nest
some file sets.

Moodie_559-9C06.fm Page 153 Tuesday, September 27, 2005 9:34 AM

154 C H A P T E R 6 ■ D E P L O Y I N G A N A P P L I C A T I O N

Listing 6-19. Using the <unzip> Task to Help Create an Entire Binary Distribution

 <!-- Tar the binary distribution with the documentation -->
 <target name="tar-bin-new"
 depends="zip-bin,tar-bin-stand-alone,tar-bin-web-new"
 description="Tar the binary distribution with the documentation">
 <echo message="Tarring the binary distribution with the documentation"/>
 <delete failonerror="false" includeemptydirs="true">
 <fileset dir="${tmp}" includes="**"/>
 </delete>
 <unzip src="${dist}/${appName}-bin.zip" dest="${tmp}"/>
 <tar destfile="${dist}/${appName}-bin.tar.gz" compression="gzip">
 <tarfileset dir="${tmp}"/>
 </tar>
 <checksum file="${dist}/${appName}-bin.tar.gz" forceOverwrite="true"/>
 <checksum file="${dist}/${appName}-bin.tar.gz" forceOverwrite="true"
 algorithm="SHA1"/>
 </target>

As you can see, this is a lot more efficient and succinct than the previous version. The <delete>
task needs to deal with a situation where the ${tmp} directory does not exist (failonerror is set
to false) and needs to remove empty directories along with the files they used to contain
(includeemptydirs set to true).

The one slight disadvantage of this approach is that the tar targets always run the zip
targets and increase the I/O operations on the file system. However, the zip targets are good at
evaluating whether they should do a full zip, so this shouldn’t be too much of a problem.

Bundling the Entire Distribution

The final target creates all the tar bundles from earlier in the chapter. This is a straight rewrite
of the zip version, as shown in Listing 6-20.

Listing 6-20. Bundling the Entire Distribution

 <!-- Tar the binary and source distributions -->
 <target name="tar-all" depends="tar-src,tar-bin"
 description="Tar the binary and source distributions">
 <echo message="Tarred the binary and source distributions"/>
 </target>

USING THE <WAR> TASK WITH ZIP FILE SETS

Now that you have seen zip file sets, you can rewrite the WAR target from the previous chapter. The <war>
task’s <lib> and <classes> child elements are file sets and do a lot of the work by filling the WAR file’s
WEB-INF/lib and WEB-INF/classes directories, respectively. The drawback of these nested elements is
that you can use them only once, so you must collect all your files into a structure that can be represented
sensibly by a file set if you want to use the files in these nested elements.

Moodie_559-9C06.fm Page 154 Tuesday, September 27, 2005 9:34 AM

C H A P T E R 6 ■ D E P L O Y I N G A N A P P L I C A T I O N 155

Remember, a file set will add the path to the file relative to its dir attribute, which can cause problems
if files are in different locations. For example, take the following:

<classes dir=".">
 <include name="${build.web.root}/**"/>
 <include name="${database.properties}"/>
</classes>

You’ve had to use the project’s base directory as the basis for this file set because this is the parent directory
of the two includes. However, this causes problems in the WAR, which will have the following structure:

WEB-INF/classes/build/web/org/mwrm/Constants.class
WEB-INF/classes/build/web/org/mwrm/PropertiesLoader.class
...
WEB-INF/classes/src/shared/conf/database.properties

The paths to these files have been included, relative to the base directory of the file set. The solution is
to choose the set of files that contains the greatest number of files and use that as the basis for the <classes> file
set, which in this case is the set of class files, and then add the other files, such as database.properties,
another way. The best way to add other files is to use <zipfileset> elements and set the prefix attribute
to the path within the web application’s structure that you require. You can extend this technique to other files
in the web application.

In the following complete example, you add the database.properties file with a <zipfileset>
element. As noted, if you were to include it as part of the <classes> element, Ant would add it as WEB-INF/
classes/src/web/conf/database.properties, which is not what you want.

 <!-- Build the WAR file in one step -->
 <target name="package-web-test" depends="compile-web"
 description="Build the WAR file in one step">
 <echo message="Building the WAR file in one step"/>
 <war destfile="${appName.war}" basedir="${src.web.pages}"
 webxml="${src.web.conf}/web.xml">
 <lib dir="${lib}"/>
 <classes dir="${build.web.root}"/>
 <zipfileset dir="${src.web.tags}" prefix="WEB-INF/tags"/>
 <zipfileset file="${database.properties}" prefix="WEB-INF/classes"/>
 <zipfileset dir="${src.web.conf}" prefix="WEB-INF">
 <include name="*.tld"/>
 </zipfileset>
 </war>
 </target>

The <zipfileset> elements here replicate the functionality of the <copy> tasks from the previous
incarnation of this target, without having to do any copying.

Moodie_559-9C06.fm Page 155 Tuesday, September 27, 2005 9:34 AM

156 C H A P T E R 6 ■ D E P L O Y I N G A N A P P L I C A T I O N

Using the Zip and Tar Build Paths
Now you have two build paths that both create compressed bundles of files that you can
distribute. You can run the entire build for both paths as follows:

> ant zip-all
> ant tar-all

Each command will create five files in the dist directory, making ten in all, named like so:

• antBook-docs.*

• antBook-src.*

• antBook-bin.*

• antBook-stand-alone-bin.*

• antBook-web-bin.*

Once you are happy with the outcome of the bundling process, it is time to get the distri-
butions out to users and fellow developers.

Distributing the Application
As with most of the topics in this chapter, how you distribute your applications depends on a
number of factors. These include whether it is a source distribution, documentation only, a
command-line client, or a web application. The nature of the application also comes into play.
In other words, you can usually place freely distributable open-source projects and freeware
on a public FTP or HTTP server so that anyone can download them, while you can place in-
house projects on a private FTP or HTTP server, copy them to a convenient location on an
internal network, or mail them to those who have a stake in the project.

Placing the Application on an FTP Server
You can place a file on an FTP server in two ways: copy it to the relevant directory if the server
is on your network or upload it to a remote server. I won’t cover the copying option here
because it is so straightforward, so let’s look at using Ant’s <ftp> task.

The <ftp> task is an optional task because it relies on code from the Jakarta Commons
Net project and code from the Jakarta ORO project. If you want to use the <ftp> task, obtain
the relevant JAR files from the distributions at jakarta.apache.org/site/downloads/
downloads_commons.html and jakarta.apache.org/site/downloads/. Once you have them,
place them in ANT_HOME/lib.

■Note If you don’t have a handy FTP server to use, the Apache Software Foundation has a Java implemen-
tation at incubator.apache.org/projects/ftpserver/. It of course comes with an Ant build file to
create the binary files. The popular FileZilla project also offers a Windows FTP server at sourceforge.net/
projects/filezilla/. Linux/Unix users have ftpd at their disposal.

Moodie_559-9C06.fm Page 156 Tuesday, September 27, 2005 9:34 AM

C H A P T E R 6 ■ D E P L O Y I N G A N A P P L I C A T I O N 157

The <ftp> task has a lot of attributes, but I’ll concentrate on the most common and
useful ones here. For full details, see the Ant manual. Listing 6-21 shows the properties in
build.properties that you will need for this section.

Listing 6-21. FTP Server Settings

FTP settings
ftp.server=localhost
ftp.src.dir=src
ftp.bin.dir=bin

Listing 6-22 shows the target to upload your application’s documentation bundles to an
FTP server.

Listing 6-22. Sending the Documentation to a Remote FTP Server

 <!-- #################### -->
 <!-- Distribution targets -->
 <!-- #################### -->

 <!-- ################### -->
 <!-- FTP targets -->
 <!-- ################### -->

 <!-- Place the documentation on FTP -->
 <target name="ftp-docs" depends="zip-docs,tar-docs"
 description="Place the documentation on FTP">
 <echo message="Placing the documentation on FTP"/>
 <ftp server="${ftp.server}"
 userid="${ftp.user}"
 password="${ftp.password}"
 remotedir="${ftp.src.dir}"
 action="send">
 <fileset dir="${dist}">
 <include name="${appName}-${package.docs}.*"/>
 </fileset>
 </ftp>
 </target>

Here you set the server name to localhost with the server attribute, which is required.
You’ll provide the username and password at the command line for security like so:

> ant -Dftp.user=antBook -Dftp.password=antB00k ftp-docs

The remotedir attribute specifies which directory on the FTP server you want to use, which
is relative to the user’s “home” directory on the FTP server. This approach does have its limita-
tions. For example, every time you run this target, Ant will upload all the files to the FTP server.
A better way to do this would be to upload only those files that have changed since the last
upload. However, the files on FTP will have a timestamp relative to the FTP server’s local time

Moodie_559-9C06.fm Page 157 Tuesday, September 27, 2005 9:34 AM

d10c55b52b1f8994064c85cd755fb5a9

158 C H A P T E R 6 ■ D E P L O Y I N G A N A P P L I C A T I O N

and so may appear to be much newer or much older than they really are, depending on where
your machine is located.

Ant can overcome this problem with the help of two of the <ftp> task’s attributes called
newer and timediffauto. This is one reason you do not want to generate the Javadocs during
every build. If you did, the Javadoc generation would change files that otherwise would be
unchanged, and so Ant would upload them onto the FTP site.

Listing 6-23 shows them in action, along with the target to send the source bundles.

Listing 6-23. Sending the Documentation and Source to a Remote FTP Server Only If They Are
Newer Files

 <!-- Place the documentation on FTP -->
 <target name="ftp-docs" depends="zip-docs,tar-docs"
 description="Place the documentation on FTP">
 <echo message="Placing the documentation on FTP"/>
 <ftp server="${ftp.server}"
 userid="${ftp.user}"
 password="${ftp.password}"
 remotedir="${ftp.src.dir}"
 action="send"
 newer="true"
 timediffauto="true">
 <fileset dir="${dist}">
 <include name="${appName}-${package.docs}.*"/>
 </fileset>
 </ftp>
 </target>

 <!-- Place the source code on FTP -->
 <target name="ftp-src" depends="zip-src,tar-src"
 description="Place the source code on FTP">
 <echo message="Placing the source code on FTP"/>
 <ftp server="${ftp.server}"
 userid="${ftp.user}"
 password="${ftp.password}"
 remotedir="${ftp.src.dir}"
 action="send"
 newer="true"
 timediffauto="true">
 <fileset dir="${dist}">
 <include name="${appName}-src.*"/>
 </fileset>
 </ftp>
 </target>

Setting newer to true tells Ant to overwrite files on the server only if the local files are newer.
You use this in conjunction with the timediffauto attribute, which calculates the difference in

Moodie_559-9C06.fm Page 158 Tuesday, September 27, 2005 9:34 AM

C H A P T E R 6 ■ D E P L O Y I N G A N A P P L I C A T I O N 159

time between the FTP server and the local machine for the purpose of determining which file
is newer.

Placing the binaries on the FTP server is just as easy, as shown in Listing 6-24.

Listing 6-24. Sending the Binaries to a Remote FTP Server

 <!-- Place the binaries on FTP -->
 <target name="ftp-bin" depends="zip-bin,tar-bin"
 description="Place the binaries on FTP">
 <echo message="Placing the binaries on FTP"/>
 <ftp server="${ftp.server}"
 userid="${ftp.user}"
 password="${ftp.password}"
 remotedir="${ftp.bin.dir}"
 action="send"
 newer="true"
 timediffauto="true">
 <fileset dir="${dist}">
 <include name="${appName}*bin*"/>
 </fileset>
 </ftp>
 </target>

This time you use the bin directory on the FTP server and a slightly different wildcard
expression to catch all the binary bundles.

Finally, you want the end of the build path to be a target that builds everything and then
uploads it all to the FTP server, as shown in Listing 6-25.

Listing 6-25. The FTP Target Builds the Entire Application and Loads It onto the FTP Server

 <!-- Place everything on FTP -->
 <target name="ftp" description="Place everything on FTP">
 <echo message="Placing everything on FTP"/>
 <antcall target="ftp-docs"/>
 <antcall target="ftp-src"/>
 <antcall target="ftp-bin"/>
 </target>

Adding a Status Bar to the Build

One final touch for the FTP target is to add a splash screen with the <splash> task while the
upload proceeds to give the user some stimulation. This will add processing and time to the
build but is an interesting effect that you may want to use for your personal builds. The default
is to show the splash screen for five seconds before the build begins, so you’ll change that by
setting the showduration attribute to 0 milliseconds, as shown in Listing 6-26.

Moodie_559-9C06.fm Page 159 Tuesday, September 27, 2005 9:34 AM

160 C H A P T E R 6 ■ D E P L O Y I N G A N A P P L I C A T I O N

Listing 6-26. Adding a Splash Screen to the FTP Target

 <!-- Place everything on FTP -->
 <target name="ftp" description="Place everything on FTP">
 <echo message="Placing everything on FTP"/>
 <splash showduration="0"/>
 <antcall target="ftp-docs"/>
 <antcall target="ftp-src"/>
 <antcall target="ftp-bin"/>
 </target>

The status bar will progress for each target in the build. You can specify your own image
using the imageurl attribute.

Adding Interactive Input to the Build

So far you have provided the username and password at the command line, but you can also
prompt the user to enter their details as needed in the build. This is slightly more secure than
providing them at the command line because they won’t remain in your shell’s history as do
your command-line values (though of course this depends on your shell and security settings).
However, they do still appear on the screen for passersby to read.

To work with interactive input, you use the <input> task. It takes four attributes, as described
in Table 6-6.

The interesting thing about the addproperty attribute is that Ant ignores it if you specify
the property some other way. Therefore, if you provide the property at the command line, Ant
will not prompt you for it later in the build; it will use the command-line version automatically.
Let’s extend the ftp target as shown in Listing 6-27.

Table 6-6. The <input> Task’s Attributes

Attribute Description

addproperty The name of the property whose value will contain the information typed
by the user. This allows you to capture user input. The default is to not
set a property.

defaultvalue The default value of the property named in addproperty. The default
is blank.

message The message that prompts the user for input. You can also specify this
message in the body of the <input> element. The default is an empty
message.

validargs A comma-separated string that represents valid arguments for this
prompt. You can use this to enforce certain usage. For example, y,Y,n,N
limits the response to one of these four letters. Note that this task is case-
sensitive. The default is an empty list, meaning any input is allowed.

Moodie_559-9C06.fm Page 160 Tuesday, September 27, 2005 9:34 AM

C H A P T E R 6 ■ D E P L O Y I N G A N A P P L I C A T I O N 161

Listing 6-27. Adding User Input to the ftp Target

 <!-- Place everything on FTP -->
 <target name="ftp" description="Place everything on FTP">
 <echo message="Placing everything on FTP"/>
 <input message="Please enter your username." addproperty="ftp.user"/>
 <input message="Please enter your password." addproperty="ftp.password"/>
 <splash showduration="0"/>
 <antcall target="ftp-docs"/>
 <antcall target="ftp-src"/>
 <antcall target="ftp-bin"/>
 </target>

By placing the prompt for input here, you can set the username and password for all the
FTP operations in the other FTP-related targets called by ftp. Here are the edited highlights of
an example run:

> ant ftp

Buildfile: build.xml

ftp:
 [echo] Placing everything on FTP
 [input] Please enter your username.
antBook
 [input] Please enter your password.
antB00k

The build should then continue, and Ant will add the files to the FTP server. If you supplied
the username and password at the command line, you’d see how Ant ignores the <input> task
because you have set the addproperty attribute.

> ant -Dftp.user=antBook -Dftp.password=antB00k ftp

Buildfile: build.xml

ftp:
 [echo] Placing everything on FTP
 [input] skipping input as property ftp.user has already been set.
 [input] skipping input as property ftp.password has already been set.

Distributing the Application via E-mail
If an FTP server is not appropriate for distribution, you may want to use the e-mail option. The
<mail> task is a core task, meaning it has no external dependencies, but if you want to use
MIME format or secure communications, you need the following:

Moodie_559-9C06.fm Page 161 Tuesday, September 27, 2005 9:34 AM

162 C H A P T E R 6 ■ D E P L O Y I N G A N A P P L I C A T I O N

• mail.jar from java.sun.com/products/javamail/

• JDK 1.4 or greater or jsse.jar from java.sun.com/products/jsse/

• activation.jar from java.sun.com/products/javabeans/glasgow/jaf.html

In this example, you will send attachments with the e-mail, so you will need to place these
JAR files in ANT_HOME/lib. The <mail> task has a lot of attributes, but you need to set a lot of
them, so you’ll look at them in an example (see Listing 6-28).

Listing 6-28. E-mail Properties

mail.from=antBuild@example.com
mail.tolist=antUser01@example.com,antUser02@example.com
mail.message.docs=Here's the docs distribution
mail.mailhost=smtp.mail.example.com
mail.subject=Ant build

As before, you will provide the username and password at the command line. Listing 6-29
shows how to e-mail the documentation to the list of people in the mail.tolist property.

Listing 6-29. E-mailing the Documentation

 <!-- ################### -->
 <!-- Email targets -->
 <!-- ################### -->

 <!-- E-mail the documentation -->
 <target name="email-docs" depends="zip-docs,tar-docs"
 description="E-mailing the documentation">
 <echo message="E-mailing the documentation"/>
 <mail from="${mail.from}"
 tolist="${mail.tolist}"
 message="${mail.message.docs}"
 mailhost="${mail.mailhost}"
 user="${mail.user}"
 password="${mail.password}"
 subject="${mail.subject}">
 <fileset dir="${dist}">
 <include name="${appName}-${package.docs}.*"/>
 </fileset>
 </mail>
 </target>

The nested file list will be included as an attachment, which is possible only if you are
using MIME formats. The attributes of <mail> are straightforward, though if you need to use
SSL encryption, you can set the ssl attribute to true. Note that you can also specify cclist and
bcclist attributes, as well as a replyto attribute.

Moodie_559-9C06.fm Page 162 Tuesday, September 27, 2005 9:34 AM

C H A P T E R 6 ■ D E P L O Y I N G A N A P P L I C A T I O N 163

If you do not want to specify a message body as a property, maybe because it is a large
body of text, you can place it in a file and refer to it with the messagefile attribute. Another
alternative is to use a nested <message> element, as shown in Listing 6-30.

Listing 6-30. Nesting a <message> Element

 <!-- E-mail the documentation -->
 <target name="email-docs" depends="zip-docs,tar-docs"
 description="E-mail the documentation">
 <echo message="E-mailing the documentation"/>
 <mail from="${mail.from}"
 tolist="${mail.tolist}"
 mailhost="${mail.mailhost}"
 user="${mail.user}"
 password="${mail.password}"
 subject="${mail.subject}">
 <message>
 ${mail.message.docs}
 </message>
 <fileset dir="${dist}">
 <include name="${appName}-${package.docs}.*"/>
 </fileset>
 </mail>
 </target>

The <message> nested element can also include a file if you specify one in its src attribute.
You can also nest the <to>, <cc>, <bcc>, <from>, and <replyto> elements, each of which has a
required address element and an optional name element.

E-mail addresses can be in any of the following formats:

• address@xyz.com

• name <address@xyz.com>

• <address@xyz.com> name

• (name) address@xyz.com

• address@xyz.com (name)

E-mailing the other parts of the distribution is similar to the process shown in Listings 6-23 and
6-24. Therefore, I won’t cover these minor changes that amount to a change of e-mail body and
change of nested file sets. Instead, let’s move on to deploying the web application.

Deploying a Web Application
Web servers that run web applications usually have some method of hot deploying a web
application on a running web application, and you will exploit in this ability in this section. The
server in this example is Tomcat, available from jakarta.apache.org/tomcat/. You will employ

Moodie_559-9C06.fm Page 163 Tuesday, September 27, 2005 9:34 AM

164 C H A P T E R 6 ■ D E P L O Y I N G A N A P P L I C A T I O N

three techniques for deploying on Tomcat, one of which will undoubtedly work on the server
of your choice.

The important detail in this process is the location of the hot-deploy directory. In Tomcat’s
case, it is CATALINA_HOME/webapps, where CATALINA_HOME is Tomcat’s installation directory. You
will have to set this variable to run Tomcat, so you will take advantage of its presence in the
build.

Copying the Expanded Web Application

If you are using the default Tomcat setup, you can copy the web application’s files into the
Tomcat webapps directory, and Tomcat will deploy it. If you want to check that you can hot-
deploy in this way, open the CATALINA_HOME/conf/server.xml file. Find the <Host> element of
your server, and check that the autoDeploy attribute is set to true. Here’s the default setup:

<Host name="localhost" appBase="webapps"
 unpackWARs="true" autoDeploy="true"
 xmlValidation="false" xmlNamespaceAware="false">

The appBase attribute defines where Tomcat will look for web applications, and that is
where you will place the expanded files, as shown in Listing 6-31. You’ll return to unpackWARs in
the next section.

Listing 6-31. Deploying the Expanded Web Application

 <!-- ################################ -->
 <!-- Deploy the web application -->
 <!-- ################################ -->

 <!-- 1. Copy the expanded web application -->
 <target name="deploy-copy-files" depends="copy-web"
 description="Deploy the application by copying it to Tomcat">
 <echo message="Copying the expanded web application to CATALINA_HOME"/>
 <property environment="env"/>
 <copy todir="${build.web.web-inf}" file="${src.web.conf}/web.xml"/>
 <copy todir="${env.CATALINA_HOME}/webapps/${appName}">
 <fileset dir="${build.web.root}"/>
 </copy>
 </target>

Note that you have to copy the web.xml file into the web application’s directory structure
because you didn’t do that when you created the WAR file in Chapter 5. If you have Tomcat
running and autoDeploy set to true, the web application will become available after a few seconds.

Copying the WAR File

Copying a WAR file to Tomcat’s webapps directory is an alternative to copying the expanded
files. This is a much neater way of doing things and takes up less network bandwidth because
compressed WARs are usually smaller than the expanded web application. If you have
unpackWARs set to true, Tomcat will expand the WAR and deploy it, assuming autoDeploy is set

Moodie_559-9C06.fm Page 164 Tuesday, September 27, 2005 9:34 AM

d10c55b52b1f8994064c85cd755fb5a9

C H A P T E R 6 ■ D E P L O Y I N G A N A P P L I C A T I O N 165

to true. If you set unpackWARs to false, Tomcat will run the web application from the WAR,
meaning slightly slower performance, but in this case Tomcat will not require write access to
the server. See the previous section if you’re unsure about this.

Listing 6-32 shows the copy operation.

Listing 6-32. Deploying the Web Application As a WAR

 <!-- 2. Copy the WAR -->
 <target name="deploy-copy-war" depends="package-web"
 description="Deploy the WAR by copying it to Tomcat">
 <echo message="Copying the WAR to CATALINA_HOME"/>
 <property environment="env"/>
 <copy file="${appName.war}" todir="${env.CATALINA_HOME}/webapps"/>
 </target>

Deploying Using a Context XML File

If you have a context XML file for your application, you can copy that to Tomcat to deploy your
web application. This means you do not have to copy the entire application onto the server.
If you are not familiar with context XML files, Listing 6-33 shows a simple example called
antBook.xml that uses the build/web directory of your project as the location for the web
application.

Listing 6-33. A Sample Context XML File Called antBook.xml

<Context path="/antBook" docBase="C:/AntBook/ch06/build/web"
 debug="0" reloadable="true" />

If you were to drop this file into the CATALINA_HOME/conf/[engine_name]/[host_name]
directory, then Tomcat would deploy the application at C:/AntBook/ch06/build/web (if
autoDeploy is set to true in Tomcat). See the earlier “Copying the Expanded Web Application”
section if you’re unsure about this. With this knowledge, you can use Ant to automate this form
of deployment, as shown in Listing 6-34.

Listing 6-34. Deploying a Web Application by Copying Its Context XML File

 <!-- 3. Deploy the web application using a context XML file -->
 <target name="deploy-context" depends="copy-web"
 description="Deploy the web application using a context XML file">
 <echo message="Deploying the web application using a context XML file"/>
 <property environment="env"/>
 <copy todir="${build.web.web-inf}" file="${src.web.conf}/web.xml"/>
 <copy todir="${env.CATALINA_HOME}/conf/Catalina/localhost"
 file="${src.web.conf}/${appName}.xml"/>
 </target>

In this case, you are taking advantage of previous targets that prepare code in the build/
web directory and so have to finish the job by copying the web.xml file into this directory. If you were
using this approach to deployment, a better solution would be to assemble the web application in

Moodie_559-9C06.fm Page 165 Tuesday, September 27, 2005 9:34 AM

166 C H A P T E R 6 ■ D E P L O Y I N G A N A P P L I C A T I O N

a folder outside the project’s build directory and ensure it is suitably protected with operating-
system security measures. You will then need to change the docBase attribute in the context
XML file.

Deploying with the Manager Application

The final method of deploying the web application is using Tomcat’s manager web application.
This is a servlet that deals with all the deployment for you. To set up the manager application,
make sure the following entries are in CATALINA_HOME/conf/tomcat-users.xml (or the equivalent
authentication realm):

<?xml version='1.0' encoding='utf-8'?>
<tomcat-users>
 <role rolename="manager"/>
 <user username="antBook" password="antB00k" roles="manager"/>
</tomcat-users>

This is the username and password you will use to work with the manager application.
There’s a lot more to Tomcat password security than this, but that’s too much for this chapter.
To find out more, go to jakarta.apache.org/tomcat/tomcat-5.5-doc/realm-howto.html.

The next stage is to make the Tomcat custom deployment tasks available to Ant. To do so,
copy CATALINA_HOME/server/lib/catalina-ant.jar to ANT_HOME/lib, and add the following
task definition to your build file (Chapter 10 covers task definitions in detail):

 <!-- The deploy task for web applications on Tomcat -->
 <taskdef name="deploy" classname="org.apache.catalina.ant.DeployTask"/>

You will need to set properties in build.properties, as follows, to keep the URL of the
manager application out of build.xml:

The location of the Tomcat server
tomcat.host=localhost
tomcat.port=8080
manager.url=http://${tomcat.host}:${tomcat.port}/manager

The last task to perform is to write the deployment target, as shown in Listing 6-35. Again,
you’ll use command-line properties for the username and password.

Listing 6-35. Writing the Deployment Target

 <!-- 4. Deploy the WAR using the manager application -->
 <target name="deploy" depends="package-web"
 description="Hot deploy the application">
 <echo message="Deploying the WAR to Tomcat"/>
 <deploy url="${manager.url}"
 username="${manager.user}"
 password="${manager.password}"
 path="/${appName}"
 war="file:${appName.war}"
 update="true"/>
 </target>

Moodie_559-9C06.fm Page 166 Tuesday, September 27, 2005 9:34 AM

C H A P T E R 6 ■ D E P L O Y I N G A N A P P L I C A T I O N 167

To deploy the application using the manager application, all you have to do is run the
following:

> ant -Dmanager.user=antBook -Dmanager.password=antB00k deploy

If you want to remove the application from the server at any time, you can define an
<undeploy> task and use it as in Listing 6-36.

Listing 6-36. Undeploying the Web Application

 <!-- The undeploy task for web applications on Tomcat -->
 <taskdef name="undeploy" classname="org.apache.catalina.ant.UndeployTask"/>

 <!-- Undeploy the web application -->
 <target name="undeploy" description="Undeploy the application">
 <echo message="Undeploying the WAR"/>
 <undeploy url="${manager.url}"
 username="${manager.user}"
 password="${manager.password}"
 path="/${appName}"/>
 </target>

Summary
This chapter took you from the end of the compilation stage to the final deployment. You
looked at creating documentation bundles and Javadocs, which are slightly problematic when
compared to Ant’s excellent ability to sense when a file has changed. In the case of Javadocs,
you have to do this check for yourself if you are worried about this having a knock-on effect.

The <zip> and <tar> tasks are similar to the <jar> and <war> tasks that you saw in the
previous chapter, but have extended functionality in line with their specialist remits. The <zip>
task is more powerful than the <tar> task and can process large batches of files at once, though
<tar> suits distributions for Unix/Linux systems much better.

You looked at three ways to distribute the application: FTP, e-mail, and web application
deployment. These are all at the end of the build path and will typically be the only targets you
invoke once an application has stabilized.

Moodie_559-9C06.fm Page 167 Tuesday, September 27, 2005 9:34 AM

Moodie_559-9C06.fm Page 168 Tuesday, September 27, 2005 9:34 AM

169

■ ■ ■

C H A P T E R 7

Running an Application

Sometimes your build process needs more functionality than file manipulation, compila-
tion, packaging, and distribution. Sometimes you need to run Java applications or external
applications. This is particularly true if you want to set up the user environment once they have
built the source code of your application. You could, for example, start a database and insert
the initial data using SQL statements so that your application will run straightaway.

This chapter will cover the relevant Ant tasks so that you can run external applications
from within your build process.

Using SQL
If you want to ensure that your database application is ready to run after you or the user has
built it, you can use Ant’s <sql> task. This task allows you to run batches of SQL scripts, which
means you can create and populate a database in one database connection. It is important to
remember that a single <sql> task represents one connection to the database, so multiple
<sql> tasks mean multiple connections to the database, which may affect performance if you
have other applications using the database as well.

One advantage of this task is that you can use it to read lines of SQL from multiple files.
Therefore, you can package the final SQL files for your database with the application and use
them in your build. By grouping all your SQL files under one <sql> task, you also limit the
number of connections that Ant needs to make.

You can also take advantage of the fact that Ant’s property files share the format of Java prop-
erties files. In other words, if you have placed database-specific information in a Java properties
file, you can also use the properties in this file for Ant’s <sql> task. This is how the example
application is set up.

You can specify SQL in a number of ways:

• You can read it in from a file using the src attribute of the <sql> task (as described in
Table 7-1).

• You can specify nested file sets. In this case, Ant will execute the SQL contained in every
file of the file set in its own transaction. This technique allows you to process batches of
SQL files quickly and efficiently. The drawback is that Ant doesn’t guarantee the order of
execution, so you cannot mix database and table creation statements with inserts.

Moodie_559-9C07.fm Page 169 Tuesday, September 27, 2005 9:36 AM

170 C H A P T E R 7 ■ R U N N I N G A N A P P L I C A T I O N

• You can nest <transaction> elements that read SQL in from files. You have to specify
each file individually, but you can control the order of execution.

• You can place SQL statements in the body of the <sql> tag.

If you need to specify a classpath, you can use the classpath attribute or nest a <classpath>
element in the usual way.

Table 7-1. The <sql> Task’s Attributes

Attribute Description

append Sets whether to append the output to the end of a file or overwrite the
contents of the file (used in conjunction with output). The default is false.

autocommit Sets the autocommit flag of this <sql> task’s database connection. If
you set this to true, every SQL statement will be committed when it is
sent to the database. The default is false, meaning each SQL file is
executed in a transaction, and the SQL statements will be committed
when the entire transaction has completed.

caching Tells Ant whether to cache loaders and the driver. The default is true.

classpath The classpath to use when searching for the database driver. The
default is the system classpath.

classpathref The reference ID of a classpath defined earlier in the build. The default
is blank.

delimiter The string that separates the SQL commands. The default is ;.

delimitertype Sets whether the delimiter should be on a line by itself (a value of row). The
default is normal, meaning the delimiter can appear anywhere on a line.

driver The fully qualified class name of the JDBC database driver. This attribute
is required.

encoding The encoding of the SQL files that you are reading. The default is your
JVM’s encoding.

escapeprocessing Sets whether the java.sql.Statement objects produced by this task will
perform escape substitution before sending the SQL to the database.
The default is true.

keepformat Sets whether Ant keeps the format of the SQL. The default is false.

onerror The action to perform if an error occurs when executing a statement.
This can be continue, which displays the error and carries on with the
process; stop, which stops execution and commits the current transac-
tion; and abort, which stops execution, aborts the transaction, and fails
the task. The default is abort.

output The file to which you want to redirect output. The default is standard out.

password The password that Ant will use when connecting to the database. This
attribute is required.

print Sets whether to display the result sets that are returned from the data-
base. The default is false.

rdbms Tells Ant to run this task only if the database it’s using matches the
value of this attribute. The default is no restriction.

Moodie_559-9C07.fm Page 170 Tuesday, September 27, 2005 9:36 AM

C H A P T E R 7 ■ R U N N I N G A N A P P L I C A T I O N 171

The example will use MySQL as the database, so you need to tell Ant about the relevant
URL and driver. This information is shared with the application, so you’ll store it in the common
database.properties file, as shown in Listing 7-1. You’ll also store details of the SQL files here.

Listing 7-1. The database.properties File

database.root=jdbc:mysql://localhost:3306/
driver.name=com.mysql.jdbc.Driver

drop.sql=SQL/drop.sql
create.sql=SQL/create.sql
insert.sql=SQL/insert.sql

Listing 7-2 shows the target that uses this information to connect to the database and
execute the SQL statements contained in the SQL files drop.sql, create.sql, and insert.sql.

Listing 7-2. The Target That Prepares the Database

 <!-- #################################### -->
 <!-- Targets that set up the environment -->
 <!-- #################################### -->

 <!-- Prepare the database by creating it and inserting data -->
 <target name="database"
 description="Prepare the database by creating it and inserting data">
 <echo message="Preparing the database by creating it and inserting data"/>

 <property file="${database.properties}"/>

showheaders Sets whether to display the headers from the result sets returned from
the database. The default is true.

src The file that contains the SQL statements you want to run. This attribute is
required unless you nest <fileset> or <transaction> elements or place
SQL between the opening and closing <sql> tags. It is ignored if you do
any of these things.

url The JDBC URL of the database. This attribute is required.

userid The username that Ant will use when connecting to the database.
This attribute is required.

version Tells Ant to run this task only if the version of the database it’s using
matches the value of this attribute. The default is no restriction.

Table 7-1. The <sql> Task’s Attributes

Attribute Description

Moodie_559-9C07.fm Page 171 Tuesday, September 27, 2005 9:36 AM

d10c55b52b1f8994064c85cd755fb5a9

172 C H A P T E R 7 ■ R U N N I N G A N A P P L I C A T I O N

 <sql driver="${driver.name}"
 url="${database.root}"
 userid="${database.user}"
 password="${database.password}">
 <classpath refid="build.classpath"/>
 <transaction src="${src.shared.conf}/${drop.sql}"/>
 <transaction src="${src.shared.conf}/${create.sql}"/>
 <transaction src="${src.shared.conf}/${insert.sql}"/>
 </sql>
 </target>

In this case, the drop.sql file contains a DROP DATABASE IF EXISTS statement to ensure that
the database is clean before you create and insert the data. The <transaction> nested elements
take only the src attribute, which behaves in the same way as the src attribute of the <sql> task.
You can also place SQL in the body of a <transaction> element, in which case the src attribute
is ignored.

The <sql> task will run the SQL statements from the files in the order they have been specified.
This ensures that any DROP and CREATE statements operate in the correct order. The <classpath>
element adds the MySQL connector that you use elsewhere in the build to the classpath.

■Note You should not run this kind of task during every build. SQL tasks are ideal parts of a configuration
target, but they can slow a build if included every time. Besides, you want the data to change naturally in
response to user actions and not renew every time you run Ant. You should also be aware that production
environments may already have the data installed in secure configurations that deny access to the Ant
process. Systems administrators may not take kindly to you repeatedly inserting data and dropping and
creating tables.

Running Java Applications
As always, Ant gives you the full power of the JVM to use in your build files, with the added
power of Ant’s properties and file sets. The example application comes with a command-line
Java client that accesses the database and displays the results of the query. I’ll show how to run
the client with Ant for the purposes of demonstration, but it’s usually better to provide a script
to run a Java client. Lay users are more comfortable with a script because it encapsulates all the
messy command-line options that set the classpath, and so on. Letting them loose with Ant can
also mean prying eyes on your build file, which you may not want.

Table 7-2 shows the attributes of the <java> task. Deprecated attributes have been omitted.

Moodie_559-9C07.fm Page 172 Tuesday, September 27, 2005 9:36 AM

C H A P T E R 7 ■ R U N N I N G A N A P P L I C A T I O N 173

Table 7-2. The <java> Task’s Attributes

Attribute Description

append Sets whether to append the output to the end of a file or overwrite the
contents of the file (used in conjunction with output). The default is false.

classname The name of the class you want to execute. This attribute is required if
you do not specify a value for jar.

classpath The classpath for this Java invocation. The default is the system classpath.

classpathref The reference ID of a classpath defined earlier in the build. The default
is blank.

dir The directory from where the JVM will be run. Ant ignores this attribute if
fork is false. The default is null.

error The file to which you want to redirect error messages. The default is the
setting in output.

errorproperty The property where Ant will store error messages. The default is blank.

failonerror Tells Ant whether to stop the build if the command exits with a return
code other than 0. The default is false.

fork Tells Ant to run the classes in an external JVM. The default is false.

input The name of a file that will be the input to this command. You can only
specify one of input and inputstring. The default is standard input from
the console. In addition, you cannot obtain standard input if you set
spawn to true.

inputstring A string that will be the input to this command. You can only specify one
of input and inputstring. The default is standard input from the console.
In addition, you cannot obtain standard input if you set spawn to true.

jar The name of the JAR file you want to execute. For this to work you must
specify a Main-Class entry in the manifest and set fork to true. This
attribute is required if you do not specify a value for classname.

jvm The command that will run the JVM. Ant ignores this attribute if fork is
set to false. The default is java.

logError Tells Ant to write error messages to the Ant log files. The error messages
will not appear in any output location that you have set. Ant ignores this
attribute if you set error or errorproperty. The default is false.

maxmemory The maximum amount of memory that Ant should allocate to a forked
JVM. Ant ignores this attribute if fork is set to false. The default is your
JVM’s default.

newenvironment Tells the JVM to ignore old environment variables if it is running as a
separate process and new ones are specified. Ant ignores this attribute
if you set fork to false. The default is false.

output The file to which you want to redirect output. The default is standard out.

outputproperty The property where Ant will store the output of this command (including
error messages unless otherwise redirected). The default is blank.

resultproperty The property where Ant will store the return code of this command. You
can use this attribute only if failonerror is false and fork is true (the
details follow this table). The default is blank.

Moodie_559-9C07.fm Page 173 Tuesday, September 27, 2005 9:36 AM

174 C H A P T E R 7 ■ R U N N I N G A N A P P L I C A T I O N

Return codes are governed by a simple set of rules:

• If failonerror is true, then 0 is the only legal return code you can capture in a property.
Other return codes ensure that the task fails.

• If failonerror is false and fork is false, then 0 is the only legal return code you can
capture in a property. Other return codes ensure that the task fails because the build’s
JVM exits on an error return code.

• If failonerror is false and fork is true, then you can capture the return code.

You can nest a number of elements in the <java> task; some replace attributes, some apply
only to forked JVMs, and some pass arguments to the JVM. I’ll discuss the latter first.

You can nest <arg> elements to send arguments to the class you are running or nested
<jvmarg> elements to send arguments to a forked JVM. They both take the same attributes (see
Table 7-3). You can specify only one at a time.

These are other nested elements:

• <assertions>, which enables Java 1.4 assertions

• <bootclasspath>, which specifies the boot classpath for this command

• <classpath>, which specifies the classpath for this command

spawn Tells Ant to start a process that will live after the Ant process has finished.
To use this you have to set fork to true and can’t use error, input, output,
result, or timeout. The default is false.

timeout The time in milliseconds that Ant should wait before stopping this command.
You should use this only if you set fork to true. The default is null.

Table 7-3. The <arg> and <jvmarg> Elements’ Attributes

Attribute Description

file The name of a file to pass on the command line. This will be converted to an
absolute filename.

line A list of command-line arguments, separated by spaces. Ant cannot guarantee
that the list you supply will be the same as the list it gives to the java command.
Ant splits the line before passing it, which may not be the way you intended it
to be split.

path A pathlike string to pass on the command line. You can use : and ; as separators,
though Ant will convert them to the system’s default convention.

pathref A reference ID to a path defined earlier in the build. Ant treats this path in the
same way as the value of the path attribute.

value A single command-line argument that can contain spaces.

Table 7-2. The <java> Task’s Attributes (Continued)

Attribute Description

Moodie_559-9C07.fm Page 174 Tuesday, September 27, 2005 9:36 AM

C H A P T E R 7 ■ R U N N I N G A N A P P L I C A T I O N 175

• <env>, which passes environment variables to the forked JVM

• <permissions>, which sets security permissions

• <redirector>, which redirects output

• <sysproperty>, which allows you to specify system properties for this command

• <syspropertyset>, which allows you to specify system properties using a property set
(see Chapter 4)

You’ll use the <classpath> element here to specify the JAR file that contains your client and
the JAR file of the MySQL connector.

Running the Stand-Alone Client
One of the drawbacks of the <java> task is that you have to send a set number of arguments to
the java command. This is fine if you have a constant number of values you want to use, but it
is not so good if you have variable numbers of arguments to pass. For example, if you always
run the target Java class with the same arguments, you do not have a problem. However, say
you want to run it with two arguments sometimes and three arguments at other times. In this
case, you could use two targets, one for the two-argument run and one for the three-argument
run. Another option is to use properties to vary the arguments sent to the application.

Properties, however, make the situation more complicated, because if a property is not set, Ant
will write the string you used to include the property. Usage checks will always fail in this case
because they will read the argument as ${propertyName} instead of being empty, as would be
the case if you ran the application at the command line. One way around this is to set defaults
for every property you want to use as a command-line argument, as shown in Listing 7-3.

Listing 7-3. Setting Defaults for Command-Line Arguments

 <!-- Set the argument defaults -->
 <!-- The Java execution and the script use them -->
 <target name="set-argument-defaults" depends="stand-alone"
 description="Set the defaults for the command-line arguments">
 <echo message="Setting the defaults for the command-line arguments"/>

 <!-- Set a default for the first argument -->
 <condition property="arg0" value="">
 <not>
 <isset property="${arg0}"/>
 </not>
 </condition>

 <!-- Set a default for the second argument -->
 <condition property="arg1" value="">
 <not>
 <isset property="${arg1}"/>
 </not>
 </condition>
 </target>

Moodie_559-9C07.fm Page 175 Tuesday, September 27, 2005 9:36 AM

176 C H A P T E R 7 ■ R U N N I N G A N A P P L I C A T I O N

Here you set the value of arg0 and arg1 to an empty string if they are not already set. Ant
will send these values to the Java application, which can handle them if necessary. Listing 7-4
shows this in action. In this case, you are assuming the user has the latest binaries and so
doesn’t need to compile them. Adding the package-stand-alone target to the depends attribute
would ensure the latest source is compiled before the user runs the code.

Listing 7-4. Running the Client

 <!-- This first target is a Java invocation -->
 <target name="run-stand-alone-java" depends="set-argument-defaults"
 description="Run the stand-alone application">
 <echo message="Running the stand-alone application"/>

 <java classname="org.mwrm.client.Client">
 <arg value="${arg0}"/>
 <arg value="${arg1}"/>
 <classpath refid="build.classpath"/>
 </java>
 </target>

Redirecting Output
The stand-alone client returns a set of results to users, which they will see on their screens as
part of the Ant build. With large data sets, this is not ideal, because to make sense of the data
they will have to copy the data from the screen and into a file. In fact, they may only want to
save the results for use later. One way to do this would be to use the output redirector (>) or
pipe (|) at the command line. However, this would capture the entire output of the build,
which is not what you or the user wants.

Ant can offer you more flexibility than this through its own <redirector> components. You
can nest them inside certain tasks to redirect the output from that task and that task only. This
allows you to capture only the output you are interested in and not the entire output of an Ant
build. The stand-alone client is a perfect candidate for an Ant <redirector> because you want
to save its output to a file.

The <redirector> component can also function as an input redirector, just like <. It has a
number of attributes as listed in Table 7-4, and you can nest it in the <java>, <exec>, and
<apply> tasks, though only one redirector is allowed per task.

Table 7-4. The Attributes of the <redirector> Component

Attribute Description

alwayslog Tells Ant whether to send data to the log in addition to any other desti-
nation. The default is false.

append Tells Ant whether to append error or output messages to the files spec-
ified in error and output. The default is false.

createemptyfiles Tells Ant whether to create the output files, even if they are to be
empty. The default is true.

Moodie_559-9C07.fm Page 176 Tuesday, September 27, 2005 9:36 AM

C H A P T E R 7 ■ R U N N I N G A N A P P L I C A T I O N 177

As you can see, the single redirector in each executable-style task acts as both an input
redirector and an output redirector. You can nest mappers to match groups of files with the
following nested elements: <inputmapper>, <outputmapper>, and <errormapper>. These are
simple file mappers, the details of which appear in Chapter 11. You can filter the data with
<inputfilterchain>, <outputfilterchain>, and <errorfilterchain> filters, which you’ll also
see in Chapter 11.

You’ll just be using a simple output redirector to store the results of your client’s query in
a text file. However, you don’t want to overwrite previous results with new results, and you
don’t want to continually append the results to the end of the same file. This could potentially
lead to massive files, and the user would have to sift through the data to find the section they
wanted. The solution is to add a timestamp to the result file’s filename.

To do so, you’ll use the <tstamp> task, which sets the values of the TSTAMP, DSTAMP, and
TODAY properties. They have the following default formats:

• TSTAMP: hhmm

• DSTAMP: yyyyMMdd

• TODAY: MMMM dd yyyy

error The name of the file where you want to place error messages for this
task. If you don’t specify a value, Ant will use standard out. The default
is null.

errorencoding The encoding for the error output. The default is the platform’s
default encoding.

errorproperty The name of the property that will contain the error output of the task.
The default is null.

input The name of the file that contains the input stream for this task. You
cannot specify input and inputstring together. The default is null.

inputencoding The encoding for the input. The default is the platform’s default encoding.

inputstring A string that will be treated as the input of this task. You cannot specify
input and inputstring together. The default is null.

logError Tells Ant whether to send error messages to the Ant log. If you set this
attribute to true, Ant will not write the error messages to the file named
in output or the property set in outputproperty. However, this attribute
has no effect if you use error/errorproperty. The default is false.

output The name of the file where you want to place the output of this task. If
you don’t specify a value, Ant will use standard out. The default is null.

outputencoding The encoding for the output. The default is the platform’s
default encoding.

outputproperty The name of the property that will contain the output of the task. The
default is null.

Table 7-4. The Attributes of the <redirector> Component

Attribute Description

Moodie_559-9C07.fm Page 177 Tuesday, September 27, 2005 9:36 AM

178 C H A P T E R 7 ■ R U N N I N G A N A P P L I C A T I O N

You can change these defaults if you want. This task has only one attribute, described in
Table 7-5, and nested <format> elements, described after the table.

If you want to use a custom format for the timestamp or if you want to store the timestamp
in a property other than TSTAMP, DSTAMP, and TODAY, then you have to use a nested <format>
element for each new format or property. Table 7-6 shows the details of the <format> element’s
attributes.

You have to put the output redirector and the timestamp together, so let’s rewrite the
run-stand-alone target, as shown in Listing 7-5.

Listing 7-5. Saving the Results in a File with a Timestamp

 <target name="run-stand-alone-java"
 depends="set-argument-defaults, package-stand-alone"
 description="Run the stand-alone application">
 <echo message="Running the stand-alone application"/>

 <!-- We want to make a file for each set of results -->
 <property name="results.file" value="results.txt"/>
 <!-- The timestamp will uniquely identify the file -->
 <tstamp/>

Table 7-5. The Attribute of the <format> Element

Attribute Description

prefix The prefix to add to the properties set by this task. The default is no prefix.

Table 7-6. The Attributes of the <format> Element

Attribute Description

locale The locale to use when formatting the timestamp. The default is the
user’s locale.

offset The number of units to use when offsetting the timestamp. You must define
the unit type with the unit attribute; if you don’t, the offset attribute has no
effect. The default is zero.

pattern The custom pattern for the timestamp stored in property. This attribute
is required.

property The name of the property that will contain the timestamp. This attribute
is required.

timezone The time zone to use, which will be displayed as part of the timestamp. The
default is the user’s local time zone.

unit The unit type to use with the offset attribute. Units can be millisecond,
second, minute, hour, day, week, month, or year. The default is null.

Moodie_559-9C07.fm Page 178 Tuesday, September 27, 2005 9:36 AM

d10c55b52b1f8994064c85cd755fb5a9

C H A P T E R 7 ■ R U N N I N G A N A P P L I C A T I O N 179

 <java classname="org.mwrm.plants.client.PlantClient">
 <arg value="${arg0}"/>
 <arg value="${arg1}"/>
 <classpath refid="build.classpath"/>
 <redirector output="${DSTAMP}-${TSTAMP}-${results.file}"/>
 </java>
 </target>

If you run this target, Ant will package the stand-alone client into its JAR file and then run the
client. Ant will place any output from the <java> task in a file called yyyyMMdd-hhmm-results.txt.
While this is useful, you may have problems if the build is set up to run 24 hours a day because
the hhmm format of TSTAMP means you could have two files with the same name if the build runs
exactly 12 hours after a previous run. To solve this, specify a <format> nested element and set
the format of TSTAMP explicitly, like so:

 <tstamp>
 <format property="TSTAMP" pattern="HHmm"/>
 </tstamp>

Now Ant will add a 24-hour time to the timestamp.

Running Native Programs
Ant, while extremely powerful and flexible, can’t always offer everything you want to do. If this
is the case, you can use the <exec> task, which can run any command-line program. You can,
for example, run scripts that prepare the environment for your application. The <exec> task’s
attributes are a lot like the <java> task’s attributes (see Table 7-7).

By default, the JVM will launch the command itself rather than invoking the underlying
shell. This has implications on Windows, for instance, because the JVM will search only for files
with the .exe extension if you don’t specify an extension, which means it won’t find scripts and
batch files. You have two ways around this: set the vmlauncher attribute to false, or supply the
full name of the batch file, including extension.

Table 7-7. The <exec> Task’s Attributes

Attribute Description

append Sets whether to append the output to the end of a file or overwrite
the contents of the file (used in conjunction with output). The
default is false.

dir The directory from where the program will be run. The default is null.

error The file to which you want to redirect error messages. The default
is the setting in output.

errorproperty The property where Ant will store error messages. The default
 is blank.

executable The command you want to execute. This should be the name of the
command and should not be accompanied by any arguments. You
specify them with nested <arg> elements. This attribute is required.

Moodie_559-9C07.fm Page 179 Tuesday, September 27, 2005 9:36 AM

180 C H A P T E R 7 ■ R U N N I N G A N A P P L I C A T I O N

failifexecutionfails Tells Ant whether to stop the build if the command fails to start at
all. The default is true.

failonerror Tells Ant whether to stop the build if the command exits with a
return code other than 0. The default is false.

input The name of a file that will be the input to this command. You can
specify only one of input and inputstring. The default is standard
input from the console. In addition, you cannot obtain standard
input if you set spawn to true.

inputstring A string that will be the input to this command. You can specify
only one of input and inputstring. The default is standard input
from the console. In addition, you cannot obtain standard input if
you set spawn to true.

logError Tells Ant to write error messages to the Ant log files. The error
messages will not appear in any output location that you have set.
Ant ignores this attribute if you set error or errorproperty. The
default is false.

newenvironment Tells the program to ignore old environment variables if new ones
are specified. The default is false.

os Ant will execute the command only if it is running on an operating
system in this list. Ant uses String.indexOf() < 0 to see whether
the operating system matches anything in this list, so you can
specify the operating systems in any format you like, even a
continuous string with no separators. The default is to always run
the command.

output The file to which you want to redirect output. The default is
standard out.

outputproperty The property where Ant will store the output of this command
(including error messages unless otherwise redirected). The
default is blank.

resolveexecutable Tells Ant to locate the executable in the project’s base directory or
the directory specified by dir. The default is false (use the user’s
current path).

resultproperty The property where Ant will store the return code of this command.
You can use this attribute only if failonerror is false (you’ll find
details about this after the table). The default is blank.

searchpath Tells Ant to use the system PATH environment variable to find the
command. The default is false.

spawn Tells Ant to start a process that will live after the Ant process has
finished. You can’t use error, input, output, or result. The default
is false.

timeout The time in milliseconds that Ant should wait before stopping this
command. The default is null.

vmlauncher Tells Ant whether to use the JVM’s execution functionality instead
of the operating system’s shell. The default is true.

Table 7-7. The <exec> Task’s Attributes (Continued)

Attribute Description

Moodie_559-9C07.fm Page 180 Tuesday, September 27, 2005 9:36 AM

C H A P T E R 7 ■ R U N N I N G A N A P P L I C A T I O N 181

Starting Tomcat with Ant
To demonstrate the <exec> task, let’s add a target that starts Tomcat in anticipation of deploying
the web application. The Tomcat startup script is in CATALINA_HOME/bin and is called startup.bat
on Windows and startup.sh on other systems. You need to check that Tomcat is not running
before trying to start it, which means you have to see whether a process is running on the
Tomcat server’s computer on the Tomcat port.

You’ll set a property called tomcat.running if Ant finds a process running on localhost at
port 8080 (you set these properties in Chapter 6). For this you’ll use a <condition> element with
a nested <socket> element. Listing 7-6 shows this target.

Listing 7-6. Checking That Tomcat Is Running

 <!-- Check whether Tomcat is running -->
 <target name="check-port" description="Check whether Tomcat is running">
 <echo message="Checking whether Tomcat is running"/>
 <condition property="tomcat.running">
 <socket server="${tomcat.host}" port="${tomcat.port}"/>
 </condition>
 </target>

If this property is set, you don’t want to start Tomcat. Therefore, you need to use an unless
attribute in the next target to check the tomcat.running property. You’ll also set the name of the
executable depending on the operating system you’re running Ant on, though you’ll see a
different approach afterward.

For now, add the following property to the project’s build file:

The name of the Tomcat start script
tomcat.executableName=startup

This is the name of Tomcat’s startup script. Listing 7-7 contains the target that starts
Tomcat if it is not running already.

Listing 7-7. Starting Tomcat
 <!-- Start Tomcat if it isn't running -->
 <target name="start-tomcat" depends="check-port"
 description="Start Tomcat if it isn't running" unless="tomcat.running">
 <echo message="Starting Tomcat"/>

 <!-- Set the executable property according to OS -->
 <condition property="executable" value="${tomcat.executableName}.bat">
 <os family="windows"/>
 </condition>

Moodie_559-9C07.fm Page 181 Tuesday, September 27, 2005 9:36 AM

182 C H A P T E R 7 ■ R U N N I N G A N A P P L I C A T I O N

 <condition property="executable" value="${tomcat.executableName}.sh">
 <os family="unix"/>
 </condition>

 <property environment="env"/>

 <exec executable="${env.CATALINA_HOME}/bin/${executable}" spawn="true"/>
 </target>

You set the spawn attribute of <exec> to true because you want to continue with the build
while Tomcat starts, mainly because Tomcat doesn’t stop running until you tell it to stop. In
other words, it doesn’t send a return code if it starts successfully. Theoretically, it’s a never-
ending process. You are using the default value for the vmlauncher attribute, which is true. This
means the JVM will use its own execution mechanism, and you therefore have to check the OS
type because the JVM needs the whole filename of the Tomcat script, including its extension.
The OS, on the other hand, knows that a .bat or .sh file is executable and so doesn’t need the
file extension, as shown next.

If you wanted to run Tomcat before deploying the web application, you would have to add
the start-tomcat target to the depends attributes of the deployment targets, as follows:

 <target name="deploy-copy-files" depends="copy-web,start-tomcat"
 description="Deploy the application by copying it to Tomcat">

 <target name="deploy-copy-war" depends="package-web,start-tomcat"
 description="Deploy the WAR by copying it to Tomcat">

 <target name="deploy" depends="package-web,start-tomcat"
 description="Hot-deploy the application">

To dispense with the checks to determine the operating system, you can set the <exec>
task’s vmlauncher attribute to false, as shown in Listing 7-8.

Listing 7-8. Using the Operating System’s Shell to Run the Command

 <!-- Start Tomcat if it isn't running -->
 <target name="start-tomcat" depends="check-port"
 description="Start Tomcat if it isn't running" unless="tomcat.running">
 <echo message="Starting Tomcat"/>

 <property environment="env"/>

 <exec executable="${env.CATALINA_HOME}/bin/${tomcat.executableName}"
 spawn="true" vmlauncher="false"/>
 <sleep seconds="15"/>
 </target>

The <sleep> task waits for the specified amount of time before it returns control to Ant,
which will give Tomcat enough time to start before another task tries to interact with it.

Moodie_559-9C07.fm Page 182 Tuesday, September 27, 2005 9:36 AM

C H A P T E R 7 ■ R U N N I N G A N A P P L I C A T I O N 183

You can specify the hours, minutes, seconds, and milliseconds attributes, which are cumulative
and accept negative numbers. Take the following example:

 <sleep minutes="1" seconds="10" milliseconds="-900"/>

This will cause Ant to sleep for one minute and one second because that is the sum of all
the attributes. The values are not precise because the OS can round them up or down as its
abilities require. Very small values may even be ignored.

Creating PGP Hashes with Ant
You may recall from Chapter 6 that you created MD5 and SHA1 hashes for the distributions of
your application. The third method for creating a hash that you looked at was Pretty Good
Privacy (PGP), though you didn’t actually generate the hash because you want to use the pgp
executable to do so. Here’s an example of the command line you want to replicate:

> pgp -s -b -o ./build/antBook-bin.zip.asc -z pgpP@ss ./dist/antBook-bin.zip

You’ve already seen the -s option that tells PGP you want to sign something. -b tells PGP
to keep the hash signature separate from the file, and -o is the file where PGP will place the
resulting hash. -z specifies the password you set when you first created your key ring (see
Chapter 2 for more on this). In this case, you’ll place the file in the build folder because PGP
creates temporary files in the output directory during the hash generation and doesn’t remove
them if it fails to generate a hash. This means the distribution directory would contain these
temporary files if something goes wrong with the process. To avoid this, you’ll copy the hash
file into the distribution file if the process succeeds. If it does not succeed, you can use the MD5
and SHA1 hashes in the meantime.

To start with, move all your hash-generation tasks into a single target so that you can use
it from any target you want. You’ll pass it the name of the file to hash so you can base the PGP
hash’s name on it in the new target. (The <checksum> task does this automatically.) All you need
to do to generate the hashes is place an <antcall> task in each of the packaging targets, as
shown in Listing 7-9.

Listing 7-9. An <antcall> Task Calls the Hash-Generation Target

 <!-- Zip the documentation -->
 <target name="zip-docs" depends="docs" description="Zip the documentation">
 <echo message="Zipping the documentation"/>
 <zip destfile="${dist}/${appName}-${package.docs}.zip">
 <!-- Include the documentation -->
 <fileset dir="${docs.all.dir}">
 <patternset refid="docs.all"/>
 </fileset>
 <!-- Include the license and the README -->
 <fileset dir="${docs.misc.dir}">
 <patternset refid="docs.misc"/>
 </fileset>
 </zip>

Moodie_559-9C07.fm Page 183 Tuesday, September 27, 2005 9:36 AM

184 C H A P T E R 7 ■ R U N N I N G A N A P P L I C A T I O N

 <antcall target="generate-hashes">
 <param name="file" value="${appName}-${package.docs}.zip"/>
 </antcall>
 </target>

This calls the hash-generation target and adds the file property to the build for the dura-
tion of generate-hashes.

The start of generate-hashes is a slight rewrite of the two <checksum> tasks from Chapter 6,
to take into account the more dynamic nature of the file to hash. In this case, you are assuming
the files are in the distribution directory because that’s how the project works; you wouldn’t be
hashing anything that isn’t in the distribution directory. Another reason for this assumption is
that it’s easier to build the PGP hash if you separate the filename from the directory, as you’ll
see after Listing 7-10. If you wanted to make this target more general, you could pass a dir
attribute to it from the calling target.

Listing 7-10. The Hash-Generation Target

 <!-- Generate the hashes for a package -->
 <target name="generate-hashes" description="Generate the hashes for a package">
 <echo message="Generating the hashes for ${file}"/>
 <checksum file="${dist}/${file}" forceOverwrite="true"/>
 <checksum file="${dist}/${file}" forceOverwrite="true" algorithm="SHA1"/>

 <!-- We want a fresh file -->
 <delete failonerror="false">
 <fileset dir="." includes="**/${file}.asc"/>
 </delete>

 <!-- PGP creates a temporary file if it fails,
 so we use the scratch directory -->
 <exec executable="pgp" spawn="false" vmlauncher="false">
 <arg value="+force"/>
 <arg value="+batchmode"/>
 <arg value="-s"/>
 <arg value="-b"/>
 <arg value="-o"/>
 <arg value="${build}/${file}.asc"/>
 <arg value="-z"/>
 <arg value="${pgp.password}"/>
 <arg value="${dist}/${file}"/>
 </exec>

 <!-- Copy the file to the distribution directory -->
 <copy file="${build}/${file}.asc" todir="${dist}" failonerror="false"/>
 </target>

Moodie_559-9C07.fm Page 184 Tuesday, September 27, 2005 9:36 AM

C H A P T E R 7 ■ R U N N I N G A N A P P L I C A T I O N 185

The <exec> task used in Listing 7-10 takes a little bit of explaining. First, the way Ant passes
arguments to PGP means that the space before the filename in, for example, -o ${build}/
${file}.asc will cause PGP to try to make a file called ' build/antBook-docs.zip.asc',
including the spaces, which can’t be done. To get around this, you have split the argument in
two and send it to PGP one after the other. This means that order is important here. An alternative
would be to do the following and eliminate the space:

 <arg value="-o${build}/${file}.asc"/>

The +force and +batchmode command-line options are designed for situations where auto-
matic or unattended processes try to generate hashes, which is exactly what you are doing
here. The first one suppresses confirmation questions such as, “Are you sure you want to over-
write this file?” The second removes, among other things, the prompt for a password if you
forget to supply one or supply the wrong one. You’d probably rather continue with the build in
this case than have it hang waiting for a response. You won’t get a PGP hash, but you will get
MD5 and SHA1 hashes.

When you run the packaging targets now, don’t forget to set the -Dpgp.password option at
the command line should you not want to place the pgp.password property in the build file
(and you probably shouldn’t).

■Note If you want to fail the build if PGP couldn’t generate a hash, it’s as simple as setting the <exec>
task’s failonerror attribute to true. If you do this, you may want to remove the <copy> task’s
failonerror attribute because it would be redundant.

Summary
This chapter introduced some ways to run commands, whether they are SQL inserts into a
database, Java programs, or native applications. The latter two are similar and share a number
of attributes. The approach you should take with them is also similar as a result. Passing argu-
ments to these tasks can lead to problems, so you need to think about variable numbers of
arguments carefully.

Native programs can help you set up the environment prior to running other Ant targets,
and this chapter showed how to ensure that a web server is running before deploying an appli-
cation to it.

Moodie_559-9C07.fm Page 185 Tuesday, September 27, 2005 9:36 AM

d10c55b52b1f8994064c85cd755fb5a9

Moodie_559-9C07.fm Page 186 Tuesday, September 27, 2005 9:36 AM

187

■ ■ ■

C H A P T E R 8

Testing an Application

Testing your application is a vital part of the software development process and one that you
skimp on at your peril. Not testing properly can cost time, money, and effort when you could
have removed bugs much earlier in the process and saved all the heartache. One important
technique for testing is unit testing, which is the main way you can use Ant for testing your
application.

In this chapter, you’ll look at the JUnit testing framework and how to integrate it into Ant.
Ant can then run the test cases you write, save their output, and display this output in a number
of ways, depending on your needs. I won’t cover how to write test cases or the theory behind
unit testing, just as I didn’t cover the theory behind object-oriented programming or writing
Java web applications. If you are not already unit testing, you may want to explore the JUnit
web site (www.junit.org) or read Test-Driven Development: By Example, by Kent Beck (Addison-
Wesley, 2002), for an introduction.

You’ll also look at code conventions and how to test them with Ant using the Checkstyle
framework.

Before you look at JUnit, I’ll discuss why you would want to use JUnit with Ant, rather than
other techniques.

Testing by Instantiation
One way to test an application is to create a main() method in the object you are testing so that
you can instantiate the class at the command line. If the class already has a main() method, you
would use that as the basis of your test. The principal goal of testing is to observe the object’s
interface to other objects or the user, so giving you some output in the former case tells you
whatever you want to know about the object’s state. The latter case shows you what the user
will experience. In both cases, you would use Ant’s <java> task to run the test.

This approach has many problems:

• The testing code is combined with the source code, which means you must remove it or
ensure it is switched off before you deploy the final application. This adds one more
degree of complexity to a build. Ideally, Ant would test the code and then, if it passes the
tests, deploy it automatically. Using the main() method means you have to intervene to
either remove the test code and recompile or incorporate a test source tree that mirrors
the real source tree.

Moodie_559-9C08.fm Page 187 Tuesday, September 27, 2005 9:38 AM

188 C H A P T E R 8 ■ T E S T I N G A N A P P L I C A T I O N

• The only way to tell whether the application has failed a test is to look at the output and
decide whether it has failed. Nothing is automatic about this, thus defeating the purpose
of using Ant.

• You should be testing the application’s interface, not how you’ve laid out its internals. In
other words, the main() method can check private and protected components, which
isn’t what you want, though it’s sometimes easy to slip a private or protected test into
the testing regime.

• If you want to save the results or display them in a better way than through System.out.
println(), you have to write custom code to capture output. This code would change for
every object you want to test.

• If you hand the project on to someone else, they may not necessarily know the details of
these custom testing plans. Writing code that passes or fails depending on a user’s say-
so means you will slow down any future maintenance efforts while the new maintainer
learns the testing regime. Remember, the new maintainer could be you.

These problems will soon become insurmountable in even small projects. JUnit, however,
does not suffer from any of these problems and is an invaluable tool during application
development.

Testing with JUnit
JUnit (www.junit.org) is the standard unit-testing framework for Java development. It is incredibly
useful and easy to extend, so you can use many, many extensions for your application, two of
which are HttpUnit (httpunit.sourceforge.net) and DbUnit (dbunit.sourceforge.net). These
extensions are specially designed to work with web applications and database-driven applica-
tions, respectively.

■Note One point to remember when reading this chapter is the distinction between a JUnit error
and a JUnit failure. An error is an unexpected problem with the class, such as an internal server error or
NullPointerException. A failure indicates application behavior at odds with what you expect as indi-
cated by the failure of an assertion. They are both as important as each other during a build but are fixed in
different ways.

Installing the Testing Frameworks
The JUnit tasks are optional Ant tasks, so before Ant can use any of the testing frameworks, you
must make sure the classes are on its classpath. This means you have to place the junit.jar file
from the JUnit download into ANT_HOME/lib or supply the path to it with the -lib command-
line option as follows:

> ant -lib C:\junit\junit.jar test

Moodie_559-9C08.fm Page 188 Tuesday, September 27, 2005 9:38 AM

C H A P T E R 8 ■ T E S T I N G A N A P P L I C A T I O N 189

The extension classes are required to be part of only the build classpath and not the Ant
classpath. In other words, Ant does not require them to instantiate the JUnit tasks. It requires
them only if a test class uses them as part of a test. For this reason, you need to add the exten-
sion classes only to a project’s classpath using a path set.

■Note The extensions will come with their own copies of the JUnit classes. Bear this in mind when
assigning classpaths.

Organizing the Test File Structure
Your test classes should not be part of your application’s source tree because they are not part
of your application. The usual technique is to place them in a separate directory structure that
mirrors the packages of the main application, which associates the tests with the objects they
are testing. This situation is as follows:

src/
 shared/
 conf/
 database.properties
 java/
 org/
 mwrm/
 shared Java classes
 stand-alone/
 java/
 org/
 mwrm/
 stand-alone client
 web/
 conf/
 web.xml
 images/
 java/
 org/
 mwrm/
 servlet classes
 pages/
 HTML pages
 JSP pages
 tags/
 tag files

test/
 org/
 mwrm/
 test classes

Moodie_559-9C08.fm Page 189 Tuesday, September 27, 2005 9:38 AM

190 C H A P T E R 8 ■ T E S T I N G A N A P P L I C A T I O N

The test directory is at the same level as the src directory and contains the same package
structure. When you build the test classes, you will place them in the main build directory
because they will not interfere with the main application there, and this makes the clean task
operate on test classes too.

Listing 8-1 shows the properties you will be using in this chapter.

Listing 8-1. The Properties for the Test Targets

The test directory
test.src=test
test.build=${build}/test
test.junit.reports=${test.build}/reports/junit
test.junit.data=${test.build}/data/junit
test.junit.style=${test.src}/style/junit

httpunit.home=C:/httpunit
httpunit.jar=${httpunit.home}/lib/httpunit.jar

Initializing the Testing Environment
As you run the tests, you’ll want to have fresh data and reports for analysis. However, the JUnit
tasks do not keep track of the reports and data they generate, so they don’t remove old data.
This means if you remove or rename a test, the results of the old test will persist and appear in
subsequent reports if you are not careful. One way to solve this is to remove the data and
reports before each test run, as shown in Listing 8-2.

Listing 8-2. Initializing the Testing Environment

 <!-- ################################### -->
 <!-- Testing targets -->
 <!-- ################################### -->

 <!-- Prepare the test directories -->
 <target name="test-init" description="Prepare the test directories">
 <echo message="Preparing the test directories"/>
 <delete dir="${test.junit.reports}"/>
 <delete dir="${test.junit.data}"/>
 <mkdir dir="${test.build}"/>
 <mkdir dir="${test.junit.reports}"/>
 <mkdir dir="${test.junit.data}"/>
 </target>

Here you remove the old reports and data so that you have a clean start to the testing
process.

Moodie_559-9C08.fm Page 190 Tuesday, September 27, 2005 9:38 AM

C H A P T E R 8 ■ T E S T I N G A N A P P L I C A T I O N 191

Compiling the Test Classes
Before you can use the test classes to test your application, you have to compile them success-
fully. As you saw previously, you will keep the test source in the test directory and use the same
packages as the main application.

The <javac> task that compiles the test classes will have to use the extensions’ classes, so
you build a testing classpath, as shown in Listing 8-3. Notice how you exclude the junit.jar file
of the HttpUnit distribution so that Ant uses the master junit.jar file that is on its classpath.
This avoids clashes in the classpath that can lead to unexpected results.

Listing 8-3. The Test Classpath

 <!-- ################################### -->
 <!-- The test build classpath -->
 <!-- ################################### -->

 <path id="test.classpath">
 <path refid="build.classpath"/>
 <fileset dir="${httpunit.home}/jars">
 <include name="*.jar"/>
 <exclude name="junit.jar"/>
 </fileset>
 <pathelement location="${httpunit.jar}"/>
 <pathelement location="${test.build}"/>
 </path>

Now that you have the classpath, you can compile the classes. In this case, the target needs
the most up-to-date versions of the code to test, so you’ll compile the tests only if the applica-
tion compiles. Listing 8-4 shows the target.

Listing 8-4. The Target to Compile the Test Classes

 <!-- Compile the test classes -->
 <target name="compile-tests"
 depends="package-stand-alone,deploy-copy-war,test-init"
 description="Compile the test classes">
 <echo message="Compiling the test classes"/>
 <javac destdir="${test.build}"
 srcdir="${test.src}">
 <classpath refid="test.classpath"/>
 </javac>
 </target>

This is a straightforward <javac> command that takes a classpath and compiles some Java
source to a specified destination directory. You create a JAR file in the dist directory because
that makes it easier to distribute the test classes should you want to send them to someone else.

Moodie_559-9C08.fm Page 191 Tuesday, September 27, 2005 9:38 AM

192 C H A P T E R 8 ■ T E S T I N G A N A P P L I C A T I O N

Testing the Application
You are now ready to run some tests. The main JUnit task is called <junit>; Table 8-1 lists its
attributes.

Table 8-1. The <junit> Task’s Attributes

Attribute Description

dir The directory in which to invoke the forked JVM, so this setting is
ignored if fork is set to false. The default is the current directory.

errorproperty The name of the property to set if there is a JUnit error. The default
is null.

failureproperty The name of the property to set if there is a JUnit failure or error. The
default is null.

filtertrace Sets whether to filter out JUnit and Ant stack traces from error and
failure stack traces. The default is true.

fork Tells Ant to run the tests in a separate JVM. The default is false.

forkmode If you are running forked tests, this setting controls how Ant handles
the fork. If you set it to once, a single forked JVM will handle all the tests; if
you set it to perBatch, a new JVM will handle each batch of tests (as set
by the <batchtest> element, which you’ll learn more about later in this
section); and if you set it to perTest, a new JVM will handle each test. A
single JVM can run tests with the same values only for errorproperty,
failureproperty, filtertrace, haltonerror, and haltonfailure, so
more than one JVM may be required even if you set this attribute to
once. The default is perTest.

haltonerror Sets whether Ant should stop the build if a JUnit error occurs. The
default is false.

haltonfailure Sets whether Ant should stop the build if a JUnit failure or error
occurs. The default is false.

includeantruntime Sets whether the forked JVM should have the Ant classes in its classpath,
so this setting is ignored if fork is set to false. The default is true.

jvm The executable to use when forking a JVM, so this setting is ignored if
fork is set to false. The default is java.

maxmemory The maximum amount of memory that Ant will assign to the forked
JVM, so this setting is ignored if fork is set to false. The default is
no limit.

newenvironment Sets whether a forked JVM will ignore old environment variables when
new ones are specified, so this setting is ignored if fork is set to false.
The default is false.

printsummary Tells Ant to display simple statistics for each test. The values are true,
false, and withOutAndErr. When testing, Ant usually swallows calls to
System.out and System.err, but it won’t if you use withOutAndErr. The
default is false.

reloading Sets whether the forked JVM should use a new classloader for every
test, so this setting is ignored if fork is set to false. The default is true.

Moodie_559-9C08.fm Page 192 Tuesday, September 27, 2005 9:38 AM

d10c55b52b1f8994064c85cd755fb5a9

C H A P T E R 8 ■ T E S T I N G A N A P P L I C A T I O N 193

The <junit> task also takes a number of nested elements, some of which you’ll use in this
example. For others, particularly those that work with forked JVMs, you should consult the Ant
documentation.

You’ll start by looking at the <classpath> and <test> nested elements because they are the
basic elements and are the ones you’ll use in every build. Listing 8-5 shows basic testing using
a single test case.

Listing 8-5. A Single Test Using the Test Classpath

 <target name="test" depends="compile-tests" description="Test the application">
 <echo message="Testing the application"/>
 <junit>
 <classpath refid="test.classpath"/>
 <test name="org.mwrm.WebTest"/>
 </junit>
 </target>

The <classpath> attribute references the test classpath that you built in Listing 8-3.
The <test> element’s name attribute takes a fully qualified class name, which in this case is
org.mwrm.WebTest. This class will run a test against the web application. To specify more tests,
simply add more <test> elements, though I’ll discuss the shortcomings of this in the “Using
XML to Store Test Data” section.

If you were to run the test and it failed (as it should when you first write it), you’d see some-
thing like the following:

test:
 [echo] Testing the application
 [junit] Test org.mwrm.WebTest FAILED

BUILD SUCCESSFUL

The test case failed, but which test in the test case was it? This output is not very informa-
tive and won’t help you diagnose which area of functionality failed the test. Therefore, the test

showoutput Tells Ant to send output to its logs as well as the formatters specified
(formatters are covered in the “Improving the Test with Better Output
and Build Failure” section). The default is false (use only formatters).

tempdir The temporary file that Ant will use. The default is this project’s base
directory.

timeout Cancels any tests that take longer than this setting, which is measured
in milliseconds. Ant ignores this attribute if fork is set to false. The
default is to not time out.

Table 8-1. The <junit> Task’s Attributes

Attribute Description

Moodie_559-9C08.fm Page 193 Tuesday, September 27, 2005 9:38 AM

194 C H A P T E R 8 ■ T E S T I N G A N A P P L I C A T I O N

is useless and might as well not have been run. Another odd thing about this result is that the
build was successful, despite the test failure.

Improving the Test with Better Output and Build Failure

You can solve the problems of sparse output and erroneous build success easily by using two
of the <junit> task’s attributes, as shown in Table 8-1. Specifically, you can improve the sparse
output by setting printsummary to true, and you can fail the build on a test failure by setting
haltonfailure to true. Listing 8-6 shows this new setup.

Listing 8-6. Improving the Output and Failing the Build When a Test Fails

 <target name="test" depends="compile-tests" description="Test the application">
 <echo message="Testing the application"/>
 <junit haltonfailure="true" printsummary="true">
 <classpath refid="test.classpath"/>
 <test name="org.mwrm.WebTest"/>
 </junit>
 </target>

Now if you run this test, you get the following:

test:
 [echo] Testing the application
 [junit] Running org.mwrm.WebTest
 [junit] Tests run: 2, Failures: 1, Errors: 0, Time elapsed: 6.189 sec

BUILD FAILED

This is much better because the build now fails, and you can see that it was one out of two
tests that failed. Note, however, that you still don’t know which of the two tests failed. To further
increase the functionality, you can add a formatter using the nested <formatter> element.

A formatter adds more information over and above the summary shown previously, and
you can specify what format you want to use. The three choices are brief, plain, and xml. brief
is a less verbose version of plain, which in turn displays a fair amount of information about the
tests and what failures occurred. In this example, you’ll use a plain formatter and return to
XML in a moment. Listing 8-7 shows how to use a formatter.

Listing 8-7. Using a Formatter to Improve the Output

 <target name="test" depends="compile-tests" description="Test the application">
 <echo message="Testing the application"/>
 <junit haltonfailure="true" printsummary="false">
 <classpath refid="test.classpath"/>
 <formatter type="brief" usefile="false"/>
 <test name="org.mwrm.WebTest"/>
 </junit>
 </target>

Moodie_559-9C08.fm Page 194 Tuesday, September 27, 2005 9:38 AM

C H A P T E R 8 ■ T E S T I N G A N A P P L I C A T I O N 195

Note that you set usefile to false, which means that Ant will print the results to the
console. You also set printsummary to false to ensure that only the formatter writes to the
console. The summary tells you the same kind of things as the formatter anyway.

If you want to use a file to store the output, omit this attribute or set it to true. The name
of the resultant file is determined by the name of the test class and in the case of this test
will be TEST-org.mwrm.WebTest.txt. If you were to use the XML formatter, it would be
TEST-org.mwrm.WebTest.xml. In other words, TEST- is used as a prefix to the class name and an
appropriate extension is used.

If you were to run the new target, you would see something like the following:

test:
 [echo] Testing the application
 [junit] Testsuite: org.mwrm.WebTest
 [junit] Tests run: 2, Failures: 1, Errors: 0, Time elapsed: 3.886 sec

 [junit] Testcase: testSession(org.mwrm.WebTest): FAILED
 [junit] Session not cancelled after empty results
 [junit] junit.framework.AssertionFailedError: Session not cancelled after
empty results
 [junit] at org.mwrm.WebTest.testSession(Unknown Source)

BUILD FAILED

This output shows you what you want to know: which tests failed and why. While this is
just about readable, better ways exist to deal with test data, which brings me to XML.

Using XML to Store Test Data

Rather than using the brief and plain formatters to save data as plain text that you’ll have to
wade though, you should save data as XML, which is easier to manipulate should you want to
examine the data. To do so, set the type attribute of the <formatter> element to xml, as shown
in Listing 8-8.

Listing 8-8. Saving Test Data As XML

 <target name="test" depends="compile-tests" description="Test the application">
 <echo message="Testing the application"/>
 <junit haltonfailure="true" printsummary="false">
 <classpath refid="test.classpath"/>
 <formatter type="brief" usefile="false"/>
 <formatter type="xml"/>
 <test todir="${test.junit.data}" name="org.mwrm.WebTest"/>
 </junit>
 </target>

Moodie_559-9C08.fm Page 195 Tuesday, September 27, 2005 9:38 AM

196 C H A P T E R 8 ■ T E S T I N G A N A P P L I C A T I O N

More is going on here than just setting the type attribute. You leave the original formatter
so that you can examine the output on the console, and you add the todir attribute to the
<test> element. This attribute tells the <junit> task where to write its data to, should it have a
nested formatter that saves its data in a file. In other words, this tells the formatter where to
write its XML files.

The output on the console will be the same as before, but you’ll also have an XML file in the
test.junit.data directory. If you open it, you’ll see that the root element is called <testsuite>
and contains a <properties> element that in turn contains a huge number of <property>
elements. These elements are the properties that Ant knew about when it ran the test. The most
important child elements of <testsuite>, however, are the <testcase> elements, as shown in
Listing 8-9.

Listing 8-9. An Abridged Test Result’s XML File

<?xml version="1.0" encoding="UTF-8" ?>
<testsuite errors="0" failures="1" hostname="localhost"
 name="org.mwrm.WebTest" tests="2" time="14.2"
 timestamp="2005-07-17T21:52:15">

<properties>
 ...
</properties>

<testcase classname="org.mwrm.WebTest" name="testIsRunning"
 time="8.602"></testcase>

<testcase classname="org.mwrm.WebTest" name="testSession"
 time="0.531">

 <failure message="Session not cancelled after empty results"
 type="junit.framework.AssertionFailedError">
 junit.framework.AssertionFailedError: Session not cancelled after empty
 results at org.mwrm.WebTest.testSession(Unknown Source)
 </failure>

</testcase>
</testsuite>

This is slightly more readable than the previous formatter’s output and much easier to
manipulate programmatically.

You’re now at a stage where you have meaningful test output and can store the results of
your tests for future examination. However, you’ve been running only one test case up until
now. To add more, you would have to add more and more <test> nested elements, which is a
headache and something you should not let developers or users do, or you would have to run
them in batches.

Moodie_559-9C08.fm Page 196 Tuesday, September 27, 2005 9:38 AM

C H A P T E R 8 ■ T E S T I N G A N A P P L I C A T I O N 197

Running a Batch of Tests

The <junit> task allows you to run a batch of tests at once and uses a file set to group these tests
together. This means you must have a strong naming convention for your test cases. The naming
convention should allow you to include all test cases easily while ignoring abstract and helper
classes. The usual method is to end the name of test cases with Test. Thus, you have WebTest or
ClientTest, not TestWeb.

With this in mind, let’s use the <batchtest> element to include all the test cases. Listing 8-10
shows you how.

Listing 8-10. Running All the Tests in a Batch

 <target name="test" depends="compile-tests" description="Test the application">
 <echo message="Testing the application"/>
 <junit haltonfailure="true" printsummary="false">
 <classpath refid="test.classpath"/>
 <formatter type="brief" usefile="false"/>
 <formatter type="xml"/>
 <batchtest todir="${test.junit.data}">
 <fileset dir="${test.build}" includes="**/*Test.class"/>
 </batchtest>
 </junit>
 </target>

The todir attribute here replicates the todir attribute of the <test> element from before,
while the file set simply includes all the test classes.

Creating a Report

The entire testing process is now automated, but you can still make more improvements. For
example, you have lots of XML data to work with, which means you have to write parsing code
to extract the data should you want to get any meaning from it. Luckily, the <junitreport>
optional task is a built-in report generator that may well provide what you need. This report
generator takes the results of all the tests, aggregates them into a master XML results file, and
transforms them into an HTML report. Listing 8-11 shows how to use the <junitreport> element to
create such a report.

Listing 8-11. Creating an HTML Report

 <target name="test" depends="compile-tests" description="Test the application">
 <echo message="Testing the application"/>
 <junit haltonfailure="true" printsummary="false">
 <classpath refid="test.classpath"/>
 <formatter type="brief" usefile="false"/>
 <formatter type="xml"/>
 <batchtest todir="${test.junit.data}">
 <fileset dir="${test.build}" includes="**/*Test.class"/>
 </batchtest>
 </junit>

Moodie_559-9C08.fm Page 197 Tuesday, September 27, 2005 9:38 AM

198 C H A P T E R 8 ■ T E S T I N G A N A P P L I C A T I O N

 <junitreport todir="${test.junit.data}">
 <fileset dir="${test.junit.data}">
 <include name="TEST-*.xml"/>
 </fileset>
 <report format="frames" todir="${test.junit.reports}"/>
 </junitreport>
 </target>

The todir attribute tells the report generator to construct the master XML file in the spec-
ified directory (in this case the same one that contains the other XML files). The nested file set
tells the generator which files to use as the basis for its master XML file, and the <report> element
specifies where to write the report. The format attribute of this element can be noframes or
frames (the default). For now you are using the default style sheets that are embedded in the
ANT_HOME/lib/ant-junit.jar file.

This approach has some problems as it stands, however: if you run this task and a test fails,
Ant doesn’t generate the reports because the build fails along with the test. In other words, Ant
doesn’t get to the <junitreport> element. To solve this, you can use the errorProperty and
failureProperty attributes (set to the same property) of the <junit> task to indicate a failure
and allow the build to continue until you reach the stage where you want to create a report.
Once you have done so, you can use the <fail> task to fail the build if the property specified in
errorProperty and failureProperty is set. Listing 8-12 shows this technique and also launches
a browser to view the results instantly.

Listing 8-12. Using errorProperty and failureProperty to Indicate a Build Failure

 <target name="test" depends="compile-tests" description="Test the application">
 <echo message="Testing the application"/>
 <junit printsummary="false"
 errorProperty="test.failed"
 failureProperty="test.failed">
 <classpath refid="test.classpath"/>
 <formatter type="brief" usefile="false"/>
 <formatter type="xml"/>
 <batchtest todir="${test.junit.data}">
 <fileset dir="${test.build}" includes="**/*Test.class"/>
 </batchtest>
 </junit>

 <junitreport todir="${test.junit.data}">
 <fileset dir="${test.junit.data}">
 <include name="TEST-*.xml"/>
 </fileset>
 <report format="frames" todir="${test.junit.reports}"/>
 </junitreport>

 <fail message="One or more tests failed.Check the reports
 in ${basedir}/${test.junit.reports}/index.html."
 if="test.failed"/>
 </target>

Moodie_559-9C08.fm Page 198 Tuesday, September 27, 2005 9:38 AM

C H A P T E R 8 ■ T E S T I N G A N A P P L I C A T I O N 199

Here, if any test causes an error or failure, you set the test.failed property. In turn, you
have removed the haltonfailure attribute and added an explicit build failure that depends on
the test.failed property. Now the build will run until the end of the target, no matter how
many tests fail.

One final point is that you can specify your own style sheet for the XSL transformation
using the styledir attribute of the <report> element. The style sheet for the report that uses
frames must be called junit-frames.xsl and should be present in the directory specified in the
styledir attribute. The style sheet for the report that doesn’t use frames should be called
junit-noframes.xsl and should also be placed in this directory. Here’s an example:

<report format="frames" todir="${test.junit.reports}"
 styledir="${test.junit.style"/>

Running a Single Test in a Batch

The final embellishment to this testing regime is running a single test case instead of the whole
batch, while still leaving the option to run the batch. This is useful when you want to test only
one piece of functionality quickly without running the entire test suite. To do so, you use the
same property for the if attribute of the <test> element and the unless attributes of the
<batchtest> element, which makes them mutually exclusive. So, if you specify said property,
Ant runs the test specified with the <test> element and ignores the <batchtest> element. The
property will be the name of a test class, so you use the property in the name of the attribute of
the <test> element too. Listing 8-13 shows the final target.

Listing 8-13. Running a Single Test in a Batch

 <target name="test" depends="compile-tests" description="Test the application">
 <echo message="Testing the application"/>
 <junit printsummary="false"
 errorProperty="test.failed"
 failureProperty="test.failed">
 <classpath refid="test.classpath"/>
 <formatter type="brief" usefile="false"/>
 <formatter type="xml"/>
 <test if="test.class" name="${test.class}" todir="${test.junit.data}"/>
 <batchtest unless="test.class" todir="${test.junit.data}">
 <fileset dir="${test.build}" includes="**/*Test.class"/>
 </batchtest>
 </junit>

 <junitreport todir="${test.junit.data}">
 <fileset dir="${test.junit.data}">
 <include name="TEST-*.xml"/>
 </fileset>
 <report format="frames" todir="${test.junit.reports}"/>
 </junitreport>

Moodie_559-9C08.fm Page 199 Tuesday, September 27, 2005 9:38 AM

d10c55b52b1f8994064c85cd755fb5a9

200 C H A P T E R 8 ■ T E S T I N G A N A P P L I C A T I O N

 <fail message="One or more tests failed. Check the reports
 in ${basedir}/${test.junit.reports}/index.html."
 if="test.failed"/>
 </target>

So, when you want to test a single piece of functionality, you can pass the name of a test
class at the command line, and it is used by itself. Otherwise, every test runs.

Adding Dependency Checking to a Test Run

You have all you need to do the testing, but you don’t necessarily want to run the tests during
every build. For example, if the test classes have changed since the last build, you would want
to run the build, but not if you have just updated some documentation or are just running the
client again after a database update.

To check whether Ant will run the tests, you will create a <condition> task that consists of
a number of nested <uptodate> conditions. Each of these <uptodate> conditions will check a
part of the application to see whether it is as up to date as the binaries. The first check is to see
whether the application source files are newer than the binaries. In this case, source files
include Java files, JSP pages, HTML pages in the web application, configuration files, and so on.
They do not include documentation or SQL files. Listing 8-14 shows the first set of checks. The
<condition> task sets the tests.notRequired property to true if all the files are up to date. You
can then use this to skip the tests.

Listing 8-14. Checking the Application’s Source Files

 <!-- Check whether the tests should run -->
 <target name="check-tests" depends="test-init"
 description="Check whether the tests should run">
 <echo message="Checking whether the tests should run"/>

 <fileset id="shared-check" dir="${src.shared.root}"
 excludes="docs/**,**/*.sql,**/package.html"/>

 <condition property="tests.notRequired">

 <and>

 <uptodate targetfile="${appName.jar}">
 <srcfiles refid="shared-check"/>
 </uptodate>

 <uptodate targetfile="${appName.jar}">
 <srcfiles dir="${src.stand-alone.java}" includes="**/*.java"/>
 </uptodate>

 <uptodate targetfile="${appName.war}">
 <srcfiles refid="shared-check"/>
 </uptodate>

Moodie_559-9C08.fm Page 200 Tuesday, September 27, 2005 9:38 AM

C H A P T E R 8 ■ T E S T I N G A N A P P L I C A T I O N 201

 <uptodate targetfile="${appName.war}">
 <srcfiles dir="${src.web.root}"
 excludes="docs/**,**/${appName}.xml,**/package.html"/>
 </uptodate>

The main points to note here are the filenames you are checking against (appName.jar and
appName.war for the stand-alone and web applications, respectively) and the exclude and
include patterns. When checking the shared code, you don’t want to check any documentation,
any SQL files, or any package.html Javadocs files, because they don’t affect any functionality in
your application.

The only files in the stand-alone code base you are interested in are Java source files. There-
fore, you can use a single include pattern, which will also exclude the documentation by default.
The web application has similar requirements to the shared code, except it does not contain
SQL files and does contain a context XML file for hot deployment on Tomcat. You don’t want
to check that this file is up to date because the WAR file does not include it, so if you change it,
the WAR file will be out-of-date until you change another component. You’d constantly be
testing the WAR file but won’t have changed any of its code.

The next check is against the test code. If the test code’s source is newer than the test
code’s binaries, you want to do some testing. Listing 8-15 shows the next check.

Listing 8-15. Checking the Test Source

 <uptodate>
 <srcfiles dir="${test.src}" includes="**/*.java"/>
 <globmapper from="*.java" to="${basedir}/${test.build}/*.class"/>
 </uptodate>

In this case, you check the file set of Java files contained in the test source directory against
the file set of class files. The <globmapper> element maps values from the source file set to the
target file set before the <uptodate> element checks them. You’ll see more of mappers in
Chapter 11.

You also need to know whether the last build failed. This is an important piece of informa-
tion because even if you don’t alter the application’s source files or the test’s source code, tests
can fail. If a test failed, you want to run the tests again regardless of the state of the code. With
this in mind, use a marker file to indicate whether a test failed, like so:

last.test.failed.file=failed.txt

 This will be created as part of the test target, just before you call the <fail> task, but you
need to add the check for it in the <condition> task, as shown in Listing 8-16.

Listing 8-16. Checking Whether the Last Test Failed

 <not>
 <available file="${last.test.failed.file}"/>
 </not>

You also face a problem if someone wants to run a single test, as described in the “Running
a Single Test in a Batch” section. In this case, let’s assume they want to run the test regardless

Moodie_559-9C08.fm Page 201 Tuesday, September 27, 2005 9:38 AM

202 C H A P T E R 8 ■ T E S T I N G A N A P P L I C A T I O N

of anything else. You therefore need to check for the presence of the command-line property
that specified the test to run, as shown in Listing 8-17.

Listing 8-17. Checking That a User Wants to Run a Single Test

 <not>
 <isset property="test.class"/>
 </not>

 </and>
 </condition>
 </target>

That’s the end of the checking target, so all that’s left is to modify the test target discussed
previously. Listing 8-18 shows the new and improved target.

Listing 8-18. Running the Tests After Checking Whether You Should

 <!-- Test the application -->
 <target name="test" depends="check-tests,compile-tests"
 unless="tests.notRequired"
 description="Test the application">
 <echo message="Testing the application"/>

 <junit printsummary="false"
 errorProperty="test.failed"
 failureProperty="test.failed">
 <classpath refid="test.classpath"/>
 <formatter type="brief" usefile="false"/>
 <formatter type="xml"/>
 <test name="${test.class}" todir="${test.junit.data}" if="test.class"/>
 <batchtest todir="${test.junit.data}" unless="test.class">
 <fileset dir="${test.build}" includes="**/*Test.class"/>
 </batchtest>
 </junit>

 <junitreport todir="${test.junit.data}">
 <fileset dir="${test.junit.data}">
 <include name="TEST-*.xml"/>
 </fileset>
 <report format="frames" todir="${test.junit.reports}"/>
 </junitreport>

 <echo message="The last test run failed."
 file="${last.test.failed.file}"/>

Moodie_559-9C08.fm Page 202 Tuesday, September 27, 2005 9:38 AM

C H A P T E R 8 ■ T E S T I N G A N A P P L I C A T I O N 203

 <fail message="One or more tests failed. Check the reports
 in ${basedir}/${test.junit.reports}/index.html."
 if="test.failed"/>

 <delete file="${last.test.failed.file}"/>
 </target>

This time you run the target only if the checks were passed. After that, the target should be
familiar until the second <echo> task. Here you create the file that indicates that the build
failed. If the build fails, then you leave the file intact; if it doesn’t, you delete it.

Using a JAR File for Batch Tests

Future versions of Ant (1.7 and greater) are likely to allow you to use JAR files as the basis of
your batch test. Listing 8-19 shows how.

Listing 8-19. Using a JAR As the Basis of a Batch Test

 <zipfileset id="jarbatch" src="${appName-test.jar}"
 includes="**/*Test.class" />

 <junit printsummary="false"
 errorProperty="test.failed"
 failureProperty="test.failed">
 <classpath refid="test.classpath"/>
 <formatter type="brief" usefile="false"/>
 <formatter type="xml"/>
 <batchtest todir="${test.junit.data}">
 <fileset refid="jarbatch"/>
 </batchtest>
 </junit>

The <zipfileset> element holds the contents of a JAR file as a file set, which you then use
as you would any other file set. Versions of Ant prior to 1.7 do not replace the / file separator
with . and thus throw FileNotFoundException when trying to create a file in the test.junit.
data directory. In other words, Ant tries to place the data in a file called TEST-org/mwrm/Test.xml
instead of a file called TEST-org.mwrm.Test.xml. The org/mwrm directory does not exist at run
time, so Ant can’t find it.

Testing Code Conventions
Unit testing is an important part of any project, but another aspect of testing is checking the
code against code conventions. Code conventions certainly matter in large projects where
many developers will be working on the code. Standardizing the layout and naming conven-
tions means that it’s easier for a developer to come to grips with a new piece of code written by
someone else on the team. Standardizing code in small projects is equally important, because
it allows for clear layout and allows you to come to grips with your code if you return to it after

Moodie_559-9C08.fm Page 203 Tuesday, September 27, 2005 9:38 AM

204 C H A P T E R 8 ■ T E S T I N G A N A P P L I C A T I O N

a gap in development. As you’ve seen a few times in this book, you may not be the sole main-
tainer of the piece of code in perpetuity.

You can choose from a number of code convention checkers, but I’ll show you how to use
Checkstyle (checkstyle.sourceforge.net) in this chapter. Its one big advantage as far as this
chapter is concerned is that it comes with an Ant task. This makes it easy for you to insert
convention checking into your testing regime. I won’t go into how to configure Checkstyle
because it comes with two excellent coding convention definitions written in XML, one of
which is the Sun coding convention as used by the Ant project. You will use this definition.

Download the binary distribution, and extract it to your file system. The JAR file you will use is
checkstyle.jar. This contains the Ant task, Checkstyle’s main classes, and a task definition file.
I haven’t shown a task definition file before, so it will be a useful exercise to demonstrate how
to implement it.

The <checkstyle> task is fairly similar to the JUnit tasks you saw previously, so the
concepts in this section will be familiar to you. It has the attributes defined in Table 8-2.

Table 8-2. The <checkstyle> Task’s Attributes

Attribute Description

classpath The classpath to use. The default is Ant’s classpath.

classpathref A reference to a path defined earlier in the build. The default is
Ant’s classpath.

config The coding convention definition XML file. You must specify one of
config or configURL.

configURL The URL of the coding convention definition XML file. You must specify
one of config or configURL.

failOnViolation Tells Ant whether to fail the build if the code fails the check. The default
is true, which is the opposite of the <junit> task’s haltonerror
attribute’s default.

failureProperty The name of a property to set if the check failed. The default is null.

file The file on which to run the style check. You can also specify file sets
with nested <fileset> elements. This is required unless you specify a
file set.

maxErrors The maximum number of errors that Checkstyle will tolerate before the
check fails. The default is zero.

maxWarnings The maximum number of warnings that Checkstyle will tolerate before
the check fails. The default is Integer.MAX_VALUE (2147483647).

packageNamesFile A file that contains package names for custom code-checking modules.
The default is null.

properties A properties file that contains property values to use in the convention
XML file. Nested <property> elements and Ant properties override prop-
erties set in this file.

Moodie_559-9C08.fm Page 204 Tuesday, September 27, 2005 9:38 AM

C H A P T E R 8 ■ T E S T I N G A N A P P L I C A T I O N 205

The <checkstyle> task takes four nested elements: <fileset>, <classpath>, <formatter>,
and <property>. I’ll cover the <formatter> element in the course of the example. The <property>
element takes a mandatory key attribute and either a value attribute or a file attribute. The
latter is a path relative to the build’s base directory.

Using the <checkstyle> Task
The goal of this section is to replicate the JUnit test regime with your Checkstyle tests. In other
words, you’ll apply a structure to the Checkstyle test targets that is analogous to the JUnit test
targets because their features are so similar.

Before you start the check, you need to specify the location of Checkstyle in the file system.
This will allow you to use Checkstyle’s coding convention files and its report-formatting files.
You also need to define the location of your test report data and the report. Set the following
properties in the build.properties file like so:

checkstyle.home=C:/checkstyle
test.checkstyle.reports=${test.build}/reports/checkstyle
test.checkstyle.data=${test.build}/data/checkstyle

You also need to treat the report directories in the same way as the JUnit report directories.
In other words, you need fresh copies of the data and the report for each build. Listing 8-20
shows the modified test-init target.

Listing 8-20. Initializing the Testing Environment

 <!-- Prepare the test directories -->
 <target name="test-init" description="Prepare the test directories">
 <echo message="Preparing the test directories"/>
 <delete dir="${test.junit.reports}"/>
 <delete dir="${test.junit.data}"/>
 <delete dir="${test.checkstyle.reports}"/>
 <delete dir="${test.checkstyle.data}"/>
 <mkdir dir="${test.build}"/>
 <mkdir dir="${test.junit.reports}"/>
 <mkdir dir="${test.junit.data}"/>
 <mkdir dir="${test.checkstyle.reports}"/>
 <mkdir dir="${test.checkstyle.data}"/>
 </target>

To use the <checkstyle> task, you’ll have to include it in Ant’s classpath by copying
checkstyle-3.5.jar to ANT_HOME/lib or by pointing to it with the -lib command-line option.
This JAR file contains a task definition file called checkstyletask.properties, which contains
the following line:

checkstyle=com.puppycrawl.tools.checkstyle.CheckStyleTask

This defines the <checkstyle> task and tells Ant which class to use to represent the task in
the build. To reference this file, you use the resource attribute of the <taskdef> task, as shown
in Listing 8-21. You’ll also use the Sun coding conventions as provided by Checkstyle.

Moodie_559-9C08.fm Page 205 Tuesday, September 27, 2005 9:38 AM

206 C H A P T E R 8 ■ T E S T I N G A N A P P L I C A T I O N

Listing 8-21. Defining and Using the <checkstyle> Task

 <taskdef resource="checkstyletask.properties"/>
 <checkstyle config="${checkstyle.home}/sun_checks.xml"
 failOnViolation="false">
 <formatter type="xml"
 tofile="${test.checkstyle.data}/checkstyle_report.xml"/>
 <fileset refid="javadoc"/>
 </checkstyle>

You want to check all the Java source files, so you use the javadoc file set from Chapter 6.
This includes all the source directories and is a convenient collection to use for your tests. You
set the <formatter> element’s type attribute to xml, which creates an XML file of the results.
This in turn allows you to use an XSLT style sheet (provided with Checkstyle) to create an
HTML report of the check. To get to that stage, though, you have to set failOnViolation to
false, which is analogous to the JUnit tests you ran previously.

Transforming XML to HTML
Ant’s <xslt> core task is ideal for transforming your XML results file into an HTML report. As
already mentioned, Checkstyle comes with XSLT style sheets. These are in the checkstyle.home/
contrib directory and are also analogous to those provided by JUnit.

The <xslt> task has a huge number of attributes, so I won’t cover all of them. Instead, I’ll
cover those pertinent to transforming your XML report into an HTML report. The in attribute
specifies the source XML file, the out attribute is the file that results from the transformation,
and the style attribute is the style sheet to use in the transformation. Listing 8-22 shows the
transformation.

Listing 8-22. Transforming an XML Report into an HTML Report

 <xslt in="${test.checkstyle.data}/checkstyle_report.xml"
 out="${test.checkstyle.reports}/checkstyle_report.html"
 style="${checkstyle.home}/contrib/checkstyle-noframes-sorted.xsl"/>

If you decided to use one of the frames-based style sheets provided by Checkstyle, the file
specified in the out attribute will be empty, and you should view the index.html file in the
reports directory instead.

You still have a discrepancy between your Checkstyle test and your JUnit test. If you recall
from the previous discussion, your JUnit tests generate a report whether your code passes
them or not, which is how your Checkstyle tests operate. However, in the case of the JUnit tests,
Ant fails the build if your code fails the JUnit tests. To do that with your Checkstyle tests, you’ll
have to use the <fail> task and a property again. Listing 8-23 shows the final version of your
Checkstyle test target.

Moodie_559-9C08.fm Page 206 Tuesday, September 27, 2005 9:38 AM

d10c55b52b1f8994064c85cd755fb5a9

C H A P T E R 8 ■ T E S T I N G A N A P P L I C A T I O N 207

Listing 8-23. The Checkstyle Test Target

 <!-- Check the coding conventions -->
 <target name="coding-style" depends="test-init"
 description="Check the coding conventions">
 <echo message="Checking the coding conventions"/>
 <taskdef resource="checkstyletask.properties"/>
 <checkstyle config="${checkstyle.home}/sun_checks.xml"
 failOnViolation="false"
 failureProperty="checkstyle.failed">
 <formatter type="xml"
 tofile="${test.checkstyle.data}/checkstyle_report.xml"/>
 <fileset refid="javadoc"/>
 </checkstyle>
 <xslt in="${test.checkstyle.data}/checkstyle_report.xml"
 out="${test.checkstyle.reports}/checkstyle_report.html"
 style="${checkstyle.home}/contrib/checkstyle-frames.xsl"/>

 <fail message="One or more Checkstyle checks failed.
 Check the reports in ${basedir}/${test.checkstyle.reports}"
 if="checkstyle.failed"/>
 </target>

So, now you have replicated the JUnit test regime with your Checkstyle tests.

Summary
This chapter ran through adding JUnit unit testing to Ant by progressively building a testing
target. I covered how to install the testing frameworks and how to organize tests within the
project’s directory structure. This is important because you do not want to mix application
code with testing code, though mirroring the application’s package structure is a useful
technique.

You saw how you should initialize the testing environment as carefully as the build envi-
ronment. Ant’s JUnit tasks do not check for old data or test results, so you must clear away old
results yourself to ensure accurate analysis. Once you have done this, you compile the testing
classes and run the tests.

The default settings for Ant’s JUnit tasks are not enough for most purposes, so you added
a great deal of functionality to your testing targets. You now have a fairly complex and powerful
testing target suitable for most builds.

Moodie_559-9C08.fm Page 207 Tuesday, September 27, 2005 9:38 AM

Moodie_559-9C08.fm Page 208 Tuesday, September 27, 2005 9:38 AM

209

■ ■ ■

C H A P T E R 9

Using Ant in Large Projects

One of the beauties of Ant is that it scales extremely well with your projects. As your projects
get larger and more complicated, so will your build files. This means you need to have a better
way of managing your projects than a single monolithic build file. The answer is to use a master
build file to control the common elements of your build while placing build instructions for
each part of your project into subordinate build files.

You have seen in previous chapters how the build file describes the structure of your build.
Splitting a build into separate build files, with each representing a single part of your build,
follows this methodology. In other words, your build is split so your build file (now files) reflect
the structure of the build.

This chapter will take you through the issues you must consider when working with large,
complex builds. The example application is split into two separate applications that share core
utility classes. This is an ideal structure to demonstrate how to use subordinate build files that
are controlled by a master build file.

In this kind of scenario, the master build file will control the entire build and will call
subordinate build files at appropriate times to mimic a build where all the targets are in one
file. This means you have to ensure that each subordinate build file encapsulates a discrete
piece of the build. If it depends on another subordinate build, then it is up to the master build
file to run the subordinate builds in the correct order. Allowing subordinate builds to call each
other can lead to problems and maintenance issues. Therefore, the subordinate build files
cannot operate on their own and must be part of a larger build.

If you are developing a major project that has a number of facets, then it is usual practice
to split the whole project into separate components that reflect each of these facets. As you’ve
already seen in earlier chapters, you can easily split a project into shared utility code, GUI code,
stand-alone clients, web applications, and so on. Each of these facets can quite easily sit in its
own directory structure, quite separate from the other facets.

This helps the development team in a number of ways and lets each developer work on
their own section of the application without fear of interference from another developer. This
also means that the conceptually separate parts are kept apart physically as well.

None of this is new to you, especially because I’ve discussed it all earlier in the book.
However, so far you’ve handled this situation with a single build file and a single properties file
for the entire example application. The application is sufficiently complicated that you could
easily use a separate build file for each facet of it. This means the massive build file (which is
1,273 lines long in my version) will be easier to manage and maintain. Another advantage is
that you can edit each subordinate build file without changing the master build file, giving you
more control over the whole build.

Moodie_559-9C09.fm Page 209 Wednesday, September 28, 2005 8:25 AM

210 C H A P T E R 9 ■ U S I N G A N T I N L A R G E P R O J E C T S

Using Master Build Files and Ant Delegation
The master build file should contain all the information and targets that are shared by all
subprojects. This may sound pretty intuitive, but it can lead to some interesting problems. For
example, if many of your subproject targets depend on an initialization target to create scratch
directories (much like the dir initialization target), when you move them you will not be able
to use the depends attribute of your subprojects’ <target> elements to refer to the master build
file. This means you will have to either replicate the dir target in each subproject’s build file or
make sure every target in the master build file that can call a subproject has a depends attribute
that points to the master dir target. You’ll return to this kind of problem when you alter the
example application’s build process in the next section.

Another thing to remember is that subordinate builds should not normally call other
subordinate builds. It is the job of the master build file to group many subordinate builds into
a coherent build. If one subordinate build relies on another, it is up to the master build file to
enforce this relationship, just as it controls the dependencies.

Let’s look at the example application and identify areas where you can instigate subordinate
build files. The most obvious areas are the stand-alone application and the web application.
However, as Figure 9-1 shows, you can potentially create subordinate builds in a few more areas.

Figure 9-1. The main portions of the example application’s build

Of the components listed in Figure 9-1, only the shared code is built as part of another
component’s build. In other words, the shared code is really a part of the build for the stand-
alone code as well as being part of the build for the web application. This means ties exist
between these two components and the final location of the compiled shared files. You can
handle this with properties, so it should not cause any extra problems.

Every other component is completely separate from the others; therefore, those compo-
nents are excellent candidates for subordinate builds.

Moodie_559-9C09.fm Page 210 Wednesday, September 28, 2005 8:25 AM

C H A P T E R 9 ■ U S I N G A N T I N L A R G E P R O J E C T S 211

Moving Ant Tasks to Subordinate Build Files
The first point to remember when moving targets to subordinate build files is that you cannot
use the depends attribute of a <target> element to reference common targets. As you move
targets into the new build file, you must note which targets it depends on and ensure that the
master build file runs these targets before it calls the subordinate build file. A second, related
issue is that the targets in the subordinate build file are no longer available to the master build
file’s depends attributes either, which means you must use the <ant> task (see Table 9-1) to call
the subordinate build file if a master file depends on one of its targets. This can lead to a fair
amount of spaghetti programming, but if your build file has definite endpoints that simply pull
together the different build paths, your build will not be affected.

The <ant> task can also have nested <property>, <propertyset>, <reference>, and <target>
elements. The <property> element is identical to the <property> task you saw in Chapter 3 and
sets a property to pass to the new build. These properties are as powerful as those you set at the
command line. Ant resolves any references in the master build before passing the property to
the subordinate build. Chapter 3 described the <propertyset> element.

If you want to pass some references to the subordinate build only, you can set the
inheritRefs attribute to false and specify those references you are interested in by using
nested <reference> elements, like so:

Table 9-1. The <ant> Task’s Attributes

Attribute Description

antfile The name of the build file to use. This is a relative file path and uses the
value of the dir attribute as the root of the path. The default is
build.xml.

dir Overrides the base directory for the project you are calling. The default
is the current project’s base directory, unless you set inheritAll to
false, and then there is no default value, which means the base directory
of the subordinate project is the value of its own basedir attribute.

inheritAll Tells Ant whether to pass properties from the master build to the subordi-
nate build. If set to false, Ant passes command-line properties only to
the subordinate build. If set to true, Ant overrides any properties set in
the subordinate build. The default is true.

inheritRefs Tells Ant whether to pass references to the subordinate build. The
default is false.

output The file where you would like to store Ant’s output. This is relative to
the base directory of the subordinate build, which you can change with
the dir attribute. The default is null.

target The name of the target you want to run in the subordinate build. The
default is the subordinate build’s default target.

Moodie_559-9C09.fm Page 211 Wednesday, September 28, 2005 8:25 AM

212 C H A P T E R 9 ■ U S I N G A N T I N L A R G E P R O J E C T S

<ant inheritRefs="false">
 <reference refid="build.classpath"/>
 <reference refid="javadoc" torefid="master.javadoc"/>
 <target name="build-both"/>
</ant>

The first element passes the build.classpath path to the subordinate build. The second
passes the javadoc path to the subordinate build, but makes it available under the master.javadoc
reference ID. The <target> element tells Ant to run the target specified in the name attribute.
This is a useful element if you want to run a number of targets in the same subordinate build
file. If you specify more than one target, Ant makes them depend on one another in the order
you specify them.

Preparing for the Move
A useful technique when using subordinate builds is to leave a version of endpoint targets,
such as package-web, in the master build file and use them to pull together the various subordi-
nate builds as if these subordinate builds were called by the original target’s depends attribute.
In other words, some targets will produce the same results as before, but the tasks that do the
work will be in subordinate build files. One useful side effect of this technique is that other
types of targets, such as the packaging targets, usually depend on endpoint targets. By keeping
these endpoint targets, you avoid breaking other parts of the build. Therefore, you keep the
same external interface to other parts of the build while changing the location of the tasks.
You’ll see more of this as you go through this chapter.

Before you begin moving targets, you need a few properties in the properties file so that
you have central control over the names of the subordinate files. Listing 9-1 shows the names
of the files you’ll be using.

Listing 9-1. The Names of the Subordinate Build Files

build.shared.xml=${src.shared.root}/build.xml
build.stand-alone.xml=${src.stand-alone.root}/build.xml
build.web.xml=${src.web.root}/build.xml
build.package.xml=build.package.xml
build.test.xml=${test.src}/build.xml

build.jstl.xml=build.jstl.xml
build.mysql.xml=build.mysql.xml

Moving the Third-Party Build Targets
The simplest moves are the targets that build the third-party libraries (JSTL and MySQL
connector). They do not depend on anything but the dir target, which you will not be moving.
However, you’ll ensure that the dir target is called before any subordinate builds run. Create a
file called build.mysql.xml, and place it in the example application’s base directory. Listing 9-2
shows its contents. The one change from the master build file is in bold.

Moodie_559-9C09.fm Page 212 Wednesday, September 28, 2005 8:25 AM

C H A P T E R 9 ■ U S I N G A N T I N L A R G E P R O J E C T S 213

Listing 9-2. The MySQL Connector Subordinate Build File

<?xml version="1.0"?>

<project name="MySQL Connector Build"
 default="build-mysql-connector" basedir=".">

 <!-- CVSROOT for the MySQL connector -->
 <property name="mysql.cvsroot"
 value=":pserver:anonymous@cvs.sourceforge.net:/cvsroot/mmmysql" />

 <!-- Update or check out required sources from CVS for the MySQL connector -->
 <target name="checkout-mysql-connector"
 description="Update or check out required sources from CVS
 for the MySQL connector">

 <echo message="Checking out the required sources from CVS
 for the MySQL connector" />

 <cvs cvsroot="${mysql.cvsroot}" quiet="true"
 command="checkout" package="${mysql.build}"
 dest="${build}" compression="true" />
 </target>

 <!-- Build the MySQL connector from source -->
 <target name="build-mysql-connector" depends="checkout-mysql-connector"
 description="Build the MySQL connector from source">
 <echo message="Building the MySQL connector from source"/>

 <!-- The MySQL connector file needs this directory to exist -->
 <!-- Therefore we need to create it -->
 <mkdir dir="${build}/dist-mysql-jdbc"/>

 <ant antfile="build.xml" dir="${build}/${mysql.build}"/>

 <copy tofile="${mysql.jar}">
 <fileset dir="${build}/build-mysql-jdbc">
 <include name="mysql-connector*/*.jar"/>
 </fileset>
 </copy>
 </target>

</project>

The build.jstl.xml file is similarly straightforward, as shown in Listing 9-3.

Moodie_559-9C09.fm Page 213 Wednesday, September 28, 2005 8:25 AM

d10c55b52b1f8994064c85cd755fb5a9

214 C H A P T E R 9 ■ U S I N G A N T I N L A R G E P R O J E C T S

Listing 9-3. The JSTL Subordinate Build File

<?xml version="1.0"?>

<project name="JSTL Build" default="build-jstl" basedir=".">

 <!-- ################################### -->
 <!-- CVS properties -->
 <!-- ################################### -->

 <!-- CVSROOT for the JSTL -->
 <property name="cvsroot"
 value=":pserver:anoncvs@cvs.apache.org:/home/cvspublic" />

 <!-- ## -->
 <!-- CVS and build tasks for the JSTL and MySQL connector -->
 <!-- ## -->

 <!-- Update or check out required sources from CVS for the JSTL -->
 <target name="checkout-jstl"
 description="Update or check out required sources from CVS
 for the JSTL">

 <echo message="Checking out the required JSTL sources from CVS"/>

 <cvs cvsroot="${cvsroot}" quiet="true"
 command="checkout -P ${jstl.build}"
 dest="${build}" compression="true" />

 </target>

 <!-- Build the JSTL from source -->
 <target name="build-jstl" depends="checkout-jstl"
 description="Build the JSTL from source">
 <echo message="Building the JSTL from source"/>

 <ant antfile="build.xml" dir="${build}/${jstl.build}"/>

 <copy todir="${lib}">
 <fileset dir="${build}/${jstl.build}/${build}/lib">
 <include name="*.jar"/>
 </fileset>
 </copy>
 </target>

</project>

You can now call these targets from other build files using the <ant> task.

Moodie_559-9C09.fm Page 214 Wednesday, September 28, 2005 8:25 AM

C H A P T E R 9 ■ U S I N G A N T I N L A R G E P R O J E C T S 215

Moving the Shared Build Targets
Let’s start to move the shared build into a build file in the shared source tree. This is a simple
operation in this application because the shared build is completed by a <javac> command in
the stand-alone build or the web build, as appropriate. As such, it depends only on the dir
target, though the master build file will take care of that before calling either the stand-alone
build or the web subordinate build. This in turn ensures that the shared code’s dependency
is covered.

Create a file called build.xml, and place it in the src/shared directory. Once you have done
this, move the <javac> command from the master build file into it, as shown in Listing 9-4.

Listing 9-4. The Shared Code’s Subordinate Build File

<?xml version="1.0"?>

<project name="Shared Code Build" default="compile-shared" basedir=".">

 <!-- Compile shared code -->
 <target name="compile-shared" description="Compile shared code">
 <echo message="Compiling the shared code"/>
 <javac srcdir="${src.shared.java}" destdir="${destination}"/>
 </target>

</project>

To make it compatible with the two main components of the application, you leave the
destination as a property that the calling build file must set. This allows the stand-alone and
web builds to control the position of their files independently.

Moving the Application-Specific Build Targets
Now you should move the stand-alone build’s targets to a subordinate build file. (You’ll get to
the master build file once you’ve competed the subordinate files.) Create a file called build.xml,
and place it in the src/stand-alone directory. The first stand-alone target in the master build
file is compile-stand-alone. The two differences will be that it cannot depend on the dir target,
and it cannot contain the shared code’s <javac> task. The master build file will ensure that it
runs the dir target and will call the shared subordinate build before calling the stand-alone
subordinate build. Listing 9-5 shows the start of the stand-alone build’s build file.

Listing 9-5. The Beginning of the Stand-Alone Subordinate Build File

<?xml version="1.0"?>

<project name="Example Application Build"
 default="package-stand-alone" basedir=".">

 <!-- ########################### -->
 <!-- The stand-alone application -->
 <!-- ########################### -->

Moodie_559-9C09.fm Page 215 Wednesday, September 28, 2005 8:25 AM

216 C H A P T E R 9 ■ U S I N G A N T I N L A R G E P R O J E C T S

 <!-- Compile the stand-alone application -->
 <target name="compile-stand-alone"
 description="Compile the stand-alone application">

 <echo message="Compiling the stand-alone application"/>
 <javac srcdir="${src.stand-alone.java}" destdir="${build.stand-alone.root}"/>
 </target>

Listing 9-6 shows the other stand-alone target you are moving. The process of creating a
JAR file of the stand-alone application does not change when you move it into the subordinate
file, though you should consider some dependencies. Again, you’ll use the <ant> task in the
master build file to point to this target should it be necessary. Note that the stand-alone-complete
target stays in the master build file because it needs to call other subordinate builds, such as
the shared build and the MySQL connector build.

Listing 9-6. Moving the Packaging Build

 <!-- Package the stand-alone application -->
 <target name="package-stand-alone" depends="compile-stand-alone"
 description="Package the stand-alone application">
 <echo message="Creating the stand-alone JAR file"/>
 <copy file="${database.properties}" todir="${build.stand-alone.root}"/>
 <jar destfile="${appName.jar}" basedir="${build.stand-alone.root}"/>
 </target>

You will still retain a package-stand-alone target in the master build file. This target will
perform the same function as the old package-stand-alone target, but will use subordinate
builds to do so. This allows you to maintain a number of dependencies, such as the one from
stand-alone-complete.

You won’t move the two targets that run the stand-alone application because they are
really part of a master build.

That’s it for the stand-alone application. You have moved all the stand-alone targets into a
subordinate build file, and now you have to do the same for the web application. The process
is similar, so there is no need to show it here.

Moving the Packaging Targets
The packaging targets, including those targets that build the documentation bundles, are large
and complex enough that you can justify giving them their own subordinate build. The process
for this is again quite simple. Copy all the packaging-related tasks into a file called build.➥

package.xml, and remove any dependencies on dir, package-stand-alone, and package-web.
Again, you’ll call these targets from the master build file. You’ll also add a new default target to
run the zip-all and tar-all targets, as shown in Listing 9-7.

Moodie_559-9C09.fm Page 216 Wednesday, September 28, 2005 8:25 AM

C H A P T E R 9 ■ U S I N G A N T I N L A R G E P R O J E C T S 217

Listing 9-7. The Zip and Tar Tasks’ Subordinate Build

<?xml version="1.0"?>

<project name="Example Application Package Build"
 default="package-all" basedir=".">

 <!-- ## -->
 <!-- Packaging the distribution -->
 <!-- ## -->

 ...

 <!-- Zip the binary and source distributions -->
 <target name="zip-all" depends="zip-src,zip-bin"
 description="Zip the binary and source distributions">
 <echo message="Zipped the binary and source distributions"/>
 </target>

 <!-- Tar the binary and source distributions -->
 <target name="tar-all" depends="tar-src,tar-bin"
 description="Tar the binary and source distributions">
 <echo message="Tarred the binary and source distributions"/>
 </target>

 <!-- Create all the packages -->
 <target name="package-all" depends="zip-all,tar-all"
 description="Create all the packages">
 <echo message="Created all the packages"/>
 </target>

</project>

Leave zip-all and tar-all targets in the master build file. These targets will ensure that
Ant builds the application before they call their namesakes in the subordinate build. As a
consequence, the distribution targets will break, but I’ll cover that in the “Changing the Master
Build File” section.

Moving the Test Targets
Moving the test targets is easy. They largely depend on each other, though the compile-tests
target depends on targets that compile both applications. You can easily solve this, however.
First, place all the test targets in a file called test/build.xml. As you have done before, you leave
a master build target that compiles both applications before running the JUnit tests. Second,
you also leave a master build target that runs the Checkstyle tests. Listing 9-8 shows the skeleton of
the testing build file.

Moodie_559-9C09.fm Page 217 Wednesday, September 28, 2005 8:25 AM

218 C H A P T E R 9 ■ U S I N G A N T I N L A R G E P R O J E C T S

Listing 9-8. The <project> Element of the Test Subordinate Build File

<?xml version="1.0"?>

<project name="Testing Build" default="test-all" basedir=".">

 ...

 <!-- Run all the tests -->
 <target name="test-all" depends="test,coding-style"
 description="Run all the tests">
 <echo message="All the tests have finished"/>
 </target>

</project>

Changing the Master Build File
The first change you’ll make in the master build file is to exclude XML files from the Javadoc
process. As things stand, the <javadoc> tasks will fail because the subordinate build XML files
are included in their classpath and don’t correspond to a Java file. To remedy this, you need to
add a new <exclude> element to the Javadoc classpath, as shown in Listing 9-9. This is something to
consider when building archives of binary files because you usually don’t want to include the build
files in a binary distribution. In this case, you are quite specific about the files to include in any
archiving task, so there is no danger of including rogue subordinate build files.

Listing 9-9. Excluding the Subordinate Build Files from the Javadoc Classpath

 <!-- ################################### -->
 <!-- Javadoc file sets -->
 <!-- ################################### -->

 <fileset id="javadoc" dir="${src}">
 <exclude name="*/conf/**"/>
 <exclude name="*/docs/*"/>
 <exclude name="**/package.html"/>
 <exclude name="**/*.xml"/>
 <include name="shared/**"/>
 <include name="stand-alone/**"/>
 <include name="web/java/**"/>
 </fileset>

You remove some targets from the master build file and place them in subordinate build
files. However, to maintain the structure of the master build, you need to call them as if they
were in the master build file. In other words, the master build still has to contain a target that
packages the stand-alone application. The difference is that all the implementation details are
in the subordinate build. Listing 9-10 shows the two targets that deal with the stand-alone build.

Moodie_559-9C09.fm Page 218 Wednesday, September 28, 2005 8:25 AM

C H A P T E R 9 ■ U S I N G A N T I N L A R G E P R O J E C T S 219

Listing 9-10. The Master Build Targets That Build the Stand-Alone Application

 <!-- ########################### -->
 <!-- The stand-alone application -->
 <!-- ########################### -->

 <!-- Compile the stand-alone application -->
 <target name="package-stand-alone" depends="dir"
 description="Compile stand-alone application">
 <echo message="Compiling the stand-alone application"/>
 <!-- First let's compile the shared code -->
 <property name="destination" value="${build.stand-alone.root}"/>
 <ant antfile="${build.shared.xml}" inheritRefs="true"/>
 <ant antfile="${build.stand-alone.xml}" inheritRefs="true"/>
 </target>

 <target name="stand-alone-complete" depends="dir"
 description="Compile stand-alone application,
 using CVS version of the MySQL connector">
 <echo message="Compiling stand-alone application,
 using CVS versions of the MySQL connector"/>
 <ant antfile="${build.mysql.xml}" inheritRefs="true"/>
 <antcall target="package-stand-alone"/>
 </target>

By maintaining a package-stand-alone target, you ensure that the tasks that rely on it
(packaging and distribution tasks, for example) don’t break. It is simply a placeholder for the
appropriate subordinate builds. The same goes for stand-alone-complete.

Here you set the inheritRefs attribute of the <ant> task to true. This makes sure the subor-
dinate builds have access to the build classpath and other necessary file sets. Without these
references, you could not maintain a centralized master build file and would have to scatter
build classpath definitions throughout the subordinate build files.

The final thing to note is that you use an <antcall> task to maintain the order of execution.
In this case, you want Ant to build the MySQL connector before you compile the application
and create its JAR file. The only way to ensure that a master target runs following a call to a
subordinate build is to use an <antcall>.

The web application targets follow along the same lines, as shown in Listing 9-11.

Listing 9-11. The Master Build Targets That Build the Web Application

 <!-- ########################### -->
 <!-- The web application -->
 <!-- ########################### -->

 <!-- Build the WAR file in one step -->
 <target name="package-web" depends="dir"
 description="Build the WAR file in one step">
 <echo message="Building the WAR file in one step"/>

Moodie_559-9C09.fm Page 219 Wednesday, September 28, 2005 8:25 AM

220 C H A P T E R 9 ■ U S I N G A N T I N L A R G E P R O J E C T S

 <!-- First let's compile the shared code -->
 <property name="destination" value="${build.stand-alone.root}"/>
 <ant antfile="${build.shared.xml}" inheritRefs="true"/>
 <ant antfile="${build.web.xml}" inheritRefs="true"/>
 </target>

 <target name="web-complete"
 description="Compile web application,
 using CVS versions of the MySQL connector and the JSTL">
 <echo message="Compiled web application,
 using CVS versions of the MySQL connector and the JSTL"/>
 <ant antfile="${build.mysql.xml}" inheritRefs="true"/>
 <ant antfile="${build.jstl.xml}" inheritRefs="true"/>
 <antcall target="package-web"/>
 </target>

This time you use the web subordinate build in package-web and build the JSTL source in
web-complete. This means the master build can still use build-both and build-all as before.

You also need to modify the master packaging targets, zip-all and tar-all. You’ll also add
a target that calls the default target in the package build, which is called package-all. All these
targets ensure that Ant compiles the code before the packaging tasks run, as shown in Listing 9-12.

Listing 9-12. The Master Build Targets That Package the Application

 <!-- Zip the binary and source distributions -->
 <target name="zip-all" depends="package-stand-alone, package-web"
 description="Zip the binary and source distributions">
 <echo message="Zipping the binary and source distributions"/>
 <ant antfile="${build.package.xml}" target="zip-all" inheritRefs="true"/>
 </target>

 <!-- Tar the binary and source distributions -->
 <target name="tar-all" depends="package-stand-alone, package-web"
 description="Tar the binary and source distributions">
 <echo message="Tarring the binary and source distributions"/>
 <ant antfile="${build.package.xml}" target="tar-all" inheritRefs="true"/>
 </target>

 <!-- Create all the packages -->
 <target name="package-all" depends="package-stand-alone, package-web"
 description="Create all the packages">
 <echo message="Creating all the packages"/>
 <ant antfile="${build.package.xml}" inheritRefs="true"/>
 </target>

You’ll have to change all the distribution targets because they depend on various packaging
targets, all of which you have moved to a subordinate build. You have only three packaging targets
to choose from now, and since the distribution targets deal with zip and tar files, you’ll use

Moodie_559-9C09.fm Page 220 Wednesday, September 28, 2005 8:25 AM

d10c55b52b1f8994064c85cd755fb5a9

C H A P T E R 9 ■ U S I N G A N T I N L A R G E P R O J E C T S 221

package-all. This may be inefficient for the first run of the build because you’ll package every-
thing, regardless of what you want to distribute, but chances are you’ll want to distribute everything
at some point anyway.

Subsequent runs of the build will create only those distributions you have changed, so
package-all acts as if it were, for example, zip-docs and tar-docs if the documentation is the
only thing that has changed. Listing 9-13 shows one of the distribution targets as an example of
the change.

Listing 9-13. The Distribution Targets All Now Depend on package-all

 <!-- Place the documentation on FTP -->
 <target name="ftp-docs" depends="package-all"
 description="Place the documentation on FTP">
 <echo message="Placing the documentation on FTP"/>
 <ftp server="${ftp.server}"
 userid="${ftp.user}"
 password="${ftp.password}"
 remotedir="${ftp.src.dir}"
 action="send"
 newer="true"
 timediffauto="true">
 <fileset dir="${dist}">
 <include name="${appName}-${package.docs}.*"/>
 </fileset>
 </ftp>
 </target>

The targets that run the tests follow the same pattern as those that package the application.
You maintain a test target as the entry point into the JUnit testing regime and a coding-style
target as the entry point into the Checkstyle style-checking regime. You’ll also add a master test
target that runs both regimes by calling the default target in the test subordinate build file.
Listing 9-14 shows these targets.

Listing 9-14. The Master Build Targets That Test the Application

 <!-- ################################### -->
 <!-- Testing targets -->
 <!-- ################################### -->

 <!-- Run the JUnit tests -->
 <target name="test" depends="package-stand-alone, deploy-copy-war"
 description="Run the JUnit tests">
 <echo message="Running the JUnit tests"/>
 <ant antfile="${build.test.xml}" target="test" inheritRefs="true"/>
 </target>

Moodie_559-9C09.fm Page 221 Wednesday, September 28, 2005 8:25 AM

222 C H A P T E R 9 ■ U S I N G A N T I N L A R G E P R O J E C T S

 <!-- Check the coding conventions -->
 <target name="coding-style" description="Check the coding conventions">
 <echo message="Checking the coding conventions"/>
 <ant antfile="${build.test.xml}" target="coding-style" inheritRefs="true"/>
 </target>

 <!-- Run all the tests -->
 <target name="test-all" depends="package-stand-alone, deploy-copy-war"
 description="Run all the tests">
 <echo message="Running all the tests"/>
 <ant antfile="${build.test.xml}" inheritRefs="true"/>
 </target>

These are the last alterations, but you have still to make some small additions. For example,
you need a way to call individual targets in the subordinate build from the command line.

Running Individual Subordinate Targets
If you tried to run a target that was part of a subordinate build by specifying a file at the
command line, you would get an error, as follows:

> ant -f src/web/build.xml compile-web

Buildfile: src\web\build.xml

compile-web:
 [echo] Compiling the web application

BUILD FAILED
C:\AntBook\ch09\src\web\build.xml:12: destination directory
"C:\AntBook\ch09\src\web\${build.web.root}" does not exist or is not a directory

Total time: 1 second

The value of the build.web.root property is not set, so Ant has used the ${build.web.root}
string as the value in the subordinate compile-web target. For example:

 <javac destdir="${build.web.root}">

This means Ant tries to compile the classes into a directory called ${build.web.root} and
subsequently fails to do so. This kind of error occurs throughout the build. The diagnosis is
simple: you haven’t set any properties for this subordinate build (or any of the others). This is
a side effect of centralizing classpaths and properties in the master build file. However, this is
not a problem because you can easily write targets in the master build file that call individual
targets in subordinate build files.

Listing 9-15 shows the targets that you can use to call targets in subordinate builds. You
use command-line properties to set the name of the target to call, and the master build passes
its references over, meaning you have access to all its properties and classpaths.

Moodie_559-9C09.fm Page 222 Wednesday, September 28, 2005 8:25 AM

C H A P T E R 9 ■ U S I N G A N T I N L A R G E P R O J E C T S 223

Listing 9-15. Targets That Call Targets in Subordinate Builds

 <!-- #################### -->
 <!-- Managing subprojects -->
 <!-- #################### -->

 <target name="stand-alone-target" depends="dir">
 <ant antfile="${build.stand-alone.xml}" target="${target}"
 inheritRefs="true"/>
 </target>

 <target name="web-target" depends="dir">
 <ant antfile="${build.web.xml}" target="${target}" inheritRefs="true"/>
 </target>

Here’s the example command line from before, which uses one of the new targets:

> ant -Dtarget=compile-web web-target

To run the tests, you would use a target as shown in Listing 9-16. It follows the same pattern
as the targets I’ve just discussed, which means you can use it to pick individual targets in the
test subordinate build. You also have to make sure that the code is up to date before you run
the tests, so you use a depends attribute.

Listing 9-16. A Target That Calls the Test Subordinate Build

 <!-- Run the tests -->
 <target name="test-target" depends="package-stand-alone,deploy-copy-war">
 <ant antfile="${build.test.xml}" target="${target}" inheritRefs="true"/>
 </target>

Really the only thing you need this target for is compiling the test classes without running
a test, though you’d never get to the tests if the code failed to compile. This target is more for
completeness than anything else.

Summary
This chapter ran through the process of using subordinate build files to encapsulate large,
independent sections of a complex project. You took the monolithic master build file that
you’ve built up over the past few chapters and split it into a number of smaller build files, each
of which focuses on a certain fragment of the whole build.

The three sections of the application—that is, the shared code, the stand-alone code, and
the web application code—lend themselves to this treatment. It is a straightforward way of
dividing a large build. You split the master build file and placed the appropriate targets in the
appropriate subordinate build files. You also moved the test targets into their own build file.

The final part of the chapter showed how to call individual targets in these subordinate
build files so that the subordinate targets have access to references from the master build.

Moodie_559-9C09.fm Page 223 Wednesday, September 28, 2005 8:25 AM

Moodie_559-9C09.fm Page 224 Wednesday, September 28, 2005 8:25 AM

225

■ ■ ■

C H A P T E R 1 0

Writing Custom Tasks

At this stage in the book, you have seen many of Ant’s tasks; some of them are core to Ant,
while others are optional because of their dependency on external libraries. During the course
of the discussion, you also came across some limitations in the set of tasks provided with the
Ant distribution. For example, you saw how the <tar> task is fairly cumbersome compared to
its <zip> cousin. Another example is the <javadoc> task, which does not do any dependency
checking when creating Javadocs. While you saw workarounds for these, this is no substitute
for a task that does something cleanly and efficiently without any quirks.

The vast majority of Ant’s tasks are excellent, and it is not often that you will find you need
something more. However, one of the beauties of Ant is the ease with which you can write new
tasks to scratch the itch you’ve had. The philosophy behind these custom tasks is similar to the
reusability philosophy behind Ant (and object-oriented software as well). If you find yourself
using clunky workarounds and <exec> tasks over and over again, it’s time to write a custom task
to automate and simplify the process.

In this chapter, you’ll look at an Ant task’s life cycle, its API, and some examples of custom
tasks. These examples will also include some third-party custom tasks you may want to use in
your builds. It’s worth checking some of the third-party custom tasks listed at http://ant.
apache.org/external.html to see whether someone has done the work for you.

Examining Custom Tasks
Before you actually write a serious custom task, you’ll look at the life cycle of a task and how
you can take advantage of the stages a task goes through during a project build. Many Java
APIs, such as the JSP custom tag API, follow a similar pattern, so you may have come across
something similar before. In the discussion on the custom task life cycle, you will inevitably dip
into the API, but I’ll leave most of the API discussion until after the life-cycle discussion.

As you’ve seen, every task you place in a build file as an XML element is represented by a
Java class in Ant, and custom tasks are no exception. In fact, you saw a custom task in Chapter 6
when you defined the <deploy> task that places a web application onto a Tomcat server. Here’s
a reminder:

<taskdef name="deploy" classname="org.apache.catalina.ant.DeployTask"/>

Moodie_559-9C10.fm Page 225 Tuesday, September 27, 2005 10:09 AM

226 C H A P T E R 1 0 ■ W R I T I N G C U S T O M T A S K S

Here the org.apache.catalina.ant.DeployTask class represents the <deploy> task when it
appears in a build file. This class has class properties that correspond to the attributes of the
<deploy> element, and this is how you interact with the class file. This class also runs certain
operations at different points in the task’s life cycle; you will learn more about this next.

Introducing the Custom Task Life Cycle
A custom task always follows the same path through the life of a project build. This means
certain sections of your custom task’s Java class must run at predefined points in a build, and
Ant will expect to call certain methods at the appropriate time as specified by the task API. In
other words, you need a guaranteed set of methods in the class that represents your task.

In common with other Java projects, the Ant API provides abstract classes with default
methods for use as the basis of a custom task, the most important of which is org.apache.
tools.ant.Task. This allows you to pick and choose which parts of the API to implement in any
given custom task without worrying about the implementation of the other parts. The life cycle
of the task is the major factor when deciding which code to place where and proceeds as follows:

1. Ant instantiates the class using its no-argument constructor.

2. Ant sets references to the project that contains the task and the location of its element
in the build file. You can obtain this information using the inherited getProject() and
getLocation() methods.

3. If you set an id attribute for the task’s element, Ant registers a reference to this newly
created task in the project object. However, the ID is not available to the task until later
in its life cycle.

4. Ant sets a reference to the task’s containing target. You can obtain this information
using the inherited getOwningTarget() method later in the life cycle.

5. Ant calls the task’s init() method. You should implement this method if you need to
run any setup code before the task runs. This method does not have access to any of the
task’s attributes, including its id attribute.

6. If you have child elements for this task, Ant calls any addXXX(), addConfiguredXXX(), and
createXXX() methods you have defined, one for each child element you have specified.
XXX stands for the name of the child element. The type of method you choose depends
on the type of nested element. You’ll learn more about this later in the “Working with
Nested Elements in Tasks” section.

7. Ant sets the attributes of this task using the appropriate setXXX() methods, where XXX
stands for the name of the attribute. The task can now manipulate these attributes.

8. Ant calls the task’s addText() method if you have defined it. This method adds the
content character data sections inside the task’s XML element.

9. Ant sets the attributes of all the task’s child elements using the appropriate setXXX()
methods.

Moodie_559-9C10.fm Page 226 Tuesday, September 27, 2005 10:09 AM

C H A P T E R 1 0 ■ W R I T I N G C U S T O M T A S K S 227

10. Ant calls the child elements’ addText() methods.

11. Ant calls the task’s execute(). This is the only step that is repeated for a given task
element. In other words, the same element’s execute() method is called again and
again by targets that depend on its containing target, but its other methods are not. This
is because it is the same object as far as Ant is concerned. Another element of the same
type will follow its own life cycle and will not be affected by the life cycle of the first task.

This is all well and good, but let’s look at some examples that demonstrate the life cycle of
a tag.

Introducing the Custom Task API
The first step in creating a custom task is to extend the org.apache.tools.ant.Task abstract
class. This class gives you default implementations of the custom task API’s methods, but you
should always override the execute() method. This is where you will place the task’s function-
ality, even though it is not mandatory for you to implement such a method. You’ll return to this
method in the “Writing an execute() Element” section.

The first custom task is a simple task that takes a name and displays it to the user via standard
out. Here’s an example of it in a build file:

<lifecycle name="Matthew"/>

You’ll add a nested element in the “Working with Nested Elements in Tasks” section, but
for now you’ll use it as a single element with a mandatory name attribute. First I’ll cover the
constructor.

■Note The Ant API contains other, more specialized abstract classes that you can extend should you need
their particular specialism. They are AbstractCvsTask, JDBCTask, MatchingTask, Pack, and Unpack in
the org.apache.tools.ant.taskdefs package. In this chapter, you’ll use only Task. You can find more
information at http://ant.apache.org/manual/base_task_classes.html.

Writing a Task’s Constructor

Ant will call a task’s constructor right at the beginning of a task’s life cycle, and it should have
no arguments. You cannot do an awful lot in the constructor if you want to implement it
because so little information is available to the task at this stage. For example, Ant has not yet
assigned it to the project object, which means it does not know which target it belongs to or
where it is in the build file. Another consequence of not being a part of the project is that you
cannot do any logging, to a file or to standard out, because the logger belongs to the project.

Listing 10-1 shows the first implementation of the demonstration task, with some
System.out.println() calls to demonstrate the values of some important objects at this stage.

Moodie_559-9C10.fm Page 227 Tuesday, September 27, 2005 10:09 AM

d10c55b52b1f8994064c85cd755fb5a9

228 C H A P T E R 1 0 ■ W R I T I N G C U S T O M T A S K S

Listing 10-1. The Example Task’s Constructor

package org.mwrm.ant.tasks;

import org.apache.tools.ant.Task;

// We'll need these objects in subsequent examples
import java.util.Hashtable;
import java.util.Enumeration;

import org.apache.tools.ant.Project;
import org.apache.tools.ant.BuildException;

import org.apache.tools.ant.UnknownElement;

public class LifeCycleTask extends Task {

 // The name attribute of this task
 private String name;

 // The body text of this task
 private String text;

 public LifeCycleTask() {
 System.out.println("---------------");
 System.out.println("Constructor called");
 System.out.println("Value of name attribute: " + name);
 System.out.println("Value of the body text: " + text);
 System.out.println("Project: " + getProject());
 System.out.println("Location: " + getLocation());
 System.out.println("Target: " + getOwningTarget());
 System.out.println("---------------");
 }
}

The methods you call in the constructor are inherited from the parent org.apache.
tools.ant.Task class. The getProject() method returns an object that represents the parent
project of this task (org.apache.tools.ant.Project), which allows you to access a number of
useful pieces of information. (You’ll learn more about this in the “Writing a Task’s init() Method”
section.) The getLocation() method returns an object that represents the location of this task
within a build file (org.apache.tools.ant.Location), which has a toString() method that
displays the location, including the line number. The getOwningTarget() method returns an
object representing the target that this task belongs to (org.apache.tools.ant.Target), which
also has a convenient toString() method that returns the name of the target.

To return some output, you have to use System.out.println() statements here, because
the project’s logger is unavailable. Should the logger be available, you will use it; this is the best
way of returning output from a custom task because it is more flexible than
System.out.println() statements.

Moodie_559-9C10.fm Page 228 Tuesday, September 27, 2005 10:09 AM

C H A P T E R 1 0 ■ W R I T I N G C U S T O M T A S K S 229

Now that you have the code, you need to compile it. Listing 10-2 shows the properties
you’ll need before you set up a target to do the work for you. You’ll use the same build file that
you’ve been using throughout the book to take advantage of some of its properties and setup
targets.

Listing 10-2. The Properties for Compiling the Custom Tasks

Custom task properties
ant.tasks.src=ant
ant.tasks.build=${build}/ant
ant.tasks.jar=${dist}/${appName}-tasks.jar

You’ll use this JAR file when running the custom task, so compile it as shown in Listing 10-3.

Listing 10-3. Compiling the Custom Tasks

 <!-- ###################################### -->
 <!-- Targets for demonstrating custom tasks -->
 <!-- ###################################### -->

 <!-- Compile the Ant tasks -->
 <target name="compile-ant-tasks" depends="dir"
 description="Compile the Ant tasks">
 <echo message="Compiling the Ant tasks"/>
 <mkdir dir="${ant.tasks.build}"/>
 <javac srcdir="${ant.tasks.src}" destdir="${ant.tasks.build}"/>
 <jar destfile="${ant.tasks.jar}" basedir="${ant.tasks.build}"/>
 </target>

To use a custom task, you must declare it with a <taskdef> element, an element you saw
earlier in the chapter and in Chapter 6. You need to specify a name for the task and tell Ant
which class to use when it encounters the task’s element in a build file. The name you specify
will be the name of the element. So, if you specify the name as a-task, the element would be
<a-task>. Listing 10-4 shows how to declare a custom task and then use it.

Listing 10-4. Declaring a Custom Task and Using It

 <!-- Demonstrate the life cycle of a task -->
 <target name="lifecycle-target"
 description="Demonstrate the life cycle of a task">
 <echo message="Demonstrating the life cycle of a task"/>
 <taskdef name="lifecycle-task"
 classname="org.mwrm.ant.tasks.LifeCycleTask" />
 <lifecycle-task/>
 </target>

You can declare the name of the task as lifecycle-task with the name attribute and then
use it in the file as <lifecycle-task>. You’ve implemented only the constructor so far, so let’s
see what it does. Run the following:

Moodie_559-9C10.fm Page 229 Tuesday, September 27, 2005 10:09 AM

230 C H A P T E R 1 0 ■ W R I T I N G C U S T O M T A S K S

> ant -lib dist/antBook-tasks.jar lifecycle-target

Buildfile: build.xml

lifecycle-target:
 [echo] Demonstrating the life cycle of a task
[lifecycle-task] ---------------
[lifecycle-task] Constructor called
[lifecycle-task] Value of name attribute: null
[lifecycle-task] Value of the body text: null
[lifecycle-task] Project: null
[lifecycle-task] Location:
[lifecycle-task] Target: null
[lifecycle-task] ---------------

BUILD SUCCESSFUL

Notice how any output from the task is prefixed with its name as you specified it. Note also
the procession of null values that tells you this task is not attached to a project for the moment.

Place some text in the body of the task like so:

 <lifecycle-task>
 The body text.
 </lifecycle-task>

This will not make any difference to the task, because Ant has still not called the addText()
method.

[lifecycle-task] Value of the body text: null

Writing a Task’s init() Method

The init() method is the next stage in the life cycle of a task that you can influence. By the time
a task reaches this stage, it has been through three more steps: it has a reference to the project
that contains it and a reference to the location of its element in the build file, the project has a
reference to it if you specified an id attribute, and it has a reference to its containing target.

To demonstrate what this means, you will implement the init() method for the custom
task. It has the following signature:

public void init() throws BuildException

You have a number of new powers to use here, the most visible of which is the log() method.
This is the best way to provide information to the user, and it simply calls the project logger’s
log() method. However, two versions are implemented in the task’s parent class:

public void log(java.lang.String msg)
public void log(java.lang.String msg, int msgLevel)

Moodie_559-9C10.fm Page 230 Tuesday, September 27, 2005 10:09 AM

C H A P T E R 1 0 ■ W R I T I N G C U S T O M T A S K S 231

The project’s logger works with constants defined as part of the Project object, which
define at what stage the message is displayed:

• Project.MSG_DEBUG

• Project.MSG_VERBOSE

• Project.MSG_INFO

• Project.MSG_WARN

• Project.MSG_ERR

The first two say that the message should be displayed only if the user runs Ant with the
-d or -v command line, respectively. The other three are always displayed but define certain
levels of urgency, though you can suppress messages at the Project.MSG_INFO level by setting
the -q command-line option. The first version of log() logs the message at the level of
Project.MSG_INFO.

You will display information at the level of Project.MSG_VERBOSE because you can turn it on
by using the -v command-line option, while users will not see it during normal use of Ant.
Listing 10-5 shows the central logAll() method that all the life-cycle methods will use. You
couldn’t use a central logging method for the constructor because most of the objects you are
interested in weren’t instantiated at that stage.

Listing 10-5. The logAll() Method Displays This Task’s Status

 public void logAll(String method) {
 log("---------------", Project.MSG_VERBOSE);
 log(method + " called", Project.MSG_VERBOSE);
 log("Value of name attribute: " + name, Project.MSG_VERBOSE);
 log("Value of the body text: " + text, Project.MSG_VERBOSE);
 log("Project: " + getProject().getName(), Project.MSG_VERBOSE);

 // Here we build some information on the location
 // within the build file
 String locationString = getLocation().getFileName();
 locationString = locationString + " at line "
 + getLocation().getLineNumber();

 // Location.getColumnNumber() is for Ant 1.7+
 // Comment it out if you are using Ant 1.6.x
 //locationString = locationString + " and column "
 //+ getLocation().getColumnNumber();

 log("Location: " + locationString, Project.MSG_VERBOSE);

 // We could use the Location.toString() method
 //log("Location: " + getLocation(), Project.MSG_VERBOSE);

Moodie_559-9C10.fm Page 231 Tuesday, September 27, 2005 10:09 AM

232 C H A P T E R 1 0 ■ W R I T I N G C U S T O M T A S K S

 log("Target: " + getOwningTarget(), Project.MSG_VERBOSE);

 // referenceCheck() returns a string with information
 // on any references to custom tasks
 log(referenceCheck(), Project.MSG_VERBOSE);

 // If the configuration wrapper is null, we use its
 // run-time equivalent
 if (getWrapper() == null) {
 log("Reference id: "
 + getRuntimeConfigurableWrapper().getAttributeMap().get("id"),
 Project.MSG_VERBOSE);
 } else {
 // We use the protected getWrapper() method
 log("Reference id: " + getWrapper().getAttributeMap().get("id"),
 Project.MSG_VERBOSE);
 }

 log("---------------", Project.MSG_VERBOSE);
 }

You can now take advantage of the project object because this task gets a reference to it
before the init() method, so you can obtain its name (Project.getName()), its description
(Project.getDescription()), and its default target (Project.getDefaultTarget()), among other
things. In this case, you’ll display just its name to show the task has a reference to its project.

The task also knows its location within the build file, so you can get some information
about it using the Location object’s methods. This object also has a toString() method.

Listing 10-6 defines the referenceCheck() method, which searches through all the refer-
ences that have been set in this project and checks to see whether they are tasks. After the
referenceCheck() call, if you can’t get a reference to the task’s configuration wrapper (org.
apache.tools.ant.RuntimeConfigurable) with the inherited getWrapper() method, you call the
inherited getRuntimeConfigurableWrapper() method to obtain a RuntimeConfigurable object
that represents a temporary run-time configuration. A task’s RuntimeConfigurable object contains
all its attributes, among other things, and is the only way to access its id attribute because there
is no getId() method. Only one object may have a certain reference ID at any time, and you
can use this information to find a specific task within the project. If you specify two tasks with
the same id attribute, you’ll see something similar to the following in Ant’s output:

Overriding previous definition of reference to lifecycle-id

This means two tasks with a reference ID of lifecycle-id exist in the project, and Ant has
used the second one in preference to the first. Note that the first task will still run before Ant
overrides it, but it won’t be a reference once Ant runs the second task.

You use the RuntimeConfigurable.getAttributeMap().get() method to show that even
though the task has been added as a reference, it does not yet have any accessible attributes.

Moodie_559-9C10.fm Page 232 Tuesday, September 27, 2005 10:09 AM

C H A P T E R 1 0 ■ W R I T I N G C U S T O M T A S K S 233

The final piece of code obtains the id attribute of the custom task you have found using its
RuntimeConfigurable object. This object does have its attributes set, but Ant hasn’t called any
setter methods on the actual task.

Listing 10-6. The referenceCheck() Method Looks for Custom Task References

 private String referenceCheck() {

 // The default setting
 String setString = "Reference not found.";

 // We need the references that have been set in this project
 Hashtable refs = getProject().getReferences();
 Enumeration e = refs.elements();

 // Let's iterate over them
 while (e.hasMoreElements()) {
 // We want to work with each object, so we'll instantiate an object
 Object obj = e.nextElement();

 // Check to see whether this object is a task
 // If it is, we'll build a string that contains its name and type
 if (obj.getClass().getName().
 equals("org.apache.tools.ant.UnknownElement")
 ||
 obj.getClass().getName().equals(this.getClass().getName())) {

 Task aTask = (Task)obj;
 setString =
 "Reference to " + aTask.getTaskName() + " found, of type "
 + aTask.getClass().getName() + ".";
 setString = setString + "Its id is "
 + aTask.getRuntimeConfigurableWrapper().
 getAttributeMap().get("id") + ".";
 }
 }
 return setString;
 }

The Project.getReferences() method returns a HashTable of objects, each of which is an
object placed as an Ant reference in the project. If an object is a task, you set the return string
appropriately. A task is set as type org.apache.tools.ant.UnknownElement until the life cycle
reaches the execute() method stage. Therefore, you have to check for this type as well as the
actual class type of the task.

Listing 10-7 shows the init() method where you just call the output method.

Moodie_559-9C10.fm Page 233 Tuesday, September 27, 2005 10:09 AM

234 C H A P T E R 1 0 ■ W R I T I N G C U S T O M T A S K S

Listing 10-7. The Example Task’s init() Method

 public void init() {
 logAll("init()");

 }

Now, run the task as follows. Remember that the logging is set at the verbose level, but the
following output has omitted the output in which you’re not interested:

> ant -lib dist/antBook-tasks.jar -v lifecycle-target

Buildfile: build.xml

lifecycle-target:
 [echo] Demonstrating the life cycle of a task
[lifecycle-task] ---------------
[lifecycle-task] Constructor called
[lifecycle-task] Value of name attribute: null
[lifecycle-task] Value of the body text: null
[lifecycle-task] Project: null
[lifecycle-task] Location:
[lifecycle-task] Target: null
[lifecycle-task] ---------------
[lifecycle-task] ---------------
[lifecycle-task] init() called
[lifecycle-task] init() called
[lifecycle-task] Value of name attribute: null
[lifecycle-task] Value of the body text: null
[lifecycle-task] Project: Example Application Build
[lifecycle-task] Location: C:\AntBook\ch10\build.xml at line 1235 and column 38
[lifecycle-task] Target: lifecycle-target
[lifecycle-task] Reference not found.
[lifecycle-task] Reference id: null
[lifecycle-task] ---------------

BUILD SUCCESSFUL

You can see how you now have a value for the project’s name and a name for the parent
target. You also have information about the task’s location in the build file. However, you haven’t
found any custom tasks set as references, and the name attribute and body text are still not set.
To add a reference, change the task’s entry in the build file to add an id attribute, as follows:

 <lifecycle-task id="lifecycle-id"/>

Now run the same command:

> ant -lib dist/antBook-tasks.jar -v lifecycle-target

Moodie_559-9C10.fm Page 234 Tuesday, September 27, 2005 10:09 AM

d10c55b52b1f8994064c85cd755fb5a9

C H A P T E R 1 0 ■ W R I T I N G C U S T O M T A S K S 235

Buildfile: build.xml

lifecycle-target:
 [echo] Demonstrating the life cycle of a task
[lifecycle-task] ---------------
[lifecycle-task] Constructor called
[lifecycle-task] Value of name attribute: null
[lifecycle-task] Value of the body text: null
[lifecycle-task] Project: null
[lifecycle-task] Location:
[lifecycle-task] Target: null
[lifecycle-task] ---------------
[lifecycle-task] ---------------
[lifecycle-task] init() called
[lifecycle-task] Value of name attribute: null
[lifecycle-task] Value of the body text: null
[lifecycle-task] Project: Example Application Build
[lifecycle-task] Location: C:\AntBook\ch10\build.xml at line 1235 and column 55
[lifecycle-task] Target: lifecycle-target
[lifecycle-task] Reference to lifecycle-task found, of type org.apache.tools.ant
.UnknownElement. Its id is lifecycle-id.
[lifecycle-task] Reference id: null
[lifecycle-task] ---------------

BUILD SUCCESSFUL

Now you have a reference to a custom task in the project, though Ant has not set it to the
correct type just yet. The reference object has an id attribute, but you can’t get at it from the
task itself still because no setXXX() methods have been called.

The next step in the life cycle is for Ant to call any createXXX() or addXXX() methods for
nested elements. You don’t have any of these in this example (though you will in the next section),
so let’s move on to the setXXX() methods.

Writing a setXXX() Method

The next step in the life cycle is when Ant calls a setXXX() method for each attribute set in the
task’s element, where XXX stands for the name of the attribute. This means that if you have ten
setXXX() methods but set only one attribute, Ant will call only the one setXXX() element for the
attribute you have set. In common with most Java mutator methods (for that is what these
methods are), they must be public void and must take a single parameter. Ant can do some nifty
conversions to change the value of the custom task’s attributes into the type of this parameter, but
you’ll come to this later. For now you’ll deal with strings.

As there are no steps in the life cycle between the init() method and this step, the objects
in the project will not have changed. However, you now have access to the attribute values.
Listing 10-8 shows the setName() method for the custom task.

Moodie_559-9C10.fm Page 235 Tuesday, September 27, 2005 10:09 AM

236 C H A P T E R 1 0 ■ W R I T I N G C U S T O M T A S K S

Listing 10-8. The setName() Method Sets the name Attribute

 public void setName(String name) {
 // The value of the name attribute
 this.name = name;
 logAll("setName()");
 }

Here you set the name property of this custom task so you can use it elsewhere (that is, in
the execute() method). You also need to add a name attribute to the custom task:

 <lifecycle-task name="Matthew" id="lifecycle-id"/>

Now run Ant:

> ant -lib dist/antBook-tasks.jar -v lifecycle-target

Buildfile: build.xml

lifecycle-target:
 [echo] Demonstrating the life cycle of a task
[lifecycle-task] ---------------
[lifecycle-task] Constructor called
[lifecycle-task] Value of name attribute: null
[lifecycle-task] Value of the body text: null
[lifecycle-task] Project: null
[lifecycle-task] Location:
[lifecycle-task] Target: null
[lifecycle-task] ---------------
[lifecycle-task] ---------------
[lifecycle-task] init() called
[lifecycle-task] Value of name attribute: null
[lifecycle-task] Value of the body text: null
[lifecycle-task] Project: Example Application Build
[lifecycle-task] Location: C:\AntBook\ch10\build.xml at line 1235 and column 55
[lifecycle-task] Target: lifecycle-target
[lifecycle-task] Reference to lifecycle-task found, of type org.apache.tools.ant
.UnknownElement. Its id is lifecycle-id.
[lifecycle-task] Reference id: null
[lifecycle-task] ---------------
[lifecycle-task] ---------------
[lifecycle-task] setName() called
[lifecycle-task] Value of name attribute: Matthew
[lifecycle-task] Value of the body text: null
[lifecycle-task] Project: Example Application Build
[lifecycle-task] Location: C:\AntBook\ch10\build.xml:1235:
[lifecycle-task] Target: lifecycle-target
[lifecycle-task] Reference to lifecycle-task found, of type org.apache.tools.ant
.UnknownElement. Its id is lifecycle-id.

Moodie_559-9C10.fm Page 236 Tuesday, September 27, 2005 10:09 AM

C H A P T E R 1 0 ■ W R I T I N G C U S T O M T A S K S 237

[lifecycle-task] Reference id: lifecycle-id
[lifecycle-task] ---------------

BUILD SUCCESSFUL

The only two things that are still not defined are the body text and the class type of the
reference. Ant has called all the setXXX() methods and has set the value of the id attribute as well.

CONVERTING PARAMETER TYPES

Ant does not pass the value of a task’s attribute directly to the appropriate setXXX() method. If it did, it
couldn’t expand any properties, and you’d have to do lots of getProject().getProperty("src.web")
calls or similar. As it is, Ant will expand any properties before passing on the value. This is not the only trick it
can pull, however, because it can convert the string value of the task’s attribute into a number of different
objects as the context demands.

This means you can write setXXX() methods with arguments other than strings and let Ant do all the
conversion work for you. Here’s the list of conversions that Ant does:

• If you have a boolean or Boolean argument, Ant will set it to true if the user specified “true,” “yes,”
or “on” in the task’s attribute. It will pass false if the user specified anything else (“false,” “no,” “off,”
“hello,” and so on).

• If you have a char or Character argument, Ant passes only the first letter of the attribute’s value.

• If you have an argument that is any other primitive type (or a wrapper for a primitive type), Ant attempts
to convert the string into that type or wrapper. If it fails, it will throw a NumberFormatException, and
the task won’t run. If it succeeds, your method can be confident it has a number of the appropriate types
with which to work.

• If you have an argument of type File, Ant will try to instantiate a File object with the attribute string
as its file path. Ant can handle absolute and relative file paths. You’ll see an example of this when you
extend the <javadoc> task in the “Extending the <javadoc> Task” section.

• If you have an argument of type org.apache.tools.ant.types.Path, Ant will interpret the task’s
attribute as a string of tokens divided by : and ; separators. If the user specifies any relative paths, Ant
uses the project’s base directory as the reference point.

• If you have an argument that is a subclass of org.apache.tools.ant.types.
EnumeratedAttribute, Ant calls its setValue() method with the value of the task’s attribute. I
won’t cover this type in this chapter.

• If you have an argument of type java.lang.Class, Ant will take the task’s argument to be a fully
qualified classname and load a class of this type, as long as it can be found in the Ant classpath. The
newly loaded class is then available in the task.

• If you have an argument of a type that has a constructor with a single argument of type String, such
as java.lang.Locale, Ant will call that constructor with the value of the task’s attribute and pass the
new object to the setXXX() method.

Moodie_559-9C10.fm Page 237 Tuesday, September 27, 2005 10:09 AM

238 C H A P T E R 1 0 ■ W R I T I N G C U S T O M T A S K S

Ant will always favor one of these more specialized methods over the plain string method, but you have
no guarantee which specialized method it will call if you define more than one. Therefore, you should not rely
too much on overloaded setXXX() methods.

Here’s an example of the java.lang.Class flavor:

package org.mwrm.ant.tasks;

import org.apache.tools.ant.Project;
import org.apache.tools.ant.Task;
import org.apache.tools.ant.BuildException;

public class ClassSetTask extends Task {

 Class qualifiedName;

 public void execute() throws BuildException {
 log("qualifiedName: " + qualifiedName, Project.MSG_INFO);
 }

 public void setQualifiedName(Class qualifiedName) {
 if (qualifiedName.getName().equals("java.lang.Integer")
 ||
 qualifiedName.getName().equals("java.lang.String")) {
 log(qualifiedName.getName()+ " found.", Project.MSG_INFO);
 } else {

 String msg = "You can only specify java.lang.Integer "
 + "or java.lang.String in qualifiedName.";
 throw new BuildException(msg);
 }
 this.qualifiedName = qualifiedName;
 }
}

You can use it in the build file as follows:

 <target name="class-set-test">
 <taskdef name="class-set-test"
 classname="org.mwrm.ant.tasks.ClassSetTask" />
 <class-set-test qualifiedName="java.lang.Integer"/>
 </target>

Now invoke it:

> ant -lib dist/antBook-tasks.jar class-set-test

Moodie_559-9C10.fm Page 238 Tuesday, September 27, 2005 10:09 AM

C H A P T E R 1 0 ■ W R I T I N G C U S T O M T A S K S 239

Writing an addText() Method

If you have defined an addText() method, Ant will call it after any setXXX() methods. It has the
same signature as a standard mutator method with a single string parameter, though it is not
defined as part of the parent Task’s definition. This means the method has no default imple-
mentation, and therefore body text will not be added unless you implement this method.

■Note You should be aware that indented elements and body text will contain a long string of whitespace
and so won’t be null. This means any usage checks that depend on the body text being null to succeed
need to be rewritten; trimming the text doesn’t help either because trimmed whitespace is still an empty
string, which does not equal null. For example, a condition where you can’t specify body text and nested
elements together can’t rely on the != null check to look for body text when you’ve indented nested
elements and introduced whitespace as body text. The solution is to use the trim() method to trim all body
text in the addText() method and set all subsequent empty strings to null. You can then do a null check.

Listing 10-9 shows the implementation. Ant will pass the body text to the addText() method as
its string parameter. Once you have this data, you can do what you want with it.

Listing 10-9. Implementing the addText() Method

 public void addText(String text) {
 // If the body text is just whitespace, it might as well be null
 if (text.trim().equals("")) {
 this.text = null;
 } else {
 this.text = text.trim();
 }
 logAll("addText()");
 }

This acts just like a setXXX() method, so you proceed as you did in Listing 10-8. To display
the text to the user, you trim the whitespace using String.trim().

Add some body text:

 <lifecycle-task name="Matthew" id="lifecycle-id">
 The body text.
 </lifecycle-task>

If you run the target as before, you can see the new body text and the execution of the
addText() method:

> ant -lib dist/antBook-tasks.jar -v lifecycle-target

Moodie_559-9C10.fm Page 239 Tuesday, September 27, 2005 10:09 AM

240 C H A P T E R 1 0 ■ W R I T I N G C U S T O M T A S K S

Buildfile: build.xml

lifecycle-target:
 [echo] Demonstrating the life cycle of a task
[lifecycle-task] ---------------
[lifecycle-task] Constructor called
[lifecycle-task] Value of name attribute: null
[lifecycle-task] Value of the body text: null
[lifecycle-task] Project: null
[lifecycle-task] Location:
[lifecycle-task] Target: null
[lifecycle-task] ---------------
[lifecycle-task] ---------------
[lifecycle-task] init() called
[lifecycle-task] Value of name attribute: null
[lifecycle-task] Value of the body text: null
[lifecycle-task] Project: Example Application Build
[lifecycle-task] Location: C:\AntBook\ch10\build.xml at line 1235 and column 54
[lifecycle-task] Target: lifecycle-target
[lifecycle-task] Reference to lifecycle-task found, of type org.apache.tools.ant
.UnknownElement. Its id is lifecycle-id.
[lifecycle-task] Reference id: null
[lifecycle-task] ---------------
[lifecycle-task] ---------------
[lifecycle-task] setName() called
[lifecycle-task] Value of name attribute: Matthew
[lifecycle-task] Value of the body text: null
[lifecycle-task] Project: Example Application Build
[lifecycle-task] Location: C:\AntBook\ch10\build.xml:1235:
[lifecycle-task] Target: lifecycle-target
[lifecycle-task] Reference to lifecycle-task found, of type org.apache.tools.ant
.UnknownElement. Its id is lifecycle-id.
[lifecycle-task] Reference id: lifecycle-id
[lifecycle-task] ---------------
[lifecycle-task] ---------------
[lifecycle-task] addText() called
[lifecycle-task] Value of name attribute: Matthew
[lifecycle-task] Value of the body text: The body text.
[lifecycle-task] Project: Example Application Build
[lifecycle-task] Location: C:\AntBook\ch10\build.xml:1235:
[lifecycle-task] Target: lifecycle-target
[lifecycle-task] Reference to lifecycle-task found, of type org.apache.tools.ant
.UnknownElement. Its id is lifecycle-id.
[lifecycle-task] Reference id: lifecycle-id
[lifecycle-task] ---------------

BUILD SUCCESSFUL

Moodie_559-9C10.fm Page 240 Tuesday, September 27, 2005 10:09 AM

C H A P T E R 1 0 ■ W R I T I N G C U S T O M T A S K S 241

The only change here is that you have access to the body text. The reference is still an
UnknownElement. The next two steps of the life cycle involve nested elements, so you’ll come to
them when you nest an element in the “Working with Nested Elements in Tasks” section.

Writing an execute() Element

The final step of the task’s life cycle is the execute() method. It has the following signature:

public void execute() throws BuildException

By this stage in the life cycle, you have all the information you could possibly need and can
now write the functionality of the task. One important point to consider in the execute() task
is usage checking. You cannot rely on DTDs (as you saw in Chapter 3), so you must check the
structure of the task yourself, and the execute() method is the best place to do so, simply because
it is the end of the life cycle and you have a fully formed task. However, you should do usage
checking at the most suitable time, which means you don’t always have to do it in the execute()
method.

You should also remember to write the functionality, because there’s no other place to do
so. Listing 10-10 shows the implementation of execute().

Listing 10-10. The execute() Method Implements the Functionality of the Task

 public void execute() throws BuildException {
 // Check that the user set a name attribute
 if (name == null) {
 throw new BuildException("You must specify a name attribute in "
 + getTaskName() + ".");
 }
 logAll("execute()");
 // Write the name to output
 log(name, Project.MSG_INFO);
 }

The usage check makes sure the user has used a name attribute and throws a BuildException
should it be missing. This is the preferred way to signal to Ant that there was a problem of some
kind. The task’s functionality is implemented by the final log() method call. Here’s the final run:

> ant -lib dist/antBook-tasks.jar -v lifecycle-target

Buildfile: build.xml

lifecycle-target:
...
[lifecycle-task] ---------------
[lifecycle-task] execute() called
[lifecycle-task] Value of name attribute: Matthew
[lifecycle-task] Value of the body text: The body text.
[lifecycle-task] Project: Example Application Build
[lifecycle-task] Location: C:\AntBook\ch10\build.xml:1235:

Moodie_559-9C10.fm Page 241 Tuesday, September 27, 2005 10:09 AM

d10c55b52b1f8994064c85cd755fb5a9

242 C H A P T E R 1 0 ■ W R I T I N G C U S T O M T A S K S

[lifecycle-task] Target: lifecycle-target
[lifecycle-task] Reference to lifecycle-task found, of type org.mwrm.ant.tasks
.LifeCycleTask. Its id is lifecycle-id.
[lifecycle-task] Reference id: lifecycle-id
[lifecycle-task] ---------------
[lifecycle-task] Matthew

BUILD SUCCESSFUL

The final items are filled in, and the task has performed its duty and shown the value of the
name attribute. Let’s run it without the -v option to see the results without the instructional
information:

> ant -lib dist/antBook-tasks.jar lifecycle-target

Buildfile: build.xml

lifecycle-target:
 [echo] Demonstrating the life cycle of a task
[lifecycle-task] ---------------
[lifecycle-task] Constructor called
[lifecycle-task] Value of name attribute: null
[lifecycle-task] Value of the body text: null
[lifecycle-task] Project: null
[lifecycle-task] Location:
[lifecycle-task] Target: null
[lifecycle-task] ---------------
[lifecycle-task] Matthew

BUILD SUCCESSFUL

This shows the problem with placing System.out.println() calls in the constructor, and
as you don’t need them anymore, you should remove them and run the command again:

> ant -lib dist/antBook-tasks.jar lifecycle-target

Buildfile: build.xml

lifecycle-target:
 [echo] Demonstrating the life cycle of a task
[lifecycle-task] Matthew

BUILD SUCCESSFUL

It works as described, so let’s introduce an error into the way you use the task by omitting
the name attribute:

Moodie_559-9C10.fm Page 242 Tuesday, September 27, 2005 10:09 AM

C H A P T E R 1 0 ■ W R I T I N G C U S T O M T A S K S 243

 <lifecycle-task id="lifecycle-id">
 The body text.
 </lifecycle-task>

Run the command to see the error message:

> ant -lib dist/antBook-tasks.jar lifecycle-target

Buildfile: build.xml

lifecycle-target:
 [echo] Demonstrating the life cycle of a task

BUILD FAILED
C:\AntBook\ch10\build.xml:1235: You must specify a name attribute in lifecycle-
task.

Working with Nested Elements in Tasks
Nested elements in tasks are slightly more complicated than attributes, though once you see
how easy they are you’ll be able to work with nested elements as a matter of course. You have
three ways to implement a nested element and make its information available to your task.
They are the addXXX(), addConfiguredXXX(), and createXXX() methods, and I’ll discuss each as
you go through this chapter.

The nested element is called <name>, and it has an optional attribute also called name. If you
do not specify a name attribute, you must place text in the body of the nested tag, which will be
added as if it were the value of a name attribute. You must specify either a name attribute or body
text. In addition, you can’t specify a name attribute in the parent task’s element if you set nested
tags, and you can’t specify both. This usage information will become clearer as you work
through the code.

Here’s the example used throughout this section:

 <lifecycle-nested-task id="lifecycle-id">
 <name name="Matthew"/>
 <name name="Laura"/>
 <name>Jones</name>
 </lifecycle-nested-task>

Here’s an example of an illegal setting:

 <lifecycle-nested-task name="IllegalName" id="lifecycle-id">
 <name name="Matthew"/>
 <name name="Laura"/>
 <name>Jones</name>
 </lifecycle-nested-task>

You set a name attribute as part of the parent task as well as nested <name> elements. Here’s
another illegal setting:

Moodie_559-9C10.fm Page 243 Tuesday, September 27, 2005 10:09 AM

244 C H A P T E R 1 0 ■ W R I T I N G C U S T O M T A S K S

 <lifecycle-nested-task id="lifecycle-id">
 <name name="Matthew"/>
 <name name="Laura"/>
 <name name="Miss">Jones</name>
 </lifecycle-nested-task>

The third <name> element has a name attribute and body text, which you have decided is illegal.
These restrictions mean you have to modify the logAll() method slightly. If you use a name

attribute, you want to display its value. On the other hand, if you use nested <name> elements,
you don’t want to display the name attribute’s value (which will be null anyway). This means
you have to wrap the offending line in an if check:

 // If name is set, you have only one value to print
 if (name != null) {
 log("Value of name attribute: " + this.name, Project.MSG_VERBOSE);
 }

Each of the three methods for working with nested elements (addXXX(), addConfiguredXXX(),
and createXXX()) works with a class that represents the nested elements, just as the task class
represents the task’s element. In the case of the addXXX() and addConfiguredXXX() methods,
this class must have a constructor like one of the following signatures:

public NestedElement() {}
public NestedElement(Project project) {}

This class can be one you have written (as you’ll do in this example) or any other class that
has a constructor that fits one of the signatures (such as a file set, which you’ll work with in the
“Extending the <javadoc> Task” section). A createXXX() method does not have these restrictions.
For now, let’s write the class that represents the nested element by placing its definition in the
custom task.

Listing 10-11 has the details of the new task.

Listing 10-11. The Skeleton of the New Custom Class and Its Nested Element

package org.mwrm.ant.tasks;

import java.util.Hashtable;
import java.util.Enumeration;
import java.util.Vector;

import org.apache.tools.ant.Project;
import org.apache.tools.ant.Task;
import org.apache.tools.ant.BuildException;

public class LifeCycleNestedTask extends Task {

 // The name attribute of this task
 private String name;

Moodie_559-9C10.fm Page 244 Tuesday, September 27, 2005 10:09 AM

C H A P T E R 1 0 ■ W R I T I N G C U S T O M T A S K S 245

 // The body text of this task
 private String text;

 // The collection of name elements
 private Vector nameElements = new Vector();

 public LifeCycleNestedTask() {...}

 public void init() {...}

 public void setName(String name) {...}

 public void addText(String text) {...}

 public void execute() throws BuildException {...}

 private String referenceCheck() {...}

 // The name element
 public static class NameElement {

 // The name attribute of this element
 String name;

 public NameElement() {
 // Empty
 }

 // The mutator method for the name attribute
 public void setName(String name) {
 this.name = name;
 }

 // The accessor method for the name attribute
 public String getName() {
 return name;
 }

 // A method for dealing with body text
 public void addText(String text) {
 // Usage check
 if (name != null) {
 String msg = "You can't specify a name attribute "
 + "and nested text in <name> elements.";
 throw new BuildException(msg);

Moodie_559-9C10.fm Page 245 Tuesday, September 27, 2005 10:09 AM

246 C H A P T E R 1 0 ■ W R I T I N G C U S T O M T A S K S

 } else {
 this.name = text.trim();
 }
 }
 }
}

This nested element follows the same rules as a task element in that it has a constructor
that will be called first and then a setXXX() method that will be called before an addText()
method. Referring to the task’s life cycle, you will see that this process happens after Ant has
called the parent task’s addText() method and before it calls the parent task’s execute() method.

You want to obtain information about the name to display, whether it is set in an attribute
or in the body text. As such, you set the name property of the nested element to whichever value
is provided. This is also the easiest place to check for this violation of the nested tag’s usage
because it concerns the nested tag only and doesn’t rely on a taskwide condition. You’ll check
for taskwide violations as usual in the execute() method.

■Note If this element were to have nested elements, you’d simply add the appropriate addXXX(),
addConfiguredXXX(), or createXXX() method to its class definition and proceed as if this element were
the outer element of the whole task. A containing element always follows the same format, no matter how
deep it is in the structure itself. This simplicity of design makes it easy to nest as many elements as you want
without tying yourself in knots.

You’ve got the class that implements the nested tag, so now you have to give the task some
way of accessing its data. You’ll start with the addName() method.

Writing an addXXX() Method
The first example will be the addName() method for the <name> nested element. When using
addXXX() methods, Ant will create an instance of a nested element’s class and pass it to the
appropriate addXXX() method. Here’s a general signature for an addXXX() method:

public void addXXX(XXXElement element)

In this case, the addName() method will be defined as follows:

public void addName(NameElement nameElement)

As you have already seen, if you are using an addXXX() method, the nested element’s class
must have a public, no-argument constructor or a public constructor that takes a Project class
as a parameter. When Ant passes the instantiated class to the addXXX() method, it is not initial-
ized, which means that none of its properties is set. This means that to use the values set by the
user, you must make this instance available to the execute() method, where it will have its
properties set. The usual way is to add it to a taskwide Vector of similar nested elements. In this
task, you have set a Vector called nameElements to contain all the name elements.

Listing 10-12 shows the addName() method for the task.

Moodie_559-9C10.fm Page 246 Tuesday, September 27, 2005 10:09 AM

C H A P T E R 1 0 ■ W R I T I N G C U S T O M T A S K S 247

Listing 10-12. The addName() Element Adds <name> Elements to the Task

 public void addName(NameElement nameElement) {
 nameElements.add(nameElement);

 logAll("addName()"); log("Value of this name: "
 + nameElement.getName(), Project.MSG_VERBOSE);
 }

Here’s an example run:

> ant -lib dist/antBook-tasks.jar -v lifecycle-nested-target

Buildfile: build.xml

lifecycle-nested-target:
 [echo] Demonstrating the life cycle of a task
[lifecycle-nested-task] ---------------
[lifecycle-nested-task] Constructor called
...
[lifecycle-nested-task] ---------------
[lifecycle-nested-task] ---------------
[lifecycle-nested-task] init() called
...
[lifecycle-nested-task] ---------------
[lifecycle-nested-task] ---------------
[lifecycle-nested-task] addName() called

[lifecycle-nested-task] Value of the body text: null
[lifecycle-nested-task] Project: Example Application Build
[lifecycle-nested-task] Location: C:\AntBook\ch10\build.xml:1244:
[lifecycle-nested-task] Target: lifecycle-nested-target
[lifecycle-nested-task] Reference to lifecycle-nested-task found, of type org
.apache.tools.ant.UnknownElement. Its id is lifecycle-id.
[lifecycle-nested-task] Reference id: lifecycle-id
[lifecycle-nested-task] ---------------
[lifecycle-nested-task] Value of this name: null
[lifecycle-nested-task] ---------------
[lifecycle-nested-task] addName() called

[lifecycle-nested-task] Value of the body text: null
[lifecycle-nested-task] Project: Example Application Build
[lifecycle-nested-task] Location: C:\AntBook\ch10\build.xml:1244:
[lifecycle-nested-task] Target: lifecycle-nested-target
[lifecycle-nested-task] Reference to lifecycle-nested-task found, of type org
.apache.tools.ant.UnknownElement. Its id is lifecycle-id.
[lifecycle-nested-task] Reference id: lifecycle-id
[lifecycle-nested-task] ---------------

Moodie_559-9C10.fm Page 247 Tuesday, September 27, 2005 10:09 AM

248 C H A P T E R 1 0 ■ W R I T I N G C U S T O M T A S K S

[lifecycle-nested-task] Value of this name: null
[lifecycle-nested-task] ---------------
[lifecycle-nested-task] addName() called

[lifecycle-nested-task] Value of the body text: null
[lifecycle-nested-task] Project: Example Application Build
[lifecycle-nested-task] Location: C:\AntBook\ch10\build.xml:1244:
[lifecycle-nested-task] Target: lifecycle-nested-target
[lifecycle-nested-task] Reference to lifecycle-nested-task found, of type org
.apache.tools.ant.UnknownElement. Its id is lifecycle-id.
[lifecycle-nested-task] Reference id: lifecycle-id
[lifecycle-nested-task] ---------------
[lifecycle-nested-task] Value of this name: null
[lifecycle-nested-task] ---------------
[lifecycle-nested-task] addText() called
...
[lifecycle-nested-task] ---------------
[lifecycle-nested-task] ---------------
[lifecycle-nested-task] execute() called
...
[lifecycle-nested-task] ---------------

BUILD SUCCESSFUL

Ant calls the addName() method three times—once for each <name> element in the example.
In each case, you can’t access the name value of the nested element, and it appears as null. To
do so, you have to write a new execute() method, which will also include some usage tests.
Listing 10-13 has the details.

Listing 10-13. The execute() Method Checks Usage and Displays the Results

 public void execute() throws BuildException {
 if (name != null && nameElements.size() > 0) {
 String msg = "You can't specify a name attribute "
 + "and <name> elements.";
 throw new BuildException(msg);
 }
 if (name == null && nameElements.size() == 0) {
 String msg = "You must specify either a name attribute "
 + "or at least one <name> element.";
 throw new BuildException(msg);
 }
 if (nameElements.size() > 0 && text != null) {
 String msg = "You can't specify <name> elements "
 + "and body text.";
 throw new BuildException(msg);
 }

Moodie_559-9C10.fm Page 248 Tuesday, September 27, 2005 10:09 AM

d10c55b52b1f8994064c85cd755fb5a9

C H A P T E R 1 0 ■ W R I T I N G C U S T O M T A S K S 249

 logAll("execute()");
 // If name is not set, you want to check nested elements
 if (name == null) {
 // Get the name elements
 Enumeration e = nameElements.elements();

 // And then iterate over them
 while (e.hasMoreElements()) {
 NameElement nameElement = (NameElement)e.nextElement();

 // Usage check
 if (nameElement.getName() == null) {
 String msg = "You must specify a name attribute "
 + "or body text for a nested <name> element.";
 throw new BuildException(msg);
 }
 log("Value of name element: " + nameElement.getName(),
 Project.MSG_VERBOSE);
 }
 }

 log("---------------", Project.MSG_VERBOSE);
 }

The execute() method enforces the remaining usage information but defers checking that
each <name> element has a name attribute until you iterate over the collection of <name> elements.
(The name attribute here also means body text, if you recall the NameElement.addText() method.)
This execute() method will be the same for the next two examples as well, because they both
use NameElement classes.

Here’s the result of this execute() method:

Buildfile: build.xml

lifecycle-nested-target:
 [echo] Demonstrating the life cycle of a task
...
[lifecycle-nested-task] ---------------
[lifecycle-nested-task] execute() called

[lifecycle-nested-task] Value of the body text: null
[lifecycle-nested-task] Project: Example Application Build
[lifecycle-nested-task] Location: C:\AntBook\ch10\build.xml:1244:
[lifecycle-nested-task] Target: lifecycle-nested-target
[lifecycle-nested-task] Reference to lifecycle-nested-task found, of type org
.mwrm.ant.tasks.LifeCycleNestedTask. Its id is lifecycle-id.
[lifecycle-nested-task] Reference id: lifecycle-id
[lifecycle-nested-task] ---------------

Moodie_559-9C10.fm Page 249 Tuesday, September 27, 2005 10:09 AM

250 C H A P T E R 1 0 ■ W R I T I N G C U S T O M T A S K S

[lifecycle-nested-task] Value of name element: Matthew
[lifecycle-nested-task] Value of name element: Laura
[lifecycle-nested-task] Value of name element: Jones
[lifecycle-nested-task] ---------------

BUILD SUCCESSFUL

Writing an addConfiguredXXX() Method
The only difference between addXXX() methods and addConfiguredXXX() methods is that Ant
sets all the properties of the nested element’s class before it passes it to the addConfiguredXXX()
method. This means you can gain access to the information set in the build file. Listing 10-14
shows the addConfiguredName() method. You should comment out the addName() method
before you compile this version of the task because Ant can’t guarantee which method it will
call (it depends on your JVM).

Listing 10-14. addConfiguredName() Gives You Access to the Nested Element’s Properties

 public void addConfiguredName(NameElement nameElement) {
 nameElements.add(nameElement);

 logAll("addConfiguredName()");
 log("Value of this name: " + nameElement.getName(), Project.MSG_VERBOSE);

 }

To compare the addName() method with the addConfiguredName() method, run the code
again:

> ant -lib dist/antBook-tasks.jar -v lifecycle-nested-target

Buildfile: build.xml

[lifecycle-nested-task] ---------------
[lifecycle-nested-task] addConfiguredName() called

[lifecycle-nested-task] Value of the body text: null
[lifecycle-nested-task] Project: Example Application Build
[lifecycle-nested-task] Location: C:\AntBook\ch10\build.xml:1244:
[lifecycle-nested-task] Target: lifecycle-nested-target
[lifecycle-nested-task] Reference to lifecycle-nested-task found, of type org
.apache.tools.ant.UnknownElement. Its id is lifecycle-id.
[lifecycle-nested-task] Reference id: lifecycle-id
[lifecycle-nested-task] ---------------
[lifecycle-nested-task] Value of this name: Matthew

Moodie_559-9C10.fm Page 250 Tuesday, September 27, 2005 10:09 AM

C H A P T E R 1 0 ■ W R I T I N G C U S T O M T A S K S 251

[lifecycle-nested-task] ---------------
[lifecycle-nested-task] addConfiguredName() called

[lifecycle-nested-task] Value of the body text: null
[lifecycle-nested-task] Project: Example Application Build
[lifecycle-nested-task] Location: C:\AntBook\ch10\build.xml:1244:
[lifecycle-nested-task] Target: lifecycle-nested-target
[lifecycle-nested-task] Reference to lifecycle-nested-task found, of type org
.apache.tools.ant.UnknownElement. Its id is lifecycle-id.
[lifecycle-nested-task] Reference id: lifecycle-id
[lifecycle-nested-task] ---------------
[lifecycle-nested-task] Value of this name: Laura
[lifecycle-nested-task] ---------------
[lifecycle-nested-task] addConfiguredName() called

[lifecycle-nested-task] Value of the body text: null
[lifecycle-nested-task] Project: Example Application Build
[lifecycle-nested-task] Location: C:\AntBook\ch10\build.xml:1244:
[lifecycle-nested-task] Target: lifecycle-nested-target
[lifecycle-nested-task] Reference to lifecycle-nested-task found, of type org
.apache.tools.ant.UnknownElement. Its id is lifecycle-id.
[lifecycle-nested-task] Reference id: lifecycle-id
[lifecycle-nested-task] ---------------
[lifecycle-nested-task] Value of this name: Jones
[lifecycle-nested-task] ---------------
[lifecycle-nested-task] execute() called

[lifecycle-nested-task] Value of the body text: null
[lifecycle-nested-task] Project: Example Application Build
[lifecycle-nested-task] Location: C:\AntBook\ch10\build.xml:1244:
[lifecycle-nested-task] Target: lifecycle-nested-target
[lifecycle-nested-task] Reference to lifecycle-nested-task found, of type org
.mwrm.ant.tasks.LifeCycleNestedTask. Its id is lifecycle-id.
[lifecycle-nested-task] Reference id: lifecycle-id
[lifecycle-nested-task] ---------------
[lifecycle-nested-task] Value of name element: Matthew
[lifecycle-nested-task] Value of name element: Laura
[lifecycle-nested-task] Value of name element: Jones
[lifecycle-nested-task] ---------------

BUILD SUCCESSFUL

This time you can display the values of the nested <name> elements before you reach the
execute() method.

Moodie_559-9C10.fm Page 251 Tuesday, September 27, 2005 10:09 AM

252 C H A P T E R 1 0 ■ W R I T I N G C U S T O M T A S K S

Writing a createXXX() Method
A createXXX() method differs from addXXX() and addConfiguredXXX() methods in that it can
work with any kind of object as a nested element. You need to define a createXXX() method
with a signature like the following:

public XXXElement createXXX()

The nested element is the NameElement class, which has an empty, no-argument instructor
so it’s not a special case. However, you’ll add a new constructor and some extra logic, as shown
in Listing 10-15.

Listing 10-15. The NameElement Class Now Has an Overloaded Constructor

 // The name element
 public static class NameElement {

 // The name attribute of this element
 String name;

 // Tells the class whether we've used the overridden constructor
 private boolean usedConstructor = false;

 public NameElement() {
 // Empty
 }

 // Used by the createName() method
 public NameElement(String text) {
 this.name = text;
 usedConstructor = true;
 }

 // The mutator method for the name attribute
 public void setName(String name) {
 this.name = name;
 }

 // The accessor method for the name attribute
 public String getName() {
 return name;
 }

 // A method for dealing with body text
 public void addText(String text) {
 // Usage check
 if (name != null && !usedConstructor) {
 throw new BuildException("You can't specify a name attribute
 and nested text in <name> elements.");

Moodie_559-9C10.fm Page 252 Tuesday, September 27, 2005 10:09 AM

C H A P T E R 1 0 ■ W R I T I N G C U S T O M T A S K S 253

 } else {
 this.name = text.trim();
 }
 }
 }

You now have a constructor that takes a string as an argument and a usage check that takes
this into account.

The most important thing to remember when using a createXXX() method is that you
create the instance of the nested element’s class and pass to it Ant with a return statement from
the createXXX() method. Once you have returned it, Ant will configure it and set its properties,
overriding any properties you have set if a user has set values for them in the build file.
Listing 10-16 shows the createName() method.

Listing 10-16. You Have to Do the Work in the createName() Method

 public NameElement createName() {
 NameElement nameElement = new NameElement("Madeleine");

 nameElements.add(nameElement);

 logAll("createName()");
 log("Value of this name: " + nameElement.getName(), Project.MSG_VERBOSE);
 return nameElement;
 }

Before you compile and run this task, remember to comment out addConfiguredName().
If you run the following, you will see that the task sets the value of each nested element’s

name attribute in turn. After that, Ant overrides each one and uses the values from the build file:

> ant -lib dist/antBook-tasks.jar -v lifecycle-nested-target

Buildfile: build.xml

lifecycle-nested-target:
 [echo] Demonstrating the life cycle of a task
...
[lifecycle-nested-task] ---------------
[lifecycle-nested-task] createName() called

[lifecycle-nested-task] Value of the body text: null
[lifecycle-nested-task] Project: Example Application Build
[lifecycle-nested-task] Location: C:\AntBook\ch10\build.xml:1244:
[lifecycle-nested-task] Target: lifecycle-nested-target
[lifecycle-nested-task] Reference to lifecycle-nested-task found, of type org
.apache.tools.ant.UnknownElement. Its id is lifecycle-id.
[lifecycle-nested-task] Reference id: lifecycle-id
[lifecycle-nested-task] ---------------

Moodie_559-9C10.fm Page 253 Tuesday, September 27, 2005 10:09 AM

254 C H A P T E R 1 0 ■ W R I T I N G C U S T O M T A S K S

[lifecycle-nested-task] Value of this name: Madeleine
[lifecycle-nested-task] ---------------
[lifecycle-nested-task] createName() called

[lifecycle-nested-task] Value of the body text: null
[lifecycle-nested-task] Project: Example Application Build
[lifecycle-nested-task] Location: C:\AntBook\ch10\build.xml:1244:
[lifecycle-nested-task] Target: lifecycle-nested-target
[lifecycle-nested-task] Reference to lifecycle-nested-task found, of type org
.apache.tools.ant.UnknownElement. Its id is lifecycle-id.
[lifecycle-nested-task] Reference id: lifecycle-id
[lifecycle-nested-task] ---------------
[lifecycle-nested-task] Value of this name: Madeleine
[lifecycle-nested-task] ---------------
[lifecycle-nested-task] createName() called

[lifecycle-nested-task] Value of the body text: null
[lifecycle-nested-task] Project: Example Application Build
[lifecycle-nested-task] Location: C:\AntBook\ch10\build.xml:1244:
[lifecycle-nested-task] Target: lifecycle-nested-target
[lifecycle-nested-task] Reference to lifecycle-nested-task found, of type org
.apache.tools.ant.UnknownElement. Its id is lifecycle-id.
[lifecycle-nested-task] Reference id: lifecycle-id
[lifecycle-nested-task] ---------------
[lifecycle-nested-task] Value of this name: Madeleine
[lifecycle-nested-task] ---------------
[lifecycle-nested-task] addText() called
...
[lifecycle-nested-task] ---------------
[lifecycle-nested-task] ---------------
[lifecycle-nested-task] execute() called

[lifecycle-nested-task] Value of the body text: null
[lifecycle-nested-task] Project: Example Application Build
[lifecycle-nested-task] Location: C:\JavaStuff\AntBook\ch10\build.xml:1244:
[lifecycle-nested-task] Target: lifecycle-nested-target
[lifecycle-nested-task] Reference to lifecycle-nested-task found, of type org
.mwrm.ant.tasks.LifeCycleNestedTask. Its id is lifecycle-id.
[lifecycle-nested-task] Reference id: lifecycle-id
[lifecycle-nested-task] ---------------
[lifecycle-nested-task] Value of name element: Matthew
[lifecycle-nested-task] Value of name element: Laura
[lifecycle-nested-task] Value of name element: Jones
[lifecycle-nested-task] ---------------

BUILD SUCCESSFUL

Moodie_559-9C10.fm Page 254 Tuesday, September 27, 2005 10:09 AM

C H A P T E R 1 0 ■ W R I T I N G C U S T O M T A S K S 255

Choosing Which Method to Use
The first choice to make when looking at the three methods described previously is between
createXXX() and addXXX()/addConfiguredXXX(). If the nested element’s object has a constructor
that takes more than one argument or an argument that isn’t a Project object, then you must
use createXXX(). If, however, it has no arguments or takes a single Project object as an argu-
ment, you should use one of addXXX() or addConfiguredXXX().

If you simply want to set defaults for a nested element’s attributes, use addXXX(). Ant will
override those that the user has set, and you don’t have to worry about spoiling a user’s settings. If
you want to check and verify attribute values, use addConfiguredXXX(). You can then override
or correct input. For example, you could strip out any whitespace if it was going to interfere
with the task’s workings.

Writing Example Custom Tasks
You have seen the details of a task’s life cycle, so now you can write some more useful custom
tasks than the instructional code in the rest of the chapter. You’ll start by creating a task that
displays usage information for the project. In other words, this task will mimic the -projecthelp
Ant command-line option in a build file. You’ll then use it as the default target of the build file
so that the user knows which tasks do what when they run Ant with no target set.

The other example task is an extension of the <javadoc> task. If you recall Chapter 6, the
main drawback of the <javadoc> task was the lack of a check to see whether the source files
were newer than a destination file. This meant you had to use <uptodate> tasks to determine
whether it was worth running a <javadoc> task. You’ll now re-create the check-docs target from
Chapter 6 as a custom task.

Providing Usage Information
The usual way to provide usage information in a build file is with <echo> tasks in the default
target of the build. When the user runs Ant with no targets as arguments, the <echo> tasks
display whatever information the writer of the build file has provided. The drawback to this
method is a high maintenance cost. Build files can change quite fast when development is
underway, and maintaining the usage information can sometimes fall by the wayside. Typos
can easily creep into this method, especially if many similarly named targets appear in the
build file. Neat formatting can also be a problem.

You’ll solve all this by using Ant’s own usage information mechanism. When you use
the -projecthelp command-line option, Ant’s org.apache.tools.ant.Main class uses its
printDescription() and printTargets() methods to display the build’s description and main
targets. (See Chapter 3 for more about Ant’s command-line options.) The Main class does all the
work of generating target names and descriptions and formats them for display. This removes
chances of typos and messy formatting while ensuring the list of targets is always up to date.

The task will have a single, optional element called buildfile, which points to the build
file from which you want to obtain the usage data. If you want to use the task to display the
current build’s targets, you can use the ant.file built-in property, which refers to the current
build file:

 <projecthelp buildfile="${ant.file}"/>

Moodie_559-9C10.fm Page 255 Tuesday, September 27, 2005 10:09 AM

d10c55b52b1f8994064c85cd755fb5a9

256 C H A P T E R 1 0 ■ W R I T I N G C U S T O M T A S K S

However, this is the default setting in the task, so you have no need to do so. In other
words, the buildfile attribute is optional. Listing 10-17 shows the source for this task.

Listing 10-17. The ProjectHelpTask Displays Usage Information for a Build

package org.mwrm.ant.tasks;

import org.apache.tools.ant.Task;
import org.apache.tools.ant.Main;
import org.apache.tools.ant.BuildException;

/**
 * <p>The <code>ProjectHelpTask</code> class displays usage information
 * for the current project. This is the same information as is displayed
 * by <code>-projecthelp</code>.</p>
 *
 */

public class ProjectHelpTask extends Task {

 // The location of the build file to use when obtaining usage information.
 String buildfile;

 /**
 * <p>Runs the task. It calls <code>org.apache.tools.ant.Main.main()</code>
 * with the <code>-projecthelp</code> parameter. It will also send
 * the current build file's filename via the <code>-f</code> parameter.</p>
 *
 * <p>The <code>buildfile</code> attribute is optional.
 * The default is the task's build file.</p>
 */
 public void execute() throws BuildException {
 // If the buildfile attribute is null, we'll use the task's build file
 if (buildfile == null) {
 buildfile = getLocation().getFileName();
 }

 // The arguments that we will pass to the Main class.
 // The buildfile attribute must follow the -f parameter.
 String[] args = {"-projecthelp", "-f", buildfile};

 // Call the Main Ant class with the arguments.
 Main.main(args);
 }

Moodie_559-9C10.fm Page 256 Tuesday, September 27, 2005 10:09 AM

C H A P T E R 1 0 ■ W R I T I N G C U S T O M T A S K S 257

 /**
 * Setter method for the <code>buildfile</code> attribute.
 * @param buildfile The filename of the current build.
 *
 */
 public void setBuildfile(String buildfile) {
 this.buildfile = buildfile;
 }
}

In the execute() method, you first check to see whether the user has specified a buildfile
attribute. If not, you set the current build file’s filename as the value of buildfile. You then
build the three command-line arguments you’ll send to Ant’s Main class, using the -projecthelp
option to signify you want a list of targets and the -f option to specify the build file to use. You
then run the Main class by calling its main() entry method. The beauty of this solution is that it
uses Ant’s own error-checking mechanisms to ensure that the file exists. If it does not, Ant’s
sensible error messages inform the user so you don’t have to worry about anything.

To use this task in a build file, you have to declare it in a <taskdef> task, as shown in
Listing 10-18.

Listing 10-18. The Default Target Displays Usage Information for This Build

<?xml version="1.0"?>

<project name="Example Application Build" default="default" basedir=".">
 ...

 <!-- ################# -->
 <!-- Usage information -->
 <!-- ################# -->

 <!-- Display a list of targets in this project -->
 <target name="default" description="Display a list of targets in this project">
 <echo message="Usage information for this project:"/>
 <taskdef name="projecthelp" classname="org.mwrm.ant.tasks.ProjectHelpTask" />
 <projecthelp/>
 </target>
</project>

Remember to compile the task and place its class file in Ant’s classpath before running
the build.

Extending the <javadoc> Task
To write a task that adds functionality to the <javadoc> task, you will extend the org.apache.
tools.ant.taskdefs.Javadoc task. This gives you access to the methods and attributes of the
<javadoc> task that are needed when carrying out its normal function. To implement the func-
tionality that checks whether a set of target files is newer than a set of source files, you will use

Moodie_559-9C10.fm Page 257 Tuesday, September 27, 2005 10:09 AM

258 C H A P T E R 1 0 ■ W R I T I N G C U S T O M T A S K S

an internal <uptodate> task (org.apache.tools.ant.taskdefs.UpToDate) and use its eval()
method to check the files.

■Note You could have started from scratch and used the org.apache.tools.ant.taskdefs.
MatchingTask class as the basis for your task because you will be pattern matching. However, you have no
need to do this when you want the Javadoc-generation powers of the Javadoc class and the pattern-matching
powers of the UpToDate class at your disposal.

The new task can have a single target file, specified by the task’s target attribute, or a file
set of target files, set with nested <targetfiles> elements. These two techniques are mutually
exclusive, so you’ll test to see whether a user has specified them together.

The setTarget() method has the following signature:

public void setTarget(File target)

Recall that Ant will convert string input into one of a number of types so that you can use
it as effectively as possible. In this case, Ant converts the string filename specified in the target
attribute in a File object representing that very file before passing it to the setTarget() method.

The file sets specified in <targetfiles> elements are compared as a logical AND, which
means they all must be newer than the source files to suppress Javadoc creation. This is how
you set things up in Chapter 6. The source files are specified by a file set represented by a
<srcfiles> nested element.

You’ll use addXXX() methods to add the nested elements because you don’t need to do
anything with them and they are just normal file sets. They have the following signatures:

public void addSrcfiles(FileSet fileset)
public void addTargetfiles(FileSet fileset)

FileSet objects have a no-argument constructor and are therefore suitable candidates for
use in addXXX() methods. In this instance, you are simply renaming the <fileset> element
<srcfiles> or <targetfiles>, as the case may be. You won’t extend the <fileset> element’s
functionality, but of course this would be possible if you wanted to extend the FileSet class.
You’re renaming them so that it’s clear what the function of each nested element is.

Listing 10-19 shows a valid example of the task.

Listing 10-19. Using the Custom Javadoc Generator

 <!-- Generate Javadocs for the application -->
 <target name="ext-javadocs" depends="dir"
 description="Generate Javadocs for the application"
 unless="docs.notRequired">
 <echo message="Generating Javadocs for the application"/>
 <taskdef name="ext-javadoc"
 classname="org.mwrm.ant.tasks.ExtendJavadocTask" />
 <ext-javadoc destdir="${docs}/api" windowtitle="${javadoc.windowtitle}"
 target="${dist}/${appName}-${package.docs}.tar.gz">

Moodie_559-9C10.fm Page 258 Tuesday, September 27, 2005 10:09 AM

C H A P T E R 1 0 ■ W R I T I N G C U S T O M T A S K S 259

 <srcfiles dir="${src}" includes="**" excludes="ant/**"/>
 <fileset refid="javadoc"/>
 <doctitle>
 ${javadoc.doctitle}
 </doctitle>
 <classpath refid="build.classpath"/>
 <link href="http://java.sun.com/j2se/${javadoc.j2se.version}/docs/api"/>
 <link href="http://java.sun.com/j2ee/${javadoc.j2ee.version}/docs/api"/>
 </ext-javadoc>
 </target>

This will check to see whether the file set specified in the <srcfiles> element is newer than
the file specified in the target attribute of <ext-javadocs>. If it is newer, then the <ext-javadocs>
task generates Javadocs. Listing 10-20 shows an example with nested <targetfiles> elements.

Listing 10-20. Using Nested <targetfiles> Elements with the <ext-javadoc> Task

 <ext-javadoc destdir="${docs}/api" windowtitle="${javadoc.windowtitle}">
 <targetfiles dir="." includes="${dist}/${appName}-${package.docs}.zip"/>
 <targetfiles dir="." includes="${dist}/${appName}-${package.docs}.tar.gz"/>
 <srcfiles dir="${src}" includes="**" excludes="ant/**"/>
 <fileset refid="javadoc"/>
 <doctitle>
 ${javadoc.doctitle}
 </doctitle>
 <classpath refid="build.classpath"/>
 <link href="http://java.sun.com/j2se/${javadoc.j2se.version}/docs/api"/>
 <link href="http://java.sun.com/j2ee/${javadoc.j2ee.version}/docs/api"/>
 </ext-javadoc>

The main work of the task takes place in the internal <uptodate> task. You’ll use its
setTargetFile() method to specify the target file you want to check against. It has the following
signature, so you can see why you need a File argument to setTarget() and FileSet objects to
represent nested <targetfiles> elements:

public void setTargetFile(File file)

To specify the file set of source files, you’ll use its addSrcfiles() method. Its signature is
as follows:

public void addSrcfiles(FileSet fileset)

The real work takes place in the <uptodate> task’s eval() method. It compares the target
file and the source files and returns a result. Its signature is as follows:

public boolean eval()

You’ll call this method once for every file in the target file sets. By doing so, you will find any
files signaling you should generate some Javadocs. One thing to consider when using internal tasks
like this is that you should always attach them to the current project. If you do not, Ant won’t give
them access to project-specific utilities, and you will get many NullPointerException stacks. In

Moodie_559-9C10.fm Page 259 Tuesday, September 27, 2005 10:09 AM

260 C H A P T E R 1 0 ■ W R I T I N G C U S T O M T A S K S

this case, the <uptodate> task uses a projectwide utility to scan directories for files and their
modified times. If you didn’t add it to the current project, it won’t be able to obtain one.

Listing 10-21 shows the task in full.

Listing 10-21. The ExtendJavadocTask Adds Checks for Up-to-Date Files to the <javadoc> Task

package org.mwrm.ant.tasks;

import java.io.File;

import java.util.Enumeration;
import java.util.StringTokenizer;
import java.util.Vector;

import org.apache.tools.ant.Project;
import org.apache.tools.ant.BuildException;

import org.apache.tools.ant.taskdefs.Javadoc;
import org.apache.tools.ant.taskdefs.UpToDate;

import org.apache.tools.ant.types.FileSet;

/**
 * <p>The <code>ExtendJavadocTask</code> class
 * extends the <code>org.apache.tools.ant.taskdefs.Javadoc</code> task.
 * It checks whether a set of source files is newer than a set of target files
 * and if so, it generates Javadocs.</p>
 *
 */

public class ExtendJavadocTask extends Javadoc {

 // The attribute of the task element
 File target;

 // A set of file sets, each of which is provided by a nested file set
 private Vector targetFileSets = new Vector();

 // The internal <uptodate> task
 private UpToDate utd;

 /**
 * <p>Creates a new instance of an internal
 * <code><uptodate></code> task
 * and adds it to the current project.</p>
 */

Moodie_559-9C10.fm Page 260 Tuesday, September 27, 2005 10:09 AM

C H A P T E R 1 0 ■ W R I T I N G C U S T O M T A S K S 261

 public void init() {
 // We need an instance of the <uptodate> task
 utd = new UpToDate();
 // We need to add the task to this project
 utd.setProject(this.getProject());
 }

 /**
 * <p>Checks whether Javadocs should be created and then calls
 * <code>super.execute()</code> if so.</p>
 * <p>This method does usage checks on the task's attributes
 * and its nested elements.
 * It will throw a <code>BuildException</code> if there is a violation.</p>
 */
 public void execute() throws BuildException {
 // This is the usage information

 // We can't have a target attribute
 // and nested targetfiles elements
 if (target != null && targetFileSets.size() > 0) {
 String msg = "You can't specify a targetfile attribute "
 + "and <targetfiles> elements.";
 throw new BuildException(msg);
 }
 // We have to specify either a target attribute
 // or at least one nested targetfiles elements
 if (target == null && targetFileSets.size() == 0) {
 String msg = "You must specify either a targetfile attribute "
 + "or at least one <targetfiles> element.";
 throw new BuildException(msg);
 }

 // If this is false, the files aren't up to date
 // and we have to run the Javadocs
 boolean eval = false;

 // If we've got to this point, we know the usage must be correct.
 // Let's check whether a single target attribute has been used.
 if (target != null) {
 // Get the results of the check
 eval = getResult(target);
 } else {
 // If a target attribute wasn't specified,
 // at least one nested targetfiles element was.

 // We first get all the file sets represented by the nested elements
 Enumeration e = targetFileSets.elements();

Moodie_559-9C10.fm Page 261 Tuesday, September 27, 2005 10:09 AM

262 C H A P T E R 1 0 ■ W R I T I N G C U S T O M T A S K S

 // And then iterate over them
 while (e.hasMoreElements()) {

 // The next element is a file set, so we get its files
 // in a semicolon-separated list
 String files = e.nextElement().toString();
 // Next, we split the list into its filenames
 StringTokenizer st = new StringTokenizer(files, ";");
 // And iterate over them to test each one
 while (st.hasMoreTokens()) {
 // We create a file from the current filename
 // in the iteration
 File tempTarget = new File(st.nextToken());
 // Get the results of the check
 eval = getResult(tempTarget);

 // One false result is enough to fail the whole file set
 if (eval == false) {
 break;
 }
 }
 // One false result is enough to fail the whole file set
 if (eval == false) {
 break;
 }
 }
 }

 // If the test failed, we want to generate Javadocs
 if (eval == false) {
 super.execute();
 } else {
 log("Skipping Javadoc creation. The files are up to date.",
 Project.MSG_INFO);
 }
 }

 // Checks whether the files are up to date
 private boolean getResult(File file) {
 // Set the target property in the <uptodate> task
 utd.setTargetFile(file);
 // Evaluate the files
 return ((utd.eval() != false) ? true : false);
 }

Moodie_559-9C10.fm Page 262 Tuesday, September 27, 2005 10:09 AM

d10c55b52b1f8994064c85cd755fb5a9

C H A P T E R 1 0 ■ W R I T I N G C U S T O M T A S K S 263

 /**
 * <p>The setter method for the <code>target</code> attribute.</p>
 * @param target A file to check against
 */
 public void setTarget(File target) {
 this.target = target;
 }

 /**
 * <p>The setter method for the file set
 * contained in the nested <code><srcfiles></code> element.</p>
 * @param fileset A file set of source files
 */
 public void addSrcfiles(FileSet fileset) {
 utd.addSrcfiles(fileset);
 }

 /**
 * <p>The setter method for the file sets
 * contained in nested <code><targetfiles></code> elements.</p>
 * @param fileset A file set of target files
 */
 public void addTargetfiles(FileSet fileset) {
 targetFileSets.add(fileset);
 }
}

As you did earlier, you use a Vector to store multiple instances of nested elements, in this
case <targetfiles>. When you want to test the files, you iterate over the Enumeration of this
Vector and then iterate over each file set contained within it. For each of the files in a file set,
you call the <uptodate> task’s eval() method.

Using an antlib File
Up until now you have added your custom tasks to the build file with <taskdef> tasks. However, if
your project uses a lot of custom tasks or a library of third-party tasks (as you will do later), you
can include them in a batch in a better way. To do so, you must use an antlib file that contains
the task definitions. An antlib file is an XML file with an <antlib> root element and a combina-
tion of <taskdef> and <typedef> elements. Once you have defined all the custom tasks you
require in the antlib file, you include it in the build file as follows:

 <typedef file="antlib.xml"/>

In effect, an antlib file acts as a properties file for task definitions with all the advantages
that entails. For example, you have a central file that contains all your task definitions, which
means they are easier to maintain. You can also copy this antlib file to another project and use
its custom tasks with a single <typedef> statement instead of a whole collection of <taskdef>
statements.

Moodie_559-9C10.fm Page 263 Tuesday, September 27, 2005 10:09 AM

264 C H A P T E R 1 0 ■ W R I T I N G C U S T O M T A S K S

■Note The <typedef> task is a more general version of the <taskdef> task, which you can use to add
data types to an Ant project. The <taskdef> task is equivalent to <taskdef adapter="org.apache.tools.
ant.TaskAdapter" adaptto="org.apache.tools.ant.Task"/>.

Moving all the custom and third-party tasks into an antlib file is as simple as wrapping
them in an <antlib> element, as shown in Listing 10-22.

Listing 10-22. The antlib.xml File Contains the Book’s Task Definitions

<?xml version="1.0"?>
<antlib>

 <!-- ###################################### -->
 <!-- The third-party tasks for the Ant book -->
 <!-- ###################################### -->

 <!-- The deploy task for web applications on Tomcat -->
 <taskdef name="deploy" classname="org.apache.catalina.ant.DeployTask"/>

 <!-- The undeploy task for web applications on Tomcat -->
 <taskdef name="undeploy" classname="org.apache.catalina.ant.UndeployTask"/>

 <!-- Checkstyle checks the code versus code conventions -->
 <taskdef resource="checkstyletask.properties"/>

 <!-- ################################# -->
 <!-- The custom tasks for the Ant book -->
 <!-- ################################# -->

 <!-- The first two demonstrate the life cycle of a task -->
 <taskdef name="lifecycle-task" classname="org.mwrm.ant.tasks.LifeCycleTask" />
 <taskdef name="lifecycle-nested-task"
 classname="org.mwrm.ant.tasks.LifeCycleNestedTask" />

 <!-- Extends the <javadoc> task -->
 <!-- It checks source file modification times vs. target file modifications -->
 <taskdef name="ext-javadoc" classname="org.mwrm.ant.tasks.ExtendJavadocTask" />

 <!-- Demonstrates converting parameters -->
 <taskdef name="class-set-test" classname="org.mwrm.ant.tasks.ClassSetTask" />

 <!-- Displays usage information generated from a build file -->
 <taskdef name="projecthelp" classname="org.mwrm.ant.tasks.ProjectHelpTask" />

</antlib>

Moodie_559-9C10.fm Page 264 Tuesday, September 27, 2005 10:09 AM

C H A P T E R 1 0 ■ W R I T I N G C U S T O M T A S K S 265

Now if you import this file to a build file with a <typedef> element, all these tasks are available
to Ant.

Another helpful way to use an antlib file is to package it with your custom tasks in a JAR file.
By placing this JAR file in Ant’s classpath, you can then reference it with a <typedef> task. For
example, let’s place the antlib.xml file in the org/mwrm/ant directory of a JAR in Ant’s classpath.
You’ll use the properties shown in Listing 10-23.

Listing 10-23. The Properties for Adding an antlib File to a JAR File

ant.tasks.antlib.xml=antlib.xml
ant.tasks.antlib.package=org/mwrm/ant
ant.tasks.antlib.dir=${ant.tasks.build}/${ant.tasks.antlib.package}

To use these properties when building the JAR file, you’ll add a <copy> task to the compile-ant-
tasks target from earlier in the chapter. Listing 10-24 shows how this task copies the antlib file into
the build directory of the JAR file and into the package specified in ant.tasks.antlib.package.

Listing 10-24. Adding an antlib File to a JAR File

 <!-- Compile the Ant tasks -->
 <target name="compile-ant-tasks" depends="dir"
 description="Compile the Ant tasks">
 <echo message="Compiling the Ant tasks"/>
 <mkdir dir="${ant.tasks.build}"/>
 <javac srcdir="${ant.tasks.src}" destdir="${ant.tasks.build}"/>
 <copy file="${ant.tasks.antlib.xml}" todir="${ant.tasks.antlib.dir}"/>
 <jar destfile="${ant.tasks.jar}" basedir="${ant.tasks.build}"/>
 </target>

You could then use the custom tasks in a build file as follows, referencing its package
and filename:

 <typedef resource="${ant.tasks.antlib.package}/${ant.tasks.antlib.xml}"/>

This entry evaluates to the following:

 <typedef resource="org/mwrm/ant/antlib.xml"/>

The final way to include an antlib file is to use the special antlib:package.name namespace
URI. When Ant encounters an element within the defined namespace, it checks the classpath
for a resource called antlib.xml and loads any tasks defined here. If you used this approach
with the example, you’d define the namespace and tasks as shown in Listing 10-25.

Moodie_559-9C10.fm Page 265 Tuesday, September 27, 2005 10:09 AM

266 C H A P T E R 1 0 ■ W R I T I N G C U S T O M T A S K S

Listing 10-25. Defining the antlib Namespace

<project name="Example Application Build" default="default" basedir="."
 xmlns:antBook="antlib:org.mwrm.ant">

 <!-- Display a list of targets in this project -->
 <target name="default" description="Display a list of targets in this project">
 <echo message="Usage information for this project:"/>
 <antBook:projecthelp/>
 </target>

</project>

The <project> element introduces the antBook namespace and tells Ant that its URI points
to an antlib file in the org.mwrm.ant package. You then use the antBook namespace to identify a
custom tag later in the file.

Using Third-Party Custom Tasks
A great place to start if you are looking for third-party Ant tasks is the Ant-Contrib project
(http://ant-contrib.sourceforge.net). This collection of custom tasks includes a large
number of logic tasks, an HTTP POST task, and some property-manipulation tasks, among
others. It also includes an Ant performance-monitoring tool.

You’ve also already seen some product-specific Ant custom tasks for the Tomcat server
and the Checkstyle tool. To this list you can add custom tasks for the Subversion source code
versioning system (http://subclipse.tigris.org/svnant.html), which is an alternative to
CVS, and major pieces of server software, such as BEA’s WebLogic server (http://e-docs.bea.
com/wls/docs90/).

As a demonstration, let’s use one of the Ant-Contrib tasks to solve one of the problems
running through this book: the <javadoc> task’s lack of conditional functionality. You’ve
already solved this problem twice. The first time you set up your own conditional checking
with <uptodate> conditions in a separate target. The second time you wrote a custom task to
include the conditional functionality. This time you’ll wrap the <javadoc> task in an Ant-
Contrib <if> task that will run it only if a nested condition is true. The general structure of the
<if> task you will be using is as follows:

<if>
 <nested.condition/>
 <then>
 <task/>
 <task/>
 </then>
</if>

The <if> task accepts only one nested condition, but you can use <and> and <or> elements
to include other checks. You already have the condition from Chapter 6, so you’ll use that as
shown in Listing 10-26, though you have to use a <not> element this time because of the <if>
task’s semantics. That is, without the <not> element, the <if> task will run the task if all the

Moodie_559-9C10.fm Page 266 Tuesday, September 27, 2005 10:09 AM

C H A P T E R 1 0 ■ W R I T I N G C U S T O M T A S K S 267

conditions nested within the <and> element are true. You want the opposite to happen, so you
have to reverse the decision.

The <javadoc> task is the same as the one in Chapter 6. You can use only one <then> element
in each <if> element (though you can also use one <then> element in each <elseif> element,
as described next). To use the target shown in Listing 10-26, you must have the Ant-Contrib JAR
file in Ant’s classpath. The <typedef> task will then be able to find it and include its tasks in
the build.

Listing 10-26. Using the Ant-Contrib <if> Task

 <typedef resource="net/sf/antcontrib/antlib.xml"/>

 <!-- Use antcontribs <if> to check if you should build the Javadocs -->
 <target name="javadocs-antcontrib" depends="dir"
 description="Use antcontribs <if> to check the Javadocs">
 <echo message="Using antcontribs <if> to check the Javadocs"/>
 <if>
 <not>
 <and>
 <uptodate targetfile="${dist}/${appName}-${package.docs}.zip">
 <srcfiles dir="${src}" includes="**"/>
 </uptodate>
 <uptodate targetfile="${dist}/${appName}-${package.docs}.tar.gz">
 <srcfiles dir="${src}" includes="**"/>
 </uptodate>
 </and>
 </not>
 <then>
 <echo message="Generating Javadocs for the application"/>
 <javadoc destdir="${docs}/api" windowtitle="${javadoc.windowtitle}">
 <fileset refid="javadoc"/>
 <doctitle>
 ${javadoc.doctitle}
 </doctitle>
 <classpath refid="build.classpath"/>
 <link
 href="http://java.sun.com/j2se/${javadoc.j2se.version}/docs/api"/>
 <link
 href="http://java.sun.com/j2ee/${javadoc.j2ee.version}/docs/api"/>
 </javadoc>
 </then>
 </if>
 </target>

In addition to the <then> nested element, you could have specified nested <elseif> elements
or a single <else> element. The <elseif> element is the same as the <if> task, but it cannot
contain an <else> element. The <else> element is a container for tasks just as the <then>
element is.

Moodie_559-9C10.fm Page 267 Tuesday, September 27, 2005 10:09 AM

268 C H A P T E R 1 0 ■ W R I T I N G C U S T O M T A S K S

Summary
In this chapter, you looked at how to write Ant custom tasks when the tasks that come with Ant
just don’t do what you want. You started by examining the custom task life cycle and what this
means when you are writing a custom task. You moved on to the API and used various tech-
niques to examine the life cycle in detail. This included examining the values of Ant objects at
different stages of the life cycle.

You looked at nested elements, which to begin with can look quite complex but are really
straightforward. The process for adding layers of nesting is the same as it is for one layer of
nesting. I discussed the three different methods that Ant provides for setting nested elements
and showed when to use each method.

Toward the end of the chapter, you learned how to write two useful custom tasks. The first
prints usage information given a build file, and the second checks the freshness of files before
creating Javadocs. The absence of this ability somewhat limits the built-in <javadoc> task.

You finished the chapter by looking at some third-party custom tasks.

Moodie_559-9C10.fm Page 268 Tuesday, September 27, 2005 10:09 AM

269

■ ■ ■

C H A P T E R 1 1

Extending Ant

Up until Chapter 10, I showed how to use Ant as it comes out of the box, with the odd addition
to illustrate a point. However, Chapter 10 introduced custom tasks, which give you enormous
power and flexibility if Ant does not provide what you want. This is not the end to Ant’s exten-
sions; I’ll cover some of the others in this chapter, as well as some aspects of Ant you won’t use
during the normal course of a build but are useful nonetheless.

Specifically, you’ll look at logging in Ant, which is not something you’ve really cared about
until now. Ant comes with some simple logging mechanisms of its own, but you can expand on
these greatly with frameworks such as JUnit. You’ll also see how to write your own logging
components using the Ant API.

Another component you’ll look at in this chapter is mappers. Many tasks operate on files
but can usually work with only one at a time. Mappers are a way of selecting groups of files for
a task and so boost the efficiency of many Ant tasks.

Logging Ant Builds
Not all Ant builds are watched over and therefore are left to their own devices. Like every auto-
matic process, however, it is useful to capture the results of an automatic build so that you can
see the outcome. You could place these results on a web server, which means you could view
them remotely and respond appropriately. Another reason to capture the results of a build is to
analyze build times if the build is taking too long or is using up too many system resources.

Ant has two kinds of logging components: listeners and loggers. Ant informs listeners of
various events that take place during a build:

• When a build starts

• When a build finishes

• When a target starts

• When a target finishes

• When a task starts

• When a task finishes

• When a message is logged

Moodie_559-9C11.fm Page 269 Tuesday, September 27, 2005 10:12 AM

d10c55b52b1f8994064c85cd755fb5a9

270 C H A P T E R 1 1 ■ E X T E N D I N G A N T

Ant provides the org.apache.tools.ant.BuildListener interface for you to implement
should you want to create a custom listener. It defines seven methods that correspond to the
events listed previously. Much like custom tasks, Ant calls the appropriate method at the
appropriate point in the listener’s life cycle.

A logger is a kind of listener that also has access to Ant’s output and error streams, which
listeners do not. However, you can use a logger from a listener via the project’s log() method.
You can also set a logger’s global logging level and make its output suitable for use in emacs or
similar systems. org.apache.tools.ant.BuildLogger is the interface that you must implement
to create a custom logger.

■Note While you can create custom listeners and loggers, Ant does provide its own implementations, which
you’ll look at first.

Ant’s basic logging mechanism displays logging messages to standard out by default,
which is how you’ve seen the log messages up to this point in the book. You also saw how to
send log messages to the logging mechanism and the different logging levels in Chapter 10
when you used a custom task’s log() method. If you wanted to save the results of an Ant build,
you would use the -logfile command-line option as follows:

> ant -logfile ant.log dir

This produces a file like the one shown in Listing 11-1.

Listing 11-1. The ant.log Log File Produced with the -logfile Option

dir:
 [echo] Creating the working directories
 [mkdir] Created dir: C:\AntBook\ch11\build\stand-alone
 [mkdir] Created dir: C:\AntBook\ch11\build\web\WEB-INF\classes

BUILD SUCCESSFUL
Total time: 4 seconds

This is pretty much what you would see on the console, minus the name of the build file
Ant is using. This is the case with all the forms of logging you will see in this chapter.

The default logger is called org.apache.tools.ant.DefaultLogger, and you can specify it
with the -logger command-line option as follows:

> ant -logger org.apache.tools.ant.DefaultLogger dir

If you want to remove empty targets from the output, you can use the org.apache.tools.ant.
NoBannerLogger implementation. This means any targets that don’t produce output will not
appear in the log, whether that be the console or a file.

Moodie_559-9C11.fm Page 270 Tuesday, September 27, 2005 10:12 AM

C H A P T E R 1 1 ■ E X T E N D I N G A N T 271

■Note You can set only one logger with the -logger command-line option. However, some of the loggers
you’ll see in this chapter can be called as listeners with the -listener option. This means you can have two
loggers at once should you need the functionality.

Sending E-mail Confirmations
One way to make sure you see the results of a build is to set up an automatic e-mail notification
service with Ant’s mail logger. This logger uses a number of properties to configure the mail it
sends and can vary the message depending on the success or failure of the build. Listing 11-2
shows an example properties file for this logger, which you should specify with a <property> task.

Listing 11-2. Properties That Configure Ant’s Mail Logger

MailLogger.mailhost=smtp.mail.yahoo.co.uk
MailLogger.user=antBook
MailLogger.password=antB00k
MailLogger.from=ant.log@example.com
MailLogger.failure.to=ant.results@example.com
MailLogger.success.to=ant.results@example.com
MailLogger.failure.subject=Build failed
MailLogger.success.subject=Build succeeded

It would be a good idea to pass the username and password on the command line, but
automated builds make this difficult because you still have to store them as plain text. To run
the mail logger, use the following -logger option:

> ant -logger org.apache.tools.ant.listener.MailLogger compile-stand-alone

The e-mail will contain the results of the build as they appeared in the console or in the log
file, should you specify that option. The mail logger still displays the output as if it were the
default logger.

■Note If you set the MailLogger.success.notify property to false, Ant will not send an e-mail if the
build succeeds. Conversely, if you set MailLogger.failure.notify to false, Ant will not send an e-mail
if the build fails.

Using XML Logs
Ant also supplies an XML logger that can display the results on the console as XML or save
them in XML format. You can also specify a style sheet to attach to the XML file so that, for
example, web browsers can transform it into HTML for a user. In this case, you can use the
XML logger as a logger by using the -logger option or a listener by using the -listener option.

Moodie_559-9C11.fm Page 271 Tuesday, September 27, 2005 10:12 AM

272 C H A P T E R 1 1 ■ E X T E N D I N G A N T

If you use it as a logger, it will supplant the default logger and will display the XML to the
console unless you use the -logfile option to specify an output file. The listener version allows
you to specify any logger you like. It will save the output to a file called log.xml, unless you use
the XmlLogger.file property to specify an alternative filename.

Both these incarnations set a reference to an XSL style sheet. By default this is log.xsl
in the current directory, but you can specify another filename with the ant.XmlLogger.
stylesheet.uri property. Ant comes with an example XSL file, ANT_HOME/etc/log.xsl, which is
an excellent place to start if you want to use this technique. If you find that it doesn’t provide
just what you want, then it’s also a great basis for your own version.

Here is the XML logger in its different guises:

> ant -listener org.apache.tools.ant.XmlLogger compile-stand-alone
> ant -logger org.apache.tools.ant.XmlLogger -logfile log.xml compile-stand-alone

The first command will save the XML results in log.xml and will display the normal set of
messages on the console. The second command will save the XML results in log.xml but won’t
display any results on the console.

Figure 11-1 shows the results of the XSL transformation of the XML file in a browser.

Figure 11-1. The transformed output of the XML logger

Using a Log4j Logger
The final logger you’ll look at is the Log4j logger. (You won’t look at another logger, called the
ANSI color logger, here.) Log4j is the de facto logging framework for Java applications, so it’s
natural that Ant should include a logger that uses it. The Log4j logger is much more flexible

Moodie_559-9C11.fm Page 272 Tuesday, September 27, 2005 10:12 AM

C H A P T E R 1 1 ■ E X T E N D I N G A N T 273

than the previous options and has the advantage that you call it with the -listener command-
line option so you can use it at the same time as the mail logger. I won’t go into any detail as to
how Log4j works except where it applies to Ant.

The first step is to download the Log4j classes from http://logging.apache.org/log4j/.
Extract the files, and place LOG4J_HOME/dist/lib/log4j.jar in Ant’s classpath. You can either
put it in ANT_HOME/lib or use the -lib switch at the command line. The final step of configura-
tion is to add a Log4j configuration file, as shown in Listing 11-3. Call this file log4j.properties,
and place it in Ant’s classpath as well. For the purposes of this chapter, you can leave it in the
build’s base directory if you want. Ant will find it there. Remember to change the path to the log
file to suit your system.

Listing 11-3. The log4j.properties File

Set the root logger for Ant
log4j.rootLogger=INFO, AntLogger

Log to a file
log4j.appender.AntLogger=org.apache.log4j.FileAppender
log4j.appender.AntLogger.File=C:/TEMP/antBook/logs/ant.log

Use the simple layout
log4j.appender.AntLogger.layout=org.apache.log4j.SimpleLayout

This is a simple configuration that sets the level of logging and the log file for Ant to use.
The logging levels are, in ascending order of severity, as follows: ALL, DEBUG, INFO, WARN, ERROR,
FATAL, and OFF. You should be careful to set the level of logging to the minimum you require
because build times can increase significantly if you choose too low a level; at the same time,
you may miss crucial information if you set the level too high.

To use the built-in Log4j logger, you have to specify it with the -listener option at the
command line, like so:

> ant -listener org.apache.tools.ant.listener.Log4jListener -lib log4j.jar dir

Here the dir target serves as a simple example. Listing 11-4 shows the contents of the
ant.log file, with the start and end of the build and the start and end of the target highlighted
in bold.

Listing 11-4. The ant.log Log File

INFO - Build started.
INFO - Task "property" started.
INFO - Task "property" finished.
INFO - Task "property" started.
INFO - Task "property" finished.
INFO - Task "property" started.
INFO - Task "property" finished.
INFO - Task "path" started.
INFO - Task "path" finished.
...

Moodie_559-9C11.fm Page 273 Tuesday, September 27, 2005 10:12 AM

274 C H A P T E R 1 1 ■ E X T E N D I N G A N T

INFO - Target "dir" started.
INFO - Task "echo" started.
WARN - Creating the working directories
INFO - Task "echo" finished.
...
INFO - Target "dir" finished.
INFO - Build finished.

If you compare these entries to what Ant displayed to the console, you will see the message
on the screen that was sent by the <echo> task. Referring to the log file, you can see that the
<echo> task sent this message at the level of WARN (defined by Project.MSG_WARN). You can set the
level of the <echo> task’s messages, but by default it logs only those messages of warning level
and higher. Other tasks send messages at the information level. Now that you have the basics
in place, you can create more complex logging setups.

Using Patterns in Log Files

Log4j doesn’t limit you to using simple text files. For example, the previous log file has no dates
or times. To change this, you can use a pattern layout, which uses pattern characters just as C
does. Table 11-1 describes those characters relevant to Ant. See http://logging.apache.org/
log4j/docs/api/org/apache/log4j/PatternLayout.html for more details on Log4j’s logging
patterns. To specify a pattern character in a log pattern, prefix it with %.

Table 11-1. Pattern Layout Placeholders

Pattern
Character

Description

c The category of the logging event. In Ant terms, this displays the project component that
made the log entry.
You can configure the precision of the category name by placing an integer in brackets
after the character. In this case, only the corresponding number of the rightmost compo-
nents of the category name will be printed.
For example, for the category org.apache.tools.ant.Project, the pattern %c{1} will
print Project.
This is a useful pattern character when you want to find out where a certain log message
has come from. You can then use this information to create more specific log files. I’ll
cover this in Chapter 12.

d The date of this log entry, which may be followed by a date format enclosed between
braces (for example, %d{HH:mm:ss} or %d{dd MMM yyyy HH:mm:ss}). If no format is given,
then ISO 8601 format is used.
For better results, you should use the Log4j date formatters. These are ABSOLUTE, DATE, and
ISO8601, for specifying AbsoluteTimeDateFormat, DateTimeDateFormat, and
ISO8601DateFormat, respectively (for example, %d{ISO8601} or %d{ABSOLUTE}).
ABSOLUTE is HH:mm:ss,SSS.
DATE is dd MMM YYYY HH:mm:ss,SSS.
ISO8601 is YYYY-MM-dd HH:mm:ss,SSS.

F The filename where the logging request was issued. This can be slow, so you should avoid
using this option unless execution speed isn’t an issue.

Moodie_559-9C11.fm Page 274 Tuesday, September 27, 2005 10:12 AM

C H A P T E R 1 1 ■ E X T E N D I N G A N T 275

Listing 11-5 shows how to put these characters into action.

Listing 11-5. Using Patterns in Log Entries

Set the root logger for Ant
log4j.rootLogger=INFO, AntLogger

Log to a pattern file
log4j.appender.AntLogger=org.apache.log4j.FileAppender
log4j.appender.AntLogger.File=C:/TEMP/antBook/logs/ant.pattern.log

Use a pattern layout
log4j.appender.AntLogger.layout=org.apache.log4j.PatternLayout
log4j.appender.AntLogger.layout.ConversionPattern=%d{ISO8601} : %p : %m %n

In this case, you’re logging the date in ISO 8601 format, followed by the priority of the
message (%p) and the message itself (%m). The line ends with a new-line character (%n). Run the
same command as before:

> ant -listener org.apache.tools.ant.listener.Log4jListener -lib log4j.jar dir

It should look something like Listing 11-6.

l The location of the caller that generated the logging event. The location information
depends on the JVM implementation but usually consists of the fully qualified name of
the calling method, followed by the filename and line number between parentheses.
Here’s an example:
org.apache.tools.ant.listener.Log4jListener.buildStarted(Log4jListener.java:58).
The location information can be useful, but obtaining it is extremely slow.

L The line number where the logging request was issued. Obtaining caller location infor-
mation is extremely slow.

m The application-supplied message associated with the logging event.

M The method name where the logging request was issued. Obtaining caller location infor-
mation is extremely slow.

n The platform-dependent line-separator character(s).
This conversion character offers practically the same performance as using a line-sepa-
rator string such as \n or \r\n. Thus, it’s the preferred way of specifying a line separator.

p Used to output the priority of the logging event.

r Used to output the number of milliseconds elapsed since the start of the application until the
creation of the logging event.

t Used to output the name of the thread that generated the logging event.

% The sequence %% outputs a single percent sign.

Table 11-1. Pattern Layout Placeholders

Pattern
Character

Description

Moodie_559-9C11.fm Page 275 Tuesday, September 27, 2005 10:12 AM

276 C H A P T E R 1 1 ■ E X T E N D I N G A N T

Listing 11-6. The ant.pattern.log Log File

2005-09-09 22:47:45,849 : INFO : Build started.
2005-09-09 22:47:47,962 : INFO : Task "property" started.
2005-09-09 22:47:48,252 : INFO : Task "property" finished.
2005-09-09 22:47:48,252 : INFO : Task "property" started.
2005-09-09 22:47:48,252 : INFO : Task "property" finished.
2005-09-09 22:47:48,252 : INFO : Task "property" started.
2005-09-09 22:47:48,252 : INFO : Task "property" finished.
2005-09-09 22:47:48,252 : INFO : Task "path" started.
2005-09-09 22:47:49,384 : INFO : Task "path" finished.
...
2005-09-09 22:47:51,537 : INFO : Target "dir" started.
2005-09-09 22:47:51,537 : INFO : Task "echo" started.
2005-09-09 22:47:51,557 : WARN : Creating the working directories
2005-09-09 22:47:51,557 : INFO : Task "echo" finished.
...
2005-09-09 22:47:51,597 : INFO : Target "dir" finished.
2005-09-09 22:47:51,758 : INFO : Build finished.

Here you can see the pattern has been applied to each of the log entries.

Using HTML Log Files

If you want, you can also log entries to HTML log files. Listing 11-7 shows this configuration.

Listing 11-7. Writing to an HTML Log File

Set the root logger for Ant
log4j.rootLogger=INFO, AntLogger

Log to an HTML file
log4j.appender.AntLogger=org.apache.log4j.FileAppender
log4j.appender.AntLogger.File=C:/TEMP/antBook/logs/ant.log.html

Set the layout to HTML, and specify a title
log4j.appender.AntLogger.layout=org.apache.log4j.HTMLLayout
log4j.appender.AntLogger.layout.Title=Apress Ant Log

Figure 11-2 shows the results.
Here you can see the default HTML layout, which shows the category that caused the

logging event and the time from the start of the first logging event (the start of the build). It’s
interesting to note that logging at the start and end of tasks has a category of org.apache.
tools.ant.UnknownElement. If you look at Figure 11-3, you can see that actual logging messages
from inside a task have the implementing class’s classname as their category.

You’ll return to these categories in the “Logging Project Components” section.

Moodie_559-9C11.fm Page 276 Tuesday, September 27, 2005 10:12 AM

d10c55b52b1f8994064c85cd755fb5a9

C H A P T E R 1 1 ■ E X T E N D I N G A N T 277

Figure 11-2. The HTML layout log

Figure 11-3. The messages from within a task are given a specific category.

Moodie_559-9C11.fm Page 277 Tuesday, September 27, 2005 10:12 AM

278 C H A P T E R 1 1 ■ E X T E N D I N G A N T

Using the Console to Display Log Messages

Ant already logs to the console window at different levels depending on the command-line
options (-q for quiet, -v for verbose, or -d for debug). The advantage of using Log4j is that you
can use custom layouts, and Ant doesn’t display everything to the console. However, Ant over-
rides any custom layout if it would have displayed the message anyway. Listing 11-8 shows how
to log to the console.

Listing 11-8. Logging to the Console

Set the root logger for Ant
log4j.rootLogger=INFO, AntLogger

Log to the console
log4j.appender.AntLogger=org.apache.log4j.ConsoleAppender
log4j.appender.AntLogger.Target=System.out

Set a custom layout level
log4j.appender.AntLogger.layout=org.apache.log4j.PatternLayout
log4j.appender.AntLogger.layout.ConversionPattern=%d{ISO8601} : %p : %m %n

The pattern here is the same as that for the pattern layout file, so the output to the console
will be identical. To illustrate how Ant overrides this logging, refer to the following output:

dir:
2005-09-09 23:17:34,211 : INFO : Target "dir" started.
 [echo] 2005-09-09 23:17:34,221 : INFO : Task "echo" started.
 [echo] Creating the working directories
2005-09-09 23:17:34,241 : INFO : Task "echo" finished.

Notice how the message from the <echo> task is displayed as normal and is not filtered
through Log4j and converted into your pattern. A better way of putting it is that Ant didn’t
allow the Log4j message through.

Logging to Different Destinations

Now that you know how to log to different media, you can send different levels of messages to
different destinations. In the example shown in Listing 11-9, all messages of level INFO and
higher are logged to a log file, and those of ERROR and higher are logged to a web page.

Listing 11-9. Sending Logging Messages to Two Destinations

Send all INFO messages and higher to a file and
all ERROR messages and higher to the console
log4j.rootLogger=INFO, AntINFO, AntERROR

Moodie_559-9C11.fm Page 278 Tuesday, September 27, 2005 10:12 AM

C H A P T E R 1 1 ■ E X T E N D I N G A N T 279

Use a pattern file for the INFO messages
log4j.appender.AntINFO=org.apache.log4j.FileAppender
log4j.appender.AntINFO.File=C:/TEMP/antBook/logs/ant.pattern.log
log4j.appender.AntINFO.layout=org.apache.log4j.PatternLayout
log4j.appender.AntINFO.layout.ConversionPattern=%d{ISO8601} : %r : %p : %m %n

Use an HTML file for ERROR messages
log4j.appender.AntERROR=org.apache.log4j.FileAppender
log4j.appender.AntERROR.File=C:/apache/htdocs/logs/ant.log.html
log4j.appender.AntERROR.layout=org.apache.log4j.HTMLLayout
log4j.appender.AntERROR.layout.Title=Apress Error Log
log4j.appender.AntERROR.Threshold=ERROR

This time you include the time from the start of the first logging event (the start of the
build) with the %r pattern. This means you can analyze build times if you want and if it’s impor-
tant to you. Figure 11-2 shows an example of this time setting. You also send serious problems
to a web page on your Apache server, where you can check on the progress of automated builds.

You can use a huge number of variations with Log4j, such as using the Windows system log
and Unix syslog, though such exhaustive treatment is beyond the scope of this chapter.

Logging Project Components

So far you have seen how to log messages, no matter where they originated, to one or more
destinations. However, you can log messages from different locations to different files. For
example, you may want to monitor the project start and finish times in one file but want to see
messages from a particular class in another. This means you could see what was occurring in
each component. To replicate this, you must assign a component’s Log4j logger to an appender.
The configuration is then the same as before.

To assign a logger to an appender, use the following convention:

log4j.logger.CATEGORY_NAME=[LOGGING_LEVEL],APPENDER_NAME

The CATEGORY_NAME is usually the fully qualified classname of the component you want to
log. You’ve already seen a bit of this in the “Using HTML Log Files” section, but here’s a brief
list of the options:

• When the project starts and ends, CATEGORY_NAME is org.apache.tools.ant.Project.

• When a target starts and ends, CATEGORY_NAME is org.apache.tools.ant.Target.

• When a task starts and ends, CATEGORY_NAME is org.apache.tools.ant.UnknownElement.

• When a logging message originates from within a task, CATEGORY_NAME is the fully quali-
fied classname of the task’s implementing class.

• CATEGORY_NAME can also be a generalized package name. For example, a CATEGORY_NAME of
org.apache.tools.ant will log message from the project logger and the target logger.
org.apache.tools.ant.taskdefs will log all messages from within tasks.

Messages that indicate the start of a project component are always logged at INFO level.
However, messages that indicate the end of a project component are logged at INFO if the

Moodie_559-9C11.fm Page 279 Tuesday, September 27, 2005 10:12 AM

280 C H A P T E R 1 1 ■ E X T E N D I N G A N T

project component finished successfully or ERROR if not. This means that task and target fail-
ures are logged at ERROR.

Listing 11-10 shows a log4j.properties file that sets a master log file that will log every-
thing and a log file that logs only messages from the project, from the target, and from inside
tasks. In other words, it ignores all task start and end events and replicates the usual Ant
console output.

Listing 11-10. A log4j.properties File That Logs Context-Specific Messages

Use individual loggers for different components
log4j.rootLogger=INFO, AntLogger

Log to a file
log4j.appender.AntLogger=org.apache.log4j.FileAppender
log4j.appender.AntLogger.File=C:/TEMP/antBook/logs/ant.log

Use the simple layout
log4j.appender.AntLogger.layout=org.apache.log4j.SimpleLayout

Set a logger for project components
log4j.logger.org.apache.tools.ant.Project=INFO,AntComponentLogger
log4j.logger.org.apache.tools.ant.Target=INFO,AntComponentLogger
log4j.logger.org.apache.tools.ant.taskdefs=INFO,AntComponentLogger

log4j.appender.AntComponentLogger=org.apache.log4j.FileAppender
log4j.appender.AntComponentLogger.File=C:/TEMP/antBook/logs/ant.pattern.log
log4j.appender.AntComponentLogger.layout=org.apache.log4j.PatternLayout
log4j.appender.AntComponentLogger.layout.ConversionPattern=%p: %m: %d{ISO8601} %n
log4j.appender.AntComponentLogger.Threshold=INFO

You saw an example of the AntLogger logger’s output in Listing 11-4. You can therefore
compare it to the output of the AntComponentLogger logger, as shown in Listing 11-11. This is
pretty similar to Ant’s normal output.

Listing 11-11. A Log That Captures Messages Only from the Project, from Targets, and from
Inside Tasks

INFO: Build started.: 00:26:59,770
INFO: Target "dir" started.: 00:27:03,195
WARN: Creating the working directories: 00:27:03,215
INFO: Created dir: C:\AntBook\ch11\build\stand-alone: 00:27:03,245
INFO: Created dir: C:\AntBook\ch11\build\web\WEB-INF\classes: 00:27:03,265
INFO: Target "dir" finished.: 00:27:03,265
INFO: Build finished.: 00:27:03,325

Moodie_559-9C11.fm Page 280 Tuesday, September 27, 2005 10:12 AM

C H A P T E R 1 1 ■ E X T E N D I N G A N T 281

The one slight drawback of this approach is that you repeat the logging activity if you set
the same levels of logging for the two log files. In the previous example, all messages at INFO and
higher, including those from the project, from targets, and from inside tasks, are logged to the
ant.log file. The logging messages from the project, from targets, and from inside tasks are also
logged to the ant.pattern.log file, which means your server will be working hard to log double
the amount of log messages.

■Note The root logger will log messages from all other loggers, regardless of its level of logging. For
example, if you set AntLogger to ERROR and AntComponentLogger to INFO, AntLogger will still log all
the INFO messages logged by AntComponentLogger.

Writing Your Own Listener
A custom build listener must implement the org.apache.tools.ant.BuildListener interface.
This interface defines the following seven methods, each corresponding to a build event:

• void buildStarted(BuildEvent event)

• void buildFinished(BuildEvent event)

• void targetStarted(BuildEvent event)

• void targetFinished(BuildEvent event)

• void taskStarted(BuildEvent event)

• void taskFinished(BuildEvent event)

• void messageLogged(BuildEvent event)

Each of these takes an org.apache.tools.ant.BuildEvent object as a parameter, which
represents the build event that has taken place. This object provides information about the
calling project component (project, target, or task), any exception associated with it, and the
log priority of any message associated with it.

■Note When writing a custom logger or listener, you should not write to standard out because Ant swallows
these calls and then displays them using its own display mechanism. This can lead to potential infinite loops
because Ant could feasibly pass the message back to the listener or logger, and so on. You should use the
logger’s output stream instead of standard out.

Listing 11-12 shows a simple implementation of a custom listener.

Moodie_559-9C11.fm Page 281 Tuesday, September 27, 2005 10:12 AM

282 C H A P T E R 1 1 ■ E X T E N D I N G A N T

Listing 11-12. The BuildEventListener Class Receives Notification of Build Events

package org.mwrm.ant.listeners;

import org.apache.tools.ant.Project;
import org.apache.tools.ant.BuildListener;
import org.apache.tools.ant.BuildEvent;

public class BuildEventListener implements BuildListener {

 public void buildStarted (BuildEvent start) {
 start.getProject().log("buildStarted() called.", Project.MSG_ERR);
 }

 public void buildFinished (BuildEvent finish) {
 finish.getProject().log("buildFinished() called.", Project.MSG_ERR);
 }

 public void targetStarted (BuildEvent start) {
 start.getProject().log("Target [" + start.getTarget().getName()
 + "] started.", Project.MSG_ERR);
 }

 public void targetFinished (BuildEvent finish) {
 finish.getProject().log("Target [" + finish.getTarget().getName()
 + "] finished.", Project.MSG_ERR);
 }

 public void taskStarted (BuildEvent start) {
 start.getProject().log("Task [" + start.getTask().getTaskName()
 + "] started.", Project.MSG_ERR);
 }

 public void taskFinished (BuildEvent finish) {
 finish.getProject().log("Task [" + finish.getTask().getTaskName()
 + "] finished.", Project.MSG_ERR);
 }

 public void messageLogged (BuildEvent event) {
 // empty
 }
}

Here you simply print to the log when an event happens. You can’t use the log in
messageLogged() because any logger assigned to this project takes responsibility for logging
messages from this event. However, you can perform other tasks, such as writing the messages
to a file, in messageLogged(). To obtain the message, call event.getMessage(). Only the
messageLogged() method has access to the message.

Moodie_559-9C11.fm Page 282 Tuesday, September 27, 2005 10:12 AM

C H A P T E R 1 1 ■ E X T E N D I N G A N T 283

If you compile this class, you can assign it as a listener as follows:

> ant -listener org.mwrm.ant.listeners.BuildEventListener

Now each event will be enclosed in statements from your custom listener.

Writing Your Own Logger
Custom loggers have to implement the org.apache.tools.ant.BuildLogger interface, which
extends org.apache.tools.ant.BuildListener. This means you have to implement the seven
methods from the previous section, though you also have to implement the following:

• void setEmacsMode(boolean emacsMode)

• void setErrorPrintStream(java.io.PrintStream err)

• void setMessageOutputLevel(int level)

• void setOutputPrintStream(java.io.PrintStream output)

The final three of these are the most important, because they govern Ant’s output for the
current build. The two setXXXPrintStream() methods define where the output will end up, and
you use them to gain access to standard out or another output stream if you want. If you do not
set an output stream, Ant swallows its output, and users will not see anything. You can use the
setMessageOutputLevel() method to define the whole logger’s message threshold. Therefore,
you can set the logger to disregard debugging messages, even if the user specifies -d at the
command line, and so on.

This example ignores the -d option and Ant’s default logging level (information) and logs
messages only at the warning level or higher. To do so, leave the setMessageOutputLevel()
method empty, and use a class member variable to set the logger’s logging level. Listing 11-13
shows the logger’s class.

Listing 11-13. The BuildEventLogger Class Receives Notification of Build Events

package org.mwrm.ant.loggers;

import java.io.PrintStream;

import org.apache.tools.ant.Project;
import org.apache.tools.ant.BuildLogger;
import org.apache.tools.ant.BuildEvent;

public class BuildEventLogger implements BuildLogger {

 // The PrintStream to write nonerror messages to
 protected PrintStream out;

 // The PrintStream to write error messages to
 protected PrintStream err;

Moodie_559-9C11.fm Page 283 Tuesday, September 27, 2005 10:12 AM

d10c55b52b1f8994064c85cd755fb5a9

284 C H A P T E R 1 1 ■ E X T E N D I N G A N T

 // Sets whether to tailor output for emacs, etc
 protected boolean emacsMode = false;

 // We'll set this logger to log only warnings and above
 protected int msgOutputLevel = Project.MSG_WARN;

 // We've seen these in the listener example
 public void buildStarted (BuildEvent start) {
 // empty
 }

 public void buildFinished (BuildEvent finish) {
 // empty
 }

 public void targetStarted (BuildEvent start) {
 // empty
 }

 public void targetFinished (BuildEvent finish) {
 // empty
 }

 public void taskStarted (BuildEvent start) {
 // empty
 }

 public void taskFinished (BuildEvent finish) {
 // empty
 }

 // When a message is sent to this logger,
 // Ant calls this method
 public void messageLogged (BuildEvent event) {
 // We need to determine how important this message is
 int priority = event.getPriority();

 // If it's as important as our log level, we display it
 if (priority <= msgOutputLevel) {
 out.println(event.getMessage());
 }
 }

 // Ant will pass the output stream to this logger
 public void setOutputPrintStream(PrintStream output) {
 this.out = new PrintStream(output, true);
 }

Moodie_559-9C11.fm Page 284 Tuesday, September 27, 2005 10:12 AM

C H A P T E R 1 1 ■ E X T E N D I N G A N T 285

 // Ant will pass the error stream to this logger
 public void setErrorPrintStream(PrintStream err) {
 this.err = new PrintStream(err, true);
 }

 // Sets the display mode
 public void setEmacsMode(boolean emacsMode) {
 this.emacsMode = emacsMode;
 }

 public void setMessageOutputLevel(int level) {
 // We will leave this empty to use the default level,
 // which we set above
 }

}

The messageLogged() method is the key to loggers and listeners. Whenever a log() call is made,
whether it is in a task, a project, a listener, or a logger, Ant will call this logger’s messageLogged()
method, so you must deal with log messages here. If you do not print them to the output
stream, the user will not see them. Ant treats log() calls from within this logger in the same
way. To see how this works, make the following changes:

 public void buildStarted (BuildEvent start) {
 start.getProject().log("Message from buildStarted().", Project.MSG_ERR);
 }
 ...
 public void messageLogged (BuildEvent event) {
 // We need to determine how important this message is
 int priority = event.getPriority();

 // If it's as important as our log level, we display it
 if (priority <= msgOutputLevel) {
 out.println("messageLogged: " + event.getMessage());
 }
 }

If you run a build, you should see the following:

> ant -logger org.mwrm.ant.loggers.BuildEventLogger -d

messageLogged: Message from buildStarted().

The log() call in buildStarted() is passed to messageLogged() where you build the new
string. The message will not appear anywhere else. Notice also that Ant will not display the
normal ream of debugging messages even though you used the -d option.

Moodie_559-9C11.fm Page 285 Tuesday, September 27, 2005 10:12 AM

286 C H A P T E R 1 1 ■ E X T E N D I N G A N T

Using the Ant-Contrib Performance Listener
The Ant-Contrib project that you learned about in the previous chapter provides a listener with
which you can monitor your build’s performance. To use it, simply specify it at the command
line, assuming the Ant-Contrib files are in your classpath:

> ant -listener net.sf.antcontrib.perf.AntPerformanceListener compile-stand-alone

Buildfile: build.xml

...results omitted...

BUILD SUCCESSFUL
Total time: 39 seconds

Statistics:
-------------- Target Results ---------------------
Example Application Build.dir: 0.080 sec
Example Application Build.compile-stand-alone: 35.331 sec

-------------- Task Results -----------------------
Example Application Build..property: 0.000 sec
Example Application Build.compile-stand-alone.echo: 0.010 sec
Example Application Build..fileset: 0.020 sec
Example Application Build.dir.mkdir: 0.030 sec
Example Application Build..patternset: 0.050 sec
Example Application Build..patternset: 0.051 sec
Example Application Build..taskdef: 0.060 sec
Example Application Build..patternset: 0.070 sec
Example Application Build..path: 0.211 sec
Example Application Build..property: 0.220 sec
Example Application Build..path: 1.001 sec
Example Application Build..patternset: 1.041 sec
Example Application Build.compile-stand-alone.javac: 1.162 sec
Example Application Build.compile-stand-alone.javac: 34.149 sec

-------------- Totals -----------------------------
Start time: Sun, 18 Sep 2005 10:27:33.349
Stop time: Sun, 18 Sep 2005 10:28:13.046
Total time: 39.697 sec

From these results, you can see which tasks and targets take the longest and work on them
should they be problematic. Unsurprisingly, the previous results show that the <javac> tasks
and the compile-stand-alone target take by far the longest, while the <mkdir> tasks and the dir
target are quick.

Moodie_559-9C11.fm Page 286 Tuesday, September 27, 2005 10:12 AM

C H A P T E R 1 1 ■ E X T E N D I N G A N T 287

Using Mappers
Mappers are Ant’s way of converting a batch of file paths into another batch of file paths. This
is a useful extension of several tasks that allow them to operate on groups of files rather than a
single file at a time. Examples of tasks that use mappers are <copy>, <pathconvert>, and <uptodate>,
which you have already seen. These tasks take a file set of source files and produce a file set of
target files that have been converted by the mapper. In the case of <uptodate>, the file set of
target files is used in the comparison. <uptodate> is actually a bit of an exception to the mapper
rules, but I’ll get to that in the “Using Glob Mappers” section.

You specify mappers with either a <mapper type="mapper_type"> declaration or a
<mappermapper_type> element. This chapter will use the second method. To demonstrate
mappers, I’ll show the <pathconvert> task because it uses mappers to form the result of its
conversion.

Using Identity Mappers
Identity mappers map a set of file paths to another, identical set of file paths. You specify an
identity mapper with an <identitymapper> element as follows:

 <pathconvert property="converted">
 <path>
 <fileset dir="${src.shared.java}" includes="**/*.java"/>
 </path>
 <identitymapper/>
 </pathconvert>
 <echo>${converted}</echo>

Here’s the result:

 [echo] C:\AntBook\ch11\src\shared\java\org\mwrm\Constants.java;C:\AntBook\
ch11\src\shared\java\org\mwrm\PropertiesLoader.java;C:\AntBook\ch11\src\shared\
java\org\mwrm\SelectData.java

This set of files is identical to the original set as defined by the pattern in the <fileset>
element.

Using Flatten Mappers
Flatten mappers take a set of file paths and strip away everything but the actual filename. You
specify a file mapper with a <flattenmapper> element as follows:

 <pathconvert property="converted">
 <path>
 <fileset dir="${src.shared.java}" includes="**/*.java"/>
 </path>
 <flattenmapper/>
 </pathconvert>
 <echo>${converted}</echo>

Moodie_559-9C11.fm Page 287 Tuesday, September 27, 2005 10:12 AM

288 C H A P T E R 1 1 ■ E X T E N D I N G A N T

 Here’s the result:

 [echo] Constants.java;PropertiesLoader.java;SelectData.java

This time the mapper has taken away any directory paths from the file set.

Using Merge Mappers
Merge mappers take a set of file paths and map it to a constant filename. This means every file
in the source set will map to the same filename. You specify a merge mapper with a
<mergemapper> element as follows:

 <pathconvert property="converted">
 <path>
 <fileset dir="${src.shared.java}" includes="**/*.java"/>
 </path>
 <mergemapper to="${appName.jar}"/>
 </pathconvert>
 <echo>${converted}</echo>

Here’s the result:

 [echo] dist/antBook.jar;dist/antBook.jar;dist/antBook.jar

In this case, the merge mapper has mapped each source file to the target filename.

Using Glob Mappers
Glob mappers are more complicated than the other mappers you’ve seen so far. To start with,
you specify a pattern that will match a set of files, using up to one * wildcard character. This
wildcard represents a string that will be substituted in the target set of file paths. You then
specify a target pattern that includes a * wildcard. Ant will replace the * wildcard in the target
pattern with the string represented by the * wildcard in the source files.

For example, apply the pattern C:/*/ch11 to C:/AntBook/ch11. In this case, the * wildcard
will represent AntBook in any replacement pattern. Now specify a target pattern of C:/TEMP/*/
logs. This will evaluate to C:/TEMP/AntBook/logs because the * wildcard in the target is replaced
by the string matched in the source pattern.

You specify a glob mapper with a <globmapper> element. Here you’ll replace .java with
.class, where it appears at the end of a file path:

 <pathconvert property="converted">
 <path>
 <fileset dir="${src.shared.java}" includes="**/*.java"/>
 </path>
 <globmapper from="*.java" to="*.class"/>

Moodie_559-9C11.fm Page 288 Tuesday, September 27, 2005 10:12 AM

C H A P T E R 1 1 ■ E X T E N D I N G A N T 289

 </pathconvert>
 <echo>${converted}</echo>

Here’s the result:

 [echo] C:\AntBook\ch11\src\shared\java\org\mwrm\Constants.class;
C:\AntBook\ch11\src\shared\java\org\mwrm\PropertiesLoader.class;
C:\AntBook\ch11\src\shared\java\org\mwrm\SelectData.class

In this case, everything before the string ".java" has been selected by the * wildcard.
When you then place a * wildcard before the string ".class", Ant places the file paths from the
source selection into the target file paths. One thing omitted from this example is the <globmapper>
element’s handledirsep attribute, which causes Ant to ignore the difference between / and \.
You’ll use it in the next example.

■Note This last operation is that the <javac> task selects the names of its output files. By using a mapper
behind the scenes, it can quickly and efficiently create a list of target files.

The next example shows a situation where you want to add directories to the middle of the
file paths:

 <pathconvert property="converted">
 <path>
 <fileset dir="${test.src}" includes="**/*.java"/>
 </path>
 <globmapper from="${basedir}/${test.src}/*.java"
 to="${basedir}/${test.build}/*.class"
 handledirsep="true"/>
 </pathconvert>
 <echo>${converted}</echo>

Here’s the result:

 [echo] C:\AntBook\ch11/build/test/org\mwrm\WebTest.class

Let’s step through this example. Set the file set, which happens to be a single file:

C:\AntBook\ch11\test\org\mwrm\WebTest.java

The * wildcard matches the org\mwrm\WebTest section of this, so Ant saves this for when it
needs to create target file paths. To build the target file path, Ant adds the project’s base direc-
tory (C:\AntBook\ch11) onto the value of the test.build property (build/test), followed by the

Moodie_559-9C11.fm Page 289 Tuesday, September 27, 2005 10:12 AM

290 C H A P T E R 1 1 ■ E X T E N D I N G A N T

saved value of * (org\mwrm\WebTest) and .java. The resultant file path is what you see in the
previous result listing.

This is your chance to examine the <uptodate> task again, because it gives different results
when using a glob mapper. Here’s an example from Chapter 8:

 <uptodate>
 <srcfiles dir="${test.src}" includes="**/*.java"/>
 <globmapper from="*.java" to="${basedir}/${test.build}/*.class"/>
 </uptodate>

This glob mapper performs the same operation as the one from the previous example but
uses a different from pattern. This is because the <srcfiles> element maintains the source files
as a relative path and will treat the target files as such unless you specify an absolute path.

Using Regexp Mappers
A regexp mapper works on similar principles to the glob mapper but uses regular expressions
to map files. You specify the regular expression in the from attribute of the <regexpmapper>
element, and you can then refer to it in the to attribute. If you want to match the results of the
entire regular expression, you use the \0 back reference, as shown here:

 <pathconvert property="converted">
 <path>
 <fileset dir="${test.src}" includes="**/*.java"/>
 </path>
 <regexpmapper from="^(.*)\.java$$" to="\0"/>
 </pathconvert>
 <echo>${converted}</echo>

Here’s the result:

 [echo] C:\AntBook\ch11\test\org\mwrm\plants\PlantWebTest.java

If you want to refer to just part of the expression, you can use subexpressions, such as the
previous (.*) expression. You can then refer to them with \1, \2, \3, and so on, where \1 refers
to the first subexpression, \2 refers to the second subexpression, and so on. Let’s change the
example a little bit:

 <pathconvert property="converted">
 <path>
 <fileset dir="${test.src}" includes="**/*.java"/>
 </path>
 <regexpmapper from="^(.*)\.java$$" to="\1.class"/>
 </pathconvert>
 <echo>${converted}</echo>

This time the result is as follows:

Moodie_559-9C11.fm Page 290 Tuesday, September 27, 2005 10:12 AM

d10c55b52b1f8994064c85cd755fb5a9

C H A P T E R 1 1 ■ E X T E N D I N G A N T 291

 [echo] C:\AntBook\ch11\test\org\mwrm\plants\PlantWebTest.class

You’ve matched everything up to the .java extension and then referred to it with \1 and
added a .class extension to it.

Using Chained Mappers
The final type of mapper is a chained mapper, which you can use to contain two or more of the
mappers described. In this case, the chained mapper applies the first mapper and then applies
the next mapper to the results of this operation, and so on, until it has used all the mappers it
contains. This all means the order in which you specify the nested mappers matters.

You specify a chained mapper with the <chainedmapper> element. Let’s combine two of the
previous examples with a chained mapper:

 <pathconvert property="converted">
 <path>
 <fileset dir="${src.shared.java}" includes="**/*.java"/>
 </path>
 <chainedmapper>
 <flattenmapper/>
 <globmapper from="*.java" to="*.class"/>
 </chainedmapper>
 </pathconvert>
 <echo>${converted}</echo>

Here’s the result:

 [echo] Constants.class;PropertiesLoader.class;SelectData.class

Here you can see the chained mapper has applied the flatten mapper like before and has
removed the path information from each filename. The chained mapper has then taken these
results and applied a glob mapper to map *.java files to *.class files.

Summary
In this chapter, you saw how to set up and use logging in Ant. Ant comes with some default
logging mechanisms that are useful for attended builds because they display output to the
console, though one can e-mail the results to ensure you see what is happening. If you want
more flexible options, then you have to turn to Log4j or write a custom logger or listener. You
saw the interfaces and methods involved in this and worked through some examples.

You also looked at mappers and how they can extend the functionality of those Ant tasks
that work with files. Of the mappers you looked at, the glob mapper is the most complicated,
but, as is the case with most things, it is the most powerful. You will find that you use this type
of mapper more than any other.

Moodie_559-9C11.fm Page 291 Tuesday, September 27, 2005 10:12 AM

Moodie_559-9C11.fm Page 292 Tuesday, September 27, 2005 10:12 AM

293

■ ■ ■

C H A P T E R 1 2

Using the Ant API

You are coming to the end of the book and have seen what Ant can do. You have built your
application in many different ways; packaged it in zip and tar files; and distributed it via e-mail,
FTP, and hot deployments. These functions are all part of Ant’s normal setup and show its
remarkable capabilities. However, one of Ant’s most valuable features is its open nature, which
allows you to add extensions and new features.

The previous two chapters showed ways to do just that. Custom tasks can build on existing
tasks in a number of ways. First, you can add functions to an existing task, just as you did when
you extended the <javadoc> task to add checks for up-to-date files. Second, if Ant does not
provide a task for a certain action you want to perform, then you can write one yourself. For
example, you wrote a task that displays usage information based on the build file that contains
the task. Third-party tasks fall into this category and are useful resources. The previous chapter
looked at other components that extend Ant.

The common theme here is that you are using the Ant API to extend Ant. You can take this
further by removing the need for a build file and running an Ant build programmatically. This
is what Ant does anyway; it just needs a build file for configuration. In this chapter, I’ll show
how to build command-line classes with a main() method. These classes will use the Ant API to
simplify tasks that can be tedious to implement.

Designing a Class to Use the Ant API
The Ant API contains a lot of useful functionality that your Java programs could quite easily
harness. This functionality has been used and abused by many Ant users and maintainers, so
you can be confident of its ability to perform its work robustly and efficiently. Another feature
of the Ant API is that it has been used and tested on many platforms, so you can be sure the
functionality imported from the API will be as portable as Ant.

When you want to use the Ant API, you’ll probably be using a specific task to perform the
work. After all, it is the tasks that do the real work in a normal Ant build, so you’ll have to use
them in your stand-alone class. The first stage in the process is selecting the Ant task you want
to replicate in a programmatic build. Once you have chosen the task, you have then to look at
its element from the build file.

A task’s element is important because it gives you insight into the member attributes of the
underlying class. While you have access to the Ant source code, you shouldn’t need to dig
around in it because all the attributes map easily to a setXXX() method in the class. This is how
you built a custom class in Chapter 10. You should check which of these attributes are required

Moodie_559-9C12.fm Page 293 Friday, September 30, 2005 8:45 AM

294 C H A P T E R 1 2 ■ U S I N G T H E A N T A P I

and which are optional and then tailor your checks on the command-line arguments as appro-
priate. You should also decide which of the attributes you are supporting and which of them
you will let users set on the command line.

A great way to start, therefore, is to choose the task you want to use and then write the
usage check. Once you have this in place, you can move on to working with the task. Quite
often you will find that the usage check is the largest part of your class because the Ant task’s
class encapsulates so much of the work.

Working with the Task Life Cycle
When using the Ant API, you approximate a task’s life cycle in your code. The first step is to
instantiate a new instance of the task class by calling its constructor, which is how a task starts
life in a project. In most cases, you can call the execute() method once you’ve set some member
variables with setXXX() methods, omitting the init() method. However, some tasks have an
init() method that you must call before using that task in an application. If you are unsure,
add a call to init() just in case or check the Javadocs for the task you are using.

Choosing a Task
In this chapter, I’ll show how to write a class that deploys WAR files to a running Tomcat server
and undeploys web applications. This example will use the third-party <deploy> and <undeploy>
tasks that come with Tomcat as an example to show that using the Ant API is the same whether
you are using core tasks or third-party ones.

Listing 12-1 shows how you used these tasks in your example build, which is how you will
use these tasks in a stand-alone class.

Listing 12-1. The <deploy> and <undeploy> Tasks You Will Use

<deploy url="${manager.url}"
 username="${manager.user}"
 password="${manager.password}"
 path="/${appName}"
 war="file:${appName.war}"
 update="true"/>

<undeploy url="${manager.url}"
 username="${manager.user}"
 password="${manager.password}"
 path="/${appName}"/>

Let’s decide which of these attributes you need to use. In the case of <deploy>, the filename
is the only piece of information a user has to specify. You can set default values for everything
else, as shown in Table 12-1.

Moodie_559-9C12.fm Page 294 Friday, September 30, 2005 8:45 AM

C H A P T E R 1 2 ■ U S I N G T H E A N T A P I 295

Actually, you won’t even let the user decide the value of the update attribute, so you won’t
offer it at the command line. This decision gives you one required command-line option (the
filename) and four optional command-line options (password, path, url, and username).

The <undeploy> task requires only the path attribute. The other three attributes will be
optional command-line options. For this example, you’ll ignore any WAR filename that the
user supplies if they run the undeploy version.

The final consideration is how to let the deployer class know which action, deploy or unde-
ploy, the user wants to perform. You already have a required command-line option for each
function, so you’ll add the action setting alongside these options. This means the user must
specify a filename and an instruction to deploy when deploying, and a path and an instruction
to undeploy when undeploying.

With all this in mind, Listing 12-2 shows the beginnings of the deployer class. The attributes set
at the top of the class definition are the defaults you will supply if the user does not.

Listing 12-2. The Default Options of the Deployer Class

package org.mwrm.ant.api;

import java.io.File;

import org.apache.tools.ant.Project;
import org.apache.tools.ant.BuildException;

import org.apache.catalina.ant.DeployTask;
import org.apache.catalina.ant.UndeployTask;

public class Deployer {

 // The default URL for the manager application
 private static String managerUrl = "localhost:8080/manager";

Table 12-1. The Default Values for the Command-Line Deploy Task

Attribute Default

password Blank

path Built from the name of the WAR file

update true

url localhost:8080/manager

username Blank

Moodie_559-9C12.fm Page 295 Friday, September 30, 2005 8:45 AM

296 C H A P T E R 1 2 ■ U S I N G T H E A N T A P I

 // The path
 // We'll build the default path below
 private static String path = "";

 // The username
 private static String username = "";

 // The password
 private static String password = "";

 // The filename of the WAR
 private static String filename;

 // The user's desired action
 private static String action = "";

 public static void main(String[] args) {
 ...
 }
}

Writing a Usage Check
You’ve now chosen which attributes to support, so you can write a usage check. Here’s the
error message that the user will see if they get something wrong:

Usage information:
Deployer action [options]
Action:
-a, -action <deploy filename.war [-path <path>] | undeploy -path <path>>
Options:
-url <url>
-u, -username <username>
-p, -password <password>

You’ll implement two methods that display usage information. The first takes no arguments
and prints the previous message, and the second takes a string argument and will display that
string as well as the previous message. Listing 12-3 shows these overloaded methods.

Listing 12-3. The Overloaded usage() Method

 // Display usage information
 private static void usage() {
 System.out.println("Usage information:");
 System.out.println("Deployer action [options]");
 System.out.println("Action:");
 String actionMsg = "-a, -action <deploy filename.war [-path <path>] "

Moodie_559-9C12.fm Page 296 Friday, September 30, 2005 8:45 AM

C H A P T E R 1 2 ■ U S I N G T H E A N T A P I 297

 + "| undeploy -path <path>>";
 System.out.println(actionMsg);
 System.out.println("Options:");
 System.out.println("-url <url>");
 System.out.println("-u, -username <username>");
 System.out.println("-p, -password <password>");

 System.exit(-1);
 }

 // Display a custom message, then usage information
 private static void usage(String message) {
 System.out.println(message);
 usage();
 }

Before you call either of these methods, you need to check the command-line arguments
provided by the user. To do so, you’ll use a series of if...else if statements. If you recognize
an argument switch, you must follow it immediately with the value in which you are interested.
Therefore, you set the appropriate variable and increase the count to indicate you’ve processed the
next argument as well.

You will set a flag called action to keep track of the action the user wants to perform. You’ll
use this later to instantiate the correct type of task. Listing 12-4 shows the main() method.

Listing 12-4. The main() Method Begins by Checking the Arguments

 public static void main(String[] args) {

 try {
 // We'll go through the command-line arguments
 for (int i = 0; i < args.length; i++) {
 String arg = args[i];

 // Check to see whether the user has specified an action
 if (arg.equals("-a") || arg.equals("-action")) {
 // If it's "undeploy", we'll remember that
 if (args[i+1].equals("undeploy")) {
 action = "undeploy";
 i++;
 // If it's "deploy", we'll remember that
 } else if (args[i+1].equals("deploy")) {
 action = "deploy";
 i++;
 // If it's not "undeploy" or "deploy", it's incorrect
 } else {
 usage();
 }

Moodie_559-9C12.fm Page 297 Friday, September 30, 2005 8:45 AM

d10c55b52b1f8994064c85cd755fb5a9

298 C H A P T E R 1 2 ■ U S I N G T H E A N T A P I

 // Check for the path
 } else if (arg.equals("-path")) {
 path = args[i+1];
 i++;
 // Check for the URL
 } else if (arg.equals("-url")) {
 managerUrl = args[i+1];
 i++;
 // Check for the username
 } else if (arg.equals("-u") || arg.equals("-username")) {
 username = args[i+1];
 i++;
 // Check for the password
 } else if (arg.equals("-p") || arg.equals("-password")) {
 password = args[i+1];
 i++;
 // If the user has specified any other argument, it's incorrect
 } else if (arg.startsWith("-")) {
 String msg = "Unknown argument: " + arg;
 usage(msg);
 // If there's no prefix, it's our WAR file
 // We check for it only if we're deploying
 } else if (action.equals("deploy")) {
 // This must be our WAR file
 filename = arg;

 // Create a file object
 File warFile = new File(filename);

 // Check whether this file actually exists
 if (warFile.exists() == false) {
 String msg = "File " + arg + " does not exist.";
 System.out.println(msg);
 System.exit(-1);
 }

 // We should set the path if the user did not
 // The path must begin with a '/'
 if (path.equals("")) {
 // If the WAR file is not in the current directory,
 // there will be a slash
 int begin = filename.lastIndexOf("/");
 // We'll add a slash or not depending on where the WAR is
 String slash = "";

Moodie_559-9C12.fm Page 298 Friday, September 30, 2005 8:45 AM

C H A P T E R 1 2 ■ U S I N G T H E A N T A P I 299

 // If there is no slash, the index will be -1
 if (begin == -1) {
 // Therefore, we need to take the whole filename
 begin = 0;
 // and add a slash to the path
 slash = "/";
 }
 // Build the path by removing the .war extension
 path = slash +
 filename.substring(begin,
 filename.lastIndexOf(".war"));
 }
 }
 }
 // If a command-line option is not followed by another argument
 // the previous checks will throw a ArrayIndexOutOfBoundsException
 } catch (ArrayIndexOutOfBoundsException aioobe) {
 usage();
 }

 // A final set of checks
 if (action.equals("undeploy") && path.equals("")) {
 usage("You must specify a path when undeploying.");
 } else if (action.equals("deploy") && filename == null) {
 usage("You must specify a file when deploying.");
 } else if (action.equals("")) {
 usage("You must specify an action with -a or -action.");
 }
 ...
 } // end of main()

When the deploy task tries to deploy or undeploy a web application, it uses a web applica-
tion path that must begin with a /. When you build the default filename, you use the existing /
if the WAR file is in a directory; however, if the file is in the current directory, you add a / to the
filename. The final step is to strip away the .war extension.

Using a Task
The final part of your command-line deployer creates the relevant task, sets its attributes, and
uses it to deploy or undeploy the WAR file. The most important point to remember when using
the Ant API is that all tasks need a project. As you saw in Chapters 10 and 11, a task’s project
object is integral to its ability to function. During its life cycle, an Ant task will try to use some of its
project’s methods, the most common of which is log(). If you don’t assign your task to a project
object and run it, you’ll get a NullPointerException when the task calls getProject().log() to log
its progress.

Moodie_559-9C12.fm Page 299 Friday, September 30, 2005 8:45 AM

300 C H A P T E R 1 2 ■ U S I N G T H E A N T A P I

For now you will do the bare minimum and add only your task to a project and no more.
(You’ll add loggers and listeners in the “Adding Loggers and Listeners” section.) This is suffi-
cient to use the task, and you can trap any exceptions with a try...catch block. Once you’re at
this stage, the only exceptions will be thrown in the event of problems connecting to the server
or problems on the server. Displaying the results of a Exception.getMessage() call will be
enough to inform the user of the problem with the server. Listing 12-5 shows the final section
of your class.

Listing 12-5. Instantiating and Using the Task

 public static void main(String[] args) {

 ...

 // Our tasks will need a project
 Project project = new Project();

 // Check what we want to do
 if (action.equals("deploy")) {
 // The deployer that will deploy the WAR file
 DeployTask deployer = new DeployTask();

 // The task needs the project's logger
 deployer.setProject(project);

 // Call init() as good practice
 deployer.init();

 // The next few methods set the attributes of the task
 deployer.setUsername(username);
 deployer.setPassword(password);
 deployer.setUrl("http://" + managerUrl);
 deployer.setWar("file:" + filename);
 deployer.setPath(path);
 deployer.setUpdate(true);

 try {
 // Run the task
 deployer.execute();
 System.out.println("Deployed " + filename + " to " + path + ".");
 } catch (BuildException be) {
 System.out.println(be.getMessage());
 }
 } else {
 // The undeployer that will undeploy the application
 UndeployTask undeployer = new UndeployTask();

Moodie_559-9C12.fm Page 300 Friday, September 30, 2005 8:45 AM

C H A P T E R 1 2 ■ U S I N G T H E A N T A P I 301

 // The task needs the project's logger
 undeployer.setProject(project);

 // Call init() as good practice
 undeployer.init();

 // The next few methods set the attributes of the task
 undeployer.setUsername(username);
 undeployer.setPassword(password);
 undeployer.setUrl("http://" + managerUrl);
 undeployer.setPath(path);

 try {
 // Run the task
 undeployer.execute();
 System.out.println("Undeployed " + path + ".");
 } catch (BuildException be) {
 System.out.println(be.getMessage());
 }
 }
 } // end of main()

Here you check for the action the user wants to perform and instantiate a DeployTask
object if they are deploying or an UndeployTask if they are undeploying. From then on, you treat
both classes in a similar way by adding them to the project, calling their init() methods, and
setting the attributes you have collected from the command line or that you provided as defaults.
Notice how the number of setXXX() calls corresponds to the number of attributes you used in
the original build file.

The final step in each case is to run the execute() method of the task. This mimics the final
stage in the task’s life cycle, as described in Chapter 10. The task will run, and if there’s a problem,
it will throw a BuildException. You catch this and display its message to the user. If the task was
successful, you tell the user because the task has no way to display output. You’ll use a logger
and listener to display both success and failure in the next section.

By calling the execute() method of each task, you are using that task’s functionality without
knowing any of the implementation details. This is fine because the whole point of using the
Ant API is to harness the complex functionality of its tasks and use this functionality in a simple,
easy way. You have no need to write the code to connect to the server, send the password, and
deploy or undeploy the application. The beauty of the Ant API is that it does most of the work
for you. You simply supply the information and validate it to provide a user-friendly experience
to your users. Relying on an Ant BuildException in every case does not leave you in control of
the output from the command-line task.

Adding Loggers and Listeners
If you want to incorporate a logger or listener into your application, it’s a fairly simple matter.
At the moment, your deployment class uses System.out.println() calls to display information
to the user. This has the advantage that it is simple, but it doesn’t save the messages or give you
any real flexibility with the output format. The arguments against System.out.println are the

Moodie_559-9C12.fm Page 301 Friday, September 30, 2005 8:45 AM

302 C H A P T E R 1 2 ■ U S I N G T H E A N T A P I

same in this chapter as they were in the previous chapter. As you saw then, Ant provides loggers
and listeners that can solve the problem.

Another disadvantage of System.out.println() when using the Ant API is that messages
from a task are swallowed by the project object because there is no logger to display them,
which forced you to confirm the success of a task in the previous section. Here are some examples
of task messages that are lost when you don’t use a logger or a listener:

[javadoc] Generating Javadoc
[zip] Building zip: C:\JavaStuff\AntBook\ch12\dist\antBook-docs.zip
[exec] A secret key is required to make a signature.
[copy] Copying 1 file to C:\JavaStuff\AntBook\ch12\build\docs

You’re using the Ant API in this chapter, so you can quite easily incorporate Ant’s logging
system into the application. Actually, Ant’s logging system may be a useful addition to any
class, never mind if it uses an Ant task. Once you see how easy it is to use Ant’s loggers, and the
Log4j logger in particular, you will see that most of the work is again done by the Ant API.

Ant has two layers of logging: project-level logging and task-level logging. The one that Ant
uses depends on where the log() method is called, and that’s the same whether you use Ant as
a build tool or you use the Ant API. This distinction matters only if the loggers and listeners you
use discriminate on the grounds of message originator. For example, the default logger prints
the name of the task that logged a message before it displays that message but does not prefix
a project-level log message. If you use the Log4j listener, you can configure it to differentiate
between the two layers if you want.

Let’s start by giving the user two more options for logging. You’ll use the default logger
(org.apache.tools.ant.DefaultLogger) to display messages to System.out, unless the user
specifies a log file with the -l/-logfile option. Not everyone will want to use the Log4j listener
(org.apache.tools.ant.listener.Log4jListener) for logging because it requires external
libraries, so you’ll turn it off by default. If the user wants to use it, they can specify the -log4j
option. Here’s the revised usage information:

Usage information:
Deployer action [options]
Action:
-a, -action <deploy filename.war [-path <path>] | undeploy -path <path>>
Options:
-url <url>
-u, -username <username>
-p, -password <password>
-l, -logfile <logfile>
-log4j

You’ll need some more classes for your new implementation. Listing 12-6 shows the
required classes.

Moodie_559-9C12.fm Page 302 Friday, September 30, 2005 8:45 AM

C H A P T E R 1 2 ■ U S I N G T H E A N T A P I 303

Listing 12-6. The New Imports for the Logging Implementation

import java.io.PrintStream;
import java.io.FileOutputStream;
import java.io.FileNotFoundException;

import org.apache.tools.ant.DefaultLogger;

import org.apache.tools.ant.listener.Log4jListener;

I won’t show the new usage() method because there’s nothing exciting there. However,
you’ll need three new variables to deal with the new information. Listing 12-7 shows these
member variables.

Listing 12-7. The New Variables to Deal with Logging

 // Sets whether the default logger will use the log file or System.out
 private static boolean useLogFile = false;

 // The log file for the default logger
 private static String logFile;

 // Sets whether we use the Log4j listener
 private static boolean useLog4j = false;

These new command-line options and variables require some more checks in the main()
method. You need only two because by setting a log filename, the user has signaled they would
like to use a file and not System.out. Listing 12-8 shows these new checks.

Listing 12-8. Determining a User’s Views on Logging

 ...
 // Check whether the user wants to use a log file
 } else if (arg.equals("-l") || arg.equals("-logfile")) {
 logFile = args[i+1];
 useLogFile = true;
 i++;
 // Check whether the user wants to use Log4j
 } else if (arg.equals("-log4j")) {
 useLog4j = true;
 // If the user has specified any other argument, it's incorrect
 } else if (arg.startsWith("-")) { ...

Each logger and listener belongs to the project and not a task. I’ve already discussed how
each task needs access to the project because that’s where the loggers are, so you need to add
your logger and listener to the project. Listing 12-9 shows the process of adding a logger and a
listener. The getLogger() method prepares an instance of the default logger, as shown in
Listing 12-10.

Moodie_559-9C12.fm Page 303 Friday, September 30, 2005 8:45 AM

304 C H A P T E R 1 2 ■ U S I N G T H E A N T A P I

Listing 12-9. Adding a Logger and a Listener

 // Our tasks will need a project
 Project project = new Project();

 // Add the logger
 // getLogger() is described next
 project.addBuildListener(getLogger());

 // Does the user want to use Log4j?
 if (useLog4j == true) {
 // The listener is configured with the log4j.properties file
 Log4jListener listener = new Log4jListener();
 project.addBuildListener(listener);
 }

The Project.addBuildListener() adds a logger or a listener to a project and makes it avail-
able to any tasks associated with the project. You add the listener only if the user wanted to,
though this shows how easy it is to use Log4j through the Ant API. You’ve just imported the
Log4jListener class and added it to a Project object. From now on, you can log by calling
project.log().

Listing 12-10. The getLogger() Method Returns an Instance of the Default Logger

 // Return the default logger for the project
 private static DefaultLogger getLogger() {
 // The logger for this class
 DefaultLogger logger = new DefaultLogger();

 // The default logger needs somewhere to write to
 PrintStream out = null;

 // Does the user want to write to a file?
 if (useLogFile == true) {
 try {
 // We'll log to the file the user specified
 // "true" here means "append to the file"
 out = new PrintStream(new FileOutputStream(logFile, true));
 } catch (FileNotFoundException fnfe) {
 // We can't use the log just yet
 System.out.println(fnfe.getMessage());
 // We'll fall back to System.out
 System.out.println("Using the console.");
 out = System.out;
 }
 } else {

Moodie_559-9C12.fm Page 304 Friday, September 30, 2005 8:45 AM

d10c55b52b1f8994064c85cd755fb5a9

C H A P T E R 1 2 ■ U S I N G T H E A N T A P I 305

 // The default is to print to System.out
 out = System.out;
 }

 // Set the output streams for the logger
 logger.setOutputPrintStream(out);
 logger.setErrorPrintStream(out);

 // Set the message threshold for this logger
 logger.setMessageOutputLevel(Project.MSG_INFO);

 return logger;
 }

The most important lines are those that set the output stream, error stream, and message
threshold. The rest of the method just prepares the logger before you return it and add it to the
project. The final changes to your class are some slight modifications to the end of the main()
method, as shown in Listing 12-11.

Listing 12-11. Enabling Logging in the main() Method

 // Our tasks will need a project
 Project project = new Project();

 // Add the logger
 project.addBuildListener(getLogger());

 // Does the user want to use Log4j?
 if (useLog4j == true) {
 // The listener is configured with the log4j.properties file
 Log4jListener listener = new Log4jListener();
 project.addBuildListener(listener);
 }

 // The deployer that will deploy the WAR file
 DeployTask deployer = new DeployTask();
 // The undeployer that will undeploy the application
 UndeployTask undeployer = new UndeployTask();

 // Check what we want to do
 if (action.equals("deploy")) {
 // The task needs the project's logger
 deployer.setProject(project);

 // The name of this task
 deployer.setTaskName("deployer");

Moodie_559-9C12.fm Page 305 Friday, September 30, 2005 8:45 AM

306 C H A P T E R 1 2 ■ U S I N G T H E A N T A P I

 // The next few methods set the attributes of the task
 deployer.setUsername(username);
 deployer.setPassword(password);
 deployer.setUrl("http://" + managerUrl);
 deployer.setWar("file:" + filename);
 deployer.setPath(path);
 deployer.setUpdate(true);

 try {
 // Run the task
 deployer.execute();
 } catch (BuildException be) {
 // The three ways to log with a task
 //System.out.println(be.getMessage());
 //project.log(be.getMessage());
 if (!(be.getMessage().indexOf("FAIL") > -1)) {
 deployer.log(be.getMessage());
 }
 }
 } else {
 // The task needs the project's logger
 undeployer.setProject(project);

 // The name of this task
 undeployer.setTaskName("undeployer");

 // The next few methods set the attributes of the task
 undeployer.setUsername(username);
 undeployer.setPassword(password);
 undeployer.setUrl("http://" + managerUrl);
 undeployer.setPath(path);

 try {
 // Run the task
 undeployer.execute();
 } catch (BuildException be) {
 // The three ways to log with a task
 //System.out.println(be.getMessage());
 //project.log(be.getMessage());
 if (!(be.getMessage().indexOf("FAIL") > -1)) {
 undeployer.log(be.getMessage());
 }
 }
 }
 } // end of main()

Moodie_559-9C12.fm Page 306 Friday, September 30, 2005 8:45 AM

C H A P T E R 1 2 ■ U S I N G T H E A N T A P I 307

The most interesting pieces here are the if blocks around the log() calls. As is common
with most tasks, in some circumstances the deployment tasks display an error message before
throwing a BuildException. For example, if the undeploy task tries to undeploy an application
that does not exist, it will display the following before throwing a BuildException:

FAIL - No context exists for path /antBook

In this case, you don’t want to display the same message again with a log() call in the
catch block. If you did, users would think there’s more wrong than there actually is.

You’ll run into other occasions where these tasks do not display a message along with a
BuildException, such as when Tomcat is unavailable. In these cases, you’ll want to display the
message to the user. The difference between the two situations is that in the first example there
was a problem with the command that you sent and Tomcat has rejected it, and in the second
example there was a problem before you could execute the command. A similar thing could
happen if you did not provide proper user credentials to Tomcat.

These two tasks signal the distinction between an error with the command and a problem
executing the command by prefixing the former with FAIL. You’ve taken advantage of this and
filtered out your logging so that the task’s internal logging messages are the only ones displayed
in the event of a failure on the server.

Once you have compiled this class, you need to run it with the following command or add
the JAR files to your classpath:

> java -classpath dist/antBook-api.jar;%ANT_HOME%/lib/catalina-ant.jar;
%ANT_HOME%/lib/ant.jar org.mwrm.ant.api.Deployer ...options...

Let’s assume these are in the classpath and run a simpler version to test the default logger:

> java Deployer -a deploy dist/antBook.war -u antBook -p antB00k

 [deployer] OK - Deployed application at context path /antBook

Now that you are using a logger, the task can display its own messages, and you don’t have
to worry about it. The next step is to check that the task logs to a log file. Run the following:

> java Deployer -a undeploy -path /antBook -u antBook -p antB00k -l deploy.log

The file deploy.log will contain the results of this run:

[undeployer] OK - Undeployed application at context path /antBook

You are sure that the default logger is working as planned, so it’s time to test the Log4j logger.
As you saw in the previous chapter, Log4j uses a configuration file called log4j.properties, so
let’s write one for your deployment example, as shown in Listing 12-12.

Moodie_559-9C12.fm Page 307 Friday, September 30, 2005 8:45 AM

308 C H A P T E R 1 2 ■ U S I N G T H E A N T A P I

Listing 12-12. The log4j.properties File for Log4j Logging

Set the root logger for Ant API logging
log4j.rootLogger=INFO, AntLogger

Log to a pattern file
log4j.appender.AntLogger=org.apache.log4j.FileAppender
log4j.appender.AntLogger.File=C:/TEMP/antBook/logs/deploy.log

Use a pattern layout
log4j.appender.AntLogger.layout=org.apache.log4j.PatternLayout
log4j.appender.AntLogger.layout.ConversionPattern=%d{ISO8601} - %p - %c{1}: %m %n

You have to make sure this file is in the classpath so the logger can read it. Also, a few more
classes are required in the classpath and are shown in the following command:

> java -classpath .;dist/antBook-api.jar;%ANT_HOME%/lib/catalina-ant.jar;
%ANT_HOME%/lib/ant.jar;%ANT_HOME%/lib/ant-apache-log4j.jar;
C:\log4j\dist\lib\log4j.jar org.mwrm.ant.api.Deployer

This time you need the current directory (.) for the log4j.properties file; the deployer
class (antBook-api.jar); the deployer and undeployer tasks (catalina-ant.jar); Ant API classes,
such as BuildException and Project (ant.jar); the Log4j logger (ant-apache-log4j.jar); and
the Log4j classes for the logger to use (log4j.jar). Make sure the paths to your versions of these
files are correct. Again, let’s assume these are all in the classpath and test the Log4j logger:

> java Deployer -a deploy dist/antBook.war -u antBook -p antB00k -log4j

If Tomcat is running and the command is successful, the default logger will log to System.out,
and the Log4j logger will log to the deploy.log file specified in Listing 12-12. Here’s the result:

2005-09-17 14:20:51,524 - INFO - DeployTask:
OK - Deployed application at context path /antBook

You can use the default logger and the Log4j logger to write to files at the same time with
the following:

> java Deploy -a undeploy -path /antBook -u antBook -p antB00k -log4j
 -l deploy.txt

Writing a Batch Copy Class
As a final example, I’ll show how to use some other parts of the Ant API. One particular feature
of Ant is its ability to work with batches of files in file sets and pattern sets. You can take advan-
tage of these components in stand-alone classes just as you can take advantage of other parts
of the Ant API. For example, in a build you can use the <copy> task to copy batches of files that
match a certain pattern. You can do the same in a stand-alone class.

I won’t go into the details of command-line options as I did for the deployer class because
the important concept here is how to use a file set in a stand-alone class. What you do have to
consider is the required attributes of a <fileset> element. As described in Chapter 4, you must

Moodie_559-9C12.fm Page 308 Friday, September 30, 2005 8:45 AM

C H A P T E R 1 2 ■ U S I N G T H E A N T A P I 309

set either the file attribute or the dir attribute of a <fileset> element; the file attribute is
shorthand for a file set that contains only one file.

With this in mind, you’ll set the dir attribute of the file set. To do so, you need a file set
object (org.apache.tools.ant.types.FileSet), and then you need to call the setDir() file with
a File object as an argument. As with a build file, you need to build a file set with includes and
excludes, which you do with the setIncludes() and setExcludes() methods:

public void setIncludes(String includes)
public void setExcludes(String excludes)

The parameter in each case is a comma-separated list of patterns to include or exclude,
though you can call each method more than once to add patterns to the list of patterns held by
a particular file set.

Once you have a file set, you add it to the copy task (org.apache.tools.ant.taskdefs.Copy)
with the addFileset() method. The other important method is the copy task’s addToDir()
method, which sets the destination for the copy operation. Listing 12-13 shows the Copyer class.

Listing 12-13. The Copyer Class Uses the Ant Copy Task

package org.mwrm.ant.api;

import java.io.File;
import java.io.PrintStream;

import org.apache.tools.ant.Project;
import org.apache.tools.ant.DefaultLogger;

import org.apache.tools.ant.taskdefs.Copy;

import org.apache.tools.ant.types.FileSet;

public class Copyer {

 public static void main(String[] args) {
 // Your tasks will need a project
 Project project = new Project();

 // Add the logger
 project.addBuildListener(getLogger());

 // Instantiate the copy task
 Copy copyTask = new Copy();

 // Build the file set
 FileSet fileset = new FileSet();
 fileset.setIncludes("*.xml");
 fileset.setIncludes("*.xsl");
 fileset.setDir(new File("."));

Moodie_559-9C12.fm Page 309 Friday, September 30, 2005 8:45 AM

310 C H A P T E R 1 2 ■ U S I N G T H E A N T A P I

 // Add the file set to the copy task
 copyTask.addFileset(fileset);
 // Set the destination for the files
 copyTask.setTodir(new File("copydir"));

 // The name of this task
 copyTask.setTaskName("copyer");

 // Add the copy task to the project
 copyTask.setProject(project);

 // Call init() as good practice
 copyTask.init();

 // Copy the files
 copyTask.execute();
 }

 // Return the default logger for the project
 private static DefaultLogger getLogger() {
 // The logger for this class
 DefaultLogger logger = new DefaultLogger();

 // The default logger needs somewhere to write to
 PrintStream out = System.out;

 // Set the output streams for the logger
 logger.setOutputPrintStream(out);
 logger.setErrorPrintStream(out);

 // Set the message threshold for this logger
 logger.setMessageOutputLevel(Project.MSG_INFO);

 return logger;
 }
}

You set two patterns here (*.xml and *.xsl), which you want to copy to the copydir directory.
The rest of the class is straightforward and again demonstrates how easy it is to use the Ant API
in complex situations such as this. The Ant tasks do all the work of matching patterns and
copying the files.

Moodie_559-9C12.fm Page 310 Friday, September 30, 2005 8:45 AM

C H A P T E R 1 2 ■ U S I N G T H E A N T A P I 311

Summary
This chapter introduced the concept of using the Ant API in normal Java programs. The Ant API
contains many powerful classes that do a lot of complex processing for you. You simply have to
gather enough information for your chosen task to do its job. This information does not neces-
sarily need to come from the command line, and you can use Ant classes from any kind of Java
class if you need its abilities. The first example was a command-line deployment/undeployment
task that worked with Tomcat’s manager application. You extended this by adding loggers and
listeners from the Ant API.

The chapter ended with an example of how to use file sets and the <copy> task in a stand-
alone Java class. By doing so, you gained access to Ant’s pattern-matching and batch-copying
abilities without having to write any complicated code of your own.

Moodie_559-9C12.fm Page 311 Friday, September 30, 2005 8:45 AM

d10c55b52b1f8994064c85cd755fb5a9

Moodie_559-9C12.fm Page 312 Friday, September 30, 2005 8:45 AM

313

Index

■Numbers and Symbols
* (asterisk) wildcard character

used in Ant patterns, 78–80

using with glob mappers, 289–290

\ (back slashes), warning against using in
property files, 50–51

** (double asterisk) wildcard character, used
in Ant patterns, 78–80

/ (forward slashes)

adding to the filename if the file is in the
current directory, 299

use of in property files, 50

${} notation, for displaying the value of a
property, 41

> (output redirector), for capturing the entire
output of the build, 176

% pattern character, description of, 275

| (pipe character), for capturing the entire
output of the build, 176

? (question mark) wildcard character, used in
Ant patterns, 78–80

■A
abstract classes

provided by the Ant API for use as basis of
a custom task, 226

website address for information about
specialized, 227

addConfiguredName() method, comparing
with the addName() method,
250–251

addConfiguredXXX() method

for implementing a nested element, 243

writing in Ant, 250–251

addFileset() method, adding a file set to the
copy task with, 309–310

addName() method

comparing with the
addConfiguredName() method,
250–251

general signature for, 246

addproperty attribute, for <input> task, 160

addSrcfiles() method, signature for, 259

addText() method

new body text and execution of, 239–240

writing in Ant, 239–241

addToDir() method, for setting the
destination for the copy operation,
309–310

addXXX() method

for implementing a nested element, 243

using to add nested elements, 258

writing in Ant, 246–250

algorithm attribute, of <modified>
element, 93

alwayslog attribute, of <redirector>
component, 176

<and> container, function of, 95

<and> element, function of, 72

Ant

assembling the project for distribution,
121–128

command-line options table, 33–34

compiling Java applications with, 104–121

creating directories in, 106–107

creating PGP hashes with, 183–185

examining its types, 77–98

extending, 269–291

installing, 11–31

installing a binary distribution, 11–14

Moodie_559-9Index.fm Page 313 Tuesday, October 11, 2005 6:23 AM

314 ■I N D E X

introducing build file syntax, 35–40

introduction to, 1–9

layers of logging in, 302

list of parameter type conversions, 237–238

running from the command line, 33–35

as standard build tool for Jakarta
products, 8

starting Tomcat in, 181–183

upgrading, 31

using, 33–76

using in large projects, 209–223

using master build files and Ant
delegation, 210

working with zip file sets in, 97–98

writing custom tasks, 225–268

Ant API

designing command-line classes to use,
293–308

using, 293–311

Ant binary distribution

downloading and installing, 11–14

signature file for verifying, 16

using MD5 and SHA1 tools to verify the
download, 19–22

verifying, 13

verifying the download, 14–22

website address, 11

Ant binary download screen, 12–13

Ant build file editor, website address for, 36

Ant builds, logging, 269–286

Ant built-in properties, accessing, 42–43

Ant CVS repository web site, downloading
nightly snapshots of CVS repository
from, 24–26

Ant documentation, writing, 137–138

Ant download page, obtaining MD5 from, 19

Ant environment variables, using to set its
default behavior, 35

Ant mail logger, properties that
configure, 271

Ant manual, in the docs directory, 30

Ant patterns

setting, 80–83

wildcard characters used in, 78

Ant public key, website address for
downloading after installing PGP, 15

Ant source distribution

building with the build script, 26–28

code showing targets that build the main,
27–28

downloading and installing, 22–28

examining, 29–31

KEYS, README, welcome.xml, and
WHATSNEW files in, 29–30

looking at directories in, 30–31

verifying after downloading, 26

Ant source download screen, downloading a
stable build from, 23–24

Ant targets and tasks, introduction to, 8–9

Ant tasks

categories of, 9

contained in Ant targets, 8–9

examining custom, 225–243

moving to subordinate build files, 211–218

Ant web site, CVS Repositories section of, 25

ant.* scripts, understanding, 30

ANT_ARGS environment variable, 35

$ANT_HOME, setting on Unix, 29

ANT_HOME environment variable, setting,
28–29

%ANT_HOME%, setting on Windows, 28–29

ANT_OPTS environment variable, 35

<ant> task

attributes of, 116

nested elements, 211

table of attributes, 211

using to use another project’s build file in
your own project, 115

<antcall> task

attributes of, 118

example calling the hash-generation
target, 183–184

using to call a target in the current
project’s build file, 118–120

using to control a project, 119

using vs. the depends attribute, 121

Moodie_559-9Index.fm Page 314 Tuesday, October 11, 2005 6:23 AM

315■I N D E X

AntComponentLogger logger, that captures
messages only from the project,
targets, and from inside tasks, 280

Ant-Contrib <if> task, code for using, 267

Ant-Contrib performance listener, using, 286

Ant-Contrib project

Ant performance-monitoring tool in, 266

website address for third-party Ant
tasks, 266

antfile attribute, of <ant> task, 116, 211

antlib file

including it in the build file, 263

using, 263–266

antlib namespace, code for defining, 266

<antlib> element, moving all custom and
third-party tasks into an antlib file by
wrapping in, 264

ant.log file

contents of, 273–274

produced with the -logfile option, 270

ant.pattern.log log file, code listing for, 276

antRun.* scripts, understanding, 30

Ant’s default target, code that calls, 27

<antstructure> task, using to generate an
incomplete DTD, 35

Apache Ant. See Ant

Apache Ant Source Distributions screen, 23

Apache Java projects, Ant as the standard
build tool for, 8

append attribute

of <cvs> task, 112

of <exec> task, 179

of <java> task, 173

of <redirector> component, 176

of <sql> task, 170

applications. See also example application

adding loggers and listeners to, 301–308

centralized properties and pattern sets for
bundling, 139–140

deploying, 131–167

deploying a web application on a running,
163–166

deploying with the manager application,
166–167

distributing, 156–167

distributing via e-mail, 161–163

example. See example application

placing on an FTP server, 156–159

running external from within your build
process, 169–185

testing as part of your software
development process, 187–207

testing by instantiation, 187–188

zipping, 140–147

application-specific build targets, moving,
215–216

apply task, that can use directory sets, 84

arch attribute, of <os> nested element, 66

<arg> element

nesting to send arguments to the class you
are running, 174

table of attributes, 174

arg1 attribute, of <equals> nested
element, 68

arg2 attribute, of <equals> nested
element, 68

<assertions> element, for enabling Java 1.4
assertions, 174

asterisk (*) wildcard character, using with
glob mappers, 289–290

attrib task, that can use directory sets, 84

attributes, common of <exclude>,
<excludesfile>, <include>, and
<includesfile> elements, 81

authentication, using PGP for to verify binary
distribution download, 14–19

autocommit attribute, for <sql> task, 170

<available> task

attributes of, 61

using, 61–63

■B
back slashes (\), warning against using in

property files, 50–51

base directory

code for setting, 37

setting for the current build, 36

Moodie_559-9Index.fm Page 315 Tuesday, October 11, 2005 6:23 AM

316 ■I N D E X

basedir attribute

of <isfileselected> element, 69

of <jar> task, 125

placing a property marker in, 41

setting the base directory of the current
build with, 36

of <tar> task, 147

of <war> task, 126

of <zip> task, 141

batch copy class, writing in Ant, 308–310

batch tests, using a JAR file for, 203

<batchtest> element, for running all the tests
in a batch, 197

BEA’s WebLogic server, website address
for, 266

Beck, Kent, Test-Driven Development: By
Example (Addison-Wesley, 2002)
by, 187

bin directory, looking at in the Ant source
distribution, 30

binaries and documentation

bundling by adding more steps to the list
of <tar> tasks, 150–151

bundling for distribution, 145–147

binary and source distributions

bundling, 147

using tar to bundle the entire distribution,
154–155

binary distribution, bundling the entire,
146–147

bootclasspath attribute, of <mkdir> task, 107

<bootclasspath> element, for specifying the
boot classpath, 174

bootclasspathref attribute, of <mkdir>
task, 107

bootstrap build, calling the main Ant class to
build, 27

build directory, needed for example
application, 104

build events, the BuildEventLogger class
receives notification of, 283–285

build files

accessing environment variables, 47–48

the beginning of the stand-alone
subordinate, 215–216

changing a task’s entry in to add an id
reference, 234–235

code showing minimum requirements
for, 35

documenting, 137–138

with a DTD declaration, 36

introducing syntax for Ant’s, 35–40

making them portable, 40

relied on by build tools, 5

setting properties in, 44–48

using Ant’s in large projects, 209–223

using a reference to set properties in, 46–47

using master build files and Ant
delegation, 210

working with properties for, 40–59

the zip and tar tasks’ subordinate build, 217

build paths, using the zip and tar to create
compressed bundles of files, 156

build process

adding a status bar to, 159–160

adding interactive input to, 160–161

documenting the build file and, 137–138

example of, 5

example of forking, 60

running external applications from
within, 169–185

build script, building the Ant source
distribution with, 26–28

build targets, moving the application
specific, 215–216

build tools, history of, 5–9

BuildEventListener class, compiling and
assigning as a listener, 283

BuildEventLogger class, receiving
notification of build events, 283–285

buildin attribute, of <propertyref>
element, 73

build.jstl.xml file, code for, 214

build.properties, setting properties in, 166

build.properties file

creating to set up a working environment
for example application, 104–111

names of the directories in example
application, 105–106

Moodie_559-9Index.fm Page 316 Tuesday, October 11, 2005 6:23 AM

317■I N D E X

builds, using properties to control, 59–73

build.xml, code for the bootstrap target
from, 27

build.xml file, including the example
application properties in, 106

built-in properties

naming convention, 42

using, 42–44

bzip2, website address, 138

■C
c pattern character, description of, 274

cache attribute, of <modified> element, 93

caching attribute, for <sql> task, 170

casesensitive attribute

of <contains> element, 71, 87

of <dirset> element, 84

of <equals> nested element, 68

of <filename> element, 90

of <fileset> element, 85

CATEGORY_NAME options, brief list of, 279

chained mappers, using, 291

<chainedmapper> element, specifying a
chained mapper with, 291

checkdirs attribute, of <date> element, 87

Checkstyle framework, for code conventions
and how to test them in Ant, 187

<checkstyle> task

code for defining and using, 206

nested elements for, 205

table of attributes, 204

testing code conventions with, 203–207

using, 205–206

<checksum> test, using, 70

chgrp task, that can use directory sets, 84

chmod task, that can use directory sets, 84

chown task, that can use directory sets, 84

class file sets, working with, 96–97

<classfileset> element

attribute of, 96

a class file set represented by, 96

classname attribute

of <available> task, 61

of <java> task, 173

classpath, specifying with a nested
<classpath> element, 53

classpath attribute

of <available> task, 61

of <checkstyle> task, 204

of <java> task, 173

of <mkdir> task, 107

of <property> task, 55

specifying as nested <classpath>
element, 62

of <sql> task, 170

classpath pathlike structure, setting, 74–75

CLASSPATH variable, 1

<classpath> element

specifying a classpath with a nested, 53

for specifying the classpath, 174

classpathref attribute

of <available> task, 61

of <checkstyle> task, 204

of <java> task, 173

of <mkdir> task, 107

of <property> task, 55

of <sql> task, 170

using, 53

clean target, for all Ant projects, 124

code conventions, testing, 203–207

code listing

of an abridged test result’s XML file, 196

addConfiguredName() gives access to the
nested elements properties, 250

adding a description to a target, 38

adding a logger and a listener to a
project, 304

adding an antlib file to a JAR file, 265

adding a prefix to imported properties,
52–53

adding a splash screen to the FTP target,
159–160

adding keys in the KEYS file to your PGP
key ring, 17

adding user input to the ftp target, 161

the addName() element adds <name>
elements to the task, 247

Moodie_559-9Index.fm Page 317 Tuesday, October 11, 2005 6:23 AM

318 ■I N D E X

Ant converts a string into the appropriate
path, 46–47

an <antcall> task calls the hash-generation
target, 183–184

of antlib.xml file that contains the book’s
task definitions, 264

the ant.log log file, 273–274

of the ant.log log file produced with the
-logfile option, 270

the ant.pattern.log log file, 276

for assembling your documentation,
136–137

for assigning a component’s Log4j logger
to an appender, 279

of basic syntax for properties files in
Ant, 49

of the bootstrap target from build.xml, 27

of a build file with a DTD declaration, 36

the BuildEventListener class receives
notification of build events, 282

the BuildEventLogger class receives
notification of build events, 283–285

building a file set only if the two.stars
property is set, 86

building a platform-specific path and
directory hierarchies, 43

building a platform-specific path with
Unix-style file separators, 44

building just the application, 119

building pathlike structures, 74

building the classpath in the build file with
environment variables, 51

building the master classpath with a
<path> element, 110

building third-party libraries as well as the
application, 119

for bundling entire binary distribution,
146–147

for bundling entire distribution, 147

centralized properties and pattern sets for
bundling the application, 139–140

changing a third-party’s key trust level, 19

changing the depends attribute of
compile-stand-alone target, 117

changing the depends attribute of
compile-web target, 117

checking an application’s source files,
200–201

checking that a user wants to run a single
test, 202

checking that Tomcat is running, 181

checking the test source, 201

checking whether the last test failed, 201

the Checkstyle test target, 207

the clean target removes the working
directories, 125

combining a chained mapper with other
mappers, 291

compiling custom tasks, 229

the Copyer class using the Ant Copy task,
309–310

copying the Java properties file using the
<copy> task, 123

copying the web applications web pages
and configuration files, 123–124

creating digests of zip files, 144–145

creating Javadocs for the example
application, 133–135

for creating, verifying, and signing your
private key, 17–18

of the CVS homes of the third-party
libraries, 113

for the database.properties file, 171

declaring a custom task and using, 229

the default options of the deployer class,
295–296

of the default target for displaying usage
information for a build, 257

defining and using the <checkstyle>
task, 206

for defining the antlib namespace, 266

the <deploy> and <undeploy> tasks you
will use, 294

for deploying a web application by
copying its context XML file, 165

for deploying the expanded web
application, 164

deploying the web application as a
WAR, 165

Moodie_559-9Index.fm Page 318 Tuesday, October 11, 2005 6:23 AM

d10c55b52b1f8994064c85cd755fb5a9

319■I N D E X

for deploying your application using the
manager application, 167

determining a user’s views on logging, 303

directory set using an explicit pattern set
followed by an implicit pattern
set, 83

for displaying a list of targets in a
project, 257

for displaying Ant’s built-in properties, 43

downloading the JSP JAR file with the
<get> task, 115

downloading the servlet JAR file with the
<get> task, 111

for e-mailing documentation, 162

enabling logging in the main() method,
305–307

of example run of addName() element,
247–248

the example task’s constructor, 228

example task’s init() method calling the
output method, 234

for excluding the subordinate build files
from the Javadoc classpath, 218

execute() method checks usage and
display the results, 248–250

the ExtendJavadocTask adds checks for
up-to-date files to the <javadoc>
task, 260–263

of a file set that turns off default
excludes, 86

for FTP server settings, 157

the FTP target builds the entire
application and loads it onto the FTP
server, 159

of full version of the package-stand-alone
target, 126

for gaining access to the system’s
environment variables, 47

of general structure of <if> task, 266

for generating an incomplete DTD, 36

the getLogger() method returns an
instance of the default logger,
304–305

the if attribute determines whether a
target runs, 118

the implementation of the execute()
method for a task, 241

implementing the addText() method,
239–241

for improving the output and failing the
build when a test fails, 194

for including the example application
properties in build.xml, 106

for initializing the testing
environment, 190

instantiating and using the task, 300–301

the <javac> task compiles the stand-alone
application, 110

the <javac> task compiles the web
application, 110–111

of the Javadoc file set, 133

java.lang.Class, 238

for the JSTL subordinate build file, 214

for loading a local property file, 52

of a log that captures messages only from
the project, targets, and from inside
tasks, 280

the log4j.properties file, 273

the log4j.properties file for Log4j logging,
308

of a log4j.properties file that logs
context-specific messages, 280

the logAll() method that all life-cycle
methods will use, 231–232

for logging to the console, 278

the main() method begins by checking the
arguments, 297–299

making the hash-generation target more
general, 184

of the master build targets that package
the application, 220

for the master build targets that test the
application, 221–222

master targets for building both
applications, 119–120

of md5script.bat for testing the integrity of
a download, 20–21

of minimum requirements for Ant’s build
file, 35

Moodie_559-9Index.fm Page 319 Tuesday, October 11, 2005 6:23 AM

320 ■I N D E X

the <mkdir> task creates the directory
structure, 106–107

moving the packaging build, 216

of MySQL connector subordinate build
file, 213

the NameElement class now has an
overload constructor, 252–253

for the names of directories in
build.properties, 105–106

the names of the subordinate build
files, 212

for nesting a <message> element, 163

the new imports for the logging
implementation, 303

the new variables to deal with logging, 303

for organizing the test file structure,
189–190

the overloaded usage() method, 296–297

the package-stand-alone target creates the
stand-alone application’s JAR
file, 126

pattern sets demonstration, contrasting
the * and ** patterns, 83

for placing a property marker in the
<project> element, 41

for placing the junit.jar file into
ANT_HOME/lib, 188

for the <project> element of the test
subordinate build file, 218

ProjectHelpTask for displaying usage
information for a build, 256–257

the properties for adding an antlib file to a
JAR file, 265

of properties for compiling the custom
tasks, 229

properties for naming distribution
bundles, 138

properties for obtaining and building the
third-party libraries, 114–115

of properties for the Javadoc build, 132

the properties for the test targets, 190

of properties for working with offline
documentation, 135

properties that configure Ant’s mail
logger, 271

for providing the username and password
at the command line for security, 157

pseudocode showing dependencies
described in Figure 1-1, 6

of relevant ant command to display
descriptions, 39

for removing references to application
"home" directories, 51

for removing the need for environment
variables, 50

for retrieving properties from a remote
file, 54

rewritten to save the results in a file with a
timestamp, 178–179

for running all the tests in a batch, 197

running a single test in a batch, 199–200

for running only one section of the build
process, 7

for running the Ant mail logger, 271

for running the stand-alone client, 176

for running the tests after checking
whether you should, 202–203

of a sample context XML file called
antBook.xml, 165

for saving test data as XML, 195

of script calling the main Ant class to build
the bootstrap build, 27

for seeing who has signed the keys in your
key ring, 18–19

sending documentation and source to
remote FTP server only if they are
newer files, 158

for sending logging messages to two
destinations, 278–279

for sending the binaries to a remote FTP
server, 159

sending documentation to a remote FTP
server, 157

the setName() method sets the name
attribute, 236

for setting $ANT_HOME on Unix, 29

for setting a classpath where a properties
file is located, 53

for setting a dependency, 39

Moodie_559-9Index.fm Page 320 Tuesday, October 11, 2005 6:23 AM

321■I N D E X

for setting a project name, base directory,
and default target, 37

setting a property to a filename using a
relative path, 45–46

for setting a property to the value of
another property, 45

setting a property with a name-value
pair, 45

setting defaults for command-line
arguments, 175–176

for setting the mysql property at the
command line, 118

of the shared code’s subordinate build
file, 215

showing how the referenceCheck()
method looks for custom task
references, 233

showing in-file property expansion in a
property file, 49

showing you have to do the work in the
createName() method, 253–254

of a simple Ant build file, 9

of a simple custom task that takes a name
and displays it, 227

of a simplified path-c section for the build
process, 7

of a single test using the test classpath, 193

of the skeleton of a new custom class and
its nested element, 244–246

for specifying a flatten mapper, 287–288

for specifying a glob mapper, 288–289

for specifying a merge mapper, 288

for specifying an identity mapper, 287

for specifying default logger with the
-logger command-line option, 270

for starting Tomcat if it is not already
running, 181–182

of a target that calls the test subordinate
build, 223

for the target that prepares the database,
171–172

for the target to compile the test
classes, 191

the targets for building the JSTL and the
MySQL connector, 116–117

of the targets for obtaining the JSTL and
the MySQL connector source
 code, 114

of the targets that build the main Ant
distribution, 27–28

of the targets that build the stand-alone
application, 219

of the targets that build the web
application, 219–220

of targets that call targets in subordinate
builds, 223

of targets that demonstrate property
precedence, 57–59

targets that tar the documentation and
binary distributions, 150–151

targets that tar the documentation and
source code, 149–150

targets that zip the documentation and
binary distribution, 145–146

targets that zip the documentation and
the source code, 143–144

for the test classpath, 191

that calls Ant’s default target, 27

for transforming XML results file into an
HTML report, 206–207

for undeploying a web application on
Tomcat, 167

of a Unix bash shell script for testing
integrity of a download, 21

for unpacking the *.tar.bz2 Ant binary
distribution file, 14

for unpacking the *.tar.gz Ant binary
distribution file, 13

the updated versions of
stand-alone-complete and
web-complete, 128

using <isreference> test to test a file set
reference, 69

using a file set and mapper as part of an
<uptodate> check, 64

using a file set as part of an <uptodate>
check, 64

using formatting to improve the output
from a test, 194

using a JAR as the basis of a batch test, 203

Moodie_559-9Index.fm Page 321 Tuesday, October 11, 2005 6:23 AM

322 ■I N D E X

using an existing pathlike structure as a
classpath, 75

using <antcall> task to control a
project, 119

using <containsregexp> selector, 92

for using e-mail properties, 162

using errorProperty and failureProperty to
indicate a build failure, 198

using <junitreport> element for creating
an HTML report, 197–198

using nested <targetfiles> elements with
the <ext-javadoc> task, 259

using patterns in log entries, 275

using <present> element, 91

using selection containers, 95–96

using tar to bundle the entire distribution,
154–155

using test-init target for initializing the
testing environment, 205

using the <available> element to check for
existence of third-party files, 62

using the <condition> task instead of
<available> and <uptodate>
tasks, 65–66

using the <different> selector, 90

using the <filename> selector, 91

using the <os> element’s family attribute
to test the operating system, 67

using the <size> selector, 92

using the <classfileset> element, 96

using the classpathref attribute instead of
classpath attribute, 53

using the custom Javadoc generator,
258–259

using the depends attribute to control a
build, 120–121

using the <filelist> element, 97

using the <modified> element, 94

using the nested <param> element, 94

using the operating system’s shell to run
the command, 182–183

using the package-all target, 221

using the <rootfileset> element, 97

using the <unzip> task to help create an
entire binary distribution, 154

using the <unzip> task to help create tar
files, 153

for verifying the signature of Ant binary
distribution download, 17

the <war> task assembles the web
application’s WAR file, 128

working with offline documentation, 136

working with offline package-list files and
online Javadocs, 135

for writing the deployment target, 166

for writing to an HTML log file, 276

for the zip and tar tasks’ subordinate
build, 217

command attribute, of <cvs> task, 112

command line, setting properties at, 56

command-line arguments, setting defaults
for, 175–176

command-line classes, designing to use the
Ant API, 293–308

command-line client

code shared with the web interface,
100–101

introducing the stand-alone
application, 102

command-line deployer. See deployer class

command-line deploy task, default values
for, 295

command-line options, table of Ant’s, 33–34

command-line programs, using <exec> task
to run, 179–185

comment attribute, of <zip> task, 141

comparator attribute, of <modified>
element, 93

compiler attribute, of <mkdir> task, 107

compiling

larger projects, 2–5

simple projects, 1–2

compress attribute

of <jar> task, 125

of <war> task, 126

Moodie_559-9Index.fm Page 322 Tuesday, October 11, 2005 6:23 AM

323■I N D E X

compression attribute

of <tar> task, 147

of <cvs> task, 112

of <unjar>, <untar>, <unwar>, and
<unzip> tasks, 153

compressionlevel attribute, of <cvs> task, 112

<condition> task

creating to check whether Ant will run the
tests, 200–201

table of attributes, 65

using, 64–72

using instead of <available> and
<uptodate> tasks, 65–66

config attribute, of <checkstyle> task, 204

configURL attribute, of <checkstyle>
task, 204

console, using to display log messages, 278

<contains> element, attributes of, 71, 87

<contains> selector, using, 87

<contains> test, using, 71

<containsregexp> element, attribute of, 91

<containsregexp> selector, using, 91–92

context XML file, using to deploy your web
application, 165–166

<copy> task

for copying web applications web pages
and configuration files, 123–124

table of attributes, 122–123

using to copy Java properties file, 123

Copyer class, code using the Ant Copy task,
309–310

core tasks, in Ant, 9

createemptyfiles attribute, of <redirector>
component, 176

createXXX() method

for implementing a nested element, 243

signature for defining, 252

writing in Ant, 252–254

Current Release of Ant section

of Ant binary download screen, 12

of source download page, 23

custom Javadoc generator, code for using,
258–259

custom listener, code showing simple
implementation of, 282

custom task API, introduction to, 227–243

custom task properties, code for, 229

custom tasks. See also example custom tasks

code for compiling, 229

code for declaring and using, 229

examining, 225–243

introducing the life cycle of, 226–227

running the implemented constructor,
229–230

using third party, 266–267

writing an init() method for, 230–235

writing example ones in Ant, 255–263

writing in Ant, 9, 225–268

CVS

downloading snapshot, 24–26

nightly snapshots on the Apache server, 25

using to obtain a source distribution, 26

CVS repositories, login details for the
third-party libraries, 113

cvs tool, website address for obtaining
Windows version, 26

<cvs> task, table of attributes, 112–113

cvsRoot attribute, of <cvs> task, 112

cvsRsh attribute, of <cvs> task, 112

■D
-D option, using to decide whether or not a

target will execute, 117–118

d pattern character, description of, 274

data-access object, shared by command-line
client and web interface, 100–101

database.properties file, code for, 171

date attribute, of <cvs> task, 113

<date> element, attributes of, 87–88

<date> selector, using, 87–88

datetime attribute, of <date> element, 87

DbUnit, website address, 188

debug attribute, of <mkdir> task, 107

debuglevel attribute, of <mkdir> task, 107

default exclude patterns, list of, 82

default excludes, working with, 81–83

Moodie_559-9Index.fm Page 323 Tuesday, October 11, 2005 6:23 AM

324 ■I N D E X

default logger, specifying with the -logger
command-line option, 270

defaultexcludes attribute

of <fileset> element, 85

of <jar> task, 125

of <tar> task, 147

of <war> task, 127

of <zip> task, 141

defaultvalue attribute, for <input> task, 160

<delete> task, attributes of, 124

deleteonexit attribute, of <delete> task, 124

delimiter attribute, for <sql> task, 170

delimitertype attribute, for <sql> task, 170

depend attribute, of <mkdir> task, 107

<depend> element, attributes of, 88

<depend> selector, using, 88–89

dependencies, using, 120–121

dependency, code for setting, 39

depends attribute

code using to set a dependency, 39

using in a forking build process, 60

using to control a build, 120–121

using vs. the <antcall> tasks, 121

<deploy> task, that places a web application
onto a Tomcat server, 225–226

deployer class, code showing the default
options of, 295–296

deployment choices, for applications, 131

deployment target, code for writing, 166

deprecation attribute, of <mkdir> task, 107

<depth> element, attributes of, 89

<depth> selector, using, 89

description attribute, for providing a target
with a description, 37

<description> element, using as a child
element of <project>, 39

dest attribute

of <cvs> task, 113

of <unjar>, <untar>, <unwar>, and
<unzip> tasks, 153

destdir attribute, of <mkdir> task, 107

destfile attribute

of <jar> task, 125

of <tar> task, 147

of <war> task, 127

of <zip> task, 141

dialog box, Windows Environment
Variables, 28

<different> element, attributes of, 90

<different> selector, criteria for using, 89

dir attribute

of <ant> task, 116, 211

of <delete> task, 124

of <dirset> element, 84

of <exec> task, 179

of <fileset> element, 85

for <java> task, 173

for <junit> task, 192

for <mkdir> task, 106–107

of <filelist> element, 97

directories, creating in Ant, 106–107

directory sets

table of Ant tasks that can use, 84

working with, 83–85

directory structure, introducing the final for
example application, 103–104

directory-based types, using, 77–98

dirmode attribute

of <tarfileset> nested element, 148

of <zipfileset> element, 98

of <zipfileset> element, 142

<dirset> element

attributes of, 84

specifying a directory set with, 83

dist directory, needed for example
application, 104

distribution bundles, properties for
naming, 138

docs directory, looking at in the Ant source
distribution, 30

documentation and source code, targets that
tar, 149–150

documentation bundles

building, 131–138

finishing, 136–137

usual structure of, 132

Moodie_559-9Index.fm Page 324 Tuesday, October 11, 2005 6:23 AM

325■I N D E X

dos value, of <os> nested element, 67

downloading

a CVS snapshot, 24–26

and installing an Ant binary distribution,
11–14

MD5 and SHA1, 19

nightly builds from the source download
page, 24

stable build from Ant source download
screen, 23–24

driver attribute, for <sql> task, 170

DSTAMP property, default format, 177

DTD, 8

generating an incomplete, 35

duplicate attribute

of <jar> task, 125

of <war> task, 127

of <zip> task, 141

dynamic attribute, of <propertyset>
element, 72

■E
<echo> task, using to document the build

process, 137–138

Eclipse IDE, website address for, 36

else attribute, of <condition> task, 65

e-mail addresses, formats for, 163

e-mail notification service, setting up with
Ant’s mail logger, 271

empty targets, removing from log file
output, 270

enablemultiplemappings attribute, of
<copy> task, 122

encoding attribute

of <copy> task, 122

of <jar> task, 125

of <mkdir> task, 107

of <sql> task, 170

of <unjar>, <untar>, <unwar>, and
<unzip> tasks, 153

of <war> task, 127

of <zip> task, 141

<env> element, for passing environment
variables to the forked JVM, 175

environment attribute, of <property> task, 55

environment variables

building the classpath in the build file
with, 51

removing the need for, 50–51

using to set Ant’s default behavior, 35

Environment Variables dialog box, setting
%ANT_HOME% on, 28–29

<equals> nested element, attributes of, 68

<equals> test, using, 68

error attribute

of <exec> task, 179

of <java> task, 173

of <redirector> component, 177

of <cvs> task, 113

errorencoding attribute, of <redirector>
component, 177

<errorfilterchain> filter, 177

<errormapper> nested element, 177

errorPropertyattribute

of <exec> task, 179

of <java> task, 173

of <junit> task, 192

of <redirector> component, 177

using with failureProperty to indicate a
build failure, 198

errorsBeginAt attribute, of <http>
element, 70

escapeprocessing attribute, for <sql>
task, 170

etc directory, looking at in the Ant source
distribution, 30

example application. See also applications

adding third-party libraries to a build, 102,
111–121

assembling for distribution, 121–128

building, 128

building the WAR file for, 127–128

the clean target removes the working
directories, 125

creating Javadocs for, 133–135

introducing, 99–104

introducing the final directory structure,
103–104

Moodie_559-9Index.fm Page 325 Tuesday, October 11, 2005 6:23 AM

d10c55b52b1f8994064c85cd755fb5a9

326 ■I N D E X

introducing the shared code, 100–101

introducing the stand-alone
application, 102

introducing the third-party libraries,
101–102

introducing the web application project, 103

main portions of the build, 210

the master build targets that package, 220

setting up a working environment for,
104–111

tarring, 147–155

example custom tasks

providing usage information, 255–257

writing in Ant, 255–263

example project

creating the documentation bundle for, 4

process of building for this book, 3–5

excludes, working with default, 81–83

excludes attribute

of <jar> task, 125

of <mkdir> task, 108

of <patternset> element, 80

of <tar> task, 147

of <war> task, 127

of <zip> task, 141

excludesfile attribute

of <jar> task, 125

of <mkdir> task, 108

of <patternset> element, 80

of <tar> task, 147

of <war> task, 127

of <zip> task, 141

<exec> task

for running native programs, 179–185

table of attributes, 179–180

executable attribute, of <exec> task, 179

execute() method

code to check usage and display the
results, 248–250

importance of overriding when creating a
custom task, 227

writing in Ant, 241–243

expression attribute, of <containsregexp>
element, 91

extdirs attribute, of <mkdir> task, 108

ExtendJavadocTask, adds checks for
up-to-date files to the <javadoc>
task, 260–263

<ext-javadoc> task, using nested
<targetfiles> elements with, 259

■F
F pattern character, description of, 274

failifexecutionfails attribute, of <exec>
task, 180

failonerror attribute

of <copy> task, 122

of <delete> task, 124

of <exec> task, 180

for <java> task, 173

of <mkdir> task, 108

of <cvs> task, 113

failOnViolation attribute, of <checkstyle>
task, 204

failureProperty attribute

of <checkstyle> task, 204

for <junit> task, 192

using with errorProperty to indicate a
build failure, 198

family attribute

of <os> nested element, 66

using the <os> element’s to test the
operating system, 67

file attribute

of <isfileselected> element, 69

for <arg> and <jvmarg> elements, 174

of <available> task, 61

of <checkstyle> task, 204

of <copy> task, 122

of <delete> task, 124

of <fileset> element, 85

of <length> element, 71

of <property> task, 55

specifying location of the local property
file with, 52

file lists, working with, 97

Moodie_559-9Index.fm Page 326 Tuesday, October 11, 2005 6:23 AM

327■I N D E X

file location

manipulating, 122–125

using to set a property, 45–46

file sets, working with, 85–96

file1 attribute, of <filesmatch> element, 71

file2 attribute, of <filesmatch> element, 71

<filelist> element, attributes of, 97

filemode attribute

of <zipfileset> element, 98, 142

<filename> element, attributes of, 90

<filename> selector, using, 90–91

filepath attribute

of <available> task, 61

specifying as nested <filepath>
element, 62

using to replace the paths in properties, 62

files attribute, of <filelist> element, 97

FileSet objects, suitability for use in addXXX()
methods, 258

<fileset> element

child elements and attributes it takes, 85

setting the dir attribute for, 309

filesetmanifest attribute, of <jar> task, 125

<filesmatch> element, attributes of, 71

<filesmatch> test, using, 70–71

filesonly attribute

of <jar> task, 125

of <war> task, 127

of <zip> task, 141

filtering attribute, of <copy> task, 122

filtertrace attribute, of <junit> task, 192

flatten attribute, of <copy> task, 122

flatten mappers, using, 287–288

<flattenmapper> element, specifying a
flatten mapper with, 287–288

followsymlinks attribute

of <dirset> element, 84

of <fileset> element, 85

fork attribute

of <java> task, 173

of <junit> task, 192

of <mkdir> task, 108

forkmode attribute, of <junit> task, 192

<format> element, table of attributes, 178

<formatter> element, using to improve the
output from a test, 194

forward slashes (/), use of in property files, 50

fsum, using on Windows to check an SHA1
digest, 21–22

FTP server

code showing properties in
build.properties, 157

FTP target builds the entire application
and loads it onto, 159

placing your application on, 156–161

sending the documentation to a
remote, 157

sending the binaries to a remote, 159

FTP target

adding a splash screen to, 159–160

adding user input to, 161

extending, 160–161

<ftp> task

use of newer and timediffauto attributes,
158–159

using for placing your application on an
FTP server, 156–161

fullpath attribute

of <tarfileset> nested element, 148

of <zipfileset> element, 98, 142

■G
<get> task, downloading the JSP JAR file

with, 115

getLocation() method, function of in the
example task’s constructor, 228

getLogger() method, forreturning an
instance of the default logger,
304–305

getOwningTarget() method, function of in
the example task’s constructor, 228

getProject() method, function of in the
example task’s constructor, 228

gid attribute, of <tarfileset> nested
element, 148

Moodie_559-9Index.fm Page 327 Tuesday, October 11, 2005 6:23 AM

328 ■I N D E X

glob mappers

adding directories to the middle of file
paths, 289–290

using, 288–289

<globmapper> element, for specifying a glob
mapper, 288–289

GNU Project, website address for make build
tool, 7

granularity attribute

of <copy> task, 122

of <date> element, 87

of <depend> element, 88

of <different> element, 90

group attribute, of <tarfileset> nested
element, 148

■H
haltonerror attribute, for <junit> task, 192

haltonfailure attribute, for <junit> task, 192

hash (message digest), created by PGP, 14

hash-generation target

code for making more general, 184

using an <antcall> task for calling, 183–184

home directories, removing references to in
applications, 51

HTML layout log, examples of, 277

HTML log files

code for writing to, 276

using, 276–277

HTML logging messages, given a specific
category from within a task, 277

HTML report, creating, 197–198

HTTP POST task, in Ant-Contrib project, 266

<http> element, attributes of, 70

<http> test, using, 70

HttpUnit, website address, 188

■I
identity mappers, using, 287

<identitymapper> element, specifying an
identity mapper with, 287

if attribute, using in a forking build process, 60

if...else if statements, for checking
command-line arguments provided
by the user, 297–299

<if> task

code for using the Ant-Contrib, 267

general structure of, 266

ignoreContents attribute, of <different>
element, 90

ignoreFileTimes attribute, of <different>
element, 90

ignoresystemclasses attribute, of <available>
task, 61

ignorewhitespace attribute, of <contains>
element, 87

implicit file sets, allowed by Ant, 96

includeantruntime attribute, for <junit>
task, 192

includeAntRuntime attribute, of <mkdir>
task, 108

includeEmptyDirs attribute, of <copy>
task, 122

includeemptydirs attribute, of <delete>
task, 124

includeJavaRuntime attribute, of <mkdir>
task, 108

includes attribute

of <jar> task, 125

of <mkdir> task, 108

of <patternset> element, 80

of <tar> task, 148

of <war> task, 127

of <zip> task, 141

includesfile attribute

of <jar> task, 125

of <mkdir> task, 108

of <patternset> element, 80

of <tar> task, 148

of <war> task, 127

of <zip> task, 141

index attribute, of <jar> task, 125

individual subordinate targets, running,
222–223

inheritAll attribute

of <ant> task, 116, 211

of <antcall> task, 118

Moodie_559-9Index.fm Page 328 Tuesday, October 11, 2005 6:23 AM

329■I N D E X

inheritRefs attribute

of <ant> task, 116, 211

of <antcall> task, 118

init() method, writing a task’s, 230–235

initialization target, defined, 37

input attribute

of <exec> task, 180

of <java> task, 173

of <redirector> component, 177

input redirector, <redirector> component
functioning as, 176–177

<input> task

table of attributes, 160

for working with interactive input,
160–161

inputencoding attribute, of <redirector>
component, 177

<inputfilterchain> filter, 177

<inputmapper> nested element, 177

inputstring attribute

of <exec> task, 180

for <java> task, 173

of <redirector> component, 177

<isfileselected> element, attributes of, 69

<isfileselected> test, using, 69

<isreference> element, attributes of, 69

<isreference> test, using, 69

<isset> element, using, 68

<istrue> and <isfalse> elements, common
attribute of, 68

<istrue> and <isfalse> tests, using, 68

■J
Jakarta Byte Code Engineering Library

(BCEL), needed to use class file
sets, 96

Jakarta products, Ant as standard build tool
for, 8

Jakarta Project, third-party libraries used by
example application, 101–102

jar attribute, for <java> task, 173

JAR files

adding an antlib file to, 265

creating, 125–126

the properties for adding an antlib file
to, 265

using when running custom tasks, 229

<jar> and <war> files vs. <zip> and <tar>
files, 140

<jar> task, attributes of, 125–126

Java applications

compiling with Ant, 104–121

rules for return codes, 174

running, 172–179

Java development, JUnit as the standard
unit-testing framework for, 188

Java projects, documentation categories,
131–132

Java properties file, shared by command-line
client and web interface, 101

<java> task

nesting a number of elements in, 174

table of attributes, 173–174

javac command, using for a Java project, 1–2

<javac> task

Ant’s Java compilation task, 107–111

child elements available for, 109

for compiling Java source code into Java
classes, 104

using Ant-Contrib task to solve lack of
conditional functionality, 266–267

JAVACMD environment variable, 35

Javadoc build, example application showing
properties used in, 132

Javadoc classpath, code for excluding the
subordinate build files from, 218

javadoc command-line tool, for building Java
API documentation, 132

Javadoc file set, code for helping with
reusability, 133

<javadoc> task

extending with the
org.apache.tools.ant.taskdefs.Javado
c task, 257–263

that can use directory sets, 84

website address for list of attributes for, 132

Moodie_559-9Index.fm Page 329 Tuesday, October 11, 2005 6:23 AM

330 ■I N D E X

Javadocs

creating, 132–136

website address for Sun’s tutorial on
working with, 132

java.lang.Class, example of, 238

JSTL, code for checking for a version of, 62

JSTL tag library, used by the example
project, 112

JUnit

installing the testing framework, 188–189

testing with, 188–203

JUnit error vs. JUnit failure, 188

JUnit failure vs. JUnit error, 188

JUnit test tasks, for testing the results of the
build process, 30

<junit> task

for running a batch of tests at one
time, 197

table of attributes, 192–193

junit.jar file, code for placing into
ANT_HOME/lib, 188

<junitreport> element, creating an HTML
report with, 197–198

jvm attribute

of <java> task, 173

of <junit> task, 192

<jvmarg> element

nesting to send arguments to a forked
JVM, 174

table of attributes, 174

■K
keepcompression attribute

of <jar> task, 126

of <war> task, 127

of <zip> task, 141

keepformat attribute, for <sql> task, 170

KEYS file, in Ant source distribution, 29

■L
L pattern character, description of, 275

l pattern character, description of, 275

<length> element, attributes of, 71

<length> test, using, 71

lib directory

looking at in the Ant source
distribution, 31

needed for example application, 104

lib folder, copying folder and its contents to a
new location, 82

life cycle

of a custom task, 226–227

reflecting on the project’s, 3–5

lifecycle-target

build file demonstrating the life cycle of a
task without the -v option, 242

build file for, 236–237

line attribute, for <arg> and <jvmarg>
elements, 174

<link> elements, that work with offline
files, 135

-listener option

calling loggers as listeners with, 271

specifying at the command line to use the
built-in Log4j logger, 273

using to use the XML logger as a listener,
271–272

listeners

adding into your application, 301–308

adding to a project, 304

various events Ant informs of that take
place during a build, 269

writing your own, 281–283

listfiles attribute, of <mkdir> task, 108

local property file, specifying location of with
the file attribute of <property> task, 52

locale attribute, of <format> element, 178

location attribute, of <property> task, 55

log files, using patterns in, 274–276

log messages, using the console to
display, 278

log() method

implementation of a task’s functionality
by, 241–242

using a logger from a listener via the
project’s, 270

versions implemented in task’s parent
class, 230–231

Moodie_559-9Index.fm Page 330 Tuesday, October 11, 2005 6:23 AM

331■I N D E X

Log4j logger

assigning a component’s to an
appender, 279

testing, 307–308

using for Java applications, 272–281

website address for downloading the
classes, 273

log4j.properties file, that logs
context-specific messages, 280

logAll() method, central method that all
life-cycle methods will use, 231–232

logError attribute

of <exec> task, 180

for <java> task, 173

of <redirector> component, 177

-logfile command-line option, using to save
the results of an Ant build, 270

-logger option, using to use the XML logger as
a logger, 271–272

loggers

adding into your application, 301–308

adding to a project, 304

calling as listeners with the -listener
option, 271

function of, 270

writing your own, 283–285

logging

Ant builds, 269–286

determining a user’s views on, 303

to different destinations, 278–279

layers of in Ant, 302

the new imports for the implementation
of, 303

the new variable to deal with, 303

project components, 279–281

logic tasks, in Ant-Contrib project, 266

logical operators, using, 71

longfile attribute, of <tar> task, 148

■M
m pattern character, description of, 275

M pattern character, description of, 275

mac value, of <os> nested element, 67

<mail> task

for distributing the application via e-mail,
161–163

e-mail properties, 162

mail.tolist property, how to e-mail
documentation to the list of people
in, 162

main() method

code for checking the arguments, 297–299

creating and using to instantiate the class
at the command line, 187–188

enabling logging in, 305–307

<majority> container, function of and
attribute for, 95

make build tool, introduction to, 7–8

manager web application, deploying your
web application with, 166–167

manifest attribute

of <jar> task, 126

of <war> task, 127

manifestencoding attribute, of <jar>
task, 126

<mapper> element, code using a nested, 64

mappers

nesting to match groups of files, 177

using, 287–291

master build files

changing, 218–223

for controlling builds in large projects,
209–223

targets that build the stand-alone
application, 219

using and Ant delegation, 210

master build targets

that package the application, 220

that test the application, 221–222

max attribute, of <depth> element, 89

maxErrors attribute, of <checkstyle>
task, 204

maxmemory attribute

of <java> task, 173

of <junit> task, 192

maxWarnings attribute, of <checkstyle>
task, 204

Moodie_559-9Index.fm Page 331 Tuesday, October 11, 2005 6:23 AM

332 ■I N D E X

MD5 and SHA1 tools

running at the command line, 20

using to verify Ant binary distribution
download, 19–22

md5script.bat file, for testing the integrity of
a download, 20–21

md5script.sh file, Unix bash shell script for
testing the integrity of a
download, 21

memoryInitialSize attribute, of <mkdir>
task, 108

memoryMaximumSize attribute, of <mkdir>
task, 108

merge mappers, using, 288

<mergemapper> element, specifying a
merge mapper with, 288

message attribute, for <input> task, 160

message digest (hash)

created by PGP, 14

creating for distributions, 144–145

<message> nested element, code for, 163

messagefile attribute, referring to a message
body with, 163

messageLogged() method, as key to loggers
and listeners, 285

millis attribute, of <date> element, 88

MIME format, requirements for using,
161–162

min attribute, of <depth> element, 89

MIT site, for PGP, 15

<mkdir> task

for creating directory structures in Ant,
106–107

table of attributes, 107–109

mode attribute, of <tarfileset> nested
element, 148

<modified> element

attributes of, 93–94

specifying attributes with a nested
<param> element, 94

<modified> selector

process used to compare files, 93

using, 93–94

MySQL

third-party libraries used by example
application, 101–102

JDBC connector used by the example
project, 112

■N
n pattern character, description of, 275

name attribute

example used in nested elements, 243

of <filename> element, 90

illegal setting in nested elements, 243–244

as only mandatory attribute for <target>
elements, 37

of <os> nested element, 66

of <property> task, 55

of <propertyref> element, 73

name property, setting and adding the name
attribute for a custom task, 236

NameElement class, code for showing an
overload constructor, 252–253

name-value pair, setting a property with, 45

native programs, running, 179–185

negate attribute

of <filename> element, 90

of <propertyset> element, 72

nested <mapper> element, code listing
using, 64

nested elements

choosing which method to use in, 255

code listing of in a patternset, 81

for the <checkstyle> task, 205

ways to implement, 243

working with in tasks, 243–255

nested <propertyref> elements, specifying
selection criteria with, 72–73

netware value, of <os> nested element, 67

newenvironment attribute

of <exec> task, 180

of <java> task, 173

of <junit> task, 192

Moodie_559-9Index.fm Page 332 Tuesday, October 11, 2005 6:23 AM

d10c55b52b1f8994064c85cd755fb5a9

333■I N D E X

nightly builds

bug fixes in, 22

downloading from the source download
page, 24

Nightly Builds section

of Ant binary download screen, 13

of source download page, 24

noexec attribute, of <cvs> task, 113

<none> container, function of, 95

<not> container, function of, 95

<not> element, function of, 72

nowarn attribute, of <mkdir> task, 108

■O
offline documentation

properties for working with, 135

working with, 136

offline package-list files, working with along
with online Javadocs, 135

offset attribute, of <format> element, 178

onerror attribute, for <sql> task, 170

openvms value, of <os> nested element, 67

optimize attribute, of <mkdir> task, 108

optional tasks, in Ant, 9

<or> container, function of, 95

<or> element, function of, 72

org.apache.tools.ant.BuildEvent object, taken
by org.apache.tools.ant.BuildListener
interface methods as a parameter, 281

org.apache.tools.ant.BuildListener interface

provided by Ant, 270

seven methods defined by, 281

org.apache.tools.ant.BuildLogger interface,
implementation of methods needed
by, 283

org.apache.tools.ant.Task abstract class,
extending to create a custom task, 227

os attribute, of <exec> task, 180

<os> nested element

attributes of, 66

possible values for the family attribute
of, 67

<os> test, using, 66–67

os/2 value, of <os> nested element, 67

os/400 value, of <os> nested element, 67

output attribute

of <ant> task, 116, 211

of <exec> task, 180

of <java> task, 173

of <redirector> component, 177

of <sql> task, 170

of <cvs> task, 113

output redirector (>), for capturing the entire
output of the build, 176

outputencoding attribute

of <copy> task, 122

of <redirector> component, 177

<outputfilterchain> filter, 177

<outputmapper> nested element, 177

outputproperty attribute

of <exec> task, 180

of <java> task, 173

of <redirector> component, 177

overwrite attribute

of <copy> task, 122

of <unjar>, <untar>, <unwar>, and
<unzip> tasks, 153

■P
P pattern character, description of, 275

package attribute, of <cvs> task, 113

package-all target, the distribution targets all
now depend on, 221

package-list files, working with offline and
online Javadocs, 135

packageNamesFile attribute, of <checkstyle>
task, 204

packaging build

moving, 216

the zip and tar tasks’ subordinate build, 217

packaging targets, moving, 216–217

<param> element, value of the name
attribute and possible value for the
value attribute, 94

<param> element’s name attribute, using, 94

parameter types, converting, 237–238

passfile attribute, of <cvs> task, 113

Moodie_559-9Index.fm Page 333 Tuesday, October 11, 2005 6:23 AM

334 ■I N D E X

password attribute

for the command-line deploy task, 295

for <sql> task, 170

path attribute

for <arg> and <jvmarg> elements, 174

for the command-line deploy task, 295

path-b section, supplying its name to the
build process, 7

path-c section, code for simplifying the build
process, 7

pathconvert task, that can use directory
sets, 84

pathlike structures

setting, 73–74

setting a classpath, 74–75

pathref attribute, for <arg> and <jvmarg>
elements, 174

pattern attribute

of <date> element, 88

of <format> element, 178

pattern sets, using in Ant, 78–83

patterns

code using in log entries, 275

setting in Ant, 80–83

table of layout placeholders, 274–275

using, 78–80

using in log files, 274–276

<patternset> element, attributes of, 80

<permissions> element, for setting security
permissions, 175

PGP

downloading the keys and the signature
after installing, 15–16

obtaining the code for, 15

using, 16–19

verifying Ant binary distribution
download with, 14–19

website address for obtaining, 15

PGP hashes, creating with Ant, 183–185

PGP key ring, adding the Ant public keys to,
16–19

pipe (|) character, for capturing the entire
output of the build, 176

platform-specific path

code for building, 43

code for building one with Unix-style file
separators, 44

port attribute

of <socket> element, 70

of <cvs> task, 113

prefix attribute

adding a prefix to imported properties
with, 52–53

of <property> task, 55

of <propertyref> element, 73

of <tarfileset> nested element, 148

of <tstamp> task, 178

using with the resource attribute to
manage property names, 53

of <zipfileset> element, 98, 142

present attribute, of <present> element, 91

<present> element, attributes of, 91

<present> selector, using, 91

preservelastmodified attribute, of <copy>
task, 122

preserveLeadingSlashes attribute, of
<tarfileset> nested element, 148

Pretty Good Privacy(tm) (PGP). See PGP

print attribute, for <sql> task, 170

printsummary attribute, for <junit> task, 192

private key, running key view command to
verify it was added, 17

private-public key, creating your own, 17

project, building the example application,
99–129

project components, logging, 279–281

<project> element, as root element of every
Ant build file, 9, 35

project life cycle, reflecting on, 3–5

project name, code for setting, 37

Project object, logger works with for defining
at what stage a message is
displayed, 231

Project.getDefaultTarget() method, for
getting a projects default target, 232

Project.getDescription() method, for getting
a projects description, 232

Moodie_559-9Index.fm Page 334 Tuesday, October 11, 2005 6:23 AM

335■I N D E X

Project.getName() method, for obtaining a
project name, 232

Project.getReferences() method, function
of, 233

-projecthelp option, for displaying targets in
Ant, 37–38

project-level logging, in Ant, 302

projects, organizing and compiling, 1–5

properties

directory structure when not set, 41

examining precedence of, 56–59

loading from a local file, 52–54

loading from a remote file, 54

precedence determined by order of
loading, 54

setting at the command line, 56

setting to the value of another property, 45

setting using a file location, 45–46

setting using a reference, 46–47

using built-in, 42–44

using to control builds, 59–73

using to decide whether or not a target will
execute, 117–118

working with, 40–59

properties attribute, of <checkstyle> task, 204

properties files, basic syntax for, 49

properties.built-in target, example results
from running, 43

property attribute

of <available> task, 61

of <condition> task, 65

of <format> element, 178

of <isset> element, 68

of <uptodate> task, 63

property files

loading a local, 52

setting properties in, 48–54

property precedence

code for targets that demonstrate, 57–59

examining, 56–59

property sets, working with, 72–73

property task, summarizing, 54–55

<property> element, defined as a task in
build files, 44

<property> task

table of attributes, 55

using a name-value pair to set a property, 44

<propertyref> element

attributes of, 73

specifying selection criteria with nested,
72–73

<propertyset> element, attributes of, 72

■Q
quiet attribute

of <delete> task, 124

of <cvs> task, 113

■R
r pattern character, description of, 275

rdbms attribute, for <sql> task, 170

README file

in Ant source distribution, 29

using to document the build process,
137–138

reallyquiet attribute, of <cvs> task, 113

<redirector> component

for redirecting output, 176–179

table of attributes, 176–177

<redirector> element, for redirecting
output, 175

<reference> elements, using nested to pass
references to the subordinate build
only, 211–212

referenceCheck() method, function of, 232–233

refid attribute

of <isreference> element, 69

of <property> task, 55

regex attribute, of <propertyref> element, 73

regexp mappers, using, 290–291

<regexpmapper> element, specifying regular
expressions in the from attribute of,
290–291

reloading attribute, for <junit> task, 192

remote FTP server. See also FTP server

sending binaries to, 159

Moodie_559-9Index.fm Page 335 Tuesday, October 11, 2005 6:23 AM

336 ■I N D E X

remotedir attribute, for specifying which
directory on the FTP server to use, 157

resolveexecutable attribute, of <exec>
task, 180

resource attribute

of <available> task, 61

of <property> task, 55

using with the prefix attribute to manage
property names, 53

resultproperty attribute

of <exec> task, 180

for <java> task, 173

return codes, simple rules for, 174

rootclass attribute, of <classfileset>
element, 96

<rootfileset> element, code using, 97

roundup attribute

of <jar> task, 126

of <war> task, 127

of <zip> task, 141

runant.* scripts, understanding, 30

run-stand-alone target, rewritten to save the
results in a file with a timestamp,
178–179

■S
Scripting, problems with in project’s life

cycle, 3–5

searchpath attribute, of <exec> task, 180

seldirs attribute, of <modified> element, 94

selector containers

table of with attributes, 95

using, 94–96

selectors, using with file sets, 86–96

server attribute, of <socket> element, 70

Servlet API, website address, 104

servlet JAR file, downloading with the <get>
task, 111

setName() method, for setting the name
attribute, 236

setTarget() method, signature for, 258

setTargetFile() method, for specifying target
files you want to check against, 259

setXXX() method

converting parameter types for, 237–238

writing in Ant, 235–237

SHA1 digests

using fsum on Windows to check, 21–22

website address, 19

shared build targets, moving, 214

showheaders attribute, for <sql> task, 171

showoutput attribute, for <junit> task, 193

<size> element, attributes of, 92

<size> selector, using, 92

<socket> element, attributes of, 70

<socket> test, using, 70

source attribute, of <mkdir> task, 108

source code

choosing between downloading and using
preexisting binaries, 112

targets for obtaining the JSTL and the
MySQL connector, 114

source code and documentation

bundling, 143–144

sending to the remote FTP server only if
they are newer files, 158–159

targets that tar, 149–150

source distribution. See also Ant source
distribution

using CVS to obtain, 26

Source Distributions link, on the Ant home
page, 22–23

source files, code for checking an
application’s, 200–201

sourcepath attribute, of <mkdir> task, 108

sourcepathref attribute, of <mkdir> task, 108

spawn attribute

of <exec> task, 180

for <java> task, 174

SQL, using for running applications, 169–172

<sql> task

table of attributes, 170–171

using, 169–172

Moodie_559-9Index.fm Page 336 Tuesday, October 11, 2005 6:23 AM

337■I N D E X

src attribute

of <sql> task, 171

of <unjar>, <untar>, <unwar>, and
<unzip> tasks, 153

of <zipfileset> element, 98, 142

srcdir attribute, of <mkdir> task, 108

srcfile attribute, of <uptodate> task, 63

stable build, 23–24

downloading from Ant binary
distribution, 12–13

stand-alone application

introducing the command-line client, 102

the <javac> task compiles, 110

stand-alone build file, targets that deal
with, 219

stand-alone client, running, 175–176

string attribute

of <contains> element, 71

of <length> element, 71

String.trim() method, function of, 239

subant task, that can use directory sets, 84

subordinate build files

code for the JSTL, 214

code for the MySQL connector, 213

code showing names of, 212

moving Ant tasks to, 211–218

the shared code’s, 215

targets that call targets in, 223

using, 209–210

subordinate targets, running individual,
222–223

substring attribute, of <contains> element, 71

<sysproperty> element, for specifying system
properties, 175

<syspropertyset> element, for specifying
system properties using a property
set, 175

system properties, accessing, 43–44

System.out.println() statements

disadvantages of when using the Ant API,
301–302

function of in the example task’s
constructor, 228

■T
t pattern character, description of, 275

tag attribute, of <cvs> task, 113

tandem value, of <os> nested element, 67

tar and zip files

creating, 138–156

vs. <jar> and <war> files, 140

<tar> task

bundling binaries and documentation for,
150–151

bundling the entire binary distribution, 152

table of attributes, 147–148

use of nested <tarfileset> elements in,
139–140

vs. <zip> task, 139–140

<tarfileset> nested element, table of
attributes, 148

target. See also initialization target; target
element; <target> elements

adding a description to, 38

code for setting default, 37

defined, 37

that prepare the database, 171–172

target attribute

of <ant> task, 116, 211

of <antcall> task, 118

of <mkdir> task, 109

target element, examining, 37–42

<target> elements. See also target; target
element

as child elements of <project>
elements, 36

for controlling which tasks Ant runs, 36

only mandatory attribute for, 37

using the description attribute of to
document the build process,
137–138

targetdir attribute

of <depend> element, 88

of <different> element, 90

of <present> element, 91

targetfile attribute, of <uptodate> task, 63

Moodie_559-9Index.fm Page 337 Tuesday, October 11, 2005 6:23 AM

338 ■I N D E X

targets. See also Ant targets and tasks;
application-specific build targets;
package-all target; packaging targets;
shared build targets; test targets;
third-party build targets

moving the shared build, 215

moving the third-party build targets,
212–214

preparing for the move, 212

task constructor, writing in Ant, 227–230

task life cycle, working with, 294

<taskdef> element, declaring a custom task
with, 229

<taskdef> task, function of, 257

task-level logging, in Ant, 302

tasks. See also Ant tasks; custom tasks;
<deploy> tasks

choosing to use in a stand-alone class,
294–296

code for instantiating and using, 300–301

using, 299–301

working with nested elements in, 243–255

working with the life cycle, 294

writing custom, 225–268

tempdir attribute

for <junit> task, 193

of <mkdir> task, 109

test classes

code for target to compile, 191

compiling, 191

test classpath

code for, 191

improving the test with better output and
build failure, 194–195

a single test using, 193

test data, using XML to store, 195–196

test file structure, organizing, 189–190

test source, code for checking, 201

test subordinate build, targets that call, 223

test targets

code of the properties for, 190

moving, 217–218

<testcase> elements, as most important child
elements of <testsuite> element, 196

Test-Driven Development: By Example
(Addison-Wesley, 2002), by Kent
Beck, 187

testing

by instantiation, 187–188

with JUnit, 188–203

testing build file, code showing skeleton
for, 218

testing environment, initializing, 190

test-init target, code for modified, 205

tests

adding dependency check to a test run,
200–203

code for checking that a user wants to run
a single test, 202

running a batch of, 197

running a single in a batch, 199–200

using a JAR file for batch tests, 203

<testsuite> element, important child
elements of, 196

text attribute, of <contains> element, 87

third-party build targets, moving, 212–214

third-party custom tasks, using, 266–267

third-party libraries

adding to the build, 111–121

introducing, 101–102

moving the targets for, 212–214

properties for obtaining and building,
114–115

used by example project, 112

timeout attribute

of <exec> task, 180

for <java> task, 174

for <junit> task, 193

timestamp, adding to a result file’s filename,
177–179

timezone attribute, of <format> element, 178

TODAY property, default format, 177

todir attribute, of <copy> task, 122

tofile attribute, of <copy> task, 123

Moodie_559-9Index.fm Page 338 Tuesday, October 11, 2005 6:23 AM

339■I N D E X

Tomcat, 8

adding the start-tomcat target to depends
attributes of deployment target, 182

starting in Ant, 181–183

Tomcat manager web application

deploying your web application with,
166–167

Tomcat server

default setup, 164

website address, 163

tools, using MD5 and SHA1 to verify the Ant
binary distribution download, 19–22

toString() method, function of in the example
task’s constructor, 228

trim attribute

of <equals> nested element, 68

of <length> element, 71

try...catch block, trapping any exceptions
with, 300–301

TSTAMP property, default format, 177

<tstamp> task

prefix attribute, 178

for setting the values of the TSTAMP,
DSTAMP, and TODAY properties,
177–179

two.stars property, 86

type attribute

of <available> task, 61

of <isreference> element, 69

of <type> element, 92

<type> element, attribute of, 92

<type> selector, using, 92

<typedef> task, function of, 263

■U
uid attribute, of <tarfileset> nested

element, 148

<undeploy> task, for undeploying a web
application on Tomcat, 167

unit attribute, of <format> element, 178

unit testing, with the JUnit testing
framework, 187–207

units attribute, of <size> element, 92

Unix, setting $ANT_HOME on, 29

unix value, of <os> nested element, 67

<unjar>, <untar>, <unwar>, and <unzip>
tasks, attributes of, 153

unless attribute, using in a forking build
process, 60

<unzip> task

extracting data from zip files with, 152–154

using to help create an entire binary
distribution, 154

using to help create tar files, 153

update attribute

for the command-line deploy task, 295

of <jar> task, 126

of <modified> element, 94

of <war> task, 127

of <zip> task, 141

<uptodate> task

table of attributes, 63

using, 63–64

url attribute

for the command-line deploy task, 295

of <http> element, 70

of <property> task, 55

of <sql> task, 171

url property, setting value of to the location
of the property file, 54

usage check

possible error message if user gets
something wrong, 296

writing, 296–299

usage information

code for ProjectHelpTask for displaying
for a build, 256–257

providing in a build file, 255–257

usage() method, code for the overloaded,
296–297

userid attribute, for <sql> task, 171

username attribute

for the command-line deploy task, 295

of <tarfileset> nested element, 148

Moodie_559-9Index.fm Page 339 Tuesday, October 11, 2005 6:23 AM

d10c55b52b1f8994064c85cd755fb5a9

340 ■I N D E X

■V
validargs attribute, for <input> task, 160

value attribute

for <arg> and <jvmarg> elements, 174

of <available> task, 61

of <condition> task, 65

of <istrue> and <isfalse> elements, 68

of <property> task, 55

of <size> element, 92

of <uptodate> task, 63

verbose attribute

of <copy> task, 123

of <delete> task, 124

of <mkdir> task, 109

version attribute

of <os> nested element, 66

of <sql> task, 171

vmlauncher attribute, of <exec> task, 180

■W
WAR files

creating, 126–128

creating of a web application, 124

<war> task

attributes of, 126–127

for creating the WAR file of a web
application, 124

using with zip file sets, 154–155

web application

deploying, 163–167

deploying as a WAR, 165

deploying by copying its context XML file,
165–166

deploying the expanded, 164

the master build targets that build, 219–220

web application project

the <javac> task compiles, 110–111

structure of, 103

web interface, code shared with the
command-line client, 100–101

webapps directory

copying the WAR file to Tomcat’s, 164–165

copying web application files into
Tomcat’s, 164

website address

for Ant-Contrib project third-party Ant
tasks, 266

for BEA’s WebLogic server, 266

for DbUnit extension for JUnit, 188

for details on Log4j’s logging patterns, 274

for downloading a CVS snapshot, 24

for downloading and deploying a web
application on the Tomcat server,
163–164

for downloading bzip2, 138

for downloading Jakarta Byte Code
Engineering Library (BCEL), 96

for downloading SHA1 digests, 19

for downloading the Ant public key after
installing PGP, 15

for downloading the Log4j classes, 273

for exploring JUnit unit testing, 187

for handy FTP servers for placing your
application on, 156

for HttpUnit extension for JUnit, 188

for information about Ant specialized
abstract classes, 227

for list of <javadoc> task attributes, 132

for make build tool from GNU Project, 7

for MIT site for PGP, 15

for obtaining Windows version of cvs
tool, 26

for the Subversion source code versioning
system, 266

for Sun’s tutorial on working with
Javadocs, 132

webxml attribute, of <war> task, 127

welcome.html file, in Ant source
distribution, 30

WHATSNEW file, in Ant source
distribution, 30

Moodie_559-9Index.fm Page 340 Tuesday, October 11, 2005 6:23 AM

341■I N D E X

when attribute

of <date> element, 88

of <length> element, 71

of <size> element, 92

whenempty attribute

of <jar> task, 126

of <zip> task, 141

win9x value, of <os> nested element, 67

Windows, setting %ANT_HOME% on, 28–29

Windows Environment Variables dialog box,
setting %ANT_HOME% on, 28–29

windows value, of <os> nested element, 67

■X
XML

advantages of writing Ant’s build files in, 8

using to store test data, 195–196

XML comments, using to document the build
process, 137–138

XML file

code for an abridged test result’s, 196

transforming into an HTML report, 206–207

XML logger

in its different guises, 272

the transformed output of, 272

XML logs, using, 271–272

XML transformation, of the XML file in a
browser, 272

<xslt> task, for transforming XML results file
into an HTML report, 206–207

■Z
zip and tar files

creating, 138–156

vs. <jar> and <war> files, 140

zip files

creating digests of, 144–145

zip file sets

using the <war> task with, 154–155

working with, 97–98

<zip> task

nested <fileset> elements in, 139–140

table of attributes, 141

vs. <tar> task, 139–140

for zipping the application, 140–147

<zipfileset> element

attributes of, 98

table of attributes, 142

<zipgroupfileset> elements

nesting in the <zip> element, 142

using as part of the bundling process,
142–143

z/os value, of <os> nested element, 67

Moodie_559-9Index.fm Page 341 Tuesday, October 11, 2005 6:23 AM

forums.apress.com
FOR PROFESSIONALS BY PROFESSIONALS™

JOIN THE APRESS FORUMS AND BE PART OF OUR COMMUNITY. You’ll find discussions that cover topics

of interest to IT professionals, programmers, and enthusiasts just like you. If you post a query to one of our

forums, you can expect that some of the best minds in the business—especially Apress authors, who all write

with The Expert’s Voice™—will chime in to help you. Why not aim to become one of our most valuable partic-

ipants (MVPs) and win cool stuff? Here’s a sampling of what you’ll find:

DATABASES

Data drives everything.

Share information, exchange ideas, and discuss any database
programming or administration issues.

INTERNET TECHNOLOGIES AND NETWORKING

Try living without plumbing (and eventually IPv6).

Talk about networking topics including protocols, design,
administration, wireless, wired, storage, backup, certifications,
trends, and new technologies.

JAVA

We’ve come a long way from the old Oak tree.

Hang out and discuss Java in whatever flavor you choose:
J2SE, J2EE, J2ME, Jakarta, and so on.

MAC OS X

All about the Zen of OS X.

OS X is both the present and the future for Mac apps. Make
suggestions, offer up ideas, or boast about your new hardware.

OPEN SOURCE

Source code is good; understanding (open) source is better.

Discuss open source technologies and related topics such as
PHP, MySQL, Linux, Perl, Apache, Python, and more.

PROGRAMMING/BUSINESS

Unfortunately, it is.

Talk about the Apress line of books that cover software
methodology, best practices, and how programmers interact with
the “suits.”

WEB DEVELOPMENT/DESIGN

Ugly doesn’t cut it anymore, and CGI is absurd.

Help is in sight for your site. Find design solutions for your
projects and get ideas for building an interactive Web site.

SECURITY

Lots of bad guys out there—the good guys need help.

Discuss computer and network security issues here. Just don’t let
anyone else know the answers!

TECHNOLOGY IN ACTION

Cool things. Fun things.

It’s after hours. It’s time to play. Whether you’re into LEGO®

MINDSTORMS™ or turning an old PC into a DVR, this is where
technology turns into fun.

WINDOWS

No defenestration here.

Ask questions about all aspects of Windows programming, get
help on Microsoft technologies covered in Apress books, or
provide feedback on any Apress Windows book.

HOW TO PARTICIPATE:

Go to the Apress Forums site at http://forums.apress.com/.

Click the New User link.

BOB_Forums_7x9.25.qxd 8/18/03

Moodie_559-9Index.fm Page 342 Tuesday, October 11, 2005 6:23 AM

	Pro Apache Ant
	Table of Content
	Chapter 1 Introducing Ant
	Chapter 2 Installing Ant
	Chapter 3 Using Ant
	Chapter 4 Examining Ant’s Types
	Chapter 5 Building a Project
	Chapter 6 Deploying an Application
	Chapter 7 Running an Application
	Chapter 8 Testing an Application
	Chapter 9 Using Ant in Large Projects
	Chapter 10 Writing Custom Tasks
	Chapter 11 Extending Ant
	Chapter 12 Using the Ant API
	Index

