

Pro Visual C++/CLI and
the .NET 2.0 Platform

■ ■ ■

Stephen R. G. Fraser

Fraser_640-4Front.fm Page i Friday, November 18, 2005 3:42 PM

Pro Visual C++/CLI and the .NET 2.0 Platform

Copyright © 2006 by Stephen R.G. Fraser

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN: 1-59059-640-4

Library of Congress Cataloging-in-Publication data is available upon request.

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Ewan Buckingham
Technical Reviewer: Don Reamey
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, Jason Gilmore,

Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser
Project Managers: Laura Cheu, Richard Dal Porto
Copy Edit Manager: Nicole LeClerc
Copy Editors: Freelance Editorial Services, Ami Knox, Liz Welch
Assistant Production Director: Kari Brooks-Copony
Production Editor: Katie Stence
Compositor: Susan Gilnert
Proofreader: Elizabeth Berry
Indexer: John Collin
Artist: April Milne
Interior Designer: Van Winkle Design Group
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.
You will need to answer questions pertaining to this book in order to successfully download the code.

Fraser_640-4Front.fm Page ii Friday, November 18, 2005 3:42 PM

To my wife, Sarah, and my daughter, Shaina, my energy and happiness.

Fraser_640-4Front.fm Page iii Friday, November 18, 2005 3:42 PM

Fraser_640-4Front.fm Page iv Friday, November 18, 2005 3:42 PM

v

Contents at a Glance

Foreword by Stanley B. Lippman . xxi

About the Author . xxxi

About the Technical Reviewer .xxxiii

Introduction . xxxv

PART 1 ■ ■ ■ The C++/CLI Language
■CHAPTER 1 Overview of the .NET Framework . 3

■CHAPTER 2 C++/CLI Basics . 27

■CHAPTER 3 Object-Oriented C++/CLI . 85

■CHAPTER 4 Advanced C++/CLI . 139

PART 2 ■ ■ ■ .NET Framework Development
in C++/CLI

■CHAPTER 5 The .NET Framework Class Library . 193

■CHAPTER 6 Integrated XML Documentation . 217

■CHAPTER 7 Collections . 241

■CHAPTER 8 Input, Output, and Serialization . 279

■CHAPTER 9 Basic Windows Forms Applications . 309

■CHAPTER 10 Advanced Windows Forms Applications . 377

■CHAPTER 11 Graphics Using GDI+ . 445

■CHAPTER 12 ADO.NET and Database Development . 515

■CHAPTER 13 XML . 559

■CHAPTER 14 Windows Services . 605

■CHAPTER 15 Web Services . 635

■CHAPTER 16 Multithreaded Programming . 661

Fraser_640-4Front.fm Page v Friday, November 18, 2005 3:42 PM

vi ■C O N T E N T S A T A G L A N C E

■CHAPTER 17 Network Programming . 695

■CHAPTER 18 Assembly Programming . 729

■CHAPTER 19 Security . 775

PART 3 ■ ■ ■ Unsafe/Unmanaged C++/CLI
■CHAPTER 20 Unsafe C++ .NET Programming . 805

■CHAPTER 21 Advanced Unsafe or Unmanaged C++ .NET Programming 825

■INDEX . 847

Fraser_640-4Front.fm Page vi Friday, November 18, 2005 3:42 PM

vii

Contents

Foreword by Stanley B. Lippman . xxi

About the Author . xxxi

About the Technical Reviewer .xxxiii

Introduction . xxxv

PART 1 ■ ■ ■ The C++/CLI Language
■CHAPTER 1 Overview of the .NET Framework . 3

What Is .NET? . 3

What Is the .NET Framework? . 4
.NET Programming Advantages . 5

A Closer Look at the .NET Framework . 6
Assemblies . 7

Common Language Runtime . 11

Common Type System . 17

Common Language Specification . 20

.NET Application Development Realms . 21

.NET Framework Class Library . 23

Summary . 25

■CHAPTER 2 C++/CLI Basics . 27

The Obligatory “Hello World!” Program . 27

Statements . 29

Variables and C++/CLI Data Types . 29

Declaring Variables. 29

Variable Name Restrictions . 31

Predefined Data Types . 32

User-Defined Data Types . 42

Boxing and Unboxing . 51

Type Modifiers and Qualifiers . 52

Type Conversions . 53

Variable Scope . 54

Namespaces . 54

Fraser_640-4Front.fm Page vii Friday, November 18, 2005 3:42 PM

cafac74dd2d083cbec0906b66fcd56b1

viii ■C O N T E N T S

Literals . 55

Numeric Literals . 55

Boolean Literals . 57

Character Literals . 58

String Literals . 59

Comments . 60

Operators . 61

Arithmetic Operators . 61

Comparisons and Logical Operators. 62

Bitwise Operators . 63

Conditional Operator. 64

Comma Operator. 65

Assignment Operators . 65

Address of, Reference, and Indirection Operators 66

Operator Precedence . 68

Flow Control Constructs . 69

if Statement . 69

switch Statement . 70

Looping Constructs . 71

while Loop . 71

do-while Loop . 72

for Loop . 73

for each Loop . 74

Skipping Loop Iterations . 75

Breaking Out of a Loop . 75

Functions . 76

Passing Arguments to a Function . 76

Returning Values from a Function. 77

Prototypes . 79

Function Overloading . 80

Passing Arguments to the main() Function . 80

Summary . 83

■CHAPTER 3 Object-Oriented C++/CLI . 85

Object-Oriented Concepts . 85

Encapsulation . 85

Inheritance. 86

Polymorphism . 86

Applying Objects to Software Development. 87

Fraser_640-4Front.fm Page viii Friday, November 18, 2005 3:42 PM

■C O N T E N T S ix

ref class/struct Basics . 89

Declaring ref classes and structs . 90

Using the ref class . 95

Member Variables. 97

Member Methods . 98

Member Properties . 118

Nested ref classes . 128

Type Casting Between Classes . 131

Abstract ref classes . 133

Interfaces . 135

Summary . 138

■CHAPTER 4 Advanced C++/CLI . 139

Preprocessor Directives . 139

Defining Directives . 140

Conditional Directives. 142

Include Directive . 143

Using Directive . 144

Multifile Libraries . 145

Header Files. 146

Source Files . 147

Namespaces . 147

Building Assemblies from Multifile Libraries 149

Assembly Referencing . 154

Templates . 156

Function Templates . 156

Class Templates . 158

Template Specialization and Partial Specialization. 159

Template Parameters . 160

Generics . 163

typedef . 165

Exceptions . 166

Basics of Exception Handling . 166

.NET Framework Base Class: Exception Classes 168

Throwing ApplicationExceptions . 170

Rethrowing Exceptions and Nested try Blocks 172

Catching Multiple Exceptions . 173

Catching All Previously Uncaught Exceptions 176

Executing Code Regardless of an Exception 177

Fraser_640-4Front.fm Page ix Friday, November 18, 2005 3:42 PM

x ■C O N T E N T S

Delegates and Events . 179

Delegates . 179

Events . 184

Summary . 189

PART 2 ■ ■ ■ .NET Framework Development
in C++/CLI

■CHAPTER 5 The .NET Framework Class Library . 193

Library Organizational Structure . 193

Library Namespaces . 194

System . 194

System::Collections . 195

System::Data . 197

System::Deployment . 198

System::Diagnostics . 198

System::DirectoryServices . 200

System::Drawing. 200

System::EnterpriseServices . 201

System::Globalization . 202

System::IO . 203

System::IO::Ports . 204

System::Management . 204

System::Net . 205

System::Reflection . 206

System::Resources . 207

System::Runtime::InteropServices . 208

System::Runtime::Remoting . 209

System::Runtime::Serialization . 211

System::Security . 211

System::Threading . 212

System::Web . 213

System::Windows::Forms . 214

System::Xml . 215

Microsoft::Win32. 216

Summary . 216

Fraser_640-4Front.fm Page x Friday, November 18, 2005 3:42 PM

■C O N T E N T S xi

■CHAPTER 6 Integrated XML Documentation . 217

The Basics . 217

The Triple Slash Comment . 218

Adding Triple Slash Comment to Your Code 219

Generating XML Documentation Files . 220

Viewing Integrated XML Documentation in IntelliSense 222

Documentation Tags . 223

Functionality Tags. 223

Formatting Tags . 229

Reference Tags . 233

Documentation Example . 236

Summary . 240

■CHAPTER 7 Collections . 241

IEnumerable, IEnumerator, and for each . 243

Standard Collections . 245

ArrayList. 245

BitArray . 248

Hashtable and SortedList . 251

Queue and Stack. 255

Specialized Collections . 257

ListDictionary . 257

StringCollection . 259

StringDictionary . 260

NameValueCollection . 261

Generic Collections . 264

List<T> . 265

LinkedList<T>. 269

Queue<T> and Stack<T> . 271

Dictionary<K,V>, SortedDictionary<K,V> . 273

Collection<T> and ReadOnlyCollection<T> 278

Summary . 278

■CHAPTER 8 Input, Output, and Serialization . 279

File System Input and Output . 279

Managing the File System . 280

Opening Files. 288

The Open Methods . 289

I/O Manipulation . 291

Fraser_640-4Front.fm Page xi Friday, November 18, 2005 3:42 PM

xii ■C O N T E N T S

Serialization of Managed Objects . 302

Setting Up Classes for Serialization . 302

BinaryFormatter vs. SoapFormatter . 304

Serialization Using BinaryFormatter . 304

Serialization Using SoapFormatter . 306

Summary . 308

■CHAPTER 9 Basic Windows Forms Applications . 309

Win Forms Are Not MFC . 309

“Hello World!” Win Form Style . 310

Customizing the Form Class . 314

Handling Win Form Delegates and Events . 319

Adding Controls . 323

The Label Control . 324

The Button Controls . 327

The Text Controls . 343

The Selection Controls . 358

Timers . 373

Summary . 376

■CHAPTER 10 Advanced Windows Forms Applications 377

ImageList . 377

Views . 379

ListView . 379

TreeView . 387

Container Controls . 394

TabControl . 394

SplitContainer . 398

Strips . 402

ToolStripContainer and ToolStripPanel. 402

ToolStripManager . 403

ToolStrip. 404

StatusStrip . 410

MenuStrip and ContextMenuStrip . 414

Bells and Whistles Controls . 420

PictureBox . 420

MonthCalendar . 423

ErrorProvider . 426

NotifyIcon . 430

Fraser_640-4Front.fm Page xii Friday, November 18, 2005 3:42 PM

■C O N T E N T S xiii

Dialog Boxes . 434

Custom Dialog Boxes . 434

Common .NET Framework–Provided Dialog Boxes 442

Summary . 444

■CHAPTER 11 Graphics Using GDI+ . 445

What Is GDI+? . 445

A Quick Look at the GDI+ Namespaces . 446

“Hello World!” GDI+ Style . 447

OnPaint vs. PaintEventHandler . 450

The Graphics Class . 454

Graphics Class Members . 454

Disposing of Resources with Deterministic Cleanup 455

Rendering Outside of the Paint Event . 455

The Invalidate Method . 459

GDI+ Coordinate Systems . 459

Common Utility Structures . 462

Point and PointF . 463

Size and SizeF . 464

Rectangle and RectangleF . 465

Region . 469

Drawing Strings . 472

Fonts . 476

Colors . 480

Custom Colors . 481

Named Colors . 481

Pens and Brushes . 481

Pens . 481

Brushes . 486

Rendering Prebuilt Images . 489

Drawing Your Own Shapes and Lines . 492

Advanced GDI+ . 494

Scrollable Windows . 494

Optimizing GDI+ . 498

Double Buffering . 501

Printing . 508

Summary . 513

Fraser_640-4Front.fm Page xiii Friday, November 18, 2005 3:42 PM

xiv ■C O N T E N T S

■CHAPTER 12 ADO.NET and Database Development 515

What Is ADO.NET? . 515

Building a Database with Visual Studio 2005 . 517

Creating a New Database . 518

Adding and Loading Tables and Views to a Database 519

Building Stored Procedures . 525

Managed Providers . 526

Connected ADO.NET . 527

Using Simple Connected ADO.NET . 527

Using Connected ADO.NET with Transactions. 539

Disconnected ADO.NET . 544

The Core Classes . 544

Creating a Table Manually in Code . 548

Developing with Disconnected ADO.NET . 549

Summary . 558

■CHAPTER 13 XML . 559

What Is XML? . 559

The .NET Framework XML Implementations . 560

Forward-Only Access . 561

Reading from an XML File . 562

Validating an XML File . 569

Writing a New XML Stream . 574

Updating an Existing XML File . 578

Working with DOM Trees . 581

Reading a DOM Tree . 585

Updating a DOM Tree . 588

Writing XmlNodes in a DOM Tree . 590

Navigating with XPathNavigator . 593

Basic XPathNavigator . 594

XPathNavigator Using XPath Expressions . 596

XML and ADO.NET . 601

Summary . 603

Fraser_640-4Front.fm Page xiv Friday, November 18, 2005 3:42 PM

cafac74dd2d083cbec0906b66fcd56b1

■C O N T E N T S xv

■CHAPTER 14 Windows Services . 605

What Are Windows Services? . 605

Architecture of Windows Services . 607

Service Application . 607

Service Control Application . 608

Service Configuration Application . 608

The ServiceProcess Namespace . 609

Creating Windows Services . 609

Auto-generated Windows Service. 610

Customizing the Windows Service . 615

Installing and Uninstalling Windows Services . 621

Managing Windows Services . 624

Services Application . 625

Custom Service Control Application . 626

Debugging Windows Services . 630

Attaching the Debugger to the Windows Service 631

A Special Main() Function . 632

Summary . 634

■CHAPTER 15 Web Services . 635

What Are Web Services? . 635

Components of a Web Service . 636

Communication Protocols . 636

Description Service. 637

Discovery Service . 637

The Web Services Namespaces . 638

A Simple Web Service . 638

Accessing a Web Service Using HTTP POST 646

Accessing a Web Service Using SOAP . 647

Debugging a Web Service . 650

Passing Data Using a Web Service . 651

Using Web Service GUI Designer Tool . 652

Returning a DataSet . 653

Inserting, Updating, and Deleting Rows in a DataSet 654

Authors DataSet Processing Web Service Client 655

Summary . 659

Fraser_640-4Front.fm Page xv Friday, November 18, 2005 3:42 PM

xvi ■C O N T E N T S

■CHAPTER 16 Multithreaded Programming . 661

What Is Multithreaded Programming? . 661

Basic .NET Framework Class Library Threading 662

Thread State . 663

Thread Priorities . 665

Using Threads . 666

Starting Threads . 666

Getting a Thread to Sleep . 669

Aborting Threads . 671

Joining Threads . 673

Interrupting, Suspending, and Resuming Threads 675

Using ThreadPools . 677

Synchronization . 679

The ThreadStatic Attribute . 680

The Interlocked Class . 682

The Monitor Class . 684

The Mutex Class . 687

The ReaderWriterLock Class . 691

Summary . 694

■CHAPTER 17 Network Programming . 695

The Network Namespaces . 695

Connection-Oriented Sockets . 696

The TCP Server . 696

The TCP Client. 702

Connectionless Sockets . 705

UDP Server . 706

UDP Client Example . 710

Using Connect() with UDP . 711

Socket Helper Classes and Methods . 712

TcpListener . 712

TcpClient . 713

TCP Helper Class Example. 714

UdpClient . 717

Changing Socket Options. 719

Fraser_640-4Front.fm Page xvi Friday, November 18, 2005 3:42 PM

■C O N T E N T S xvii

Asynchronous Sockets . 720

Accepting Connections. 721

Connecting to a Connection. 722

Disconnecting from a Connection . 723

Sending a Message . 724

Receiving a Message . 724

Asynchronous TCP Server . 725

Summary . 728

■CHAPTER 18 Assembly Programming . 729

Reflection . 729

Examining Objects . 730

Dynamically Invoking or Late-Binding Objects 735

Attributes . 738

Creating a Custom Attribute . 739

Implementing a Custom Attribute . 742

Using a Custom Attribute . 743

Shared Assemblies . 746

The Global Assembly Cache . 746

Adding Assemblies to the GAC . 747

The Shared Assembly’s Strong Name . 748

Re-signing an Assembly . 749

Signcoded Digital Signature . 749

Versioning . 749

No DLL Hell Example . 751

Application Configuration Files . 754

Resources . 755

Creating Resources . 756

Embedding Resources . 758

Accessing Resources . 762

Globalization and Localization . 764

The Globalization Tools . 765

The Localization Tools . 767

Building a Multicultural Windows Application 767

Building a Multicultural Console Application 770

Summary . 773

Fraser_640-4Front.fm Page xvii Friday, November 18, 2005 3:42 PM

xviii ■C O N T E N T S

■CHAPTER 19 Security . 775

The Security Namespaces . 775

Role-Based Security . 776

Identities . 776

Principal . 777

Working with Identities and Principals . 778

Securing Your Code Using Roles . 780

Code Access Security . 783

Permissions . 783

Policy Statement . 784

Code Groups . 785

Evidence . 790

Securing Your Code Using CAS . 795

Summary . 802

PART 3 ■ ■ ■ Unsafe/Unmanaged C++/CLI

■CHAPTER 20 Unsafe C++ .NET Programming . 805

What Is Unsafe Code? . 805

Why Do We Still Need Unsafe Code? . 806

Creating Unsafe Code . 807

The Managed and Unmanaged #pragma Directives. 807

Unmanaged Arrays . 810

Unmanaged Classes/Structs . 811

Pointers . 815

Including the vcclr.h File . 820

Summary . 823

■CHAPTER 21 Advanced Unsafe or Unmanaged
C++ .NET Programming . 825

P/Invoke . 825

Calling DLLs without P/Invoke . 826

Using P/Invoke . 828

Data Marshaling . 833

MarshalAsAttribute . 833

Marshaling Strings . 835

Marshaling Ref and Value Classes . 835

Fraser_640-4Front.fm Page xviii Friday, November 18, 2005 3:42 PM

■C O N T E N T S xix

Accessing COM Components from .NET . 837

Interop Assembly . 839

Creating the Interop Assembly . 839

Invoking the Interop Assembly . 841

Handling COM Object Errors . 843

Late Binding a COM Object . 844

Summary . 846

■INDEX . 847

Fraser_640-4Front.fm Page xix Friday, November 18, 2005 3:42 PM

Fraser_640-4Front.fm Page xx Friday, November 18, 2005 3:42 PM

xxi

Foreword by Stanley B. Lippman

It is with great satisfaction that I introduce you to Stephen’s excellent new book, Pro Visual C++/CLI
and the .NET 2.0 Platform, the first detailed treatment of what has been standardized under ECMA as
C++/CLI. Of course, any text, no matter how excellent, is itself incomplete, like a three-walled room.
The fourth wall, in this case, is you, the reader. You complete the text by exercising the code samples,
poking around with them, and finally writing your own code. That’s really the only way to develop a
deep understanding of this stuff. But having an experienced guide to step you through the hazards of
any new language is priceless, and this is what Stephen’s text accomplishes. I cannot recommend it
too highly.

With Stephen’s indulgence, I would like to give you a short overview of the ideas behind the
language’s original design and place it in the context of the design and evolution of C++ itself. The
first question people ask is, “So what is C++/CLI?”

C++/CLI is a self-contained, component-based dynamic programming language that, like C#
or Java, is derived from C++. Unlike those languages, however, we have worked hard to integrate
C++/CLI into ISO-C++, using the historical model of evolving the C/C++ programming language to
support modern programming paradigms. Historically, one can say that C++/CLI is to C++ as C++ is
to C. More generally, one can view the evolution leading to C++/CLI in the following historical context:

• BCPL (Basic Computer Programming Language)

• B (Ken Thompson, original Unix work ...)

• C (Dennis Ritchie, adding type and control structure to B ...)

• C with Classes (~1979)

• C84 (~1984) ...

• Cfront, release E (~1984, to universities) ...

• Cfront, release 1.0 (1985, to the world)—20th birthday !!!

• Multiple/Virtual Inheritance Programming (~1988) (MI)

• Generic Programming (~1991) (Templates)

• ANSI C++/ISO-C++ (~1996)

• Dynamic Component Programming (~2005) (C++/CLI)

C++/CLI represents a tuple. The first term, C++, refers of course to the C++ programming
language invented by Bjarne Stroustrup at Bell Laboratories. It supports a static object model that is
optimized for the speed and size of its executables. It does not support runtime modification of the
program other than, of course, heap allocation. It allows unlimited access to the underlying machine, but
very little access to the types active in the running program, and no real access to the associated infra-
structure of that program.

The third term, CLI, refers to the Common Language Infrastructure, a multitiered architecture
supporting a dynamic component programming model. In many ways, this represents a complete
reversal of the C++ object model. A runtime software layer, the virtual execution system, runs between
the program and the underlying operating system. Access to the underlying machine is fairly

Fraser_640-4Front.fm Page xxi Friday, November 18, 2005 3:42 PM

cafac74dd2d083cbec0906b66fcd56b1

xxii ■F O R E W O R D B Y S T A N L E Y B . L I P P M A N

constrained. Access to the types active in the executing program and the associated program infra-
structure—both as discovery and construction—is supported.

The second term, slash (/), represents a binding between C++ and the CLI.
So, a first approximation of an answer as to “What is C++/CLI?” is to say that it is a binding of the

static C++ object model with the dynamic component object model of the CLI. In short, it is how
we do .NET programming using C++ rather than, say, C# or Visual Basic. Like C# and the CLI itself,
C++/CLI is undergoing standardization under ECMA (and eventually under ISO).

The common language runtime (CLR) is the implementation of the CLI that is platform specific
to the Windows operating system. Similarly, Visual C++ 2005 is our implementation of C++/CLI.

So, as a second approximation of an answer, I would say that C++/CLI integrates the .NET
programming model within C++ in the same way as, back at Bell Laboratories, we integrated generic
programming using templates within the then existing C++. In both cases, both your investment in
an existing C++ code base and in your existing C++ expertise are preserved. This was an essential
baseline requirement of the design of C++/CLI.

What Does Learning C++/CLI Involve?
There are three aspects in the design of a CLI language that hold across all languages: (1) a mapping
of language-level syntax to the underlying Common Type System (CTS); (2) the choice of a level of
detail to expose the underlying CLI infrastructure to the direct manipulation of the programmer;
and, (3) the choice of additional functionality to provide over that supported directly by the CLI.
A fourth element of designing a CLI extension to an existing language, such as C++ or Ada, requires a
fourth aspect: (4) that of integrating the managed and native type systems. We’ll briefly look at an
example of each in turn.

How Does C++/CLI Map to the CTS?
One aspect of programming C++/CLI is learning the underlying Common Type System, which
includes three general class types:

1. A polymorphic reference type that is used for all class inheritance

2. A nonpolymorphic value type that is used for implementing concrete types requiring
runtime efficiency such as the numeric types

3. An abstract interface type that is used for defining a set of operations common to a set of
either reference or value types that implement the interface

This design aspect, the mapping of the CTS to a set of built-in language types, is common across
all CLI languages, although of course the syntax varies in each CLI language. So, for example, in C#,
one writes

abstract class Shape { ... } // C#

to define an abstract Shape base class from which specific geometric objects are to be derived,
while in C++/CLI one writes

ref class Shape abstract { ... }; // C++/CLI

to indicate the exact same underlying CLI reference type. The two declarations are represented
exactly the same in the underlying CIL. Similarly, in C#, one writes

struct Point2D { ... } // C#

Fraser_640-4Front.fm Page xxii Friday, November 18, 2005 3:42 PM

■F O R E W O R D B Y S T A N L E Y B . L I P P M A N xxiii

to define a concrete Point2D class, while in C++/CLI one writes

value class Point2D { ... }; // C++/CLI

The family of class types supported with C++/CLI represents an integration of the CTS with the
native facilities, of course, and that determined our choice of syntax. For example:

class native {};
value class V {};
ref class R {};
interface class I {};

The CTS also supports an enumeration class type that behaves somewhat differently from the
native enumeration, and we provide support for both of those as well:

enum native { fail, pass };
enum class CLIEnum : char { fail, pass};

Similarly, the CTS supports its own array type that again behaves differently from the native
array. And again we provide support for both:

int native[] = { 1,1,2,3,5,8 };
array<int>^ managed = { 1,1,2,3,5,8 };

It is not true to think of any one CLI language as closer to or more nearly a mapping to the under-
lying CTS than is another. Rather, each CLI language represents a view into the underlying CTS
object model.

What Level of Detail of the CLI Does
C++/CLI Expose?
The second design aspect reflects the level of detail of the underlying CLI implementation model to
incorporate into the language. How does one go about determining this? Essentially, we need to ask
these questions:

• What are the kinds of problems the language is likely to be tasked to solve? We must make sure
the language has the tools necessary to do this.

• What are the kinds of programmers the language is likely to attract?

Let’s look at an example: the issue of value types occurring on the managed heap. Value types
can find themselves on the managed heap in a number of circumstances:

• Implicit boxing

• We assign an object of a value type to an Object.

• We invoke a virtual method through a value type that is not overridden.

• When a value type serves as a member of a reference class type

• When a value type is being stored as the element type of a CLI array

Fraser_640-4Front.fm Page xxiii Friday, November 18, 2005 3:42 PM

xxiv ■F O R E W O R D B Y S T A N L E Y B . L I P P M A N

The design question a CLI language has to ask is, “Should we allow the programmer to manipulate
the address of a value type of this sort?”

What are the issues?
Any object located on the managed heap is subject to relocation during the compaction phase

of a sweep of the garbage collector. Any pointers to that object must be tracked and updated by the
runtime; the programmer has no way to manually track it herself. Therefore, if we were to allow the
programmer to take the address of a value type potentially resident on the managed heap, we would
need to introduce a tracking form of pointer in addition to the existing native pointer.

What are the trade-offs to consider? On the one hand, simplicity and safety.

• Directly introducing support in the language for one or a family of tracking pointers makes it
a more complicated language. By not supporting this, we expand the available pool of
programmers by requiring less sophistication.

• Allowing the programmer access to these ephemeral value types increases the possibility of
programmer error—she may purposely or by accident do bad things to the memory. By not
supporting this, we create a potentially safer runtime environment.

On the other hand, efficiency and flexibility.

• Each time we assign the same Object with a value type, a new boxing of the value occurs.
Allowing access to the boxed value type allows in-memory update, which may provide signif-
icant performance ...

• Without a form of tracking pointer, we cannot iterate over a CLI array using pointer arithmetic.
This means that the CLI array cannot participate in the STL iterator pattern and work with the
generic algorithms. Allowing access to the boxed value type allows significant design flexibility.

We chose in C++/CLI to provide a collection of addressing modes that handle value types on the
managed heap.

int ival = 1024;

// int^ provides a tracking handle for
// direct read/write access to a boxed value type ...
int^ boxedi = ival;

array<int>^ ia = gcnew array<int>{1,1,2,3,5,8};

// interior_ptr<T> supports indexing into the GC heap ...
interior_ptr<int> begin = &ia[0];

value struct smallInt { int m_ival; ... } si;
pin_ptr<int> ppi = &si.m_ival;

We imagine the C++/CLI programmer to be a sophisticated system programmer tasked with
providing infrastructure and organizationally critical applications that serve as the foundation over
which a business builds its future. She must address both scalability and performance concerns and
must therefore have a system-level view into the underlying CLI. The level of detail of a CLI language
reflects the face of its programmer.

Complexity is not in itself a negative quality. Human beings, for example, are more complicated
than single-cell bacteria, but that is, I think we all agree, not a bad thing. When the expression of a
simple concept is complicated, that is a bad thing. In C++/CLI, we have tried to provide an elegant
expression to a complex subject matter.

Fraser_640-4Front.fm Page xxiv Friday, November 18, 2005 3:42 PM

■F O R E W O R D B Y S T A N L E Y B . L I P P M A N xxv

What Does C++/CLI Add Over That of the CLI?
A third design aspect is a language-specific layer of functionality over that directly supported by the
CLI. This may require a mapping between the language-level support and the underlying implemen-
tation model of the CLI. In some cases, this just isn’t possible because the language cannot intercede
with the behavior of the CLI. One example of this is the virtual function resolution in the constructor
and destructor of a base class. To reflect ISO-C++ semantics in this case would require a resetting of
the virtual table within each base class constructor and destructor. This is not possible because
virtual table handling is managed by the runtime and not the individual language.

So this design aspect is a compromise between what we might wish to do, and what we find
ourselves able to do. The three primary areas of additional functionality provided by C++/CLI are
the following:

• A form of Resource Acquisition is Initialization (RAII) for reference types. In particular,
to provide an automated facility for what is referred to as deterministic finalization of garbage
collected types that hold scarce resources.

• A form of deep-copy semantics associated with the C++ copy constructor and copy assign-
ment operator; however, this could not be extended to value types.

• Direct support of C++ templates for CTS types in addition to the CLI generic mechanism—this
had been the topic of my original first column. In addition, we provide a verifiable version of
the Standard Template Library for CLI types.

Let’s look at a brief example: the issue of deterministic finalization.
Before the memory associated with an object is reclaimed by the garbage collector, an associated

Finalize() method, if present, is invoked. You can think of this method as a kind of super-destructor
since it is not tied to the program lifetime of the object. We refer to this as finalization. The timing of
just when or even whether a Finalize() method is invoked is undefined. This is what is meant when
we say that garbage collection exhibits nondeterministic finalization.

Nondeterministic finalization works well with dynamic memory management. When available
memory gets sufficiently scarce, the garbage collector kicks in and things pretty much just work.
Nondeterministic finalization does not work well, however, when an object maintains a critical
resource such as a database connection, a lock of some sort, or perhaps native heap memory. In this
case, we would like to release the resource as soon as it is no longer needed. The solution currently
supported by the CLI is for a class to free the resources in its implementation of the Dispose() method
of the IDisposable interface. The problem here is that Dispose() requires an explicit invocation, and
therefore is liable not to be invoked.

A fundamental design pattern in C++ is spoken of as Resource Acquisition is Initialization. That
is, a class acquires resources within its constructor. Conversely, a class frees its resources within its
destructor. This is managed automatically within the lifetime of the class object.

This is what we would like to do with reference types in terms of the freeing of scarce resources:

• Use the destructor to encapsulate the necessary code for the freeing of any resources associ-
ated with the class.

• Have the destructor automatic invocation tied with the lifetime of the class object.

The CLI has no notion of the class destructor for a reference type. So the destructor has to be
mapped into something else in the underlying implementation. Internally, then, the compiler does
the following transformations:

• The class has its base class list extended to inherit from the IDisposable interface.

• The destructor is transformed into the Dispose() method of IDisposable.

Fraser_640-4Front.fm Page xxv Friday, November 18, 2005 3:42 PM

xxvi ■F O R E W O R D B Y S T A N L E Y B . L I P P M A N

That gets us half the way to our goal. We still need a way to automate the invocation of the
destructor. A special stack-based notation for a reference type is supported; that is, one in which its
lifetime is associated within the scope of its declaration. Internally, the compiler transforms the
notation to allocate the reference object on the managed heap. With the termination of the scope,
the compiler inserts an invocation of the Dispose() method—the user-defined destructor. Reclamation
of the actual memory associated with the object remains under the control of the garbage collector.

Let’s look at a code example.

ref class Wrapper {
 Native *pn;
public:
 // resource acquisition is initialization
 Wrapper(int val) { pn = new Native(val); }

 // this will do our disposition of the native memory
 ~Wrapper(){ delete pn; }

 void mfunc();
protected:

 // an explicit Finalize() method - as a failsafe ...
 ! Wrapper() { delete pn; }
};

void f1()
{
 // normal treatment of a reference type ...
 Wrapper^ w1 = gcnew Wrapper(1024);

 // mapping a reference type to a lifetime ...
 Wrapper w2(2048); // no ^ token !

 // just illustrating a semantic difference ...
 w1->mfunc(); w2.mfunc();

 // w2 is disposed of here
}

//
// ... later, w1 is finalized at some point, maybe ...

C++/CLI is not just an extension of C++ into the managed world. Rather, it represents a fully
integrated programming paradigm similar in extent to the earlier integration of the multiple inheritance
and generic programming paradigms into the language. I think the team has done an outstanding job.

Fraser_640-4Front.fm Page xxvi Friday, November 18, 2005 3:42 PM

■F O R E W O R D B Y S T A N L E Y B . L I P P M A N xxvii

Integrating C++/CLI with ISO-C++
The type of a string literal, such as "Pooh", is treated differently within C++/CLI; it is more nearly a
kind of System::String than a C-style character string pointer. This has a visible impact with regard
to the resolution of overload functions. For example:

public ref class R {
public:
 void foo(System::String^); // (1)
 void foo(std::string); // (2)
 void foo(const char*); // (3)
};

void bar(R^ r)
{
 // which one?
 r->foo("Pooh");
}

In ISO-C++, this resolves to instance (3)—a string literal is more nearly a kind of constant pointer
to character than it is an ISO-C++ standard library string type. Under C++/CLI, however, this call
resolves to (1)—a string literal is now more nearly a kind of System::String than pointer to character.
The type of a string literal is treated differently within C++/CLI. It has been designed to be more
nearly a kind of System::String than a C-style character string pointer.

void foo(System::String^); // (1)
void foo(std::string); // (2)
void foo(const char*); // (3)

void bar(R^ r){ r->foo("Pooh"); } // which foo?

ISO-C++: // (3) is invoked ...
C++/CLI: // (1) is invoked ...

So, What Did You Say About C++/CLI?
C++/CLI represents an integration of native and managed programming. In this iteration, we have
done that through a kind of separate but equal community of source-level and binary elements:

• Mixed mode: source-level mix of native and CTS types plus binary mix of native and CIL
object files. (Compiler switch: \clr.)

• Pure mode: source-level mix of native and CTS types. All compiled to CIL object files.
(Compiler switch: \clr:pure.)

• Native class can hold CTS types through a special wrapper class only.

• CTS classes can hold native types only as pointers.

Of course, the C++/CLI programmer can also choose to program with the .NET managed types
only, and in this way provide verifiable code, using the \clr:safe Visual C++ compiler switch.

Fraser_640-4Front.fm Page xxvii Friday, November 18, 2005 3:42 PM

xxviii ■F O R E W O R D B Y S T A N L E Y B . L I P P M A N

How Was C++/CLI Invented?
People often ask, “Who invented C++/CLI?” and, really, that’s like asking, “Who invented quantum
physics?” The answer to both questions is, well, it was actually a number of different folks, because
the problem was too hard for any one of us to do it all, but too important to let more than one person
do each part. In a sense, the way you got to do it was by wanting to do it more than anyone else. In that
way, the design of C++/CLI is more like an improvisatory jazz composition than the studied design of
a master, such as the original invention of C++—then called C with Classes—by Bjarne Stroustrup
within Bell Laboratories. Let me see if I can explain that.

There are four people primarily responsible for C++/CLI: David Burggraaf, myself, Herb Sutter,
and Brandon Bray. From a programmer’s perspective, the primary creator of C++\CLI is Brandon
Bray. That will probably surprise some of you because it is unlikely that all of you have (as yet) heard
of Brandon, while most of you have certainly heard of both Herb Sutter and myself. The thing to
remember, of course, is that at one time, no one had heard of either Herb or myself either. (In fact,
the lab manager at Bell Laboratories back in 1985 when I was working on my first edition of C++
Primer, asked my boss, Barbara Moo, during our group’s dog and pony show, “Why is he writing a
book?”) So, from now on, whenever you hear Brandon’s name, you should think, oh, he’s the one
who, as we say in animation, skinned the beast and located it in world space.

Brandon won this job literally through a form of corporate natural selection. He wanted it more,
and he rose to its many, many difficulties—in particular, Herb’s compassionate but firm shepherding
and my sheepdog’s growls and yapping, always to the same point: Don’t go there unless you are
certain it is the correct direction and you are able and willing to defend it. That was the standard
Brandon was held to, and within that boundary lies C++\CLI. It is a largely homogeneous, coherent,
and thoughtful invention. It would, in my opinion, be unfair and incorrect to characterize it as
complicated or ill-formed. It is complex, but only because it integrates nearly 30 years of technological
change in one interoperative language: Visual C++ 2005.

From an origin’s perspective, the primary visionary behind C++\CLI is David Burggraaf, the
program manager of Visual C++, although he had no real idea of what C++\CLI would be, except that
it would (1) reinvigorate C++ within Microsoft, (2) reengage C++ on the .NET platform, (3) reengage
Microsoft within the larger C++ community, and (4) create the best and most leading-edge C++
language development group in the world.

That was David’s agenda, and obviously the same person cannot be successful in leading the
Visual C++ product unit of Microsoft and detailing a 300++ C++\CLI language specification for ECMA
standardization! But had someone other than David been hired by Craig Symonds, general manager
of all Visual Studio, Brandon would never had his opportunity—and I would not be writing this, nor
would you be reading Stephen’s excellent book.

When I joined Microsoft back in the winter of 2001, it was on the condition that they accept the
fact that I considered their new product, Managed Extension for C++, an abomination. When I was
later asked to explain what I felt was wrong with it—no one at the time accepted that evaluation—
I thought it more productive to show them how I would have done it rather than simply criticize what
they had done. Using the reference (&) addition to C invented by Bjarne as an analogy, I introduced
the concept of the CLR reference type as a hat (^)—actually, I first proposed % as the token, since it
physically mirrors the duple nature of a reference type (a named handle that we manipulate and an
unnamed instance of the type allocated on the managed heap).

I also insisted we view our binding as an additional paradigm added to C++ similar to adding
multiple inheritance or generic programming using templates—that is, adding keywords and tokens
unique to this paradigm. To circumvent the problem of breaking existing code with new keywords,
I proscribed contextual keywords. And I said our specification should be mapped as closely as
possible to the existing ISO-C++ standard.

This was back in October, 2001. My manager said I had three months to develop the entire language,
and another three months to deliver an implementation spec. I was a bit naïve at the time as to how

Fraser_640-4Front.fm Page xxviii Friday, November 18, 2005 3:42 PM

cafac74dd2d083cbec0906b66fcd56b1

■F O R E W O R D B Y S T A N L E Y B . L I P P M A N xxix

Microsoft schedules its releases, and so I took him at his word. I delivered both by March, 2002, and
that pretty much ended my direct participation in the language design. Three-and-a-half years later,
September, 2005, Brandon Bray delivered the specification to ECMA, and an implementation was
released as part of Visual C++ 2005.

As the Grateful Dead once wrote, it’s been a long, strange trip!
So, returning back to the question, What is C++/CLI? It is a first-class entry visa into the .NET

programming model. With C++/CLI, there is a C++ migration path not just for our C++ source base,
but for our C++ expertise as well. I for one find great satisfaction in that.

Stanley B. Lippman
Architect, Visual C++

Microsoft Corporation

Fraser_640-4Front.fm Page xxix Friday, November 18, 2005 3:42 PM

Fraser_640-4Front.fm Page xxx Friday, November 18, 2005 3:42 PM

xxxi

About the Author

■STEPHEN R. G. FRASER has over 15 years of IT experience working for a number of consulting
companies, ranging from the large consulting firms of EDS and Andersen Consulting (Accenture)
and smaller consulting firms like Allin Consulting to startup e-business and medical companies.
His IT experience covers all aspects of application and Web development and management, from
initial concept all the way through to deployment. He lives in Silicon Valley with his wife, Sarah, and
daughter, Shaina.

Fraser_640-4Front.fm Page xxxi Friday, November 18, 2005 3:42 PM

Fraser_640-4Front.fm Page xxxii Friday, November 18, 2005 3:42 PM

xxxiii

About the Technical Reviewer

■DON REAMEY is a software development engineer for Microsoft’s Office Business Applications Group,
where he works on applications that integrate with Microsoft Office. Don has 16 years of experience in
the software industry, with 10 of those years building C++ and Java applications for the financial
industry. Don holds a bachelors of science degree in Information Systems from Pfeiffer University.

Fraser_640-4Front.fm Page xxxiii Friday, November 18, 2005 3:42 PM

Fraser_640-4Front.fm Page xxxiv Friday, November 18, 2005 3:42 PM

xxxv

Introduction

In the first edition of this book, I said .NET is the future. I need to correct that—C++/CLI is the
future. Microsoft seems to have a set pattern when it comes to releasing their products. It takes them
three versions to come out with a superior and polished product. Well, true to form, even though
they call it .NET 2.0, this is version three and, to put it bluntly, Microsoft has hit the nail on the head
once again.

Don’t get me wrong; C# and Visual Basic .NET are still great development languages (and version
three is as well), but neither have the flexibility or the pedal-to-the-metal power of C++/CLI. With
.NET 2.0’s version of C++/CLI, you no longer have a forced kludge of .NET concepts and C++. Instead,
C++/CLI is now a true implementation of the C++ language from which you can implement .NET
applications. If you’re one of the legions of established C++ developers out there, this is a godsend,
as you no longer have to learn a completely new language to get the benefits of .NET.

Best of all, with C++/CLI, you can practically mix and match .NET code and legacy C++ code at
will. Of course, doing so comes at a cost (we’ll get to that later in the book), but the benefits of this and
not having to rewrite a lot of code may be worth it. As a designer, architect, or developer, it will be
your task to determine whether performing this mixing and matching is worth the cost.

Unfortunately, not all is sunshine. All the code you wrote for version 1.1 of .NET can no longer
be compiled with the new .NET 2.0 C++/CLI compiler option because the language syntax has changed
(for the better, I think). The changes, for the most part, are fairly straightforward. There is, though, a
legacy compiler option if you need it to compile your old Managed Extension for C++ v1.1 code. Also,
the C++/CLI language has a few new operators, but all of them make sense and provide the language
much clearer syntax to work with.

Microsoft has put a lot of effort into the new Managed C++ compiler, or more correctly, C++/CLI
compiler. With this version, I feel there will be a large migration of all the old C++ developers back
from C# to C++/CLI. C++/CLI will become the premier language, as it should be, to develop .NET code.

What Is This Book About?
This is a book about writing .NET 2.0 applications using C++/CLI. You’ll cover a lot of ground in a
short period of time. In the end, you’ll be proficient at developing .NET applications, be they console
applications, Windows applications, Windows services, or Web services.

While you’re learning the ins and outs of .NET application development, you’ll be learning the
syntax of C++/CLI, both traditional to C++ and new to .NET 2.0. You will also gain a good understanding
of the .NET architecture.

But, unlike the previous version, this book does not leave legacy developers out in the cold, as it
also shows how to integrate your previously built C++ code and/or COM, DCOM, COM+, and ActiveX
components with your new .NET 2.0 code. It should be noted that this book does not show you how
to build any of this legacy code (other than some very simple example code). Instead, it shows you
how to code in the world of .NET 2.0 and how to access this legacy code only when it is needed.

Fraser_640-4Front.fm Page xxxv Friday, November 18, 2005 3:42 PM

cafac74dd2d083cbec0906b66fcd56b1

xxxvi ■I N T R O D U C T I O N

Changes in the Second Edition
Microsoft has made many changes to C++/CLI between versions 1.1 and 2.0; in fact, every program
example in this book has been changed, though in almost all cases the output result is exactly the
same as in the previous version of this book.

The first major difference is that, when appropriate, the book uses the well-established, standard
two-part (declaration and implementation) approach of C++ coding. This version of the book does
not advocate the use of C# inline coding style, although it’s sometimes easier to code in the inline
style, due to the autogenerated code by Visual Studio 2005.

The second major difference in the second edition is that it does cover unsafe and unmanaged
C++. The book goes into how to use it, but it does not go into detail about the technologies that are
developed in it, like COM+ or ATL. You will be notified that the code is unsafe when the following
note first mentions it:

■Unsafe Code The following is unmanaged code or unsafe code.

The third difference is that this book codes using C++ predefined data types as opposed to .NET
Framework data types. Ultimately, they compile to the same thing anyway, and I thought that using
.NET Framework data types everywhere in the previous book just complicated things unnecessarily.

Basically, this is a C++/CLI book, not a C# want-to-be book, where some of the readers felt my
previous version of this book had strayed. With these three changes, I try to reflect this. An unfortu-
nate side effect is that the preceding three changes forced a lot of alterations to be made throughout
the book. In particular, Chapters 2 though 4 of the book have been updated considerably (although
in truth, almost every chapter went through a major overhaul).

In addition to this move to make the book truly a C++/CLI book, I also added several new chapters:

• Chapter 6, “Integrated XML Documentation”: C++/CLI has integrated the documentation
that C# developers have been enjoying for some time.

• Chapter 14, “Windows Services”: The basics of creating Windows services using C++/CLI.

• Chapter 17, “Network Programming”: The basics of network programming and the Socket
assembly.

• Chapter 19, “Security”: The basics of .NET security and how to add it to your C++/CLI code.

• Chapter 20, “Unsafe C++ .NET Programming”: A look at some of the easier unsafe C++ topics
like unsafe classes, mixing managed and unsafe code and wrapping unsafe code.

• Chapter 21, “Advanced Unsafe/Unmanaged C++ .NET Programming”: A look at some of the
more advanced unsafe C++ topics like PInvoke, COM object integration, and data marshalling.

Who Should Read This Book?
If you’re new to the Visual C++/CLI language, plain and simple, this book is for you. The software
world is changing, and learning a new language is hard enough without getting unnecessarily
bogged down with a complex set of old technologies before you learn about the new ones.

Fraser_640-4Front.fm Page xxxvi Friday, November 18, 2005 3:42 PM

■I N T R O D U C T I O N xxxvii

If you’re an experienced Visual C++ or Managed Extension for C++ programmer, this book is
also for you. Microsoft is changing your world. This book will show you these changes. You’ll find
many books on the market that try to teach you how to force your old world into this new one. This
book isn’t one of those. Instead, you’ll learn the right way to develop .NET code, as the only focus
here is the new world: .NET development.

This book is for Visual C++ programmers who don’t care about COM, DCOM, COM+, or ActiveX
components, either because they already know them or because they never had any reason to learn
to code them. You’ll use a pure .NET development environment. The only time you’ll use compo-
nents is when you access them—a necessary evil, as there are thousands of them out there that may
never be converted to .NET.

This book is also for the (gasp!) non-Microsoft C++ developer who wants to dive into the .NET
world without getting bogged down with all the things that he or she disliked about pre-.NET Windows
development.

What Does This Book Cover?
This book addresses the topic of C++/CLI in three parts.

The first four chapters cover the basics and background information that make up the C++/CLI
and .NET worlds. I recommend that you read these chapters first, as they provide information that
you’ll need to understand the remainder of the book. I also recommend that you read the chapters in
sequential order because they build on one another.

The main body of the book is the next fifteen chapters of the book, which are stand-alone and
cover specific topics. Here, you can pick and choose the chapters that interest you the most (hopefully
every chapter) and read them in any order.

The final two chapters cover unsafe code and how to integrate it with C++/CLI. Like the first four
chapters, I recommend you read them in order as they build on each other.

Chapter 1: “Overview of the .NET Framework”
In this chapter, you address the basics of the .NET architecture. You’re bombarded with many new
.NET terms such as “assemblies,” “common language runtime (CLR),” “Common Language Specifi-
cation (CLS),” “common type system (CTS),” “just-in-time (JIT) compilation,” “Microsoft intermediate
language (MSIL or IL),” and “manifests.” This chapter tries to soften the blow of your first foray into
the .NET world.

Chapter 2: “C++/CLI Basics”
This chapter should be a refresher course on the basics of C++, but be careful when you read it because
there have been several changes, some of them subtle. This chapter covers the core syntax of C++/CLI.
Old-time C++ programmers should pay attention to this new feature: the handle.

Chapter 3: “Object-Oriented C++/CLI”
Now, with the basics covered, you delve into object-oriented development (OOD). This chapter
covers topics that old-time C++ programmers will take for granted, such as inheritance, encapsulation,
polymorphism, classes, methods, and operator overloading. But be careful with this chapter, as .NET
makes some significant changes—in particular in the areas of properties, constructors, and destructors.

Fraser_640-4Front.fm Page xxxvii Friday, November 18, 2005 3:42 PM

xxxviii ■I N T R O D U C T I O N

Chapter 4: “Advanced C++/CLI”
In this chapter, I start to discuss things that should make even seasoned C++ programmers sit up and
take notice, because most of the topics I cover are new to C++/CLI. This chapter’s topics include
multifile programming, exception handling, and delegates.

Chapter 5: “The .NET Framework Class Library”
In this chapter, you start to work with .NET as you make your first strides into the .NET Framework
class library. This chapter is just an overview and takes a cursory look at many of the .NET Frame-
work’s base classes. I focus on helping you learn how to find the classes that you need. In later
chapters, I go into some of these base classes in much more detail.

Chapter 6: “Integrated XML Documentation”
In this chapter, you will learn how to add, generate, and finally view XML documentation that you
will embed in your C++/CLI code. This much-needed and welcome feature is a new addition to C++/CLI
in version 2.0 and closely maps to the documentation that has been available to the C# developer
since the release of .NET.

Chapter 7: “Collections”
Working with collections should be nearly second nature to the average software developer. Because
collections are so commonplace, most programmers expect powerful and feature-rich ways of handling
them, and .NET doesn’t disappoint. This chapter covers the six common collections provided by
.NET and then touches on a few less common ones.

Chapter 8: “Input, Output, and Serialization”
Many programs that you’ll write in your career will involve moving, copying, deleting, renaming,
reading, and/or writing files. More recently, with object-oriented programming, many of the file’s I/O
activity in a program involve serialization. With this in mind, you’ll explore the System::IO and
System::Runtime::Serialization namespaces.

Chapter 9: “Basic Windows Forms Applications”
Almost all Windows developers, sometime in their careers, will create a Windows application. This
chapter shows you how to do it “.NET style.” You’ll explore how Visual Studio 2005 simplifies your
development experience. You’ll also explore the basic controls found in the System::Windows::Forms
namespace in some detail.

Chapter 10: “Advanced Windows Forms Applications”
Having a handle on the basics is all well and good, but, as a .NET developer, I’m sure you will want to
add more elaborate controls to your Windows applications. This chapter takes what you learned in
Chapter 9 and expands on it by exploring some of the more advanced controls available to you in the
System::Windows::Forms namespace.

Fraser_640-4Front.fm Page xxxviii Friday, November 18, 2005 3:42 PM

■I N T R O D U C T I O N xxxix

Chapter 11: “Graphics Using GDI+”
If you’re like me, you like a little pizzazz in the form of graphics to spice up a boring Windows appli-
cation. This chapter shows you how .NET has made adding images and graphics a whole lot easier
with the System::Drawing namespace.

Chapter 12: “ADO.NET and Database Development”
What is software development without databases? In most cases, the answer would be “not much.”
Microsoft is well aware of this and has gone to great lengths to make database programming easier.
Their solution is ADO.NET. In this chapter, you’ll explore the many features of ADO.NET that you
can find in the System::Data namespace.

Chapter 13: “XML”
XML is the new world order when it comes to data storage. Microsoft has embraced XML in a big way.
This chapter shows the many ways that you can now access XML data in the .NET environment.

Chapter 14: “Windows Services”
The C++ language has long been a stronghold for Windows services development. This will not
change with C++/CLI. In fact, I predict that some of the defection to C# in this area may return
because of the power of C++/CLI. In this chapter, you will see just how easy it is to create Windows
services using C++/CLI.

Chapter 15: “Web Services”
The concept of Web services is not unique. In this chapter, you’ll explore Web services within the
.NET Framework. You’ll examine how to design and create them by walking through the process
yourself, creating a simple Web service and three different clients (console, Windows application,
and Web application) to interact with the service.

Chapter 16: “Multithreaded Programming”
Being able to run multiple threads at the same time allows for better CPU usage and is a powerful
feature. This chapter explores how the .NET Framework makes working with multiple threads
concurrently a snap as you cover the .NET Framework’s built-in multithreading capabilities.

Chapter 17: “Network Programming”
In this chapter, you’ll examine the different methods of moving data over a network using .NET. Or,
more specifically, you will examine socket coding in C++/CLI for both TCP and UDP in both synchro-
nous and asynchronous approaches.

Chapter 18: “Assembly Programming”
In traditional C++, application and library developers had few choices regarding what went into .exes
and .dlls. With .NET assemblies, this has changed, and you now have plenty of choices. This chapter
explores those choices by looking at how you can augment your assemblies with resources, localiza-
tion, attributes, and reflection.

Fraser_640-4Front.fm Page xxxix Friday, November 18, 2005 3:42 PM

xl ■I N T R O D U C T I O N

Chapter 19: “Security”
.NET is touted as being an extremely secure software environment, and this is evident with the plethora
of .NET Framework security features. In this chapter, you will see how you can access many of them
using C++/CLI.

Chapter 20: “Unsafe C++ .NET Programming”
This chapter takes a look at what is involved in mixing and matching unsafe C++, also known as
unmanaged C++ or traditional C++, with Safe/Managed C++/CLI. If you have some legacy C++ code
that you want to migrate to .NET, this is the chapter for you.

Chapter 21: “Advanced Unsafe or Unmanaged C++ .NET
Programming”
Unlike other books, which cover this topic, this book looks at advanced unsafe C++ from the eyes of
someone who is coding in C++/CLI and wants to integrate some unsafe or unmanaged code into his
or her existing code. (Usually the approach is the opposite, i.e., a developer is coding unsafe or unman-
aged code and trying to force it into the C++/CLI environment.) It will regard the unsafe/unmanaged
code as a black box that you will attach to your C++/CLI code in different fashions, depending on the
type of unsafe/unmanaged code to which you are connecting.

What You Need to Use This Book
The first thing you should probably do is download the code for this book from the Downloads section of
the Apress Web site (http://www.apress.com) or from http://www.ProCppCLI.net. Most of the code in
the book is listed in its entirety, but some of the larger programs (in particular, the Windows Forms
applications) list only relevant code.

In addition to the source code, you should have a copy of Visual Studio 2005 final beta or later.
Note that most, but not all, the features mentioned in the book work with the Visual C++/CLI Express
2005 version.

As long as you have the .NET Framework version 2.0 and its associated C++/CLI compiler,
however, you should be able to build nearly everything in the book (though with a lot more effort).

■Caution This book contains material that isn’t supported in Visual Studio .NET 2003 and the .NET Framework 1.1
or earlier.

This Book Is Not the End of the Story
A book is a pretty static thing, and once you finish reading it, you have to go elsewhere for more infor-
mation. Fortunately, I have built a Web site devoted entirely to Visual C++/CLI and the .NET 2.0
Platform: http://www.ProCppCLI.net.

On this site, you will find not only all the source code for this book, but also further writings on
C++/CLI by me and other authors. The Web site’s goal is to promote further exploration of C++/CLI
and thus it will also contain news, a discussion area, an area to upload your code, and an area to
download third-party code.

Fraser_640-4Front.fm Page xl Friday, November 18, 2005 3:42 PM

■I N T R O D U C T I O N xli

How to Reach Me
I would like to hear from you. Feel free to e-mail me at Stephen.Fraser@apress.com or
srgfraser@ProCppCLI.net. If you have a question and you think others would benefit from the
answer, ask it on the http://www.ProCppCLI.net discussion board. I will respond to every e-mail
and discussion entry that I can. Questions, comments, and suggestions are all welcome.

Oh, by the way, thank you for buying my book. Now, let’s get started!

Fraser_640-4Front.fm Page xli Friday, November 18, 2005 3:42 PM

Fraser_640-4Front.fm Page xlii Friday, November 18, 2005 3:42 PM

cafac74dd2d083cbec0906b66fcd56b1

■ ■ ■

P A R T 1

The C++/CLI Language

Fraser_640-4C01.fm Page 1 Tuesday, October 18, 2005 5:26 AM

Fraser_640-4C01.fm Page 2 Tuesday, October 18, 2005 5:26 AM

3

■ ■ ■

C H A P T E R 1

Overview of the .NET Framework

First off, let’s get one thing straight. This book is about developing code within the confines of the
Microsoft .NET Framework 2.0. Therefore, it only makes sense that you start by getting acquainted
with the underlying architecture with which you will be developing your code: the .NET Framework.

I cover a lot of material in this chapter, mostly at the 30,000-foot level. The main goal here isn’t
to make you a .NET Framework expert. This chapter is designed to provide you with a level playing
field from which to start your C++/CLI code development while exploring this book.

I start with a brief description of what the .NET Framework is and why we programmers need it.
Then, I briefly examine the assembly, which is the central building block for all .NET Framework
application distribution and execution. Next, I move on to the core of .NET Framework: the common
language runtime (CLR), the common type system (CTS), and the common language specification
(CLS). Finally, I discuss, at a very high level, the software components available to .NET Framework
developers.

What Is .NET?
To put it in the simplest of terms, .NET is Microsoft’s strategy to move from a client-centric model to
a network-centric model. Another way of looking at it is that the impact of .NET will be the following:

• For programmers: A paradigm shift in the approach to software development and deployment.

• For architectures: Internet processing power to be distributed more on the Web clients and
less on the Web servers via Web deployment, enabling much better use of the Internet.

• For the future of the Internet: Ultimately, the Internet will become more an operating system
and less a means of simply connecting computers together.

These things are mostly about the future. What does .NET mean to programmers here and now?
The first major change that you will see with .NET is that the medium for software deployment will
change from full-functionality CD-ROM installations to much smaller, as-needed-functionality
Internet downloads. Microsoft calls this “Click-once” deployment or smart clients.

.NET provides the functionality to place small elements of your application programs on a Web
server. These elements can then be downloaded on an as-needed basis, when that application is
executing. Basically, applications run as described in these steps:

Fraser_640-4C01.fm Page 3 Tuesday, October 18, 2005 5:26 AM

4 C H A P T E R 1 ■ O V E R V I E W O F T H E . N E T F R A M E W O R K

1. A user attempts to start an application using the .NET runtime.

2. The runtime checks to see if an up-to-date version of the application is in the system’s global
assembly cache. If it is, the runtime executes it from the cache; otherwise, the runtime
downloads the updated version and then executes it.

3. While the application is running, it may require other elements. When one such element is
required, the runtime checks the cache to see if it exists. Then, the runtime makes one
further check to ensure the element is up to date. If there is no version in the cache, or it is
not up to date, then the element is downloaded.

As you can see, this is considerably different from how it is done now, whereby everything is
placed on a CD-ROM and installed at one time. I’m sure you can see that the .NET method ensures
that the “latest and greatest” are always being executed.

Does this mean that the only way of distributing software is via the Internet? No, there is
nothing stopping you from distributing the old way or even combining the two methods, in which
you install everything up front and then use the Internet to keep everything up to date.

As you can imagine, developers now have to start designing their software in a much more
modular fashion. Developers also have to be conscious of what modules will likely go together so
that those modules can be downloaded concurrently to mitigate the amount of time a user has to
wait between running different functionalities of the application. This will also allow for more efficient
usage of the Internet.

Another major aspect of .NET that developers will become quickly aware of is that applications
are no longer restricted only to the computer on which they are running. It is now possible to execute
code from Web services on computers anywhere around the world. True, with some complex coding
such as DCOM, COM+, and CORBA, you could, before the advent of .NET, escape the sandbox of the
application host computer. But now with .NET, the code to access the resources of the Internet is
nearly effortless. Equally as easy, it is possible to make your resources available to the Internet. With
.NET, IIS, and a domain or IP, a computer does not have to be an island.

■Note Wherever you read the word “Internet,” you can assume “intranet” and “extranet” apply as well.

What Is the .NET Framework?
The .NET Framework comprises all the pieces needed to develop, deploy, and execute Web services,
Web applications, Windows services, Windows applications, and console applications. (Well, almost
all the pieces. IIS is needed for Web services and Web applications.) I discuss each of these in more
detail later in the chapter. You can think of the .NET Framework as a three-level hierarchy consisting
of the following:

• Application development technologies like Web services, Web Forms, and Windows Forms

• .NET Framework base classes

• CLR

This hierarchy is illustrated in Figure 1-1.

Fraser_640-4C01.fm Page 4 Tuesday, October 18, 2005 5:26 AM

C H A P T E R 1 ■ O V E R V I E W O F T H E . N E T F R A M E W O R K 5

Figure 1-1. The .NET Framework hierarchy

Each of the layers in Figure 1-1 is dependent on the layer beneath it. The CLR lies just above the
operating system and insulates the programmer from its intricacies. The CLR is what actually loads,
verifies, and executes Web services, Web Form applications, Windows services, Windows applica-
tions, and console applications.

The .NET Framework base classes are a large number of classes broken up by namespaces
containing all the predeveloped functionality of .NET. They contain classes to handle things such
as file I/O, database access, security, threading, graphical user interfaces, and so on. As a C++/CLI
developer, you will spend many hours perusing and using these classes.

The application development technologies provide a higher layer of abstraction than the base
classes. C++/CLI developers will use these technologies to build their Web applications, Web services,
and Windows applications. Most of the functionality a developer needs can be found at this level of
abstraction, but in those cases where more control is needed, the developer can dive down into the
base classes level.

.NET Programming Advantages
The .NET Framework was designed and developed from day one to be Internet aware and Internet
enabled. It uses technologies such as SOAP and XML as its underlying methods of communication.
As a developer, you have the option of probing as deeply as you wish into each of these technologies,
but with the .NET Framework, you have the luxury, if you want, of staying completely ignorant of them.

You have probably heard that .NET is language neutral. This key feature of .NET is handled by
.NET compilers. It is currently possible to develop code using the languages provided by Microsoft,
(C++/CLI, C#, J#, JScript .NET, and Visual Basic .NET) or in one of the many other languages provided by
third parties (such as COBOL, Delphi, and Perl). All .NET-compatible languages have full access to
the .NET Framework class library. I cover .NET multilanguage support briefly in this chapter.

Fraser_640-4C01.fm Page 5 Tuesday, October 18, 2005 5:26 AM

6 C H A P T E R 1 ■ O V E R V I E W O F T H E . N E T F R A M E W O R K

Another thing you have probably heard whispers about is that .NET can be platform independent.
This means that it is possible to port the .NET Framework to non-Windows platforms and then run it
without recompiling .NET applications and services. The reason for this is that .NET-compatible code is
compiled into something called assemblies, which contain code, along with several other things, in
an intermediate language. I cover assemblies briefly in this chapter and then delve into the art of
working with them in Chapter 18.

■Note It is true that the .NET Framework can be ported. Two such ports, Mono and DOTGNU, for the Linux platform
are probably the best-known ports of the .NET Framework. Microsoft has also provided Rotor for multiple platforms such
as MAC and BSD Unix.

If you’ve been coding and deploying Windows code in C++ for any length of time, I’m sure you’ve
become painfully aware that it’s anything but simple. Now, if you’ve gone beyond this to build
distributed applications, the complexity has multiplied many times over. A key design goal of the
.NET Framework is to dramatically simplify software development and deployment. Some of the
most obvious ways that the .NET Framework does this are as follows:

• It usually shelters you from the complexities of the raw Windows Application Programming
Interface (API). However, there are several APIs in the Win32 that don’t exist in .NET and still
require the use of P/Invoke to gain access. I cover P/Invoke in Chapter 21.

• It provides a consistent, well-documented object model, and with it, users can create their
own consistent self-documented object models.

• Managed code is used to create objects that can be garbage collection. You no longer have to
worry about memory loss because you forgot to delete allocated pointers. In fact, if you use
managed code, you don’t even have to deallocate pointers because the .NET Framework does
not use pointers; instead it uses handles, and the .NET Framework does the deleting of allo-
cated memory for you.

• The intricacies of COM and COM+ have been removed. To be more accurate, COM and
COM+ are not part of the .NET Framework. You can continue to use these technologies, but
.NET supports them by placing COM and COM+ components in a class-library-derived
wrapper. You no longer have to worry about things such as the VARIANT, IUnknown, IDL,
and so on.

• Deployment components no longer use the registry or special directories.

• Deployment is frequently as simple as an xcopy.

A Closer Look at the .NET Framework
Okay, you have looked at .NET and the .NET Framework in general terms. Now, let’s break it into the
elements that are relevant to a C++/CLI programmer and then look at each element in some detail.
There are five major elements that a C++/CLI developer should have at least a basic knowledge of
before attempting to code:

• Assemblies

• CLR

• CTS

• CLS

• .NET Framework class library

Fraser_640-4C01.fm Page 6 Tuesday, October 18, 2005 5:26 AM

C H A P T E R 1 ■ O V E R V I E W O F T H E . N E T F R A M E W O R K 7

Each element impacts the C++/CLI programmer differently. Assemblies are a new form of
binary distribution. The CLR is a new way of executing. The CTS is a new way of defining data-
storage types. CLS is a specification of language-neutral support. The .NET Framework class library
is a whole new set of development objects to learn. I discuss each of these elements in more detail in
the following sections.

Assemblies
You need a basic understanding of assemblies before you can learn about any other element of the
.NET Framework. I cover some basic information about assemblies in this chapter and then discuss
working with them in detail in Chapter 18.

Figure 1-2. The basic assembly structure

Assemblies are the core building blocks for all .NET Framework application distribution and
execution. They are generated after compiling C++/CLI code. Like pre-.NET application deliverables,
they end with either .exe or .dll, but that is pretty well as far as the similarities go.

Basic Structure
Assemblies are a self-describing collection of functionalities stored in an intermediate language
and/or resources needed to execute some portion of an application. Assemblies are made up of four
sections: the assembly metadata, type metadata, Microsoft intermediate language (MSIL) code, and
resources (Figure 1-2). All sections except the assembly metadata are optional, though an assembly
made up of just assembly metadata sections won’t do anything.

Assemblies can be either private or shared. Private assemblies reside in the same directory as
the application itself or in one of its child directories. Shared assemblies, on the other hand, are
stored in the global assembly cache (GAC). The GAC is really nothing more than a directory structure
that stores all the assemblies that are globally available to the computer (Figure 1-3). A neat feature
of the GAC is that more than one version of the same assembly can reside in it.

Fraser_640-4C01.fm Page 7 Tuesday, October 18, 2005 5:26 AM

cafac74dd2d083cbec0906b66fcd56b1

8 C H A P T E R 1 ■ O V E R V I E W O F T H E . N E T F R A M E W O R K

Figure 1-3. The global assembly cache

A key feature of all assemblies is that they are self-describing. In other words, all information
needed to understand how to use the assembly can be found within the assembly itself. An assembly
does this by including metadata directly within itself. There are two different metadata sections in
an assembly: the assembly metadata and the type metadata. You gain access to this metadata using
reflection, which I cover in Chapter 18.

Metadata
The assembly metadata is also known as the assembly manifest. As its name suggests, the assembly
metadata describes the assembly. Here is a list of some of the assembly metadata’s contents:

• The name of the assembly.

• The version number.

• The culture used by the assembly (i.e., language, currency, number formatting, and so on).

• Strong name information. This is a uniquely identifiable name that can be used for shared
assemblies.

• A list of all files that make up the assembly.

• A list of all reference assemblies.

• Reference information for all exported classes, methods, properties, and so on, found in
the assembly.

Fraser_640-4C01.fm Page 8 Tuesday, October 18, 2005 5:26 AM

C H A P T E R 1 ■ O V E R V I E W O F T H E . N E T F R A M E W O R K 9

The type metadata, however, describes the types within the assembly. The type metadata
generated depends on the type being created. On the one hand, if the type were a method, then the
metadata generated would contain things such as the name, return types, number of arguments and
their types, and access level. A property, on the other hand, would reference the get and set methods;
these methods in turn would contain names, return types, and so on.

A nice feature of metadata is that it can be used by many of the tools available to the C++/CLI
developer. For example, Visual Studio .NET’s IntelliSense statement completion functionality
(Figure 1-4) is actually driven using the reference assembly’s metadata and not some secondary
description file. Because it comes directly from an assembly, IntelliSense will also work for assem-
blies you have written yourself without any additional effort on your part.

Figure 1-4. Visual Studio .NET’s IntelliSense using metadata

Versioning
Application assemblies are very version-aware when they’re referencing strong-named assemblies
within the GAC. Every assembly has a version number. Also, every referencing assembly stores the
version number of any assembly that it references. It’s not until the referenced assembly is strong
named and in the GAC that the referencing assembly automatically checks when executing, via the
CLR, that the versions match before it continues to execute. I cover assembly versioning in detail in
Chapter 18.

Fraser_640-4C01.fm Page 9 Tuesday, October 18, 2005 5:26 AM

10 C H A P T E R 1 ■ O V E R V I E W O F T H E . N E T F R A M E W O R K

Microsoft Intermediate Language
A major change that is hidden for the most part under the covers but that you should be aware of as
a C++/CLI programmer is that C++/CLI code gets compiled to MSIL and not machine code. MSIL is
a CPU-independent set of instructions similar to an assembly language. For example, it contains
arithmetic and logical operators and flow control. But, unlike the average assembly language, it also
contains higher-level instructions to load, store, initialize, and call class objects.

Just for some grins and giggles, here is an example of some MSIL generated from a simple
C++/CLI program. See if you can figure out what it does.

IL_0000: ldarg.0
IL_0001: ldarg.1
IL_0002: add
IL_0003: stloc.0
IL_0004: ldstr "{0} + {1} = {2}"
IL_0009: ldarga.s val1
IL_000b: call instance string [mscorlib]System.Int32::ToString()
IL_0010: ldarga.s val2
IL_0012: call instance string [mscorlib]System.Int32::ToString()
IL_0017: ldloca.s total
IL_0019: call instance string [mscorlib]System.Int32::ToString()
IL_001e: call void [mscorlib]System.Console::WriteLine(string,
object,
object,
object)
IL_0023: ret

For those of you who are curious, the preceding code adds two numbers together and then
writes the result out to the console.

MSIL is easily converted to native code. In fact, just prior to the MSIL code running, the CLR
rapidly compiled it to native code.

■Note The MSIL in an assembly is compiled prior to execution. It is not interpreted at runtime.

One key characteristic of MSIL is that it is an object-orientation–based language with the
restriction of single class inheritance, although multiple inheritance of interfaces is allowed. All
types, both value and reference, used within the MSIL must conform to the CTS. Any exposed types
must follow the CLS. I cover both CTS and CLS later in this chapter. Error handling should be done
using exceptions.

MSIL is the key to .NET’s capability to be language neutral. All code, no matter what the
programming language, is compiled into the same MSIL. Because all languages ultimately compile
to the same MSIL, it is now possible for encapsulation, inheritance, polymorphism, exception handling,
debugging, and so on, to be language neutral.

Fraser_640-4C01.fm Page 10 Tuesday, October 18, 2005 5:26 AM

C H A P T E R 1 ■ O V E R V I E W O F T H E . N E T F R A M E W O R K 11

MSIL will also be one of the keys to .NET’s capability to be platform independent. With MSIL,
you can have “write once, run anywhere” ability, just as you do with Java. All that is required for
an assembly to run on a non-Windows platform is for the ported CLR to compile MSIL into non-
Windows-specific code.

With the combination of MSIL and metadata, .NET is capable of providing a high level of security.
For example, strong names found in metadata can ensure that only trusted assemblies are run. If
you add code verification to this, provided when your code is compiled with the /clr:safe option,
then the CLR can ensure that only managed code running with valid privileges is executed.

Resources
In .NET, resources (i.e., string tables, images, cursors, etc.) can be stored in two places: in external
.resources files or directly within an assembly. Accessing the resources in either location is extremely
easy, as the .NET Framework class library provides three straightforward classes for access within
the System::Resources namespace. I cover these classes in detail in Chapter 18, but if you want to get
a head start and look them up yourself, here they are:

• ResourceManager: Use to access resources from within an assembly

• ResourceWriter: Use to write resources to an external .resources file

• ResourceReader: Use to read resources from an external .resources file

In addition to these classes, the .NET Framework provides the utility resgen.exe, which creates
a .resources file from a text file containing key/value pairs.

The resgen.exe utility is very useful if you wish to make your Windows applications support
multiple (human) languages. It’s easy to do this. Simply create multiple .resources files, one for each
language. From these, build satellite assemblies for each language. Then the application will auto-
matically access the correct language resource based on the current culture specified on the computer.
You’ll learn how to do this in Chapter 18.

Common Language Runtime
Runtimes are hardly a new concept when it comes to code execution. Visual Basic 6.0 has msvbvm60.dll,
and Java, of course, has the Java Virtual Machine (JVM). The common language runtime (CLR) is
.NET’s runtime system.

Do we need another runtime? What makes this one that much better than all the rest? It is simply
the fact that the CLR is designed to be the runtime for all languages and (possibly) all platforms. Or,
in other words, you no longer need a myriad of different runtimes to handle each programming
language and platform. Instead, all you need is the CLR.

It’s a pretty big claim. Does it hold water?
There are two common roles for runtimes: to execute code and/or to add common function-

ality used by most applications. The CLR performs both of these roles for the .NET Framework. But
these roles are only the tip of the iceberg. The CLR also performs several other services, such as code
verification, access security, garbage collection, and exception handling, and it also handles multi-
language support and compiles MSIL into the native language of the platform (Figure 1-5).

Fraser_640-4C01.fm Page 11 Tuesday, October 18, 2005 5:26 AM

12 C H A P T E R 1 ■ O V E R V I E W O F T H E . N E T F R A M E W O R K

Figure 1-5. The CLR start-up process flow

Starting up an application in .NET is conceptually very simple. The CLR loads the application
assembly, any referenced developer assemblies, and any referenced base class library assemblies.
Then, the application is optionally verified for type safety and valid access security. Next, the loaded
MSIL, with the help of information found in the metadata from the assemblies, is compiled into
native code. Finally, the application is executed.

The CLR was designed to help provide the following:

Fraser_640-4C01.fm Page 12 Tuesday, October 18, 2005 5:26 AM

C H A P T E R 1 ■ O V E R V I E W O F T H E . N E T F R A M E W O R K 13

• Simplified programming infrastructure: Much of the low-level plumbing (memory manage-
ment, local and remote process communication, etc.) is handled automatically or hidden
unless access is needed.

• Scalability: Areas that allow for scalability (memory management, process communication,
component management, and so on) are contained, already optimized, within the framework.

• Simple, safe deployment: A simple xcopy is usually all that is required for deployment.

Managed Data
Managed data is data that is allocated by an application and then deallocated by the CLR’s garbage
collector. All .NET languages except C++/CLI default to managed data. To create managed data in
C++/CLI, you must create a reference type within your source code. Chapter 3 will explore how to
create managed data in C++/CLI.

Managed Code
Basically, managed code is code targeted for the .NET Framework’s CLR, which provides things such
as memory management, code access security, and multilanguage integration. Essentially, if the
code is compiled into MSIL within assemblies, then usually you are creating managed code.

Conversely, native code, sometimes known (inaccurately) as unmanaged code, is not targeted
for the CLR. Native code runs outside of the CLR sandbox, meaning that you lose things like garbage
collection and code security. It is possible for the .NET Framework to access C DLLs, COM, and
COM+ services, even though all of these are native. I cover native code in detail in Chapters 20 and 21.

New to .NET version 2.0 is the ability to create safe code or managed code that is verifiable by the
CLR. Unsafe code as you may expect is code that can’t be verified and is usually in the form of native
code, but that is not a requirement, and unsafe code can also be compiled to MSIL and run in the
CLR (thus, managed code by definition). I cover unsafe code in detail in Part 3. I will also be pointing
it out in passing throughout the book.

All the compilers that come with the .NET Framework default to generating managed code
except C++/CLI. To create managed code in C++/CLI, you need to add one of the .NET command-
line switches (/clr:oldSyntax, /clr, /clr:pure and /clr:safe) when compiling.

• /clr:oldSyntax: This switch is used to compile of C++/CLI code from .NET versions 1.0 and
1.1. It will generally create a mixed image of native and managed code.

• /clr: This switch is used for the new C++/CLI code syntax of .NET 2.0. It will generally create
a mixed image of native and managed code.

• /clr:pure: This switch is used to generate managed code and unmanaged data. If you use
unsafe code, the compile will fail.

• /clr:safe: This switch is used to generate managed code and managed data. If you use
unsafe code and/or unmanaged data, the compile will fail.

When you use Visual Studio .NET, simply select one of the C++/CLI project templates, and
these will set the /clr switch for you. However, I suggest that you change the switch to /clr:safe
if you plan to use only managed code, as this book does in most examples.

Common Language Runtime Services
Along with loading and executing an assembly, the CLR provides several other services. Code verifi-
cation and code access verification are optional services available before the assembly is loaded.
Garbage collection, on the other hand, is always active while the assembly is being executed.

Fraser_640-4C01.fm Page 13 Tuesday, October 18, 2005 5:26 AM

14 C H A P T E R 1 ■ O V E R V I E W O F T H E . N E T F R A M E W O R K

Code Verification

The code verification service is executed prior to actually running the application. Its goal is to walk
through the code, ensuring that it is safe to run. For example, it checks for things such as invalid
handle references and reading past the end of arrays. The goal of code verification is to ensure that
the code does not crash, and that if an error happens to occur, it is handled by the CLR by throwing
an exception. This gives the application more control over how to recover or exit gracefully.

Code Access Verification

Code access verification also walks through the code and checks that all code has the permission to
execute. The goal of this service is to try to stop malicious attacks on the user’s computer.

A simplified way of looking at how this service works is that the CLR contains a list of actions
that it can grant permission to execute, and the assembly contains a list of all the permissions it
requires to run. If the CLR can grant all the permissions, then the assembly runs without problems.
If, however, the CLR can’t grant all the permissions, then it runs what it can but generates an excep-
tion whenever it tries to do something that it doesn’t have permission to do.

Garbage Collection

Garbage collection is the mechanism that allows a runtime to detect and remove managed objects
from the managed heap that are no longer being physically accessed within the application. The
.NET Framework’s garbage collector has the added bonus of compacting the memory after it
removes the unused portion, thus keeping the fingerprints of the applications as small as possible.
This bonus can complicate things sometimes, as managed objects in .NET do not have a fixed location,
but you can overcome this with the pin_ptr<> keyword. I cover pin_ptr<> in Chapter 20. Also, because
managed objects are referenced using handles and not pointers, pointer arithmetic is gone except in
unsafe sections of the code.

Garbage collection presents a big change to average C++/CLI programmers, because it means
an end to most of those annoying memory leaks that plague them while developing. It also has an
added bonus: Programmers when dealing with memory management no longer have to figure out
where to call the delete command to the classes that they’ve created using the gcnew command.

■Caution We will see in Chapter 3 that programmers still have to be aware of when to call the delete command
if they are working with computer resources.

Garbage collection is not the default for C++/CLI. Because this is the case, there are a few things
(covered in Chapter 3) that C++/CLI programmers need to learn before they can use garbage collec-
tion—in particular, the keyword ref. Fortunately, with version 2.0 of .NET, unlike in prior versions of
C++/CLI, programmers have gained control of when a managed object gets deleted.

■Note Well, there actually isn’t a prior version of C++/CLI. What came before C+/CLI was Managed Extensions
for C++, or Managed C++. If you want to learn about Managed C++, you can read about it in my previous book,
Managed C++ and .NET Development.

Attributes

Attributes are a way for developers to provide additional information about the classes, methods,
or data types to the assemblies they are creating. This additional information is stored within the
assembly’s metadata.

Fraser_640-4C01.fm Page 14 Tuesday, October 18, 2005 5:26 AM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 1 ■ O V E R V I E W O F T H E . N E T F R A M E W O R K 15

There are several predefined attributes that the compiler can use to help during the compile
process. For example, the System::Obsolete attribute causes the compiler to generate a warning
when it encounters an obsolete method in a class library assembly.

You will see in Chapter 18 how to work with attributes and how it is possible to add your own
custom attributes to the assembly metadata.

All attributes—developer code-created and compiler-generated—can be extracted using reflection.

Reflection

An interesting service provided by the CLR is reflection. This is the ability to programmatically
examine the metadata within an assembly, including the one executing the reflection code. This
service allows access to the metadata information, such as details about classes, methods, properties,
and so on, contained within the assembly.

Most likely, you will use reflection mainly to get attribute information out of the assembly metadata.
For more advanced C++/CLI developers, reflection provides the ability to extract type information
within a class so that they can use it to generate types dynamically.

Reflection is accomplished using the myriad classes in the System::Reflection namespace.
Chapter 18 covers reflection.

Multiple Language Support
.NET had the ambitious goal of creating a completely language-neutral environment for developing
software. Some of the features the .NET Framework and Visual Studio .NET developers had in mind
were the following:

• Common data types should be shared by all languages.

• Object handles and/or references from any language should be able to be passed as an argu-
ment to a method.

• Calling methods from classes created in other languages should be possible.

• Classes should be able to contain instances of other classes created in a different language.

• Inheriting from classes created in another language should be possible.

• The development and debugging environment for all languages should be the same.

Believe it or not, every one of those features is now supported by the CLR and MSIL.
The idea is to pick the best language for the job. Each language has its strong and weak points

when it comes to software development. With language-neutral development, you can select the
language that best suits the type of development needed.

Will developers accept this concept? In this age of computer-language holy wars, it seems a little
doubtful. Plus, allowing the use of multiple languages during the development of a project does add
complexity. Having said that, though, I’ve worked on a large project that used C, C++, COBOL, HTML,
Macro (Assembler), and SQL, plus an assortment of batch scripting languages. To make things
worse, each of these languages had different tools for development, and debugging was a nightmare.
I don’t even want to talk about passing data between modules created in different languages. What
I would have given for .NET back then!

How does the .NET Framework create a language-neutral environment? The key is a combina-
tion of MSIL and metadata. Basically, the MSIL code tells the CLR what to do (which commands to
execute), and the metadata tells it how to do it (which interfaces to use). For a language to be .NET
Framework compliant, it obviously needs to be compiled into MSIL code and metadata and placed
in an assembly (Figure 1-6).

Fraser_640-4C01.fm Page 15 Tuesday, October 18, 2005 5:26 AM

16 C H A P T E R 1 ■ O V E R V I E W O F T H E . N E T F R A M E W O R K

Figure 1-6. Many compilers, one output

Because all languages have this requirement, Microsoft was able to tweak each compiler they
developed so that it created code to conform to their MSIL and metadata language-neutral require-
ments. Also, all languages were changed to conform to the common type system (CTS). I cover the
CTS later in this chapter.

Multiple Platform Support
By its architecture, the .NET Framework is conducive to multiple platform support. The CLR enables
platform independence by providing a runtime layer that sits between the operating system and the
application. The just-in-time (JIT) compiler generates machine-specific native code. JIT is covered
in the next section, “Just-in-Time Compilation.” The MSIL and metadata allow for the “write once,
run anywhere” capability that is the claim to fame of Java.

Currently, the only multiple platform support provided by the .NET Framework is for Windows-
based platforms such as Windows 2000 and Windows XP. With .NET version 2.0, Microsoft has added
64-bit support to the existing 32-bit support, but the operating system is still only Windows-based.

What does platform independence mean to C++/CLI programmers? It means a new way of
looking at things. C++/CLI programmers think of multiple platform support as coding generically
and recompiling on each new platform. With the .NET Framework, developers only need to develop
the code and compile it once. The resulting assembly could be run on any supported platform
without change.

True, to develop real platform-independent code, developers must only use managed code. If a
developer were to use unmanaged code, the assembly generated would become closely coupled
with the architecture on which it was compiled.

Fraser_640-4C01.fm Page 16 Tuesday, October 18, 2005 5:26 AM

C H A P T E R 1 ■ O V E R V I E W O F T H E . N E T F R A M E W O R K 17

■Note This book focuses, for the most part, on creating code that is platform independent. Though, unlike the
previous version of the book, it does delve into unsafe code, which is not platform independent.

Just-in-Time Compilation
Even though .NET applications are stored in an intermediate language, .NET applications are not
interpreted. Instead, they are compiled into a native executable. It is the job of the JIT compiler, a key
component of the CLR, to convert MSIL code into machine code with the help of metadata found in
the executable assembly.

The JIT compiling process is, in concept, very easy. When an application is started, the JIT
compiler is called to convert the MSIL code and metadata into machine code. To avoid the poten-
tially slow start-up time caused by compiling the entire application, the JIT compiler only compiles
the portions of code that it calls, when they are called (hence the name, just-in-time compiler). After
the code is compiled, it is placed in cached memory and then run. The compiled code remains in the
cached memory for as long as the application is executing. This way, the portion of code can be
grabbed from cached memory, instead of having to go through the compile process each time it is
called. There is a bonus in compiling this way. If the code is not called, it is not compiled.

Microsoft claims that managed code should run as fast as native code. How can Microsoft make
this claim? The JIT compiler is amazingly fast, but there still is the overhead of having to compile the
application each time it is run. This leads one to believe that managed code would be slower.

The key to Microsoft’s claim is that JIT compilers generate code specific to the processor type of
the machine they are running on. On the other hand, traditional compilers generate code targeting
a general range of processor types. For example, the Visual Studio 6.0 C++ compiler generates
generic Pentium machine code. A JIT compiler, knowing that it is run on, let’s say, a quad processor
Pentium IV, would generate code specific to that processor. The execution time between these two
sets of machine code will in many cases be quite different and always in the favor of the JIT compiler-
generated code. This increase in speed in the managed code should offset the JIT compiling over-
head and, in many cases, make the overall execution faster than the unmanaged code.

Common Type System
The common type system (CTS) defines how all types are declared, used, and managed within the
.NET Framework and, more specifically, the CLR. It is also a key component for the CLR’s multiple
language support. The CTS was designed to perform the following functions:

• Provide an object-oriented data model that can support the data types of all .NET Framework-
compatible programming languages.

• Provide a set of constraints that the data types of a .NET-compatible language must adhere to
so that it can interact with other .NET-compatible programming languages.

• Provide a framework for .NET-compatible interlanguage integration and data type safety.

There are two categories of data types defined by the CTS: the value type and the reference type.
Value types, such as int, float, or char, are stored as the representation of the data type itself. Reference
types, such as handles, classes, or arrays, are stored on the managed heap as references to the location
of the data type.

■Note Unmanaged pointer types are stored on the C Runtime (CRT) heap, which differs from the managed
reference type’s managed heap.

Fraser_640-4C01.fm Page 17 Tuesday, October 18, 2005 5:26 AM

18 C H A P T E R 1 ■ O V E R V I E W O F T H E . N E T F R A M E W O R K

As you can see in Figure 1-7, all data types fall into one of these two categories.

Figure 1-7. CTS hierarchy

Let’s briefly walk through the hierarchy of all CTS types:

• Arrays: A single or multidimensional indexed grouping of types

• Boxed value types: A temporary reference to a value type so that it can be placed on the heap

Fraser_640-4C01.fm Page 18 Tuesday, October 18, 2005 5:26 AM

C H A P T E R 1 ■ O V E R V I E W O F T H E . N E T F R A M E W O R K 19

• Built-in value types: Primitive value types that represent integers, real numbers, Booleans,
and characters

• Reference class types: A user-defined grouping of types and methods

• Delegates: A type that holds a reference to a method

• Enumerations: A list of named integer constants

• Interface types: A class type where all methods are abstract

• Handler types: A reference to a type

• User-defined value types: User-defined expansion to the standard, primitive value types

A point worth mentioning is that the CLS defines all .NET-compatible language data types, but
a .NET-compatible language does not need to support all CLS-defined data types. In versions prior
to .NET 2.0, even Microsoft Visual Basic .NET did not support all data types. This has changed in
.NET version 2.0, as you can see in the comparison of the built-in value and reference types supported
by Visual Basic .NET, C#, and C++/CLI (Table 1-1).

Table 1-1. Built-in Value and Reference Types and Their Language Keywords

Base Class Visual Basic .NET C# C++/CLI

System::Byte Byte byte unsigned char

System::Sbyte SByte sbyte char

System::Int16 Short short short or __int16

System::Int32 Integer int int, long or __int32

System::Int64 Long long long long or __int64

System::UInt16 UShort ushort unsigned short or unsigned __int16

System::UInt32 UInteger uint unsigned int, unsigned long or
unsigned __int32

System::UInt64 ULong ulong unsigned long long or unsigned __int64

System::Single Single float float

System::Double Double double double

System::Object Object object Object^

System::Char Char char __wchar_t

System::String String string String^

System::Decimal Decimal decimal Decimal

System::IntPtr IntPtr IntPtr IntPtr

System::UIntPtr UIntPtr UIntPtr UIntPtr

System::Boolean Boolean bool bool

Fraser_640-4C01.fm Page 19 Tuesday, October 18, 2005 5:26 AM

20 C H A P T E R 1 ■ O V E R V I E W O F T H E . N E T F R A M E W O R K

■Note The ^ character in Table 1-1 is not a typo. This is C++/CLI’s new handle symbol, which I will cover in
Chapter 2.

■Caution You should take care when using UInt64, as unpredictable results are possible on Intel 32-bit
platforms because they are not thread-safe and do not load the registers atomically.

Common Language Specification
Given that not all of the CTS data types need to be supported by every .NET-compatible language,
how then does the .NET Framework maintain that these languages are, in fact, compatible? This is
where the common language specification (CLS) comes in. The CLS is a minimum subset of the CTS
that all languages must support to be .NET compatible (Figure 1-8).

To ensure interlanguage operability, it is only the CLS subset that can be exposed by assemblies.
Because you can be assured that all languages’ building assemblies are using this subset, you can
thus also be assured that all languages will be able to interface with it.

■Note When you develop your .NET code, it is completely acceptable to use the entire CTS. It is only exposed
types that need to adhere to the CLS for interlanguage operability.

There is no imposed restriction on using the CLS. If you know that your assemblies will only be
used by one language, then it is perfectly acceptable to use all the types available to that language,
even those that are exposed. Just be aware that if there comes a time when you want to use your
assemblies with another language, they may not work because they do not adhere to the CLS.

If you want to view the CLS, you can find it in the .NET documentation. Just search for “What is
the common language specification?” The key points that you should be aware of as a C++/CLI
programmer are as follows:

• Global methods and variables are not allowed.

• The CLS does not impose case sensitivity, so make sure that all exposed types differ by more
than their case.

• The only primitive types allowed are Byte, Int16, Int32, Int64, Single, Double, Boolean, Char,
Decimal, IntPtr, and String.

• Variable-length argument lists are not allowed. Use fixed-length arrays instead.

• Pointers are not allowed.

• Class types must inherit from a CLS-compliant class. System::Object is CLS compliant.

• Array elements must be CLS compliant.

Some other requirements might also affect you, if you get fancy with your coding. But you will
most likely come across the ones in the previous list.

Fraser_640-4C01.fm Page 20 Tuesday, October 18, 2005 5:26 AM

C H A P T E R 1 ■ O V E R V I E W O F T H E . N E T F R A M E W O R K 21

Figure 1-8. CLS intersection diagram

.NET Application Development Realms

.NET application development falls primarily into one of five realms: Web applications, Web services,
Windows applications, Windows services, and console applications. Using languages such as C#,
Visual Basic .NET, and Visual Studio .NET provides a simple, powerful, and consistent environment
to develop all five. Unfortunately, for C++/CLI, only four are supported: console applications,
Windows applications, Windows services, and Web services.

Prior to version 2.0 of .NET, Web applications were indirectly supported by C++/CLI, but that is
no longer true as ASP.NET does not support C++/CLI even indirectly anymore.

Console Applications
Console applications are basically extinct as a final software delivery in the Windows world. Okay,
developers and administrators still use them a lot, but the average nontechnical user has GUI-based
applications as their final delivery. For developer tools, there is nothing like them. If you need to
figure out how to do something, write out a console application. There is nothing simpler and nothing
with less overhead. This book is full of console applications for just those reasons.

The key elements of all console applications are the main() function and the
System::Console::WriteLine() method. In fact, that is almost all you need to write a console application.

Windows Applications
Windows applications may be the biggest change for C++/CLI programmers. C++/CLI does not
support the Microsoft Foundation Class (MFC) library. Wow, don’t panic—believe it or not, the .NET
Framework has a better solution. It’s called Windows Forms, and I’m sure you’ll think, as I do, that

Fraser_640-4C01.fm Page 21 Tuesday, October 18, 2005 5:26 AM

cafac74dd2d083cbec0906b66fcd56b1

22 C H A P T E R 1 ■ O V E R V I E W O F T H E . N E T F R A M E W O R K

it’s a godsend. With Windows Forms, you get the ease of Visual Basic along with the power of C++/CLI
when you develop Windows applications. I cover Windows applications in Chapters 9 and 10.

■Note With .NET version 2.0, you can now use MFC and Windows Forms somewhat interchangeably, but if you
do, the generated assembly will be classified as unsafe.

When you create Windows Forms, you will use the massive System::Windows::Forms
namespace. Though this namespace is large, it is consistent and well laid out. It will not take you
long to get good at using it.

Just to add some variety to your Windows applications, .NET also provides a new and improved
Graphical Device Interface (GDI) called, conveniently, GDI+. With GDI+, you can play with fonts,
change colors and, of course, draw pictures. GDI+ is almost worth learning just for one class,
System::Drawing::Image, which allows an application to load almost any commonly supported
graphic file formats, including GIF, JPEG, and BMP, into memory, where they can be manipulated
and drawn to the screen. To implement GDI+ in the .NET Framework, you need to explore the
System::Drawing namespace. I cover GDI+ in Chapter 11.

Web Applications
ASP.NET is a large part of developing Web applications. But unlike traditional Web application
development, .NET has changed things. Web applications no longer are run using interpreted
scripts. Now they use full-blown compiled applications. These applications are usually written using
C# and Visual Basic .NET.

Unfortunately, with .NET 2.0 and C++/CLI you can no longer write Web applications. The
reason for this is primarily because Microsoft introduced a new construct in C# and Visual Basic
.NET called the partial class, which has no equivalent in C++/CLI, and partial classes are heavily
relied upon in ASP.NET Web applications.

■Note Unlike my last book, Managed C++ and .NET Development, this book contains no chapter on Web
application development. Instead, I replaced it with Chapter 14, which concentrates more on C++/CLI and
Windows Services.

Windows Services
A Windows service is a Windows application that can be started automatically when the operating
system boots. However, this is not a requirement, as it is possible to start the Windows service manually.

With the Windows service there is no need for an interactive user or an interface. You will see in
Chapter 14 that you do have some limited ability to interface with the service, but to do so, you need
a separate control program.

Not only do Windows services not need an interactive user, but they can also continue to run
after a user logs off.

Web Services
You might want to think of a Web service as programmable functionality that you execute over the
Internet. Talk about remote programming! Using a simple HTTP request, you can execute some
functionality on some computer on the opposite side of the world. Okay, there are still some kinks,
such as the possible bandwidth problems, but they will be overcome with the current technology
advancement rate—that much I am certain of. Chapter 15 covers Web services.

Fraser_640-4C01.fm Page 22 Tuesday, October 18, 2005 5:26 AM

C H A P T E R 1 ■ O V E R V I E W O F T H E . N E T F R A M E W O R K 23

Web services are based on XML technology and, more specifically, the XML-derived Simple
Object Access Protocol (SOAP). SOAP was designed to exchange information in a decentralized and
distributed environment using HTTP. For more technical details about SOAP, peruse the World
Wide Web Consortium’s Web pages on SOAP (http://www.w3.org/TR/SOAP).

When you code Web services, you will be working primarily with the System::Web::Services
namespace. You also get to look at attributes again.

Web services are a key part of Microsoft’s plans for .NET because, as you may recall, .NET is
about delivering software as a service.

.NET Framework Class Library
Everything you’ve learned so far is all fine and dandy, but the thing that is most important, and
where C++/CLI programmers will spend many a day, is the massive .NET Framework class library.
There are literally hundreds of classes and structures contained within a hierarchy of namespaces.
C++/CLI programmers will use many of these classes and structures on a regular basis.

With such a large number of elements in the class library, you would think that a programmer
could quickly get lost. Fortunately, this is not true. The .NET Framework class library is, in fact, well
organized, easy to use, and virtually self-documenting. Namespaces, class names, properties, methods,
and variable names usually make perfect sense. The only real exceptions to this that I have found are
class library wrapped native classes. I am sure there are other exceptions, but by and large, most
namespaces and classes are understandable just by their names. This, obviously, differs considerably
from the Win32 API, where obscure names are more the norm.

With the .NET Framework class library, you can have complete control of the computer. That’s
because the class library functionality ranges from a very high level, such as the MonthCalendar
class—which displays a single month of a calendar on a Windows Form—down to a very low level,
such as the PowerModeChangedEventHandler, which notifies the application when the computer is
about to be suspended, resumed, or changed from AC to battery or vice versa.

There are two hierarchies of namespaces in the .NET Framework class library: the platform-
neutral System namespace and the Microsoft-specific (and aptly named) Microsoft namespace.
Table 1-2 shows a brief subset of the namespaces that the average C++/CLI programmer will run into.

Table 1-2. Common .NET Framework Class Library Namespaces

Namespace Description

Microsoft::win32 Contains classes to handle events raised by the operating
system and to manipulate the system registry

System Contains classes that handle primitive types, mathematics,
program invocation, and supervision of applications

System::Collections Contains classes that define collections of objects, such as
lists, queues, arrays, hash tables, and dictionaries

System::Collections::Generic Contains classes that allows classes, structures, interfaces,
methods, and delegates to be declared and defined without
specific types

System::Data Contains classes that handle database access

System::Data::OleDb Contains classes that handle access to OLE DB databases

System::Data::SqlClient Contains classes that handle access to Microsoft SQL
Server databases

Fraser_640-4C01.fm Page 23 Tuesday, October 18, 2005 5:26 AM

24 C H A P T E R 1 ■ O V E R V I E W O F T H E . N E T F R A M E W O R K

System::Diagnostics Contains classes that allow you to debug your application
and trace application execution

System::DirectoryServices Contains classes to access Active Directory

System::Drawing Contains classes to handle the GDI+ graphics functionality

System::Drawing::Drawing2D Contains classes that handle advanced two-dimensional
and vector graphics functionality

System::Drawing:Imaging Contains classes to handle advanced GDI+ imaging
functionality

System::Drawing::Printing Contains classes to handle custom printing

System::Globalization Contains classes that define culture-related information,
such as language, currency, and numbers

System::IO Contains classes to handle reading and writing of data
streams and files

System::Net Contains classes to handle many of the protocols and
services found on networks

System::Reflection Contains classes that examine loaded types, methods, and
fields, and also dynamically create and invoke types

System::Resources Contains classes to create, store, and manage various
culture-specific resources

System::Runtime::InteropServices Contains classes to access COM objects and native APIs

System::Runtime::Remoting Contains classes to create and configure distributed
applications

System::Security Contains classes to handle the CLR security system

System::Threading Contains classes to handle multithreaded programming

System::Web Contains classes to handle communication between
browser and server

System::Web::Mail Contains classes to create and send an e-mail using the
SMTP mail service built into Microsoft Windows 2000

System::Web::Security Contains classes to handle ASP.NET security in Web
applications

System::Web::Services Contains classes to build and use Web services

System::Web::UI Contains classes to create controls and pages in Web
applications

System::Windows::Forms Contains classes to create Windows-based applications

System::XML Contains classes to handle XML

Table 1-2. Common .NET Framework Class Library Namespaces (Continued)

Namespace Description

Fraser_640-4C01.fm Page 24 Tuesday, October 18, 2005 5:26 AM

C H A P T E R 1 ■ O V E R V I E W O F T H E . N E T F R A M E W O R K 25

Summary
This chapter created a level playing field on which to start your exploration of C++/CLI, beginning
with the big picture, examining what exactly .NET is. I then explored the .NET Framework generically
and finally broke it down piece-by-piece, examining such things as assemblies, the common
language runtime (CLR), the common type system (CTS), and the common language specification
(CLS). The chapter ended with a look at the myriad classes available to the C++/CLI developer.

The journey has begun. In the next chapter, you’ll look at the basics of C++/CLI. Let’s continue.

Fraser_640-4C01.fm Page 25 Tuesday, October 18, 2005 5:26 AM

Fraser_640-4C01.fm Page 26 Tuesday, October 18, 2005 5:26 AM

27

■ ■ ■

C H A P T E R 2

C++/CLI Basics

You have a little work to do before you can have some fun. This chapter covers many basic but
important aspects of C++/CLI programming.

This chapter starts out with variables and data types. Then you will learn about comments,
literals, expressions, and operations. Next, you will explore looping and flow control. Finally, you
will end with functions, focusing on C++/CLI and its infrequently used capability to be strictly a
procedure language. The next chapter will look at C++/CLI as an object-oriented language, its true
claim to fame.

■Caution Even though you may know C++ very well, don’t skip this chapter—several things vary between
traditional C++ and C++/CLI. True, some of the changes may not be significant, but recognizing and understanding
these changes now may make your life easier in the future.

The Obligatory “Hello World!” Program
It seems like all the programming books I read always start with a “Hello World!” program. Who am
I to do things differently? Here is the “Hello World!” program, C++/CLI style:

using namespace System;

// The Obligatory Hello World!
void main(void)
{
 Console::WriteLine("Hello C++/CLI World");
}

You can create the Hello.cpp program by typing it in with any text editor. You can use Edit or
Notepad, as both come with all versions of Windows. To compile it into an assembly called Hello.exe,
simply execute the following line from the command prompt:

cl Hello.cpp /clr:safe /doc

■Note You need the command prompt to be configured for the .NET development environment. Unless you have
configured your default command prompt for this environment, I recommend that you use the command prompt
provided by Visual Studio 2005.

Fraser_640-4C02.fm Page 27 Thursday, November 17, 2005 4:56 PM

28 C H A P T E R 2 ■ C + + / C L I B A S I C S

Even though this is an assembly, you run it as you would any other executable. If you run it from
the command line, you should get something like Figure 2-1.

Figure 2-1. Executing Hello.exe from the command line

I don’t cover namespaces until later in this chapter, but for now you can think of them as a way
of combining a bunch of code into a uniquely named group. When you want to access this group,
you use the using statement and provide its unique name. Basically, the next line

using namespace System;

says you are going to use the stuff in this System namespace.
Every C++/CLI program must start with a main() function, and every program can have only

one main() function. When the main() function finishes executing, so does the program. In the case
of Hello.cpp, it also happens to be the only function. The first line of the main() function is this:

void main(void)

There are other variations of main(), including the WinMain() function used to start Windows
programs. I cover those other variations later in this chapter. In the preceding variation of main(),
you are receiving no parameters, which is signified by the (void) placed after the main, and you are
also expecting the function to return no value so void is placed before the function call, as well.

■Tip The void parameter is optional when no parameters are used by the method. Instead, you can just use a
pair of empty brackets. Therefore, you could also declare the above main method as void main().

A function is a block of code referenced by name, in this case main. It starts with an open curly
bracket ({) and ends with a closed curly bracket (}). Within a function is the set of statements that it
will execute. The main() function of Hello.cpp contains only one statement:

Console::WriteLine("Hello Managed World");

If more than one statement were present, the statements would be executed sequentially from
beginning to end, unless a statement specifically altered the flow, either by looping back or by condi-
tionally bypassing some of the code. You will see how this is done later in this chapter.

In C++/CLI, displaying text strings, which are enclosed in quotation marks (""), to a console
window is handled using the static WriteLine() method of the class Console. Don’t panic if that
doesn't mean much to you—it will shortly. You will learn about classes and static methods in
Chapter 3. You will also examine text strings and namespaces in Chapter 3. For now, all you need to
know about displaying your own text is to replace “Hello Managed World” with whatever you want.

Fraser_640-4C02.fm Page 28 Thursday, November 17, 2005 4:56 PM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 2 ■ C + + / C L I B A S I C S 29

Statements
C++/CLI’s most basic element is the statement. A statement is a coding construct that performs a
single C++/CLI action. You will learn about different types of statements as you progress through
this book, but the main thing to remember about all statements is that they end with a semicolon (;).
If you forget the semicolon, your compiler will throw up all over you. Here are some statements:

using namespace System;
System::Console::WriteLine("Hello Managed World");
bool IsOpen;
y = GetYCoord();

Not much to look at, are they?
C++/CLI provides a construct for compound statements. To create a compound statement, you

simply enclose several simple statements within curly brackets:

{
 x = x + y;
 PrintAnswer(x);
}

These statements execute as a group and can be placed anywhere a simple statement can be
placed. You will see them in the “Flow Control Constructs” and “Looping Constructs” sections later
in this chapter.

Variables and C++/CLI Data Types
One of the key differences between traditional C++ and C++/CLI, believe it or not, is found at this
low level of the language. If you have worked with C++, then it may come as a little surprise that the
data types int, long, float, and so on, are no more. They have been replaced with .NET fundamental
types. To simplify things for traditional C++ programmers, C++/CLI allows the use of the old data types,
but they are, in fact, just aliases.

Alas, I’m getting ahead of myself. I’ll start at the beginning, and that is how to create or, more
accurately, declare variables.

Declaring Variables
To use a variable in C++/CLI, you must first declare it. The minimum declaration of a variable
consists of a data type and a variable name:

int counter;
double yCoord;

Variable declarations can go almost anywhere in the code body of a C++/CLI program. One of
the few criteria for declarations is that they have to occur before the variable is used. It was once
required that all declarations occur as the first statements of a function, as a result of C++’s original
C background. You will still see this in practice today, because some programmers feel it makes the
code cleaner to read. Personally, I prefer to place the variable closer to where it is first used—that
way, I don’t have to scroll to the top of every function to see how I declared something. How you
code it is up to you. Following the standards of your company is always a good rule of thumb, or if
you are coding on your own, stay consistent. You will find that it will save you time down the line.

Fraser_640-4C02.fm Page 29 Thursday, November 17, 2005 4:56 PM

30 C H A P T E R 2 ■ C + + / C L I B A S I C S

There is an assortment of more complex declarations. For example, you can string together
several comma-delimited variable names at the same time:

int x, y, z;

There are two special data types called a handle and a pointer (which I’ll explain in more detail
later). A handle requires a carat [^] in front of the variable name or after the data type, and a pointer
requires an asterisk [*]:

String^ handlename;
String ^handlename;

String* pointername;
String *pointername;

■Unsafe Code Pointers are classified as unsafe code because they cause data to be placed in the CRT heap
and not the managed heap. Therefore, you need to handle all memory management yourself. The primary reason
pointers are unsafe is that they allow a programmer to specify a memory location to access or reference; thus, with
knowledge of the operating system, a programmer could potentially allow the executing of code unprotected by .NET.

You might think of these as saying “String handle called handlename” or “handlename handle
to a String” and “String pointer called pointername” or “pointername pointer to a String.” They are
equivalent. There is a complication with string handles, as shown here:

int^ isaHandle, isNOTaHandle;
int* isaPointer, isNOTaPointer;

The preceding line actually declares one handle and one pointer to an int and two variables of
type int. This is probably not what you are expecting. If you want two handles and two pointers to
an int, you need to declare it like this:

int ^aHandle, ^anotherHandle;
int *aPointer, *anotherPointer;

You have two possible ways to initialize the variable within the declaration statement. The first
is by using a standard assignment:

int counter = 0;
double yCoord = 300.5;

The second is by using what is known as functional notation, as it resembles the calling of a
function passing the initialization value as a parameter. In C++/CLI, you should probably call this
constructor initialization, as you are actually calling the data type’s constructor to create these variables:

int counter(0);
double yCoord(300.5);

Again, use caution when initializing a variable within the declaration statement using standard
assignment. This code may not do what you expect:

int x, y, z = 200;

Only z is initialized to 200; all the other variables take on the default value of the data type. Enter
the following to code this so that all variables are initialized to 200:

int x = 200, y = 200, z = 200;

Fraser_640-4C02.fm Page 30 Thursday, November 17, 2005 4:56 PM

C H A P T E R 2 ■ C + + / C L I B A S I C S 31

or

int x = y = z = 200;

It is always a good thing to initialize your variables before you use them. If you don’t initialize a
variable, its contents can be almost anything when it is used. To help remind you of this, the compiler
displays a warning about uninitialized variables while it is compiling.

Variable Name Restrictions
For those of you with a C++ background, there are no big changes here. Variable names consist of
upper- and lowercase letters, digits from 0 to 9, and the underscore character (_). The variable name
must start with a letter or an underscore character. Also, variable names cannot be the same as C++/CLI
reserved keywords, including all variable names starting with two underscores, which C++/CLI has
also reserved. Table 2-1 contains a list of more commonly used C++/CLI reserved keywords. For a
complete list of all reserved words, look in the documentation provided in Visual Studio 2005.

In addition to the single-word keywords in Table 2-1, in C++/CLI double-word keywords have
been added. Any white space, including comments and new lines (but excluding XML documentation
comments and new lines in macros), is permitted between the double-word keywords. Table 2-2
contains a list of all C++/CLI reserved double-word keywords.

Table 2-1. Common C++/CLI Reserved Keywords

Keywords

asm auto bool break case

catch char class const const_cast

continue default delete do double

dynamic_cast else enum explicit export

extern false float for friend

gcnew goto if inline int

long mutable namespace new nullptr

operator pin_ptr private protected public

register reinterpret_cast restrict return safe_cast

short signed sizeof static static_cast

struct switch template this throw

true try typedef typeid typename

typeid _typeof union unsigned using

virtual void volatile wchar_t while

Fraser_640-4C02.fm Page 31 Thursday, November 17, 2005 4:56 PM

32 C H A P T E R 2 ■ C + + / C L I B A S I C S

To add one more wrinkle to variable name mess, C++/CLI also has added some context-sensitive
keywords words, or what Microsoft calls identifiers. These words can be used as variable names
unless they are placed in a specific location in the code. I will describe each of these identifiers later
in this chapter or in subsequent chapters where appropriate. Table 2-3 contains a list of all the
C++/CLI identifiers.

Variables should probably be self-descriptive. However, there is nothing stopping you from
writing a program that uses variable names starting with a0000 and continuing through z9999. If you
do this, though, don’t ask me to debug it for you.

There are also people who think that you should use Hungarian notation for variable names.
This notation allows other programmers to read your code and know the data type by the prefix
attached to its name. I find this notation cumbersome and don’t use it myself unless, of course,
company standards dictate its use.

■Note You can find out the data type of a variable within Visual Studio 2005 by just placing your cursor over the
variable name.

Predefined Data Types
All data types, even the simplest ones, are truly objects in C++/CLI. This differs from traditional C++,
where primitive types such as int, float, and double were strictly stored values of data types themselves.

As a C++/CLI programmer, you have the luxury of programming simple data types just as you
would in traditional C++, knowing that you can convert them to objects if needed.

Predefined data types fall into two different types: fundamental types and reference types.
Fundamental types are the data types that default to just storing their values for efficiency on the
stack but can be boxed to become full objects. Reference types, on the other hand, are always objects
and are stored on the managed heap.

Table 2-2. C++/CLI Reserved Double-Word Keywords

Double-Word Keywords

enum class enum struct for each interface class

interface struct ref class ref struct value class

value struct

Table 2-3. C++/CLI Identifiers

Identifiers

Abstract delegate event finally

Generic in initonly literal

Override property sealed where

Fraser_640-4C02.fm Page 32 Thursday, November 17, 2005 4:56 PM

C H A P T E R 2 ■ C + + / C L I B A S I C S 33

Fundamental Types
All the standard C++ data types are available to the C++/CLI programmer. Or, at least, so it appears.
In reality, the standard data types are just an alias for the .NET Framework’s fundamental types.
With .NET 2.0, there is now no difference between using the standard C++ data types and .NET
Framework’s fundamental types. It’s a matter of taste (or company standards) which ones you choose.
My feeling, given that this is C++/CLI, is that I’m going to use C++ data types. Plus, the Visual Studio
2005 editor defaults to color-coding the data type keywords, which make things easier.

There are five distinct groups of fundamental value types:

1. Integer

2. Floating point

3. Decimal

4. Boolean

5. Character

Programmers with a C++ background should readily recognize four of these groups. Decimal,
most probably, is new to all. Let’s go over all of them so that there are no surprises.

Integer Types

Eight different integer types are provided to C++/CLI programmers. These can all be broken down
into unsigned and signed numbers. (In other words, can negative numbers be represented or just
positive numbers?) Table 2-4 shows the integer types.

Byte and SByte are the smallest of the integer types, at 1 byte each, hence their names. Their
C++/CLI aliases are unsigned char and char, respectively. A Byte can range from 0 to 255, and an
SByte can range from –128 to 127, inclusive. In traditional C++, char usually represents ASCII characters.

Table 2-4. Integer Fundamental Types

C++/CLI Alias Class Library Description Range

unsigned char System::Byte 8-bit unsigned integer 0 to 255

char System::SByte 8-bit signed integer –128 to 127

short System::Int16 16-bit signed integer –32,768 to 32,767

unsigned short System::UInt16 16-bit unsigned integer 0 to 65,535

int or long System::Int32 32-bit signed integer –2,147,483,648 to 2,147,483,647

unsigned int or long System::UInt32 32-bit unsigned integer 0 to 4,294,967,295

long long or __int64 System::Int64 64-bit signed integer –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

unsigned long long
or __int64

System::UInt64 64-bit unsigned integer 0 to 18,446,744,073,709,551,615

Fraser_640-4C02.fm Page 33 Thursday, November 17, 2005 4:56 PM

34 C H A P T E R 2 ■ C + + / C L I B A S I C S

■Caution The C++/CLI alias char is not the same as the .NET Framework class library System::Char. A char
is an 8-bit unsigned integer that frequently represents an ASCII character, whereas a System::Char is a 16-bit
Unicode character.

The remainder of the integer types has fairly self-descriptive .NET Framework class library
names, with their type and size merged into their name. Int16 are 16-bit integers, UInt16 are
unsigned 16-bit integers, and so on. Personally, I think these names make more sense than short,
int, and long. Plus, long and int are the same size (4 bytes), so you have to throw in __Int64 or long
long.

■Note Given that short and int are the norm to a C++ programmer, I’ll use them but, because there really isn’t
a 64-bit integer standard keyword, I use the .NET Framework’s System::Int64 or the more convenient Int64.

There is nothing complex about declaring integer type variables. Whenever you declare an
integer type variable in C++/CLI, it is immediately initialized to the value of zero. This differs from
traditional C++ compilers, where the initialization is optional and up to the compiler. For traditional
C++, it is possible that the value of a variable remains uninitialized and, thus, contains just about any
numeric value.

To initialize integer types, you simply declare a variable and assign it a character: octal, decimal,
or hexadecimal literal. I examine literals later in this chapter.

Listing 2-1 is a simple piece of code showing integer types in action.

Listing 2-1. Integer Types in Action

using namespace System;

// Integer Fundamental Types in Action
void main()
{
 char v = 'F'; // Intialize using charater literal
 short w(123); // Intializing using Functional Notation
 int x = 456789; // Decimal literal assigned
 long y = 987654321l; // long integer literal assigned
 Int64 z = 0xFEDCBA9876543210; // Hex literal assigned

 Console::WriteLine(v); // Write out a char
 Console::WriteLine(w); // Write out a short
 Console::WriteLine(x); // Write out a int
 Console::WriteLine(y); // Write out a long
 Console::WriteLine(z); // Write out a Int64
 Console::WriteLine(z.ToString("x")); // Write out a Int64 in Hex
}

Figure 2-2 shows the results of this little program.

Fraser_640-4C02.fm Page 34 Thursday, November 17, 2005 4:56 PM

C H A P T E R 2 ■ C + + / C L I B A S I C S 35

Figure 2-2. Results of IntegerTypes.exe

For those of you from traditional C++ backgrounds, the ToString() appended to the integer
variables in the Console::WriteLine() method might be a little confusing. Remember, in C++/CLI,
integer types are objects and have several methods attached to them, and ToString() happens to be
one of them.

Floating-Point Types

C++/CLI provides only two different floating-point types. Table 2-5 describes the details of each.

■Note C++/CLI also supports a long double, but on the Microsoft platform long double and double are
the same.

The .NET Framework class library System::Single has the smaller range of numbers it can
represent of the two floating-point types available to C++/CLI. Its alias for C++ programmers is the
better-known float type. A float can represent numbers from ±1.5x10-45 to ±3.4x1038, but only
seven of the digits are significant.

The System::Double class library has the larger range of the two. Its alias is double. A double can
represent numbers from ±5.0x10-324 to ±1.7x10308, but only 15 of the digits are significant.

Listing 2-2 is a simple piece of code showing floating-point types in action.

Table 2-5. Floating-Point Fundamental Types

C++/CLI
Alias

Class Library Description Significant
Digits

Range

float System::Single 32-bit single-precision
floating point

7 significant digits ±1.5x10-45
to ±3.4x1038

double System::Double 64-bit double-precision
floating point

15 significant digits ±5.0x10-324
to ±1.7x10308

Fraser_640-4C02.fm Page 35 Thursday, November 17, 2005 4:56 PM

cafac74dd2d083cbec0906b66fcd56b1

36 C H A P T E R 2 ■ C + + / C L I B A S I C S

Listing 2-2. Floating-Point Types in Action

using namespace System;

// Floating-point Fundamental Types in Action
void main()
{
 float w = 123.456f; // standard decimal notation
 float x = 7890e3f; // exponent notation
 double y = 34525425432525764765.76476476547654; // too big will truncate
 double z = 123456789012345e-300; // exponent will be reset

 Console::WriteLine(w); // Write out Single
 Console::WriteLine(x); // Write out Single with more zeros
 Console::WriteLine(y); // Write out Double truncated
 Console::WriteLine(z); // Write out Double shift back decimal
}

Figure 2-3 shows the results of this little program.

Figure 2-3. Results of FloatingPoint.exe

The .NET Framework class library double is the default value used by most functions and methods
that deal with floating-point numbers.

Decimal Type

C++/CLI supports only one decimal type. This type has no traditional C++ equivalent and thus has
no alias. Table 2-6 describes the decimal type.

This fundamental type was designed specifically for calculations requiring a lot of significant
digits, as it provides 28 significant digits. Within those 28 digits, you can put a decimal. In other
words, you can place a very big number in a System::Decimal that will have a small fractional area,
or you can make a very small number with a very big fractional part.

Table 2-6. Decimal Fundamental Type

Class Library Description Significant
Digits

Range

System::Decimal 128-bit high-precision
decimal notation

28 ±7.9x10-28 to ±7.9x1028

Fraser_640-4C02.fm Page 36 Thursday, November 17, 2005 4:56 PM

C H A P T E R 2 ■ C + + / C L I B A S I C S 37

System::Decimals are not a native C++ data type and, as such, they need a little magic to get
them initialized if the number of significant digits you want to capture is larger than 15. The significance
of 15 is that it is the number of significant digits provided by a double, the closest data type available
to initialize a Decimal.

Here are three ways to load a number with more than 15 significant digits (there are other ways,
I’m sure):

1. The first method is to load the digits into a String and convert the String to Decimal.

Decimal w = System::Convert::ToDecimal("123456789012345678901.2345678");

2. The second method is to use one of the Decimal constructors. Most of the constructors are
pretty self explanatory. Basically convert a numeric type to a Decimal. Two constructors are
more complex. The first takes an array of integers to represent the binary format of the
Decimal. The second is this monstrosity:

public: Decimal(
 int lo, // The low 32 bits of a 96-bit integer.
 int mid, // The middle 32 bits of a 96-bit integer.
 int hi, // The high 32 bits of a 96-bit integer.
 bool isNegative, // false is positive.
 unsigned char scale // A power of 10 ranging from 0 to 28.
);

3. The third method is to add two doubles together using the combined significant digits of
both to make up the Decimal.

All three of these methods are shown in Listing 2-3. Also, for grins and giggles, I decided to use
the Decimal method GetBits() to break the Decimal into its parts and then use the constructor to
put it back together again. Don’t fret if you don’t understand C++/CLI arrays, as that portion of the
code is not essential to the understanding of the Decimal type. I cover arrays in detail later in the chapter.

Listing 2-3. Decimal Types in Action

using namespace System;

// Decimal Fundamental Type in Action
void main()
{
 Decimal w = System::Convert::ToDecimal("123456789012345678901.2345678");
 Console::WriteLine(w);

 Decimal x = (Decimal)0.1234567890123456789012345678; // will get truncated
 Decimal y = (Decimal)0.0000000000000000789012345678; // works fine

 Console::WriteLine(x);
 Console::WriteLine(y);

 // Decimal constructor
 Decimal z(0xeb1f0ad2, 0xab54a98c, 0, false, 0); // = 12345678901234567890
 Console::WriteLine(z);

 // Create a 28 significant digit number
 Decimal a = (Decimal)123456789012345000000.00000000;
 Decimal b = (Decimal)678901.23456780;
 Decimal c = -(a + b);

Fraser_640-4C02.fm Page 37 Thursday, November 17, 2005 4:56 PM

38 C H A P T E R 2 ■ C + + / C L I B A S I C S

 Console::WriteLine(c); // display prebroken Decimal

 // Break it up into 4 parts
 array<int>^ d = Decimal::GetBits(c);

 // Reassemble using Decimal constructor
 Decimal e(d[0], d[1], d[2], // digits
 ((d[3] & 0x80000000) == 0x80000000), // sign
 ((d[3] >> 16) & 0xff)); // decimal location

 Console::WriteLine(d[0]); // display part 1
 Console::WriteLine(d[1]); // display part 2
 Console::WriteLine(d[2]); // display part 3
 Console::WriteLine(d[3].ToString("X")); // display part 4
 Console::WriteLine(e); // display reassembled Decimal
}

Figure 2-4 shows the results of this program.

Figure 2-4. Results of Decimal.exe

Boolean Type

C++/CLI provides only one Boolean type. Table 2-7 describes the details of it.

The System::Boolean fundamental type has the C++/CLI alias of bool. A bool can only have a
value of true or false.

C++/CLI is a little lenient when it comes to initializing bools, as it allows them to be assigned
with the value of zero for false and any number other than zero for true. The compiler does give a
warning if the value assigned is not one of the following: true, false, 1, or 0.

Table 2-7. Boolean Fundamental Type

C++/CLI Alias Class Library Values

bool System::Boolean true | not 0 or false | 0

Fraser_640-4C02.fm Page 38 Thursday, November 17, 2005 4:56 PM

C H A P T E R 2 ■ C + + / C L I B A S I C S 39

Listing 2-4 is a simple piece of code showing the Boolean type in action.

Listing 2-4. Boolean Type in Action

using namespace System;

// Boolean Fundamental Type in Action
void main()
{
 bool a = 18757; // will give a warning but set to true
 bool b = 0; // false
 bool c = true; // obviously true
 bool d = false; // obviously false

 Console::WriteLine(a);
 Console::WriteLine(b);
 Console::WriteLine(c);
 Console::WriteLine(d);
}

Figure 2-5 shows the results of this little program.

Figure 2-5. Results of Boolean.exe

Character Type

C++/CLI provides only one character type. Table 2-8 describes the details of this character type.

The .NET Framework class library System::Char is a 16-bit Unicode character, which has a
C++/CLI alias of __wchar_t (or wchar_t, if the Zc:wchar_t flag is set on the compiler).

Listing 2-5 is a simple piece of code showing the Char type in action.

Table 2-8. Character Fundamental Type

C++/CLI Alias Class Library Value

wchar_t System::Char A single 16-bit Unicode character

Fraser_640-4C02.fm Page 39 Thursday, November 17, 2005 4:56 PM

40 C H A P T E R 2 ■ C + + / C L I B A S I C S

Listing 2-5. Char Type in Action

using namespace System;

// Character Fundamental Type in Action
void main()
{
 Char a = L'A'; // character literal 'A'
 Char b = L'\x0041'; // hex notation for hex 41 which happens to be 'A'

 Console::WriteLine (a);
 Console::WriteLine (b); //Even though I put hex 41 in b, the ASCII 'A'
 //is printed due to b being a Char
}

Figure 2-6 shows the results of this little program.

Figure 2-6. Results of Chars.exe

Not long ago, all Windows programs used ASCII, an 8-bit, English-only character set. Unfortunately,
this was not very helpful for languages such as Chinese, which requires more than the 256-character
limit imposed by ASCII. To try to solve this obvious problem, a new encoding protocol was developed
called Unicode, within which many character sets could be defined. Unicode uses 16 bits to represent
each character instead of ASCII’s 8. ASCII is a subset of Unicode.

■Caution Traditional C++ programmers must be wary of the C++/CLI alias char, as it is not the same as the
.NET Framework’s class library Char. A char is an 8-bit ASCII character, whereas a Char is a 16-bit Unicode
character.

Reference Types
As a C++/CLI programmer, you can think of reference types as a handle to data in the managed heap
that you don’t have to worry about deleting. Handles and pointers have many similarities; they both
reference data in a heap (Managed and CRT). Where handles differ considerably from pointers is
that a handle’s address can’t be manipulated, or in other words, you can’t add or subtract offsets to
a handle as you can with a pointer.

There are many reference types in .NET; the .NET Framework is full of them, but all C++/CLI
developers almost always use only two. One is the Object type, the root of all classes in the .NET
Framework class library. The other is the String type.

I deal with these two reference types now, but throughout the book I’ll cover many more.

Fraser_640-4C02.fm Page 40 Thursday, November 17, 2005 4:56 PM

C H A P T E R 2 ■ C + + / C L I B A S I C S 41

Object Type

The System::Object is the root type of the entire .NET Framework class library hierarchy. In other
words, every object found in the .NET Framework ultimately has, as a parent, the Object type.

Because all objects in the .NET Framework derive from System::Object, all objects inherit
several general-purpose methods, such as

• Object(): Creates a new instance of an object

• Equals(): Compares two object instances to see if they are equal

• GetHashCode(): Returns a hash code for the object

• GetType(): Returns the data type of the object

• ReferenceEquals(): Checks if two instances of an object are the same

• ToString(): Returns a string representation of the object

A developer can replace a few of these methods. For example, replacing ToString() allows an
object to represent itself in a way that is readable to the user.

String Type

As a C++/CLI programmer, you will probably become very intimate with System::String. Many of
your programs will involve character strings. The String type was built to handle them. Traditional
C++ programmers can now forget character arrays, CString or STL’s string class—you now have a
powerful, predefined .NET Framework reference type to manipulate strings with. As an added bonus, it
is completely garbage collected!

Being a reference type, Strings are allocated to the managed heap and referenced using a handle.
String types are also immutable, meaning their value cannot be modified once they have been
created. This combination allows for the optimized capability of multiple handles representing the
same character string managed heap location. When a String object changes, a completely new
character string is allocated in the managed heap and, if no other handle references the original
String object, then the original String object is garbage collected.

Listing 2-6 is a little program showing the String type in action.

Listing 2-6. String Type in Action

using namespace System;

// String Type in Action
void main()
{
 // Create some strings
 String^ s1 = "This will ";
 String^ s2 = "be a ";
 String^ s3 = "String";
 Console::WriteLine(String::Concat(s1, s2, s3));

 // Create a copy, then concatenate new text
 String^ s4 = s2;
 s4 = String::Concat(s4, "new ");
 Console::WriteLine(String::Concat(s1, s4, s3));

Fraser_640-4C02.fm Page 41 Thursday, November 17, 2005 4:56 PM

42 C H A P T E R 2 ■ C + + / C L I B A S I C S

 // Replace stuff in a concatenated string
 String^ s5 = String::Concat(s1, s2, s3)->Replace("i", "*");
 Console::WriteLine(s5);

 // Insert into a string
 String^ s6 = s3->Insert(3, "ange Str");
 Console::WriteLine(String::Concat(s1, s2, s6));

 // Remove text from strings
 s1 = s1->Remove(4, 5); // remove ' will' from middle
 s2 = s2->Remove(0, 3); // remove 'be ' from start
 Console::WriteLine(String::Concat(s1, "is ", s2, s3));
}

Figure 2-7 shows the results of this little program.

Figure 2-7. Results of StringFun.exe

User-Defined Data Types
With C++/CLI, you can create your own data types. User-defined data types fall into two groups:
value types or reference types. As I pointed out earlier, value types are placed directly on the stack,
whereas reference types are placed on the managed heap and referenced via the stack.

Value Types
Only three kinds of user-defined value types can be created using C++/CLI:

• enum class or enum struct (equivalent)

• value struct

• value class

The enum class and enum struct types are simply named constants. The value struct and value
class types are identical, except that the default access value struct members are public, whereas
value class members are private.

Native enums, enum classes, and enum structs

Conceptually, enums and consts share a lot of similarities. Both enable better readability of code.
They also allow for the actual value being represented to be maintained at one location in your code,
thus enabling the value to be changed at one location and have that change reflected throughout the
code. Where enums and consts differ is that enums allow for grouping of common values within a
single construct, creating a new data type. Then you can use this new data type to enforce that only

Fraser_640-4C02.fm Page 42 Thursday, November 17, 2005 4:56 PM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 2 ■ C + + / C L I B A S I C S 43

specific enum values be placed in a specified variable. A const, on the other hand, is just a represen-
tation of a value and cannot be used to define a new data type.

Like the fundamental types already discussed, enums default to being placed on the stack but
can beused automatically as objects when required.

There are two different syntaxes for declaring enums in C++/CLI. Ultimately, both syntax
generate the same metadata and inherit from System::enums.

The first syntax is the pre-C++/CLI style, better known as a native enum. C++/CLI has augmented
the native enum with the addition of an optional ability to declare the underlying data type. The data
type of a native enum can be explicitly declared as one of the following data types: bool, char, unsigned
char, signed char, short, unsigned short, int, unsigned int, long long, unsigned long long, float,
or double. Here is an example of a native enum with and without the optional declaration of the data type:

enum Creature { Dog, Cat, Eagle };
enum Vehicle : char { Car, Boat, Plane };

The second syntax, know as CLI enums, is the preferred one for managed code (according to
Microsoft) and mirrors more the syntax of the other value type declarations:

enum class Creature { Dog, Cat, Eagle };
enum struct Creature { Dog, Cat, Eagle };

CLI enums are different from native enums in that the names of the CLI enums’ values, better
known as enumerators, can only be found through the scope of the enums’ name, and the declaring
of the enums’ data type has no meaning with a CLI enum. What this means to you is that to code a
native enum like this:

Creature animal;
animal = Cat;

you code a CLI enum like this:

Creature animal;
animal = Creature::Cat;

The following example creates a CLI enum of all the primary colors. Then the function prints the
string equivalent of the primary color enum using a switch statement. I describe the switch statement
later in this chapter.

The System::Enum from which enums originate provides a simpler way of doing this exact same
thing. The ToString() method for enums prints out the enum name as a character string.

Listing 2-7 is a little program showing enums in action.

Listing 2-7. Enums in Action

using namespace System;

enum class PrimeColors { Red, Blue, Yellow };

// Enum Type in Action
void main()
{
 PrimeColors color;

 color = PrimeColors::Blue;

Fraser_640-4C02.fm Page 43 Thursday, November 17, 2005 4:56 PM

44 C H A P T E R 2 ■ C + + / C L I B A S I C S

 switch (color)
 {
 case PrimeColors::Red :
 Console::WriteLine("Red");
 break;
 case PrimeColors::Blue :
 Console::WriteLine("Blue");
 break;
 case PrimeColors::Yellow :
 Console::WriteLine("Yellow");
 break;
 }

 Console::WriteLine(color.ToString());
}

Figure 2-8 shows the results of this program.

Figure 2-8. Results of Enums.exe

value struct and value class

The value struct and value class data types are basically C++/CLI’s equivalent to traditional C++’s
class and struct data types but with an added bonus. Both are unmanaged (not garbage collected)
constructs used to combine multiple data types and methods (or functions) into a single data type.
Then when a new instance of the data type is created, it is allocated either to the stack or CRT heap.

The added bonus is that a copy of value struct or value class can be assigned to a variable
on the managed heap. Notice I said “a copy,” because the original value struct and value class
remains unmanaged. For those of you new to the C++ world, I cover the class and struct in detail in
Chapter 21.

■Unsafe Code A struct and class without the prefix value or ref are unsafe code, as they are referenced
using pointers and not handles. Thus, a struct and a class are placed on the CRT heap, which you have to
maintain yourself.

The only difference between a value struct and a value class is the default access of their
members; value struct members are public, whereas value class members are private. I cover
public and private access in Chapter 3.

The value struct and value class are C++/CLI’s way of providing programmers with a method
of creating their own value types, thus allowing for expansion beyond the basic fundamental types.

All value structs and value classes are derived from the .NET Framework class library’s
System::ValueType, which allows for the value struct’s and value class’s ability to be placed on

Fraser_640-4C02.fm Page 44 Thursday, November 17, 2005 4:56 PM

C H A P T E R 2 ■ C + + / C L I B A S I C S 45

the stack. A value struct and value class can inherit from only interfaces. Trying to inherit from a
value struct or value class results in a compile time error.

Listing 2-8 is a simple example of a value class called Coord3D. It is made up of three doubles,
a constructor, and a Write() method. I cover constructors and overriding in Chapter 3. The main()
function creates the two copies of Coord3D on the stack, with one using the default constructor, and
the other using the one user-defined constructor. Notice that to assign a value class to another, you
simply use the equal sign (=).

Listing 2-8. A value class in Action

using namespace System;

// Value class in Action
value class Coord3D
{
public:
 double x;
 double y;
 double z;

 Coord3D (double x, double y, double z)
 {
 this->x = x;
 this->y = y;
 this->z = z;
 }

 String^ Write()
 {
 return String::Format("{0},{1},{2}", x, y, z);
 }
};

void main()
{
 Coord3D coordA;
 Coord3D coordB(1,2,3);

 coordA = coordB; // Assign is simply an =

 coordA.x += 5.5; // Operations work just as usual
 coordA.y *= 2.7;
 coordA.z /= 1.3;

 Console::WriteLine(coordB.Write());
 Console::WriteLine(coordA.x);
 Console::WriteLine(coordA.y);
 Console::WriteLine(coordA.z);
}

Figure 2-9 shows the results of this program.

Fraser_640-4C02.fm Page 45 Thursday, November 17, 2005 4:56 PM

46 C H A P T E R 2 ■ C + + / C L I B A S I C S

Figure 2-9. Results of ValueClass.exe

Reference Types
User-defined reference types are data types a programmer develops that are accessed using handles,
and where the actual data object is located on the managed heap. All reference types in C++/CLI are
garbage collected.

C++/CLI provides four kinds of user-defined reference types: arrays, classes, interfaces, and
delegates. All four of these types share one thing: to create an instance of them required the gcnew
operator.

new vs. gcnew

The gcnew operator is new to all C++/CLI developers. It appears for the first time with .NET version 2.0
and replaces the well-known new operator, which was used in all prior versions of C++/CLI (Managed
Extensions for C++). Its purpose is to create an instance of a reference type object on the managed
heap and return a handle to this instance. This differs from the new operator, which creates an
instance of a native class on the CRT heap and returns a pointer to this instance.

■Unsafe Code The new operator is used to create an instance of an object on the CRT heap and create a pointer
to this object, and thus you lose the benefits of the .NET version 2.0 CLR.

Why a new operator? The gcnew and new operators do different things. When you think of it, it
sort of makes sense. Why confuse things by using the same operator? Why not improve readability
of the code and make it obvious which types of object you are creating? Hence, the new operator
gcnew and the new handle with the caret [^] symbol were created.

Arrays

Arrays, like all other data types in C++/CLI, are objects, unlike their traditional C++ counterparts,
which are simply pointers into CRT heap memory. In fact, the only resemblance between a C++/CLI
and a traditional C++ array is its single-dimension syntax when being referenced.

All C++/CLI arrays are garbage collected. Also, they can be made up of any data type that derives
from System::Object. If you recall, that is every data type in the .NET Framework class library.

C++/CLI arrays have specific dimensions that, when violated, generate an exception. All arrays
are derived from a System::Array object, which provides them with many helpful methods and
properties, in particular, the Length property for single-dimension arrays and the GetLength()
method for single- or multidimensional arrays. Both of these provide the dimensions of the array.

There are no stack base declarations of C++/CLI arrays using subscripts, as in traditional C++.
All C++/CLI arrays are references and created on the managed heap.

Fraser_640-4C02.fm Page 46 Thursday, November 17, 2005 4:56 PM

C H A P T E R 2 ■ C + + / C L I B A S I C S 47

■Unsafe Code For the experienced C++ programmer it is still possible to create stack-based declarations of
unsafe C++ arrays, just as you would in traditional C++, because that syntax is still available to you. But arrays
declared in this fashion lose the benefits of .NET’s CLR given that they compile to unmanaged data.

Unlike what you have seen so far when declaring data types, arrays are declared with syntax
very similar to C++/CLI templates or .NET 2.0 generic classes. Also, to declare an array requires the
namespace stdcli::language:

using namespace stdcli::language;

For those coders who had to struggle with the declaration syntax of an array in the previous
version of .NET (1.0 and prior), the new syntax should seem like a breath of fresh air, as I believe is
a little easier to work with due to three aspects of the declaration:

• The declaration points out that it is derived from that array class.

• The declaration is more or less consistent with other reference type declarations.

• The declaration of arrays made of value types is the same as one made up reference types.

To declare an array requires a handle to the keyword array followed by the data type enclosed
in angle brackets:

array<datatype>^ arrayname;

To create an instance of the array, use the constructor initialization format. Also, because you
are allocating the array to the managed heap, the gcnew operator is required. Therefore, to create an
array of five ints and an array of seven Strings would require the following statements:

using namespace stdcli::language;

array<int>^ fiveInts = gcnew array<int>(5);
array<String^>^ sevenStrings = gcnew array<String^>(7);

■Unsafe Code It is possible to create arrays of unmanaged data types, as well, so long as the data type is of
type pointer. Because the data type is a pointer and thus allocated to the CRT heap, you have to make sure that you
handle the memory management yourself. In other words, you need to call delete on all allocated data.

class CLASS {};

array<CLASS*>^ pClass = gcnew array<CLASS*>(5);
for (int i = 0; i < pClass->Length; i++)
 pClass[i] = new CLASS();
...
for (int i = 0; i < pClass->Length; i++)
 delete pClass[i];

It is also possible to directly initialize an array at the time of declaration with the following
syntax:

array<String^>^ name = gcnew array<String^> {"Stephen", "R", "G", "Fraser"};

Multidimensional arrays also have a template-like syntax. All you have to do is add a rank after
the data type:

Fraser_640-4C02.fm Page 47 Thursday, November 17, 2005 4:56 PM

48 C H A P T E R 2 ■ C + + / C L I B A S I C S

array<datatype, rank>^ arrayname;

The rank specifies the number of dimensions of the array and can range from 1 to 32. Any other
value generates an error. The rank must also be explicit. Therefore, the rank cannot be a variable. It
must be either a numeric literal or a numeric const value. When this rank is greater than 1, then the
array is multidimensional. Notice, with this syntax it is possible to write single and multidimen-
sional array declarations the same way:

using namespace stdcli::language;

array<int, 1>^ Ints_5 = gcnew array<int>(5);
array<int, 2>^ Ints_5x3 = gcnew array<int>(5, 3);
array<int, 3>^ Ints_5x3x2 = gcnew array<int>(5, 3, 2);

Multidimensional arrays declared in the preceding fashion all have dimensions of uniform size
or, in the case of a two-dimensional array, are rectangular. It is also possible to have arrays that have
different sizes within a dimension. This form of declaring multidimensional arrays, usually known
as jagged arrays, is made up of arrays of arrays. With the new array syntax, declaring an array in this
format is a breeze:

array< array<datatype>^ >^

Notice all you do is make the data type of the outer array declaration another array declaration.
Initializing the array takes a little more effort, but then again it is not complicated. Here we create a
two-dimensional array, in which the first dimension is 4 and the second dimension varies from 5
to 20.

array< array<int>^ >^ jagged = gcnew array< array<int>^ >(4);

for (int i = 0; i < jagged->Length; i++)
{
 e[i] = gcnew array<int>((i+1) * 5); // each row 5 bigger
}

In the preceding example, I show how to subscript into an array, or in layman’s terms, how to
access an element of an array. For those of you with prior C++ experience, this should look familiar.
It’s the name of the array followed by the index to the element enclosed in square brackets:

variable_name[index];

Be careful though: Multidimensional arrays are accessed in a different syntax than traditional
arrays. Instead of the name of the array followed by each dimension index in its own square bracket,
the syntax is now the name of the array followed by a comma-delimitated list of dimension indexes
enclosed in a single set of square brackets:

variable_name[index1,index2,index3];

■Caution Just to complicate things, jagged arrays use the traditional syntax to access an element of an array.

Unlike traditional C++, subscripting is not a synonym for pointer arithmetic, and it is not
commutative. Thus, the only way to access data from an array is by using subscripts with all dimen-
sions starting at a value of zero.

Two very helpful static methods of the System::Array are Sort() and Reverse(), which provide
quick ways to sort and reverse the order of the elements in an array. Reverse() is shown in the
following example.

Fraser_640-4C02.fm Page 48 Thursday, November 17, 2005 4:56 PM

C H A P T E R 2 ■ C + + / C L I B A S I C S 49

Listing 2-9 is a program showing C++/CLI arrays in action.

Listing 2-9. C++/CLI Arrays in Action

using namespace System;

// Arrays in Action
void main()
{
 // Single dimension
 array<int>^ a = gcnew array<int>(4);
 array<String^>^ b = gcnew array<String^>(4);

 for (int i = 0; i < a->Length; i++)
 {
 a[i] = i;
 }

 for (int i = 0; i < b->Length; i++)
 {
 b[i] = a[i].ToString();
 }

 for (int i = 0; i < b->Length; i++)
 {
 Console::WriteLine(b[i]);
 }

 Console::WriteLine();
 Array::Reverse(b);
 for (int i = 0; i < b->Length; i++)
 {
 Console::WriteLine(b[i]);
 }

 // Multi dimension uniform
 array<int,2>^ c = gcnew array<int,2>(4,3);
 array<String^,2>^ d = gcnew array<String^,2>(4,3);

 for (int x = 0; x < c->GetLength(0); x++)
 {
 for (int y = 0; y < c->GetLength(1); y++)
 {
 c[x,y] = (x*10)+y;
 }
 }

 Console::WriteLine();
 for (int x = 0; x < d->GetLength(0); x++)
 {
 for (int y = 0; y < d->GetLength(1); y++)
 {
 Console::Write("{0,-5:00}", c[x,y]);
 }
 Console::WriteLine();

Fraser_640-4C02.fm Page 49 Thursday, November 17, 2005 4:56 PM

cafac74dd2d083cbec0906b66fcd56b1

50 C H A P T E R 2 ■ C + + / C L I B A S I C S

 }

 // Multidimension jagged
 array< array<int>^ >^ e = gcnew array<array<int>^>(4);

 for (int x = 0; x < e->Length; x++)
 {
 e[x] = gcnew array<int>(4+(x*2)); // each row 2 bigger
 for(int y = 0; y < e[x]->Length; y++)
 {
 e[x][y] = (x*10)+y;
 }
 }

 Console::WriteLine();

 for (int x = 0; x < e->Length; x++)
 {
 for (int y = 0; y < e[x]->Length; y++)
 {
 Console::Write("{0,-5:00}", e[x][y]);
 }
 Console::WriteLine();
 }
}

Figure 2-10 shows the results of this little program.

Figure 2-10. Results of Arrays.exe

Classes

A class is a fundamental building block of most C++/CLI programs. Classes are made up of data
members, properties, and methods. Classes are designed to provide the object-oriented nature of
the C++/CLI programming language. In other words, they provide the ability to implement encap-
sulation, inheritance, and polymorphism.

Chapter 3 covers classes in detail.

Fraser_640-4C02.fm Page 50 Thursday, November 17, 2005 4:56 PM

C H A P T E R 2 ■ C + + / C L I B A S I C S 51

Interfaces

An interface is a collection of methods and properties, without actual definitions, placed into a single
unit. In other words, an interface has no implementations for its own methods and properties. You
might want to think of an interface as a binding contract of all the methods and properties that an
inheriting class must provide.

Chapter 3 covers interfaces.

Delegates and Events

A delegate is a reference type that acts as a “function pointer” that can be bound to either an instance
or a static method within a C++/CLI class. Delegates can be used whenever a method needs to be
called in a dynamic nature, and they are usually used as callback functions or for handling events
within .NET Framework applications. I examine delegates in Chapter 4.

An event is a specialized implementation of a delegate. An event allows one class to trigger the
execution of methods found in other classes without knowing anything about these classes or even
from which classes it is invoking the method. I examine events in Chapter 4, and they are imple-
mented quite extensively in Chapters 9 and 10.

Boxing and Unboxing
In previous versions of C++/CLI (Managed Extensions for C++ versions 1.1 and prior) boxing was a
big deal, but now with .NET version 2.0, you can almost not worry about it at all. Boxing is the CLR
technique for converting value types into reference types. And, conversely, unboxing is the technique for
converting reference types into value types.

The default form of storage for the .NET Framework value types is on the stack, in its machine
native form. In this form, a data type cannot access its methods, such as ToString(), because the
value type needs to be in an object (reference) format. To remedy this, the value type implicitly
(automatically) is boxed whenever the ToString() method is called.

■Note In prior versions of C++/CLI (Managed Extensions for C++), implicit boxing only occurred with fundamental
value types. In .NET version 2.0, all value types are implicitly boxed.

For example, to box the following simple POINT value type:

value class POINT
{
public:
 int x, y;
 POINT(int x, int y) : x(x) , y(y) {}
};

POINT p1(1,2);

would take either of the following lines of code:

Object ^o = p1;
// -or-
POINT ^hp = p1;

Fraser_640-4C02.fm Page 51 Thursday, November 17, 2005 4:56 PM

52 C H A P T E R 2 ■ C + + / C L I B A S I C S

■Caution The created boxed object is a copy of the value type. Therefore, any modifications made to the boxed
object will not be reflected in the contents of the originating value type.

Unboxing a reference type back into its value type simply requires a type cast. You will probably
find that unboxing comes in handy when you have stored your boxed value types in a collection
(which store reference types) and want to convert them back to their value types. I cover type casting
in the “Type Conversions” section later in this chapter and collections in Chapter 7.

Here’s how you would unbox the preceding two boxed value types.

 POINT p2 = (POINT)o;
 POINT p3 = (POINT)hp;

Type Modifiers and Qualifiers
Three modifiers and one data type qualifier are provided to C++/CLI programmers. They provide a
little information to help define the variables they precede.

auto
The auto modifier tells the compiler that it should create the variable when entering a block and
destroy it when exiting the block. If this sounds like most variables to you, you would be right, as it is
the default modifier for all variables. Placing the auto keyword in front of variables is optional. In
fact, I have never seen it used myself, but if you like typing, here is how you would use it in a program:

auto int normalInteger;

const
The const qualifier tells the compiler that the variable it is associated with cannot change during
execution. It also means that objects referenced to by a const handle or pointed to by a const pointer
cannot be changed. Constants are the opposite of variables. The syntax to create a const data type is
simply this:

const Int32 integerConstant = 42;

Note that you need to initialize a const at the time of declaration.

■Caution C++/CLI does not support const member methods on managed data types. For example, bool
GetFlag() const {return true;} is not allowed within a value struct or ref class, nor is it supported by an
interface.

extern
The extern modifier tells the compiler that the variable is defined elsewhere, usually in a different
file, and will be added in when the final executable or library is linked together. It tells the compiler
how to define a variable without actually allocating any storage for it. You will see this variable modifier
usually when a global variable is used in more than one source file. (I discuss multifile source file
assemblies in the Chapter 4.)

Fraser_640-4C02.fm Page 52 Thursday, November 17, 2005 4:56 PM

C H A P T E R 2 ■ C + + / C L I B A S I C S 53

■Note An error will occur during the linking of the application if an external variable is not defined in some other
source file.

Using the extern modifier looks like this:

extern int externVariable;

static
The static modifier has four meanings based on where it is used.

When the static modifier is applied to a global variable, the variable’s global nature is restricted
to the source file in which it is declared. In other words, the variable is accessible to all functions,
classes, and so on, declared within the file, but an extern variable or class in another source file will
not have access to it.

When the static modifier is applied to a variable within a function (see the "Functions" section),
then the variable will not go out of scope or be deleted when the function exits. This means that the
next time the function is called, the static variable will retain the same value it had when the func-
tion was left the previous time.

When the static modifier is applied to a variable within a class (I discuss classes in Chapter 3),
then only one copy of the variable is created, and it is shared by all instances of the class.

When the static modifier is applied to a method within a class, then the method is accessible
without the need to instantiate the class.

Here are some basic examples of the static modifier in use:

static int staticVariable;
static void staticFunction (int arg) { }

Type Conversions
Any time the data type on the left side of an assignment statement has a different data type than the
evaluated result of the right side, a type conversion will take place. When the only data types used in
the statement are fundamental types, then the conversion will happen automatically. Unfortunately,
converting automatically may not always be a good thing, especially if the left side data type is
smaller, because the resulting number may lose significant digits. For example, when assigning a
UInt16 to a Byte, the following problem may occur:

UInt16 a = 43690;
Byte b = a; // b now equals 170 not 43690.

Here is what happened. UInt16 is a 16-bit number, so 43690 decimal represented as a 16-bit
number is 1010 1010 1010 1010 in binary. Byte is an 8-bit number, so only the last 8 bits of the UInt16
can be placed into the Byte. Thus, the Byte now contains 1010 1010 in binary, which happens to
equal only 170 decimal.

The C++/CLI compiler will notify you when this type of error may occur. Being warned, the
compiler and, subsequently, the program it generates go merrily on their way.

If you don’t want the warning, but you still want to do this type of conversion, then you can do
something called an explicit cast. It’s the programmer’s way of saying, “Yes, I know, but I don’t care.”
To code an explicit cast, you use one of the following syntaxes:

safe_cast<data-type-to-convert-to>(expression)
// --or--
(data-type-to-convert-to) expression

Fraser_640-4C02.fm Page 53 Thursday, November 17, 2005 4:56 PM

54 C H A P T E R 2 ■ C + + / C L I B A S I C S

Here’s an actual example of both syntaxes:

char b = safe_cast<char>(a);
// --or--
char b = (char) a;

■Note Unlike prior versions of C++/CLI (Managed Extensions for C++) the use of the old type conversion syntax:
(datatype) variable will first try to do a safe_cast, which, in most cases, will make the two syntaxes the same.

In C++/CLI, when resolving an expression, all data types that make up the expression must be
the same. If the expression is made up of more than one type, then type conversion occurs to make
all the data types the same. If all the data types are integer types, then the data types are converted
to an int or Int64 data type. If a data type is a floating-point type, then the all data types in the
expression are converted to a float or double.

All these types of conversions happen automatically. There are cases, though, where you may
want all data types to be converted to a data type of your choosing. Here again, you use explicit
casting, as shown here:

double realA = 23.67;
double realB = 877.12;
int intTotal = safe_cast<int>(realA) + safe_cast<int>(realB);
// -or-
int intTotal = (int) realA + (int) realB;

Variable Scope
There are two different scopes: global and local. They have subtleties that might bend these scopes
a bit, but that’s something most programmers don’t care about.

Global scope for a variable means that it is declared outside of all functions, classes, and structures
that make up a program, even the main() functions. They are created when the program is started
and exist for the entire lifetime of the program. All functions, classes, and structures can access
global variables. The static modifier has the capability to restrict a global variable to only the source
file in which it is declared.

Local variables are local to the block of code in which they are declared. This means that local
variables exist within the opening and closing curly brackets within which they were declared. Most
commonly, local variables are declared within a function call, but it is perfectly acceptable to declare
them within flow control and looping constructs, which you will learn about in the “Flow Control
Constructs” and “Looping Constructs” sections. It is also valid to create a block of code only to reduce the
scope of a variable.

The following code shows some global and local variable declarations:

int globalVariable;
int main()
{
 int localFunctionVariable;
 { int localToOwnBlock; }
}

Namespaces
Some programmers work in an isolated world where their code is the only code. Others use code
from many sources. A problem with using code from many sources is that there is a very real possi-
bility that the same names for classes, functions, and so on, can be used by more than one source.

Fraser_640-4C02.fm Page 54 Thursday, November 17, 2005 4:56 PM

C H A P T E R 2 ■ C + + / C L I B A S I C S 55

To allow the same names to be used by multiple sources, namespaces were created. Namespaces
create a local scope declarative region for variables, functions, classes, and structures. In other
words, namespaces allow programmers to group their code under a unique name.

Creating a namespace simply requires combining all of the code within a named region, such as

namespace MyNamespace
{
 // classes, structs, functions, namespace-global variables
}

It is possible to use the same namespace across multiple source code files. The compiler will
combine them into one namespace.

To reference something out of a namespace requires the use of the :: operator. For example:

MyNamespace::NSfunc();

Typing the namespace repeatedly can get tiring, so C++/CLI allows the programmer to bring a
namespace into the local scope using

using namespace MyNamespace;

Now, with the namespace brought into local scope, the function NSfunc from the previous
example can be accessed just like any other function of local scope:

NSfunc();

■Caution Bringing multiple namespaces into the local scope could cause duplicate function, class, and struct
names to occur.

Literals
Other than Decimals, each of the preceding data types has literals that can be used for things such as
initializing variables or as constants. In the preceding programs, I have shown many different literals.
In this section, I go over them in more detail.

Numeric Literals
Numeric literals come in five flavors:

• Octal numbers

• Integer numbers

• Hexadecimal numbers

• Decimal numbers

• Exponential numbers

Octal numbers are hardly ever used anymore. They are mainly still in use just for backward
compatibility with some ancient programs. They are base-8 numbers and thus made up of the
numbers 0 through 7. All octal numbers start with a 0. Some examples are as follows:

0123 (an integer value of 83) 01010 (an integer value of 520)

Fraser_640-4C02.fm Page 55 Thursday, November 17, 2005 4:56 PM

56 C H A P T E R 2 ■ C + + / C L I B A S I C S

You need to be aware of octal numbers because if you mistakenly start an integer number with
a 0, then the compiler will happily treat it as an octal number. For example, if you type in 0246, the
compiler will think its value is equivalent to the integer value 166.

Integer numbers are straightforward. They are simply whole numbers. Some examples are
as follows:

1234 –1234 +1234

The symbols – and + are not actually part of the number but, in fact, are unary operators that
convert the whole number into a negative or positive number. The + unary operator is assumed,
so 1234 and +1234 mean the same thing.

Hexadecimal numbers are the most complex of the numeric constants. They are base-16 numbers
and are made up of the numbers 0 through 9 and the letters A through F (or a through f, as case does
not matter). The letters represent the numbers 10 through 15. A hexadecimal literal always starts
with 0x. Some examples of hexadecimal numbers are as follows:
0x1234 (an integer value of 4660)0xabcd (an integer value of 43981)

Decimal numbers are the same as integer numbers, except they also contain a decimal and a
fractional portion. They are used to represent real numbers. Some examples are as follows:

1.0 3.1415 –1.23

Just as in integer numbers, the minus symbol (–) is a unary operator and not part of the
decimal number.

The last numeric literals are the exponential numbers. They are similar to decimal numbers
except that along with the decimal—or more accurately, the mantissa—is the exponent, which tells
the compiler how many times to multiply or divide the mantissa by 10. When the exponent is posi-
tive, the mantissa is multiplied by 10 exponent times. If the exponent is negative, the mantissa is
divided by 10 exponent times. Some examples are as follows:

1.23e4 (a decimal value of 12300.0) 1.23e-4 (a decimal value of 0.000123)

An interesting feature that comes along with C++/CLI is that numeric literals are also objects.
This means that they also have the ToString() method. Listing 2-10 shows a numeric literal object in
action. Note that you need to surround the numeric literal with brackets.

Listing 2-10. Numeric Literals in Action

using namespace System;

// Integer Literals in Action
void main()
{
 Console::WriteLine (010); // An Octal 10 is a base-10 8
 Console::WriteLine (-010); // Negative Octal 10 is a base-10 -8

 Console::WriteLine (0x10); // A Hex 10 is a base-10 16
 Console::WriteLine (-0x10); // Negative Hex 10 is a base-10 -16

 // This is kind of neat. Number literals are objects, too!
 Console::WriteLine ((1234567890).ToString());
 Console::WriteLine ((0xABCDEF).ToString("X"));
}

Figure 2-11 shows the results of this little program.

Fraser_640-4C02.fm Page 56 Thursday, November 17, 2005 4:56 PM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 2 ■ C + + / C L I B A S I C S 57

Figure 2-11. Results of IntegerLiteral.exe

Boolean Literals
There are only two Boolean literals: the values true and false.

Like numeric literals, Boolean literals are objects in C++/CLI. Thus, they too provide the
ToString() method. Listing 2-11 shows a Boolean literal object in action.

Listing 2-11. Boolean Literals in Action

using namespace System;

// Boolean Literals in Action
void main()
{
 bool isTrue = true;
 bool isFalse = false;

 Console::WriteLine (isTrue);
 Console::WriteLine (isFalse);

 // This is kind of neat. Boolean literals are objects, too!
 Console::WriteLine (true.ToString ());
 Console::WriteLine (false.ToString ());
}

Figure 2-12 shows the results of this little program.

Figure 2-12. Results of BooleanLiteral.exe

Fraser_640-4C02.fm Page 57 Thursday, November 17, 2005 4:56 PM

58 C H A P T E R 2 ■ C + + / C L I B A S I C S

Character Literals
C++/CLI provides two different types of character literals:

• Character

• Escape sequence

Character literals are the most basic form and are simply a printable letter, number, or symbol
enclosed in single quotes. These literals can be placed in either char (8-bit) types (or any other
integer type, for that matter) and Char (16-bit) types. Here are a few examples:

‘A’ ‘0’ ‘+’

Escape sequences are a little more elaborate and come in a few flavors. Like the character literal
form, escape sequences are placed within single quotes. The first character within the quotes is
always a backslash [\]. After the backslash will be a character such as the ones shown in Table 2-9, an
octal number, or an x followed by a hexadecimal number. The octal or hexadecimal numbers are the
numeric equivalent of the character you want the literal to represent.

All the character literal types can be prefixed with the letter L to tell the compiler to create a
Unicode equivalent of the character literal. Remember that Unicode characters are 16 bits, so they
will not fit in the char type; instead, they should be placed in Char types.

Listing 2-12 is a program showing character literals in action.

Table 2-9. Special Escape Sequences

Escape Sequence Character

\? Question mark

\' Single quote

\" Double quote

\\ Backslash

\0 Null

\a Bell or alert

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Tab

\v Vertical tab

Fraser_640-4C02.fm Page 58 Thursday, November 17, 2005 4:56 PM

C H A P T E R 2 ■ C + + / C L I B A S I C S 59

Listing 2-12. Character Literals in Action

using namespace System;

// Character Literals in Action
void main()
{
 char a = 'a'; // character 'a'
 Char b = L'b'; // Unicode 'b'

 char t = '\t'; // tab escape
 Char s = L'\\'; // Unicode backslash escape

 char d = '\45'; // octal escape
 Char e = L'\x0045'; // Unicode hexadecimal escape

 Console::WriteLine (a); // displays numeric equiv of 'A'
 Console::WriteLine (b); // displays the letter 'b'
 Console::WriteLine (t); // displays numeric equiv of tab
 Console::WriteLine (s); // displays backslash
 Console::WriteLine (d); // displays decimal equiv of octal 45
 Console::WriteLine (e); // displays the letter 'e'
}

Figure 2-13 shows the results of this little program.

Figure 2-13. Results of CharLiteral.exe

String Literals
Managed string literals are simply character strings enclosed in double quotes. You can also create
literal strings prefixed with the letter L, creating a Unicode string literal.

By the way, the escape sequences shown previously also work within Strings. You must be
careful to avoid too many characters after the backslash being taken as the escape sequence. Realistic
examples of this are difficult with the Latin alphabet, but this illustrates the point:

String ^s1 = "\x61"; // a
String ^s2 = "\x611"; // is NOT a1 but a Unicode hexadecimal escape of 611

Fraser_640-4C02.fm Page 59 Thursday, November 17, 2005 4:56 PM

60 C H A P T E R 2 ■ C + + / C L I B A S I C S

Listing 2-13 is a program showing string literals in action.

Listing 2-13. String Literals in Action

using namespace System;

// String Literals in Action
void main()
{
 String^ a = "Managed String";
 String^ b = L"Unicode String";

 Console::WriteLine(a);
 Console::WriteLine(b);
}

Figure 2-14 shows the results of this little program.

Figure 2-14. Results of StringLiteral.exe

Comments
Documenting programs is a very important practice all software developers should do, no matter
what programming language they use. Unfortunately, documentation is often the first thing to
suffer when a project is crunched for time.

If you are the only developer for a program, you might think that because you wrote the program,
you should have no problem remembering how the program works. From experience, leaving a
piece of code and coming back to it six months or more later is nearly equivalent to reading someone
else’s code, unless, of course, it is documented.

C++/CLI, like traditional C++, provides two comment styles: the single-line comment and the
multiline comment. There is also a third comment style that allows for the autogeneration of docu-
mentation. I’ll cover this style in Chapter 6.

The single-line comment begins with a double slash (//). Anything after the double slash is a
comment. Depending on where you place the double slash, you can use a single-line comment for
an entire line or just part of a line. By the way, you probably noticed the comments in the previous
example code, but here are a couple more examples:

// This entire line is a comment.
int x = 0; // This comment uses part of the line.

The multiline comment starts with /* and ends with */. You can place multiline comments
anywhere in the code, even on different lines. You must use care with this kind of comment, because
embedding a multiline comment within a multiline comment will cause errors. Here are some
multiline comments:

Fraser_640-4C02.fm Page 60 Thursday, November 17, 2005 4:56 PM

C H A P T E R 2 ■ C + + / C L I B A S I C S 61

/***

 * Common comment box. You will see these frequently *
 * within programs. *
 ***/

Int32 x = 0; /* This is a comment on a single line */
Int32 y = 0; /* This is a comment that stretched for
 More than one line */
/* Embedded comments like this /* do not work
 as you might expect */ this portion would
 not be commented and will in this case cause errors */

Because of the embedded comment problem, many programmers, myself included, prefer to
use the double slash comment.

Operators
C++/CLI and traditional C++ are identical, except for one new operator introduced in C++/CLI, the
unary % (or reference operator). If you have programmed in C++, then you should find very little
new information in this section, but it might serve as a bit of a refresher. For anyone inexperienced
in C++, this section is essential because it shows all the basic operations available to a C++/CLI
programmer.

Arithmetic Operators
Arithmetic operators are used to perform arithmetic operations on integer, floating-point, and
decimal data types. Seven arithmetic operations are available, as shown in Table 2-10.

The -, +, *, and / operators perform exactly as expected. The % operator evaluates to the
remainder of a division operation. The -- and ++ operators decrease and increase the operand by 1,
respectively. You can place the -- and ++ operators before the operand, and in this way, the operand
is incremented or decremented before any other operations take place in the expression. You can
also place these operators after the operand, and in this case, the operand is incremented or decre-
mented after all the operations in the expression are done.

Table 2-10. Arithmetic Operators

Operator Action

- Subtraction or unary minus

+ Addition

* Multiplication

/ Division

% Modulus

-- Decrement

++ Increment

Fraser_640-4C02.fm Page 61 Thursday, November 17, 2005 4:56 PM

62 C H A P T E R 2 ■ C + + / C L I B A S I C S

When an expression contains more than one arithmetic operator, the arithmetic operators will
be evaluated according to the precedence shown in Table 2-11. If two operators of the same prece-
dence occur in the expression, then they are evaluated from left to right.

Comparisons and Logical Operators
Comparison operators are used to compare two expressions and then generate a Boolean value
(true/false) based on the result of the comparison. There are six comparison operators, as shown in
Table 2-12.

■Caution Be very careful when using the assignment operator = and the equal to operator ==. If you mistakenly
use = for the comparison operator, the left value is overwritten by the right, and if the left value is nonzero, then the
comparison will have a true result. This is unlikely to be what you want.

Logical operators are similar to comparison operators except that they compare Boolean values
instead of expressions. The three logical operators are shown in Table 2-13.

Table 2-11. Arithmetic Precedence

Precedence Operators

Highest -- ++ - (unary minus)

* / %

Lowest - +

Table 2-12. Comparison Operators

Operator Meaning

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

== Equal to

!= Not equal to

Table 2-13. Logical Operators

Operator Meaning

! NOT: If the operand was true, then false is evaluated or vice versa.

&& AND: If both operands are true, then evaluate to true; otherwise, evaluate to false.

|| OR: If either or both operands are true, then evaluate to true; otherwise, evaluate to
false.

Fraser_640-4C02.fm Page 62 Thursday, November 17, 2005 4:56 PM

C H A P T E R 2 ■ C + + / C L I B A S I C S 63

Often, you will find both a comparison and a logical operator in the same comparison state-
ment. For grins and giggles, figure out what this means:

 a < b && c >= d || !e

When a statement contains more than one comparison or logical operator, then they will be
evaluated according to the precedence shown in Table 2-14. If two operators of the same precedence
occur in the expression, then they are evaluated from left to right.

Bitwise Operators
The bitwise operators are used to manipulate the bits of an integer type value. There are six bitwise
operators, as shown in Table 2-15.

The bitwise AND operator compares the bit pattern of its two operands. If both the bits at the
same offset in the bit pattern are 1s, then the resulting bit pattern will become a 1; otherwise, it will
become a 0. For example:

0101 & 0011 becomes 0001

The bitwise OR operator compares the bit pattern of its two operands. If either or both the bits
at the same offset in the bit pattern are 1s, then the resulting bit pattern will become a 1; otherwise,
it will become a 0. For example:

0101 & 0011 becomes 0111

Table 2-14. Comparison and Logical Operator Precedence

Highest !

> >= < <=

== !=

&&

Lowest ||

Table 2-15. Bitwise Operators

Operator Action

& Bitwise AND

| Bitwise OR

^ Bitwise XOR

~ Ones complement

>> Right shift

<< Left shift

Fraser_640-4C02.fm Page 63 Thursday, November 17, 2005 4:56 PM

cafac74dd2d083cbec0906b66fcd56b1

64 C H A P T E R 2 ■ C + + / C L I B A S I C S

The bitwise XOR operator compares the bit pattern of its two operands. If either, but not both,
of the bits at the same offset in the bit pattern is a 1, then the resulting bit pattern will become a 1;
otherwise, it will become a 0. For example:

0101 & 0011 becomes 0110

The ones complement operator simply flips the bits. If it was a 1, then it becomes a 0, and vice
versa:

0101 becomes 1010

The shift operators shift all the bits of the operand per the number of bits specified right (>>) or
left (<<). For example:

Right shift - 00101100 >> 2 becomes 00001011
Left shift - 00101100 << 2 becomes 10110000

■Tip Right-shifting by 1 bit is equivalent to dividing by 2, and left-shifting by 1 bit is equivalent to multiplying by 2.
Both shifts are far faster than either dividing or multiplying on a computer. So, if you need a little more speed in your
application, and you are working with integer types and dividing or multiplying by factors of 2, you might want to
consider shifting instead.

When a statement contains more than one bitwise operator, then the bitwise operators will be
evaluated according to the precedence shown in Table 2-16. If two operators of the same precedence
occur in the expression, then they are evaluated from left to right.

Conditional Operator
The conditional operator is the only ternary operator available to C++/CLI programmers. A ternary
operator uses three expressions.

The conditional operator takes the first expression and sees if it is true (nonzero) or false (zero).
If it is true, then the second expression is executed. If it is false, then the third expression is executed.
A conditional operator looks like this:

expression1 ? expression2 : expression3;
a < b ? "a is less than b" : "a is greater than or equal to b";

Table 2-16. Bitwise Operator Precedence

Highest ~

>> <<

&

^

Lowest |

Fraser_640-4C02.fm Page 64 Thursday, November 17, 2005 4:56 PM

C H A P T E R 2 ■ C + + / C L I B A S I C S 65

Comma Operator
The comma operator causes a sequence of expressions to act as a single expression, with the last
expression ultimately becoming that to which the total expression evaluates. You can place a series
of comma-delimited expressions anywhere you can place a normal expression.

You will probably see the comma operator most frequently used in the initialization and incre-
ment sections of a for loop, but there is nothing stopping a programmer from using it elsewhere.
I discuss for loops later in this chapter.

The following example, though completely contrived, shows the comma operator in action.
First, b is incremented, then a is assigned the value of multiplying post incremented a and b, and
finally, c is assigned the value of a modulus b:

int a = 2;
int b = 3;
int c = (b++, a = b++ * a++, a % b);

The values of the variables after this code snippet finishes are

a = 9
b = 5
c = 4

Assignment Operators
There are 11 assignment operators available to C++/CLI, as shown in Table 2-17.

The operator used to assign one value to another is simply the equal sign (=). The expression on
the right side of the equal sign is calculated and then assigned to the value on the left side of the
equal sign.

Table 2-17. Assignment Operators

Operator Action

= Assign

+= Add then assign

-= Subtract then assign

*= Multiply then assign

/= Divide then assign

%= Modulus then assign

>>= Shift right then assign

<<= Shift left then assign

&= AND then assign

^= XOR then assign

|= OR then assign

Fraser_640-4C02.fm Page 65 Thursday, November 17, 2005 4:56 PM

66 C H A P T E R 2 ■ C + + / C L I B A S I C S

You have seen assignment used several times already in this chapter, but here are a few
more examples:

String ^str = "This is a managed string.";
int num1 = 0x1234;
int num2 = 4321;
num1 = num2;

Assigning a common value to several different variables can be accomplished by stringing
together several assignments. For example, to assign 42 to the variables a, b, and c, you would write

a = b = c = 42;

It is a common practice to take a value, do some operation it, and then place the results back
into the original operator. For example:

a = a + 5;
b = b * 2;

So common is this that C++/CLI provides a set of special assignments to handle it:

a += 5;
b *= 2;

Address of, Reference, and Indirection Operators
Three operators are available to C++/CLI programmers for handling handles and pointers, as shown
in Table 2-18.

The address of operator returns the address of the object after it. For example, if x were located
at address 1024, then to place the address (1024) in variable y, you would write this:

y = &x; // place the address of x into y

■Unsafe The address of operator, by its very nature of being a manipulator of pointers, has to be and is an
unsafe operation.

The reference operator was introduced, by necessity, in C++/CLI as a consequence of a syntac-
tical lack of a safe operator to reference handles. Introduced for the same reason as the handle, the
reference operator provides a means to reference only managed data objects (objects on the managed
heap). Thus, it provides an obvious syntactical difference between managed and unsafe code (which
use the address of operator). The following code shows how to create a reference of an int value type:

Table 2-18. Address of, Reference, and Indirection Operators

Operator Action

& (unary) Address of

% (unary) Reference

* (unary) Indirection

Fraser_640-4C02.fm Page 66 Thursday, November 17, 2005 4:56 PM

C H A P T E R 2 ■ C + + / C L I B A S I C S 67

int intVT = 10;
int %intRef = intVT; // Assign int value type to a reference.
Console::WriteLine(intRef); // Print out reference. This should contain 10.
intRef = 20; // Change value of reference.
Console::WriteLine(intVT); // Print out value type. This should contain 20.

The indirection operator has been augmented in C++/CLI from Managed Extensions for C++
and now gets the value from the address or a handle stored within itself. On the one hand, if
y contained the address 1024, then to place the value of 50 at the address 1024, you would write

*y = 50; // place the value of 50 at the address y points to

On the other hand, if y were a handle to an int, then to place the value of 50 on that handle, you
would write:

*y = 50; // place the value of 50 at the int handle y

Hmm . . . Looks kind of familiar, don’t you think?
Listing 2-14 is a program that shows the reference and indirection operators in action. I’ll hold

off demonstrating the address of operator until I discuss unsafe code in detail in Chapters 20 and 21.

Listing 2-14. Reference and Indirection Operators in Action

using namespace System;

ref class RefClass
{
public:
 int X;

 RefClass(int x)
 {
 X = x;
 }
};

// Reference and Indirection in Action
void main()
{
 RefClass rc(10);
 RefClass ^o;

 o = %rc; // place a reference of rc in the handle o
 Console::WriteLine(o->X); // print out object. This should contain 10.

 rc.X = 20; // place 50 at the address y points to
 Console::WriteLine(o->X); // print out object. This should contain 20.

 int %i = rc.X; // assign rc.X to a reference

 i = 30; // change value of reference
 Console::WriteLine(o->X); // print out object. This should contain 30.

 Console::WriteLine();

Fraser_640-4C02.fm Page 67 Thursday, November 17, 2005 4:56 PM

68 C H A P T E R 2 ■ C + + / C L I B A S I C S

 int ^y = gcnew int(100); // create a handle to an int
 Console::WriteLine(y); // print out int.

 *y = 110; // Assign new value to dereferenced int
 Console::WriteLine(*y); // print out dereferenced int.
}

Figure 2-15 shows the results of this little program.

Figure 2-15. Results of ReferenceIndirect.exe

■Unsafe Code Directly modifying a dereferenced value is unverifiable and therefore is an unsafe operation.
Thus, the preceding example cannot be compiled using the /clr:safe option.

Operator Precedence
I have shown operator precedence for each operator in its own section, but what if operators from
different sections occur in the same statement? Table 2-19 shows the precedence of all the operators.

Table 2-19. Operator Precedence

Precedence Operators

Highest () [] ::

! ~ ++ -- - (unary) * (unary) % (unary) & (unary)

* / %

+ -

<< >>

< <= > >=

== !=

&

^

|

&&

Fraser_640-4C02.fm Page 68 Thursday, November 17, 2005 4:56 PM

C H A P T E R 2 ■ C + + / C L I B A S I C S 69

Flow Control Constructs
Normally in a C++/CLI program, statements are executed sequentially from beginning to end. There
will be times when a program is going to execute a portion of code only if certain conditions are true.
To handle conditional execution of code, C++/CLI provides two flow control constructs: if and switch.

if Statement
The if statement enables the conditional execution of code based on the evaluated value of some
condition. An if statement in its simplest form is as follows:

if (condition)
{
 statements;
}

The condition can be any expression, but to make more sense it should evaluate to a Boolean
value of either true or false. It is perfectly valid to evaluate to a zero (false) or nonzero (true) condition, as
well.

Obviously, it is possible to execute a block of code when a condition is not true, as shown here:

if (! condition)
{
 statements;
}

What if you want a block of code to execute when a condition is true and some other block of
code to execute when the condition is false? You could write two if statements, one for the true
condition and one for the false condition, or you could use the if-else statement, which looks like this:

if (condition)
{
 statements;
}
else // ! condition (the comment is optional)
{
 statements;
}

There is one more construct for if statements. What if you want different blocks of code to be
executed based on mutually exclusive conditions? You could write a stream of if conditions, one for
each condition, but then each condition would have to be checked, which would be a waste of time.
Instead, you should use the if-else–if-else construct, also called the nested if construct, which
exits the if construct once it matches a condition. The nested if construct looks like this:

||

?:

Lowest = += -= *= /= %= >>= <<= &= ^= |=

Table 2-19. Operator Precedence

Precedence Operators

Fraser_640-4C02.fm Page 69 Thursday, November 17, 2005 4:56 PM

70 C H A P T E R 2 ■ C + + / C L I B A S I C S

if (condition1) // first mutually exclusive condition
{
 statements;
}
else if (condition2) // second mutually exclusive condition
{
 statements;
}
else // optional catch the rest condition
{
 statements;
}

This example will display a different string depending on the value of the animal variable:

enum Creature : int {Dog, Cat, Eagle};
Creature animal;

// assign a value to animal
animal = Cat;

if (animal == Dog)
{
 Console::WriteLine ("The animal is a dog");
}
else if (animal == Cat)
{
 Console::WriteLine ("The animal is a cat");
}
else // animal is not a dog or cat
{
 Console::WriteLine ("Maybe the animal is a bird");
}

switch Statement
The switch statement is a multiple-choice flow-control construct. It functions in a very similar
manner to the nested if construct, except that it only works for integer value types or expressions
that evaluate to integers. The switch statement works like this: The switch expression is checked
against each case constant. If a case constant matches the expression, then its associated statements
are executed. If no case constant matches the expression, then the default statements are executed.
Finally, the switch statement is exited.

A switch statement looks like this:

switch (expression)
{
 case constant1:
 statements1;
 break;
 case constant2:
 statements2;
 break;
 default:
 statements3;
}

Fraser_640-4C02.fm Page 70 Thursday, November 17, 2005 4:56 PM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 2 ■ C + + / C L I B A S I C S 71

You can write the preceding nested if statement as a switch statement, like this:

switch (animal)
{
 case Dog:
 Console::WriteLine ("The animal is a dog");
 break;
 case Cat:
 Console::WriteLine ("The animal is a cat");
 break;
 default:
 Console::WriteLine ("Maybe the animal is a bird");
}

The first thing you may notice is that each case ends with a break statement. This break state-
ment tells the switch that it is finished. If you fail to place a break statement at the end of a case, then
the following case will also be executed. This may sound like a mistake, but there are times when this
falling through to the next case is exactly what you will want. For example, this case statement
executes the same code for lower- and uppercase characters:

switch (keypressed)
{
 case 'A':
 case 'a':
 Console::WriteLine ("Pressed the A key");
 break;
 case 'B':
 case 'b':
 Console::WriteLine ("Pressed the B key");
 break;
 default:
 Console::WriteLine ("Pressed some other key");
}

■Caution A missing break statement is a very common and difficult error to debug, because often the error
caused by it does not occur until later in the program.

Looping Constructs
So far, you have seen that C++/CLI programs are statements that are executed sequentially from
beginning to end, except when flow control dictates otherwise. Obviously, there are scenarios in
which you would like to be able to repeat a single statement or a block of statements a certain number
of times, until a certain condition occurs or for all elements of a collection. C++/CLI provides four
looping constructs for this: while, do while, for, and for each.

while Loop
The while loop is the simplest looping construct provided by C++/CLI. It simply repeats a statement
or a block of statements while the condition is true (some people prefer to say until the condition is
false). The basic format of a while loop is as follows:

Fraser_640-4C02.fm Page 71 Thursday, November 17, 2005 4:56 PM

72 C H A P T E R 2 ■ C + + / C L I B A S I C S

while (condition)
{
 statements;
}

The condition is checked at the start of each iteration of the loop, including the first. Thus, if the
condition evaluates at the start to false, then the statements never are executed. The while loop
condition expression is the same as an if statement condition.

In its simplest form, the while loop repeats a statement or a block of statements forever:

while (true)
{
 statements;
}

I cover how to break out of this type of loop a little later.
More commonly, you will want the while loop condition to be evaluated. Here is an example of

how to display all the numbers from 1 to 6 inclusive:

int i = 0;
while (i < 6)
{
 i++;
 Console::WriteLine(i);
}

do-while Loop
There are scenarios in which you will want or need the loop to always execute at least once. You
could do this in one of two ways:

• Duplicate the statement or block of statements before the while loop.

• Use the do while loop.

Obviously, the do while loop is the better of the two solutions.
Like the while loop, the do while loop loops through a statement or a block of statements until

a condition becomes false. Where the do while differs is that it always executes the body of the loop
at least once. The basic format of a do while loop is as follows:

do {
 statements;
} while (condition);

As you can see, the condition is checked at the end of every iteration of the loop. Therefore, the
body is guaranteed to execute at least once. The condition is just like the while statement and the if
statement.

Like the while statement, the most basic form of the do while loop loops forever, but because
this format has no benefit over the while statement, it is seldom used. Here is the same example
previously used for the while statement. It displays the numbers 1 to 6 inclusive.

int i = 0;
do {
 i++;
 Console::WriteLine(i);
} while (i < 6);

Fraser_640-4C02.fm Page 72 Thursday, November 17, 2005 4:56 PM

C H A P T E R 2 ■ C + + / C L I B A S I C S 73

■Caution Do not forget the semicolon (;) after the closing bracket of the condition because if you do, the compiler
will generate a few angry messages and not compile successfully.

for Loop
The for loop is the most complex construct for handling looping and can be used for almost any
kind of loop. In its simplest form, the for loop, like the other two loop constructs, simply repeats a
statement or a block of statements forever:

for (; ;)
{
 statements;
}

Normally, you will want control of how your program will loop, and that’s what the for loop
excels at. With the for loop, you can not only check to see if a condition is met as you do in the while
loop, but you can also initialize and increment variables on which to base the condition. The basic
format for a for loop is this:

for (initialization; condition; increment)
{
 statements;
}

When the code starts executing a for loop (only the first time), the initialization is executed. The
initialization is an expression that initializes variables that will be used in the loop. It is also possible
to actually declare and initialize variables that will only exist while they are within the loop construct.

The condition is checked at every iteration through the loop, even the first. This makes it similar
to the while loop. In fact, if you don’t include the initialization and increment, the for loop acts in an
identical fashion to the while loop. You can use almost any type of condition statement, so long as it
evaluates to false or zero when you want to exit the loop.

The increment executes at the end of each iteration of the for loop and just before the condition
is checked. Usually the code increments (or decrements) the variables that were initialized in the
initialization, but this is not a requirement.

Let’s look at a simple for loop in action. This for loop creates a counter i, which will iterate so
long as it remains less than 6 or, in other words, because you start iterating at zero, this for loop will
repeat six times.

for (int i = 0; i < 6; i++)
{
 Console::WriteLine (i);
}

The output of this for loop is as follows:

0
1
2
3
4
5

Fraser_640-4C02.fm Page 73 Thursday, November 17, 2005 4:56 PM

74 C H A P T E R 2 ■ C + + / C L I B A S I C S

One thing to note is that the initialization variable is accessible within the for loop, so it is
possible to alter it while the loop is executing. For example, this for loop, though identical to the
previous example, will only iterate three times:

for (int i = 0; i < 6; i++)
{
 i++;
 Console::WriteLine (i);
}

The output of this for loop is as follows:

1
3
5

for loops are not restricted to integer type. It is possible to use floating-point or even more
advanced constructs. Though this might not mean much to some of you, for loops are a handy way
of iterating through link lists. (I know it is a little advanced at this point in the book, but I am throwing it
in here to show how powerful the for loop can be.) For those of you who want to know what this
does, it loops through the elements of a link list to the maximum of ten link list elements:

for (int i=0, list *cur=headptr; i<10 && cur->next != 0; i++, cur=cur->next)
{
 statements;
}

for each Loop
Although the for each construct has been in Visual Basic for a long time and in C# since its inception,
the for each loop is just now making its appearance in C++/CLI. For now, the for each is strictly
a C++/CLI construct, as it allows the iteration through all items in a collection deriving from the
IEnumerable interface. I will cover in detail collections and the IEnumerable interface in Chapter 7,
so at present I will stick to the collection that we already have covered, the array.

You might think that because of the specific nature of this construct it won’t be very helpful.
Well, you would be wrong—the .NET Framework is filled with collections, and most developers use
many different types of collections (not just arrays) within their code. Thanks to the for each construct
your code will be considerably simplified.

The basic syntax of the for each loop is

for each (<data declaration> in collection)
{
}

Therefore, if you have an array named numbers, this is how you iterate through it:

array<int>^ numbers = gcnew array<int> { 1, 2, 3, 4 };
for each (int i in numbers)
{
 Console::WriteLine(i);
}

Fraser_640-4C02.fm Page 74 Thursday, November 17, 2005 4:56 PM

C H A P T E R 2 ■ C + + / C L I B A S I C S 75

There is one gotcha, however. With the for each loop, you can’t modify the collection itself
while iterating through. This doesn’t mean you can’t change the contents of the elements of the
collection. It means you can’t add or remove elements to or from the collection. This is not an issue
for arrays, given that this is not allowed anyway, but for many other collection types it may be a
problem. The worst thing is if the compiler doesn't catch it. It is the CLR that lets you know about it
by throwing an exception. I’ll cover exceptions in Chapter 4; I show you this gotcha in action when
I cover collections in Chapter 7.

Skipping Loop Iterations
Even though you have set up a loop to iterate through multiple iterations of a block of code, there
may be times that some of the iteration doesn’t need to be executed. In C++/CLI, you can do this
with a continue statement.

You usually find the continue statement in some type of condition statement. When the
continue statement is executed, the program jumps immediately to the next iteration. In the case of
the while and do while loops, the condition is checked, and the loop continues or exits depending
on the result of the condition. For a for each loop the next element in the collection is retrieved and
then continues, unless there are no more elements, and then the loop exits. If continue is used in a
for loop, the increment executes first, and then the condition executes.

Here is a simple and quite contrived example that will print out all the prime numbers under 30:

for (Int32 i = 1; i < 30; i++)
{
 if (i % 2 == 0 && i / 2 > 1)
 continue;
 else if (i % 3 == 0 && i / 3 > 1)
 continue;
 else if (i % 5 == 0 && i / 5 > 1)
 continue;
 else if (i % 7 == 0 && i / 7 > 1)
 continue;
 Console::WriteLine(i);
}

Breaking Out of a Loop
Sometimes you need to leave a loop early, maybe because there is an error condition and there is no
point in continuing, or in the case of the loops that will loop indefinitely, you simply need a way to
exit the loop. In C++/CLI, you do this with a break statement. The break statement in a loop works
the same way as the switch statement you saw earlier.

There is not much to the break statement. When it is executed, the loop is terminated, and the
flow of the program continues after the loop.

Though this is not really a very good example, the following sample shows how you could
implement do while type flow in a for loop. This loop breaks when it gets to 10:

for (int i = 0; ; i++)
{
 Console::WriteLine(i);

 if (i >= 10)
 break;
}

Fraser_640-4C02.fm Page 75 Thursday, November 17, 2005 4:56 PM

76 C H A P T E R 2 ■ C + + / C L I B A S I C S

Functions
At the core of all C++/CLI programs is the function. It is the source of all activity within a program.
Functions also enable programmers to break their programs into manageable chunks. You have
already been using a function called main(). Now let’s see how you can go about creating a few of
your own.

The general format of a function looks like this:

return-type function-name (parameter-list)
{
 statements-of-the-function;
}

The return-type of the function is the value type, handle, pointer, or reference that is returned
by the function when it finishes. The return type can be any value type, reference, handle, or pointer,
even ones that are user defined. If no return type is specified for the function, then C++/CLI defaults
the return value to int. If the function does not return a value, then the return value should be set to
the keyword void.

The function-name is obviously the name of the function. The rules of naming a function are the
same as those for naming a variable.

The parameter-list is a comma-separated list of variable declarations that define the variable,
which will be passed to the function when it starts executing. Parameter variables can be any value
types, references, handles, or pointers, even ones that are user defined.

Passing Arguments to a Function
There are two different ways of passing arguments to a function: by value and by reference. Syntactically,
there is little difference between the two. In fact, the only difference is that passing by reference has
an additional reference operator (percent [%]) placed before the value name:

void example (int ByValue, int %ByReference)
{
}

The big difference is in how the actual values are passed. When passing by value, a copy of the
variable is passed to the function. Because the argument is a copy, the function can’t change the
original passed argument value. For example, this function takes the value of parameter a and adds
5 to it:

void example (int a)
{
 a = a + 5;
}

When the function is called,

int a = 5;
example(a);

the value of a will still be 5.
What if you want to actually update the value of the parameter passed so that it reflects any

changes made to it within the function? You have two ways to handle this. The first is to pass a
handle by value. Because you are passing a handle to the value, and not the actual value, any
changes that you make to the value within the function will be reflected outside the function. The
problem of passing by handle is that now the syntax of the function is more complicated because
you have to worry about dereferencing the handles.

Fraser_640-4C02.fm Page 76 Thursday, November 17, 2005 4:56 PM

C H A P T E R 2 ■ C + + / C L I B A S I C S 77

void example (int ^a)
{
 *a = *a + 5;
}

When the function is called,

int ^a = 5;
example(a);

the value of a will be 10.
The second approach is to pass the arguments by reference. When passing arguments by refer-

ence, the argument value is not copied; instead, the function is accessing an alias of the argument or,
in other words, the function is accessing the argument directly.

void example (int %a)
{
 a = a + 5;
}

When the function is called,

int a = 5;
int b = example(a);

the value of a will be 10.
There is a pro and a con to using references. The pro is that it is faster to pass arguments by

reference, as there is no copy step involved. The con is that, unlike using handlers, other than %,
there is no difference between passing by value or reference. There is a very real possibility that
changes can happen to argument variables within a function without the programmer knowing.

The speed benefit is something some programmers don’t want to give up, but they still want
to feel secure that calling a function will not change argument values. To solve this problem, it is
possible to pass const reference values. When these are implemented, the compiler makes sure that
nothing within the function will cause the value of the argument to change:

void example (const int %a)
{
// a = a + 5; // This line will cause a compiler error because
 // we are trying to change the const a
 int b = a + 5;
}

When the function is called,

int a = 5;
example(a);

the value of a will still be 5.

Returning Values from a Function
Returning a value from a function is a two-step process. First, specify the type of value the function
will return, and second, using the return statement, pass a return value of that type:

double example()
{
 double a = 8.05;
 // do some stuff
 return a;
}

Fraser_640-4C02.fm Page 77 Thursday, November 17, 2005 4:56 PM

cafac74dd2d083cbec0906b66fcd56b1

78 C H A P T E R 2 ■ C + + / C L I B A S I C S

Returning Handles
You need to take care when you return a handle from a function.

■Caution Never return a handle to a variable of local scope to a function, because it will not be a valid handle
on exiting the function.

Never do this:

ref class RefClass {};

RefClass^ ERRORexample()
{
 RefClass a;
 // do some stuff;
 return %a; // This variable will disappear when the function ends, so
 // reference will be invalid
}

Instead, you should return the handle a that was passed to the function or the handle b that was
created by the gcnew operator in the function:

ref class RefClass
{
public:
 int X;
 RefClass(int x) : X(x) {}
};

RefClass^ Okexample(RefClass^ a)
{
 RefClass^ b = gcnew RefClass(8);
 // do some stuff;
 if (a->X > b->X)
 return a;
 else
 return b;
}

void main()
{
 RefClass ^r = gcnew RefClass(7);
 RefClass ^a = Okexample(r);
}

In traditional C++, the variable b in the preceding example would be a classic location for a
memory leak, because the developer would have to remember to call the delete statement on the
returned value b. This is not the case in C++/CLI, because handles are garbage collected automati-
cally when no longer used; thus delete need not be called.

Returning References
You also need to take care when you return a reference from a function.

Fraser_640-4C02.fm Page 78 Thursday, November 17, 2005 4:56 PM

C H A P T E R 2 ■ C + + / C L I B A S I C S 79

■Caution Never return a reference to a variable of local scope to a function, because it will not be a valid reference
on exiting the function.

Never do this:

ref class RefClass {};

RefClass% ERRORexample()
{
 RefClass a;
 // do some stuff;
 return a; // This variable will disappear when the function ends, so
 // reference will be invalid
}

Instead, you should return a reference that was passed to the function, or a pointer or reference
to a variable that was created by the gcnew operator within the function:

ref class RefClass
{
public:
 int X;
 RefClass(int x) : X(x) {}
};

RefClass% Okexample(RefClass %a)
{
 RefClass^ b = gcnew RefClass(8);
 // do some stuff;
 if (a.X > b->X)
 return a;
 else
 return *b;
}

void main()
{
 RefClass r(9);
 RefClass %a = Okexample(r);
}

Something worth noting in this function is the creation of a reference using the gcnew operator.
Again, with traditional C++ you would have to delete the reference. Fortunately, because handles
get garbage collected in C++/CLI, there is no need for the delete statement and no memory leak occurs.

Prototypes
You can’t use a function until it has been defined. Okay, there is nothing stopping you from placing
function declarations in every *.cpp file where it is used, but then you would have a lot of redundant
code.

The correct approach is to create prototypes of your functions and place them within an
include (.h) file. (I cover include files in Chapter 4.) This way, the compiler will have the definition

Fraser_640-4C02.fm Page 79 Thursday, November 17, 2005 4:56 PM

80 C H A P T E R 2 ■ C + + / C L I B A S I C S

it needs, and the function implementation will be in only one place. A prototype is simply a function
without its body followed by a semicolon:

int example (const int %a);

Function Overloading
In the dark ages of C, it was a common practice to have many functions with very similar names
doing the same functionality for different data types. For example, you would see functions such as
PrintInt(int x) to print an integer, PrintChar(char c) to print a character, PrintString(char *s)
to print an array of characters, and so on. Having many names doing the same thing became quite a
pain. Then, along came C++, and now C++/CLI, with an elegant solution to this annoyance: function
overloading.

Function overloading is simply C++/CLI’s way of having two or more methods with exactly the
same name but with a different number or type of parameter. Usually, the overloaded functions provide
the same functionality but use different data types. Sometimes the overloaded functions provide a
more customized functionality as a result of having more parameters to more accurately solve the
problem. But, in truth, the two overloaded functions could do completely different things. This,
however, would probably be an unwise design decision, as most developers would expect similar
functionality from functions using the same name.

When a function overloaded call takes place, the version of the method to run is determined at
compile time by matching the calling function’s signature with those of the overloaded function.
A function signature is simply a combination of the function name, number of parameters, and
types of parameters. For function overloading, the return type is not significant when it comes to
determining the correct method. In fact, it is not possible to overload functions by changing only the
return type. If you do this, the compiler will give a bunch of errors, but only the one indicating that a
function is duplicated is relevant.

There is nothing special about coding overloaded functions. For example, here is one function
overloaded three times for the supersecret Test function:

int Test () { /* do stuff */ }
int Test (int x) { /* do stuff */ }
int Test (int x, int y, double z) { /* do stuff */ }

Calling an overloaded function is nothing special either. Simply call the function you want with
the correct parameters. For example, here is some code to call the third supersecret Test function:

Test (0, 1, 2.0);

The only thing that C++/CLI programmers need to concern themselves with that traditional
C++ programmers do not is that fundamental types and their corresponding runtime value types
produce the same signature. Thus, these two functions are the same and will produce an error:

 Int32 Test (Int32 x) { /* do stuff */ }
 int Test (int x) { /* do stuff */ } // Error Duplicate definition of Test

Passing Arguments to the main() Function
So far in every example in this book, the main() function has had no arguments. If you have worked
with C++ before, you know that it is possible to retrieve the parameters passed to a program from the
command line via the main() function’s arguments. (If you haven’t, well, now you do.)

C++/CLI has made a rather large change to the main() function, especially if you come from the
traditional C++ world or even from the Managed Extensions for C++ world. You now have a choice
of main() functions.

Fraser_640-4C02.fm Page 80 Thursday, November 17, 2005 4:56 PM

C H A P T E R 2 ■ C + + / C L I B A S I C S 81

int main (int argc, char *argv[])
The first choice is the standard main() function, which counts all the parameters passed to it, including
the program that is being run, and places the count in the first argument, traditionally called argc.
Next, it takes all the parameters and places them in an unmanaged pointer to char array, with each
parameter being a separate element of the array. Finally, it passes a pointer to this array as the
second argument, usually called argv.

■Unsafe Code Passing arguments to this main() function is unsafe code because it uses pointers to pass
the values.

Yep, I said pointer. Alarms should have gone off in your head—yes, passing arguments to the
main() function using this choice is unsafe code, as passing arguments in this fashion actually
compiles to native code and not MSIL code, so the argv argument is not garbage collected. Fortu-
nately, the cleanup of argv is handled automatically (so, you could say that it is sort of garbage collected).
Unfortunately, because it is not garbage collected, it adds a major wrinkle when compiling. You
can’t use the option /clr:safe. Instead, you can use /clr or /clr:pure.

Listing 2-15 is a little program that reads in all the parameters passed to it and then writes them out.

Listing 2-15. Parsing a Command Line the Traditional Method

using namespace System;

// Passing parameters to main() traditional method
int main (int argc, char *argv[])
{
 Console::WriteLine (argc.ToString());
 for (int i = 0; i < argc; i++)
 {
 Console::WriteLine (gcnew String(argv[i]));
 }
 return 0;
}

Figure 2-16 shows the results of this little program when passed the parameter “This is a test
this is only a test”.

Figure 2-16. Results of MainArgsTrad.exe

Fraser_640-4C02.fm Page 81 Thursday, November 17, 2005 4:56 PM

82 C H A P T E R 2 ■ C + + / C L I B A S I C S

int main (array<System::String ^> ^args)
The second choice more resembles the static main() method of C#. It simply takes all the parameters
and places them on a managed array.

One advantage of this type of main() function is that it doesn’t need to have the number of
elements being passed, because the managed array provides the number of the argument in a property
called Length. By the way, if you process the args array using the for each method, you won’t even
need to know how many arguments are being passed.

Another major advantage of this choice of main() function is that it is safe and can be compiled
using the /clr:safe option.

■Caution The first element of the args array is not the name program being run as you would expect in the
traditional main() function. Instead, it is the first parameter passed to the program.

Listing 2-16 is a little program that reads in all the parameters passed to it and then writes
them out.

Listing 2-16. Parsing a Command Line the New Method

using namespace System;

// Passing parameters to main() new method
int main(array<System::String ^> ^args)
{
 Console::WriteLine (args->Length);

 for each (String^ s in args)
 {
 Console::WriteLine(s);
 }
 return 0;
}

Figure 2-17 shows the results of this little program when passed the parameter “This is a test this
is only a test”. Notice the number of arguments passed is one less than the traditional main() function, as
the program name is not passed.

Figure 2-17. Results of MainArgsNew.exe

Fraser_640-4C02.fm Page 82 Thursday, November 17, 2005 4:56 PM

C H A P T E R 2 ■ C + + / C L I B A S I C S 83

Summary
I covered a lot of ground in this chapter, starting with variables and C++/CLI’s fundamental types.
Next, you learned about literals and operators. Then you examined two basic C++/CLI constructs:
flow control and looping. You finished by exploring functions.

For the traditional C++ programmer, much of this chapter was not new. The areas that you
should pay close attention to are .NET Framework class library fundamental data types, Strings,
value types, arrays, all the literals (in particular, string literals), and returning pointers and references
from functions.

In the next chapter, you will continue to expand on your knowledge of the basics. This time, you
will focus on the object-oriented aspects of C++/CLI.

Fraser_640-4C02.fm Page 83 Thursday, November 17, 2005 4:56 PM

Fraser_640-4C02.fm Page 84 Thursday, November 17, 2005 4:56 PM

cafac74dd2d083cbec0906b66fcd56b1

85

■ ■ ■

C H A P T E R 3

Object-Oriented C++/CLI

In the previous chapter, I covered in detail the basics of C++/CLI, focusing on programming strictly
in a procedural style. This chapter explores the real strength of C++/CLI: as an object-oriented
language.

The chapter starts with a review of object-oriented programming (OOP) in general. You will
then explore C++/CLI’s OOP capabilities, focusing primarily on ref classes, which are the corner-
stones of C++/CLI OOP. You will do this by breaking ref classes down into their parts and examining
each part in detail. Finally, you will learn about interfaces.

■Caution Don’t skip this chapter, even if you know C++ very well, because several things are different between
traditional C++ and C++/CLI. True, some of the changes may not be significant, but recognizing and understanding
these changes now may make your life easier in the future.

OOP is more a way of thinking than a programming technique. For those making the transition
from procedural programming, you must understand that OOP will involve a paradigm shift for you.
But, once you realize this and make the shift, you will wonder why you programmed any other way.

OOP is just an abstraction taken from everyday life and applied to software development. The
world is made up of objects. In front of you is a book. It is an object. You are sitting on a chair or a
couch, or you might be lying on a bed—all objects. I could go on, but I’m sure you get the point.
Almost every aspect of our lives revolves around interacting with, fixing, and improving objects.
It should be second nature to do the same thing with software development.

Object-Oriented Concepts
All objects support three specific concepts: encapsulation, inheritance, and polymorphism. Think
about the objects around you—no, scratch that; think about yourself. You are an object: You are
made up of arms, legs, a torso, and a head, but how they work does not matter to you—this is encap-
sulation. You are a mammal, human, and male or female—this is inheritance. When greeted, you
respond with “Good day,” “Bonjour,” “Guten Tag,” or “Buon giorno”—this is polymorphism.

As you shall see shortly, you can apply the object paradigm to software development as well.
C++/CLI does it by using software objects called ref classes and ref structs. But before I get into
software objects, let’s examine the concepts of an object more generically.

Encapsulation
All objects are made up of a combination of different things or objects. Many of these things are not
of any concern to the other objects that interact with them. Going back to you as an example of an

Fraser_640-4C03.fm Page 85 Wednesday, November 16, 2005 1:56 PM

86 C H A P T E R 3 ■ O B JE C T - O R I E N T E D C + + / C L I

object, you are made up of things such as blood, muscles, and bone, but most objects that interact
with you don’t care about that level of things. Most objects that interact with you only care that you
have hands, a mouth, ears, and other features at this level of abstraction.

Encapsulation basically means hiding the parts of an object that do things internally from other
objects that interact with it. As you saw in the previous example, the internal workings of hands, a
mouth, and ears are irrelevant to other objects that interact with you.

Encapsulation is generally used to simplify the model that other objects have to interact with. It
allows other objects to only be concerned with using the right interface and passing the correct input
to get the required response. For example, a car is a very complex object. But, to me, a car is simple:
A steering wheel, an accelerator, and a brake represent the interface; and turning the steering wheel,
stepping on the accelerator, and stepping on the brake represent input.

Encapsulation also allows an object to be fixed, updated, or replaced without having to change
the other objects interacting with it. When I trade in my Mustang LX for a Mustang GT, I still only
have to worry about turning the steering wheel, stepping on the accelerator, and stepping on the brake.

The most important thing about encapsulation is that because portions of the object are protected
from external access, it is possible to maintain the internal integrity of the object. This is because it
is possible to allow only indirect access, or no access at all, to private features of the object.

Inheritance
Inheritance is hardly a new concept. We all inherit many traits (good and bad) from both of our
parents. We also inherit many traits from being a mammal, such as being born, being nursed, having
four limbs, and so on. Being human, we inherit the traits of opposable thumbs, upright stature,
capacity for language, and so forth. I’m sure you get the idea. Other objects also inherit from other
more generic objects.

You can think of inheritance as a tree of objects starting with the most generic traits and expanding
to the most specific. Each level of the tree expands on the definition of the previous level, until finally
the object is fully defined. Inheritance allows for the reuse of previously defined objects. For example,
when you say that a Mustang is a car, you know that it has four wheels and an engine. In this scenario,
the base object definition came for free—you didn’t have to define it again.

Notice, though, that a Mustang is always a car, but a car need not be a Mustang. The car could
be a Ferrari. The link of inheritance is one way, toward the root.

Polymorphism
The hardest concept to grasp is polymorphism—not that it’s difficult, but it’s just taken so much for
granted that it’s almost completely overlooked. Polymorphism is simply the ability for different objects
derived from a common base object to respond to the same stimuli in completely different ways.

For example, (well-trained) cats, dogs, and birds are all animals, but when asked to speak,
they will all respond differently. (I added “well-trained” because normally a cat will look at you as
if you are crazy, a dog will be to busy chasing his tail, and a bird will squawk even if you don’t ask
it to do anything.)

You can’t have polymorphism without inheritance, as the stimuli that the object is expected
to respond to must be to an interface that all objects have in common. In the preceding example,
you are asking an animal to speak. Depending on the type of animal (inheritance), you will get a
different response.

A key thing about polymorphism is that you know that you will get a response of a certain type,
but the object responding—not the object requesting—determines what the actual response will be.

Fraser_640-4C03.fm Page 86 Wednesday, November 16, 2005 1:56 PM

C H A P T E R 3 ■ O B J E C T - O R I E N T E D C + + / C L I 87

Applying Objects to Software Development
Okay, you know what objects and their concepts are and how to apply them to software develop-
ment. With procedural programming, there is no concept of an object, just a continual stream of logic
and data. Let me back up a bit on that. It could be argued that, even in procedural programming, objects
exist, given that variables, literals, and constants could be considered objects (albeit simple ones). In
procedural programming, breaking up the logic into smaller, more manageable pieces is done by
way of functions. To group common data elements together, the structure or class is used depending
on language.

Before you jump on me, I would like to note that there were (obviously) other object-oriented
languages before C++, but this book only covers C++/CLI’s history. It wasn’t until C++ that computer
data and its associated logic was packaged together into the struct and a new construct known as the
class. (If you are a purist, there was “C with Classes” first.) With the combination of data and logic
associated with this data into a single construct, object-oriented concepts could be applied to
programming.

Here, in a nutshell, is how objected-oriented concepts are applied to C++/CLI development.
Classes and structures are programming constructs that implement within the C++ language the
three key object-oriented concepts: encapsulation, inheritance, and polymorphism.

Encapsulation, or the hiding of complexity, is accomplished by not allowing access to all data
and functionality found in a class. Instead, only a simpler and more restricted interface is provided
to access the class.

Fraser_640-4C03.fm Page 87 Wednesday, November 16, 2005 1:56 PM

88 C H A P T E R 3 ■ O B JE C T - O R I E N T E D C + + / C L I

Inheritance is the ability to innately reuse the functionality and data of one class within another
derived class.

Polymorphism is the ability for different classes to respond to the same request in different
ways. Classes provide something called the virtual method, or function, which allows any class
derived from the same parent class to respond differently to the same request.

Fraser_640-4C03.fm Page 88 Wednesday, November 16, 2005 1:56 PM

C H A P T E R 3 ■ O B J E C T - O R I E N T E D C + + / C L I 89

I expand on each of these concepts as the chapter progresses.
Now that you understand OOP conceptually, let’s see how it is actually done with C++/CLI.

ref class/struct Basics
First off, there is nothing forcing you to program in an objected-oriented fashion with ref classes
or ref structs, and using ref classes and ref structs does not mean you are doing OOP. For example,
it is possible to break the code based on function areas instead of objects. It may appear to be OOP,
but what you really are doing is just using a ref class as a namespace. Plus, you gain none of the
benefits of OOP.

■Note I am currently only dealing with the managed data types within C++/CLI (ref class, ref struct,
value class, and value struct). In Chapters 20 and 21, I’ll cover unmanaged and native data types (class
and struct).

It is the organization of code and data into unique objects that distinguishes procedural coding
from object-oriented coding.

Fraser_640-4C03.fm Page 89 Wednesday, November 16, 2005 1:56 PM

90 C H A P T E R 3 ■ O B JE C T - O R I E N T E D C + + / C L I

For those totally new to object programming, you need to understand that each time you create
(or instantiate) a ref class definition a new instance of the ref class object will be created. In other
words, no matter how many instances you want, they will all be unique instances created from the
same ref class definition.

But before you look at objects and OOP, you will look at the ref class and the ref struct and
what makes up a ref class and a ref struct in general terms.

Declaring ref classes and structs
The ref class and ref struct are basically an extension of the traditional C++ class and struct. Like
traditional C++ classes and structs, ref classes and ref structs are made up of variables and methods.
Unlike traditional classes and structs, ref classes and ref structs are created and destroyed in a
completely different manner. Also, ref classes and ref structs have an additional construct called
the property.

Private, Public, and Protected Member Access Modifiers
There really is no real difference between a ref class and ref struct except for the default access
to its members. A ref classes defaults to private access to its members, whereas a ref struct default
to public. Notice that I used the term “default.” It is possible to change the access level of either the
ref class or the ref struct. So, truthfully, the usage of a ref class or a ref struct is just a matter
of taste. Most people who code C++ use the keywords ref class when they create objects, and ref
struct is very seldom if ever used.

■Note Because ref struct is very seldom used, I’m going to use ref class from here on, but you can
assume ref struct applies as well.

The way you declare ref classes is very similar to the way you declare traditional classes. Let’s
look at a ref class declaration. With what you learned in Chapter 2, much of a ref class definition
should make sense. First, there is the declaration of the ref class itself and then the declaration of
the ref class’s variables, properties, and methods.

The following example is the Square ref class, which is made up of a constructor, a method to
calculate the square’s area, and a dimension variable:

ref class Square
{
 // constructor
 Square (int d)
 {
 Dims = d;
 }

 // method
 int Area()
 {
 return Dims * Dims;
 }

 // variable
 int Dims;
};

Fraser_640-4C03.fm Page 90 Wednesday, November 16, 2005 1:56 PM

C H A P T E R 3 ■ O B J E C T - O R I E N T E D C + + / C L I 91

The first thing to note about this ref class is that because the access to ref classes defaults to
private, the constructor, the method, and the variable are not accessible outside the ref class. This
is probably not what you want. To make the ref class’s members accessible outside of the ref class,
you need to add the access modifier public: to the definition:

ref class Square
{
public:
 // public constructor
 Square (int d)
 {
 Dims = d;
 }

 // public method
 int Area()
 {
 return Dims * Dims;
 }

 // public variable
 int Dims;
};

With this addition, all the ref class’s members are accessible. What if you want some members
to be private and some public? For example, what if you want the variable Dims only accessible
through the constructor? To do this, you add the private: access modifier:

ref class Square
{
public:
 Square (int d)
 {
 Dims = d;
 }

 int Area()
 {
 return Dims * Dims;
 }
private:
 int Dims;
};

Besides public and private, C++/CLI provides one additional member access modifier: protected.
Protected access is sort of a combination of public and private; where a protected ref class member
has public access when it’s inherited but private access (i.e., can’t be accessed) by methods that are
members of a ref class that don’t share inheritance.

Here is a quick recap of the access modifiers for members.
If the member has public access, it is

Fraser_640-4C03.fm Page 91 Wednesday, November 16, 2005 1:56 PM

cafac74dd2d083cbec0906b66fcd56b1

92 C H A P T E R 3 ■ O B JE C T - O R I E N T E D C + + / C L I

• Accessible by external functions and methods

• Accessible to derived ref classes

If the member has private access, it is

• Not accessible by external functions and methods

• Not accessible to derived ref classes

If the member has protected access, it is

• Not accessible by external functions and methods

• Accessible to derived ref classes

If you are visually oriented, as I am, maybe Figure 3-1 will help clear up member access modifiers.

Figure 3-1. Summary of the three member access modifiers

The ref Keyword
If you have come from the traditional C++ world, you may have noticed the new keyword ref in front
of the class’s definition. This is one of the biggest and most important changes between traditional
C++ and C++/CLI. (It is also a big change from C++/CLI and Managed Extensions for C++, as the
keyword was __gc.) The use of the ref keyword tells the compiler, which in turn tells the common
language runtime (CLR), that this class will be a reference object on the managed heap. C++/CLI, to
be consistent with traditional C++, defaults to classes being placed on the CRT heap and not the

Fraser_640-4C03.fm Page 92 Wednesday, November 16, 2005 1:56 PM

C H A P T E R 3 ■ O B J E C T - O R I E N T E D C + + / C L I 93

managed heap. It is up to developers to decide if they want the class to be managed and, if so, they
must manually place the ref in front of the class.

For this minor inconvenience, you get several benefits:

• Garbage collection

• Inheritance from any .NET Framework base class that is not sealed (I cover sealed classes later in
the chapter) or, if no base class is specified, automatic inheritance from the System::Object class

• Ability for the ref class to be used within .NET Framework collections and arrays

• Inheritance from any number of managed interfaces

• Ability to contain properties

• Ability to contain pointers to unmanaged classes

■Unsafe Code Because pointers to unmanaged classes is unverifiable, placing these pointers within a
ref class is unsafe.

With the good, there is the bad. Traditional C++ programmers might find these items drawbacks
with ref classes:

• Only single class inheritance is allowed.

• Inheritance from unmanaged classes is not allowed.

• In addition, ref classes

• Cannot be a parent class of an unmanaged type

• Do not support friends

• Cannot contain an overridden gcnew or delete operator

• Must use public inheritance

• Cannot be used with the sizeof or offsetof operator

• Pointer arithmetic on the ref class handles is not allowed.

On the other hand, these drawbacks may not be as bad as you might think. A ref class allows
multiple interface inheritance, though, as I will show later, you are forced to implement all the methods
for these interfaces within the new ref class. The .NET Framework is quite extensive, so inheritance
of unmanaged classes may not be needed as frequently as you might expect. Overriding gcnew and
delete seems to defeat the purpose of ref classes. Because pointer arithmetic is not allowed on
handles, sizeof and offsetof are kind of useless, anyway, and pointer arithmetic is a very big
contributor to memory leaks and programs aborting as a result of illegal memory access.

Inheriting ref classes
Even though writing a stand-alone ref class can provide quite a lot of functionality to an object, it
is in the object-oriented nature of ref classes and their capability to inherit from other ref classes
that their real strength lays.

As I mentioned earlier, ref classes have the ability to inherit from a single ref class and
multiple interfaces. I focus on ref class inheritance now, and later in this chapter, I will look at
interface inheritance.

Inheriting from a ref class allows an inheriting ref class (usually known as the child) to get
access to all the public and protected members of the inherited ref class (usually known as the

Fraser_640-4C03.fm Page 93 Wednesday, November 16, 2005 1:56 PM

94 C H A P T E R 3 ■ O B JE C T - O R I E N T E D C + + / C L I

parent or base class). You can think of inheritance in one of two ways: It allows the functionality of
the base class to expand without the need to duplicate any of the code, or it allows the child class to
fix or augment some feature of its parent class without having to know or understand how the parent
functions (this is encapsulation, by the way). But, really, they both mean the same thing.

A restriction imposed by C++/CLI on ref classes is that ref classes can only use public inher-
itance. For example:

ref class childClass : public baseClass {};

is allowed, but the following will generate compile time errors:

ref class childClass : protected baseClass {}; // Error
ref class childClass : private baseClass {}; // Error

This means that with the public access to a base class, the child can access any public or protected
member of the base class as if it were one of its own members. Private members of the base class, on
the other hand, are not accessible by the child class, and trying to access them will generate a compi-
lation error.

Unmanaged classes (also known as native and unsafe classes) can have public, protected, or
private access to their base class. Notice there is no “ref” in front of these classes:

class childClass : public baseClass {}
class childClass : protected baseClass {}
class childClass : private baseClass {}

■Unsafe Code Unmanaged classes are not verifiable and thus are an unsafe coding construct.

For private ref class access, all base class members are inherited as private and thus are not
accessible. Protected ref class access allows access to public and protected base class members but
changes the public access to protected. Personally, I’ve never used private or protected base class
access, as I’ve simply never had a use for it, but it’s available if you ever need it.

Listing 3-1 shows the Cube ref class inheriting from a Square ref class. Notice that because
both the member access and the ref class access of the Square ref class are public, the Cube ref
class has complete access to the Square ref class and can use all the Square ref class’s members
as if they were its own.

Listing 3-1. Inheritance in Action

using namespace System;

// Base class
ref class Square
{
public:
 int Area()
 {
 return Dims * Dims;
 }

 int Dims;
};

Fraser_640-4C03.fm Page 94 Wednesday, November 16, 2005 1:56 PM

C H A P T E R 3 ■ O B J E C T - O R I E N T E D C + + / C L I 95

// Child class
ref class Cube : public Square
{
public:
 int Volume()
 {
 return Area() * Dims;
 }
};

// Inheritance in action
void main()
{
 Cube ^cube = gcnew Cube();
 cube->Dims = 3;

 Console::WriteLine(cube->Dims);
 Console::WriteLine(cube->Area());
 Console::WriteLine(cube->Volume());
}

Figure 3-2 shows the results of this little program.

Figure 3-2. Results of Inherit.exe

Sealed ref classes
A sealed ref class is one that cannot be inherited from. The sealed ref class enables a developer to
stop all other developers from inheriting from the defined ref class. I have never had an opportu-
nity to seal any of my ref classes. I have come across it a few times. Almost every time, I was forced
to create my own similar ref class because I needed additional functionality that the sealed ref
class lacked. Personally, I feel the sealed ref class goes against object-oriented development, because
it stops one of the key OOP cornerstones: inheritance. But the tool is available for those who wish to
use it.

The code to seal a ref class is simply the addition of the specific location identifier sealed after
the ref class name in the ref class definition, like this:

ref class sealClass sealed
{
};

Using the ref class
Unlike procedural code, the declaration of a ref class is simply that: a declaration. The ref class’s
methods do nothing on their own and only have meaning within the confines of an object. An object is

Fraser_640-4C03.fm Page 95 Wednesday, November 16, 2005 1:56 PM

96 C H A P T E R 3 ■ O B JE C T - O R I E N T E D C + + / C L I

an instantiated ref class. A neat thing about when a ref class is instantiated is that automatically all
the ref classes it is derived from also get instantiated.

The code to instantiate or create an object from the ref class in the previous section is simply this:

Square ^sqr = gcnew Square(); // a handle

or this:

Square sqr; // a local or stack instance

Notice that you can create either a handle or a local or stack instance to the Square object. For
those of you coming from a traditional C++ background, the syntax when working with handles is
identical to pointers except for the initial declaration just shown. I personally have found the syntax
when working with stack instances of an object a little easier but, as you will find out, in many cases
you simply can’t use them.

Handle to an Object
If you recall from the previous chapter, C++/CLI data types can fall into one of two types: value types
and reference types. A ref class is a reference type. What this means is that the ref class, when
created using the gcnew operator, allocates itself on the managed heap, and then a handle is placed
on the stack indicating the location of the allocated object.

This is only half the story, though. The CLR places the ref class object on the managed heap.
The CLR will maintain this ref class object on the heap so long as a handle is using it. When all
handles to the object go out of scope or, in other words, no variables are accessing it, the CLR will
delete it automatically.

■Caution If the ref class object accesses certain unmanaged resources that hold system resources, the CLR
will hold the ref class object for an indefinite (not necessarily infinite) period of time. Using COM-based ADO is
a classic example of this. This was a major issue in prior versions of C++/CLI (Managed Extensions for C++), but
the addition of deterministic destructors has helped alleviate this issue. I cover destructors later in this chapter.

Once you have created an instance of a ref class using the following:

Square ^sqr = gcnew Square(); // a handle

you now have access to its variables, properties, and methods. The code to access a reference object
handle is simply the name of the object you created followed by the arrow [->] operator. For
example:

sqr->Dims = 5;
int area = sqr->Area();

You might be wondering why pointer arithmetic is not allowed on reference object handles.
They seem harmless enough. Well, the problem comes from the fact that the location of the object
in the managed heap memory can move. The garbage collection process not only deletes unused
objects in heap memory, it also compacts it. Thus, it is possible that a ref class object can be relo-
cated during the compacting process.

Local or Stack Objects
I assume that up until now you’ve been using the member access operator or dot [.] operator on
faith that I would explain it later. There really isn’t anything special about the dot operator; it’s only
used for accessing individual member variables, properties, or methods out of a ref class. Its syntax
is simply this:

Fraser_640-4C03.fm Page 96 Wednesday, November 16, 2005 1:56 PM

C H A P T E R 3 ■ O B J E C T - O R I E N T E D C + + / C L I 97

class-name . member-data-or-method
int intval; // value type
String ^s = intval.ToString();
Square sqr; // reference type
int i = sqr.Dims;

You have seen both the -> and . operators used when accessing ref class members. What is
the difference? The -> operator is used to access data or methods from a handle or a pointer off a
heap, whereas the dot [.] operator is used to access the object off the stack.

You have already seen one type of stack object the value type. It is also possible to create a stack
object out of a reference type as was just shown.

Listing 3-2 is an example of using a ref class as both a stack and a heap reference.

Listing 3-2. Stack Reference Object in Action

using namespace System;

ref class Square
{
public:
 int Area()
 {
 return Dims * Dims;
 }
 int Dims;
};

void main()
{
 Square ^sqr1 = gcnew Square(); // Handle
 sqr1->Dims = 2;
 Console::WriteLine(sqr1->Area());

 Square sqr2; // local stack instance
 sqr2.Dims = 3;
 Console::WriteLine(sqr2.Area());
}

Figure 3-3 shows the results of this little program.

Figure 3-3. Results of StackReferences.exe

Member Variables
This fancy name is simply C++/CLI’s way of reminding programmers that ref classes are objects.
Member variables are simply variables defined within the definition of a ref class.

Fraser_640-4C03.fm Page 97 Wednesday, November 16, 2005 1:56 PM

98 C H A P T E R 3 ■ O B JE C T - O R I E N T E D C + + / C L I

The syntax of defining member variables is identical to that of ordinary variables except for one
important thing: You cannot initialize a variable in its definition. I explain how to initialize variables
later in this chapter when I cover constructors. The definition of a variable is simply a data type and
a variable name, or a comma-delimited list of variable names:

ref class varExample
{
 int x;
 String ^str1, ^str2;
};

In C++/CLI, member variables can be either managed data types or a pointer to an unmanaged
data type.

■Unsafe Code The pointer to an unmanaged data type causes the entire ref class to become unsafe.

Member variables can be public, protected, or private. With C++/CLI and ref classes, public
member variables should be handled with care, especially if invalid values in these variables will
cause problems in the program’s execution. A better solution is to make them private (or protected,
so that inherited access can still access them directly), and then make public properties to them for
external methods to access. Properties can, if coded correctly, perform validation on the data entered
into the variable. Otherwise, they work just like normal member variables. I cover properties later in
this chapter.

Static Member Variables
Static member variables are variables that provide ref class-wide storage. In other words, the same
variable is shared by all instances of a ref class. At first glance, you might wonder why you would
want a shared member variable across all instances of and ref class type. A couple of reasons that
you will frequently come across for using static member variable is as a counter of how many
instances of the ref class have been created and how many of those instances are currently active.
Though, I’m sure you will come up with several other reasons to use them.

To define a static member variable in a ref class, simply define it as static and assign a value to
it in the ref class definitions, like this:

ref class staticVar
{
 static int staticVar = 3;
};

You might be wondering how initializing the variable within the ref class can work, as it would
appear that the value would be reset for each instance of the ref class. Fortunately, this is not the
case; only the first time that the ref class is instantiated is the variable created and initialized.

Member Methods
A member method is simply a fancy term that means that the function is declared within a ref class.
Everything you learned about functions in the previous chapter is applicable to member methods.
You might consider revisiting Chapter 2’s section on functions if you are uncertain how they are
defined or how they work.

Fraser_640-4C03.fm Page 98 Wednesday, November 16, 2005 1:56 PM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 3 ■ O B J E C T - O R I E N T E D C + + / C L I 99

Like all members of a ref class, member methods can be public, protected, or private. Public
methods are accessible outside of the ref class and are the workhorse of interclass communication.
It is via methods that ref classes pass messages, requesting and being requested to perform some
type of functionality. Protected member methods are the same as private member methods except
that inherited ref classes have access to them. Private ref classes encapsulate the functionality
provided by the ref class, as they are not accessible from outside the ref class except via some
public member method that uses it.

Just as a quick recap, Listing 3-3 is a public member method that calls a protected member
method that calls a private member method.

Listing 3-3. Member Methods in Action

using namespace System;

ref class MethodEx
{
public:
 void printPublic(int num)
 {
 for (int i = 0; i < num; i++)
 {
 Console::WriteLine("Public");
 }
 printProtected(num/2);
 }
protected:
 void printProtected(int num)
 {
 for (int i = 0; i < num; i++)
 {
 Console::WriteLine("Protected");
 }
 printPrivate(num/2);
 }
private:
 void printPrivate(int num)
 {
 for (int i = 0; i < num; i++)
 {
 Console::WriteLine("Private");
 }
 }
};

int main()
{
 MethodEx ex;

 ex.printPublic(4);
 // ex.printProtected(4); // Error cannot access
 // ex.printPrivate(4); // Error cannot access
}

Fraser_640-4C03.fm Page 99 Wednesday, November 16, 2005 1:56 PM

100 C H A P T E R 3 ■ O B JE C T - O R I E N T E D C + + / C L I

Figure 3-4 shows the results of this little program.

Figure 3-4. Results of MethodEx.exe

Static Member Methods
Static member methods are methods that have ref class scope. In other words, they exist without
your having to create an instance of the ref class. Because they are not associated with any particular
instance of a ref class, they can use only static member variables, which also are not associated
with a particular instance. For the same reason, a static member method cannot be a virtual member
method, as virtual member methods are also associated with ref class instances.

Coding static member methods is no different from coding normal member methods, except
that the function declaration is prefixed with the static keyword.

Listing 3-4 uses a static member method to print out a static member variable. Oh, by the way,
WriteLine() is also a static member method.

Listing 3-4. Static Member Methods and Variables in Action

using namespace System;

ref class StaticTest
{
private:
 static int x = 42;
public:
 static int get_x()
 {
 return x;
 }
};

void main()
{
 Console::WriteLine (StaticTest::get_x());
}

Figure 3-5 shows the results of this little program.

Fraser_640-4C03.fm Page 100 Wednesday, November 16, 2005 1:56 PM

C H A P T E R 3 ■ O B J E C T - O R I E N T E D C + + / C L I 101

Figure 3-5. Results of StaticMethodEx.exe

You might have noticed that to access the static member method, you use the ref class name
and the :: operator instead of the . or -> operator. The reason is because you’ve not created an
object, so you’re effectively accessing the namespace tree.

ref class Constructors
The ref class constructor is a special ref class method that is different in many ways from the
member method. In C++/CLI, a constructor is called whenever a new instance of a ref class is
created. Instances of ref classes are created using the operator gcnew. Memory for the instance is
allocated on the managed heap that is maintained by the CLR.

The purpose of the constructor is to get the object to an initialized state. There are two ways that
the actual initialization process can take place, within the constructor or in a separate method that the
constructor calls. Normally, you would use the first method if the ref class instance is only initial-
ized once. The second method would be used if the ref class is reused and needs to be reinitialized
at a later time. When this reinitialization takes place the initialization method is called, as you can’t
call the constructor method directly.

The ref class constructor process differs from the unmanaged class constructor process in
that, for ref class constructors, all member variables are initialized to zero before the actual constructor
is called. (Although this is helpful, initialization to zero is not always what you need. You might want
to initialize to a specific value.) Thus, even if the constructor does nothing, all member variables will
still have been initialized to zero or the data type’s equivalent. For example, the DateTime data type
initializes to 1/1/0001 12:00:00 a.m., which is this data type’s equivalent of zero.

A ref class constructor method always has the same name as the ref class itself. A ref class
constructor method does not return a value and must not be defined with the void return type.
A constructor method can take any number of parameters. Note that a constructor method needs to
have public accessibility to be accessible by the gcnew operator.

If no constructor method is defined for a ref class, then a default constructor method is gener-
ated. This constructor method does nothing of its own, except it calls the constructor method of its
parent and sets all member variables to a zero value. If you define a constructor method, then a
default constructor method will not be generated. Thus, if you create a constructor method with
parameters and you expect the ref class to be able to be created without parameters, then you
must manually create your own default zero-parameter constructor method.

A special construct of a constructor method is the initializer list. It’s a list of variables that need
to be initialized before the constructor method itself is called. You can use it to initialize the ref
class’s own variables as well; in fact, it’s more efficient to do it this way, but it’s also much harder to
read in this format. The most common use of an initializer list is to initialize a parent ref classes by
way of one of the parent’s constructors. The syntax for an initializer list involves simply placing a

Fraser_640-4C03.fm Page 101 Wednesday, November 16, 2005 1:56 PM

102 C H A P T E R 3 ■ O B JE C T - O R I E N T E D C + + / C L I

colon (:) and a comma-delimited list of functional notation variable declarations between the
constructor method’s declaration and the constructor method’s implementation:

Constructor (int x, int y, int z) : var1(x, y), var2(z) { }

A new constructor type has been added in C++/CLI, the copy constructor. The copy constructor
initializes a ref class object to be a copy of an existing ref class object of the same type. This type
of constructor should not be anything new to developers who have already been coding in C++,
except that the syntax has change a little. You now use the % operator instead of the & operator.

Listing 3-5 shows the constructors for a ref class called ChildClass inherited from ParentClass.

Listing 3-5. Constructors in Action

using namespace System;

// Parent Class
ref class ParentClass
{
public:
 // Default constructor that initializes ParentVal to a default value
 ParentClass() : PVal(10) { }

 // A constructor that initializes ParentVal to a passed value
 ParentClass(int inVal) : PVal(inVal) { }
 // Copy Constructor
 ParentClass(const ParentClass %p) : PVal(p.PVal) {}

 int PVal;
};

// Child class that inherits form ParentClass
ref class ChildClass : public ParentClass
{
public:
 // Default constructor that initializes ChildVal to a default value
 ChildClass () : CVal(20) {}; // default constructor

 // A constructor that initialized CVal to a passed value
 ChildClass(int inVal) : CVal(20) {};

 // A constructor that initialized the parent class with a passed value
 // and initializes ChildVal to a another passed value
 ChildClass (int inVal1, int inVal2) : ParentClass(inVal1), CVal(inVal2) { }

 // copy constructor
 ChildClass(const ChildClass %v) : ParentClass(v.PVal), CVal(v.CVal) { }

 int CVal;
};

Fraser_640-4C03.fm Page 102 Wednesday, November 16, 2005 1:56 PM

C H A P T E R 3 ■ O B J E C T - O R I E N T E D C + + / C L I 103

void main()
{
 ParentClass p1(4); // Constructor
 ParentClass p2 = p1; // Copy Constructor

 p1.PVal = 2; // Change original, new unchanged

 Console::WriteLine("p1.PVal=[{0}] p2.PVal=[{1}]", p1.PVal, p2.PVal);

 ChildClass ^c1 = gcnew ChildClass(5,6); // Constructor
 ChildClass c2 = *c1; // Copy Constructor

 c1->CVal = 12; // Change original, new unchanged

 Console::WriteLine("c1=[{0}/{1}] c2=[{2}/{3}]",
 c1->PVal, c1->CVal, c2.PVal, c2.CVal);
}

Figure 3-6 shows the results of this little program.

Figure 3-6. Results of Constructors.exe

Static ref class Constructors
In traditional C++, the syntax for initializing static member variables was rather cumbersome. It
forced you to define it in the ref class and then initialize it outside the ref class before the main()
function was called. You saw that with ref classes you could directly assign a value to a static
member variable—but what happens if you need something more elaborate than a simple assign-
ment? C++/CLI has provided a new construct for ref classes called the static ref class constructor.

The static ref class constructor’s purpose is to initialize static member variables normally with
something more complex than a simple assignment, but not necessarily. Any ref class can have a static
ref class constructor, though it only really makes sense if the ref class has static member variables,
because the static ref class constructor is not allowed to initialize any nonstatic member variables.

When the static ref class constructor is invoked it is undefined, but it is guaranteed to happen
before any instances of the ref class are created or any references are made to any static members
of the ref class.

If you recall, it is possible to initialize static member variables directly in the definition of the
ref class. If you use the static ref class constructor, then these default values are overwritten by
the value specified by the static ref class constructor.

Fraser_640-4C03.fm Page 103 Wednesday, November 16, 2005 1:56 PM

104 C H A P T E R 3 ■ O B JE C T - O R I E N T E D C + + / C L I

The static ref class constructor syntax is identical to the default constructor syntax, except
that the static keyword is placed in front. This means that a static ref class constructor cannot
take any parameters.

In the following example, the ref class Test is made up of two static member variables initial-
ized to 32 and a static ref class constructor that overwrites the first constant with the value of 42:

ref class Test
{
public:
 static Test()
 {
 value1 = 42;
 }
 static int value1 = 32;
 static int value2 = 32;
};

By the way, you can have both static and nonstatic (normal, I guess) constructor methods in the
same ref class.

Destructors
Destructors serve two purposes in C++/CLI. The first is the deallocating of memory previously allo-
cated to a heap by either the new or gcnew operator. The second purpose is the often overlooked
releasing of system resources, either managed or unmanaged.

In versions prior to C++/CLI, Managed Extensions for C++ only handled the deallocating
of managed memory and managed resources. To handle the releasing of unmanaged memory
or unmanaged resources, it forced the developer to inherit from a .NET Framework interface
IDisposable. If this means nothing to you, don’t worry—things have gotten a whole lot easier.

Memory Management Destructors

All objects allocated on the managed heap using gcnew need to be deallocated. You have a choice
about how to do this. You can call the delete operator on the handle of the ref class object, and the
managed memory will be deallocated immediately in reverse order to which it was allocated. In
other words, if the object allocated internal objects, then they would be deallocated first.

To start the deallocation process when a program is finished with the object, you simply call the
delete operator on the object:

delete classname;

This is new to C++/CLI and is what is known as deterministic cleanup. The programmer now has
complete control of when things are finally cleaned up.

The other choice is that the developer does not have to give up the garbage collection function-
ality of the CLR, if it doesn’t matter when the memory is finally deallocated. In this case, the program
is not required to call the delete operator; it simply has does nothing. It will be the job of the CLR to
detect when an object is no longer being accessed and then garbage collect it. In most cases, this
choice is the best, and there is really no need to call the delete operator because CLR garbage collection
works just fine.

The destructor method, which the delete operator calls, has the same syntax as the default
constructor method except that a tilde (~) is placed before the destructor method’s name:

~Test() {} // destructor

Fraser_640-4C03.fm Page 104 Wednesday, November 16, 2005 1:56 PM

C H A P T E R 3 ■ O B J E C T - O R I E N T E D C + + / C L I 105

■Note For the delete operator to be able to access the destructor, the destructor needs public access.

Within the destructor, you would call the delete operator for any objects that the ref class
needs to clean up. If your ref class doesn’t allocate anything while it was running, then there is no
need to create a destructor as a default one will be generated for you.

Resource Management Destructors

Cleaning up managed resources like String or an ArrayList is handled just like managed memory
resources.

Unmanaged resources, like open handles to files, kernel objects, or database objects, are a little
trickier. The reason is if you don’t specifically code the closing of these objects, then they don’t get
closed until the program ends or sometimes not until the machine is rebooted. Yikes!

Surprisingly, the CLR does not even have any explicit runtime support for cleaning up unmanaged
resources. Instead, it is up to the programmer to implement a pattern for resource management based
on a .NET Framework core interface IDisposable. The pattern is to place all resources that needed to
be cleaned up within the Dispose() method exposed by the IDisposable interface and then call the
Dispose() method when the resources are no longer needed. A little cumbersome, if you ask me.

With Managed Extensions for C++ version 1.1 and prior, that is exactly how you would have had
to code unmanaged resource cleanup. In version C++/CLI, things have become a whole lot easier.
With the addition of deterministic cleanup to C++/CLI, the delete operator now implements the
IDisposable interface pattern automatically for you. Therefore, all you need to do to clean up your
unmanaged resources is to add code to your ref class’s destructor and then call the delete operator
when the object and the resources it's accessing are no longer needed. Simple, right? Well, there is a
catch.

What if you forget to call the delete operator? The answer is, unfortunately, that the destructor
and subsequently the IDisposable interface pattern are not called. This means the unmanaged
resources are not cleaned up. Ouch! So much for .NET’s great ability to clean up after itself, right?

Fortunately, this is not the end of the story. The CLR’s garbage collection process has not yet
occurred. This process will deallocate all managed objects whenever it gets around to that chore
(you have no control of this). As an added bonus, C++/CLI has made things easier by providing an
interface directly with the CLR garbage collection process (for when this finally does happen) called
the Finalize destructor.

The Finalize destructor method is called by the CLR, when the CLR detects an object that needs
to be cleaned up. An elegant solution, don’t you think? Well, the elegance doesn’t end there. The
CLR, before it calls the Finalize destructor, checks to see if the delete operator has been already
called on the object and, if so, does not even waste its time on calling the Finalize destructor.

What does this boil down to? You can clean up unmanaged resource yourself, or if you don’t
care when cleanup finally does occur (or you forget to do it), the CLR will do the cleanup for you.
Nice, huh?

The Finalize destructor has the same syntax as the standard destructor, except an exclamation
point (!) is used instead of a tilde (~), and it has to have protected access:

protected:
 !Test() {} // Finalize destructor

■Note The Finalize destructor must have protected access.

Fraser_640-4C03.fm Page 105 Wednesday, November 16, 2005 1:56 PM

cafac74dd2d083cbec0906b66fcd56b1

106 C H A P T E R 3 ■ O B JE C T - O R I E N T E D C + + / C L I

Here is how you code destructor logic, if you want all your bases covered for an object that has
managed and unmanaged memory and resources to clean up:

ref class ChildClass : public ParentClass
{
public:
 ~Test()
 {
 // free all managed and unmanaged resources and memory
 }
protected:
 !Test()
 {
 // free all unmanaged resources and memory only
 }
}

The managed cleanup code is only found in the deterministic cleanup destructor, whereas
unmanaged cleanup is found in both the deterministic cleanup and Finalize destructor. One thing
you will find is that there is usually duplicate unmanaged memory and resource cleanup code in
both of these destructors. Most likely, you will write an additional method, which these destructors
call to eliminate this duplication.

Virtual Methods
Virtual methods are the cornerstone of polymorphism, as they allow different child ref classes
derived from a common base ref class to respond to the same method call in a way specific to each
child ref class. Polymorphism occurs when a virtual method is called through a base ref class
handle. For example:

BaseClass ^BaseObject = gcnew ChildClass()
BaseObject->DoStuff() // will call the Child class version instead of the Base
 // class version as long as DoStuff is declared a virtual.

This works because when the call is made, it is the type of the actual object pointed to that
determines which copy of the virtual method is called.

Technically, when you declare a virtual method, you are telling the compiler that you want
dynamic or runtime binding to be done on any method with an identical signature in a derived ref
class. To make a method virtual, you simply need to place the keyword virtual in front of the method
declaration.

virtual void Speak () {}

Any method that you declare as virtual will automatically be virtual for any directly or indirectly
derived ref class.

Normally, in a standard virtual animal example, you would first declare a base ref class Animal
with a virtual method of Speak(). You then create specific animal-type ref classes derived from
Animal and override the virtual method Speak(). In the main() function, you would create an array of
Animal objects and assign specific animal derived objects to it. Finally, you would loop through the
Animal array. Because the Speak() method is virtual, the actual object type assigned to the Animal
array determines which Speak() to execute.

Fraser_640-4C03.fm Page 106 Wednesday, November 16, 2005 1:56 PM

C H A P T E R 3 ■ O B J E C T - O R I E N T E D C + + / C L I 107

There are two methods of overriding a virtual function: implicit and explicit (or named). You
can also hide the virtual override sequence and start a new one, or you can simply stop the virtual
sequence altogether.

Implicit Virtual Overriding

For implicit overriding, the method signature of the base ref class must be the same as the derived
ref class including the prefix virtual. This means that the name of the method and the number of
parameters and their types must be identical. The return type of the method need not be identical,
but it must at least be derived from the same type as that of the base method’s return type. Also, you
need to append the new keyword override after the parameters:

virtual void Speak () override
{
}

Hiding Virtual Overriding

Usually, if a parent defines a method as virtual, there is usually a good reason. I haven’t yet had a
reason to do this, but if you really want to overrule a parent ref class and hide a method from prop-
agating virtual overriding to its children, you can. To do so, add the keyword new after the method
declaration:

void Speak() new
{
}

You can also hide virtual overriding propagation and start a new one from the current ref class
by making the above member method virtual:

virtual void Speak() new
{
}

To me, both of these method declarations go against proper OOP, but they are available if there
is good reason.

Explicit or Named Virtual Overriding

Explicit or named overriding allows you to assign a method with a different name to a virtual function.
To do this, you need to declare the overriding method as virtual and then assign the name of the
virtual method being overridden:

ref class Puppy : public Dog
{
public:
 virtual void Yip () = Dog::Speak
 {
 }
};

One handy feature of explicit overriding is that it allows you to overcome a virtual sequence that
has been hidden by the new operator, as an explicit overriding does not need to override a direct
parent. It can override an indirect parent, occurring before the virtual method sequence hide point,
by specifying the ref class name of a grandparent (or great grandparent, or . . .) along with the
method being overridden:

Fraser_640-4C03.fm Page 107 Wednesday, November 16, 2005 1:56 PM

108 C H A P T E R 3 ■ O B JE C T - O R I E N T E D C + + / C L I

ref class Tiger : public Cat
{
public:
 virtual void Growl () = Animal::Speak
 {
 }
};

An even cooler feature of explicit virtual overriding is that you can actually continue two different
virtual method sequences from a single virtual method. You do this by explicitly overriding a sealed
sequence, which has been declared virtual to start a new sequence, using the same method name as
the new sequence and then adding an explicit virtual override. Explaining it is a bit confusing, but an
example should make things clearer:

ref class Animal
{
public:
 virtual void Speak ()
 {
 Console::WriteLine("Animal is Mysteriously Silent");
 }
}

ref class Cat : public Animal
{
public:
 virtual void Speak() new // sequence hidden and a new one created
 {
 Console::WriteLine("Cat says Meow");
 }
};

ref class Tiger : public Cat
{
public:
 virtual void Speak() override = Animal::Speak //both sequences continue here
 {
 Console::WriteLine("Tiger says Growl");
 }
};

You can also do the same thing using a comma-delimited list of methods you want to explicitly
override with this one method. However, in this case the new virtual method needs a different name,
or the compiler will complain a little bit:

ref class Tiger : public Cat
{
public:
 virtual void Growl() = Animal::Speak, Cat::Speak
 {
 Console::WriteLine("Tiger says Growl");
 }
};

It probably is obvious, but like implicit overriding, explicit overriding requires that the signature of
the overriding method must match the virtual method being overwritten.

Fraser_640-4C03.fm Page 108 Wednesday, November 16, 2005 1:56 PM

C H A P T E R 3 ■ O B J E C T - O R I E N T E D C + + / C L I 109

Listing 3-6 is not your standard virtual animal example. It’s a very contrived example, trying to
show all the different statements associated with virtual methods.

Listing 3-6. Virtual Methods in Action

using namespace System;

ref class Animal
{
public:
 virtual void Speak ()
 {
 Console::WriteLine("Animal is Mysteriously Silent");
 }
};

ref class Dog : public Animal
{
public:
 // Standard explicit virtual override
 virtual void Speak() override
 {
 Console::WriteLine("Dog says Woof");
 }
};

ref class Puppy : public Dog
{
public:
 // Yip name overrides dog's virtual speak
 virtual void Yip() = Dog::Speak
 {
 Console::WriteLine("Puppy says Yip Yip");
 }
};

ref class Cat : public Animal
{
public:
 // Start a new speak virtual sequence so animal's virtual speak fails
 virtual void Speak() new
 {
 Console::WriteLine("Cat says Meow");
 }
};

ref class Tiger : public Cat
{
public:
 // Though inherited from cat, Tiger name overrides Animal's speak
 // thus, can speak though animal virtual sequence
 // also this method overrides Cat's virtual Speak method as well

Fraser_640-4C03.fm Page 109 Wednesday, November 16, 2005 1:56 PM

110 C H A P T E R 3 ■ O B JE C T - O R I E N T E D C + + / C L I

 virtual void Growl() = Animal::Speak, Cat::Speak
 {
 Console::WriteLine("Tiger says Growl");
 }
};

void main()
{
 // Array of Animal handles
 array<Animal^>^ animals = gcnew array<Animal^>
 {
 gcnew Animal(),
 gcnew Dog(),
 gcnew Puppy(),
 gcnew Cat(),
 gcnew Tiger()
 };

 for each (Animal ^a in animals)
 {
 a->Speak();
 }

 Console::WriteLine();

 Animal^ cat1 = gcnew Cat();
 Cat^ cat2 = gcnew Cat();
 Cat^ tiger = gcnew Tiger();

 // new cancels virtual sequence of Animal
 cat1->Speak();

 // new speak sequence established for cat
 cat2->Speak();
 tiger->Speak();
}

Figure 3-7 shows the results of this little program.

Figure 3-7. Results of VirtualAnimals.exe

Fraser_640-4C03.fm Page 110 Wednesday, November 16, 2005 1:56 PM

C H A P T E R 3 ■ O B J E C T - O R I E N T E D C + + / C L I 111

Pure Virtual Method

When you look at the previous example, you may notice that the base ref class virtual method
Speak() really has a nonsense implementation and shouldn’t even be included in the ref class.
A better way to implement this example and ensure that the virtual method is always overridden is
to force the inheriting ref classes to override the virtual method and, if they don't, generate an
error. You can do this with a pure virtual method.

The big difference between a pure virtual method and a virtual method is that a ref class that
contains pure virtual methods cannot be instantiated. In other words, a ref class that has pure
virtual methods must be inherited to be used. I cover this in more detail later in the chapter in the
section about abstract ref classes.

A pure virtual method is simply a definition of a method without any implementation. When
you use it, the compiler checks to make sure that the pure virtual method is overwritten. If it is not,
then the compiler generates an error.

A pure virtual method has the same syntax as a regular virtual method, except that instead of a
method implementation, a = 0; is appended:

virtual void PureVirtualFunction() = 0;

■Caution You cannot hide a pure virtual method with the new operator.

Method Overriding

Method overriding is defining a method in a derived ref class that has an identical signature to the
base ref class. How the derived ref class actually works depends on whether the method is virtual
or not. If the method is virtual, it runs as I described previously.

On the other hand, if the method is not virtual, then it works in a completely different way,
because polymorphism does not come into effect at all. First, no dynamic binding occurs, only stan-
dard static or compile-time binding. What this means is that whatever type the method is called with
is executed. For example, in the VirtualAnimal example, if the Speak() method were not virtual, then
the Animal ref class’s Speak() method would be called every time in the for each loop. This displays
“Mysterious Silence” every time as opposed to the assorted messages generated by the virtual version of
the example. The reason this happens is because the array is of type Animal.

To get each animal to speak now, you must create instances of each type of animal and call that
animal’s speak() method directly. Overriding a nonvirtual method simply has the effect of hiding the
base ref class’s copy of the method.

Method Overloading
There is nothing special about coding overloaded methods, given that they are handled in exactly
the same way as function overloading, which I covered in the previous chapter. The only real differ-
ence is that they are now methods inside a ref class and not functions out on their own. For example,
here is the same supersecret method (this time) overloaded three times in a Secret ref class:

ref class Secret
{
 int Test () { /* do stuff */ }
 int Test (int x) { /* do stuff */ }
 int Test (int x, int y, double z) { /* do stuff */ }
};

Fraser_640-4C03.fm Page 111 Wednesday, November 16, 2005 1:56 PM

112 C H A P T E R 3 ■ O B JE C T - O R I E N T E D C + + / C L I

Calling an overloaded method is nothing special either. Simply call the method you want with
the correct parameters. For example, here is some code to call the second supersecret Test method
from a handle called secret and the third method from a stack object:

secret->Test (0, 1, 2.0); // handle
secret.Test(5); // local stack

For those of you coming from a traditional C++ or Visual Basic background, you might have
used default arguments. Unfortunately, with C++/CLI, ref classes do not support default argu-
ments in member methods. In fact, they generate an error.

A suggested solution to this change in syntax is to use overloaded methods. That is, define a
method with fewer parameters and then initialize the variable in the method body. For example,
here are four methods that when combined are equivalent to one method with three defaulted
arguments:

ref class NoDefaultArgs
{
 // Invalid method with default values
 // int DefArgs (int x = 1, int y = 2, int z = 3) { /* do stuff */ }

 // Equivalent combination of overloaded methods
 int DefArgs ()
 {
 x = 1;
 y = 2;
 z = 3;
 /* do stuff */
 }
 int DefArgs (int x)
 {
 y = 2;
 z = 3;
 /* do stuff */
 }
 int DefArgs (int x, int y)
 {
 z = 3;
 /* do stuff */
 }
 int DefArgs (int x, int y, int z)
 {
 /* do stuff */
 }
}

I’m sure there is a good reason why Microsoft eliminated default arguments, but personally,
I hope it puts them back in, because using overloads can get quite cumbersome.

Managed Operator Overloading
Operator overloading is one important feature that most traditional C++ programmers learn to work
with early in their careers. It is one of C++’s claims to fame. Operator overloading is the ability to use
standard operators and give them meaning in a ref class—for example, adding two strings together
to get a new concatenated string.

Fraser_640-4C03.fm Page 112 Wednesday, November 16, 2005 1:56 PM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 3 ■ O B J E C T - O R I E N T E D C + + / C L I 113

C++/CLI’s ref classes support operator overloading as well, but in a slightly different syntax
than traditional C++. The major difference in the syntax revolves round the aspect that to support
the .NET Framework’s feature of multiple (computer) language support, managed operator overloads
must be declared as static. Also as a consequence of this, binary operators must pass both the left-
and right-hand sides of the operator as parameters, and unary operators must pass the left-hand
side of the operator as a parameter. This contrasts with the traditional operator overloading where
the parameters are declared as member variables, and one fewer parameter is passed because the
other parameter is an instance variable.

Therefore, traditional operator overloading syntax for the multiplication operator looks like this:

OpClass^ operator *(const OpClass ^rhs);

whereas managed operator overloading syntax for the multiplication operator looks like this:

static OpClass^ operator *(const OpClass ^lhs, const OpClass ^rhs);

One thing to keep in mind is that traditional operator overloading syntax is only supported
within the C++/CLI language environment, because this syntax does not adhere to the requirements
of being static and passing all operands.

A convenient feature of managed operator overloading for veteran C++ developers is that if you
will never support multiple languages, then you can still use the traditional syntax that you are
accustomed to. Or, if you do plan to support multiple languages, you can use the managed operator
overloading syntax only with ref class for which you plan to support multiple languages and use
traditional for the rest. Personally, I stick to the managed operator overloading syntax because, you
never know, in the future, you might need multilanguage support.

■Caution You cannot use both traditional and managed syntaxes for operator overloading for the same operator
within the same ref class.

Not all operators can be overloaded. The most notable missing operators are the open and
closed square brackets [], open and closed round brackets (), gcnew, new, and delete. The Table 3-1
is a list of the operators available to be overloaded.

There are two types of operator overloads: unary and binary. You would have a good case, if you
claimed that the increment and decrement operators are a third type of operator. As you will see,

Table 3-1. Supported Managed Operators

Operators

+ - * / %

^ & | ~ !

= < > += -=

*= /= %= ^= &=

|= << >> <<= >>=

== != <= >= &&

|| ++ -- ,

Fraser_640-4C03.fm Page 113 Wednesday, November 16, 2005 1:56 PM

114 C H A P T E R 3 ■ O B JE C T - O R I E N T E D C + + / C L I

the increment and decrement operator syntax is the same as that of a unary operator. It is only the
implementation of the operators that makes them different.

Overloading Unary Operators

Unary operators, if you recall from the previous chapter, are operators that take only one operand.
With built-in operators, except for the increment and decrement operators, the operand themselves
are not changed by the operator. For example, when you place the negative operator in front of a
number (operand), the number (operand) does not change and become negative, though the value
returned is negative:

int i = 1;
int j = -i; // j = -1 but i = 1

With managed operators, unlike their built-in arithmetic equivalent, you have a little more
power over how unary operators actually work. You can make the operands mutable if you want,
though, this could be dangerous, as most developers would not expect functionality. To ensure that
the operand is not mutable, you should use the const operator in the argument of the operator over-
load method:

static OpClass^ operator -(const OpClass ^lhs)
{
 OpClass^ ret = gcnew OpClass();
 ret->i = -(lhs->i);
 return ret;
}

With the const operator, the compiler will fail if the lhs argument is changed within the body of
the method. On the other hand, if you want the argument to change during the operation then you
would leave off the const operator:

static OpClass^ operator -(OpClass ^lhs)
{
 lhs->i = -(lhs->i);
 return lhs;
}

The preceding is mutability and is probably not what you want but it is available if there is a
need. In fact, this mutability was how I thought the increment and decrement was implemented but
I found out instead that the compiler generates code specifically for the operators. Here is how you
could implement an increment operator. Notice the const operator in the argument:

static OpClass^ operator ++(const OpClass ^lhs)
{
 OpClass^ ret = gcnew OpClass();
 ret->i = (lhs->i) + 1;
 return ret;
}

Overloading Binary Operators

A binary operator takes two operands; what you do with this operand when it comes to managed
operator overloading is totally up to you. For example, you could return a bool for a logical operator,
a result object for an arithmetic operator, or return a void and mutate the first argument for an
assignment operator.

Here are each of these types of operation using the same operator.

Fraser_640-4C03.fm Page 114 Wednesday, November 16, 2005 1:56 PM

C H A P T E R 3 ■ O B J E C T - O R I E N T E D C + + / C L I 115

■Note You can’t place all these overloads in one ref class as there would be method ambiguity, but each is
perfectly valid if implemented uniquely in a ref class. On the other hand, the user of these operators would most
likely be completely confused by the first two examples as they go against how they are normally used.

• Logical operator (unexpected implementation):

static bool operator *=(const OpClass ^lhs, const OpClass ^rhs)
{
 return lhs->i == rhs->i;
}
// ...
bool x = op1 *= op2;

• Arithmetic operator (unexpected implementation):

static OpClass^ operator *=(const OpClass ^lhs, const OpClass ^rhs)
{
OpClass^ ret = gcnew OpClass();
ret->i = lhs->i * rhs->i;
return ret;
}
// ...
OpClass^ x = y *= z;

• Assignment operator (expected implementation):

static void operator *=(OpClass ^lhs, const OpClass ^rhs)
{
lhs->i *= rhs->i;
}
// ...
x *= y;

By the way, you could even implement these operators a fourth way by having the operator
overload return a different type than Boolean or the operator ref class. For example:

static int operator *=(const OpClass ^lhs, const OpClass ^rhs) {}

Listing 3-7 is an example of assorted managed operator overloads.

Listing 3-7. Operator Overload in Action

using namespace System;

ref class OpClass
{
public:
 OpClass() : i(0) {}
 OpClass(int x) : i(x) {}

 // x != y
 static bool operator !=(const OpClass ^lhs, const OpClass ^rhs)
 {
 return lhs->i != rhs->i;
 }

Fraser_640-4C03.fm Page 115 Wednesday, November 16, 2005 1:56 PM

116 C H A P T E R 3 ■ O B JE C T - O R I E N T E D C + + / C L I

 // x * y
 static OpClass^ operator *(const OpClass ^lhs, const OpClass ^rhs)
 {
 OpClass^ ret = gcnew OpClass();
 ret->i = lhs->i * rhs->i;
 return ret;
 }

 // x *= y
 static void operator *=(OpClass ^lhs, const OpClass ^rhs)
 {
 lhs->i *= rhs->i;
 }

 // -x
 static OpClass^ operator -(const OpClass ^lhs)
 {
 OpClass^ ret = gcnew OpClass();
 ret->i = -(lhs->i);
 return ret;
 }

 // ++x and x++
 static OpClass^ operator ++(const OpClass ^lhs)
 {
 OpClass^ ret = gcnew OpClass();
 ret->i = (lhs->i) + 1;
 return ret;
 }

 virtual String ^ ToString() override
 {
 return i.ToString();
 }
private:
 int i;
};

void main()
{
 OpClass ^op1 = gcnew OpClass(3);
 OpClass ^op2 = gcnew OpClass(5);
 OpClass ^op3 = gcnew OpClass(15);

 if (op1 * op2 != op3)
 Console::WriteLine("Don't Equal");
 else
 Console::WriteLine("Equal");

 op1 *= op2;
 Console::WriteLine(op1);

Fraser_640-4C03.fm Page 116 Wednesday, November 16, 2005 1:56 PM

C H A P T E R 3 ■ O B J E C T - O R I E N T E D C + + / C L I 117

 Console::WriteLine(++op1); // prints 15 then increments to 16
 Console::WriteLine(op1++); // increOpClassents to 17 then prints

 Console::WriteLine(-op1); // Negation of OpClass1
 Console::WriteLine(op1); // prior Negation op left OpClass1 unchanged
}

Figure 3-8 shows the results of this little program.

Figure 3-8. Results of OperatorOverload.exe

Both operands don’t have to be of the same type as the defining ref class, but at least one
of the managed operands must be of the same type as the defining ref class. Defining a managed
operands with one argument, something other then the defining ref class, is not automatically
associative. You must define the other combination as well. Listing 3-8 compares whether the ref
class Number is greater than an int associatively.

Listing 3-8. Operator Overload for Mixed Data Types in Action

using namespace System;

ref class Number
{
public:
 Number(int x) : i(x) {}

 static bool operator >(Number^ n, int v) // maps to operator >
 {
 return n->i > v;
 }
 static bool operator >(int v, Number^ n) // maps to operator >
 {
 return v > n->i;
 }

 virtual String ^ ToString() override
 {
 return i.ToString();
 }
private:
 int i;
};

Fraser_640-4C03.fm Page 117 Wednesday, November 16, 2005 1:56 PM

118 C H A P T E R 3 ■ O B JE C T - O R I E N T E D C + + / C L I

int main()
{
 Number^ n = gcnew Number(5);

 if (n > 6)
 Console::WriteLine("{0} Greater than 6", n);
 else
 Console::WriteLine("{0} Less than or Equal 6", n);

 if (6 > n)
 Console::WriteLine("6 Greater than {0}", n);
 else
 Console::WriteLine("6 Less than or Equal {0}", n);
}

Figure 3-9 shows the results of this little program.

Figure 3-9. Results of OperatorOverloadMixed.exe

Member Properties
The purpose of properties is to enrich encapsulation for ref classes by hiding member variables,
yet at the same time providing protected access to the values contained in these variables. Properties
are successful in doing this, and as an added benefit, they provide an improved and simplified inter-
face to a member variable.

A problem with traditional C++ classes is that there is no simple and standardized way of main-
taining member variables. Frequently, programmers will simplify the syntax of interfacing with their
class and allow public access to member variables even at the risk of having invalid data placed into
them. Seeing the risk of exposing some of the more volatile variables, a programmer then might
decide to write “getter and setter” methods. These methods protect the member variables but also
complicate the necessary syntax for their access, because you always have to access the variables as
a function call instead of using the more intuitive variable access format.

Properties solve this problem by providing direct member variable-like access to member variables,
but with the security and flexibility of getter and setter methods. To the programmer accessing the
ref class, properties act like member variables. Member properties resemble simple scalar variables,
static variables, arrays, and indexes. To the developer of the ref class, properties are simply getter
and setter methods with specific rules and syntax. The complexity of these methods is totally up to
the ref class creator.

Trivial Properties
Trivial properties are the most common implementation of a property with getter and setter methods
accessing a single member variable without any additional actions being done on that member variable.
You might consider the trivial property as a placeholder for future enhancement to the ref classes

Fraser_640-4C03.fm Page 118 Wednesday, November 16, 2005 1:56 PM

C H A P T E R 3 ■ O B J E C T - O R I E N T E D C + + / C L I 119

API as it enables a ref class to maintain binary compatibility when a more elaborate property
evolves. If you were to initially code the API as directly accessing the member variable, then in the
future, you would lose binary compatibility if you changed the API access to properties.

Coding trivial properties is, as the name suggests, trivial. Simply declare the member variable
with a prefix of the keyword property.

property type PropertyName;

You would then access the property just as you would any other member variable but, under
the covers, you are actually accessing the variable as a property.

Scalar Properties
One step up from trivial properties is the scalar property. This form of property allows the ability to
provide read-only, write-only, or both read and write access to a member variable. It also allows
doing things like validating the property before updating its underlying member variable or logging
all changes made to the property.

To create a scalar property with read and write access, you need to extend the trivial property
syntax by adding a get() and set() method:

property type PropertyName
{
 type get() {};
 void set (type value) {};
}

You can make a property write-only by excluding the set method in the property’s declaration:

property type PropertyName
{
 type get() {};
}

Conversely, you can make the property read-only by excluding the get method:

property type PropertyName
{
 void set (type value) {};
}

The get() method gives you full access to the property to do as you please. The most common
thing you will do is validate the parameter and then assign it to a private member variable.

The only real catch you might encounter is that the property name cannot be the same as a
member variable. A conversion I use, which is by no means a standard, is to use a lowercase letter as
the first letter of the member variable and an uppercase letter as the first letter of the property name.

With the addition of a set() method, you are now free to put any calculation you want within
the method, but it must return the type specified. For this type of property, the most common body
of the method is a simple return of the member variable storage of the property.

Listing 3-9 shows a trivial property, and scalar properties that are readable, writable, and both
readable and writable.

Listing 3-9. Scalar Properties in Action

using namespace System;

ref class ScalarProp
{

Fraser_640-4C03.fm Page 119 Wednesday, November 16, 2005 1:56 PM

cafac74dd2d083cbec0906b66fcd56b1

120 C H A P T E R 3 ■ O B JE C T - O R I E N T E D C + + / C L I

public:
 // Constructor
 ScalarProp()
 {
 Cost = 0.0;
 number = 0;
 name = "Blank Name";
 description = "Scalar Property";
 }

 // trivial property
 property double Cost;

 // Read & write with validated parameter
 property int Number
 {
 void set(int value)
 {
 if (value < 1)
 value = 1;
 else if (value > 10)
 value = 10;

 number = value;
 }

 int get()
 {
 return number;
 }
 }

 // Write-only property
 property String^ Name
 {
 void set(String^ value)
 {
 name = value;
 }
 }

 // Ready-only property
 property String ^Description
 {
 String^ get()
 {
 return String::Concat(name, " ", description);
 }
 }
private:
 String ^name;
 String ^description;
 int number;
};

Fraser_640-4C03.fm Page 120 Wednesday, November 16, 2005 1:56 PM

C H A P T E R 3 ■ O B J E C T - O R I E N T E D C + + / C L I 121

void main()
{
 ScalarProp sp;

 sp.Name = "The Ref Class";

 Console::WriteLine(sp.Description);

 sp.Cost = 123.45;
 Console::WriteLine(sp.Cost);

 sp.Number = 20; // Will be changed to 10
 Console::WriteLine(sp.Number);

 sp.Number = -5; // Will be changed to 1
 Console::WriteLine(sp.Number);

 sp.Number = 6; // Will not change
 Console::WriteLine(sp.Number);
}

Figure 3-10 shows the results of this program.

Figure 3-10. Results of ScalarProp.exe

Static Properties
As I mentioned previously, ref classes also contain static member variables. Likewise, C++/CLI
provides property syntax to support static properties, or properties that have ref class-wide storage.

Static properties are nearly identical to scalar properties except that they contain the keyword
static in their definition and they can only use static variables for storage. To create a readable and
writable static property, simply use this syntax:

property static type PropertyName
{
 type get() {};
 void set (type value) {};
}

For example:

Fraser_640-4C03.fm Page 121 Wednesday, November 16, 2005 1:56 PM

122 C H A P T E R 3 ■ O B JE C T - O R I E N T E D C + + / C L I

property static String^ Name
{
 void set(String^ value)
 {
 name = value;
 }
 String^ get()
 {
 return name;
 }
}

You can optionally place the keyword static in front of the get() and set() method, but I
personally find this redundant.

Programmers can access a static property in the same way they would a static member variable,
by using ref class name and the :: operator:

class::PropertyName

For example:

StaticProp::Name = "Static Property";
Console::WriteLine(StaticProp::Name);

Listing 3-10 shows a simple readable and writable static Name property.

Listing 3-10. Static Properties in Action

using namespace System;

ref class StaticProp
{
public:
 property static String^ Name
 {
 void set(String^ value)
 {
 name = value;
 }
 String^ get()
 {
 return name;
 }
 }
private:
 static String^ name;
};

int main()
{
 StaticProp::Name = "Static Property";
 Console::WriteLine(StaticProp::Name);
}

Figure 3-11 shows the results of this little program.

Fraser_640-4C03.fm Page 122 Wednesday, November 16, 2005 1:56 PM

C H A P T E R 3 ■ O B J E C T - O R I E N T E D C + + / C L I 123

Figure 3-11. Results of StaticProp.exe

Array Properties
C++/CLI provides simple array syntax for properties. This is a big improvement over traditional C++,
where getter and setter methods simply don’t perform that elegantly.

The syntax for array properties is the same as that for the scalar property, except that the property’s
type is an array:

property array<type>^ NumArray
{
 array<type>^ get() {}
 void set (array<type>^ value) {}
}

For example:

property array<int>^ NumArray
{
 array<int>^ get() {}
 void set (array<int>^ value) {}
}

Once the get() and set() methods have been created, it is a simple matter to access an array
property using normal array syntax. Listing 3-11 shows how to add a readable and writable array
property to a ref class.

Listing 3-11. Array Properties in Action

using namespace System;

ref class ArrayProp
{
public:
 ArrayProp(int size)
 {
 numArray = gcnew array<int>(size);
 }

 property array<int>^ NumArray
 {
 array<int>^ get()
 {
 return numArray;
 }

Fraser_640-4C03.fm Page 123 Wednesday, November 16, 2005 1:56 PM

124 C H A P T E R 3 ■ O B JE C T - O R I E N T E D C + + / C L I

 void set (array<int>^ value)
 {
 numArray = value;
 }
 }
private:
 array<int>^ numArray;
};

void main()
{
 ArrayProp aprop(5);

 for (int i = 0 ; i < aprop.NumArray->Length ; ++i)
 aprop.NumArray[i] = i;

 for each (int i in aprop.NumArray)
 Console::WriteLine(i);
}

Figure 3-12 shows the results of this little program.

Figure 3-12. Results of ArrayProp.exe

Indexed Properties
At first glance, indexed properties may appear to provide the same functionality as array properties.
They allow you to look up a property based on an index. The syntax to allow you to do this is more
complex than that of the array property:

property type PropertyName [indexType1, ..., indexTypeN]
{
 type get(indexType1 index1, ..., indexTypeN indexN) {};
 void set(indexType1 index1, ..., indexTypeN indexN, type value) {};
}

Here is an example of two indices being used in an indexed property:

property AType^ PropertyName [int, int]
{
 AType^ get(String^ index1, int index2) {};
 void set(String^ index1, int index2, AType^ value) {};
}

Fraser_640-4C03.fm Page 124 Wednesday, November 16, 2005 1:56 PM

C H A P T E R 3 ■ O B J E C T - O R I E N T E D C + + / C L I 125

So why would a programmer go through all of the problems of using indexed properties? It boils
down to one thing: The index doesn’t have to be numeric. In other words, when you use indexed
properties, you get the ability to work with an array index of any type.

In the preceding sample, the index is of type String^. So, when programmers want to access an
indexed property, they would access it like this:

PropertyName["StringValue", intValue]

If the indexed properties are still a little hazy, Listing 3-12 is a more complex example to show
them in action. You start by defining a Student ref class with two trivial properties. You then create
a Course ref class, which, using a nested ref class (covered next), stores a linked list of students
and their grades for the course. You use an indexed property ReportCard to extract the grades from
the linked list using the student’s name.

Listing 3-12. Indexed Properties in Action

using namespace System;

ref class Student
{
public:
 Student(String^ s, int g)
 {
 Name = s;
 Grade = g;
 }

 property String^ Name;
 property int Grade;
};

ref class Course
{
 ref struct StuList
 {
 Student ^stu;
 StuList ^next;
 };
 StuList ^Stu;
 static StuList ^ReportCards = nullptr;

public:
 property Student^ ReportCard [String^]
 {
 Student^ get(String^ n)
 {
 for(Stu = ReportCards; Stu && (Stu->stu->Name != n); Stu = Stu->next)
 ;
 if (Stu != nullptr)
 return Stu->stu;
 else
 return gcnew Student("",0); // empty student
 }

Fraser_640-4C03.fm Page 125 Wednesday, November 16, 2005 1:56 PM

126 C H A P T E R 3 ■ O B JE C T - O R I E N T E D C + + / C L I

 void set(String^ n, Student^ s)
 {
 for(Stu = ReportCards; Stu && (Stu->stu->Name != n); Stu = Stu->next)
 ;
 if (Stu == nullptr)
 {
 StuList ^stuList = gcnew StuList;
 stuList->stu = s;
 stuList->next = ReportCards;
 ReportCards = stuList;
 }
 }
 }
};

void main()
{
 Course EnglishLit;
 Student Stephen("Stephen", 95); // student as stack variable
 Student ^Sarah = gcnew Student("Sarah", 98); // student as heap variable

 EnglishLit.ReportCard["Stephen"] = %Stephen; // index as String literal
 EnglishLit.ReportCard[Sarah->Name] = Sarah; // index as String^

 Console::WriteLine(EnglishLit.ReportCard[Stephen.Name]->Grade);
 Console::WriteLine(EnglishLit.ReportCard["Sarah"]->Grade);
}

Figure 3-13 shows the results of this little program.

Figure 3-13. Results of IndexProps.exe

Default Indexed Property (Indexer)
Scalar properties provide fieldlike access on an instance of an object. A default indexed property,
however, allows arraylike access directly on specific collection within an instance of an object. The
default indexed property is a convenience, simplifying the access to a selected (default) collection
within a ref class.

The syntax of a default indexed property is identical to an indexed property, except that the
keyword default is used in place of the name of the property. That way, when you want to access the
default collection within the ref class, you omit the property name and just reference the instance
of the object as if it where the default collection itself.

Listing 3-13 is a simple example of a default index property where the default collection called
defaultArray is coded to be the default index property.

Fraser_640-4C03.fm Page 126 Wednesday, November 16, 2005 1:56 PM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 3 ■ O B J E C T - O R I E N T E D C + + / C L I 127

Listing 3-13. Indexed Properties in Action

using namespace System;

ref class Numbers
{
public:
 Numbers()
 {
 defaultArray = gcnew array<String^>
 {
 "zero", "one", "two", "three", "four", "five"
 };
 }

 property String^ default [int]
 {
 String^ get(int index)
 {
 if (index < 0)
 index = 0;
 else if (index > defaultArray->Length)
 index = defaultArray->Length - 1;

 return defaultArray[index];
 }
 }
private:
 array<String^>^ defaultArray;
};

void main()
{
 Numbers numbers;

 Console::WriteLine(numbers[-1]);
 Console::WriteLine(numbers[3]);
 Console::WriteLine(numbers[10]);
}

Figure 3-14 shows the results of this little program.

Figure 3-14. Results of DefIndexProps.exe

Fraser_640-4C03.fm Page 127 Wednesday, November 16, 2005 1:56 PM

128 C H A P T E R 3 ■ O B JE C T - O R I E N T E D C + + / C L I

By the way, there is no restriction that the index be an integer. Just like an indexed property, a
default indexed property can be any type and number of indexes.

Nested ref classes
As their name suggests, nested ref classes are ref classes defined inside another ref class. You
might think of them as member ref classes.

Nested classes differ from inherited classes in that inherited classes have an “is a” relationship,
whereas nested classes have a “contains a” relationship. In other words, for inheritance class A “is a”
class B, and for nested classes, class C “contains a” class D. Of course, you can always use a separate class
instead of a nested class to do this. What you gain by using nested classes is context, because a
nested class only has context within the class containing it.

I very seldom use nested classes, but they do make sense if the nested class only really has meaning
within its container class.

Like all members of a class, a nested class’s accessibility is determined by whether it is located
within the public, protected, or private area of its class. Unlike member types, a nested class, though
limited to the scope of the enclosing class, has its own members, and these members adhere to the
accessibility of the nested class. For example, if the nested class has public accessibility, but the
accessibility of the nested class’s member variable is private, then the member variable is private as
far as the surrounding class is concerned, even though the nested class is accessible to external functions
and methods.

In Listing 3-14, you can see a surrounding class with a nested class. The nested class has three
members: a public, a protected, and a private member variable. The surrounding class has three
member variable references to the nested class: public, protected, and private. The surrounding
class also has an initializer list constructor for the member variables and a method to access all the
nested class instances within the surrounding class. The listing shows an inheriting class to the
surrounding class with a method showing how to access the nested class instances of its parent class.
Finally, the listing shows a main() function that indicates how to reference the member variable found
within the nested class within the surrounding class. The class has no output. Its purpose is to show
you a method of accessing nested classes’ public members.

Listing 3-14. Nested Classes in Action

using namespace System;

ref class SurroundClass
{
public:
 ref class NestedClass // Declaration of the nested class
 {
 public:
 int publicMember;
 protected:
 int protectedMember;
 private:
 int privateMember;
 };

 NestedClass^ protectedNC; // protected variable reference to NestedClass

private:
 NestedClass^ privateNC; // private variable reference to NestedClass

Fraser_640-4C03.fm Page 128 Wednesday, November 16, 2005 1:56 PM

C H A P T E R 3 ■ O B J E C T - O R I E N T E D C + + / C L I 129

public:
 NestedClass^ publicNC; // public variable reference to NestedClass

 // Constructor for SurroundClass
 // Notice the initializer list declaration of the reference member variable
 SurroundClass() : publicNC(gcnew NestedClass),
 protectedNC(gcnew NestedClass),
 privateNC(gcnew NestedClass)
 {}

 // A member showing how to access NestedClass within SurroundClass
 // Notice only public member variables of the nested class are accessed
 // The private and protected are hidden
 void method()
 {
 int x;

 NestedClass nc1; // Declared another reference NestedClass

 x = nc1.publicMember; // Accessing new NestedClass variable

 x = publicNC->publicMember; // Accessing public NestedClass variable
 x = protectedNC->publicMember;// Accessing protected NestedClass variable
 x = privateNC->publicMember; // Accessing private NestedClass variable
 }
};

// A inherited class showing how to access NestedClass within a member method
// Notice only public and protected NestedClass are accessed
// The private is hidden
ref class inheritSurroundClass : public SurroundClass
{
public:
 void method()
 {
 int x;

 NestedClass nc1; // can access because NestedClass
 // declaration protected
 x = nc1.publicMember;

 x = publicNC->publicMember;
 x = protectedNC->publicMember;
 }
};

// The main function shows how to access NestedClass from outside SurroundClass
// inheritance tree
// Notice only the public NestedClass reference is accessible
void main()
{
 SurroundClass sc;
 int x = sc.publicNC->publicMember;
}

Fraser_640-4C03.fm Page 129 Wednesday, November 16, 2005 1:56 PM

130 C H A P T E R 3 ■ O B JE C T - O R I E N T E D C + + / C L I

There is a lot of code in Listing 3-14. Figure 3-15 should clear up any confusion.

Figure 3-15. Accessing nested class members

Fraser_640-4C03.fm Page 130 Wednesday, November 16, 2005 1:56 PM

C H A P T E R 3 ■ O B J E C T - O R I E N T E D C + + / C L I 131

Only public members are accessible outside of a nested class. For the surrounding class to
access the public variable, the nested class can be public, protected, or private. For an inheriting
class of the surrounding class, only public or protected access to the nested class will allow access to
the nested class’s public member variable. Finally, to access the nested class’s public member variable
outside of the inheritance tree of the surrounding class, both the nested class and the surrounding class
must have public access.

Type Casting Between Classes
Type casting is the process of converting from one type to another. I covered type casting of the built-
in types in Chapter 2. Now I expand on that discussion to include class and struct types.

C++/CLI provides three different operators for type casting between classes or structs:
static_cast, dynamic_cast, and safe_cast. Each performs the process of trying to convert from
one class type to another.

Notice that I wrote “trying to convert.” To legally convert a class to another, it needs to inherit
from or be the class type to which it is being converted. For example, let’s say class B inherits from
class A, which in turn inherits from the Object class (all ref classes inherit from the Object class).
This means that class B can safely be converted to a class A or the Object class. Class A, on the other
hand, can safely convert to the Object class, but it would be an invalid conversion to class B, as class
A is not inherited from class B.

The static_cast operator is the fastest of the three conversion operators, but it is also the most
dangerous, as it assumes that the programmer knows what she is doing, and so it does no validity
checks of its own. The syntax for the operator is simply this:

static_cast<target_type>(object_to_convert);

or

static_cast<int>(var);
static_cast<ClassA^>(ClassBvar);

■Unsafe Code The static_cast operator cannot be verified and thus is classified as unsafe code.

The dynamic_cast operator is slower than the static_cast operator because it verifies that the
type casting is valid. If the conversion is allowed, then the dynamic_cast operator completes the
conversion. On the other hand, if it’s not a valid conversion, then the dynamic_cast operator returns
nullptr. The syntax of the dynamic_cast operator is identical to the static_cast operator except that
static is replaced with dynamic in the following statement:

dynamic_cast<ClassA^>(ClassBvar);

A nifty little trick to check if a class is of a certain type can be done using the dynamic_cast operator.
If you come from the C# world, then this is equivalent to the is operator:

if (dynamic_cast<ClassA^>(ClassB) != 0)
{
 // ClassB is of type ClassA
}

The last conversion operator is the safe_cast. The safe_cast is the closest match the conversion
behavior of all other .NET-supported languages and is designed so that you can rely exclusively on it
for writing verifiable code. Because of this, C++/CLI uses safe_cast as the premier cast type for C-style
casting. Thus, you normally won’t even need to use the safe_cast operator at all, just the C-style

Fraser_640-4C03.fm Page 131 Wednesday, November 16, 2005 1:56 PM

132 C H A P T E R 3 ■ O B JE C T - O R I E N T E D C + + / C L I

cast. The syntax of the safe_cast operator is also identical to the static_cast operator, except that
static is replaced this time with safe in the following statement:

safe_cast<ClassA^>(ClassBvar);

The safe_cast operator is similar to the static_cast operator in that it can call user-defined
conversions both implicitly and explicitly. It also can reverse standard conversion, like from a
base class to an inherited class. The safe_cast is also like the dynamic_cast in that it checks to
see if the cast was valid, except that instead of returning a nullptr, it throws an exception of type
System::InvalidCastException. I cover exceptions in Chapter 4.

Listing 3-15 doesn’t produce any output. I’ve provided comments on what the result of each
statement is. If you want to prove to yourself that I’m right, you can run the code through a debugger
and watch the results as you execute each statement.

Listing 3-15. Type Casting in Action

using namespace System;

ref class A {};
ref class B : public A {};
ref class C {};

void main()
{
 Object ^v1 = gcnew A();
 Object ^v2 = gcnew B();
 Object ^v3 = gcnew C();

 A ^a1 = gcnew A();
 A ^a2 = gcnew B();
 A ^a3 = dynamic_cast<A^>(v1); // downcast
 A ^a4 = dynamic_cast<A^>(v2); // downcast
 A ^a5 = static_cast<A^>(v3); // a5 has invalid value of type C class

 B ^b1 = gcnew B();
 B ^b2 = dynamic_cast<B^>(v2); // downcast
 B ^b3 = dynamic_cast<B^>(v3); // Fails b3 = null. Miss match classes
 B ^b4 = dynamic_cast<B^>(a2); // downcast

 C ^c1 = gcnew C();
 C ^c2 = dynamic_cast<C^>(v1); // Fails c2 = null. Miss match classes
 C ^c3 = static_cast<C^>(v2); // c3 has invalid value of type B class
 C ^c4 = safe_cast<C^>(v3); // downcast

 C ^c5 = (C^)(v3); // downcast

// B ^e1 = safe_cast<B^>(c1); // does not compile as compiler knows these
 // are unrelated handles.
}

Fraser_640-4C03.fm Page 132 Wednesday, November 16, 2005 1:56 PM

C H A P T E R 3 ■ O B J E C T - O R I E N T E D C + + / C L I 133

Abstract ref classes
An abstract ref class is an incomplete definition of a ref class, and it contains at least one pure
virtual member method. It is a binding agreement between the ref class that derives from the
abstract ref class and the ref class that calls the methods of that derived ref class.

In every other way, an abstract ref class is the same as a normal ref class. It can have variables,
methods, properties, constructors, and destructors. The only thing it can’t do is instantiate an object
from itself. Though, it is possible to instantiate a derived ref class of the abstract ref class and
then access the derived ref class using a handle to the abstract class.

AbstractClass ^ac = gcnew DerivedClass();

You might be wondering why you would need a constructor if you can’t create an abstract class.
The constructor of an abstract class serves the same purpose it does in a normal class: to initialize
the member variables. There’s one catch, though. The only place you can put an abstract class
constructor is in the derived class’s initializer list. Because the constructor only needs to be accessed
by the deriving class, it’s safest to declare the constructor as protected.

Any class that derives from an abstract class must implement the pure virtual function, or it will
become an abstract class itself.

Any class that has pure virtual methods is abstract. In fact, even though C++/CLI has added the
keyword abstract to declare a class as abstract, the keyword is optional and not needed. What it
does is simply make the class notation explicit. It also makes your code more readable, as now you
can see that a class is abstract from its initial declaration and you do not have to search the class for
pure virtual methods.

However, if you do make the class abstract by including the keyword abstract, the class becomes
abstract even if it normally would not be abstract. Thus, if a class is declared as abstract, you cannot
create an instance of the class. Instead, only inherited classed from it can be instantiated. To make a
class explicitly abstract, add the abstract keyword after the class declaration:

ref class AbstractExClass abstract
{
};

Because an abstract class has to be inherited, obviously a sealed class is not allowed, but it is
legal to seal a virtual method, if the abstract class implements it.

To show abstract classes in action, Listing 3-16 shows an abstract class defined with a
constructor and two methods, one of which is a pure virtual method. Another class inherits this class
and seals Method1, but because it does not implement Method2, it too is abstract. Finally, this second
abstract class is called by a third class, which implements the pure virtual function. Because the class
now has all classes implemented, it can be instantiated. The example also shows how to pass an
abstract class handle as a parameter.

Listing 3-16. Abstract Classes in Action

using namespace System;

ref class AbstractExClass abstract
{
protected:
 int AbstractVar;
 AbstractExClass(int val): AbstractVar(val) {}

Fraser_640-4C03.fm Page 133 Wednesday, November 16, 2005 1:56 PM

cafac74dd2d083cbec0906b66fcd56b1

134 C H A P T E R 3 ■ O B JE C T - O R I E N T E D C + + / C L I

public:
 virtual void Method1() = 0; // unimplemented method
 virtual void Method2() = 0; // unimplemented method
 void Method3()
 {
 Console::WriteLine(AbstractVar.ToString());
 }
};

ref class MidAbstractExClass abstract : public AbstractExClass
{
public:
 virtual void Method1() override sealed
 {
 Console::WriteLine((AbstractVar * 3).ToString());
 }
protected:
 MidAbstractExClass(int val) : AbstractExClass(val) {}
};

ref class DerivedExClass : public MidAbstractExClass
{
public:
 DerivedExClass(int val) : MidAbstractExClass(val) {}
 virtual void Method2() override
 {
 Console::WriteLine((AbstractVar * 2).ToString());
 }
};

void testMethod(AbstractExClass ^aec)
{
 aec->Method1();
 aec->Method2();
 aec->Method3();
}

void main()
{
 AbstractExClass ^Ab1 = gcnew DerivedExClass(5);
 Ab1->Method1();
 Ab1->Method2();
 Ab1->Method3();

 AbstractExClass ^Ab2 = gcnew DerivedExClass(6);
 testMethod(Ab2);

 DerivedExClass ^dc = gcnew DerivedExClass(7);
 testMethod(dc);
}

Figure 3-16 shows the results of this little program.

Fraser_640-4C03.fm Page 134 Wednesday, November 16, 2005 1:56 PM

C H A P T E R 3 ■ O B J E C T - O R I E N T E D C + + / C L I 135

Figure 3-16. Results of AbstractEx.exe

Interfaces
An interface is similar to an abstract class in that it is a binding agreement between the class that
derives from the abstract class and the class that calls the methods of that derived class. The key
difference is that an interface only contains public, pure virtual methods. As the name suggests, it
defines an interface to a class. But defining is all it does, as it does not contain variables or imple-
mentations for any methods.

Though classes can only inherit one class, they are able to inherit as many interfaces as needed
to define the interface to the class. It is up to the class to implement all interfaces.

Like an abstract class, you can’t instantiate an object from an interface. But, like abstract ref
classes, it is possible to instantiate a ref class that implements the interface and then access the
implementing ref class using a handle to the interface.

AnInterface ^iface = gcnew AnInterfaceImplementer();

This allows a developer to write a “generic” class that operates only on the interface. When a
developer implements the interface, the base class can use the derived object in place of the
interface.

Traditionally, C++ programmers have defined an interface as a ref class that contains only
pure virtual methods. With C++/CLI, it has been formalized with the keywords interface class. To
create an interface, preface the keyword class with the keyword interface (instead of ref) in the
definition and then place in the body of the interface a set of public, pure virtual methods.

■Note You can also just place within the interface class method prototypes without the keyword virtual or the
“= 0” suffix, because they are assumed.

Because only public access is allowed within an interface, the default logically for interface
access is public. This means there is no need to include the public access modifier, as you would if it
were a class. Oh, by the way, if you try to use access modifiers in your interface, the compiler slaps
your hand and tells you to remove them.

Obviously, because an interface is only made up of pure virtual methods, the sealed keyword
has no relevance to interfaces and will generate an error.

One additional note about interfaces: Even though they cannot contain method variables, is it
is perfectly legal to define properties within an interface. The definition of the properties cannot
have an implementation—like other methods in the interface, the properties need to be implemented in
the interface’s inheriting class.

Fraser_640-4C03.fm Page 135 Wednesday, November 16, 2005 1:56 PM

136 C H A P T E R 3 ■ O B JE C T - O R I E N T E D C + + / C L I

Listing 3-17 shows how to create a couple of interfaces, one with pure virtual methods only and
another with a combination of methods and property definitions. It then shows how to do multiple
inheritances in a ref class (one base class and two interfaces).

Listing 3-17. Interfaces in Action

using namespace System;

interface class Interface1
{
 void Method1();
 void Method2();
};

interface class Interface2
{
 void Method3();
 property String^ X;
};

ref class Base
{
public:
 void MethodBase()
 {
 Console::WriteLine("MethodBase()");
 }
};

ref class DerivedClass : public Base, public Interface1, public Interface2
{
public:
 virtual property String^ X
 {
 String^ get()
 {
 return x;
 }

 void set(String^ value)
 {
 x = value;
 }
 }

 virtual void Method1()
 {
 Console::WriteLine("Method1()");
 }

Fraser_640-4C03.fm Page 136 Wednesday, November 16, 2005 1:56 PM

C H A P T E R 3 ■ O B J E C T - O R I E N T E D C + + / C L I 137

 virtual void Method2()
 {
 Console::WriteLine("Method2()");
 }

 virtual void Method3()
 {
 Console::WriteLine("Method3()");
 }

 virtual void Print()
 {
 MethodBase();
 Method1();
 Method2();
 Method3();
 }

private:
 String^ x;
};

void main()
{
 DerivedClass dc;

 dc.X = "Start'n Up";
 Console::WriteLine(dc.X);

 dc.Print();
}

Figure 3-17 shows the results of this little program. One thing you should note about the code is
that the class that implements the interface requires each interface method to be prefixed with the
keyword virtual. If you forget, you’ll get a sequence of pretty self-explanatory compile time errors
telling you to add the keyword.

Figure 3-17. Results of InterfaceEx.exe

Fraser_640-4C03.fm Page 137 Wednesday, November 16, 2005 1:56 PM

138 C H A P T E R 3 ■ O B JE C T - O R I E N T E D C + + / C L I

Summary
This chapter covered the basics of objected-oriented development using C++/CLI. You started with
a quick refresher on what objects are and their fundamental concepts. From there, you saw how
these concepts fit into the world of C++/CLI. You looked at ref classes in general, and then you
broke down a ref class into its parts: member variables, member methods, and member proper-
ties. You finished the chapter by looking at abstract ref classes and interfaces.

Unlike the basics, C++/CLI has implemented many changes to traditional C++. Though none of
the changes are complex—in fact, many simplify things—this chapter should be read carefully by
experienced C++ programmers.

You will continue to examine C++/CLI in the next chapter, but now that you have covered the
basics, you can move onto a few more complex and, dare I say, fun topics.

Fraser_640-4C03.fm Page 138 Wednesday, November 16, 2005 1:56 PM

139

■ ■ ■

C H A P T E R 4

Advanced C++/CLI

You have learned the basics of C++/CLI and moved on to explore its object-oriented nature. Now it
is time to start looking at some of the more advanced features of C++/CLI. Unlike the previous chapters,
this one does not have a common thread from start to finish; instead, it consists of an assortment of more
advanced topics that didn’t fit into the previous two chapters.

This chapter covers the following topics:

• Working with preprocessor directives

• Using multifile libraries and building an assembly from them

• Referencing the custom-built assemblies in your applications

• Templates

• Generics

• Handling errors in C++/CLI using exceptions

• Working with delegates

• Using delegates in events

Preprocessor Directives
Before any actual compiling occurs on a piece of program source code in C++/CLI, it must first go
through the preprocessor, just as in traditional C++. The purpose of the preprocessor is to prepare
the program source code for compiling using a number of instructions called preprocessor directives.

These preprocessor directives enable the programmer to do tasks such as include or exclude
code based on conditions, define constants, and so on. All of the directives are prefixed with the #
symbol (variously called pound, number sign, and hash), which makes them stand out from the rest
of the program source code. Table 4-1 shows a complete set of all preprocessor directives for C++/CLI.

Fraser_640-4C04.fm Page 139 Monday, November 14, 2005 11:41 AM

140 C H A P T E R 4 ■ A D V A N C E D C + + / C L I

The three directives that you’ll most likely deal with using C++/CLI are the defining, conditional,
and include directives. Other than the #using directive, there’s no difference between C++/CLI and
traditional C++ when it comes to the available processor directives, though the #import and many
#pragma directives don’t make sense and won’t be used with C++/CLI. This is appropriate, given that
C++/CLI wasn’t designed to change how C++ works; instead, it’s supposed to expand C++ so that it
works seamlessly with .NET.

By convention, preprocessor directives are placed near the top of the source code. In actuality,
other than a select few exceptions (the #using preprocessor directive comes to mind as it needs
global scope) you can place a preprocessor directive on its own line almost anywhere in the code—
basically wherever it makes sense. The #define declarative, for instance, just needs to be placed
before it is used.

Defining Directives
The #define directive is used to execute a macro substitution of one piece of text for another. Here
are the three basic syntaxes for implementing #define:

#define identifier
#define identifier token-string
#define identifier(parameter1,..., parameterN) token-string

The first syntax defines the existence of a symbol. The second syntax allows for the substitution
of text identified by the identifier with the following token-string. The third syntax provides the same

Table 4-1. C++/CLI Preprocessor Directives

Directive Description

#define Defines or undefines a meaningful name to a constant or macro in your program.

#undef

#if Allows for conditional compilation of program source code.

#ifdef

#ifndef

#elif

#else

#endif

#error Intended to allow you to generate a diagnostic error when something goes wrong
in the preprocessor stage.

#include Provides header file insertion.

#line Redefines the compiler’s internally stored line number and filename with the
provided line number and filename.

#pragma Provides machine/operating system–specific features while retaining compatibility
with C++. Most likely, the only #pragma directives that you will encounter in
C++/CLI are once, which causes an include file to be only included once, and
managed and unmanaged, which allow for function-level control of compiling functions
as managed or unmanaged.

#using Imports .NET assembly metadata into program source code using C++/CLI.

Fraser_640-4C04.fm Page 140 Monday, November 14, 2005 11:41 AM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 4 ■ A D V A N C E D C + + / C L I 141

functionality as the second, and the passed parameters are placed within the token-string. Listing 4-1
shows the source code before it has been passed through the preprocessor.

Listing 4-1. Original #defined Code

using namespace System;
#define DISAPPEARS
#define ONE 1
#define TWO 2
#define POW2(x) (x)*(x)

void main ()
{
 Console::Write("The following symbol disappears->" DISAPPEARS);
 Console::WriteLine("<-");

 int x = TWO;
 int y = POW2(x + ONE);

 Console::WriteLine(y);
}

Listing 4-2 shows the source code after it has passed through the preprocessor. Notice that all
identifiers have been substituted with their token-string, or lack of token-string in the case of the
DISAPPEARS identifier.

Listing 4-2. Processed #defined Code

using namespace System;

void main ()
{
 Console::Write("The following symbol disappears->");
 Console::WriteLine("<-");

 int x = 2;
 int y = (x + 1)*(x + 1);

 Console::WriteLine(y);
}

The #undef directive’s purpose is to remove a previously defined symbol. Unlike #define, there
is only one syntax:

#undef identifier

The #undef directive undefines symbols that have been previously defined using the #define
directive or the /D compile-time switch. If the symbol was never defined, then the #undef directive
will be ignored by the preprocessor. If you forget to #undef a symbol before you #define it again, the
compiler will generate a warning but will let you continue. It is probably a good idea whenever you
see this warning to #undef the variable just before you #define it again to get rid of the warning, but
there is nothing saying you have to.

Another approach that you can use to get rid of the warning for an already assigned symbol is to
use the #pragma push_macro() and #pragma pop_macro() directives in conjunction with the #undef
and #define directives. With this approach, the value of the symbol is stored so that it can be reassigned
later after the application no longer needs the new symbol definition. Here is a simple example:

Fraser_640-4C04.fm Page 141 Monday, November 14, 2005 11:41 AM

142 C H A P T E R 4 ■ A D V A N C E D C + + / C L I

#define MY_SYMBOL "Original"

#pragma push_macro("MY_SYMBOL")
#undef MY_SYMBOL
#define MY_SYMBOL "New Value"
 Console::WriteLine(MY_SYMBOL);

#pragma pop_macro("MY_SYMBOL")
 Console::WriteLine(MY_SYMBOL);

Conditional Directives
Conditional directives provide the ability to selectively compile various pieces of a program. They
work in a similar manner to the if flow control construct covered in Chapter 2. The big difference is
that instead of not executing a particular section of code, now it will not be compiled.

The basic syntax for conditional directives is as follows:

#if constant-expression
// code
#elif constant-expression
// code
#else
// code
#endif

Similar to the if flow control construct, the first #if or #elif constant-expression that evaluates
to nonzero or true will have its body of code compiled. If none of the constant-expressions evaluates to
true, then the #else body of code is compiled.

Only one of the blocks of code will be compiled, depending on the result of the constant-
expressions. The constant-expressions can be any combination of symbols, integer constants,
character constants, and preprocessor operators (see Table 4-2).

Table 4-2. Preprocessor Operators

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

& Bitwise AND

| Bitwise OR

^ Bitwise XOR

&& Logical AND

|| Logical OR

<< Left shift

Fraser_640-4C04.fm Page 142 Monday, November 14, 2005 11:41 AM

C H A P T E R 4 ■ A D V A N C E D C + + / C L I 143

Though usually quite simple, an expression can become quite complex, as the following
example suggests:

#define ONE 1
#define TWO 2
#define THREE 3

#if ((ONE & THREE) && (TWO <= 2)) || defined FOUR
 Console::WriteLine("IF");
#else
 Console::WriteLine("ELSE");
#endif

The #if directive has two special preprocessor operators called defined and !defined. The first
evaluates to true on the existence of the identified symbol. The second, obviously, evaluates to true
if the identified symbol does not exist. To simplify the syntax, and because the defined and !defined
operators are the most commonly used preprocessor operators with the #if directive, special versions of
the directive were created: #ifdef and #ifndef.

These two directives are equivalent:

#if defined symbol
#ifdef symbol

and so are these two:

#if !defined symbol
#ifndef symbol

Include Directive
The #include directive causes the compiler to insert a piece of code into another piece of code. The
most common usage of the #include directive is to place header files containing type definitions at
the top of a piece of source file to ensure that the types are defined before they are used.

There are two different #include directive syntaxes for including a file in a source. The first uses
angle brackets (<>) to enclose the file’s path, and the second uses double quotes (""):

>> Right shift

== Equality

!= Inequality

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

defined Symbol is defined

!defined Symbol is not defined

Table 4-2. Preprocessor Operators

Operator Description

Fraser_640-4C04.fm Page 143 Monday, November 14, 2005 11:41 AM

144 C H A P T E R 4 ■ A D V A N C E D C + + / C L I

#include <file-path-spec>
#include "file-path-spec"
#include <windows.h>
#include "myclassdef.h"
#include "c:/myincludes/myclassdef.h"

Each directive syntax causes the replacement of that directive by the entire contents of its specified
file. The difference when processing the two syntaxes is the order that files are searched for when a
path is not specified. If the file’s path is specified, then no search is done, and the file is expected to
be at the location specified by the path. One major drawback is that the path cannot be a network
path (per the Universal Naming Convention [UNC]). In a corporate, multideveloper site, this inability
could be quite a nuisance or possibly even crippling. Table 4-3 summarizes the differences between
the angle bracket and double quote syntax search methods when no path is specified.

■Caution Though the C++/CLI compiler supports the INCLUDE environment variable, Visual Studio 2005 does not.

Using Directive
#using is a preprocessor directive specific to C++/CLI. When compiled, it generates metadata that is
used by the common language runtime (CLR) to identify which assemblies to load. If you are an
experienced C++ programmer, you can think of this directive as being similar to the #include directive,
except that instead of including an .h file, you are now including a compiled .dll assembly file.

The syntax of the #using directive purposely resembles that of the #include directive. This makes
sense, as the #using directive’s function resembles that of the #include directive. The only difference
in the syntax between #using and #include is that you replace “include” with “using”:

#using <assembly-path-spec>
#using "assembly-path-spec"
#using <mscorlib.dll>
#using "myassembly.dll"
#using <DEBUG/myassembly.dll>

There is no difference between using quotes and angle brackets with #using as there is with the
#include directive. Because this is the case, you will generally see angle brackets with #using directives.
With either the double quote method or the angle bracket method, the compiler searches for the
assembly using the following path:

Table 4-3. #include Syntax Search Differences

Syntax Form Search Method

#include <...> Check for files along the path specified by the /I compiler option and then
along paths specified by the INCLUDE environment variable.

#include "..." Check for files in the same directory of the file that contains the #include
statement, then along the path specified by the /I compiler option, and
finally, along paths specified by the INCLUDE environment variable.

Fraser_640-4C04.fm Page 144 Monday, November 14, 2005 11:41 AM

C H A P T E R 4 ■ A D V A N C E D C + + / C L I 145

• The path specified by the #using directive

• The current directory

• The .NET Framework system directory

• Directories added with the /AI compiler option

• Directories in the LIBPATH environment variable

■Caution The #using directive is only used to help the compiler and the Visual Studio 2005 IDE find the
assembly. It does not tell the CLR where to find it. To run the application, you must still place the assembly in a loca-
tion where the CLR knows to look for it.

It should be noted that the keyword using and the preprocessor directive #using are different.
The using keyword enables coding without the need of explicit qualifications. The using keyword
says, “Whenever a class or variable does not exist in the current scope, check the scope of the namespace
specified by the using statement, and if it is there, use it just like it is part of the current scope.”

Okay, now after that nice long explanation, I should tell you that you will probably never use the
#using directive if you are developing C++/CLI code within Visual Studio 2005 because in VS .NET
the best way to add assembly references is via Solution Explorer.

Multifile Libraries
So far, in every example, you have used only one file as the source of an application. For small
example or demonstration programs, this might be okay, but for more complex applications, using
multiple source files to break up an application to make it more readable is a much better approach.

Breaking up the source code of an application into its possible many parts can be done in any
number of ways. One of the most common approaches is to break off the source into groups of
common functionality, better known as libraries. Libraries are a powerful means of breaking up an
application because they are more conducive to code reuse, and only at the cost of some minor
up-front design work.

The first thing that you will confront when building multifile libraries is that all types need to be
declared before they are used in C++/CLI. This is not a problem in a single file, because all you have
to do is place the declaration of the type before it is used.

With multifile libraries, you run into the problem of how to access a type that is declared in a
different file. You could define a whole bunch of classes and then cut and paste all of the class defi-
nitions that you need in every file that uses them, but then you are going to be living in maintenance
hell for the lifetime of the library. A better solution is to use header files to hold all these definitions
and then #include them at the start of any source file that uses these definitions.

Almost all C++/CLI libraries (and applications, for that matter) should be broken up into two
types of files: header files and source files. A header file is made up of the code needed to describe the
types that are used, and a source file is made up of all the code that implements these types.

Fraser_640-4C04.fm Page 145 Monday, November 14, 2005 11:41 AM

146 C H A P T E R 4 ■ A D V A N C E D C + + / C L I

With this split, it is a simple thing to place all needed definitions of types by a source file at its
top. You discovered earlier that it is a simple matter to place all the declarations in a header file and
then insert the contents of the header into the main source code using the #include directive. Coding
this way also ensures that all types will be declared before they are used, just as they need to be, by
C++/CLI.

Okay, you know that you can split source code into two parts, and you know how to actually
include the definition part of the source. Let’s examine the two parts in more detail.

Header Files
Header files look very similar to all the examples that you have seen in this book so far. Instead of
ending in .cpp, they usually end in .h, but that is not mandatory—they can actually end with anything.
The only real difference between what you have seen in Chapter 3’s class definitions and the class defini-
tions found in header files in this chapter is that the header files now only contain the definition portion
of functions, member properties, and member methods.

■Note Header files are made up of function prototypes and class definitions.

It is legal to place the implementation of a class within a header file. In fact, so far that is how
I have been coding every class in the book. To a C++ programmer this is called inline coding.

Here is an example of a header file:

//square.h

ref class Square
{
public:
 Square (int d);
 int Area();
private:
 int Dims;
};

Notice that the only difference between this file and what you have seen previously is that there
is no main() function, and that the constructor Square() and the member method Area() are only
declared and have no implementation. You could, in fact, have implemented both the constructor
and the member method, and the header file still would have been valid because classes in C++/CLI
are just definitions. What you can’t include in header files are function implementations—for example,
the main() function. What you can include are only function prototypes.

Fraser_640-4C04.fm Page 146 Monday, November 14, 2005 11:41 AM

C H A P T E R 4 ■ A D V A N C E D C + + / C L I 147

Source Files
You have seen source files previously in this book. They are C++/CLI files that end with .cpp. With
traditional C++ source files, the definition is not found in the source file, unlike all the examples you
have seen thus far. Instead, they contain only the implementation of the definitions specified in the
header file.

The syntax for implementing member methods in a separate source file from their definitions
is similar to that of the function, which was covered in Chapter 2, except that the member method is
prefixed with the name of the class it is implementing and the scope resolution (::) operator.

The following example shows the source file for the square.h header file listed previously. Its
structure is very typical of all C++/CLI source files. It starts with the standard using namespace
System; statement. Next comes the include statement for the header file, which this source file will
be defining, and finally, the actual implementations of all the unimplemented member methods.

// square.cpp

using namespace System;

#include "square.h"

Square::Square (int d)
{
 Dims = d;
}

int Square::Area()
{
 return Dims * Dims;
}

Namespaces
Adding a namespace to a library is optional but highly recommended. Remember that all identifiers
have to be unique in C++/CLI, at least within their own scope. When you develop code on your own,
keeping identifiers unique should not be a problem. With careful coordination and a detailed naming
convention, a small group of programmers can keep all their identifiers unique. However, with the
addition of third-party source code, unique identifiers become increasingly harder to maintain.
That is, unless namespaces are used.

Namespaces create a local-scope declarative region for types. In other words, namespaces
allow programmers to group code under a unique name. Thus, with a namespace, it is possible for
programmers to create all types with any names they like and be secure in the knowledge that the types
will be unique within the application if they are placed within a uniquely identified namespace.

The basic syntax of a namespace is simply this:

namespace name
{
 // all types to be defined within the namespace
}

Fraser_640-4C04.fm Page 147 Monday, November 14, 2005 11:41 AM

cafac74dd2d083cbec0906b66fcd56b1

148 C H A P T E R 4 ■ A D V A N C E D C + + / C L I

If you want a namespace called Test to provide local scope to the Square class defined previously,
you would simply code it like this:

namespace Test
{
 public ref class Square
 {
 public:
 Square (int d);
 int Area();
 private:
 int Dims;
 };
}

Those of you with a traditional C++ background may have noticed the additional keyword public
placed in front of the class declaration. C++/CLI handles namespaces differently from traditional
C++. Types within a namespace have private access. Thus, to make the class accessible outside the
namespace, it has to be declared public. In traditional C++, all types are public within a namespace.

Personally, I don’t like the new syntax, as it is inconsistent with C++. It should be public: (be
careful, this is invalid syntactically), as it is in classes and structures. This syntax resembles C# and Java.

■Caution If you fail to make any of the classes within the namespace public, then the namespace will not be
accessible and will generate an error when you attempt to use the using statement for the namespace.

The syntax to implement a member method within a namespace does not change much. Simply
add the namespace’s name in front of the class name, delimited by the scope resolution (::)
operator.

using namespace System;

#include "square.h"

Test::Square::Square (int d)
{
 Dims = d;
}

int Test::Square::Area()
{
 return Dims * Dims;
}

Fraser_640-4C04.fm Page 148 Monday, November 14, 2005 11:41 AM

C H A P T E R 4 ■ A D V A N C E D C + + / C L I 149

If you are observant or have a good memory, you might remember that you could use the using
statement to simplify the preceding code to this:

using namespace System;

#include "square.h"
using namespace Test;

Square::Square (int d)
{
 Dims = d;
}

int Square::Area()
{
 return Dims * Dims;
}

Be careful to place the using statement after the #include directive because the namespace Test
is defined in the included header file.

Building Assemblies from Multifile Libraries
I don’t cover assemblies until Chapter 18, so let’s not get bogged down with the details of what an
assembly really is until then. For now, think of an assembly as a specially formatted .dll or .exe file
that is executed by the CLR.

A key feature that you need to know about assemblies is that they’re self-describing. What does
that mean to a C++/CLI programmer? Simply put, you don’t need header files to use the types placed
within an assembly. Or, in other words, all those header files you meticulously created when you
built your library are no longer needed once you finish creating your assembly. This is a major change
from traditional C++.

■Note Header files are not needed with assemblies!

Building Multifile Library Assemblies
You will learn how to actually access an assembly later in this chapter. The common C++ way of
creating a library, either static or dynamic, is to create a set of header files to describe all the function-
ality found within the library. Then, in separate source files, implement all the functionality defined
by these header files. All of the source code, along with all the associated header files, is run through
the compiler to generate object files. Then all the object files are linked together to create a library file.

Fraser_640-4C04.fm Page 149 Monday, November 14, 2005 11:41 AM

150 C H A P T E R 4 ■ A D V A N C E D C + + / C L I

Fraser_640-4C04.fm Page 150 Monday, November 14, 2005 11:41 AM

C H A P T E R 4 ■ A D V A N C E D C + + / C L I 151

The main reason for all these header files is that when the class is implemented, all the classes,
structures, variables, and so on are defined and thus are accessible.

This exact process can be used to generate library assemblies as well. The only difference in the
process would be that the C++/CLI flags are turned on for the compiler and linker.

The following example, which consists of Listings 4-3 through 4-6, shows how to create an
assembly using the traditional C++ method.

Listing 4-3 shows the header definition to the Card.h file. This file defines an enum of playing
card Suits and a Card class within the namespace of Cards. Notice that the keyword public is placed
in front of both the enum class and the ref class, as both need to be publicly accessible.

Listing 4-3. Card.h: Traditional Method

namespace Cards
{
 public enum class Suits { Heart, Diamond, Spade, Club };

 public ref class Card
 {
 private:
 int type;
 Suits suit;

 public:
 Card(int type, Suits suit);

 property int Type
 {
 int get();
 void set(int value);
 }

 property Suits Suit
 {
 Suits get();
 void set(Suits value);
 }

 virtual String^ ToString() override;
 };
}

Listing 4-4 shows the implementation of the class’s constructor and member methods. There
are a couple of things of note in this file. First is how you implement the getter and setter methods.
Notice that you must include the class name and the property name before the get or set method
declaration. Second is how you can override the virtual method ToString() inherited from the
Object class. This allows you to use the class directly within the Console::WriteLine() method.
As you can see, there is nothing special to doing either of these. I also do a little magic to get the
characters that represent the heart, diamond, spade, and club.

Fraser_640-4C04.fm Page 151 Monday, November 14, 2005 11:41 AM

152 C H A P T E R 4 ■ A D V A N C E D C + + / C L I

Listing 4-4. Card.cpp: Traditional Method

using namespace System;

#include "card.h"
using namespace Cards;

Card::Card(int type, Suits suit)
{
 Type = type;
 Suit = suit;
}

int Card::Type::get()
{
 return type;
}

void Card::Type::set(int value)
{
 type = value;
}

Suits Card::Suit::get()
{
 return suit;
}

void Card::Suit::set(Suits value)
{
 suit = value;
}

String^ Card::ToString()
{
 String ^t;

 if (Type > 1 && Type < 11)
 t = Type.ToString();
 else if (Type == 1)
 t = "A";
 else if (Type == 11)
 t = "J";
 else if (Type == 12)
 t = "Q";
 else
 t = "K";

 switch (Suit)
 {
 case Suits::Heart:
 return String::Concat(t, gcnew String((Char)3, 1));
 case Suits::Diamond:
 return String::Concat(t, gcnew String((Char)4, 1));

Fraser_640-4C04.fm Page 152 Monday, November 14, 2005 11:41 AM

C H A P T E R 4 ■ A D V A N C E D C + + / C L I 153

 case Suits::Club:
 return String::Concat(t, gcnew String((Char)5, 1));
 default: //Spade
 return String::Concat(t, gcnew String((Char)6, 1));
 }
}

Listing 4-5 defines a second class named Deck. Notice that you use the Card class within the
class, yet you never declare it within the header file. The trick to handling this is to remember that
header files are pasted wholesale into the source file during compilation. Because this is the case,
you simply place the include file of Card.h before Deck.h in the Deck.cpp source file, as you will see in
Listing 4-6. Thus, the Card class is pasted in first and, therefore, defined as needed before the Deck class.

Listing 4-5. Deck.h: Traditional Method

namespace Cards
{
 public ref class Deck
 {
 array<Card^>^ deck;
 int curCard;

 public:
 Deck(void);

 Card ^Deal();
 void Shuffle();
 };
}

Listing 4-6 shows the final source file to the mini library. Notice, as I stated previously, that
Card.h is included before Deck.h. If you’re observant, you might also notice that the Random class is
used. You can find this class within the .NET Framework class library.

Listing 4-6. Deck.cpp: Traditional Method

using namespace System;

#include "card.h"
#include "deck.h"

using namespace Cards;

Deck::Deck(void)
{
 deck = gcnew array<Card^>(52);

 for (int i = 0; i < 13; i++)
 {
 deck[i] = gcnew Card(i+1, Suits::Heart);
 deck[i+13] = gcnew Card(i+1, Suits::Club);
 deck[i+26] = gcnew Card(i+1, Suits::Diamond);
 deck[i+39] = gcnew Card(i+1, Suits::Spade);
 }

Fraser_640-4C04.fm Page 153 Monday, November 14, 2005 11:41 AM

154 C H A P T E R 4 ■ A D V A N C E D C + + / C L I

 curCard = 0;
}

Card^ Deck::Deal()
{
 if (curCard < deck->Length)
 return deck[curCard++];
 else
 return nullptr;
}

void Deck::Shuffle()
{
 Random ^r = gcnew Random();
 Card ^tmp;
 int j;

 for(int i = 0; i < deck->Length; i++)
 {
 j = r->Next(deck->Length);
 tmp = deck[j];
 deck[j] = deck[i];
 deck[i] = tmp;
 }

 curCard = 0;
}

The command you need to execute to build a library assembly from the command line is a little
more complex than what you have seen so far, but it is hardly rocket science. The syntax is simply as
follows (without the ellipsis):

cl source1.cpp source2.cpp...sourceN.cpp /clr:safe /LD /FeOutputName.dll

The first change to the command line is that it takes a list of source file names. The next change
is the /LD argument, which tells the linker to create a .dll and then, finally, the /Fe argument, which
indicates the name of the .dll file to create. Notice that there is no space between the /Fe argument
and the name of the file to create.

To compile the previous example, you would use

cl card.cpp deck.cpp /clr:safe /LD /FeCards.dll

Assembly Referencing
Once you place all of your library logic in an assembly, you are going to want to access it. With C++/CLI,
getting access to or referencing an assembly is remarkably easy: one file copy (even this step can be elim-
inated) and one line of code. In fact, the command to compile the application doesn’t even change.

After you have done these two things, you can access the library classes as if they were coded
directly within your application. If you are using Visual Studio 2005, then you will even have full
access to the type definitions within the assembly using IntelliSense.

Fraser_640-4C04.fm Page 154 Monday, November 14, 2005 11:41 AM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 4 ■ A D V A N C E D C + + / C L I 155

You’ll learn more about configuring access to library assemblies in Chapter 18, but the simplest
method is just to place the assembly in the same directory where the final .exe file is going to be
placed. Moving or copying the assembly can be done by using the simple copy.exe command or by
just dragging and dropping using Windows Explorer. That’s it. There’s no registering, unregistering,
GUIDs, or variants.

You’ve already covered the line that needs to be added to the source code: #using. Simply add a
#using statement at the top of the source code, and voilá! The library is available as if it were coded
right there in your code. You don’t even need any header files—the assembly fully describes itself to
the compiler, so it doesn’t need any headers.

Listing 4-7 shows an application called PlayCards.exe that references the Cards.dll assembly
that you just created. Notice that you have access to the namespace and classes, just as you would if you
had coded them in the application. You can make references and handles to the classes. In fact, you can
even inherit from them. You can use them just as you would any other class in the application.

Listing 4-7. PlayCards.cpp: Reference a User Assembly

#using <cards.dll>

using namespace System;
using namespace Cards;

void main()
{
 Deck deck;

 deck.Shuffle();

 Card ^card;
 int cnt = 0;
 while ((card = deck.Deal()) != nullptr)
 {
 Console::Write(card->ToString());
 Console::Write("\t");
 cnt++;

 if (cnt > 4)
 {
 Console::WriteLine("");
 cnt = 0;
 }
 }
 Console::WriteLine("");
}

To build this application from the command line, simply copy Cards.dll to the same directory
as the source of PlayCards.cpp and then execute the same command from the command line as you
always have:

cl PlayCards.cpp /clr:safe

Figure 4-1 shows a sample output of this random program.

Fraser_640-4C04.fm Page 155 Monday, November 14, 2005 11:41 AM

156 C H A P T E R 4 ■ A D V A N C E D C + + / C L I

Figure 4-1. Example results of PlayCards.exe

Templates
Templates are a welcome addition to C++/CLI. I personally feel that this feature’s omission contrib-
uted quite a bit to Managed Extensions for C++’s (C++/CLI’s predecessor) lackluster adoption and
C#’s rapid rise as the number one language for .NET development. Without templates, there was no
real difference between the two languages. (The lack of ASP.NET support by C++/CLI may in the
future be another major factor. With Managed Extensions for C++, there was at least partial support,
but now with C++/CLI, there is no longer even partial support for ASP.NET.)

Though often overlooked by the novice C++ programmer, templates frequently become an
often-used feature as a developer’s skills in C++ improve. As a consequence of its strong ability to
encourage code reusability, I am sure the same will hold true with C++/CLI.

There really isn’t much difference between C++ and C++/CLI, so a developer who has experi-
ence in templates should feel right at home with the C++/CLI implementation. The important things
that an experienced developer should be aware of are that templates are verifiable (safe) and only
work within a single assembly. To perform template-like functionality across assemblies requires a
.NET Framework 2.0 construct known as generics. I’ll cover generics later in this chapter.

Okay, so what are templates? Templates are used as a compile-time technique that enables a
programmer to specify, with a single set of code, a complete range of related functions and/or classes.
Have you ever taken a piece of code, cut and pasted it somewhere else, and then just changed the data
type(s) implemented within this code? Well, that is what templates do, but without the cut and paste.

There are types of C++/CLI templates (just as in standard C++): function templates and class
templates. At first glance, both types of templates look quite complicated, but once you build one or
two of them, you will see just how easy they actually are.

Function Templates
Function templates provide the ability to implement the same functionality on different data types.
In ancient times, developers used to implement this using #define macro directives. Unfortunately,
this method was not always type-safe and it was rather complex to write, especially if the macro was
large. Function templates, on the other hand, have complete type checking, and the template function is
nearly identical to a standard function. Also, compile-time error messages are detailed and noted on
the line in the template where the error occurs. The #define macro directives have more cryptic
error messages and appear where the macro is implemented but not where it is declared.

Fraser_640-4C04.fm Page 156 Monday, November 14, 2005 11:41 AM

C H A P T E R 4 ■ A D V A N C E D C + + / C L I 157

To implement a template, you need to create a regular function but replace the data types for
which you want to replicate the functionality with a template data type. Then you prefix the function
with a template header, within which you declare this template data type:

template <class T>
T min (T a, T b)
{
 return (a < b) ? a : b;
}

■Note You can use any identifier for the template class, not just T as I do in the examples.

■Note Though I only use the class operator within the template statement, you can also use typename. Both
are interchangeable.

By the way, here is the same code as a #define macro directive (yes, all the brackets are needed):

#define min(a,b) ((a) < (b)) ? (a) : (b)

Then you use the template just as you would any other function:

int a = 5;
int b = 6;
Console::WriteLine("The min of {0} and {1} is {2}", a, b, min(a,b));

The compiler will look at the function min and check to see if the data types are the same. If they
are, it will generate an instance of a function to handle the function. For example, if a and b are int
values, then code similar to the following will be generated:

int min (int a, int b)
{
 return (a < b) ? a : b;
}

Be careful, though, because the template specifies that the data type of both parameters must
be the same, given that only one type is specified within the template. If you were to implement the
preceding template like this:

int a = 5;
double b = 6;
Console::WriteLine("The min of {0} and {1} is {2}", a, b, min(a,b));

the compiler would generate an error, as it would not be able to resolve the template type.
Templates allow you to specify multiple template types. You could go wild and instead declare

the preceding template to support different data types, like this:

template <class T1, class T2>
T1 min (T1 a, T2 b)
{
 return (T1)((a < b) ? a : b);
}

Then if you implemented the template using different data types, you would be fine.
Or would you? What happens if the type data types in the template could not be compared? For

example, what would happen if the first data type was an int and the second a handle to String?

Fraser_640-4C04.fm Page 157 Monday, November 14, 2005 11:41 AM

158 C H A P T E R 4 ■ A D V A N C E D C + + / C L I

int a = 5;
String^ b = "Hi";
Console::WriteLine("The min of {0} and {1} is {2}", a, b, min(a,b));

The types are compared at compile time and will be found to be incompatible, and a compile-time
error will be generated.

All the preceding implementation of the template functions has been implicit. It is also possible
to implement the template explicitly. This is done by specifying the data type to use in square brackets
after the function name within the function call. Now, because there is no longer any ambiguity of
the data type being used, the explicit instantiation of the original min function template would compile.

int a = 5;
double b = 6;
Console::WriteLine("The min of {0} and {1} is {2}", a, b, min<double>(a,b));

Class Templates
The idea behind class templates is the same as function templates. This time, though, the template
creates data type generic classes. Syntactically, the declaration of a class template is the same as a
standard class, except that you prefix the class with a template statement and then use the data type
specified by the prefix within the class declaration.

template <class T>
ref class Point2D
{
public:
 Point2D();
 T X;
 T Y;
 static Point2D^ operator*(const Point2D^ lhs, const T rhs);
};

The implementation of the template is a little more involved, as you need to also prefix the
methods with the template statement and qualify the method with the class template followed by a
template argument list. One thing I find a little odd about the class template implementation is that
you don’t need a template argument list when you use a template class within a method, but if you
return a template class, you do. Take a closer look at the operator* method to see what I mean:

template <class T>
Point2D<T>::Point2D() : X((T)0), Y((T)0) {}

template <class T>
Point2D<T>^ Point2D<T>::operator*(const Point2D^ lhs, const T rhs)
{
 Point2D^ ret = gcnew Point2D();
 ret->X = lhs->X * rhs;
 ret->Y = lhs->Y * rhs;
 return ret;
}

Creating an instance of a class template is nearly as easy as creating an instance of a class. You
simply need to explicitly specify the data type to be used by the template when you create the
instance of the template class using a template argument list:

 Point2D<double>^ TopLeft = gcnew Point2D<double>(10.5, 10.9);

Fraser_640-4C04.fm Page 158 Monday, November 14, 2005 11:41 AM

C H A P T E R 4 ■ A D V A N C E D C + + / C L I 159

That’s it. From here on, you will be coding just as you would a standard class. One thing you
need to note is that each time you create an instance of a template with different data type, you are
creating a new copy of the class template or what is known as a new generated class.

■Caution The definition and implementation of a class template must reside within the same file (usually a
header file). The reason for this is that a generated class is created when an instantiation occurs during the compile
and both the definition and implementation have to be available at that time.

Template Specialization and Partial Specialization
There will come a time when you are going to want to perform special actions when a certain data
type is used within the class template. This is what is known as template specialization. For example,
let’s say your class will not work properly for a particular data type. By providing a specialization for
the generation of that type, you could throw an exception notifying the implementer of the class
template of the problem. (I cover exceptions later in this chapter.)

To create a template specialization, you simple create an additional copy of the class template
but with an explicit data type in the template argument list:

template <>
ref class Point2D<char>
{
public:
 Point2D() { throw gcnew Exception("Data Type is too small"); }
};

You create an instance of a template specialization exactly like a class template:

 Point2D<char>^ TopLeft = gcnew Point2D<char>(10.5, 10.9);

Because the compiler finds the specialized data type, it generates the specialization instance
instead. A partial specialization is very similar to a specialization except that not all of the template
data types are explicitly specified:

// template class
template <class T1, class T2>
ref class ACB
{
};

// partial specialization template
template <class T1>
ref class ABC<T1, char>
{
};

void main()
{
 // generates instance of template class
 ABC<int,int>^ templateClass = gcnew ABC<int,int>();

 // generates instance of partial specialization
 ABC<int,char>^ partialSpec = gcnew ABC<int,char>();
}

Fraser_640-4C04.fm Page 159 Monday, November 14, 2005 11:41 AM

160 C H A P T E R 4 ■ A D V A N C E D C + + / C L I

Template Parameters
Class templates have an additional construct that allows you to specify a default parameter to
provide to the class. This comes in handy for things like preinitializing an array within the template.
All default parameters are treated like const.

template <class T, int elements>
ref class X
{
private:
 static array<T>^ iArray = gcnew array<T>(elements);
public:
 X() {}
};

To create and instance of a template with a parameter, use the following syntax:

X<int,10> x;
// - or –
X<int,10>^ x = gcnew X<int,10>();

The managed heap declaration looks like a managed array declaration, doesn’t it?
It is also possible to provide default data types and parameters:

template <class T = int, int elements = 10>
ref class X
{
};

Now, that everything is defaulted, you can declare the template, like this:

X<> x;
// - or –
X<>^ x = gcnew X<>();

Listing 4-8 is an example of both a function template and a very simple (read: incomplete)
Point2D class template. The Point2D class template also has a specialization on the char data type,
which throws an exception if implemented.

Listing 4-8. Templates in Action

using namespace System;

// Function Template --------------------------------------

template <class T>
T min (T a, T b)
{
 return (a < b) ? a : b;
}

// Class Template ---

template <class T>
ref class Point2D
{

Fraser_640-4C04.fm Page 160 Monday, November 14, 2005 11:41 AM

C H A P T E R 4 ■ A D V A N C E D C + + / C L I 161

public:
 Point2D();
 Point2D(T x, T y);

 T X;
 T Y;

 static Point2D^ operator-(const Point2D^ lhs, const Point2D^ rhs);
 static Point2D^ operator*(const Point2D^ lhs, const T rhs);

 virtual String^ ToString() override;
};

template <class T>
Point2D<T>::Point2D() : X((T)0), Y((T)0) {}

template <class T>
Point2D<T>::Point2D(T x, T y) : X(x), Y(y) {}

template <class T>
Point2D<T>^ Point2D<T>::operator-(const Point2D^ lhs, const Point2D^ rhs)
{
 Point2D^ ret = gcnew Point2D();

 ret->X = lhs->X - rhs->X;
 ret->Y = lhs->Y - rhs->Y;

 return ret;
}

template <class T>
Point2D<T>^ Point2D<T>::operator*(const Point2D^ lhs, const T rhs)
{
 Point2D^ ret = gcnew Point2D();

 ret->X = lhs->X * rhs;
 ret->Y = lhs->Y * rhs;

 return ret;
}

template <class T>
String^ Point2D<T>::ToString()
{
 return String::Format("X={0} Y={1}", X, Y);
}

// Class Template Specialization ----------------------------

template <>
ref class Point2D<char>
{

Fraser_640-4C04.fm Page 161 Monday, November 14, 2005 11:41 AM

cafac74dd2d083cbec0906b66fcd56b1

162 C H A P T E R 4 ■ A D V A N C E D C + + / C L I

public:
 Point2D() { throw gcnew Exception("Data Type is too small"); }
 Point2D(char x, char y) { throw gcnew Exception("Data Type is too small"); }
};

// main function --

void main()
{
 int a = 5;
 int b = 6;
 double c = 5.1;

 Console::WriteLine("The min of {0} and {1} is {2}", a, b, min(a,b));
 Console::WriteLine("The min of {0} and {1} is {2}", a, c, min<double>(a,c));

 Console::WriteLine("----------------------------");

 Point2D<int>^ TopLeftI = gcnew Point2D<int>(10, 10);
 Point2D<int>^ BottomRightI = gcnew Point2D<int>(15, 20);

 Point2D<int>^ SizeI = BottomRightI - TopLeftI;
 Console::WriteLine(SizeI);

 SizeI = SizeI * 2;
 Console::WriteLine(SizeI);

 Console::WriteLine("----------------------------");

 Point2D<double>^ TopLeft = gcnew Point2D<double>(10.5, 10.9);
 Point2D<double>^ BottomRight = gcnew Point2D<double>(15.2, 20.3);

 Point2D<double>^ SizeD = BottomRight - TopLeft;
 Console::WriteLine(SizeD);

 SizeD = SizeD * 0.5;
 Console::WriteLine(SizeD);

 Console::WriteLine("----------------------------");

 try
 {
 Point2D<char>^ TopLeft = gcnew Point2D<char>(10, 10);
 }
 catch (Exception^ ex)
 {
 Console::WriteLine(ex->Message);
 }
}

Figure 4-2 shows the results of this little program.

Fraser_640-4C04.fm Page 162 Monday, November 14, 2005 11:41 AM

C H A P T E R 4 ■ A D V A N C E D C + + / C L I 163

Figure 4-2. Results of Templates.exe

Generics
Let’s get one thing straight right away. Generics are not .NET templates. Yes, they have a similar
syntax to templates and some overlap of functionality, as both templates and generics make it
possible to create data type generic types. But that is where the similarities end.

So what are generics? They are runtime, subtype constraint–based, instantiated data type, generic
objects that are verifiable and have cross-language support. Okay, perhaps this is not the easiest
definition to follow. Maybe it will be easier to understand if I compare and contrast a generic with a
template, which it closely resembles.

A generic is syntactically coded in nearly an identical fashion as a template. The big differences
are that specializations are not allowed and there are no default parameters. Oh, you also use the
keyword generic instead of template. In other words, the basic generic is easier to code then a template:

generic<class K, class V>
ref class KVClass
{
public:
 property K Key;
 property V Value;
 KVClass(K key, V value);
};

generic<class K, class V>
KVClass<K,V>::KVClass(K key, V value)
{
 Key = key;
 Value = value;
}

The preceding code will generate an instance for any key/value data type pair. What happens if
the generic will only work for a certain subset of data types? That is where the subtype constraint
comes into play. Subtype constraints allow you to specify which base class and/or interfaces that
each generic parameter supports.

A subtype constraint cannot be a sealed class or value type, including built-in types such as int
or double. The reason is that value types and sealed classes cannot have derived classes; thus, only
one class would ever be able to satisfy the subtype constraint—the value type or sealed class itself. If
you think about it, you only have to rewrite the generic with the parameter replaced with the value
type or sealed class to accomplish the same thing.

Fraser_640-4C04.fm Page 163 Monday, November 14, 2005 11:41 AM

164 C H A P T E R 4 ■ A D V A N C E D C + + / C L I

To code a subtype constraint, you use the following code placed between the generic statement
and the class or method:

where type-parameter_1: [class constraint,] [interface constraint list]
//...
where type-parameter_N: [class constraint,] [interface constraint list]

or

generic<class K, class V>
 where K : IComparable
ref class KVClass
{
};

generic<class K, class V>
 where K : IComparable
V KVClass<K,V>::isGreater(KVClass ^in)
{
}

One major difference between generics and templates is when they are instantiated. For templates,
it happens at compile time, whereas for generics, it happens at runtime. This difference is significant
because instantiation at compile time means that the same template instantiated in two different
assemblies results in two different types being generate. The reason is that all types are qualified by
the assembly in which they are defined. In other words, the data type DType in assembly 1 is not the
same as the data type DType in assembly 2, even if DType is defined exactly the same way in both
assemblies. So, assembly 1’s myTemplate<T> is a different type from assembly 2’s myTemplate<T>. The
generic, on the other hand, because it is instantiated at runtime, is able to create one specialization
for all references.

Another difference between templates and generics is that only generics provide .NET cross-
language support because other languages do not support templates. This means that a generic
object created in C++/CLI can be used, for example, by C# or Visual Basic .NET.

Listing 4-9 is an example of a very simple (read: very incomplete) key/value pair generic. You
will see in Chapter 7 that the .NET Framework provides a base class for you to inherit to build this
type of generic.

Listing 4-9. Generics in Action

using namespace System;

// Generic Class --

generic<class K, class V>
 where K : IComparable
ref class KVClass
{
public:
 property K Key;
 property V Value;
 KVClass(K key, V value);

 V isGreater(KVClass ^in);
};

Fraser_640-4C04.fm Page 164 Monday, November 14, 2005 11:41 AM

C H A P T E R 4 ■ A D V A N C E D C + + / C L I 165

generic<class K, class V>
KVClass<K,V>::KVClass(K key, V value)
{
 Key = key;
 Value = value;
}

generic<class K, class V>
 where K : IComparable
V KVClass<K,V>::isGreater(KVClass ^in)
{
 if (Key->CompareTo(in->Key) > 0)
 return Value;
 else
 return in->Value;
}

// main function --

void main()
{
 KVClass<int,String^> ^a = gcnew KVClass<int,String^>(5, "Five");
 KVClass<int,String^> ^b = gcnew KVClass<int,String^>(6, "Six");

 Console::WriteLine(a->isGreater(b));

 KVClass<String^,int> ^t = gcnew KVClass<String^,int>("Tomato", 1);
 KVClass<String^,int> ^c = gcnew KVClass<String^,int>("Carrot", 2);

 Console::WriteLine(t->isGreater(c));
}

Figure 4-3 shows the results of this little program.

Figure 4-3. Results of Generics.exe

typedef
The typedef operator allows you to create new names for existing data types. These operators are
extremely handy when it comes to arrays and templates, because they improve readability and
simplify coding. For example, a typedef for an array of integers could be declared as

typedef array<int> intArray;

Fraser_640-4C04.fm Page 165 Monday, November 14, 2005 11:41 AM

166 C H A P T E R 4 ■ A D V A N C E D C + + / C L I

Now to create an instance of an array of five integers, you would simply code

intArray^ x = gcnew intArray(5);

Similarly, using typedef with class templates can make things easier to read. Instead of

Point2D<int>^
Point2D<double>^

from the preceding example, you could use the following:

typedef Point2D<int> Int2DPoint;
typedef Point2D<double> Double2DPoint;

You could then create instances of the templates like this:

Int2DPoint^ TopLeftI = gcnew Int2DPoint(10, 10);
Double2DPoint^ TopLeftD = gcnew Double2DPoint(10, 10);

The typedef operator also has one more important benefit. If the data type defined by the
typedef were ever to change, you would only have to make the change within the typedef statement.
If you don’t use the typedef, you would have to scan through all your code looking for and then
changing all instances of the data type.

However, the typedef operator can also make your code complicated if not used properly,
because there is nothing stopping you from renaming all your date types to meaningless names. For
example, you could rename all your data types to animal names. (I’m not sure why you would do
this, but you could.)

typedef char mouse;
typedef short cat;
typedef int elephant;
// and so on ...

Exceptions
Error handling should be nothing new to software developers. All programmers have written code
that verifies that the processes in their code work properly and, if they don’t, does something special
to correct them. Wouldn’t it be nice if nothing could go wrong with your programs, and you could
write code without having to worry about whether something might go wrong?

Well, you can use exceptions to do that—sort of. Along with the exception’s normal role of
handling all unforeseen problems, it can actually allow you to code in a manner as if nothing will go
wrong and then capture all the possible errors at the end. This separation of error handling from the
main code logic can make the program much easier to work with. It eliminates multiple layers of if
statements with the sole purpose of trapping errors that might occur (but most probably won’t).

With C++/CLI, exceptions have been taken one step further than with traditional C++. Exceptions
can now be thrown across language boundaries. That means that if, for example, you code a ref
class in C++/CLI, and the ref class is used in some C# code, any exceptions thrown in the C++/CLI
class can be caught by the C# code. A major benefit of this is there is that no need for checking the
HResult for errors any longer (if implemented using exceptions). You just have to code as if things
worked correctly, because if they didn’t, the error would be caught by the exception handler. I won’t
go into multilanguage programming in this book, but rest assured it does work.

Basics of Exception Handling
Coding for exceptions is very easy. You break your code up into three parts: the code for successful
execution, the errors, and the code to clean up afterward. In C++/CLI, these three parts are known as

Fraser_640-4C04.fm Page 166 Monday, November 14, 2005 11:41 AM

C H A P T E R 4 ■ A D V A N C E D C + + / C L I 167

the try block, the catch block, and the finally block. I will describe the try and catch blocks now
and examine the finally block at the end of this section.

The process for handling exceptions is a little tricky for new developers because the linear flow
of the code is broken. Whenever an error occurs, the program throws an exception. At this point,
normal execution flow of the program ends, and the program goes in search of a handler for the
exception that it threw. You’ll see how the program searches for exceptions later, in the section
“Catching Multiple Exceptions.” If it doesn’t find an exception, the program terminates. Before
C++/CLI, this termination would have left programs without cleaning up after themselves, but if you
code with ref classes, you don’t have to worry about this.

Exceptions also have to be thrown within a try block, or they will immediately terminate
without searching for a handler. The try block is simply a block of code enclosed in curly brackets
and prefixed with the keyword try:

try
{
 // code body where exception can be thrown
}

After the try block are one or more catch blocks. Each catch block handles a different type of
error. A catch block looks similar to a function with one parameter, except that the function name is
always catch, there is no return type, and the parameter is the exception type to trap.

catch (ExceptionType e1)
{
 // code to handle exception
}
// repeat for all specific exception types
catch (ExceptionType eN)
{
 // generic code to handle exception
}

Listing 4-10 shows a simple example of an exception. I noted in Chapter 3 that the safe_cast
operator throws a System::InvalidCastException when it is unable to convert from one try to another.
This coding example shows how to capture this exception so that it can be handled more elegantly
than the abrupt termination that would normally happen. The safe_cast operator is actually to
smart to be used directly as it knows that class X and class Y are not related, so I had to use the C-cast
style type cast, which internally uses the safe_cast operator.

Listing 4-10. CatchException.exe: Simple Exception Handling Example

using namespace System;

ref class X {};
ref class Y {};

void main()
{
 X ^x = gcnew X;

 try
 {
 Y ^y = (Y^)x;
 Console::WriteLine("No Exception"); // Should not execute
 }

Fraser_640-4C04.fm Page 167 Monday, November 14, 2005 11:41 AM

168 C H A P T E R 4 ■ A D V A N C E D C + + / C L I

 catch (InvalidCastException ^e)
 {
 Console::WriteLine("Invalid Cast Exception");
 Console::WriteLine(e->StackTrace);
 }
}

Figure 4-4 shows the results of this little program.

Figure 4-4. Results of CatchException.exe

.NET Framework Base Class: Exception Classes
The .NET Framework has an extensive set of exceptions that it may throw. You’ll encounter two
different types of exceptions while using .NET:

• ApplicationException

• SystemException

System::ApplicationException is the base class of those exceptions that are user-defined or, in
other words, the ones that you have defined yourself.

System::SystemException, on the other hand, handles exceptions created within the CLR, for
example, exceptions caused by stream I/O, databases, security, threading, XML, and so on. You can
be sure that if the program has aborted as a result of a system problem, you can catch it using the
generic System::SystemException.

Both of these exceptions derive from the System::Exception class, which is the root of all .NET
exceptions. The System::Exception class provides many useful properties (see Table 4-4) to help
resolve any exceptions that might occur.

Table 4-4. Key System::Exception Member Properties

Property Description

Helplink The Uniform Resource Name (URN) or Uniform Resource Locator (URL),
if appropriate, to a help file providing more information about the exception.

InnerException This property gives access to the exception that caused this exception,
if any.

Message A textual description of the error.

Fraser_640-4C04.fm Page 168 Monday, November 14, 2005 11:41 AM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 4 ■ A D V A N C E D C + + / C L I 169

SystemException
You can’t begin to explore all the exceptions that the .NET Framework class library provides to
developers. Even the following illustration, which displays some of the more common exceptions,
shows only the tip of the iceberg.

 The .NET Framework provides developers with a huge set of classes. If something could go
wrong, the .NET Framework class library provides an exception for it. As you can see from the preceding
illustration, the names of the exceptions are self-explanatory, and if you add to them the properties
mentioned previously, you have a great tool for finding where your application threw its exception
and why.

Source The name of the object, assembly, or application that caused the exception.

StackTrace A text string of all the method calls on the stack made before triggering
the exception.

TargetSite The name of the method that triggered the exception.

Table 4-4. Key System::Exception Member Properties

Property Description

Fraser_640-4C04.fm Page 169 Monday, November 14, 2005 11:41 AM

170 C H A P T E R 4 ■ A D V A N C E D C + + / C L I

The best resource to use to explore exceptions is the documentation provided by the .NET
Framework. You should start your search by looking up System.Exception. From there you should
quickly be able to navigate to the exception in question.

There is nothing special about catching exceptions thrown by the system. As long as you place
the methods that might throw an exception within a try block, all you have to do is catch the system-
thrown exception. Here is an example of exception handling, about as simple as it comes:

try
{
 // Methods that throw OutOfMemoryException
}
catch (OutOfMemoryException *oome) // If a method throws an exception
{ // Execution will continue here
 // Process exception
}

ApplicationException
Truthfully, there is nothing stopping you from throwing exceptions derived from the class
System::SystemException or System::Exception. It is even possible to derive an exception from
one of the exceptions derived from System::SystemException. The .NET Framework only really
added the System::ApplicationException class for readability purposes. In fact, neither
System::SystemException nor System::ApplicationException adds any additional functionality
to System::Exception.

There is nothing difficult about creating an application exception class. It is just a standard
C++/CLI class, but instead of inheriting from System::Object or some other class, you inherit from
System::ApplicationException.

ref class MyException : public ApplicationException
{
};

Within the custom exception, you can implement anything you want, but in practice, you probably
only want to implement things that will help resolve the cause of the exception.

 If you are an experienced traditional C++ developer, you know that you could derive your exception
from any data type. For example, you could create your exception simply from the System::Object
class or even a built-in type such as int. This still works in C++/CLI as well, but if you do this, you will
lose the ability to have your exceptions caught by other languages besides C++/CLI.

■Note All exceptions you create for your applications should be inherited from
System::ApplicationException.

Throwing ApplicationExceptions
Obviously, if you can create your own exceptions, you must be able to throw them, too. Technically,
you can throw an exception at any time you want, but in practice, it is best only to throw an exception
when something in your program fails unexpectedly and normal process flow can no longer continue.
The reason is that the processing of an exception has a lot of overhead, which can slow the program
down when executing. Often, it is better to use if statements to process errors.

Syntactically, throwing an exception is very easy. Simply throw a new instance of an exception
class. In other words, add code with the following syntax:

Fraser_640-4C04.fm Page 170 Monday, November 14, 2005 11:41 AM

C H A P T E R 4 ■ A D V A N C E D C + + / C L I 171

throw gcnew <Exception-Class>(<constructor-parameters>);

or, for example:

throw gcnew ApplicationException("Error Message");

If you create your own derived exception, just replace ApplicationException with it and pass
any parameters to its constructor—if the construct has any parameters, that is.

The actual throw statement does not have to be physically in the try block. It can be located in any
method that is executed within the try block or any nested method that is called within a try block.

Listing 4-11 shows how to create a custom exception from the .NET Framework’s
System::ApplicationException. Notice that because you’re using the System namespace, you don’t
have to prefix the exceptions with System::. This program simply loops through the for loop three
times, throwing an exception on the second iteration.

Note that the try block is within the for loop. This is because although you can resolve an
exception and allow code to continue processing, the only place you are allowed to start or resume
a try block is from its beginning. So, if the for loop was found within the try block, there would be
no way of resuming the loop, even if you used the dreaded goto statement to try to jump into the
middle of the try block.

Listing 4-11. ThrowDerived.exe: Throwing an Exception

using namespace System;

ref class MyException : public ApplicationException
{
public:
 MyException(String ^err);
};

MyException::MyException(System::String ^err) : ApplicationException(err)
{
}

void main()
{
 for (int i = 0; i < 3; i++)
 {
 Console::WriteLine("Start Loop");
 try
 {
 if (i == 0)
 {
 Console::WriteLine("\tCounter equal to 0");
 }
 else if (i == 1)
 {
 throw gcnew MyException("\t**Exception** Counter equal to 1");
 }
 else
 {
 Console::WriteLine("\tCounter greater than 1");
 }
 }

Fraser_640-4C04.fm Page 171 Monday, November 14, 2005 11:41 AM

172 C H A P T E R 4 ■ A D V A N C E D C + + / C L I

 catch (MyException ^e)
 {
 Console::WriteLine(e->Message);
 }
 Console::WriteLine("End Loop");
 }
}

Figure 4-5 shows the results of this little program.

Figure 4-5. Results of ThrowDerived.exe

As you can see, there is nothing spectacular about throwing an exception of your own. It is
handled exactly the same way as a system exception, except now you are catching an exception class
you created instead of one created by the .NET Framework.

Rethrowing Exceptions and Nested try Blocks
Sometimes your program may catch an exception that it cannot completely resolve. In these cases,
the program might want to rethrow the exception so that another catch block can resolve the exception.

To rethrow an exception, simply add this statement within the catch block:

throw;

Once you rethrow the exception, exactly the same exception continues to make its way up the
stack, looking for another catch block that matches the exception. Rethrowing an exception only
works with nested try blocks. It will not be caught in a catch block at the same level as it was originally
caught and thrown but instead will be caught in a catch block at a higher level.

There is no limit on nesting try blocks. In fact, it is a common practice to have one try block
that surrounds the entire program within the main() function and to have multiple try blocks
surrounding other areas of the code where an exception has a higher probability of occurring. This
format allows the program to catch and resolve exceptions close to where the exception occurred,
but it still allows the program to catch other unexpected exceptions before the program ends, so that
the program may shut down more gracefully.

Listing 4-12 is a contrived example showing an exception being rethrown within nested try
blocks. Of course, nesting try blocks immediately together like this doesn’t make much sense.

Fraser_640-4C04.fm Page 172 Monday, November 14, 2005 11:41 AM

C H A P T E R 4 ■ A D V A N C E D C + + / C L I 173

Listing 4-12. RethrowException.exe: Rethrowing an Exception

using namespace System;

void main()
{
 try
 {
 try
 {
 throw gcnew ApplicationException("\t***Boom***");
 Console::WriteLine("Imbedded Try End");
 }
 catch (ApplicationException ^ie)
 {
 Console::WriteLine("Caught Exception ");
 Console::WriteLine(ie->Message);
 throw;
 }
 Console::WriteLine("Outer Try End");
 }
 catch (ApplicationException ^oe)
 {
 Console::WriteLine("Recaught Exception ");
 Console::WriteLine(oe->Message);
 }
}

Figure 4-6 shows the results of this little program.

Figure 4-6. Results of RethrowException.exe

Catching Multiple Exceptions
So far, you have only dealt with a single catch block associated with a try block. In reality, you can
have as many catch blocks associated with a try block as there are possible exception classes that
can be thrown by the try block. (Actually, you can have more, but catching exceptions that are not
thrown by the try block is a waste of time and code.)

Using multiple catch blocks can be a little trickier in C++/CLI than in traditional C++ because
all exceptions are derived from a single class. The order in which the catch blocks are placed after the
try block is important. For catch blocks to work properly in C++/CLI, the most-derived class must
appear first and the least-derived class or the base class, System::Exception, must appear last.

Fraser_640-4C04.fm Page 173 Monday, November 14, 2005 11:41 AM

174 C H A P T E R 4 ■ A D V A N C E D C + + / C L I

For example, System::IO::FileNotFoundException must be caught before
System:IO::IOException is caught, which in turn must be caught before System::SystemException is
caught, which ultimately must be caught before System::Exception. You can find the order of system
exception inheritance in the documentation provided by the .NET Framework.

Listing 4-13 shows the correct order of catching exceptions of derived exception class, but this
time they are all derived from the System::ApplicationException class. You might want to change
the order of the catch blocks to see what happens.

Listing 4-13. MultiException.exe: Catching Multiple Exceptions

using namespace System;

/// <Summary>Base Class</Summary>
ref class LevelOneException : public ApplicationException
{
public:
 LevelOneException(String ^err);
};

LevelOneException::LevelOneException(String ^err) : ApplicationException(err)
{
}

/// <Summary>Inherited Class</Summary>
ref class LevelTwoException : public LevelOneException
{
public:
 LevelTwoException(String ^err);
};

LevelTwoException::LevelTwoException(String ^err) : LevelOneException(err)
{
}

/// <Summary>Catching multiple exceptions</Summary>
void main()
{

Fraser_640-4C04.fm Page 174 Monday, November 14, 2005 11:41 AM

C H A P T E R 4 ■ A D V A N C E D C + + / C L I 175

 for (int i = 0; i < 4; i++)
 {
 Console::WriteLine("Start Loop");
 try
 {
 if (i == 1)
 throw gcnew ApplicationException("\tBase Exception Thrown");
 else if (i == 2)
 throw gcnew LevelOneException("\tLevel 1 Exception Thrown");
 else if (i == 3)
 throw gcnew LevelTwoException("\tLevel 2 Exception Thrown");

 Console::WriteLine("\tNo Exception");
 }
 catch (LevelTwoException ^e2)
 {
 Console::WriteLine(e2->Message);
 Console::WriteLine("\tLevel 2 Exception Caught");
 }
 catch (LevelOneException ^e1)
 {
 Console::WriteLine(e1->Message);
 Console::WriteLine("\tLevel 1 Exception Caught");
 }
 catch (ApplicationException ^e)
 {
 Console::WriteLine(e->Message);
 Console::WriteLine("\tBase Exception Caught");
 }
 Console::WriteLine("End Loop");
 }
}

Figure 4-7 shows the results of this little program.

Figure 4-7. Results of MultiException.exe

Fraser_640-4C04.fm Page 175 Monday, November 14, 2005 11:41 AM

cafac74dd2d083cbec0906b66fcd56b1

176 C H A P T E R 4 ■ A D V A N C E D C + + / C L I

Catching All Previously Uncaught Exceptions
If you want to correctly code C++/CLI code, which is used in a multilanguage environment, then the
easiest way of catching all exceptions is simply to add the catching of System::Exception to the end
of your catch block, because all .NET exceptions—of both system and application origin—are
derived from this class.

There is also another way of catching all uncaught exceptions, even those not derived from
System::Exception. It is simply a catch block without an exception call. In the class’s place is an
ellipsis:

catch (...)
{
}

■Unsafe Code The catch(...) block is an unsafe coding construct. You can only throw or catch handles to
a ref class with /clr:safe.

This form of catch block doesn’t provide much in the way of information to help determine
what caused the exception, because it doesn’t have as a parameter any type of exception to derive
from. Thus, there’s no way to print out the stack or messages associated with the exception that’s
generated. All you actually know is that an exception occurred.

In C++/CLI, this form of catch block should probably only be used as a last resort or during
testing, because if this catch block is executed, your code will not work properly in the .NET portable
managed multilanguage environment anyway. Of course, if your code is not destined for such an
environment, then you may need to use this form of catch block.

The usual reason that this type of exception occurs in C++/CLI is that the developer forgot to
derive the exception class from System::ApplicationException. Listing 4-14 shows this occurring.

Listing 4-14. CatchAll.exe: Catching All Exceptions

using namespace System;

ref class MyDerivedException : public ApplicationException
{
public:
 MyDerivedException(String ^err);
};

MyDerivedException::MyDerivedException(String ^err) : ApplicationException(err)
{
}

ref class MyException // Not derived from Exception class
{
};

Fraser_640-4C04.fm Page 176 Monday, November 14, 2005 11:41 AM

C H A P T E R 4 ■ A D V A N C E D C + + / C L I 177

void main()
{
 for (int i = 0; i < 4; i++)
 {
 Console::WriteLine("Start Loop");
 try
 {
 if (i == 1)
 throw gcnew ApplicationException("\tBase Exception");
 else if (i == 2)
 throw gcnew MyDerivedException("\tMy Derived Exception");
 else if (i == 3)
 throw gcnew MyException();

 Console::WriteLine("\tNo Exception");
 }
 catch (ApplicationException ^e)
 {
 Console::WriteLine(e->Message);
 }
 catch (...)
 {
 Console::WriteLine("\tMy Exception");
 }
 Console::WriteLine("End Loop");
 }
}

Figure 4-8 shows the results of this little program.

Figure 4-8. Results of CatchAll.exe

Executing Code Regardless of an Exception
There are times when code needs to be run at the completion of a try block, whether the try block
completed cleanly or threw an exception. For example, you may want to close a file stream or data-
base that has been open in the try block. Up until now, if you threw an exception, there was no way
to ensure that such code would always run unless you put the close statement at the end of each of
the try and catch blocks.

Fraser_640-4C04.fm Page 177 Monday, November 14, 2005 11:41 AM

178 C H A P T E R 4 ■ A D V A N C E D C + + / C L I

With C++/CLI, it is now possible to remove this redundant coding by adding a finally block
after the last catch block. The syntax for a finally block is the following:

finally
{
 // Code to always be executed
}

All code within the finally block will always be executed after the completion of the try block
or after the completion of the caught catch block.

As you can see in Listing 4-15, the finally block is run both at the successful completion of the
try block and after the System::ApplicationException catch block is executed.

Listing 4-15. Finally.exe: The finally Block

using namespace System;

void main()
{
 for (int i = 0; i < 3; i++)
 {
 Console::WriteLine("Start Loop");
 try
 {
 if (i == 0)
 {
 Console::WriteLine("\tCounter = 0");
 }
 else if (i == 1)
 {
 throw gcnew ApplicationException("\t*Exception* Counter = 1");
 }
 else
 {
 Console::WriteLine("\tCounter greater than 1");
 }
 }
 catch (ApplicationException ^e)
 {
 Console::WriteLine(e->Message);
 }
 finally
 {
 Console::WriteLine("\tDone every time");
 }
 Console::WriteLine("End Loop");
 }
}

Figure 4-9 shows the results of this little program.

Fraser_640-4C04.fm Page 178 Monday, November 14, 2005 11:41 AM

C H A P T E R 4 ■ A D V A N C E D C + + / C L I 179

Figure 4-9. Results of Finally.exe

Delegates and Events
Delegates and events are completely new concepts to the traditional C++ developer. Truth be told,
both provide the same functionality, allowing functions to be manipulated as reference handles.
Because a handle can be assigned to more than one value in its lifetime, it is possible to have functions
executed based on whichever function was last placed in the handle.

For those of you with a C++ background, you might notice that this object-oriented approach is
very similar to function pointers. Where they differ is that delegates and events are ref classes and
not pointers, and delegates and events only invoke global functions or member methods of ref classes.

You might be wondering, if they all do the same thing, why introduce the new concepts? Remember
that a key aspect of .NET is language independence. Unfortunately, function pointers are strictly a
C++ language feature and are not easily implemented in other languages, especially languages that
have no pointers. Also, function pointers are far from easy to implement. Delegates and events were
designed to overcome these problems.

Delegates
A delegate is a ref class that accepts and then invokes one or more methods that share the same
signature from global functions or other classes that have methods with this same signature.

The .NET Framework supports two forms of delegates:

• System::Delegate: A delegate that accepts and invokes only a single method.

• System::MulticastDelegate: A delegate that accepts and invokes a chain of methods. A
MulticastDelegate can perform something known as multicast chaining, which you can think
of as a set of delegates linked together and then later, when called, executed in sequence.

C++/CLI only supports multicast delegates, but this really isn’t a problem because there’s nothing
stopping a multicast delegate from accepting and invoking only one method.

The creating and implementing of delegates is a three-part process with an optional fourth part
if multicast chaining is being implemented:

1. Create the delegate.

2. Create the global function(s) or member method(s) to be delegated.

3. Place the method on the delegate.

4. Combine or remove delegates from the multicast chain.

Fraser_640-4C04.fm Page 179 Monday, November 14, 2005 11:41 AM

180 C H A P T E R 4 ■ A D V A N C E D C + + / C L I

Creating a Delegate
The code involved in creating a delegate is extremely easy. In fact, it is just a method prototype
prefixed with the keyword delegate. By convention, a delegate is suffixed with “delegate” but this is
not essential, for example:

delegate void SayDelegate(String ^name);

What happens in the background during the compilation process is a lot more complex. This
statement actually is converted to a class with a constructor to accept delegated methods and three
member methods to invoke these methods. Figure 4-10 shows the effects of the resulting compila-
tion by running the program ILDASM in Listing 4-16.

Figure 4-10. ILDASM snapshot of the generated delegate class

Creating a Method to Be Delegated
There is nothing special about creating a global function or member method for delegating. The
only criteria are that it has the same signature as the delegate and that if it is a member method that
it has public scope. The method can be a global function:

void SayHello(String ^name)
{
 Console::Write("Hello there ");
 Console::WriteLine(name);
}

a static member method:

ref class Talkative
{
public:
 static void SayHello(String ^name);
};
or an instance member method:

ref class Talkative
{
public:
 void SayStuff(String ^name);
};

Fraser_640-4C04.fm Page 180 Monday, November 14, 2005 11:41 AM

C H A P T E R 4 ■ A D V A N C E D C + + / C L I 181

Placing a Method on the Delegate
This is the least obvious part of the delegating process. The reason is that you need to implement the
auto-generated constructor of the delegate class. If you were not aware that a delegate was a class,
then the syntax would appear quite confusing. But, because you are, it should be obvious that all you
are doing is creating a new instance of the delegate class for each method that you want to delegate.

There are two constructors for a delegate. The first takes the address of the method as a parameter.
This constructor is used when the method is a global function or a static member method:

delegate-name (address-of-method);

The other constructor is for instance member methods and takes two parameters, the handle to
the instance of the class within which the member method can be found and fully referenced address of
the method:

delegate-name (handle-of-object, address-of-method);

For example, here are delegations of a global function and a static and instance member
methods:

// Global Function
SayDelegate ^say = gcnew SayDelegate(&SayHello);

// Static member functions
SayDelegate ^hello = gcnew SayDelegate(&Talkative::SayHi);

// Instance member functions
Talkative ^computer = gcnew Talkative();
SayDelegate ^stuff = gcnew SayDelegate(computer, &Talkative::SayStuff);

Combining and Removing Delegates from a Multicast Chain
These are the trickiest parts of the delegating process, which doesn’t say much. The reason they’re
tricky is that they require the use of two auto-generated methods or two overloaded operators:

• Combine() method or + operator

• Remove() method or - operator

These methods or operators make sense as you are combining (or adding) and removing (or
subtracting) methods from the delegate class.

The syntax for both combining and removing is exactly the same, except for, of course, the
operator of the method being called:

// create initial delegate
SayDelegate say = gcnew SayDelegate(&SayHello);

// add Static member function
say = say + gcnew SayDelegate(&Talkative::SayHi);
// -or-
say += gcnew SayDelegate(&Talkative::SayHiThere);

// remove delegate
say = say - gcnew SayDelegate(&Talkative::SayHi);
// -or-
say -= gcnew SayDelegate(&Talkative::SayHiThere);

Fraser_640-4C04.fm Page 181 Monday, November 14, 2005 11:41 AM

182 C H A P T E R 4 ■ A D V A N C E D C + + / C L I

The + operator takes the two delegates, chains them together, and then places them on a delegate.
The - operator does the opposite of the + operator. It removes the specified delegate from the delegate
multicast chain and then places the new chain on a delegate.

I never use the auto-generated methods, because the overloaded operators are so much easier
to code. But here they are if you want to use them:

SayDelegate ^say =
 (SayDelegate^)(Delegate::Combine(say, gcnew SayDelegate(&SayHello)));

SayDelegate ^say =
 (SayDelegate^)(Delegate::Remove(say, gcnew SayDelegate(&SayHello)));

See what I mean? It’s a lot more coding, and a type cast is required.

Invoking a Delegate
The process of invoking a delegate is quite simple, but not obvious if you are not aware that a delegate is
a class. All you have to do is either call the auto-generated member method Invoke or call the class
itself as if it were a method with the parameter list that you specified when you created the delegate:

say->Invoke("Mr Fraser");
// -or-
say("Stephen");

There is no difference in the syntax, whether you invoke one method or a whole chain of methods.
The Invoke method simply starts at the top of the chain and executes methods until it reaches the
end. If there is only one method, then it only executes that one method.

Listing 4-16 is a complete example of creating, adding, removing, and invoking delegates. The
example simply creates a delegate, adds four different types of methods to the delegate chain, and
invokes the delegate. Then it removes two of the methods from the delegate chain and invokes the
delegate again, but this time the delegate contains only two methods.

Listing 4-16. Delegates.exe: Programming Delegates

using namespace System;

/// <summary>A Delegate that talks a lot</summary>
delegate void SayDelegate(String ^name);

/// <summary>A friendly function</summary>
void SayHello(String ^name)
{
 Console::Write("Hello there ");
 Console::WriteLine(name);
}

/// <summary>A talkative class</summary>
ref class Talkative
{
public:
 static void SayHi(String ^name);
 void SayStuff(String ^name);
 void SayBye(String ^name);
};

Fraser_640-4C04.fm Page 182 Monday, November 14, 2005 11:41 AM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 4 ■ A D V A N C E D C + + / C L I 183

void Talkative::SayHi(System::String ^name)
{
 Console::Write("Hi there ");
 Console::WriteLine(name);
}

void Talkative::SayStuff(System::String ^name)
{
 Console::Write("Nice weather we are having. Right, ");
 Console::Write(name);
 Console::WriteLine("?");
}

void Talkative::SayBye(System::String ^name)
{
 Console::Write("Good-bye ");
 Console::WriteLine(name);
}

/// <summary>Delegates in action</summary>
void main()
{
 SayDelegate^ say;

 // Global Function
 say = gcnew SayDelegate(&SayHello);

 // add Static member function
 say += gcnew SayDelegate(&Talkative::SayHi);

 Talkative ^computer = gcnew Talkative();

 // add instance member functions
 say = say + gcnew SayDelegate(computer, &Talkative::SayStuff);
 say += gcnew SayDelegate(computer, &Talkative::SayBye);

 // invoke delegate
 say->Invoke("Stephen");

 Console::WriteLine("-------------------------------");

 // remove a couple of methods
 say = say - gcnew SayDelegate(&Talkative::SayHi);
 say -= gcnew SayDelegate(computer, &Talkative::SayBye);

 // invoke delegate again with two fewer methods
 say("Stephen");
 }

Figure 4-11 shows the results of this little program.

Fraser_640-4C04.fm Page 183 Monday, November 14, 2005 11:41 AM

184 C H A P T E R 4 ■ A D V A N C E D C + + / C L I

Figure 4-11. Results of Delegates.exe

Events
An event is a specific implementation of delegates. You’ll see it used quite extensively when I describe
Windows Forms in Chapters 9 and 10. For now, you can explore what events are and how they work
without worrying about the .NET Framework event model.

In simple terms, events allow one class to trigger the execution of methods found in other classes
without knowing anything about these classes or even from which classes it is invoking the method.
This allows a class to execute methods and not have to worry about how, or even if, they are imple-
mented. Because events are implemented using multicast delegates, it is possible for a single class to
call a chain of methods from multiple classes.

There are always at least two classes involved with events. The first is the source of the event.
This class generates an event and then waits for some other class, which has delegated a method to
handle the event, to process it. If there are no delegated methods to process the event, then the event
is lost. The second and subsequent classes, as was hinted previously, receive the event by delegating
methods to handle the event. Truthfully, only one class is needed to handle an event, given that the
class that created the event could also delegate a method to process the event. But why would you
want to do this, when a direct call to the method could be used, thus avoiding the event altogether?
And it would be much more efficient.

Building an Event Source Class
Before you create an event source class, you need to define a delegate class on which the event will
process. The delegate syntax is the same as was covered previously. In fact, there is no difference
between a standard delegate and one that handles events. To differentiate between these two types
of delegates, by convention delegates that handle events have a suffix of “Handler”:

delegate void SayHandler(String ^name);

Once you have the delegate defined, you can then create an event source class. There are basically
two pieces that you will find in all event source classes: the event and an event trigger method. Like
delegates, events are easy to code but do a little magic in the background. To create an event, include
within a ref class in a public scope area a delegate class declaration prefixed by the keyword event:

ref class EventSource
{
public:
 event SayHandler^ OnSay;
//...
};

Fraser_640-4C04.fm Page 184 Monday, November 14, 2005 11:41 AM

C H A P T E R 4 ■ A D V A N C E D C + + / C L I 185

Simple enough, but when the compiler encounters this, it is converted into three member methods:

• add_<delegate-name>: A public member method that calls the Delegate::Combine method to
add delegated receiver class methods. To simplify the syntax, use the overloaded += operator
instead of calling add_<delegate-name> directly.

• remove_<delegate-name>: A public member method that calls the Delegate::Remove method
to remove delegated receiver class methods. To simplify the syntax, use the overloaded
-= operator instead of calling remove_<delegate-name> directly.

• raise_<delegate-name>: A protected member method that calls the Delegate::Invoke method
to call all delegated receiver class methods. This method is protected so that client classes
cannot call it. It can only be called through a managed internal process.

Figure 4-12 is an ILDASM snapshot that shows the methods that were created by the event
keyword within the event source class in Listing 4-17.

Figure 4-12. ILDASM snapshot of the generated event member methods

Finally, now that you have an event, you need a way to trigger it. The triggering event can be
almost anything. In Web Forms, the triggering event will be handled by things such as mouse clicks
and key presses. In this case, you will simply call the delegate directly:

ref class EventSource
{
public:
 event SayHandler^ OnSay;

 void Say(String ^name)
 {
 OnSay(name);
 }
};

Notice that I don’t have to make sure that the event is not a nullptr. With C++/CLI, the event
has a default value that does nothing, so we don’t have to make the check. In fact, if you check to see
if the event is unassigned by comparing the event to nullptr, you get the compile-time error C3918.
This code generates the following error:

Fraser_640-4C04.fm Page 185 Monday, November 14, 2005 11:41 AM

186 C H A P T E R 4 ■ A D V A N C E D C + + / C L I

void Say(String ^name)
{
 if (OnSay != nullptr) // Error C3918 is generated
 OnSay(name);
}

■Caution If you are converting Managed Extensions for C++ code to C++/CLI code, you will have to check that
you don’t compare an event or delegate to a nullptr, because this was how the validation of the event or delegate
was originally handled.

Building Event Receiver Class(es)
One or more classes can process an event. The process for delegating a member class to an event is
identical for each class. Other than the simplified syntax, you will find that event handling and delegate
processing are the same. First, you create the member method to delegate. Then you combine it on
the event handler.

The first thing you need to do is create a public ref class member method to be delegated to
the event handler. Nothing is new here:

ref class EventReceiver
{
public:
//...
 void SayBye(String ^name)
 {
 Console::Write("Good-bye ");
 Console::WriteLine(name);
 }
};

Then, to combine this method on the event handler, the event receiver class must know with
which event source class it will be associated. The easiest way to do this is to pass it through the
constructor. To avoid a null handle error, check to make sure that the handle was passed. I could make
more thorough validations, such as verifying the type of class, but this is enough to convey the idea.

Now that you have the event source class and a member method to place, it is simply a matter
of creating a new instance of a delegate of the event’s delegate type and combining it. Or, in this case,
using the operator += to combine the new delegate to the event within the source event class:

ref class EventReceiver
{
 EventSource ^source;
public:
 EventReceiver(EventSource ^src)
 {
 if (src == nullptr)
 throw gcnew ArgumentNullException("Must pass an Event Source");
 source = src;
 source->OnSay += gcnew SayHandler(this, &EventReceiver::SayBye);
 }
//...
};

Fraser_640-4C04.fm Page 186 Monday, November 14, 2005 11:41 AM

C H A P T E R 4 ■ A D V A N C E D C + + / C L I 187

What if you have a delegated method that you no longer want handled by the event? You would
remove it just as you would a standard delegate. The only difference is that you can now use the
-= operator:

 source->OnSay -= gcnew SayHandler(this, &EventReceiver::SayStuff);

Implementing the Event
You now have both a source and a receiver class. All you need to do is create instances of each and
then call the event trigger method.

void main()
{
 EventSource ^source = gcnew EventSource();
 EventReceiver ^receiver = gcnew EventReceiver(source);

 source->Say("Mr Fraser");
}

Listing 4-17 shows all of the code needed to handle an event. This time, the event source class
has two event receiver classes. The event is triggered twice. The first time, all delegates are combined
and executed. The second time, one of the delegates is removed. You might notice that the member
methods are very familiar.

Listing 4-17. Events.exe: Programming Events

using namespace System;

delegate void SayHandler(String ^name);

ref class EventSource
{
public:
 event SayHandler^ OnSay;

 void Say(String ^name)
 {
 OnSay(name);
 }
};

ref class EventReceiver1
{
 EventSource ^source;
public:

 EventReceiver1(EventSource ^src)
 {
 if (src == nullptr)
 throw gcnew ArgumentNullException("Must pass an Event Source");

 source = src;

Fraser_640-4C04.fm Page 187 Monday, November 14, 2005 11:41 AM

188 C H A P T E R 4 ■ A D V A N C E D C + + / C L I

 source->OnSay += gcnew SayHandler(this, &EventReceiver1::SayHello);
 source->OnSay += gcnew SayHandler(this, &EventReceiver1::SayStuff);
 }

 void RemoveStuff()
 {
 source->OnSay -= gcnew SayHandler(this, &EventReceiver1::SayStuff);
 }

 void SayHello(String ^name)
 {
 Console::Write("Hello there ");
 Console::WriteLine(name);
 }

 void SayStuff(String ^name)
 {
 Console::Write("Nice weather we are having. Right, ");
 Console::Write(name);
 Console::WriteLine("?");
 }
};

ref class EventReceiver2
{
 EventSource ^source;
public:

 EventReceiver2(EventSource ^src)
 {
 if (src == nullptr)
 throw gcnew ArgumentNullException("Must pass an Event Source");

 source = src;

 source->OnSay += gcnew SayHandler(this, &EventReceiver2::SayBye);
 }

 void SayBye(String ^name)
 {
 Console::Write("Good-bye ");
 Console::WriteLine(name);
 }
};

void main()
{
 EventSource ^source = gcnew EventSource();

 EventReceiver1 ^receiver1 = gcnew EventReceiver1(source);
 EventReceiver2 ^receiver2 = gcnew EventReceiver2(source);

 source->Say("Mr Fraser");

Fraser_640-4C04.fm Page 188 Monday, November 14, 2005 11:41 AM

C H A P T E R 4 ■ A D V A N C E D C + + / C L I 189

 Console::WriteLine("-------------------------------");

 receiver1->RemoveStuff();

 source->Say("Stephen");
}

Figure 4-13 shows the results of this little program.

Figure 4-13. Results of Events.exe

Summary
In this chapter, you looked at some more advanced C++/CLI language topics. You started with the
preprocessor directives, and then you moved on to multifile software development. Next, you
covered templates, typedef, and exceptions, and finally, you ended with delegates and events.

This chapter covered a lot of new ground for the traditional C++ developer, though much of it
had a very familiar flavor to it. You use much of this chapter later in the book, so a good under-
standing of these topics is essential.

Okay, you have finally covered C++/CLI as a language. In the next chapter, you make your first
real foray into the world of .NET software development by looking at the .NET Framework class library.

Fraser_640-4C04.fm Page 189 Monday, November 14, 2005 11:41 AM

cafac74dd2d083cbec0906b66fcd56b1

Fraser_640-4C04.fm Page 190 Monday, November 14, 2005 11:41 AM

■ ■ ■

P A R T 2

.NET Framework
Development in C++/CLI

Fraser_640-4C05.fm Page 191 Friday, October 28, 2005 8:54 PM

Fraser_640-4C05.fm Page 192 Friday, October 28, 2005 8:54 PM

193

■ ■ ■

C H A P T E R 5

The .NET Framework Class Library

To put it bluntly, the .NET Framework class library is just plain huge. One chapter could never do it
justice. There are, in fact, several books devoted solely to describing all the interfaces, structures,
enumerations, classes, methods, variables, and so on, that are contained within this library. This
chapter’s goal is to focus on giving you a head start in learning how to navigate through this massive
library.

Even though the library is big, it is well organized and (gasp!) well documented. Once you
understand the basics of how the library is organized, it will be easy for you to locate what you are
looking for. It should also be quite simple to figure out if what you are looking for is not included in
the library.

I just briefly touch upon the contents of the class library here. In the following chapters, I delve
deeper into many specific areas in the library.

Library Organizational Structure
The first thing you need to know about the .NET Framework class library is that it is an object-oriented
tree derived from a single root: System::Object. The next important characteristic is that the .NET
Framework class library strictly follows the rules specified by the common language specification
(CLS), covered in Chapter 1. The key rules that you should be aware of are as follows:

• Global functions and variables are not allowed.

• There is no imposed case sensitivity (a consequence of the need to support languages like
Visual Basic .NET), so all exposed types differ by more than their case. In other words, all
public or protected members differ by more then just case.

• The primitive types allowed as parameters conform to the CLS, namely, Byte, Int16, Int32,
Int64, Single, Double, Boolean, Char, Decimal, IntPtr, and String.

• Variable-length parameter lists to methods are not allowed. Fixed-length arrays are used as
parameters instead.

• Pointers are not allowed.

• Class types must inherit from a CLS-compliant class.

• Only single class inheritance is allowed, although multiple inheritance of interfaces is
permitted.

Another important aspect of the .NET Framework class library is that the current version is
broken up into nearly 100 namespaces. Unlike many other libraries, the component identifiers used
for the namespaces are self-describing and thus have the benefit of making it easy to understand
what functionality resides within a namespace.

Fraser_640-4C05.fm Page 193 Friday, October 28, 2005 8:54 PM

194 C H A P T E R 5 ■ T H E . N E T F R A M E W O R K C LA S S L I B R A R Y

You should be aware that even though namespaces in the .NET Framework class library
appear to be broken up into a hierarchy, there is, in fact, no actual “class inheritance hierarchy”
that corresponds directly to this “namespace hierarchy.” Instead, the namespaces are simply a way
of organizing classes into common functionality groups. For example, there is a “namespace
hierarchy” of System::Collections::Specialized, but many of the classes found in the
System::Collections::Specialized namespace don’t inherit from System::Collections.

The .NET Framework class library is physically made up of multiple assembly .dlls, which you
have to add references to in your code either using the #using statement or in the program’s refer-
ence properties, if using Visual Studio 2005. An assembly does not necessarily correspond directly to
a namespace, as an assembly may contain multiple namespaces. Also, some of the namespaces
spread across multiple assemblies. This does complicate things, as there is no one-to-one correlation,
but the .NET Framework class library has placed the most commonly used classes into one assembly:
mscorlib.dll. Then, it spread out the less common classes into assemblies made up of common
functionality.

Unfortunately, I know of no way to easily figure out which assembly contains which classes. I’ve
tried to help you in this regard by pointing out the necessary assemblies to include for each namespace.
The only other way I know of to figure out which assembly is needed (other than looking it up in the
.NET documentation) is to look for the C1190 error when compiling (I suppose “linking” is more
accurate). This error tells you which assembly is missing.

Library Namespaces
It’s unlikely that you’ll use every namespace in the .NET Framework class library. (That’s not to say
you won’t—it’s just unlikely.) Instead, you’ll probably work with the subset of namespaces described in
the sections that follow.

I will start with the root namespace System and then progress alphabetically through the most
common namespaces. This chapter will not provide you everything you need to implement the
classes within a namespace. Instead, it will give you an understanding of what functionality resides
within it. If you want a deeper understanding of all the details of the classes within a namespace
(I do not cover the namespace in the subsequent chapters), then I suggest you peruse the documen-
tation provided with the .NET Framework, as it is remarkably well done.

System
The System namespace is the root of the .NET Framework class library namespace hierarchy. The
namespace is defined within the mscorlib.dll assembly.

Unlike the other namespaces of the .NET Framework class library, which focus on a particular
area of functionality, the System namespace is more a mishmash of core data types and basic func-
tionality that is needed by the rest of the namespace hierarchy.

The most important class within the System namespace is probably the Object class because it
is the root of all other classes found within the class library. When you create C++/CLI ref classes of
your own, the Object class is inherited by default if you do not specify a parent class. Remember that
because C++/CLI ref classes can only inherit from other C++/CLI ref classes, ultimately your class
will inherit the Object class.

Some of the other common functional areas covered by the System namespace are as follows:

• Primitive types, such as Byte, Int32, Double, and String

• Arrays

• Data type conversion

Fraser_640-4C05.fm Page 194 Friday, October 28, 2005 8:54 PM

C H A P T E R 5 ■ T H E . N E T F R A M E W O R K C L A S S L I B R A R Y 195

• Attributes

• Delegates

• Enums

• Events

• Exceptions

• Garbage collection

• Math

• Operating system information

• Random numbers

As you can see, you have already covered most of these areas in previous chapters.
Normally, a developer would allow garbage collection to be handled automatically by the CLR,

because it’s a well-tuned process. For some applications, there might be occasions when garbage
collection simply doesn’t run often enough or at the times wanted by the developer. For these cases,
the .NET Framework class library provides the System::GC class. This class doesn’t allow the programmer
the ability to change the garbage collection process, but it changes the triggering process and helps
determine when memory is garbage collected. As a C++/CLI developer, you will probably have little
need for the System::GC class given that you now have deterministic cleanup at your disposal. Other
.NET languages are not so lucky.

The Math class is an important class that I haven’t yet covered. It’s made up of a set of static data
type overloaded member methods such as Abs(), Exp(), Max(), and Sin(). These methods are easy to
use. For example, to find the square root of a number, simply code the following:

double val = 16;
double root = System::Math::Sqrt(val);

Another class that can come in handy is System::OperatingSystem. This class provides informa-
tion such as the version and platform identifier. The System::Version class is used to hold the four-
part version (Build, Major, Minor, and Revision) used by the .NET Framework.

Because I am a games program developer at heart, one of the first classes I went in search of was
the random-number generator. System::Random provides random numbers in both integer and
floating-point formats.

 System::Random ^rand = gcnew System::Random();
 int intRandomNumber = rand->Next(1, 10); // between 1 and 10 inclusive
 double doubleRandomNumber = rand->NextDouble(); // between 0.0 and 1.0

System::Collections
There are, in fact, three sets of collections available to the .NET Framework programmer:
System::Collections, System::Collections::Specialized, and System::Collections::Generic.
As the namespaces suggest, the first set contains standard collection types, the second contains
collection types with a more specific purpose, and the third set contains collections specifically
targeting the new generic class introduced in the .NET Framework version 2.0. You will find the more
common and frequently used System::Collections in the mscorlib.dll assembly, whereas the
System::Collections::Specialized and System::Collections::Generic are in the system.dll assembly.

Because collections are an integral part of most .NET software development, Chapter 7 goes
into many of these collections in much greater detail.

Fraser_640-4C05.fm Page 195 Friday, October 28, 2005 8:54 PM

196 C H A P T E R 5 ■ T H E . N E T F R A M E W O R K C LA S S L I B R A R Y

Table 5-1 shows you at a glance what collection types are found in the System::Collections
namespace.

Table 5-2 lists all the collection types that you will find in System::Collection::Specialized. As
you can see, you will probably use these collections less often, but the .NET Framework class library
is nice enough to provide them if you ever end up needing to use one of them.

Table 5-3 lists all the collections that you will find in System::Collections::Generic. Most likely,
as you become more familiar with generics, these collections will become your primary choice.

■Note After claiming that the .NET Framework strictly adheres to the CLS rules, Microsoft goes ahead and makes
me a liar. System::Collections::Generic classes are not CLS compliant. Personally, I think the CLS rules will
be expanded to include generics, but we shall see.

Table 5-1. Collection Types Found Within System::Collections

Collection Description

ArrayList An array that grows dynamically

BitArray An array of bit values (either 1 or 0)

Hashtable A collection of key/value pairs organized based on a hash code of the key

Queue A collection of first-in-first-out objects

SortedList A collection of key/value pairs sorted by key and accessible by either key or
index value

Stack A collection of first-in-last-out objects

Table 5-2. Collection Types Found Within System::Collections::Specialized

Collection Description

BitVector32 A small collection that will represent Boolean or small integers within
32 bits of memory

HybridDictionary A collection that switches from a list dictionary when small to a hash
table when larger

ListDictionary A singular link list recommended for lists of ten objects or less

NameValueCollection A collection of string key/value pairs organized on the string key and
accessible by either string key or index

StringCollection A collection of strings

StringDictionary A hash table with the key strongly typed to be a string

Fraser_640-4C05.fm Page 196 Friday, October 28, 2005 8:54 PM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 5 ■ T H E . N E T F R A M E W O R K C L A S S L I B R A R Y 197

System::Data
The System::Data namespace is the root for all ADO.NET classes found in the .NET Framework class
library. ADO.NET is the data access technology written for the .NET Framework and replaces the use
of ADO where it is important to remain entirely within .NET. Accessing a database is a very common
practice in software development, so you might think that it would be included in the mscorlib.dll
default assembly, but you would be wrong. You need to reference two different assemblies. The first
is the System.Data.dll assembly, which makes sense now that you know that it’s a separate assembly.
The second is the System.Xml.dll assembly. I go into detail about why this assembly is needed in
Chapter 12. A simple reason is that ADO.NET uses a lot of XML and exposes member methods that use
XML. To include these assemblies, if you don’t recall, simply add these lines to the top of your source:

#using <System.data.dll>
#using <System.Xml.dll>

The System::Data namespace comprises most of the classes that make up the ADO.NET architec-
ture. The classes that represent the specific databases to which ADO.NET will connect are missing.
These classes are known in ADO.NET-speak as data providers. Currently, ADO.NET supports
multiple data providers. The data providers found in the System::Data namespace are the following:

• System::Data::SqlClient: For Microsoft SQL Server database access

• System::Data::SqlClientCe: For Microsoft SQL Server CE Edition database access

• System::Data::Odbc: For ODBC database access

• System::Data::OleDb: For OLE DB database access

• System::Data::OracleClient: For Oracle database access

Table 5-3. Collection Types Found Within System::Collections::Generic

Collection Description

Collection<T> A base class for generic collections from which users are urged to
derive their own specialized container classes.

Dictionary<K,V> A collection of key/value paired generic objects that are organized
based on the key and retrieved as a KeyValuePair<K,V> struct.

KeyedCollection<K,V> A base class for generic collections using key/value pairs from
which users are urged to derive their own specialized container
classes.

LinkedList<T> A doubly (forward and backward) linked list generic objects.

List<T> An array of generic objects that grows dynamically.

Queue<T> A collection of first-in-first-out generic objects.

ReadOnlyCollection<T> A base class for a generic read-only collection from which users
are urged to derive their own specialized container classes.
A collection that is read-only is simply a collection with a wrapper
that prevents modifying the collection.

SortedDictionary<K,V> A collection of key/value paired generic objects that are sorted
based on the key.

Stack<T> A collection of first-in-last-out generic objects.

Fraser_640-4C05.fm Page 197 Friday, October 28, 2005 8:54 PM

198 C H A P T E R 5 ■ T H E . N E T F R A M E W O R K C LA S S L I B R A R Y

Many classes are contained within the System::Data namespace. Depending on your database
needs, you may require the use of many of these classes. Most likely, though, you’ll only have to rely on a
few. Table 5-4 provides a list of the more common classes that you may encounter. But don’t despair
immediately if the specific database access functionality you require isn’t in this table. Chances are that
there’s a class within this namespace that does what you need because System::Data is quite thorough.

You will look at the System::Data and its five data provider namespaces when you learn about
ADO.NET in great detail in Chapter 12.

System::Deployment
The System::Deployment namespace comprises all of the classes needed to programmatically update
an application supporting Microsoft’s ClickOnce deployment model. Being a very specialized
namespace, it was placed within its own assembly, System.Deployment.dll. To add the namespace,
the following code is required at the top of your source:

#using <System.Deployment.dll>

In a nutshell, you use the class ApplicationDeployment to check for the existence of new updates
over the Internet or intranet. If they are available, the class downloads and installs them on the client
machine, either synchronously or asynchronously and automatically or user controlled.

System::Diagnostics
Executing a program in the CLR environment has its advantages, one of those being readily available
diagnostic information. True, it is possible to code your traditional C++ to capture diagnostic infor-
mation, but with .NET, you get it virtually free with the classes within the System::Diagnostics
namespace. The only catch is that because this namespace is not used that frequently, you need to
implement the System.dll assembly:

#using <System.dll>

Table 5-4. Common System::Data Namespace Classes

Class Name Description

Constraint A constraint enforced on a data column—for example, a foreign
key constraint or a unique key constraint.

DataColumn A strong typed column in a data table.

DataRelation A relationship between two data tables within the data set.

DataRelationCollection A collection of all the data relations for a data set.

DataRow A row of data in a data table.

DataSet An in-memory cache of all retrieved data from the data provider.

DataTable An in-memory cache of a single data table within the data set.

DataTableCollection A collection of all data tables within the data set.

DataView A customized view of a data table used for sorting, filtering,
searching, editing, and navigation. This view can be bound to
higher-level constructs such as GUI tables and lists.

Fraser_640-4C05.fm Page 198 Friday, October 28, 2005 8:54 PM

C H A P T E R 5 ■ T H E . N E T F R A M E W O R K C L A S S L I B R A R Y 199

The diagnostic functionality available ranges from simply allowing viewing of event log files
and performance counters to allowing direct interaction with system processes. An added bonus is
that this namespace provides classes to handle debugging and tracing.

Two main classes handle event logs in the System::Diagnostics namespace. EventLog
provides the ability to create, read, write, and delete event logs or event sources across a network.
EntryWrittenEventHandler provides asynchronous interaction with event logs. Numerous supporting
classes provide more detailed control over the event logs.

It is possible to monitor system performance using the class PerformanceCounter. It is also possible
to set up your own custom performance counters using the class PerformanceCounterCategory. You
can only write to local counters, but the restriction is eased when it comes to reading counters. Of
course, you need to have the right to access the remote machine from where you want to read the
counter.

The System::Diagnostics namespace provides an amazing amount of power when it comes to
processes. For example, the Process class has the ability to start, monitor, and stop processes on
your local machine. In fact, the Process class can also monitor processes on remote machines.
Added to this are the ProcessThread and ProcessModule classes, which allow you to monitor the
process’s threads and modules. It is also possible to control how a process runs by having control
over things such as arguments and environment variables, and input, output, and error streams
using the ProcessStartInfo class.

Almost every programmer uses debug and/or trace statements within his code. So common is
the practice that the .NET Framework class library includes the Debug and Trace classes to ease your
coding life. Syntactically, the Debug and Trace classes are nearly identical. The difference between
them lies in the time of compilation and the current development environment being used. Trace
statements are executed no matter what the environment (unless you code otherwise), whereas
debug statements are only included and executed while within the Debug environment.

Table 5-5 provides you with a quick lookup table of the classes you might find useful within the
System::Diagnostics namespace.

Table 5-5. Common System::Diagnostics Namespace Classes

Class Name Description

Debug Methods and properties to help debug a program

Debugger Provides communication to a debugger

DefaultTraceListener The default output method for Trace

EntryWrittenEventHandler Handler to provide asynchronous interaction with event logs

EventLog Provides interaction with event logs

PerformanceCounter Provides access to system performance counters

PerformanceCounterCategory Creates and provides access to custom performance counters

Process Provides access to local and remote processes and the ability to
start and stop local processes

ProcessModule Provides access to process modules

ProcessStartInfo Provides control over the environment for which a
process starts

ProcessThread Provides access to process threads

Trace Provides methods and properties to help trace a program

Fraser_640-4C05.fm Page 199 Friday, October 28, 2005 8:54 PM

200 C H A P T E R 5 ■ T H E . N E T F R A M E W O R K C LA S S L I B R A R Y

System::DirectoryServices
System::DirectoryServices is a small namespace providing easy access to Active Directory. Not the most
commonly used namespace, it has been placed in its own assembly, System.Directoryservices.dll. To
add the namespace, you require the following code at the top of your source:

#using <System.Directoryservices.dll>

It is assumed that you have prior knowledge of Active Directory before you use the class; in a
nutshell, here is how to use the class. First, you use the class DirectoryEntry constructor to get
access to a node or object within Active Directory. Then, with the DirectoryEntry node and some
help classes, you are capable of activities such as creating, deleting, renaming, setting passwords,
moving a child node, and enumerating children.

You can use the classes in this namespace with any of the Active Directory service providers.
The current providers are

• Internet Information Services (IIS)

• Lightweight Directory Access Protocol (LDAP)

• Novell NetWare Directory Service (NDS)

• Windows NT

Another class that you might find of some use in System::DirectoryServices is the
DirectorySearcher class. This class allows you to perform a query against an Active Directory
hierarchy. Unfortunately, as of now, only LDAP supports DirectorySearcher.

The book Pro .NET Directory Services Programming by Mikael Freidlitz, Ajit Mungale, Erick Sgarbi,
Noel Simpson, and Jamie Vachon (Apress, 2003) covers in extreme detail how to use this namespace.
Though the book is written for C# and VB .NET developers, I think you can still use it to get the infor-
mation you need.

System::Drawing
Computer software without some form of graphics is nearly a thing of the past, especially in the PC
world. The .NET Framework relies on a technology named GDI+ to handle graphics. GDI+ is easy to
use. It is designed to handle the myriad graphic adapters and printers in a device-independent
fashion, thus saving you from having to worry about coding for each graphic device on your own. Of
course, this is not a new concept; Windows has had a Graphical Device Interface (GDI) since its
earliest versions. Those of you from the GDI world should see a considerable simplification of how
you now have to code graphics. But you will also find a huge increase in added functionality.

System::Drawing provides the core graphic classes of GDI+, whereas the following four other
child namespaces provide more specialized graphics capabilities:

• System::Drawing::Drawing2D: Adds advanced two-dimensional (2D) and vector graphics

• System::Drawing::Imaging: Adds advanced GDI+ imaging

• System::Drawing::Printing: Adds print-related services

• System::Drawing::Text: Adds advanced GDI+ typography

Fraser_640-4C05.fm Page 200 Friday, October 28, 2005 8:54 PM

C H A P T E R 5 ■ T H E . N E T F R A M E W O R K C L A S S L I B R A R Y 201

Every System::Drawing namespace requires that you add the System.Draw.dll assembly to the
top of your source:

#using <System.Drawing.dll>

I go into GDI+ software development in detail in Chapter 11, but for those of you who can’t wait
that long, here’s a brief summary of the functionality.

The core of all GDI+ classes can be found in the System::Drawing namespace. This large namespace
contains classes to handle things ranging from a point on the graphics device all the way up to
loading and displaying a complete image in many graphic file formats, including BMP, GIF, and JPEG.

The key to all graphics development is the aptly named Graphics class. This class basically
encapsulates the graphics device—for example, the display adaptor or printer. With it you can
draw a point, line, polygon, or even a complete image. When you use the Graphics class with other
System::Drawing classes, such as Brush, Color, Font, and Pen, you have the means to create amazing
and creative images on your display device.

Though you can do almost any 2D work you want with System::Drawing, the .NET Framework
class library provides you with another set of classes found within the System::Drawing::Drawing2D
that allows for more fine-tuned 2D work. The basic principle is similar to the “connect-the-dots”
pictures that you did as a kid. The image you want to draw is laid out in 2D space by drawing straight
and curved lines from one point to another. Images can be left open or closed. They can also be
filled. Filling and line drawing can be done using a brush and/or using a color gradient.

The System::Drawing namespace can handle most imaging functionality. With the
System::Drawing::Imaging namespace, you can add new image formats that GDI+ does not support.
You can also define a graphic metafile that describes a sequence of graphics operations that can be
recorded and then played back.

GDI+ can display (or, more accurately, print) to a printer. To do so is very similar to displaying
to a monitor. The difference is that a printer has many different controls that you will not find on a
monitor—for example, a paper source or page feed. All these differences were encapsulated and
placed into the System::Drawing::Printing namespace.

Nearly all the functionality to handle text is located within the System::Drawing namespace. The
only thing left out and placed in the System::Drawing::Text namespace is the ability to allow users
to create and use collections of fonts.

System::EnterpriseServices
The System::EnterpriseServices namespace provides the ability for .NET Framework objects to
interface with COM+ objects. COM+ objects are a key component of Microsoft’s enterprise-wide
application architecture. You can think of COM+ as an extension of COM into the enterprise
environment.

With the System::EnterpriseServices namespace, it is fairly easy to use .NET Framework objects
within enterprise applications. Table 5-6 shows some of the more common classes and attributes within
the System::EnterpriseServices namespace.

Every System::EnterpriseServices namespace requires that you add the System.
Enterpriseservices.dll assembly to the top of your source:

#using <System.Enterpriseservices.dll>

Fraser_640-4C05.fm Page 201 Friday, October 28, 2005 8:54 PM

202 C H A P T E R 5 ■ T H E . N E T F R A M E W O R K C LA S S L I B R A R Y

System::Globalization
The System::Globalization namespace contains classes that define culture-related information,
such as language, currency, numbers, and calendar. Because globalization is a key aspect of .NET,
the namespace was included within the mscorlib.dll assembly.

I cover globalization in Chapter 18, when I go into assembly programming. The CultureInfo
class contains information about a specific culture, such as the associated language, the country or
region where the culture is located, and even the culture’s calendar. Within the CultureInfo class,
you will also find reference to the date, time, and number formats the culture uses. Table 5-7 shows
some of the more common classes within the System::Globalization namespace.

Table 5-6. Common System::EnterpriseServices Namespace Classes and Attributes

Class Name Description

ApplicationActivationAttribute An attribute that enables you to specify whether compo-
nents in the assembly run in the creator’s process
(Library) or in a system process (Server)

ContextUtil A class made up several static members from which you
retrieve contextual information about the COM+ object

EventClassAttribute An attribute that specifies that the object is an Event class

JustInTimeActivationAttribute An attribute that turns just-in-time (JIT) activation on
or off

SecurityIdentity A class that contains information regarding the identity
assumed by a COM+ object

SecurityRoleAttribute An attribute that configures a role of an application
or component

ServicedComponent A base class for all classes using COM+ services

SharedProperty A class that provides access to a shared property

SharedPropertyGroup A class that provides access to a collection of
shared properties

SharedPropertyGroupManager A class that controls the access to shared properties

TransactionAttribute An attribute that specifies the type of transaction that is
available to the attributed object (Disabled, NotSupported,
Required, RequiredNew, and Supported)

Table 5-7. Common System::Globalization Namespace Classes

Class Name Description

Calendar Specifies how to divide time into pieces (e.g., weeks, months,
and years)

CultureInfo Contains specific information about a culture

DateTimeFormatInfo Specifies how dates and times are formatted

NumberFormatInfo Specifies how numbers are formatted

Fraser_640-4C05.fm Page 202 Friday, October 28, 2005 8:54 PM

C H A P T E R 5 ■ T H E . N E T F R A M E W O R K C L A S S L I B R A R Y 203

System::IO
If you are not using sockets or a database to retrieve and store data, then you are most likely using
file and/or stream input and output (I/O). Of course, it is completely possible that you are using
sockets, a database, and file and stream I/O within the same application. As you can guess by the
name System::IO, it handles the .NET Framework library class’s file and stream I/O. To access
System::IO, you need to reference the mscorlib.dll assembly:

#using <mscorlib.dll>

Typically when you deal with the System::IO namespace’s classes, you are working with files
and directories on your local machine and network, or streams of data probably via the Internet.
These, however, are not the only uses of the classes found within the System::IO namespace. For
example, it is possible to read data from and write data to computer memory, usually either a string
buffer or a specific memory location.

You learn about the .NET Framework class library’s I/O capabilities in some detail in Chapter 8.
For now, Table 5-8 shows some of the more common classes that you might come across in the
System::IO namespace.

RegionInfo Contains information about the country and region

SortKey Maps a string to its sort key

TextInfo Specifies the properties and behaviors of the writing system

Table 5-8. Common System::IO Namespace Classes

Class Name Description

BinaryReader Reads in .NET primitive types from a binary stream.

BinaryWriter Writes out .NET primitive types to a binary stream.

Directory A collection of static methods for creating, moving, and enumerating
directories.

DirectoryInfo A collection of instance methods for creating, moving, and
enumerating directories.

File A collection of static methods for creating, copying, deleting, moving,
and opening files. It also can be used in the creation of a FileStream.

FileInfo A collection of instance methods for creating, copying, deleting,
moving, and opening files. It also can be used in the creation of a
FileStream.

FileNotFoundException An exception that is thrown when a file on a disk is not found.

FileStream Provides support for both synchronous and asynchronous read
and write operations to a stream.

FileSystemWatcher Monitors and then raises events for file system changes.

IOException An exception that is thrown when an I/O exception occurs.

Table 5-7. Common System::Globalization Namespace Classes

Class Name Description

Fraser_640-4C05.fm Page 203 Friday, October 28, 2005 8:54 PM

cafac74dd2d083cbec0906b66fcd56b1

204 C H A P T E R 5 ■ T H E . N E T F R A M E W O R K C LA S S L I B R A R Y

System::IO::Ports
The System::IO::Ports namespace provides the developer complete access to the computer’s serial
port. System::IO::Ports is primarily made up of the one class SerialPort, which presents assorted
functionality like synchronous and event-driven I/O, and access to serial driver properties. The
SerialPort class also provides a method to allow stream access to the serial ports of the computer.

To access System::IO::Ports, you need to reference the System.dll assembly near the top of
your code:

#using <System.dll>

This was not added until .NET Framework version 2.0, which is a surprising oversight by
Microsoft.

System::Management
The System::Management namespace provides access to a large amount of information about the
system, devices, and applications maintained within the Windows Management Instrumentation
(WMI) infrastructure. The System::Management allows you to query for information like the free
space remaining on the disk, CPU utilization, shared device names, and so forth.

You will predominately use classes derived from ManagementObjectSearcher, ManagementQuery,
and ManagementEventWatcher to get information for both managed and unmanaged components
maintained within the WMI infrastructure.

Though the System::Management namespace appears to be simple, it is actually deceptively
tricky to use. In fact, .NET System Management Services by Alexander Golomshtok (Apress, 2003)
covers how to use this namespace in great detail, to help you over the learning curve. Though the
book is written for C# developers, I think you can still use it to get the information you need.

To access System::Management, you need to reference the System.Management.dll assembly
near the top of your code:

#using <System.Management.dll>

MemoryStream Provides support for reading and writing a stream of bytes
to memory.

Path Provides support for operations on a String that contains a file
or directory.

StreamReader Reads a UTF-8 encoded byte stream from a TextReader.

StreamWriter Writes a UTF-8 encoded byte stream to a TextWriter.

StringReader Reads a String using a TextReader.

StringWriter Writes a String using a TextWriter.

TextReader An abstract reader class that can represent a sequence
of characters.

TextWriter An abstract writer class that can represent a sequence of characters.

Table 5-8. Common System::IO Namespace Classes (Continued)

Class Name Description

Fraser_640-4C05.fm Page 204 Friday, October 28, 2005 8:54 PM

C H A P T E R 5 ■ T H E . N E T F R A M E W O R K C L A S S L I B R A R Y 205

Table 5-9 shows some of the more common classes that you might come across in the
System::Management namespace.

System::Net
This namespace will be hidden from most Web developers using .NET, because they will most likely
use ASP.NET’s higher-level extraction of Internet communication. For those of you who are more
familiar with the networks, the .NET Framework class library has provided several namespaces.

To access both the System::Net hierarchy of namespaces, you need to reference the System.dll
assembly near the top of your code:

#using <system.dll>

The System::Net namespace provides a simple programming interface for many of today’s
network protocols. It enables you to do things such as manage cookies, make DSN lookups, and
communicate with HTTP and FTP servers. If that is not intimate enough for you, then the
System::Net::Sockets namespace provides you with the ability to program at the sockets level.
I cover network programming in detail in Chapter 17.

Table 5-9. Common System::Management Namespace Classes

Class Name Description

EventQuery Represents a WMI event query. Instances of this
class or derived classes from it are used in
ManagementEventWatcher to subscribe to WMI events

ManagementClass Represents a management class

ManagementEventWatcher Used to temporarily subscribe to event notifications
based on a specified EventQuery

ManagementNamedValueCollection Represents a collection of key/value pairs containing
contextual information to WMI operations

ManagementObject Represents a data management class

ManagementObjectCollection Represents a collection data management class retrieved
from WMI

ManagementObjectSearcher This collection retrieves a ManagementObjectCollection
based on a specific query

ManagementPath Used to build and parse paths to a specific WMI object

ManagementQuery An abstract class used to build all management
query objects

PropertyData Represents a specific WMI object property

PropertyDataCollection Represents a collection of properties about a WMI object

QualifierData Represents a specific WMI object qualifier

QualifierDataCollection Represents a collection of qualifiers about a WMI object

Fraser_640-4C05.fm Page 205 Friday, October 28, 2005 8:54 PM

206 C H A P T E R 5 ■ T H E . N E T F R A M E W O R K C LA S S L I B R A R Y

For those of you who want to program your network at this lower level, Table 5-10 provides a list
of all the namespaces that make up the System::Net hierarchy.

System::Reflection
Most of the time when you develop code, it will involve static loading of assemblies and the data
types found within. You will know that, to execute properly, application X requires class Y’s method
Z. This is pretty standard and most programmers do it without thinking.

This is the normal way of developing with the .NET Framework class library as well. There are
times, though, that a developer may not know which class, method, or other data type is needed for
successful execution until the time that the application is running. What is needed is dynamic
instance creation of data types. With the .NET Framework class library, this is handled by the classes
within the System::Reflection namespace found within the mscorlib.dll assembly:

#using <mscorlib.dll>

The System::Reflection namespace provides a class that encapsulates assemblies, modules,
and types. With this encapsulation, you can now examine and load classes, structures, methods, and
so forth. You can also create dynamically an instance of a type and then invoke one of its methods,
or access its properties or member variables.

Table 5-10. System::Net Hierarchy Namespaces

Namespace Description

System::Net A simple programming interface for many of the
protocols used on networks today

System::Net::Cache A set of types used to define cache policies for resources
obtained using the WebRequest and HttpWebRequest

System::Net::Configuration A set of types used to access and update configuration
settings for the System::Net namespace hierarchy

System::Net::Mail A simple programming interface for sending electronic
mail to a Simple Mail Transfer Protocol (SMTP) server
for delivery

System::Net::Mime A set of types used to define Multipurpose Internet
Mail Exchange (MIME) headers

System::Net::NetworkInformation A simple programming interface for retrieving infor-
mation about your network like network traffic data,
statistics, and address change information

System::Net::Security A simple programming interface for secured data
transfer

System::Net::Sockets A simple programming interface for Windows Sockets
(Winsock)

Fraser_640-4C05.fm Page 206 Friday, October 28, 2005 8:54 PM

C H A P T E R 5 ■ T H E . N E T F R A M E W O R K C L A S S L I B R A R Y 207

I explore System::Reflection in more detail when you examine assembly programming in
Chapter 18. Table 5-11 shows some of the more common classes that you might use within the
System::Reflection namespace.

System::Resources
The .NET Framework can handle resources in several different ways: in an assembly, in a satellite
assembly, or as external resource files and streams. The handling of resources within the .NET
Framework class library for any of these three ways lies in the classes of the System::Resources
namespace. Handling resources is a very common task, so it was placed within the mscorlib.dll
assembly:

#using <mscorlib.dll>

Resources can be fixed for an application divided by culture. I examine resources programming
with assembly programming in Chapter 18. You will be dealing mostly with three classes within the
System::Resources namespace, as shown in Table 5-12.

Table 5-11. Common System::Reflection Namespace Classes

Class Name Description

Assembly Defines an assembly

AssemblyName Provides access to all the parts of an assembly’s name

AssemblyNameProxy A remotable version of AssemblyName

Binder Selects a method, property, and so forth, and converts its actual
argument list to a generic formal argument list

ConstructorInfo Provides access to the constructor’s attributes and metadata

EventInfo Provides access to the event’s attributes and metadata

FieldInfo Provides access to the field’s attributes and metadata

MemberInfo Provides access to the member’s attributes and metadata

MethodInfo Provides access to the method’s attributes and metadata

Module Defines a module

ParameterInfo Provides access to the parameter’s attributes and metadata

Pointer Provides a wrapper class for a pointer

PropertyInfo Provides access to the property’s attributes and metadata

TypeDelegator Provides a wrapper for an object and then delegates all methods to
that object

Fraser_640-4C05.fm Page 207 Friday, October 28, 2005 8:54 PM

208 C H A P T E R 5 ■ T H E . N E T F R A M E W O R K C LA S S L I B R A R Y

System::Runtime::InteropServices
The System::Runtime::InteropServices namespace provides a wide variety of members that support
COM interoperability and platform invoke services.

.NET has not exposed the entire Win32. But all is not lost, because the
System::Runtime::InteropServices namespace provides the DLLImportAttribute and some helper
attributes to call into these APIs or any other C DLL API.

Developers have made a huge investment in developing COM objects, and it would be
quite a waste of effort to rewrite the objects into .NET object. Because of this, the
System::Runtime::InteropServices namespace was created to provide types to make interfacing
with COM objects extremely easy.

Interfacing with C DLLs and COM objects is explored in more detail with advanced unsafe
programming in Chapter 21. Table 5-13 shows some of the more common classes that you might use
within the System::Runtime::InteropServices namespace.

To access System::Runtime::InteropServices, you need to reference the mscorlib.dll assembly:

#using <mscorlib.dll>

Table 5-12. Common System::Resources Namespace Classes

Class Name Description

ResourceManager Provides the ability to access culture-specific resources from an assembly
or satellite assembly. It can also read from a specified resource file or stream.

ResourceReader Provides the ability to read from a specified resource file or stream.

ResourceWriter Provides the ability to write to a specified resource file or stream.

Table 5-13. Common System::Runtime::InteropServices Namespace Classes

Class Name Description

ClassInterfaceAttribute Used to indicate the type of interface that will be generated
for the public member types exposed by a managed type
to a COM

ComDefaultInterfaceAttribute Used to specify a default interface exposed to the COM

ComRegisterFunctionAttribute Used to specify the custom method to call when you
register an assembly for use with the COM

ComSourceInterfacesAttribute Used to identify a list of interfaces that are exposed as
COM event sources for the class

ComUnregisterFunctionAttribute Used to specify the custom method to call when you
unregister an assembly for use with the COM

DispIdAttribute Used to specify the COM dispatch identifier (DISPID) of a
method, field, or property

Fraser_640-4C05.fm Page 208 Friday, October 28, 2005 8:54 PM

C H A P T E R 5 ■ T H E . N E T F R A M E W O R K C L A S S L I B R A R Y 209

System::Runtime::Remoting
System::Runtime::Remoting is a hierarchy of namespaces providing classes and interfaces that allow
developers the ability to create and configure distributed applications. For those of you who are pre-
.NET developers, this namespace hierarchy replaces (or is possibly equivalent to) DCOM.

A distributed application is an application where its parts are distributed among multiple
machines allowing improved performance, scalability, and maintainability. Development using
System::Runtime::Remoting hierarchy of namespaces is a large topic and well beyond the scope of
this book. Fortunately, Advanced .NET Remoting, Second Edition by Ingo Rammer (Apress, 2005)
covers in depth how to develop applications using this namespace hierarchy. Although the book is
written for C# developers, I think you can still use it to get the information you need.

To access System::Runtime::Remoting, you need to reference the mscorlib.dll assembly:

#using <mscorlib.dll>

Table 5-14 provides a list of all the namespaces that make up the System::Runtime::Remoting
hierarchy.

DllImportAttribute Used to indicate that the method is exposed by an
unmanaged dynamic-link library (C DLL) as a static entry
point and thus can be called by the platform invoke
services (PInvoke)

GuidAttribute Used to supply an explicit System::Guid to a class interface
or type library when an automatic GUID is undesirable

IDispatchImplAttribute Used to indicate which IDispatch implementation the
CLR uses when exposing dual interfaces and dispinterfaces
to COM

InAttribute Used to indicate that data should be marshaled only from
the caller to the callee

InterfaceTypeAttribute Used to indicate how a managed interface is exposed to
COM (dual, dispatch-only, or IUnknown)

Marshal A collection of methods for allocating unmanaged memory,
copying unmanaged memory, and converting managed to
unmanaged types, as well as an assortment of methods
for interacting with unmanaged code

OutAttribute Indicates that data should be marshaled only from the
callee back to the caller

ProgIdAttribute An attribute that allows the assigning of a ProgID to a class

RegistrationServices A collection of services for registering and unregistering
managed assemblies for use from COM

Table 5-13. Common System::Runtime::InteropServices Namespace Classes

Class Name Description

Fraser_640-4C05.fm Page 209 Friday, October 28, 2005 8:54 PM

210 C H A P T E R 5 ■ T H E . N E T F R A M E W O R K C LA S S L I B R A R Y

Table 5-14. System::Runtime::Remoting Hierarchy Namespaces

Namespace Description

System::Runtime::Remoting Provides classes and interfaces that allow devel-
opers to create and configure distributed
applications. Some of the more important classes
of the namespace are RemotingConfiguration,
RemotingServices, and ObjRef.

System::Runtime::Remoting::Activation Provides classes that support server and client
activation of remote objects.

System::Runtime::Remoting::Channels Provides classes that support and handle
channels (objects that transport messages
between applications across remoting
boundaries) and channel sinks.

System::Runtime::Remoting::Channels::Http Provides classes that support and handle chan-
nels and channel sinks using the HTTP protocol.

System::Runtime::Remoting::Channels::Ipc Provides classes that support and handle
channels and channel sinks using the IPC
protocol.

System::Runtime::Remoting::Channels::Tcp Provides classes that support and handle
channels and channel sinks using the TCP
protocol.

System::Runtime::Remoting::Contexts Provides classes that define the contexts
(ordered sequence of properties that defines
an environment for the class) for all objects
that reside within.

System::Runtime::Remoting::Lifetime Provides classes that manage the lifetime of
remote objects.

System::Runtime::Remoting::Messaging Provides classes that are used to create and
transmit messages.

System::Runtime::Remoting::Metadata Provides classes and attributes that can be used
to customize generation and processing of
SOAP for objects and fields.

System::Runtime::Remoting::Metadata::W3cXsd2001 Provides classes that contains the XML Schema
Definition (XSD) defined by the World Wide
Web Consortium (W3C) in 2001.

System::Runtime::Remoting::MetadataServices Provides classes that contain the classes used to
convert metadata to and from XML schema for
the remoting infrastructure.

System::Runtime::Remoting::Proxies Provides classes that control and provide func-
tionality for proxies.

System::Runtime::Remoting::Services Provides classes that contain service classes that
provide functionality to the .NET Framework.

Fraser_640-4C05.fm Page 210 Friday, October 28, 2005 8:54 PM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 5 ■ T H E . N E T F R A M E W O R K C L A S S L I B R A R Y 211

System::Runtime::Serialization
System::Runtime::Serialization contains all the classes used to serialize and deserialize objects.
Serialization is the process of converting an object, most likely an instance of a class to a linear
sequence of bytes appropriate for things like storage or transmission over a stream. Deserialization
is the conversion of a linear sequence of bytes back into an object.

The .NET Framework provides two formats for the linear sequence: SOAP and binary. You can
also create your own format as well. The choice of which format is determined by which formatter
namespace is chosen.

I cover serialization and deserialization of class objects in Chapter 8. Table 5-15 shows some of
the common classes that you might use within the System::Runtime::Serialization namespace.

To access System::Runtime::Serialization, you need to reference the mscorlib.dll assembly:

#using <mscorlib.dll>

System::Security
The System::Security namespace and the hierarchy of namespaces below it make up a major portion
of .NET’s security functionality. System::Web::Security makes up most of the rest. You can break up
.NET security primarily into three different areas: role-based security, code access security, and
cryptography.

Role-based security determines what programs may be run based on the role of the user. Code
access security adds granularity to .NET security by allowing the CLR to determine what code block
within a program can be executed based on evidence of who the user is and the permissions that
user may have. Cryptography provides the ability to allow only the users with appropriate keys the
ability to read data and code.

I cover .NET security in Chapter 19. Table 5-16 shows all the namespaces within the
System::Security namespace hierarchy.

Table 5-15. Common System::Runtime::Serialization Namespace Classes

Class Name Description

Formatter The base functionality for the CLR serialization
formatters

Formatters::Binary::BinaryFormatter A class used to serialize and deserialize objects into
a binary format

Formatters::Soap::SoapFormatter A class used to serialize and deserialize objects into
a SOAP format

FormatterServices A class containing static methods which help in the
implementing of a Formatter for serialization

SerializationInfo A class that contains all the data needed to serialize
or deserialize an object

Fraser_640-4C05.fm Page 211 Friday, October 28, 2005 8:54 PM

212 C H A P T E R 5 ■ T H E . N E T F R A M E W O R K C LA S S L I B R A R Y

System::Threading
Multithread programming can be a very powerful feature, because when coded properly, it allows
for more optimal CPU usage and a better perception of response time. Very seldom is a computer at
100 percent usage, and running more than one thread concurrently can help you get more out of
your CPU.

The .NET Framework has built-in multithreading. In fact, an important feature of .NET, garbage
collection, is handled using multithreading. The .NET Framework exposes its multithreading capa-
bilities with the classes found in the System::Threading namespace. Multithreading, as an important
and frequently used feature of the .NET Framework, is found in the mscorlib.dll assembly:

#using <mscorlib.dll>

The System::Threading namespace provides a class to manage groups of threads, a thread
scheduler, a class to synchronize mutually exclusive threads, and an assortment of other functional-
ities to handle multithreading. I cover multithreading in Chapter 16. For now, Table 5-17 lists all the
common classes in the System::Threading namespace that you might use.

Table 5-16. System::Security Hierarchy Namespaces

Namespace Description

System::Security Provides the underlying structure of the CLR
security system.

System::Security::AccessControl Provides all the security access information on objects like
Active Directory, Files, Registry, Mutex, and Semaphores.

System::Security::Authentication Provides a set of enumerations that describe the secu-
rity of a connection.

System::Security::Cryptography Provides cryptographic services, including secure
encoding and decoding of data. This namespace also
contains functions, such as hashing, random number
generation, and message authentication.

System::Security::Permissions Defines classes that control access to operations and
resources based on policy.

System::Security::Policy Contains code groups, membership conditions, and
evidence.

System::Security::Principal Defines a principal object that represents the security
context under which code is running.

Table 5-17. Common System::Threading Namespace Classes

Class Name Description

Interlocked Provides atomic operations for a shared variable across multiple
threads

Monitor Provides a lock for critical sections of a thread, allowing for
synchronized access

Mutex Provides synchronized access to shared resources across mutually
exclusive threads

Fraser_640-4C05.fm Page 212 Friday, October 28, 2005 8:54 PM

C H A P T E R 5 ■ T H E . N E T F R A M E W O R K C L A S S L I B R A R Y 213

System::Web
The System::Web namespace and the hierarchy of namespaces below it make up a major portion of
the .NET Framework class library. This makes sense, as .NET came into being because of the Internet
and the World Wide Web.

The System::Web hierarchy is too massive to cover fully here, and given that C++/CLI only supports
a small portion of the namespaces, those relating to Web services, I only give these namespaces cursory
coverage and leave it to the .NET Framework documentation to provide any detailed explanations
you need of any particular class. The .NET Framework breaks Web development into two pieces:
Web applications and Web services. I only cover Web services (in Chapter 15) because C++/CLI does
not support Web applications, although even this chapter really just scratches the surface of the
functionality available to you.

Table 5-18 helps you navigate through the myriad classes provided by the System::Web namespace
hierarchy by providing you with a list of some of the more common namespaces that you might use.

ReaderWriterLock Provides a lock that allows a single writer for many readers

Thread Creates and controls threads

ThreadPool Provides a pool of efficient worker threads that are managed by the system

Timer Provides the ability for threads to execute at discrete intervals

Table 5-18. Common System::Web Hierarchy Namespaces

Namespace Description

System::Web Contains classes to handle browser–server communications.
This namespace contains HttpRequest and HttpResponse
to handle the HTTP dialog between the browser and the
Web server.

System::Web::Caching Contains the cache class used to provide caching of
frequently used data on the Web server.

System::Web::Configuration Contains classes to help set up the ASP.NET configuration.

System::Web::Hosting Provides the ability to host managed applications that reside
outside of the Microsoft Internet Information Services (IIS).

System::Web::Mail Contains classes to create and send e-mail using either the
SMTP mail service built into Microsoft Windows 2000 or an
arbitrary SMTP server.

System::Web::Security Contains classes to handle ASP.NET security in Web
applications.

System::Web::Services Contains classes to create and implement Web services
using ASP.NET and XML Web service clients.

System::Web::SessionState Contains classes to store the data specific to a client within
a Web application, giving to the user the appearance of a
persistent connection.

Table 5-17. Common System::Threading Namespace Classes

Class Name Description

Fraser_640-4C05.fm Page 213 Friday, October 28, 2005 8:54 PM

214 C H A P T E R 5 ■ T H E . N E T F R A M E W O R K C LA S S L I B R A R Y

System::Windows::Forms
Visual Basic has been using forms for many versions, and Windows Forms is modeled on Visual
Basic’s form technology, but with a much finer grain of control. Normally you will create Windows
Forms using a drag-and-drop tool, but you also have full access to all aspects of the Win form within
your code.

As of the current release, Windows Forms and Windows-based GUI applications are pretty
much synonymous. However, if the .NET Framework starts to get ported to other platforms, as it can
be, then a Windows Form will be more equivalent to a GUI application.

First off, all the classes that make up the .NET Windows Forms environment are actually found
within the System::Windows::Forms namespace. This namespace is large, containing several hundred
different types (classes, structures, enumerations, and delegates). You probably will not use every
type within the namespace, but there is a good chance that you may use a large number of them,
especially if your Windows Form has any complexity involved.

You will cover Windows Forms in detail in Chapters 9 and 10, but you will also see them used
many times in subsequent chapters. For those of you who want a head start, Table 5-19 shows a
good number of common classes that you will become quite familiar with if you plan to build
Windows Forms.

System::Web::UI Contains classes and interfaces to create server controls
and pages for Web applications.

System::Web::UI::HtmlControls Contains classes to create HTML server controls on Web
Form pages of Web applications.

System::Web::UI::Imaging Contains classes to create dynamic images and custom
image generation services.

System::Web::UI::WebControls Contains classes to create Web server controls on Web
pages of Web applications.

Table 5-19. Common System::Windows::Forms Namespace Classes

Class Name Description

Application Provides static methods and properties for managing an application

Button Represents a Windows Forms Button control

CheckBox Represents a Windows Forms CheckBox control

CheckListBox Represents a Windows Forms CheckListBox control

Clipboard Provides methods to place data in and retrieve data from the system clipboard

ComboBox Represents a Windows Forms ComboBox control

Control Represents the base class of all controls in the Windows Forms environment

Table 5-18. Common System::Web Hierarchy Namespaces (Continued)

Namespace Description

Fraser_640-4C05.fm Page 214 Friday, October 28, 2005 8:54 PM

C H A P T E R 5 ■ T H E . N E T F R A M E W O R K C L A S S L I B R A R Y 215

System::Xml
XML is a key component of the .NET Framework. Much of the underlying technological architecture
of .NET revolves around XML. No matter what type of application you plan on developing, be it for
the Web or a local machine, there is a good chance that somewhere in your application XML is being
used. You just might not be aware of it. Because of this, there are a lot of specialized XML classes
available to a .NET developer.

To provide XML support to your .NET applications requires the addition of the System.Xml.dll
assembly to the top of your source code:

#using <System.Xml.dll>

The .NET Framework provides a developer two different methods of processing XML data: a
fast, noncaching, forward-only stream, and a random access in-memory Document Object Model
(DOM) tree. You will cover both methods in Chapter 13. You will also see a little bit of XML in
Chapter 15.

Table 5-20 shows all of the .NET Framework class library’s XML-related classes that fall within
the System::Xml namespace hierarchy.

Cursor Represents a Windows Forms cursor

Form Represents a window or dialog box, which makes up part of the application’s
user interface

Label Represents a Windows Forms Label control

LinkLabel Represents a Windows Forms label control that can display a hyperlink

ListBox Represents a Windows Forms ListBox control

Menu Represents the base functionality of all Windows Forms menus

PictureBox Represents a Windows Forms PictureBox control

RadioButton Represents a Windows Forms RadioButton control

RichTextBox Represents a Windows Forms RichTextBox control

ScrollBar Represents a Windows Forms ScrollBar control

StatusBar Represents a Windows Forms StatusBar control

TextBox Represents a Windows Forms TextBox control

ToolBar Represents a Windows Forms ToolBar

TreeView Represents a hierarchical display list of TreeNodes

Table 5-19. Common System::Windows::Forms Namespace Classes

Class Name Description

Fraser_640-4C05.fm Page 215 Friday, October 28, 2005 8:54 PM

216 C H A P T E R 5 ■ T H E . N E T F R A M E W O R K C LA S S L I B R A R Y

Microsoft::Win32
One namespace within the .NET Framework that I find very helpful at times that does not fall directly
under the System namespace hierarchy is the Microsoft::Win32 namespace. There are other namespaces
within the Microsoft hierarchy, but they are very specialized, and most likely you will not use them.

To access Microsoft::Win32, you need to reference the mscorlib.dll assembly:

#using <mscorlib.dll>

What makes Microsoft::Win32 unique is that two of its classes, Registry and RegistryKey,
provide access to the Windows registry. Although the Windows registry is being used less and less
because of .NET’s web.config and application.config files, I still find the registry helpful on some
occasions.

Summary
In this chapter, you took a high-level look at the core library provided to .NET developers: the .NET
Framework class library. You started by learning the basic structure of the .NET Framework class
library. You then moved on to examine many of the namespaces that make up the class library. You
will see many of these namespaces in later chapters. You should now have an appreciation of how
large the library is and a good idea of how to navigate through it.

In the next chapter, you will look at the very helpful C++/CLI-integrated XML documentation.
With this addition, you will be able to make your own documentation that is easy to read, write, and
maintain.

Table 5-20. Common System::Xml Namespace Classes

Class Name Description

System::Xml All the core classes needed to create, read, write, and
update XML

System::Xml::Schema Provides XML schema support

System::Xml::Serialization Provides the ability to serialize .NET managed objects to and
from XML

System::Xml::Xpath Provides support for the XPath and evaluation engine

System::Xml::Xsl Provides support for Extensible Stylesheet Transformations
(XSLT)

Fraser_640-4C05.fm Page 216 Friday, October 28, 2005 8:54 PM

217

■ ■ ■

C H A P T E R 6

Integrated XML Documentation

An important and necessary evil of all software development is documentation. As a programmer
I can vouch for the fact that I hate writing documentation—even more so if I have to write both inline
and external documentation. If I could remove the necessity to do only one set of documentation,
I’d be a much happier camper. With Visual Studio 2005 my wish has finally come true.

What I am referring to is integrated XML documentation.
Integrated XML documentation is a new commenting style introduced in Visual Studio 2005

but new to C++/CLI in that it allows the developer to add documentation internally to the program
and then, with a compile switch, to generate external documentation from these new comments.
The generated documentation is in the form of XML, which with several third-party tools on the
market can be used to build impressive-looking documentation in multiple formats. (I use the de facto
standard NDoc, and all generated documentation in this chapter is created using NDoc. You can get
more information and download NDoc from http://ndoc.sourceforge.net.)

Integrated XML documentation has always been a part of C#, and I have often wondered why it
was excluded from Managed Extensions for C++ as I saw no real reason that it should be left out. I’m
sure Visual Basic .NET developers thought the same thing as well. Yes, there are third-party add-ons
that added the functionality, but it has taken Microsoft until now to see the light and now it is available
to all C++/CLI programmers.

In this chapter I discuss the basics of the new documentation tool, then I show some of the
documentation tags available, and finally I present an example that uses all the standard tags provided
by the C++/CLI compiler.

The Basics
I have to be one of the first people to admit, I hate documenting my code. It seems like such a waste
of time as the code seems so self-explanatory at the time you write it. Of course the function
GetDate() gets a date and BuildDataTree() builds a data tree. Isn’t it obvious? Then six months rolls
around and the project leader asks you to make a change to your code. You look at the code you
wrote and wonder who was the dimwit who wrote this code without documentation? What date is
the GetDate() getting and which data tree is the BuildDataTree() building? Then you remember the
dimwit is yourself for being too lazy to write reasonable documentation for your code.

The key to documentation as far as I’m concerned is determining what a reasonable amount of
documentation is. I’ve seen both extremes on this. I had a colleague who came from an RPG II back-
ground and literally commented every line of his COBOL program. If you don’t know COBOL (lucky
you!), it is one of the most self-documenting computer languages around, obviously if written properly.
Commenting every line is like repeating every sentence in a book.

As you read this book you will see that I am at the other extreme: I only document stuff that
I think is unusual or coded in such a way that might cause confusion. This is a very bad habit!

Fraser_640-4C06.fm Page 217 Monday, November 14, 2005 11:41 AM

cafac74dd2d083cbec0906b66fcd56b1

218 C H A P T E R 6 ■ I N T E G R A T E D X M L D O C U M E N T A T I O N

Don’t follow my lead on this. I have the luxury in this book to have another 800 or so pages of docu-
mentation surrounding my code, and duplicating the text in my book within the code would make
the book even longer. An unfortunate side effect is that the downloaded code is virtually
commentless.

A reasonable number of comments fall somewhere in between these two extremes, and it is up
to the developer to find this documentation sweet spot.

So what is reasonable? Oh, there are hundreds, if not thousands, of pages written on the topic,
but I personally consider a reasonable amount of commenting as enough documentation to allow
you, and by proxy someone else, to understand your code six months after you have written it. I feel
that after approximately six months you will be looking at the code in nearly the same perspective as
any other programmer with a basic overall understanding of the software being developed. Remember,
this is just my personal standard. If you don’t like it or think it too simplistic, then be my guest and
read up on the topic.

You should try to establish documentation standards and a definition of what is reasonable
documentation early in the project when you are developing in a team environment. I find early
code reviews to be the best place to solidify the standards set during the design phase.

One aspect of software development that I like even less than commenting my code is writing
the same documentation twice: once in the code itself and then again in an external reference docu-
ment. Not liking it doesn’t mean I don’t see the need for it. In fact, I have to admit, it is more or less
essential, especially for projects in which multiple developers are going to share the code. And let’s
not even get started discussing how both internal and external documentation is indispensable for
maintenance programmers.

That said, wouldn’t it be nice to have to write documentation in only one place and then generate
the other needed forms of documentation from it? Guess what, you can. (Duh?! or I wouldn’t be
writing this chapter.)

Although I’m sure other languages provide the facility, C# was my first exposure to a language
that provided a built-in tool to allow me to tackle both of my areas of least pleasure at one time. This
tool is integrated XML documentation, or, as I like to call it, the triple slash comment. (This feature
was one of the many that first attracted me to code C# over Managed Extensions for C++ when I first
started developing for .NET.) Now, with Visual Studio 2005 and C++/CLI, the playing field has been
leveled in this area, because triple slash comments have been added.

The Triple Slash Comment
So what are triple slash comments? They are a new commenting syntax added to C++/CLI that allows
XML documentation to be generated from them. There really is nothing special about them. You just
write three forward slashes (///) and then write an XML-formatted comment associated with the
next class, method, property, or variable.

One common error that you will find when using the triple slash comment is associating them
with variables and functions outside of classes; this is not allowed (nor can you use them with
namespaces).

■Caution You can use triple slash comments only with classes and their members.

In addition to this error, triple slash comments can be used only in the code declaration (within
the class itself) and not in external implementations either within the .h or .cpp file.

■Caution Triple slash comments are valid only within the class declaration itself.

Fraser_640-4C06.fm Page 218 Monday, November 14, 2005 11:41 AM

C H A P T E R 6 ■ I N T E G R A T E D X M L D O C U M E N T A T I O N 219

Another common error is not having well-formed XML within your triple slash comments, as
this results in a compile-time warning being thrown.

■Caution Triple slash comments must use well-formed XML.

The third most common mistake (it’s really not an error) is expecting the formatting that you
place within your triple slash comments to be maintained in your generated XML documents. There
are tags that allow you to format your generated XML.

■Caution White space is ignored within triple slash comments by the compiler.

Adding Triple Slash Comment to Your Code
Okay, let’s look at the simple triple slash comment example in Listing 6-1. I provide more advanced
examples a little later.

Listing 6-1. Simple Triple Slash Comments

using namespace System;

namespace SimpleTripleSlash
{
 /// <summary>
 /// This is a summary comment for Class1
 /// </summary>
 public ref class Class1
 {
 public:
 /// <summary>This is a summary comment for Method1</summary>
 void Method1() {}

 /// <summary>This is a summary comment for Variable1</summary>
 int Variable1;
 };
}

Not much of a difference between a triple slash comment and a standard C++/CLI comment, is
there? In fact, if you were not paying attention, you probably wouldn’t have noticed anything different
about these comments.

But believe me, there is a world of difference. First off, the actual comments are enclosed in the
XML tags, in this case the <summary>. The <summary> tag is one of the many tags available to you for
generating integrated XML documentation from triple slash comments. The biggest difference,
however, occurs when you compile this class (with the addition of a compile switch or of a simple
project property change—I cover both next), as compiling the class causes an XML file to be generated.
These generated XML files contain the <summary> XML tag, as well as a few other auto-generated tags
and attributes. It is with these XML files that you can generate very impressive external code
documentation.

The triple slash comments are single-line comments, but as shown in Listing 6-1, you can
stretch your comments within a tag over multiple lines. Remember, however, that white space is
removed by the compiler, so don’t spend your time lining up everything and expect it to line up in

Fraser_640-4C06.fm Page 219 Monday, November 14, 2005 11:41 AM

220 C H A P T E R 6 ■ I N T E G R A T E D X M L D O C U M E N T A T I O N

the generated XML documentation. But don’t panic, I will show you later how you can do some
formatting to make your comments look impressive.

Generating XML Documentation Files
It is really a no-brainer when it comes to generating XML documentation files from triple slash
comments.

If you are developing your code with Visual Studio 2005, you simply need to set the Generate
XML Documentation Files property of the project to yes. To do this, follow these steps:

1. Right-click the project in the Solution Explorer.

2. Select the Properties menu item. This will display the project’s property page, as shown in
Figure 6-1.

3. Select All Configurations from the Configuration drop-down list (if you want documentation
generated for all configuration) or select the appropriate option to suit your needs.

4. Expand the Configuration Properties and C/C++ branches.

5. Select Output Files.

6. Select Yes (/doc) within the Generate XML Documentation Files property.

7. Click the OK button.

Figure 6-1. The project property page

If, on the other hand, you are developing your code using some other development editor, you
need to add the /doc argument to the cl compile command:

cl SimpleTripleSlash.cpp /clr:safe /doc

With either scenario, the same XML documentation file is generated (see Listing 6-2).

Fraser_640-4C06.fm Page 220 Monday, November 14, 2005 11:41 AM

C H A P T E R 6 ■ I N T E G R A T E D X M L D O C U M E N T A T I O N 221

Listing 6-2. Generated XML Documentation

<?xml version="1.0"?>
<doc>
 <assembly>
 SimpleTripleSlash
 </assembly>
 <members>
 <member name="T:SimpleTripleSlash.Class1">
 <summary>
 This is a summary comment for Class1
</summary>
 </member>
 <member name="M:SimpleTripleSlash.Class1.Method1">
 <summary>This is a summary comment for Method1</summary>
 </member>
 <member name="F:SimpleTripleSlash.Class1.Variable1">
 <summary>This is a summary comment for Variable1</summary>
 </member>
 </members>
</doc>

Not what you expected, is it? It’s definitely not the beautiful MSDN documentation that you
have become accustomed to. Believe it or not, IntelliSense and NDoc (as you can see in Figure 6-2)
can take this document and work wonders with it, as it actually contains a lot of information.

Figure 6-2. NDoc-generated documentation from XML documentation

First, it tells the assembly name that the document is associated with within the <assembly> tag.
Next it contains, with a <members> tag, all the member types (T:), methods (M:), and fields (F:) found

Fraser_640-4C06.fm Page 221 Monday, November 14, 2005 11:41 AM

222 C H A P T E R 6 ■ I N T E G R A T E D X M L D O C U M E N T A T I O N

in the assembly and fully clarified within <member> tags. Finally, also within the member tags, are
your triple slash comments (without the triple slash).

In this simple example there are only <summary> tags but, as you will see later in the chapter, a
number of tags can be added. Plus, you can also add your own custom tags.

■Note The actual compile process, which is normally hidden from you (and usually irrelevant to you), is that the
cl.exe command generates an .xdc file, which then gets converted to an .xml file by the xdcmake.exe command.
That is why there is an .xdc file in your project’s Debug directory.

Viewing Integrated XML Documentation in IntelliSense
One very cool feature of integrated XML documentation is that you can use it to provide IntelliSense
for your class libraries. All you need to do is copy the generated XML documentation file to the same
directory as your class library assembly and then auto-magically the triple slash documentation of
the summary and param tags that you added to the class becomes part of the information IntelliSense
displays. You can see this in action in Figure 6-3.

Figure 6-3. Automatically generated IntelliSense from triple slash comments

■Caution If you move or delete the XML documentation file from the directory of the assembly, IntelliSense will
stop working for the classes of that assembly.

One thing that caught me a couple of times is that you have to compile any new documentation
changes to the assembly and make sure the newly generated XML file is moved to the appropriate
directory. If you don’t, the old IntelliSense documentation will still be displayed.

What if you place your assembly in some nonstandard place—does this mean you have to manu-
ally copy the XML documentation file to this same location? The answer is yes you can, but you don’t
have to because you can append the directory you want the XML file written to after the /doc argument:

Fraser_640-4C06.fm Page 222 Monday, November 14, 2005 11:41 AM

C H A P T E R 6 ■ I N T E G R A T E D X M L D O C U M E N T A T I O N 223

cl SimpleTripleSlash.cpp /clr:safe /doc"C:\some\special\place\"

You can also rename the XML file by appending a file name instead of a path, although I’m not
sure why you would want to do this.

Visual Studio 2005 also provides a method for specifying an XML file’s name or path:

1. Right-click the project in the Solution Explorer.

2. Select the Properties menu item.

3. Select All Configurations from the Configuration drop-down list (if you want documentation
generated for all configurations) or select the option that suits your needs.

4. Expand the Configuration Properties and C/C++ branches.

5. Select Output Files.

6. Update the filename or path within the XML Documentation File Name property.

7. Click the OK button.

Documentation Tags
Although the compiler will process any tag that is valid XML, most likely you will restrict yourself to
the 16 tags described in this section. These 16 tags make up the most commonly used set of tags
implemented by most documenting systems that use the compiler’s auto-generated XML documen-
tation. They also happen to cover all the documentation you normally need to fulfill the “reasonable
amount” requirement I discussed previously.

Notice that I said the compiler will process any valid XML. You have to be careful here, as it is
possible to create what looks like great documentation, only to have your compiler throw out garbage.
The biggest culprit of breaking valid XML rules is the use of the less-than [<] symbol in implementa-
tion code examples. Instead of your comments saying something is less than something else, it says
that a new tag has started. Not quite what you are expecting, I am sure. To get around this, you need
to replace the [<] symbol with the < XML code.

The common integrated XML documentation tags available to the C++/CLI developer fall into
three different categories. The first kind of tag describes the functionality of the subsequent type,
member, or field. The second kind helps provide formatting to the tags and is used within the func-
tionality tags. The third tag type provides ways of referencing other documentation sources.

The order that you place the functionality tags (and include tag) is not relevant, but it is probably
a good thing to use the tags in the same order because shifting the order may lead to confusion or
tags being forgotten. Formatting tags and reference tags must be placed inside functionality tags
(except the include tag as just noted). Be careful, though: you cannot embed functionality tags
within each other. Finally, not every tag is applicable to every type being documented. In most cases
it is fairly obvious which tag(s) to use.

■Note All example figures of documentation are generated by NDoc. The code for each was generated from the
documentation example at the end of this section.

Functionality Tags
As I noted previously, the order in which you add the functionality tags to your source is irrelevant;
however, I’m going to cover them in the order that I personally place them in my programs.

Fraser_640-4C06.fm Page 223 Monday, November 14, 2005 11:41 AM

224 C H A P T E R 6 ■ I N T E G R A T E D X M L D O C U M E N T A T I O N

Something you might want to note is all of the tags can be repeated except <summary>, <remarks>,
and <returns>. This makes sense to me, as you are only going to need one instance of these three
tags. (I could make a case, however, that multiple <remarks> tags come in handy.)

<summary>
You will probably use the <summary> tag (see Figure 6-4) every time you triple slash comment your
code. You should probably treat this tag as mandatory.

Its basic purpose is to provide an overall summary of the type, method, or field being documented.
The <summary> tag is used by most development tools as the primary source of the description of the
object being described. IntelliSense and the Object Browser in Visual Studio 2005 rely on it to
provide the functionality summary displayed.

The basic syntax is

/// <summary> The summary text </summary>

But most likely you will split the <summary> tag on multiple lines, something like this:

/// <summary>
/// The summary text
/// </summary>

Remember that white space is not significant, unless one of the formatting tags is embedded
within the <summary> tag. I cover formatting tags later in the chapter.

Figure 6-4. NDoc-generated <summary> tag

<param>
You will only use the <param> tag (see Figure 6-5) if the object you are documenting is a method, as it
describes one of the parameters being passed to a method. Of course, if the method has no parameters,
using this tag is quite useless.

The syntax is

/// <param name="parameterName"> Description of the parameter </param>

The name attribute must match the name of the parameter exactly. If not, the compiler will warn
you of the discrepancy and IntelliSense will be unable to provide you information about the param-
eter as you pass your cursor over the parameter within your code.

Personally, I like to mention the data type of the parameter using a <see> tag (I cover the <see>
tag a little later); that way, if the documentation is being viewed online, it enables the reader to quickly
click the data type to get more information about what is being passed.

Fraser_640-4C06.fm Page 224 Monday, November 14, 2005 11:41 AM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 6 ■ I N T E G R A T E D X M L D O C U M E N T A T I O N 225

Figure 6-5. NDoc-generated <param> tag

<returns>
Like the <param> tag, you will only use the <returns> tag (see Figure 6-6) when documenting methods.
The purpose of the <returns> tag is to describe what gets returned by a method. Obviously, if the
method does not return a value, a <returns> tag should not be included for the method. You might
think this tag would be useful for properties, but you should use a <value> tag for that instead.

The syntax is

/// <returns> Description of the value returned </returns>

Like the <param> tag, I find it useful to add the data type returned with the <see> tag. This provides a
quick link for online documentation created from the generated XML documentation.

Figure 6-6. NDoc-generated <returns> tag

<value>
The <value> tag documents the value of a property (see Figure 6-7). You should probably consider it
as a mandatory tag for all public properties.

You need to put the <value> tag outside of the property and not within it. In other words, don’t
place the tag next to the get or set declarations; instead, place it outside above the property’s grouping
declaration. For a trivial property, you don’t have much choice.

The syntax is

/// <value> Description of the property's value </value>

Fraser_640-4C06.fm Page 225 Monday, November 14, 2005 11:41 AM

226 C H A P T E R 6 ■ I N T E G R A T E D X M L D O C U M E N T A T I O N

Just like the <returns> and <param> tags, I like to mention the data type of the property value
using a <see> tag, so that online documentation can provide quick links to the values data type for
more details.

Figure 6-7. NDoc-generated <value> tag

<remarks>
The <remarks> tag’s purpose is to provide supplemental information about the object being docu-
mented (see Figure 6-8).

The basic syntax is

/// <remarks> The remark text </remarks>

But most often you will split the <remarks> tag on multiple lines, like you did with the <summary>
tag, something like this:

/// <remarks>
/// The remark text
/// </remarks>

Most likely you will extensively use one of the formatting tags within this tag, as it will probably
contain things like lists, code snippets, and paragraph breaks.

You could potentially place all your documentation within the <summary> tag and ignore the
<remarks> tag altogether. I feel that it is better to use the <remarks> tags to point out special informa-
tion that you think is important and want to stand out.

Figure 6-8. NDoc-generated <remarks> tag

<example>
As I’m sure you can figure out, the purpose of the <example> tag is to supply examples, most likely
coding examples, for the object being documented (see Figure 6-9). This tag is extremely helpful if
you are creating a class library API because it shows how to implement the object.

Fraser_640-4C06.fm Page 226 Monday, November 14, 2005 11:41 AM

C H A P T E R 6 ■ I N T E G R A T E D X M L D O C U M E N T A T I O N 227

Unfortunately, I find that most developers don’t use this tag as much as they should (sometimes
even me; hey, I never claimed to be a perfect software developer!). In a perfect world, every method
in a class should have an implementation example, but instead most developers just put one catchall
example at the class level.

The basic syntax is

/// <example> The example </example>

You will probably never use the <example> tag without embedding within it a formatting tag of
some sort—most examples require some form of formatting, especially if the example is code.

The following is the syntax of the example you will more than likely use. (Sorry about the chicken
and egg scenario; the formatting tags are covered later in the chapter.)

/// <example>
/// <para> Example summary </para>
/// <para>[Visual Basic]</para>
/// <code>
/// Visual Basic .NET code example
/// </code>
/// <para>[C#]</para>
/// <code>
/// C# code example
/// </code>
/// <para>[C++]</para>
/// <code>
/// C++ code example
/// </code>
/// </example>

The <example> tag shown in this sample code first gives a basic outline of what the example
contains and then provides implementation examples for each language.

Figure 6-9. NDoc-generated <example> tag

Fraser_640-4C06.fm Page 227 Monday, November 14, 2005 11:41 AM

228 C H A P T E R 6 ■ I N T E G R A T E D X M L D O C U M E N T A T I O N

<exception>
The often overlooked <exception> tag is used to describe one exception that a method may throw
(see Figure 6-10). If your method throws more than one exception type, you should provide one
<exception> tag for each exception thrown.

Fortunately, the .NET Framework documentation uses this tag quite extensively. However, I have
worked with fairly well-documented class libraries that failed to use it, and when an exception
occurs I have no clue why the exception happened or how to proceed.

The basic syntax is

/// <exception cref="ExceptionClass">
/// Description of exception and how to resolve it
/// </exception>

The cref attribute of the <exception> tag is the class name of the exception being thrown and
must match exactly the exception thrown in the code. In some cases if the exception isn’t defined
within the same namespace, you will have to fully qualify the cref, for example:

/// <exception cref="System::OverflowException"> ... </exception>

Figure 6-10. NDoc-generated <exception> tag

<permission>
The <permission> tag is seldom used but is available for describing the permissions a caller needs to
be able to call and execute the method successfully (see Figure 6-11). Usually you restrict access to a
method when it is providing an interface to a system resource of some type and it doesn’t want any
Tom, Dick, or Harry program to have access to the resource. Because most methods you write don’t
access such resources, there is no need to restrict access permission, thus, no need to use the
<permission> tag.

The basic syntax is

/// <permission cref="PermissionClass"> Description of permission </permission>

The cref attribute of the <permission> tag is the name of the permission required to run and
must match exactly the permissions used in the code. In most cases, the cref attribute will need to
be fully qualified as you will most liking being using the System::Security namespace provided by
the .NET Framework. In fact, it will probably be the System::Security::PermissionSet class.

Fraser_640-4C06.fm Page 228 Monday, November 14, 2005 11:41 AM

C H A P T E R 6 ■ I N T E G R A T E D X M L D O C U M E N T A T I O N 229

Figure 6-11. NDoc-generated <permission> tag

Formatting Tags
If you could only generate documentation as one continuous stream without paragraphs, formatting, or
lists, I could safely say it would not be used. Documentation needs to be user-friendly and easy to read
or it isn’t likely to be used, although there have been some exceptions in the past, mostly out of sheer
necessity.

You might be thinking that because the documentation generated from triple slash comments
is based on XML, and its white space is not significant, auto-generated documentation will be unfor-
matted and awfully bland. This is not the case, however, as integrated XML documentation has
predefined tags to provide formatting.

One thing to remember is that formatting tags are, in fact, just tags. It is up to the document
generation tool to provide the actual formatting associated with these tags. You might find different
tools handle these tags differently, but their basic underlying results should be similar.

Another thing to remember is that formatting tags are placed within other tags and are not used
as stand-alone comments.

<c>
The <c> tag is the first of two formatting tags used to provide code formatting (see Figure 6-12). The
other is the <code> tag. In most cases, code formatting means the use of a fixed-width font and white
space is significant.

You use the <c> tag to embed code directly within the current line of text and the code contains
no line breaks. The basic syntax is

<c>Some Code</c>

You can use this tag within all of the other tags (except another <c> or <code> tag, as that would
be redundant).

Figure 6-12. NDoc-generated <c> tag

Fraser_640-4C06.fm Page 229 Monday, November 14, 2005 11:41 AM

230 C H A P T E R 6 ■ I N T E G R A T E D X M L D O C U M E N T A T I O N

<code>
The second code formatting tag is the <code> tag (see Figure 6-13). Its purpose is to provide a stand-
alone block of code. So, when embedded within a stream of text, the <code> tag will cause a line
break on both ends of the tag. For some documentation generators, the code will be placed in a gray
box. Just like the <c> tag, you can expect the generated text to use a fixed-width font and the white
space to be significant.

The basic syntax is

/// <code>
/// A code statement
/// Another code statement;
/// </code>

Remember that with the <code> tag white space is significant, so adding tabs, spaces, and return
characters will be reflected in the generated code. White space significance starts after the last slash
of the triple slash comment.

■Caution Be careful of tabs, as they can make your code formatting look—how should I say it?—ugly.

You will most likely use this tag within the <example> tag, but there is nothing stopping you from
using it within other tags.

Figure 6-13. NDoc-generated <code> tag

<para>
You will often find that your functionality tags contain text that needs to be split into multiple para-
graphs (see Figure 6-14). This is where the <para> tag comes in handy. You use the <para></para>
pair to delimit the start and end of a paragraph.

The basic syntax is

<para> The paragraph </para>

One thing to be aware of is that white space within the <para> tag is not significant. Therefore,
you can place the <para> end to end or on their own lines and have the paragraph text immediately
follow the tag or start on a new line and have the document generated create the same result.

Fraser_640-4C06.fm Page 230 Monday, November 14, 2005 11:41 AM

C H A P T E R 6 ■ I N T E G R A T E D X M L D O C U M E N T A T I O N 231

Figure 6-14. NDoc-generated <para> tag

<list>
The <list> tag (see Figure 6-15) is one of the most complex tags available to you, as it allows you to
create a bulleted list, numbered list, a table, and a definition of a term. (The reason for not designing
four different tags escapes me.) Just to make things easier, I’ll cover each format individually.

Figure 6-15. NDoc-generated <list> tag

Bulleted List

The bulleted list’s basic syntax is quite simple. Create a <list> tag with a type of bullet and then list
all the bullets as <item> tags:

/// <list type="bullet">
/// <item> bullet </item>
/// <item> bullet </item>
/// </list>

You will most likely use this tag within the <summary> and <remarks> tags, but there is nothing
stopping you from using it within other tags.

Fraser_640-4C06.fm Page 231 Monday, November 14, 2005 11:41 AM

cafac74dd2d083cbec0906b66fcd56b1

232 C H A P T E R 6 ■ I N T E G R A T E D X M L D O C U M E N T A T I O N

■Note The documentation states that you should use a <description> tag within each <item> tag, but I don’t
see any need for it; it seems to work fine without it.

Numbered List

The numbered list’s basic syntax is nearly the same as that of a bulleted list. Create a <list> tag with
a type of number and then list all the numbered list entries as <item> tags:

/// <list type="number">
/// <item> entry 1 </item>
/// <item> entry 2 </item>
/// <item> entry n </item>
/// </list>

You will most likely use this tag within the <summary> and <remarks> tags, but there is nothing
stopping you from using it within other tags.

Table

Personally, I don’t like the basic syntax of the table, as I don’t think it really makes sense. I feel whoever
developed this is just trying to force the syntax to work when it would have been better to create a
new tag.

Here is the table’s basic syntax:

/// <list type="table">
/// <item>
/// <description>row 1 -- column a</description>
/// <description>row 1 -- column b</description>
/// <description>row 1 -- column c</description>
/// </item>
/// <item>
/// <description>row 2 -- column a</description>
/// <description>row 2 -- column b</description>
/// <description>row 2 -- column c</description>
/// </item>
/// </list>

Create a <list> tag with a type of table and then create rows using the <item> tag and columns
using the <description> tag.

Definition of Terms

On the other hand, I think the basic syntax of terms makes perfect sense, except I would have added
another type, instead of duplicating the table type.

Here is the definition of terms’ basic syntax:

/// <list type="table">
/// <listheader>
/// <term>Properties</term>
/// <description>Initial Value</description>

Fraser_640-4C06.fm Page 232 Monday, November 14, 2005 11:41 AM

C H A P T E R 6 ■ I N T E G R A T E D X M L D O C U M E N T A T I O N 233

/// </listheader>
/// <item>
/// <term>term1 name</term>
/// <description>term1 description</description>
/// </item>
/// <item>
/// <term>term2 name</term>
/// <description>term2 description</description>
/// </item>
/// <item>
/// <term>termN name</term>
/// <description>termN description</description>
/// </item>
/// </list>

First, just like all of the other lists, create a <list> but this time with a type of table (why not
terms?), and then create a <listheader> section containing two subsection headers, <term> and
<description>. These headers are used in the header section of the definition of terms table. Finally,
add <item> tags for each <term> and <description> pair contained in the table.

Reference Tags
The last four tags, for lack of a better word, I call “reference” tags as each references something—
although I will admit I’m stretching it a bit with the <include> tag. They are especially helpful
because they keep you from having to write the same documentation repeatedly.

<include>
The <include> tag (see Figure 6-16) provides the ability to include documentation from an external
XML file. You should be comfortable with the concept of include files, as you use them all the time in
C++ programming. The only difference here is that you are including documentation instead of code.

The basic syntax is

/// <include file='DocumentationFile' path='XPathToComment' />

Figure 6-16. NDoc-generated <include> tag

The <include> tag is useful, but only in specific conditions; it should not be abused. For example,
the <include> tag is handy when you have a repeating set of documentation that you don’t want to

Fraser_640-4C06.fm Page 233 Monday, November 14, 2005 11:41 AM

234 C H A P T E R 6 ■ I N T E G R A T E D X M L D O C U M E N T A T I O N

type over and over again. With the <include> tag, you can write it once in an external XML file and
then include it repeatedly within your triple slash comments.

A neat thing about the <include> tag is that you can include a complete tag like <remarks>. That
way, if you have a repeating remark, you only have to write it once in an include XML file and then
just put the <include> tag in the triple slash comment.

There is one gotcha that keeps getting me when I use the <include> tag: changes made to the
include documentation XML file do not force a build to occur. In other words, a build when you have
only changed the include documentation XML does nothing.

■Caution A build of a class library will not occur if you only make changes in the included documentation XML
file. You need to either specify a rebuild or make a change to the class library code.

The big problem with the <include> tag is, because the documentation is now in a separate file,
you lose the benefit of triple slash’s internal documentation capability. Let’s look at some examples
in Listings 6-3 and 6-4 so you can see what I mean.

Listing 6-3. Included Comments

using namespace System;

namespace AllTags
{
 public ref class AClass
 {
 public:
 /// <summary> This is a summary with an <include> tag containing
 /// a <list type="bullet">
 /// <include file='document.xml' path='AllDoc/Entry[@num="1"]/*' />
 /// </summary>
 /// <include file='document.xml' path='AllDoc/Entry[@num="2"]/*' />
 void includeTag() {}
 };
}

As you can see, the comments mean virtually nothing to the reader of the code. Listing 6-4 is the
actual XML documentation XML file.

Listing 6-4. An Include XML Documentation File

<?xml version="1.0" encoding="utf-8"?>
<AllDoc>

 <Entry num="1">
 <para>These are repeating bullets:</para>
 <list type="bullet">
 <item> bullet </item>
 <item> bullet </item>
 <item> bullet </item>
 </list>
 </Entry>

Fraser_640-4C06.fm Page 234 Monday, November 14, 2005 11:41 AM

C H A P T E R 6 ■ I N T E G R A T E D X M L D O C U M E N T A T I O N 235

 <Entry num="2">
 <remarks>
 This is a complete <remark> entry from an include
 file called documentation.xml.
 </remarks>
 </Entry>

</AllDoc>

Notice you have to use the < XML code in both of these listings because, if you don’t, invalid
XML will be created in the triple slash comment.

One thing of note about <include> tags (and the main reason I don’t use them very often) is that
not only are they not very helpful in documenting the code itself, but they cause you to lose the
context of the comment within the include XML documentation file because it is not directly associated
with the code it is documenting.

I guess what I am saying is, I don’t like the <include> tag. I’d rather cut and paste the repeated
code, but it’s your code and your documentation standards.

<paramref>
The <paramref> tag (see Figure 6-17) is similar to the <param> tag in that they both reference a param-
eter of the method being documented. The difference is that the <paramref> tag gets embedded in
the comment text, while the <param> tag creates its own section in the documentation.

The basic syntax is

<paramref name="parameterName"/>

This tag really doesn’t do much more than provide a way to let the document generated know
this is a parameter name and provide a unique format style. For example, in the case of NDoc, it
simply gets italicized.

Figure 6-17. NDoc-generated <paramref> tag

<see>
The <see> tag (see Figure 6-18) is one of the most powerful tags in your triple slash comment arsenal.
It allows you to reference other documentation in your documentation environment. Most important,
it allows you to reference all of the .NET Framework. Thus, you can provide references (as I noted
previously) to the data types you are using within the <param>, <returns>, <value>, <exception>, and
<permission> tags. This enables the documentation’s users to quickly jump to the documentation of
the referenced data type if they are uncertain about its functionality.

Fraser_640-4C06.fm Page 235 Monday, November 14, 2005 11:41 AM

236 C H A P T E R 6 ■ I N T E G R A T E D X M L D O C U M E N T A T I O N

The basic syntax is

<see cref="datatype"/>

What is generated is a link to the specified data type embedded in the text of your comments.
One problem (or not, depending on how you look at it) is that the link text will not be fully qualified
even if the cref is fully qualified. Sometimes you will want to have the qualifiers show up in the link
text (or any other text for that matter), so this tag provides additional syntax:

<see cref="datatype"> link text </see>

With this syntax, whatever text you place within the <see></see> pair gets used as the link text.

Figure 6-18. NDoc-generated <see> tag

<seealso>
The <seealso> tag is similar to the <see> tag except instead of placing the link to the reference data
type directly in the comment text, it gets placed in the “See Also” section of the documentation (see
Figure 6-19).

Like the <see> tag, the <seealso> tag has two syntaxes:

<seealso cref="datatype"/>
<seealso cref="datatype"> embedded text </seealso>

The difference between the two syntaxes is that the first does not place any text in the comment
where the <seealso> tag is placed, whereas the second syntax does. (The text placed is just normal
text and not a link.)

Figure 6-19. NDoc-generated <seealso> tag

Documentation Example
Listing 6-5 is a nonsense example demonstrating all the common tags provided by the C++/CLI
compiler. You can see the NDoc results of this example in Figures 6-4 through 6-19.

Fraser_640-4C06.fm Page 236 Monday, November 14, 2005 11:41 AM

C H A P T E R 6 ■ I N T E G R A T E D X M L D O C U M E N T A T I O N 237

■Note When I first started using triple slash comments, I found that they looked simple enough to use, but I
always seemed to mess up on which got embedded into which. Hopefully this long-winded example will help you
get over this hurdle I experienced.

Listing 6-5. All the Documentation Tags in Action

using namespace System;
using namespace System::IO;

namespace AllTags
{
 public ref class AClass
 {
 public:

 /// <summary>
 /// This is a summary tag for the summaryTag() method
 /// </summary>
 void summaryTag() {}

 /// <param name="param1">The first int parameter</param>
 /// <param name="param2">The second String^ parameter</param>
 void paramTag(int param1, String ^param2) {}

 /// <returns> returnsTag returns an int </returns>
 int returnsTag() {return 0;}

 /// <value> valueTag property has a value of double</value>
 property double valueTag
 {
 double get() {return 0.0;}
 void set(double val) {}
 }

 /// <remarks>
 /// This is a remarks tag for the remarksTag() method
 /// </remarks>
 void remarksTag() {}

 /// <example>
 /// <para> Example summary </para>
 /// <para>[Visual Basic]</para>
 /// <code>
 /// Visual Basic .NET code example
 /// </code>
 /// <para>[C#]</para>
 /// <code>
 /// C# code example
 /// </code>
 /// <para>[C++]</para>
 /// <code>
 /// C++ code example

Fraser_640-4C06.fm Page 237 Monday, November 14, 2005 11:41 AM

238 C H A P T E R 6 ■ I N T E G R A T E D X M L D O C U M E N T A T I O N

 /// </code>
 /// </example>
 void exampleTag() {}

 /// <exception cref="System::OverflowException">
 /// This method might throw this exception (NOT)
 /// </exception>
 void exceptionTag() {}

 /// <permission cref="System::Security::PermissionSet">
 /// Go ahead anyone can access me.
 /// </permission>
 void permissionTag() {}

 /// <summary>
 /// Some <c>Program code</c> in a summary
 /// </summary>
 void cTag() {}

 /// <example>
 /// Some code in an example tag
 /// <code>
 /// A code statement;
 /// Another code statement;
 /// </code>
 /// </example>
 void codeTag() {}

 /// <summary>
 /// <para>This is the first paragraph which spans more than one line
 /// When the document window is small enough.</para><para>This is the
 /// next paragraph which started in a new line.</para>
 /// </summary>
 void paraTag() {}

 /// <summary>
 /// A bullet list
 /// <list type="bullet">
 /// <item> bullet </item>
 /// <item> bullet </item>
 /// </list>
 /// A numbered list
 /// <list type="number">
 /// <item> entry 1 </item>
 /// <item> entry 2 </item>
 /// <item> entry n </item>
 /// </list>
 /// A table
 /// <list type="table">
 /// <item>
 /// <description>row 1 -- column a</description>
 /// <description>row 1 -- column b</description>
 /// <description>row 1 -- column c</description>
 /// </item>

Fraser_640-4C06.fm Page 238 Monday, November 14, 2005 11:41 AM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 6 ■ I N T E G R A T E D X M L D O C U M E N T A T I O N 239

 /// <item>
 /// <description>row 2 -- column a</description>
 /// <description>row 2 -- column b</description>
 /// <description>row 2 -- column c</description>
 /// </item>
 /// </list>
 /// A definition of terms
 /// <list type="table">
 /// <listheader>
 /// <term>Properties</term>
 /// <description>Initial Value</description>
 /// </listheader>
 /// <item>
 /// <term>term1 name</term>
 /// <description>term1 description</description>
 /// </item>
 /// <item>
 /// <term>term2 name</term>
 /// <description>term2 description</description>
 /// </item>
 /// <item>
 /// <term>termN name</term>
 /// <description>termN description</description>
 /// </item>
 /// </list>
 /// </summary>
 void listTag() {}

 /// <summary> This is a summary with an <include> tag containing
 /// a <list type="bullet">
 /// <include file='document.xml' path='AllDoc/Entry[@num="1"]/*' />
 /// </summary>
 /// <include file='document.xml' path='AllDoc/Entry[@num="2"]/*' />
 void includeTag() {}

 /// <summary> This summary references the <paramref name="param1"/>
 /// parameter of the method
 /// </summary>
 void paramrefTag(int param1) {}

 /// <summary>
 /// The basic see tag <see cref="File" />
 /// The enhanced see tag <see cref="FileInfo">System::IO:FileInfo</see>
 /// </summary>
 void seeTag() {}

 /// <summary>
 /// The basic see tag [<seealso cref="File" />] Nothing here
 /// The enhanced see tag <seealso cref="FileInfo">FileInfo</seealso>
 /// </summary>
 void seealsoTag() {}
 };
}

Fraser_640-4C06.fm Page 239 Monday, November 14, 2005 11:41 AM

240 C H A P T E R 6 ■ I N T E G R A T E D X M L D O C U M E N T A T I O N

Summary
This chapter described in detail the integrated XML documentation provided by the C++/CLI compiler,
beginning with the basics of documentation and the triple slash comment provided by the compiler,
followed by each of the standard tags available to the C++/CLI developer. The chapter ended with an
examination of the triple slash comment in action in an example that featured every common docu-
mentation tag.

In the next chapter, you’ll begin exploring the .NET development and, in particular, the collection
functionality provided by the .NET Framework class library.

Fraser_640-4C06.fm Page 240 Monday, November 14, 2005 11:41 AM

241

■ ■ ■

C H A P T E R 7

Collections

Anyone who has been around the coding world for any length of time has more than likely written
his or her own collection routine—probably a simply linked list. Newer programmers may not have
written one of their own, but instead, in the case of C++ programmers, used the Standard Template
Library (STL) version of a linked list. Either way, most programmers have found a need to work with
collections. The .NET Framework uses collections as well. Because collections are so common, the
.NET Framework class library provides a large number of different types.

There are, in fact, three primary sets of collections available to the .NET Framework programmer:
System::Collections, System::Collections::Specialized, and System::Collections::Generic. As
the names of these namespaces suggest, the first set contains standard collection types, the second
contains collection types with a more specific purpose, and the third set contains collections specif-
ically targeting the new generic type introduced in the .NET Framework version 2.0.

Something to be aware of is that the names of the three namespaces just mentioned seem to
imply that the specialized collections and generic collections are inherited from the standard collec-
tions, but in fact there is no such relationship. The namespaces are just groupings of different types
of collections.

This chapter focuses on the standard collection set shown in Table 7-1 and the generic collec-
tion set shown in Table 7-2. However, the .NET Framework class library has many other specific
collections scattered throughout the many namespaces—for example,
System::Text::RegularExpressions::Group, System::Security::PermissionSet,
System::Web::UI::WebControls::DataKeyCollection, and even System::Array.

Table 7-1. .NET Standard Collection Classes

Collection Description

ArrayList An array that grows dynamically

BitArray An array of bit values (either 1 or 0)

BitVector32 A small collection that will represent Boolean or small integers
within 32 bits of memory

CollectionBase An abstract base class for deriving strongly typed collections

DictionaryBase An abstract base class for deriving strongly typed collections of
key/value pairs

Hashtable A collection of key/value pairs organized based on a hash code of
the key

HybridDictionary A collection that switches from a ListDictionary when small to a
Hashtable when large

Fraser_640-4C07.fm Page 241 Saturday, October 29, 2005 12:59 AM

242 C H A P T E R 7 ■ C O L L E C T I O N S

To make things easier for the developer, the .NET Framework class library provides several
interfaces (see Table 7-3 for standard and Table 7-4 for generic) that help provide some common-
ality between the collections. Learning collections is simplified because many of the collections
share these interfaces, and once you learn an interface in one collection, it requires little effort to
learn it in a second one.

ListDictionary A singular linked list recommended for lists of ten objects or less

NameValueCollection A collection string of key/value pairs organized on the string key and
accessible by either string key or index

Queue A collection of first-in-first-out objects

SortedList A collection of key/value pairs sorted by key and accessible by either
key or index value

Stack A collection of first-in-last-out objects

StringCollection A collection of strings

StringDictionary A Hashtable with the key strong typed to be a string

Table 7-2. .NET Generic Collection Classes

Collection Description

Collection<T> A base class for generic collections from which users are urged to
derive their own specialized container classes.

Dictionary<K,V> A collection of key/value paired generic objects that are organized
based on the key and retrieved as a KeyValuePair<K,V> struct.

KeyedCollection<K,V> A base class for generic collections using key/value pairs from which
users are urged to derive their own specialized container classes.

LinkedList<T> A doubly (forward and backward) linked list generic object.

List<T> An array of generic objects that grows dynamically.

Queue<T> A collection of first-in-first-out generic objects.

ReadOnlyCollection<T> A base class for a generic read-only collection from which users are
urged to derive their own specialized container classes. A collection
that is read-only is simply a collection with a wrapper that prevents
modifying the collection.

SortedDictionary<K,V> A collection of key/value paired generic objects that are sorted
based on the key.

Stack<T> A collection of first-in-last-out generic objects.

Table 7-1. .NET Standard Collection Classes (Continued)

Collection Description

Fraser_640-4C07.fm Page 242 Saturday, October 29, 2005 12:59 AM

C H A P T E R 7 ■ C O L LE C T I O N S 243

■Note Default implementations of collections in System::Collections::Generic are not synchronized
(thread-safe).

IEnumerable, IEnumerator, and for each
Even though each of the collections in Tables 7-1 and 7-2 is implemented differently internally, all
except BitVector32 implement either the IEnumerable or IEnumerable<T> interface. These interfaces
expose one member method, GetEnumerator(). This method returns a handle to an object that

Table 7-3. .NET Standard Collection Interfaces

Interface Description

ICollection Defines methods to determine the size, and provide synchronization
and enumeration through all nongeneric collections

IComparer Exposes a method to compare objects of the collection

IDictionary Defines methods to allow access to key/value pairs within the
collection

IDictionaryEnumerator Exposes methods to access keys and values while enumerating
a collection

IEnumerable Exposes a method to retrieve an object that implements the
IEnumerator interface

IEnumerator Exposes a method to enumerate through a collection

IHashCodeProvider Exposes a method to provide a custom hash algorithm

IList Defines methods to add, insert, delete, and access objects using an
index

Table 7-4. .NET Generic Collection Interfaces

Interface Description

ICollection<T> Defines properties to determine the size of the collection and methods to
add, remove, copy, and clear elements, as well as check for the existence
of elements

IComparer<T> Exposes a method to compare objects of the collection

IDictionary<K,V> Defines properties to allow access to key/value pairs within the collection and
methods to add and remove elements, as well as check for the existence of
elements

IEnumerable<T> Exposes a method to retrieve an object that implements the IEnumerator<T>
interface

IEnumerator<T> Exposes a method to enumerate through a collection

IList<T> Defines methods to add, insert, delete, and access objects using an index

Fraser_640-4C07.fm Page 243 Saturday, October 29, 2005 12:59 AM

244 C H A P T E R 7 ■ C O L L E C T I O N S

implements either the IEnumerator or IEnumerator<T> interface. And both the IEnumerator and
IEnumerator<T> interfaces expose member methods that allow all collections to be handled the exact
same way if there is a need.

The IEnumerator and IEnumerator<T> interfaces are fairly simple. You call the method MoveNext()
to advance the enumerator to the next item in the collection, and then you grab the item out of the
Current property. You know you have reached the end of the collection when MoveNext() returns
false.

The IEnumerator interface contains one more method called Reset(), which the implementing
class should define, that moves the enumerator back to the start of the collection.

Sound simple enough? There is an even easier way to iterate through a collection. Remember
the for each statement? It implements all this IEnumerator and IEnumerator<T> stuff for you.

The following code shows equivalent implementation, first using the IEnumerable and
IEnumerator interfaces, and then for each. Both are implemented on the same array (which also
implements the IEnumerable interface even though it is not a member of System::Collections):

using namespace System;
using namespace System::Collections;

void main()
{
 array<int>^ IntList = gcnew array<int> { 1, 2, 3, 4, 5 };

 IEnumerable ^collection = (IEnumerable^)IntList; //Not really needed
 IEnumerator ^enumerator = collection->GetEnumerator();

 Console::WriteLine("IEnumerator\n-----------");

 while (enumerator->MoveNext())
 {
 int i = (int)enumerator->Current;
 Console::WriteLine(i);
 }

 Console::WriteLine("\nfor each\n--------");

 for each (int i in IntList)
 Console::WriteLine(i);
}

Figure 7-1 shows the results of the IEnum_foreach.exe program.
The choice of which to use is entirely up to you. There are a few occasions when your only

choice is to use IEnumerable/IEnumerator. I show an example in HashSortList.cpp later in the
chapter. I find for each to be easier to use, and I try to use it whenever possible.

Fraser_640-4C07.fm Page 244 Saturday, October 29, 2005 12:59 AM

C H A P T E R 7 ■ C O L LE C T I O N S 245

Figure 7-1. Results of IEnum_foreach.exe

Standard Collections
Now that you’ve looked at the major similarity among the .NET Framework class library collections,
you’ll take a look at how they differ. You’ll start with the standard, or more common, collections of
the class library. There’s nothing new about these collection types, as they’ve been around for quite
a long time. What’s different is how the .NET Framework class library implements them and what
interfaces the library provides.

ArrayList
If you’ve never coded an array, then you probably haven’t been coding very long. Arrays, with their
simple syntax, are the easiest of all collections to work with, especially when you know exactly how
much data you’re working with. Unfortunately, they quickly lose their usefulness when the number
of data elements is unknown.

The ArrayList is a solution to the shortcomings of the simple array. You get the simple syntax of
an array without having to worry about the number of data elements. Well, that’s not quite accurate:
you actually get a slightly more complex array syntax, but only after the array is already loaded.
Loading the ArrayList requires member method calls—simple ones, but method calls just the same.
Once the ArrayList is loaded, though, you can treat it almost exactly as you would a simple array.

There is nothing difficult about creating an ArrayList; it is simply a standard class. It does have
three different constructors. The default takes no parameters. This constructor creates an ArrayList
with a starting Capacity of 16:

ArrayList ^alist = gcnew ArrayList();

That doesn’t mean that the ArrayList is restricted to 16; it just means that the first internal array
contains space for 16 elements. If the number of elements, also known as the Count, exceeds the
Capacity, then the Capacity is doubled or, in other words, the internal array of the ArrayList doubles
and the original array is copied to the new, expanded array.

Fraser_640-4C07.fm Page 245 Saturday, October 29, 2005 12:59 AM

cafac74dd2d083cbec0906b66fcd56b1

246 C H A P T E R 7 ■ C O L L E C T I O N S

■Caution When the size of the ArrayList exceeds its capacity, the capacity is doubled. This could cause the
ArrayList to be larger than is useful. For example, if your capacity is 20,000 and you add a 20,001st element,
then the capacity becomes 40,000, which might not be what you want.

The second constructor allows you to set the initial Capacity. This allows you to optimize the
loading of the ArrayList, as no doubling of the Capacity need occur if you can restrict the size of the
ArrayList to less than the Capacity.

ArrayList ^alist = gcnew ArrayList(300);

The last constructor allows you to create an ArrayList from another specified collection. This
constructor copies the elements from the originating collection and then sets the Capacity and
Count to the number of elements copied.

ArrayList ^org = gcnew ArrayList();
//...populate org
ArrayList ^alist = gcnew ArrayList(org);

It is possible to get the Count or Capacity.

int count = alist->Count;
int capacity = alist->Capacity;

It is also possible to change the Capacity of an ArrayList at runtime by changing the Capacity
property. If you change the Capacity to 0, the Capacity changes to the default Capacity of 16. Here is
how you would code the setting of the capacity to 123:

alist->Capacity = 123;

■Caution Setting the Capacity to a value less than the Count of the ArrayList will result in an
ArgumentOutOfRangeException being thrown.

Loading an ArrayList requires the use of member methods. All of the member methods are
quite simple to use and self-explanatory. You can append or insert one or a range of elements to an
ArrayList. You can also remove a specific element either by index or by specific content, or you can
remove a range of elements by index.

alist->Add("One");

array<String^>^ morenums1 = gcnew array<String^> {"Three", "Six"};
alist->AddRange(morenums1);

alist->Insert(1, "Two");

array<String^>^ morenums2 = gcnew array<String^> {"Four", "Five"};
alist->InsertRange(3, morenums2);

alist->Remove("Six");
alist->RemoveAt(1);
alist->RemoveRange(0,4); // Index, Count

Once the ArrayList is loaded, it is possible to access the ArrayList in nearly the same way as a
simple array. The only difference is that you are accessing a default index property into the ArrayList,
instead of accessing the array element directly.

Fraser_640-4C07.fm Page 246 Saturday, October 29, 2005 12:59 AM

C H A P T E R 7 ■ C O L LE C T I O N S 247

alist[1] = "Three";

for (int i = 0; i < alist->Count; i++)
{
 Console::Write("{0} ", alist[i]);
}

■Caution Trying to access an ArrayList element that does not exist via the default index property will throw
an ArgumentOutOfRangeException.

■Note The default index property index starts at 0, just like any other array in C++.

The ArrayList provides a few useful methods that might make your coding life a little easier. For
example, it is possible to reverse the order of all the elements of the ArrayList with Reverse().

alist->Reverse();

Another useful method is the Sort() method, which allows you to sort the ListArray.

Alist->Sort();

It is also possible to do a binary search of a sorted ArrayList to search for a specific element.
With this method, the element’s index is returned. If the element is not found, then the search
method returns a negative number that indicates the index of the next largest object in the ArrayList.

int indx = alist->BinarySearch("Four");

Similar to the binary search, you can do a linear search to check if the ArrayList contains an
element. If the search finds the element, it returns true. If not, it returns false.

bool fnd = alist->Contains("One");

Listing 7-1 shows the ArrayList in action and demonstrates many of the functionalities
described previously.

Listing 7-1. Working with ArrayLists

using namespace System;
using namespace System::Collections;

void main()
{
 ArrayList ^alist = gcnew ArrayList(4); // will double to 8
 alist->Add("One");
 alist->Add("-");
 alist[1] = "Three";

 alist->Insert(1, "Two");

 array<String^>^ morenums = gcnew array<String^> {"Four", "Five"};

 alist->AddRange(morenums);

Fraser_640-4C07.fm Page 247 Saturday, October 29, 2005 12:59 AM

248 C H A P T E R 7 ■ C O L L E C T I O N S

 alist->Reverse();

 Console::WriteLine("*** The ArrayList ***");
 for (int i = 0; i < alist->Count; i++)
 {
 Console::Write("{0} ", alist[i]);
 }

 Console::WriteLine("\n\nCapacity is: {0}", alist->Capacity.ToString());

 alist->Capacity = 10;
 Console::WriteLine("New capacity is: {0}", alist->Capacity.ToString());

 Console::WriteLine("Count is: {0}", alist->Count.ToString());

 alist->Sort();

 int indx = alist->BinarySearch("Four");
 Console::WriteLine("Four found at index: {0}", indx.ToString());

 bool fnd = alist->Contains("One");
 Console::WriteLine("ArrayList contains a 'One': {0}", fnd.ToString());

 Console::WriteLine();
}

Figure 7-2 shows the results of the ArrayList.exe program.

Figure 7-2. Results of ArrayList.exe

BitArray
This is a neat little collection that stores an array containing only true and false values. Unlike the
ArrayList, the length of the BitArray is fixed at creation. It can, on the other hand, be set to any
length (memory permitting, of course).

There are several constructors for creating a BitArray. You can divide them into three different
types. The first type simply sets a predetermined array length of bools to either true or false.

Fraser_640-4C07.fm Page 248 Saturday, October 29, 2005 12:59 AM

C H A P T E R 7 ■ C O L LE C T I O N S 249

BitArray ^barray1 = gcnew BitArray(8); // Sets to false
BitArray ^barray2 = gcnew BitArray(32, false);
BitArray ^barray3 = gcnew BitArray(256, true);

The second type takes an array of bools, unsigned chars, or ints and moves their bit values into
the BitArray, where, in the case of unsigned chars and ints, bits of 1 are true and bits of 0 are false.

array<bool>^ bools = gcnew array<bool> { true, false, true, true, false };
BitArray ^barray1 = gcnew BitArray(bools);

array<unsigned char>^ chars = gcnew array<unsigned char> { 0x55, 0xAA };
BitArray ^barray2 = gcnew BitArray(chars);

array<int>^ ints = gcnew array<int> { 0x55555555, 0xAAAAAAAA };
BitArray ^barray3 = gcnew BitArray(ints);

The last constructor type takes one BitArray and copies it to another BitArray.

BitArray ^barray1 = gcnew BitArray(8);
BitArray ^barray2 = gcnew BitArray(barray1);

A convenient feature of BitArrays is that they can be treated as arrays of Booleans. The array is
manipulated in the same way as an ArrayList—that is, using the default index property—but this
time the array items are only bools.

barray1[1] = false;
barray1[4] = true;

Console::WriteLine("Item[0]={0}", barray1[0]);
Console::WriteLine("Item[7]={0}", barray1[7]);

The functionality associated with BitArrays is obviously related to bit manipulation or, more
specifically, AND, OR, XOR, and NOT. The basic idea around these bit manipulation methods is to
take the original BitArray, and then take another and apply a bitwise operation on the two BitArrays.

BitArray ^barray1 = gcnew BitArray(8);
//...Manipulate bits for barray1
BitArray ^barray2 = gcnew BitArray(8);
//...Manipulate bits for barray2

barray2->And(barray1);
barray2->Or(barray1);
barray2->Xor(barray1);

The NOT method is a little different in that it only works on its own BitArray.

barray1->Not();

One last method that could come in handy is SetAll(). This method returns all the values in the
BitArray back to either true or false depending on the value passed to it.

barray2->SetAll(true);
barray2->SetAll(false);

Listing 7-2 shows the BitArray in action and demonstrates many of the functionalities
described previously.

Fraser_640-4C07.fm Page 249 Saturday, October 29, 2005 12:59 AM

250 C H A P T E R 7 ■ C O L L E C T I O N S

Listing 7-2. Working with BitArrays

using namespace System;
using namespace System::Collections;

void Print(BitArray ^barray, String ^desc)
{
 Console::WriteLine(desc);

 int i = 0;
 for each(bool^ val in barray)
 {
 Console::Write("{0} ", val);

 if (++i > 7)
 {
 Console::WriteLine();
 i = 0;
 }
 }
 Console::WriteLine();
}

void main()
{
 BitArray ^barray1 = gcnew BitArray(8, true);
 Print(barray1, "BitArray(8, true);");

 barray1[1] = false;
 barray1[4] = false;
 barray1->Not();
 Print(barray1, "Modified bit 1&4 then Not");

 BitArray ^barray2 = gcnew BitArray(8, true);
 barray2->And(barray1);
 Print(barray2, "And with BitArray(8, true)");

 barray2->SetAll(true);
 barray2->Or(barray1);
 Print(barray2, "Or with BitArray(8, true)");

 barray2->SetAll(true);
 barray2->Xor(barray1);
 Print(barray2, "Xor with BitArray(8, true)");

 array<unsigned char>^ chars = gcnew array<unsigned char> { 0x55, 0xAA };
 BitArray ^barray3 = gcnew BitArray(chars);
 Print(barray3, "BitArray(0x55, 0xAA);");

 Console::WriteLine("Item[0]={0}", barray3[0]);
 Console::WriteLine("Item[8]={0}", barray3[8]);

 Console::WriteLine();
}

Fraser_640-4C07.fm Page 250 Saturday, October 29, 2005 12:59 AM

C H A P T E R 7 ■ C O L LE C T I O N S 251

Figure 7-3 shows the results of the BitArray.exe program.

Figure 7-3. Results of BitArray.exe

Hashtable and SortedList
The Hashtable is a powerful method for storing data. The Hashtable works by storing its values in
memory and then uses its key to later look up these values. What makes the Hashtable so powerful is
that it doesn’t search through all the keys to find a match; instead, it takes the key and analyzes it to
figure out the index to the key’s value. It then retrieves the value using this index.

The SortedList is a combination of a Hashtable and an Array. Depending on how you access the
SortedList, it will respond like a Hashtable or an Array. For example, if you access the SortedList
using the default index property, it works like a Hashtable. On the other hand, if you use the
GetByIndex() method, the SortedList works like an Array.

A SortedList can do everything that a Hashtable can do and more. To access the values out of a
Hashtable, you use the key. With a SortedList, on the other hand, you can use the key or access the
data in a sorted manner directly using an index, making retrieval very fast. The cost of this added
functionality is that the SortedList is slower for deletes, updates, and inserts.

The reason the SortedList is slower is that both the keys and the values must be accessible in a
sorted manner. This means that when data is added to or removed from the SortedList, the values
may be inserted into or removed from the internal value array. This requires memory manipulation.
For the Hashtable, the values do not normally require this manipulation. (I had to add the “normally”
qualifier in the previous sentence, because as those of you who understand the internal workings of
the Hashtable know, a Hashtable can have the same bad performance if multiple keys hash to the
same bucket.)

Both the Hashtable and SortedList have numerous constructors, but in most cases, you will
probably simply use the default constructor.

Hashtable ^hashtable = gcnew Hashtable();
SortedList ^sortedlist = gcnew SortedList();

On the other hand, all the other constructors provide parameters to help with the efficiency of
the collection.

Fraser_640-4C07.fm Page 251 Saturday, October 29, 2005 12:59 AM

252 C H A P T E R 7 ■ C O L L E C T I O N S

A major factor both the Hashtable and SortedList have in common is Capacity. If many entries
are to be made into these collection types, then creating them with a sufficiently large capacity
allows the entries to be inserted more efficiently than if you let them perform automatic rehashing
as needed to grow the collections.

Hashtable ^hashtable = gcnew Hashtable(300);
SortedList ^sortedlist = gcnew SortedList(300);

A Hashtable constructor provides another parameter to further refine the collection’s efficiency:
the load factor. The load factor is the ratio of the number of filled buckets to the total number of
buckets available. A bucket is full when it points to or contains a data element. The load factor is a
value between 0.1 and 1.0. A smaller load factor means faster lookup at the cost of increased memory
consumption. Conversely, a larger load factor uses memory more efficiently at the cost of longer
expected time per lookup. The default load factor of 1.0 generally provides the best balance between
speed and size.

Hashtable ^hashtable = gcnew Hashtable(300, 0.75);

You use the Add() method to load these collections. Neither the Hashtable nor the SortedList
have an insert method. If you think about it, an insert really doesn’t make sense, because the Hashtable
analyzes the key and doesn’t care where the values are located, and the SortedList is sorted when-
ever the Add() method is invoked.

hashtable->Add(nullptr, "zero");
sortedlist->Add("A", "two");

■Note Database programmers, take note that in the preceding example, null is a valid key.

Unloading individual elements in the Hashtable and SortedList requires the use of the Remove()
method and the specific key. The SortedList also allows elements of the collection to be removed by
index value using the RemoveAt() method. It is also possible to remove all the elements of the collec-
tions using the Clear() method.

hashtable->Remove(nullptr);
hashtable->Clear();
sortedlist->Remove("A");
sortedlist->RemoveAt(2);
sortedlist->Clear();

Now that you can put key/value pairs into a Hashtable and a SortedList, you need to be able to
get them out. Both of these collection types provide a plethora of methods to do just that. One of the
easiest methods is to use the default index property. Be careful: this is not an array property like you
have seen in the previous collection types. A default index property, if you recall from Chapter 3,
takes an Object instead of an integer value type between the square brackets, which you normally
associate with an array. In this case, the object you would use is the key of the value you wish to
retrieve.

Console::WriteLine("key="A" value={1}", hash["A"]);
Console::WriteLine("key="A" value={1}", sort["A"]);

If you don’t know the keys or you simply want all the data and, in the case of a Hashtable, don’t
care about the order, then you can enumerate through the collections. It’s possible to enumerate by
key, by value, or by both key and value at the same time. To get the enumerator, you need to use the
Keys property, the Values property, or the GetEnumerator() method.

Fraser_640-4C07.fm Page 252 Saturday, October 29, 2005 12:59 AM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 7 ■ C O L LE C T I O N S 253

IDictionaryEnumerator ^enum1 = hash->GetEnumerator();
IDictionaryEnumerator ^enum2 = sort->GetEnumerator();
IEnumerator ^keys1 = hash->Keys->GetEnumerator();
IEnumerator ^keys2 = sort->Keys->GetEnumerator();
IEnumerator ^vals1 = hash->Values->GetEnumerator();
IEnumerator ^vals2 = sort->Values->GetEnumerator();

Enumerating by both key and value at the same time is a little different from what you have seen
so far. You need to use the IDictionaryEnumerator interface instead of IEnumerator. Also, to retrieve
the key and value from the collection, you use the Key and Value properties and not the Current
property (see Listing 7-3 for an example).

The code to enumerate keys and values on their own, though, is no different than any other
collection.

If you are not sure, but you want a quick way to see if a Hashtable or SortedList contains a key
or a value, you would use the ContainsKey() (or Contains()) method and the ContainsValue() method.
Simply use the key or value you are searching for as a parameter. The methods will return true
or false.

bool b1 = hash->Contains("A");
bool b2 = sort->Contains("A");
bool b3 = hash->ContainsKey("Z");
bool b4 = sort->ContainsKey("Z");
bool b5 = hash->ContainsValue("cat");
bool b6 = sort->ContainsValue("cat");

Three methods specific to SortedList are based on indexes to values. Because a Hashtable
doesn’t have an index to its values, these methods wouldn’t make sense, so they aren’t included.
You can get a value by index or you can get the index of a key or a value.

Console::WriteLine("Index {0} contains: {1}", i, sort->GetByIndex(i));
Console::WriteLine("Index key 'B': {0}", sort->IndexOfKey(“B"));
Console::WriteLine("Index val 'cat': {0}", sort->IndexOfValue("cat"));

Listing 7-3 shows the Hashtable and SortedList in action and demonstrates the functionality
described previously.

Listing 7-3. Working with Hashtables and SortedLists

using namespace System;
using namespace System::Collections;

void main()
{
 Hashtable ^hash = gcnew Hashtable();
 SortedList ^sort = gcnew SortedList();

 array<String^>^ keys = gcnew array<String^> {"B", "A", "C", "D"};
 array<String^>^ skeys = gcnew array<String^>{"A", "B", "C", "D"};
 array<String^>^ values = gcnew array<String^> {"moose", "zebra",
 "horse", "frog" };

 for (int i = 0; i < keys->Length; i++)
 {
 hash->Add(keys[i], values[i]);
 sort->Add(keys[i], values[i]);
 }

Fraser_640-4C07.fm Page 253 Saturday, October 29, 2005 12:59 AM

254 C H A P T E R 7 ■ C O L L E C T I O N S

 Console::WriteLine("Hashtable\tSortedList");

 Console::WriteLine("By indexed property");
 for (int i = 0; i < hash->Count; i++)
 {
 Console::WriteLine("{0} {1}\t\t{2} {3}", skeys[i],
 hash[skeys[i]], skeys[i], sort[skeys[i]]);
 }

 Console::WriteLine("\nBy index");
 for (int i = 0; i < sort->Count; i++)
 {
 Console::WriteLine("N/A\t\t{0} {1}", i, sort->GetByIndex(i));
 }

 Console::WriteLine("\nBy enumerator");
 IDictionaryEnumerator ^enum1 = hash->GetEnumerator();
 IDictionaryEnumerator ^enum2 = sort->GetEnumerator();
 while (enum1->MoveNext() && enum2->MoveNext())
 {
 Console::Write("{0} {1}\t\t", enum1->Key, enum1->Value);
 Console::WriteLine("{0} {1}", enum2->Key, enum2->Value);
 }

 Console::WriteLine("\nEnumerate Key");
 IEnumerator ^keys1 = hash->Keys->GetEnumerator();
 IEnumerator ^keys2 = sort->Keys->GetEnumerator();
 while (keys1->MoveNext() && keys2->MoveNext())
 {
 Console::Write("{0}\t\t", keys1->Current);
 Console::WriteLine("{0}", keys2->Current);
 }

 Console::WriteLine("\nEnumerate Value");
 IEnumerator ^vals1 = hash->Values->GetEnumerator();
 IEnumerator ^vals2 = sort->Values->GetEnumerator();
 while (vals1->MoveNext() && vals2->MoveNext())
 {
 Console::Write("{0}\t\t", vals1->Current);
 Console::WriteLine("{0}", vals2->Current);
 }

 Console::WriteLine("\nContains a Key 'A' and 'Z'");
 Console::WriteLine("{0}\t\t{1}", hash->Contains("A"),
 sort->Contains("A"));
 Console::WriteLine("{0}\t\t{1}", hash->ContainsKey("Z"),
 sort->ContainsKey("Z"));

 Console::WriteLine("\nContains a Value 'frog' and 'cow'");
 Console::WriteLine("{0}\t\t{1}", hash->ContainsValue("frog"),
 sort->ContainsValue("frog"));
 Console::WriteLine("{0}\t\t{1}", hash->ContainsValue("cow"),
 sort->ContainsValue("cow"));

Fraser_640-4C07.fm Page 254 Saturday, October 29, 2005 12:59 AM

C H A P T E R 7 ■ C O L LE C T I O N S 255

 Console::WriteLine("\n\t\t'B' key index: {0}",
 sort->IndexOfKey("B"));

 Console::WriteLine("\t\t'frog' value index: {0}",
 sort->IndexOfValue("frog"));
}

Figure 7-4 shows the results of the HashSortList.exe program.

Figure 7-4. Results of HashSortList.exe

Queue and Stack
The Queue and Stack collections are simple but handy. If you have ever been to an amusement park
and waited to get on a ride, then you should be very familiar with a queue. Basically, the order you go
in is the order you come out. A Queue is often known as a first-in-first-out (FIFO) collection. The best
real-world example that I know of a stack is a plate dispenser at an all-you-can-eat buffet. Here, the last
plate placed in is the first one out. A Stack is often known as a last-in-first-out (LIFO) collection.

The Queue and Stack collections don’t provide a vast array of methods, as many of the other
collections do. They do both contain the standard Count property, and the GetEnumerator() and
Contains() methods.

Even the constructors of a Queue and a Stack are quite simple. You can create them from another
collection, specifying their initial size or taking the default size.

Fraser_640-4C07.fm Page 255 Saturday, October 29, 2005 12:59 AM

256 C H A P T E R 7 ■ C O L L E C T I O N S

Queue ^que1 = gcnew Queue();
Stack ^stk1 = gcnew Stack();
Queue ^que2 = gcnew Queue(8);
Stack ^stk2 = gcnew Stack(8);
Queue ^que3 = gcnew Queue(stk1);
Stack ^stk3 = gcnew Stack(que1);

Both the Queue and Stack have one more method in common: the Peek() method. This method
allows the program to see the next element that is going to come off the Queue or Stack but does not
actually remove it.

Console::WriteLine(que->Peek());
Console::WriteLine(stk->Peek());

Both the Queue and Stack collections have the same process of placing elements on and off.
However, they use different method names that more closely resemble the type of collection they
are. To place an element onto a Queue, you use the Enqueue() method, and to take an element off the
Queue, you use the Dequeue() method. (I know, neither of these method names is actually an English
word, but hey, we’re programmers, not authors. Wait a minute—I am!)

que->Enqueue("First");
que->Dequeue();

To place an element onto a Stack, you use the Push() method, and to take it off, you use the
Pop() method.

stk->Push("First");
stk->Pop();

There are occasions when you want to Dequeue or Pop all elements of the Queue or Stack. You can
do this with the single method Clear().

Listing 7-4 shows the Queue and Stack in action and demonstrates the functionality described
previously.

Listing 7-4. Working with Queues and Stacks

using namespace System;
using namespace System::Collections;

void main()
{
 Queue ^que = gcnew Queue();
 Stack ^stk = gcnew Stack();

 array<String^>^ entry = gcnew array<String^> {
 "First", "Second", "Third", "Fourth"
 };

 Console::WriteLine("Queue\t\tStack");

 Console::WriteLine("** ON **");
 for (int i = 0; i < entry->Length; i++)
 {
 que->Enqueue(entry[i]);
 stk->Push(entry[i]);

Fraser_640-4C07.fm Page 256 Saturday, October 29, 2005 12:59 AM

C H A P T E R 7 ■ C O L LE C T I O N S 257

 Console::WriteLine("{0}\t\t{1}", entry[i], entry[i]);
 }

 Console::WriteLine("\n** OFF **");
 while ((que->Count > 0) && (stk->Count > 0))
 {
 Console::WriteLine("{0}\t\t{1}", que->Dequeue(), stk->Pop());
 }

 que->Clear();
 stk->Clear();

 Console::WriteLine("\n");
}

Figure 7-5 shows the results of the QueueStack.exe program.

Figure 7-5. Results of QueueStack.exe

Specialized Collections
Now that you have covered all of the standard collections, you’ll take a look at a few of the more
commonly used specialized collections provided by the .NET Framework class library. Unlike the
standard set of collections that I discussed previously, these specialized collections require the refer-
encing of the System.dll assembly and use the System::Collections::Specialized namespace.

#using <system.dll>
using System::Collections::Specialized;

ListDictionary
If you require quick access to a short list of elements, a ListDictionary might just be what you need.
It has very little overhead. It is just a singular linked list, which makes it very fast for one-way access
in the creation order, if you plan on restricting the number of data elements.

Fraser_640-4C07.fm Page 257 Saturday, October 29, 2005 12:59 AM

258 C H A P T E R 7 ■ C O L L E C T I O N S

■Note Microsoft in the documentation states that the ListDictionary is faster than a Hashtable if you
restrict the size to ten or less. My take on this is that when you plan on having more than ten elements, it is probably
better to use a Hashtable.

In fact, the .NET Framework class library provides a specialized collection called the
HybridDictionary that starts off as a ListDictionary when the number of entries is small and auto-
matically changes to a Hashtable when the number of elements increases.

The ListDictionary has few methods, all of which you learned about earlier in this chapter.
A feature that the ListDictionary shares with the Hashtable (and the SortedList), which you haven’t
covered already, is the capability to add key/value pairs using the default index property. As you
might expect, when the key passes, the value is changed because the default index property already
exists. (What you might not expect is that if the key is unique, then the key/value pair is added.)

■Caution Add() works when adding a unique key only. Duplicate keys passed to the Add() method throw an
ArgumentException instead of replacing the value.

Listing 7-5 shows the ListDictionary in action and demonstrates the functionality described
previously.

Listing 7-5. Working with ListDictionary

#using <system.dll>

using namespace System;
using namespace System::Collections;
using namespace System::Collections::Specialized;

void main()
{
 ListDictionary ^ldict = gcnew ListDictionary();

 ldict->Add("A", "First");
 ldict->Add("B", "Second");
 ldict->Add("C", "Third");
 ldict["D"] = "Fourth";

 try {
 ldict->Add("C", "Third Replaced");
 }
 catch (ArgumentException ^e)
 {
 Console::WriteLine("ldict->Add(\"C\", \"Third Replaced\");");
 Console::WriteLine("Throws exception: {0}", e->Message);
 }
 ldict["B"] = "Second Replaced";

Fraser_640-4C07.fm Page 258 Saturday, October 29, 2005 12:59 AM

C H A P T E R 7 ■ C O L LE C T I O N S 259

 Console::WriteLine("\nEnumerate");
 IEnumerator ^keys = ldict->Keys->GetEnumerator();
 IEnumerator ^vals = ldict->Values->GetEnumerator();
 while (keys->MoveNext() && vals->MoveNext())
 {
 Console::WriteLine("{0}\t\t{1}", keys->Current, vals->Current);
 }

 Console::WriteLine();
}

Figure 7-6 shows the results of the ListDict.exe program.

Figure 7-6. Results of ListDict.exe

StringCollection
When you plan to maintain many strings, it might be more advantageous to use a StringCollection
than any of the other collection types (unless you want key/value access), as a StringCollection is
designed to specifically handle strings. A StringCollection resembles a simplified ArrayList in
many ways, except that it lacks a few of its methods and uses the StringEnumerator instead of the
IEnumerator.

Listing 7-6 shows the StringCollection in action. As you can see, it has many of the same
methods as an ArrayList and is strongly typed to strings.

Listing 7-6. Working with StringCollection

#using <system.dll>

using namespace System;
using namespace System::Collections;
using namespace System::Collections::Specialized;

void main()
{
 StringCollection ^strcol = gcnew StringCollection();

 strcol->Add("The first String");

Fraser_640-4C07.fm Page 259 Saturday, October 29, 2005 12:59 AM

cafac74dd2d083cbec0906b66fcd56b1

260 C H A P T E R 7 ■ C O L L E C T I O N S

 array<String^>^ tmpstr = gcnew array<String^> {"Third", "Fourth" };
 strcol->AddRange(tmpstr);

 strcol->Insert(1, "Second");

 strcol[0] = "First";

 StringEnumerator ^strenum = strcol->GetEnumerator();
 while (strenum->MoveNext())
 {
 Console::WriteLine(strenum->Current);
 }

 Console::WriteLine("\n'for each' works as well");

 for each (String^ s in strcol)
 Console::WriteLine(s);

 Console::WriteLine();
}

Figure 7-7 shows the results of the StringColl.exe program.

Figure 7-7. Results of StringColl.exe

StringDictionary
The StringDictionary sounds impressive, don’t you think? It’s really just a Hashtable strongly typed
and designed specifically for strings. There’s nothing new here, other than pretty well all methods
expect the String type instead of the Object type.

Listing 7-7 shows the StringDictionary in action. This example shows one of the many ways of
displaying the StringDictionary in alphabetical order, as a StringDictionary does not sort its entries.
If you recall, a Hashtable works by simply looking up the key to find its value, and no sorting occurs.
In the example, you get a copy of all the keys and place them into an ArrayList. Then, you use the
ArrayList’s built-in Sort() method.

Fraser_640-4C07.fm Page 260 Saturday, October 29, 2005 12:59 AM

C H A P T E R 7 ■ C O L LE C T I O N S 261

Listing 7-7. Working with StringDictionary

#using <system.dll>

using namespace System;
using namespace System::Collections;
using namespace System::Collections::Specialized;

void main()
{
 StringDictionary ^strdict = gcnew StringDictionary();

 strdict->Add("Dog", "Four leg, hydrant loving, barking, mammal");
 strdict->Add("Frog", "Green, jumping, croaking, amphibian");

 strdict["Crocodile"] = "Ugly, boot origin, snapping, reptile";

 ArrayList ^alist = gcnew ArrayList();
 alist->AddRange(strdict->Keys);
 alist->Sort();

 for (int i = 0; i < alist->Count; i++)
 {
 Console::WriteLine("{0,10}:\t{1}", alist[i],
 strdict[(String^)alist[i]]);
 }

 Console::WriteLine();
}

Figure 7-8 shows the results of the StringDict.exe program.

Figure 7-8. Results of StringDict.exe

NameValueCollection
Let’s finish off the standard collections with one final type: NameValueCollection. This collection is
similar in many ways to the StringDictionary. It uses a Hashtable internally and is optimized for
handling string. Where it differs is in its ability to have multiple values for a single key.

You can add a key/value pair to a NameValueCollection using the Add() or Set() method, or the
default index property. However, only the Add() method allows multiple values to be assigned to a
single key:

Fraser_640-4C07.fm Page 261 Saturday, October 29, 2005 12:59 AM

262 C H A P T E R 7 ■ C O L L E C T I O N S

nvCol->Set("Flower", "Rose");
nvCol->Add("Animal", "Dog");
nvCol["Fruit"] = "Plum";

You can update the value of a key using either the default index property or the Set() method,
but in both cases only a single value can be assigned to a key.

■Caution The default index property and the Set() method will overwrite a key with multiple values with a single
value. In other words, you will lose all values assigned to the key and they will be replaced with the new single value.

To get all the keys in the collection, you use the AllKeys property. This property returns an
array, which has been cached for better performance and is automatically refreshed when the
collection changes.

array<String^>^ keys = nvCol.AllKeys;

There are two different ways of getting the values using a key: either as an array of strings using
the GetValues() method or as a comma-delimited list using the Get() method.

array<String^>^ vals = nvCol.GetValues("Flower");
String ^vals = nvCol.Get("Flower");

It is also possible to manipulate the collection using indexes. To get a key at a specific index, use
the GetKey() method.

String ^key = nvCol.GetKey(1);

To get the values at a specific index, you use the default index property, but this time passing a
numeric index. Using the default index property this way returns a comma-delimited list of values.

String ^vals = nvCol[3];

You remove a specific key and all its values from the collection by passing the index of the key
you want to remove into the Remove() method.

Listing 7-8 shows the NameValueCollection in action.

Listing 7-8. Working with NameValueCollection

#using <system.dll>

using namespace System;
using namespace System::Collections::Specialized;

void main()
{
 NameValueCollection^ nvCol = gcnew NameValueCollection();

 nvCol->Add(nullptr, "void");

 nvCol->Set("Flower", "Rose");

Fraser_640-4C07.fm Page 262 Saturday, October 29, 2005 12:59 AM

C H A P T E R 7 ■ C O L LE C T I O N S 263

 nvCol->Add("Animal", "Dog");
 nvCol->Add("Animal", "Cat");
 nvCol->Add("Animal", "Cow");

 nvCol->Add("Fruit", "Apple");
 nvCol->Add("Fruit", "Pear");
 nvCol->Add("Fruit", "Peach");

 array<String^>^ keys = nvCol->AllKeys;

 Console::WriteLine("Key\t\tValue");
 for (int i = 0; i < keys->Count; i++)
 {
 array<String^>^ vals = nvCol->GetValues(keys[i]);

 Console::WriteLine("{0}:\t\t{1}", keys[i], vals[0]);
 for (int j = 1; j < vals->Count; j++)
 {
 Console::WriteLine("\t\t{0}", vals[j]);
 }
 }

 Console::WriteLine("------ Index Lookups ------");
 Console::WriteLine("Key @[1]:\t{0}", nvCol->GetKey(1));
 Console::WriteLine("Values @[3]:\t{0}", nvCol[3]);

 nvCol->Remove(nullptr);

 nvCol["Fruit"] = "Plum";

 nvCol->Set("Animal", "Deer");
 nvCol->Add("Animal", "Ape");

 keys = nvCol->AllKeys;

 Console::WriteLine("--------- Updated ---------");
 for (int i = 0; i < keys->Count; i++)
 {
 Console::WriteLine("{0}:\t\t{1}", keys[i],
 nvCol->Get(keys[i]));
 }

 Console::WriteLine();
}

Figure 7-9 shows the results of the NameValue.exe program.

Fraser_640-4C07.fm Page 263 Saturday, October 29, 2005 12:59 AM

264 C H A P T E R 7 ■ C O L L E C T I O N S

Figure 7-9. Results of NameValue.exe

Generic Collections
Originally, I was expecting to write a lot about this set of collections. As I started to work with them, I real-
ized that I’d already covered most of what you need to know earlier in the chapter. The reason for this—
the only big difference between generic collections and the standard ones—is the initial code to create
the collection and the collection once defined only allows the data type defined in the collection’s decla-
ration (or one inherited from it) as an element of the collection. This differs from the standard collection
since standard collections don’t care which managed types you add to the collection.

Most of the collection types within the generic collection set have standard collection equiva-
lents. The one noticeable and, I think, welcome addition is the LinkedList<T>. I’m not sure I know
why it does not have a standard set equivalent, especially since it is many C++ programmers’ second
choice when it comes to collections (array being the first).

The use of the generic collection set requires either mscorlib.dll:

• List<T>

• Queue<T>

• Stack<T>

• Dictionary<K,V>

• SortedDictionary<K,V>

or System.dll:

• LinkedList<T>

• Collection<T>

• ReadOnlyCollection<T>

• KeyedCollection<K,V>

They all, on the other hand, use the namespace System::Collections::Generic.
One thing that you need to know about generic collections is that none of them support the

IsSynchronized or SyncRoot properties and the Synchronized() method (unless you add the function-
ality yourself). Thus, there is no way to make the default generic collections thread-safe.

Fraser_640-4C07.fm Page 264 Saturday, October 29, 2005 12:59 AM

C H A P T E R 7 ■ C O L LE C T I O N S 265

■Caution The default generic collections cannot be made thread-safe.

List<T>
The List<T> collection is the generic equivalent to the ArrayList. There are some differences, however.
List<T> provides most of the functionality of ArrayList; the only notable exception is ArrayList’s ability
to fix its length. List<T>, on the other hand, has added some functionality: performing a common oper-
ation on all elements using an Action<T> delegate, finding elements based on a Predicate<T> delegate,
and determining if all have something in common, again using the Predicate<T> delegate.

I’m not going to cover the features that List<T> and ArrayList have in common; just look them
up in the earlier ArrayList section, as they are almost always coded the same way.

The List<T> has three constructors. The first is the default constructor, which has no parameters:

List<T> ^list = gcnew List<T>(); // T is the data type of the list.

You should use this constructor when you have no ballpark idea of how many elements are
going to be in the list. If you do know, or have an idea of, how many elements the list contains, then
you should use the second constructor, which has a capacity parameter:

 List<T> ^list = gcnew List<T>(capacity); // T is the data type of the list.

The reason this constructor is better is because the capacity is already correct (or almost correct)
and the collection doesn’t have to perform numerous resizing operations. Remember, though, the
caution I mentioned earlier: the collection doubles in size when it needs to perform a resize opera-
tion. So if you make the capacity a large number like 32000, and the actual count is 32001, then you’ll
get a collection of size 64000 elements. That would be a big waste of memory, though you could
perform a TrimToSize() or set the Capacity property directly to get the memory back.

The last constructor takes as a parameter another List<T> from which it makes a copy. The
initial capacity is the size of the copied List<T>:

List<T> ^listOrig = gcnew List<T>();
// ... initialize listOrig wth some elements
List<T> ^listCopy = gcnew List<T>(listOrig);

Most of List<T>’s new functionally is available because all the data elements within the collection
are the same type or inherited from the same type. Therefore, it is safe to perform common opera-
tions on each element without having to worry if the element will abort due to type incompatibility.
For the List<T> collection, these operations fall onto two delegates: Action<T> and Predicate<T>.

Action<T>
The Action<T> delegate represents the method that performs an action on the specified element of a
collection. Its declaration is

public delegate void Action<T>(T obj) sealed;

The parameter obj is the object on which the action is being performed.
When you implement the Action<T> delegate, you can make it either a stand-alone function or

a static method within a class. Most likely, you will make it a static member of the class of the type of
the obj parameter:

Fraser_640-4C07.fm Page 265 Saturday, October 29, 2005 12:59 AM

266 C H A P T E R 7 ■ C O L L E C T I O N S

ref class datatype
{
public:
 static void ActionDelegate(datatype obj);
};

void datatype::ActionDelegate(datatype obj)
{
 // do some operations on obj
}

Predicate<T>
The Predicate<T> delegate represents the method that defines a set of conditions and determines
whether the specified object meets those conditions. Its declaration is

public delegate bool Predicate<T>(T obj) sealed;

The parameter obj is the object to which the conditions are being compared.
Just like the Action<T> delegate, when you implement the Predicate<T> delegate, you can make

it either a stand-alone function or a static method within a class. Most likely, you will make it a static
member of the class of the type of the obj parameter:

ref class datatype
{
public:
 static void PredicateDelegate(datatype obj);
};

void datatype::PredicateDelegate(datatype obj)
{
 // compare conditions on obj
}

Using Action<T> and Predicate<T>
The Action<T> delegate is used with the List<T>’s ForEach() method. This method allows you to
perform specific actions on each element of a List<T> based on the type of List<T>. This differs from
the for each statement, because the for each statement performs the same operations on the List<T>
no matter what its type. The syntax of the ForEach method is simply

list->ForEach(gcnew Action<datatype>(datatype::ActionDelegate));

Upon completion of this method, every element of the list will have had the ActionDelegate
performed upon it.

The Predicate<T> delegate is used by several methods within the List<T> class:

• Exists(): Determines if elements match the criteria of the Predicate<T>

• Find(): Returns the first element that matches the criteria of the Predicate<T>

• FindAll(): Returns all elements that match the criteria of the Predicate<T>

Fraser_640-4C07.fm Page 266 Saturday, October 29, 2005 12:59 AM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 7 ■ C O L LE C T I O N S 267

• FindIndex() Returns a zero-based index to the first element that matches the criteria of the
Predicate<T>

• FindList(): Returns the last element that matches the criteria of the Predicate<T>

• FindLastIndex(): Returns a zero-based index to the last element that matches the criteria of
the Predicate<T>

• TrueForAll(): Returns true if all elements match the criteria of the Predicate<T>

All of these functions have basically the same syntax. Here is FindAll():

 List<datatype>^ ret =
 list->FindAll(gcnew Predicate<datatype>(datatype::PredicateDelegate));

Some have overloaded methods with additional parameters to limit the number of elements to
work on.

Listing 7-9 shows List<T>, Action<T>, and Predicate<T> in action.

Listing 7-9. Working with List<T>, Action<T>, and Predicate<T>

using namespace System;
using namespace System::Collections::Generic;

// -------- StringEx class ---------------------------------------

ref class StringEx
{
public:
 String^ Value;

 StringEx(String^ in);
 virtual String^ ToString() override;

 static bool With_e_Predicate(StringEx^ val);
 static void SurroundInStars(StringEx^ val);
};

StringEx::StringEx(String^ in) : Value(in) {}

String^ StringEx::ToString() { return Value; }

bool StringEx::With_e_Predicate(StringEx^ val)
{
 return val->Value->ToUpper()->IndexOf("E") > 0;
}

void StringEx::SurroundInStars(StringEx^ val)
{
 val->Value = String::Format("** {0} **", val->Value);
}

Fraser_640-4C07.fm Page 267 Saturday, October 29, 2005 12:59 AM

268 C H A P T E R 7 ■ C O L L E C T I O N S

// ---------- Main function ---------------------------------------

void main()
{
 List<StringEx^>^ alist = gcnew List<StringEx^>();

 alist->Add(gcnew StringEx("One"));
 alist->Add(gcnew StringEx("-"));
 alist[1] = gcnew StringEx("Three");

 alist->Insert(1, gcnew StringEx("Two"));

 List<StringEx^>^ morenums = gcnew List<StringEx^>();
 morenums->Add(gcnew StringEx("Four"));
 morenums->Add(gcnew StringEx("Five"));

 alist->AddRange(morenums);

// alist[0] = "Six"; // Compile time error not a StringEx
// alist->Add("Six"); // Compile time error not a StringEx

 Console::WriteLine("*** The List<StringEx^> ***");
 for (int i = 0; i < alist->Count; i++)
 Console::WriteLine("{0} ", alist[i]);

 // Find all words in list that contain an 'e'
 List<StringEx^>^ With_e =
 alist->FindAll(gcnew Predicate<StringEx^>(StringEx::With_e_Predicate));

 Console::WriteLine("\n\n*** The List<StringEx^> containing an 'e' ***");

 for each(StringEx^ str in With_e)
 Console::WriteLine("{0} ", str);

 // Surround all elements with stars
 alist->ForEach(gcnew Action<StringEx^>(StringEx::SurroundInStars));

 Console::WriteLine("\n\n*** The List<StringEx^> surrounded by stars ***");

 for each(StringEx^ str in alist)
 Console::WriteLine("{0} ", str);

 Console::WriteLine("\n");
}

Figure 7-10 shows the results of the ListGeneric.exe program.

Fraser_640-4C07.fm Page 268 Saturday, October 29, 2005 12:59 AM

C H A P T E R 7 ■ C O L LE C T I O N S 269

Figure 7-10. Results of ListGeneric.exe

LinkedList<T>
A linked list is probably one of the simplest types of collections available, second only to an array.
Linked lists store arbitrarily located data in such a way as to make the data sequentially accessible.
Specifically, the programmer writes a struct or class containing a handle pointing to the next (and,
for a doubly linked list, to the previous) struct or class in the sequence.

A linked list has some advantages even over the array; the most notable advantage being that
you can quickly insert and delete items in the sorted linked list. When you insert and delete items in
a sorted array, you need to either make room for the new items or fill the hole left by deleting an item.
These operations both require all elements after the insertion point to be copied up to the next
element in the array in the case of insertion, or down in the case of a delete. The biggest disadvan-
tage to a linked list is that you cannot immediately locate any particular element. Instead, you must
traverse the list until you reach the element.

Now, with .NET version 2.0, you have a linked list built into the framework so you don’t have to
write your own. You might argue that there are plenty of other, more powerful collections available.
However, I think there is something to be said for the simplicity of the linked list and its lack of over-
head requirements as compared to the other collection types.

The LinkedList<T> has two public constructors. The first is the default constructor, which takes
no parameters and creates an empty link list:

LinkedList<datatype>^ list = gcnew LinkedList<datatype>();

The second takes an object implementing the IEnumerable<T> interface as a parameter. This
allows the linked list to start with some existing data:

Fraser_640-4C07.fm Page 269 Saturday, October 29, 2005 12:59 AM

270 C H A P T E R 7 ■ C O L L E C T I O N S

LinkedList<datatype>^ list =
 gcnew LinkedList<datatype>((IEnumerable<datatype>^)existingList);

By the way, the array supports the IEnumerable<T> interface, so you can use it to initialize a
LinkedList<T>:

array<String^>^ arrList = gcnew array<String^> {"One", "Two", "Three"};

LinkedList<String^>^ list =
 gcnew LinkedList<String^>((IEnumerable<String^>^)arrList);

The LinkedList<T> is very simple and limited. It is designed to be fast and have little overhead.
If you want more features, then you have many more feature-rich collections from which to choose.
The features you will most likely use are as follows:

• The LinkedListNode<T> properties to the Head and Tail of the list

• The Find() and FindList() methods, which return a LinkedListNode<T> to the first or last
matching node in the list

• The methods to add a new node to the list at the head (AddHead()), tail (AddTail()), before
another node (AddBefore()), or after another node (AddAfter())

• The methods to remove from the list at the head (RemoveHead()), tail (RemoveTail()), a specific
node (Remove()), or all nodes (Clear())

To reference specific nodes within or to navigate through your LinkedList<T>, you need to use
the LinkedListNode<T> class. (You can also use the for each statement to walk (only) forward through the
LinkedList<T> as well.

Navigation using LinkedListNode<T> is rather easy. All you do is get the next or previous node
from LinkedList<T> via the handle property, pointing to the Next and Previous node on the accessed
LinkedListNode<T> object. You know you have reached the beginning or end of the linked list when
the Next or Previous property on the LinkedListNode<T> is a nullptr. The Value property contains
the actual data being stored by the linked list.

Listing 7-10 shows a plethora of properties and methods of the List<T> and LinkedListNode<T>
in action.

Listing 7-10. Working with Linked Lists

using namespace System;
using namespace System::Collections::Generic;

int main()
{
 array<String^>^ arrList = gcnew array<String^> {"Two", "Three", "Four"};

 LinkedList<String^>^ list =
 gcnew LinkedList<String^>((IEnumerable<String^>^)arrList);

 list->AddTail("Six");
 list->AddHead("Zero");
 list->AddAfter(list->Head, "One");
 list->AddBefore(list->Tail, "5");

 Console::WriteLine("Write with error");

 LinkedListNode<String^>^ current = list->Tail;

Fraser_640-4C07.fm Page 270 Saturday, October 29, 2005 12:59 AM

C H A P T E R 7 ■ C O L LE C T I O N S 271

 while (current != nullptr)
 {
 Console::WriteLine(current->Value);
 current = current->Previous;
 }

 Console::WriteLine("\nNumber of elements = {0}", list->Count);

 LinkedListNode<String^>^ node = list->Find("5");

 list->AddBefore(node, "Five");
 list->Remove(node);

 list->RemoveHead();

 Console::WriteLine("\nWrite with corrections");
 for each (String^ str in list)
 Console::WriteLine(str);

 Console::WriteLine("\nNumber of elements = {0}\n", list->Count);

// list->Add(4); // Compile time error as type is not a String^
}

Figure 7-11 shows the results of the LinkListGeneric.exe program.

Figure 7-11. Results of LinkedListGeneric.exe

Queue<T> and Stack<T>
Other than the syntax of the constructors, there is really no difference between the generic and standard
versions. In fact, they contain nearly exactly the same methods and properties. A noticeable exception is
the thread-safe properties and methods, which the generic collections lack.

Fraser_640-4C07.fm Page 271 Saturday, October 29, 2005 12:59 AM

272 C H A P T E R 7 ■ C O L L E C T I O N S

Since there is nothing really new, I’ll just provide Listing 7-11, which is a conversion of the
earlier standard Queue and Stack example to Queue<T> and Stack<T>. Notice that the only two lines
that changed from QueueStack.cpp are

Queue<String^>^ que = gcnew Queue<String^>();
Stack<String^>^ stk = gcnew Stack<String^>();

Listing 7-11. Working with Queue<T>s and Stack<T>s

#using <system.dll>

using namespace System;
using namespace System::Collections::Generic;

void main()
{
 Queue<String^>^ que = gcnew Queue<String^>();
 Stack<String^>^ stk = gcnew Stack<String^>();

 array<String^>^ entry = gcnew array<String^> {
 "First", "Second", "Third", "Fourth"
 };

 Console::WriteLine("Queue\t\tStack");

 Console::WriteLine("** ON **");
 for (int i = 0; i < entry->Length; i++)
 {
 que->Enqueue(entry[i]);
 stk->Push(entry[i]);

 Console::WriteLine("{0}\t\t{1}", entry[i], entry[i]);
 }

 Console::WriteLine("\n** OFF **");
 while ((que->Count > 0) && (stk->Count > 0))
 {
 Console::WriteLine("{0}\t\t{1}", que->Dequeue(), stk->Pop());
 }

 que->Clear();
 stk->Clear();

 Console::WriteLine("\n");
}

Figure 7-12 shows the results of the QueueStackGeneric.exe program.

Fraser_640-4C07.fm Page 272 Saturday, October 29, 2005 12:59 AM

C H A P T E R 7 ■ C O L LE C T I O N S 273

Figure 7-12. Results of QueueStackGeneric.exe

Dictionary<K,V>, SortedDictionary<K,V>
The Dictionary<K,V> and SortedDictionary<K,V> are extremely handy key/value pair collections.
With the addition of generics, you are now provided an elegant way to control your key/value pair
type storage. Each allows you to define the data types of both the key and the value, and then ensure
that those data types are the only ones used when implementing the collection.

The Dictionary<K,V> and SortedDictionary<K,V> are very similar in many respects. Obviously,
as the collection names suggests, their biggest difference is that the SortedDictionary<K,V> is sorted.
(Why do I want to write “Duh!” here?) You also have greater control over the elements when working
with the SortedDictionary<K,V>, mainly because it is sorted.

Both dictionary collections have six constructors. The first three are pretty standard: default
with no parameters, a parameter of capacity, and a parameter of IDictionary for preloading.

Dictionary<K,V>^ dict1 = gcnew Dictionary<K,V>();
SortedDictionary<K,V>^ dict2 = gcnew SortedDictionary<K,V>();

Dictionary<K,V>^ dict3 = gcnew SortedDictionary<K,V>(100);
SortedDictionary<K,V>^ dict4 = gcnew SortedDictionary<K,V>(100);

Dictionary<K,V>^ dict5 = gcnew SortedDictionary<K,V>(inDictionary);
SortedDictionary<K,V>^ dict6 = gcnew SortedDictionary<K,V>(inDictionary);

One thing that you might note is that since both the Dictionary<K,V> and
SortedDictionary<K,V> inherit from the IDictionary interface, you can interchangeably load from
either dictionary type.

 One requirement of both these dictionary types is that the key’s data type needs to implement
IComparable<K> or System::IComparable. If it doesn’t, then you need to use one of the three remaining
constructors that take the additional parameter of IComparer<K>, thus adding the ability to compare
the keys.

One cool feature is that you can implement your own version of IComparer<K> for the dictionary.
This allows, in the case of SortedDictionary<K,V>, a way of sorting the elements as you wish.

You can load either of these dictionaries using either the Add() method or the default index
property. The default index property takes as its index the key of the value.

dict->Add("Key1", "One");
dict["Key2"] = "Two";

Fraser_640-4C07.fm Page 273 Saturday, October 29, 2005 12:59 AM

cafac74dd2d083cbec0906b66fcd56b1

274 C H A P T E R 7 ■ C O L L E C T I O N S

All keys for either type of dictionary must be unique. If you try to repeat a key using the Add()
method, the dictionary is going to throw the exception

 System.ArgumentException: An item with the same key has already been added.

On the other hand, if you repeat a key using the default index property, the value is just replaced:

dict->Add("Key3", "3");
dict["Key3"] = "Three"; // replaces value
dict->Add("Key3", "3"); // throws exception

To access the value for a key, simply call the default index property with the index of the key:

String^ value = dict["Key3"];

Both dictionaries contain two properties to access their keys and values. These properties are
implemented for the Dictionary<K,V> class using the classes Dictionary<K,V>::KeyCollection and
Dictionary<K,V>::ValueCollection, and for the SortedDictionary<K,V> class using the classes
SortedDictionary<K,V>::KeyCollection and SortedDictionary<K,V>::ValueCollection. From these
classes, you grab an enumerator to the keys and values with the GetEnumerator() method:

Dictionary<K,V>::KeyCollection::Enumerator ^k = dict->Keys->GetEnumerator();
Dictionary<K,V>::ValueCollection::Enumerator ^v =dict->Values->GetEnumerator();

while (k->MoveNext() && v->MoveNext())
{
 Console::WriteLine("Key = [{0}]\tValue = [{1}]", k->Current, v->Current);
}

and

SortedDictionary<K,V>::KeyCollection::Enumerator ^k =
 dict->Keys->GetEnumerator();
SortedDictionary<K,V>::ValueCollection::Enumerator ^v =
 dict->Values->GetEnumerator();

while (k->MoveNext() && v->MoveNext())
{
 Console::WriteLine("Key = [{0}]\tValue = [{1}]", k->Current, v->Current);
}

Both dictionary types allow you to remove key/value pairs from the collection using the Remove()
method, which takes as a parameter the key.

Okay, here is one last note before moving on to an example. A for each statement requires, as
the first part of the statement, the type of each element in the collection. Since each element of the
dictionaries is a key/value pair, the element type is not the type of the key or the type of the value.
Instead, the element type is KeyValuePair<K,V>. Therefore, to use the for each statement to iterate
through the collection, you need to code something similar to this:

for each (KeyValuePair<K,T> pair in dictionary)
{
 Console::WriteLine("Key = [{0}]\tValue = [{1}]", pair->Key, pair->Value);
}

Listing 7-12 shows the Dictionary<K,V> and SortedDictionary<K,V> in action.

Fraser_640-4C07.fm Page 274 Saturday, October 29, 2005 12:59 AM

C H A P T E R 7 ■ C O L LE C T I O N S 275

Listing 7-12. Working with Generic Dictionaries

#using <system.dll>

using namespace System;
using namespace System::Collections::Generic;

// Make the dictionary sort in reverse
ref class Reverse : public IComparer<int>
{
public:
 virtual int Compare(int x, int y) { return y - x; }
 virtual bool Equals(int x, int y) { return x == y; }
 virtual int GetHashCode(int obj) { return obj.GetHashCode(); }
};

Dictionary<int,String^>^ DictionaryExample()
{
 Dictionary<int,String^>^ dict = gcnew Dictionary<int,String^>();

 dict->Add(1, "One");
 dict->Add(6, "Six");
 dict->Add(5, "Five");

 dict->Add(3, "3");
// dict->Add(3, "3"); // throws an exception
 dict[3] = "Three";

 dict[7] = "Seven";

 String^ t = dict[3];
 Console::WriteLine("dict[3] = {0}\n", t);

 for each (KeyValuePair<int,String^>^ pair in dict)
 {
 Console::WriteLine("Key = [{0}]\tValue = [{1}]",
 pair->Key, pair->Value);
 }

 Console::WriteLine("\nDictionary contains 6? [{0}]",
 dict->ContainsKey(6));

 dict->Remove(6);

 Console::WriteLine("\nDictionary had 6 removed? [{0}]\n",
 !dict->ContainsKey(6));

 Dictionary<int,String^>::KeyCollection::Enumerator ^key =
 dict->Keys->GetEnumerator();
 Dictionary<int,String^>::ValueCollection::Enumerator ^value =
 dict->Values->GetEnumerator();

Fraser_640-4C07.fm Page 275 Saturday, October 29, 2005 12:59 AM

276 C H A P T E R 7 ■ C O L L E C T I O N S

 while (key->MoveNext() && value->MoveNext())
 {
 Console::WriteLine("Key = [{0}]\tValue = [{1}]",
 key->Current, value->Current);
 }

 return dict;
}

void SortedDictionaryExample(Dictionary<int,String^>^ inDict)
{
 SortedDictionary<int,String^>^ dict =
 gcnew SortedDictionary<int,String^>(inDict, gcnew Reverse());

 dict->Add(6, "Six");

 String^ t = dict[3];
 Console::WriteLine("dict[3] = {0}\n", t);

 Console::WriteLine("Sorted Values:");
 for each (String ^s in dict->Values)
 Console::WriteLine("\t{0}",s);

 Console::WriteLine();

 for each (KeyValuePair<int,String^>^ pair in dict)
 {
 Console::WriteLine("Key = [{0}]\tValue = [{1}]",
 pair->Key, pair->Value);
 }

 Console::WriteLine("\nSortedDictionary contains 'Six'? [{0}]",
 dict->ContainsValue("Six"));

 dict->Remove(6);

 Console::WriteLine("\nSortedDictionary had 'Six' removed? [{0}]\n",
 !dict->ContainsValue("Six"));

 SortedDictionary<int,String^>::KeyCollection::Enumerator ^key =
 dict->Keys->GetEnumerator();
 SortedDictionary<int,String^>::ValueCollection::Enumerator ^value =
 dict->Values->GetEnumerator();

 while (key->MoveNext() && value->MoveNext())
 {
 Console::WriteLine("Key = [{0}]\tValue = [{1}]",
 key->Current, value->Current);
 }
}

Fraser_640-4C07.fm Page 276 Saturday, October 29, 2005 12:59 AM

C H A P T E R 7 ■ C O L LE C T I O N S 277

void main()
{
 Console::WriteLine("Dictionary\n----------");
 Dictionary<int,String^>^ dict = DictionaryExample();

 Console::WriteLine();

 Console::WriteLine("\nReverse SortedDictionary\n----------------");
 SortedDictionaryExample(dict);

 Console::WriteLine();
}

Figure 7-13 shows the results of the DictionaryGeneric.exe program.

Figure 7-13. Results of DictionaryGeneric.exe

Fraser_640-4C07.fm Page 277 Saturday, October 29, 2005 12:59 AM

278 C H A P T E R 7 ■ C O L L E C T I O N S

Collection<T> and ReadOnlyCollection<T>
Since exposing collections from an object is such a common activity in .NET development, the .NET
Framework has provided three base classes to do this: Collection<T>, ReadOnlyCollection<T>, and
KeyedCollection<K,V>. There is really nothing new to learn about these collections. All they imple-
ment is the minimum functionality required for accessing collections, which we have already gone
over in detail.

The Collection<T> class is the base class for simple generic collections and provides implemen-
tations for the IList<T>, ICollection<T>, IEnumerable<T>, IList, ICollection, and IEnumerable
interfaces.

The ReadOnlyCollection<T> class is the base class for simple generic read-only collections and
provides implementations for the IList<T>, ICollection<T>, IEnumerable<T>, IList, ICollection, and
IEnumerable interfaces. Unlike Collection<T> class, there are no properties or methods to update the
collection.

The KeyedCollection<K,V> is an abstract class, inherited from Collection<T>, for simple generic
key/value collections.

Microsoft suggests that you return one of these three types of collections from your objects if
you want to provide a standard, plain-vanilla collection API.

Summary
In this chapter, you took a somewhat detailed look at some of the collections made available by the
.NET Framework class library. You started by looking at the IEnumerable interface, which is common
to most collections. Next, you covered all the common collections. You then examined a few of the
more specialized collections provided by the .NET Framework class library. You finished by exam-
ining the generic type collections, which are new to .NET version 2.0.

In the next chapter, you’re going to look at how the .NET Framework addresses the important
areas of file I/O.

Fraser_640-4C07.fm Page 278 Saturday, October 29, 2005 12:59 AM

279

■ ■ ■

C H A P T E R 8

Input, Output, and Serialization

Most programs are of little use if there is no way of retrieving input from some source and outputting
it to the same or another source. You have several options available for handling input/output (I/O).
In this chapter, you will examine file and directory I/O, I/O manipulation, and finally, serialization
or the process of storing the state of an object or member to a permanent medium.

There are other I/O mechanisms. For example, this book covers databases, XML, and GUI inter-
faces in later chapters. Before you get to these more complex I/O systems, you’ll start with simple
files. Files are the core of most I/O-related activities in a program.

The first thing you need to look at is the file system. Anybody who plays (oops, I mean works) on
a computer sees the file system as an uncomplicated means of placing files wherever he wants them.
Usually, the file system is taken for granted. Truthfully, the file system is anything but simple and,
without the .NET Framework class library, a developer would see just how complicated it really is.

Once you have the file system under your belt, you will end this chapter with serialization.
Serialization is the process of storing a class to the file system for later retrieval. You will see how
unbelievably easy this is to do with the .NET Framework class library.

File System Input and Output
When you think of the file system, you need to consider its two parts: files and directories. The .NET
Framework class library tries to treat files and directories in a very similar way. But, obviously, there
are things that you can do with one that you can’t do with the other. Because of this, the .NET Frame-
work class library has split the functionality of files and directories into two. Well, that is not actually
correct, the functionality was split into four: two classes for files and two for directories.

The reason files and directories were split into two classes each is because of the two different
ways programmers tend to work with them: either one-time access or over the lifetime of a method,
a class, or even an application. One-time access operations on a file or directory really don’t need the
overhead of creating an instance of a class to handle the operation. Instead, the use of static methods
seems more appropriate. On the other hand, if the file handle or directory handle is going to be around
for a while, it makes sense to create a class instance to hold the file handle or directory handle.

The two classes that make up file access are File and FileInfo. The File class contains static
methods to access files, whereas you need to create an instance of a FileInfo class to access files.
They have much of the same functionality, so selecting one over the other based on functionality
does not normally make sense. Instead, you should choose one class over the other based on the
number of times the file will be accessed and whether the information being accessed needs to be
cached to increase performance. If it will be accessed one time only, then File makes sense. If you
need repeated cached access to the file, you should use the FileInfo class.

Fraser_640-4C08.fm Page 279 Sunday, October 30, 2005 12:15 AM

280 C H A P T E R 8 ■ I N P U T , O U T P U T , A N D S E R I A L I Z A T I O N

Managing the File System
As someone who has coded before, you know that you can open, read, and write to files. The .NET
Framework class library takes files and the file system in general a step further. It treats files and
directories like the objects they are. It provides not only the standard I/O features you have come to
expect in a framework, but also ways of dealing with files and directories as a whole. For example, it
is possible to copy, move, get information about, and delete complete file and directory objects.
With these functions, you now have a way of providing for the maintenance of the file system as a
whole and not just the files that make up the system.

FileSystemInfo
You will look at files and directories separately, but you could almost cover them as one, because
they have numerous methods and properties in common. In fact, both DirectoryInfo and FileInfo
are derived from the same abstract class, FileSystemInfo.

The FileSystemInfo class provides the numerous properties and methods that the DirectoryInfo
and FileInfo classes have in common (see Table 8-1).

As you can see, other than the Delete() method, each of the FileSystemInfo class members in
Table 8-1 provides information about the file or directory of the current instance. Some even provide
you with update abilities.

Directory and DirectoryInfo
The Directory and DirectoryInfo classes provide you with a means of maintaining the directory
structure under which your program has control. If you’ve ever worked directly with the directory
structure without the aid of some form of framework, then you’ll quickly come to appreciate the ease
with which you can maintain the directory system using the .NET Framework class library. To prove
that it’s simple to work with directories in the .NET Framework class library, let’s examine a few of
the more common methods and properties.

Table 8-1. Commonly Used FileSystemInfo Class Members

Property/Method Description

Attributes Gets or sets attributes associated with the current file system object.

CreationTime Gets or sets creation date and time of current file system object.

Exists Determines whether the file system object exists.

Extension Gets the string extension associated with the current file system object.

FullName Gets full name of the current file system object. This will include the file or
directories path.

LastAccessTime Gets or sets last access date and time of current file system object.

LastWriteTime Gets or sets last date and time current file system object was updated.

Name Gets the name of the file or the last directory of current file system object.

Delete() Deletes the current file system object.

Fraser_640-4C08.fm Page 280 Sunday, October 30, 2005 12:15 AM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 8 ■ I N P U T , O U T P U T , A N D S E R I A L I Z A T I O N 281

Whether you are using the static methods provided by Directory or the properties and member
method of DirectoryInfo will determine if you need to call a constructor. Obviously, calling static
member methods does not require you to instantiate a class, and thus there is no need for a constructor.

The constructor for the DirectoryInfo class simply takes the full path to the directory you wish
to manipulate as a parameter, though the directory doesn’t need to exist if you’re creating it. As you
continue, you’ll see that the Directory static member calls have this same full path as the member’s
first parameter.

DirectoryInfo ^dir = gcnew DirectoryInfo("C:\\WinNT\\Temp");

To examine the details of a directory using the DirectoryInfo class, you need to implement the
inherited properties of the FileSystemInfo class. On the other hand, if you are implementing the
Directory class, the static member methods are a bit different.

// DirectoryInfo implementation:
String^ Name = dir->FullName;
DateTime Created = dir->CreationTime;
DateTime Accessed = dir->LastAccessTime;
DateTime Updated = dir->LastWriteTime;
FileAttributes Attributes = dir->Attributes;

// Directory implementation
// No equivalent for dir->FullName
DateTime Created = Directory::GetCreationTime("C:\\WinNT\\Temp");
DateTime Accessed = Directory::GetLastAccessTime("C:\\WinNT\\Temp");
DateTime Updated = Directory::GetLastWriteTime("C:\\WinNT\\Temp");
// No equivalent for dir->Attributes

Commonly, you are going to want to list all the files and directories that are contained within
the current directory. Both Directory and DirectoryInfo provide methods to get all the files and
subdirectories separately in two method calls or together in one method call. Notice, though, that
the DirectoryInfo implementation returns an Object, whereas the Directory implementation
returns complete directory strings.

// DirectoryInfo implementation:
array<DirectoryInfo^>^ subDirs = dir->GetDirectories();
array<FileInfo^>^ files = dir->GetFiles();
array<FileSystemInfo^>^ dirsFiles = dir->GetFileSystemInfos();

// Directory implementation
array<String^>^ subDirs = Directory::GetDirectories("C:\\WinNT\\Temp");
array<String^>^ files = Directory::GetFiles("C:\\WinNT\\Temp");
array<String^>^ dirsFiles = Directory::GetFileSystemEntries("C:\\WinNT\\Temp");

Three useful methods that Directory has that DirectoryInfo doesn’t are as follows:

String ^currentDirectory = Directory::GetCurrentDirectory();
Directory::SetCurrentDirectory(currentDirectory);
array<String^>^ logicalDrives = Directory::GetLogicalDrives();

These methods get and set the current working directory and get all current logical drives on
the system.

Fraser_640-4C08.fm Page 281 Sunday, October 30, 2005 12:15 AM

282 C H A P T E R 8 ■ I N P U T , O U T P U T , A N D S E R I A L I Z A T I O N

A handy auxiliary class that you can use to manipulate the complete directory strings is the Path
class. This class contains several static methods to combine, extract, and manipulate path strings.
Table 8-2 shows some of the more useful static methods.

To extract the filename out of a complete directory string, you would use the following
GetFileName() method of the Path class:

array<String^>^ files = Directory::GetFileSystemEntries(path);
for each (String^ file in files)
{
 Console::WriteLine(Path::GetFileName(file));
}

The activities that you will probably do most with directories are checking whether the directory
exists, creating a directory, moving or renaming an existing directory, and deleting a directory.

// DirectoryInfo implementation:
if (dir->Exists) {}
dir->Create(); // Notice it creates the directory specified by constructor
dir->CreateSubdirectory("SubDir");
dir->MoveTo("C:\\WinNT\\TempXXX"); // Move or rename the current directory tree
dir->Delete(); // Will fail if directory is not empty
dir->Delete(true); // Deletes the entire directory tree (security permitting)

// Directory implementation
if (Directory::Exists("C:\\WinNT\\Temp")) {}
Directory::CreateDirectory("C:\\WinNT\\TempXXX");
Directory::Move("C:\\WinNT\\Temp", "C:\\WinNT\\TempXXX");
Directory::Delete("C:\\WinNT\\TempXXX");
Directory::Delete("C:\\WinNT\\TempXXX", true);

Listing 8-1 shows the DirectoryInfo class in action and demonstrates many of the functionalities
described previously.

Table 8-2. Commonly Used Path Class Members

Method Description

ChangeExtension() Changes the extension of the path string.

GetDirectoryName() Extracts the directory name out of the path string. Notice
that for a directory, this method extracts the parent path.

GetExtension() Gets the extension from the filename contained in the
path string.

GetFileName() Gets the filename or the directory name.

GetFileNameWithoutExtension() Gets the extension from the filename contained in the
path string.

GetFullPath() Gets the absolute path of the path string.

Fraser_640-4C08.fm Page 282 Sunday, October 30, 2005 12:15 AM

C H A P T E R 8 ■ I N P U T , O U T P U T , A N D S E R I A L I Z A T I O N 283

Listing 8-1. Working with DirectoryInfo

using namespace System;
using namespace System::IO;
using namespace System::Text;

int main(array<System::String ^> ^args)
{
 if (args->Length == 0)
 {
 Console::WriteLine("Usage: DirInfo <Directory>");
 return -1;
 }

 StringBuilder ^tmppath = gcnew StringBuilder();

 for each (String^ s in args)
 {
 tmppath->Append(s);
 tmppath->Append(" ");
 }

 String ^path = tmppath->ToString()->Trim();

 DirectoryInfo ^dir = gcnew DirectoryInfo(path);

 if (!dir->Exists)
 {
 Console::WriteLine("Directory Not Found");
 return -1;
 }

 Console::WriteLine("Name: {0}", dir->FullName);

 Console::WriteLine("Created: {0} {1}",
 dir->CreationTime.ToShortDateString(),
 dir->CreationTime.ToLongTimeString());

 Console::WriteLine("Accessed: {0} {1}",
 dir->LastAccessTime.ToShortDateString(),
 dir->LastAccessTime.ToLongTimeString());

 Console::WriteLine("Updated: {0} {1}",
 dir->LastWriteTime.ToShortDateString(),
 dir->LastWriteTime.ToLongTimeString());

 Console::WriteLine("Attributes: {0}",
 dir->Attributes);

 Console::WriteLine("Sub-Directories:");

Fraser_640-4C08.fm Page 283 Sunday, October 30, 2005 12:15 AM

284 C H A P T E R 8 ■ I N P U T , O U T P U T , A N D S E R I A L I Z A T I O N

 array<DirectoryInfo^>^ subDirs = dir->GetDirectories();
 if (subDirs->Length == 0)
 Console::WriteLine("\tNone.");
 else
 {
 for each (DirectoryInfo^ dinfo in subDirs)
 {
 Console::WriteLine("\t{0}", dinfo->Name);
 }
 }

 Console::WriteLine("Files:");

 array<FileInfo^>^ files = dir->GetFiles();
 if (files->Length == 0)
 Console::WriteLine("\tNone.");
 else
 {
 for each (FileInfo^ finfo in files)
 {
 Console::WriteLine("\t{0}", finfo->Name);
 }
 }

 return 0;
}

Figure 8-1 shows the results of the DirInfo.exe program.

Figure 8-1. Results of DirInfo.exe

Fraser_640-4C08.fm Page 284 Sunday, October 30, 2005 12:15 AM

C H A P T E R 8 ■ I N P U T , O U T P U T , A N D S E R I A L I Z A T I O N 285

File and FileInfo
Once you understand how to manage directories, it’s not a big leap to manage files. Most of the
properties and methods you use to manage files are identical to those you use to manage directories.
The big difference, obviously, is that the class names have changed to File and FileInfo. In addition,
there are a few additional file-specific methods added and a couple of directory-specific methods
removed. There are also several methods to open up files in different ways. You will learn more
about those a little later in the chapter.

Just like directories, having a constructor depends on whether you are using the static methods
of File or the instance member methods of FileInfo.

FileInfo ^fileinfo = gcnew FileInfo("C:\\WinNT\\Temp\\file.dat");

■Note You could also have coded the previous line as

FileInfo ^fileinfo = gcnew FileInfo("file.dat");

So long as the current directory is C:\WinNT\Temp. You can get and set the current directory with the
Directory class’s GetCurrentDirectory() and SetCurrentDirectory() methods.

Examining the details of a file while implementing the FileInfo class requires the use of the
inherited properties of the FileSystemInfo class. You will see very little difference between the file
methods and the directory methods. The File class’s static methods are also the same as the direc-
tory equivalent, but this time there is a static method to retrieve attributes (see Table 8-3). There is
an additional property to get the length of the file out of a FileInfo class but, oddly enough, there is
no static method in the File class.

// FileInfo implementation:
String^ Name = fileinfo->FullName;
DateTime Created = fileinfo->CreationTime;
DateTime Accessed = fileinfo->LastAccessTime;
DateTime Updated = fileinfo->LastWriteTime;
FileAttributes Attributes = fileinfo->Attributes;
Int64 Length = fileinfo->Length; // Physical, uncompressed, and
 // unclustered size

// File implementation
// No equivalent for file->FullName
DateTime Created = File::GetCreationTime("C:\\WinNT\\Temp\\file.dat");
DateTime Accessed = File::GetLastAccessTime("file.dat");
DateTime Updated = File::GetLastWriteTime("file.dat");
FileAttributes Attributes = File::GetAttributes("file.dat");
// No equivalent for file->Length;

Fraser_640-4C08.fm Page 285 Sunday, October 30, 2005 12:15 AM

286 C H A P T E R 8 ■ I N P U T , O U T P U T , A N D S E R I A L I Z A T I O N

Other than open files, which I cover next, the most likely activities you will do with files are
check whether a file exists, copy or move an existing file, or simply delete a file. You will find that the
methods closely resemble those of the directory.

// FileInfo implementation:
if (fileinfo->Exists) {}
fileinfo->CopyTo("C:\\WinNT\\Temp\\file.dat");
fileinfo->CopyTo("file.dat", true); // Overwrite existing
fileinfo->MoveTo("C:\\WinNT\\Temp\\file.dat"); // Target file can't exist
fileinfo->Delete(); // delete the file

// File implementation:
if (File::Exists("C:\\WinNT\\Temp\\file.dat")) {}
File::Copy("C:\\WinNT\\Temp\\file1.dat", "C:\\WinNT\\Temp\\file2.dat");
File::Copy("file1.dat", "file2.dat", true); //overwrite existing
File::Move("C:\\WinNT\\Temp\\file1.dat", "file2.dat");
File::Delete("file1.dat");

■Caution Even though the documentation sort of suggests otherwise, the destination of the Move() and
MoveTo() methods cannot be a directory. The destination must be a nonexistent filename or a complete path
including the filename.

Listing 8-2 shows the FileInfo class in action and demonstrates many of the functionalities
described previously.

Table 8-3. Common File Attributes

Attribute Description

Archive This attribute marks a file for archive or backup.

Directory The file is a directory.

Encrypted For a file, it means it is encrypted. For a directory, it means that all newly created
files in the directory will be encrypted.

Hidden The file is hidden from normal directory display.

Normal The file is normal and has no other attributes set. (Note: This attribute is only
valid if it is the only attribute set.)

ReadOnly The file is read-only.

System The file is part of the operating system.

Fraser_640-4C08.fm Page 286 Sunday, October 30, 2005 12:15 AM

C H A P T E R 8 ■ I N P U T , O U T P U T , A N D S E R I A L I Z A T I O N 287

Listing 8-2. Working with FileInfo

using namespace System;
using namespace System::IO;
using namespace System::Text;

int main(array<System::String ^> ^args)
{
 if (args->Length == 0)
 {
 Console::WriteLine("Usage: FileInfo <File>");
 return -1;
 }

 StringBuilder ^tmpfile = gcnew StringBuilder();

 for each (String^ s in args)
 {
 tmpfile->Append(s);
 tmpfile->Append(" ");
 }

 String ^strfile = tmpfile->ToString()->Trim();

 FileInfo ^fileinfo = gcnew FileInfo(strfile);

 if (!fileinfo->Exists)
 {
 Console::WriteLine("File Not Found");
 return -1;
 }

 Console::WriteLine("Name: {0}", fileinfo->FullName);

 Console::WriteLine("Created: {0} {1}",
 fileinfo->CreationTime.ToShortDateString(),
 fileinfo->CreationTime.ToLongTimeString());

 Console::WriteLine("Accessed: {0} {1}",
 fileinfo->LastAccessTime.ToShortDateString(),
 fileinfo->LastAccessTime.ToLongTimeString());

 Console::WriteLine("Updated: {0} {1}",
 fileinfo->LastWriteTime.ToShortDateString(),
 fileinfo->LastWriteTime.ToLongTimeString());

 Console::WriteLine("Length: {0}", fileinfo->Length);

 Console::WriteLine("Attributes: {0}", fileinfo->Attributes);

 return 0;
}

Fraser_640-4C08.fm Page 287 Sunday, October 30, 2005 12:15 AM

cafac74dd2d083cbec0906b66fcd56b1

288 C H A P T E R 8 ■ I N P U T , O U T P U T , A N D S E R I A L I Z A T I O N

Figure 8-2 shows the results of the FileInfo.exe program.

Figure 8-2. Results of FileInfo.exe

Opening Files
There is no shortage of ways that you can open a file using the .NET Framework class library. There
are 14 methods combined in the File and FileInfo class (see Table 8-4). Many of these methods
have numerous parameter combinations. Both File and FileInfo use the same 7 method names, and
each of the methods with the same name do the same thing. Though the methods have the same
name, the parameters passed differ, or at least the first parameter differs.

There always seems to be one exception. The File::Create() has an overloaded method that
has a buffer size parameter that the FileInfo class’s Create() method lacks.

You will see FileStream, StreamWriter, and StreamReader later in this chapter.
Of these 14 (7×2) methods, only 2 actually take any parameters (other than the name of the file

you wish to open for the static methods). Basically, the .NET Framework class library provides 2 equiva-
lent file open methods and 12 shortcuts.

Table 8-4. Opening a File Using the File and FileInfo Classes

Method Description

Open() Creates a FileStream to a file providing a plethora of read/write and share
privilege options

Create() Creates a FileStream providing full read and write privileges to a file

OpenRead() Creates a read-only FileStream to an existing file

OpenWrite() Creates a write-only unshared FileStream to a file

AppendText() Creates a StreamWriter that appends text to the end of an existing file

CreateText() Creates a StreamWriter that writes a new text file

OpenText() Creates a StreamReader that reads from an existing file

Fraser_640-4C08.fm Page 288 Sunday, October 30, 2005 12:15 AM

C H A P T E R 8 ■ I N P U T , O U T P U T , A N D S E R I A L I Z A T I O N 289

The Open Methods
There are only two root open methods in the .NET Framework class library: File::Open() and
FileInfo::Open(). These methods are virtually the same, except the File::Open() method has one
additional parameter: the path to the file you want to open. The FileInfo::Open() method gets this
information from its constructor.

The Open() method is made up of three overloaded methods. Each overload provides progres-
sively more information about how you want the file opened. The first overload takes as a parameter
the file mode with which you wish to open the file (see Table 8-5). Because the other two parameters
are not specified, the file will open by default with read/write access and as unshared.

FileInfo ^fileinfo = gcnew FileInfo("file.dat");
FileStream ^fs = fileinfo.Open(FileMode::Truncate);
// or
FileStream ^fs = File::Open("file.dat", FileMode::CreateNew);

The second overload takes the additional parameter of the file access you require the file to
have (see Table 8-6). The file will also be opened by default as unshared.

FileInfo ^fileinfo = gcnew FileInfo("file.dat");
FileStream ^fs = fileinfo->Open(FileMode::Truncate, FileAccess::ReadWrite);
// or
FileStream ^fs = File::Open("file.dat", FileMode::Append, FileAccess::Write);

Table 8-5. FileMode Enumeration Values

FileMode Description

Append Opens a file if it exists and sets the next write point to the end of the file. If the file
does not exist, it creates a new one. You can only use FileMode::Append with a
file access of write-only, as any attempt to read throws an ArgumentException.

Create Creates a new file. If the file already exists, it will be overwritten.

CreateNew Creates a new file. If the file already exists, an IOException is thrown.

Open Opens an existing file. If the file does not exist, a FileNotFoundException is thrown.

OpenOrCreate Opens an existing file. If the file does not exist, it creates a new file.

Truncate Opens an existing file and truncates it to a length of 0 bytes. If the file does not
exist, a FileNotFoundException is thrown.

Table 8-6. FileAccess Enumeration Values

FileAccess Description

Read Allows data only to be read from the file

ReadWrite Allows data to be read from and written to the file

Write Allows data only to be written to the file

Fraser_640-4C08.fm Page 289 Sunday, October 30, 2005 12:15 AM

290 C H A P T E R 8 ■ I N P U T , O U T P U T , A N D S E R I A L I Z A T I O N

The final overload has one more parameter. It specifies how the file is shared with others trying
to access it concurrently (see Table 8-7).

FileInfo ^fileinfo = gcnew FileInfo("file.dat");
FileStream ^fs = fileinfo->Open(FileMode::Truncate, FileAccess::ReadWrite,
 FileShare::Read);
// or
FileStream ^fs = File::Open("file.dat", FileMode::Append, FileAccess::Write,
 FileShare::None);

All those parameters make the file open process very configurable, but also a little tedious. This
is especially true if you just want to open the file in a very generic and standard way. The .NET
Framework class library provides you with a way to simplify file opening if the way you want to open
a file happens to fall in one of six standard open configurations.

FileInfo ^fileinfo = gcnew FileInfo("file.dat");
FileStream ^CreateFile = fileinfo.Create();
FileStream ^OpenReadFile = fileinfo.OpenRead();
FileStream ^OpenWriteFile = fileinfo.OpenWrite();
StreamWriter ^AppendTextFile = fileinfo.AppendText();
StreamWriter ^CreateTextFile = fileinfo.CreateText();
StreamReader ^OpenTextFile = fileinfo.OpenText();
// or
FileStream ^CreateFile = File::Create("file.dat");
FileStream ^OpenReadFile = File::OpenRead("file.dat");
FileStream ^OpenWriteFile = File::OpenWrite("file.dat");
StreamWriter ^AppendTextFile = File::AppendText("file.dat");
StreamWriter ^CreateTextFile = File::CreateText("file.dat");
StreamReader ^OpenTextFile = File::OpenText("file.dat");

Notice that none of the preceding file opening methods takes any parameters, except the file
path in the case of the static method of the File class. Personally, I think the names of the methods
make them pretty self-explanatory.

Table 8-7. FileShare Enumeration Values

FileShare Description

None Specifies exclusive access to the current file. Subsequent openings of the file by a
process, including the current one, will fail until the file closes.

Read Specifies that subsequent openings of the file by a process, including the current
one, will succeed only if it is for a FileMode of Read.

ReadWrite Specifies that subsequent openings of the file by a process, including the current
one, will succeed for either reading or writing.

Write Specifies that subsequent openings of the file by a process, including the current
one, will succeed only if it is for a FileMode of Write.

Fraser_640-4C08.fm Page 290 Sunday, October 30, 2005 12:15 AM

C H A P T E R 8 ■ I N P U T , O U T P U T , A N D S E R I A L I Z A T I O N 291

I/O Manipulation
Okay, you now have a file open and it is time to actually do something with it. Oops, did I say “file”?
Files are only one thing that you can do I/O manipulation with. You can also do I/O manipulation in
and out of memory using the MemoryStream and BufferedStream classes and in and out of network
sockets using NetworkStream. You will look at the MemoryStream class a little later to see how it differs
from a FileStream.

There are several different means to accomplish I/O manipulation. You will examine the three
most common: using Streams, using TextReaders and TextWriters, and using BinaryReaders and
BinaryWriters. Figure 8-3 shows the class hierarchy for manipulating files.

Figure 8-3. The class hierarchy for I/O manipulation

Using Streams
In the computer world, streams are a method of transferring a sequential stream of data to and from
one source to another in either a synchronous or asynchronous manner. The .NET Framework class
library sends this data as a stream of bytes. A stream can also transfer these blocks of data starting
from any location in one source to any location in another source.

What does this mean to you? Basically, you can read data, write data, and adjust the current
location where you access the data. Not much to it, is there?

All stream-based I/O in the .NET Framework class library derives from the abstract base class
Stream. The Stream class contains several virtual methods, which the inheriting class must define
(see Table 8-8). Basically, these virtual methods define core Stream functionality and thus ensure
that the inheriting class satisfies the definition of a stream as stated previously.

Fraser_640-4C08.fm Page 291 Sunday, October 30, 2005 12:15 AM

292 C H A P T E R 8 ■ I N P U T , O U T P U T , A N D S E R I A L I Z A T I O N

You will see some of these properties and methods implemented in the following stream
implementations.

FileStreams

One of the most common implementations of a Stream is the FileStream class. This class provides
implementations for the abstract Stream class so that it can perform file-based streaming. Or, in
other words, it allows you to read from and write to a file.

You have already seen several ways to open a FileStream. It is also possible to open a FileStream
directly without using File or FileInfo. To do this, you use one of the FileStream’s many constructors.
The most common parameters passed to the constructor are identical to those passed to the static
File::Open() method.

FileStream ^fs = gcnew FileStream("file.dat", FileMode::CreateNew);
FileStream ^fs = gcnew FileStream("file.dat", FileMode::Append,
 FileAccess::Write);
FileStream ^fs = gcnew FileStream("file.dat", FileMode::Create,
 FileAccess::Write, FileShare::None);

Once you finally have the FileStream open, you can start to read and/or write Bytes of data from
or to it. As you saw from the virtual methods defined by the Stream class in Table 8-8, there are two
ways of reading and writing to a stream. You can do it either by individual unsigned chars or by
arrays of unsigned chars.

Table 8-8. The Virtual Methods and Properties of the Stream Class

Member Description

CanRead A Boolean value specifying whether reading is supported.

CanSeek A Boolean value specifying whether seeking is supported.

CanWrite A Boolean value specifying whether writing is supported.

Close() A method that closes the file and releases resources associated with the stream.

Flush() This method moves the data from the source buffer to its destination source
and then clears the buffer. If the stream does not support a buffer, this method
does nothing.

Length The length of the stream in bytes.

Position If seeking is supported, then this property can be used to get or set the position
in the stream.

Read() Reads a specified number of bytes from the stream and then advances the position
after the last read byte.

ReadByte() Reads a single byte from the stream and then advances the position after the byte.

Seek() If seeking is supported, then this method can be used to set the position in
the stream.

SetLength() Sets the length of the stream in bytes.

Write() Writes a specified number of bytes to the stream and then advances the position
after the last written byte.

WriteByte() Writes one byte to the stream and then advances the position after the byte.

Fraser_640-4C08.fm Page 292 Sunday, October 30, 2005 12:15 AM

C H A P T E R 8 ■ I N P U T , O U T P U T , A N D S E R I A L I Z A T I O N 293

array<unsigned char>^ data = { 'A', 'p', 'p', 'l', 'e' };
fso->Write(data, 0, 4);
fso->WriteByte(data[4]);

array<unsigned char>^ ca = gcnew array<unsigned char>(5);
ca[0] = fsi->ReadByte();
fsi->Read(ca, 1, 4);

Simply placing the location in the Position property sets the location of the next place to read
from or write to the file.

fsi->Position = 0;

You can also set the location of the next read or write by the Seek() method. This method allows
you to use offsets from the beginning of the file (same as the Position property), the current location,
or the end of the file.

fsi->Seek(0, SeekOrigin::Begin);

If you desire further access but want the data available in the file (for another operation or just
for safety), flush the file buffer.

fso->Flush();

You should always close your files after you are done with them.

fso->Close();

Listing 8-3 shows the FileStream class in action and demonstrates many of the functionalities
described previously.

Listing 8-3. Working with a FileStream

using namespace System;
using namespace System::IO;

void main()
{
 FileStream ^fso = gcnew FileStream("file.dat", FileMode::Create,
 FileAccess::Write, FileShare::None);

 array<unsigned char>^ data = gcnew array<unsigned char> { 'T', 'h', 'i',
 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e',
 's', 't', '!', '\r', '\n', 'T', 'h', 'i', 's',
 ' ', 'i', 's', ' ', 'o', 'n', 'l', 'y', ' ',
 'a', ' ', 't', 'e', 's', 't', '.','\r', '\n' };

 for (int i = 0; i < data->Length-5; i += 5)
 {
 fso->Write(data, i, 5);
 }

 for (int i = data->Length -4; i < data->Length; i++)
 {
 fso->WriteByte(data[i]);
 }

Fraser_640-4C08.fm Page 293 Sunday, October 30, 2005 12:15 AM

294 C H A P T E R 8 ■ I N P U T , O U T P U T , A N D S E R I A L I Z A T I O N

 fso->Close();

 FileInfo ^fi = gcnew FileInfo("file.dat");
 FileStream ^fsi = fi->OpenRead();

 int b;
 while ((b = fsi->ReadByte()) != -1)
 {
 Console::Write((Char)b);
 }

 fsi->Position = 0;

 array<unsigned char>^ ca = gcnew array<unsigned char>(17);
 fsi->Read(ca, 0, 17);
 for (int i = 0; i < ca->Length; i++)
 {
 Console::Write((Char)ca[i]);
 }

 Console::WriteLine();

 fsi->Close();

 fi->Delete(); // If you want to get rid of it
}

Figure 8-4 shows the file output generated by the FileStream.exe program.

Figure 8-4. File output of FileStream.exe

MemoryStreams

Programming with a MemoryStream is not much different from working with a FileStream. Obviously,
what’s happening behind the scenes, on the other hand, is completely different. You’re no longer
dealing with files; instead, you’re dealing with computer memory.

There are only a few differences from a coding perspective when you deal with a MemoryStream.
Obviously, the constructor is different.

MemoryStream ^fs = gcnew MemoryStream();

A MemoryStream has an additional property and a couple of unique methods (see Table 8-9).

Fraser_640-4C08.fm Page 294 Sunday, October 30, 2005 12:15 AM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 8 ■ I N P U T , O U T P U T , A N D S E R I A L I Z A T I O N 295

Listing 8-4 shows the MemoryStream class in action and demonstrates many of the functionalities
described previously.

Listing 8-4. Working with a MemoryStream

using namespace System;
using namespace System::IO;

void main()
{
 array<unsigned char>^ data = gcnew array<unsigned char> { 'T', 'h', 'i',
 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't',
 '!', '\r', '\n', 'T', 'h', 'i', 's', ' ', 'i', 's', ' ',
 'o', 'n', 'l', 'y', ' ', 'a', ' ', 't', 'e', 's', 't',
 '.','\r', '\n' };

 MemoryStream ^ms = gcnew MemoryStream();
 ms->Capacity = 40;

 for (int i = 0; i < data->Length-5; i += 5)
 {
 ms->Write(data, i, 5);
 }

 for (int i = data->Length -4; i < data->Length; i++)
 {
 ms->WriteByte(data[i]);
 }

 array<unsigned char>^ ca = ms->GetBuffer();
 for each (unsigned char c in ca)
 {
 Console::Write((Char)c);
 }
 Console::WriteLine();

 FileStream ^fs = File::OpenWrite("file.dat");

 ms->WriteTo(fs);

 fs->Close();
 ms->Close();
}

Table 8-9. Additional MemoryStream Property and Methods

Member Description

Capacity This property gets or sets the number of bytes allocated to the stream.

GetBuffer() This method returns an unsigned array of bytes that the stream created.

WriteTo() This method writes the contents of the MemoryStream to another stream, which
comes in handy if you want to write the stream out to a FileStream.

Fraser_640-4C08.fm Page 295 Sunday, October 30, 2005 12:15 AM

296 C H A P T E R 8 ■ I N P U T , O U T P U T , A N D S E R I A L I Z A T I O N

Figure 8-5 shows a display of the buffer contained within the MemoryStream. Figure 8-6 shows
the results displayed to the console. Figure 8-7 shows the resulting file output generated by the
MemoryStream.exe program. Notice that Figures 8-5 through 8-7 all have the same results, as expected.

Figure 8-5. Display of the buffer of the MemoryStream created by MemoryStream.exe

Fraser_640-4C08.fm Page 296 Sunday, October 30, 2005 12:15 AM

C H A P T E R 8 ■ I N P U T , O U T P U T , A N D S E R I A L I Z A T I O N 297

Figure 8-6. Console results of MemoryStream.exe

Figure 8-7. File output of MemoryStream.exe

Using StreamReaders and StreamWriters
A drawback when using a FileStream is that it isn’t very String- or character-friendly. Because what
you often want to store are Strings and characters, it only makes sense that methods be made to
optimize and simplify the process of writing these to a stream. This is where the StreamReader and
StreamWriter classes become helpful.

Just like the Stream class, the abstract StreamReader and StreamWriter classes define all the
functionality that needs to be implemented to support String and character reading and writing
(see Tables 8-10 and 8-11).

Table 8-10. Common StreamReader Members

Method Description

Close() Closes the file and releases any resources

Peek() Reads the next character without advancing the stream pointer

Read() Reads data from the input stream

ReadBlock() Reads a specified number of characters from the stream to a specified starting
location in an input buffer

ReadLine() Reads a line of data from the input stream and returns it as a String

ReadToEnd() Reads the rest of the data from the current file location to the end and returns it
as a single String

Fraser_640-4C08.fm Page 297 Sunday, October 30, 2005 12:15 AM

298 C H A P T E R 8 ■ I N P U T , O U T P U T , A N D S E R I A L I Z A T I O N

There are many ways to create a StreamReader and a StreamWriter. You can start from the File
or FileInfo class and create one directly from its methods. It is also possible to build one from a
FileStream, again using the File or FileInfo class or with the FileStream constructor.

StreamReader ^sr1 = File::OpenText("file.dat");
StreamWriter ^sw1 = fileinfo->CreateText("file.dat");

StreamReader ^sr2 = gcnew StreamReader(File::Open("file.dat",
 FileMode::Open, FileAccess::Read, FileShare::None));
StreamWriter ^sw2 = gcnew StreamWriter(gcnew FileStream("file.dat",
 FileMode::Create, FileAccess::Write, FileShare::None));

Writing to the StreamWriter, after you have created it, is no different than writing to the console.
You should be very familiar with the Write() and WriteLine() methods. Reading is a little trickier, as
you can read one character, an array of characters, or the rest of the characters in the stream. In most
cases, you will most likely be using the StreamReader methods ReadLine() and ReadToEnd(). The first
reads a single line of text, while the second reads all the text remaining on the stream. Both return
their results as a String.

String ^in1 = sr->ReadLine();
String ^in2 = sr->ReadToEnd();

Listing 8-5 shows the StreamWriter and StreamReader classes in action and demonstrates many
of the functionalities described previously. It also resembles the previous examples but, as you can
see, the code is much simpler.

Listing 8-5. Working with a StreamWriter and a StreamReader

using namespace System;
using namespace System::IO;

void main()
{
 array<String^>^ data = gcnew array<String^> {
 "This is ", "a test!", "This is only a test." };

 StreamWriter ^sw = gcnew StreamWriter(gcnew FileStream("file.dat",
 FileMode::Create, FileAccess::Write, FileShare::None));

 for (int i = 0; i < data->Length-1; i++)
 {
 sw->Write(data[i]);
 }

Table 8-11. Common StreamWriter Members

Method Description

Close() Closes the file and releases any resources

Flush() Forces the writing of the current buffer and then clears it

Write() Writes the specified String to the output stream

WriteLine() Writes the specified String to the output stream, then writes the NewLine String

Fraser_640-4C08.fm Page 298 Sunday, October 30, 2005 12:15 AM

C H A P T E R 8 ■ I N P U T , O U T P U T , A N D S E R I A L I Z A T I O N 299

 sw->WriteLine();

 sw->WriteLine(data[2]);

 sw->Close();

 StreamReader ^sr = File::OpenText("file.dat");

 String^ in = sr->ReadLine();
 Console::WriteLine(in);

 Console::WriteLine(sr->ReadToEnd());

 sw->Close();
}

Figure 8-8 shows the results of StreamRW.exe displayed to the console. Figure 8-9 shows the
resulting file output generated by the StreamRW.exe program. Notice that Figures 8-8 and 8-9 have
the same results, as expected.

Figure 8-8. Console results of StreamRW.exe

Figure 8-9. File output of StreamRW.exe

Using BinaryReader and BinaryWriter
You have looked at I/O for Bytes and Strings. What if you want to store all the other data types, such
as Booleans, integers, and floating points? This is where the BinaryReader and BinaryWriter come
into play. These classes were designed specifically to handle all the .NET Framework’s built-in data
types (including Byte and String).

To create a BinaryReader or BinaryWriter class, you need to use its constructor and pass it a
Stream. This means, by the way, that BinaryReaders and BinaryWriters can take as a parameter a
FileStream, MemoryStream, NetworkStream, and so on.

FileStream ^fs = File::OpenRead(fname);
BinaryReader ^br = gcnew BinaryReader(fs);

MemoryStream ^ms = gcnew MemoryStream();
BinaryWriter ^br = gcnew BinaryWriter(ms);

Fraser_640-4C08.fm Page 299 Sunday, October 30, 2005 12:15 AM

300 C H A P T E R 8 ■ I N P U T , O U T P U T , A N D S E R I A L I Z A T I O N

The process of writing with the BinaryWriter is very simple. After you create your BinaryWriter,
you only need to use two more methods, Write() and Close(). The Write() method takes care of all
the hard work by being made up of numerous overloaded versions of itself (one for each supported
data type).

The BinaryReader class is a little harder to work with. This time, you need to work with many
different read methods (one for each supported type). They all have the same syntax: Readxxx(),
where xxx is the data type. Examples of read methods are ReadInt32(), ReadBoolean(), and ReadSingle().

A drawback of the BinaryReader is that you need to know the data type you are reading in before
you actually do the read, so that you can make the correct call.

Listing 8-6 shows the BinaryWriter and BinaryReader classes in action and demonstrates many
of the functionalities described previously. You might want to notice the special coding you need to
do to handle DateTime classes.

Listing 8-6. Working with a BinaryWriter and a BinaryReader

using namespace System;
using namespace System::IO;
using namespace System::Runtime::Serialization::Formatters::Binary;

// ------ Player class ---

ref class Player
{
 String ^Name;
 Int32 Strength;
 Boolean IsMale;
 DateTime CreateDate;

public:
 Player();
 Player (String ^Name, int Str, bool IsMale);

 void Print();
 void Save(String ^fname);
 void Load(String ^fname);
};

Player::Player()
{
}

Player::Player (String ^Name, int Str, bool IsMale)
{
 this->Name = Name;
 this->Strength = Str;
 this->IsMale = IsMale;
 this->CreateDate = DateTime::Now;
}

Fraser_640-4C08.fm Page 300 Sunday, October 30, 2005 12:15 AM

C H A P T E R 8 ■ I N P U T , O U T P U T , A N D S E R I A L I Z A T I O N 301

void Player::Print()
{
 Console::WriteLine("Name: {0} ({1})", Name, (IsMale ? "M" : "F"));
 Console::WriteLine("Str: {0}", Strength);
 Console::WriteLine("Date: {0}", CreateDate.ToString());
}

void Player::Save(String ^fname)
{
 FileStream ^fs = File::OpenWrite(fname);
 BinaryWriter ^bw = gcnew BinaryWriter(fs);

 bw->Write(Name);
 bw->Write(Strength);
 bw->Write(IsMale);

 // Due to multicultures this is a safe way of storing DateTimes
 bw->Write(CreateDate.Ticks);

 bw->Close();
 fs->Close();
}

void Player::Load(String ^fname)
{
 FileStream ^fs = File::OpenRead(fname);
 BinaryReader ^br = gcnew BinaryReader(fs);

 Name = br->ReadString();
 Strength = br->ReadInt32();
 IsMale = br->ReadBoolean();

 // Due to multicultures this is a safe way of retrieving DateTimes
 CreateDate = DateTime(br->ReadInt64());

 br->Close();
 fs->Close();
}

// ------- Main Function ---

void main()
{
 Player ^Joe = gcnew Player("Joe", 10, true);
 Joe->Save("Player.dat");

 Console::WriteLine("Original Joe");
 Joe->Print();

 Player ^JoeClone = gcnew Player();
 JoeClone->Load("Player.dat");

 Console::WriteLine("\nCloned Joe");
 JoeClone->Print();
}

Fraser_640-4C08.fm Page 301 Sunday, October 30, 2005 12:15 AM

cafac74dd2d083cbec0906b66fcd56b1

302 C H A P T E R 8 ■ I N P U T , O U T P U T , A N D S E R I A L I Z A T I O N

Figure 8-10 shows the results of BinaryRW.exe displayed to the console. Figure 8-11 shows the
resulting file output generated by the BinaryRW.exe program. Notice that Figure 8-11 is pretty unread-
able unless you know the format in which it was stored. The fact that Figure 8-10 and Figure 8-11
represent the same data is not obvious.

Figure 8-10. Console results of BinaryRW.exe

Figure 8-11. File output of BinaryRW.exe

Serialization of Managed Objects
The BinaryReader and BinaryWriter classes are okay when it comes to storing small classes to disk
and retrieving them later, as you saw in the last section. But classes can become quite complicated.
What happens when your class has numerous member variables and/or linked objects? How do you
figure out which data type belongs with which class? In what order were they saved? It can become
quite a mess very quickly. Wouldn’t it be nice if you didn’t have to worry about the details and could
just say, “Here’s the file I want the class saved to. Now, save it.” I’m sure you know where I’m going
with this; this is the job of serialization.

Serialization is the process of storing the state of an object or member to a permanent medium,
most probably to disk for later retrieval or to be transported over the network for some remote
process to use, but there are many other uses for serialization. Deserialization is the process of
restoring an object or member from disk, network, or wherever you serialized it to. Sounds tough,
but the .NET Framework class library actually makes it quite simple to do.

Setting Up Classes for Serialization
The process of setting a class up for serialization is probably one of the easiest things that you can do
in C++/CLI. You simply place the [Serializable] attribute in front of the managed object you want
to serialize. Yep, that is it!

[Serializable]
ref class ClassName
{
//...
};

Fraser_640-4C08.fm Page 302 Sunday, October 30, 2005 12:15 AM

C H A P T E R 8 ■ I N P U T , O U T P U T , A N D S E R I A L I Z A T I O N 303

The reason this is possible is because all the class’s information is stored in its metadata. This
metadata is so detailed that all the information regarding serializing and deserializing the class is
available at runtime for the CLR to process the serialization or deserialization request.

Listing 8-7 shows the entire process of setting up the Player class for serialization. To make
things interesting, I split PlayerAttr off into its own class. As you will see, even the serialization of a
linked object like this only requires placing the [Serializable] attribute in front of it.

Listing 8-7. Making a Class Ready for Serialization

// --------- Player Attribute class ------------------------------------

[Serializable]
ref class PlayerAttr
{
public:
 property int Strength;
 property int Dexterity;
 property int Constitution;
 property int Intelligence;
 property int Wisdom;
 property int Charisma;

 PlayerAttr(int Str, int Dex, int Con, int Int, int Wis, int Cha);
 void Print();
};

PlayerAttr::PlayerAttr(int Str, int Dex, int Con, int Int, int Wis, int Cha)
{
 this->Strength = Str;
 this->Dexterity = Dex;
 this->Constitution = Con;
 this->Intelligence = Int;
 this->Wisdom = Wis;
 this->Charisma = Cha;
}

void PlayerAttr::Print()
{
 Console::WriteLine("Str: {0}, Dex: {1}, Con {2}",
 Strength, Dexterity, Constitution);
 Console::WriteLine("Int: {0}, Wis: {1}, Cha {2}",
 Intelligence, Wisdom, Charisma);
}

// -------- Player class ---------------------------------------

[Serializable]
ref class Player
{
public:
 property String ^Name;
 property String ^Race;
 property String ^Class;
 property PlayerAttr ^pattr;

Fraser_640-4C08.fm Page 303 Sunday, October 30, 2005 12:15 AM

304 C H A P T E R 8 ■ I N P U T , O U T P U T , A N D S E R I A L I Z A T I O N

 Player (String ^Name, String ^Race, String ^Class,
 int Str, int Dex, int Con, int Int, int Wis, int Cha);
 void Print();
};

Player::Player (String ^Name, String ^Race, String ^Class,
 int Str, int Dex, int Con, int Int, int Wis, int Cha)
{
 this->Name = Name;
 this->Race = Race;
 this->Class = Class;
 this->pattr = gcnew PlayerAttr(Str, Dex, Con, Int, Wis, Cha);
}

void Player::Print()
{
 Console::WriteLine("Name: {0}", Name);
 Console::WriteLine("Race: {0}", Race);
 Console::WriteLine("Class: {0}", Class);
 pattr->Print();
}

If you can’t tell, I play Dungeons and Dragons (D&D). These classes are a very simplified player
character. Of course, you would probably want to use enums and check minimums and maximums
and so forth, but I didn’t want to get too complicated.

BinaryFormatter vs. SoapFormatter
Before you actually serialize a class, you have to make a choice. In what format do you want to store
the serialized data? Right now, the .NET Framework class library supplies you with two choices. You
can store the serialized class data in a binary format or in an XML format or, more specifically, in a
Simple Object Access Protocol (SOAP) format.

The choice is up to you. Binary is more compact, faster, and works well with the CLR. SOAP, on
the other hand, is a self-describing readable text format that can be used with a system that doesn’t
support the CLR. Which formatter type you should use depends on how you plan to use the serial-
ized data.

It is also possible to create your own formatter. This book does not cover how to do this, because
this book is about .NET, and the main reason that you might want to create your own formatter is if
you are interfacing with a non-CLR (non-.NET) system that has its own serialization format. You
should check the .NET Framework documentation for details on how to do this.

Serialization Using BinaryFormatter
As I hinted at previously, the process of serializing a class is remarkably easy. First off, all the code to
handle serialization is found in the mscorlib.dll assembly. This means you don’t have to worry about
loading any special assemblies. The hardest thing about serialization is that you have to remember
that the BinaryFormatter is located in the namespace System::Runtime::Serialization::
Formatters::Binary. You have the option of using the fully qualified version of the formatter every
time, but I prefer to add a using statement and save my fingers for typing more important code.

using namespace System::Runtime::Serialization::Formatters::Binary;

Fraser_640-4C08.fm Page 304 Sunday, October 30, 2005 12:15 AM

C H A P T E R 8 ■ I N P U T , O U T P U T , A N D S E R I A L I Z A T I O N 305

The simplest constructor for the BinaryFormatter is just the standard default, which takes no
parameters.

BinaryFormatter ^bf = gcnew BinaryFormatter();

To actually serialize a class, you need to call the BinaryFormatter’s Serialize() method. This
method takes a Stream and a class handle. Make sure you open the Stream for writing. You also need
to truncate the Stream or create a new copy each time. And don’t forget to close the Stream when
you’re done.

BinaryFormatter ^bf = gcnew BinaryFormatter();

FileStream ^plStream = File::Create("Player.dat");
bf->Serialize(plStream, Joe);
plStream->Close();

The process of deserializing is only slightly more complicated. This time, you need to use the
deserialize() method. This method only takes one parameter, a handle to a Stream open for reading.
Again, don’t forget to close the Stream after you’re finished with it. The tricky part of deserialization
is that the deserialize() method returns a generic Object class. Therefore, you need to typecast it to
the class of the original serialized class.

plStream = File::OpenRead("Player.dat");
Player ^JoeClone = (Player^)(bf->Deserialize(plStream));
plStream->Close();

Listing 8-8 shows the entire process of serializing and deserializing the Player class.

Listing 8-8. Serializing and Deserializing the Player Class

using namespace System;
using namespace System::IO;
using namespace System::Runtime::Serialization::Formatters::Binary;

void main()
{
 Player ^Joe =
 gcnew Player("Joe", "Human", "Thief", 10, 18, 9, 13,10, 11);

 Console::WriteLine("Original Joe");
 Joe->Print();

 FileStream ^plStream = File::Create("Player.dat");

 BinaryFormatter ^bf = gcnew BinaryFormatter();
 bf->Serialize(plStream, Joe);
 plStream->Close();

 plStream = File::OpenRead("Player.dat");

 Player ^JoeClone = (Player^)bf->Deserialize(plStream);
 plStream->Close();

 Console::WriteLine("\nCloned Joe");
 JoeClone->Print();
}

Fraser_640-4C08.fm Page 305 Sunday, October 30, 2005 12:15 AM

306 C H A P T E R 8 ■ I N P U T , O U T P U T , A N D S E R I A L I Z A T I O N

Figure 8-12 shows the results of BinFormSerial.exe displayed to the console. Figure 8-13 shows
the resulting binary-formatted serialization output file generated.

Figure 8-12. Console results of BinFormSerial.exe

Figure 8-13. Binary-formatted file output of the serialization of the Player class

Serialization Using SoapFormatter
There is very little difference in the code required to serialize using the SoapFormatter when compared
with the BinaryFormatter. One obvious difference is that you use the SoapFormatter object instead of
a BinaryFormatter object. There is also one other major difference, but you have to be paying attention
to notice it, at least until you finally try to compile the serializing application. The SoapFormatter is

Fraser_640-4C08.fm Page 306 Sunday, October 30, 2005 12:15 AM

C H A P T E R 8 ■ I N P U T , O U T P U T , A N D S E R I A L I Z A T I O N 307

not part of the mscorlib.dll assembly. To use the SoapFormatter, you need to reference the .NET
assembly system.runtime.serialization.formatters.soap.dll. You will also find the SoapFormatter
class in the namespace System::Runtime::Serialization::Formatters::Soap, which also differs
from the BinaryFormatter.

#using <system.runtime.serialization.formatters.soap.dll>
using namespace System::Runtime::Serialization::Formatters::Soap;

The biggest difference is one that doesn’t occur in the code. Instead, it’s the serialized file gener-
ated. BinaryFormatted serialization files are in an unreadable binary format, whereas SoapFormatted
serialization files are in a readable XML text format.

Listing 8-9 shows the entire process of serializing and deserializing the Player class using the
SoapFormatter. Notice that the only differences between SOAP and binary are the #using and using
statements and the use of SoapFormatter instead of BinaryFormatter.

Listing 8-9. Serializing and Deserializing the Player Class Using SoapFormatter

#using <system.runtime.serialization.formatters.soap.dll>

using namespace System;
using namespace System::IO;
using namespace System::Runtime::Serialization::Formatters::Soap;

int main(void)
{
 Player ^Joe = gcnew Player("Joe", "Human", "Thief", 10, 18, 9, 13,10, 11);

 Console::WriteLine("Original Joe");
 Joe->Print();

 FileStream ^plStream = File::Create("Player.xml");

 SoapFormatter ^sf = gcnew SoapFormatter();
 sf->Serialize(plStream, Joe);
 plStream->Close();

 plStream = File::OpenRead("Player.xml");

 Player ^JoeClone = (Player^)sf->Deserialize(plStream);
 plStream->Close();

 Console::WriteLine("\nCloned Joe");
 JoeClone->Print();
}

Figure 8-14 shows the resulting SOAP-formatted serialization output file generated by
SoapFormSerial.exe.

Fraser_640-4C08.fm Page 307 Sunday, October 30, 2005 12:15 AM

308 C H A P T E R 8 ■ I N P U T , O U T P U T , A N D S E R I A L I Z A T I O N

Figure 8-14. SOAP-formatted file output of the serialization of the Player class

Summary
In this chapter, you explored a major component of software development: I/O. You started by
looking at how the .NET Framework class library provides an object-style approach to the Windows
file system, covering files and directories. You then moved on to look at how to open files for I/O
manipulation. Next, you learned how to perform many different methods of reading, writing, and
seeking to not only files, but also memory streams. You finished by looking at a specialized I/O
system known as serialization.

Though none of the concepts in this chapter should be new to anyone who has worked with
file I/O before, how it is done with the .NET Framework class library is new. And, as you should
suspect, I/O manipulation can be accomplished in many different ways.

In the next chapter, you will move away from the humdrum of the console and start playing
with one of Windows’s claims to fame: the graphical user interface (GUI).

Fraser_640-4C08.fm Page 308 Sunday, October 30, 2005 12:15 AM

cafac74dd2d083cbec0906b66fcd56b1

309

■ ■ ■

C H A P T E R 9

Basic Windows Forms Applications

Console applications are fine for quick utilities and testing functionality, but Windows applica-
tions really shine when they present a graphical user interface (GUI) to the world. With the release
of Visual Studio 2005, Microsoft is continuing to extend its “easy-to-build” initiative for C++/CLI
windows applications. It is effortless to drag and drop your complete user interface using the built-
in design tool provided by Visual Studio 2005. Adding event handling to these GUI components is a
breeze as well—all it requires is a double-click at design time on the component.

The available GUI options in the .NET Framework are quite staggering, and no one chapter can
do them justice. As this is the case, I have broken up the topic into two parts. In this chapter I cover
the more basic areas of .NET Framework Windows GUI development, better known as Windows
Forms (or Win Forms). On completing this chapter, you should have a firm background on how to
develop (albeit bland) Win Forms on your own. You will have to wait for the next chapter to learn
more of the bells and whistles.

In this chapter you will learn how to use the design tool, but that is not the only focus of the
chapter. You will also learn how to build your Win Forms without the design tool. The reason I cover
both approaches is that I feel the intimate knowledge of the Win Form components that you gain by
manual development will allow you to build better interfaces. Once you know both methods, you
can combine the two to create the optimal interface to your Windows application.

Win Forms Are Not MFC
The first thing you need to know about Win Forms is that they are not an upgrade, enhancement,
new version, or anything else of the Microsoft Foundation Classes (MFC). They are a brand-new,
truly object-oriented Windows GUI implementation. A few classes have the same names and
support the same functionalities, but that is where the similarities end.

Win Forms have a much stronger resemblance to Visual Basic’s (pre-.NET) forms from an
implementation standpoint. In fact, Microsoft has taken the Visual Basic GUI development model of
forms, controls, and properties and created a language-neutral equivalent for the .NET Framework.

When you create Windows applications with the .NET Framework, you will be working with
Win Forms. It is possible to still use MFC within Visual Studio 2005; in fact the line between MFC and
Win Forms is becoming quite blurry as you are now able to work with components of both with a
single Windows GUI application. However, once you have worked with Win Forms for a while, you
will see that it is a much easier-to-code, cleaner, more object-oriented, and more complete imple-
mentation of the Windows GUI. More than likely you will start to phase out your MFC development
altogether.

This book will completely ignore MFC and focus entirely on Win Forms.

Fraser_640-4C09.fm Page 309 Monday, November 14, 2005 11:41 AM

310 C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S

“Hello World!” Win Form Style
Okay, you did the obligatory “Hello World!” for a console application, so now you’ll do it again for a
Win Form application. The first thing you need to do is create a project using the Windows Forms
Application (.NET) template, exactly as you did for the console application (see Figure 9-1).

Figure 9-1. Creating a Win Form “Hello World!” application project

Once the project template is finished being built, you have a complete Windows application.
Okay, on to the next chapter . . . Just kidding!

The process of building the “Hello World!” application involves the following steps:

1. Expand the GUI Toolbox view.

2. Click the required GUI component in the Toolbox view.

3. Drag the component to the design form.

4. Change the component’s properties in the Properties view.

5. Double-click the component to create the event handler for the component. This will bring
up the IDE editor.

6. Enter the code in the IDE editor to handle the event for the component.

This is very straightforward. If this level of simplicity gives you the willies, as it did me, be
comforted by the fact that you can go in and code everything by hand if you want. After a while, you
will come to realize that you do not have to code much in the way of the GUI interface manually.

So what code is provided? Listing 9-1 shows Hello.cpp. It doesn’t look as if much is going on, but
looks can be deceiving.

Fraser_640-4C09.fm Page 310 Monday, November 14, 2005 11:41 AM

C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S 311

Listing 9-1. The Default Hello.cpp

// Hello.cpp : main project file.

#include "stdafx.h"
#include "Form1.h"

using namespace Hello;

[STAThreadAttribute]
int main(array<System::String ^> ^args)
{
 // Enabling Windows XP visual effects before any controls are created
 Application::EnableVisualStyles();
 Application::SetCompatibleTextRenderingDefault(false);

 // Create the main window and run it
 Application::Run(gcnew Form1());
 return 0;
}

The first thing you notice is that the wizard includes the stdafx.h header file. Within the header
file is nothing but a #pragma once directive. This handy file, which has been preconfigured to be
precompiled, can be used in the future when you need to include common header (.h) files across all
your source (.cpp) files.

Make sure you keep the #include "Form1.h" line, which, as you’ll see, contains the definition of
the form.

The next thing the code does is add metadata, using [STAThreadAttribute], which will let the
Win Form know to use single-threaded apartment (STA), if needed. If you don’t know what an apart-
ment state is, don’t worry about it—it’s a process threading thing for COM, and this book doesn’t
look at COM until Chapter 21. The .NET Framework normally doesn’t use apartment threads, but
just to be safe, the apartment state is set to a single-threaded apartment in case a COM object is
wrapped and used later in the application.

Next, the template sets up the default look and feel for the Win Form application by adding the
Application::EnableVisualStyles() method to give the application an Windows XP look. You can
do what you like with this method; I normally just leave it.

The template then adds the SetCompatibleTextRenderingDefault() method, which you use to
specify backward compatibility on rendering of text with .NET 1.1. When this method is passed a
value of true, text rendering is compatible with .NET 1.1; when passed a value of false, this method
provides richer GDI rendering capabilities that are not backward compatible. You can leave this set
to false unless you are using rendering methods from .NET 1.1 assemblies and you find that things
don’t render as expected.

Finally, the program uses the Application::Run() method to start up Form1. As you will see, the
Application class is a fairly powerful class containing several static methods and properties to
manage an application. The most common tasks you will use it for are starting and stopping your
applications, processing Windows messages, and processing the previously noted template defaulted
EnableVisualStyles() and SetCompatibleTextRenderingDefault() static methods. You may also
find it useful for getting information about an application via its properties.

Not much there, was there? Okay, maybe all the magic is in the Form1.h file (see Listing 9-2). To
access the source code of Form1.h, you need to right-click Form1.h within Solution Explorer (or
within the form designer window) and select View Code.

Fraser_640-4C09.fm Page 311 Monday, November 14, 2005 11:41 AM

312 C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S

Notice that the template makes extensive use of inline coding. My guess is that the Microsoft
development team stole a lot of GUI design code from the C# version and doing it this way simplified
development. (Also, I had to slightly change the Form1 class <Summary> comment to fit the dimensions
of the book.)

Listing 9-2. The Default Form1.h

#pragma once

namespace Hello
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;

 /// <summary>
 /// Summary for Form1
 ///
 /// WARNING: If you change the name of this class, you will need to change
 /// the 'Resource File Name' property for the managed resource
 /// compiler tool associated with all .resx files this class
 /// depends on. Otherwise, the designers will not be able to
 /// interact properly with localized resources associated with
 /// this form.
 /// </summary>
 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();
 //
 //TODO: Add the constructor code here
 //
 }

 protected:
 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }

Fraser_640-4C09.fm Page 312 Monday, November 14, 2005 11:41 AM

C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S 313

 private:
 /// <summary>
 /// Required designer variable.
 /// </summary>
 System::ComponentModel::Container ^components;

#pragma region Windows Form Designer generated code
 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 void InitializeComponent(void)
 {
 this->components = gcnew System::ComponentModel::Container();
 this->Size = System::Drawing::Size(300,300);
 this->Text = L"Form1";
 this->Padding = System::Windows::Forms::Padding(0);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 }
#pragma endregion
 };
}

Believe it or not, Form1.h, along with Hello.cpp, is a complete Win Forms application. You want
to know something else? If you code Form1.h by hand, all you need is this:

#pragma once

using namespace System;
using namespace System::Windows::Forms;

namespace Hello
{
 public ref class Form1 : public Form
 {
 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }

 public:
 Form1()
 {
 this->Size = Drawing::Size(300,300);
 this->Text = L"Form1";
 }
 };
}

Fraser_640-4C09.fm Page 313 Monday, November 14, 2005 11:41 AM

314 C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S

All the rest of the code is for the design tool. Now this is simple! All the code does is specify the
form’s size and title. The rest is handled within the .NET Framework.

Okay, now for grins and giggles, let’s change the title of the form to Hello World!. To do this, just
change the form’s Text property. You can do this in a couple of ways. First, you can just type Hello
World! in the source code, replacing the String Text property value Form1. Second, you can change
the Text text box within the Properties view. Notice that if you change the property in one place, the
other automatically gets updated as well.

As a thought, I guess the developers of the .NET Framework could have made things easier by
calling this the Title property, but as you will soon see, the Text property is found in all Win Forms
controls and is used for the default text-based property of the control.

When you finally finish staring in disbelief, go ahead and try compiling and running hello.exe.
(Pressing Ctrl-F5 is the fastest way of doing this.) Rather unexciting, as you can see in Figure 9-2, but
hey, what do you expect from a one-line code change?

Figure 9-2. The “Hello World!” form

Customizing the Form Class
The Form class by itself is not the most exciting thing, but before you move on and give it some func-
tionality, let’s look at what you’ll be getting in the default Form class. Then let’s see what else you can
customize.

So what do you get for free with a Form class? Among many things, you get the following:

• Sized

• Minimized

• Maximized

• Moved

• Closed

Fraser_640-4C09.fm Page 314 Monday, November 14, 2005 11:41 AM

C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S 315

It displays an icon, provides a control box, and does a lot of stuff in the background such as
change the cursor when appropriate and take Windows messages and convert them into .NET events.

The Form class is also very customizable. By manipulating a few of the Form class’s properties
you can get a completely different look from the default, along with some additional functionality
that was disabled in the default form configuration. Some of the more common properties are
as follows:

• AutoScroll is a Boolean that specifies whether the form should automatically display scroll
bars if sizing the window obscures a displayable area. The default value is true.

• ClientSize is a System::Drawing::Size that specifies the size of the client area. The client area
is the size of the window within the border and caption bar. You use this control to adjust the
size of the window to your liking or to get the dimensions of it for GDI+ drawing. You will
examine GDI+ in Chapter 11.

• Cursor is a Cursor control that you use to specify the cursor to display when over the Win
Form. The default is conveniently named Cursors::Default.

• FormBorder is a FormBorderStyle enum class that specifies the style of the border. You use this
control to change the look of the form. Common styles are FixedDialog, FixedToolWindow, and
SizableToolWindow, but the style you will see most often is the default Sizable.

• Icon is a System::Drawing::Icon that you use to specify the icon associated with the form.

• MaximizeBox is a Boolean that specifies whether the maximize button should be displayed on
the caption bar. The default is true.

• Menu is a MainMenu control you use as the menu displayed on the form. The default is null,
which signifies that there is no menu.

• MinimizeBox is a Boolean that specifies whether the minimize button should be displayed on
the caption bar. The default is true.

• Size is a System::Drawing::Size that specifies the size of the form. The size of the window
includes the borders and caption bar. You use this control to set the size of the Win Form.

• WindowState is a FormWindowState enum class that allows you to find out or specify whether
the Win Form is displayed as Normal, Minimized, or Maximized. The default window state is
FormWindowState::Normal.

There’s nothing special about working with Form class properties. You can either change them
using the Properties view, as shown in Figure 9-3, or directly in code, as Listing 9-3 points out. The
choice is yours. Frequently you’ll start off by making general changes using the Properties window
and then go into the code’s InitializeComponent() method (which you can find in the Form1.h file
for all the examples in the book) to fine-tune the changes. It doesn’t matter if you make the changes
in the code or in the Properties window, as any changes you make in one will immediately be reflected in
the other.

Fraser_640-4C09.fm Page 315 Monday, November 14, 2005 11:41 AM

cafac74dd2d083cbec0906b66fcd56b1

316 C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S

Figure 9-3. Customizing Form1 using the Properties view

■Caution Be careful when you make changes within the InitializeComponent() method. The changes
have to be made in exactly the same manner as the code generator or you may cause Visual Studio 2005’s GUI
design tool to stop functioning. Also, if you add code to this section it may be deleted if you modify the form by
adding or removing components.

Fraser_640-4C09.fm Page 316 Monday, November 14, 2005 11:41 AM

C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S 317

To customize a form (or any other control, for that matter), you just assign the appropriate types
and values you want to the properties and let the form handle the rest. The example in Figure 9-3 and
Listing 9-3 shows a hodgepodge of different form customizations just to see what the form will look
like when it’s done. The biggest change happened when I modified FormBorderStyle.

■Tip Properties that differ from the default appear in boldface in the Properties view.

Listing 9-3. Customizing Form1.h

#pragma once

namespace CustomHello
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();
 }

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }

 private:
 System::ComponentModel::Container ^components;

#pragma region Windows Form Designer generated code

Fraser_640-4C09.fm Page 317 Monday, November 14, 2005 11:41 AM

318 C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S

 void InitializeComponent(void)
 {
 this->SuspendLayout();
 //
 // Form1
 //
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->BackColor = System::Drawing::Color::Black;
 this->ClientSize = System::Drawing::Size(692, 274);
 this->Cursor = System::Windows::Forms::Cursors::UpArrow;
 this->FormBorderStyle =
 System::Windows::Forms::FormBorderStyle::SizableToolWindow;
 this->Name = L"Form1";
 this->SizeGripStyle = System::Windows::Forms::SizeGripStyle::Show;
 this->Text = L"Custom Form";
 this->TopMost = true;
 this->ResumeLayout(false);
 }

#pragma endregion
 };
}

The running of CustomHello.exe results in the display in Figure 9-4. Notice that this form is
quite a bit different from the default form generated by the previous example, Hello.exe. For instance,
this form has no control box and no minimize or maximize button, and in the bottom right there is
a form-sizing grip and an up-arrow cursor.

Figure 9-4. A very customized form

■Note For the rest of the chapter I will not list the .cpp file, as it is the same for every example. I will also remove
compiler-generated comments and directives, unless they aid in the reading of the code, just to save a tree or two
when printing this book.

Fraser_640-4C09.fm Page 318 Monday, November 14, 2005 11:41 AM

C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S 319

Handling Win Form Delegates and Events
Remember back in Chapter 4 when I discussed delegates and events and you thought to yourself,
“That would be a great way to handle an event-driven GUI application!” You know what? You were
right. This is exactly how the Win Form handles its user- and system-generated events.

Win Forms uses the .NET Framework’s event model to handle all the events that take place
within the form. This requires a delegate, an event source class, and an event receiver class. (You
might want to revisit Chapter 4 if this means nothing to you.) Fortunately, many of the delegates and
event source classes you need to worry about are already part of the .NET Framework class library.
You need to define the event receiver class.

For the following example, you’ll use the MouseDown event that’s defined in the event source
class System::Windows::Forms::Control:

event MouseEventHandler ^MouseDown;

This event uses the MouseEventHandler delegate, which is defined in the
System::Windows::Forms namespace:

public delegate void MouseEventHandler(Object^ sender, MouseEventArgs^ e);

For those of you who are curious, the class MouseEventArgs provides five properties that you can
use to figure out information about the MouseDown event:

• Button: An enum class specifying which mouse button was pressed down.

• Clicks: The number of times the mouse was pressed and released.

• Delta: The number of detents the mouse wheel was rotated. A detent is one notch of the
mouse wheel.

• X: The horizontal location of the mouse where it was clicked.

• Y: The vertical location of the mouse where it was clicked.

The first step in creating an event receiver class is to create the event handler that will handle
the event generated by the event source class. So, in the case of MouseDown, you need to create a
method with the same signature as MouseEventHandler. Notice also that you make the handler private.
You don’t want any outside method calling this event by accident, as it’s only intended to be called
within the event receiver class.

private:
 void Mouse_Clicked(System::Object^ sender,
 System::Windows::Forms::MouseEventArgs^ e)
 {
 }

Once you have the handler, all you need to do is delegate it onto the MouseDown event. As you
may recall from Chapter 4, C++/CLI uses multicast delegates; therefore, you can chain as many
handler methods as you need to complete the MouseDown event.

MouseDown += gcnew MouseEventHandler(this, Mouse_Clicked);

If at a later time you no longer want this handler to handle the MouseDown event, all you need to
do is remove the delegated method.

MouseDown -= gcnew MouseEventHandler(this, Mouse_Clicked);

Fraser_640-4C09.fm Page 319 Monday, November 14, 2005 11:41 AM

320 C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S

After describing all this, I’ll now tell you that you can create and delegate event handlers auto-
matically using the design tool and you don’t have to worry about syntax or coding errors for the
declarations. All you have to code is the functionality that handles the event. To add event handlers
to a control or (in this case) a form, follow these steps:

1. In the Properties window, click the icon that looks like a lightning bolt. This will change the
view from properties to events (see Figure 9-5).

Figure 9-5. Properties view of event handlers

2. Double-click the event you want to add to the control or form. This will create all the appro-
priate code in the form using the default name.

Fraser_640-4C09.fm Page 320 Monday, November 14, 2005 11:41 AM

C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S 321

or

Enter the name of the new method in the text box next to the event handler you are creating.

or

If you have already written the method, select the method from the drop-down list next to
the event that you want it to handle.

Listing 9-4 is a fun little program that jumps your Win Form around the screen depending on
where your mouse pointer is and which mouse button you press within the client area of the form.
As you can see, event handling is hardly challenging. Most of the logic of this program is designed
just to determine where to place the form on a MouseDown event.

Listing 9-4. Mouse Jump: Press a Mouse Button and See the Form Jump

#pragma once

namespace MouseJump
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();
 }

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }

 private:
 System::ComponentModel::Container ^components;

#pragma region Windows Form Designer generated code

 void InitializeComponent(void)
 {
 this->SuspendLayout();
 //
 // Form1
 //

Fraser_640-4C09.fm Page 321 Monday, November 14, 2005 11:41 AM

322 C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S

 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(450, 300);
 this->Name = L"Form1";
 this->Text = L"Mouse Jump";
 this->MouseDown +=
 gcnew System::Windows::Forms::MouseEventHandler(this,
 &Form1::Form1_MouseDown);
 this->ResumeLayout(false);
 }

#pragma endregion

 private:
 System::Void Form1_MouseDown(System::Object^ sender,
 System::Windows::Forms::MouseEventArgs^ e)
 {
 // Get mouse x and y coordinates
 int x = e->X;
 int y = e->Y;

 // Get Forms upper left location
 Point loc = DesktopLocation;

 // Handle left button mouse click
 if (e->Button == Windows::Forms::MouseButtons::Left)
 {
 Text = String::Format("Mouse Jump - Left Button at {0},{1}",
 x, y);

 DesktopLocation = Drawing::Point(loc.X + x, loc.Y +y);
 }
 // Handle right button mouse click
 else if (e->Button == Windows::Forms::MouseButtons::Right)
 {
 Text = String::Format("Mouse Jump - Right Button at {0},{1}",
 x, y);

 DesktopLocation = Point((loc.X+1) - (ClientSize.Width - x),
 (loc.Y+1) - (ClientSize.Height - y));
 }
 // Handle middle button mouse click
 else
 {
 Text = String::Format("Mouse Jump - Middle Button at {0},{1}",
 x, y);
 DesktopLocation = Point((loc.X+1) - ((ClientSize.Width/2) - x),
 (loc.Y+1) - ((ClientSize.Height/2) - y));
 }
 }
 };
}

Fraser_640-4C09.fm Page 322 Monday, November 14, 2005 11:41 AM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S 323

The MouseJump.exe application shown in Figure 9-6 is hardly exciting, because you can’t see
the jumping of the form in a still image. Notice that the coordinates at which the mouse was last
clicked are displayed in the title bar.

Figure 9-6. The form after a mouse jump

Adding Controls
Okay, now that you have covered the basics of a form and how to handle events from a form, you’ll
go ahead and make the form do something constructive. To do this, you need to add what the .NET
Framework class library calls controls.

Controls give you the ability to build an interface by breaking it down into smaller components.
Each control provides a specific type of input and/or output functionality to your Win Form. For
example, there are controls to place a label on the screen, display and input text data, select a data
item from a list, and display and (if you want) update a tree of data. There is even a control to display
a calendar.

All controls inherit from the Component and Control classes, with each class providing a number
of standard methods and properties. Each control will have a few methods and properties of its own
that make it unique. Also, all controls have events, for which you can create handlers. You can find
all controls provided by the .NET Framework class library within the System::Windows::Forms
namespace.

You can add controls to a Win Form in one of two ways, just like almost any other process when
it comes to Win Forms. You can use Visual Studio 2005 GUI tool to drop and drag the controls to the
Win Form, or you can code the controls by hand using Visual Studio 2005’s IDE editor (or almost any
other editor for that matter).

Let’s look at how to drag and drop controls onto a Win Form, as this is essentially what you’re
going to mimic when you code by hand. The steps are as follows:

1. Resize the form to the size you want by dragging the borders of the form in the design
window. Make it a little bigger than you think you’ll need. Don’t worry—you can change the
size later to enclose the controls better. I’ve learned from past experience that having the
extra real estate makes things easier when designing.

2. Bring the cursor over the Toolbox tab (if you don’t have it tacked open). This will expand
the Toolbox.

Fraser_640-4C09.fm Page 323 Monday, November 14, 2005 11:41 AM

324 C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S

3. Click, hold, and then drag the control you want from the Toolbox to the form. (If you don’t
have the Toolbox tacked open, you may need to drag the control to an open location on the
form and release it there. This will cause the Toolbox to close so that you can click again and
drag the control to the desired location on the form.)

4. Alter the properties of the controls as you wish by changing them in the Properties view. I
recommend changing the Name property at a minimum, but there is nothing stopping you
from using the default name for the control.

5. Add event handlers as desired. You might consider holding off on this step until you have the
entire Win Form laid out.

6. Repeat steps 1 through 5 for all other required controls.

Behind the scenes, these steps add a definition of the control to the class and then create an
instance of it. Each property that is changed adds a line of code that updates one of the control’s
properties. Each event handler added adds a delegation statement and then creates an event handler.

As a developer, you can rely solely on the drag-and-drop functionality of Visual Studio 2005 or
you can do as I do and use the tool to build the basic design but then fine-tune it within the code
itself. You could also be a glutton for punishment and do it all by hand. But why bother? The tool is
there, so why not use it?

Okay, now that you know how to add a control to the Win Form, you’ll take a look at an assort-
ment of the more common controls provided by the .NET Framework class library, starting with one
of the easiest: Label.

The Label Control
The name of this control is a little misleading. It gives you the impression that its only purpose is to
display static text in the form. Nothing could be further from the truth. The Label control is also great
for displaying dynamic text to the form. Heck, the Label control can even trigger an event when clicked.

In general, though, you’ll normally use a Label control to statically label something else. The
usual process of creating a label is simply to create the Label control and then set its properties so
that the control looks the way you want it to. Here are some of the more common properties used by
the Label control:

• BackColor is a System::Drawing::Color that represents the background color of the label and
defaults to the DefaultBackColor property.

• Font is a System::Drawing::Font that represents the font used by the label and defaults to the
DefaultFont property.

• ForeColor is a System::Drawing::Color that represents the foreground color (or the actual
color of the text) of the label and defaults to the DefaultForeColor property.

• Image is a System::Drawing::Image that represents the image displayed within the label. The
default is null, which signifies that no image is to be displayed.

• ImageAlign is a ContentAlignment enum class that represents the alignment of the image within
the label. I like to visualize the different alignments by picturing a tic-tac-toe game in my
head, with each box a possible alignment. The default alignment is the center box of the tic-
tac-toe game or ContentAlignment::MiddleCenter.

• Text is a String containing the actual text to be displayed.

• TextAlign is a ContentAlignment enum class that represents the alignment of the image within
the label. The default is based on the culture of the computer. Because my computer has a
culture of en-us, the default alignment is the top-left corner, or ContentAlignment::TopLeft.

Fraser_640-4C09.fm Page 324 Monday, November 14, 2005 11:41 AM

C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S 325

• UseMnemonic is a Boolean that specifies whether or not the ampersand (&) character should be
interpreted as an access-key prefix character. The default is true.

Now that you have seen the more common properties, for grins and giggles you’ll implement a
Label control using some of its less common properties (see Listing 9-5).

Listing 9-5. The MightyLabel, an Implementation of the Uncommon Properties

#pragma once

namespace MightyLabel
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 labelSwitch = true;
 InitializeComponent();
 }

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }

 private:
 System::Windows::Forms::Label^ MightyLabel;
 bool labelSwitch;

 System::ComponentModel::Container ^components;

#pragma region Windows Form Designer generated code

 void InitializeComponent(void)
 {
 this->MightyLabel = (gcnew System::Windows::Forms::Label());
 this->SuspendLayout();
 //
 // MightyLabel
 //
 this->MightyLabel->BorderStyle =
 System::Windows::Forms::BorderStyle::FixedSingle;

Fraser_640-4C09.fm Page 325 Monday, November 14, 2005 11:41 AM

326 C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S

 this->MightyLabel->Cursor = System::Windows::Forms::Cursors::Hand;
 this->MightyLabel->Location = System::Drawing::Point(63, 91);
 this->MightyLabel->Name = L"MightyLabel";
 this->MightyLabel->Size = System::Drawing::Size(150, 35);
 this->MightyLabel->TabIndex = 1;
 this->MightyLabel->Text =
 L"This is the mighty label! It will change when you click it";
 this->MightyLabel->TextAlign =
 System::Drawing::ContentAlignment::MiddleCenter;
 this->MightyLabel->Click +=
 gcnew System::EventHandler(this, &Form1::MightyLabel_Click);
 //
 // Form1
 //
 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(292, 273);
 this->Controls->Add(this->MightyLabel);
 this->Name = L"Form1";
 this->Text = L"The Mighty Label";
 this->ResumeLayout(false);
 }

#pragma endregion

 private:
 System::Void MightyLabel_Click(System::Object^ sender,
 System::EventArgs^ e)
 {
 if (labelSwitch)
 MightyLabel->Text = L"Ouchie!!! That hurt.";
 else
 MightyLabel->Text = L"Ooo!!! That tickled.";
 labelSwitch = !labelSwitch;
 }
 };
}

As you can see, dragging and dropping can save you a lot of time when you’re designing a form,
even in such a straightforward case. But even this simple program shows that a programmer is still
needed. A designer can drag and drop the label to where it’s needed, and can even change the
control’s properties, but a programmer is still needed to give the controls life or, in other words, to
handle events.

Notice that a Form class is like any other C++/CLI class in that you can add your own member
variables, methods, and properties. In this example, I add a bool member variable called labelSwitch
to hold the current state of the label. I initialize it in the constructor just as I would in any other class
and then use it within the Click event handler. Basically, as long as you don’t code within the areas
that the generated code says to avoid, you’re safe to use the Form class as you see fit.

Figure 9-7 shows what MightyLabel.exe looks like when you execute it. Be sure to click the label
a couple of times.

Fraser_640-4C09.fm Page 326 Monday, November 14, 2005 11:41 AM

C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S 327

Figure 9-7. The MightyLabel example

The Button Controls
Buttons are one of the most commonly used controls for getting user input found in any Win Forms
application, basically because the average user finds buttons easy to use and understand. And yet
they are quite versatile for the software developer.

The .NET Framework class library provides three different types of buttons: Button, CheckBox,
and RadioButton. All three inherit from the abstract ButtonBase class, which provides common func-
tionality across all three. Here are some of the common properties provided by ButtonBase:

• FlatStyle is a FlatStyle enum class that represents the appearance of the button. The default
is FlatStyle::Standard, but other options are Flat and Popup.

• Image is a System::Drawing::Image that represents the image displayed on the button. The
default is null, meaning no image is to be displayed.

• IsDefault is a protected Boolean that specifies whether the button is the default for the form.
In other words, it indicates whether the button’s Click event gets triggered when the Enter
key is pressed. The default is false.

• Text is a String that represents the text that will be displayed on the button.

Remember, you also get all the properties of Control and Component. Thus, you have a plethora
of properties and methods to work with.

Button
The Button control does not give much functionality beyond what is defined by the abstract
ButtonBase class. You might think of the Button control as the lowest-level implementation of the
abstract base class.

Most people think of Button as a static control that you place on the Win Form at design time.
As the example in Listing 9-6 points out (over and over again), this is not the case. Yes, you can statically
place a Button control, but you can also dynamically place it on the Win Form.

Fraser_640-4C09.fm Page 327 Monday, November 14, 2005 11:41 AM

328 C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S

Listing 9-6. The Code for “Way Too Many Buttons!”

#pragma once

namespace TooManyButtons
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();
 }

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }
 private:
 System::Windows::Forms::Button^ TooMany;

 System::ComponentModel::Container ^components;

#pragma region Windows Form Designer generated code

 void InitializeComponent(void)
 {
 this->TooMany = (gcnew System::Windows::Forms::Button());
 this->SuspendLayout();
 //
 // TooMany
 //
 this->TooMany->Location = System::Drawing::Point(12, 12);
 this->TooMany->Name = L"TooMany";
 this->TooMany->Size = System::Drawing::Size(75, 23);
 this->TooMany->TabIndex = 1;
 this->TooMany->Text = L"Click Me!";
 this->TooMany->Click +=
 gcnew System::EventHandler(this, &Form1::TooMany_Click);

Fraser_640-4C09.fm Page 328 Monday, November 14, 2005 11:41 AM

C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S 329

 //
 // Form1
 //
 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->AutoScroll = true;
 this->ClientSize = System::Drawing::Size(292, 273);
 this->Controls->Add(this->TooMany);
 this->Name = L"Form1";
 this->Text = L"Too Many Buttons";
 this->ResumeLayout(false);
 }

#pragma endregion

 private:
 System::Void TooMany_Click(System::Object^ sender,
 System::EventArgs^ e)
 {
 // Grab the location of the button that was clicked
 Point p = ((Button^)sender)->Location;

 // Create a dynamic button
 Button ^Many = gcnew Button();
 Many->Location = Drawing::Point(p.X + 36, p.Y + 26);
 Many->Text = L"Click Me!";
 Many->Click += gcnew System::EventHandler(this,
 &Form1::TooMany_Click);
 // Add dynamic button to Form
 Controls->Add(Many);
 }
 };
}

There really isn’t much difference between adding a Label control and a Button statically, as you
can see in the InitializeComponent() method. The fun code in Listing 9-6 is in the TooMany_Click()
event handler method. The first thing this method does is grab the location of the button that
was clicked and place it into a Point struct so that you can manipulate it. You’ll examine
System::Drawing::Point in Chapter 11. You could have grabbed the whole button but you only need
its location. Next, you build a button. There’s nothing tricky here, except the button is declared
within the event handler. Those of you from a traditional C++ background are probably jumping up
and down, screaming “Memory leak!” Sorry to disappoint you, but this is C++/CLI and the memory
will be collected when it’s no longer referenced, so this code is perfectly legal. And finally, the last
step in placing the button dynamically on the Win Form is adding it.

Figure 9-8 shows what TooManyButtons.exe looks like when you execute it. Be sure to click a
few of the newly created buttons.

Fraser_640-4C09.fm Page 329 Monday, November 14, 2005 11:41 AM

cafac74dd2d083cbec0906b66fcd56b1

330 C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S

Figure 9-8. Way too many buttons

CheckBox
The CheckBox control is also an extension of the ButtonBase class. It’s similar to a normal Button
control in many ways. The two major differences are that it looks different on the Win Form and that
it retains its check state when clicked. Well, the first difference isn’t always true—there’s a property
to make a CheckBox look like a Button.

The CheckBox control, if configured to do so, can have three states: checked, unchecked, and
indeterminate. I’m sure you understand checked and unchecked states, but what is this indeterminate
state? Visually, in this state, the check boxes are shaded. Most likely you saw this type of check box
when you installed Visual Studio 2005 on your machine. Remember when you set which parts to
install and some of the checkmarks were gray? When you selected the gray box, you found that some
of the subparts were not checked. Basically, the indeterminate state of the parent resulted from the
fact that not all the child boxes were checked.

In addition to supporting the properties provided by ButtonBase, the CheckBox control supports
some properties unique to itself:

• Appearance is an Appearance enum class that specifies whether the check box looks like a button
or a standard check box. The default, Appearance::Normal, is a standard check box.

• CheckAlign is a ContentAlignment enum class that represents the alignment of the check box
within the CheckBox control. The default alignment is centered and to the left:
ContentAlignment::MiddleLeft.

• Checked is a Boolean that represents whether or not the check box is checked. This property
returns true if the check box is in an indeterminate state as well. The default is false.

• CheckState is a CheckState enum class that represents the current state of the check box:
Checked, Unchecked, or Indeterminate. The default is CheckState::Unchecked.

• ThreeState is a Boolean that specifies whether the check box can have an indeterminate state.
The default is false.

In our next example (see Listing 9-7), you’ll have a little fun with the CheckBox control, in particular
the Visibility property. Enter the code from the listing and have some fun.

Fraser_640-4C09.fm Page 330 Monday, November 14, 2005 11:41 AM

C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S 331

Listing 9-7. The Code for “You Can’t Check Me!”

#pragma once

namespace CheckMe
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();
 }

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }

 private:
 System::Windows::Forms::CheckBox^ BottomCheck;
 System::Windows::Forms::CheckBox^ checkBox2;
 System::Windows::Forms::CheckBox^ checkBox1;
 System::Windows::Forms::CheckBox^ TopCheck;

 System::ComponentModel::Container ^components;

#pragma region Windows Form Designer generated code

 void InitializeComponent(void)
 {
 this->BottomCheck = (gcnew System::Windows::Forms::CheckBox());
 this->checkBox2 = (gcnew System::Windows::Forms::CheckBox());
 this->checkBox1 = (gcnew System::Windows::Forms::CheckBox());
 this->TopCheck = (gcnew System::Windows::Forms::CheckBox());
 this->SuspendLayout();
 //
 // BottomCheck

Fraser_640-4C09.fm Page 331 Monday, November 14, 2005 11:41 AM

332 C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S

 //
 this->BottomCheck->AutoSize = true;
 this->BottomCheck->Enabled = false;
 this->BottomCheck->Location = System::Drawing::Point(52, 167);
 this->BottomCheck->Name = L"BottomCheck";
 this->BottomCheck->Size = System::Drawing::Size(127, 17);
 this->BottomCheck->TabIndex = 4;
 this->BottomCheck->TabStop = false;
 this->BottomCheck->Text = L"You Can\'t Check Me!";
 this->BottomCheck->Visible = false;
 this->BottomCheck->Enter +=
 gcnew System::EventHandler(this, &Form1::BottomCheck_Enter);
 this->BottomCheck->MouseEnter +=
 gcnew System::EventHandler(this, &Form1::BottomCheck_Enter);
 //
 // checkBox2
 //
 this->checkBox2->AutoSize = true;
 this->checkBox2->Location = System::Drawing::Point(52, 130);
 this->checkBox2->Name = L"checkBox2";
 this->checkBox2->Size = System::Drawing::Size(106, 17);
 this->checkBox2->TabIndex = 5;
 this->checkBox2->Text = L"Don\'t Forget ME!";
 //
 // checkBox1
 //
 this->checkBox1->AutoSize = true;
 this->checkBox1->Checked = true;
 this->checkBox1->CheckState =
 System::Windows::Forms::CheckState::Indeterminate;
 this->checkBox1->Location = System::Drawing::Point(52, 90);
 this->checkBox1->Name = L"checkBox1";
 this->checkBox1->Size = System::Drawing::Size(133, 17);
 this->checkBox1->TabIndex = 2;
 this->checkBox1->Text = L"Check Me! Check Me!";
 this->checkBox1->ThreeState = true;
 //
 // TopCheck
 //
 this->TopCheck->AutoSize = true;
 this->TopCheck->Location = System::Drawing::Point(52, 49);
 this->TopCheck->Name = L"TopCheck";
 this->TopCheck->Size = System::Drawing::Size(127, 17);
 this->TopCheck->TabIndex = 3;
 this->TopCheck->TabStop = false;
 this->TopCheck->Text = L"You Can\'t Check Me!";
 this->TopCheck->Enter +=
 gcnew System::EventHandler(this, &Form1::TopCheck_Enter);
 this->TopCheck->MouseEnter +=
 gcnew System::EventHandler(this, &Form1::TopCheck_Enter);

Fraser_640-4C09.fm Page 332 Monday, November 14, 2005 11:41 AM

C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S 333

 //
 // Form1
 //
 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(242, 273);
 this->Controls->Add(this->BottomCheck);
 this->Controls->Add(this->checkBox2);
 this->Controls->Add(this->checkBox1);
 this->Controls->Add(this->TopCheck);
 this->Name = L"Form1";
 this->Text = L"Can\'t Check Me";
 this->ResumeLayout(false);
 this->PerformLayout();
 }
#pragma endregion

 private:
 System::Void TopCheck_Enter(System::Object^ sender,
 System::EventArgs^ e)
 {
 // Hide Top checkbox and display bottom
 TopCheck->Enabled = false;
 TopCheck->Visible = false;
 BottomCheck->Enabled = true;
 BottomCheck->Visible = true;
 }

 private:
 System::Void BottomCheck_Enter(System::Object^ sender,
 System::EventArgs^ e)
 {
 // Hide Bottom checkbox and display top
 BottomCheck->Enabled = false;
 BottomCheck->Visible = false;
 TopCheck->Enabled = true;
 TopCheck->Visible = true;
 }
 };
}

You may have noticed that I threw in the indeterminate state in the first/second/first... (which-
ever) check box, just so you can see what it looks like.

An important thing to take from this example is that it shows you can delegate the same event
handler to more than one event. Doing this in the Visual Studio 2005 Properties view requires that
you use the drop-down list to select the event handler that you want to re-delegate.

The example also shows how to enable/disable and show/hide both in the Properties view and
at runtime.

Figure 9-9 shows what CheckMe.exe looks like when you execute it. Who says programmers
don’t have a sense of humor!

Fraser_640-4C09.fm Page 333 Monday, November 14, 2005 11:41 AM

334 C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S

Figure 9-9. You can’t check me!

RadioButton
From a coding perspective, there isn’t much to say about the RadioButton control other than you
code it in exactly the same way you code a CheckBox control. The only difference between the
RadioButton and CheckBox controls is that with the RadioButton you lose the CheckState property and
its associated CheckStateChanged event.

The RadioButton control works a little differently than the CheckBox control. Only one RadioButton
can be checked at a time within a given container, which at this point is the Win Form. (You will see
that you can have multiple containers placed on a Win Form later in this chapter in the section “The
GroupBox Control.”) If you have ever played with a car radio, you should understand exactly how a
RadioButton works.

Listing 9-8 shows a neat little trick that the GUI design tool can’t do—it shows how to create an
array of radio buttons. Having unique names for what amounts to a single entity with multiple
values seems a little silly in most cases, and at worst the code goes on forever. I think developing a
set of radio buttons, as shown in Listing 9-8, makes good sense.

Listing 9-8. The Code for an Array of Radio Buttons

#pragma once

namespace ArrayOfRadios
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();

Fraser_640-4C09.fm Page 334 Monday, November 14, 2005 11:41 AM

C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S 335

 array<String^>^ rbText = gcnew array<String^> {
 L"Can", L"You", L"Click", L"More", L"Than", L"One"
 };
 radios = gcnew array<RadioButton^>(6);
 label = gcnew Label();

 for (int i = 0; i < radios->Length; i++)
 {
 int j = 50*i;
 radios[i] = gcnew RadioButton();
 radios[i]->BackColor = Color::FromArgb(255,j+5,j+5,j+5);
 radios[i]->ForeColor = Color::FromArgb(255,250-j,250-j,250-j);
 radios[i]->Location = Drawing::Point(90, 10+(40*i));
 radios[i]->TabIndex = i;
 radios[i]->TabStop = true;
 radios[i]->Text = rbText[i];
 radios[i]->CheckedChanged +=
 gcnew EventHandler(this, &Form1::radioCheckedChanged);
 }
 Controls->AddRange(radios);

 label->Location = Drawing::Point(90, 10+(40*radios->Length));
 Controls->Add(label);
 }

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }

 private:
 array<RadioButton^>^ radios;
 Label ^label;
 System::ComponentModel::Container ^components;

#pragma region Windows Form Designer generated code

 void InitializeComponent(void)
 {
 this->SuspendLayout();
 //
 // Form1
 //
 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(292, 273);
 this->Name = L"Form1";
 this->Text = L"An Array Of Radios";
 this->ResumeLayout(false);

 }

Fraser_640-4C09.fm Page 335 Monday, November 14, 2005 11:41 AM

336 C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S

#pragma endregion

 private:
 void radioCheckedChanged(Object ^sender, EventArgs ^e)
 {
 RadioButton ^rb = (RadioButton^)sender;

 if (rb->Checked == true)
 label->Text = rb->Text;
 }
 };
}

The code in Listing 9-8 is pretty straightforward. (This example doesn’t include the design tool–
specific code as it was written by hand.) First, you create an array of RadioButton controls, and then
you populate the array. I also threw in a Label control to show how to extract the currently checked
RadioButton control.

You should notice a couple of things going on in this listing. First, only one event handler method
is needed, as the sender parameter will tell you which RadioButton sent the event. Second, you need to
check for a true Checked value because the CheckedChanged event is also triggered on the unchecking
event, which also always occurs when a different RadioButton is checked. And the final thing you
might want to notice is that you can use the AddRange() method instead of the Add() method to add
controls to the form because there is a ready-made array using this method, as the array of RadioButtons
is also an array of controls.

I also play with colors a bit, but you look at colors in detail in Chapter 11, so I will hold off the
explanation until then.

Figure 9-10 shows what ArrayOfRadios.exe looks like when you execute it.

Figure 9-10. An array of radio buttons

The GroupBox Control
The GroupBox control does basically what its name suggests: It groups controls into a box. Not only
does the GroupBox group controls visually, but it also binds the controls so that they act as a group.

The GroupBox control is predominately used for RadioButton controls, but that isn’t a require-
ment. The requirement is that everything it groups is a control. Grouping random control types is
usually done just for cosmetic reasons. Grouping RadioButton controls, on the other hand, provides

Fraser_640-4C09.fm Page 336 Monday, November 14, 2005 11:41 AM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S 337

the RadioButton control with additional functionality. Instead of being able to select only a single
RadioButton on the form, you now can select a unique RadioButton for each GroupBox.

The next example (see Listing 9-9) shows how it is now possible to select more than one
RadioButton—in this case, one of the RadioButton controls attached to the form and one from each
of the GroupBoxes. Notice I use three arrays of RadioButtons. If you were to create a unique RadioButton
each time instead of the array, as is the case for the generated GUI-designed code, you would then
be declaring and implementing 12 different RadioButtons. I think this is a good example of why
knowing how to code Win Forms by hand improves the code.

Listing 9-9. The Code for Grouping RadioButtons

#pragma once

namespace GroupingRadios
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();
 BuildRadios();
 }

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }

 private:
 System::Windows::Forms::GroupBox^ groupBox2;
 System::Windows::Forms::GroupBox^ groupBox1;

 array<System::Windows::Forms::RadioButton^>^ radio1;
 array<System::Windows::Forms::RadioButton^>^ radio2;
 array<System::Windows::Forms::RadioButton^>^ radio3;

 System::ComponentModel::Container ^components;

Fraser_640-4C09.fm Page 337 Monday, November 14, 2005 11:41 AM

338 C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S

#pragma region Windows Form Designer generated code

 void InitializeComponent(void)
 {
 this->groupBox2 = (gcnew System::Windows::Forms::GroupBox());
 this->groupBox1 = (gcnew System::Windows::Forms::GroupBox());
 this->SuspendLayout();
 //
 // groupBox2
 //
 this->groupBox2->Location = System::Drawing::Point(125, 153);
 this->groupBox2->Name = L"groupBox2";
 this->groupBox2->Size = System::Drawing::Size(152, 134);
 this->groupBox2->TabIndex = 3;
 this->groupBox2->TabStop = false;
 this->groupBox2->Text = L"Use";
 //
 // groupBox1
 //
 this->groupBox1->Location = System::Drawing::Point(125, 12);
 this->groupBox1->Name = L"groupBox1";
 this->groupBox1->Size = System::Drawing::Size(152, 135);
 this->groupBox1->TabIndex = 2;
 this->groupBox1->TabStop = false;
 this->groupBox1->Text = L"You";
 //
 // Form1
 //
 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(352, 330);
 this->Controls->Add(this->groupBox2);
 this->Controls->Add(this->groupBox1);
 this->Name = L"Form1";
 this->Text = L"Using Group Boxes";
 this->ResumeLayout(false);
 }

#pragma endregion

 void BuildRadios()
 {
 this->SuspendLayout();

 // Text for RadioButton places on Form directly
 array<String^>^ rbText1 = gcnew array<String^> {
 L"Can", L"You", L"Click", L"More", L"Than", L"One"
 };

 // Build a RadioButton for each rbText1
 radio1 = gcnew array<RadioButton^>(6);
 for (int i = 0; i < radio1->Length; i++)
 {
 radio1[i] = gcnew RadioButton();

Fraser_640-4C09.fm Page 338 Monday, November 14, 2005 11:41 AM

C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S 339

 radio1[i]->Location = Drawing::Point(20, 20+(40*i));
 radio1[i]->Text = rbText1[i];
 }
 // Add RadioButtons to Form
 Controls->AddRange(radio1);

 // Text for RadioButton places in first GroupBox
 array<String^>^ rbText2 = gcnew array<String^> {
 L"Can", L"If", L"You"
 };

 // Build a RadioButton for each rbText2
 radio2 = gcnew array<RadioButton^>(3);
 for (int i = 0; i < radio2->Length; i++)
 {
 radio2[i] = gcnew RadioButton();
 radio2[i]->Location = Drawing::Point(40, 30+(35*i));
 radio2[i]->Text = rbText2[i];
 }
 // Add RadioButtons to GroupBox
 groupBox1->Controls->AddRange(radio2);

 // Text for RadioButton places in second GroupBox
 array<String^>^ rbText3 = gcnew array<String^> {
 L"Different", L"Group", L"Boxes"
 };

 // Build a RadioButton for each rbText3
 radio3 = gcnew array<RadioButton^>(3);
 for (int i = 0; i < radio3->Length; i++)
 {
 radio3[i] = gcnew RadioButton();
 radio3[i]->Location = Drawing::Point(40, 30+(35*i));
 radio3[i]->Text = rbText3[i];
 }
 // Add RadioButtons to GroupBox2
 groupBox2->Controls->AddRange(radio3);

 this->ResumeLayout(false);
 }
 };
}

Only a couple of things are new here. First, notice now that you add the GroupBox to the form
and then add the RadioButtons to the GroupBox, as opposed to adding the RadioButtons to the form.
You can also add the RadioButtons to the GroupBox and then add the GroupBox to the form. Which of
the previous methods you choose is not important, as long as the controls are defined and instanti-
ated before being added.

The second new thing is the location where you put the RadioButtons. The location is relative to
the GroupBox and not the form. Notice that the same code is used to specify the location of the
RadioButtons for both GroupBoxes.

As you can see, you can combine the auto-generated GUI tool code and the hand-coded code
together, but you have to be careful. You can’t add your code within the InitializeComponent()
method, because the GUI design tool will overwrite it any time you change the form using the design

Fraser_640-4C09.fm Page 339 Monday, November 14, 2005 11:41 AM

340 C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S

tool. Because this is the case, I had to create the BuildRadios() method to add my hand-designed
code instead of embedding it directly within the InitializeComponent() method.

Figure 9-11 shows what GroupingRadios.exe looks like when you execute it. Try to click the
radio buttons. Now you are able to select three different ones.

Figure 9-11. Groups of radio buttons

The Panel Control
The Panel control is similar in many ways to the GroupBox control. It also groups controls visually
into a box and binds them so that they act as a group. It differs in that you can enable it to support
scrolling, thus letting the Panel control contain more controls than its area would normally allow.

A feature that both the Panel and GroupBox controls share is that when you disable the Panel, all
the controls within the Panel are also disabled. You do this by setting the Enable property to false.
Another feature I particularly like is that you can make the Panel invisible by setting the Visible
property to false. Using this feature, you can make the form less cluttered by hiding Panels that are
not currently relevant.

Listing 9-10 shows how it is now possible to enable, disable, and make Panels reappear. It also
highlights how to enable autoscrolling within a Panel.

Listing 9-10. The Code for Disabling and Hiding Panels

#pragma once

namespace Panels
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;

Fraser_640-4C09.fm Page 340 Monday, November 14, 2005 11:41 AM

C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S 341

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();
 }

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }

 private:
 System::Windows::Forms::Panel^ Rightpanel;
 System::Windows::Forms::Button^ button2;
 System::Windows::Forms::Button^ button1;
 System::Windows::Forms::Panel^ Leftpanel;
 System::Windows::Forms::Button^ bnHide;
 System::Windows::Forms::Button^ bnDisable;

 System::ComponentModel::Container ^components;

#pragma region Windows Form Designer generated code

 void InitializeComponent(void)
 {
 this->Rightpanel = (gcnew System::Windows::Forms::Panel());
 this->button2 = (gcnew System::Windows::Forms::Button());
 this->button1 = (gcnew System::Windows::Forms::Button());
 this->Leftpanel = (gcnew System::Windows::Forms::Panel());
 this->bnHide = (gcnew System::Windows::Forms::Button());
 this->bnDisable = (gcnew System::Windows::Forms::Button());
 this->Rightpanel->SuspendLayout();
 this->Leftpanel->SuspendLayout();
 this->SuspendLayout();
 //
 // Rightpanel
 //
 this->Rightpanel->AutoScroll = true;
 this->Rightpanel->BorderStyle =
 System::Windows::Forms::BorderStyle::Fixed3D;
 this->Rightpanel->Controls->Add(this->button2);
 this->Rightpanel->Controls->Add(this->button1);
 this->Rightpanel->Location = System::Drawing::Point(161, 22);
 this->Rightpanel->Name = L"Rightpanel";
 this->Rightpanel->Size = System::Drawing::Size(121, 60);
 this->Rightpanel->TabIndex = 3;

Fraser_640-4C09.fm Page 341 Monday, November 14, 2005 11:41 AM

342 C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S

 //
 // button2
 //
 this->button2->Location = System::Drawing::Point(20, 62);
 this->button2->Name = L"button2";
 this->button2->Size = System::Drawing::Size(75, 23);
 this->button2->TabIndex = 1;
 this->button2->Text = L"button 2";
 //
 // button1
 //
 this->button1->Location = System::Drawing::Point(20, 7);
 this->button1->Name = L"button1";
 this->button1->Size = System::Drawing::Size(75, 23);
 this->button1->TabIndex = 0;
 this->button1->Text = L"button 1";
 //
 // Leftpanel
 //
 this->Leftpanel->BorderStyle =
 System::Windows::Forms::BorderStyle::FixedSingle;
 this->Leftpanel->Controls->Add(this->bnHide);
 this->Leftpanel->Controls->Add(this->bnDisable);
 this->Leftpanel->Location = System::Drawing::Point(28, 22);
 this->Leftpanel->Name = L"Leftpanel";
 this->Leftpanel->Size = System::Drawing::Size(120, 95);
 this->Leftpanel->TabIndex = 2;
 //
 // bnHide
 //
 this->bnHide->Location = System::Drawing::Point(17, 62);
 this->bnHide->Name = L"bnHide";
 this->bnHide->Size = System::Drawing::Size(75, 23);
 this->bnHide->TabIndex = 1;
 this->bnHide->Text = L"Hide";
 this->bnHide->Click +=
 gcnew System::EventHandler(this, &Form1::bnHide_Click);
 //
 // bnDisable
 //
 this->bnDisable->Location = System::Drawing::Point(17, 7);
 this->bnDisable->Name = L"bnDisable";
 this->bnDisable->Size = System::Drawing::Size(75, 23);
 this->bnDisable->TabIndex = 0;
 this->bnDisable->Text = L"Disable";
 this->bnDisable->Click +=
 gcnew System::EventHandler(this, &Form1::bnDisable_Click);
 //
 // Form1
 //
 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(310, 139);
 this->Controls->Add(this->Rightpanel);

Fraser_640-4C09.fm Page 342 Monday, November 14, 2005 11:41 AM

C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S 343

 this->Controls->Add(this->Leftpanel);
 this->Name = L"Form1";
 this->Text = L"A hidden fourth button";
 this->Rightpanel->ResumeLayout(false);
 this->Leftpanel->ResumeLayout(false);
 this->ResumeLayout(false);
 }

#pragma endregion

 private:
 System::Void bnDisable_Click(System::Object^ sender,
 System::EventArgs^ e)
 {
 Rightpanel->Enabled = !Rightpanel->Enabled;
 }

 private:
 System::Void bnHide_Click(System::Object^ sender, System::EventArgs^ e)
 {
 Rightpanel->Visible = !Rightpanel->Visible;
 }
 };
}

What’s interesting in this form is the ability to use a button to disable and hide Panels. Another
neat feature is that you can use the Enable and Visible properties as toggles:

Rightpanel->Enabled = !Rightpanel->Enabled;
Rightpanel->Visible = !Rightpanel->Visible;

To get RightPanel to scroll, you have to set its client size smaller than the visual area needed to
view all controls. Basically, because a control is going to be obscured, the Panel automatically
creates the appropriate scroll bar (either vertical or horizontal) so that the control can be exposed.

Figure 9-12 shows what Panels.exe looks like when you execute it and click the Disable Panel
button. I guess I could have also clicked the Hide Panel button, but then the RightPanel would have
disappeared and you wouldn’t be able to tell that it was disabled.

Figure 9-12. Disabling and hiding panels

The Text Controls
There is obviously a need to enter text into most Win Forms applications. To handle this, the .NET
Framework provides three highly configurable text controls: TextBox, MaskedTextBox, and RichTextBox.
All three text controls are very powerful. In fact, the simplest of the three, the TextBox control, has so
much functionality that you will probably use it most, if not all, of the time. A few possible exceptions

Fraser_640-4C09.fm Page 343 Monday, November 14, 2005 11:41 AM

cafac74dd2d083cbec0906b66fcd56b1

344 C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S

are when you want a specifically formatted sequence of characters, in which case you would select
MaskedTextBox, or if you require font styles such as boldface, italic, or underline within the text being
entered, in which case you would choose RichTextBox.

As is the common theme in the .NET Framework class library, the text controls derive from a
common abstract base class, TextBoxBase. This class provides a common set of functionality that
you can use for all three text controls, and it’s also a great starting point for those programmers who
need to write a text control to meet specific needs.

The abstract TextBoxBase class is composed of numerous properties and methods that can
handle text input from the user. Being that TextBoxBase is an abstract class, you can’t instantiate
from it; instead, you need to use one of its child classes. Here are some common TextBoxBase-specific
properties:

• AcceptsTab is a Boolean that represents, in a multiline text control, whether the Tab key will be
used as a control character or as a means to move to the next control. The default is false.

• CanUndo is a Boolean that represents whether the control can undo the previous operation that
occurred. The default is false.

• MaxLength is an Int32 that represents the maximum number of characters allowed to be
entered into the control. The default is 0, which means the allowable number of characters
enterable is only restricted by the memory of the computer.

• Modified is a Boolean that represents whether the content of the control has been modified
since the control was created or the contents were set. The default is false.

• Multiline is a Boolean that represents whether the control is made up of more than one line.
The default is false.

• ReadOnly is a Boolean that represents whether the control is read-only. The default is false.

• SelectedText is a String containing selected text from the control. The default is a zero-length
String (not null).

• SelectionLength is an Int32 that represents the length of the selected text. If the SelectionLength
property is set to a value larger than the length of text within the control, it’s automatically set
to the number of characters in the control minus the SelectionStart property.

• SelectionStart is an Int32 that represents the starting location of the selected text within the
control. If the SelectionStart property is set to a value larger than the number of characters
within the control, it’s automatically set to the value after the last character in the control.

• Text is a String that represents the text of the control.

• WordWrap is a Boolean that represents, in a multiline text control, whether a word wraps auto-
matically to the beginning of a line when necessary. If the value is false, the control will scroll
horizontally when text is entered beyond the width of the control. The default is true.

Here are some common TextBoxBase-specific methods:

• AppendText() adds text to the end of the current text of the control.

• Clear() sets the text in the control to be empty.

• ClearUndo() removes the last undo operation from the undo buffer.

• Copy() takes the selected text and places it on the Clipboard. The control is unaffected.

• Cut() removes the selected text from the control and places it on the Clipboard.

• Paste() copies the text in the Clipboard to the current location of the cursor in the control.

• Select() selects text within the control using a start location and a length.

Fraser_640-4C09.fm Page 344 Monday, November 14, 2005 11:41 AM

C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S 345

• SelectAll() selects all the text within the control.

• Undo() restores the contents in the text control back to the previous state before the last operation.

TextBox
As stated earlier, you can configure the TextBox control in many ways, ranging from long to short,
normal to password hidden, and single to multilined. If you enable this control, you have a built-in
undo buffer. You can cut and paste to it. The functionality this control has is simply amazing.

Along with the properties provided by TextBoxBase, the TextBox control adds a few properties of
its own:

• AcceptReturn is a Boolean that represents, in a multiline control, whether pressing the Enter
key creates a new line of text or passes control to the default button of the form. If this property
is set to false, then Ctrl-Enter must be pressed to create a new line of text. The default is true.

• CharacterCasing is a CharacterCasing enum class that notifies the control as characters are
entered into the control that it should convert the character to uppercase, lowercase, or leave
the character as typed. The default is CharacterCasing::Normal or to leave the characters as
they are typed.

• PasswordChar is a Char that represents the character to be used to replace all the characters
typed in, thus hiding the password from view. The default is the value 0, meaning do not use
PasswordChar.

• TextAlign is a HorizontalAlignment enum class that represents whether the text should be right
justified, left justified, or centered when entered. The default is HorizontalAlignment::Left,
or left justified.

MaskedTextBox
The basic idea behind the MaskedTextBox is it provides a mask by which to enter text data. Then,
using an assortment of properties and methods, it ensures that the user is adhering to the specified
mask.

Here are some common properties and an event that you would use to ensure the data entered
matches the mask:

• BeepOnError is a Boolean property that enables or disables the system beep when an invalid
character is entered onto the mask entry. If this property is set to true, then invalid keystrokes
will beep. The default is false.

• MaskCompleted is a Boolean property that becomes true when all required mask entries have
been populated.

• MaskFull is a Boolean property that becomes true when all mask entries are populated.

• MaskInputRejected is an event that provides a way for you to customize the handling of
invalid keystroke entries onto the mask.

Having valid characters entered onto the mask does not necessarily mean that you have a valid
value to match the given type of the data entry field. In other words, you can enter numbers into a
date field, as is required by the mask, and still enter an invalid date. To ensure that a valid data type
will result from the entry in the MaskedTextBox, you must assign an instance of the data type expected
to be entered to the ValidatingType property:

mtbDoB->ValidatingType = DateTime::typeid;

 I will cover the typeid operator in detail in Chapter 18.

Fraser_640-4C09.fm Page 345 Monday, November 14, 2005 11:41 AM

346 C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S

Then to see if the input data of the control matches the data type assigned, you add a handler
to the TypeValidationCompleted event, which triggers when the control loses focus. Finally, you examine
the IsValidInput property of TypeValidationEventArgs argument passed by the event. If the value
is true, then the data entered into the control parses to the data type assign by the ValidatingType
property, and the value is placed in TypeValidationEventArgs’ ReturnValue property.

■Note If you are implementing your own data type, you need to implement the static Parse() method before
assigning an instance of it to the ValidatingType property.

If you just want the text value returned from the MaskedTextBox and not a specific data type,
then the control provides a number of properties to provide the value in the format you require:

• Text is a String property that returns what the user currently sees in the control.

• OutputText is a String property that returns a value based on the values specified in the
IncludeLiteral and IncludePrompt properties. The IncludeLiteral property specifies
whether the literals specified in the mask are included, while the IncludePrompt specifies
whether the prompt characters are included. Both of these properties default to true.

• InputText is a String property that returns only what the user actually entered in the control.

The MaskedTextBox control’s mask must be made up of one or more of the characters defined in
Table 9-1. The characters used by MaskedTextBox are based on those used by the Masked Edit Control
in Visual Basic 6.0.

Table 9-1. MaskedTextBox Masking Characters

Masking Character Description

0 A mandatory digit between 0 and 9.

9 An optional digit between 0 and 9.

An optional digit between 0 and 9 or a +, - or space. If the position of
this mask entry is left blank, then the value is space.

L A mandatory letter between a–z and A–Z.

? An optional letter between a–z and A–Z.

& A mandatory letter. If the AsciiOnly property is set, then this mask
behaves the same as L.

C An optional letter. If the AsciiOnly property is set, then this mask
behaves the same as ?.

A A mandatory alphanumeric. If the AsciiOnly property is set, then the
only characters allowed are a–z and A–Z.

a An optional alphanumeric. If the AsciiOnly property is set, then the
only characters allowed are a–z and A–Z.

 . A decimal placeholder. The UI culture will determine the actual
decimal placeholder used.

, A thousands placeholder. The UI culture will determine the actual
thousands placeholder used.

Fraser_640-4C09.fm Page 346 Monday, November 14, 2005 11:41 AM

C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S 347

The next example (see Listing 9-11) demonstrates some features of the TextBox and MaskedTextBox
control. First it creates a TextBox and a MaskedTextBox to handle input. When the user clicks the
Submit button, the text gets inserted into the front of the read-only, multiline text box. This multiline
text box can be made editable if you enter “Editable” in the bottom password text box.

You should notice the following thing about this example. I set the multiline text box properties
AcceptTab and AcceptReturn to true. This causes the pressing of the Tab key to create a tab character
in the multiline text box (when editable, obviously) and causes the Enter key to create a new line of
text. This differs from the default functionality of the remaining controls, which jump to the next
control on the Tab key and causes the AcceptButton to be triggered when the Enter key is pressed.

Listing 9-11. Some TextBox and MaskedTextBox Code

#pragma once

namespace TextEntry
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();

 DoB = DateTime::MinValue;

: A time separator. The UI culture will determine the actual time
separator used.

/ A date separator. The UI culture will determine the actual date
separator used.

$ A currency symbol. The UI culture will determine the actual currency
symbol used.

< Converts all subsequent characters to lowercase.

> Converts all subsequent characters to uppercase.

| Disables previous > or < masks.

\ Turns a mask character into a literal. A [\\] will turn into a \ literal.

All other characters A literal that will appear in a static location within the control. The user
will not be able to move or delete the literal.

Table 9-1. MaskedTextBox Masking Characters

Masking Character Description

Fraser_640-4C09.fm Page 347 Monday, November 14, 2005 11:41 AM

348 C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S

 // setting validating type to DateTime
 mtbDoB->ValidatingType = DateTime::typeid;
 }

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }

 private:
 System::Windows::Forms::Button^ bnSubmit;
 System::Windows::Forms::Label^ label3;
 System::Windows::Forms::TextBox^ tbPassword;
 System::Windows::Forms::TextBox^ tbOutput;
 System::Windows::Forms::Label^ label2;
 System::Windows::Forms::MaskedTextBox^ mtbDoB;
 System::Windows::Forms::Label^ label1;
 System::Windows::Forms::TextBox^ tbName;

 DateTime^ DoB;

 System::ComponentModel::Container ^components;

#pragma region Windows Form Designer generated code

 void InitializeComponent(void)
 {
 this->bnSubmit = (gcnew System::Windows::Forms::Button());
 this->label3 = (gcnew System::Windows::Forms::Label());
 this->tbPassword = (gcnew System::Windows::Forms::TextBox());
 this->tbOutput = (gcnew System::Windows::Forms::TextBox());
 this->label2 = (gcnew System::Windows::Forms::Label());
 this->mtbDoB = (gcnew System::Windows::Forms::MaskedTextBox());
 this->label1 = (gcnew System::Windows::Forms::Label());
 this->tbName = (gcnew System::Windows::Forms::TextBox());
 this->SuspendLayout();
 //
 // bnSubmit
 //
 this->bnSubmit->Location = System::Drawing::Point(260, 36);
 this->bnSubmit->Margin = System::Windows::Forms::Padding(1,3,3,3);
 this->bnSubmit->Name = L"bnSubmit";
 this->bnSubmit->Size = System::Drawing::Size(56, 20);
 this->bnSubmit->TabIndex = 10;
 this->bnSubmit->Text = L" Submit";
 this->bnSubmit->Click +=
 gcnew System::EventHandler(this, &Form1::bnSubmit_Click);
 //
 // label3

Fraser_640-4C09.fm Page 348 Monday, November 14, 2005 11:41 AM

C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S 349

 //
 this->label3->AutoSize = true;
 this->label3->Location = System::Drawing::Point(14, 232);
 this->label3->Name = L"label3";
 this->label3->Size = System::Drawing::Size(56, 13);
 this->label3->TabIndex = 14;
 this->label3->Text = L"Password:";
 //
 // tbPassword
 //
 this->tbPassword->CausesValidation = false;
 this->tbPassword->Location = System::Drawing::Point(78, 226);
 this->tbPassword->MaxLength = 16;
 this->tbPassword->Name = L"tbPassword";
 this->tbPassword->PasswordChar = '?';
 this->tbPassword->Size = System::Drawing::Size(238, 20);
 this->tbPassword->TabIndex = 13;
 this->tbPassword->UseSystemPasswordChar = true;
 this->tbPassword->WordWrap = false;
 this->tbPassword->TextChanged +=
 gcnew System::EventHandler(this,&Form1::tbPassword_TextChanged);
 //
 // tbOutput
 //
 this->tbOutput->Location = System::Drawing::Point(14, 63);
 this->tbOutput->Multiline = true;
 this->tbOutput->Name = L"tbOutput";
 this->tbOutput->ReadOnly = true;
 this->tbOutput->ScrollBars =
 System::Windows::Forms::ScrollBars::Vertical;
 this->tbOutput->Size = System::Drawing::Size(302, 156);
 this->tbOutput->TabIndex = 12;
 this->tbOutput->TabStop = false;
 //
 // label2
 //
 this->label2->AutoSize = true;
 this->label2->Location = System::Drawing::Point(168, 15);
 this->label2->Name = L"label2";
 this->label2->Size = System::Drawing::Size(69, 13);
 this->label2->TabIndex = 11;
 this->label2->Text = L"Date of Birth:";
 //
 // mtbDoB
 //
 this->mtbDoB->AllowPromptAsInput = false;
 this->mtbDoB->BeepOnError = true;
 this->mtbDoB->Location = System::Drawing::Point(168, 36);
 this->mtbDoB->Margin = System::Windows::Forms::Padding(3,3,1,3);
 this->mtbDoB->Mask = L"00/00/0000";
 this->mtbDoB->Name = L"mtbDoB";
 this->mtbDoB->Size = System::Drawing::Size(89, 20);
 this->mtbDoB->TabIndex = 8;
 this->mtbDoB->TypeValidationCompleted +=

Fraser_640-4C09.fm Page 349 Monday, November 14, 2005 11:41 AM

350 C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S

 gcnew System::Windows::Forms::TypeValidationEventHandler(this,
 &Form1::mtbDoB_TypeValidationCompleted);
 //
 // label1
 //
 this->label1->AutoSize = true;
 this->label1->Location = System::Drawing::Point(14, 15);
 this->label1->Name = L"label1";
 this->label1->Size = System::Drawing::Size(38, 13);
 this->label1->TabIndex = 9;
 this->label1->Text = L"Name:";
 //
 // tbName
 //
 this->tbName->Location = System::Drawing::Point(14, 36);
 this->tbName->Name = L"tbName";
 this->tbName->Size = System::Drawing::Size(147, 20);
 this->tbName->TabIndex = 7;
 this->tbName->Validating +=
 gcnew System::ComponentModel::CancelEventHandler(this,
 &Form1::tbName_Validating);
 //
 // Form1
 //
 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(331, 261);
 this->Controls->Add(this->bnSubmit);
 this->Controls->Add(this->label3);
 this->Controls->Add(this->tbPassword);
 this->Controls->Add(this->tbOutput);
 this->Controls->Add(this->label2);
 this->Controls->Add(this->mtbDoB);
 this->Controls->Add(this->label1);
 this->Controls->Add(this->tbName);
 this->Name = L"Form1";
 this->Text = L"Simple entry data entry";
 this->ResumeLayout(false);
 this->PerformLayout();
 }

#pragma endregion

 private:
 System::Void bnSubmit_Click(System::Object^ sender,
 System::EventArgs^ e)
 {
 if (tbName->Text->Length <= 0) // Blank name bad!
 tbName->Focus();
 else if (*DoB == DateTime::MinValue) // Bad date bad!
 mtbDoB->Focus();

Fraser_640-4C09.fm Page 350 Monday, November 14, 2005 11:41 AM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S 351

 else // Good!
 {
 // Concatinate name and date of birth and add to output
 tbOutput->Text = String::Format("{0} - {1}\r\n{2}",
 tbName->Text, mtbDoB->Text, tbOutput->Text);
 tbName->Clear();
 mtbDoB->Clear();
 DoB = DateTime::MinValue;
 }
 }

 System::Void tbPassword_TextChanged(System::Object^ sender,
 System::EventArgs^ e)
 {
 // if the Password TextBox Text equals "Editable" then make
 // the multiline TextBox editable and have a tab stop
 if (tbPassword->Text->Equals("Editable"))
 {
 tbOutput->TabStop = true;
 tbOutput->ReadOnly = false;
 }
 else
 {
 tbOutput->TabStop = false;
 tbOutput->ReadOnly = true;
 }
 }

 System::Void mtbDoB_TypeValidationCompleted(System::Object^ sender,
 System::Windows::Forms::TypeValidationEventArgs^ e)
 {
 // Check to see if the date was valid and less than or equals
 // todays date. When false make the MaskedTextBox yellow
 // and make DoB MinValue. otherwise set it to normal and make
 // DoB the value within MaskedTextBox
 if (e->IsValidInput &&
 (*(DateTime^)e->ReturnValue) <= DateTime::Now)
 {
 DoB = (DateTime^)e->ReturnValue;
 mtbDoB->BackColor = SystemColors::Window;
 }
 else
 {
 mtbDoB->BackColor = Color::Yellow;
 DoB = DateTime::MinValue;
 }
 }

Fraser_640-4C09.fm Page 351 Monday, November 14, 2005 11:41 AM

352 C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S

 System::Void tbName_Validating(System::Object^ sender,
 System::ComponentModel::CancelEventArgs^ e)
 {
 // Check to make sure there is a name. When false make the
 // TextBox yellow. Otherwise set it to normal as all is okay
 if (tbName->Text->Length <= 0)
 tbName->BackColor = Color::Yellow;
 else
 tbName->BackColor = SystemColors::Window;
 }
 };
}

One thing to note about the code in Listing 9-11 is the use of the Control class’s Validating
event. This event is triggered when a control loses focus and allows the value within the control to be
validated. In the previous example, I use the Validating event to turn the control yellow when no
name is entered in the control.

By the way, if you set the Cancel property to true within the CancelEventArgs argument, then
the focus will remain within the current control.

Data validation is well beyond the scope of this book, but Data Entry and Validation with C#
and VB .NET Windows Forms by Nick Symmonds (Apress, 2003) covers the topic in great detail.
Again, the book is not written for C++/CLI, but you should be able to follow it well enough to imple-
ment its contents.

Figure 9-13 shows what TextEntry.exe looks like when you execute it.

Figure 9-13. Assorted text boxes

RichTextBox
Plain and simple, the RichTextBox control is overkill, for most cases, when you need text input. This
control provides advanced formatting features, such as boldface, italics, underline, color, and different
fonts. It is also possible to format paragraphs. You can assign text directly to the control using the
Text property, or you can load it from a Rich Text Format (RTF) or plain text file using the LoadFile()
method.

The RichTextBox control is a little tricky to use, as most of the added functionality over the
TextBox control requires the handling of events or other controls, such as buttons, to implement.
For example, implementing boldfacing of text within a RichTextBox requires implementing the
SelectionFont property, which needs to be referenced somehow. In the following example, I do this
by pressing the F1 key, but you could do it any number of other ways.

Fraser_640-4C09.fm Page 352 Monday, November 14, 2005 11:41 AM

C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S 353

The RichTextBox control provides a number of additional properties to handle the formatting
features it provides. Here are some of the more common properties:

• BulletIndent is an Int32 that represents the number of pixels inserted as the indentation
after a bullet. The default is 0.

• CanRedo is a Boolean that represents whether undone operations can be reapplied.

• RedoActionName is a String that represents the name of the next redo action to be applied. If
the return String is empty (a zero-length String, not a null), then there are no more actions
that can be redone.

• RightMargin is an Int32 that represents the number of pixels from the left side of the control
where the nonvisible right margin is placed.

• Rtf is a String that represents the RTF-formatted data in the control. The content of the Rtf
property differs from that of the Text property in that the Rtf property is in Rich Text Format,
whereas the Text property is in just plain text.

• Scrollbars is a RichTextScrollbars enum class that represents which (if any) scroll bars will be
visible within the control. The default is RichTextScrollbars::Both, which will display both
vertical and horizontal scroll bars if needed. I prefer to use ForceVertical instead because it
stops the control from having to readjust itself when the content extends beyond the vertical
height of the control. It now simply enables the already visible vertical scroll bar.

• SelectedRtf is a String containing selected RTF-formatted text from the control. The default
is a zero-length String (not null).

• SelectionBullet is a Boolean that represents whether the bullet style should be applied to the
current selected text or insertion point. The default is false.

• SelectionColor is a System::Drawing::Color that represents the color of the selected text. If
more than one color falls within the selected text, then Color::Empty is returned.

• SelectionFont is a System::Drawing::Font that represents the font of the selected text. If more
than one font falls within the selected text, then null is returned.

• SelectionHangingIndent is an Int32 that represents the distance in pixels between the left
edge of the first line of text in the selected paragraph and the left edge of subsequent lines in
the same paragraph.

• SelectionIndent is an Int32 that represents the distance in pixels between the left edge of the
control window and the left edge of the current selected text or text added after the insertion
point.

• SelectionRightIndent is an Int32 that represents the distance in pixels between the right
edge of the text and the right edge of the control.

• SelectionTabs is an array of Int32 that represents a set of absolute tab locations in pixels.

• ShowSelectionMargin is a Boolean that represents whether the selection margin on the left
side of the control is expanded for easier access. Clicking the margin highlights the entire row.
The default is false.

• UndoActionName is a String that represents the name of the next undo action to be applied. If
the return String is empty (a zero-length String, not a null), then there are no more actions
that can be undone.

The RichTextBox control provides a number of additional methods as well:

• Find() searches for the specified text within the control.

• LoadFile() loads a text or RTF-formatted file into the control.

Fraser_640-4C09.fm Page 353 Monday, November 14, 2005 11:41 AM

354 C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S

• Redo() will redo the last undo operation done on the control.

• SaveFile() saves a text or RTF-formatted file to the specified path/file location.

• Undo() will undo the last operation done on the control.

The next example (see Listing 9-12) is an extremely simple and limited use of the functionality
of the RichTextBox. It lacks many of the features that are available, but it is a good starting point and
gives you some ideas about how to implement your own RTF editor, if you are so inclined.

In the example, pressing the F9 key loads a couple of pages from a novel I am writing. You can
save the file back by pressing F10. To test out the special features of this RichTextBox, select some
text with the mouse and then press one of the remaining function keys (F1–F8).

Listing 9-12. Implementing a Simple RTF Editor

#pragma once

namespace RichText
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();
 BuildLabels();
 }

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }
 private:
 System::Windows::Forms::RichTextBox^ rtBox;

 array<System::Windows::Forms::Label^>^ labels;

 System::ComponentModel::Container ^components;

Fraser_640-4C09.fm Page 354 Monday, November 14, 2005 11:41 AM

C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S 355

#pragma region Windows Form Designer generated code

 void InitializeComponent(void)
 {
 this->rtBox = (gcnew System::Windows::Forms::RichTextBox());
 this->SuspendLayout();
 //
 // rtBox
 //
 this->rtBox->Anchor =
 static_cast<System::Windows::Forms::AnchorStyles>
 (System::Windows::Forms::AnchorStyles::Top
 | System::Windows::Forms::AnchorStyles::Bottom
 | System::Windows::Forms::AnchorStyles::Left
 | System::Windows::Forms::AnchorStyles::Right);
 this->rtBox->Location = System::Drawing::Point(0, 32);
 this->rtBox->Name = L"rtBox";
 this->rtBox->RightMargin = 900;
 this->rtBox->ScrollBars =
 System::Windows::Forms::RichTextBoxScrollBars::ForcedVertical;
 this->rtBox->ShowSelectionMargin = true;
 this->rtBox->Size = System::Drawing::Size(950, 488);
 this->rtBox->TabIndex = 1;
 this->rtBox->Text = L"";
 this->rtBox->KeyDown +=
 gcnew System::Windows::Forms::KeyEventHandler(this,
 &Form1::rtBox_KeyDown);
 //
 // Form1
 //
 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(950, 520);
 this->Controls->Add(this->rtBox);
 this->Name = L"Form1";
 this->Text = L"(Very Simple Rich Text Editor)";
 this->ResumeLayout(false);
 }

#pragma endregion

 void BuildLabels()
 {
 array<String^>^ rtLabel = gcnew array<String^> {
 L"F1-Bold", L"F2-Italics", L"F3-Underline",
 L"F4-Normal", L"F5-Red", L"F6-Blue",
 L"F7-Green", L"F8-Black", L"F9-Load",
 L"F10-Save"
 };
 labels = gcnew array<System::Windows::Forms::Label^>(10);

Fraser_640-4C09.fm Page 355 Monday, November 14, 2005 11:41 AM

356 C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S

 // Build the labels
 for (int i = 0; i < labels->Length; i++)
 {
 labels[i] = gcnew Label();
 labels[i]->BackColor = SystemColors::ControlDark;
 labels[i]->BorderStyle = BorderStyle::FixedSingle;
 labels[i]->Location = Drawing::Point(5+(95*i), 8);
 labels[i]->Size = Drawing::Size(85, 16);
 labels[i]->Text = rtLabel[i];
 labels[i]->TextAlign = ContentAlignment::MiddleCenter;
 }
 // Place labels on the Form
 Controls->AddRange(labels);
 }

 System::Void rtBox_KeyDown(System::Object^ sender,
 System::Windows::Forms::KeyEventArgs^ e)
 {
 try
 {
 if (rtBox->SelectionLength > 0)
 {
 // Change selected text style
 FontStyle fs;
 switch (e->KeyCode)
 {
 case Keys::F1:
 fs = FontStyle::Bold;
 break;
 case Keys::F2:
 fs = FontStyle::Italic;
 break;
 case Keys::F3:
 fs = FontStyle::Underline;
 break;
 case Keys::F4:
 fs = FontStyle::Regular;
 break;
 // Change selected text color
 case Keys::F5:
 rtBox->SelectionColor = Color::Red;
 break;
 case Keys::F6:
 rtBox->SelectionColor = Color::Blue;
 break;
 case Keys::F7:
 rtBox->SelectionColor = Color::Green;
 break;
 case Keys::F8:
 rtBox->SelectionColor = Color::Black;
 break;
 }

Fraser_640-4C09.fm Page 356 Monday, November 14, 2005 11:41 AM

C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S 357

 // Do the actual change of the selected text style
 if (e->KeyCode >= Keys::F1 && e->KeyCode <= Keys::F4)
 {
 rtBox->SelectionFont = gcnew Drawing::Font(
 rtBox->SelectionFont->FontFamily,
 rtBox->SelectionFont->Size,
 fs
);
 }
 }
 // Load hard coded Chapter01.rtf file
 else if (e->KeyCode == Keys::F9)
 {
 rtBox->LoadFile("Chapter01.rtf");
 }
 // Save hard coded Chapter01.rtf file
 else if (e->KeyCode == Keys::F10)
 {
 rtBox->SaveFile("Chapter01.rtf",
 RichTextBoxStreamType::RichText);
 }
 }
 // Capture any blowups
 catch (Exception ^e)
 {
 MessageBox::Show(String::Format("Error: {0}", e->Message));
 }
 }
 };
}

As you can see, implementing the functionality of the RichTextBox is done externally to the
control itself. You need some way of updating the properties. I took the easy way out by capturing
simple function keystroke events and updating the selected RichTextBox text as appropriate. You
will probably want to use a combination of keystrokes, button clicks, and so on to make the editing
process as easy as possible.

Another interesting bit of code in this example is the use of the Anchor property:

this->rtBox->Anchor = static_cast<System::Windows::Forms::AnchorStyles>
 (System::Windows::Forms::AnchorStyles::Top |
 System::Windows::Forms::AnchorStyles::Bottom |
 System::Windows::Forms::AnchorStyles::Left |
 System::Windows::Forms::AnchorStyles::Right);

This property allows you to have a control anchor itself to any or all (as shown in the previous
code) sides of the parent window. Thus, when the parent window is resized, so is the control. (I
removed all the extra, and unneeded, code added by the code generator to make it more readable.)

Be careful when you run this program, as it is dependent on where it is executed. To make
things easier, I hard-coded the program to load and save to the current working directory. When you
run this program within Visual Studio 2005, the current working directory is located where your
source code is. Thus, the Chapter01.rtf file is located in the same directory as the source code. If you
run this program on its own out of Windows Explorer, for example, then it will not find the RTF file.
In this scenario, you need to copy the file to the same directory as the executable. Obviously, if you
wanted to make the program more robust, you would allow a user to specify where the RTF file is, so
this dependency would not be an issue.

Fraser_640-4C09.fm Page 357 Monday, November 14, 2005 11:41 AM

cafac74dd2d083cbec0906b66fcd56b1

358 C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S

Figure 9-14 shows what RichText.exe looks like when you execute it.

Figure 9-14. The simple RTF editor in action

The Selection Controls
The three common selection controls, ListBox, ComboBox, and CheckedListBox, are the last of the
more basic controls provided by the .NET Framework class library that you will cover in this chapter.
Each of the controls represents a selectable scrolling list of items.

When you create a selection control, you provide it with a collection of values for it to display.
Each value within the collection has a unique index. The control keeps track of these indices for you,
along with their associated values. All you have to do is handle selection events sent by the selection
controls or query the control for which a value or values have been selected, either by value or index.

Selection controls are helpful when you want to select from a list of items of a “reasonable” size.
“Reasonable,” though, is a very relative term and it depends on what the user is selecting and where
the data is coming from (fetching 300 rows from a local hard disk is different than fetching them
from a mainframe in another country). For example, a list of 50 items may seem excessive in a selec-
tion control if there is no rhyme or reason to it, but it is just right when you are looking for a state in
America.

All of the selection controls inherit from the abstract class ListControl. This provides a common
set of properties and methods from which to build upon. Selection controls have the capability to
display lists originating from sources that implement the IList interface. The functionality is
provided by the ListControl’s property, DataSource. You will see an example of this when you cover
ADO.NET in Chapter 12.

Here is a list of some of the most common properties found in the ListControl class and thus
inherited by the ListBox, ComboBox, and CheckListBox controls:

• DataSource is an Object that implements the IList interface, frequently an Array or DataSet,
which represents the items that make up the control. The default is null, which means no
DataSource is being used.

Fraser_640-4C09.fm Page 358 Monday, November 14, 2005 11:41 AM

C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S 359

• SelectedIndex is an Int32 that represents the zero-based index of the currently selected item.
If no index is selected, then –1 will be returned.

• SelectedValue is an Object that represents the value of the currently selected item as speci-
fied by the control data source’s ValueMember. If the ValueMember is not specified, then the
ToString() value is returned.

• ValueMember is a String that represents the property of the control’s data source to use as the
value. The default is an empty String (and not null), meaning that it uses the ToString()
value.

The ListBox is truly just a selection list, whereas the ComboBox is a combination of a ListBox and
a TextBox. The CheckListBox, on the other hand, is a combination of a ListBox and a CheckBox. In
fact, the CheckListBox inherits directly from ListBox and thus only indirectly from ListControl.

ListBox
The ListBox control is a simple scrollable list of items from which a user can select one or more
items, depending on the SelectionMode of the ListBox. Four modes are available:

• SelectionMode::None: No items can be selected.

• SelectionMode::One: Only one item can be selected at a time.

• SelectionMode::MultiSimple: More than one item can be selected.

• SelectionMode::MultiExtended: More than one item can be selected. The method of selecting
the multiple items uses the Shift and Ctrl keys to allow for swifter selection of items.

The ListBox control provides a number of additional properties from the ListControl to
configure the control and organize, find, and select the data within:

• Items is a ListBox::ObjectCollection that represents the collection of items within the
control. The ObjectCollection allows you to do things such as add and remove items from
the ListBox. Note that this method of providing items to the ListBox is not the same as
using a DataSource. If you use a DataSource, you cannot manipulate the items in the ListBox
using the ObjectCollection.

• MultiColumn is a Boolean that represents whether the control can be broken into multiple
columns. The default is false.

• SelectedIndices is a ListBox::SelectedIndexCollection that represents the collection of
zero-based indices of currently selected items within the control.

• SelectedItems is a ListBox::SelectedObjectCollection that represents the collection of
currently selected items within the control.

• Sorted is a Boolean that represents whether the control is automatically sorted. The default
is false.

• Text is a String that represents the value of the currently selected item. If you set the value of
the Text property, then the ListBox searches itself for an item that matches the Text property
and selects that item.

The ListBox control also provides a number of additional methods:

• ClearSelected() deselects all selected items in the control.

• FindString() finds the first item that starts with a given String.

• FindStringExact() finds the first item that exactly matches a given String.

Fraser_640-4C09.fm Page 359 Monday, November 14, 2005 11:41 AM

360 C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S

• GetSelected() determines if a given item is currently selected.

• SetSelected() selects the items at the given index.

• Sort() sorts the items in the control.

Listing 9-13 shows how to transfer selected items between two different lists. The ListBox on
the left is sorted and is a MultiExtended list, whereas the one on the right is not sorted and is a
MultiSimple list.

Listing 9-13. Transferring Items Between ListBoxes

#pragma once

namespace ListTransfers
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();
 }

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }

 private:
 System::Windows::Forms::ListBox^ LBDest;
 System::Windows::Forms::Button^ bnR2L;
 System::Windows::Forms::Button^ bnL2R;
 System::Windows::Forms::ListBox^ LBOrg;
 System::Windows::Forms::Label^ label2;
 System::Windows::Forms::Label^ label1;

 System::ComponentModel::Container ^components;

Fraser_640-4C09.fm Page 360 Monday, November 14, 2005 11:41 AM

C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S 361

#pragma region Windows Form Designer generated code

 void InitializeComponent(void)
 {
 this->LBDest = (gcnew System::Windows::Forms::ListBox());
 this->bnR2L = (gcnew System::Windows::Forms::Button());
 this->bnL2R = (gcnew System::Windows::Forms::Button());
 this->LBOrg = (gcnew System::Windows::Forms::ListBox());
 this->label2 = (gcnew System::Windows::Forms::Label());
 this->label1 = (gcnew System::Windows::Forms::Label());
 this->SuspendLayout();
 //
 // LBDest
 //
 this->LBDest->FormattingEnabled = true;
 this->LBDest->Location = System::Drawing::Point(213, 46);
 this->LBDest->Name = L"LBDest";
 this->LBDest->SelectionMode =
 System::Windows::Forms::SelectionMode::MultiSimple;
 this->LBDest->Size = System::Drawing::Size(134, 134);
 this->LBDest->TabIndex = 10;
 this->LBDest->DoubleClick +=
 gcnew System::EventHandler(this, &Form1::LBDest_DoubleClick);
 //
 // bnR2L
 //
 this->bnR2L->Location = System::Drawing::Point(167, 108);
 this->bnR2L->Name = L"bnR2L";
 this->bnR2L->Size = System::Drawing::Size(33, 20);
 this->bnR2L->TabIndex = 9;
 this->bnR2L->Text = L"<==";
 this->bnR2L->Click +=
 gcnew System::EventHandler(this, &Form1::bnR2L_Click);
 //
 // bnL2R
 //
 this->bnL2R->Location = System::Drawing::Point(167, 80);
 this->bnL2R->Name = L"bnL2R";
 this->bnL2R->Size = System::Drawing::Size(33, 20);
 this->bnL2R->TabIndex = 8;
 this->bnL2R->Text = L"==>";
 this->bnL2R->Click +=
 gcnew System::EventHandler(this, &Form1::bnL2R_Click);
 //
 // LBOrg
 //
 this->LBOrg->FormattingEnabled = true;
 this->LBOrg->Items->AddRange(gcnew cli::array< System::Object^>(10)
 {L"System", L"System::Collections", L"System::Data",
 L"System::Drawing", L"System::IO", L"System::Net",
 L"System::Threading", L"System::Web",
 L"System::Windows::Forms", L"System::Xml"});

Fraser_640-4C09.fm Page 361 Monday, November 14, 2005 11:41 AM

362 C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S

 this->LBOrg->Location = System::Drawing::Point(20, 46);
 this->LBOrg->Name = L"LBOrg";
 this->LBOrg->SelectionMode =
 System::Windows::Forms::SelectionMode::MultiExtended;
 this->LBOrg->Size = System::Drawing::Size(133, 134);
 this->LBOrg->Sorted = true;
 this->LBOrg->TabIndex = 6;
 this->LBOrg->DoubleClick +=
 gcnew System::EventHandler(this, &Form1::LBOrg_DoubleClick);
 //
 // label2
 //
 this->label2->AutoSize = true;
 this->label2->Location = System::Drawing::Point(213, 17);
 this->label2->Name = L"label2";
 this->label2->Size = System::Drawing::Size(104, 13);
 this->label2->TabIndex = 7;
 this->label2->Text = L"Unsorted Multisimple";
 //
 // label1
 //
 this->label1->AutoSize = true;
 this->label1->Location = System::Drawing::Point(20, 17);
 this->label1->Name = L"label1";
 this->label1->Size = System::Drawing::Size(107, 13);
 this->label1->TabIndex = 5;
 this->label1->Text = L"Sorted Multiextended";
 //
 // Form1
 //
 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(367, 196);
 this->Controls->Add(this->LBDest);
 this->Controls->Add(this->bnR2L);
 this->Controls->Add(this->bnL2R);
 this->Controls->Add(this->LBOrg);
 this->Controls->Add(this->label2);
 this->Controls->Add(this->label1);
 this->Name = L"Form1";
 this->Text = L"List Box Transfers";
 this->ResumeLayout(false);
 this->PerformLayout();
 }

#pragma endregion

 private:
 System::Void LBOrg_DoubleClick(System::Object^ sender,
 System::EventArgs^ e)
 {

Fraser_640-4C09.fm Page 362 Monday, November 14, 2005 11:41 AM

C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S 363

 // Add Selected item to other ListBox
 // Then remove item from original
 if (LBOrg->SelectedItem != nullptr)
 {
 LBDest->Items->Add(LBOrg->SelectedItem);
 LBOrg->Items->Remove(LBOrg->SelectedItem);
 }
 }

 System::Void LBDest_DoubleClick(System::Object^ sender,
 System::EventArgs^ e)
 {
 // Add Selected item to other ListBox
 // Then remove item from original
 if (LBDest->SelectedItem != nullptr)
 {
 LBOrg->Items->Add(LBDest->SelectedItem);
 LBDest->Items->Remove(LBDest->SelectedItem);
 }
 }

 System::Void bnL2R_Click(System::Object^ sender, System::EventArgs^ e)
 {
 // Add all Selected items to other ListBox
 // Then remove all the items from original
 array<Object^>^ tmp =
 gcnew array<Object^>(LBOrg->SelectedItems->Count);
 LBOrg->SelectedItems->CopyTo(tmp, 0);
 LBDest->Items->AddRange(tmp);
 for (int i = 0; i < tmp->Length; i++)
 LBOrg->Items->Remove(tmp[i]);
 }

 System::Void bnR2L_Click(System::Object^ sender, System::EventArgs^ e)
 {
 // Add all Selected items to other ListBox
 // Then remove all the items from original
 array<Object^>^ tmp =
 gcnew array<Object^>(LBDest->SelectedItems->Count);
 LBDest->SelectedItems->CopyTo(tmp, 0);
 LBOrg->Items->AddRange(tmp);
 for (int i = 0; i < tmp->Length; i++)
 LBDest->Items->Remove(tmp[i]);
 }
 };
}

The code is pretty straightforward. It creates two ListBoxes and configures them using their
properties. There are a couple of things you need to pay attention to in Listing 9-13. First, when
handling the double-click event for a list, make sure that an item is actually selected by checking the
SelectedItem for a nullptr value before trying to work with the SelectedItem. This is because double-
clicking an area of the list that is not an item generates an event with no selection.

Fraser_640-4C09.fm Page 363 Monday, November 14, 2005 11:41 AM

364 C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S

The second thing to watch out for is removing items from a list using the SelectedItems property.
The SelectedItems property does not create a copy of the items selected; instead, it uses the original
items. Thus, if you try to remove items from a list such as the following:

// This code DOES NOT work
for (Int32 i = 0; i < LBDest->SelectedItems->Count; i++)
{
 LBDest->Items->Remove(LBDest->SelectedItems->Item[i]);
}

not all the selected items get removed—in fact, only half do. What is happening is that
LBDest->SelectedItems->Count decreases when you call LBDest->Items->Remove() because the
SelectedItems enumeration is decreasing in size at the same time as the ListBox entries are. My
solution was to create a copy of the SelectedItems and then use that instead of SelectedItems directly:

// This DOES work
array<Object^>^ tmp = gcnew array<Object^>(LBDest->SelectedItems->Count);
LBDest->SelectedItems->CopyTo(tmp, 0);
for (int i = 0; i < tmp->Count; i++)
 LBDest->Items->Remove(tmp[i]);

Figure 9-15 shows what ListTransfers.exe looks like when you execute it.

Figure 9-15. Transferring items between list boxes

ComboBox
The ComboBox control is a combination of a ListBox control with a TextBox control attached to the
top. The ListBox control provides a quick click response, and the TextBox control allows the user to
type in an answer.

There are three different DropDownStyles of ComboBox:

• ComboBoxStyle::Simple: The list is always expanded and the text field can be edited.

• ComboBoxStyle::DropDown: The list starts collapsed but can be expanded and the text field can
be edited.

• ComboBoxStyle::DropDownList: The list starts collapsed but can be expanded and the text field
only accepts Strings that are part of the selection list. (This style of ComboBox does not allow
responses that are not part of the list.)

Like all other controls, the ComboBox provides several properties and methods to support the
functionality of the control. You will probably recognize that these members are half TextBox and
half ListBox in nature. Some of the common members unique to the ComboBox are as follows:

Fraser_640-4C09.fm Page 364 Monday, November 14, 2005 11:41 AM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S 365

• DroppedDown is a Boolean that represents whether the list portion of the control has been
expanded.

• MaxDropDownItems is an Int32 that represents the maximum number of items that can be visu-
ally displayed in the list portion of the control. This number can range from 1 to 100. Note that
this is not the same as the total items in the control, which is limited to the memory of the
computer, though I doubt you will ever create a list that large (unless of course you acciden-
tally create an infinite loop).

• MaxLength is an Int32 that represents the maximum length of the text box portion of the control.

• Select() is a method that selects a specified range of text within the text box portion of
the control.

• SelectAll() is a method that selects all the text in the text box portion of the control.

• SelectionLength is an Int32 that represents the length of the selected text within the text box
portion of the control.

• SelectionStart is an Int32 that represents the zero-based starting position of the selected
text within the text box portion of the control.

Listing 9-14 shows that you can keep all three ComboBox style controls in sync. Selecting an item
in one control will automatically update the other two. If you type an entry in the text box area, the
other two controls are updated appropriately. Note that if you type in a value that is not on the
selection list, then the DropDownList style control does not update.

Listing 9-14. Synchronizing ComboBoxes

#pragma once

namespace SyncCombos
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();
 PopulateLists();
 }

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }

Fraser_640-4C09.fm Page 365 Monday, November 14, 2005 11:41 AM

366 C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S

 private:
 System::Windows::Forms::ComboBox^ ddlist;
 System::Windows::Forms::ComboBox^ simple;
 System::Windows::Forms::ComboBox^ ddown;

 System::ComponentModel::Container ^components;

#pragma region Windows Form Designer generated code

 void InitializeComponent(void)
 {
 this->ddlist = (gcnew System::Windows::Forms::ComboBox());
 this->simple = (gcnew System::Windows::Forms::ComboBox());
 this->ddown = (gcnew System::Windows::Forms::ComboBox());
 this->SuspendLayout();
 //
 // ddlist
 //
 this->ddlist->DropDownStyle =
 System::Windows::Forms::ComboBoxStyle::DropDownList;
 this->ddlist->FormattingEnabled = true;
 this->ddlist->Location = System::Drawing::Point(300, 14);
 this->ddlist->Name = L"ddlist";
 this->ddlist->Size = System::Drawing::Size(121, 21);
 this->ddlist->TabIndex = 5;
 this->ddlist->SelectedIndexChanged +=
 gcnew System::EventHandler(this, &Form1::ddlist_Change);
 //
 // simple
 //
 this->simple->DropDownStyle =
 System::Windows::Forms::ComboBoxStyle::Simple;
 this->simple->FormattingEnabled = true;
 this->simple->Location = System::Drawing::Point(154, 11);
 this->simple->Name = L"simple";
 this->simple->Size = System::Drawing::Size(122, 117);
 this->simple->TabIndex = 4;
 this->simple->SelectedIndexChanged +=
 gcnew System::EventHandler(this, &Form1::simple_Change);
 this->simple->TextChanged +=
 gcnew System::EventHandler(this, &Form1::simple_Change);
 //
 // ddown
 //
 this->ddown->FormattingEnabled = true;
 this->ddown->Location = System::Drawing::Point(12, 14);
 this->ddown->MaxDropDownItems = 3;
 this->ddown->MaxLength = 10;
 this->ddown->Name = L"ddown";
 this->ddown->Size = System::Drawing::Size(121, 21);
 this->ddown->TabIndex = 3;
 this->ddown->SelectedIndexChanged +=
 gcnew System::EventHandler(this, &Form1::ddown_Change);

Fraser_640-4C09.fm Page 366 Monday, November 14, 2005 11:41 AM

C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S 367

 this->ddown->TextChanged +=
 gcnew System::EventHandler(this, &Form1::ddown_Change);
 //
 // Form1
 //
 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(433, 138);
 this->Controls->Add(this->ddlist);
 this->Controls->Add(this->simple);
 this->Controls->Add(this->ddown);
 this->Name = L"Form1";
 this->Text = L"Synchronized Combo boxing";
 this->ResumeLayout(false);
 }

#pragma endregion

 private:
 void PopulateLists()
 {
 // Item to be placed in all ComboBoxes
 array<Object^>^ ddItems = gcnew array<Object^> {
 L"oranges", L"cherries", L"apples",
 L"lemons", L"bananas", L"grapes"
 };
 ddown->Items->AddRange(ddItems);
 simple->Items->AddRange(ddItems);
 ddlist->Items->AddRange(ddItems);
 }

 System::Void ddown_Change(System::Object^ sender, System::EventArgs^ e)
 {
 // Update simple and dropdownlist with dropdown text
 simple->Text = ddown->Text;
 ddlist->SelectedItem = ddown->Text;
 }

 System::Void simple_Change(System::Object^ sender,System::EventArgs^ e)
 {
 // Update dropdown and dropdownlist with simple text
 ddown->Text = simple->Text;
 ddlist->SelectedItem = simple->Text;
 }

 System::Void ddlist_Change(System::Object^ sender,System::EventArgs^ e)
 {
 // Update simple and dropdown with dropdownlist SelectedText
 ddown->SelectedItem = ddlist->SelectedItem;
 simple->SelectedItem = ddlist->SelectedItem;
 }
 };
}

Fraser_640-4C09.fm Page 367 Monday, November 14, 2005 11:41 AM

368 C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S

When you are working with Simple or DropDown ComboBoxes, all you usually need to worry about
is what is currently in the Text property. This property tells you what the current value is in the
ComboBox, and placing the value in it automatically changes the SelectedItem property. On the other
hand, when you are working with the DropDownList, it is better to work with the SelectedItem property,
because it is more efficient for the control as the editing overhead of the text field goes unused.

Figure 9-16 shows what SyncCombos.exe looks like when you execute it.

Figure 9-16. Synchronized combo boxes

CheckedListBox
The CheckedListBox control provides you a way to group related check boxes in a scrollable and
selectable ListBox control. In other words, this control provides the functionality of an array of
check boxes and at the same time the functionality of a ListBox, allowing the selection of a checkable
item without actually checking the item off.

The CheckedListBox control directly inherits from the ListBox control, so in addition to the
functionality provided by the ListBox, the CheckedListBox provides numerous other properties.
Some of the more common are as follows:

• CheckedIndices is a CheckedListBox::CheckedIndexCollection that represents the collection
of zero-based indices of currently checked or indeterminate state items within the control.

• CheckedItems is a CheckedListBox::CheckedItemCollection that represents the collection of
currently checked or indeterminate state items within the control.

• CheckOnClick is a Boolean that represents whether the check box is toggled immediately on
the selection of the check box item. The default is false.

• ThreeDCheckBoxes is a Boolean that represents if 3D or flat check boxes are used. The default is
false or a flat appearance.

Along with the preceding properties, the CheckListBox control provides several methods. The
following methods get access to the checked status of the CheckListBox’s items:

• GetItemChecked() checks (using a specified index) whether an item is checked.

• GetItemCheckState() checks (using a specified index) what the check state of the item is.

• SetItemChecked() checks or unchecks an item at a specified index.

• SetItemCheckState() sets the check status of an item at a specified index.

Working with the CheckedListBox can be a little confusing, as selected and checked items are
not the same thing. You can have an item that does not check or uncheck when selected.

To get the selected item (you can only have one, unless you select SelectionMode::None), you
use the properties prefixed by “Selected”. Even though there are properties that suggest more than
one item can be selected, these properties return a collection of one item. Basically, the difference

Fraser_640-4C09.fm Page 368 Monday, November 14, 2005 11:41 AM

C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S 369

between SelectedIndex and SelectedIndices, and SelectedItem and SelectedItems, is that the first
returns a single item and the second returns a collection of one item.

To get the checked items from the control, you need to use the properties and methods that
contain “Check(ed)” within their name. Note that there are two common ways of getting all the
checked items in the CheckedListBox. The first method is to use the default index property of
CheckIndices and CheckItems:

for (int i = 0; i < checkedlistbox->CheckedItems->Count; i++)
{
 //...do what you want with:
 // checkedlistbox->CheckedItems[i];
}

The second approach is to use the methods GetItemChecked() and GetItemCheckState():

for (int i = 0; i < checkedlistbox->Items->Count; i++)
{
 if (checkedlistbox->GetItemChecked(i))
 {
 //...do what you want with:
 // checkedlistbox->Items[i];
 }
}

The main difference between the two is that the first approach provides only a list of checked
items, whereas the second requires an iteration through all the items and verifies the check status
of each.

The example in Listing 9-15 shows how closely the CheckListBox is to an array of Checkboxes and
a ListBox. It does this by synchronizing input using these controls.

Listing 9-15. Splitting the CheckedListBox

#pragma once

namespace SplitCLB
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();

 array<Object^>^ Items = gcnew array<Object^> {
 "Appleman", "Challa", "Chand", "Cornell",
 "Fraser", "Gunnerson", "Harris", "Rammer",
 "Symmonds", "Thomsen", "Troelsen", "Vaughn"
 };

Fraser_640-4C09.fm Page 369 Monday, November 14, 2005 11:41 AM

370 C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S

 clBox->Items->AddRange(Items);
 lBox->Items->AddRange(Items);

 // Create a Check box for each entry in Items array.
 cBox = gcnew array<CheckBox^>(Items->Length);

 int j = cBox->Length/2;
 for (int i = 0; i < j; i++)
 {
 // Build Left Column
 cBox[i] = gcnew CheckBox();
 cBox[i]->Location = Drawing::Point(50, 160+(30*i));
 cBox[i]->TabIndex = i+2;
 cBox[i]->Text = Items[i]->ToString();
 cBox[i]->CheckStateChanged +=
 gcnew EventHandler(this, &Form1::cBox_CheckStateChanged);

 // Build Right Column
 cBox[i+j] = gcnew CheckBox();
 cBox[i+j]->Location = Drawing::Point(180, 160+(30*i));
 cBox[i+j]->TabIndex = i+j+2;
 cBox[i+j]->Text = Items[i+j]->ToString();
 cBox[i+j]->CheckStateChanged +=
 gcnew EventHandler(this, &Form1::cBox_CheckStateChanged);
 }
 // Add all CheckBoxes to Form
 Controls->AddRange(cBox);
 }

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }

 private:
 System::Windows::Forms::ListBox^ lBox;
 System::Windows::Forms::CheckedListBox^ clBox;

 array<CheckBox^>^ cBox;

 System::ComponentModel::Container ^components;

Fraser_640-4C09.fm Page 370 Monday, November 14, 2005 11:41 AM

C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S 371

#pragma region Windows Form Designer generated code

 void InitializeComponent(void)
 {
 this->lBox = (gcnew System::Windows::Forms::ListBox());
 this->clBox = (gcnew System::Windows::Forms::CheckedListBox());
 this->SuspendLayout();
 //
 // lBox
 //
 this->lBox->FormattingEnabled = true;
 this->lBox->Location = System::Drawing::Point(356, 32);
 this->lBox->Name = L"lBox";
 this->lBox->Size = System::Drawing::Size(120, 264);
 this->lBox->TabIndex = 3;
 this->lBox->SelectedIndexChanged +=
 gcnew System::EventHandler(this,
 &Form1::lBox_SelectedIndexChanged);
 //
 // clBox
 //
 this->clBox->FormattingEnabled = true;
 this->clBox->Location = System::Drawing::Point(12, 32);
 this->clBox->MultiColumn = true;
 this->clBox->Name = L"clBox";
 this->clBox->Size = System::Drawing::Size(323, 79);
 this->clBox->TabIndex = 2;
 this->clBox->ThreeDCheckBoxes = true;
 this->clBox->SelectedIndexChanged +=
 gcnew System::EventHandler(this,
 &Form1::clBox_SelectedIndexChanged);
 this->clBox->ItemCheck +=
 gcnew System::Windows::Forms::ItemCheckEventHandler(this,
 &Form1::clBox_ItemCheck);
 //
 // Form1
 //
 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(494, 392);
 this->Controls->Add(this->lBox);
 this->Controls->Add(this->clBox);
 this->Name = L"Form1";
 this->Text = L"Splitting The Check List Box";
 this->ResumeLayout(false);
 }

Fraser_640-4C09.fm Page 371 Monday, November 14, 2005 11:41 AM

cafac74dd2d083cbec0906b66fcd56b1

372 C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S

#pragma endregion

 private:
 System::Void clBox_ItemCheck(System::Object^ sender,
 System::Windows::Forms::ItemCheckEventArgs^ e)
 {
 // update state of CheckBox with same index as checked CheckedListBox
 cBox[e->Index]->CheckState = e->NewValue;
 }

 System::Void clBox_SelectedIndexChanged(System::Object^ sender,
 System::EventArgs^ e)
 {
 // update ListBox with same selected item in the CheckedListBox
 lBox->SelectedItem = clBox->SelectedItem->ToString();
 }

 System::Void lBox_SelectedIndexChanged(System::Object^ sender,
 System::EventArgs^ e)
 {
 // update CheckedListBox with same selected item in the ListBox
 clBox->SelectedItem = lBox->SelectedItem;
 }

 void cBox_CheckStateChanged(Object^ sender, EventArgs^ e)
 {
 // update state of CheckedListBox with same index as checked CheckBox
 CheckBox^ cb = (CheckBox^)sender;
 clBox->SetItemCheckState(Array::IndexOf(cBox, cb), cb->CheckState);
 }
 };
}

The CheckedListBox provides an event to handle the checking of a box within the control. To
handle this event, you need to create a method with the template:

ItemCheck(System::Object^ sender, System::Windows::Forms::ItemCheckEventArgs^ e)

Conveniently, the handler provides the parameter of type ItemCheckEventArgs, which among
other things provides the index of the box being checked and the current and previous state of the
box. I use this information to update the external array of check boxes.

cBox[e->Index]->CheckState = e->NewValue;

One other thing of note in the code is the trick I used to get the index of the CheckBox, which
triggered the state change event out of the CheckBox array. The Array class has a neat little static
method, Array::IndexOf(), which you pass as arguments to the array containing an entry and the
entry itself, with the result being the index to that entry. I used this method by passing it the array of
CheckBoxes along with the dynamically cast sender Object.

Figure 9-17 shows what SplitCLB.exe looks like when you execute it.

Fraser_640-4C09.fm Page 372 Monday, November 14, 2005 11:41 AM

C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S 373

Figure 9-17. Splitting the checklist box

Timers
A few timers are sprinkled throughout the .NET Framework class library. One relevant to this
chapter is found in the System::Windows::Forms namespace. Though not a GUI control, the Timer is
an important component for scheduling events that occur at discrete user-defined intervals.

Notice I called Timer a “component” and not a “control,” as it inherits from the Component class
but not the Control class. This fact is apparent when you implement a Timer in Visual Studio 2005,
because when you drag the component to the Win Form it does not get placed on the form. Instead,
it gets placed in its own area at the bottom of the designer window. Even though it is placed there,
you still work with the Timer the same way you do with a control. You use the Properties view to
update the Timer’s properties and events.

The Timer component is easy to use. Just instantiate it in your program:

Timer^ timer = gcnew Timer();

Create an event handler to accept Tick events:

void timer_Tick(Object^ sender, System::EventArgs^ e)
{
 //...Process the Tick event
}

And then delegate that event handler:

timer->Tick += gcnew EventHandler(this, &Form1::timer_Tick);

The Timer component provides a few properties to configure and methods to implement the
functionality of the control:

• Enabled is a Boolean that represents whether the Timer is enabled or disabled. When enabled,
the Timer will trigger Tick events at an interval specified by the Interval property. The default
is false, or disabled.

Fraser_640-4C09.fm Page 373 Monday, November 14, 2005 11:41 AM

374 C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S

• Interval is an Int32 that represents the discrete interval in milliseconds between triggering
Tick events. The default interval is 0, meaning no interval is set.

• Start() is a method that does the same thing as the Enabled property being set to true.

• Stop() is a method that does the same thing as the Enabled property being set to false.

The Timer is such a simple example (see Listing 9-16) that I decided to throw another less frequently
used control, the ProgressBar, into the program. You have seen a progress bar whenever you install
software (it’s that bar that seems to take forever to slide across). The example is simply a repeating
one-minute timer.

Listing 9-16. The One-Minute Timer

#pragma once

namespace MinuteTimer
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();
 seconds = 0;
 }

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }

 private:
 System::Windows::Forms::ProgressBar^ progressBar;
 System::Windows::Forms::Label^ lbsecs;
 System::Windows::Forms::Timer^ timer;

 int seconds;

 System::ComponentModel::IContainer^ components;

Fraser_640-4C09.fm Page 374 Monday, November 14, 2005 11:41 AM

C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S 375

#pragma region Windows Form Designer generated code

 void InitializeComponent(void)
 {
 this->components = (gcnew System::ComponentModel::Container());
 this->progressBar = (gcnew System::Windows::Forms::ProgressBar());
 this->lbsecs = (gcnew System::Windows::Forms::Label());
 this->timer =
 (gcnew System::Windows::Forms::Timer(this->components));
 this->SuspendLayout();
 //
 // progressBar
 //
 this->progressBar->Location = System::Drawing::Point(61, 16);
 this->progressBar->Maximum = 60;
 this->progressBar->Name = L"progressBar";
 this->progressBar->Size = System::Drawing::Size(326, 23);
 this->progressBar->TabIndex = 3;
 //
 // lbsecs
 //
 this->lbsecs->AutoSize = true;
 this->lbsecs->Location = System::Drawing::Point(19, 25);
 this->lbsecs->Name = L"lbsecs";
 this->lbsecs->Size = System::Drawing::Size(13, 13);
 this->lbsecs->TabIndex = 2;
 this->lbsecs->Text = L"0";
 this->lbsecs->TextAlign =
 System::Drawing::ContentAlignment::MiddleRight;
 //
 // timer
 //
 this->timer->Enabled = true;
 this->timer->Tick +=
 gcnew System::EventHandler(this, &Form1::timer_Tick);
 //
 // Form1
 //
 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(407, 55);
 this->Controls->Add(this->progressBar);
 this->Controls->Add(this->lbsecs);
 this->Name = L"Form1";
 this->Text = L"One minute timer";
 this->ResumeLayout(false);
 this->PerformLayout();
 }

Fraser_640-4C09.fm Page 375 Monday, November 14, 2005 11:41 AM

376 C H A P T E R 9 ■ B A S I C W I N D O W S F O R M S A P P L I C A T I O N S

#pragma endregion

 private:
 System::Void timer_Tick(System::Object^ sender, System::EventArgs^ e)
 {
 // Write current tick count (int 10th of second) to label
 seconds++;
 seconds %= 600;
 lbsecs->Text = String::Format("{0}.{1}", (seconds/10).ToString(),
 (seconds%10).ToString());
 // Update ProgressBar
 progressBar->Value = seconds/10;
 }
 };
}

The ProgressBar simply shows the amount completed of some activity. You specify the starting
point (Minimum) and the end point (Maximum) for which you want to monitor the progress, and then
you simply update the value of the ProgressBar between these two points. The default start and end
values are 0 to 100, representing progress from 0 percent to 100 percent, which is the most common
use for the ProgressBar. In this example, because I am representing seconds in a minute, it made
more sense to go from 0 to 60. Updating the ProgressBar itself is very simple, as it will move over
automatically when the value exceeds the specified step factor.

Figure 9-18 shows what MinuteTimer.exe looks like when you execute it.

Figure 9-18. The one-minute timer

Summary
You covered a lot in this chapter. You started with the lowly “Hello World!” form and worked your
way up to building fully functional Win Forms. Along the way, you explored a number (most, actu-
ally) of the more common simple GUI controls provided by the .NET Framework class library. You
should now be able to build a simple Win Form with a high level of confidence.

In the next chapter, you will continue to look at the GUI interface provided by the .NET Frame-
work class library, but this time you look at some of the more advanced Win Form topics such as
views, menus, and dialog boxes.

Fraser_640-4C09.fm Page 376 Monday, November 14, 2005 11:41 AM

377

■ ■ ■

C H A P T E R 1 0

Advanced Windows
Forms Applications

In the previous chapter, you got all the basics of Windows Forms applications squared away. It is
now time to look at some of the more exciting controls and features provided by the .NET Frame-
work. Even though this chapter covers more advanced Win Forms applications, this does not mean
they are more complex or difficult to develop. The main reason is that the .NET Framework uses
encapsulation quite extensively in its classes and hides much of the complexities of Win Forms from
you. On the other hand, you can still access these complexities if you really want to.

In this chapter, I continue using the approach of covering both manual development and devel-
opment using the GUI design tool. As I pointed out in the previous chapter, I feel the intimate
knowledge of Win Form components, attained by building Win Forms manually, will allow you to
build better GUI interfaces to your Windows application.

This chapter covers some of the more powerful GUI controls provided by the .NET Framework.
It also looks at three other Win Form development areas: menus, dialog boxes, and the MDI
interface.

In Chapter 9, I covered most of the more commonly used data entry controls. Nothing is stopping
you from using these controls in a simple form every time you need data from the user. However,
doing so is not always the best way to interact with or present information to the user.

Let’s now start a whirlwind tour of some of the remaining controls provided by the .NET Frame-
work class library.

ImageList
Before I can go very much further into the discussions about Windows Forms, I have to make a
minor detour. As I’m sure you are aware, Windows applications are fairly graphics intensive. In fact,
most of the controls I’m going to cover in this chapter have some graphics capabilities.

Though some of the controls allow you to access image files or image resources directly, usually
a Win Form control requires you to place all the images you are using within an ImageList compo-
nent. (An ImageList inherits from Component but not Control.) Then, using an index to each image in
the ImageList, you place the appropriate image in the control’s image type property.

The process of creating an ImageList is extremely easy with Visual Studio 2005, though behind
the scenes a lot is taking place. The steps to create an ImageList are as follows:

1. Drag and drop an ImageList to the form you want to place images on.

2. Within the ImageList property, click the ellipses button next to the Images property. This will
bring up a dialog box similar to the one shown in Figure 10-1.

Fraser_640-4C10.fm Page 377 Sunday, October 30, 2005 12:25 AM

378 C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S

Figure 10-1. The Images Collection Editor dialog box

3. Click the Add button, and then navigate to and open the image file within the present Open
File dialog box.

4. Repeat step 3 for all desired images.

5. Click the OK button.

Once you have added the images to the ImageList, you may need to configure these three
ImageList properties:

• ColorDepth is a ColorDepth object that represents the color depth of the icon. The default is
8-bit color, so most likely you will not need to change this property.

• ImageSize is a Size object that represents the size of the images contained in the list. The
default is 16×16 but the maximum is 256×256. Note that all images in the list are the same size.

• TransparentColor is a Color object that represents the transparent color. You probably will be
able to ignore this property, as the default is Transparent.

Now that the ImageList is available, it will be selectable from the properties list of all controls
within the form that use ImageLists. For a control to get access to the ImageList, simply select the
ImageList from this property list.

The final step differs from control to control, but usually to select the specific image to use out
of the ImageList, you update an image index property within the control with the corresponding
index to the image within the ImageList.

What happens behind the scenes is not quite as easy, and it’s fortunate that you don’t have to
worry about it. First, the ImageList that you created is added to the Form1.resx file. At the same time,
code is also added to the Form1.h file for a control to access the ImageList. Next, when the program
is compiled, the ImageList is serialized and placed within a resource file. The resource file then gets
embedded in the executable assembly.

If you examine the code added to the Form1.h file to get access to the ImageList, you will notice
that program actually gets the ImageList from the executable assembly:

Fraser_640-4C10.fm Page 378 Sunday, October 30, 2005 12:25 AM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S 379

System::ComponentModel::ComponentResourceManager^ resources =
 gcnew System::ComponentModel::ComponentResourceManager(typeid<Form1>);
// ...
this->imFruitSmall->ImageStream =
 (stdcli::language::safe_cast<System::Windows::Forms::ImageListStreamer^ >
 (resources->GetObject(L"imageList.ImageStream")));

You will examine resources and how the preceding code works in much more detail in Chapter 18.

Views
Now that our detour is over, it is finally time to continue on with some advanced, and I think more fun,
Window Form controls. Let’s start off with two of the views provided by the .NET Framework:
ListView and TreeView. There is a third view, DataGridView, but since this view is so closely integrated
with database development, I’ll hold off discussing it until we tackle database development in
Chapter 12. If you have used Windows for any amount of time, then you have seen ListView and
TreeView, quite extensively, maybe without knowing it. The reason is that these views, when used
correctly, provide a better way of displaying data to the user. Because of this, Microsoft uses them
within a large portion of the applications and tools they provide.

A point that may not be readily apparent about views, because of all the underlying functionality
they provide, is that they are also controls. This means that they are inheritable and derive from
components and then the control class. Thus, any place that you could use a simple control from the
previous chapter, you could also use one of these feature rich views. What this means, for example,
is that instead of displaying data using rows and rows of Label and TextBox controls, you could plug
in one of these views instead.

ListView
The ListView is a powerful (but slightly complicated) control that displays a list of items. You can see
what a ListView control looks like by opening up Windows Explorer. The ListView is the right-hand
panel if two panels are being displayed. The items can consist of a combination of a record (array) of
text, a large icon, and/or a small icon.

You can display a ListView in one of four different View property modes:

• View::LargeIcon displays a large icon with text underneath in a grid layout.

• View::SmallIcon displays a small icon with text along the side in columns.

• View::List displays the root text associated with the item in a single column.

• View::Details displays the root text and subtext in multiple columns.

Providing the functionality of the ListView requires a number of properties, many of which you
have seen before. Here are some of the common ones unique to the ListView:

• Activation is an ItemActivation enum that represents whether one or two clicks are required
to activate an item. The default is two clicks or ItemActivation::Standard.

• AllowColumnReorder is a Boolean that represents whether the headings can be dragged to
reorder the columns. The default is false.

Fraser_640-4C10.fm Page 379 Sunday, October 30, 2005 12:25 AM

380 C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S

• AutoArrange is a Boolean that represents whether the icons are automatically arranged. The
default is true.

• Columns is a ListView::ColumnHeaderCollection that represents a collection of column headers
to be used if the View property mode is set to View::Details.

• FocusItem is a ListViewItem that represents the item that currently has focus. If no item has
focus, null is returned.

• FullRowSelect is a Boolean that represents whether clicking an item selects all its subitems as
well. The default is false.

• GridLines is a Boolean that represents whether grid lines are displayed. The default is false.

• HeaderStyle is a ColumnHeaderStyle enum that represents whether the header is displayed
and if it is clickable. The default is displayed and clickable: ColumnHeaderStyle::Clickable.

• HoverSelection is a Boolean that represents whether the item is automatically selected when
the cursor hovers over it for a few seconds. The default is false.

• LabelEdit is a Boolean that represents whether the label of an item can be edited. The default
is false.

• LabelWrap is a Boolean that represents whether the label wraps when displayed. The default
is true.

• LargeImageList is an ImageList of the large icons to be used if the View property is set to
View::LargeIcon.

• SmallImageList is an ImageList of the small icons to be used if the View property is set to
View::SmallIcon.

Along with these properties, the ListView provides a number of methods. These are some of the
common methods unique to ListView:

• ArrangeIcons() arranges the icons in large and small icon views.

• EnsureVisible() ensures that an item is visible even if the ListView must scroll to make it visible.

• GetItemAt() gets an item at a specified x and y location.

Listing 10-1 shows a ListView of fruit, their price, and the month when they are available for
harvest. (The data was derived using a high-tech research facility. Okay, you caught me—I made it
up.) When an item is selected, its price is displayed in a label. The example also shows how you can
switch to any of the four ListView views based on the check value of radio buttons.

Listing 10-1. A ListView of Fruit

#pragma once

namespace ListViewEx
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;

 public ref class Form1 : public System::Windows::Forms::Form
 {

Fraser_640-4C10.fm Page 380 Sunday, October 30, 2005 12:25 AM

C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S 381

 public:
 Form1(void)
 {
 InitializeComponent();
 FillListView();
 }

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }

 private:
 System::Windows::Forms::ImageList^ imFruitSmall;
 System::Windows::Forms::ImageList^ ilFruitLarge;
 System::Windows::Forms::RadioButton^ rbDetails;
 System::Windows::Forms::RadioButton^ rbList;
 System::Windows::Forms::RadioButton^ rbSmallIcon;
 System::Windows::Forms::RadioButton^ rbLargeIcon;
 System::Windows::Forms::Label^ label;
 System::Windows::Forms::ListView^ lView;
 System::Windows::Forms::ColumnHeader^ Fruit;
 System::Windows::Forms::ColumnHeader^ Price;
 System::Windows::Forms::ColumnHeader^ Available;
 System::ComponentModel::IContainer^ components;

#pragma region Windows Form Designer generated code
 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 void InitializeComponent(void)
 {
 this->components = (gcnew System::ComponentModel::Container());
 System::ComponentModel::ComponentResourceManager^ resources =
 (gcnew System::ComponentModel::ComponentResourceManager(Form1::typeid));
 this->imFruitSmall =
 (gcnew System::Windows::Forms::ImageList(this->components));
 this->ilFruitLarge =
 (gcnew System::Windows::Forms::ImageList(this->components));
 this->rbDetails = (gcnew System::Windows::Forms::RadioButton());
 this->rbList = (gcnew System::Windows::Forms::RadioButton());
 this->rbSmallIcon = (gcnew System::Windows::Forms::RadioButton());
 this->rbLargeIcon = (gcnew System::Windows::Forms::RadioButton());
 this->label = (gcnew System::Windows::Forms::Label());
 this->lView = (gcnew System::Windows::Forms::ListView());
 this->Fruit = (gcnew System::Windows::Forms::ColumnHeader());
 this->Price = (gcnew System::Windows::Forms::ColumnHeader());
 this->Available = (gcnew System::Windows::Forms::ColumnHeader());
 this->SuspendLayout();

Fraser_640-4C10.fm Page 381 Sunday, October 30, 2005 12:25 AM

382 C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S

 //
 // imFruitSmall
 //
 this->imFruitSmall->ImageStream =
 (cli::safe_cast<System::Windows::Forms::ImageListStreamer^>
 (resources->GetObject(L"imFruitSmall.ImageStream")));
 this->imFruitSmall->Images->SetKeyName(0, L"apple.ico");
 this->imFruitSmall->Images->SetKeyName(1, L"banana.ico");
 this->imFruitSmall->Images->SetKeyName(2, L"orange.ico");
 //
 // ilFruitLarge
 //
 this->ilFruitLarge->ImageStream =
 (cli::safe_cast<System::Windows::Forms::ImageListStreamer^>
 (resources->GetObject(L"ilFruitLarge.ImageStream")));
 this->ilFruitLarge->Images->SetKeyName(0, L"apple.ico");
 this->ilFruitLarge->Images->SetKeyName(1, L"banana.ico");
 this->ilFruitLarge->Images->SetKeyName(2, L"orange.ico");
 //
 // rbDetails
 //
 this->rbDetails->Anchor =
 static_cast<System::Windows::Forms::AnchorStyles>
 ((System::Windows::Forms::AnchorStyles::Bottom |
 System::Windows::Forms::AnchorStyles::Right));
 this->rbDetails->AutoSize = true;
 this->rbDetails->Checked = true;
 this->rbDetails->Location = System::Drawing::Point(154, 201);
 this->rbDetails->Name = L"rbDetails";
 this->rbDetails->Size = System::Drawing::Size(53, 17);
 this->rbDetails->TabIndex = 17;
 this->rbDetails->Text = L"Details";
 this->rbDetails->CheckedChanged +=
 gcnew System::EventHandler(this, &Form1::rbType_CheckedChanged);
 //
 // rbList
 //
 this->rbList->Anchor =
 static_cast<System::Windows::Forms::AnchorStyles>
 ((System::Windows::Forms::AnchorStyles::Bottom |
 System::Windows::Forms::AnchorStyles::Right));
 this->rbList->AutoSize = true;
 this->rbList->Location = System::Drawing::Point(154, 177);
 this->rbList->Name = L"rbList";
 this->rbList->Size = System::Drawing::Size(37, 17);
 this->rbList->TabIndex = 16;
 this->rbList->Text = L"List";
 this->rbList->CheckedChanged +=
 gcnew System::EventHandler(this, &Form1::rbType_CheckedChanged);
 //
 // rbSmallIcon
 //
 this->rbSmallIcon->Anchor =
 static_cast<System::Windows::Forms::AnchorStyles>

Fraser_640-4C10.fm Page 382 Sunday, October 30, 2005 12:25 AM

C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S 383

 ((System::Windows::Forms::AnchorStyles::Bottom |
 System::Windows::Forms::AnchorStyles::Right));
 this->rbSmallIcon->AutoSize = true;
 this->rbSmallIcon->Location = System::Drawing::Point(154, 153);
 this->rbSmallIcon->Name = L"rbSmallIcon";
 this->rbSmallIcon->Size = System::Drawing::Size(70, 17);
 this->rbSmallIcon->TabIndex = 15;
 this->rbSmallIcon->Text = L"Small Icon";
 this->rbSmallIcon->CheckedChanged +=
 gcnew System::EventHandler(this, &Form1::rbType_CheckedChanged);
 //
 // rbLargeIcon
 //
 this->rbLargeIcon->Anchor =
 static_cast<System::Windows::Forms::AnchorStyles>
 ((System::Windows::Forms::AnchorStyles::Bottom |
 System::Windows::Forms::AnchorStyles::Right));
 this->rbLargeIcon->AutoSize = true;
 this->rbLargeIcon->Location = System::Drawing::Point(154, 129);
 this->rbLargeIcon->Name = L"rbLargeIcon";
 this->rbLargeIcon->Size = System::Drawing::Size(72, 17);
 this->rbLargeIcon->TabIndex = 14;
 this->rbLargeIcon->Text = L"Large Icon";
 this->rbLargeIcon->CheckedChanged +=
 gcnew System::EventHandler(this, &Form1::rbType_CheckedChanged);
 //
 // label
 //
 this->label->Anchor =
 static_cast<System::Windows::Forms::AnchorStyles>
 ((System::Windows::Forms::AnchorStyles::Bottom |
 System::Windows::Forms::AnchorStyles::Left));
 this->label->BorderStyle =
 System::Windows::Forms::BorderStyle::FixedSingle;
 this->label->Location = System::Drawing::Point(19, 162);
 this->label->Name = L"label";
 this->label->Size = System::Drawing::Size(64, 21);
 this->label->TabIndex = 13;
 this->label->TextAlign =
 System::Drawing::ContentAlignment::MiddleCenter;
 //
 // lView
 //
 this->lView->Anchor =
 static_cast<System::Windows::Forms::AnchorStyles>
 ((((System::Windows::Forms::AnchorStyles::Top |
 System::Windows::Forms::AnchorStyles::Bottom) |
 System::Windows::Forms::AnchorStyles::Left) |
 System::Windows::Forms::AnchorStyles::Right));
 this->lView->Columns->AddRange(
 gcnew cli::array< System::Windows::Forms::ColumnHeader^>(3)
 {
 this->Fruit, this->Price, this->Available
 });

Fraser_640-4C10.fm Page 383 Sunday, October 30, 2005 12:25 AM

384 C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S

 this->lView->FullRowSelect = true;
 this->lView->GridLines = true;
 this->lView->LabelEdit = true;
 this->lView->LargeImageList = this->ilFruitLarge;
 this->lView->Location = System::Drawing::Point(0, 0);
 this->lView->MultiSelect = false;
 this->lView->Name = L"lView";
 this->lView->Size = System::Drawing::Size(270, 109);
 this->lView->SmallImageList = this->imFruitSmall;
 this->lView->TabIndex = 12;
 this->lView->View = System::Windows::Forms::View::Details;
 this->lView->SelectedIndexChanged +=
 gcnew System::EventHandler(this,
 &Form1::lView_SelectedIndexChanged);
 //
 // Fruit
 //
 this->Fruit->Text = L"Fruit";
 this->Fruit->Width = 115;
 //
 // Price
 //
 this->Price->Text = L"Price";
 this->Price->Width = 50;
 //
 // Available
 //
 this->Available->Text = L"Available";
 this->Available->Width = 100;
 //
 // Form1
 //
 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(269, 229);
 this->Controls->Add(this->rbDetails);
 this->Controls->Add(this->rbList);
 this->Controls->Add(this->rbSmallIcon);
 this->Controls->Add(this->rbLargeIcon);
 this->Controls->Add(this->label);
 this->Controls->Add(this->lView);
 this->Name = L"Form1";
 this->Text = L"List View Example";
 this->ResumeLayout(false);
 this->PerformLayout();
 }
#pragma endregion

 private:
 void FillListView()
 {
 array<String^>^ itemRec1 = gcnew array<String^> {
 "Apple", "1.50", "September"
 };

Fraser_640-4C10.fm Page 384 Sunday, October 30, 2005 12:25 AM

C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S 385

 lView->Items->Add(gcnew ListViewItem(itemRec1, 0));

 array<String^>^ itemRec2 = gcnew array<String^> {
 "Banana", "3.95", "November"
 };
 lView->Items->Add(gcnew ListViewItem(itemRec2, 1));

 array<String^>^ itemRec3 = gcnew array<String^> {
 "Orange", "2.50", "March"
 };
 lView->Items->Add(gcnew ListViewItem(itemRec3, 2));
 }

 System::Void lView_SelectedIndexChanged(System::Object^ sender,
 System::EventArgs^ e)
 {
 if (lView->FocusedItem != nullptr)
 label->Text = lView->FocusedItem->SubItems[1]->Text;
 }

 System::Void rbType_CheckedChanged(System::Object^ sender,
 System::EventArgs^ e)
 {
 if (rbLargeIcon->Checked)
 lView->View = View::LargeIcon;
 else if (rbSmallIcon->Checked)
 lView->View = View::SmallIcon;
 else if (rbList->Checked)
 lView->View = View::List;
 else if (rbDetails->Checked)
 lView->View = View::Details;
 }
 };
}

Working with the ListView is a little tricky because the GUI designer doesn’t place things in the
code where you expect them (or at least I don’t think so). So I’ll group the code together so that you
can see what’s happening more clearly.

First, like any control, you create the ListView and then configure it using its properties. The
example ListView is anchored and uses full row selection, display gridlines, no multiple selections,
editable labels, large image list, small image list, and is preset to the detailed view.

private: System::Windows::Forms::ListView^ lView;
//...
this->lView = gcnew System::Windows::Forms::ListView();

this->lView->Anchor = System::Windows::Forms::AnchorStyles::Top |
 System::Windows::Forms::AnchorStyles::Bottom |
 System::Windows::Forms::AnchorStyles::Left |
 System::Windows::Forms::AnchorStyles::Right;
this->lView->FullRowSelect = true;
this->lView->GridLines = true;
this->lView->LabelEdit = true;
this->lView->LargeImageList = this->ilFruitLarge;
this->lView->Location = System::Drawing::Point(0, 0);

Fraser_640-4C10.fm Page 385 Sunday, October 30, 2005 12:25 AM

cafac74dd2d083cbec0906b66fcd56b1

386 C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S

this->lView->MultiSelect = false;
this->lView->Size = System::Drawing::Size(270, 109);
this->lView->SmallImageList = this->imFruitSmall;
this->lView->View = System::Windows::Forms::View::Details;
this->lView->SelectedIndexChanged +=
 gcnew System::EventHandler(this, &Form1::lView_SelectedIndexChanged);

this->Controls->Add(this->lView);

Next, because the detailed view is available, you need to create headers for the ListView’s items.
Notice that you add the headers to the ListView control’s Column property.

// Fruit
System::Windows::Forms::ColumnHeader^ Fruit;
this->Fruit = gcnew (gcnew System::Windows::Forms::ColumnHeader());
this->Fruit->Text = L"Fruit";
this->Fruit->Width = 115;

// Price
System::Windows::Forms::ColumnHeader^ Price;
this->Price = (gcnew System::Windows::Forms::ColumnHeader());
this->Price->Text = L"Price";
this->Price->Width = 50;

// Available
System::Windows::Forms::ColumnHeader^ Available;
this->Available = (gcnew System::Windows::Forms::ColumnHeader());
this->Available->Text = L"Available";
this->Available->Width = 100;

// Add header to ListView
this->lView->Columns->AddRange (
 gcnew array<System::Windows::Forms::ColumnHeader^ >(3) {
 this->Fruit, this->Price, this->Available
 }
);

Finally, once the ListView is ready for the world to see, you add the list items to the view. I showed
this being done manually, but you could also use the designer to add list items. Notice the last
parameter of the ListViewItem constructor is an integer index to the image within both image lists
(large and small) assigned to the ListView.

// Add an Apple to the listview
array<String^>^ itemRec1 = gcnew array<String^> {
 "Apple", "1.50", "September"
};
lView->Items->Add(gcnew ListViewItem(itemRec1, 0));

Figure 10-2 shows what ListViewEx.exe looks like when you execute it.

Fraser_640-4C10.fm Page 386 Sunday, October 30, 2005 12:25 AM

C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S 387

Figure 10-2. A ListView of fruit

TreeView
If you have worked with Visual Studio 2005, then you should be familiar with the TreeView control. It
is used in numerous places—Solution Explorer, Server Explorer, and Class View, just to name a few.
It is a control that displays a hierarchy of items in a tree format.

The TreeView, like the ListView just covered, can be a little complicated when you first try to
develop code for it. Once you get the hang of it, though, you will realize that it is worth the effort of
learning. The TreeView is a powerful tool that you will probably use several times in your coding career.

Configuring the TreeView control requires setting properties, just as with every other control.
Here are the common properties you will likely use:

• CheckBoxes is a Boolean that represents whether check boxes are displayed next to each node
in the tree. The default is false.

• ImageIndex is a zero-based Int32 index to the ImageList that represents the position of the
default image used by all nodes of the tree. The default is 0. A value of –1 specifies that no
image will be used.

• ImageList is a collection of bitmaps, icons, and metafiles that will be used to display the
images on the tree control. If the Image list is nullptr, which is the default, no images are
displayed on the tree.

• Indent is an Int32 that represents the distance in pixels to indent for each tree hierarchy level.
The default is 19.

• LabelEdit is a Boolean that represents whether the label is editable. The default is false.

• Nodes is a TreeNodeCollection that represents all the TreeNodes that make up the tree. You will
always have to populate this property and there is no default.

• SelectedImageIndex is a zero-based Int32 index to the ImageList that represents the position
of the default selected image used by the tree. The default is 0. A value of –1 specifies that no
image will be used.

• SelectedNode is a TreeNode that represents the currently selected node. The default is null,
which means no node has been selected.

• ShowLines is a Boolean that represents whether lines will be displayed between nodes. The
default is true, which means that lines will be displayed.

Fraser_640-4C10.fm Page 387 Sunday, October 30, 2005 12:25 AM

388 C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S

• ShowPlusMinus is a Boolean that represents whether the expand (+) and contract (–) buttons
are displayed for nodes that have child nodes. The default is true, which means that they will
be displayed.

• ShowRootLines is a Boolean that represents whether lines will be displayed between nodes that
are at the root of the tree. The default is true, which means that lines will be displayed.

The key to working with the TreeView, like any other control, is to know which event to handle
(see Table 10-1). All the events of the TreeView have default handlers, but if you want the control to
do anything other than expand and contract, you need to handle the events yourself.

The basic building block of a tree hierarchy is the TreeNode. There is always at least one root
node and from it sprouts (possibly many) subnodes. A subnode in turn is also a TreeNode, which can
sprout its own TreeNodes.

There are several constructors for the TreeNode, but you’ll probably deal with two of them at any
one time, unless you create the tree at design time (then you won’t have to deal with them at all).
Which two you use will depend on whether you have images associated with the tree nodes.

If you are not using images, then the first constructor of the pair takes as a parameter a String
as the label for the TreeNode, and the second constructor takes a String label as well as an array of
child TreeNodes. The second constructor allows for a node to have one or more child nodes. To make
a node with only one child, you need to assign to the second parameter an array of child TreeNodes
containing only one node.

// Constructor for a node with no children or images
TreeNode^ rtnA = gcnew TreeNode("Root Node A");
// Constructor for a node with children but no images
array<TreeNode^>^ tnodes= gcnew array<TreeNode^> {
 gcnew TreeNode("Node A"),
 gcnew TreeNode("Node B")
};
TreeNode^ rtnB = gcnew TreeNode("Root Node A", tnodes);

Table 10-1. Common TreeView Events

Event Description

AfterCheck Occurs after a check box is checked

AfterCollapse Occurs after a node is collapsed

AfterExpand Occurs after a node is expanded

AfterLabelEdit Occurs after a label is edited

AfterSelect Occurs after a node is selected

BeforeCheck Occurs before a check box is checked

BeforeCollapse Occurs before a node is collapsed

BeforeExpand Occurs before a node is expanded

BeforeLabelEdit Occurs before a label is edited

BeforeSelect Occurs before a node is selected

Fraser_640-4C10.fm Page 388 Sunday, October 30, 2005 12:25 AM

C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S 389

If you are using images, on the other hand, then the first constructor of the pair takes a String
parameter and an integer value representing indexes into the ImageList that you assigned to the
TreeView. The second constructor takes these three parameters but also an array of child TreeNodes.
Just like the constructor that didn’t take image indexes, the second constructor allows for a node to
have one or more child nodes.

// Constructor for a node with no children but with images
TreeNode^ rtnA = gcnew TreeNode("Root Node A", 0, 1);
// Constructor for a node with children and images
array<TreeNode^>^ tnodes= gcnew array<TreeNode^> {
 gcnew TreeNode("Node A", 2, 3),
 gcnew TreeNode("Node B", 2, 3)
};
TreeNode^ rtnB = gcnew TreeNode("Root Node A", 0, 1, tnodes);

The TreeNode has a number of properties to handle its functionality. Many of the properties are
used in navigating the tree. Here are some of the more common TreeNode properties:

• Checked is a Boolean that represents whether the current node is checked. The default is false.

• FirstNode is the first TreeNode in the Nodes collection of the current node in the TreeView. If
the current node has no child nodes, then the property returns a null value.

• FullPath is a String containing the entire path from the root to the current node delimited by
backslashes (\). The path is all the nodes that need to be navigated to get to the current node.

• ImageIndex is a zero-based Int32 index to the TreeView::ImageList associated with the
current node that represents the position of the unselected image for the node. The default is
the same value as is specified in the TreeView::ImageIndex associated with the current node.

• Index is a zero-based Int32 index that represents the index of the current node within the
TreeView’s Nodes collection.

• LastNode is the last TreeNode in the Nodes collection of the current node in the TreeView. If the
current node has no child nodes, then the property returns a nullptr value.

• NextNode is the next sibling TreeNode in the Nodes collection of the current node in the TreeView.
If the current node has no next sibling node, then the property returns a nullptr value.

• Nodes is a TreeNodeCollection that represents all the children nodes that make up the current
tree node.

• Parent is a TreeNode that represents the parent node of the current tree node.

• PrevNode is the previous sibling TreeNode in the Nodes collection of the current node in the
TreeView. If the current node has no previous sibling node, then the property returns a
nullptr value.

• SelectedImageIndex is a zero-based Int32 index to the TreeView::ImageList associated with
the current node that represents the position of the selected image for the node. The default
is the same value as is specified in the TreeView::ImageIndex associated with the current node.

• Text is a String that represents the text label of the current tree node.

• TreeView is the parent TreeView object that the TreeNode is a member of.

Listing 10-2 shows how to build a tree hierarchy at runtime as opposed to prebuilding it statically.
This example builds a new tree hierarchy every time it runs as it generates its node information
randomly.

Fraser_640-4C10.fm Page 389 Sunday, October 30, 2005 12:25 AM

390 C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S

Listing 10-2. Random Tree Builder

#pragma once

namespace TreeViewEx
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();
 }

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }

 private:
 System::Windows::Forms::TreeView^ tView;
 System::Windows::Forms::ImageList^ imFolders;
 System::ComponentModel::IContainer^ components;

#pragma region Windows Form Designer generated code
 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 void InitializeComponent(void)
 {
 this->components = (gcnew System::ComponentModel::Container());
 System::Windows::Forms::TreeNode^ treeNode1 =
 (gcnew System::Windows::Forms::TreeNode(L"<holder>"));
 System::Windows::Forms::TreeNode^ treeNode2 =
 (gcnew System::Windows::Forms::TreeNode(
 L"Root Node A", 0, 1,
 gcnew cli::array< System::Windows::Forms::TreeNode^ >(1)
 {treeNode1}));
 System::Windows::Forms::TreeNode^ treeNode3 =
 (gcnew System::Windows::Forms::TreeNode(L"<holder>"));

Fraser_640-4C10.fm Page 390 Sunday, October 30, 2005 12:25 AM

C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S 391

 System::Windows::Forms::TreeNode^ treeNode4 =
 (gcnew System::Windows::Forms::TreeNode(
 L"Root Node B", 0, 1,
 gcnew cli::array< System::Windows::Forms::TreeNode^ >(1)
 {treeNode3}));
 System::ComponentModel::ComponentResourceManager^ resources =
 (gcnew System::ComponentModel::ComponentResourceManager(Form1::typeid));
 this->tView = (gcnew System::Windows::Forms::TreeView());
 this->imFolders =
 (gcnew System::Windows::Forms::ImageList(this->components));
 this->SuspendLayout();
 //
 // tView
 //
 this->tView->Dock = System::Windows::Forms::DockStyle::Fill;
 this->tView->ImageIndex = 0;
 this->tView->ImageList = this->imFolders;
 this->tView->LabelEdit = true;
 this->tView->Location = System::Drawing::Point(0, 0);
 this->tView->Name = L"tView";
 treeNode1->Name = L"Node1";
 treeNode1->Text = L"<holder>";
 treeNode2->ImageIndex = 0;
 treeNode2->Name = L"Node0";
 treeNode2->SelectedImageIndex = 1;
 treeNode2->Text = L"Root Node A";
 treeNode3->Name = L"Node3";
 treeNode3->Text = L"<holder>";
 treeNode4->ImageIndex = 0;
 treeNode4->Name = L"Node2";
 treeNode4->SelectedImageIndex = 1;
 treeNode4->Text = L"Root Node B";
 this->tView->Nodes->AddRange(
 gcnew cli::array< System::Windows::Forms::TreeNode^ >(2)
 {treeNode2, treeNode4});
 this->tView->SelectedImageIndex = 1;
 this->tView->Size = System::Drawing::Size(194, 481);
 this->tView->TabIndex = 0;
 this->tView->BeforeExpand +=
 gcnew System::Windows::Forms::TreeViewCancelEventHandler(this,
 &Form1::tView_BeforeExpand);
 //
 // imFolders
 //
 this->imFolders->ImageStream =
 (cli::safe_cast<System::Windows::Forms::ImageListStreamer^ >
 (resources->GetObject(L"imFolders.ImageStream")));
 this->imFolders->Images->SetKeyName(0, L"CLSDFOLD.ICO");
 this->imFolders->Images->SetKeyName(1, L"OPENFOLD.ICO");
 //
 // Form1

Fraser_640-4C10.fm Page 391 Sunday, October 30, 2005 12:25 AM

392 C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S

 //
 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(194, 481);
 this->Controls->Add(this->tView);
 this->Name = L"Form1";
 this->Text = L"Tree View Example";
 this->ResumeLayout(false);

 }
#pragma endregion
 private:
 System::Void tView_BeforeExpand(System::Object^ sender,
 System::Windows::Forms::TreeViewCancelEventArgs^ e)
 {
 // Already expanded before?
 if (e->Node->Nodes->Count > 1)
 return; // Already expanded
 else if (e->Node->Nodes->Count == 1)
 {
 if (e->Node->Nodes[0]->Text->Equals("<holder>"))
 e->Node->Nodes->RemoveAt(0); // Node ready for expanding
 else
 return; // Already expanded but only one sub node
 }
 // Randomly expand the node
 Random ^rand = gcnew Random();
 int rnd = rand->Next(1,5);
 for (int i = 0; i < rnd; i++) // Randon number of subnodes
 {
 TreeNode ^stn =
 gcnew TreeNode(String::Format("Sub Node {0}", i+1), 0, 1);
 e->Node->Nodes->Add(stn);

 if (rand->Next(2) == 1) // Has sub sub-nodes
 stn->Nodes->Add(gcnew TreeNode("<holder>", 0, 1));
 }
 }
 };
}

The first steps, as with every other control, are to create the TreeView, configure it using proper-
ties, and then add it to the Form.

this->tView = gcnew TreeView();
this->tView->Dock = System::Windows::Forms::DockStyle::Fill;
this->tView->LabelEdit = true;
this->tView->Size = System::Drawing::Size(200, 450);
this->tView->BeforeExpand +=
 gcnew TreeViewCancelEventHandler(this, &Form1::tView_BeforeExpand);
this->Controls->Add(this->tView);

Because in this example you’re building a tree hierarchy on the fly, you need to handle an event
that occurs just before the tree node is expanded. The BeforeExpand event fits the bill. The
BeforeExpand event takes as a handler TreeViewCancelEventHandler. You might note that the handler

Fraser_640-4C10.fm Page 392 Sunday, October 30, 2005 12:25 AM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S 393

has the word “Cancel” in it, which means that it’s triggered before the expansion of the node and it’s
possible to have the code cancel the expansion.

Now that you have a tree, you need to add one or more root TreeNodes. You also have to add a
holder sub-TreeNode or the expansion box will not be generated. The following code was auto-generated
(I added the comments for readability, but be aware that comments and code in the Visual Studio
2005–generated areas will be deleted on recompile or when new components are added by the
design tool):

// holder node
System::Windows::Forms::TreeNode^ treeNode1 =
 gcnew System::Windows::Forms::TreeNode(L"<holder>");

// root node which take the above holder node as a child
System::Windows::Forms::TreeNode^ treeNode2 =
 gcnew System::Windows::Forms::TreeNode(L"Root Node A", 0, 1,
 gcnew array<System::Windows::Forms::TreeNode^>(1) {treeNode1});

At this point, if you were to execute the program (assuming you created a stub for the BeforeExpand
event handler), you would get a TreeView with a root TreeNode and a sub-TreeNode. The sub-TreeNode
would have the label <holder>.

The last thing you need to do is replace the holder TreeNode when the expansion box is clicked
with its own, randomly generated TreeNode hierarchy. Before you replace the holder TreeNode, you
need to make sure that this is the first time the node has been expanded. You do this by looking for
the holder TreeNode in the first child (and it should be the only child) of the selected expanded
TreeNode. You can find all child nodes in the Nodes property in the Node property. (Look at the code—
this is easier to code than explain.)

if (e->Node->Nodes->Count > 1)
 return; // Already expanded
else if (e->Node->Nodes->Count == 1)
{
 if (e->Node->Nodes[0]->Text->Equals(S"<holder>"))
 e->Node->Nodes->RemoveAt(0); // Holder node ready for expanding
 else
 return; // Already expanded but only one subnode
}

If the node has been expanded previously, just jump out of the handler and let the TreeView
reexpand the node with its original tree. If this is the first time the node has been expanded, then
remove the holder and randomly create a new sub-TreeNode. The code to create the sub-TreeNode is
virtually the same as that of the root TreeNode, except now you add it to the selected to-be-expanded
TreeNode.

Random ^rand = gcnew Random();
int rnd = rand->Next(1,5);
for (int i = 0; i < rnd; i++) // Random number of subnodes
{
 TreeNode ^stn = gcnew TreeNode(String::Format("Sub Node {0}", i+1), 0, 1);
 e->Node->Nodes->Add(stn);

 if (rand->Next(2) == 1) // Has sub subnodes
 stn->Nodes->Add(gcnew TreeNode("<holder>"));
}

Figure 10-3 shows a sample of what TreeViewEx.exe looks like when you execute it.

Fraser_640-4C10.fm Page 393 Sunday, October 30, 2005 12:25 AM

394 C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S

Figure 10-3. Randomly generated and editable TreeView

Container Controls
You saw two container controls, GroupBox and Panel, in the previous chapter. These controls simply
group controls together. In this chapter, you will look at two more powerful controls: SplitContainer
and TabControl.

SplitContainer and TabControl provide for a much better use of Windows Forms real estate.
You already saw an improved use of real estate with the Panel control, in that it allowed more controls to
be placed in a smaller area of the screen by implementing scroll bars. In this section, you’ll see how
the TabControl and SplitContainer controls improve on this paradigm.

TabControl
You can think of the TabControl control as several forms or, more accurately, TabPages layered on top
of each other. The actual TabPage displayed is determined by which TabPage’s tab is selected. It’s a
neat tool to conserve desktop real estate and group common but stand-alone functionality together.

Several properties are associated with the TabControl control, but in most cases you will simply
configure the control, assign the appropriate controls to each tab panel, and then forget about it.
The internal default functionality of the TabControl is usually good enough that you will not have to
interfere with how it works.

The following are some TabControl properties that you might actually work with:

• Alignment is a TagAlignment enum that represents which side (Top, Left, Right, or Bottom) of
the control the tabs of the TabPages will be displayed. The default is Top.

• Appearance is a TabAppearance enum that represents the appearance of the control’s tabs.
Possible appearances are Buttons, FlatButtons, and Normal. The default is the standard tab
appearance of Normal.

Fraser_640-4C10.fm Page 394 Sunday, October 30, 2005 12:25 AM

C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S 395

• HotTrack is a Boolean that represents whether the tab changes color when the mouse passes
over it. The default is false, which means that the tab’s color will not change when passed over.

• ImageList is a collection of bitmaps, icons, and metafiles that will be used to display the
images on the tab control. If the Image list is null, which is the default, no images are displayed
on the control.

• Multiline is a Boolean that represents whether the tabs can be displayed on multiple lines.
The default is false, which forces all tabs to be placed on one line.

• SelectedTab is a TabPage that represents the currently selected tab. If no page is selected, null
is returned.

• ShowToolTips is a Boolean that represents whether ToolTips are displayed when the mouse
passes over the control’s tabs. The default is false, meaning no ToolTips are displayed.

• TabCount is an Int32 that represents the number of tabs found on the control.

• TabPages is a TabPageCollection that represents all the TabPages that make up the control.

You work with a TabPage class in almost the exact same way you do a Form class, as it has many
of the same properties. Really the only difference between a Form and a TabPage is that the TabPage
provides a few properties to configure how the actual tab of the TabPage is displayed. Here are those
properties:

• ImageIndex is a zero-based Int32 index to the TabControl::ImageList associated with the
current TabPage that represents the position of the image for the tab.

• Text is a String that represents the text found on the tab.

• ToolTip is a String that represents the text found in the ToolTip for the tab.

Listing 10-3 is a simple two-page TabControl that displays each tab along the left side of the
Form, and has HotTrack and ShowToolTips set on. The tab pages themselves have a different color
background, and each has a different label displayed within it. I could have used any control(s) I wanted
within each tab page, but I didn’t want to cloud the issue of building the TabControl.

Listing 10-3. A Simple TabControl

#pragma once

namespace TabControlEx
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();
 }

Fraser_640-4C10.fm Page 395 Sunday, October 30, 2005 12:25 AM

396 C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }

 private:
 System::Windows::Forms::TabControl^ tabControl1;
 System::Windows::Forms::TabPage^ tabPage1;
 System::Windows::Forms::Label^ label2;
 System::Windows::Forms::TabPage^ tabPage2;
 System::Windows::Forms::Label^ label1;

 System::ComponentModel::Container ^components;

#pragma region Windows Form Designer generated code

 void InitializeComponent(void)
 {
 this->tabControl1 = (gcnew System::Windows::Forms::TabControl());
 this->tabPage1 = (gcnew System::Windows::Forms::TabPage());
 this->label2 = (gcnew System::Windows::Forms::Label());
 this->tabPage2 = (gcnew System::Windows::Forms::TabPage());
 this->label1 = (gcnew System::Windows::Forms::Label());
 this->tabControl1->SuspendLayout();
 this->tabPage1->SuspendLayout();
 this->tabPage2->SuspendLayout();
 this->SuspendLayout();
 //
 // tabControl1
 //
 this->tabControl1->Alignment =
 System::Windows::Forms::TabAlignment::Bottom;
 this->tabControl1->Controls->Add(this->tabPage1);
 this->tabControl1->Controls->Add(this->tabPage2);
 this->tabControl1->Dock = System::Windows::Forms::DockStyle::Fill;
 this->tabControl1->HotTrack = true;
 this->tabControl1->Location = System::Drawing::Point(0, 0);
 this->tabControl1->Multiline = true;
 this->tabControl1->Name = L"tabControl1";
 this->tabControl1->SelectedIndex = 0;
 this->tabControl1->ShowToolTips = true;
 this->tabControl1->Size = System::Drawing::Size(215, 129);
 this->tabControl1->TabIndex = 1;
 //
 // tabPage1
 //
 this->tabPage1->BackColor = System::Drawing::Color::PaleGreen;
 this->tabPage1->Controls->Add(this->label2);
 this->tabPage1->Location = System::Drawing::Point(4, 4);
 this->tabPage1->Name = L"tabPage1";

Fraser_640-4C10.fm Page 396 Sunday, October 30, 2005 12:25 AM

C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S 397

 this->tabPage1->Padding = System::Windows::Forms::Padding(3);
 this->tabPage1->Size = System::Drawing::Size(207, 103);
 this->tabPage1->TabIndex = 0;
 this->tabPage1->Text = L"Tab One";
 this->tabPage1->ToolTipText = L"This is tab one";
 this->tabPage1->UseVisualStyleBackColor = false;
 //
 // label2
 //
 this->label2->AutoSize = true;
 this->label2->Location = System::Drawing::Point(61, 44);
 this->label2->Name = L"label2";
 this->label2->Size = System::Drawing::Size(78, 13);
 this->label2->TabIndex = 1;
 this->label2->Text = L"This is Tab One";
 //
 // tabPage2
 //
 this->tabPage2->BackColor = System::Drawing::Color::Plum;
 this->tabPage2->Controls->Add(this->label1);
 this->tabPage2->Location = System::Drawing::Point(4, 4);
 this->tabPage2->Name = L"tabPage2";
 this->tabPage2->Padding = System::Windows::Forms::Padding(3);
 this->tabPage2->Size = System::Drawing::Size(207, 103);
 this->tabPage2->TabIndex = 1;
 this->tabPage2->Text = L"Tab Two";
 this->tabPage2->ToolTipText = L"This is tab two";
 this->tabPage2->UseVisualStyleBackColor = false;
 //
 // label1
 //
 this->label1->AutoSize = true;
 this->label1->Location = System::Drawing::Point(61, 44);
 this->label1->Name = L"label1";
 this->label1->Size = System::Drawing::Size(79, 13);
 this->label1->TabIndex = 0;
 this->label1->Text = L"This is Tab Two";
 //
 // Form1
 //
 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(215, 129);
 this->Controls->Add(this->tabControl1);
 this->Name = L"Form1";
 this->Text = L"Tab Control Example";
 this->tabControl1->ResumeLayout(false);
 this->tabPage1->ResumeLayout(false);
 this->tabPage1->PerformLayout();
 this->tabPage2->ResumeLayout(false);
 this->tabPage2->PerformLayout();
 this->ResumeLayout(false);
 }

Fraser_640-4C10.fm Page 397 Sunday, October 30, 2005 12:25 AM

398 C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S

#pragma endregion
 };
}

The best part about TabControls is that you don’t have to know anything about them because
Visual Studio 2005’s design GUI tool can handle everything for you. The only real issue about
TabControls is that there is no TabPage control in the Toolbox view to drag to the TabControl.
Instead, to add a TabPage, you need to add it to the TabPages collection property within the
TabControl’s Properties view.

I think the generated code is pretty self-explanatory. You add the TabPage to the TabControl, add
the Label to a TabPage, and finally add the TabControl to the Form.

Figure 10-4 shows what TabControlEx.exe looks like when you execute it. Unfortunately, you
can’t see it in action in this still image.

Figure 10-4. A simple TabControl

SplitContainer
The SplitContainer is a simple little control that takes two panels and allows you to resize them at
runtime using a little area located between the panels known as the splitter. You can spot this area
between the panels not only because the area is (normally) a different color than the panels, but
also because the cursor changes automatically into what Windows calls a VSplit or HSplit cursor,
depending on whether you use a vertical or horizontal SplitContainer.

The SplitContainer is a vast improvement over its predecessor, the Splitter control. The
largest improvement in my mind is that with the Splitter you were required to do several elaborate
steps to get it configured. Now, with the SplitContainer, you simply drag the control onto the Design
view, and then using the Orientation property, you specify whether the container will be split verti-
cally or horizontally. Most likely you will also use the dock property to fill the Window Form or the
container control that you place it in, but you don’t have to, as Listing 10-4 points out.

The following are some SplitContainer properties that you might work with:

• FixedPanel specifies that a panel stays a fixed size when a resize event occurs. The default is
none, which causes the two panels that make up the control to stay proportionally the same.

• Panel1 is the left or top Panel control depending on the type of split.

• Panel1Collapsed is a Boolean value that allows you to make the Panel1 completely collapse
when set to true. When collapsed, there is no way to resize the control; you must program-
matically set the value back to false to allow the control to resize again.

• Panel2 is the right or bottom Panel control depending on the type of split.

• Panel2Collapsed is a Boolean value that allows you to make the Panel2 completely collapse
when set to true. When collapsed, there is no way to resize the control; you must program-
matically set the value back to false to allow the control to resize again.

Fraser_640-4C10.fm Page 398 Sunday, October 30, 2005 12:25 AM

C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S 399

• SplitterDistance is an Int32 value of the number of pixels from the left or top where the split
occurs.

• SplitterWidth is an Int32 value of the size between the two panels.

In the example, I fill the SplitContainer control’s Panel1 and Panel2 properties with TextBox
controls, though this is not necessary. You can use the SplitContainer control’s Panel properties just
like you would a standard Panel control.

Listing 10-4 shows the SplitContainer being used twice. The first time I split the entire Window
Form vertically using a green background. The second time I split horizontally a small portion of the
Right panel using a red background.

Listing 10-4. The SplitContainer Control

#pragma once

namespace SplitContainerEx
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();
 }

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }
 private:
 System::Windows::Forms::SplitContainer^ splitContainer1;
 System::Windows::Forms::TextBox^ textBox1;
 System::Windows::Forms::SplitContainer^ splitContainer2;
 System::Windows::Forms::TextBox^ textBox2;
 System::Windows::Forms::TextBox^ textBox3;

 System::ComponentModel::Container ^components;

Fraser_640-4C10.fm Page 399 Sunday, October 30, 2005 12:25 AM

cafac74dd2d083cbec0906b66fcd56b1

400 C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S

#pragma region Windows Form Designer generated code

 void InitializeComponent(void)
 {
 this->splitContainer1 =
 (gcnew System::Windows::Forms::SplitContainer());
 this->textBox1 = (gcnew System::Windows::Forms::TextBox());
 this->splitContainer2 =
 (gcnew System::Windows::Forms::SplitContainer());
 this->textBox2 = (gcnew System::Windows::Forms::TextBox());
 this->textBox3 = (gcnew System::Windows::Forms::TextBox());
 this->splitContainer1->Panel1->SuspendLayout();
 this->splitContainer1->Panel2->SuspendLayout();
 this->splitContainer1->SuspendLayout();
 this->splitContainer2->Panel1->SuspendLayout();
 this->splitContainer2->Panel2->SuspendLayout();
 this->splitContainer2->SuspendLayout();
 this->SuspendLayout();
 //
 // splitContainer1
 //
 this->splitContainer1->BackColor = System::Drawing::Color::Green;
 this->splitContainer1->Dock =
 System::Windows::Forms::DockStyle::Fill;
 this->splitContainer1->Location = System::Drawing::Point(0, 0);
 this->splitContainer1->Name = L"splitContainer1";
 //
 // splitContainer1.Panel1
 //
 this->splitContainer1->Panel1->Controls->Add(this->textBox1);
 //
 // splitContainer1.Panel2
 //
 this->splitContainer1->Panel2->Controls->Add(this->splitContainer2);
 this->splitContainer1->Size = System::Drawing::Size(292, 273);
 this->splitContainer1->SplitterDistance = 116;
 this->splitContainer1->TabIndex = 1;
 this->splitContainer1->Text = L"splitContainer1";
 //
 // textBox1
 //
 this->textBox1->AutoSize = false;
 this->textBox1->BorderStyle =
 System::Windows::Forms::BorderStyle::None;
 this->textBox1->Dock = System::Windows::Forms::DockStyle::Fill;
 this->textBox1->Location = System::Drawing::Point(0, 0);
 this->textBox1->Name = L"textBox1";
 this->textBox1->Size = System::Drawing::Size(116, 273);
 this->textBox1->TabIndex = 0;
 this->textBox1->Text = L"Left Textbox";
 this->textBox1->TextAlign =
 System::Windows::Forms::HorizontalAlignment::Center;

Fraser_640-4C10.fm Page 400 Sunday, October 30, 2005 12:25 AM

C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S 401

 //
 // splitContainer2
 //
 this->splitContainer2->BackColor = System::Drawing::Color::Red;
 this->splitContainer2->Location = System::Drawing::Point(18, 82);
 this->splitContainer2->Name = L"splitContainer2";
 this->splitContainer2->Orientation =
 System::Windows::Forms::Orientation::Horizontal;
 //
 // splitContainer2.Panel1
 //
 this->splitContainer2->Panel1->Controls->Add(this->textBox2);
 //
 // splitContainer2.Panel2
 //
 this->splitContainer2->Panel2->Controls->Add(this->textBox3);
 this->splitContainer2->Size = System::Drawing::Size(132, 102);
 this->splitContainer2->SplitterDistance = 42;
 this->splitContainer2->TabIndex = 0;
 this->splitContainer2->Text = L"splitContainer2";
 //
 // textBox2
 //
 this->textBox2->AutoSize = false;
 this->textBox2->BorderStyle =
 System::Windows::Forms::BorderStyle::None;
 this->textBox2->Dock = System::Windows::Forms::DockStyle::Fill;
 this->textBox2->Location = System::Drawing::Point(0, 0);
 this->textBox2->Name = L"textBox2";
 this->textBox2->Size = System::Drawing::Size(132, 42);
 this->textBox2->TabIndex = 0;
 this->textBox2->Text = L"Top Right Textbox";
 this->textBox2->TextAlign =
 System::Windows::Forms::HorizontalAlignment::Center;
 //
 // textBox3
 //
 this->textBox3->AutoSize = false;
 this->textBox3->BorderStyle =
 System::Windows::Forms::BorderStyle::None;
 this->textBox3->Dock = System::Windows::Forms::DockStyle::Fill;
 this->textBox3->Location = System::Drawing::Point(0, 0);
 this->textBox3->Name = L"textBox3";
 this->textBox3->Size = System::Drawing::Size(132, 56);
 this->textBox3->TabIndex = 0;
 this->textBox3->Text = L"Bottom Right Textbox";
 this->textBox3->TextAlign =
 System::Windows::Forms::HorizontalAlignment::Center;
 //
 // Form1
 //
 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(292, 273);

Fraser_640-4C10.fm Page 401 Sunday, October 30, 2005 12:25 AM

402 C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S

 this->Controls->Add(this->splitContainer1);
 this->Name = L"Form1";
 this->Text = L"Form1";
 this->splitContainer1->Panel1->ResumeLayout(false);
 this->splitContainer1->Panel2->ResumeLayout(false);
 this->splitContainer1->ResumeLayout(false);
 this->splitContainer2->Panel1->ResumeLayout(false);
 this->splitContainer2->Panel2->ResumeLayout(false);
 this->splitContainer2->ResumeLayout(false);
 this->ResumeLayout(false);
 }
#pragma endregion
 };
}

Figure 10-5 shows what SplitControlEx.exe looks like when you execute it.

Figure 10-5. A simple pair of SplitContainer controls

Strips
If you have worked with prior versions of Windows Forms, you may have noticed that your toolbars,
status bar, and menus bore little resemblance to and lacked much of the functionality of those you
found on many of Microsoft’s applications and tools. To fix this (oversight?), several third-party
controls were developed. However, with .NET version 2.0 Web Forms, many of these third-party
controls may have become obsolete due to the new strip controls—ToolStrip, StatusStrip, and
MenuStrip.

ToolStripContainer and ToolStripPanel
In previous versions of Windows Forms, there was little flexibility to how and where you displayed
your main menu, status bar, and toolbars (I’ll just call them strip controls from here on). You had no
options to drag your strip controls to different sides of your form or display multiple strip controls
together. This has now been changed with the addition of the ToolStripContainer control.

Fraser_640-4C10.fm Page 402 Sunday, October 30, 2005 12:25 AM

C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S 403

The ToolStripContainer control is where you place your strip controls if you want them aligned
along the border. More accurately, any one of the following (aptly named) four ToolStripPanel
properties is where you place your strip controls:

• TopToolStripPanel

• BottomToolStripPanel

• LeftToolStripPanel

• RightToolStripPanel

A fifth panel, the ContentPanel, fills the center area between all the ToolStripPanels. You use
this area as the home for all the content of your form.

Before you add your strip control within Visual Studio 2005, you first add a ToolStripContainer
just like you would any other control. Once added, you dock fill it to the form so that the four
ToolStripPanels align with the sides of the form. Next, you expand the ToolStripPanel where you
want to place your strip. Finally, you drag and drop your strip to the expanded ToolStripPanel.

One nice feature that the ToolStripPanel control provides is the ability to display multiple strip
controls together. The ToolStripPanel is a container control that provides flow layout functionality.
As you add strip controls to the ToolStripPanel control, they are arranged from left to right in the
case of a ToolStripPanel control docked to the top or bottom, and from top to bottom in the case
of a ToolStripPanel control docked to the left or right side. When you reach the edge of the
ToolStripPanel, additional controls flow to the next row.

There’s not much to the coding of ToolStripContainer controls. You declare it as follows:

System::Windows::Forms::ToolStripContainer^ toolStripContainer1;

You create instances of it like so:

this->toolStripContainer1 = gcnew system::Windows::Forms::ToolStripContainer();

You use the following to dock it to a Windows Form border (and optionally set a few of its
properties):

this->toolStripContainer1->Dock = System::Windows::Forms::DockStyle::Fill;

To add it to the Windows Form:

this->Controls->Add(this->toolStripContainer1);

And finally, to add strip controls to the appropriate ToolStripPanel using any combination of
the following statements:

this->toolStripContainer1->TopToolStripPanel->Controls->Add(this->Strip1);
this->toolStripContainer1->BottomToolStripPanel->Controls->Add(this->Strip1);
this->toolStripContainer1->LeftToolStripPanel->Controls->Add(this->Strip1);
this->toolStripContainer1->RightToolStripPanel->Controls->Add(this->Strip1);

By the way, you can add strips without using the ToolStripContainer, but then you lose the
ability to move the strips around.

ToolStripManager
The ToolStripManager class is made up of several static properties and methods that you use to
control the arrangement, rendering, and display style of strip controls. You can, in most cases, just
use the defaults and ignore the ToolStripManager class completely, but if you find you have the need,
the following three properties are available to specify a renderer and display styles:

Fraser_640-4C10.fm Page 403 Sunday, October 30, 2005 12:25 AM

404 C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S

• Renderer is a ToolStripRenderer object that specifies the default painting styles for the
Windows Form.

• RenderMode is a ToolStripManagerRenderMode enum specifying whether the System (flat style
with system colors) or Professional (custom palette and a streamlined style) mode will be
used.

• VisualStylesEnabled is a Boolean that represents whether rendered is done using themes.

The main reason I use the ToolStripManager class is to merge two strip controls together and
then later, when I no longer need the controls to be merged, undo the merge. The merging of two
strip controls is done with the aptly named method Merge(), while you undo or revert the merge
using the RevertMerge() method.

ToolStrip
Most Windows applications have a tool strip. Many like Microsoft Word have more than one, often
all visible at the same time. In this section, you’ll learn how to implement ToolStrip controls using
the .NET Framework class library.

The ToolStrip has improved considerably over its predecessor the ToolBar. It provides a lot
more functionality with a much cleaner interface. With all this extra functionality, the ToolStrip control
is a little more complex than the ToolBar, but the design tool is intuitive, which evens things out.

I guess I could have placed this ToolStrip discussion in with the “Container Controls” section
as the ToolStrip is in fact a container. However, unlike the other containers, it can contain only
controls derived from the ToolStripItem class. This isn’t really an issue, as you can place standard
controls within the ToolStripControlHost control and then place them on the ToolStrip. The .NET
Framework supports several ToolStripItems out of the box. The following are the most common
ones you might use:

• ToolStripButton is a selectable button that can contain text and images.

• ToolStripComboBox is a combo box.

• ToolStripSplitButton is a combination of a standard button on the left and a drop-down
button on the right.

• ToolStripLabel is a nonselectable item that displays text, images, and hyperlinks.

• ToolStripSeparator is a separator.

• ToolStripDropDownButton is a control that, when clicked, displays an associated list of buttons
from which the user can select a single item.

• ToolStripTextBox is a text box.

The ToolStrip control has a few overall tool strip configuration properties. These properties
work in conjunction with the preceding ToolStripItems to get the final look and feel of the tool strip.
Here are some of the more commonly used ToolStrip properties:

• AllowItemReorder is a Boolean value indicating whether the ToolStrip will allow and handle
by itself drag-and-drop and item reordering. The default value is false.

• AllowMerge is a Boolean value indicating whether multiple MenuStrip, ToolStripDropDownMenu,
ToolStripMenuItem, and other types can be combined. The default is false.

• CanOverflow is a Boolean value indicating whether items in the ToolStrip can be sent to an
overflow menu. The default is true.

• GripStyle is a ToolStripGripStyle enum value of either Visible or Hidden. The default is Visible.

Fraser_640-4C10.fm Page 404 Sunday, October 30, 2005 12:25 AM

C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S 405

• ImageList is a collection of bitmaps, icons, and metafiles that will be used to display the
images on the ToolStrip. The default is nullptr or no image list.

• OverflowButton is the ToolStripItem that is the overflow button for a ToolStrip with CanOverflow
equal to true.

• RenderMode is a ToolStripRenderMode enum that specifies the tool strip renderer to use. You will
most likely use ManagerRenderMode, which uses the renderer specified by the ToolStripManager,
but you can also specifically select System (flat style with system colors) or Professional
(custom palette and a streamlined style).

• ShowItemToolTips is a Boolean that represents whether tool tips are displayed for all
ToolStripItems when the mouse passes over them. The default is false.

The ToolStripItem class provides a number of common properties used to configure the tool
strip items themselves. Here are some of the more common properties:

• AutoToolTip is a Boolean value indicating whether to use the Text property or the ToolTipText
property for the ToolStripItem tool tip. The default is true, meaning the Text property is used.

• DisplayStyle is a ToolStripGripStyle enum value indicating whether Image, ImageAndText,
None, or Text is displayed. The default is ImageAndText.

• ImageIndex is a zero-based Int32 index to the ToolStrip::ImageList associated with the
current ToolStripItem that represents the position of the image for the button. The default
is –1, or no image will appear on the button.

• ImageScaling is a Boolean value indicating whether the image automatically resizes to fit in
a container.

• Pressed is a Boolean that represents whether the item is pressed.

• Selected is a Boolean that represents whether the item is selected.

• Text is a String that represents the text displayed on the button.

• TextImageRelation is a TextImageRelation enum value indicating the relationship between its
text and image. Possible values are ImageAboveText, ImageBeforeText, Overlay, TextAboveImage, or
TextBeforeImage. The default is ImageBeforeText.

• ToolTipText is a String that appears in the ToolTip control associated with the item.

The code in Listing 10-5 builds a tool strip with two ToolStripButtons: a happy face and a sad
face, ToolStripLabel and a ToolStripTextBox. When you click either of the buttons, the label in
the body of the form is updated with a combination of the ToolStripTextBox’s Text property and
ToolTipText of the ToolStripButton inherited from the ToolStripItem.

Listing 10-5. An Emotional Tool Strip

namespace ToolStripEx
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;

Fraser_640-4C10.fm Page 405 Sunday, October 30, 2005 12:25 AM

406 C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();
 }

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }

 private:
 System::Windows::Forms::Label^ lbOutput;
 System::Windows::Forms::ToolStrip^ toolStrip;
 System::Windows::Forms::ToolStripButton^ tsbnHappy;
 System::Windows::Forms::ToolStripButton^ tsbnSad;
 System::Windows::Forms::ToolStripSeparator^ Sep1;
 System::Windows::Forms::ToolStripLabel^ Label;
 System::Windows::Forms::ToolStripTextBox^ tstbName;
 System::Windows::Forms::ToolStripContainer^ toolStripContainer1;

 System::ComponentModel::Container ^components;

#pragma region Windows Form Designer generated code

 void InitializeComponent(void)
 {
 System::ComponentModel::ComponentResourceManager^ Resources =
 (gcnew System::ComponentModel::ComponentResourceManager(Form1::typeid));
 this->lbOutput = (gcnew System::Windows::Forms::Label());
 this->toolStrip = (gcnew System::Windows::Forms::ToolStrip());
 this->tsbnHappy = (gcnew System::Windows::Forms::ToolStripButton());
 this->tsbnSad = (gcnew System::Windows::Forms::ToolStripButton());
 this->Sep1 = (gcnew System::Windows::Forms::ToolStripSeparator());
 this->Label = (gcnew System::Windows::Forms::ToolStripLabel());
 this->tstbName = (gcnew System::Windows::Forms::ToolStripTextBox());
 this->toolStripContainer1 =
 (gcnew System::Windows::Forms::ToolStripContainer());
 this->toolStrip->SuspendLayout();
 this->toolStripContainer1->ContentPanel->SuspendLayout();
 this->toolStripContainer1->TopToolStripPanel->SuspendLayout();
 this->toolStripContainer1->SuspendLayout();
 this->SuspendLayout();
 //
 // lbOutput

Fraser_640-4C10.fm Page 406 Sunday, October 30, 2005 12:25 AM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S 407

 //
 this->lbOutput->AutoSize = true;
 this->lbOutput->Font =
 (gcnew System::Drawing::Font(L"Microsoft Sans Serif", 8.25F,
 System::Drawing::FontStyle::Bold,
 System::Drawing::GraphicsUnit::Point,
 static_cast<System::Byte>(0)));
 this->lbOutput->Location = System::Drawing::Point(47, 42);
 this->lbOutput->Name = L"lbOutput";
 this->lbOutput->Size = System::Drawing::Size(208, 13);
 this->lbOutput->TabIndex = 7;
 this->lbOutput->Text = L"Enter a name then click an emotion";
 //
 // toolStrip
 //
 this->toolStrip->Dock = System::Windows::Forms::DockStyle::None;
 this->toolStrip->Items->AddRange(
 gcnew cli::array< System::Windows::Forms::ToolStripItem^ >(5)
 { this->tsbnHappy, this->tsbnSad,
 this->Sep1, this->Label, this->tstbName});
 this->toolStrip->Location = System::Drawing::Point(0, 0);
 this->toolStrip->Name = L"toolStrip";
 this->toolStrip->Size = System::Drawing::Size(300, 25);
 this->toolStrip->Stretch = true;
 this->toolStrip->TabIndex = 6;
 this->toolStrip->Text = L"toolStrip1";
 //
 // tsbnHappy
 //
 this->tsbnHappy->Image =
 (cli::safe_cast<System::Drawing::Image^>
 (resources->GetObject(L"tsbnHappy.Image")));
 this->tsbnHappy->Name = L"tsbnHappy";
 this->tsbnHappy->Size = System::Drawing::Size(58, 22);
 this->tsbnHappy->Text = L"Happy";
 this->tsbnHappy->ToolTipText = L"a happy camper";
 this->tsbnHappy->Click +=
 gcnew System::EventHandler(this, &Form1::tsbn_Click);
 //
 // tsbnSad
 //
 this->tsbnSad->Image =
 (cli::safe_cast<System::Drawing::Image^>
 (resources->GetObject(L"tsbnSad.Image")));
 this->tsbnSad->Name = L"tsbnSad";
 this->tsbnSad->Size = System::Drawing::Size(45, 22);
 this->tsbnSad->Text = L"Sad";
 this->tsbnSad->ToolTipText = L"major gloomy";
 this->tsbnSad->Click +=
 gcnew System::EventHandler(this, &Form1::tsbn_Click);
 //
 // Sep1

Fraser_640-4C10.fm Page 407 Sunday, October 30, 2005 12:25 AM

408 C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S

 //
 this->Sep1->Name = L"Sep1";
 this->Sep1->Size = System::Drawing::Size(6, 25);
 //
 // Label
 //
 this->Label->Name = L"Label";
 this->Label->Size = System::Drawing::Size(34, 22);
 this->Label->Text = L"Name";
 //
 // tstbName
 //
 this->tstbName->Name = L"tstbName";
 this->tstbName->Size = System::Drawing::Size(92, 25);
 this->tstbName->Text = L"Computer";
 //
 // toolStripContainer1
 //
 this->toolStripContainer1->ContentPanel->Controls->Add(
 this->lbOutput);
 this->toolStripContainer1->ContentPanel->Size =
 System::Drawing::Size(300, 105);
 this->toolStripContainer1->Location = System::Drawing::Point(0, 0);
 this->toolStripContainer1->Name = L"toolStripContainer1";
 this->toolStripContainer1->Size = System::Drawing::Size(300, 130);
 this->toolStripContainer1->TabIndex = 8;
 this->toolStripContainer1->Text = L"toolStripContainer1";
 //
 // toolStripContainer1.TopToolStripPanel
 //
 this->toolStripContainer1->TopToolStripPanel->Controls->Add(
 this->toolStrip);
 //
 // Form1
 //
 this->AutoScaleMode =
 System::Windows::Forms::AutoScaleMode::Inherit;
 this->ClientSize = System::Drawing::Size(300, 129);
 this->Controls->Add(this->toolStripContainer1);
 this->Name = L"Form1";
 this->Text = L"Emotional Tool Strip";
 this->toolStrip->ResumeLayout(false);
 this->toolStrip->PerformLayout();
 this->toolStripContainer1->ContentPanel->ResumeLayout(false);
 this->toolStripContainer1->ContentPanel->PerformLayout();
 this->toolStripContainer1->TopToolStripPanel->ResumeLayout(false);
 this->toolStripContainer1->TopToolStripPanel->PerformLayout();
 this->toolStripContainer1->ResumeLayout(false);
 this->toolStripContainer1->PerformLayout();
 this->ResumeLayout(false);
 }

Fraser_640-4C10.fm Page 408 Sunday, October 30, 2005 12:25 AM

C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S 409

#pragma endregion

 private:
 System::Void tsbn_Click(System::Object^ sender, System::EventArgs^ e)
 {
 this->lbOutput->Text = String::Format("{0} is {1}!",
 tstbName->Text, ((ToolStripButton^)sender)->ToolTipText);
 }
 };
}

The process for creating a ToolStrip within Visual Studio 2005 is relatively straightforward,
once you know how to do it. The steps are as follows:

1. Add a ToolStripContainer as outlined earlier.

2. Drag and drop the ToolStrip from the Toolbox to the ToolStripPanel of choice within the
Design view.

3. Within the ToolStrip’s Properties dialog box, click the ellipses button next to the Items
property. This will bring up a dialog box similar to the one shown in Figure 10-6.

Figure 10-6. The Items Collection Editor dialog box

4. Select the appropriate ToolStrip item type from the drop-down list.

5. Click the Add button and then update the ToolStrip item’s properties as appropriate.

6. Repeat step 4 for all the items.

7. Click the OK button.

Figure 10-7 shows what ToolStripEx.exe looks like when you execute it.

Fraser_640-4C10.fm Page 409 Sunday, October 30, 2005 12:25 AM

410 C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S

Figure 10-7. The emotional toolbar

StatusStrip
The StatusStrip is an easy-to-use control whose purpose is to display status information to the user.
You will find the status strip at the bottom of many Windows applications. The truth is, the placement
of the status strip is only a well-accepted convention, as the StatusStrip supports being placed
anywhere on the Windows Form.

I have already covered almost everything you need to know about the StatusStrip, as the
StatusStrip is a child of the ToolStrip. The only difference that you probably have to worry about is
that the StatusStrip provides the Boolean property SizeGrip, which the ToolStrip doesn’t. If you set
SizeGrip to false, the SizeGrip disappears. The default is true. The SizeGrip, by the way, is that
dotted triangle in the bottom corner that you use to resize the window.

Since the StatusStrip is a slightly augmented ToolStrip, anything you can do with a ToolStrip
you can do with a StatusStrip. This means you can use all the same ToolStripItems, plus the
ToolStripProgressBar control. (You can use the ToolStripProgressBar control on the ToolStrip as
well, but you rarely, if ever, see it there as it normally represents a status.)

In most cases, you will probably use only the ToolStripLabel, which allows you to place text and
images in the status strip.

One property that you will use on a StatusStrip’s ToolStripLabel that you don’t use as frequently
on a ToolStrip is the Spring property. This property tells the ToolStripLabel to fill up all unused
spaces on the StatusStrip, in effect causing all other controls to be left or right justified based on
whether the ToolStripLabel is on the left or right of that control. In the example that follows, that is
how I right justify the two mouse coordinate ToolStripLabels.

Listing 10-6 shows the creation of the StatusStrip with three ToolStripLabels . The status
information displayed is the mouse x, y location and the last mouse button pressed while within the
ContentPanel area of the ToolStripContainer.

Listing 10-6. Status Bar Display of x, y Coordinates

namespace StatusStripEx {

 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();
 }

Fraser_640-4C10.fm Page 410 Sunday, October 30, 2005 12:25 AM

C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S 411

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }

 private:
 System::Windows::Forms::ToolStripContainer^ tsContainer;
 System::Windows::Forms::StatusStrip^ statusStrip1;
 System::Windows::Forms::ToolStripStatusLabel^ statusButtons;
 System::Windows::Forms::ToolStripStatusLabel^ statusXCoord;
 System::Windows::Forms::ToolStripStatusLabel^ statusYCoord;

 System::ComponentModel::Container ^components;

#pragma region Windows Form Designer generated code

 void InitializeComponent(void)
 {
 this->tsContainer =
 (gcnew System::Windows::Forms::ToolStripContainer());
 this->statusStrip1 =
 (gcnew System::Windows::Forms::StatusStrip());
 this->statusButtons =
 (gcnew System::Windows::Forms::ToolStripStatusLabel());
 this->statusXCoord =
 (gcnew System::Windows::Forms::ToolStripStatusLabel());
 this->statusYCoord =
 (gcnew System::Windows::Forms::ToolStripStatusLabel());
 this->tsContainer->BottomToolStripPanel->SuspendLayout();
 this->tsContainer->SuspendLayout();
 this->statusStrip1->SuspendLayout();
 this->SuspendLayout();
 //
 // tsContainer
 //
 //
 // tsContainer.BottomToolStripPanel
 //
 this->tsContainer->BottomToolStripPanel->Controls->Add(
 this->statusStrip1);
 //
 // tsContainer.ContentPanel
 //
 this->tsContainer->ContentPanel->Size =
 System::Drawing::Size(292, 251);
 this->tsContainer->ContentPanel->MouseDown +=
 gcnew System::Windows::Forms::MouseEventHandler(this,
 &Form1::tsContainer_ContentPanel_MouseDown);

Fraser_640-4C10.fm Page 411 Sunday, October 30, 2005 12:25 AM

412 C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S

 this->tsContainer->ContentPanel->MouseMove +=
 gcnew System::Windows::Forms::MouseEventHandler(this,
 &Form1::tsContainer1_ContentPanel_MouseMove);
 this->tsContainer->Dock = System::Windows::Forms::DockStyle::Fill;
 this->tsContainer->Location = System::Drawing::Point(0, 0);
 this->tsContainer->Name = L"tsContainer";
 this->tsContainer->Size = System::Drawing::Size(292, 273);
 this->tsContainer->TabIndex = 0;
 this->tsContainer->Text = L"toolStripContainer1";
 //
 // statusStrip1
 //
 this->statusStrip1->Dock = System::Windows::Forms::DockStyle::None;
 this->statusStrip1->Items->AddRange(
 gcnew cli::array< System::Windows::Forms::ToolStripItem^>(3)
 {this->statusButtons, this->statusXCoord, this->statusYCoord});
 this->statusStrip1->Location = System::Drawing::Point(0, 0);
 this->statusStrip1->Name = L"statusStrip1";
 this->statusStrip1->Size = System::Drawing::Size(292, 22);
 this->statusStrip1->TabIndex = 0;
 //
 // statusButtons
 //
 this->statusButtons->Name = L"statusButtons";
 this->statusButtons->Size = System::Drawing::Size(177, 17);
 this->statusButtons->Spring = true;
 this->statusButtons->TextAlign =
 System::Drawing::ContentAlignment::MiddleLeft;
 //
 // statusXCoord
 //
 this->statusXCoord->AutoSize = false;
 this->statusXCoord->BorderSides =
 static_cast<System::Windows::Forms::ToolStripStatusLabelBorderSides>
 ((((System::Windows::Forms::ToolStripStatusLabelBorderSides::Left
 | System::Windows::Forms::ToolStripStatusLabelBorderSides::Top)
 | System::Windows::Forms::ToolStripStatusLabelBorderSides::Right)
 | System::Windows::Forms::ToolStripStatusLabelBorderSides::Bottom));
 this->statusXCoord->BorderStyle =
 System::Windows::Forms::Border3DStyle::Sunken;
 this->statusXCoord->Name = L"statusXCoord";
 this->statusXCoord->Size = System::Drawing::Size(50, 17);
 //
 // statusYCoord
 //
 this->statusYCoord->AutoSize = false;
 this->statusYCoord->BorderSides =
 static_cast<System::Windows::Forms::ToolStripStatusLabelBorderSides>
 ((((System::Windows::Forms::ToolStripStatusLabelBorderSides::Left
 | System::Windows::Forms::ToolStripStatusLabelBorderSides::Top)
 | System::Windows::Forms::ToolStripStatusLabelBorderSides::Right)
 | System::Windows::Forms::ToolStripStatusLabelBorderSides::Bottom));

Fraser_640-4C10.fm Page 412 Sunday, October 30, 2005 12:25 AM

C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S 413

 this->statusYCoord->BorderStyle =
 System::Windows::Forms::Border3DStyle::Sunken;
 this->statusYCoord->Name = L"statusYCoord";
 this->statusYCoord->Size = System::Drawing::Size(50, 17);
 //
 // Form1
 //
 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(292, 273);
 this->Controls->Add(this->tsContainer);
 this->Name = L"Form1";
 this->Text = L"Status Strip Mouse Tracking";
 this->tsContainer->BottomToolStripPanel->ResumeLayout(false);
 this->tsContainer->BottomToolStripPanel->PerformLayout();
 this->tsContainer->ResumeLayout(false);
 this->tsContainer->PerformLayout();
 this->statusStrip1->ResumeLayout(false);
 this->statusStrip1->PerformLayout();
 this->ResumeLayout(false);

 }
#pragma endregion

private:
 System::Void tsContainer_ContentPanel_MouseDown(System::Object^ sender,
 System::Windows::Forms::MouseEventArgs^ e)
 {
 // clicked mouse button in first status bar panel
 if (e->Button == System::Windows::Forms::MouseButtons::Right)
 statusButtons->Text = "Right";
 else if (e->Button == System::Windows::Forms::MouseButtons::Left)
 statusButtons->Text = "Left";
 else
 statusButtons->Text = "Middle";
 }

 System::Void tsContainer1_ContentPanel_MouseMove(System::Object^ sender,
 System::Windows::Forms::MouseEventArgs^ e)
 {
 // x,y coords in second and third status bar panels
 statusXCoord->Text = String::Format("X={0}", e->X);
 statusYCoord->Text = String::Format("Y={0}", e->Y);
 }
 };
}

Figure 10-8 shows what StatusBar.exe looks like when you execute it.

Fraser_640-4C10.fm Page 413 Sunday, October 30, 2005 12:25 AM

cafac74dd2d083cbec0906b66fcd56b1

414 C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S

Figure 10-8. A three-panel status bar

MenuStrip and ContextMenuStrip
There are two types of Windows Forms menus in the .NET Framework, the MenuStrip or the main
menu that you find (almost always at the very top of the Windows Form) on most applications and
the ContextMenuStrip or a menu that pops up within the context of some other control, for example,
when you right-click an item in the Solution Explorer in Visual Studio 2005.

There is very little difference between either of these menus, especially while developing them.
Simply drag either the MenuStrip or ContextMenuStrip to the Design view from the Toolbox window
and then build the menu the exact same way. The only two differences are that they use different
constructors, and you need to assign a ContextMenuStrip to a control’s ContextMenuStrip property,
while a MenuStrip is added to a RaftingContainer control.

Believe it or not, you have almost already learned everything you need to know about a MenuStrip
or a ContextMenuStrip, as they are, like the StatusStrip, slightly enhanced ToolStrips. So slightly
enhanced that I found no methods or properties worth mentioning.

Since the MenuStrip and the ContextMenuStrip are slightly augmented ToolStrips, anything
you can do with a ToolStrip you can do with either the MenuStrip or the ContextMenuStrip. This
means you can use all the same ToolStripItems, plus the ToolStripMenuItem. (You can use the
ToolStripMenuItem control on the ToolStrip as well, but you rarely, if ever, see it there as it normally
represents a menu item.)

By convention and in most cases because it only makes visual or logical sense, you use the
following ToolStripItems on a MenuStrip or ContextMenuStrip:

• ToolStripMenuItem is a menu item.

• ToolStripComboBox is a combo box.

• ToolStripSeparator is a separator.

• ToolStripTextBox is a textbox.

Building a menu is very straightforward. Add ToolStripMenuItems to the MenuStrip or
ContextMenuStrip. If you want a submenu for the current ToolStripMenuItem, then add
ToolStripMenuItems to its DropDownItems collection property. If you want a different ToolStripItem
type, then add that ToolStripItem type instead of the ToolStripMenuItem.

Fraser_640-4C10.fm Page 414 Sunday, October 30, 2005 12:25 AM

C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S 415

The ToolStripMenuItem is well suited for menu development as it includes probably every property
or method you will need to add a menu item. Here is a list of the properties that you will most likely use:

• Checked is a Boolean that represents whether a check mark appears next to the menu item.
The default is false, which means it won’t display the check mark.

• CheckOnClick a Boolean that represents whether the ToolStripMenuItem should automatically
appear checked/unchecked when clicked.

• CheckState is a CheckState enum indicating whether a ToolStripMenuItem is in the Checked,
Unchecked, or Indeterminate state. The default is Unchecked.

• DropDownItems is a ToolStripItemCollection of submenu items for the current
ToolStripMenuItem.

• Enabled is a Boolean that represents whether the menu item is enabled. The default is true,
which means it can be accessed.

• Image is an Image object that represents the image to display for the menu item.

• ShortcutKeys is a Keys enum that represents the shortcut keystroke associated with the menu
item. The default is Keys::None, which associates no shortcut.

• ShowShortcutKeys is a Boolean that represents whether the shortcut key is displayed. The
default is true.

• Text is a String that represents the text to display for the menu item.

The ToolStripItem that first surprised me when I first saw it as a standard item for a menu was
the ToolStripComboBox, but then once I thought about it, I came to realize it made sense. Real estate
on a menu is pretty scarce, and the use of multiple mutually exclusive radio button menu items to
select a single item can be quite a waste of space. With a ToolStripComboBox, you can select an appro-
priate mutually exclusive item from a large list and at the same time only use up one line on the
menu. My conclusion was reinforced when I found out that there is a radio button check in the
ToolStripMenuItem.

Listing 10-7 shows the creation of a MenuStrip with an assortment of ToolStripMenuItems with
different properties set. It also includes a ToolStripComboBox to show how you can use it to retrieve a
single value from a mutually exclusive list.

Listing 10-7. Simple Assorted Menu

namespace SimpleMenu
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();
 }

Fraser_640-4C10.fm Page 415 Sunday, October 30, 2005 12:25 AM

416 C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }

 private:
 System::Windows::Forms::ToolStripContainer^ toolStripContainer1;
 System::Windows::Forms::MenuStrip^ mainMenuStrip;
 System::Windows::Forms::ToolStripMenuItem^ miFile;
 System::Windows::Forms::ToolStripMenuItem^ miFileSub;
 System::Windows::Forms::ToolStripComboBox^ miFileSubThis;
 System::Windows::Forms::ToolStripMenuItem^ miFileExit;
 System::Windows::Forms::ToolStripMenuItem^ miFileSubCheck;
 System::Windows::Forms::ToolStripMenuItem^ miFileSubImage;
 System::Windows::Forms::ToolStripMenuItem^ miFileSubSayBoo;
 System::Windows::Forms::ToolStripMenuItem^ miHelp;
 System::Windows::Forms::ToolStripMenuItem^ miHelpAbout;
 System::Windows::Forms::ToolStripSeparator^ miFileSep1;
 System::ComponentModel::IContainer^ components;

#pragma region Windows Form Designer generated code
 void InitializeComponent(void)
 {
 System::ComponentModel::ComponentResourceManager^ resources =
 (gcnew System::ComponentModel::ComponentResourceManager(Form1::typeid));
 this->toolStripContainer1 =
 (gcnew System::Windows::Forms::ToolStripContainer());
 this->mainMenuStrip = (gcnew System::Windows::Forms::MenuStrip());
 this->miFile = (gcnew System::Windows::Forms::ToolStripMenuItem());
 this->miFileSub =
 (gcnew System::Windows::Forms::ToolStripMenuItem());
 this->miFileSubThis =
 (gcnew System::Windows::Forms::ToolStripComboBox());
 this->miFileSubCheck =
 (gcnew System::Windows::Forms::ToolStripMenuItem());
 this->miFileSubImage =
 (gcnew System::Windows::Forms::ToolStripMenuItem());
 this->miFileSubSayBoo =
 (gcnew System::Windows::Forms::ToolStripMenuItem());
 this->miFileSep1 =
 (gcnew System::Windows::Forms::ToolStripSeparator());
 this->miFileExit =
 (gcnew System::Windows::Forms::ToolStripMenuItem());
 this->miHelp =
 (gcnew System::Windows::Forms::ToolStripMenuItem());
 this->miHelpAbout =
 (gcnew System::Windows::Forms::ToolStripMenuItem());
 this->toolStripContainer1->TopToolStripPanel->SuspendLayout();

Fraser_640-4C10.fm Page 416 Sunday, October 30, 2005 12:25 AM

C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S 417

 this->toolStripContainer1->SuspendLayout();
 this->mainMenuStrip->SuspendLayout();
 this->SuspendLayout();
 //
 // toolStripContainer1
 //
 // toolStripContainer1.ContentPanel
 //
 this->toolStripContainer1->ContentPanel->Size =
 System::Drawing::Size(292, 249);
 this->toolStripContainer1->Dock =
 System::Windows::Forms::DockStyle::Fill;
 this->toolStripContainer1->Location = System::Drawing::Point(0, 0);
 this->toolStripContainer1->Name = L"toolStripContainer1";
 this->toolStripContainer1->Size = System::Drawing::Size(292, 273);
 this->toolStripContainer1->TabIndex = 0;
 this->toolStripContainer1->Text = L"toolStripContainer1";
 //
 // toolStripContainer1.TopToolStripPanel
 //
 this->toolStripContainer1->TopToolStripPanel->Controls->Add(
 this->mainMenuStrip);
 //
 // mainMenuStrip
 //
 this->mainMenuStrip->Dock =System::Windows::Forms::DockStyle::None;
 this->mainMenuStrip->Items->AddRange(
 gcnew cli::array< System::Windows::Forms::ToolStripItem^>(2)
 {this->miFile, this->miHelp});
 this->mainMenuStrip->Location = System::Drawing::Point(0, 0);
 this->mainMenuStrip->Name = L"mainMenuStrip";
 this->mainMenuStrip->Size = System::Drawing::Size(292, 24);
 this->mainMenuStrip->TabIndex = 0;
 this->mainMenuStrip->Text = L"menuStrip1";
 //
 // miFile
 //
 this->miFile->DropDownItems->AddRange(
 gcnew cli::array< System::Windows::Forms::ToolStripItem^>(3)
 {this->miFileSub, this->miFileSep1, this->miFileExit});
 this->miFile->Name = L"miFile";
 this->miFile->Size = System::Drawing::Size(35, 20);
 this->miFile->Text = L"&File";
 //
 // miFileSub
 //
 this->miFileSub->DropDownItems->AddRange(
 gcnew cli::array< System::Windows::Forms::ToolStripItem^>(4)
 {this->miFileSubThis, this->miFileSubCheck,
 this->miFileSubImage, this->miFileSubSayBoo});
 this->miFileSub->Name = L"miFileSub";
 this->miFileSub->Size = System::Drawing::Size(152, 22);
 this->miFileSub->Text = L"&Sub";
 //

Fraser_640-4C10.fm Page 417 Sunday, October 30, 2005 12:25 AM

418 C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S

 // miFileSubThis
 //
 this->miFileSubThis->Items->AddRange(
 gcnew cli::array< System::Object^>(3)
 {L"This", L"That", L"Other Thing"});
 this->miFileSubThis->Name = L"miFileSubThis";
 this->miFileSubThis->Size = System::Drawing::Size(121, 21);
 //
 // miFileSubCheck
 //
 this->miFileSubCheck->Checked = true;
 this->miFileSubCheck->CheckOnClick = true;
 this->miFileSubCheck->CheckState =
 System::Windows::Forms::CheckState::Checked;
 this->miFileSubCheck->Name = L"miFileSubCheck";
 this->miFileSubCheck->Size = System::Drawing::Size(181, 22);
 this->miFileSubCheck->Text = L"Check Me";
 //
 // miFileSubImage
 //
 this->miFileSubImage->Image =
 (cli::safe_cast<System::Drawing::Image^>
 (resources->GetObject(L"miFileSubImage.Image")));
 this->miFileSubImage->Name = L"miFileSubImage";
 this->miFileSubImage->Size = System::Drawing::Size(181, 22);
 this->miFileSubImage->Text = L"I have an image";
 //
 // miFileSubSayBoo
 //
 this->miFileSubSayBoo->Name = L"miFileSubSayBoo";
 this->miFileSubSayBoo->ShortcutKeys =
 static_cast<System::Windows::Forms::Keys>
 ((System::Windows::Forms::Keys::Control |
 System::Windows::Forms::Keys::S));
 this->miFileSubSayBoo->Size = System::Drawing::Size(181, 22);
 this->miFileSubSayBoo->Text = L"Say Boo";
 this->miFileSubSayBoo->Click +=
 gcnew System::EventHandler(this,&Form1::miFileSubSayBoo_Click);
 //
 // miFileSep1
 //
 this->miFileSep1->Name = L"miFileSep1";
 this->miFileSep1->Size = System::Drawing::Size(149, 6);
 //
 // miFileExit
 //
 this->miFileExit->Name = L"miFileExit";
 this->miFileExit->Size = System::Drawing::Size(152, 22);
 this->miFileExit->Text = L"E&xit";
 this->miFileExit->Click +=
 gcnew System::EventHandler(this, &Form1::miFileExit_Click);
 //
 // miHelp
 //

Fraser_640-4C10.fm Page 418 Sunday, October 30, 2005 12:25 AM

C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S 419

 this->miHelp->DropDownItems->AddRange(
 gcnew cli::array< System::Windows::Forms::ToolStripItem^>(1)
 {this->miHelpAbout});
 this->miHelp->Name = L"miHelp";
 this->miHelp->Size = System::Drawing::Size(40, 20);
 this->miHelp->Text = L"&Help";
 //
 // miHelpAbout
 //
 this->miHelpAbout->Name = L"miHelpAbout";
 this->miHelpAbout->Size = System::Drawing::Size(152, 22);
 this->miHelpAbout->Text = L"About";
 this->miHelpAbout->Click +=
 gcnew System::EventHandler(this, &Form1::miHelpAbout_Click);
 //
 // Form1
 //
 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(292, 273);
 this->Controls->Add(this->toolStripContainer1);
 this->MainMenuStrip = this->mainMenuStrip;
 this->Name = L"Form1";
 this->Text = L"Simple Menu";
 this->toolStripContainer1->TopToolStripPanel->ResumeLayout(false);
 this->toolStripContainer1->TopToolStripPanel->PerformLayout();
 this->toolStripContainer1->ResumeLayout(false);
 this->toolStripContainer1->PerformLayout();
 this->mainMenuStrip->ResumeLayout(false);
 this->mainMenuStrip->PerformLayout();
 this->ResumeLayout(false);
 }
#pragma endregion

 private:
 System::Void miFileExit_Click(System::Object^ sender,
 System::EventArgs^ e)
 {
 Application::Exit();
 }

 System::Void miHelpAbout_Click(System::Object^ sender,
 System::EventArgs^ e)
 {
 MessageBox::Show("Simple Menu v.1.0.0.0");
 }

 System::Void miFileSubSayBoo_Click(System::Object^ sender,
 System::EventArgs^ e)
 {
 MessageBox::Show("BOO");
 }
 };
}

Fraser_640-4C10.fm Page 419 Sunday, October 30, 2005 12:25 AM

420 C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S

Figure 10-9 shows what SimpleMenu.exe looks like when you execute it.

Figure 10-9. A simple menu

Bells and Whistles Controls
You’ll finish off looking at Win Form controls by exploring some fun controls that you may not use
that often, but that can occasionally come in handy.

PictureBox
The PictureBox is a handy little control for displaying an existing image file. What makes it really cool
is that it has built-in support for bitmaps, metafiles, and icons, and .jpg, .gif, and .png files. You
implement all of them the same way:

1. Drag and drop the PictureBox to your Win Form.

2. Update the Image property in the PictureBox’s Properties view with the location of your file
using the provided Open dialog box.

Like all controls, PictureBox provides properties to manipulate itself. In most cases you will
only have to worry about the following:

• BorderStyle is a BorderStyle enum that represents the border to surround your image. Three
borders are available: Fixed3D, FixedSingle, and the default None.

• Image is an Image object that represents the image to be displayed. The Image object supports
bitmaps, metafiles, and icons, and .jpg, .gif, and .png files.

• Size is a Size object that represents the height and width of the control. If the SizeMode is set
to StretchImage, then the images inside will stretch or shrink to fit this size.

• SizeMode is a PictureBoxSizeMode that represents how the image will be displayed. The four
modes are AutoSize, which forces the control to be the same size as the image; CenterImage,
which centers the image within the control (the image will be clipped if the control is too
small); the default Normal, which aligns the picture with the upper-left corner; and StretchImage,
which makes the image the same size as the control.

The code in Listing 10-8 shows a picture of my daughter in a StretchImage mode PictureBox.

Fraser_640-4C10.fm Page 420 Sunday, October 30, 2005 12:25 AM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S 421

Listing 10-8. PictureBox of Shaina

namespace PictureBoxEx
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();
 }

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }
 private:
 System::Windows::Forms::PictureBox^ pictureBox1;
 System::ComponentModel::Container ^components;

#pragma region Windows Form Designer generated code

 void InitializeComponent(void)
 {
 System::ComponentModel::ComponentResourceManager^ resources =
 (gcnew System::ComponentModel::ComponentResourceManager(Form1::typeid));
 this->pictureBox1 = (gcnew System::Windows::Forms::PictureBox());
 (cli::safe_cast<System::ComponentModel::ISupportInitialize^>
 (this->pictureBox1))->BeginInit();
 this->SuspendLayout();
 //
 // pictureBox1
 //
 this->pictureBox1->Anchor =
 static_cast<System::Windows::Forms::AnchorStyles>
 ((((System::Windows::Forms::AnchorStyles::Top
 | System::Windows::Forms::AnchorStyles::Bottom)
 | System::Windows::Forms::AnchorStyles::Left)
 | System::Windows::Forms::AnchorStyles::Right));
 this->pictureBox1->Image = (cli::safe_cast<System::Drawing::Image^>
 (resources->GetObject(L"pictureBox1.Image")));
 this->pictureBox1->Location = System::Drawing::Point(12, 12);
 this->pictureBox1->Name = L"pictureBox1";

Fraser_640-4C10.fm Page 421 Sunday, October 30, 2005 12:25 AM

422 C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S

 this->pictureBox1->Size = System::Drawing::Size(369, 287);
 this->pictureBox1->SizeMode =
 System::Windows::Forms::PictureBoxSizeMode::StretchImage;
 this->pictureBox1->TabIndex = 0;
 this->pictureBox1->TabStop = false;
 //
 // Form1
 //
 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(393, 311);
 this->Controls->Add(this->pictureBox1);
 this->Name = L"Form1";
 this->Text = L"Shaina Shoshana";
 (cli::safe_cast<System::ComponentModel::ISupportInitialize^>
 (this->pictureBox1))->EndInit();
 this->ResumeLayout(false);
 }
#pragma endregion
 };
}

You might want to note in the preceding code that Visual Studio 2005 creates a resource of the
PictureBox’s image and places it within the assembly in a similar fashion to the ImageList, instead of
referencing the file. If you don’t want the image placed in the assembly for some reason, then you’ll
have to code the updating of the Image property manually with code similar to this:

this->pictureBox->Image = new Drawing::Bitmap(S"ShainaOk.jpg");

Figure 10-10 shows what PictureBoxEx.exe looks like when you execute it.

Figure 10-10. A PictureBox of Shaina

Fraser_640-4C10.fm Page 422 Sunday, October 30, 2005 12:25 AM

C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S 423

MonthCalendar
The MonthCalendar is a neat little control that provides the ability to display a month to the user and
then allow the user to do things such as navigate from month to month and select a year, month,
day, or range of days. Another feature of the MonthCalendar control is it allows the user to highlight
specific dates on the control, either on an annual, monthly, or specific single-day basis.

Like all controls, you configure MonthCalendar using properties. Here are some of the most
commonly used properties:

• AnnuallyBoldedDates is an array of DateTime objects that represents which dates to bold
every year.

• BoldedDates is an array of DateTime objects that represents which specific dates to bold.

• CalendarDimensions is a System::Drawing::Size that represents the number of rows and
columns of months to be displayed within the control. The maximum number of months that
can be displayed is 12.

• MaxDate is a DateTime that represents the maximum date that can be shown in the control. The
default is 12/31/9998.

• MaxSelectionCount is an Int32 that represents the maximum number of dates that can be
selected at one time. The default is 7.

• MinDate is a DateTime that represents the minimum date that can be shown in the control. The
default is 01/01/1753.

• MonthlyBoldedDates is an array of DateTime objects that represents which dates to bold
every month.

• SelectionEnd is a DateTime that represents the end date of the selected date range. The default
is SelectionEnd (equaling SelectionStart).

• SelectionRange is a SelectionRange object that represents the selected range of dates within
the control.

• SelectionStart is a DateTime that represents the start date of the selected date range.

• ShowToday is a Boolean that represents whether the date specified in the TodayDate property is
shown at the bottom of the control.

• ShowTodayCircle is a Boolean that represents whether the date specified in the TodayDate
property is circled.

• ShowWeekNumbers is a Boolean that represents whether the week number is displayed for
each week.

• TodayDate is a DateTime representing any date that you want to be set as today’s date. The
default is the current system date.

• TodayDateSet is a Boolean that represents whether the TodayDate property was explicitly set.

Something you might want to note about the MonthCalendar control is that you can’t select
dates at random intervals. You can only select individual days or a range of days sequentially.

Listing 10-9 presents the MonthCalendar in action. The code simply shows a two-by-two
MonthCalendar control that generates DateChanged events when clicked. It also has two additional
labels to display the selected day or ranges of days.

Fraser_640-4C10.fm Page 423 Sunday, October 30, 2005 12:25 AM

424 C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S

Listing 10-9. The MonthCalendar Control

namespace MonthCalendarEx
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();
 }

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }
 private:
 System::Windows::Forms::Label^ End;
 System::Windows::Forms::Label^ Start;
 System::Windows::Forms::MonthCalendar^ monthCal;
 System::ComponentModel::Container ^components;

#pragma region Windows Form Designer generated code
 void InitializeComponent(void)
 {
 this->End = (gcnew System::Windows::Forms::Label());
 this->Start = (gcnew System::Windows::Forms::Label());
 this->monthCal = (gcnew System::Windows::Forms::MonthCalendar());
 this->SuspendLayout();
 //
 // End
 //
 this->End->BorderStyle =
 System::Windows::Forms::BorderStyle::FixedSingle;
 this->End->Location = System::Drawing::Point(230, 323);
 this->End->Name = L"End";
 this->End->Size = System::Drawing::Size(83, 20);
 this->End->TabIndex = 5;
 //
 // Start
 //
 this->Start->BorderStyle =
 System::Windows::Forms::BorderStyle::FixedSingle;

Fraser_640-4C10.fm Page 424 Sunday, October 30, 2005 12:25 AM

C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S 425

 this->Start->Location = System::Drawing::Point(122, 323);
 this->Start->Name = L"Start";
 this->Start->Size = System::Drawing::Size(83, 20);
 this->Start->TabIndex = 4;
 //
 // monthCal
 //
 this->monthCal->AnnuallyBoldedDates =
 gcnew cli::array< System::DateTime >(1)
 {System::DateTime(2004, 12, 31, 0, 0, 0, 0)};
 this->monthCal->CalendarDimensions = System::Drawing::Size(2, 2);
 this->monthCal->Location = System::Drawing::Point(13, 11);
 this->monthCal->MaxSelectionCount = 365;
 this->monthCal->MonthlyBoldedDates =
 gcnew cli::array< System::DateTime >(2)
 {System::DateTime(2004, 10, 1, 0, 0, 0, 0),
 System::DateTime(2004, 10, 15, 0, 0, 0, 0)};
 this->monthCal->Name = L"monthCal";
 this->monthCal->ShowWeekNumbers = true;
 this->monthCal->Size = System::Drawing::Size(410, 297);
 this->monthCal->TabIndex = 3;
 this->monthCal->DateChanged +=
 gcnew System::Windows::Forms::DateRangeEventHandler(this,
 &Form1::monthCal_DateChanged);
 //
 // Form1
 //
 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(436, 355);
 this->Controls->Add(this->End);
 this->Controls->Add(this->Start);
 this->Controls->Add(this->monthCal);
 this->Name = L"Form1";
 this->Text = L"Month Calendar";
 this->ResumeLayout(false);

 }
#pragma endregion
 private:
 System::Void monthCal_DateChanged(System::Object^ sender,
 System::Windows::Forms::DateRangeEventArgs^ e)
 {
 // Update start and end range labels when date changes
 Start->Text = e->Start.Date.ToShortDateString();
 End->Text = e->End.Date.ToShortDateString();
 }
 };
}

The only thing unusual about the preceding code is that you need to remember that
System::DateTime is a value type structure, and thus you don’t create it on the stack with the gcnew
statement. Also, when you use System::DateTime in a statement, you use the operator . and not ->.

Figure 10-11 shows what MonthCalendarEx.exe looks like when you execute it.

Fraser_640-4C10.fm Page 425 Sunday, October 30, 2005 12:25 AM

426 C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S

Figure 10-11. The MonthCalendar control

ErrorProvider
The ErrorProvider control is a nice piece of eye candy, especially when it comes to form validation,
as you can use it to provide visual attention to data entry errors on the form. It has the additional
bonus of being able to tell the user the reason for the data entry error. It provides this functionality
by placing an icon next to the control in error and then providing a ToolTip-like pop-up displaying
the reason for the error when the mouse pauses over the icon. Actually, it displays any text that you
provide to it. In theory, this text should be the reason for the error.

Another interesting feature of the ErrorProvider control is that you need only one for your
entire form. Yet, at the same time, it provides a specific error message for each control in error.

To implement the ErrorProvider control, drag and drop it to your Design view from the
Toolbox view. Then, when an error occurs in your validation process, place an error message along
with a pointer to the control in error into the ErrorProvider.

To customize the look and feel of the ErrorProvider control, a few members are provided.
These are the properties that you will most likely change:

• BlinkRate is an Int32 that represents the flash rate of the icon in milliseconds. The default is
250 milliseconds.

• BlinkStyle is an ErrorBlinkStyle enum that represents the style that the icon blinks. The
possible values are AlwaysBlink, NeverBlink, and the default BlinkIfDifferentError.

• Icon is an Icon object that represents the icon to be displayed on error. The default is a red
circle with a white exclamation point inside.

• SetError() is a method that sets the error for a specified control to display when the mouse
pauses over the icon. When the message is an empty string, no icon or error is displayed.

• SetIconAlignment() is a method that sets the icon’s location relative to a specified control.
The default is MiddleRight.

• SetIconIconPadding() is a method that specifies the number of pixels of padding to add
between an icon and a specified control. Because many controls have white space surrounding
them, this control is not used too often.

Fraser_640-4C10.fm Page 426 Sunday, October 30, 2005 12:25 AM

C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S 427

Listing 10-10 shows the ErrorProvider control in action. The code is the start of a login form
that validates that a name and password have been entered. When either of these fields is blank, the
ErrorProvider control is added after the control on the form. Just for grins and giggles, I show how
to place the icon on the left side of the control when validating on the Button control.

Listing 10-10. The ErrorProvider Control

namespace ErrorProviderEx
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();
 }

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }

 private:
 System::Windows::Forms::TextBox^ tbPword;
 System::Windows::Forms::Label^ lbPword;
 System::Windows::Forms::Button^ bnLogin;
 System::Windows::Forms::TextBox^ tbName;
 System::Windows::Forms::Label^ lbName;
 System::Windows::Forms::ErrorProvider^ eProvider;
 System::ComponentModel::IContainer^ components;

#pragma region Windows Form Designer generated code
 void InitializeComponent(void)
 {
 this->components = (gcnew System::ComponentModel::Container());
 this->tbPword = (gcnew System::Windows::Forms::TextBox());
 this->lbPword = (gcnew System::Windows::Forms::Label());
 this->bnLogin = (gcnew System::Windows::Forms::Button());
 this->tbName = (gcnew System::Windows::Forms::TextBox());
 this->lbName = (gcnew System::Windows::Forms::Label());
 this->eProvider =
 (gcnew System::Windows::Forms::ErrorProvider(this->components));

Fraser_640-4C10.fm Page 427 Sunday, October 30, 2005 12:25 AM

cafac74dd2d083cbec0906b66fcd56b1

428 C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S

 (cli::safe_cast<System::ComponentModel::ISupportInitialize^>
 (this->eProvider))->BeginInit();
 this->SuspendLayout();
 //
 // tbPword
 //
 this->tbPword->Location = System::Drawing::Point(103, 83);
 this->tbPword->Name = L"tbPword";
 this->tbPword->PasswordChar = '*';
 this->tbPword->Size = System::Drawing::Size(100, 20);
 this->tbPword->TabIndex = 9;
 this->tbPword->Validating +=
 gcnew System::ComponentModel::CancelEventHandler(this,
 &Form1::textbox_Validating);
 //
 // lbPword
 //
 this->lbPword->AutoSize = true;
 this->lbPword->Location = System::Drawing::Point(34, 83);
 this->lbPword->Name = L"lbPword";
 this->lbPword->Size = System::Drawing::Size(53, 13);
 this->lbPword->TabIndex = 8;
 this->lbPword->Text = L"&Password";
 //
 // bnLogin
 //
 this->bnLogin->Location = System::Drawing::Point(75, 131);
 this->bnLogin->Name = L"bnLogin";
 this->bnLogin->Size = System::Drawing::Size(75, 23);
 this->bnLogin->TabIndex = 7;
 this->bnLogin->Text = L"&Login";
 this->bnLogin->Click +=
 gcnew System::EventHandler(this, &Form1::login_Click);
 //
 // tbName
 //
 this->tbName->Location = System::Drawing::Point(103, 31);
 this->tbName->Name = L"tbName";
 this->tbName->Size = System::Drawing::Size(100, 20);
 this->tbName->TabIndex = 6;
 this->tbName->Validating +=
 gcnew System::ComponentModel::CancelEventHandler(this,
 &Form1::textbox_Validating);
 //
 // lbName
 //
 this->lbName->AutoSize = true;
 this->lbName->Location = System::Drawing::Point(34, 31);
 this->lbName->Name = L"lbName";
 this->lbName->Size = System::Drawing::Size(35, 13);
 this->lbName->TabIndex = 5;
 this->lbName->Text = L"&Name";

Fraser_640-4C10.fm Page 428 Sunday, October 30, 2005 12:25 AM

C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S 429

 //
 // eProvider
 //
 this->eProvider->ContainerControl = this;
 //
 // Form1
 //
 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(237, 185);
 this->Controls->Add(this->tbPword);
 this->Controls->Add(this->lbPword);
 this->Controls->Add(this->bnLogin);
 this->Controls->Add(this->tbName);
 this->Controls->Add(this->lbName);
 this->Name = L"Form1";
 this->Text = L"System Login";
 (cli::safe_cast<System::ComponentModel::ISupportInitialize^>
 (this->eProvider))->EndInit();
 this->ResumeLayout(false);
 this->PerformLayout();

 }
#pragma endregion

 private:
 System::Void textbox_Validating(System::Object^ sender,
 System::ComponentModel::CancelEventArgs^ e)
 {
 try
 {
 TextBox ^tb = (TextBox^)(sender);

 if (tb->Text->Equals(""))
 eProvider->SetError(tb, "**Error** Missing Entry!");
 else
 eProvider->SetError(tb, "");
 }
 catch (Exception^)
 {
 // Not TextBox
 }
 }

 System::Void login_Click(System::Object^ sender, System::EventArgs^ e)
 {
 if (tbName->Text->Equals(""))
 eProvider->SetError(tbName, "**Error** Missing Entry!");
 else
 eProvider->SetError(tbName, "");

Fraser_640-4C10.fm Page 429 Sunday, October 30, 2005 12:25 AM

430 C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S

 if (tbPword->Text->Equals(""))
 {
 // Place the icon left side of control
 eProvider->SetIconAlignment(tbPword,
 ErrorIconAlignment::MiddleLeft);
 eProvider->SetError(tbPword, "**Error** Missing Entry!");
 }
 else
 eProvider->SetError(tbPword, "");
 }
 };
}

Figure 10-12 shows what ErrorProviderEx.exe looks like when you execute it.

Figure 10-12. The ErrorProvider control

NotifyIcon
If you’ve tried to add an icon to the notification area in your past life, you know that it wasn’t a
simple task. Well, with the .NET Framework, it is. All it takes is a drag and drop of the NotifyIcon
control from the Toolbox view to the Design view.

The NotifyIcon control also provides four properties that you’ll probably change:

• Icon is an Icon object that represents the icon to display on the notification area. The default
is null, which causes no icon to be displayed. (Why someone would do this, I’m not sure.)

• Text is a String that represents the ToolTip text to be displayed when the mouse pauses over
the icon in the notification area. The default is null, which causes no text to be displayed.

• ContextMenu is a ContentMenu object that represents a pop-up menu displayed when the icon
is right-clicked. The default is null, which causes no menu to be displayed. (I cover ContentMenus
earlier in this chapter.)

• Visible is a Boolean that represents whether the icon is displayed in the notification area.
The default is true, which displays the icon.

Listing 10-11 shows the NotifyIcon control in action. To give the example some life, I added two
buttons. The first toggles the icon in the notification area, and the second toggles the program
display in the taskbar. When you write your own program, you may want to display either in the noti-
fication area or in the taskbar, but not in both. I also added a context menu so that you can exit the
application if you happen to minimize the application while the taskbar icon is turned off.

Fraser_640-4C10.fm Page 430 Sunday, October 30, 2005 12:25 AM

C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S 431

Listing 10-11. The NotifyIcon Control

namespace NotifyIconEx
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();
 }

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }

 private:
 System::Windows::Forms::Button^ bnTaskBar;
 System::Windows::Forms::Button^ bnNotify;
 System::Windows::Forms::NotifyIcon^ notifyIcon;
 System::Windows::Forms::ContextMenuStrip^ menuExit;
 System::Windows::Forms::ToolStripMenuItem^ miExit;
 System::ComponentModel::IContainer^ components;

#pragma region Windows Form Designer generated code

 void InitializeComponent(void)
 {
 this->components = (gcnew System::ComponentModel::Container());
 System::ComponentModel::ComponentResourceManager^ resources =
 (gcnew System::ComponentModel::ComponentResourceManager(Form1::typeid));
 this->bnTaskBar = (gcnew System::Windows::Forms::Button());
 this->bnNotify = (gcnew System::Windows::Forms::Button());
 this->notifyIcon =
 (gcnew System::Windows::Forms::NotifyIcon(this->components));
 this->menuExit =
 (gcnew System::Windows::Forms::ContextMenuStrip(this->components));
 this->miExit = (gcnew System::Windows::Forms::ToolStripMenuItem());
 this->menuExit->SuspendLayout();
 this->SuspendLayout();

Fraser_640-4C10.fm Page 431 Sunday, October 30, 2005 12:25 AM

432 C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S

 //
 // bnTaskBar
 //
 this->bnTaskBar->Location = System::Drawing::Point(28, 59);
 this->bnTaskBar->Name = L"bnTaskBar";
 this->bnTaskBar->Size = System::Drawing::Size(131, 23);
 this->bnTaskBar->TabIndex = 3;
 this->bnTaskBar->Text = L"Toggle TaskBar Icon";
 this->bnTaskBar->Click +=
 gcnew System::EventHandler(this, &Form1::bnTaskBar_Click);
 //
 // bnNotify
 //
 this->bnNotify->Location = System::Drawing::Point(28, 12);
 this->bnNotify->Name = L"bnNotify";
 this->bnNotify->Size = System::Drawing::Size(131, 23);
 this->bnNotify->TabIndex = 2;
 this->bnNotify->Text = L"Toggle Notify Icon";
 this->bnNotify->Click +=
 gcnew System::EventHandler(this, &Form1::bnNotify_Click);
 //
 // notifyIcon
 //
 this->notifyIcon->ContextMenuStrip = this->menuExit;
 this->notifyIcon->Icon = (cli::safe_cast<System::Drawing::Icon^>
 (resources->GetObject(L"notifyIcon.Icon")));
 this->notifyIcon->Text = L"Notify Icon Example";
 this->notifyIcon->Visible = true;
 //
 // menuExit
 //
 this->menuExit->Items->AddRange(
 gcnew cli::array< System::Windows::Forms::ToolStripItem^>(1)
 {this->miExit});
 this->menuExit->Name = L"miExit";
 this->menuExit->RightToLeft =
 System::Windows::Forms::RightToLeft::No;
 this->menuExit->Size = System::Drawing::Size(153, 48);
 //
 // miExit
 //
 this->miExit->Name = L"miExit";
 this->miExit->Size = System::Drawing::Size(152, 22);
 this->miExit->Text = L"E&xit";
 this->miExit->Click +=
 gcnew System::EventHandler(this, &Form1::miExit_Click);
 //
 // Form1
 //

Fraser_640-4C10.fm Page 432 Sunday, October 30, 2005 12:25 AM

C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S 433

 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(192, 106);
 this->Controls->Add(this->bnTaskBar);
 this->Controls->Add(this->bnNotify);
 this->Icon = (cli::safe_cast<System::Drawing::Icon^>
 (resources->GetObject(L"$this.Icon")));
 this->Name = L"Form1";
 this->Text = L"Notify Icon";
 this->menuExit->ResumeLayout(false);
 this->ResumeLayout(false);

 }
#pragma endregion

 private:
 System::Void bnNotify_Click(System::Object^ sender,
 System::EventArgs^ e)
 {
 notifyIcon->Visible = !notifyIcon->Visible;
 }

 System::Void bnTaskBar_Click(System::Object^ sender,
 System::EventArgs^ e)
 {
 this->ShowInTaskbar = ! this->ShowInTaskbar;
 }

 System::Void miExit_Click(System::Object^ sender,
 System::EventArgs^ e)
 {
 Application::Exit();
 }
 };
}

There really isn’t much to the preceding code, and building it is a snap (or a few drags and
drops, to be more accurate). You simply drag the NotifyIcon and two buttons to the form and
change a few properties. Then you add the events to toggle the icon and taskbar entry.

Coding the context menu is only slightly more complex, but I covered that earlier.
You change the program’s icon and the NotifyIcon’s icon in the exact same way. Just double-

click the app.ico in the Resource folder of Solution Explorer. This brings up a paint editor on which
you can draw your icon.

■Tip Within an icon file are multiple icons of different sizes. Remember to change all the different sizes or you will
get mismatching icons when the system uses icons of different sizes. (To switch to an icon of a different size, right-
click in the graphic Design view, outside of your icon drawing area, and select the Current Icon Image Types menu
item. Then select the submenu item for the icon size you want to edit.)

Figure 10-13 shows what NotifyIconEx.exe looks like when you execute it.

Fraser_640-4C10.fm Page 433 Sunday, October 30, 2005 12:25 AM

434 C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S

Figure 10-13. The NotifyIcon control

Dialog Boxes
First things first: Dialog boxes are just Forms that are called or started differently and can, if you want,
pass and/or return data and return a DialogResult. That’s it! Forget what you once knew about
dialog boxes (if you were a classic Visual C++ MFC programmer)—things have gotten a lot easier.

Everything that you’ve learned so far in this chapter works the same for dialog boxes. All you
need to do is learn a couple of optional features and how to call the dialog box itself, and then you’ll
know all you need to develop dialog boxes.

Custom Dialog Boxes
Building a custom dialog box is almost exactly the same as creating the main Win Form, except it
requires two additional steps. Here are the steps you follow to create a custom dialog box:

1. Right-click the project folder within Solution Explorer.

2. Select Add New Item from the drop-down menu item Add. A dialog box similar to the one in
Figure 10-14 appears.

Figure 10-14. The Add New Item dialog box

Fraser_640-4C10.fm Page 434 Sunday, October 30, 2005 12:25 AM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S 435

3. Select the Windows Form (.NET) icon from the Templates panel and give the dialog box a
name. I used MyDialog.

4. Click Open. This will provide you with an empty form in the Design view.

5. Build the form exactly as you do the main form.

You can now work with this form in exactly the same way as you do with the application’s main
form, except for a couple of minor things.

The first minor difference is that if you want to pass information to the dialog box or get infor-
mation back from the dialog box, you need to add properties to your form to get and set the information:

public:
 property String^ PassedValue1; // Trival

// or

 Property String^ PassedValue2
 {
 void set(String^ value)
 {
 tbPassedValue->Text = value;
 }
 String^ get()
 {
 return tbPassedValue->Text;
 }
 }

Another method of doing this would be to change the constructor to send data to the dialog box,
but I prefer properties. Plus, if you use the constructor to pass data to the dialog box, you still need
to create properties or methods to send data back, so why not bite the bullet and use properties in
both cases? This method is clean and safe (because you can verify the validity of the passed data) and
it’s easy to use.

The second change that you can make, which is totally optional, is to change the style of the
dialog box to look more like a dialog box and less like a form:

this->FormBorderStyle =
 System::Windows::Forms::FormBorderStyle::FixedToolWindow;
// Or
this->FormBorderStyle =
 System::Windows::Forms::FormBorderStyle::SizableToolWindow;

The third difference is that you want to have any buttons that close your dialog box return a
DialogResult. The .NET Framework class library provides a number of possible DialogResults (see
Table 10-2).

Table 10-2. DialogResults

Type Description

Abort Returns the value Abort. Usually you will have a button labeled Abort to
handle this.

Cancel Returns the value Cancel. This is the value returned when the Esc key is pressed (if
enabled) or the close dialog box button is clicked. Also, you will have a button on
the form labeled Cancel.

Fraser_640-4C10.fm Page 435 Sunday, October 30, 2005 12:25 AM

436 C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S

To return a DialogResult value to the calling form, you need to assign to the button that will end
the dialog the desired DialogResult value:

bnOK->DialogResult = DialogResult::OK;

When the button is clicked, it will automatically return the DialogResult it was set to
(DialogResult::OK is set in the preceding code). By the way, you can still handle the Click event, if
you need to, for the button. (You can even change its DialogResult in the handler if you really want
to. For example, you could turn DialogResult::OK into DialogResult::Cancel if no text is entered in
the dialog box.)

The final change you are probably going to want to make is to assign default buttons to respond
to the Accept and Cancel conditions. You do this by assigning a button to the form’s AcceptButton
and CancelButton properties:

AcceptButton = bnOK;
CancelButton = bnCancel;

Once you have performed the preceding additional steps, you have a complete custom dialog
box. Listing 10-12 shows the code of a custom dialog box that takes in some text, places it in a text
box, allows it to be updated, and then returns the updated text to the calling form. The dialog box
also allows the user to abort or cancel the dialog box.

Listing 10-12. The MyDialog.h File

using namespace System;
using namespace System::ComponentModel;
using namespace System::Collections;
using namespace System::Windows::Forms;
using namespace System::Data;
using namespace System::Drawing;

Ignore Returns the value Ignore. Usually you will have a button labeled Ignore to
handle this.

No Returns the value No. Usually you will have a button labeled No to handle this.

None Returns nothing. You will use this with a modal dialog box, which is discussed later
in this section.

OK Returns the value OK. This is the value returned when the Enter key is pressed (if
enabled). Also, you will have a button on the form labeled OK.

Retry Returns the value Retry. Usually you will have a button labeled Retry to
handle this.

Yes Returns the value Yes. Usually you will have a button labeled Yes to handle this.

Table 10-2. DialogResults (Continued)

Type Description

Fraser_640-4C10.fm Page 436 Sunday, October 30, 2005 12:25 AM

C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S 437

namespace CustomDialog
{
 public ref class MyDialog : public System::Windows::Forms::Form
 {
 public:
 MyDialog(void)
 {
 InitializeComponent();
 }

 protected:
 ~MyDialog()
 {
 if (components)
 {
 delete components;
 }
 }

 public:
 property String^ PassedValue // PassedValue property
 {
 void set(String ^value)
 {
 tbPassedValue->Text = value;
 }
 String ^get()
 {
 return tbPassedValue->Text;
 }
 }

 private:
 System::Windows::Forms::Button^ bnCancel;
 System::Windows::Forms::Button^ bnAbort;
 System::Windows::Forms::Button^ bnOK;
 System::Windows::Forms::TextBox^ tbPassedValue;
 System::ComponentModel::Container ^components;

#pragma region Windows Form Designer generated code

 void InitializeComponent(void)
 {
 this->bnCancel = (gcnew System::Windows::Forms::Button());
 this->bnAbort = (gcnew System::Windows::Forms::Button());
 this->bnOK = (gcnew System::Windows::Forms::Button());
 this->tbPassedValue = (gcnew System::Windows::Forms::TextBox());
 this->SuspendLayout();

Fraser_640-4C10.fm Page 437 Sunday, October 30, 2005 12:25 AM

438 C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S

 //
 // bnCancel
 //
 this->bnCancel->DialogResult =
 System::Windows::Forms::DialogResult::Cancel;
 this->bnCancel->Location = System::Drawing::Point(205, 60);
 this->bnCancel->Name = L"bnCancel";
 this->bnCancel->Size = System::Drawing::Size(75, 23);
 this->bnCancel->TabIndex = 7;
 this->bnCancel->Text = L"Cancel";
 //
 // bnAbort
 //
 this->bnAbort->DialogResult =
 System::Windows::Forms::DialogResult::Abort;
 this->bnAbort->Location = System::Drawing::Point(110, 60);
 this->bnAbort->Name = L"bnAbort";
 this->bnAbort->Size = System::Drawing::Size(75, 23);
 this->bnAbort->TabIndex = 6;
 this->bnAbort->Text = L"Abort";
 //
 // bnOK
 //
 this->bnOK->DialogResult = System::Windows::Forms::DialogResult::OK;
 this->bnOK->Location = System::Drawing::Point(13, 60);
 this->bnOK->Name = L"bnOK";
 this->bnOK->Size = System::Drawing::Size(75, 23);
 this->bnOK->TabIndex = 5;
 this->bnOK->Text = L"OK";
 //
 // tbPassedValue
 //
 this->tbPassedValue->Location = System::Drawing::Point(13, 20);
 this->tbPassedValue->Name = L"tbPassedValue";
 this->tbPassedValue->Size = System::Drawing::Size(267, 20);
 this->tbPassedValue->TabIndex = 4;
 //
 // myDialog
 //
 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(292, 102);
 this->Controls->Add(this->bnCancel);
 this->Controls->Add(this->bnAbort);
 this->Controls->Add(this->bnOK);
 this->Controls->Add(this->tbPassedValue);
 this->Name = L"myDialog";
 this->Text = L"My Custom Dialog";
 this->ResumeLayout(false);
 this->PerformLayout();
 }
#pragma endregion
 };
}

Fraser_640-4C10.fm Page 438 Sunday, October 30, 2005 12:25 AM

C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S 439

Figure 10-15 shows what the preceding example looks like when you execute it.

Figure 10-15. A custom dialog box

Now let’s take a look at the code to implement a custom dialog box (see Listing 10-13). The
example calls the dialog box by clicking anywhere in the form.

Listing 10-13. Implementing a Custom Dialog Box

#include "MyDialog.h"

namespace CustomDialog
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();
 }

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }

 private:
 System::Windows::Forms::Label^ lbRetString;
 System::Windows::Forms::Label^ lbRetVal;
 System::ComponentModel::Container ^components;

Fraser_640-4C10.fm Page 439 Sunday, October 30, 2005 12:25 AM

440 C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S

#pragma region Windows Form Designer generated code

 void InitializeComponent(void)
 {
 this->lbRetString = (gcnew System::Windows::Forms::Label());
 this->lbRetVal = (gcnew System::Windows::Forms::Label());
 this->SuspendLayout();
 //
 // lbRetString
 //
 this->lbRetString->Location = System::Drawing::Point(34, 119);
 this->lbRetString->Name = L"lbRetString";
 this->lbRetString->Size = System::Drawing::Size(225, 19);
 this->lbRetString->TabIndex = 3;
 //
 // lbRetVal
 //
 this->lbRetVal->Location = System::Drawing::Point(34, 77);
 this->lbRetVal->Name = L"lbRetVal";
 this->lbRetVal->Size = System::Drawing::Size(225, 19);
 this->lbRetVal->TabIndex = 2;
 //
 // Form1
 //
 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(292, 273);
 this->Controls->Add(this->lbRetString);
 this->Controls->Add(this->lbRetVal);
 this->Name = L"Form1";
 this->Text = L"Click Form to get dialog";
 this->Click +=
 gcnew System::EventHandler(this, &Form1::Form1_Click);
 this->ResumeLayout(false);
 }

#pragma endregion

 private:
 System::Void Form1_Click(System::Object^ sender, System::EventArgs^ e)
 {
 MyDialog ^mydialog = gcnew MyDialog();
 mydialog->PassedValue = "This has been passed from Form1";

 if (mydialog->ShowDialog() ==
 System::Windows::Forms::DialogResult::OK)
 lbRetVal->Text = "OK";
 else if (mydialog->DialogResult ==
 System::Windows::Forms::DialogResult::Abort)
 lbRetVal->Text = "Abort";
 else
 lbRetVal->Text = "Cancel";

Fraser_640-4C10.fm Page 440 Sunday, October 30, 2005 12:25 AM

C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S 441

 lbRetString->Text = mydialog->PassedValue;
 }
 };
}

Figure 10-16 shows what the preceding example looks like when you execute it.

Figure 10-16. Calling a custom dialog box

Not much of a change, is there? First, you include the include file for the definition of the
MyDialog class using the standard include statement:

#include "MyDialog.h"

You need to do this because C++/CLI requires (like standard C++) that classes be defined before
you use them. Next, you create an instance of the dialog box:

MyDialog ^mydialog = gcnew MyDialog();

Optionally, you can pass all the data you want to the dialog box:

mydialog->PassedValue = "This has been passed from Form1";

Then you call the dialog box in one of two ways:

• ShowDialog()

• Show()

The first mode, ShowDialog(), is modal. In this mode, you wait for the dialog box to finish before
you continue processing. Normally, you would check the DialogResult upon exit, as you do in the
example, but that is not necessary:

if (mydialog->ShowDialog() == System::Windows::Forms::DialogResult::OK)
 lbRetVal->Text = "OK";
else if (mydialog->DialogResult == System::Windows::Forms::DialogResult::Abort)
 lbRetVal->Text = "Abort";
else
 lbRetVal->Text = "Cancel";

The second mode, Show(), is modeless. In this mode, the dialog box opens and then returns
control immediately back to its caller. You now have two threads of execution running. (I cover
threads in Chapter 16.) I usually use modeless dialog boxes for displaying information and not
retrieving information. A classic example is the about box:

Fraser_640-4C10.fm Page 441 Sunday, October 30, 2005 12:25 AM

cafac74dd2d083cbec0906b66fcd56b1

442 C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S

AboutBox->Show();

This is not to say that you can’t use a modeless dialog box to retrieve information, but you just
need to be aware that the code that opens the dialog box is still executing, and it will not be waiting
for a result from the dialog box. If this confuses you, you might want to consult Chapter 16 on how
to code for two (or more) threads of execution.

The final thing you might do (again, this is optional) is grab the changed data out of the dialog box:

lbRetString->Text = mydialog->PassedValue;

By the way, I have been using Strings to pass data back and forth between the dialog box and
the main application. This is not a restriction, though—you can use any data type you want.

Common .NET Framework–Provided Dialog Boxes
When you’ve worked with Windows for any length of time, you soon come to recognize some common
dialog boxes that many applications use. The .NET Framework class library provides you easy access
to using these same Windows dialog boxes in your programs. Table 10-3 shows a list of the available
common dialog boxes.

You call the common dialog boxes in the same way you do the custom dialog box you just built.
Listing 10-14 shows just how simple it is to call the ColorDialog. Calling all the other custom dialog
boxes is done the same way.

Listing 10-14. Calling a Common ColorDialog

namespace ColorDialogEx
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;

Table 10-3. The Common Dialog Boxes

Dialog Box Description

ColorDialog A dialog box to select a color

FolderBrowserDialog A dialog box that allows the user to choose a folder

FontDialog A dialog box to select a font

OpenFileDialog A common Open File dialog box

PageSetupDialog A dialog box that manipulates page settings, such as margins

PrintDialog A dialog box to select a printer and the portion of the document
you want to print

SaveFileDialog A common File Save dialog box

Fraser_640-4C10.fm Page 442 Sunday, October 30, 2005 12:25 AM

C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S 443

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();
 }

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }

 private:
 System::ComponentModel::Container ^components;

#pragma region Windows Form Designer generated code

 void InitializeComponent(void)
 {
 this->SuspendLayout();
 //
 // Form1
 //
 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(292, 273);
 this->Name = L"Form1";
 this->Text = L"Common Color Dialog - Click Form";
 this->Click +=
 gcnew System::EventHandler(this, &Form1::Form1_Click);
 this->ResumeLayout(false);

 }
#pragma endregion

 private:
 System::Void Form1_Click(System::Object^ sender, System::EventArgs^ e)
 {
 ColorDialog^ colordialog = gcnew ColorDialog();

 if (colordialog->ShowDialog() ==
 System::Windows::Forms::DialogResult::OK)
 {
 BackColor = colordialog->Color;
 }
 }
 };
}

Fraser_640-4C10.fm Page 443 Sunday, October 30, 2005 12:25 AM

444 C H A P T E R 1 0 ■ A D V A N C E D W I N D O W S F O R M S A P P L I C A T I O N S

There is nothing new or special here. First, check to make sure that the dialog box exited with
the DialogResult of OK, and then set the color of the object you want changed with the value in the
Color property of the ColorDialog.

Figure 10-17 shows what the example looks like when you execute it.

Figure 10-17. Calling a common ColorDialog

Summary
In this chapter, you’ve encountered many of the more powerful controls available to the Win Forms
developer. You started off with a couple of views and then moved on to container controls. Next, you
looked at the strip controls ToolStrip, StatusStrip, and MenuStrip. Then, to finish off the coverage
of controls, you took a look at some of the more fun controls available. After your whirlwind tour of
controls, you ended Windows Form development with examining dialog boxes.

You should now be able to build a commercial-grade GUI interface that will impress all of
your peers.

In the next chapter, you’ll continue to examine the GUI interface provided by the .NET Frame-
work class library, but this time you’ll look at working with things such as fonts and prebuilt images,
and drawing your own images from scratch.

Fraser_640-4C10.fm Page 444 Sunday, October 30, 2005 12:25 AM

445

■ ■ ■

C H A P T E R 1 1

Graphics Using GDI+

Using the .NET Framework class library’s Windows Form controls is not the only way to graphically
present data to the user. There is no doubt that Win Form controls are powerful, but occasionally
you may want more control over what exactly is displayed by the computer than these controls can
provide. This chapter covers another major method of displaying data to Windows applications: GDI+.

Unlike in a Win Forms application, when you write GDI+ code, you do it from scratch. There are
no GUI drag-and-drop tools available to ease development, though you still lay out the form on
which you plan to use GDI+ with the GUI design tool. The entire form does not need to be the target
of the GDI+ images. Instead, GDI+ images can be painted on any control. Thus, you can develop a
complex form and designate only a small portion of the form to working with GDI+.

In this chapter you will see just how easy it is to develop applications using GDI+. You will start
with a high-level overview of GDI+ by looking at what it is and what it consists of. You will then look
in detail at some of its functionality, such as fonts, pens, colors, and lines. Once you have covered the
basics of GDI+, you will then look at more advanced topics, such as scrolling, optimization, and
double buffering. Finally, to round off the discussion, you will discover that GDI+ is not just for
displaying data to your monitor—you can also use it on printers.

At first glance, you might think this chapter is solely for the graphics guru. This is somewhat
true, but many of the topics presented in this chapter are used by other areas of the .NET Framework
class library such as Win Forms and Web Forms. For example, the Font class and the Color, Size, and
Position structures are used frequently in Win Forms and Web Forms. Graphics gurus will want to
read this chapter, and the average Win Forms or Web Forms developer should probably skim this
chapter as well.

What Is GDI+?
In the simplest terms, GDI+ is a set of namespaces that provides for the rendering of 2D graphics. For
example, GDI+ provides support for colors, pens, fonts, image transformations, and anti-aliasing.
GDI+ contains none of the advanced animation and 3D rendering features found in DirectX.

Notice that I didn’t include the phrase “render to the video adapter” in the preceding paragraph,
because the device GDI+ renders to is immaterial. Well, almost immaterial—some differences have to
be accounted for between some devices. For example, video adapters don’t have to worry about form
feeds, whereas printers obviously do. GDI+ is designed to support almost any graphical display device.

GDI+ originated from the Windows Graphical Device Interface (GDI), which has been around
since Microsoft Windows 3.0. GDI+ shares many of the features of its predecessor, but with the .NET
Framework class library there have been several improvements, thus the new name of GDI+.

Fraser_640-4C11.fm Page 445 Monday, November 14, 2005 11:53 AM

446 C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I +

A Quick Look at the GDI+ Namespaces
You can find the core functionality of GDI+ in the .NET Framework class library namespaces listed
in Table 11-1.

Primarily, most of the functionality that you’ll be working with is found in the classes and structures
in the System::Drawing namespace (see Table 11-2).

Table 11-1. GDI+ Core Namespaces

Namespace Description

System::Drawing This namespace is the core of GDI+. It consists of numerous
classes to handle basic 2D rendering. It is also the location of
the Graphics class from which all GDI+ functionality springs.

System::Drawing::Drawing2D This namespace extends the 2D rendering capabilities of
GDI+ by providing more advanced 2D rendering and vector
graphics.

System::Drawing::Imaging This namespace provides classes that allow direct manipula-
tion of graphical images.

System::Drawing::Printing This namespace provides classes that allow printing to a
printer. It also provides classes to interact with the printer.

System::Drawing::Text This namespace provides advanced font and font family
functionality.

Table 11-2. Key System::Drawing Namespace Classes and Structures

Class/Structure Description

Bitmap A class that represents and provides limited manipulation capabili-
ties for an image file with formats such as .bmp, .gif, and .jpg

Brush A class used to specify the color and pattern to fill the interior of a
shape such as a rectangle, ellipsis, or polygon

Brushes A class made up of several static properties of predefined brushes

Color A structure that represents a color

Font A class that represents a font

FontFamily A class that defines a group of fonts with the same basic design

Graphics The core class of GDI+ that represents a drawing surface where you
will place your text, shapes, and images

Icon A class that represents a Windows icon

Image An abstract base class used in all image type classes such as bitmaps
and icons

Pen A class used to specify the color, thickness, and pattern used to
outline shapes

Pens A class made up of several static properties of predefined pens

Fraser_640-4C11.fm Page 446 Monday, November 14, 2005 11:53 AM

C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I + 447

All of the functionality of GDI+ is located within the System.Drawing.dll assembly. Thus, you
need to reference it at the top of your source code with the following #using statement:

#using <System.Drawing.dll>

■Note If you are using Visual Studio 2005 to do your Win Forms development, System.Drawing.dll is automati-
cally added as a reference.

“Hello World!” GDI+ Style
Why break a trend I’ve set in the book? Here’s “Hello World!” again (see Listing 11-1). This time it’s
using GDI+ to render the “Hello World” text.

Listing 11-1. “Hello World!” GDI+ Style

namespace HelloGDI
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;

Point, PointF A structure that represents an x, y coordinate as either a pair of
Int32s or Singles

Rectangle, RectangleF A structure that represents the size and location of a rectangle using
either Int32 or Single values

Region A sealed class that describes a geometric shape using rectangles

Size, SizeF A structure that represents a size as either a pair of Int32s or Singles

SolidBrushes A class that defines a Brush that fills a shape with a solid color

StringFormat A sealed class that specifies the layout information such as align-
ment, formatting, and line spacing for a set of text

SystemBrushes A class made up of several static properties of SolidBrushes using
system colors

SystemColors A class made up of several static properties of system colors

SystemFonts A class made up of several static properties of system fonts

SystemIcons A class made up of several static properties of Windows system icons

SystemPens A class made up of several static properties of Pens using system colors

TextureBrush A class that represents a Brush that uses an image to fill a shape interior

Table 11-2. Key System::Drawing Namespace Classes and Structures

Class/Structure Description

Fraser_640-4C11.fm Page 447 Monday, November 14, 2005 11:53 AM

448 C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I +

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();
 }

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }

 private:
 System::ComponentModel::Container ^components;

#pragma region Windows Form Designer generated code
 void InitializeComponent(void)
 {
 this->SuspendLayout();
 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(292, 273);
 this->Name = L"Form1";
 this->Text = L"Hello GDI+";
 this->Paint +=
 gcnew System::Windows::Forms::PaintEventHandler(this,
 &Form1::Form1_Paint);
 this->ResumeLayout(false);
 }
#pragma endregion
 private:
 System::Void Form1_Paint(System::Object^ sender,
 System::Windows::Forms::PaintEventArgs^ e)
 {
 Graphics ^g = e->Graphics;
 g->DrawString("Hello World!",
 gcnew Drawing::Font("Arial", 16), Brushes::Black, 75.0, 110.0);
 }
 };
}

Figure 11-1 shows the results of the program HelloGDI.exe.

Fraser_640-4C11.fm Page 448 Monday, November 14, 2005 11:53 AM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I + 449

Figure 11-1. Results of “Hello World!” GDI+ style

As you can see, not much is new here. The big differences are the addition of the
PaintEventHandler event handler and the using of an instance of the Graphics class. The rest of the
code is identical to that of any program you looked at in the previous two chapters.

All controls generate a Paint event when they determine that it needs to be updated. The Form
class happens to also be a child of the Control class. A Paint event is triggered whenever the control
is created, resized, or restored, or when another control that had overlaid it is moved, re-exposing a
portion or all of the overlaid control.

As was pointed out previously, this “Hello World!” example differs from the previous two
chapters in that it implements an event handler, PaintEventHandler, and uses a Graphics class.
PaintEventHandler has two parameters. The first parameter is the sender of the Paint event. In this
case, it is the form, but it can be almost any control. The second parameter is a pointer to the
PaintEventArgs class. It is from the PaintEventArgs class that you will get two important pieces of
information: the Graphics class and the ClipRectangle or the area that needs to be updated on the
form. You will learn about the ClipRectangle later in the chapter when you look at optimization.

The Graphics class is the key to GDI+, but I delay exploration of the class until its own section a
little later in the chapter. For the example, all you need to know is that the Graphics class has a
member method, DrawString(), that you will use to draw the string to the display device. To get
access to the Graphics class, you usually extract its pointer from the PaintEventHandler parameter:

System::Void Form1_Paint(System::Object^ sender,
 System::Windows::Forms::PaintEventArgs^ e)
{
 Graphics ^g = e->Graphics;

The final piece of this “Hello World!” program is to actually render the “Hello World” string to
the display device. The DrawString method takes a few parameters. This example shows rendering
on the drawing surface, at location x equals 75 and y equals 100, in black, 16-point Arial font:

g->DrawString("Hello World!",
 gcnew Drawing::Font("Arial", 16), Brushes::Black, 75.0, 110.0);

Something to note about rendering with GDI+ is that the location coordinates are based on the
client area of the form or, more accurately, the control. Rendering to a location outside of the control
will be clipped and won’t be visible. Don’t panic; you’ll see how to add a scroll bar so you can scroll
over and make hidden renderings visible.

Fraser_640-4C11.fm Page 449 Monday, November 14, 2005 11:53 AM

450 C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I +

OnPaint vs. PaintEventHandler
There’s a second way of processing Paint events: the protected virtual OnPaint() method. Unlike
what you’ve seen before, you don’t call the OnPaint() method. Instead, you need to override it and
then let the system handle it when it’s called. Listing 11-2 shows the “Hello World!” program again,
this time using the virtual OnPaint() method.

Listing 11-2. “Hello World!” Using OnPaint()

namespace HelloGDI_OnPaint
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();
 }

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }

 private:
 System::ComponentModel::Container ^components;

#pragma region Windows Form Designer generated code
 void InitializeComponent(void)
 {
 this->components = gcnew System::ComponentModel::Container();
 this->Size = System::Drawing::Size(300,300);
 this->Text = L"Hello GDI+";
 this->Padding = System::Windows::Forms::Padding(0);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 }
#pragma endregion

Fraser_640-4C11.fm Page 450 Monday, November 14, 2005 11:53 AM

C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I + 451

 protected:
 virtual void OnPaint(System::Windows::Forms::PaintEventArgs ^e) override
 {
 Form::OnPaint(e);

 Graphics ^g = e->Graphics;
 g->DrawString("Hello World!",
 gcnew Drawing::Font("Arial", 16), Brushes::Black, 75.0, 110.0);
 }
 };
}

The results of HelloGDI_OnPaint.exe when run are identical to the PaintEventHandler version.
Most of the code is the same as well. The first difference is that there’s no handling of the Paint event
within the InitializeComponent() method. It isn’t needed because the OnPaint() method will handle the
Paint events for you. That isn’t to say that you can’t have the handler. I see a possibility where a static
set of graphic rendering activities are placed within the OnPaint() method and then a set of other
graphic rendering activities are placed in multiple Paint event handlers and, based on conditions,
dynamically delegated to the appropriate handler. However, you could do the same thing using an
OnPaint() or a Paint event handler alone.

So what’s the difference (if any) between the OnPaint() method and the handler
PaintEventHandler? Isn’t the OnPaint() method just a prepackaged PaintEventHandler? I thought so,
like many other people (I assume), but I was wrong. The fact is that the Control class’s OnPaint()
method is actually in charge of executing all the delegated Paint event handlers. This means the only
way you can be assured that a Paint event happens is by overriding the OnPaint() method, because
it’s possible to disable the Paint event handlers from actually firing within the OnPaint() method. It’s a
very simple thing to do—you just have to not call the base class Form::OnPaint() within the OnPaint()
method.

As you can see, the first statement within the OnPaint() method is to call the base class version
of itself:

virtual void OnPaint(System::Windows::Forms::PaintEventArgs ^e) override
{
 Form::OnPaint(e);
 //...Do stuff
}

Placing the OnPaint() method first was a conscious decision on my part, as it can make a differ-
ence where the base method call is placed within the implementation of the method. Placing it first,
as shown in the preceding code, indicates that you must handle all the other delegated Paint events
first or, in other words, do the rendering specified within this OnPaint() method last. Now if you
place the base method call after doing the rendering of the method:

virtual void OnPaint(System::Windows::Forms::PaintEventArgs ^e) override
{
 //...Do stuff
 Form::OnPaint(e);
}

this indicates render first what is in this method, and then handle all other delegated Paint events.
Both might be legitimate depending on what you want to do. Try the code in Listing 11-3 first by
placing Form::OnPaint() as the first line in the overloaded method and then as the last.

Fraser_640-4C11.fm Page 451 Monday, November 14, 2005 11:53 AM

452 C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I +

Listing 11-3. Placing the OnPaint Base Class Method

namespace OnPaintWhere
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();
 }

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }

 private:
 System::ComponentModel::Container ^components;

#pragma region Windows Form Designer generated code
 void InitializeComponent(void)
 {
 this->SuspendLayout();
 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(292, 273);
 this->Name = L"Form1";
 this->Text = L"Form1";
 this->Paint +=
 gcnew System::Windows::Forms::PaintEventHandler(this,
 &Form1::Form1_Paint);
 this->ResumeLayout(false);
 }
#pragma endregion

 protected:
 virtual void OnPaint(System::Windows::Forms::PaintEventArgs ^e) override
 {
// Form::OnPaint(e);

 e->Graphics->DrawString("Hello GDI+",
 gcnew Drawing::Font("Arial", 16), Brushes::Black, 75.0, 110.0);

Fraser_640-4C11.fm Page 452 Monday, November 14, 2005 11:53 AM

C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I + 453

 Form::OnPaint(e);
 }

 private:
 System::Void Form1_Paint(System::Object^ sender,
 System::Windows::Forms::PaintEventArgs^ e)
 {
 e->Graphics->DrawString("Hello GDI+",
 gcnew Drawing::Font("Arial", 16), Brushes::Purple, 75.0, 110.0);
 }
 };
}

Figure 11-2 shows OnPaintWhere.exe in action where the text “Hello GDI+” is in purple in this
black-and-white image. Guess you’ll have to take my word for it.

Figure 11-2. The rendering results if the base OnPaint is placed last in the method

When Form::OnPaint() is placed on the first line, the text turns out black, as the OnPaint()
method’s version of the DrawString() method is handled last. When Form::OnPaint() is placed at the
end, on the other hand, the text is purple because the PaintEventHandler version of the DrawString()
method is handled last. By the way, if you remove all the logic within the OnPaint() method, no text
is displayed, because the PaintEventHandler is never triggered as Form::OnPaint() was not called to
execute the delegated Paint events.

Now after saying all this, does it really matter if your OnPaint() method calls its base class
version? The usual answer to this is “Not really.” If you don’t plan on using the Paint event handler
yourself and the form that you created is never inherited (both normally being the case), then calling
OnPaint() makes no difference. In fact, it might speed things up minutely if you don’t call it because
it isn’t doing any unneeded method calls. (This is my take on it, though. The .NET Framework docu-
mentation says you should always call the base class method, so maybe you should take Microsoft’s
word, as there might be some hidden reason that I’m unaware of. That said, so far I haven’t come
across any problems.)

Which should you use: the OnPaint() method or the Paint event handler? I think the OnPaint()
method, as it doesn’t have the event delegate implementation overhead. But because it’s easier to
use than the Paint event (you only have to double-click the event handler in the Properties dialog
box to add it) and the cost of the overhead is so minute, I use the Paint handler from this point on.

Fraser_640-4C11.fm Page 453 Monday, November 14, 2005 11:53 AM

454 C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I +

The Graphics Class
So what is this magical Graphics class? It’s the heart of all rendering activity of GDI+. It’s a device-
independent representation of the drawing surface that you plan to render graphics on. It can represent
a monochrome display device like many PDAs or cell phones, a true-color display device like those
supported on a good number of computers used today, or anything in between. It can also be used
for printers, from plotter to dot matrix to color laser.

Graphics Class Members
The Graphics class provides developers with a large number of rendering methods (see Table 11-3)
from which they can choose to render their images. The rendering methods of the Graphics class can
be divided into two groups: lines/outlines (draws) and fills. (The Clear() method is technically a
fill.) Draws are used to outline open-ended and closed shapes or, in other words, they draw lines and
outline shapes. Fills . . . well, they fill shapes.

Table 11-3. Common Graphics Class Rendering Methods

Method Description

Clear() Clears the entire client area to the background color

DrawArc() Draws a part of an ellipse

DrawClosedCurve() Draws a closed curve defined by an array of points

DrawCurve() Draws an open curve defined by an array of points

DrawEllipse() Draws an ellipse

DrawIcon() Draws an icon

DrawImage() Draws an image

DrawImageUnscaled() Draws an image without scaling

DrawLine() Draws a line

DrawLines() Draws a series of connected lines

DrawPie() Draws a pie segment

DrawPolygon() Draws a polygon defined by an array of points

DrawRectangle() Draws a rectangle

DrawRectangles() Draws a series of rectangles

DrawString() Draws a text string

FillClosedCurve() Fills a closed curve defined by an array of points

FillEllipse() Fills an ellipse

FillPie() Fills a pie segment

FillPolygon() Fills a polygon defined by an array of points

FillRectangle() Fills a rectangle

FillRectangles() Fills a series of rectangles

Fraser_640-4C11.fm Page 454 Monday, November 14, 2005 11:53 AM

C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I + 455

Something that might disturb you a little bit is that there is no Graphics constructor. The main
way of getting an instance of a Graphics class is by grabbing from

• A PaintEventArgs’s Graphics property

• A control using its CreateGraphics() method

• An image using the Graphics static FromImage() method

• A handle to a window using the Graphics static FromHwnd() method

Usually you will only use PaintEventArgs’s Graphics property or, as you will see in the “Double
Buffering” section, the FromImage() method.

Disposing of Resources with Deterministic Cleanup
The Graphics object uses a lot of system resources. Some examples of Graphics objects are
System::Drawing::Graphics, System::Drawing::Brush, and System::Drawing::Pen. It’s important
that if you create a Graphics object, you release it as soon as you’ve finished with it. You do this by
calling the destructor for the object once you’re done with it. This allows the system resources asso-
ciated with the Graphics object to be reallocated for other purposes.

You’re probably thinking, “Won’t the garbage collector handle all this?” Yes, it will, but because
you have no control over when the garbage collector will run on the object and because graphics
resources are precious, it’s better to use deterministic cleanup and call the destructor yourself.

Be careful to call the destructor only on objects you create. For example, you don’t call the
destructor for the Graphics object you extracted from PaintEventArg, as you’re just accessing an
existing object and not creating your own. Listing 11-4 presents an example where you need to call
the destructor for a Graphics object.

Rendering Outside of the Paint Event
Now you’ll examine CreateGraphics() in an example (see Listing 11-4) and see what happens when
you minimize and then restore the window after clicking a few coordinates onto the form.

Listing 11-4. The Problem with Using CreateGraphics

namespace DisappearingCoords
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();
 }

Fraser_640-4C11.fm Page 455 Monday, November 14, 2005 11:53 AM

cafac74dd2d083cbec0906b66fcd56b1

456 C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I +

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }

 private:
 System::ComponentModel::Container ^components;

#pragma region Windows Form Designer generated code
 void InitializeComponent(void)
 {
 this->SuspendLayout();
 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(292, 273);
 this->Name = L"Form1";
 this->Text = L"Click and see coords";
 this->MouseDown +=
 gcnew System::Windows::Forms::MouseEventHandler(this,
 &Form1::Form1_MouseDown);
 this->ResumeLayout(false);

 }
#pragma endregion

 private:
 System::Void Form1_MouseDown(System::Object^ sender,
 System::Windows::Forms::MouseEventArgs^ e)
 {
 Graphics ^g = this->CreateGraphics();
 g->DrawString(String::Format("({0},{1})", e->X, e->Y),
 gcnew Drawing::Font("Courier New", 8),
 Brushes::Black, (Single)e->X, (Single)e->Y);

 delete g; // we delete the Graphics object because we
 // created it with the CreateGraphics() method.
 }
 };
}

Figure 11-3 shows the program DisappearingCoords.exe with the coordinate strings clipped
after resizing the form.

Fraser_640-4C11.fm Page 456 Monday, November 14, 2005 11:53 AM

C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I + 457

Figure 11-3. Clipped rendered coordinate strings

The coordinates disappear! What’s happening here? When you minimize a window or overlay it
with another window, its graphics device memory is released back to the system resource pool.
Thus, everything that was displayed on the graphics device is lost, along with all the coordinates that
you clicked onto the drawing surface.

With the preceding logic, the only time that a coordinate string is drawn to the graphics device
is during a mouse click. Because this is the case, there is no way of restoring the coordinates without
at least one mouse click occurring. This is why you want to use the Paint event; it is automatically
triggered whenever more of the drawing surface area is exposed, either because it was restored,
resized, or something that was obscuring it was removed.

Added to this, because none of the information about what was displayed on the drawing
surface is stored anywhere when the surface area is reduced, you need to store the coordinates that
you previously clicked so they can all be restored. Listing 11-5 shows how to fix the shortcomings of
the previous example.

Listing 11-5. Corrected Clipping Problem

namespace CorrectingCoords
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();
 coords = gcnew ArrayList(); // Instantiate coords array
 }

Fraser_640-4C11.fm Page 457 Monday, November 14, 2005 11:53 AM

458 C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I +

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }

 private:
 System::ComponentModel::Container ^components;
 ArrayList ^coords;

#pragma region Windows Form Designer generated code
 void InitializeComponent(void)
 {
 this->SuspendLayout();
 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(292, 273);
 this->Name = L"Form1";
 this->Text = L"Click and see coords";
 this->Paint +=
 gcnew System::Windows::Forms::PaintEventHandler(this,
 &Form1::Form1_Paint);
 this->MouseDown +=
 gcnew System::Windows::Forms::MouseEventHandler(this,
 &Form1::Form1_MouseDown);
 this->ResumeLayout(false);
 }
#pragma endregion

 private:
 System::Void Form1_MouseDown(System::Object^ sender,
 System::Windows::Forms::MouseEventArgs^ e)
 {
 coords->Add(Point(e->X, e->Y));
 Invalidate();
 }

 private:
 System::Void Form1_Paint(System::Object^ sender,
 System::Windows::Forms::PaintEventArgs^ e)
 {
 for each (Point^ p in coords)
 {
 e->Graphics->DrawString(String::Format("({0},{1})",p->X,p->Y),
 gcnew Drawing::Font("Courier New", 8),
 Brushes::Black, (Single)p->X, (Single)p->Y);
 }
 }
 };
}

Fraser_640-4C11.fm Page 458 Monday, November 14, 2005 11:53 AM

C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I + 459

Figure 11-4 shows CorrectingCoords.exe, though it’s hard to tell after it has been minimized,
resized, and overlaid. Notice the rendered string still appears as expected.

Figure 11-4. Correctly rendered coordinate strings

Now the MouseDown event handles the adding of the click coordinates to an array for safekeeping,
and the responsibility of rendering the coordinates is back where it should be: in the Paint event
handler (Form1_Paint()). Notice that every time the drawing surface is painted, every coordinate is
rewritten, which is hardly efficient. You will look at optimizing this later.

How does the control know when to trigger a Paint event when the mouse clicks it on? That is
the job of the Invalidate() method.

The Invalidate Method
What is this Invalidate() method and why was it called? The Invalidate() method is the manual
way of triggering a Paint event. Thus, in the previous example, because you no longer draw the coor-
dinate information to the screen in the MouseDown handler, you need to trigger the Paint event using
the Invalidate() method.

Calling the Invalidate() method without any parameters, as shown in the preceding example,
tells the form that its entire client area needs updating. The Invalidate() method also can take
parameters. These parameters allow the Invalidate() method to specify that only a piece of the
client area within the control needs to be updated. You will look at this type of the Invalidate()
method in GDI+ optimization later in the chapter.

GDI+ Coordinate Systems
When you rendered the strings earlier, you placed them where they were supposed to be on the
screen by specifying pixel distances from the top-left corner, increasing the X-axis when moving to
the right and increasing the Y-axis when moving down to the bottom (see Figure 11-5).

Fraser_640-4C11.fm Page 459 Monday, November 14, 2005 11:53 AM

460 C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I +

Figure 11-5. The default GDI coordinate system

A key aspect of GDI+ is that it is supposed to be device independent. How can that be, if every-
thing is rendered based on a pixel standard? Pixels are only one of several coordinate systems supported
by GDI+ (see Table 11-4). For example, instead of coordinate (100, 100), meaning 100 pixels to the
right and 100 pixels down, the meaning could be 100 millimeters to the right and 100 millimeters
down. To change the coordinate system to be based on a different unit of measure, you need to
change the PageUnit property of the Graphics class to a different GraphicsUnit.

It is also possible to move the origin (0, 0) away from the top-left corner to somewhere else on
the drawing surface. This requires you to translate the origin (0, 0) to where you want it located using
the Graphics class’s TranslateTransform() method.

The example in Listing 11-6 changes the unit of measure to millimeter and shifts the origin
to (20, 20).

Listing 11-6. Changing the Unit of Measure and the Origin

namespace CorrectingCoords
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;

Table 11-4. GDI+-Supported GraphicsUnits

System Description

Display Specifies 1/75 of an inch as a unit of measure

Document Specifies 1/300 of an inch as a unit of measure

Inch Specifies 1 inch as a unit of measure

Millimeter Specifies 1 millimeter as a unit of measure

Pixel Specifies 1 pixel as a unit of measure

Point Specifies a printer’s point or 1/72 of an inch as a unit of measure

Fraser_640-4C11.fm Page 460 Monday, November 14, 2005 11:53 AM

C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I + 461

 using namespace System::Data;
 using namespace System::Drawing;

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();
 coords = gcnew ArrayList(); // Instantiate coords array
 }

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }

 private:
 System::ComponentModel::Container ^components;
 ArrayList ^coords;

#pragma region Windows Form Designer generated code
 void InitializeComponent(void)
 {
 this->SuspendLayout();
 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(292, 273);
 this->Name = L"Form1";
 this->Text = L"Click and see coords";
 this->Paint +=
 gcnew System::Windows::Forms::PaintEventHandler(this,
 &Form1::Form1_Paint);
 this->MouseDown +=
 gcnew System::Windows::Forms::MouseEventHandler(this,
 &Form1::Form1_MouseDown);
 this->ResumeLayout(false);
 }
#pragma endregion

 private:
 System::Void Form1_MouseDown(System::Object^ sender,
 System::Windows::Forms::MouseEventArgs^ e)
 {
 coords->Add(Point(e->X, e->Y));
 Invalidate();
 }

Fraser_640-4C11.fm Page 461 Monday, November 14, 2005 11:53 AM

462 C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I +

 private:
 System::Void Form1_Paint(System::Object^ sender,
 System::Windows::Forms::PaintEventArgs^ e)
 {
 for each (Point^ p in coords)
 {
 e->Graphics->DrawString(String::Format("({0},{1})",p->X,p->Y),
 gcnew Drawing::Font("Courier New", 8),
 Brushes::Black, (Single)p->X, (Single)p->Y);
 }
 }
 };
}

As you can see in NewUnitsOrigin.exe, it is possible to use multiple types of units of measure
and origins within the same Paint event handler. Figure 11-6 displays a small rectangle, which was
generated by the default pixel unit of measure and origin. The larger and thicker lined rectangle is
what was generated when the unit of measure was changed to millimeter and origin was moved
to (20, 20).

Figure 11-6. Changing the unit of measure and the origin

You should notice a couple of things in this example. First, the client size still uses pixel width
and height. There is no PageUnit property for a form. Second, when you change the PageUnit of the
Graphics class, all rendering from that point is changed to the new unit of measure. This is true even
for the width of lines. Pens::Black creates lines 1 unit thick. When the unit is millimeters,
Pens::Black will end up creating a line 1 millimeter thick.

Common Utility Structures
When you render your own text, shape, or image, you need to be able to tell the Graphics class where
to place it and how big it is. It is not surprising that the .NET Framework class library provides a small
assortment of structures and a class to do just that. Here they are in brief:

• Point/PointF is used to specify location.

• Size/SizeF is used to specify size.

• Rectangle/RectangleF is used to specify both location and size at the same time.

• Region is used to specify combinations of rectangles and regions.

Fraser_640-4C11.fm Page 462 Monday, November 14, 2005 11:53 AM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I + 463

All of these types use units of measure configured by the property PageUnit within the Graphics
class. You need to take care that you always configure PageUnit consistently, or you might find that
even though the same values are placed in these structures, they in fact represent different locations
and sizes.

All the structures have int and float versions. Both provide the same functionality. The only
real difference is the level of granularity that is supported in numeric values stored within the struc-
tures. In most cases, the int version will be good enough, but if you want finer granularity, you might
want to choose the float version. Just remember that ultimately, the resolution of the drawing
surface will decide how the shape, image, or text is displayed.

Point and PointF
As the name of this structure suggests, Point/PointF is an (x, y) location in units. Remember that
units do not necessarily mean pixels. Pixels are only the default. The Point/PointF structure provides
a few members (see Table 11-5) to aid in their manipulation.

To access the X or Y values within the Point/PointF structure, you simply need to access the X or
Y property:

Drawing::Point a = Drawing::Point(10,15);
int x = a.X;
int y = a.Y;

Casting from Point to PointF is implicit, but to convert from PointF, you need to use one of two
static methods: Round() or Truncate(). The Round() method rounds to the nearest integer, and the
Truncate() method simply truncates the number to just its integer value.

Table 11-5. Common Point/PointF Members

Member Description

+ operator Translates a Point/PointF by a Size/SizeF.

- operator Translates a Point/PointF by the negative of a Size/SizeF.

== operator Compares the equality of two points. Both Xs and Ys must equal for the point
to equal.

!= operator Compares the inequality of two points. If either the Xs or Ys don’t equal, then
the points don’t equal.

IsEmpty Specifies if the point is empty.

Ceiling() Static member that returns next higher integer Point from a PointF.

Offset() Translates the point by the specified x and y amounts.

Round() Static member that returns a rounded Point from a PointF.

Truncate() Static member that returns a truncated Point from a PointF.

X Specifies the x coordinate of the point.

Y Specifies the y coordinate of the point.

Fraser_640-4C11.fm Page 463 Monday, November 14, 2005 11:53 AM

464 C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I +

Drawing::Point a = Drawing::Point(10,15);
Drawing::PointF b = a;
Drawing::Point c = Drawing::Point::Round(b);
Drawing::Point d = Drawing::Point::Truncate(b);

The Offset() method is only found in Point, and it translates the point by the x and y coordinates
passed to it.

a.Offset(2, -3);

The method is cumbersome as it returns void. I think it should return a Point type. I think it
should also be a member of PointF.

Size and SizeF
Mathematically, Size/SizeF and Point/PointF are virtually the same. How they differ is really just
conceptually. Point/PointF specifies where something is, whereas Size/SizeF specifies how big it is.
Point/PointF and Size/SizeF even have many of the same members (see Table 11-6). The biggest
difference is that sizes have widths and heights, whereas the points have x and y coordinates.

It is possible to add or subtract two sizes and get a size in return. It is also possible to subtract a
size from a point that returns another point. Adding or subtracting points generates a compiler
error.

Drawing::Size sizeA = Drawing::Size(100, 100);
Drawing::Size sizeB = Drawing::Size(50, 50);
Drawing::Size sizeC = sizeA + sizeB;
Drawing::Size sizeD = sizeC - sizeB;

Drawing::Point pointA = Drawing::Point(10, 10) + sizeD;
Drawing::Point pointB = pointA - sizeC;

Table 11-6. Common Size/SizeF Members

Member Description

+ operator Adds two sizes together.

- operator Subtracts one size from another.

== operator Compares the equality of two sizes. Both Widths and Heights must equal for
the points to equal.

!= operator Compares the inequality of two sizes. If either Widths or Heights don’t equal,
then the points don’t equal.

IsEmpty Specifies whether the size is empty.

Ceiling() Static member that returns the next higher integer Size from a SizeF.

Round() Static member that returns a rounded Size from a SizeF.

Truncate() Static member that returns a truncated Size from a SizeF.

Height Specifies the height of the size.

Width Specifies the width of the size.

Fraser_640-4C11.fm Page 464 Monday, November 14, 2005 11:53 AM

C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I + 465

You can cast Point/PointF to Size/SizeF. What happens is the value of X becomes Width and
the value of Y becomes Height, and vice versa. The following code shows how to implement all the
combinations. It also shows the Size to SizeF combinations:

size = point;
point = size;
sizeF = pointF;
pointF = (Drawing::PointF)sizeF;

sizeF = (Drawing::Size)point;
pointF = (Drawing::Point)size;
sizeF = size;

size = Drawing::Size::Round(pointF);
size = Drawing::Size::Truncate(pointF);
point = Drawing::Point::Round((Drawing::PointF)sizeF);
point = Drawing::Point::Truncate((Drawing::PointF)sizeF);
size = Drawing::Size::Round(sizeF);
size = Drawing::Size::Truncate(sizeF);

Rectangle and RectangleF
As I’m sure you can guess, the Rectangle/RectangleF structure represents the information that
makes up a rectangle. It’s really nothing more than a combination of a Point structure and a Size
structure. The Point specifies the starting upper-left corner and the Size specifies the size of the
enclosed rectangular area starting at the point. There is, in fact, a Rectangle/RectangleF constructor
that takes as its parameters a Point and a Size.

The Rectangle structure provides many properties and methods (see Table 11-7), a few of which
are redundant. For example, there are properties called Top and Left that return the exact same
thing as the properties X and Y.

Table 11-7. Common Rectangle/RectangleF Members

Member Description

== Returns whether the rectangle has the same location and size

!= Returns whether the rectangle has different location or size

Bottom Returns the y coordinate of the bottom edge

Ceiling() Static member that returns the next higher integer Rectangle from
a RectangleF

Contains Returns whether a point falls within the rectangle

Height Specifies the height of the rectangle

Intersect() Returns a Rectangle/RectangleF that represents the intersection of
two rectangles

IsEmpty Specifies whether all the numeric properties are zero

Left Returns the x coordinate of the left edge

Location A Point structure that specifies the top-left corner

Offset() Relocates a rectangle by a specified amount

Fraser_640-4C11.fm Page 465 Monday, November 14, 2005 11:53 AM

466 C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I +

The rectangle provides three interesting methods. The first is the Intersection() method,
which can take two rectangles and generate a third rectangle that represents the rectangle that the
two others have in common. The second is the Union() method. This method does not really produce
the union of two rectangles as the method’s name suggests. Instead, it generates the smallest rectangle
that can enclose the other two. The third interesting method is Contains(), which specifies whether
a point falls within a rectangle. This method could come in handy if you want to see if a mouse click
falls inside a rectangle.

The example in Listing 11-7 uses these three methods. This program checks whether a point
falls within an intersection of the two rectangles or within the union of two rectangles. (Obviously, if
the point falls within the intersection, it also falls within the union.)

Listing 11-7. Intersection, Union, or Neither

namespace InterOrUnion
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();

Right Returns the x coordinate of the right edge

Round() Static member that returns a rounded Rectangle from a RectangleF

Size A Size structure that specifies the size of the rectangle

Top Returns the y coordinate of the top edge

Truncate() Static member that returns a truncated Rectangle from a RectangleF

Union() Returns a Rectangle/RectangleF that represents the smallest possible
rectangle that can contain the two rectangles

Width Specifies the width of the rectangle

X Specifies the x coordinate of the top-left corner

Y Specifies the y coordinate of the top-left corner

Table 11-7. Common Rectangle/RectangleF Members (Continued)

Member Description

Fraser_640-4C11.fm Page 466 Monday, November 14, 2005 11:53 AM

C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I + 467

 // Build the rectangles from points and size
 Drawing::Point point1 = Drawing::Point(25,25);
 Drawing::Point point2 = Drawing::Point(100,100);
 Drawing::Size size = Drawing::Size(200, 150);
 rect1 = Drawing::Rectangle(point1, size);
 rect2 = Drawing::Rectangle(point2, size);
 }

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }

 private:
 System::ComponentModel::Container ^components;

 // intersecting and unions rectangles
 Drawing::Rectangle rect1;
 Drawing::Rectangle rect2;

#pragma region Windows Form Designer generated code
 void InitializeComponent(void)
 {
 this->SuspendLayout();
 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(330, 300);
 this->Name = L"Form1";
 this->Text = L"Click in Window";
 this->Paint +=
 gcnew System::Windows::Forms::PaintEventHandler(this,
 &Form1::Form1_Paint);
 this->MouseDown +=
 gcnew System::Windows::Forms::MouseEventHandler(this,
 &Form1::Form1_MouseDown);
 this->ResumeLayout(false);
 }
#pragma endregion

 private:
 System::Void Form1_Paint(System::Object^ sender,
 System::Windows::Forms::PaintEventArgs^ e)
 {
 // Draw a couple of rectangles
 e->Graphics->DrawRectangle(Pens::Black, rect1);
 e->Graphics->DrawRectangle(Pens::Black, rect2);
 }

Fraser_640-4C11.fm Page 467 Monday, November 14, 2005 11:53 AM

468 C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I +

 private:
 System::Void Form1_MouseDown(System::Object^ sender,
 System::Windows::Forms::MouseEventArgs^ e)
 {
 // build a point from x,y coords of mouse click
 Point p = Point(e->X, e->Y);

 // did we click in the intersection?
 if (Rectangle::Intersect(rect1, rect2).Contains(p))
 Text = "Intersection and Union";
 // did we click in the union?
 else if (Rectangle::Union(rect1, rect2).Contains(p))
 Text = "Union";
 // did we miss altogether
 else
 Text = "Outside of Both";
 }
 };
}

The first thing you need to do is declare and build two rectangles that you will make the mouse
check against:

Drawing::Rectangle rect1;
Drawing::Rectangle rect2;
//...
// Build the rectangles from points and size
Drawing::Point point1 = Drawing::Point(25,25);
Drawing::Point point2 = Drawing::Point(100,100);
Drawing::Size size = Drawing::Size(200, 150);

rect1 = Drawing::Rectangle(point1, size);
rect2 = Drawing::Rectangle(point2, size);

You will learn about the DrawRectangle() method later, but as you can see in the code, it takes a
Pen to draw with and then the Rectangle to draw:

g->DrawRectangle(Pens::Black, rect1);

Finally, in the MouseDown event, you check to see where the mouse was clicked and place the
results in the title:

// build a point from x,y coords of mouse click
Point p = Point(e->X, e->Y);

// did we click in the intersection?
if (Rectangle::Intersect(rect1, rect2).Contains(p))
 Text = "Intersection and Union";
// did we click in the union?
else if (Rectangle::Union(rect1, rect2).Contains(p))
 Text = "Union";
// did we miss altogether?
else
 Text = "Outside of Both";

Figure 11-7 shows the mouse being clicked in the intersection of the two rectangles in
InterOrUnion.exe.

Fraser_640-4C11.fm Page 468 Monday, November 14, 2005 11:53 AM

C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I + 469

Figure 11-7. It’s an intersection.

Region
The last of the utility types is the only class in the bunch. Region is a neat little class in that it alters
itself with the help of other rectangles and regions into a more complex region. The alterations
that the Region class does are things such as unions, intersections, exclusive or, and complements.
A Region class has no properties of its own; instead, it is made up of a number of methods (see
Table 11-8) that it uses to alter itself.

Table 11-8. Common Region Members

Member Description

Complement() Alters itself to become the complement of itself. The region of the
complement is restricted by a specified rectangle.

Exclude() Alters itself to become the portion of the region that does not intersect with
the given rectangle or region.

GetBounds() Specifies the smallest rectangle that the region can be contained within.

Intersect() Alters itself to become the intersection of itself and a specified rectangle
or region.

IsEmpty() Specifies whether the region is made up of an empty area.

IsInfinite() Specifies whether the region is infinite in size.

MakeEmpty() Sets the region to empty.

MakeInfinite() Sets the region to infinite.

Transform() Transforms itself using a matrix.

Translate() Translates itself by a specified amount.

Union() Alters itself to become the union of itself and a specified rectangle or region.

Xor() Alters itself to become the exclusive or (the union minus the intersection) of
itself and a specified rectangle or region.

Fraser_640-4C11.fm Page 469 Monday, November 14, 2005 11:53 AM

cafac74dd2d083cbec0906b66fcd56b1

470 C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I +

Listing 11-8 shows some of these methods in action.

Listing 11-8. Displaying a Region

namespace RegionEx
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();

 Drawing::Point point1 = Drawing::Point(25,25);
 Drawing::Point point2 = Drawing::Point(100,100);
 Drawing::Size size = Drawing::Size(200, 150);
 Rectangle rect1 = Drawing::Rectangle(point1, size);
 Rectangle rect2 = Drawing::Rectangle(point2, size);

 region = gcnew Drawing::Region(rect1);
 region->Xor(rect2);
 }

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }

 private:
 System::ComponentModel::Container ^components;
 Drawing::Region ^region;

#pragma region Windows Form Designer generated code
 void InitializeComponent(void)
 {
 this->SuspendLayout();
 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(322, 273);
 this->Name = L"Form1";
 this->Text = L"Filling A Region";

Fraser_640-4C11.fm Page 470 Monday, November 14, 2005 11:53 AM

C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I + 471

 this->Paint +=
 gcnew System::Windows::Forms::PaintEventHandler(this,
 &Form1::Form1_Paint);
 this->ResumeLayout(false);
 }
#pragma endregion

 private:
 System::Void Form1_Paint(System::Object^ sender,
 System::Windows::Forms::PaintEventArgs^ e)
 {
 e->Graphics->FillRegion(Brushes::Blue, region);
 }
 };
}

To save typing, I decided to cut and paste the code to build the rectangle from the previous
example.

To build a Region class, you start with an empty Region and then add a rectangle or a Region to it:

Drawing::Region ^region;
region = gcnew Drawing::Region(rect1);

Now you can start to alter the Region. Notice that the Region methods return void. In other words,
the Region actually gets changed with each method call to itself. To Xor it with another rectangle, call
the Xor() method:

region->Xor(rect2);

You will cover filling regions later, but so that you know, the FillRegion() method takes a Brush
to specify the color to fill it with and then the Region to fill.

Figure 11-8 shows the area that makes up the region that you built with RegionEx.exe from two
rectangles.

Figure 11-8. Displaying a region

Fraser_640-4C11.fm Page 471 Monday, November 14, 2005 11:53 AM

472 C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I +

Drawing Strings
Drawing strings almost doesn’t require a section of its own—all it involves is a single call to the
DrawString() method found in the Graphics class. The more difficult part of drawing strings is
setting up the font and color you want to print with. (I cover both topics later.)

Now you’ll take a quick peek at the DrawString() method. If you were to look at the .NET Frame-
work documentation, you’d find a plethora of overloads. When you examine them more closely,
you’ll discover that they all start with the parameters String, Font, and Brush. From there, it gets a
little tricky because you have to decide if you just want to specify the starting upper-left corner of
where you want the string displayed, using either (x, y) coordinates or a Point, or specify the entire
rectangle that you want to restrict the string to.

g->DrawString(string, font, brush, xF, yF);
g->DrawString(string, font, brush, pointF);
g->DrawString(string, font, brush, rectangleF);

When you restrict the string to a rectangle, the text automatically word-wraps, as Listing 11-9
shows. It unfortunately will also show half of a line of text if the vertical height is not enough.

Listing 11-9. Drawing a String to a Rectangle

namespace StringRect
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();
 }

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }

 private:
 System::ComponentModel::Container ^components;

Fraser_640-4C11.fm Page 472 Monday, November 14, 2005 11:53 AM

C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I + 473

#pragma region Windows Form Designer generated code
 void InitializeComponent(void)
 {
 this->SuspendLayout();
 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(292, 273);
 this->Name = L"Form1";
 this->Text = L"String in a Rectangle";
 this->Paint +=
 gcnew System::Windows::Forms::PaintEventHandler(this,
 &Form1::Form1_Paint);
 this->ResumeLayout(false);
 }
#pragma endregion

 private:
 System::Void Form1_Paint(System::Object^ sender,
 System::Windows::Forms::PaintEventArgs^ e)
 {
 // Draw the string
 e->Graphics->DrawString(
 "Let's draw a string to a rectangle and go a little "
 "overboard on the size of the string that we place "
 "inside of it",
 gcnew Drawing::Font(gcnew FontFamily("Arial"), 12),
 Brushes::Black, Drawing::RectangleF(20.0, 40.0, 260.0, 50.0));
 }
 };
}

Figure 11-9 shows that StringRect.exe draws a string to a rectangle that is too small.

Figure 11-9. A string restricted to a too-small rectangle

In reality, each of the overloads for the DrawString() method listed previously has one more
parameter of type StringFormat, which has been defaulted to GenericDefault.

g.DrawString(string, font, brush, xF, yF, stringformat);
g.DrawString(string, font, brush, pointF, stringformat);
g.DrawString(string, font, brush, rectangleF, stringformat);

Fraser_640-4C11.fm Page 473 Monday, November 14, 2005 11:53 AM

474 C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I +

StringFormat is a class containing several properties (see Table 11-9) that allow the DrawString()
method to do things such as draw the text vertically and left-, right-, or center-align it.

Listing 11-10 shows the same text as shown earlier, but this time it is written in a downward
direction and centered on each line.

Listing 11-10. Drawing Strings Downward in a Rectangle

namespace DownwardStringRect
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();
 }

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }

 private:
 System::ComponentModel::Container ^components;

Table 11-9. Common StringFormat Properties

Property Description

Alignment Specifies alignment of the text

FormatFlags Specifies StringFormatFlags such as DirectionVertical and NoWrap

GenericDefault A static method that gets the generic default StringFormat object

GenericTypographic A static method that gets the generic typographic StringFormat object

LineAlignment Specifies line alignment

Trimming Specifies how to trim a string that doesn’t fit completely within a
display area

Fraser_640-4C11.fm Page 474 Monday, November 14, 2005 11:53 AM

C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I + 475

#pragma region Windows Form Designer generated code
 void InitializeComponent(void)
 {
 this->SuspendLayout();
 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(300, 145);
 this->Name = L"Form1";
 this->Text = L"Downward String in a Rectangle";
 this->Paint +=
 gcnew System::Windows::Forms::PaintEventHandler(this,
 &Form1::Form1_Paint);
 this->ResumeLayout(false);
 }
#pragma endregion

 private:
 System::Void Form1_Paint(System::Object^ sender,
 System::Windows::Forms::PaintEventArgs^ e)
 {
 // create and configure the StringFormat object
 StringFormat ^stringformat = gcnew StringFormat();
 stringformat->FormatFlags = StringFormatFlags::DirectionVertical;
 stringformat->Alignment = StringAlignment::Center;

 // Draw the string
 e->Graphics->DrawString(
 "Let's draw a string to a rectangle and go a little "
 "overboard on the size of the string that we place "
 "inside of it",
 gcnew Drawing::Font(gcnew FontFamily("Arial"), 13),
 Brushes::Black, Drawing::RectangleF(20.0, 40.0, 250.0, 80.0),
 stringformat);
 }
 };
}

Figure 11-10 shows that DownwardStringRect.exe draws a string in a downward direction and
centers it in a rectangle that is too small. This causes the string to be clipped on the final line.

Figure 11-10. A string drawn downward and restricted to a too-small rectangle

Fraser_640-4C11.fm Page 475 Monday, November 14, 2005 11:53 AM

476 C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I +

Fonts
It seems that many people seem overly concerned about the differences between GDI+’s Font class
and FontFamily class. Here’s my take on it: A Font class represents a single font and a FontFamily
class represents a group of fonts that share many characteristics. You might think of a font family as
“Arial” and a font as “Arial, 10-point, italic.”

When you draw strings with GDI+, you don’t have much of a choice. You have to build a Font
class. You can’t draw a string with a FontFamily class.

When you build a Font class, you have the choice of starting with a FontFamily class or a String
containing the name of a font family. You’ll probably use a String if you’re planning on building a
Font class from one of the standard fonts found on a computer (e.g., Arial, Courier, and Times New
Roman). On the other hand, if your font is a little less common, you probably will search the computer
for a list of font families currently loaded on your computer. If you find the FontFamily class in the
list of font families, then it’s a simple matter of using the FontFamily class instead of the String
containing the font family’s name. In general, I don’t find the FontFamily class that useful as I tend
to use the more common fonts in my programs, but you might have more exotic tastes. Basically, to
use the FontFamily class, just replace the String in the first parameter of the Font constructor with
the FontFamily class.

The process of building a font is quite easy. You do it using the Font constructors. You will use
three constructors most often. They are really the same except that parameters are defaulted for two
of them.

The first constructor has no defaulted values and takes the name of the font family and the unit
size, the font style, and the graphics unit:

Font ^f = gcnew Drawing::Font("Arial", 16, FontStyle::Bold,GraphicsUnit::Point);

In most cases, fonts default to a graphics unit of pixels. Therefore, Font provides a constructor
with the graphics unit defaulted to pixels:

Font ^f = gcnew Drawing::Font("Arial", 16, FontStyle::Bold);

In addition, most of the time you are going to work with the font in the regular font style (not
boldface, italic, or underline). So, again, Font provides a default for this:

Font ^f = gcnew Drawing::Font("Arial", 16);

Even though the Font class has several properties (see Table 11-10), they are all read-only.
In other words, you can’t change a font once you have constructed it.

Table 11-10. Common Font Properties

Property Description

Bold true if the font is boldface

FontFamily Gets the font family

Height Gets the height of the font in the current graphics unit

Italic true if font is italicized

Name Gets the name of the font

Size Gets the size of the font in the current graphics unit

SizeInPoints Gets the size of the font in points (1/72 inch)

Fraser_640-4C11.fm Page 476 Monday, November 14, 2005 11:53 AM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I + 477

The code in Listing 11-11 creates ten random fonts and then displays them.

Listing 11-11. Generating Random Fonts

namespace FontsGalore
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;
 using namespace System::Drawing::Text;

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();

 fonts = gcnew array<Drawing::Font^>(10);
 fontstr = gcnew array<String^>(10);

 // Used to generate random fonts
 array<float>^ sizes = gcnew array<float> {
 10.0, 12.5, 16.0
 };

 array<FontStyle>^ fontstyles = gcnew array<FontStyle> {
 FontStyle::Regular, FontStyle::Bold,
 FontStyle::Italic,
 (FontStyle)(FontStyle::Underline|FontStyle::Bold|FontStyle::Italic)
 };

 array<GraphicsUnit>^ units = gcnew array<GraphicsUnit> {
 GraphicsUnit::Point, GraphicsUnit::Pixel
 };

 // Get all fonts on computer
 InstalledFontCollection ^availFonts =
 gcnew InstalledFontCollection();

Strikeout true if the font is struck out

Style Gets the style information

Underline true if the font is underlined

Unit Gets the graphics unit

Table 11-10. Common Font Properties

Property Description

Fraser_640-4C11.fm Page 477 Monday, November 14, 2005 11:53 AM

478 C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I +

 array<FontFamily^>^ fontfamilies = availFonts->Families;

 Random ^rand = gcnew Random();
 int ff, s, fs, u;

 for (int i = 0; i < fonts->Length; i++)
 {
 s = rand->Next(0,3);
 fs = rand->Next(0,3);
 u = rand->Next(0,2);

 // Not all fonts support every style
 do {
 ff = rand->Next(0,fontfamilies->Length);
 }
 while (!fontfamilies[ff]->IsStyleAvailable(
 (FontStyle)fontstyles[fs]));

 // Display string of font
 fontstr[i] = String::Format("{0} {1} {2}",
 fontfamilies[ff]->Name,
 sizes[s],
 String::Concat(fontstyles[fs], " ",
 units[u]));

 // Create the font
 fonts[i] = gcnew Drawing::Font(fontfamilies[ff], sizes[s],
 (FontStyle)fontstyles[fs],
 (GraphicsUnit)units[u]);
 }
 }

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }

 private:
 System::ComponentModel::Container ^components;
 array<Drawing::Font^>^ fonts;
 array<String^>^ fontstr;

#pragma region Windows Form Designer generated code

 void InitializeComponent(void)
 {
 this->SuspendLayout();
 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(292, 273);

Fraser_640-4C11.fm Page 478 Monday, November 14, 2005 11:53 AM

C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I + 479

 this->Name = L"Form1";
 this->Text = L"Many Fonts";
 this->Paint +=
 gcnew System::Windows::Forms::PaintEventHandler(this,
 &Form1::Form1_Paint);
 this->ResumeLayout(false);
 }
#pragma endregion

 private:
 System::Void Form1_Paint(System::Object^ sender,
 System::Windows::Forms::PaintEventArgs^ e)
 {
 float lineloc = 0;
 for (int i = 0; i < fonts->Length; i++)
 {
 // Display font
 e->Graphics->DrawString(fontstr[i], fonts[i], Brushes::Black,
 10, lineloc);

 // Calculate the top of the next line
 lineloc += fonts[i]->Height;
 }
 }
 };
}

Deep within the code is the routine to get a list of all the font families on your system:

InstalledFontCollection ^availFonts = gcnew InstalledFontCollection();
array<FontFamily^>^ fontfamilies = availFonts->Families;

After these two lines are run, you have an array of all FontFamilies on your computer. It is pretty
easy, no? The only hard part is remembering to add the namespace System::Drawing::Text, which
you need to get access to the InstalledFontCollection class.

Something you might want to notice is how I figured out where to start the next line of String.
I did this by adding the height of the font to the current line y coordinate after I finished drawing with it:

lineloc += fonts[i]->Height;

Figure 11-11 shows one instance of FontsGalore.exe running. I doubt you will ever see the same
combination of fonts displayed twice.

Figure 11-11. Displaying random fonts

Fraser_640-4C11.fm Page 479 Monday, November 14, 2005 11:53 AM

480 C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I +

Colors
Most current display device technology defines colors by breaking them up into their three basic
components: red, green, and blue. Depending on the configuration of the display device, these
components usually will have a value that ranges from 0 to 255. The principle is that by combining
different amounts of red, green, and blue, you can generate any color. Thus, many of today’s display
devices can display up to 16,777,216 (256 cubed) unique colors.

But the story doesn’t end there. Colors also provide an alpha component. This component
represents how transparent the color is. If the alpha value is 0, then the color is completely trans-
parent (a kind of useless color), and a value of 255 is completely opaque. In between these two
points are varying degrees of transparency that will, when drawn to the screen, merge with any
color already existing at that location. You see this effect used most often in computer games.

Many of the Graphics class’s Drawing methods need a System::Drawing::Color structure
containing one of the colors built from the values described previously before they can be used. The
Color class has a number of members (see Table 11-11) available to get color information from. You
can use only three common methods to place color information into a Color structure:

• FromArgb() returns a Color class based on the alpha, red, green, and blue values passed to it.

• FromKnownColor() returns a Color class based on a predefined color.

• FromName() returns a Color class based on the string color name passed.

You must use one of these three methods to create your color because there is no Color constructor.

There are two basic methods of defining a Color class: defining it using a combination of red,
green, blue, and alpha component values or selecting the color from a list of predefined colors.

Table 11-11. Common Color Members

Member Description

A Gets the alpha component

B Gets the blue component

G Gets the green component

GetBrightness() Gets the brightness of the color based on the hue-saturation-
brightness (HSB) value of the color

GetHue() Gets the hue of the color, based on the HSB value of the color

GetSaturation() Gets the saturation of the color, based on the HSB value of the color

IsKnownColor() true if it is a known color

IsNamedColor() true if it is a named color

IsSystemColor() true if it is a system color

Name Gets the name of a “named” color

R Gets the red component

ToArgb() Gets the 32-bit ARGB value of the color

ToKnownColor() Gets the KnownColor value of the color

Fraser_640-4C11.fm Page 480 Monday, November 14, 2005 11:53 AM

C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I + 481

Custom Colors
To build your own custom color, you need to use the Color class’s FromArgb() method. There are
several overloads of the method, but you will most likely use two of them. The first method takes
only the red, green, and blue components and defaults the alpha component to opaque (255). The
second method allows you to specify the alpha component.

// Pure red
Color red1 = Color::FromArgb(255, 0, 0);
Color red2 = Color:: FromArgb(255, 255, 0, 0);
//Pure green
Color green1 = Color::FromArgb(0, 255, 0);
Color green2 = Color::FromArgb(255, 0, 255, 0);
//Pure blue
Color blue1 = Color::FromArgb(0, 0, 255);
Color blue2 = Color::FromArgb(255, 0, 0, 255);

You can make transparent or semitransparent colors by adjusting the alpha component passed
to the FromArgb() method:

Color transparentgray = Color::FromArgb(127, 127, 127, 127);

Named Colors
The Color class provides a large number of predefined, or named, colors. There are two types of
named colors. The first is a name that describes the color. These types of colors range (alphabetically)
from AliceBlue to YellowGreen. The second type of color uses a name that describes its role in the
Windows standard interface, such as ControlText, ScrollBar, and Window.

The three ways of creating named colors are using the FromKnownColor() method, using the
static named color method directly, or using the string name of the color.

Color c1 = Color::FromKnownColor(KnownColor::AliceBlue);
Color c2 = Color::AliceBlue;
Color c3 = Color::FromName("AliceBlue");

Pens and Brushes
When you render images to a drawing surface, you need an object to actually do the drawing. GDI+
provides two objects: the Pen and the Brush. The Pen type is used to draw the outline of a shape, and
the Brush type fills in an enclosed shape. (Makes sense, don’t you think?)

Pens
You’ve all worked with a pen, so the idea of what a pen does shouldn’t be hard to visualize. Normally,
you use a pen to draw the outline of the object. Most likely, you draw a solid line, but sometimes you
might use a sequence of a bunch of dots and dashes. When you’re drawing a line between two
objects, you probably will put an arrow on one or both ends. If you like variety, you might even use
a red or blue pen along with your black one.

The Pen type provided by GDI+ provides basically the same functionality.

Fraser_640-4C11.fm Page 481 Monday, November 14, 2005 11:53 AM

482 C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I +

Custom Pens
You use the Pen constructor to create a Pen object, and then you use its properties (see Table 11-12)
to indicate how you want the Pen used. There are several constructors to create a Pen, but in most
cases the simple color and width constructors do the trick:

Pen^ pen1 = gcnew Pen(Color::Blue, 3.0);

Or if you want the Pen to be only 1 graphics unit thick, you could use this even easier code:

Pen^ pen2 = gcnew Pen(Color::Blue);

Notice I used the term “graphics unit.” The Pen type’s thickness is based on the graphics unit,
not pixels, though the default is pixels.

Named Pens
If you are creating a pen that is only 1 graphics unit thick and uses a named color, then you can use
one of the pens found in the Pens class. The name of the pen is the same as the name of the named
color it is using:

Pen^ pen = Pens::AliceBlue;

Table 11-12. Common Pen Properties

Property Description

Color Specifies the color of the Pen

CompoundArray Specifies the splitting of the width of a line into multiple parallel lines

CustomEndCap Specifies a custom cap for the end of the line

CustomStartCap Specifies a custom cap for the start of the line

DashCap Specifies the dash-dot-space pattern used at the cap of a line

DashOffset Specifies the distance from the start of the line to the beginning of the
dash-dot-space pattern

DashPattern Specifies a predefined dash-dot-space pattern to be used for a line

DashStyle Specifies the style of the dash lines

EndCap Specifies a predefined cap to be used for the end of the line

LineJoin Specifies the style of the join between two consecutive lines

PenType Specifies the style of the line generated by the Pen

StartCap Specifies a predefined cap to be used for the start of the line

Width Specifies the width of the Pen

Fraser_640-4C11.fm Page 482 Monday, November 14, 2005 11:53 AM

C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I + 483

System Pens
System pens are virtually the same as named pens, except that instead of a pen being named after a
color, it is named after the role that the Pen would use on the Windows GUI interface. Also, you will
find system pens in the SystemPens class and not in the Pens class:

Pen^ pen = SystemPens::MenuText;

Listing 11-12 presents an example program that draws a few lines using the CompoundArray,
DashStyle, StartCap, and EndCap properties.

Listing 11-12. Creating Some Random Lines

namespace DrawingLines
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;
 using namespace System::Drawing::Drawing2D;

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();

 pen = gcnew array<Pen^>(5);

 // a one unit width black pen
 pen[0] = Pens::Black;

 // a one unit with purple pen broken with dashes
 pen[1] = gcnew Pen(Color::Purple);
 pen[1]->DashStyle = DashStyle::Dash;

 // a 4 unit width chocolate pen
 pen[2] = gcnew Pen(Color::Chocolate, 4);

 // An 8 width royalblue pen made of three lines narrow wide narrow
 pen[3] = gcnew Pen(Color::RoyalBlue, 10);
 array<float>^ cArray = gcnew array<float> {
 0.0f, 0.1f, 0.3f, 0.7f, 0.9f, 1.0f
 };
 pen[3]->CompoundArray = cArray;

 // a 5 width tomato pen with diamond start and round end anchors
 pen[4] = gcnew Pen(Color::Tomato, 5);
 pen[4]->StartCap = LineCap::DiamondAnchor;
 pen[4]->EndCap = LineCap::RoundAnchor;
 }

Fraser_640-4C11.fm Page 483 Monday, November 14, 2005 11:53 AM

cafac74dd2d083cbec0906b66fcd56b1

484 C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I +

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }

 private:
 System::ComponentModel::Container ^components;
 array<Pen^>^ pen;

#pragma region Windows Form Designer generated code

 void InitializeComponent(void)
 {
 this->SuspendLayout();
 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(292, 273);
 this->Name = L"Form1";
 this->Text = L"Drawing Some lines";
 this->Paint +=
 gcnew System::Windows::Forms::PaintEventHandler(this,
 &Form1::Form1_Paint);
 this->ResumeLayout(false);

 }
#pragma endregion

 private:
 System::Void Form1_Paint(System::Object^ sender,
 System::Windows::Forms::PaintEventArgs^ e)
 {
 Random ^rand = gcnew Random();

 for (int i = 0; i < 10; i++)
 {
 e->Graphics->DrawLine(pen[i%5], rand->Next(0,299),
 rand->Next(0,299), rand->Next(0,299), rand->Next(0,299));
 }
 }
 };
}

Figure 11-12 shows one instance of DrawingLines.exe running. I doubt you will ever see the
same combination of lines being displayed twice.

The preceding code is pretty self-explanatory, with the help of the embedded comments,
except for two things. The first is that you need to add the System::Drawing::Drawing2D namespace.
This namespace defines both the DashStyle and LineCap classes.

Fraser_640-4C11.fm Page 484 Monday, November 14, 2005 11:53 AM

C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I + 485

Figure 11-12. Displaying random lines

The second is the code that implements the CompoundArray property. This property splits a
single line into multiple parallel lines. It does this by taking the width of a line and defining some
portions as visible and other portions as not visible. The basic idea is, starting at 0 percent, find the
first percent value that the line will be visible and write that into a Single area, and then find the
percent where it becomes invisible again and write that value into the area. Repeat the process for all
the parallel sublines that make up the full area, stopping at 100 percent.

If you want to define the entire line width as being visible (a waste of time, by the way), the array
will look like this:

array<float>^ cArray = gcnew array<float> { 0.0f, 1.0f };

If you want to define the top half of the line as visible and the bottom as invisible (again, a waste
of time), the array will look like this:

array<float>^ cArray = gcnew array<float> { 0.0f, 0.5f };

If you want the top 10 percent and the bottom 10 percent only to be visible, the array will look
like this:

array<float>^ cArray = gcnew array<float> { 0.0f, 0.1f, 0.9f, 1.0f };

Notice that the compound array always has an even number of elements.
The preceding example breaks the line like this:

So the code ends up looking like this:

Fraser_640-4C11.fm Page 485 Monday, November 14, 2005 11:53 AM

486 C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I +

pen[3] = gcnew Pen(Color::RoyalBlue, 10);
array<float>^ cArray = gcnew array<float> {
 0.0f, 0.1f, 0.3f, 0.7f, 0.9f, 1.0f
};
pen[3]->CompoundArray = cArray;

Brushes
You use brushes to fill in the objects that you drew with the pens you defined in the previous section.
Unlike the Pen class, the Brush class is an abstract class. You don’t create objects directly from the
Brush class; instead, brushes are created from classes derived from the Brush class such as SolidBrush,
HatchBrush, and TextureBrush.

You can also create named brushes and SystemBrushes. The Brushes class will fill a shape like
the SolidBrush class. The only difference is that the brushes are predefined with names based on
named colors.

Brush^ brush = Brushes::AliceBlue;

SystemBrushes are like the Brushes class, but instead of colors, the SystemBrushes are named
based on the Windows role they would represent.

Brush^ brush = SystemBrushes:: ActiveBorder;

SolidBrush, HatchBrush, and TextureBrush are not the only brushes available, but I cover only
them to give you some ideas on how to work with brushes.

Solid Brushes
The SolidBrush class is the easiest of the brushes. All it takes in its constructor is the color that you
want to fill the shape with. Its only property with any relevance is the color you used in the constructor:

SolidBrush^ brush = gcnew SolidBrush(Color::Black);

Hatch Brushes
The HatchBrush class is a little more complicated than the SolidBrush class. First, you need to add the
namespace System::Drawing::Drawing2D so that you can access the both the HatchBrush class and
the HatchStyle enumeration. The HatchBrush uses the HatchStyle enumeration (see Table 11-13) to
define the look of the brush. GDI+ provides numerous hatch styles.

Table 11-13. Ten of the Many HatchStyle Enumerations

Enumeration Description

BackwardDiagonal Specifies a pattern of diagonal lines from the upper right to lower left

Cross Specifies a pattern of vertical and horizontal lines

DiagonalBrick Specifies a pattern that looks like slanted bricks

Divots Specifies a pattern that looks like divots (a golfer’s nightmare)

Horizontal Specifies a pattern of horizontal lines

Plaid Specifies a pattern that looks like plaid

SmallConfetti Specifies a pattern that looks like small confetti

Fraser_640-4C11.fm Page 486 Monday, November 14, 2005 11:53 AM

C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I + 487

The constructor is a little more complicated too, as you need to pass the HatchStyle and two
colors, the first being the foreground hatch color and the second being the background color.

using namespace System::Drawing::Drawing2D;

HatchBrush^ b = gcnew HatchBrush(HatchStyle::Divots,
 Color::Brown, Color::Green);

Textured Brushes
A TextureBrush class allows you to place an image in the brush and then use it to fill in shapes. The
best part of TextureBrush is how little code is needed to get it to work. The basic tasks behind the
creation of a TextureBrush are loading the image and then placing it in the brush:

Image^ brushimage = gcnew Bitmap("MyImage.bmp");
TextureBrush^ tbrush = gcnew TextureBrush(brushimage);

Because I haven’t covered images yet, I defer their explanation until later in the chapter. But as
you can see in the preceding constructor, once you have an image available, it is a simple process to
place it into a TextureBrush.

But that is not where the story ends. What happens if the brush is smaller than the shape it is
trying to fill? The TextureBrush provides a WrapMode parameter (see Table 11-14) in the constructor
(and also a property) to determine what to do—either clamp it or tile it. Clamping means that only one
copy of the image is drawn, and tiling means that the image is repeatedly drawn until the area is filled.

There is one more piece of the puzzle. The first brush starts in the upper-left corner of the control
you are drawing in. Thus, if you are filling a rectangle, for instance, and you want the brush to start in
the upper-left corner of the rectangle, then you need to call the Brush class’s TranslateTransform()
method to translate the brush to start at that location:

Sphere Specifies a pattern of spheres laid adjacent to each other

Vertical Specifies a pattern of vertical lines

ZigZag Specifies a pattern of horizontal lines that looks like zigzags

Table 11-14. WrapModes Enumeration

Enumeration Description

Clamp Clamp the image to the object boundary

Tile Tile the shape

TileFlipX Tile the shape, flipping horizontally on each column

TileFlipXY Tile the shape, flipping horizontally and vertically

TileFlipY Tile the shape, flipping vertically on each row

Table 11-13. Ten of the Many HatchStyle Enumerations

Enumeration Description

Fraser_640-4C11.fm Page 487 Monday, November 14, 2005 11:53 AM

488 C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I +

// Translate brush to same start location as rectangle
tbrush->TranslateTransform(25,25);
// Fill rectangle with brush
g->FillRectangle(tbrush, 25, 25, 250, 250);

Listing 11-13 shows the tiling of the TextureBrush using WrapMode::TileFlipXY. It also shows how to
translate the starting point of the tiling to the upper-left corner of the shape you are trying to fill.

Listing 11-13. Filling with a TextureBrush

namespace TextureBrushEx
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;
 using namespace System::Drawing::Drawing2D;

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();
 }

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }

 private:
 System::ComponentModel::Container ^components;

#pragma region Windows Form Designer generated code

 void InitializeComponent(void)
 {
 this->SuspendLayout();
 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(292, 273);
 this->Name = L"Form1";
 this->Text = L"Texture Brush";
 this->Paint +=
 gcnew System::Windows::Forms::PaintEventHandler(this,
 &Form1::Form1_Paint);
 this->ResumeLayout(false);

 }

Fraser_640-4C11.fm Page 488 Monday, November 14, 2005 11:53 AM

C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I + 489

#pragma endregion

 private:
 System::Void Form1_Paint(System::Object^ sender,
 System::Windows::Forms::PaintEventArgs^ e)
 {
 // Load Image
 Image^ bimage = gcnew Bitmap("Images\\CLICppCover.gif");
 // Create brush
 TextureBrush^ tbsh = gcnew TextureBrush(bimage,
 WrapMode::TileFlipXY);

 // Translate brush to same start location as rectangle
 tbsh->TranslateTransform(25,25);
 // Fill rectangle with brush
 e->Graphics->FillRectangle(tbsh, 25, 25, 250, 250);
 }
 };
}

Figure 11-13 shows TextureBrushEx.exe in action. Remember to make sure that the bitmap file
is in the Images directory off the current executable starting directory so the program can find it. If it
is not, then the program will abort.

Figure 11-13. Displaying the tiled TextureBrush

Rendering Prebuilt Images
If you are implementing GDI+, you are probably planning to do one of two things: Render an existing
image or draw your own image. You will cover rendering an existing image first, as it is the easier of
the two processes.

Here’s the process in a nutshell. Load the image. Draw the image. That’s it. And it can be done
in one line, too!

g->DrawImageUnscaled(Image::FromFile("Images\\CLICppCover.jpg"), 0.0, 0.0);

Fraser_640-4C11.fm Page 489 Monday, November 14, 2005 11:53 AM

490 C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I +

Of course, if you want a little more control, there is another DrawImage() method that you can work
with. The Image class has a few members (see Table 11-15) with which you can manipulate the image.

Before you can render an image, you need to load it from some source, either from a file as
shown previously or a data stream (maybe the Internet?). Once the image is loaded, the Image class
provides you the ability to flip and rotate the image.

■Note The Image class doesn’t use the GraphicsUnit, as you might expect. Instead, it uses pixels per inch.

Once you have an image, you’re ready to render it. You’ve seen the Graphics class’s
DrawImageUnscaled() method. That is about the extent of the functionality it provides. It can take an
image and the location where you want to place it. A more flexible rendering method is DrawImage().
It takes myriad overloads (you can examine them at your leisure within the .NET Framework docu-
mentation), but the most useful overload takes the image and stretches it to the size you want (see
Listing 11-14).

Listing 11-14. Stretching an Image

namespace DrawImageEx
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;

Table 11-15. Common Image Class Members

Member Description

FromFile() Static method to load an image from a file

FromHbitmap() Static method to load a bitmap from a Windows handle

FromStream() Static method to load an image from a stream

GetBounds() Returns a bounding rectangle for the image

Height Specifies the height of the image

HorizontalResolution Specifies the horizontal resolution of the image in pixels per inch

PhysicalDimensions Specifies the size of the image

RotateFlip() Rotates, flips, or rotates and flips the image

Save() Saves the file to a stream

Size Specifies the size of the image

VerticalResolution Specifies the vertical resolution of the image in pixels per inch

Width Specifies the width of the image

Fraser_640-4C11.fm Page 490 Monday, November 14, 2005 11:53 AM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I + 491

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();
 }

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }

 private:
 System::ComponentModel::Container ^components;

#pragma region Windows Form Designer generated code

 void InitializeComponent(void)
 {
 this->SuspendLayout();
 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(292, 273);
 this->Name = L"Form1";
 this->Text = L"Draw Image";
 this->Paint +=
 gcnew System::Windows::Forms::PaintEventHandler(this,
 &Form1::Form1_Paint);
 this->ResumeLayout(false);
 }
#pragma endregion

 private:
 System::Void Form1_Paint(System::Object^ sender,
 System::Windows::Forms::PaintEventArgs^ e)
 {
 Image^ img = Image::FromFile("Images\\CLICppCover.gif");
 e->Graphics->DrawImage(img, 0, 0, img->Width*2, img->Height*2);
 }
 };
}

Figure 11-14 shows the end result of DrawImageEx.exe, which doubles the image with the
DrawImage() method. It is a little blurry but not too bad.

Fraser_640-4C11.fm Page 491 Monday, November 14, 2005 11:53 AM

492 C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I +

Figure 11-14. Doubling an image’s size

One last note about rendering images. So far you have only loaded images from files of type .gif,
but you can actually load .bmp, .jpg, .png, and .tif image files without having to change a single line
of code other than the name of the file.

Drawing Your Own Shapes and Lines
Now you can finally get to the fun part of GDI+: drawing your own images. You saw some of this in
action earlier in the chapter. The steps involved are quite easy: Grab the Graphics class and then
draw or fill the objects you want using the appropriate method. I listed all the methods you will likely
use back in Table 11-3, so you might want to take a quick peek back there to refresh your memory.

Because all it really takes to draw an image is calling methods, let’s create a simple piece of
artwork with the example in Listing 11-15.

Listing 11-15. A Piece of Art

namespace HappyFace
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();
 }

Fraser_640-4C11.fm Page 492 Monday, November 14, 2005 11:53 AM

C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I + 493

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }

 private:
 System::ComponentModel::Container ^components;

#pragma region Windows Form Designer generated code

 void InitializeComponent(void)
 {
 this->SuspendLayout();
 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(300, 300);
 this->Name = L"Form1";
 this->Text = L"Happy Face";
 this->Paint +=
 gcnew System::Windows::Forms::PaintEventHandler(this,
 &Form1::Form1_Paint);
 this->ResumeLayout(false);
 }
#pragma endregion

 private:
 System::Void Form1_Paint(System::Object^ sender,
 System::Windows::Forms::PaintEventArgs^ e)
 {
 Graphics^ g = e->Graphics;
 Pen^ b4pen = gcnew Pen(Color::Black, 4);

 // Head
 Rectangle rect = Drawing::Rectangle(25, 25, 250, 250);
 g->FillEllipse(Brushes::Yellow, rect);
 g->DrawEllipse(b4pen, rect);

 // Mouth
 g->FillPie(Brushes::White, 100, 175, 100, 50, 0, 180);
 g->DrawPie(b4pen, 100, 175, 100, 50, 0, 180);

 // Left Eye
 rect = Drawing::Rectangle(100, 100, 25, 25);
 g->FillEllipse(Brushes::White, rect);
 g->DrawEllipse(b4pen, rect);

Fraser_640-4C11.fm Page 493 Monday, November 14, 2005 11:53 AM

494 C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I +

 // Right Eye
 rect = Drawing::Rectangle(175, 100, 25, 25);
 g->FillEllipse(Brushes::White, rect);
 g->DrawEllipse(b4pen, rect);

 // Get rid of pen Created
 delete b4pen;
 }
 };
}

Figure 11-15 shows the results of HappyFace.exe, which is about the limit of my artistic abilities.

Figure 11-15. A happy face

Advanced GDI+
I kind of like the happy face I created in the last section, so I’ll get a little more mileage out of it by
using it to demonstrate a few more advanced GDI+ topics: scrollable windows, optimizing, and
double buffering. By “advanced,” I don’t mean difficult—rather, I mean less obvious in how to
implement. All three topics aren’t that hard to implement.

Scrollable Windows
In the previous chapter on Win Forms, you didn’t have to worry about a scrolling window as the Win
Form handled it itself. With GDI+, on the other hand, it’s up to you to add the necessary two lines in
your code to get the scrollable window to work. Yep, you read correctly: two lines of code.

For those of you who aren’t sure what a scrollable window is, it’s a window that automatically
attaches scroll bars to itself when the display information extends beyond its width. You use the
scroll bar to shift the display area over so you can view this obscured displayed information.

To enable automatic scroll bars in a form, you need to update the AutoScrollMinSize property
for the form:

this->AutoScrollMinSize = System::Drawing::Size(400, 400);

The size that you need to specify is the smallest area needed to display all the information. In
my case, I was a little overzealous on the size so that you can see the scrolling better.

Fraser_640-4C11.fm Page 494 Monday, November 14, 2005 11:53 AM

C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I + 495

When you add the preceding line to your previous happy face example, you get scroll bars as
shown in Figure 11-16, and everything seems hunky-dory.

Figure 11-16. A happy face in a scrollable window

Or is it? When you try to scroll the window, you get nothing but garbage, as you can see in
Figure 11-17.

Figure 11-17. A not-so-happy happy face in a scrollable window

What’s happening here? Believe it or not, the program is functioning perfectly—just not how
you want it to. You can find the problem in the Paint event handler. The following steps show how
the current program is working:

1. You click the scroll bar.

2. The window scrolls.

3. The Invalidate event is triggered for the clip area of the newly exposed window.

4. The Paint event handler executes.

5. The newly exposed window is replaced with any display data that belongs in it.

Sounds like it’s working correctly to me, except for one minor detail. How does the program
know what belongs in the newly exposed clip area? Notice that all the points in each of the drawing

Fraser_640-4C11.fm Page 495 Monday, November 14, 2005 11:53 AM

496 C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I +

routines haven’t been notified that the scroll took place. They’re still drawing the same information
at the same locations. Thus, the window is just repainting the newly exposed clip area with the orig-
inal and wrong display information.

You have two (at least) ways of solving this problem. You might try adjusting each of the
drawing routines by the amount of the scroll so that when they’re called they render correctly. This
solution isn’t so bad when you’re dealing with a handful of drawing and filling routines, but it’s not
good for a large number of routines.

An easier solution is to translate the origin of the Graphics class using the TranslateTransform()
method (which I discussed earlier) to reflect the scroll. This solution has the same effect as the
previous solution. The best part is that you have to add only one line of code, instead of changing
every draw and fill routine. (Told you it would take two lines of code!)

g->TranslateTransform((float)AutoScrollPosition.X,(float)AutoScrollPosition.Y);

It’s also fortunate that the Form class provides a property, AutoScrollPosition, which indicates
how much was scrolled.

Listing 11-16 shows the happy face program modified to handle scroll bars.

Listing 11-16. A Scrolling Happy Face

namespace ScrollingHappyFace
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();
 }

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }

 private:
 System::ComponentModel::Container ^components;

#pragma region Windows Form Designer generated code
 void InitializeComponent(void)
 {
 this->SuspendLayout();

Fraser_640-4C11.fm Page 496 Monday, November 14, 2005 11:53 AM

C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I + 497

 this->AutoScrollMinSize = System::Drawing::Size(400,400);

 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(292, 273);
 this->Name = L"Form1";
 this->Text = L"Scrolling Happy Face";
 this->Paint +=
 gcnew System::Windows::Forms::PaintEventHandler(this,
 &Form1::Form1_Paint);
 this->ResumeLayout(false);

 }
#pragma endregion

 private:
 System::Void Form1_Paint(System::Object^ sender,
 System::Windows::Forms::PaintEventArgs^ e)
 {
 Graphics^ g = e->Graphics;
 g->TranslateTransform((float)AutoScrollPosition.X,
 (float)AutoScrollPosition.Y);

 Pen^ b4pen = gcnew Pen(Color::Black, 4);

 // Head
 Rectangle rect = Drawing::Rectangle(25, 25, 250, 250);
 g->FillEllipse(Brushes::Yellow, rect);
 g->DrawEllipse(b4pen, rect);

 // Mouth
 g->FillPie(Brushes::White, 100, 175, 100, 50, 0, 180);
 g->DrawPie(b4pen, 100, 175, 100, 50, 0, 180);

 // Left Eye
 rect = Drawing::Rectangle(100, 100, 25, 25);
 g->FillEllipse(Brushes::White, rect);
 g->DrawEllipse(b4pen, rect);

 // Right Eye
 rect = Drawing::Rectangle(175, 100, 25, 25);
 g->FillEllipse(Brushes::White, rect);
 g->DrawEllipse(b4pen, rect);

 // Get rid of pen Created
 delete b4pen;
 }
 };
}

Figure 11-18 shows a happily scrolled happy face.

Fraser_640-4C11.fm Page 497 Monday, November 14, 2005 11:53 AM

cafac74dd2d083cbec0906b66fcd56b1

498 C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I +

Figure 11-18. The right side of a happy face

Optimizing GDI+
You have many ways to optimize GDI+. This section describes the most obvious and easiest-to-
implement methods.

Did you notice something about your Paint event handler method in the previous example? It
executed every line in itself even if it was only repainting a small sliver of the graphic display. Wouldn’t
it be better and faster if only the parts of the Paint event handler method that need executing were
executed? Let’s see how you can do this.

The first thing you have to figure out is how to let a draw or fill method know that it needs to be
executed.

What do all the draw and fill routines have in common in the preceding example? They all have
a bounding rectangle. This rectangle indicates the area that it is supposed to update. Okay, so you
know the area each draw or fill method needs to update.

Rectangle Head = Drawing::Rectangle(125, 25, 250, 250);
g->FillEllipse(Brushes::Yellow, Head);

Next, you want to know if this area is the same as what needs to be updated on the drawing
surface. Remember way back near the beginning of the chapter where I wrote that the PaintEventArgs
parameter provides two pieces of information: the Graphics and the ClipRectangle? This clip rectangle is
the area that needs to be updated.

Drawing::Rectangle ClipRect = pea->ClipRectangle;

You now have two rectangles: one that specifies where it will update and another that specifies
where it needs to be updated. So by intersecting these two rectangles, you can figure out if the draw
routine needs to be executed, because when the intersection is not empty you know that the draw or
fill needs to be executed.

if (!(Rectangle::Intersect(ClipRect, Head)).IsEmpty)
{
 //...Execute draw or fill method
}

The neat thing about this is that if you surround every draw and fill method with this compar-
ison, when the Paint event handler is executed, only the draw or fill methods that need to be
executed are.

Fraser_640-4C11.fm Page 498 Monday, November 14, 2005 11:53 AM

C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I + 499

There is one more wrinkle, though. The clip area is based on the client area and not the scroll
area. This sounds familiar, doesn’t it? So you have to adjust the clip area by the negative of
AutoScrollPosition.

ClipRect.Offset(-AutoScrollPosition.X, -AutoScrollPosition.Y);

Why negative? You’re doing the exact opposite of what you did in the previous example. This
time you’re moving the object on the drawing surface and keeping the drawing surface still. In the
previous example, you kept the objects still and moved the drawing surface (well, it’s not really doing
this but it’s easier to picture this way).

Listing 11-17 shows the scrollable happy face program with this optimization.

Listing 11-17. An Optimized Scrollable Happy Face

namespace OptimizedHappyFace
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();

 Head = Drawing::Rectangle(125, 25, 250, 250);
 Mouth = Drawing::Rectangle(200, 175, 100, 50);
 LEye = Drawing::Rectangle(200, 100, 25, 25);
 REye = Drawing::Rectangle(275, 100, 25, 25);

 b4pen = gcnew Pen(Color::Black, 4);
 }

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }

 private:
 System::ComponentModel::Container ^components;

 System::Drawing::Rectangle Head;
 System::Drawing::Rectangle Mouth;
 System::Drawing::Rectangle LEye;
 System::Drawing::Rectangle REye;
 Pen^ b4pen;

Fraser_640-4C11.fm Page 499 Monday, November 14, 2005 11:53 AM

500 C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I +

#pragma region Windows Form Designer generated code
 void InitializeComponent(void)
 {
 this->SuspendLayout();

 this->AutoScrollMinSize = System::Drawing::Size(400,400);

 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(292, 273);
 this->Name = L"Form1";
 this->Text = L"Optimized Happy Face";
 this->Paint +=
 gcnew System::Windows::Forms::PaintEventHandler(this,
 &Form1::Form1_Paint);
 this->ResumeLayout(false);
 }
#pragma endregion

 private:
 System::Void Form1_Paint(System::Object^ sender,
 System::Windows::Forms::PaintEventArgs^ e)
 {
 Graphics^ g = e->Graphics;

 Drawing::Rectangle ClipRect = e->ClipRectangle;
 ClipRect.Offset(-AutoScrollPosition.X, -AutoScrollPosition.Y);

 g->TranslateTransform((float)AutoScrollPosition.X,
 (float)AutoScrollPosition.Y);

 if (!(Rectangle::Intersect(ClipRect, Head)).IsEmpty)
 {
 g->FillEllipse(Brushes::Yellow, Head);
 g->DrawEllipse(b4pen, Head);

 if (!(Rectangle::Intersect(ClipRect, Mouth)).IsEmpty)
 {
 g->FillPie(Brushes::White, Mouth, 0, 180);
 g->DrawPie(b4pen, Mouth, 0, 180);
 }
 if (!(Rectangle::Intersect(ClipRect, LEye)).IsEmpty)
 {
 g->FillEllipse(Brushes::White, LEye);
 g->DrawEllipse(b4pen, LEye);
 }
 if (!(Rectangle::Intersect(ClipRect, REye)).IsEmpty)
 {
 g->FillEllipse(Brushes::White, REye);
 g->DrawEllipse(b4pen, REye);
 }
 }
 }
 };
}

Fraser_640-4C11.fm Page 500 Monday, November 14, 2005 11:53 AM

C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I + 501

Notice that in the code I threw in one more optimization in OptimizedHappyFace.exe. The
Paint event handler method doesn’t draw the mouth or eyes if the head doesn’t need to be painted.
I can do this because the mouth and eyes are completely enclosed within the head, so if the head
doesn’t need painting, there’s no way that the mouth or eyes will either.

Double Buffering
Double buffering is the technique of using a secondary off-screen buffer to render your entire screen
image. Then, in one quick blast, you move the completed secondary buffer onto your primary on-
screen form or control.

The use of double buffering speeds up the rendering process and makes image movement
much smoother by reducing flickering. Let’s give the happy face some life and let it slide repeatedly
across the form.

Unbuffer Method
The first example in Listing 11-18 shows how you can implement this without double buffering.
(There are other ways of doing this—some of them are probably more efficient.) There is nothing
new in the code. You start by creating a Timer and telling it to invalidate the form each time it is triggered.
Then you render the happy face repeatedly, shifting it over to the right and slowing it by changing
the origin with the TranslateTransform() method. When the happy face reaches the end of the
screen, you reset the happy face back to the left and start again.

Listing 11-18. Sliding the Happy Face the Ugly Way

namespace SingleBuffering
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();
 X = -250; // Preset to be just left of window
 }

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }

Fraser_640-4C11.fm Page 501 Monday, November 14, 2005 11:53 AM

502 C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I +

 private:
 System::Windows::Forms::Timer^ timer1;
 System::ComponentModel::IContainer^ components;

 float X; // Actual x coordinate of Happy face

#pragma region Windows Form Designer generated code

 void InitializeComponent(void)
 {
 this->components = (gcnew System::ComponentModel::Container());
 this->timer1 =
 (gcnew System::Windows::Forms::Timer(this->components));
 this->SuspendLayout();
 //
 // timer1
 //
 this->timer1->Enabled = true;
 this->timer1->Interval = 10;
 this->timer1->Tick +=
 gcnew System::EventHandler(this, &Form1::timer1_Tick);
 //
 // Form1
 //
 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(500, 300);
 this->Name = L"Form1";
 this->Text = L"Form1";
 this->Paint +=
 gcnew System::Windows::Forms::PaintEventHandler(this,
 &Form1::Form1_Paint);
 this->ResumeLayout(false);
 }
#pragma endregion
 private:
 System::Void Form1_Paint(System::Object^ sender,
 System::Windows::Forms::PaintEventArgs^ e)
 {
 Graphics^ g = e->Graphics;

 // Move image at end of line start from beginning
 if (X < ClientRectangle.Width)
 X += 1.0;
 else
 X = -250.0;

 g->TranslateTransform(X, 25.0);

 // redraw images from scratch
 Pen^ b4pen = gcnew Pen(Color::Black, 4);

Fraser_640-4C11.fm Page 502 Monday, November 14, 2005 11:53 AM

C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I + 503

 Drawing::Rectangle Head = Drawing::Rectangle(0, 0, 250, 250);
 g->FillEllipse(Brushes::Yellow, Head);
 g->DrawEllipse(b4pen, Head);

 Drawing::Rectangle Mouth = Drawing::Rectangle(75, 150, 100, 50);
 g->FillPie(Brushes::White, Mouth,0,180);
 g->DrawPie(b4pen, Mouth, 0, 180);

 Drawing::Rectangle LEye = Drawing::Rectangle(75, 75, 25, 25);
 g->FillEllipse(Brushes::White, LEye);
 g->DrawEllipse(b4pen, LEye);

 Drawing::Rectangle REye = Drawing::Rectangle(150, 75, 25, 25);
 g->FillEllipse(Brushes::White, REye);
 g->DrawEllipse(b4pen, REye);

 delete b4pen;
 }

 System::Void timer1_Tick(System::Object^ sender, System::EventArgs^ e)
 {
 // Move the image
 Invalidate();
 }
 };
}

When you run SingleBuffering.exe, you will see a rather ugly, flickering happy face sort of
sliding across the screen. If you have a superpowered computer with a great graphics card, then the
flickering may not be that bad, or it may be nonexistent. My computer is actually on the high end
graphically, and it still looks kind of pathetic.

Double Buffer Method
I change as little of the original code as possible in the double buffering example in Listing 11-19,
which should enable you to focus on only what is needed to implement double buffering.

As the technique’s name suggests, you need an extra buffer. Creating one is simple enough:

dbBitmap = gcnew Bitmap(ClientRectangle.Width, ClientRectangle.Height);

We have not covered the Bitmap class. But for the purposes of double buffering, all you need to
know is that you create a bitmap by specifying its width and height. If you want to know more about
the Bitmap class, the .NET Framework documentation is quite thorough.

If you recall, though, you don’t call draw and fill methods from a bitmap—you need a Graphics
class. Fortunately, it’s also easy to extract the Graphics class out of a bitmap:

dbGraphics = Graphics::FromImage(dbBitmap);

Now that you have a Graphics class, you can clear, draw, and fill it just like you would a form-
originated Graphics class:

dbGraphics->FillEllipse(Brushes::Yellow, Head);
dbGraphics->DrawEllipse(b4pen, Head);

Fraser_640-4C11.fm Page 503 Monday, November 14, 2005 11:53 AM

504 C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I +

So how do you implement a double buffer? The process is pretty much the same as for a single
buffer, except that instead of drawing to the display device directly, you draw to the buffer. Once the
image is complete, you copy the completed image to the display device. Notice you copy the image
or buffer and not the graphic.

e->Graphics->DrawImageUnscaled(dbBitmap, 0, 0);

The reason double buffering is faster than single buffering is because writing to memory is
faster than writing to the display device. Flickering is not an issue because the image is placed in its
complete state onto the screen. There is no momentary delay, as the image is being built in front of
your eyes.

Listing 11-19 shows the changes needed to implement double buffering. I don’t claim this is the
best way to do it. The goal is to show you what you can do using GDI+.

Listing 11-19. Sliding a Happy Face Double Buffer Style

namespace DoubleBuffering
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();
 this->SetStyle(ControlStyles::Opaque, true);

 dbBitmap = nullptr;
 dbGraphics = nullptr;
 X = -250; // Preset to be just left of window

 Form1_Resize(nullptr, EventArgs::Empty);
 }

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }
 private:
 System::Windows::Forms::Timer^ timer1;
 System::ComponentModel::IContainer^ components;

 Bitmap^ dbBitmap;
 Graphics^ dbGraphics;
 int X; // Actual x coordinate of Happy face

Fraser_640-4C11.fm Page 504 Monday, November 14, 2005 11:53 AM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I + 505

#pragma region Windows Form Designer generated code

 void InitializeComponent(void)
 {
 this->components = (gcnew System::ComponentModel::Container());
 this->timer1 =
 (gcnew System::Windows::Forms::Timer(this->components));
 this->SuspendLayout();
 //
 // timer1
 //
 this->timer1->Enabled = true;
 this->timer1->Interval = 10;
 this->timer1->Tick +=
 gcnew System::EventHandler(this, &Form1::timer1_Tick);
 //
 // Form1
 //
 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(500, 300);
 this->Name = L"Form1";
 this->Text = L"Sliding Happy Face";
 this->Paint +=
 gcnew System::Windows::Forms::PaintEventHandler(this,
 &Form1::Form1_Paint);
 this->Resize +=
 gcnew System::EventHandler(this, &Form1::Form1_Resize);
 this->ResumeLayout(false);

 }
#pragma endregion

 private:
 System::Void Form1_Paint(System::Object^ sender,
 System::Windows::Forms::PaintEventArgs^ e)
 {
 // Move image at end of line start from beginning
 if (X < ClientRectangle.Width)
 {
 X ++;
 dbGraphics->TranslateTransform(1.0, 0.0);
 }
 else
 {
 X = -250;
 dbGraphics->TranslateTransform(
 (float)-(ClientRectangle.Width+250), 0.0);
 }

 // Clear background
 dbGraphics->Clear(Color::White);

Fraser_640-4C11.fm Page 505 Monday, November 14, 2005 11:53 AM

506 C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I +

 // redraw image from scratch
 Pen^ b4pen = gcnew Pen(Color::Black, 4);

 Drawing::Rectangle Head = Drawing::Rectangle(0, 0, 250, 250);
 dbGraphics->FillEllipse(Brushes::Yellow, Head);
 dbGraphics->DrawEllipse(b4pen, Head);

 Drawing::Rectangle Mouth = Drawing::Rectangle(75, 150, 100, 50);
 dbGraphics->FillPie(Brushes::White, Mouth,0,180);
 dbGraphics->DrawPie(b4pen, Mouth, 0, 180);

 Drawing::Rectangle LEye = Drawing::Rectangle(75, 75, 25, 25);
 dbGraphics->FillEllipse(Brushes::White, LEye);
 dbGraphics->DrawEllipse(b4pen, LEye);

 Drawing::Rectangle REye = Drawing::Rectangle(150, 75, 25, 25);
 dbGraphics->FillEllipse(Brushes::White, REye);
 dbGraphics->DrawEllipse(b4pen, REye);

 // Make the buffer visible
 e->Graphics->DrawImageUnscaled(dbBitmap, 0, 0);

 delete b4pen;
 }

 System::Void Form1_Resize(System::Object^ sender, System::EventArgs^ e)
 {
 // Get rid of old stuff
 if (dbGraphics != nullptr)
 {
 delete dbGraphics;
 }

 if (dbBitmap != nullptr)
 {
 delete dbBitmap;
 }

 if (ClientRectangle.Width > 0 && ClientRectangle.Height > 0)
 {
 // Create a bitmap
 dbBitmap = gcnew Bitmap(ClientRectangle.Width,
 ClientRectangle.Height);

 // Grab its Graphics
 dbGraphics = Graphics::FromImage(dbBitmap);

 // Set up initial translation after resize (also at start)
 dbGraphics->TranslateTransform((float)X, 25.0);
 }
 }

Fraser_640-4C11.fm Page 506 Monday, November 14, 2005 11:53 AM

C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I + 507

 System::Void timer1_Tick(System::Object^ sender, System::EventArgs^ e)
 {
 // Move the image
 Invalidate();
 }
 };
}

Let’s take a look at some of the changes that were needed. I already mentioned the building of
a bitmap, so I’ll skip that.

The first difference is that you have to handle the resizing of the form. The reason you must do
this is because the secondary off-screen buffer needs to have the same dimensions as the primary
on-screen buffer. When a form is resized, the primary buffer changes size; therefore you need to
change the secondary buffer.

Notice also that you delete the Graphics class and the Bitmap class. Both of these classes use a
lot of resources between them, and disposing of the old one before the new releases those resources.
You need to check to make sure they have been initialized, because the first time this method is run
they have not been initialized. Also, when the form is minimized you get rid of the buffer, so when
the form is expanded you need to build the buffer again.

this->Resize += gcnew System::EventHandler(this, &Form1::Form1_Resize);
//...
System::Void Form1_Resize(System::Object^ sender, System::EventArgs^ e)
{
 // Get rid of old stuff
 if (dbGraphics != nullptr)
 {
 delete dbGraphics;
 }
 if (dbBitmap != nullptr)
 {
 delete dbBitmap;
 }
 if (ClientRectangle.Width > 0 && ClientRectangle.Height > 0)
 {
 // Create a bitmap
 dbBitmap = gcnew Bitmap(ClientRectangle.Width,ClientRectangle.Height);
 // Grab its Graphics
 dbGraphics = Graphics::FromImage(dbBitmap);
 // Set up initial translation after resize (also at start)
 dbGraphics->TranslateTransform((float)X, 25.0);
 }
}

You need to call the Resize event handler yourself (or write some duplicate code) before the
Paint event is called the first time, in order to initialize dbBitmap and dbGraphics. I call the method in
the constructor:

Form1_Resize(nullptr, EventArgs::Empty);

If you don’t, the Paint event handler will throw a System.NullReferenceException when it first
encounters dbGraphics.

The next difference is an important one. It is the setting of the style of the form to opaque. What
this does is stop the form from clearing itself when it receives Invalidate().

SetStyle(ControlStyles::Opaque, true);

Fraser_640-4C11.fm Page 507 Monday, November 14, 2005 11:53 AM

508 C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I +

There is no need to clear the on-screen buffer because the off-screen buffer will overwrite
everything on the on-screen buffer. All the clearing of the on-screen buffer does is momentarily
leave the screen empty before the off-screen buffer writes to it, which produces a flicker.

■Caution If you forget to set the style to opaque, your image will flicker.

The last difference that I haven’t already discussed is the TranslateTransform() changes. Notice
that you translate by one each time and not by “X”. The reason for this is that the same Graphics class
stays active the entire time this program is running (unless the screen is resized). The same translation
matrix is being used, so you only need to increment by one. When you reach the end of the screen,
you need to translate all the way back in one big jump.

if (X < ClientRectangle.Width)
{
 X++;
 dbGraphics->TranslateTransform(1.0, 0.0);
}
else
{
 X = -250;
 dbGraphics->TranslateTransform((float)-(ClientRectangle.Width+250), 0.0);
}

Figure 11-19 shows DoubleBuffering.exe sliding a happy face across the form. Unfortunately,
this still image doesn’t show much of the sliding.

Figure 11-19. The sliding happy face

Printing
I’ll finish off this discussion of GDI+ by showing that you aren’t restricted to the display adapter
when it comes to GDI+. As I’ve been suggesting throughout the chapter, GDI+ is device indepen-
dent, so in theory you should be able to draw using GDI+ to the printer. You know what? You can.

The printer is not as closely linked to the computer as the display adapter is, so to get GDI+ to
work, you need to somehow provide for this link between your system and the printer. GDI+ does
this through the PrintDocument class, which you can find in the System::Drawing::Printer namespace.

Fraser_640-4C11.fm Page 508 Monday, November 14, 2005 11:53 AM

C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I + 509

You can configure the PrintDocument class using its members (see Table 11-16), but letting the
PrintDialog handle this is much easier.

In the example in Listing 11-20, you’ll print the happy face I’m so proud of. First, you’ll bring up
the happy face using the normal Paint event handler method. Then you’ll right-click to bring up the
PrintDialog to print the happy face to the printer of your choice.

Just to prove that the same GDI+ code works for both the screen and the printer, I separated the
code that generates the happy face into a method of its own that both the screen and print processes
access.

First, look at the code as a whole and then I’ll walk you through the highlights.

Listing 11-20. Printing a Happy Face

namespace PrintHappyFace
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();
 }

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }

Table 11-16. Common PrintDocument Members

Member Description

DefaultPageSettings Specifies the default settings to be used on all pages printed

DocumentName Specifies the name of the document being printed

Print() A method to start the printing process of a PrintDocument

PrintController Specifies the print controller that maintains the print process

PrinterSettings Specifies the printer that prints the document

Fraser_640-4C11.fm Page 509 Monday, November 14, 2005 11:53 AM

510 C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I +

 private:
 System::Drawing::Printing::PrintDocument^ printDocument;
 System::Windows::Forms::PrintDialog^ printDialog;
 System::ComponentModel::Container ^components;

#pragma region Windows Form Designer generated code

 void InitializeComponent(void)
 {
 this->printDocument =
 (gcnew System::Drawing::Printing::PrintDocument());
 this->printDialog = (gcnew System::Windows::Forms::PrintDialog());
 this->SuspendLayout();
 //
 // printDocument
 //
 this->printDocument->PrintPage +=
 gcnew System::Drawing::Printing::PrintPageEventHandler(this,
 &Form1::printDocument_PrintPage);
 //
 // printDialog
 //
 this->printDialog->Document = this->printDocument;
 //
 // Form1
 //
 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(300, 300);
 this->Name = L"Form1";
 this->Text = L"Click to Print";
 this->Paint +=
 gcnew System::Windows::Forms::PaintEventHandler(this,
 &Form1::Form1_Paint);
 this->Click +=
 gcnew System::EventHandler(this, &Form1::Form1_Click);
 this->ResumeLayout(false);
 }
#pragma endregion

 private:
 System::Void Form1_Click(System::Object^ sender, System::EventArgs^ e)
 {
 // Display Print dialog when mouse pressed
 if (printDialog->ShowDialog() == Windows::Forms::DialogResult::OK)
 {
 printDocument->Print();
 }
 }

Fraser_640-4C11.fm Page 510 Monday, November 14, 2005 11:53 AM

C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I + 511

 System::Void printDocument_PrintPage(System::Object^ sender,
 System::Drawing::Printing::PrintPageEventArgs^ e)
 {
 CreateHappyFace(e->Graphics); //Same call as Form1_Paint
 e->HasMorePages = false;
 }

 System::Void Form1_Paint(System::Object^ sender,
 System::Windows::Forms::PaintEventArgs^ e)
 {
 CreateHappyFace(e->Graphics);//Same call as printDocument_PrintPage
 }

 // Generic Happy Face Creator
 void CreateHappyFace(Graphics ^g)
 {
 Pen^ b4pen = gcnew Pen(Color::Black, 4);

 Rectangle rect = Drawing::Rectangle(25, 25, 250, 250);
 g->FillEllipse(Brushes::Yellow, rect);
 g->DrawEllipse(b4pen, rect);

 g->FillPie(Brushes::White, 100, 175, 100, 50, 0, 180);
 g->DrawPie(b4pen, 100, 175, 100, 50, 0, 180);

 rect = Drawing::Rectangle(100, 100, 25, 25);
 g->FillEllipse(Brushes::White, rect);
 g->DrawEllipse(b4pen, rect);

 rect = Drawing::Rectangle(175, 100, 25, 25);
 g->FillEllipse(Brushes::White, rect);
 g->DrawEllipse(b4pen, rect);

 delete b4pen;
 }
 };
}

The first thing I did when I created PrintHappyFace was drag and drop a PrintDocument and a
PrintDialog control to the form and then set the Document property of the PrintDialog to the newly
created PrintDocument. (It will show up in the Document property drop-down box.) Then I added a
PrintPage event handler to the PrintDocument. I examine the handler below.

This auto-generates all the code needed to create a PrintDialog and a PrintDocument and then
links them together. I need to link the PrintDialog to the PrintDocument so that any configuration
changes made to the printers through the PrintDialog get reflected in the PrintDocument.

Next, I added an event handler for the Click event of Form1, which displays the PrintDialog (see
Figure 11-20) and gathers the user’s input on configuring the printer.

Fraser_640-4C11.fm Page 511 Monday, November 14, 2005 11:53 AM

cafac74dd2d083cbec0906b66fcd56b1

512 C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I +

Figure 11-20. The Print dialog box

If the user is happy and wants to complete the print process, he or she will click the OK button,
which will return DialogResult::OK. If the user doesn’t want to complete the print process, he or she
will click the Cancel button and DialogResult::Cancel will be returned. I ignore this result in the
example, but you might want to acknowledge the cancel. Printers are frequently on the opposite end
of the office (I don’t know how this is possible, but it seems to be always true), and walking to the
printer and waiting for something cancelled could be aggravating to users.

if (pdialog->ShowDialog() == System::Windows::Forms::DialogResult::OK)

When the DialogResult::OK is received, you call the documents Print() method, which then
triggers a PrintPage event:

printdoc->Print();

The last thing to notice about the preceding example is the PrintPage event handler. The
PrintPage event handler handles the printing of only one page at a time. If you want to print more
than one page, you need to set the HasMorePages property of the PrintPageEventArgs parameter
passed to the PrintPage event handler to true. You must also keep track of where you left off
printing, and when the next PrintPage event is triggered you then continue where you left off:

System::Void printDocument_PrintPage(System::Object^ sender,
 System::Drawing::Printing::PrintPageEventArgs^ e)
{
 CreateHappyFace(e->Graphics);
 e->HasMorePages = false; // false means only one page will be printed.
}

Notice that the exact same GDI+ code found in the CreateHappyFace() method is used for
displaying to the screen and printing to the printer.

Fraser_640-4C11.fm Page 512 Monday, November 14, 2005 11:53 AM

C H A P T E R 1 1 ■ G R A P H I C S U S I N G G D I + 513

Summary
This has been another long chapter in which you covered a lot of ground. You started off with

the basics of what GDI+ is. You created your third “Hello World” program—this time with a GDI+
flavor. You then moved on and examined many of the GDI+ classes, the most important being the
Graphics class, from which all GDI+ functionality derives. You played with strings, fonts, and pre-
drawn images and ended up with the basics of drawing your own image. Next, you covered the
advanced topics: scrollable windows, optimizing, and double buffering. You ended the chapter by
demonstrating that you can also use GDI+ to print to printers.

You should now have all the information you need to display your own images and no longer be
restricted to drawing with the controls provided by Win Forms.

In the next chapter, you get to play with databases using ADO.NET. Along the way, you will look
at some of the tools Visual Studio 2005 provides to work with databases.

Fraser_640-4C11.fm Page 513 Monday, November 14, 2005 11:53 AM

Fraser_640-4C11.fm Page 514 Monday, November 14, 2005 11:53 AM

515

■ ■ ■

C H A P T E R 1 2

ADO.NET and
Database Development

You’ve already looked at two of the four common methods of getting input into and out of your
.NET Windows applications: streams and controls. ADO.NET, which you’ll examine in detail in this
chapter, is the third. In the next chapter, you’ll round it out with XML, the fourth and final common
method. ADO.NET is a huge topic. In this chapter, you’ll learn about some of the more commonly
used aspects of it.

When you’re implementing with ADO.NET, you’re dealing with data stores or, to use the better-
known term, databases. Most developers are going to have to deal with the database. If that thought
frightens you, it shouldn’t, as ADO.NET has made the database an easy and, dare I say, fun thing to
work with. The hard part now is no longer interfacing with the database, be it a 2-tier, 3-tier, or even
n-tier architecture, but instead designing a good database. Hey—Visual Studio 2005 even works with
you there!

The language of relational databases is still SQL. That doesn’t change with ADO.NET. If you
don’t know SQL, then you might need to read up on it a little bit. However, for those of you who don’t
know SQL, I made this chapter’s SQL code rudimentary, to say the least. SQL is a very powerful
language, and most programmers should have at least some SQL knowledge. But don’t fret if you
don’t, as the SQL you’ll find in this chapter isn’t important in your understanding of ADO.NET. What
I’m basically trying to say in a roundabout way is that this chapter is about ADO.NET and not SQL.

This chapter starts by covering the basic concepts of ADO.NET. You’ll then move on to building,
from scratch, a (very simple) database using Visual Studio 2005. Then, using this database, you’ll
examine in detail the two methods provided by ADO.NET to access a database: connected and
disconnected.

Those of you who have read my book Real World ASP.NET: Building a Content Management
System (Apress, 2002) might find some of the material similar, as you’re going to be using the data-
base I developed in that book.

What Is ADO.NET?
Databases are made up of tables, views, relationships, constraints, and stored procedures. They’re
usually the domain of the database architects, designers, developers, and administrators. ADO.NET,
on the other hand, is how application developers get their hands on these (meaning the tables,
views, and so forth—not the architects and designers, though sometimes I’d like to get my hands on
the designers . . .). With ADO.NET, it’s possible to keep these two diverse software developing worlds
separate, letting the specialists in both fields focus on what they do best.

Fraser_640-4C12.fm Page 515 Monday, November 14, 2005 11:54 AM

516 C H A P T E R 1 2 ■ A D O . N E T A N D D A T A B A S E D E V E L O P M E N T

ADO.NET is a set of classes that encompasses all aspects of accessing data sources within the
.NET architecture. It’s designed to provide full support for either connected or disconnected data
access, while using an Extensible Markup Language (XML) format for transmitting data when data
transfer is required. Chapter 13 contains more details about XML, so don’t worry about it for now.
Just think of ADO.NET as a programmer’s window into a data source, in this case the DVC_DB
database.

The classes that make up ADO.NET are located primarily in two assemblies: System.Data.dll
and System.Xml.dll. To reference these two assemblies, you need to either add the following two
lines to the top of your application source:

#using <System.Data.dll>
#using <System.Xml.dll>

or add a reference to these assemblies in the project’s Properties page.
The addition of the System.Xml.dll assembly is due to the heavy reliance on XML in the internals

of ADO.NET and in particular the class XmlDataDocument.
Seven namespaces house all of ADO.NET’s functionality. These namespaces are described at a

high level in Table 12-1.

Now that you have a basic understanding of what ADO.NET is, let’s take a small sidetrack from
C++/CLI and see how to build a database using Visual Studio 2005.

Table 12-1. ADO.NET Namespaces

Namespace Description

System::Data Contains most of the classes that make up ADO.NET. The classes
found within this namespace are designed to work independently
of the type of data source used. The most important class in this
namespace is the DataSet class, which is the cornerstone of
disconnected data source access.

System::Data::Common Contains the common interfaces used by each of the
managed providers.

System::Data::Odbc Contains the classes that make up the ODBC managed provider,
which allows access to ODBC-connected databases such as
MySQL. The classes contained within this namespace are all
prefixed with Odbc.

System::Data::OleDb Contains the classes that make up the OLE DB managed provider,
which allows access to databases such as Sybase, Microsoft Access,
and Microsoft SQL Server 6.5. The classes contained within this
namespace are all prefixed with OleDb.

System::Data::Oracle Contains the classes that make up the Oracle managed provider,
which allows access to Oracle8i and later databases. The classes
contained within this namespace are all prefixed with Oracle.

System::Data::SqlClient Contains the classes that make up the SQL Server managed
provider, which allows access to Microsoft SQL Server 7.0 and later
databases. The classes contained within this namespace are all
prefixed with Sql.

System::Data::SqlTypes Contains classes for native data types associated with SQL Server.

Fraser_640-4C12.fm Page 516 Monday, November 14, 2005 11:54 AM

C H A P T E R 1 2 ■ A D O . N E T A N D D A T A B A S E D E V E L O P M E N T 517

Building a Database with Visual Studio 2005
Visual Studio 2005 is well equipped when it comes to the design and development of Microsoft SQL
Server databases. It provides the functionality to create databases, tables, views, stored procedures,
and many other features.

The starting point of all database utilities is Server Explorer. Select Server Explorer from the
View menu to open it (see Figure 12-1). You will find your database in the Data Connections folder
just above the Servers folder.

Figure 12-1. Server Explorer

Visual Studio 2005 provides Microsoft SQL Server databases with much of the functionality that
comes with SQL Enterprise Manager. On the other hand, all the other database types are mostly
restricted to viewing and editing records. This book focuses on Microsoft SQL Server and covers the
functionality provided by Visual Studio 2005. If you are developing using any other database, much
of the first part of this chapter will not help you because you will have to use the database maintenance
tools provided by your database.

■Tip If you don’t currently have a database installed on your system, I recommend that you install the MSDE 2000
database server or SQL Server 2005 Express. These databases are stripped-down versions of Microsoft SQL Server,
and with either you’ll get a good feel for the functionality provided by Visual Studio 2005. Plus, you can always uninstall it
later and use the database of your choice.

There is nothing stopping you from building your Microsoft SQL Server databases outside of
Visual Studio 2005, using the SQL Enterprise Manager, for example, and then adding the database to
Server Explorer. Doing this is beyond the scope of this book, however.

Now you’ll build your own simple content management database so that you can explore
ADO.NET with intimate knowledge of its architecture, instead of as a black box as you would if you
were using one of the preinstalled databases provided with Microsoft SQL Server.

Fraser_640-4C12.fm Page 517 Monday, November 14, 2005 11:54 AM

518 C H A P T E R 1 2 ■ A D O . N E T A N D D A T A B A S E D E V E L O P M E N T

Creating a New Database
The first step in database development isn’t creating one. Obviously, creating the data model, designing
the logical database, and designing the physical database should come first. But hey, I’m a programmer.
I’ll code first and then go ask questions. (I’m joking—really!)

Visual Studio 2005 makes creating databases so easy that it’s almost not worth explaining how
to do it.

The following steps create the database DCV_DB, which contains author information and their
related stories. You will use this database throughout the chapter.

1. Select Server Explorer from the View menu.

2. Right-click the Data Connections folder.

3. Select the Create New SQL Server Database menu item, which displays the Create New SQL
Server Database dialog box shown in Figure 12-2.

Figure 12-2. The Create New SQL Server Database dialog box

4. Enter the server name that the database will reside on (in my case, Amidala).

5. Enter DCV_DB in the New database name field.

6. Select the Use Windows Authentication radio button.

7. Click OK.

Microsoft SQL Server supports two types of security: Windows Authentication and SQL Server
authentication. Covering these security systems is beyond the scope of this book. In the preceding
database, I use the default security configuration. You should consult your DBA to see which security
method you should use.

Now you should have a new database called DCV_DB in your database folder. You can expand
it and see all the default folders built. If you click these folders, however, you will see that there is
nothing in them. Okay, let’s fix that and add some stuff.

Fraser_640-4C12.fm Page 518 Monday, November 14, 2005 11:54 AM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 1 2 ■ A D O . N E T A N D D A T A B A S E D E V E L O P M E N T 519

Adding and Loading Tables and Views to a Database
An empty database is really quite useless, so now you’ll add a couple of tables to the database to
provide a place to store your content.

■Note The tables and views you use in this chapter are purposely very simple (you might even call them minimal)
and aren’t the best schema around. I did this so that you don’t get bogged down with the details of the database
and so it doesn’t take much effort or time for you to build these tables and views yourself.

The first table is for storing authors and information about them, and the second table is for
storing headlines and stories. The two databases are linked together by a common AuthorID key.
Figure 12-3 shows a data diagram of the database.

Figure 12-3. The DCV_DB data diagram

Having this separation means you have to store only one copy of the author information, even
though the author may have written many stories. If you had created only one table to contain all the
information, a lot of duplicated author information would have to be rekeyed each time a story is
added to maintain the database. It also conveniently enables me to show you how to create a relation-
ship between tables.

The process of building a new table is only slightly more difficult than creating a database. The
hard part is figuring out what columns are needed and the format for each table in the database. It’s
nice to know you can spend most of your time designing the ultimate database schema instead of
figuring out how to implement it.

Creating Tables
To create the first table, follow these steps:

1. Expand the Date Connections folder.

2. Expand the DCV_DB folder. Usually the server name will precede the database name and be
followed by dbo. For my system, I expand the Amidala.DCV_DB.dbo folder.

3. Right-click the Tables folder.

4. Select the Add New Table menu item. You should now have an entry form in which to enter
the database columns shown in Table 12-2. (Note that Description and Identity Specification
are entered in the Column Properties view, which comes available when you select the
column definition row.)

Fraser_640-4C12.fm Page 519 Monday, November 14, 2005 11:54 AM

520 C H A P T E R 1 2 ■ A D O . N E T A N D D A T A B A S E D E V E L O P M E N T

5. Right-click the AuthorID row and select Set Primary Key from the drop-down menu.

6. Select Save Table1 from the File menu.

7. Enter Authors into the text field in the dialog box.

8. Click OK.

Go ahead and repeat these steps for the second table, but use the information in Table 12-3 and
use StoryID as the primary key. Save the table as Content.

In this book I don’t go into what all the data types mean, but if you’re interested, many good
books on Microsoft SQL Server and SQL cover this topic in great detail.

The Identity Specification, when set to Yes, will turn on autonumber generation for the column.
Why the field is called “Identity Specification” (instead of “Autonumber”) is a mystery to me. I’m an
application programmer, though, and not a database person. It’s probably some special database
term.

Okay, you now have your tables. The next step is to build a relationship between them. In this
database, it is fairly obvious: AuthorID is the column that should link these two tables.

Creating a Relationship
To create a relationship between your tables, follow these steps:

Table 12-2. Authors Database Table Column Descriptions

Column
Name

Data Type Length Description Identity
Specification

Allow
Nulls

AuthorID int 4 Auto-generated ID number
for the author

Yes No

LastName varchar 50 Last name of the author No No

FirstName varchar 50 First name of the author No No

Table 12-3. Content Database Table Column Descriptions

Column
Name

Data Type Length Description Identity
Specification

Allow
Nulls

StoryID int 4 Auto-generated ID number
for the story

Yes No

AuthorID int 4 Foreign key to the
Authors database

No No

Headline varchar 80 Headline for the content No No

Story text 16 Story portion of the content No No

Fraser_640-4C12.fm Page 520 Monday, November 14, 2005 11:54 AM

C H A P T E R 1 2 ■ A D O . N E T A N D D A T A B A S E D E V E L O P M E N T 521

1. Right-click the Content table in Server Explorer.

2. Select Open Table Definition from the menu.

3. Right-click anywhere on the Table Designer.

4. Select Relationships from the menu. This will bring up a Relationships property page similar
to the one shown in Figure 12-4.

Figure 12-4. The Foreign Key Relationships property page

5. Click the Add button.

6. Click the Tables and Columns Specification property and click the ellipses. This will bring up
a Tables and Columns dialog box similar to the one shown in Figure 12-5.

Figure 12-5. The Tables and Columns property page

Fraser_640-4C12.fm Page 521 Monday, November 14, 2005 11:54 AM

522 C H A P T E R 1 2 ■ A D O . N E T A N D D A T A B A S E D E V E L O P M E N T

7. Select Authors as the primary key side of the relationship from the Primary key table drop-
down list.

8. Select AuthorID as the primary key in the grid beneath the Primary key table drop-down list.

9. Select AuthorID as the foreign key in the grid beneath the Foreign key.

10. Click OK.

11. Click Close.

Now you have two tables and a relationship between them. Quite often, when you want to get
data from a database, you need information from multiple tables. For example, in this case, you
might want to get all stories with each author’s first and last name. As mentioned previously, you
could have created the Content table that way, but then you would have a lot of duplicate data
floating around. There is nothing stopping you from executing a SQL statement, also known as a
query, that gets this information, as shown in Listing 12-1.

Listing 12-1. Getting Data from Two Tables

SELECT FirstName,
 LastName,
 Headline,
 Story
FROM Authors,
 Content
WHERE Authors.AuthorID = Content.AuthorID
ORDER BY StoryID ASC

Personally, I prefer to be able to write a query something like this instead:

SELECT FirstName, LastName, Headline, Story FROM Stories

This is exactly what you can do with database views. Basically, you might think of a view as a
virtual table without any data of its own, based on a predefined query. If you know you are going to
use the same set of data based on a query, you might consider using the view instead of coding.

■Note Those of you who are knowledgeable about SQL and views might have noticed the ORDER BY clause.
Microsoft SQL Server supports the ORDER BY clause in its views, unlike some older database systems.

Creating a View
Follow these steps to create a view:

1. Right-click the Views table from within the DCV_DB folder in Server Explorer.

2. Select Add New View from the menu. This will bring up an Add Table dialog box similar to
the one shown in Figure 12-6.

Fraser_640-4C12.fm Page 522 Monday, November 14, 2005 11:54 AM

C H A P T E R 1 2 ■ A D O . N E T A N D D A T A B A S E D E V E L O P M E N T 523

Figure 12-6. The Add Table dialog box

3. Select both Authors and Content.

4. Click the Add button. This generates a window similar to the one shown in Figure 12-7.

Figure 12-7. The View Design window

Fraser_640-4C12.fm Page 523 Monday, November 14, 2005 11:54 AM

524 C H A P T E R 1 2 ■ A D O . N E T A N D D A T A B A S E D E V E L O P M E N T

5. Click the Close button.

6. Click the check boxes for FirstName and LastName in the Authors table.

7. Click the check boxes for StoryID, Headline, and Story in the Content table.

8. Right-click StoryID and select Sort Ascending from the menu.

9. Select Save View1 from the File menu.

10. Enter Stories into text field.

11. Click OK.

Pretty painless, don’t you think? You have the option of testing your view right there, too. Click
the Run Query button on the main toolbar. (It’s the button with an exclamation point on it.) The
View Design window is pretty powerful. If you play with it for a while, you’ll see what I mean.

Did you click the Run Query button and get nothing? Oops . . . I forgot to tell you to load some
data into the database. You can do this with Visual Studio 2005 as well. Simply double-click either of
the tables you created, and an editable table will appear.

First enter the data for the authors. If you don’t, you won’t have an author ID to enter into the
AuthorID column in the Content view. Enter the data from Table 12-4. Notice that there are no
author IDs to enter—this field is automatically created. In fact, Visual Studio 2005 will yell at you if
you try to enter something in the AuthorID column.

Now enter the data in Table 12-5. Notice that StoryID cannot be entered. It, too, is an auto-
generated number. You do have to enter AuthorID, though, because it is not automatically generated in
this table.

Table 12-4. Author Data

LastName FirstName

Doors Bill

Ellidaughter Larry

Fraser Stephen

Table 12-5. Content Data

AuthorID Headline Story

1 .NET is the Best According to my research. The .NET product has no
competition, though I am a little biased.

2 Oracle is #1 Research suggests that it is the best database on the
market, not that I have any biases in that conclusion.

3 Content Management
is Expensive

Not anymore. It now costs the price of a book and a
little work.

4 SQL Server Will Be #1 This database has no real competition. But then
again, I am a little biased.

Fraser_640-4C12.fm Page 524 Monday, November 14, 2005 11:54 AM

C H A P T E R 1 2 ■ A D O . N E T A N D D A T A B A S E D E V E L O P M E N T 525

Building Stored Procedures
You don’t have to use stored procedures, because anything you can run using stored procedures you
can run using standard SQL. So, why cover this utility at all?

There are two main reasons. First, stored procedures let a software developer call database code
using function calls with arguments. Second, and more important, the utility is compiled before it
gets loaded. This makes the calls to the database faster and more efficient because it has already
been optimized.

Because you haven’t encountered ADO.NET code yet, you won’t be able to do much with the
stored procedure you’ll create. Fortunately, Visual Studio 2005 provides an option so that it can be
tested.

Unlike the previous utilities, you have to actually code stored procedures. If you don’t know
SQL, don’t worry because the coding is short and, I think, pretty self-explanatory. As always, there
are many good books you can read to get a better understanding of it.

You will create a stored procedure to insert data into the Authors table. You already did this
process manually, so you should have a good idea of what the stored procedure needs to do.

To create a stored procedure, follow these steps:

1. Right-click the Stored Procedures table from within the DCV_DB folder in Server Explorer.

2. Select Add New Stored Procedure from the menu. This will bring up an editing session with
the default code shown in Listing 12-2.

Listing 12-2. Default Stored Procedure Code

CREATE PROCEDURE dbo.StoredProcedure1
/*
 (
 @parameter1 datatype = default value,
 @parameter2 datatype OUTPUT
)
*/
AS
 /* SET NOCOUNT ON */
 RETURN

First you have to set up the parameters that will be passed from the program. Obviously, you
need to receive all the mandatory columns that make up the row. In the Authors table’s case, that’s
the entire row except AuthorID, which is auto-generated. Listing 12-3 shows the changes that need
to be made to the default code provided in order to add parameters. Note that the comments (/*...*/)
are removed.

Listing 12-3. Setting the Parameters

CREATE PROCEDURE dbo.StoredProcedure1
 (
 @LastName NVARCHAR(32) = NULL,
 @FirstName NVARCHAR(32) = NULL
)
AS

Fraser_640-4C12.fm Page 525 Monday, November 14, 2005 11:54 AM

cafac74dd2d083cbec0906b66fcd56b1

526 C H A P T E R 1 2 ■ A D O . N E T A N D D A T A B A S E D E V E L O P M E N T

The SET NOCOUNT ON option prevents the number of rows affected by the stored procedure from
being returned to the calling program every time it is called. If you need a count on the number of
records affected, you can leave the SET NOCOUNT ON option commented out, or you can delete the
option altogether. Because I will use the count in a later example, I left the option commented out.

Finally, you code the actual insert command. The key to this stored procedure is that instead of
hard-coding the values to be inserted, you use the parameters you previously declared. Listing 12-4
is the final version of the stored procedure. Note that you rename the stored procedure to
dbo.InsertAuthor.

Listing 12-4. InsertAuthor Stored Procedure

CREATE PROCEDURE dbo.InsertAuthor
 (
 @LastName NVARCHAR(32) = NULL,
 @FirstName NVARCHAR(32) = NULL
)
AS
 /* SET NOCOUNT ON */

 INSERT INTO Authors (LastName, FirstName)
 VALUES (@LastName, @FirstName)

 RETURN

All that’s left is to save the stored procedure. Saving the file will create a stored procedure with
the name on the CREATE PROCEDURE line. If you made a mistake while coding, the save will fail, and an
error message will tell you where the error is.

To run or debug the stored procedure, just right-click the newly created stored procedure and
select Run Stored Procedure or Step Into Stored Procedure.

You now have a database to work with for the rest of the chapter. Let’s continue on and start
looking at ADO.NET and how to code it using C++/CLI.

Managed Providers
Managed providers provide ADO.NET with the capability to connect to and access data sources.
Their main purpose, as far as most developers are concerned, is to provide support for the
DataAdapter class. This class is essentially for mapping between the data store and the DataSet.

Currently four (Microsoft supported) managed providers exist for ADO.NET:

• SQL Server managed provider: Connects to Microsoft SQL Server version 7.0 or higher
databases

• OLE DB managed provider: Connects to several supported OLE DB data sources

• ODBC managed provider: Connects to ODBC-connected databases such as MySQL

• Oracle managed provider: Connects to the Oracle8i or higher databases

Fraser_640-4C12.fm Page 526 Monday, November 14, 2005 11:54 AM

C H A P T E R 1 2 ■ A D O . N E T A N D D A T A B A S E D E V E L O P M E N T 527

Determining which of these managed providers is actually used depends on the database that
ADO.NET interfaces with. Currently, ADO.NET interfaces with four groups of database types:
Microsoft SQL Server 7.0 and later, Oracle8i and later, databases that provide ODBC support, and
databases that provide OLE DB support. Which database group you are using determines whether
you implement the System::Data::SqlClient, System::Data::Oracle, System::Data::Odbc, or
System::Data::OleDb namespace.

In addition, the group of databases interfaced with determines which classes you will use. You will
find that if you are using the System::Data::SqlClient namespace, then all of your classes will be
prefixed with Sql, as in SqlCommand() and SqlDataAdapter(). If you are using the System::Data::Oracle
namespace, then the classes will be prefixed with Oracle, as in OracleCommand() and
OracleDataAdapter(). If you are using the System::Data::Odbc namespace, then the classes will be
prefixed with Odbc, as in OdbcCommand() and OdbcDataAdapter(). And, if you are using the
System::Data::OleDb namespace, then the classes will be prefixed with OleDb, as in OleDbCommand()
and OleDbDataAdapter().

Once you have learned one managed provider, you have pretty much learned all four because
they are nearly the same, except for the Sql, OleDb, Odbc, and Oracle prefixes and a few other small
differences.

Because this book uses Microsoft SQL Server 2000, I use the SQL Server managed provider and
thus the namespace associated with it.

Connected ADO.NET
As I stated previously, you have two distinct ways of accessing a database using ADO.NET. I cover the
one that’s easier to visualize and code (at least for me) first: connected access.

With connected access, you are continually connected to the database during the entire time you
work with it. Like file access, you open the database, work with it for a while, and then you close it.
Also like file I/O, you have the option of buffering data written to the database. This buffered access
to the database is better known as transactional database access. I discuss this access method after
I cover nontransactional database access.

Using Simple Connected ADO.NET
You’ll start with the easiest way of working with the database, where the commands you execute
happen immediately to the database.

Figure 12-8 shows the basic flow of nontransactional database access.

Fraser_640-4C12.fm Page 527 Monday, November 14, 2005 11:54 AM

528 C H A P T E R 1 2 ■ A D O . N E T A N D D A T A B A S E D E V E L O P M E N T

Figure 12-8. Nontransactional database access

1. Create a link to the database with a SqlConnection.

2. Open the database with the Open() method.

3. Create a database command with SqlCommand.

Fraser_640-4C12.fm Page 528 Monday, November 14, 2005 11:54 AM

C H A P T E R 1 2 ■ A D O . N E T A N D D A T A B A S E D E V E L O P M E N T 529

4. Execute the command by using one of the three methods within SqlCommand (see Table 12-6).
The database is immediately updated.

5. Repeat steps 3 and 4 until completed.

6. Close the database with the Close() method.

■Note If you are using the SQL Server managed provider, use classes prefixed with Sql. On the other hand, when
you are using the OLE DB managed provider, use classes starting with OleDb; when you are using the ODBC
managed provider, use classes starting with Odbc; and when you are using the Oracle managed provider, use
classes starting with Oracle.

Connecting to, Opening, and Closing a Database
With connected nontransactional access to a database, you will always be connecting to, opening,
and closing your database. To handle this, you need to work with one of the Connection classes:
SqlConnection, OleDbConnection, OdbcConnection, or OracleConnection. Which one of these you use
depends on the managed provider you use.

This book uses Microsoft SQL Server, so you’ll use the SQL Server managed provider. If you are
using the OLE DB, ODBC, or Oracle managed provider, just remember to replace the prefix of every
class starting with Sql with OleDb, Odbc, or Oracle and, of course, you will have to change the connec-
tion string, but I’ll get to that shortly.

Listing 12-5 shows how to connect, open, and close a database in a nontransactional method.

Listing 12-5. Connecting, Opening, and Closing a Database

using namespace System;
using namespace System::Data;
using namespace System::Data::SqlClient;

void main()
{
 SqlConnection^ connection = gcnew SqlConnection();

#ifdef SQLAuth
 // SQL Server authentication
 connection->ConnectionString =
 "User ID=sa; Password=;"
 "Data Source=(local); Initial Catalog=DCV_DB;";

Table 12-6. The Main SqlCommand SQL Statement Execution Methods

Method Description

ExecuteNonQuery Executes a statement that updates the database.

ExecuteReader Executes a query to the database that could potentially return multiple
rows from a database. This method returns a SqlDataReader object that
provides forward-only read access to the retrieved data or result set.

ExecuteScalar Executes a statement that returns a single value.

Fraser_640-4C12.fm Page 529 Monday, November 14, 2005 11:54 AM

530 C H A P T E R 1 2 ■ A D O . N E T A N D D A T A B A S E D E V E L O P M E N T

#else
 // Windows Integrated Security
 connection->ConnectionString =
 "Persist Security Info=False; Integrated Security=SSPI;"
 "Data Source=(local); Initial Catalog=DCV_DB;";
#endif

 try
 {
 connection->Open();
 Console::WriteLine("We got a connection!");
 }
 catch (SqlException ^e)
 {
 Console::WriteLine("No connection the following error occurred: {0}",
 e->Message);
 }
 finally
 {
 connection->Close();
 Console::WriteLine("The connection to the database has been closed");
 }
}

The first thing you do (as with any other .NET application) is import the namespaces needed to
access the ADO.NET basic functionality:

using namespace System;
using namespace System::Data;
using namespace System::Data::SqlClient;

For those of you using a database other than Microsoft SQL Server, use one of the following
namespaces instead of System::Data::SqlClient: System::Data::OleDb, System::Data::Odbc, or
System::Data::Oracle.

There is nothing special about creating a SqlConnection class. It is just a default constructor:

SqlConnection ^connection = gcnew SqlConnection();

The hardest part of this piece of coding is figuring out what the connection string is. For the SQL
Server managed provider, this is fairly easy because it is usually made up of a combination of four
out of six clauses:

• Data Source: The location of the database server. This field will normally be (local) for your
local machine, or the server name or IP address when the server is remote. Since the database
is local for me, I need to use (local).

• Initial Catalog: The name of the database. I am using the DCV_DB database.

• Persist Security Info: Use True when security-sensitive information is returned as part of
the connection. Since this is not the case in this example, I use False.

• Integrated Security: When False (the default)True (or the equivalent and recommended
SSPI). Since both are common, I show both types of security. Which gets implemented is
determined by whether you define SQLAuth.

Fraser_640-4C12.fm Page 530 Monday, November 14, 2005 11:54 AM

C H A P T E R 1 2 ■ A D O . N E T A N D D A T A B A S E D E V E L O P M E N T 531

• User ID: The user ID (not recommended with Windows Integrated Security). I use the system-
defined sa user ID, but I would recommend that you use one of your own creation.

• Password: The user password (not recommended with Windows Integrated Security). I use
a blank password to simplify things, but this is severely frowned upon in a production
environment.

■Tip You can find the connection string in the connection string property when you select the database connection
in the Server Explorer.

The connection string will look like this in the code:

connection->ConnectionString =
 "User ID=sa; Password=; Data Source=(local); Initial Catalog=DCV_DB;";

or

connection->ConnectionString =
 "Persist Security Info=False;Integrated Security=SSPI;"
 "Data Source=(local); Initial Catalog=DCV_DB;";

The connection string for the Oracle managed provider is very similar to the SQL Server managed
provider, whereas the OLE DB and ODBC managed providers always add an additional clause: for
OLE DB, the Provider clause, and for ODBC, the Driver clause. For example:

//OLE DB Connection string
connection->ConnectionString =
 "Provider=SQLOLEDB; Data Source=(local); Initial Catalog=DCV_DB; "
 "User ID=sa; Password=;";

and

// ODBC Connection string
connection->ConnectionString =
 "Driver={SQL Server}; Data Source=(local); Initial Catalog=DCV_DB; "
 "User ID=sa; Password=;";

■Note In the preceding code example, I define two of the more common connection strings I use and use the
compile-time directive #ifdef SQLAuth to allow me to choose the one I want. I do this to simplify things. In most
cases, it would be better not to hard-code the connection string at all and instead retrieve it from a configuration file
or registry.

You open and close the database in virtually the same way as you do a file, except the Open()
method doesn’t have any parameters:

connection->Open();
connection->Close();

You need to pay attention to the try statement. ADO.NET commands can abort almost anywhere,
so it is always a good thing to enclose your ADO.NET logic within a try clause and capture any
exceptions by catching SQLException (OleDbException, OdbcException, or OracleException).

It is also possible for ADO.NET to abort with the database still open. (Probably not in this
example, but I felt having the correct code right from the beginning would make things clearer.)
Therefore, it is a good idea to place your Close() method within a finally clause so that it will always
be executed.

Fraser_640-4C12.fm Page 531 Monday, November 14, 2005 11:54 AM

532 C H A P T E R 1 2 ■ A D O . N E T A N D D A T A B A S E D E V E L O P M E N T

Figure 12-9 shows the results of the preceding example program. Impressive, no?

Figure 12-9. The database is successfully opened and closed.

Querying a Database
All queries made to a connected database are done using the SqlCommand, OleDbCommand, OdbcCommand,
or OracleCommand class. As noted previously, the SqlCommand class provides three methods to send
SQL commands to the database, with each depending on the type of command. To query the data-
base, you need to use the ExecuteReader() method.

Before you run the ExecuteReader() method, you need to configure SqlCommand by placing the
SQL command into it. There are two common ways of doing this. You can either place the SQL
command, in text form, into the CommandText property or place the name of the stored procedure
containing the SQL command into the same property. The default method is the command in text
form. If you plan to use a stored procedure, you need to change the CommandType property to
CommandType::StoredProcedure.

Listing 12-6 shows both methods. The first command uses a text-formatted command and
retrieves the contents of the Authors database for authors with a specified LastName, in this case
hard-coded to “Doors”. The second command, using a stored procedure, retrieves all Stories view
records where LastName equals the value passed to the stored procedure, in this case also “Doors”.

Both calls to the ExecuteReader() method after being configured return an instance of
SqlDataReader, which is then iterated through to display the retrieved content.

Listing 12-6. The “Doors” Stories

using namespace System;
using namespace System::Data;
using namespace System::Data::SqlClient;

void main()
{
 String ^Name = "Doors";

 SqlConnection ^connection = gcnew SqlConnection();

#ifdef SQLAuth
 // SQL Server authentication
 connection->ConnectionString =
 "User ID=sa; Password=;"
 "Data Source=(local); Initial Catalog=DCV_DB;";
#else
 // Windows Integrated Security
 connection->ConnectionString =
 "Persist Security Info=False; Integrated Security=SSPI;"
 "Data Source=(local); Initial Catalog=DCV_DB;";
#endif

Fraser_640-4C12.fm Page 532 Monday, November 14, 2005 11:54 AM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 1 2 ■ A D O . N E T A N D D A T A B A S E D E V E L O P M E N T 533

 try
 {
 SqlCommand ^cmd = gcnew SqlCommand();
 cmd->Connection = connection;

 cmd->CommandType = CommandType::Text;
 cmd->CommandText =
 String::Format("SELECT FirstName, LastName FROM Authors "
 "WHERE LastName = '{0}'",
 Name);

 connection->Open();

 SqlDataReader ^reader = cmd->ExecuteReader();

 while(reader->Read())
 {
 Console::WriteLine("{0} {1}",
 reader["FirstName"], reader["LastName"]);
 }
 reader->Close();

 // CREATE PROCEDURE dbo.StoriesWhereLastName
 // (
 // @LastName NVARCHAR(32) = NULL
 //)
 // AS
 // /* SET NOCOUNT ON */

 // SELECT StoryID, Headline, Story FROM Stories
 // WHERE LastName = @LastName
 //
 // RETURN

 cmd->CommandType = CommandType::StoredProcedure;
 cmd->CommandText = "StoriesWhereLastName";

 cmd->Parameters->Add(
 gcnew SqlParameter("@LastName",SqlDbType::VarChar));
 cmd->Parameters["@LastName"]->Value = Name;

 reader = cmd->ExecuteReader();

 Console::WriteLine("--");
 while(reader->Read())
 {
 Console::WriteLine(reader["StoryID"]);
 Console::WriteLine(reader["Headline"]);
 Console::WriteLine(reader["Story"]);
 Console::WriteLine();
 }
 reader->Close();
 }

Fraser_640-4C12.fm Page 533 Monday, November 14, 2005 11:54 AM

534 C H A P T E R 1 2 ■ A D O . N E T A N D D A T A B A S E D E V E L O P M E N T

 catch (SqlException ^e)
 {
 Console::WriteLine("No connection the following error occurred: {0}",
 e->Message);
 }
 finally
 {
 connection->Close();
 }
}

The code to query a database with a CommandType of Text is pretty easy (if you know SQL, that is).
First, you set the SqlCommand class’s CommandType property to Text:

cmd->CommandType = CommandType::Text;

Next, you place the SQL command you want to execute in the CommandText property. What makes
this process easy is that you can use standard String formatting to build the command, as you see
here:

cmd->CommandText =
 String::Format("SELECT * FROM Authors WHERE LastName='{0}'", Name);

Finally, you run the SqlCommand class’s ExecuteReader() method. This method returns a
SqlDataReader class from which you process the result set produced from the query:

SqlDataReader ^reader = cmd->ExecuteReader();

The code to query a database with a CommandType of StoredProcedure is a little more difficult if
passing parameters is required. (It is a little easier if no parameters are passed, as no SQL code has to
be written by the application developer.) First, you set the SqlCommand class’s CommandType property
to StoredProcedure:

cmd->CommandType = CommandType::StoredProcedure;

Next, you place the name of the stored procedure you want to execute in the CommandText
property:

cmd->CommandText = "StoriesWhereLastName";

Now comes the tricky part. You need to build a collection of SqlParameters, within which you
will place all the parameters that you want sent to the stored procedure. The SqlCommand class
provides a property called Parameters to place your collection of SqlParameters.

The first step is to use the Add() method off of the Parameters property collection to add all the
SqlParameters making up all the parameters that will be passed to the stored procedure. The constructor
for the SqlParameters class takes two or three parameters depending on the data type of the parameter
that will be passed to the stored procedure. If the data type has a predefined length like int or a variable
length like VarChar, then only two parameters are needed.

cmd->Parameters->Add(gcnew SqlParameter("@LastName", SqlDbType::VarChar));

Fraser_640-4C12.fm Page 534 Monday, November 14, 2005 11:54 AM

C H A P T E R 1 2 ■ A D O . N E T A N D D A T A B A S E D E V E L O P M E N T 535

On the other hand, if the data type needs its length specified like Char, then the third parameter
is used to specify the length.

cmd->Parameters->Add(gcnew SqlParameter("@FixedSizeString",SqlDbType::Char,32));

When all the parameters are specified, you need to assign values to them so that the stored
procedure can use them. You do this by assigning a value to the Value property of the indexed property,
off of the Parameters property collection of the SqlCommand class. Clear as mud? The example should
help:

cmd->Parameters["@LastName"]->Value = Name;

Finally, when all the parameters are assigned values, you call the SqlCommand class’s
ExecuteReader() method just like you did for a CommandType of Text:

reader = cmd->ExecuteReader();

The processing of the result set within the SqlDataReader object is handled in a forward-only
manner. The basic process is to advance to the next record of the result set using the Read() method.
If the return value is false, you have reached the end of the result set and you should call the Close()
method to close the SqlDataReader. If the value is true, then you continue and process the next result
set record.

while(reader->Read())
{
 Console::WriteLine(reader["StoryID"]);
 Console::WriteLine(reader["Headline"]);
 Console::WriteLine(reader["Story"]);
 Console::WriteLine("");
}
reader->Close();

There are two different methods of processing the record set. You can, as I did, use the indexed
property to get the value based on the column header. You can also process the columns using an
assortment of type-specific Getxxx() methods. The following code generates the same output as the
preceding code:

while(reader->Read())
{
 Console::WriteLine(reader->GetInt32(0));
 Console::WriteLine(reader->GetString(1));
 Console::WriteLine(reader->GetString(2));
 Console::WriteLine("");
}
reader->Close();

Note the parameter passed in the position of the column starting at zero.
I personally find using column names easier, but the style you choose to use is up to you.

Figure 12-10 shows the results of the preceding example program.

Fraser_640-4C12.fm Page 535 Monday, November 14, 2005 11:54 AM

536 C H A P T E R 1 2 ■ A D O . N E T A N D D A T A B A S E D E V E L O P M E N T

Figure 12-10. Retrieving Bill Doors’s stories

Insert, Update, and Delete Commands
The code to modify the database (i.e., insert, update, and delete rows of the database) isn’t much
different from the code to query the database. Obviously, the SQL is different. The only other difference
is that you call the SqlCommand class’s ExecuteNonQuery() method instead of the ExecuteReader()
method.

You can still use both CommandTypes and you still need to set up the SQLParameters the same way
for stored procedures.

In Listing 12-7 you insert a new record into the database, you change the LastName on the
record, and then you delete the record. (A lot of work for nothing, don’t you think?)

Listing 12-7. Modifying the Database

using namespace System;
using namespace System::Data;
using namespace System::Data::SqlClient;

void main()
{
 String ^Name = "Doors";

 SqlConnection ^connection = gcnew SqlConnection();

#ifdef SQLAuth
 // SQL Server authentication
 connection->ConnectionString =
 "User ID=sa; Password=;"
 "Data Source=(local); Initial Catalog=DCV_DB;";
#else
 // Windows Integrated Security
 connection->ConnectionString =
 "Persist Security Info=False; Integrated Security=SSPI;"
 "Data Source=(local); Initial Catalog=DCV_DB;";
#endif

 try
 {
 SqlCommand ^cmd = gcnew SqlCommand();
 cmd->Connection = connection;
 connection->Open();

Fraser_640-4C12.fm Page 536 Monday, November 14, 2005 11:54 AM

C H A P T E R 1 2 ■ A D O . N E T A N D D A T A B A S E D E V E L O P M E N T 537

 cmd->CommandType = CommandType::StoredProcedure;
 cmd->CommandText = "InsertAuthor";

 cmd->Parameters->Add(gcnew SqlParameter("@LastName", SqlDbType::VarChar));
 cmd->Parameters->Add(gcnew SqlParameter("@FirstName",SqlDbType::VarChar));

 cmd->Parameters["@LastName"]->Value = "Dope";
 cmd->Parameters["@FirstName"]->Value = "John";

 int affected = cmd->ExecuteNonQuery();
 Console::WriteLine("Insert - {0} rows are affected", affected);

 cmd->CommandType = CommandType::Text;
 cmd->CommandText = "UPDATE Authors SET LastName = 'Doe'"
 "WHERE LastName = 'Dope'";

 affected = cmd->ExecuteNonQuery();
 Console::WriteLine("Update - {0} rows are affected", affected);

 cmd->CommandType = CommandType::Text;
 cmd->CommandText = "DELETE FROM Authors WHERE LastName = 'Doe'";

 affected = cmd->ExecuteNonQuery();
 Console::WriteLine("Delete - {0} rows are affected", affected);
 }
 catch (SqlException ^e)
 {
 Console::WriteLine("No connection the following error occurred: {0}",
 e->Message);
 }
 finally
 {
 connection->Close();
 }
}

As you can see, there is not much new going on here in the C++/CLI code, other than the call to
ExecuteNonQuery(). This method returns the number of rows affected by the SQL command.

int affected = cmd->ExecuteNonQuery();

Figure 12-11 shows the results of the preceding example program.

Figure 12-11. A lot of modifications to the database for no gain

Fraser_640-4C12.fm Page 537 Monday, November 14, 2005 11:54 AM

538 C H A P T E R 1 2 ■ A D O . N E T A N D D A T A B A S E D E V E L O P M E N T

Returning a Single Value from a Query
The final command-executing method of the SqlCommand class is ExecuteScalar(). This method is
designed to return an Object handle as the result of the query. The returned Object points to a value
like that produced by an aggregated SQL function such as COUNT or SUM. Again, like the database
modifying command, there is not much changed between the source code needed to execute this
type of method and that of a standard query.

Listing 12-8 shows how to count all the records in a database and also how to sum a column.
(The database does not have a column that you would want to sum—I had to improvise.)

Listing 12-8. Counting and Summing

using namespace System;
using namespace System::Data;
using namespace System::Data::SqlClient;

void main()
{
 SqlConnection ^connection = gcnew SqlConnection();

#ifdef SQLAuth
 // SQL Server authentication
 connection->ConnectionString =
 "User ID=sa; Password=;"
 "Data Source=(local); Initial Catalog=DCV_DB;";
#else
 // Windows Integrated Security
 connection->ConnectionString =
 "Persist Security Info=False; Integrated Security=SSPI;"
 "Data Source=(local); Initial Catalog=DCV_DB;";
#endif

 try
 {
 SqlCommand ^cmd = gcnew SqlCommand();
 cmd->Connection = connection;
 connection->Open();

 cmd->CommandType = CommandType::Text;
 cmd->CommandText = "SELECT COUNT(*) FROM Authors";

 Object ^NumAuthors = cmd->ExecuteScalar();
 Console::WriteLine("The number of Authors are {0}", NumAuthors);

 cmd->CommandType = CommandType::Text;
 cmd->CommandText = "SELECT SUM(AuthorID) FROM Authors";

Fraser_640-4C12.fm Page 538 Monday, November 14, 2005 11:54 AM

C H A P T E R 1 2 ■ A D O . N E T A N D D A T A B A S E D E V E L O P M E N T 539

 Object ^UselessNum = cmd->ExecuteScalar();
 Console::WriteLine("The Sum of AuthorIDs for fun is {0}", UselessNum);
 }
 catch (SqlException ^e)
 {
 Console::WriteLine("No connection the following error occurred: {0}",
 e->Message);
 }
 finally
 {
 connection->Close();
 }
}

As you can see, other than the SQL code and the calling of the ExecuteScalar() method, there is
not much new. The ExecuteScalar() method returns a handle to an Object, which you can type cast
to the type of the return value. In both cases, you could have type cast the return Object handle to
int, but the WriteLine() method can do it for you.

Figure 12-12 shows the results of the preceding example program.

Figure 12-12. Counting rows and summing a column

Using Connected ADO.NET with Transactions
Think about this scenario. You buy a computer on your debit card, but while the purchase is being
processed, the connection to the debit card company is lost. The response from the debit card
reader is a failure message. You try again, and the debit card reader now responds that there is not
enough money. You go home empty-handed, angry, and confused. Then a month later, your bank
statement says you bought a computer with your debit card.

It can’t happen, right? Wrong. If you use the preceding immediate updating method, it’s very
possible, as each update to the database is stand-alone. One command can complete, for example,
the withdrawal, while a second command may fail, for example, the sale.

This is where transactions come in handy. They make sure all database commands needed to
complete a process are completed successfully before allowing the database to commit (or write)
these commands. If one or more of the commands fail, the database can reject all of the commands
and return to its original state before any of the commands were completed. This is known as
rolling back.

Figure 12-13 shows the basic flow of transactional database access.

Fraser_640-4C12.fm Page 539 Monday, November 14, 2005 11:54 AM

cafac74dd2d083cbec0906b66fcd56b1

540 C H A P T E R 1 2 ■ A D O . N E T A N D D A T A B A S E D E V E L O P M E N T

Figure 12-13. Transactional database access

Fraser_640-4C12.fm Page 540 Monday, November 14, 2005 11:54 AM

C H A P T E R 1 2 ■ A D O . N E T A N D D A T A B A S E D E V E L O P M E N T 541

1. Create a link to the database with a SqlConnection.

2. Open the database with the Open() method.

3. Configure for transactions.

4. Create a database transaction with the SqlCommand class.

5. Execute the transaction by using the ExecuteNonQuery() method of the SqlCommand class. The
temporary copy of the database is updated.

6. Repeat steps 4 and 5 until completed.

7. When all transactions are complete, either commit the transactions to the database or roll
them back.

8. Close the database with the Close() method.

Listing 12-9 shows how to convert the nontransactional example from Listing 12-7 into a trans-
actional example.

Listing 12-9. Transactional Database Updates

using namespace System;
using namespace System::Data;
using namespace System::Data::SqlClient;

void main()
{
 String ^Name = "Doors";

 SqlConnection ^connection = gcnew SqlConnection();
 SqlTransaction ^transaction;

#ifdef SQLAuth
 // SQL Server authentication
 connection->ConnectionString =
 "User ID=sa; Password=;"
 "Data Source=(local); Initial Catalog=DCV_DB;";
#else
 // Windows Integrated Security
 connection->ConnectionString =
 "Persist Security Info=False; Integrated Security=SSPI;"
 "Data Source=(local); Initial Catalog=DCV_DB;";
#endif

 try
 {
 connection->Open();

 SqlCommand ^cmd = gcnew SqlCommand();

 transaction = connection->BeginTransaction(
 IsolationLevel::Serializable, "AuthorTransaction");

Fraser_640-4C12.fm Page 541 Monday, November 14, 2005 11:54 AM

542 C H A P T E R 1 2 ■ A D O . N E T A N D D A T A B A S E D E V E L O P M E N T

 cmd->Connection = connection;
 cmd->Transaction = transaction;

 cmd->CommandType = CommandType::StoredProcedure;
 cmd->CommandText = "InsertAuthor";

 cmd->Parameters->Add(gcnew SqlParameter("@LastName", SqlDbType::Char,32));
 cmd->Parameters->Add(gcnew SqlParameter("@FirstName",SqlDbType::Char,32));

 cmd->Parameters["@LastName"]->Value = "Dope";
 cmd->Parameters["@FirstName"]->Value = "John";

 int affected = cmd->ExecuteNonQuery();
 if (affected <= 0)
 throw gcnew Exception("Insert Failed");
 Console::WriteLine("Insert - {0} rows are affected", affected);

 cmd->CommandType = CommandType::Text;
 cmd->CommandText = "UPDATE Authors SET LastName = 'Doe'"
 "WHERE LastName = 'Dope'";

 affected = cmd->ExecuteNonQuery();
 if (affected <= 0)
 throw gcnew Exception("Insert Failed");
 Console::WriteLine("Update - {0} rows are affected", affected);

 // This transaction will return 0 affected rows
 // because "Does" does not exist.
 // Thus, the if condition throws an execption which causes all
 // Transactions to be rolled back.
 cmd->CommandType = CommandType::Text;
 cmd->CommandText = "DELETE FROM Authors WHERE LastName = 'Does'";

 affected = cmd->ExecuteNonQuery();
 if (affected <= 0)
 throw gcnew Exception("Insert Failed");
 Console::WriteLine("Delete - {0} rows are affected", affected);

 transaction->Commit();
 }
 catch (Exception ^e)
 {
 transaction->Rollback("AuthorTransaction");
 Console::WriteLine("Transaction Not completed");
 Console::WriteLine("SQL error occurred: {0}", e->Message);
 }
 finally
 {
 connection->Close();
 }
}

Fraser_640-4C12.fm Page 542 Monday, November 14, 2005 11:54 AM

C H A P T E R 1 2 ■ A D O . N E T A N D D A T A B A S E D E V E L O P M E N T 543

As you can see, there have not been many changes. First, you need to declare a SqlTransaction
(OleDbTransaction, OdbcTransaction, or OracleTransaction) class:

SqlTransaction ^transaction;

Next, you need to create a transaction set using the SqlConnection class’s BeginTransaction()
method. The BeginTransaction() method takes two parameters. The first parameter specifies the
locking behavior of the transaction (see Table 12-7) and the second is the name of the transaction set:

transaction = connection->BeginTransaction(IsolationLevel::RepeatableRead,
 "AuthorTransaction");

Now that you have a transaction set, you need to assign it to the SqlCommand class’s property
Transaction:

cmd->Transaction = transaction;

The last set of transactional database updates is to execute all the transactions. If everything
completes successfully, then execute the SqlTransaction class’s Commit() method:

transaction->Commit();

If, on the other hand, an error occurs, you would then execute the SqlTransaction class’s
Rollback() method:

transaction->Rollback("AuthorTransaction");

Figure 12-14 shows the results of the preceding example program failing because the name of
the author was not found in the database.

Figure 12-14. Transactional database update rollback

Table 12-7. Common Transaction IsolationLevels

Level Description

ReadCommitted Specifies that locks are held while the data is read, but changes to the data
can occur before the transaction is committed

ReadUncommitted Specifies that changes can occur even while the data is being read

RepeatableRead Specifies that locks are held on the data until the transaction is committed,
but additional rows can be added or deleted

Serializable Specifies that locks are held on the entire database until the transaction
is committed

Fraser_640-4C12.fm Page 543 Monday, November 14, 2005 11:54 AM

544 C H A P T E R 1 2 ■ A D O . N E T A N D D A T A B A S E D E V E L O P M E N T

Disconnected ADO.NET
Let’s switch gears and now look at disconnected ADO.NET. Disconnected data access is a key feature
of ADO.NET. Basically, it means that most of the time when you’re accessing a database, you aren’t
getting the data from the database at all. Instead, you’re accessing a synchronized, in-memory copy
of the data that was moved earlier to your client computer. Don’t worry about all the technical issues
surrounding this; just be glad that it works because it provides three major benefits:

• Less congestion on the database server because users are spending less time connected to it

• Faster access to the data because the data is already on the client

• Capability to work across disconnection networks such as the Internet

It also offers one benefit (associated with disconnected access) that is less obvious: Data doesn’t
have to be stored in a database-like format. Realizing this, Microsoft decided to implement ADO.NET
using a strong typed XML format. The benefit is that having data in XML format enables data to be
transmitted using standard HTTP. This causes a further benefit: Firewall problems disappear. An
HTTP response with the body of XML flows freely through a firewall, unlike the pre-ADO.NET tech-
nology’s system-level COM marshalling requests. If the previous bonus is Greek (or geek) to you,
don’t fret. In fact, be glad you have no idea what I was talking about.

The Core Classes
If you spend a lot of time working with ADO.NET, you may have an opportunity to work with almost
all of ADO.NET’s classes. For the purposes of this book, however, I’ve trimmed these classes down to
the following:

• DataAdaptor

• DataSet

• DataTableCollection

• DataTable

• DataRow

• DataColumn

• DataRelationCollection

• DataRelation

• Constraint

All of these classes interact with each other in some way. Figure 12-15 shows the flow of the
interaction. Essentially, the DataAdaptor connects the data store to the DataSet. The DataSet stores
the data in a Tables property containing a DataTablesCollection made up of one or more DataTables.
Each DataTable is made up of DataRows and DataColumns. All of the DataTables store their relation-
ships in a Relations property containing a DataRelationCollection made up of DataRelations.
Finally, each DataTable can be affected by Constraints. Simple, isn’t it?

Fraser_640-4C12.fm Page 544 Monday, November 14, 2005 11:54 AM

C H A P T E R 1 2 ■ A D O . N E T A N D D A T A B A S E D E V E L O P M E N T 545

Figure 12-15. The disconnected ADO.NET class interaction

DataAdaptor
The DataAdaptor is the bridge between a data source (database) and the DataSet. Its purpose is to
extract data out of the data source and place it in the DataSet. Then it updates, if required, the data
source with the changes made in the DataSet.

It should be relatively easy to get comfortable with the SqlDataAdaptor, OleDbDataAdaptor,
OdbcDataAdaptor, or OracleDataAdaptor, as they use (just like connected database access) a connec-
tion class to connect to the data source and a command class to add, update, and select data out of
the data source.

The basic idea behind using the DataAdaptor is to provide SQL commands to the following four
properties to handle sending and receiving data between the DataSet and the data store:

• SelectCommand

• InsertCommand

• UpdateCommand

• DeleteCommand

Fraser_640-4C12.fm Page 545 Monday, November 14, 2005 11:54 AM

546 C H A P T E R 1 2 ■ A D O . N E T A N D D A T A B A S E D E V E L O P M E N T

If you plan to only read data from the database, then only the SelectCommand property needs to
be provided.

With these properties provided, it is a simple matter to call the DataAdaptor class’s Fill()
method to select data from the data store to the DataSet and to call the Update() method to insert,
update, and/or delete data from the DataSet to the data store.

DataSet Class
The DataSet is the major controlling class for disconnected ADO.NET. A DataSet is a memory cache
used to store all data retrieved from a data source, in most cases a database or XML file. The data
source is connected to the DataSet using a DataAdaptor.

A DataSet consists of one or more data tables in a DataTableCollection class, which in turn is
made up of data rows and data columns. Relationships between the tables are maintained via a
DataRelationsCollection class. The DataSet also stores the format information about the data.

A DataSet is data source–independent. All it understands is XML. In fact, all data sent or
received by the DataSet is in the form of an XML document. The DataSet has methods for reading
and writing XML, and these are covered in Chapter 13.

A DataSet also provides transactional access to its data. To commit all changes made to the
DataSet from the time it was created or since the last time it was committed, call the DataSet class’s
AcceptChanges() method. If you want to roll back changes since the DataSet was corrected or since
it was last committed, call the RejectChanges() method. What actually happens is a cascading effect
where the AcceptChanges() and RejectChanges() methods execute their table’s versions of the
method, which in turn calls the table’s rows’ version. Thus, it is also possible to commit or roll back
at the table and row levels.

DataTableCollection Class
A DataTableCollection is a standard collection class made up of one or more DataTables. Like any
other collection class, it has functions such as Add, Remove, and Clear. Usually, you will not use any of
this functionality. Instead, you will use it to get access to a DataTable stored in the collection.

The method of choice for doing this will probably be to access the DataTableCollection indexed
property, using the name of the table that you want to access as the index:

DataTable ^dt = dSet->Tables["Authors"];

It is also possible to access the same table using the overloaded array property version of Item:

DataTable ^dt = dSet->Tables[0];

With this method, you need to know which index is associated with which table. When you use
the indexed property, it is a little more obvious.

■Caution The first index in a DataTableCollection is 0.

DataTable Class
Put simply, a DataTable is one table of data stored in memory. A DataTable also contains constraints,
which help ensure the integrity of the data it is storing.

It should be noted that a DataTable can be made up of zero or more DataRows, because it is
possible to have an empty table. Even if the table is empty, the Columns property will still contain a
collection of the headers that make up the table.

Fraser_640-4C12.fm Page 546 Monday, November 14, 2005 11:54 AM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 1 2 ■ A D O . N E T A N D D A T A B A S E D E V E L O P M E N T 547

Many properties and methods are available in the DataTable, but in most cases you will simply
use it to get access to the rows of the table. Two of the most common methods are enumerating
through the Rows collection:

IEnumerator ^Enum = dt->Rows->GetEnumerator();
while(Enum->MoveNext())
{
 DataRow ^row = (DataRow^)(Enum->Current);
 //...Do stuff to row
}

and selecting an array of DataRows using the Select() method:

array<DataRow^>^ row =
 dt->Select(String::Format("AuthorID={0}", CurrentAuthorID));

Another method that you will probably come across is NewRow(), which creates a new DataRow,
which will later be added to the DataTable Rows collection:

DataRow ^row = dt->NewRow();
//...Build row
dt->Rows->Add(row);

DataRow Class
The DataRow is where the data is actually stored. You will frequently access the data from the DataRow
as indexed property, using the name of the column that you want to access as the index.

row["LastName"] = tbLastName->Text;

It is also possible to access the same column using the overloaded array property version:

row[0] = tbLastName->Text;

With this method, you need to know which index is associated with which column. When you
use the indexed property, it is a little more obvious.

■Caution The first index in a DataRow is 0.

DataColumn Class
You use the DataColumn class to define the columns in a DataTable. Each DataColumn has a data type
that determines the kind of data it can hold. A DataColumn also has properties similar to a database,
such as AllowNull and Unique. If the DataColumn auto-increments, then the AutoIncrement property
is set. (Now, that makes more sense than Identity.)

DataRelationCollection Class
A DataRelationCollection is a standard collection class made up of one or more DataRelations. Like
any other collection class, it has functions such as Add, Remove, and Clear. Usually, as with the
DataTableCollection class, you will not use any of this functionality. Instead, you will simply use it
to get access to the DataRelations it stores.

Fraser_640-4C12.fm Page 547 Monday, November 14, 2005 11:54 AM

548 C H A P T E R 1 2 ■ A D O . N E T A N D D A T A B A S E D E V E L O P M E N T

DataRelation Class
A DataRelation is used to relate two DataTables together. It does this by matching DataColumns
between two tables. You can almost think of it as the ADO.NET equivalent of the foreign-key relationship
in a relational database (like you previously set).

One important thing you have to keep in mind is that the DataColumns must be the same data
type. Remember that ADO.NET has strong data types, and when comparing different data types, one
data type must be converted to the other. This conversion is not done automatically.

Constraint Classes
The Constraint classes make it possible to add a set of constraints on a particular column in your
DataTable. Two types of constraints are currently supported by ADO.NET:

• ForeignKeyConstraint disallows a row to be entered unless there is a matching row in another
(parent) table.

• UniqueConstraint makes sure that a column is unique within a DataTable.

Creating a Table Manually in Code
Normally, database designers build the databases that you use, but the DataColumn, DataRelation,
and Constraint classes allow you as a developer to build a DataTable dynamically. The following
snippet of code shows how to create the Authors DataTable manually:

// Create an empty DataTable
DataTable ^Authors = gcnew DataTable("Authors2");

// Add all the columns
Authors->Columns->Add(gcnew DataColumn("AuthorID",
 Type::GetType("System.Int32")));
Authors->Columns->Add(gcnew DataColumn("LastName",
 Type::GetType("System.String")));
Authors->Columns->Add(gcnew DataColumn("FirstName",
 Type::GetType("System.String")));

// Add autoincrement to AuthorID
Authors->Columns["AuthorID"]->AutoIncrement = true;

// Make AuthorID unique
Authors->Constraints->Add(
 gcnew UniqueConstraint("PK_AuthorID", Authors->Columns["AuthorID"]));

// Make AuthorID the Primary key
array<DataColumn^>^ key = gcnew array<DataColumn^>(1);
key[0] = Authors->Columns["AuthorID"];
Authors->PrimaryKey = key;

// Create a relation between AuthorID in Authors and Content tables
dSet->Relations->Add("StoryLink",
 Authors2->Columns["AuthorID"],
 dSet->Tables["Content"]->Columns["AuthorID"]);

// add table to DataSet
dSet->Tables->Add(Authors);

Fraser_640-4C12.fm Page 548 Monday, November 14, 2005 11:54 AM

C H A P T E R 1 2 ■ A D O . N E T A N D D A T A B A S E D E V E L O P M E N T 549

Developing with Disconnected ADO.NET
In the final two examples of this chapter, you’re going to build a couple of small Win Form applica-
tions to maintain the Authors DataTable that you’ve been working with throughout the chapter.
These examples use disconnected data source access with full select, insert, update, and delete
capabilities that can be either committed or rolled back. For the first example, you do all the work.
For the second, you let Visual Studio 2005 do all the work. A good portion of the code (which you can
find in the Downloads section of my Web site, www.ProCppCLI.net, or the Apress Web site, http://
www.apress.com) is related to auto-generated Win Forms controls and isn’t included here as it really
has no relevance to this chapter’s topic. What you’ll see in the example is the code that wasn’t auto-
generated by Visual Studio 2005.

Figure 12-16 shows the final result of the first example, from which you can build your own
Win Form.

Figure 12-16. The Author Maintenance tool

Building the DataAdaptor
The first thing that you need to do is build the application’s SqlDataAdaptor. Then you’ll use the
SqlDataAdaptor to place data in the DataSet. Eight major steps (three of which are optional) are
involved in building a SqlDataAdaptor and populating and maintaining a DataSet:

1. Create a SqlConnection.

2. Create a SqlDataAdaptor.

3. Implement a SelectCommand property.

4. Implement an InsertCommand property (optional).

5. Implement an UpdateCommand property (optional).

6. Implement a DeleteCommand property (optional).

7. Create a DataSet.

8. Populate (fill) the DataSet.

You build a SqlConnection for a disconnected database in the same way as you build a connected
database:

Fraser_640-4C12.fm Page 549 Monday, November 14, 2005 11:54 AM

550 C H A P T E R 1 2 ■ A D O . N E T A N D D A T A B A S E D E V E L O P M E N T

SqlConnection ^connect = gcnew SqlConnection();

#ifdef SQLAuth
 // SQL Server authentication
 connect->ConnectionString =
 "User ID=sa; Password=;"
 "Data Source=(local); Initial Catalog=DCV_DB;";
#else
 // Windows Integrated Security
 connect->ConnectionString =
 "Persist Security Info=False; Integrated Security=SSPI;"
 "Data Source=(local); Initial Catalog=DCV_DB;";
#endif

Creating the SqlDataAdapter is a simple constructor call. You probably want to also add the
primary key information. This ensures that incoming records that match existing records are
updated instead of appended:

dAdapt = gcnew SqlDataAdapter();
dAdapt->MissingSchemaAction = MissingSchemaAction::AddWithKey;

The SelectCommand is the SQL command that will be used to populate the DataSet. It can be as
complex or as simple as you like. The implementation of the SelectCommand requires a standard
SqlCommand like the one you created earlier with connected access. Notice that the constructor takes
the SQL command and the data source connection:

dAdapt->SelectCommand =
 gcnew SqlCommand("SELECT AuthorID, LastName, FirstName"
 "FROM Authors", connect);

The InsertCommand is the SQL command that will be executed to insert added DataSet rows back
into the data source. The implementation of this property is a little tricky, as it requires parameters
to be passed to the command. The Add() method to the Parameters property is similar to what you
have seen previously, except it has one additional parameter and the size parameter is mandatory,
even if it is obvious, as in the case of Int. The additional property is the name of the column that the
data will be extracted from:

// Implement Insert command
dAdapt->InsertCommand =
 gcnew SqlCommand("INSERT INTO Authors (LastName, FirstName) "
 "VALUES (@LastName, @FirstName)", connect);

// Add parameters
dAdapt->InsertCommand->Parameters->Add("@LastName", SqlDbType::VarChar, 50,
 "LastName");
dAdapt->InsertCommand->Parameters->Add("@FirstName", SqlDbType::VarChar, 50,
 "FirstName");

The UpdateCommand is the SQL command that will be executed to update rows in the data source
that have been modified within the DataSet. The code does not contain anything new:

dAdapt->UpdateCommand =
 gcnew SqlCommand("UPDATE Authors SET "
 "LastName = @LastName, FirstName = @FirstName, "
 "WHERE AuthorID = @AuthorID", connect);
dAdapt->UpdateCommand->Parameters->Add("@LastName", SqlDbType::VarChar, 50,
 "LastName");

Fraser_640-4C12.fm Page 550 Monday, November 14, 2005 11:54 AM

C H A P T E R 1 2 ■ A D O . N E T A N D D A T A B A S E D E V E L O P M E N T 551

dAdapt->UpdateCommand->Parameters->Add("@FirstName", SqlDbType::VarChar, 50,
 "FirstName");
dAdapt->UpdateCommand->Parameters->Add("@AuthorID", SqlDbType::Int, 4,
 "AuthorID");

In the preceding WHERE clause, I use the key AuthorID, which is an auto-generated column that
can’t be changed, to find the row to update. This simplifies things because if the key used to find the
row to update can be changed during the update process, then when it’s changed the WHERE clause
won’t be able to find the right row due to the changed key not matching the original key in the
database.

So, are you stuck with only being able to use unchangeable keys? Fortunately, the answer is no.
When changed, DataRows store their original values so that they can be accessed for this exact reason
(they can be used for rolling back changes as well). Let’s pretend you can update AuthorID. Here is
the code that needs to be changed:

dAdapt->UpdateCommand =
 gcnew SqlCommand("UPDATE Authors SET "
 "LastName = @LastName, FirstName = @FirstName, "
 "AuthorID = @AuthorID "
 "WHERE AuthorID = @OldAuthorID", connect);
//...All the parameters plus
dAdapt->UpdateCommand->Parameters->Add("@OldAuthorID", SqlDbType::Int, 4,
 "AuthorID")->SourceVersion = DataRowVersion::Original;

The DeleteCommand is the SQL command that will be executed when a DataRow is removed from
the DataSet, which needs to be deleted now from the data source. Nothing new to explore here in
the code:

dAdapt->DeleteCommand =
 gcnew SqlCommand("DELETE FROM Authors "
 "WHERE AuthorID = @AuthorID", connect);
dAdapt->DeleteCommand->Parameters->Add("@AuthorID", SqlDbType::Int, 4,
 "AuthorID");

You create a DataSet with a simple constructor. To fill the DataSet, you call the SqlDataAdapter
class’s Fill() method. The Fill() method takes two parameters: a handle to the DataSet and the
name of the data source table that you will be filling the DataSet with:

dSet = new DataSet();
dAdapt->Fill(dSet, "Authors");

Selecting Rows
You have many ways of selecting records from the DataSet. A common way of getting all the rows
from a table is to use the DataRow collection found in the Rows property of the table and then enumerate
through the collection. You populate the list box doing exactly that:

DataTable ^dt = dSet->Tables["Authors"];

if (dt == nullptr)
 throw gcnew Exception("No Authors Table");

IEnumerator ^Enum = dt->Rows->GetEnumerator();
while(Enum->MoveNext())
{
 DataRow ^row = (DataRow^)(Enum->Current);
 lbAuthors->Items->Add(ListBoxItem(row));
}

Fraser_640-4C12.fm Page 551 Monday, November 14, 2005 11:54 AM

552 C H A P T E R 1 2 ■ A D O . N E T A N D D A T A B A S E D E V E L O P M E N T

As you can see in the ListBoxItem() method, to grab the columns, you use the indexed property
of the DataRow:

String ^ListBoxItem(DataRow ^row)
{
 return String::Format("{0} {1} {2}",
 row["AuthorID"],
 row["FirstName"],
 row["LastName"]);
 }

A way of getting a specific set of DataRows from a DataTable is by using the DataTable’s Select()
method. The method takes as a parameter a filter of the primary key:

array<DataRow^>^ row =
 dt->Select(String::Format("AuthorID={0}", CurrentAuthorID));

You will see this code implemented later in updating and deleting rows.

Inserting Rows
Inserting a new row or, in this case, a new author is done by updating the text boxes with the infor-
mation about the author and then clicking the Add button.

A good portion of the following code consists of validating, updating the list box, and cleaning
up for text boxes. The actual ADO.NET-related code simply creates a new row, updates the columns
with the information in the list boxes, and adds the row to the DataTable.

Notice that the actual insertion of the row into the data source with the Update() method is not
found in this method. The reason for this is that I want to be able to commit or roll back all changes
at one time using the Commit and Rollback buttons. Thus, the Update() method only occurs in the
Commit button event. When the Update() method finally gets called, the UpdateCommand (which was
coded previously) will get executed:

System::Void bnAdd_Click(System::Object^ sender, System::EventArgs^ e)
{
 // Make sure the text boxes are populated
 if (tbFirstName->Text->Trim()->Length == 0 ||
 tbLastName->Text->Trim()->Length == 0)
 return;

 // Create a new row in the DataTable
 DataTable ^dt = dSet->Tables["Authors"];
 DataRow ^row = dt->NewRow();

 // Update the columns with the new author information
 row["FirstName"] = tbFirstName->Text;
 row["LastName"] = tbLastName->Text;

 // Add the row to the Rows collection
 dt->Rows->Add(row);

 // Add the new row to the list box
 lbAuthors->Items->Add(ListBoxItem(row));

 // Blank out the text boxes
 tbFirstName->Text = "";
 tbLastName->Text = "";
}

Fraser_640-4C12.fm Page 552 Monday, November 14, 2005 11:54 AM

C H A P T E R 1 2 ■ A D O . N E T A N D D A T A B A S E D E V E L O P M E N T 553

Updating Rows
Updating an author row is handled when you select a row out of the list box, update the text boxes,
and finally click the Update button.

The ADO.NET-related code to update the author requires that you first select the row to be
updated using the DataTable class’s Select() method. Once you have the row, you update the author
information in the row columns. Like when you inserted a row, the Update() method does not get
called until the Commit button is clicked, but when the Update() method finally gets called, the
UpdateCommand ends up being executed:

System::Void bnUpdate_Click(System::Object^ sender, System::EventArgs^ e)
{
 // Make sure we have a selected author from the listbox
 if (CurrentAuthorID < 0)
 return;

 // Select the author using its AuthorID
 DataTable ^dt = dSet->Tables["Authors"];
 array<DataRow^>^ row =
 dt->Select(String::Format("AuthorID={0}", CurrentAuthorID));

 // Since we know that AuthorID is unique only one row will be returned
 // Update the row with the text box information
 row[0]["FirstName"] = tbFirstName->Text;
 row[0]["LastName"] = tbLastName->Text;

 // Update listbox
 lbAuthors->Items->Insert(lbAuthors->SelectedIndex, ListBoxItem(row[0]));
 lbAuthors->Items->RemoveAt(lbAuthors->SelectedIndex);
}

Deleting Rows
Deletion of an author DataRow happens when you click a row in the list box and then click the
Delete button.

The code to handle deleting a row is a little tricky, as it requires the use of transactional access
to the DataSet. First, you need to select the row. Then you call its Delete() method. Deleting a record
in the DataSet does not actually occur until the change is accepted. At this point only, a flag is set in
the DataRow.

Also, like inserting and updating, the actual updating of the database does not occur until the
Update() method is called when the Commit button is clicked. Ultimately, when the Update() method is
called, the DeleteCommand (built previously) will be executed:

System::Void bnDelete_Click(System::Object^ sender, System::EventArgs^ e)
{
 // Make sure we have a selected author from the listbox
 if (CurrentAuthorID < 0)
 return;

 // Select the author using its AuthorID
 DataTable ^dt = dSet->Tables["Authors"];
 array<DataRow^>^ row =
 dt->Select(String::Format("AuthorID={0}", CurrentAuthorID));

Fraser_640-4C12.fm Page 553 Monday, November 14, 2005 11:54 AM

cafac74dd2d083cbec0906b66fcd56b1

554 C H A P T E R 1 2 ■ A D O . N E T A N D D A T A B A S E D E V E L O P M E N T

 // Since we know that AuthorID is unique only one row will be returned
 // Delete the row
 row[0]->Delete();

 // All went well, delete the row from list box
 lbAuthors->Items->RemoveAt(lbAuthors->SelectedIndex);
}

Committing and Rolling Back Changed Rows
You commit all author DataRows changed when you click the Commit button.

Because a DataSet is disconnected from the database, anything that you do to it will not get
reflected in the actual database until you force an update using the Update() method. Because this is
the case, it is really a simple matter to either commit or roll back any changes that you have made to
the DataSet.

To commit the changes to the database, simply call the Update() method, which will walk
through the DataSet and update any changed records in its corresponding database record. Depending
on the type of change, the appropriate SQL command (insert, update, or delete) will be executed. To
commit the changes to the DataSet, you need to call the AcceptChanges() method, which will cause
the DataSet to accept all changes that were made to it:

dAdapt->Update(dSet, "Authors");
dSet->AcceptChanges();

To roll back any changes, simply don’t call the Update() method, and call the RejectChanges()
method to delete all changes in the DataSet that you have made since you last committed:

dSet->RejectChanges();

No (Coding) Effort Development with Disconnected ADO.NET
Lots of hard work there don’t you think? What if I were to tell you that you could provide the exact
same functionality using Visual Studio 2005 with a few drag and drop operations and typing three
lines of code? Hard to believe . . . but it’s true. It’s all due to the power of the Typed DataSet and the
DataGridView.

Typed DataSet

A Typed DataSet is an extension of a DataSet class where all columns of the database table are imple-
mented as strongly typed properties. What you add after that to the class is really up to you.

I bet you are wondering how many of the three lines of code you are going to have to type make
up the Typed DataSet. Fortunately, the answer is none, as Visual Studio 2005 can create a Typed
DataSet for you. Okay, I’ve heard from hardcore developers that the generated Typed DataSet is not
perfect, but to me it works just fine.

The steps to creating a Typed DataSet are straightforward:

1. Right-click the project name in the Solution Explorer.

2. Select the menu items Add ➤ New Item. This displays the dialog box shown in Figure 12-17.

Fraser_640-4C12.fm Page 554 Monday, November 14, 2005 11:54 AM

C H A P T E R 1 2 ■ A D O . N E T A N D D A T A B A S E D E V E L O P M E N T 555

Figure 12-17. Add New Item dialog box

3. Select DataSet Template and then enter AuthorsDS as the name of the Typed DataSet. (This
is my naming convention, i.e., table name followed by DS, but you can use any name you want.)

4. Click Add and then you get a (rather pretty) blue screen that gives you details on what to
do next.

5. From within the Server Explorer, navigate to the Authors table.

6. Drag the Authors table to the blue screen and drop it.

7. You now have a screen that looks like Figure 12-18.

Figure 12-18. AuthorsDS Typed DataSet

Fraser_640-4C12.fm Page 555 Monday, November 14, 2005 11:54 AM

556 C H A P T E R 1 2 ■ A D O . N E T A N D D A T A B A S E D E V E L O P M E N T

You’re finished. Okay, this was a rather simple example. You could also drag other tables, which
incidentally retain their relationships, but I very seldom create Typed DataSets that are made up of
more than one table.

DataGridView

Now comes that fun part. The DataGridView is probably one of the most powerful controls available
in your screen design arsenal. It is also extremely easy to work with, but in this chapter I will barely
even scratch the surface of the functionality it provides.

The DataGridView control provides a customizable table for displaying data with or without an
underlying data source. In other words, you can either create your table manually or, as I will do in
the example, generate it automatically by binding it to a data source. In this case, the data source is
the Typed DataSet AuthorsDS.

The DataGridView class allows for a massive amount of customization. It provides more than
150 public properties, more than 80 public methods, and nearly 200 public events. Covering all these
could take a fair-size book. Fortunately, at least as far as I’m concerned, all the properties, methods,
and events I have to be concerned about are available via the Visual Studio 2005 Window form designer.

Here are the steps to implement a simple DataGridView:

1. Drag and drop the DataGridView from the Toolbox to your form.

2. Size it so that it nearly fills the form, but leave room for two buttons at the bottom.

3. Anchor the control to all four sides.

4. Click the triangle in the box in the top-right corner of the DataGridView.

5. Click the drop-down arrow next to the Choose Data Source text box. This displays a dialog
box similar to the one in Figure 12-19.

Figure 12-19. DataGridView Tasks

6. Select the AuthorsDS link. This adds two addition controls to the form, AuthorsDS and
AuthorDSBindingSource.

7. Select the AuthorDSBindingSource control and select Authors from the DataMember property
drop-down list. Presto, your DataGridView changes from a gray box into a table.

Fraser_640-4C12.fm Page 556 Monday, November 14, 2005 11:54 AM

C H A P T E R 1 2 ■ A D O . N E T A N D D A T A B A S E D E V E L O P M E N T 557

8. Right-click within the DataGridView and select Edit Columns. This presents you with a dialog
box like the one in Figure 12-20.

Figure 12-20. DataGridView Edit Columns dialog box

9. Go wild and change the look and feel of the DataGridView to your heart’s content.

10. Click OK.

Go ahead and compile and run your form. You should get a table of all the records in your Authors
table. You can even edit, add, and remove them. But oops . . . you can’t save your changes to your
database.

Here is where your three lines of code come in. Add two buttons, Commit and Rollback. Then
in the Commit button’s click event handler, add the following two lines:

this->AuthorsTableAdapter->Update(this->AuthorsDS->Authors);
this->AuthorsDS->AcceptChanges();

These lines provide the ability to commit the changes you made to the DataGridView to the database
and then accept the changes to the DataSet. If you recall, you saw these same two lines in the Commit
button in the prior example.

Finally, add your third and last line of code to the rollback button’s click event handler:

this->AuthorsDS->RejectChanges();

This line rejects all changes you made and restores the DataGridView back to its original state or
to its state when the DataSet was last committed.

Fraser_640-4C12.fm Page 557 Monday, November 14, 2005 11:54 AM

558 C H A P T E R 1 2 ■ A D O . N E T A N D D A T A B A S E D E V E L O P M E N T

Done! Figure 12-21 shows the final results of the second example.

Figure 12-21. Maintaining authors using a DataGridView

Summary
In this chapter, you saw a large portion of the .NET Framework’s ADO.NET. You started out by covering
the basics of ADO.NET. You then moved on to creating a database to work with through the rest of
the chapter using Visual Studio 2005. Next, you explored how to connect, query, insert, update,
delete, count, and sum rows of a database using connected access to the database. Finally, you
learned how to do the same things with disconnected access, in the process building a couple simple
Windows Forms author maintenance tools.

You have now learned the code you will need to implement ADO.NET in either a connected or
disconnected manner. The world of databases should now be open to you when you create your
applications.

In the next chapter, you’ll examine the mysterious world of XML, the last of the four common
methods of getting input into and out of your .NET Windows applications.

Fraser_640-4C12.fm Page 558 Monday, November 14, 2005 11:54 AM

559

■ ■ ■

C H A P T E R 1 3

XML

Though you’re covering XML last of the four most common .NET Framework class library input/output
(I/O) mechanisms, it’s hardly the least important. In fact, much of the underlying architecture of
.NET relies on XML, so much so that the .NET Framework class library provides a plethora of ways of
working with XML. This chapter covers some of the more common classes.

A major goal of the .NET Framework class library is to simplify XML development. It has done
this. But if you come from a background of implementing XML in the worlds of Microsoft XML
Parser (MSXML) or Java, what you’ve already learned isn’t lost. In fact, you’ll find many similarities
between these implementations and the one provided by the .NET Framework class library.

This chapter isn’t intended to provide details about XML, though to provide a level playing field
I do include some high-level coverage. Instead, the goal is to show you how to implement the many
facets of XML development provided by the .NET Framework class library. In particular, you’ll learn
how to read, write, update, and navigate an XML file. After you’ve covered the common areas of XML
that you’ll more than likely develop code for, you’ll move on and look at using XML with ADO.NET.

What Is XML?
First off, XML is not a computer language. Rather, it is a meta-language for defining or specifying
how to mark up a document in such a way as to identify its structure.

Say what?
How about this definition: XML is a method of arranging a document so that it’s broken up into

parts. For example, in this chapter you’re going to create an XML document of role-playing monsters.
The document will be broken up by monster name, hit dice, and weapon(s). (If you play Dungeons
& Dragons [D&D], you know this is a very small subset of all the information available, but I didn’t
want or need to make the examples any more difficult.)

XML documents, in their simplest form, are made up of a hierarchy of two types of components:
elements and attributes.

An element is made up of three parts:

• Start element node, often called the start tag. It is made up of an element text name enclosed
in angle brackets: <Element_Tag>.

• Content node(s) made up of a combination of zero or more text nodes (text enclosed between
start and end element nodes) and child or nested elements (hence the hierarchical nature of
XML).

• End element node, often called the end tag. It is made up of a backslash and text, which
must exactly match the text name of the start element node, enclosed in angle brackets:
</Element_Tag>.

Fraser_640-4C13.fm Page 559 Wednesday, November 16, 2005 1:58 PM

560 C H A P T E R 1 3 ■ X M L

An attribute is an extension to the start element node. It provides more information about the
element. Attributes are one or more name= "value" pairs added after the element text name but
before the closing angle bracket: <Element_Tag name="value" >.

Two additional components that you will encounter are the XML header declaration and the
comment. The header declaration indicates that the file should be parsed as XML and in most cases
will simply read

<?xml version="1.0" encoding="utf-8"?>

Comments provide the reader of the XML file additional information that will be ignored by the
XML parser. The syntax of a comment is <!-- comment_text -->.

Listing 13-1 shows the XML document that you’ll be using throughout the chapter.

Listing 13-1. An XML Monster File

<?xml version="1.0" encoding="utf-8"?>
<!-- Monster List -->
<MonsterList>
 <!-- Easy Monster -->
 <Monster>
 <Name>Goblin</Name>
 <HitDice Dice="1d8" Default="4"/>
 <Weapon Number="1" Damage="1d4">Dagger</Weapon>
 </Monster>
 <!-- Medium Monster -->
 <Monster>
 <Name>Succubus</Name>
 <HitDice Dice="6d8+6" Default="33"/>
 <Weapon Number="2" Damage="1d3+1">Claw</Weapon>
 <Weapon Number="1" Damage="1d4">Dagger</Weapon>
 </Monster>
 <!-- Tough Monster -->
 <Monster>
 <Name>Red Dragon</Name>
 <HitDice Dice="22d12+110" Default="253"/>
 <Weapon Number="1" Damage="2d8">Bite</Weapon>
 <Weapon Number="2" Damage="2d6">Claw</Weapon>
 <Weapon Number="2" Damage="1d8">Wing</Weapon>
 </Monster>
</MonsterList>

The .NET Framework XML Implementations
The .NET Framework class library provides two ways of processing XML data:

• Fast, noncached, forward-only stream

• Random access via an in-memory Document Object Model (DOM) tree

Both methods of processing XML data are equally valid. However, each has a definite time
when it is better suited. At other times, both will work equally well, and the decision of which to use
is up to the developer’s taste.

Fraser_640-4C13.fm Page 560 Wednesday, November 16, 2005 1:58 PM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 1 3 ■ X M L 561

The major deciding factors for choosing one method over the other are whether all data needs
to be in memory at one time (large files take up large amounts of memory, which in many cases isn’t
a good thing, but with the large amount of physical memory a computer can have nowadays the size
of the XML file is almost irrelevant) and whether random access to the data is needed. When either
of these factors occurs, the DOM tree should probably be used because the process of repeatedly
starting from the beginning of the document and reading forward sequentially through it to find the
right place in the stream of XML to read, update, or write random data is time consuming.

On the other hand, if the data can be processed sequentially, a forward-only stream is probably
the better choice because it is easier to develop and uses fewer resources more efficiently than a
DOM tree. However, there is nothing stopping you from using a DOM tree in this scenario as well.

Implementing code to process XML with the .NET Framework class library requires referencing
the System.Xml.dll assembly. You would think that due to the heavy reliance on XML in the .NET
Framework, it would be part of the mscorlib.dll assembly. Because it is not, your source code imple-
menting XML requires the following code be placed at the top of your source code (this is done
automatically for you by Visual Studio 2005 for Windows Forms applications but not for console
applications):

#using <system.xml.dll>

Six namespaces house all of the XML functionality within the .NET Framework class library.
Table 13-1 describes these namespaces at a high level.

Forward-Only Access
Forward-only access to XML is amazingly fast. If you can live with the restriction that you can
process the XML data only in a forward-only method, then this is the way to go. The base abstract
classes for implementing this method of access are named, intuitively enough, XmlReader and
XmlWriter.

The .NET Framework class library’s implementation of forward-only access, when you first look
at it, seems a lot like the Simple API for XML (SAX), but actually they are fundamentally different.
Whereas SAX uses a more complex push model, the class library uses a simple pull model. This
means that a developer requests or pulls data one record at a time instead of having to capture the
data using event handlers.

Table 13-1. XML Namespaces

Namespace Description

System::Xml Provides the core of all XML functionality

System::Xml::Schema Provides support for XML Schema definition language
(XSD) schemas

System::Xml::Serialization Provides support for serializing objects into XML
formatted documents or streams

System::Xml::XPath Provides support for the XPath parser and
evaluation engine

System::Xml::Xsl Provides support for Extensible Stylesheet Language
Transformations (XSLT) transforms

Fraser_640-4C13.fm Page 561 Wednesday, November 16, 2005 1:58 PM

562 C H A P T E R 1 3 ■ X M L

Coding using the .NET Framework class library’s implementation of forward-only access
seems, to me, more intuitive because you can handle the processing of an XML document as you
would a simple file, using a good old-fashioned while loop. There is no need to learn about event
handlers or SAX’s complex state machine.

Reading from an XML File
To implement forward-only reading of an XML file you use the XmlReader class. This is a little tricky
as the XmlReader is an abstract class. This means, instead of the normal creation of the class using a
constructor, you use the static method Create(), in conjunction with the optional
XmlReaderSettings class.

For those of you who developed XML code with a previous version of the .NET Framework, it is
also possible to still use the XmlTextReader and XmlNodeReader classes, which inherit from XmlReader.
With .NET Framework version 2.0, Microsoft has recommended the use of the XmlReader class, since
using the Create() method with the XmlReaderSettings class you get the following benefits:

• The ability to specify the features you want supported by the created XmlReader instance.

• The ability to create an instance of XmlReaderSettings that can be reused to create multiple
XmlReaders, each sharing the same features.

• The ability to create a unique instance or modify an existing instance of the XmlReaderSettings,
allowing each XmlReader to have a different set of features.

• You can extend the features of the XmlReader. The Create() method can accept another
XmlReader. The underlying XmlReader instance can be a reader such as an XmlTextReader,
or another user-defined XmlReader instance that you add your own features to.

• Provides the ability to take advantage of all the new features added to the XmlReader class
in .NET Framework version 2.0. Some features, such as better conformance checking and
compliance to the XML 1.0 recommendation, are only available with XmlReader instances
created using the Create() method.

I’ll cover the XmlReaderSettings class when I discuss XML file validation later in the chapter, as
much of this class pertains to validation.

The XmlReader class is made up of a number of properties and methods. Some of the more
common properties you will probably encounter are as follows:

• AttributeCount is an Int32 that specifies the number of attributes in the current Element,
DocumentType, or XmlDeclaration node. Other node types don’t have attributes.

• Depth is an Int32 that specifies the depth of the current node in the tree.

• EOF is a Boolean that’s true if the reader is at the end of the file; otherwise, it’s false.

• HasAttributes is a Boolean that’s true if the current node has attributes; otherwise, it’s false.

• HasValue is a Boolean that’s true if the current node has a value; otherwise, it’s false.

• IsEmptyElement is a Boolean that’s true if the current node is an empty element, or in other
words, the element ends in />.

Fraser_640-4C13.fm Page 562 Wednesday, November 16, 2005 1:58 PM

C H A P T E R 1 3 ■ X M L 563

• Item is the String value of an attribute specified by index or name within the current node.

• LocalName is the String the local name of the current node. For example, Monster is the
LocalName for the element <my:Monster>.

• Name is the String qualified name of the current node. For example, the fully qualified
my:Monster is the Name for the element <my:Monster>.

• NodeType is an XmlNodeType enum class that represents the node type (see Table 13-2) of the
current node.

• Prefix is the String namespace prefix of the current node. For example, my is the namespace
for the element <my:Monster>.

• ReadState is a ReadState enum class of the current state of the XmlReader object. Possible states
are: Closed, EndOfFile, Error, Initial, and Interactive.

• Value is the String value for the current node.

Here are a few of the more common XmlReader methods:

• Close() changes the ReadState of the reader to Closed.

• Create() is used to create an instance of an XmlReader.

• GetAttribute() gets the String value of the attribute.

• IsStartElement() returns the Boolean true if the current node is a start element tag.

• MoveToAttribute() moves to a specified attribute.

• MoveToContent() moves to the next node containing content.

• MoveToElement() moves to the element containing the current attribute.

• MoveToFirstAttribute() moves to the first attribute.

• MoveToNextAttribute() moves to the next attribute.

• Read() reads the next node.

• ReadAttributeValue() reads an attribute containing entities.

• ReadContentAs[data type]() reads the current content of the node as the [data type] specified.
Examples are ReadContentAsInt() and ReadContentAsDouble().

• ReadElementContentAs[data type]() reads the value of element node as the [data type]
specified. Examples are ReadElementContentAsInt() and ReadElementContentAsDouble().

• ReadElementString() is a helper method for reading simple text elements.

• ReadEndElement() verifies that the current node is an end element tag and then reads the
next node.

• ReadStartElement() verifies that the current node is a start element tag and then reads the
next node.

• ReadString() reads the contents of an element or text node as a String.

• Skip() skips the children of the current node.

Fraser_640-4C13.fm Page 563 Wednesday, November 16, 2005 1:58 PM

564 C H A P T E R 1 3 ■ X M L

The XmlReader class processes an XML document by tokenizing a text stream of XML data. Each
token (or node, as it is known in XML) is then made available by the Read() method and can be
handled as the application sees fit. A number of different nodes are available, as you can see in
Table 13-2.

The basic logic of implementing the XmlReader class is very similar to that of a file IO class:

1. Open the XML document.

2. Read the XML element.

3. Process the element.

4. Repeat steps 2 and 3 until the end of file (EOF) is reached.

5. Close the XML document.

The example in Listing 13-2 shows how to process the previous XML monster file. The output is
to the console and contains a breakdown of the nodes that make up the XML file.

Table 13-2. Common XML Node Types

Node Type Description

Attribute An element attribute

Comment A comment

Document The root of a document tree providing access to the entire XML
document

DocumentFragment A subtree of a document

DocumentType A document type declaration

Element A start element tag

EndElement An end element tag

EndEntity The end of an entity declaration

Entity The start of an entity declaration

EntityReference A reference to an entity

None The value placed in NodeType before any Read() method is called

SignificantWhitespace White space between markups in a mixed content model or white
space within the xml:space="preserve" scope

Text The text content

Whitespace White space between markups

XmlDeclaration An XML declaration

Fraser_640-4C13.fm Page 564 Wednesday, November 16, 2005 1:58 PM

C H A P T E R 1 3 ■ X M L 565

Listing 13-2. Splitting the XML Monster File into Nodes

#using <system.xml.dll>

using namespace System;
using namespace System::Xml;

String ^indent(Int32 depth)
{
 String ^ind = "";
 return ind->PadLeft(depth * 3, ' ');
}

void main()
{
 XmlReader ^reader;

 try
 {
 reader = XmlReader::Create("Monsters.xml");

 while (reader->Read())
 {
 switch (reader->NodeType)
 {
 case XmlNodeType::Comment:
 Console::WriteLine(
 "{0}Comment node: Value='{1}'",
 indent(reader->Depth), reader->Value);
 break;
 case XmlNodeType::Element:
 Console::WriteLine(
 "{0}Element node: Name='{1}'",
 indent(reader->Depth), reader->Name);

 if (reader->HasAttributes)
 {
 while (reader->MoveToNextAttribute())
 {
 Console::WriteLine(
 "{0}Attribute node: Name='{1}' Value='{2}'",
 indent(reader->Depth), reader->Name,
 reader->Value);
 }
 reader->MoveToElement();
 }

Fraser_640-4C13.fm Page 565 Wednesday, November 16, 2005 1:58 PM

566 C H A P T E R 1 3 ■ X M L

 if (reader->IsEmptyElement)
 {
 Console::WriteLine(
 "{0}End Element node: Name='{1}'",
 indent(reader->Depth), reader->Name);
 }
 break;
 case XmlNodeType::EndElement:
 Console::WriteLine(
 "{0}End Element node: Name='{1}'",
 indent(reader->Depth), reader->Name);
 break;
 case XmlNodeType::Text:
 Console::WriteLine(
 "{0}Text node: Value='{1}'",
 indent(reader->Depth), reader->Value);
 break;
 case XmlNodeType::XmlDeclaration:
 Console::WriteLine(
 "Xml Declaration node: Name='{1}'",
 indent(reader->Depth), reader->Name);

 if (reader->HasAttributes)
 {
 while (reader->MoveToNextAttribute())
 {
 Console::WriteLine(
 "{0}Attribute node: Name='{1}' Value='{2}'",
 indent(reader->Depth), reader->Name,
 reader->Value);
 }
 }
 reader->MoveToElement();
 Console::WriteLine(
 "End Xml Declaration node: Name='{1}'",
 indent(reader->Depth), reader->Name);
 break;
 case XmlNodeType::Whitespace:
 // Ignore white space
 break;
 default:
 Console::WriteLine(
 "***UKNOWN*** node: Name='{1}' Value='{2}'",
 indent(reader->Depth), reader->Name, reader->Value);
 }
 }
 }

Fraser_640-4C13.fm Page 566 Wednesday, November 16, 2005 1:58 PM

C H A P T E R 1 3 ■ X M L 567

 catch (XmlException ^e)
 {
 Console::WriteLine("\n\n\nSplitting XML Aborted with error: {0}",
 e->Message);
 }
 finally
 {
 if (reader->ReadState != ReadState::Closed)
 {
 reader->Close();
 }
 }
}

The preceding code, though longwinded, is repetitively straightforward and, as pointed out,
resembles the processing of a file in many ways.

One neat little trick this example shows is how you can use the XmlReader class’s Depth property
to indent your output based on the depth the current node is within the tree. All I do is simply indent
an additional three spaces for each depth:

String ^indent(Int32 depth)
{
 String ^ind = "";
 return ind->PadLeft(depth * 3, ' ');
}

You process all XML within an XmlException try/catch block because every XML method in the
.NET Framework class library can throw an XmlException.

You start by opening the XML file. Then you read the file, and finally you close the file. You place
the Close() method in a finally clause to ensure that the file gets closed even on an exception. Before
you close the file, you verify that the file had in fact been opened in the first place. It is possible for the
Create() method of the XmlReader class to throw an XmlException and never open the XML file:

XmlReader ^reader;
try
{
 reader = XmlReader::Create("Monsters.xml");
 while (reader->Read())
 {
 //...Process each node.
 }
}
catch (XmlException ^e)
{
 Console::WriteLine("\n\n\nSplitting XML Aborted with error: {0}",
 e->Message);
}
finally
{
 if (reader->ReadState != ReadState::Closed)
 {
 reader->Close();
 }
}

Fraser_640-4C13.fm Page 567 Wednesday, November 16, 2005 1:58 PM

cafac74dd2d083cbec0906b66fcd56b1

568 C H A P T E R 1 3 ■ X M L

The processing of each of the nodes is done using a simple case statement on the node type of
the current node:

switch (reader->NodeType)
{
 case XmlNodeType::Comment:
 //...Process a comment
 break;
 case XmlNodeType::Element:
 //...Process an element
 break;
 //...etc.
}

The processing of most of the node types in the preceding example involves simply writing either
the name or the value to the console. One exception is the Element tag. It starts off like the other node
type by writing its name to the console, but then it continues on to check if it has attributes. If it does, it
moves through each of the attributes and writes them to the console as well. When it has finished
processing the attributes, it moves the element back as the current node using the MoveToElement()
method. You might think you have just broken the forward-only property, but in reality, attributes
are only part of an element, so therefore the element is still the current node.

It is possible for an element to be empty using the syntax <tag/>, so you have to then check to
see if the element is empty. If it is, you write the element’s end tag to the console:

case XmlNodeType::Element:
 Console::WriteLine("{0}Element node: Name='{1}'",
 indent(reader->Depth), reader->Name);

 if (reader->HasAttributes)
 {
 while (reader->MoveToNextAttribute())
 {
 Console::WriteLine("{0}Attribute node: Name='{1}' Value='{2}'",
 indent(reader->Depth), reader->Name,
 reader->Value);
 }
 reader->MoveToElement();
 }

 if (reader->IsEmptyElement)
 {
 Console::WriteLine("{0}End Element node: Name='{1}'",
 indent(reader->Depth), reader->Name);
 }
 break;

Figure 13-1 shows the results of ReadXML.exe. It’s hard to believe so much information is
contained within such a small XML file.

Fraser_640-4C13.fm Page 568 Wednesday, November 16, 2005 1:58 PM

C H A P T E R 1 3 ■ X M L 569

Figure 13-1. A console output of the XML monster file

Validating an XML File
The XmlReader class in conjunction with the XmlReaderSettings class can be used to verify that an
XML file is well formed—in other words, that it follows all the syntax rules of an XML file. These
classes don’t verify, though, that the XML file is valid.

A valid XML file needs the nodes to be in a specific order, number, and type. You can use the
following two standards for checking validity:

• Document type definition (DTD)

• XML schema definition (XSD)

Fraser_640-4C13.fm Page 569 Wednesday, November 16, 2005 1:58 PM

570 C H A P T E R 1 3 ■ X M L

Validating an XML file requires a DTD or a XSD schema file. Monsters.dtd (see Listing 13-3) is
an example of a DTD for the Monsters.xml file. DTD is an older method of validating XML and is
becoming more or less obsolete. But since it is still used, I thought I’d show an example.

Listing 13-3. The Monsters.dtd File

<!ELEMENT MonsterList (Monster)+ >
<!ELEMENT Monster (Name, HitDice, Weapon+) >
<!ELEMENT Name (#PCDATA) >
<!ELEMENT HitDice EMPTY >
<!ATTLIST HitDice Dice CDATA #IMPLIED Default CDATA #IMPLIED >
<!ELEMENT Weapon (#PCDATA) >
<!ATTLIST Weapon Number CDATA #IMPLIED Damage CDATA #IMPLIED >

You will also need to make this minor change to the XML file so that it knows where to find the
DTD file:

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE MonsterList SYSTEM "Monsters.dtd">
<!-- Monster List -->

The XSD is very different from the DTD. It is much more verbose, but since it is defined using
XML it is a little easier to read. In addition, it is far more powerful. On the other hand, the application
code is virtually the same for both standards, so we won’t go into the details of the schema definitions.
But just to give you an idea of what a schema definition looks like, Listing 13-4 is the XSD equivalent
to Listing 13-3, which incidentally was auto-generated by clicking in the XML create schema toolbar
button while the Monsters.xml file was being displayed in the Visual Studio 2005 code window.

Listing 13-4. The Monsters.xsd File

<?xml version="1.0" encoding="utf-8"?>
<xs:schema attributeFormDefault="unqualified"
 elementFormDefault="qualified"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="MonsterList">
 <xs:complexType>
 <xs:sequence>
 <xs:element maxOccurs="unbounded" name="Monster">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Name" type="xs:string" />
 <xs:element name="HitDice">
 <xs:complexType>
 <xs:attribute name="Dice" type="xs:string"
 use="required" />
 <xs:attribute name="Default" type="xs:unsignedByte"
 use="required" />
 </xs:complexType>
 </xs:element>

Fraser_640-4C13.fm Page 570 Wednesday, November 16, 2005 1:58 PM

C H A P T E R 1 3 ■ X M L 571

 <xs:element maxOccurs="unbounded" name="Weapon">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="Number" type="xs:unsignedByte"
 use="required" />
 <xs:attribute name="Damage" type="xs:string"
 use="required" />
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

To verify an XML file, you need to add an instance of the XmlReaderSettings class within the
Create() method of the XmlReader class. The XmlReaderSettings class basically extends the functionality
of the XmlReader class by adding verification logic.

■Note The XmlReaderSettings class extends features of the XmlReader besides those of validation, but
these features are beyond the scope of this book.

The XmlReaderSettings class has a few properties and a method to extend the XmlReader class
with validation support:

• IgnoreComments is a Boolean value to specify whether validation should ignore comments. The
default is false.

• IgnoreWhiteSpace is a Boolean value to specify whether validation should ignore insignificant
white space. The default is false.

• ProhibitDtd is a Boolean value to specify whether DTD validation is prohibited. The default is
true.

• Reset() is a method that resets the instance of the XmlReaderSettings back to default values.

• Schemas is an XmlSchemaSet containing the collection of schemas used for validation.

• ValidationType is a ValidationType enumerator to which type of validation, DTD, Schema
(XSD), or None, should be done. The default is None.

■Caution If you want to validate using DTD, you must both set ProhibitDTD to false and set ValidationType
to DTD.

Fraser_640-4C13.fm Page 571 Wednesday, November 16, 2005 1:58 PM

572 C H A P T E R 1 3 ■ X M L

Listing 13-5 shows in a minimal fashion how to validate an XML file with a DTD.

Listing 13-5. Validating the Monsters.xml File

using namespace System;
using namespace System::Xml;
using namespace System::Xml::Schema;

ref class ValidateXML
{
public:
 ValidateXML(String ^filename)
 {
 XmlReader ^vreader;
 try
 {
 XmlReaderSettings ^settings = gcnew XmlReaderSettings();
 settings->ProhibitDtd = false;
 settings->ValidationType = ValidationType::DTD;
 vreader = XmlReader::Create("Monsters.xml", settings);

 while(vreader->Read())
 {
 // ... Process nodes just like XmlTextReader()
 }
 Console::WriteLine("Finished Processing");
 }
 catch (Exception ^e)
 {
 Console::WriteLine(e->Message);
 }
 finally
 {
 if (vreader->ReadState != ReadState::Closed)
 {
 vreader->Close();
 }
 }
 }
};

void main()
{
 gcnew ValidateXML("Monsters.xml");
}

As you can see, there isn’t much difference between implementing a simple XmlReader and a
validated XmlReader. In fact, the only difference is that an instance of the XmlReaderSettings class is
created and passed as a parameter to the XmlReader class’s Create() method.

When you run this on the Monsters.xml file listed earlier, “Finished Processing” displays on the
console. To test that validation is happening, change the Easy Monster to have its HitDice element
placed after the Weapon element, as shown in Listing 13-6.

Fraser_640-4C13.fm Page 572 Wednesday, November 16, 2005 1:58 PM

C H A P T E R 1 3 ■ X M L 573

Listing 13-6. Invalid Monsters.xml File

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE MonsterList SYSTEM "Monsters.dtd">
<!-- Monster List -->
<MonsterList>
 <!-- Easy Monster -->
 <Monster>
 <Name>Goblin</Name>
 <Weapon Number="1" Damage="1d4">Dagger</Weapon>
 <HitDice Dice="1d8" Default="4" />
 </Monster>
 <!-- The rest of the document -->
</MonsterList>

Now the program ValidateXML.exe will abort, as shown in Figure 13-2.

Figure 13-2. Aborting the Monsters.xml file

What happens if you want to handle the problems in the invalid XML file yourself, instead of
just throwing the exception? You can override the exception being thrown by providing a handler to
ValidationEventHandler of the XmlReaderSettings class. Within this handler, you can do whatever
processing is necessary for the validation error.

ValidationEventHandler is triggered whenever a validation error occurs. The code for the handler is
similar to all the other event handlers you’ve seen so far in this book. It takes two parameters: a pointer to
an Object (which in this case you ignore), and a pointer to ValidationEventArgs. ValidationEventArgs
provides in its properties information to tell you what caused the validation event to trigger.

Notice that you also need to import the System::Xml::Schema namespace:

using namespace System::Xml::Schema;
ref class ValidateXML
{
public:
 void ValidationHandler (Object ^sender, ValidationEventArgs ^vea)
 {
 Console::WriteLine(vea->Message);
 }
 //...the rest of class
};

Delegating the event handler follows the same process you’ve seen before:

XmlReaderSettings ^settings = gcnew XmlReaderSettings();
settings->ProhibitDtd = false;
settings->ValidationType = ValidationType::DTD;
settings->ValidationEventHandler +=
 gcnew ValidationEventHandler(this, &ValidateXML::ValidationHandler);
vreader = XmlReader::Create("Monsters.xml", settings);

or

Fraser_640-4C13.fm Page 573 Wednesday, November 16, 2005 1:58 PM

574 C H A P T E R 1 3 ■ X M L

XmlSchemaSet^ sc = gcnew XmlSchemaSet;
sc->Add(L"urn:monster-schema", L"Monsters.xsd");

XmlReaderSettings ^settings = gcnew XmlReaderSettings();
settings->ValidationType = ValidationType::Schema;
settings->Schemas = sc;
settings->ValidationEventHandler +=
 gcnew ValidationEventHandler(this, &ValidateXML::ValidationHandler);
vreader = XmlReader::Create("Monsters.xml", settings);

Now when you execute the application, you get the same message displayed to the console, as
that is the logic I placed in the handler, but the program continues on to the end of the file without
an exception being thrown.

Writing a New XML Stream
There will come a time when you’ll need to generate some XML to be sent to some other application
or stored off for later use by the current application. An easy way of doing this is through the XmlWriter
class and optional XmlWriterSettings class.

■Note You can also use XmlTextWriter, but Microsoft recommends that you use XmlWriter instead.
The benefits are more or less the same as those for XmlReader, which we discussed earlier.

Just like its counterpart XmlReader, XmlWriter is an abstract class and you create an instance
using its Create() method. You can also pass as an argument a settings class. The XmlWriterSettings
class is primarily used to tell XmlWriter how to format the output of its XML stream. Here are some
of the more common properties you will set:

• Encoding is an Encoding enum class that represents the character encoding to use.

• Indent is a Boolean value that represents whether to indent elements. The default value is false.

• IndentChars is a String that represents what set of characters to use for indenting. This value
is used when Indent is set to true.

• NewLineChars is a String that represents what set of characters to use for a line break. This
value is used when NormalizeNewLines is set to true.

• NewLineHandling is a NewLineHandling enum class that represents whether the new lines are
Entitize (preserve new line characters that would not be otherwise preserved by a normalizing
XmlReader), None (unchanged), or Replaced.

• NewLineOnAttribute is a Boolean value that specifies whether to write attributes on a new line.
The default value is false.

• OmitXmlDeclaration is a Boolean value that specifies whether to omit the XML declaration.
The default value is false, which means the declaration is written.

The XmlWriter class is implemented as a forward-only XML stream writer. There aren’t many
commonly used properties when it comes to the XmlWriter class. Most likely you will only deal with
a couple:

Fraser_640-4C13.fm Page 574 Wednesday, November 16, 2005 1:58 PM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 1 3 ■ X M L 575

• Settings, which returns the XmlWriterSettings associated with the XmlWriter.

• WriteState, which is a WriteState enum class of the current state of the XmlWriter. Possible
states are: Attribute value being written, Closed method was called, Content being written,
Element start tag being written, Error, Prolog value being written, and Start (meaning a write
method has yet to be called).

Instead of properties, the XmlWriter class depends on a number of methods. Some of the more
common methods are as follows:

• Close() closes the streams associated with the XmlWriter.

• Create() creates an instance of XmlWriter.

• Flush() flushes the write buffers.

• WriteAttributes() writes all attributes at the current location.

• WriteAttributeString() writes an attribute.

• WriteBase64() encodes the specified binary bytes as Base64 and then writes them out.

• WriteBinHex() encodes the specified binary bytes as BinHex and then writes them out.

• WriteCharEntity() writes out a char entity for the specified Unicode character. For example,
a © symbol would generate a char entity of ©.

• WriteChars() writes out a text buffer at a time.

• WriteComment() writes out a comment.

• WriteDocType() writes out a DOCTYPE declaration.

• WriteElementString() writes out an element.

• WriteEndAttribute() writes out an end attribute, closing the previous WriteStartAttribute.

• WriteEndDocument() writes out end attributes and elements for those that remain open and
then closes the document.

• WriteEndElement() writes out an empty element (if empty) or a full end element.

• WriteEntityRef() writes out an entity reference.

• WriteFullEndElement() writes out a full end element.

• WriteName() writes out a valid XML name.

• WriteNode() writes out everything from the XmlReader to the XmlWriter and advances the
XmlReader to the next sibling.

• WriteStartAttribute() writes out the start of an attribute.

• WriteStartDocument() writes out the start of a document.

• WriteStartElement() writes out the start tag of an element.

• WriteString() writes out the specified string.

• WriteValue() writes out a simple-typed value.

• WriteWhitespace() writes out specified white space.

Fraser_640-4C13.fm Page 575 Wednesday, November 16, 2005 1:58 PM

576 C H A P T E R 1 3 ■ X M L

As you can see from the preceding lists, there is a write method for every type of node that you
want to add to your output file. Therefore, the basic idea of writing an XML file using the XmlWriter
class is to open the file, write out all the nodes of the file, and then close the file.

The example in Listing 13-7 shows how to create an XML monster file containing only a Goblin.

Listing 13-7. Programmatically Creating a Goblin

using namespace System;
using namespace System::Xml;

void main()
{
 XmlWriter ^writer;
 try
 {
 XmlWriterSettings ^settings = gcnew XmlWriterSettings();
 settings->Indent = true;
 settings->IndentChars = (" ");
 settings->NewLineOnAttributes = true;

 writer = XmlWriter::Create("Goblin.xml", settings);

 writer->WriteStartDocument();

 writer->WriteStartElement("MonsterList");

 writer->WriteComment("Program Generated Easy Monster");
 writer->WriteStartElement("Monster");

 writer->WriteStartElement("Name");
 writer->WriteString("Goblin");
 writer->WriteEndElement();

 writer->WriteStartElement("HitDice");
 writer->WriteAttributeString("Dice", "1d8");
 writer->WriteAttributeString("Default", "4");
 writer->WriteEndElement();

 writer->WriteStartElement("Weapon");
 writer->WriteAttributeString("Number", "1");
 writer->WriteAttributeString("Damage", "1d4");
 writer->WriteString("Dagger");
 writer->WriteEndElement();

 // The folling not needed with WriteEndDocument
 // writer->WriteEndElement();
 // writer->WriteEndElement();

 writer->WriteEndDocument();

Fraser_640-4C13.fm Page 576 Wednesday, November 16, 2005 1:58 PM

C H A P T E R 1 3 ■ X M L 577

 writer->Flush();
 }
 catch (Exception ^e)
 {
 Console::WriteLine("XML Writer Aborted -- {0}", e->Message);
 }
 finally
 {
 if (writer->WriteState != WriteState::Closed)
 {
 writer->Close();
 }
 }
}

This may seem like a lot of work to create just one monster in an XML file, but remember that
all monsters have basically the same structure; therefore, you could create almost any number of
Monster elements by removing the hard-coding and placing Weapon elements in a loop, as opposed
to the expanded version shown in the preceding code. You, of course, also need some way of providing
the monster information that you want placed in the XML file. (A random generator would be cool—
tough to code, but cool.)

The Create() method of the XmlWriter class has several overloads. It can take as a parameter
either a stream, filename, StringBuilder, TextWriter, or another XmlWriter. Along with each of
these, Create() can also take an instance of an XmlWriterSettings class. I showed the constructor
using a filename in the previous example. When using the filename, the constructor will automati-
cally create the file or, if the filename exists, the constructor truncates it. In either case, you are
writing to an empty file.

XmlWriter ^writer;
writer = XmlWriter::Create("Goblin.xml");

If you plan on allowing someone to read the generated XML, you might, as I stated earlier, want
to consider passing to the Create() method an instance of the XmlWriterSettings class. In the previous
example I used my favorite settings. First, I told XmlWriterSettings that I am going to indent the
output with three spaces, instead of one long continuous stream of XML text:

XmlWriterSettings ^settings = gcnew XmlWriterSettings();
settings->Indent = true;
settings->IndentChars = (" ");

Then I told it to put each attribute on a new line:

settings->NewLineOnAttributes = true;
writer = XmlWriter::Create("Goblin.xml", settings);

Okay, now to actually write the XML, the first thing you need to do is start the document using
the WriteStartDocument() method. This method adds the following standard XML header to the
XML document:

<?xml version="1.0" encoding="utf-8"?>

Next, you simply write the XML document. You use the WriteStartElement(), WriteString(),
and WriteEndElement() methods to add elements, and for attributes you use the WriteAttributeString()

Fraser_640-4C13.fm Page 577 Wednesday, November 16, 2005 1:58 PM

578 C H A P T E R 1 3 ■ X M L

method. If you want to include comments, then you use the WriteComment() method. Once you’ve
finished adding the XML document, you finish off with a WriteEndDocument() method. You might
notice that the WriteEndDocument() method automatically ends any open elements.

writer->WriteComment("Add a weapon element");
writer->WriteStartElement("Weapon");
writer->WriteAttributeString("Number", "1");
writer->WriteAttributeString("Damage", "1d4");
writer->WriteString("Dagger");
writer->WriteEndElement();

Now that you have a new XML document, you must flush out any buffers and finally close the
file so that some other process can access it. As you saw with the XmlReader class, you check the
status of the file to make sure it even needs to be closed:

writer->Flush();
if (writer->WriteState != WriteState::Closed)
{
 writer->Close();
}

Figure 13-3 shows Goblin.xml, the output of WriteXML.exe, displayed in the Visual Studio 2005
editor.

Figure 13-3. The generated Goblin.xml file

Updating an Existing XML File
You have many ways to update an XML file. Using a standard editor comes to mind. Another option,
especially if you are working with a repetitive operation, is to read in the XML file using the XmlReader
class, make your changes, and then write out the edited XML with XmlWriter.

A catch to using this method is that there is no backtracking with either the reader or the writer.
Therefore, you must make all changes as the element or attribute becomes available or store them
temporarily.

There isn’t anything new with this code. It simply isn’t obvious how it’s done. So here’s an
example of how to update an XML file in a forward-only manner. In Listing 13-8, you’re adding the
element <Encountered>False</Encountered> after the name of every monster.

Fraser_640-4C13.fm Page 578 Wednesday, November 16, 2005 1:58 PM

C H A P T E R 1 3 ■ X M L 579

Listing 13-8. Updating the XML Monster File

using namespace System;
using namespace System::Xml;

void main()
{
 XmlReader ^reader;
 XmlWriter ^writer;
 try
 {
 reader = XmlReader::Create("Monsters.xml");

 XmlWriterSettings ^settings = gcnew XmlWriterSettings();
 settings->Indent = true;
 settings->IndentChars = (" ");

 writer = XmlWriter::Create("New_Monsters.xml", settings);

 while (reader->Read())
 {
 switch (reader->NodeType)
 {
 case XmlNodeType::Comment:
 writer->WriteComment(reader->Value);
 break;
 case XmlNodeType::Element:
 writer->WriteStartElement(reader->Name);
 writer->WriteAttributes(reader, false);
 if (reader->IsEmptyElement)
 writer->WriteEndElement();
 break;
 case XmlNodeType::EndElement:
 writer->WriteEndElement();

 // *** Add new Monster Element
 if (reader->Name->Equals("Name"))
 {
 writer->WriteStartElement("Encountered");
 writer->WriteString("False");
 writer->WriteEndElement();
 }
 break;
 case XmlNodeType::Text:
 writer->WriteString(reader->Value);
 break;
 case XmlNodeType::XmlDeclaration:
 writer->WriteStartDocument();
 break;
 }
 }

Fraser_640-4C13.fm Page 579 Wednesday, November 16, 2005 1:58 PM

580 C H A P T E R 1 3 ■ X M L

 writer->Flush();

 Console::WriteLine("Done");
 }
 catch (Exception ^e)
 {
 Console::WriteLine("XML Update Aborted -- {0}", e->Message);
 }
 finally
 {
 if (writer->WriteState != WriteState::Closed)
 {
 writer->Close();
 }
 if (reader->ReadState != ReadState::Closed)
 {
 reader->Close();
 }
 }
}

Notice that there is no “open for update” mode for either the reader or the writer, so you need
to open an input and an output file:

XmlReader ^reader = XmlReader::Create("Monsters.xml");
XmlTWriter ^writer = XmlWriter::Create("New_Monsters.xml", settings);

After that, the code is standard XmlReader and XmlWriter logic. Basically, you read in each element,
attribute, comment, and so on and then write them out again. When the end element of Name shows
up, write it out and then dump out the new element:

while (reader->Read())
{
 switch (reader->NodeType)
 {
 //...Other cases.
 case XmlNodeType::EndElement:
 writer->WriteEndElement();
 if (reader->Name->Equals("Name"))
 {
 writer->WriteStartElement("Encountered");
 writer->WriteString("False");
 writer->WriteEndElement();
 }
 break;
 //...The remaining cases.

Figure 13-4 shows New_Monsters.xml, the output of UpdateXML.exe, displayed in the Visual
Studio 2005 editor.

Fraser_640-4C13.fm Page 580 Wednesday, November 16, 2005 1:58 PM

C H A P T E R 1 3 ■ X M L 581

Figure 13-4. The generated New_Monsters.xml file

Working with DOM Trees
The Document Object Model (DOM) is a specification for how to store and manipulate XML docu-
ments in memory. This differs significantly from the forward-only access just discussed, because for
that method only a single node of the XML document is in memory at any one time. Having the
entire document in memory has some major advantages and a couple of significant disadvantages
compared to forward-only access.

The most important advantage is that because the entire XML document is in memory, you
have the ability to access any portion of the XML document at any time. This means you can read,
search, write, change, and delete anywhere at any time in the document. Best of all, once you are
through, you can dump the XML document back to disk with a single command.

The major disadvantages are that the DOM tree can use up a lot more memory than forward-
only access. especially if the XML document is large, and that there is often a delay as the DOM tree
is loaded. Are these disadvantages significant? In most cases the answer is not really. Most computers
have more than enough memory to handle all but the very largest XML documents (and when a docu-
ment gets that large, the data should probably be in a database anyway). The slight delay is usually
masked in the start-up of the application, and for the delay to be noticeable at all, the XML docu-
ment needs to be quite sizable. (Again, when an XML document gets that large, it should probably
be placed in a database.)

Fraser_640-4C13.fm Page 581 Wednesday, November 16, 2005 1:58 PM

cafac74dd2d083cbec0906b66fcd56b1

582 C H A P T E R 1 3 ■ X M L

The core underlying class of the DOM tree is the abstract class XmlNode. You should be able to
get comfortable quickly with XmlNode, as the classes derived from XmlNode have a close resemblance
to the node types you worked with in the previous section. As you can see in Table 13-3, every type
of node that is part of an XML document inherits from XmlNode. In fact, even the XmlDocument class is
inherited from XmlNode.

Because it’s easier to visualize the XmlNode hierarchy than describe it in text, I’ve included the
following illustration:

Table 13-3. Classes Derived from XmlNode

Class Description

XmlAttribute Represents an attribute

XmlCDataSection Represents a CDATA section

XmlCharacterData Provides text manipulation methods that are used by several
inherited classes

XmlComment Represents an XML comment

XmlDataDocument Provides the ability to store, retrieve, and manipulate data
through a relational DataSet

XmlDeclaration Represents the XML declaration node

XmlDocument Represents an XML document

XmlDocumentFragment Represents a fragment or hierarchical branch of the XML
document tree

XmlDocumentType Represents the DTD

XmlElement Represents an element

XmlEntity Represents an entity declaration

XmlEntityReference Represents an entity reference node

XmlLinkedNode Provides the ability to get the node before and after the
current node

XmlNotation Represents a notation declaration

XmlProcessingInstruction Represents a processing instruction

XmlSignificantWhitespace Represents white space between markup in a mixed content
mode or white space within an xml:space= 'preserve' scope

XmlText Represents the text content of an element or attribute

XmlWhitespace Represents white space in element content

Fraser_640-4C13.fm Page 582 Wednesday, November 16, 2005 1:58 PM

C H A P T E R 1 3 ■ X M L 583

You use the properties and the methods defined in the XmlNode class to navigate, manipulate,
and remove the nodes of the DOM tree. Here are some of the more common XmlNode properties:

• Attributes is an XmlAttributeCollection containing the attributes of the current node.

• ChildNodes is an XmlNodeList containing all the child nodes of the current node.

• FirstChild is an XmlNode of the first child of the current node, probably the XML declaration.
If there is no first child node, then the value is null.

• HasChildNodes is a Boolean that is true if the node has any children; otherwise, it is false.

• InnerText is a String concatenation of the value of the current node and all of its children.

• InnerXml is a String representing the markup of the children of the current node. Setting this
property replaces all the children of the current node.

• IsReadOnly is a Boolean that is true if the node is read-only; otherwise, it is false.

• Item is an XmlElement child of the current node specified by name.

• LastChild is an XmlNode of the last child of the current node.

• LocalName is a String representing the name of the current node without the namespace
prefix.

• Name is a String representing the qualified name of the current node.

• NextSibling is the XmlNode with the same parent immediately following the current node.
It has a value of null if no subsequent sibling exists.

• NodeType is an XmlNodeType enum class that represents the node type (see Table 13-2) of the
current node.

• OuterXml is a String representing the markup of the current node and of the children of the
current node.

• OwnerDocument is the XmlDocument of which the current node belongs.

• ParentNode is the XmlNode of the parent of the current node.

• PreviousSibling is the XmlNode with the same parent immediately before the current node.
It has a value of null if no prior sibling exists.

Fraser_640-4C13.fm Page 583 Wednesday, November 16, 2005 1:58 PM

584 C H A P T E R 1 3 ■ X M L

• Value is a String representing the value of the current node.

As mentioned previously, XmlNode has methods. Here are some of the more common ones:

• AppendChild() adds a child to the end of the list of children for the current node.

• CloneNode() creates a duplicate of the current node.

• CreateNavigator() creates an XPathNavigator.

• InsertAfter() inserts a node immediately after the current node.

• InsertBefore() inserts a node immediately before the current node.

• PrependChild() adds a child at the beginning of the list of children for the current node.

• RemoveAll() removes all children and/or attributes for the current node.

• RemoveChild() removes the specified child node.

• ReplaceChild() replaces the specified child node.

• SelectNodes() selects a list of nodes that matches a specified XPath expression.

• SelectSingleNode() selects the first node that matches a specified XPath expression.

• WriteContentTo() saves all the children of the XmlDocument to an XmlWriter.

• WriteTo() saves the XmlDocument to an XmlWriter.

XmlNodes are placed in an XmlNodeList. This list is ordered and supports indexed as well as
enumerated access. Any changes that you make to the XmlNodes in the DOM tree are immediately
reflected in the XmlNodeList in which the XmlNodes reside. You can find the root of all XmlNodeLists in
the DocumentElement property of the XmlDocument class.

The starting point of working with DOM trees is the XmlDocument class. Not only do you use this
class to load and save the XML document to and from disk, but you also use it to query the DOM tree
and create nodes to be added to the tree. As you might have noticed in Table 13-3, XmlDocument
inherits from XmlNode, so the XmlDocument class has all the XmlNode class’s properties and methods.
Here are some of the more common properties unique to XmlDocument:

• DocumentElement is an XmlElement representing the root element of the document.

• DocumentType is an XmlDocumentType containing the DocumentType or DOCTYPE declaration if the
document has one.

• PreserveWhitespace is a Boolean that is true if white space is to be preserved; otherwise, it is
false.

As you can see, the XmlDocument class provides quite a bit of additional functionality over the
XmlNode class. The following are some of the XmlDocument class’s unique methods:

• CreateAttribute() creates an XmlAttribute.

• CreateCDataSection() creates an XmlCDataSection.

• CreateComment() creates an XmlComment.

• CreateDocumentFragment() creates an XmlDocumentFragment.

• CreateDocumentType() creates an XmlDocumentType.

• CreateElement() creates an XmlElement.

• CreateEntityReference() creates an XmlEntityReference.

• CreateNode() creates an XmlNode.

• CreateTextNode() creates an XmlText.

Fraser_640-4C13.fm Page 584 Wednesday, November 16, 2005 1:58 PM

C H A P T E R 1 3 ■ X M L 585

• CreateXmlDeclaration() creates an XmlDeclaration.

• GetElementById() gets an element based on a specified ID.

• GetElementsByTagName() gets an XmlNodeList of all elements that match the specified tag.

• ImportNode() imports a node for another XmlDocument.

• Load() loads into the XmlDocument a File, Stream, TextReader, or XmlReader.

• LoadXml() loads into the XmlDocument a String.

• ReadNode() creates an XmlNode based on the current position of an XmlReader.

• Save() saves the XmlDocument to a specified filename, Stream, TextWriter, or XmlWriter.

Reading a DOM Tree
You have many different ways of navigating through a DOM tree. You’ll start out by using only the
basic methods found in XmlDocument, XmlNode, and XmlNodeList. Later you’ll look at an easier way of
navigating using XPaths.

Because the DOM is stored in a tree in memory, it’s a good candidate for navigating via recursion.
The example in Listing 13-9 demonstrates an implementation of recursively following the tree branch
and dumping the node information it passed along the way. You dump the tree to the system console.

Listing 13-9. Reading a DOM Tree Recursively

using namespace System;
using namespace System::Xml;

String ^indent(int depth)
{
 String ^ind = "";
 return ind->PadLeft(depth*4, ' ');
}

void Navigate(XmlNode ^node, int depth)
{
 if (node == nullptr)
 return;

 Console::WriteLine("{0}: Name='{1}' Value='{2}'",
 String::Concat(indent(depth),node->NodeType.ToString()),
 node->Name, node->Value);

 if (node->Attributes != nullptr)
 {
 for (int i = 0; i < node->Attributes->Count; i++)
 {
 Console::WriteLine("{0}Attribute: Name='{1}' Value='{2}'",
 indent(depth+1),node->Attributes[i]->Name,
 node->Attributes[i]->Value);
 }
 }
 Navigate(node->FirstChild, depth+1);
 Navigate(node->NextSibling, depth);
}

Fraser_640-4C13.fm Page 585 Wednesday, November 16, 2005 1:58 PM

586 C H A P T E R 1 3 ■ X M L

void main()
{
 XmlDocument ^doc = gcnew XmlDocument();

 try
 {
 XmlReader ^reader = XmlReader::Create("Monsters.xml");
 doc->Load(reader);
 reader->Close();

 XmlNode ^node = doc->FirstChild; // I want the Xml Declaration

 // Recursive navigation of the DOM tree
 Navigate(node, 0);
 }
 catch (Exception ^e)
 {
 Console::WriteLine("Error Occurred: {0}", e->Message);
 }
}

As I stated before, you process all XML documents within an exception try block because every
XML method in the .NET Framework class library can throw an exception.

Before you start reading the DOM tree, you need to load it. First, you create an XmlDocument to
hold the tree. You do this using a standard constructor:

XmlDocument ^doc = gcnew XmlDocument();

Then you load the XML document into the XmlDocument. It is possible to pass the name of the
XML file directly into the Load() method, which I think is a little easier. But, if you do it the following
way, make sure you close the file after the load is complete, because the file resource remains open
longer than it needs to be. Plus, if you try to write to the file, it will throw an exception because the
file is already open.

XmlReader ^reader = XmlReader::Create("Monsters.xml");
doc->Load(reader);
reader->Close();

In the previous example, I call the XmlDocument class’s FirstChild() method instead of the
DocumentElement() method because I want to start reading the XML document at the XML declaration
and not the first element of the document.

XmlNode ^node = doc->FirstChild; // I want the Xml Declaration

Finally, you call a simple recursive method to navigate the tree. The first thing this method does
is check to make sure that you have not already reached the end of the current branch of the tree:

if (node == nullptr)
 return;

Then it dumps to the console the current node’s type, name, and value. Notice that I use the
little trick I mentioned in Chapter 3 to display the enum class’s (in this case, the NodeType’s) String name:

Console::WriteLine("{0}: Name='{1}' Value='{2}'",
 String::Concat(indent(depth), node->NodeType.ToString()),
 node->Name, node->Value);

Fraser_640-4C13.fm Page 586 Wednesday, November 16, 2005 1:58 PM

C H A P T E R 1 3 ■ X M L 587

The method then checks to see if the element has any attributes. If it does, it then iterates through
them, dumping each to the console as it goes:

if (node->Attributes != nullptr)
{
 for (int i = 0; i < node->Attributes->Count; i++)
 {
 Console::WriteLine("{0}Attribute: Name='{1}' Value='{2}'",
 indent(depth+1),
 node->Attributes[i]->Name,
 node->Attributes[i]->Value));
 }
}

The last thing the method does is call itself to navigate down through its children, and then it
calls itself to navigate through its siblings:

Navigate(node->FirstChild, depth+1);
Navigate(node->NextSibling, depth);

Figure 13-5 shows the resulting console dump for ReadXMLDOM.exe of all the nodes and
attributes that make up the monster DOM tree.

Figure 13-5. The console dump of the monster DOM tree

Fraser_640-4C13.fm Page 587 Wednesday, November 16, 2005 1:58 PM

588 C H A P T E R 1 3 ■ X M L

Updating a DOM Tree
The process of updating a DOM tree is as simple as finding the correct node and changing the appro-
priate values. Finally, after all of the changes are made, save the changes.

In Listing 13-10, you continue to recursively navigate the DOM tree of Listing 13-1, but this time
you’re looking for a Goblin node that was mistakenly given a Dagger. The Goblin was supposed to
have a Saber. The trick is that you can just globally change all Daggers to Sabers because the Succubus
node also has a Dagger, so you have to verify that it is the Goblin node’s Dagger. There are many ways
of doing this, and I can think of a couple (better ones) using flags, but the method in Listing 13-10 shows
the implementation of the largest number of different methods to find a node (without being
redundant).

Listing 13-10. Updating the Monster DOM Tree

using namespace System;
using namespace System::Xml;

void Navigate(XmlNode ^node)
{
 if (node == nullptr)
 return;

 if (node->Value != nullptr && node->Value->Equals("Dagger"))
 {
 if (node->ParentNode->ParentNode["Name"]->FirstChild->Value->
 Equals("Goblin"))
 {
 node->Value = "Saber";
 node->ParentNode->Attributes["Damage"]->Value = "1d8";
 }
 }

 Navigate(node->FirstChild);
 Navigate(node->NextSibling);
}

void main()
{
 XmlDocument ^doc = gcnew XmlDocument();

 try
 {
 doc->Load("Monsters.xml");
 XmlNode ^root = doc->DocumentElement;

Fraser_640-4C13.fm Page 588 Wednesday, November 16, 2005 1:58 PM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 1 3 ■ X M L 589

 // Recursive navigation of the DOM tree
 Navigate(root);

 doc->Save("New_Monsters.xml");
 }
 catch (Exception ^e)
 {
 Console::WriteLine("Error Occurred: {0}", e->Message);
 }
}

The main method looks familiar enough. The primary difference is that you will write out the
DOM tree when you are done to make sure the change actually occurred:

doc->Save("New_Monsters.xml");

The recursive function is pretty similar. Let’s look closely at the if statement that does the
update. First, you make sure the node has a value, as not all nodes have one. Calling the Equals()
method on a node that doesn’t have a value will cause an exception to be thrown:

if (node->Value != nullptr && node->Value->Equals("Dagger"))

So you now know that you have a node with a value of Dagger. How do you check to make sure
it belongs to a Goblin node? You do this by checking the current node’s grandparent’s Name element
for the value of Goblin:

if (node->ParentNode->ParentNode["Name"]->FirstChild->Value->Equals("Goblin"))

What I really want you to focus on in the preceding statement is ParentNode["Name"]. The default
indexed property of a ParentNode contains a collection of its child elements. This collection can be
either an indexed property (as previously) or an array property where it is passed the numeric index
of the child: ParentNode[0].

To change the value of a node, you simply assign it a new value:

node->Value = "Saber";

The damage done by a Saber differs from a Dagger, so you need to change the Damage attribute
of the Weapon node. Notice that it is the Weapon node, not the Saber node. The Saber node is an XmlText
node. You need to navigate to the Saber node’s parent first and then to its attributes. Notice that
Attributes also has a default indexed property.

node->ParentNode->Attributes["Damage"]->Value = "1d8";

Figure 13-6 shows the new copy of the XML monster file created by UpdateXMLDOM.exe in the
Visual Studio 2005 editor.

Fraser_640-4C13.fm Page 589 Wednesday, November 16, 2005 1:58 PM

590 C H A P T E R 1 3 ■ X M L

Figure 13-6. The updated XML monster file

Writing XmlNodes in a DOM Tree
You can truly get a good understanding of how a DOM tree is stored in memory by building a few
XmlNodes manually. The basic process is to create a node and then append all its children on it. Then
for each of the children, append all their children, and so on.

The last example (see Listing 13-11) before you get to XPaths shows how to add a new monster
(a Skeleton node) after the Goblin node.

Listing 13-11. Adding a New Monster to the DOM Tree

using namespace System;
using namespace System::Xml;

XmlElement ^CreateMonster(XmlDocument ^doc)
{
 XmlElement ^skeleton = doc->CreateElement("Monster");

 // <Name>Skeleton</Name>
 XmlElement ^name = doc->CreateElement("Name");
 name->AppendChild(doc->CreateTextNode("Skeleton"));
 skeleton->AppendChild(name);

 // <HitDice Dice="1/2 d12" Default="3" />
 XmlElement ^hitdice = doc->CreateElement("HitDice");
 XmlAttribute ^att = doc->CreateAttribute("Dice");
 att->Value = "1/2 d12";
 hitdice->Attributes->Append(att);
 att = doc->CreateAttribute("Default");
 att->Value = "3";
 hitdice->Attributes->Append(att);
 skeleton->AppendChild(hitdice);

Fraser_640-4C13.fm Page 590 Wednesday, November 16, 2005 1:58 PM

C H A P T E R 1 3 ■ X M L 591

 // <Weapon Number="2" Damage="1d3-1">Claw</Weapon>
 XmlElement ^weapon = doc->CreateElement("Weapon");
 att = doc->CreateAttribute("Number");
 att->Value = "2";
 weapon->Attributes->Append(att);
 att = doc->CreateAttribute("Damage");
 att->Value = "1d3-1";
 weapon->Attributes->Append(att);
 weapon->AppendChild(doc->CreateTextNode("Claw"));
 skeleton->AppendChild(weapon);

 return skeleton;
}

void main()
{
 XmlDocument ^doc = gcnew XmlDocument();

 try
 {
 doc->Load("Monsters.xml");
 XmlNode ^root = doc->DocumentElement;

 // Skip comment and goblin
 XmlNode ^child = root->FirstChild->NextSibling;

 // Insert new monster
 root->InsertAfter(CreateMonster(doc), child);

 doc->Save("New_Monsters.xml");
 }
 catch (Exception ^e)
 {
 Console::WriteLine("Error Occurred: {0}", e->Message);
 }
}

The method of inserting XmlNodes, though not difficult, needs a quick explanation. I first wondered
why you needed to pass a pointer to the XmlNode that you are going to place on the new XmlNode
before or after. Why not just call the Insert method for this node instead, like this:

childNode->InsertBefore(newNode); // wrong
childNode->InsertAfter(newNode); // wrong

Then I realized that I am not actually inserting after the child node. Instead I am inserting into
the parent node after or before the child node. Thus the correct syntax:

parentNode->InsertBefore(newNode, childNode);
parentNode->InsertAfter(newNode, childNode);

or as in the previous code:

root->InsertAfter(CreateMonster(doc), child);

Like the writing methods of forward-only access, it seems a lot of effort is required to create
such a simple XmlElement. You need to remember that the correct way to do this is without hard-
coding, thus making it reusable.

Fraser_640-4C13.fm Page 591 Wednesday, November 16, 2005 1:58 PM

592 C H A P T E R 1 3 ■ X M L

The first issue with creating nodes dynamically is that you need access to the XmlDocument, as all
the XmlNode creation methods are found in it. You have two choices: pass XmlDocument as a parameter
as was done in this example, or make XmlDocument a private member variable that all classes can
access.

Now that you have access to the creation methods, it is a simple matter to create the element:

XmlElement ^skeleton = doc->CreateElement("Monster");

Then you create and append any of its child elements:

XmlElement ^weapon = doc->CreateElement("Weapon");
skeleton->AppendChild(weapon);

Of course, to create these child elements, you need to create and append the child elements
attribute(s) and body text (which might have to create grandchildren nodes, and so on):

XmlAttribute ^att = doc->CreateAttribute("Number");
att->Value = "2";
weapon->Attributes->Append(att);

att = doc->CreateAttribute("Damage");
att->Value = "1d3-1";
weapon->Attributes->Append(att);

weapon->AppendChild(doc->CreateTextNode("Claw"));

Figure 13-7 shows the resulting new copy of the XML monster file from WriteXMLDOM.exe
with the new inserted monster in the Visual Studio 2005 editor.

Figure 13-7. The XML monster file with a new monster

Fraser_640-4C13.fm Page 592 Wednesday, November 16, 2005 1:58 PM

C H A P T E R 1 3 ■ X M L 593

Navigating with XPathNavigator
Wouldn’t it be nice to have easy sequential access through an XML file and the concept of a current
location like you have with XmlReader discussed previously, but without the restriction of forward-
only access? You do. It’s called the XPathNavigator class.

If you were comfortable with the XmlReader class, then you should have no trouble adapting to
the XPathNavigator class, as many of its properties and methods are very similar. Also, if you were
comfortable with XmlDocument, you should have few problems with XPathNavigator because you will
find a lot of overlap between them. The following are some of the more common XPathNavigator
properties:

• HasAttributes is a Boolean that is true if the current node has attributes; otherwise, it is false.

• HasChildren is a Boolean that is true if the current node has children; otherwise, it is false.

• IsEmptyElement is a Boolean that is true if the current node is an empty element or, in other
words, the element ends in />.

• LocalName is a String representing the name of the current node without the namespace prefix.

• Name is a String representing the qualified name of the current node.

• NodeType is an XmlNodeType enum class that represents the node type (see Table 13-2) of the
current node.

• Value is a String representing the value of the current node.

• ValueAs<data type> is a <data type> representing the value of the current node. Some exam-
ples are ValueAsBoolean and ValueAsInt32.

Here are some of the more commonly used XPathNavigator class methods:

• ComparePosition() compares the position of the current navigator with another specified
navigator.

• Compile() compiles an XPath String into an XPathExpression.

• Evaluate() evaluates an XPath expression.

• GetAttribute() gets the attribute with the specified LocalName.

• IsDescendant() determines whether the specified XPathNavigator is a descendant of the
current XPathNavigator.

• IsSamePosition() determines whether the current and a specified XPathNavigator share the
same position.

• Matches() determines whether the current node matches a specified expression.

• MoveTo() moves to the position of a specified XPathNavigator.

• MoveToAttribute() moves to the attribute that matches a specified LocalName.

• MoveToChild() moves to the child node specified.

• MoveToDescendant() moves to the descendant node specified.

• MoveToFirst() moves to the first sibling of the current node.

• MoveToFirstAttribute() moves to the first attribute of the current node.

• MoveToFirstChild() moves to the first child of the current node.

• MoveToId() moves to the node that has a specified String ID attribute.

• MoveToNext() moves to the next sibling of the current node.

Fraser_640-4C13.fm Page 593 Wednesday, November 16, 2005 1:58 PM

594 C H A P T E R 1 3 ■ X M L

• MoveToNextAttribute() moves to the next attribute of the current node.

• MoveToParent() moves to the parent of the current node.

• MoveToPrevious() moves to the previous sibling of the current node.

• MoveToRoot() moves to the root node of the current node.

• Select() selects a collection of nodes that match an XPath expression.

• SelectAncestor() selects a collection of ancestor nodes that match an XPath expression.

• SelectChildren() selects a collection of children nodes that match an XPath expression.

• SelectDescendants() selects a collection of descendant nodes that match an XPath expression.

• ValueAs() returns the current node value as the type specified.

As you can see by the list of methods made available by XPathNavigator, it does what its name
suggests: navigates. The majority of the methods are for navigating forward, backward, and, as you
will see when you add XPath expressions, randomly through the DOM tree.

Basic XPathNavigator
Let’s first look at the XPathNavigator class without the XPath functionality or simply its capability to
move around a DOM tree. The example in Listing 13-12 is your third and final read through the
monster XML file. This time you are going to use XPathNavigator.

Listing 13-12. Navigating a DOM Tree Using XPathNavigator

using namespace System;
using namespace System::Xml;
using namespace System::Xml::XPath;

String ^indent(int depth)
{
 String ^ind = "";
 return ind->PadLeft(depth*4, ' ');
}

void Navigate(XPathNavigator ^nav, int depth)
{
 Console::WriteLine("{0}: Name='{1}' Value='{2}'",
 String::Concat(indent(depth), nav->NodeType.ToString()),
 nav->Name, nav->Value);

 if (nav->HasAttributes)
 {
 nav->MoveToFirstAttribute();
 do {
 Console::WriteLine("{0} Attribute: Name='{1}' Value='{2}'",
 indent(depth+1),nav->Name, nav->Value);
 }
 while(nav->MoveToNextAttribute());
 nav->MoveToParent();
 }

Fraser_640-4C13.fm Page 594 Wednesday, November 16, 2005 1:58 PM

C H A P T E R 1 3 ■ X M L 595

 if (nav->MoveToFirstChild())
 {
 Navigate(nav, depth+1);
 nav->MoveToParent();
 }
 if (nav->MoveToNext())
 Navigate(nav, depth);
}

void main()
{
 XmlDocument ^doc = gcnew XmlDocument();
 try
 {
 doc->Load("Monsters.xml");
 XPathNavigator ^nav = doc->CreateNavigator();
 nav->MoveToRoot();
 Navigate(nav, 0);
 }
 catch (Exception ^e)
 {
 Console::WriteLine("Error Occurred: {0}", e->Message);
 }
}

The first thing you have to remember when working with the XPathNavigator class is that you
need to import the namespace System::Xml::XPath using the following command:

using namespace System::Xml::XPath;

I personally think of the XPathNavigator as a token that I move around that shows where I
currently am in the DOM tree. In the preceding program I use only one XPathNavigator object
pointer that gets passed around. This pointer eventually passes by every node of the DOM tree.

You create an XPathNavigator from any class that inherits from the XmlNode class using the
CreateNavigator() method:

XPathNavigator ^nav = doc->CreateNavigator();

At this point, your navigator is pointing to the location of the node that you created it from.
To set it at the first element of the DOM tree, you need to call the navigator’s MoveToRoot() method:

nav->MoveToRoot();

Using recursion still holds true for XPathNavigator navigation as it does for standard XmlDocument
navigation. You will probably notice that it has many similarities to the XmlDocument reader example.
The biggest difference, though, is that with an XPathNavigator you need to navigate back out of a
child branch before you can enter a new branch. Therefore, you see the use of the MoveToParent()
method much more frequently.

Something that you have to get used to if you have been using XmlDocument and XmlNode navigation
is that the move methods return Boolean success values. In other words, to find out if you successfully
moved to the next node, you need to check whether the move method returned true. If the move
method can’t successfully move to the next node, then it returns false. The move ends up changing
an internal pointer in the XPathNavigator. This is considerably different than navigating with XmlNodes,
where the nodes return the value of the next node or null if they can’t navigate as requested.

Fraser_640-4C13.fm Page 595 Wednesday, November 16, 2005 1:58 PM

cafac74dd2d083cbec0906b66fcd56b1

596 C H A P T E R 1 3 ■ X M L

One other thing you’ll probably notice is that the Value property returns a concatenation of all
its child node Value properties, and not just its own Value. You might not think it helpful, but I’ll
show how you can use this feature as a shortcut in the next example.

Figure 13-8 shows the console dump, created by ReadXPathNav.exe, of all the nodes and
attributes that make up the monster DOM tree.

Figure 13-8. A console list of all nodes of the XML monster file

XPathNavigator Using XPath Expressions
Using any of the methods in the previous section to navigate an XML file or DOM tree is hardly
trivial. If you’re trying to get specific pieces of information out of your XML files, going through the
trouble of writing all that code hardly seems worth the effort. If there wasn’t a better way, I’m sure
XML would lose its popularity. The better way is the XPath expression.

With XPath expressions, you can quickly grab one particular piece of information out of the
DOM tree or a list of information. The two most common ways of implementing XPath expressions
are via the XPathNavigator class’s Select() method and the XmlNode class’s SelectNodes() method.

The XPath expression syntax is quite large and beyond the scope of this book. If you want to
look into the details of the XPath language, then I recommend you start with the documentation on
XPath provided by the .NET Framework.

For now, let’s make do with some simple examples that show the power of the XPath (almost
wrote “Force” there—hmmm . . . I must have just seen Star Wars).

Fraser_640-4C13.fm Page 596 Wednesday, November 16, 2005 1:58 PM

C H A P T E R 1 3 ■ X M L 597

The first example is the most basic form of XPath. It looks very similar to how you would specify
a path or a file. It is simply a list of nodes separated by the forward slash (/), which you want to match
within the document. For example,

/MonsterList/Monster/Name

specifies that you want to get a list of all Name nodes that have a parent node of Monster and MonsterList.
The starting forward slash specifies that MonsterList be at the root. Here is a method that will execute
the preceding XPath expression:

void GetMonsters(XPathNavigator ^nav)
{
 XPathNodeIterator ^list =
 nav->Select("/MonsterList/Monster/Name");

 Console::WriteLine("Monsters\n--------");
 while (list->MoveNext())
 {
 XPathNavigator ^n = list->Current;
 Console::WriteLine(n->Value);
 }

// The required code to do the same as above if no
// XPathNavigator concatenation occurred.
/*
 list = nav->Select("/MonsterList/Monster/Name");

 Console::WriteLine("Monsters\n--------");
 while (list->MoveNext())
 {
 XPathNavigator ^n = list->Current;
 n->MoveToFirstChild();
 Console::WriteLine(n->Value);
 }
*/
}

Figure 13-9 presents the output of the snippet.

Figure 13-9. Output for the XPath expression MonsterList/Monster/Name

As promised earlier, this example shows how the concatenation of child values by the
XPathNavigator can come in handy. Remember that the XmlText node is a child of the XmlElement
node, so without the concatenation of the XPathNavigator class, the dumping of the values of the
Name nodes will produce empty strings, because XmlElement nodes have no values.

Fraser_640-4C13.fm Page 597 Wednesday, November 16, 2005 1:58 PM

598 C H A P T E R 1 3 ■ X M L

That was simple enough. Let’s look at something a little more complex. It is possible to specify
that you don’t care what the parents are by prefixing with a double forward slash (//). For example,

//Name

would get you all Name nodes in the document. Be careful, though: If you use the Name element start
tag in different places, you will get them all.

Along the same lines, if you don’t actually care what the parent is but you want only a node at a
specific depth, you would use the asterisk (*) to match any element. For example,

/MonsterList/*/Name

would get all the names with a grandparent of MonsterList, but it would matter who the parent was.
Conditional expressions are possible. You enclose conditionals in square brackets ([]). For

example,

//Monster[Name]

would result in all monsters that have the Name node (which would be all of them, as Name is a mandatory
element—but that is another story). It is possible to specify an exact value for the conditional node
or specify what values it cannot be. For example,

//Monster[Name = ''Goblin'']
//Monster[Name != ''Succubus'']

would result in the first expression grabbing the Monster node Goblin and the second expression
grabbing every monster but the Succubus.

Here is a method that will execute a combination of a few of the expressions you covered previously.
Also notice that just to be different, the example uses the XmlNode class’s SelectNodes() method.
Because XmlNodes don’t concatenate child values, you need to navigate to the child to get the desired
value:

void GetDragonsWeapons(XmlNode ^node)
{
 XmlNodeList ^list =
 node->SelectNodes("//Monster[Name='Red Dragon']/Weapon");

 Console::WriteLine("\nDragon's Weapons\n-------");

 IEnumerator ^en = list->GetEnumerator();
 while (en->MoveNext())
 {
 XmlNode ^n = (XmlNode^)en->Current;
 Console::WriteLine(n->FirstChild->Value);
 }
}

Figure 13-10 shows the output of the snippet.

Figure 13-10. Output for the XPath expression //Monster[Name='Red Dragon']/Weapon

Fraser_640-4C13.fm Page 598 Wednesday, November 16, 2005 1:58 PM

C H A P T E R 1 3 ■ X M L 599

Let’s expand on this expression just a little more. It is also possible to have conditionals with
logical operators such as and, or, and not().

The following method shows the logical operator in practice. It also shows how to grab an
attribute value out of the navigator:

void GetGoblinSuccubusHitDice(XPathNavigator ^nav)
{
 XPathNodeIterator ^list =
 nav->Select("//Monster[Name='Goblin' or Name='Succubus']/HitDice");

 Console::WriteLine("\nGoblin & Succubus HD\n-----------");
 while (list->MoveNext())
 {
 XPathNavigator ^n = list->Current;
 n->MoveToFirstAttribute();
 Console::WriteLine(n->Value);
 }
}

Figure 13-11 shows the output of the snippet.

Figure 13-11. Output for the XPath expression //Monster[Name='Goblin' or Name='Succubus']/HitDice

To match attributes in an XPath expression, use the “at” sign (@) in front of the attribute’s name.
For example,

void GetGoblinSuccubusHitDice(XPathNavigator ^nav)
{
 XPathNodeIterator ^list =
 nav->Select("//Monster[Name='Goblin' or Name='Succubus']/HitDice/@Dice");

 Console::WriteLine("\nGoblin & Succubus HD\n----------");
 while (list->MoveNext())
 {
 XPathNavigator ^n = list->Current;
 Console::WriteLine(n->Value);
 }
}

results in the same output as the previous example. Notice that you no longer have to move to the
attribute before displaying it.

As a final example, the following snippet shows that you can make numeric comparisons.
In this example, I grab all Weapon elements with a Number attribute of less than or equal to 1:

Fraser_640-4C13.fm Page 599 Wednesday, November 16, 2005 1:58 PM

600 C H A P T E R 1 3 ■ X M L

void GetSingleAttackWeapons(XPathNavigator ^nav)
{
 XPathNodeIterator ^list =
 nav->Select("//Weapon[@Number <= 1]");

 Console::WriteLine("\nSingle Attack Weapons\n----------");
 while (list->MoveNext())
 {
 XPathNavigator ^n = list->Current;
 Console::WriteLine(n->Value);
 }
}

Figure 13-12 shows the output of the snippet.

Figure 13-12. Output for the XPath expression //Weapon[@Number <= 1]

Table 13-4 is a list of the available operators that you have at your disposal when developing
your XPath expressions.

Table 13-4. XPath Operators

Operator Description

| Compute the union of node sets; for example: //monsters | //players would return
a node set containing all monster and players (if players were part of the DOM)

+ Addition

- Subtraction

* Multiplication

div Division

= Equals

!= Not equals

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

or Or

Fraser_640-4C13.fm Page 600 Wednesday, November 16, 2005 1:58 PM

C H A P T E R 1 3 ■ X M L 601

XML and ADO.NET
This topic almost doesn’t merit a section of its own, as only one class, XmlDataDocument, needs to be
examined, and XmlDataDocument inherits from XmlDocument. What am I trying to get at? To use ADO.NET
and XML together, you need to create a DataSet (see Chapter 12) and create an XmlDataDocument with
it. Then you can manipulate the database data just as you did with XmlDocument.

The XmlDataDocument class adds properties and members to streamline some activities and to
make them more “relational database”–like, but other than that you have already learned what you
need to work with XML originating from an ADO.NET database:

• DataSet is the DataSet used to create the XmlDataDocument.

• CreateEntityReference() is a method that is not supported and throws an exception.

• GetElementById() is a method that is not supported and throws an exception.

• GetElementFromRow() gets an XmlElement associated with a specified DataRow.

• GetRowFromElement() gets a DataRow associated with a specified XmlElement.

• Load() loads into the XmlDocument using a filename, Stream, TextReader, or XmlReader, and
then synchronizes with the DataSet.

The example in Listing 13-13 is an exact duplicate of Listing 13-9, except that the source of the
XML data is the DCV_DB database created in Chapter 12.

Listing 13-13. Dumping the DCV_DB Database to a Console Using XML

using namespace System;
using namespace System::Data;
using namespace System::Data::SqlClient;
using namespace System::Xml;

String ^indent(int depth)
{
 String ^ind = "";
 return ind->PadLeft(depth*4, ' ');
}

void Navigate(XmlNode ^node, int depth)
{
 if (node == nullptr)
 return;

and And

mod Modulus (remainder)

not Negation

Table 13-4. XPath Operators

Operator Description

Fraser_640-4C13.fm Page 601 Wednesday, November 16, 2005 1:58 PM

602 C H A P T E R 1 3 ■ X M L

 Console::WriteLine("{0}: Name='{1}' Value='{2}'",
 String::Concat(indent(depth),node->NodeType.ToString()),
 node->Name, node->Value);

 if (node->Attributes != nullptr)
 {
 for (int i = 0; i < node->Attributes->Count; i++)
 {
 Console::WriteLine("{0}Attribute: Name='{1}' Value='{2}'",
 indent(depth+1),node->Attributes[i]->Name,
 node->Attributes[i]->Value);
 }
 }

 Navigate(node->FirstChild, depth+1);
 Navigate(node->NextSibling, depth);
}

void main()
{
 XmlDocument ^doc = gcnew XmlDocument();

 try
 {
 SqlConnection ^connect = gcnew SqlConnection();

#ifdef SQLAuth
 // SQL Server authentication
 connect->ConnectionString =
 "User ID=sa; Password=;"
 "Data Source=(local); Initial Catalog=DCV_DB;";
#else
 // Windows Integrated Security
 connect->ConnectionString =
 "Persist Security Info=False; Integrated Security=SSPI;"
 "Data Source=(local); Initial Catalog=DCV_DB;";
#endif

 SqlDataAdapter ^dAdapt = gcnew SqlDataAdapter();
 DataSet ^dSet = gcnew DataSet();
 dAdapt->SelectCommand =
 gcnew SqlCommand("SELECT * FROM Authors", connect);

 dAdapt->Fill(dSet, "Authors");
 XmlDataDocument ^doc = gcnew XmlDataDocument(dSet);

 // Recursive navigation of the DOM tree
 Navigate(doc->DocumentElement, 0);
 }
 catch (Exception ^e)
 {
 Console::WriteLine("Error Occurred: {0}", e->Message);
 }
}

Fraser_640-4C13.fm Page 602 Wednesday, November 16, 2005 1:58 PM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 1 3 ■ X M L 603

As you can see, the only code that is different from the original (Listing 13-9) is the standard
code to create a DataSet and then the placing of the DataSet within an XmlDataDocument. If you need
a refresher on creating a DataSet, please review Chapter 12.

 SqlConnection ^connect = gcnew SqlConnection();

#ifdef SQLAuth
 // SQL Server authentication
 connect->ConnectionString =
 "User ID=sa; Password=;"
 "Data Source=(local); Initial Catalog=DCV_DB;";
#else
 // Windows Integrated Security
 connect->ConnectionString =
 "Persist Security Info=False; Integrated Security=SSPI;"
 "Data Source=(local); Initial Catalog=DCV_DB;";
#endif

 SqlDataAdapter ^dAdapt = gcnew SqlDataAdapter();
 DataSet ^dSet = gcnew DataSet();
 dAdapt->SelectCommand = gcnew SqlCommand("SELECT * FROM Authors", connect);

 dAdapt->Fill(dSet, "Authors");
 XmlDataDocument ^doc = gcnew XmlDataDocument(dSet);

Figure 13-13 shows the resulting console dump by ADONET.exe of all the nodes and attributes
that make up the DCV_DB database DOM tree.

Figure 13-13. The console dump of the DCV_DB database DOM tree

Summary
In this chapter you covered the last of the .NET Framework class library’s standard I/O mechanisms.
You started with a quick refresher on XML. You then learned how to read, validate, write, and update
XML documents using forward-only access. Then you looked at DOM trees and how to go about

Fraser_640-4C13.fm Page 603 Wednesday, November 16, 2005 1:58 PM

604 C H A P T E R 1 3 ■ X M L

reading from, updating, and writing to them. Next, you took a brief look at the powerful XPath. You
finished off by learning how simple it is to manipulate ADO.NET databases using XML.

Now with all four I/O systems covered, you should have no problems getting the necessary
information into your system.

In the next chapter, you will explore the first of two service types covered in this book, the
Windows service.

Fraser_640-4C13.fm Page 604 Wednesday, November 16, 2005 1:58 PM

605

■ ■ ■

C H A P T E R 1 4

Windows Services

The .NET Framework provides two considerably different types of services applications to the
developer: the Windows service, which I cover in this chapter, and the Web service, which I cover in
the next chapter. Although both are called services, they are very different. Windows services are
standalone installed applications, while, as you shall see, Web services provide a service via a network
to another application.

Windows services, I’d like to point out, is a bit of a misnomer, as this same functionality is also
available on the Mono/Linux platform using what is called a monod, which (I believe) is an imple-
mentation of a forked daemon and has nothing to do with Windows at all. I am also pretty sure the
other .NET-implemented platforms don’t use Windows in any way to implement the functionality.
Admittedly, I have not looked into it. Personally, I think Windows services should be called service
processes, as the implementing .NET Framework namespace suggests.

That being said, so as to not confuse the Windows developer, this chapter will focus on the
Windows implementation of the service process and use the term Windows service. This kind of
makes sense, as C++/CLI currently only has (as far as I know) a Windows implementation. Hopefully,
since Microsoft has released the standard to the ECMA, there will be other implementations on
other platforms.

■Note Windows Services do not run on Windows 98 or Windows ME. They require the NT kernel and thus run on
Windows NT4, Windows 2000, Windows XP, and Windows 2003.

This chapter starts out by providing you with a general understanding of Windows services and
its three parts: the service application, the service control application, and the service configuration
application. Next, you will see how to create, install, and uninstall a Windows service. Then you will
take a look at how to manage a Windows service. Finally, you will take a look at how to debug the
Windows service, as it is done a little differently from the normal debugging process.

What Are Windows Services?
A Windows service, or what used to be known as an NT service, is an installed long-running execut-
able application that runs in its own process space. Windows services can run without a user context
(albeit only under Windows NT, Windows 2000, or Windows XP and Windows Vista at this point).
They don’t require a user to be logged in to function, and they generally run in a higher-powered
security mode than do most users. A Windows service is normally automatically started when the
computer boots, but it can be also started, paused, restarted, and stopped manually by a user.

Another telling aspect of Windows services is that it has no user interface, thus making it good
for the scenario where the user needs some long-running functionality that does not interfere with

Fraser_640-4C14.fm Page 605 Monday, November 14, 2005 11:56 AM

606 C H A P T E R 1 4 ■ W I N D O W S S E R V I C E S

users working on the computer. Also, due to the fact that the Windows service has no interface, it is
ideal for running in the background thread on a server. Since I do not cover multithreading until
later in the book (Chapter 16), I will not the cover placing of a Windows service in a background
thread, but after you have read Chapter 16, you should have little difficulty doing so.

■Note Not having an interface, though, does not make an application a service. Console applications can be
written without an interface as well. Typically, services provide system-level support, including a system event log,
performance counters, and a task scheduler, but again that does not make an application a service either.

As mentioned previously, a Windows service is installed into the registry as an executable object.
As you will see, the main() method does not actually run the service; instead, it is used to install the
service into the registry. To actually start a Windows service, you will need to use either the Services
application, which is part of the Administrative Tools on the Control Panel (see Figure 14-1), or
create your own service control application. (You can also configure your Windows service to auto-
matically start at startup as well.)

Figure 14-1. The Administrative Tools’ Services application

In case you are interested, all Windows services installed on a computer can be found in the
registry at

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services

There are several different types of Windows services that can be created, but only two managed
code types can be created with the .NET Framework. A Windows service made up of only a single
service in a process is of type Win32OwnProcess, while a Windows service made up of multiple services in
a single shared process is of type Win32ShareProcess.

Fraser_640-4C14.fm Page 606 Monday, November 14, 2005 11:56 AM

C H A P T E R 1 4 ■ W I N D O W S S E R V I C E S 607

You can find out the type of Windows service you are accessing by querying the property
ServiceController.ServiceType. If the service was not created by .NET, then it is possible for this
property to have other values as listed in Table 14-1.

Architecture of Windows Services
Unlike other application types, Windows services actually require three different programs to function
properly. The first program is the service application itself. This program implements the functionality
required by the Windows service. The second program is the service control application. This program
provides the ability to start, pause, restart, stop, and send unique commands to the service applica-
tion. The final program is the service configuration application. This program installs and configures
the service application.

Service Application
The service application provides the functionality of the Windows service. But since it is a registry
executable object, it is internally set up a little differently from other applications. The service appli-
cation is also made up of three parts: the main, the service-main, and the handlers.

The main part provides the ability to register the true entry point or points of the service appli-
cation, the service-main or service-mains. This dual functionality is required because a Windows
service can be either of type Win32OwnProcess or Win32ShareProcess. Thus, when the Windows service
is of type Win32OwnProcess, the main part must register the single service-main that makes up the
Windows service. On the other hand, when the Windows service type is Win32ShareProcess, then the
main part must register the multiple services that comprise the Windows service.

The service-main is the Windows service’s interface to the outside world and is called when the
service needs to be started. Once called, the service-main then needs to register a handler to the
Service Control Manager (SCM).

The SCM is part of the operating system that communicates with the Windows service. It is the
SCM that sends events to the third part of the service application, the handler. It is up to the handler
to handle the start, pause, continue, stop, and custom events sent to it from the SCM.

Table 14-1. Windows Service Types

ServiceType Description

Adapter A service for a piece of hardware that needs its own driver.

FileSystemDriver A file system driver. This is a specific type of kernel driver.

InteractiveProcess A service that can communicate with the desktop.

KernelDriver A low-level hardware device driver.

RecognizerDriver A file system driver used during the system startup to determine file
system types.

Win32OwnProcess A service made up of only a single service in a process.

Win32ShareProcess A service made up of multiple services in a single shared process.

Fraser_640-4C14.fm Page 607 Monday, November 14, 2005 11:56 AM

608 C H A P T E R 1 4 ■ W I N D O W S S E R V I C E S

Service Control Application
You don’t have to write your own service control application, since the Windows operating system
provides one for you, as you saw previously with the Administrative Tools’ Services application. This
tool provides limited functionality. It can only start, stop, pause, resume, and restart a Windows service.

When you write your own service control application, you can query and retrieve the properties
of the Windows service. Plus, another cool feature of writing your own implementation of the service
control application is you can write custom controls that allow you to perform more specialized
tasks within the Windows service.

Whenever you use the Services application or your own service control application, you are still
using the SCM to communicate with your Windows service. Your service application and service
control application only have built-in functionality to communicate via the SCM. You can also use
TCP/IP to directly communicate with the service application when the functionality provided by the
SCM just doesn’t cut it. Again, since I don’t cover network programming until Chapter 17, I will not
show how to write this code, but after you finish Chapter 17, you should have no trouble writing it
yourself.

Service Configuration Application
The service configuration application does as its name suggests: it configures the Windows service.
Through this application, you specify things like whether the Windows service is started automati-
cally at startup, manually, or is disabled; the user to run the session under; and any dependencies
that the services may have.

Windows services normally start when the computer is booted, but you have the option to
determine manually when the service will be started. You use the service configuration application
to set up the registry and then the service control application to perform the actual startup process.
The Windows operating system provides you with a very limited service configuration application,
as the Administrative Tools’ Services application handles the setting up of automatic startup, manual
startup, and disabling of the Windows service.

The Windows service can be run under four different security context groups as shown in
Table 14-2.

The LocalSystem runs the Windows service in a high-privileged security context. Most services
do not need this high level of privileges. I recommend the use of LocalService and NetworkService
security context instead unless you truly need the high security.

Table 14-2. Windows Service Security Contexts

Context Description

LocalService Acts as a nonprivileged user on the local computer and uses anony-
mous credentials on any remote server

LocalSystem Acts as a high-privileged user

NetworkService Acts as a privileged user on the local computer and presents the
computer’s credentials to any remote server

User Uses the privileges available to the specified user (the user may get
challenged for a username and password unless both are set within the
application)

Fraser_640-4C14.fm Page 608 Monday, November 14, 2005 11:56 AM

C H A P T E R 1 4 ■ W I N D O W S S E R V I C E S 609

■Note LocalService and NetworkService are available only for Windows XP and Windows 2003.

During the startup process, there may be the requirement that certain services be available or
loaded first. The service configuration application can be coded to let you know of missing depen-
dencies and preload those dependencies that it has control over.

The ServiceProcess Namespace
Only one namespace is directly related to Windows services: the ServiceProcess namespace. In fact,
you normally only have to deal with four of the classes within these namespaces. Table 14-3 shows a
brief description of these classes. The rest of the chapter further expands on them.

One cool feature of using the preceding classes is that if you are using Visual Studio 2005, many
of the properties can be manipulated using the Properties window, so you don’t even have to look at
the code. Don’t worry. Not all of the class members can be handled this way. You will still need to
write some code.

Creating Windows Services
Okay, I’ve shown you all the pieces, but how do you actually go about creating a Windows service?
The example in this section shows you. Here I’ll also explore a new feature to make things interesting:
system event logs. The example will use system event logs to log all Windows service handlers that
are triggered. The easy route would be to just use file I/O like what I covered in Chapter 8, but since
the normal route for logging events in a Windows service is the system event log, I thought I’d do it
that way (albeit stripped down and simplified).

But before we get into this new feature, let’s start things off by creating the basic skeleton
program from which almost all Windows services emerge.

Table 14-3. ServiceProcess Namespace Classes

Class Description

ServiceBase This class is used to create a service application and contains the
handlers that your code will interact with.

ServiceController This class is used to create a service controller application and
allows you to connect, stop, start, etc., a Windows service.

ServiceInstaller This class, along with the ServiceProcessInstaller, is used to
create a service configuration application. This class provides
properties unique to each service within a Windows service, in
particular StartType (Automatic, Manual, Disabled), DisplayName,
ServiceName, and ServicesDependentOn.

ServiceProcessInstaller This class, along with the ServiceInstaller, is used to create a
service configuration application. This class provides properties
that pertain to all services that are contained within the Windows
Service, in particular Username, Password, Context and Account.

Fraser_640-4C14.fm Page 609 Monday, November 14, 2005 11:56 AM

cafac74dd2d083cbec0906b66fcd56b1

610 C H A P T E R 1 4 ■ W I N D O W S S E R V I C E S

Like any other application, the first step is to create the base application from a template using
Visual Studio 2005. (For those of you doing this from a text editor, you will need to do a bit more
typing.) This time the template to select is Windows Service, as shown in Figure 14-2. I gave the new
project, created from the template, the name Simple. You will find that the template adds “WinService”
to your service names automatically, so I felt it a bit redundant to add some derivative of “Windows
service” to the project name. But obviously, you can call your projects anything you want to or
change the names created by the template.

Figure 14-2. Selecting the Windows Service template

Unlike most of the other projects created from a Visual Studio 2005 template, this one is not a
fully functional application when compiled. You still need to add installers to the project for the
Windows service to run. I’ll cover installers later in the chapter. What you do get is the service appli-
cation part of the Windows service.

The template adds a number of files to the project, but really at this point only two are of interest.
If you used “Simple” as your project name, then the two files will be called SimpleWinService.cpp
and SimpleWinService.h.

Auto-generated Windows Service
SimpleWinService.cpp, shown in Listing 14-1, is the code automatically generated by the template.
This code is basically used to start the registration process of the Windows service.

Fraser_640-4C14.fm Page 610 Monday, November 14, 2005 11:56 AM

C H A P T E R 1 4 ■ W I N D O W S S E R V I C E S 611

Listing 14-1. Template-generated SimpleWinService.cpp

#include "stdafx.h"
#include <string.h>
#include "SimpleWinService.h"

using namespace Simple;
using namespace System::Text;
using namespace System::Security::Policy;
using namespace System::Reflection;

//To install/uninstall the service, type: "Simple.exe -Install [-u]"
int _tmain(int argc, _TCHAR* argv[])
{
 if (argc >= 2)
 {
 if (argv[1][0] == _T('/'))
 {
 argv[1][0] = _T('-');
 }

 if (_tcsicmp(argv[1], _T("-Install")) == 0)
 {
 array<String^>^ myargs = System::Environment::GetCommandLineArgs();
 array<String^>^ args = gcnew array<String^>(myargs->Length - 1);

 // Set args[0] with the full path to the assembly,
 Assembly^ assem = Assembly::GetExecutingAssembly();
 args[0] = assem->Location;

 Array::Copy(myargs, 2, args, 1, args->Length - 1);
 AppDomain^ dom = AppDomain::CreateDomain(L"execDom");
 Type^ type = System::Object::typeid;
 String^ path = type->Assembly->Location;
 StringBuilder^ sb =
 gcnew StringBuilder(path->Substring(0, path->LastIndexOf(L"\\")));
 sb->Append(L"\\InstallUtil.exe");
 Evidence^ evidence = gcnew Evidence();
 dom->ExecuteAssembly(sb->ToString(), evidence, args);
 }
 }
 else
 {
 ServiceBase::Run(gcnew SimpleWinService());
 }
}

Ugly, don’t you think?

Fraser_640-4C14.fm Page 611 Monday, November 14, 2005 11:56 AM

612 C H A P T E R 1 4 ■ W I N D O W S S E R V I C E S

This code is really mostly legacy code from the Managed Extensions for C++ days due to Managed
C++’s not being able to generate safe code. You used to need all this code to magically build a command
to fool Windows into believing the code is safe. Now with C++/CLI, since safe code can be generated,
most of this code can be thrown away. However, it’s probably a good thing to keep this code in your
arsenal if you plan on writing a Windows service that isn’t safe. (You’ll learn about unsafe code in
Chapters 20 and 21.) On the other hand, if you plan on using safe code, then Listing 14-2 shows how
I would change the preceding code.

Listing 14-2. Conversion of SimpleWinService.cpp for Safe Code

#include "stdafx.h"
#include "SimpleWinService.h"

using namespace Simple;
using namespace System::Collections;
using namespace System::ServiceProcess;

void main()
{
 array<ServiceBase^>^ ServicesToRun;

 // More than one user service may run within the same process. To add
 // another service to this process, change the following line to
 // create a second service object. For example,
 //
 // ServicesToRun = gcnew array<ServiceBase^>
 // {
 // gcnew Service1(),
 // gcnew Service2()
 // };
 //
 ServicesToRun = gcnew array<ServiceBase^> { gcnew SimpleWinService() };

 ServiceBase::Run(ServicesToRun);
}

Notice most of the preceding code is comments. By the way, I can’t lay claim to this code, as it
is the code generated by the C# template converted into C++/CLI.

■Note To use Listing 14-2, you must compile using the /clr:safe option. If the code compiles cleanly with this
option, then you know your code is safe. By the way, you also need to remove the include files from stdafx.h as they
contain unsafe code. (You don’t need these include files anyway.)

What’s the big difference between these two listings? Two things are different. The first is that to
install Listing 14-1, you use the command Sample.exe –Install, and to uninstall, you use the
command Simple -Install -u. For Listing 14-2, you use the command InstallUtil Simple.exe to
install and InstallUtil –u Simple.exe to uninstall.

Fraser_640-4C14.fm Page 612 Monday, November 14, 2005 11:56 AM

C H A P T E R 1 4 ■ W I N D O W S S E R V I C E S 613

■Note Actually, you are using the InstallUtil command for both listings, but the code in Listing 14-1 builds
this code behind the scenes.

The second difference in the code generated by Listing 14-1 contains native code and may not
be safe, while Listing 14-2 compiles to strictly safe code (if you use the /clr:safe option, that is).

Once you strip away all the magic code, all you are left with is

ServiceBase::Run(ServicesToRun);

All the ServiceBase::Run() method does (at least as far as you need to be concerned about) is
load the service application into memory and provide the service-main entry point so that the service
control application can start the application.

SimpleWinService.h, shown in Listing 14-3, is a little more exciting, as it is where you will spend
most of your time coding the Windows service—in particular, the following two auto-generated
handlers:

• OnStart(): Used to initialize the Windows service during the startup process

• OnStop(): Used to shut down everything opened up while the Windows service was executing

And the four handlers that you most likely will add yourself:

• OnContinue(): Runs when the continue event is sent by the Service Control Manager. The
handler is used to start up any resources that you might have stopped when you passed the
Windows service. This handler is only valid when the Windows service is in a paused state.

• OnCustomCommand(): Runs when the SCM sends a custom event to the Windows service.

• OnPause(): Runs when the SCM sends a pause event to the Windows service. You use this
handler to shut down any resources that don’t need to be active while the Windows service is
paused.

• OnShutdown(): Runs just before the system shuts down. This is the last chance the Windows
service has to shut down any resources that might be left running. Note that this is called
when the computer shuts down, not the Windows service.

Listing 14-3. Auto-generated SimpleWinService.h Code

#pragma once

using namespace System;
using namespace System::Collections;
using namespace System::ServiceProcess;
using namespace System::ComponentModel;

namespace Simple
{
 public ref class SimpleWinService : public ServiceProcess::ServiceBase
 {
 public:
 SimpleWinService()
 {
 InitializeComponent();
 }

Fraser_640-4C14.fm Page 613 Monday, November 14, 2005 11:56 AM

614 C H A P T E R 1 4 ■ W I N D O W S S E R V I C E S

 protected:
 ~SimpleWinService()
 {
 if (components)
 {
 delete components;
 }
 }

 virtual void OnStart(array<String^>^ args) override
 {
 }

 virtual void OnStop() override
 {
 }

 private:
 System::ComponentModel::Container ^components;

#pragma region Windows Form Designer generated code

 void InitializeComponent(void)
 {
 this->components = gcnew System::ComponentModel::Container();
 this->CanStop = true;
 this->CanPauseAndContinue = true;
 this->AutoLog = true;
 this->ServiceName = L"SimpleWinService";
 }
#pragma endregion
 };
}

Listing 14-3 has some interesting Boolean properties that you might want to be aware of (you
can change them directly in the code or via the Properties window as shown in Figure 14-3):

• AutoLog: You set this to true when you want the Windows service to automatically log entries
in the Windows system event log.

• CanHandlePowerEvent: You set this to true when you want the Windows service to receive
power events like switch for AC power to battery.

• CanHandleSessionChangeEvent: You set this to true when you want the Windows service to
receive the change event from a Terminal Services session.

• CanPauseAndContinue: You set this to true when you want to give the user the ability to pause
the Windows service.

• CanShutdown: You set this to true when you want the Windows service to receive the Windows
Shutdown message.

• CanStop: You set this to true if you want the user to be able to shut the Windows service down.

• ServiceName: This is the name of the service as it will appear in the Administrative Tools’
Services application.

Fraser_640-4C14.fm Page 614 Monday, November 14, 2005 11:56 AM

C H A P T E R 1 4 ■ W I N D O W S S E R V I C E S 615

Figure 14-3. The Windows ServiceProcess Properties View

These properties (except for AutoLog and ServiceName) provide you with a way to restrict which
events the Windows Service will receive.

Customizing the Windows Service
Procedurally, there really isn’t much to customizing Windows services. You simply override the
handlers provided by ServiceProcess::ServiceBase, which you inherited from automatically when
creating a Windows service from the Visual Studio 2005 template. (Of course, the features you want
to implement within the Windows service can be any level of complexity.)

Since creating Windows services is basically the same process, I can get away with a very simple
example—the logging of all events sent to the Windows service from the SCM.

But before we do this, let’s drag and drop an EventLog control from the components section of
the toolbox to the SimpleWinService.h Design view. Once the EventLog icon is on the Design view,
click it to enable the Properties window. Right-click the Log property drop-down and then select
Application (since you are not logging errors or security info). Finally, in the Source property, enter
SimpleWinService. Now, a few additional lines of code are added to your template, and you are
ready to create system event logs using the following command:

eventLog1->WriteEntry("An system event log message go here");

■Note There are many more options available to you when it comes to configuring system event logs, but they
are beyond the scope of this chapter. For more information, consult the .NET Framework documentation.

OnStart()
The first event that your Windows service will probably handle is OnStart(). Frequently, this handler
will be used to create a new background thread of execution for the Windows service to run under.
Why a separate thread, you are probably asking?

My first thought (and probably yours as well) when I encountered Windows services was that I’d
simply start the service in the main thread and then let it run. Then when it needs to pause, continue, or

Fraser_640-4C14.fm Page 615 Monday, November 14, 2005 11:56 AM

616 C H A P T E R 1 4 ■ W I N D O W S S E R V I C E S

stop, just handle the event from the main thread. The problem is that a Windows service handler
times out after 30 seconds. Thus, if the OnStart() does not return in 30 seconds, the Windows
service aborts.

To get around this, you need to have OnStart() return in less than 30 seconds. To do this, you
usually create either a System::Timers::Timer or another thread of execution to run your Windows
service’s activities and then let the main thread continue and return.

I’ll show the System::Timers::Timer logic in the example, but since I have not covered multi-
threading yet, I’ll not show any of this code, but once you read Chapter 16, you should have no problem
plugging a new thread of execution within the OnStart() handler in place of the Timer event.

Nearly any code you want can be placed in the OnStart() handler so long as it takes less than
30 seconds to execute (and your security context has the privileges to run it).

Here’s a simple and possibly somewhat redundant example of the OnStart() in action. I also for
grins and giggles added timer event code and code to dump out the args that were passed:

virtual void OnStart(array<String^>^ args) override
{
 eventLog1->WriteEntry("SimpleWinService Started");

 if (args->Length == 0)
 eventLog1->WriteEntry("Empty args");
 else
 {
 for each (String ^s in args)
 {
 eventLog1->WriteEntry(s);
 }
 }
 double interval = 10000; // 10 seconds - hard coded for simplicity
 // but could be passed as an argument
 this->timer = gcnew System::Timers::Timer(interval);
 this->timer->Elapsed += gcnew System::Timers::ElapsedEventHandler(this,
 &SimpleWinService::timer_Tick);
 this->timer->Start();
}

As you can see, the example overrides the virtual handler provided by the Windows Service
template, with a log to the system event log stating that the Windows service was started and a dump
of the args using the system event log as well.

The code to create the timer is pretty easy. Create a Timer with an interval of 10 seconds. Notice
that the timer itself is a member variable code:

private:
 System::Timers::Timer^ timer;

The reason the timer is a member variable is that other Windows service handlers are going to
need access to it. Next, you add an event handler to the timer’s Elapse handler. Here’s the code for
the handler:

private:
void timer_Tick(System::Object^ sender, System::Timers::ElapsedEventArgs^ e)
{
 this->timer->Stop();
 eventLog1->WriteEntry("SimpleWinService Elapsed Event Occurred");
 this->timer->Start();
}

Fraser_640-4C14.fm Page 616 Monday, November 14, 2005 11:56 AM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 1 4 ■ W I N D O W S S E R V I C E S 617

This is pretty much the minimum code you can have for the elapse handler. Notice that you first
Stop() the timer, perform whatever actions you want within the elapsed event, and then Start() the
timer again. Doing this prevents any problems that might happen if the code takes longer than
the timer elapse interval. If you are 100 percent certain that the process time of the handler will be
less than the timer’s elapsed time, then you can skip the Stop() and Start() steps.

Now, why is this code of the OnStart() handler redundant? If you have the AutoLog feature set
to true, the Windows service will also automatically log this event. Because of this, when you finally
get to run this example, you will have two system log events created, one automatically and this one
that you created earlier.

This handler is the only one to take an argument, in this case, a string array of values that is sent
to it from the Start command. If you use the Services application found in the Administrative Tools,
you can add the arguments using the General tab on the Windows service’s Properties window. To
do this, select Windows service in the Services application, and then right-click and select the Properties
menu item. This should present the Properties dialog window as shown in Figure 14-4. From here,
just add the arguments to the Start Parameters text box.

Figure 14-4. Setting starting arguments using Services application

I have yet to use this parameter, but I’m sure it is put to good use by somebody.

OnStop()
The second event that you will most probably have your Windows service handle is OnStop(). Here
you place all the code you need to shut down your Windows service.

One thing that bit me once with the OnStop() handler is that it is never called when the CanStop
property is set to false, even when the computer is shutting down. Instead, the SCM handles every-
thing itself. (Also, you have no way to stop the Windows service, except killing the process or shutting
down the machine.)

One nice thing is that you don’t have to do anything special within the OnStop() handler to
trigger the stop event for all the dependent services, as they are automatically triggered by the SCM.

Fraser_640-4C14.fm Page 617 Monday, November 14, 2005 11:56 AM

618 C H A P T E R 1 4 ■ W I N D O W S S E R V I C E S

Let’s continue the example. Since I started a Timer in the OnStart(), I better stop it on the OnStop().
Plus, I will write a system event log entry stating that the Windows service was stopped. (Just like
OnStart() if the AutoLog is true, the writing of this event log is sort of redundant.)

Here’s all I need to do to shut down this simple example:

virtual void OnStop() override
{
 this->timer->Stop();
 eventLog1->WriteEntry("SimpleWinService Stopped");
}

OnPause() and OnContinue()
Two common event handlers you may implement are OnPause() and OnContinue(). Obviously these
handles are triggered when the Windows services is paused and continued. You use these events to
temporarily stop and then later restart any resources that don’t need to be active while the Windows
service is paused.

To continue our example, there is no need to have the timer continue to run while the Windows
service is paused. (In fact, if you don’t stop the timer, you have not actually paused the service.)
When the Windows service finally continues, you obviously need to start the timer back up. Here is
the code to handle the pause and continue process:

virtual void OnPause() override
{
 this->timer->Stop();
 eventLog1->WriteEntry("SimpleWinService Paused");
}

virtual void OnContinue() override
{
 eventLog1->WriteEntry("SimpleWinService Continued");
 this->timer->Start();
}

The only trick to using these two handlers is that you need to manually add them to your code,
but as you can see, it’s hardly rocket science.

Other ServiceBase Class Handlers
There are a few more ServiceBase class handlers that you might use, but I thought it a bit redundant
showing examples of using them, as you code them the exact same way as the other handlers. There
is one exception, the OnCustomCommand(), but I will hold off covering this handler until I cover managing
Windows services later in the chapter.

Customized Example
Okay, SimpleWinService.cpp has remained unchanged from what was generated by the template (or
the safe version, if you used that), but we’ve made quite a few changes to SimpleWinService.h. Since
some of the code was auto-generated by Visual Studio 2005, I thought it would be helpful for those
of you writing a Windows service without VS 2005 to see the customized SimpleWinService.h, shown
in Listing 14-4, in its entirety.

Fraser_640-4C14.fm Page 618 Monday, November 14, 2005 11:56 AM

C H A P T E R 1 4 ■ W I N D O W S S E R V I C E S 619

Listing 14-4. Customized SimpleWinService.h Code

#pragma once

using namespace System;
using namespace System::Collections;
using namespace System::ServiceProcess;
using namespace System::ComponentModel;

namespace Simple
{
 private:
 double interval;

 public ref class SimpleWinService : public ServiceProcess::ServiceBase
 {
 public:
 SimpleWinService()
 {
 InitializeComponent();
 interval = 15000; // 15 seconds - default
 }

 protected:
 ~SimpleWinService()
 {
 if (components)
 {
 delete components;
 }
 }

 virtual void OnStart(array<String^>^ args) override
 {
 eventLog1->WriteEntry("SimpleWinService Started");

 if (args->Length == 0)
 eventLog1->WriteEntry("Empty args");
 else
 {
 for each (String ^s in args)
 {
 eventLog1->WriteEntry(s);
 }
 }

 this->timer = gcnew System::Timers::Timer(interval);
 this->timer->Elapsed +=
 gcnew System::Timers::ElapsedEventHandler(this,
 &SimpleWinService::timer_Tick);
 this->timer->Start();
 }

Fraser_640-4C14.fm Page 619 Monday, November 14, 2005 11:56 AM

620 C H A P T E R 1 4 ■ W I N D O W S S E R V I C E S

 virtual void OnStop() override
 {
 this->timer->Stop();
 eventLog1->WriteEntry("SimpleWinService Stopped");
 }

 virtual void OnPause() override
 {
 this->timer->Stop();
 eventLog1->WriteEntry("SimpleWinService Paused");
 }

 virtual void OnContinue() override
 {
 eventLog1->WriteEntry("SimpleWinService Continued");
 this->timer->Start();
 }

 private:
 System::Diagnostics::EventLog^ eventLog1;
 System::Timers::Timer^ timer;

 System::ComponentModel::IContainer^ components;

#pragma region Windows Form Designer generated code

 void InitializeComponent(void)
 {
 this->components = (gcnew System::ComponentModel::Container());
 this->eventLog1 = (gcnew System::Diagnostics::EventLog());
 (cli::safe_cast<System::ComponentModel::ISupportInitialize^>
 (this->eventLog1))->BeginInit();
 //
 // eventLog1
 //
 this->eventLog1->Log = L"Application";
 this->eventLog1->Source = L"SimpleWinService";
 //
 // SimpleWinService
 //
 this->CanPauseAndContinue = true;
 this->ServiceName = L"SimpleWinService";
 (cli::safe_cast<System::ComponentModel::ISupportInitialize^>
 (this->eventLog1))->EndInit();
 }

Fraser_640-4C14.fm Page 620 Monday, November 14, 2005 11:56 AM

C H A P T E R 1 4 ■ W I N D O W S S E R V I C E S 621

#pragma endregion

 private:
 void timer_Tick(System::Object^ sender,
 System::Timers::ElapsedEventArgs^ e)
 {
 this->timer->Stop();
 eventLog1->WriteEntry("SimpleWinService Elapsed Event Occurred");
 this->timer->Start();
 }
 };
}

Installing and Uninstalling Windows Services
With other application types, you would now be ready to compile and run. Not so with Windows
services.

You now need to add one ServiceProcessInstaller class and a ServiceInstaller class for each
service that makes up the Windows service. These classes then are used by the service configuration
application to register the Windows service correctly within the registry. To perform the actual
registering process, you normally use the service configuration application provided by .NET called
InstallUtil.exe. (You can use other installation programs or even write your own, but doing this is
beyond the scope of this book.)

Fortunately, the process for creating the ServiceProcessInstaller and ServiceInstaller class
is mostly automated. Here are the steps you will follow:

1. Switch to the Design view of the service. You can double-click SimpleWinService.h to do this.

2. Right-click anywhere on the Design view window to bring up the menu as shown in
Figure 14-5.

Figure 14-5. Adding installer

3. Select the Add Installer menu item. This will generate ProjectInstaller.cpp and ProjectInstaller.h.

4. Double-click ProjectInstaller.h in the Solution Explorer to switch to the Design view of the
ProjectInstaller.

5. Select the serviceInstaller1 component.

6. Set the ServiceName property to SimpleWinService if it isn’t that already.

Fraser_640-4C14.fm Page 621 Monday, November 14, 2005 11:56 AM

622 C H A P T E R 1 4 ■ W I N D O W S S E R V I C E S

7. Set the StartType property to Automatic if you want the service to start automatically on
startup or leave it as manual if you want the user to start the Windows service. (You might
want to leave it as manual for now, as you will most probably be continually starting and
stopping the service manually. Once everything is working properly, switch the property to
Automatic.)

8. Select the serviceProcessInstaller1 component.

9. Set the Account property to the security context that most suits the need of the Windows
service. (Being lazy, I usually just set this to LocalSystem or NetworkService during devel-
opment and then change it to something more appropriate during final testing and release.)

10. Build your Windows service.

For those of you who are interested, the auto-generated code for ProjectInstall.cpp is shown in
Listing 14-5, and ProjectInstaller.h is shown cleaned up in Listing 14-6.

Listing 14-5. Auto-generated ProjectInstall.cpp

#include "StdAfx.h"
#include "ProjectInstaller.h"

Listing 14-6. Auto-generated ProjectInstall.h

#pragma once

using namespace System;
using namespace System::ComponentModel;
using namespace System::Collections;
using namespace System::Configuration::Install;

namespace Simple
{
 [RunInstaller(true)]
 public ref class ProjectInstaller :
 public System::Configuration::Install::Installer
 {
 public:
 ProjectInstaller(void)
 {
 InitializeComponent();
 }

 protected:
 ~ProjectInstaller()
 {
 if (components)
 {
 delete components;
 }
 }

Fraser_640-4C14.fm Page 622 Monday, November 14, 2005 11:56 AM

C H A P T E R 1 4 ■ W I N D O W S S E R V I C E S 623

 private:
 System::ServiceProcess::ServiceProcessInstaller^ serviceProcessInstaller1;
 System::ServiceProcess::ServiceInstaller^ serviceInstaller1;
 System::Diagnostics::EventLogInstaller^ eventLogInstaller1;

 System::ComponentModel::Container ^components;

#pragma region Windows Form Designer generated code
 void InitializeComponent(void)
 {
 this->serviceProcessInstaller1 =
 (gcnew System::ServiceProcess::ServiceProcessInstaller());
 this->serviceInstaller1 =
 (gcnew System::ServiceProcess::ServiceInstaller());
 this->eventLogInstaller1 =
 (gcnew System::Diagnostics::EventLogInstaller());
 //
 // serviceProcessInstaller1
 //
 this->serviceProcessInstaller1->Account =
 System::ServiceProcess::ServiceAccount::LocalSystem;
 this->serviceProcessInstaller1->Password = nullptr;
 this->serviceProcessInstaller1->Username = nullptr;
 //
 // serviceInstaller1
 //
 this->serviceInstaller1->ServiceName = L"SimpleWinService";
 //
 // ProjectInstaller
 //
 this->Installers->AddRange(
 gcnew cli::array<System::Configuration::Install::Installer^>(2)
 {
 this->serviceProcessInstaller1,
 this->serviceInstaller1
 });
 }
#pragma endregion
 };
}

Now you should have a Windows service that you can finally install and run unless you have
added resources to your Windows service that also need to be installed like the system event log. To
install the system event log, switch to the Design view of SimpleWinService.h again, right-click the
eventLog1 component, and select the Add Installer menu item. Now rebuild the project, and you will
have a Windows service ready to be installed.

The first thing you do is navigate in the Visual Studio 2005 Command console window to the
directory where your Windows service assembly is located. How you actually install your Windows
services depends on which version of SimpleWinService.cpp you used, though behind the scenes,
you are really doing the same thing.

Fraser_640-4C14.fm Page 623 Monday, November 14, 2005 11:56 AM

cafac74dd2d083cbec0906b66fcd56b1

624 C H A P T E R 1 4 ■ W I N D O W S S E R V I C E S

To install your Windows service using the default template version, you use the command
Sample.exe –Install at the command line. (To uninstall, you use the command Simple -Install -u.)

For the safe code version, you use the command InstallUtil Simple.exe at the command line
to install the Windows service. (To uninstall, you use the command InstallUtil –u Simple.exe.)

Since both end up doing the same thing behind the scenes, both of the preceding installation
methods will cause the output shown in Figure 14-6 to be generated in the command window.

Figure 14-6. Running the installer program

Note that if you selected a security context of User, you will be asked to enter, as shown in
Figure 14-7, the user and password you want to run the Windows service under. Make sure you use
the full username by including your domain or workgroup as well as the username. For me this is
Amidala\Stephen Fraser.

Figure 14-7. Username and password to run Windows service.

Managing Windows Services
The most basic method of managing Windows services is using the Administrative Tools’ Services
application provided by the Windows operating system. For most Windows services, this applica-
tion will be all that you need. On the other hand, on those rare occasions .NET provides you with the

Fraser_640-4C14.fm Page 624 Monday, November 14, 2005 11:56 AM

C H A P T E R 1 4 ■ W I N D O W S S E R V I C E S 625

System::ServiceProcess::ServiceController class, which enables you to connect and control
Windows services within your own custom application.

Services Application
The Administrative Tools’ Services application (see Figure 14-8) is actually a snap-in to the Microsoft
Management Console (MMC). Not only does this tool allow you to see, start, pause, continue, stop,
and restart all services currently on your system, but it also allows you to perform some configurations on
them as well.

Figure 14-8. The Administrative Tools’ Services application

As you can see in Figure 14-8, SimpleWinService is now available on your system, but the status
is blank or currently not run. In addition, the startup type is manual and the Windows service uses
the LocalSystem security context. Your implementation could be different if you selected different
property values for ServiceProcessInstaller and ServicesInstaller.

Double-clicking the SimpleWinService line causes the Services application to present the Windows
services properties dialog box as shown in Figure 14-9. The tabs across the top of the control point
out the different properties that can be customize for the Windows service:

• Change state and startup method of Windows service.

• Specify user login security context for the Windows service.

• Specify action to perform on Windows service failure.

• View Windows service dependencies.

Fraser_640-4C14.fm Page 625 Monday, November 14, 2005 11:56 AM

626 C H A P T E R 1 4 ■ W I N D O W S S E R V I C E S

Figure 14-9. Services application properties dialog box

I usually only deal with the General tab, where I change the Windows service startup method
from Manual (user controlled) to Automatic (system controlled started during startup process). You
can also specify stop, start, etc. on the General tab, but I usually use the middle panel on the Services
application or use the right-click context menu (see Figure 14-10) associated with the Windows service.

Figure 14-10. Services application Windows services context menu

Custom Service Control Application
There will come a time when the Services application just doesn’t provide enough functionality.
When that time comes, the ability to create your own custom service control application really
comes in handy.

Usually, you will create a GUI service control application, but nothing is stopping you from
making it a console application. In the following examples, I’ll show you a couple of GUI tools, but
you should have no trouble making equivalent console applications using the same basic logic.

It is remarkably easy to write your own custom service control application. All that really is
required is to add an instance of a System::ServerProcess::ServiceController to your application.
Link the controller instance to the Windows service you want to interface with, and then call the

Fraser_640-4C14.fm Page 626 Monday, November 14, 2005 11:56 AM

C H A P T E R 1 4 ■ W I N D O W S S E R V I C E S 627

controller’s methods. The actual communication between the controller and the Windows service is
handled for you behind the scenes. Well, to be more accurate, the communication between your
controller and the SCM is hidden from you. As mentioned previously, the Windows service gets its
handles triggered from the SCM.

Visual Studio 2005 provides a drag and drop interface to simplify the creation of the controller
instance for Windows applications. I’ll show the steps here, though the code that gets generated is so
simple, it is almost easier just to code it by hand.

1. Create a Windows application. (If you need a reminder on how to do this, I covered how in
Chapters 9 and 10.)

2. Open up the Server Explorer.

3. Navigate to the Services branch of the tree as shown in Figure 14-11.

Figure 14-11. Server Explorer, Services branch

4. Select the service you want to interface with.

5. Right-click and select Add to Designer or simply drag the service directly onto the form.

Doing all that adds the following code to your Windows Form, assuming your server is called
Amidala and the Windows service is called SimpleWinService:

private: System::ServiceProcess::ServiceController^ serviceController1;
this->serviceController1 = (gcnew System::ServiceProcess::ServiceController());
this->serviceController1->MachineName = L"amidala";
this->serviceController1->ServiceName = L"SimpleWinService";

Fraser_640-4C14.fm Page 627 Monday, November 14, 2005 11:56 AM

628 C H A P T E R 1 4 ■ W I N D O W S S E R V I C E S

Basically, now your application is connected to the Windows service. You have read access (and
a few with write access) to a number of the Windows services properties and the ability to trigger the
Windows service’s handles by making ServiceController method calls. Table 14-4 shows some of
the more common properties and methods available to you.

The actual code to implement a custom service control application is nearly trivial. And as far
as I can see, there is really only one gotcha. The properties in the ServiceController are a snapshot,
and to get the most recent version of them, you need to call the Refresh() method.

To show you what I mean, add four buttons to the Windows Form that you created previously.
The form should look something like Figure 14-12.

Table 14-4. Commonly Used ServiceController Properties and Methods

Property/Method Description

CanPauseAndContinue A property indicating whether the Windows service can be paused
and continued

CanShutDown A property indicating whether the Windows service receives
shutdown events

CanStop A property indicating whether the Windows service can stop
after starting

Close() A method that closes down this instance of ServicesController and
releases all resources associated with the instance

Continue() A method that triggers the OnContinue() handler

DependentServices A property containing a list of all dependent Windows services

DisplayName A property that allows you to get or set the friendly name of the
Windows service

ExecuteCommand() A method that triggers the OnCustomCommand() handler

GetServices() A static method that retrieves an array of all Windows services on
the system

MachineName A property that allows you to get or set the name of the computer of
where the Windows service resides

Pause() A method that triggers the OnPause() handler

Refresh() A method that refreshes all the Windows Services properties

ServiceName A property that allows you to get or set the name of the service this
instance of ServicesController is referencing

Start() A method that triggers the OnStart() handler

Status A property indicating the current status (state would be more accu-
rate) of the Windows service

Stop() A method that triggers the OnStop() handler

WaitForStatus() A method that waits until the Windows services becomes a specified
status (state)

Fraser_640-4C14.fm Page 628 Monday, November 14, 2005 11:56 AM

C H A P T E R 1 4 ■ W I N D O W S S E R V I C E S 629

Figure 14-12. SimpleWinServive controller

Now let’s add the ability for the service control application to start the Windows service. Once
you have your Windows Form laid out, double-click the Start button so that you can edit the code for
the start Windows service event handler. Here is the code:

System::Void bnStart_Click(System::Object^ sender, System::EventArgs^ e)
{
 serviceController1->Refresh();

 if (serviceController1->Status == ServiceControllerStatus::Stopped)
 {
 serviceController1->Start();
 MessageBox::Show("SimpleWinService Started");
 }
 else
 {
 MessageBox::Show("SimpleWinService Running");
 }
}

Yes, that’s all it takes! Now let’s take a closer look. The first thing you need to do is Refresh() the
properties. If you don’t, then the Status property will probably be out of sync with the actual Windows
service. Then, before you call the Start() method, you need to make sure that the Windows services
status is Stopped. Another option would be to enclose the Start() method in a try/catch block, as
the Start() method throws an exception if the current start is not Stopped. I added the MessageBoxes
so that you can verify all is well, but they are obviously not needed.

Now let’s stop the service:

System::Void bnStart_Click(System::Object^ sender, System::EventArgs^ e)
{
 serviceController1->Refresh();

 if (serviceController1->Status == ServiceControllerStatus::Stopped)
 {
 serviceController1->Start();
 MessageBox::Show("SimpleWinService Started");
 }
 else
 {
 MessageBox::Show("SimpleWinService Running");
 }
}

The code is nearly identical. In fact most of the handler trigger methods are handled this exact
same way. There is one major exception: ExecuteCommand().

The ExecuteCommand() method allows you to trigger an event on the Windows service based on
a numeric value between 128 and 255. Windows reserves the values 0 through 127. The implemen-
tation of the custom command is made up of two parts.

Fraser_640-4C14.fm Page 629 Monday, November 14, 2005 11:56 AM

630 C H A P T E R 1 4 ■ W I N D O W S S E R V I C E S

First you need to add a call to your Windows Form to ExecuteCommand(), passing it a number
representing the command that you want the Windows service to execute. Here is the code for the
button Interval 15. (The code for button Interval 20 is virtually the same except the numeric value
passed in the ExecuteCommand() method.)

System::Void bnIntv15_Click(System::Object^ sender, System::EventArgs^ e)
{
 serviceController1->Refresh();

 if (serviceController1->Status == ServiceControllerStatus::Running)
 {
 serviceController1->ExecuteCommand(150);
 MessageBox::Show("SimpleWinService Interval in 15 seconds");
 }
 else
 {
 MessageBox::Show("SimpleWinService Not Running");
 }
}

I’m pretty sure you are starting to see a pattern forming on these event handlers.
The second half the of the custom command is to add an OnCustomCommand() handler to your

Windows service, which will process the numeric command sent by the ExecuteCommand() method.
Here is an example that changes the interval time of the timer of the Windows service:

virtual void OnCustomCommand(int cmd) override
{
 if (cmd == 150)
 this->timer->Interval = 15000;
 else
 this->timer->Interval = 20000;
}

I used an if statement due to the fact that only two numeric values are being sent to the
OnCustomCommand() handler. Normally, you would probably use a case statement on the cmd parameter.

Normally, I include a full example of the source code, but I see no real added value in doing so
for this example, as all the code is so trivial. But if you need the code example, it is available on the
Apress and ProCppCLI.net Web sites.

Debugging Windows Services
The process of debugging a Windows service is a little different from the generic Windows Forms
application or console application, since you do not start or execute the service via the main()
method. Fortunately, all is not lost, as you have two techniques for debugging your Windows service.
Which debugging process you use depends on what functionality you are trying to test.

Fraser_640-4C14.fm Page 630 Monday, November 14, 2005 11:56 AM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 1 4 ■ W I N D O W S S E R V I C E S 631

Attaching the Debugger to the Windows Service
The first process is outlined in the many C# books out there that cover Windows services: attach the
debugger to the service after it is running. This allows you to use all the standard debugging features
available on Visual Studio 2005. The process, while straightforward, is, as far as I’m concerned, far
from intuitive. But once you know the steps, you can replicate it for any Windows service.

To attach the debugger to a Windows service requires the following steps:

1. Start your Windows service using the Services application or your own custom service
control application.

2. Select from the main Visual Studio 2005 menu Debug and then the menu item Attach to
Process. This will display a dialog box similar to the one in Figure 14-13.

Figure 14-13. Attach to Process dialog box

3. Click Show processes from all users. You may not need this if you started the process using
your own user security context.

4. Select your Windows service from the Available Processes list.

5. Click the Attach button.

Fraser_640-4C14.fm Page 631 Monday, November 14, 2005 11:56 AM

632 C H A P T E R 1 4 ■ W I N D O W S S E R V I C E S

When you complete these steps, the dialog box will disappear, the debugger will be attached to
your Windows service, and you will be in debug mode of Visual Studio 2005. At this point, you can
set break point, watches, etc., just like you would for any other Windows or console application.

The problem with this method is that you cannot test the OnStart() handler, as it has already
run. And executing the OnStop() handler ends the debug session, so you can’t restart the Windows
service to test the OnStart() either.

This is where the other testing process comes in.

A Special Main() Function
A Windows service is really just a specialized application. Due to this fact, you can write a slightly
modified main() function to test your Windows service’s startup process. I think it’s easier just to
show you the code first and walk you through it than try to explain things beforehand. Listing 14-7
shows the new main() method.

Listing 14-7. Debug-enhanced main() Method

#include "stdafx.h"
#include "SimpleWinService.h"

using namespace Simple;
using namespace System::Collections;
using namespace System::ServiceProcess;

void main()
{
#ifndef COMMANDLINE_DEBUG
 array<ServiceBase^>^ ServicesToRun;
 ServicesToRun = gcnew array<ServiceBase^> { gcnew SimpleWinService() };
 ServiceBase::Run(ServicesToRun);
#else
 SimpleWinService ^svc = gcnew SimpleWinService();
 svc->OnStart(nullptr);
 Console::WriteLine("Any key stop stop");
 Console::ReadLine();
 svc->OnStop();
#endif
}

The code uses the #ifndef directive (covered in Chapter 4) to split the main() method into two
parts. If you recall, the #ifndef directive causes the compiler only to compile code in the enclosed
region (between #else, #elseif, or #endif) when the symbol specified does not exist. Thus, the first
block compiles the code just like normal, if the symbol COMMANDLINE_DEBUG does not exist, whereas
the second block compiles the special code allowing you to debug the OnStart() handler, if the
symbol does exist.

You can place the symbol COMMANDLINE_DEBUG either as a #define directive in stdafx.h or in
SimpleWinService.h anywhere before the line

#include "SimpleWinService.h"

Fraser_640-4C14.fm Page 632 Monday, November 14, 2005 11:56 AM

C H A P T E R 1 4 ■ W I N D O W S S E R V I C E S 633

or in the application’s Processor Definitions property as shown in Figure 14-14. You need to place it
before the preceding #include statement because SimpleWinService.h also uses the symbol, as I’ll
point out next.

Figure 14-14. Processor Definitions property

One more issue remains. When you compile the preceding code, you get two errors telling you
that the OnStart() and OnStop() methods are not accessible. The reason is the auto-generated
template code for Windows services defines these two methods as protected and thus not accessible.

To fix this, add

#ifdef COMMANDLINE_DEBUG
 public:
#endif

right before the call to OnStart(). This will cause the methods to now be public when the symbol is
defined.

Now you can compile and debug the Windows service exactly like any other Windows or console
application. This, unfortunately, also means you cannot access the Windows service using the Services
application or your custom service control application, as it has not actually been started as a service. So
long as you don’t try to interface it with either of these, it will behave just like the Windows service
does when compiled as a service, with the added bonus that you can now debug the OnStart()
method.

By the way, you can debug the other handlers as well by calling them in the main() function.

Fraser_640-4C14.fm Page 633 Monday, November 14, 2005 11:56 AM

634 C H A P T E R 1 4 ■ W I N D O W S S E R V I C E S

Summary
Admittedly, this chapter has simplified the coding of Windows services, but you should be well on
your way to understanding Windows services after reading it. The chapter started by discussing
what a Windows service is and its three parts: service application, service configuration application,
and service control application. You moved on by creating a simple Service application. You then
saw how to implement a service configuration application using the ServiceProcessInstaller and
ServiceInstaller classes. Next, you saw how to use the Windows-provided service control application
called the Services application and how to write your own. Finally, you saw two methods for debugging
your Windows services.

In the next chapter, you’ll explore a different kind of service, the Web service.

Fraser_640-4C14.fm Page 634 Monday, November 14, 2005 11:56 AM

635

■ ■ ■

C H A P T E R 1 5

Web Services

Web services are the central hub of everything that is .NET. The basic goal of Web services is to
make distributed applications much easier to design and develop than ever before. They change the
way Internet, intranet, extranet, or whichevernet-based applications are written. Basically, Web
services put the “net” in .NET.

Web services aren’t unique to Microsoft or .NET. In fact, all of the major industry players have a
Web services offering. This chapter, however, focuses only on the Microsoft .NET Framework imple-
mentation of Web services.

The chapter starts by providing you with a general understanding of Web services. You’ll discover
how to implement and consume a simple Web service using C++/CLI. With the basics under your
belt, you’ll then be ready for a more elaborate implementation of a Web service, this time working
with the ADO.NET skills you acquired back in Chapter 12.

What Are Web Services?
In simple terms, Web services are software components that can be accessed and executed remotely
via a network by a client application using standard protocols such as Hypertext Transfer Protocol
(HTTP) and Simple Object Access Protocol (SOAP), as shown in the following illustration.

■Note Web services are not restricted to SOAP or HTTP, but this chapter will focus on these two as they are all
I use and are the most common.

What does this mean in English? You can create a class, make it available on the Internet, and
have someone on the other side of the world execute the methods on that class as if the methods
were on their local machine. Likewise, Web services enable you to execute other developers’ classes
from anywhere around the world as long as they’re hosted on the Internet. You can also place the
class on a server within your LAN or WAN and execute it exactly the same way using your intranet,
extranet, or whatevernet, but that simply isn’t as exciting, so I’ll stick to Web services’ Internet capa-
bilities in this chapter.

Fraser_640-4C15.fm Page 635 Monday, November 14, 2005 11:57 AM

636 C H A P T E R 1 5 ■ W E B S E R V I C E S

Another cool feature of Web services is that they aren’t just a .NET thing. You can access Web
services written in any computer language on any platform as long as they conform to an agreed-
upon set of standards to communicate, nearly always HTTP and SOAP. This feature allows for simple
integration of diverse legacy systems and new .NET applications.

For those of you who have been coding for a few years, Web services are a much improved alter-
native to DCOM, COBRA, and the like.

Components of a Web Service
Web services are based on well-established networking protocols and a few newer technologies. In
truth, you really don’t have to know much about any of these technologies because .NET handles
them, for the most part, in the background for you. In fact, the first few Web services I wrote were in
complete blissful ignorance of these technologies. But, of course, true to my developer nature, I wanted
to see what happens behind the curtain.

Basically, for a Web service to function, you need

• A communication protocol so that the service and its consuming client can communicate

• A description service so that the consuming client will be able to understand how to use the
Web service

• A discovery service so that the consuming client can find the Web service

In the following sections you’ll take a look at each requirement in a little more detail.

Communication Protocols
Communication between .NET Web services and client consumers is handled via generic HTTP
using, normally, port 80. (For those of you who are HTTP knowledgeable, you are aware that HTTP
is not restricted to port 80.) If you know something about Internet technology, you will recognize this
as the same communication method used by standard Web browsers. Thus, if your system supports
a Web browser, it can also support Web services. This is a key aspect of Web services, as other distrib-
uted application methods use their own specific communication protocols.

Communication between a Web service and a consumer client is always initiated by the client.
Clients communicate with the Web service over HTTP in two different ways:

• HTTP POST commands

• SOAP

If you have done any Web programming, you should be quite comfortable with using HTTP
POST commands. Normally, you will not use this method when implementing Web services because
it is limited to simple data types for passing between the client and the service.

■Caution Make sure you are using HTTP POST and not HTTP GET. HTTP GET is supported by Web services, but
you need to change your default machine.config file. (You must uncomment the line <add name="HttpGet"/>.)
My guess is that Microsoft plans to phase this out, so I recommend that you don’t use HTTP GET, and except for
basic Web service testing, I don’t really see any reason to use HTTP GET anyway.

Fraser_640-4C15.fm Page 636 Monday, November 14, 2005 11:57 AM

C H A P T E R 1 5 ■ W E B S E R V I C E S 637

SOAP is a powerful XML-based protocol that packages up a method call to be executed, along
with any parameters it requires for implementing. This package is then sent using a standard HTTP
request to the Web service. Upon the completion of the execution of a method, SOAP packages up
any return values and sends them back to the client using a standard HTTP response.

The best part of SOAP, at least when it comes to .NET, is you get it for free in almost all cases, and
you don't have to know anything about it so long as you code within the Common Language Specifi-
cation (CLS) specified by .NET. As you will see later in this chapter when I show how to send a DataSet
from a Web service to a client, it is possible to transmit fairly complex data objects using SOAP.

Description Service
It’s all well and good that you send stuff back and forth between the client and the Web service. But
before this communication can take place, the client needs some way to find out what it can request
the Web service to do and what format the request needs to be in. (The format is also known as the
method signature.) You might think that you could use SOAP to handle the descriptive service, but
SOAP was not designed to describe method signatures, only to package them for transport.

The Web service provides this description of its interfaces using the standard called the Web
Services Description Language (WSDL). Like SOAP, WSDL is XML based. But instead of packaging
like SOAP, WSDL actually describes the method signatures. In fact, WSDL describes method signa-
tures in such detail that Visual Studio 2005 imports the WSDL’s XML definitions and uses them to
provide IntelliSense help.

Like all the previous technologies for Web services, WSDL is completely handled by Visual
Studio 2005.

Discovery Service
Even if you can communicate between a client and a Web service and describe how this communi-
cation needs to take place, it’s all still moot if the client doesn’t know where to find the required Web
service it needs to execute. This is the job of the discovery service. .NET provides two discovery services:

• Web Services Discovery tool (DISCO)

• Universal Description, Discovery, and Integration (UDDI)

DISCO is used to describe each Web service in any given virtual directory and any related
subdirectories. Originally, .NET was going to use DISCO as its primary method of discovery, but
with the advent of the superior UDDI, DISCO has become optional. It is still created automatically
by Visual Studio 2005 for those who want to stick with DISCO, but I think it will most probably
disappear in the future.

UDDI’s scope is more far-reaching than DISCO’s. With UDDI, you register your Web service
with a central agency. Once your Web service is registered, third parties can search the agency to
locate your registered Web service.

Personally, I find discovery services only useful if I don’t know the exact URL of the Web service
(which for me is rarely as I am usually the author of the Web service). As you will see later in the
chapter, if you know the URL of the Web service you can access it directly without worrying about
directory services.

Fraser_640-4C15.fm Page 637 Monday, November 14, 2005 11:57 AM

cafac74dd2d083cbec0906b66fcd56b1

638 C H A P T E R 1 5 ■ W E B S E R V I C E S

The Web Services Namespaces
Five namespaces within the .NET Framework are directly related to Web services development:

• System::Web::Services is the primary namespace for Web services development. It consists
of classes required for Web services creation.

• System::Web::Services::Configuration consists of classes that configure how Web services
are created using ASP.NET.

• System::Web::Services::Description provides classes to programmatically interface with
the WSDL.

• System::Web::Services::Discovery provides classes to programmatically discover Web
services on a Web server.

• System::Web::Services::Protocols defines the protocols for transmitting data to and from
the client and Web service over the network.

Most of the time when you develop Web services, you can be almost completely ignorant of the
preceding namespaces. Normally, all you will need when implementing a Web service is two attributes,
WebServiceAttribute and WebMethodAttribute, and an optional class, WebService. You use this class
as a base class from which to inherit your Web service. You can find all three in the
System::Web::Services namespace.

You use the System::Web::Services::Protocols namespace as well, but only indirectly within
auto-generated code created when you add a Web reference.

A Simple Web Service
Enough theory—let’s look at some code. In this example, you’ll create an overly simplified Web
service that finds a zip code based on city and state. It’s so oversimplified that it finds the zip code
only for two city and state combinations. In truth, it really doesn’t matter what the internal workings
of a Web service are, as they’re just (in the case of this book) standard C++/CLI classes. What is
special is the ability to access these classes over a network.

The process of creating a Web service is very easy. The first step is the same as that of any other
project: Select the appropriate template (in this case, the ASP.NET Web Service template) to start
building your Web service and give it a name. As you can see in Figure 15-1, I gave the project the
name FindZipCode.

Once the New Project Wizard finishes, you’re left with (believe it or not) a fully functioning
“Hello World” Web service. Okay, let’s modify the “Hello World” service so that it provides zip code–
finding functionality.

The first thing I usually do with the template is delete the generated Web service *.asmx, *.cpp,
and *.h files. Then I add a new ASP.NET Web service with a more appropriate name. If you like the
default name generated, then you can go ahead and use that one. In the case of this example, I actually
like the default, FindZipCodeClass, so I won’t go through the delete process.

The code generated by the Web service wizard uses the standard two-file format of C++/CLI
(finally, a C++/CLI template that is done correctly!). Well, actually, to be more accurate, the code
generated is a three-file format, since the template provides an .asmx file as well as the .cpp and .h
files. An .asmx file is a Web service file that defines the class where the methods of the service reside.

Web services are not fully supported by C++/CLI and the only way to implement them is to
precompile the source. In other languages, such as C# and Visual Basic .NET, there would be two
additional attributes: the Language attribute, which specifies the language of the associated code,
and the Codebehind attribute, which specifies the source file for the Web service. These other attributes
allow the Web service to be compiled at runtime.

Fraser_640-4C15.fm Page 638 Monday, November 14, 2005 11:57 AM

C H A P T E R 1 5 ■ W E B S E R V I C E S 639

Figure 15-1. Selecting the ASP.NET Web Service template

The first file you should look at is FindZipCodeClass.asmx. In almost all cases, you will not
change the contents of this file. As you can see in Listing 15-1, the file contains a single WebService
directive containing a Class attribute that specifies the name of the associated class with this .asmx file.

Listing 15-1. FindZipCodeClass.asmx

<%@ WebService Class=FindZipCode.FindZipCodeClass %>

The next file of interest in this simple example is the FindZipCodeClass.h file, which contain the
definitions of the methods that make up the Web service. Listing 15-2 shows the final version of
FindZipCodeClass.h.

Listing 15-2. FindZipCodeClass.h

#pragma once

using namespace System;
using namespace System::Web;
using namespace System::Web::Services;

namespace FindZipCode {

 [WebServiceBinding(ConformsTo=WsiProfiles::BasicProfile1_1,
 EmitConformanceClaims = true)]
 [WebService(Namespace="http://procppcli.net",
 Description = "Zip code retrieval service")]
 public ref class FindZipCodeClass : public WebService
 {

Fraser_640-4C15.fm Page 639 Monday, November 14, 2005 11:57 AM

640 C H A P T E R 1 5 ■ W E B S E R V I C E S

 public:
 FindZipCodeClass()
 {
 InitializeComponent();
 }

 protected:
 ~FindZipCodeClass()
 {
 if (components)
 {
 delete components;
 }
 }

 private:
 System::ComponentModel::Container ^components;

#pragma region Windows Form Designer generated code
 void InitializeComponent()
 {
 }
#pragma endregion

 public:
 [WebMethod(Description = "Get the zip code from city and state")]
 int GetZip(String ^city, String ^state);
 };
}

I removed the comments to save space. I also removed the redundant namespace qualifying
because using namespace System::Web::Services does this for you. But you should probably leave
the comments in and update them to reflect your Web service’s functionality. Whether you use the
redundant namespace qualifying is up to you.

You might also notice that the template auto-generated some designer code. This code will
enable the designer to accept components that you drag onto it. I find this facility most helpful when
I drag a database connection to the designer, as it auto-generates the connection string needed to
connect to the dragged database.

The first noteworthy bit of generated code is the auto-generated but optional WebServiceBinding
attribute. This attribute uses the ConformsTo property to specify which Web Services Interoperability
(WSI) specification this Web service claims to conform to and the EmitConformanceClaims property
to specify whether this claim is provided when a WSDL of the Web service is published. Personally,
I have not done anything with this attribute and since it doesn’t impact what I’m doing with the Web
service I just leave it there.

As you might have noticed when you were entering the previous example, the second attribute
WebService is not auto-generated. It is optional, though in this case I recommend always adding it.
The WebService attribute provides the Web service with two important features:

• A guaranteed unique namespace (if used properly). Just like C++/CLI namespaces, this
namespace resolves name clashes between multiple Web services.

• A description of the Web service for potential consumer clients to read and determine if it is
the correct Web service to use.

Fraser_640-4C15.fm Page 640 Monday, November 14, 2005 11:57 AM

C H A P T E R 1 5 ■ W E B S E R V I C E S 641

How do you guarantee a unique namespace? It is possible for some third-party developer to
create a Web service with the exact same name and members as your Web service. So to stop this
from happening, a Web service uses your Web address as a root namespace, because a Web address
is guaranteed to be unique for the Web server that hosts the Web service. Of course, it is still required
that all Web services be unique on a single Web server.

Here is the code for the WebService attribute from the previous example:

[WebService(Namespace="http://procppcli.net",
 Description = "Zip code retrieval service")]

Notice that it uses standard attribute syntax.
The declaration of the ref class FindZipCodeClass and its public method GetZip() have nothing

particularly special about them, except the attributes WebServiceBinding, WebService, and WebMethod.
Most of Web service magic resides in the last WebMethod attribute. The WebMethod attribute is the

only required element (other than the .asmx file) for a Web service. You must add it to any public
methods that you want to be accessible within the Web service.

■Note Only public members with the [WebMethod] attribute are accessible within the Web service.

Even if the member is public, it will not be accessible unless it has a WebMethod attribute. Just like
the WebService attribute, you can include an optional Description of the Method.

 [WebMethod(Description = "Get the zip code from city and state")]

The last file generated by the template of current interest is FindZipCodeClass.cpp, shown in
Listing 15-3.

Listing 15-3. FindZipCodeClass.cpp

#include "stdafx.h"
#include "FindZipCodeClass.h"
#include "Global.asax.h"

namespace FindZipCode
{
 int FindZipCodeClass::GetZip(String ^city, String ^state)
 {
 // Obviously very simplified
 if (city->Equals("Louisville") && state->Equals("KY"))
 return 40241;
 else if (city->Equals("San Jose") && state->Equals("CA"))
 return 95138;
 else
 throw gcnew Exception("Zip Code not found");
 }
};

The public method GetZip() is nothing particularly special, except that it throws an exception
on an error. I could have just as easily returned a predetermined value to handle the not found
condition, but I want to show you that, when you build consuming clients later in the chapter,
exception handling works even over the Internet.

Okay, let’s compile and run the Web service. You can do this the same way as any other appli-
cation. I use Ctrl-F5, but you can use any method you are comfortable with. What you should get is
a Web page that looks something like the one shown in Figure 15-2.

Fraser_640-4C15.fm Page 641 Monday, November 14, 2005 11:57 AM

642 C H A P T E R 1 5 ■ W E B S E R V I C E S

Figure 15-2. The FindZipCode Web service Web page

■Tip You might get the error “Resource can’t be found.” If you do, check the URL that Visual Studio 2005 is trying
to execute. Most likely it is using the solution’s URL instead of the project’s. To fix this, go to Debugging properties
of the project and change the HTTP URL to point to the correct place. In my case the URL contains http://
localhost/Chapter15/findzipcode.asmx and this needed to be changed to http://localhost/
FindZipCode/findzipcode.asmx.

■Tip You might get the error “Unable to load DLL ‘msvcm80d.dll’.” If you do, it means you compiled your Web
service using the /clr:pure option, which has a dependency on this DLL. To get around this error, recompile
the project using the /clr:safe option, which doesn’t have this dependency.

I don’t remember coding this Web page, do you? This Web page was automatically created
when you compiled your Web service. This page is how a third-party developer will get information
about your Web service. Note that I used the term “developer.” The client application will get its
information using WSDL. Because I wasn’t very detailed in my descriptions on the WebService and
WebMethod attributes, this page isn’t very helpful. I personally recommend that you be as detailed as
possible in those attribute descriptions. This will make it easier for a developer to use your Web
service.

Go ahead and click the “Service Description” hyperlink to generate and display the WSDL for
your Web service. As you can see in Listing 15-4, it’s interesting, but I personally don’t need to know
anything about it. I’ll let the computer figure all this out for me.

Listing 15-4. FindZipCode’s WSDL

<?xml version="1.0" encoding="utf-8" ?>
 <wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
 xmlns:tns="http://procppcli.net"

Fraser_640-4C15.fm Page 642 Monday, November 14, 2005 11:57 AM

C H A P T E R 1 5 ■ W E B S E R V I C E S 643

 xmlns:s="http://www.w3.org/2001/XMLSchema"
 xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
 xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
 targetNamespace="http://procppcli.net"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 Zip code retrieval service
 </wsdl:documentation>
 <wsdl:types>
 <s:schema elementFormDefault="qualified"
 targetNamespace="http://procppcli.net">
 <s:element name="GetZip">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1"
 name="city" type="s:string" />
 <s:element minOccurs="0" maxOccurs="1"
 name="state" type="s:string" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="GetZipResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="1" maxOccurs="1"
 name="GetZipResult" type="s:int" />
 </s:sequence>
 </s:complexType>
 </s:element>
 </s:schema>
 </wsdl:types>
 <wsdl:message name="GetZipSoapIn">
 <wsdl:part name="parameters" element="tns:GetZip" />
 </wsdl:message>
 <wsdl:message name="GetZipSoapOut">
 <wsdl:part name="parameters" element="tns:GetZipResponse" />
 </wsdl:message>
 <wsdl:portType name="FindZipCodeClassSoap">
 <wsdl:operation name="GetZip">
 <wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 Get the zip code from city and state
 </wsdl:documentation>
 <wsdl:input message="tns:GetZipSoapIn" />
 <wsdl:output message="tns:GetZipSoapOut" />
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="FindZipCodeClassSoap" type="tns:FindZipCodeClassSoap">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" />
 <wsdl:operation name="GetZip">
 <soap:operation soapAction="http://procppcli.net/GetZip"
 style="document" />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>

Fraser_640-4C15.fm Page 643 Monday, November 14, 2005 11:57 AM

644 C H A P T E R 1 5 ■ W E B S E R V I C E S

 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:binding name="FindZipCodeClassSoap12"
 type="tns:FindZipCodeClassSoap">
 <soap12:binding transport="http://schemas.xmlsoap.org/soap/http" />
 <wsdl:operation name="GetZip">
 <soap12:operation soapAction="http://procppcli.net/GetZip"
 style="document" />
 <wsdl:input>
 <soap12:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap12:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="FindZipCodeClass">
 <wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 Zip code retrieval service
 </wsdl:documentation>
 <wsdl:port name="FindZipCodeClassSoap"
 binding="tns:FindZipCodeClassSoap">
 <soap:address
 location="http://localhost/FindZipCode/FindZipCode.asmx" />
 </wsdl:port>
 <wsdl:port name="FindZipCodeClassSoap12"
 binding="tns:FindZipCodeClassSoap12">
 <soap12:address
 location="http://localhost/FindZipCode/FindZipCode.asmx" />
 </wsdl:port>
 </wsdl:service>
 </wsdl:definitions>

Now go back to the previous page and click the GetZip hyperlink. On this page, you get a simple
dialog box to test your Web service. I’ll show you the code to do this yourself a little later in this chapter.

Another interesting, but unnecessary, bit of information provided on this page are the HTTP
request (see Listing 15-5) and response (see Listing 15-6) SOAP wrappers for your Web service. The
reason that I think that they are provided (other than they look cool) is that other platforms are not
as lucky as .NET and have to build and parse these SOAP wrappers themselves.

Listing 15-5. FindZipCode’s Request SOAP Wrapper

POST /FindZipCode/FindZipCode.asmx HTTP/1.1
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: "http://procppcli.net/GetZip"

Fraser_640-4C15.fm Page 644 Monday, November 14, 2005 11:57 AM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 1 5 ■ W E B S E R V I C E S 645

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <GetZip xmlns="http://procppcli.net">
 <city>string</city>
 <state>string</state>
 </GetZip>
 </soap:Body>
</soap:Envelope>

Listing 15-6. FindZipCode’s Response SOAP Wrapper

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length
<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <GetZipResponse xmlns="http://procppcli.net">
 <GetZipResult>int</GetZipResult>
 </GetZipResponse>
 </soap:Body>
</soap:Envelope>

The last things shown on this page are the request (see Listing 15-7) and response (see Listing 15-8)
for an HTTP POST. You’ll probably use this information only in the simplest of Web services and,
even then, probably only during the debug phase of that Web service’s development. Other platforms,
on the other hand, may need to use this information because they don’t have SOAP support.

Listing 15-7. FindZipCode’s HTTP POST Request

POST /FindZipCode/FindZipCode.asmx/GetZip HTTP/1.1
Host: localhost
Content-Type: application/x-www-form-urlencoded
Content-Length: length

city=string&state=string

Listing 15-8. FindZipCode’s HTTP POST Response

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length

<?xml version="1.0" encoding="utf-8"?>
<int xmlns="http://procppcli.net">int</int>

Congratulations, you’ve made your first C++/CLI Web service! Now let’s look at an assortment
of ways to access your Web service.

Fraser_640-4C15.fm Page 645 Monday, November 14, 2005 11:57 AM

646 C H A P T E R 1 5 ■ W E B S E R V I C E S

Accessing a Web Service Using HTTP POST
Using HTTP POST commands is the easier of the two methods of consuming your Web service. All it
requires is some simple HTML code and a Web browser. The problem with using HTTP POST is that
the response back from the Web service is an XML document that you will need to parse yourself.

Listing 15-9 shows a sample of some HTML code you might use to consume the Web service.
It is basically a stripped-down version of the code generated when you access FindZipCode.asmx.

Listing 15-9. HTML to Consume the FindZipCode Web Service

<HTML>
 <BODY>
 To execute click the 'Invoke' button.
 <form action='http://localhost/FindZipCode/FindZipCode.asmx/GetZip'
 method="POST">
 <table>
 <tr>
 <td>Parameter</td>
 <td>Value</td>
 </tr>
 <tr>
 <td>city:</td>
 <td><input type="text" name="city"></td>
 </tr>
 <tr>
 <td>state:</td>
 <td><input type="text" name="state"></td>
 </tr>
 <tr>
 <td colspan="2" align="center">
 <input type="submit" value="Invoke">
 </td>
 </tr>
 </table>
 </form>
 </BODY>
</HTML>

As you can see, there is not much to this HTML. The only tricky parts are as follows:

• Use a form action attribute that is made up of the Web service’s name, including the .asmx
suffix, followed by the name of the method you want to consume.

• Remember to use within your <form> tag a method attribute of POST and not the more
common GET.

• Make sure the names of the input types match the Web service method parameters’ names.

Figure 15-3 shows the data entry code getzip.html in action. Figure 15-4 shows what the response
is after you click the Invoke button.

Fraser_640-4C15.fm Page 646 Monday, November 14, 2005 11:57 AM

C H A P T E R 1 5 ■ W E B S E R V I C E S 647

Figure 15-3. Consuming the FindZipCode Web service using getzip.html

Figure 15-4. Response to getzip.html from the FindZipCode Web service

Accessing a Web Service Using SOAP
With .NET, the only real way to consume Web services is to use SOAP. As you saw previously, the
SOAP wrapper is quite complex. Fortunately, if you’re using Visual Studio 2005 and C++/CLI (or any
other .NET language, for that matter) you don’t have to know squat about SOAP, because pretty well
everything about SOAP is taken care of for you. (If you use complex objects you might have to mark
up the objects with attributes in order describe how to serialize the object, but that is beyond the
scope of this book.)

Normally, when you’re working with distributed programs, the client would be either a Windows
Form or a Web Form. In the following example, on the other hand, I use a console to be different and
to prove that it can be done. In a later example, I show how to use the more normal Windows Form.

The following example shows how to implement a client using the console. In this example, the
client simply requests three zip codes. The first two are valid city/state combinations and the third
is an invalid combination. The response to all three requests is written to the console. The third
response ends up being a caught exception.

Start by creating a new Console Application (.NET) project. (In the example, I added this project
to the chapter solution just to keep all the same code for a chapter together.)

Fraser_640-4C15.fm Page 647 Monday, November 14, 2005 11:57 AM

648 C H A P T E R 1 5 ■ W E B S E R V I C E S

Once the wizard has done its thing, you need to add a Web reference to the FindZipCode Web
service. I thought it would be neat to use a real Web reference from over the Internet instead of localhost,
so I copied the Web service FindZipCode that I created previously to my Web site host server,
ProCppCLI.net. Unfortunately, ProCppCLI.net does not support .NET Framework version 2.0 yet,
so I had to use an old .NET Framework version 1.1 copy of the Web service from ManagedCpp.net
(which is an old site of mine), but the result is ultimately the same.

■Tip For those of you who want to try out a remote copy of the Web service, I keep a copy of FindZipCode on an
old Web site of mine: www.ManagedCpp.net. You can find the Web service at http://www.managedcpp.net/
FindZipCode/FindZipCode.asmx.

To add a Web reference, you right-click the References folder of your client application and select
Add Web Reference. This will cause the Add Web Reference dialog box to appear (see Figure 15-5).

Figure 15-5. The Add Web Reference dialog box that appears before you select a Web service

From here, you can either click one of the links within the dialog box to search for the Web
service or type the URL of the Web service in the supplied text box. In Figure 15-5, I typed in the URL
of the Web service, but if you don’t have access to a Web server or don’t want to use my copy of the
Web service, then select the “Web services on the local machine” link, which will find and make
available the Web service you built previously. Once you select the Web service, you want the Add
Web Reference dialog box changes to look like Figure 15-6.

Fraser_640-4C15.fm Page 648 Monday, November 14, 2005 11:57 AM

C H A P T E R 1 5 ■ W E B S E R V I C E S 649

Figure 15-6. The Add Web Reference dialog box after you have selected a Web service

Now all you have to do is change the Web reference name to something more appropriate than
the Web server’s name, and then click the Add Reference button.

The addition of a Web reference adds a number of files to your project. Among them are a WSDL
file and a DISCO file. Both are nice to look at but, in most cases, you will do nothing with them
directly. The only file of real importance is the include file with the same name as the Web reference
name you changed previously. All you need to do with this file is include it at the top of your client
application. If you are curious, you can open this file to see some of the details of how the connection
to the Web service is made.

Now you need to make the changes to your main .cpp file, as shown in Listing 15-10.

Listing 15-10. A Console Web Services Client Application

#include "FindZipCode.h"

using namespace System;

void main()
{
 FindZipCode::FindZipCodeClass ^fzc = gcnew FindZipCode::FindZipCodeClass();

 try
 {
 Console::WriteLine(fzc->GetZip("Louisville", "KY").ToString());
 Console::WriteLine(fzc->GetZip("San Jose", "CA").ToString());
 Console::WriteLine(fzc->GetZip("xx", "cc").ToString());
 }

Fraser_640-4C15.fm Page 649 Monday, November 14, 2005 11:57 AM

650 C H A P T E R 1 5 ■ W E B S E R V I C E S

 catch (Exception ^e)
 {
 Console::WriteLine(e->Message);
 }
}

Believe it or not, that’s all the coding you have to do. Notice that you instantiate a Web service
class in the same way as you do any other class:

FindZipCode::FindZipCodeClass ^fzc = gcnew FindZipCode::FindZipCodeClass();

Also notice that you access methods in the same way:

fzc->GetZip("Louisville", "KY").ToString();

From the client programming perspective, there is no difference between using a local class and
using a Web service class. If I were to give this code to a developer, he would have no way of knowing
it uses Web services unless he or she opened the FindZipCode.h include file.

Go ahead and run the client. Figure 15-7 shows the result of the client application
ZipCodeConsoleClient.exe. As is expected, two zip codes are printed to the console, and then the
exception is captured and printed to the console (just as I predicted at the beginning of this example).

Figure 15-7. The client consumer of Web service FindZipCode in action

Debugging a Web Service
Debugging a Web service on its own is really no different than debugging any other .NET applica-
tion. Simply compile within the debug solution configuration and then set breakpoints where you
want the execution to stop.

There is only one scenario that requires you to do anything special, and that is if you create your
Web service within a solution that has a different name than the Web service. When you do this,
starting the debugger causes the error shown in Figure 15-8.

Figure 15-8. The debugging Web service error

The wording of the error doesn’t really explain what caused the error. But it’s very easy to solve
the problem. What has happened is that the URL to your Web service is incorrect. When you build a
Web service from an existing solution, Visual Studio 2005 creates a URL to your Web service using
the solution’s path instead of the Web service’s. Thus, if you look in the Web service project properties
under the Configuration Properties ➤ Debugging folder, you’ll find that the HTTP URL has a value of

Fraser_640-4C15.fm Page 650 Monday, November 14, 2005 11:57 AM

C H A P T E R 1 5 ■ W E B S E R V I C E S 651

http://localhost/solutiondir/webservicename.asmx when it should have the value http://localhost/
webservicedir/webservicename.asmx. To fix the problem, simply type the correct HTTP URL in the
text box.

Debugging a Web service when it is being consumed by a client is, on the other hand, not as
simple and could require a little more effort to set up, depending on how your environment is set up.

The first scenario is when the client and Web service are in two different solutions. If this is the
case, simply start up the Web service solution in debug mode and when the client calls the Web
service the breakpoint will be triggered.

The second scenario is when the client and Web service are in the same solution but in different
projects. In this case, I use the following two procedures (there are probably others that I don’t know).

Procedure 1
The first step is to set a breakpoint in the client calling the Web service just before the first time

you want to call the Web service with the debugger.
Then, the only way you can get the debugger to work within the Web service is to step into the

Web service. Once you have stepped into Web service, from then on you can debug the Web service
just like any other part of the application. In other words, breakpoints within the Web service don’t
work unless you step into the Web service at least once first.

Procedure 2
Open up two instances of Visual Studio 2005 for the solution. One will open a dialog box (see

Figure 15-9) stating that the .ncb file could not be opened for writing.

Figure 15-9. The .ncb file cannot be edited by multiple concurrent instances of Visual Studio.

Remember which instance generated this error, as you don’t want to make any modification to
the code with this instance of Visual Studio 2005.

Now, in either instance start up the Web service in debug mode. Once it has started, open up
the client in the other instance. Now when a call to the Web service is made the first instance of
Visual Studio 2005 will stop at any breakpoints you may have set up (without needing to step into it
like you did in the first procedure).

Passing Data Using a Web Service
I’m going to finish this chapter with a more elaborate example of a Web service. It will take the
MaintAuthors detached database project example you created back in Chapter 12 and convert it to
a Web service.

With this example, you will truly see a detached (figuratively speaking) database, where the
client is on one system and the Web service (database) is located somewhere else on the Internet.

The Web service consists of two methods. The first returns a DataSet of authors, and the second
takes in a DataSet of authors and updates the database based on the batched processes made by the
client to the authors DataSet. You should note that this example considers no concurrency issues

Fraser_640-4C15.fm Page 651 Monday, November 14, 2005 11:57 AM

cafac74dd2d083cbec0906b66fcd56b1

652 C H A P T E R 1 5 ■ W E B S E R V I C E S

(i.e., what happens if multiple clients update the database via the multiple Web service instances at
the same time?).

The Windows Form client application receives a DataSet of authors and then allows additions,
updates, and deletions to the DataSet.

Using Web Service GUI Designer Tool
One neat feature of Visual Studio 2005 is the ability to drag and drop a SqlConnection to a Web
service. Not only does this spare you the time and effort of writing the code for the SqlConnection,
but it also saves you from having to figure out the connection string to connect to a database.

The steps are… actually, the step is quite simple. Directly out of the Server Explorer, drag the
data connection to the database you want to add a connection to, and drop it on the designer screen
of the web service’s .h file. Once you do that, the code needed to create a SqlConnection is automat-
ically added to the actual .h file. Listing 15-11 shows the auto-generated code (both by the project
template and by dropping and dragging a connection) along with the definition of the two Web service
methods needed to implement the detached database.

Listing 15-11. AuthorWSClass.h

using namespace System;
using namespace System::Data;
using namespace System::Data::SqlClient;
using namespace System::Web;
using namespace System::Web::Services;

namespace AuthorWS
{
 [WebServiceBinding(ConformsTo=WsiProfiles::BasicProfile1_1,
 EmitConformanceClaims = true)]
 [WebService(Namespace="http://procppcli.net",
 Description = "Author table access Web service")]
 public ref class AuthorWSClass : public System::Web::Services::WebService
 {

 public:
 AuthorWSClass()
 {
 InitializeComponent();
 }

 protected:
 ~AuthorWSClass()
 {
 if (components)
 {
 delete components;
 }
 }

 private: System::Data::SqlClient::SqlConnection^ sqlConnection;
 private: System::ComponentModel::IContainer^ components;

Fraser_640-4C15.fm Page 652 Monday, November 14, 2005 11:57 AM

C H A P T E R 1 5 ■ W E B S E R V I C E S 653

 private:
 void InitializeComponent()
 {
 this->sqlConnection =
 gcnew System::Data::SqlClient::SqlConnection();
 //
 // sqlConnection
 //
 this->sqlConnection->ConnectionString =
 L"Server=Amidala;Integrated Security=True;Database=DCV_DB";
 this->sqlConnection->FireInfoMessageEventOnUserErrors = false;
 }

 public:
 [WebMethod(Description =
 "Method to retrieve All Authors from the database")]
 DataSet ^GetAuthors();

 [WebMethod(Description =
 "Method to Commit changed made on client with Server database")]
 void UpdateAuthors(DataSet ^dSet);
 };
}

Returning a DataSet
The easier of the two Web service methods to implement relates to filling a DataSet of all authors and
then sending the DataSet from the Web service to the consuming client (see Listing 15-12).

Listing 15-12. Building the Authors DataSet Web Service

DataSet^ AuthorWSClass::GetAuthors()
{
 SqlDataAdapter ^dAdapt;
 DataSet ^dSet;

 dAdapt = gcnew SqlDataAdapter();
 dAdapt->MissingSchemaAction = MissingSchemaAction::AddWithKey;

 dAdapt->SelectCommand =
 gcnew SqlCommand("SELECT AuthorID, LastName, FirstName FROM Authors",
 sqlConnection);
 dSet = gcnew DataSet();
 dAdapt->Fill(dSet, "Authors");

 return dSet;
}

As you can see, a Web service has no problems sending the complex DataSet object using SOAP.
In fact, if it wasn’t for the WebMethod attribute found in the method’s declaration, this method would
look like any other ADO.NET DataSet fill method.

Fraser_640-4C15.fm Page 653 Monday, November 14, 2005 11:57 AM

654 C H A P T E R 1 5 ■ W E B S E R V I C E S

One big difference, though, is that this method uses its own method scope version of the
SqlConnection (auto-generated), DataAdapter, and DataSet. The reason is that a Web service (unless
otherwise specified using the EnableSession property of the WebMethod attribute) is stateless. Basically,
each time the Web service is called, it is from scratch. Thus, there is no need to have the SqlConnection,
DataAdapter, or DataSet stick around after the Web service method has finished. For this same reason,
there is no reason to assign the InsertCommand, UpdateCommand, and DeleteCommand properties to the
DataAdapter as they are not used in the method.

Inserting, Updating, and Deleting Rows in a DataSet
Inserting, updating, and deleting rows in a DataSet via a Web service is handled in virtually the same
way as standard, nondistributed ADO.NET. The UpdateAuthors() method (see Listing 15-13) is made
up of code that is almost exactly the same as what you saw in Chapter 12.

Listing 15-13. Updating the Authors Database Web Service

void AuthorWSClass::UpdateAuthors(DataSet ^dSet)
{
 SqlDataAdapter ^dAdapt;

 dAdapt = gcnew SqlDataAdapter();
 dAdapt->MissingSchemaAction = MissingSchemaAction::AddWithKey;

 dAdapt->InsertCommand =
 gcnew SqlCommand("INSERT INTO Authors (LastName, FirstName) "
 "VALUES (@LastName, @FirstName)",
 sqlConnection);
 dAdapt->InsertCommand->Parameters->Add("@LastName", SqlDbType::VarChar,
 50, "LastName");
 dAdapt->InsertCommand->Parameters->Add("@FirstName", SqlDbType::VarChar,
 50, "FirstName");

 dAdapt->UpdateCommand =
 gcnew SqlCommand("UPDATE Authors SET LastName = @LastName,"
 "FirstName = @FirstName "
 "WHERE AuthorID = @AuthorID",
 sqlConnection);
 dAdapt->UpdateCommand->Parameters->Add("@LastName", SqlDbType::VarChar,
 50, "LastName");
 dAdapt->UpdateCommand->Parameters->Add("@FirstName", SqlDbType::VarChar,
 50, "FirstName");
 dAdapt->UpdateCommand->Parameters->Add("@AuthorID", SqlDbType::Int,
 4, "AuthorID");

 dAdapt->DeleteCommand =
 gcnew SqlCommand("DELETE FROM Authors WHERE AuthorID = @AuthorID",
 sqlConnection);
 dAdapt->DeleteCommand->Parameters->Add("@AuthorID", SqlDbType::Int,
 4, "AuthorID");

 dAdapt->Update(dSet, "Authors");
 }

Fraser_640-4C15.fm Page 654 Monday, November 14, 2005 11:57 AM

C H A P T E R 1 5 ■ W E B S E R V I C E S 655

I’m sure you are seeing the pattern here. Distributed code using Web services is usually very
close to, if not the same as, its nondistributed equivalent. The only real difference is that the class
state is not maintained. Therefore, you have to be careful about global and class variables.

Unlike the plain ADO.NET version in Chapter 12, the Web service creates a new version of the
DataAdapter each time a DataSet update is required. The reason, as I stated previously, is that the
Web service is stateless, so on the call to the AuthorUpdate() method, no DataAdapter object exists.
Having a new or different DataAdapter from the one when the DataSet was created is not an issue,
because a DataAdapter is not strongly linked to the DataSet it is supporting. In fact, as long as the
database schema is the same, DataSets are interchangeable as far as DataAdapters are concerned. As
you will see later, the DataSet of the Update process can be a subset of the one sent by the GetAuthors()
method, because only changed rows are contained within this DataSet.

What is neat about this method is that it can handle inserted, updated, and deleted records, all
in a batch-like manner, instead of requiring a separate method for each of these process types.

■Caution To simplify this example, I didn’t add any code to handle database concurrency.

One major issue that you may encounter when you try to access a database from within a Web
service is that the Web service does not have the rights to access it. Instead you get the following error:

Exception Details: System.Data.SqlClient.SqlException: Login failed for user
'COMPUTERNAME\ASPNET'.

What this means in layman terms is that the Web service logs in to the database using the login
ID of COMPUTERNAME\ASPNET and not your login ID. Thus, if the database is not set up to accept this
login ID, then things don’t go very well for your Web service.

 The solution is simple (once you know it). Add COMPUTERNAME\ASPNET as a user who can log in to
the database in question. To do this, you need to run the following commands (I use SQL Query
Analyzer but you can use the command osql in a command window as well):

USE DATABASENAME
EXEC sp_grantlogin 'COMPUTERNAME\ASPNET'
EXEC sp_grantdbaccess 'COMPUTERNAME\ASPNET'
EXEC sp_addrolemember 'db_owner', 'COMPUTERNAME\ASPNET'
go

where COMPUTERNAME is the name of the computer the Web service is running on.

Authors DataSet Processing Web Service Client
In truth, there is little reason to include this section in the chapter other than to show that very little
has changed in the Web service client application when you compare it to the ADO.NET example in
Chapter 12. Listing 15-14 has been included so that you can compare it to the source code of the
MaintAuthors example in Chapter 12.

Fraser_640-4C15.fm Page 655 Monday, November 14, 2005 11:57 AM

656 C H A P T E R 1 5 ■ W E B S E R V I C E S

Listing 15-14. Web Server Version of the MaintAuthors Application

namespace MaintAuthors
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();

 authors = gcnew AuthorWS::AuthorWSClass();
 dSet = authors->GetAuthors();

 DataTable ^dt = dSet->Tables["Authors"];

 if (dt == nullptr)
 throw gcnew Exception("No Authors Table");

 for each (DataRow ^row in dt->Rows::get())
 {
 lbAuthors->Items->Add(ListBoxItem(row));
 }

 CurrentAuthorID = -1;
 }

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }

 DataSet ^dSet;
 int CurrentAuthorID;
 AuthorWS::AuthorWSClass ^authors;

 void InitializeComponent(void)
 //... Not shown to save space

Fraser_640-4C15.fm Page 656 Monday, November 14, 2005 11:57 AM

C H A P T E R 1 5 ■ W E B S E R V I C E S 657

 private:
 String ^ListBoxItem(DataRow ^row)
 {
 return String::Format("{0} {1} {2}",
 row["AuthorID"],
 row["FirstName"],
 row["LastName"]);
 }

 System::Void bnRollback_Click(System::Object^ sender,
 System::EventArgs^ e)
 {
 dSet->RejectChanges();

 lbAuthors->Items->Clear();

 DataTable ^dt = dSet->Tables["Authors"];

 for each (DataRow^ row in dt->Rows)
 {
 lbAuthors->Items->Add(ListBoxItem(row));
 }
 CurrentAuthorID = -1;
 }

 System::Void bnCommit_Click(System::Object^ sender,
 System::EventArgs^ e)
 {
 authors->UpdateAuthors(dSet->GetChanges());
 dSet->AcceptChanges();

 lbAuthors->Items->Clear();

 DataTable ^dt = dSet->Tables["Authors"];

 for each (DataRow^ row in dt->Rows)
 {
 lbAuthors->Items->Add(ListBoxItem(row));
 }
 CurrentAuthorID = -1;
 }

 System::Void bnDelete_Click(System::Object^ sender,
 System::EventArgs^ e)
 {
 if (CurrentAuthorID < 0)
 return;

 DataTable ^dt = dSet->Tables["Authors"];
 array<DataRow^>^ row =
 dt->Select(String::Format("AuthorID={0}", CurrentAuthorID));

 row[0]->Delete();

Fraser_640-4C15.fm Page 657 Monday, November 14, 2005 11:57 AM

658 C H A P T E R 1 5 ■ W E B S E R V I C E S

 lbAuthors->Items->RemoveAt(lbAuthors->SelectedIndex);
 }

 System::Void bnUpdate_Click(System::Object^ sender,
 System::EventArgs^ e)
 {
 if (CurrentAuthorID < 0)
 return;

 DataTable ^dt = dSet->Tables["Authors"];
 array<DataRow^>^ row =
 dt->Select(String::Format("AuthorID={0}", CurrentAuthorID));

 row[0]["FirstName"] = tbFirstName->Text;
 row[0]["LastName"] = tbLastName->Text;

 lbAuthors->Items->Insert(lbAuthors->SelectedIndex,
 ListBoxItem(row[0]));
 lbAuthors->Items->RemoveAt(lbAuthors->SelectedIndex);
 }

 System::Void bnAdd_Click(System::Object^ sender, System::EventArgs^ e)
 {
 if (tbFirstName->Text->Trim()->Length == 0 ||
 tbLastName->Text->Trim()->Length == 0)
 return;

 DataTable ^dt = dSet->Tables["Authors"];

 DataRow ^row = dt->NewRow();

 row["FirstName"] = tbFirstName->Text;
 row["LastName"] = tbLastName->Text;

 dt->Rows->Add(row);

 lbAuthors->Items->Add(ListBoxItem(row));

 tbFirstName->Text = "";
 tbLastName->Text = "";
 }

 System::Void lbAuthors_SelectedIndexChanged(System::Object^ sender,
 System::EventArgs^ e)
 {
 array<System::Char>^ ASpace = gcnew array<System::Char>{' '};

 if (lbAuthors->SelectedItem == nullptr)
 {
 CurrentAuthorID = -1;
 tbFirstName->Text = "";
 tbLastName->Text = "";
 return;
 }

Fraser_640-4C15.fm Page 658 Monday, November 14, 2005 11:57 AM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 1 5 ■ W E B S E R V I C E S 659

 array<String^>^ split =
 lbAuthors->SelectedItem->ToString()->Split(ASpace);

 CurrentAuthorID = Convert::ToInt32(split[0]);
 tbFirstName->Text = split[1];
 tbLastName->Text = split[2];
 }
 };
}

As you can see, the code is the same except that the ADO.NET DataAdapter and DataSet logic
has been removed. In actuality, this logic should probably have been moved to its own class in the
example in Chapter 12, but this was not done because it simplifies the code listing.

Figure 15-10 shows the Web service version of MaintAuthors.exe in action. Those of you looking
for differences between this and the original version in Chapter 12 won’t find any.

Figure 15-10. Web service version of MaintAuthors

Summary
In this chapter you examined the “net” in .NET: Web services. What you found out is that Web
services are extremely easy to develop and code because you aren’t doing anything different when
coding Web services as compared to developing any other class. In general, any complexities associ-
ated with the distributed application nature of Web services are hidden from you. The only real
difference of note is that Web services are generally coded in a stateless manner.

You started the chapter by covering the basics of Web services. Then you moved on to examine
two different examples of Web services and multiple ways to write consumer clients. The second
example was relatively complex, but the complex logic actually had very little to do with Web services
and more to do with coding ADO.NET in a stateless manner.

In the next chapter, you’ll take a look at a third way of working over a network. This time, you
will take complete control and code at the socket level.

Fraser_640-4C15.fm Page 659 Monday, November 14, 2005 11:57 AM

Fraser_640-4C15.fm Page 660 Monday, November 14, 2005 11:57 AM

661

■ ■ ■

C H A P T E R 1 6

Multithreaded Programming

Normally, multithreaded programming would be one of the more advanced topics, if not the most
advanced topic, in a book, but due to the .NET Framework, it is no more advanced than any other
topic in this book. Why, you might ask? Well, the answer is that the .NET Framework (as usual) has
hidden most of the complexities of this habitually complex area of software development within its
classes.

Having the complexities hidden doesn’t mean it’s any less powerful or flexible than your doing
the entire complex coding yourself. In fact, true to the nature of the .NET Framework, if you want to
get lost in the details, you can still do so. On the other hand, because this chapter is about developing
multithreaded programs using C++/CLI and not about multithreaded programming in general, I try
to stay away from these details and let the .NET Framework deal with them. However, for those of
you who like to delve into the details, I try to point you in the right direction for future exploration.

This chapter starts off by covering multithreaded programming at a high level, so those of you
who are new to multithreaded programming can get comfortable with the concept. Next, you’ll
explore the more commonly used and, fortunately, easy-to-understand multithreaded programming
features provided by the .NET Framework. With the basics covered, you’ll explore some of the more
complex areas of multithreaded programming, including thread states, priorities, and the weighty
topic of synchronization. Finally, you’ll learn about a second way of handling multithreaded
programming: thread pools.

What Is Multithreaded Programming?
Most developers are comfortable with the concept of multitasking, or the capability of computers to
execute more than one application or process at the same time. However, multithreading may be a
more alien term. Many programmers have not had any reason to program in a multithreaded fashion.
In fact, for some programming languages, there is no way to do multithreaded programming without
jumping through some very convoluted programming hoops.

So, what is multithreaded programming? You might want to think of it as multitasking at the
program level. A program has two options for executing itself. The first option is to run itself in one
thread of execution. In this method of execution, the program follows the logic of the program from
start to end in a sequential fashion. You might want to think of this method of execution as single
threaded. The second option is that the program can break itself into multiple threads of execution
or, in other words, split the program into multiple segments (with beginning and end points) and
run some of them concurrently (at the same time). This is what is better known as multithreading.
It should be noted, though, that the end result of either a single-threaded or a multithreaded program
will be the same.

Fraser_640-4C16.fm Page 661 Thursday, November 3, 2005 5:00 PM

662 C H A P T E R 1 6 ■ M U L T I T H R E A D E D P R O G R A M M I N G

Of course, if you have a single processor machine, true concurrency is not possible, as only one
command can be run at a time through the CPU. (With Intel Corporation’s new Hyper-Threading
Technology, you can execute more than one command at the same time on a single CPU, but that is
a topic for another book altogether.) This is an important concept to grasp because many programmers
mistakenly think that if they break a computationally bound section of a program into two parts and
run them in two threads of execution, then the program will take less time to run. The opposite is
actually the case—it will take longer. The reason is that the same amount of code is being run for the
program, plus additional time must be added to handle the swapping of the thread’s context (the
CPU’s registers, stack, and so on).

So for what reason would you use multithreading for a single process computer if it takes longer
than single threading? The reason is that, when used properly, multithreading can provide better I/O-
related response time, as well as better use of the CPU.

Wait a second, didn’t I just contradict myself? Well, actually, I didn’t.
The key point about proper use of multithreading is the types of commands the threads are

executing. Computational bound threads (i.e., threads that do a lot of calculations) gain very little
when it comes to multithreading, as they are already working overtime trying to get themselves
executed. Multithreading actually slows this type of thread down. I/O threads, on the other hand,
gain a lot. This gain is most apparent in two areas: better response and CPU utilization.

I’m sure you’ve all come across a program that seemed to stop or lock up and then suddenly
came back to life. The usual reason for this is that the program is executing a computationally bound
area of the code. And, because multithreading wasn’t being done, there were no CPU cycles provided
for user interaction with the computer. By adding multithreading, it’s possible to have one thread
running the computational bound area and another handling user interaction. Having an I/O thread
allows the user to continue to work while the CPU blasts its way through the computational bound
thread. True, the actual computational bound thread will take longer to run, but because the user
can continue to work, this minute amount of time usually doesn’t matter.

I/O threads are notorious for wasting CPU cycles. Humans, printers, hard drives, monitors, and
so forth are very slow when compared to a CPU. I/O threads spend a large portion of their time
simply waiting, doing nothing. Thus, multithreading allows the CPU to use this wasted time.

Basic .NET Framework Class Library Threading
There is only one namespace that you need to handle threading: System::Threading. What you plan
to do while using the threads will determine which of the classes you will use. Many of the classes
provide different ways to do the same thing, usually differing in the degree of control. Here is a list of
some of the more common classes within the System::Threading namespace:

• AutoResetEvent notifies a waiting thread that an event has occurred. You use this class to
allow communication between threads using signaling. Typically, you use this class for threads
that need exclusive access.

• Interlocked allows for atomic operation on a variable that is shared between threads.

Fraser_640-4C16.fm Page 662 Thursday, November 3, 2005 5:00 PM

C H A P T E R 1 6 ■ M U L T I T H R E A D E D P R O G R A M M I N G 663

• ManualResetEvent notifies one or more threads that an event has occurred. You use this class
to allow communication between threads using signaling. Typically, you use this class for
scenarios where one thread must complete before other threads can proceed.

• Monitor provides a mechanism to synchronize access to objects by locking access to a block
of code, commonly called a critical section. While a thread owns the lock for an object, no
other thread can acquire that lock.

• Mutex provides a synchronization primitive that solves the problem of two or more threads
needing access to a shared resource at the same time. It ensures that only one thread at a time
uses the resource. This class is similar in functionality to Monitor, except Mutex allows for
interprocess synchronization.

• ReaderWriterLock allows a single writer and multiple readers access to a resource. At any
given time, it allows either concurrent read access for multiple threads or write access to a
single thread.

• Semaphore limits the number of threads that can access a particular system resource.

• Thread is the core class to create a thread to execute a portion of the program code.

• ThreadPool provides access to a pool of system-maintained threads.

• WaitHandle allows for the taking or releasing of exclusive access to a shared system-specific
resource.

From the preceding list of classes, you can see that the .NET Framework class library provides
two ways to create threads:

• Thread

• ThreadPool

The difference between the two primarily depends on whether you want to maintain the Thread
object or you want the system to handle it for you. In effect, nearly the same results can be achieved
with either method. I cover Thread first, as it provides you with complete control of your threads.
Later in this chapter, I cover ThreadPool, where the system maintains the process threads—though,
even with this reduction in control, you will see later in the chapter that ThreadPools can be used just
as effectively as Threads. But, before you explore either method, you’ll take a look at thread state and
priority.

Thread State
The .NET Framework thread model is designed to model an execution thread. Many of the Threading
namespace classes and members map directly to an execution state of a thread. Personally, I found
knowing the execution states of a thread ultimately made it easier for me to understand threading,
so using Figure 16-1 and Table 16-1, I’ll walk you through the state and the action required to change
states within the .NET Framework thread model.

Fraser_640-4C16.fm Page 663 Thursday, November 3, 2005 5:00 PM

664 C H A P T E R 1 6 ■ M U L T I T H R E A D E D P R O G R A M M I N G

Figure 16-1. The execution states of a thread

You might want to note that the states in Table 16-1 map directly to the
System::Threading::ThreadState enumeration. And, if you need to determine the current state, you
would look in the ThreadState property in the Thread class.

Table 16-1. The Execution States of a Thread

Action State

The thread is created with the CLR and has not been invoked. Unstarted

The thread executes its start process. Running

The thread continues to run until another action occurs. Running

The running thread calls sleep for a specified length of time. WaitSleepJoin

The running thread calls wait on a locked resource. WaitSleepJoin

Fraser_640-4C16.fm Page 664 Thursday, November 3, 2005 5:00 PM

C H A P T E R 1 6 ■ M U L T I T H R E A D E D P R O G R A M M I N G 665

In addition to these states is a Background state, which means the thread is executing in the
background (as opposed to in the foreground). The biggest difference between a background thread
and a foreground thread is that a background thread ends when the main application thread ends.
A foreground thread continues executing until it is aborted or finishes executing. You set a thread to
be in the background by setting the IsBackground property of the Thread class.

Thread Priorities
Not all threads are created equal. Well, that’s not really true, all threads are created equal. You just
make them unequal later by updating the Priority property of the Thread class. With the .NET
Framework, you have five levels of priorities available to place on a thread:

• Highest

• AboveNormal

• Normal

• BelowNormal

• Lowest

You can find each of the preceding priorities in the System::Threading:ThreadPriority
enumeration.

The basic idea behind priorities is that all threads are created at a Normal priority. When unal-
tered, each “running” thread gets an equal share of processor time. If, on the other hand, you change
the priority of the thread to a higher level—AboveNormal, for example—then the documentation says
it will be scheduled to execute prior to threads at a lower level. Well, this is sort of the case. If that
were truly how the Framework did it, then lower-level threads would never run (in other words, they
would starve) until the higher-level thread finished. This doesn’t happen, so it appears that the .NET
Framework has additional logic in it to allow lower-level priority threads to have at least a little
processor time.

Normally you don’t want to mess with priorities, but for those rare occasions, the functionality,
as you have come to expect with the .NET Framework, is provided.

The running thread calls join on another thread. WaitSleepJoin

Another thread calls interrupt on the WaitSleepJoin thread. Running

Another thread calls suspend on the thread. SuspendRequest

The SuspendRequested thread processes the suspend call. Suspended

Another thread calls resume on a Suspended thread. Running

Another thread calls abort on the thread. AbortRequest

The AbortRequested thread processes the abort call. Aborted

Table 16-1. The Execution States of a Thread

Action State

Fraser_640-4C16.fm Page 665 Thursday, November 3, 2005 5:00 PM

cafac74dd2d083cbec0906b66fcd56b1

666 C H A P T E R 1 6 ■ M U L T I T H R E A D E D P R O G R A M M I N G

Using Threads
Of the two methods available in the .NET Framework for creating threads, Thread and ThreadPool,
the System::Threading::Thread class provides you with the most control and versatility. The cost is
a minor amount of additional coding complexity.

Like all classes in the .NET Framework, the Thread class is made up of properties and methods.
The ones you will most likely use are as follows:

• Abort() is a method that raises a ThreadAbortException in the thread on which it is invoked,
which starts the process of terminating the thread. Calling this method normally results in the
termination of the thread.

• CurrentThread is a static Thread property that represents the currently running thread.

• Interrupt() is a method that interrupts a thread that is currently in the WaitSleepJoin thread
state, thus resulting in the thread returning to the Running thread state.

• IsBackground is a Boolean property that represents whether a thread is a background or a fore-
ground thread. The default is false.

• Join() is a method that causes the calling thread to block until the called thread terminates.

• Name is a String property that represents the name of the thread. You can write the name only
once to this property.

• Priority is a ThreadPriority enumerator property that represents the current priority of the
thread. The default is Normal.

• Resume() is a method that resumes a suspended thread and makes its thread state Running.

• Sleep() is a method that blocks the current thread for a specified length of time and makes its
thread state WaitSleepJoin.

• Start() is a method that causes the thread to start executing and changes its thread state
to Running.

• Suspend() is a method that causes the thread to suspend. The thread state becomes Suspended.

• ThreadState is a ThreadState enumerator property that represents the current thread state of
the thread.

The idea of running and keeping track of two or more things at the same time can get confusing.
Fortunately, in many cases with multithreaded programming, you simply have to start a thread and
let it run to completion without interference.

I start off by showing you that exact scenario first. Then I show you some of the other options
available to you when it comes to thread control.

Starting Threads
The first thing that you need to do to get the multithreaded programming running is to create an
instance of a Thread. In prior versions of the .NET Framework 2.0, you didn’t have much in the way
of options, as there was only one constructor:

System::Threading::Thread(System::Threading::ThreadStart ^start);

The parameter ThreadStart is a delegate to the method that is the starting point of the thread.
The signature of the delegate is a method with no parameters that returns void:

public delegate void ThreadStart();

Fraser_640-4C16.fm Page 666 Thursday, November 3, 2005 5:00 PM

C H A P T E R 1 6 ■ M U L T I T H R E A D E D P R O G R A M M I N G 667

Version 2.0 of the .NET Framework has expanded the constructors by an additional three. All
these additions help to overcome a shortcoming of thread creation. The first addition is to allow the
specification of a ParameterizedThreadStart, instead of a simple ThreadStart, thus allowing an
Object parameter to be passed to the thread.

System::Threading::Thread(System::Threading::ParameterizedThreadStart ^start);

The third and fourth additional constructors expand the other two constructors by allowing the
maximum stack size to be specified. Such fine-tuning of threads is beyond the scope of this book,
but I thought I’d let you know it was available, just in case you need it.

Thread(ThreadStart ^start, Int32 mazStackSize);
Thread(ParameterizedThreadStart ^start, Int32 mazStackSize);

■Caution The maxStackSize passed to the Thread constructor must be greater than 128K (131072) bytes or
an ArgumentOutOfRangeException will be thrown.

One thing that may not be obvious when you first start working with threads is that creating an
instance of the Thread object doesn’t cause the thread to start. The thread state after creating an
instance of the thread is, instead, Unstarted. To get the thread to start, you need to call the Thread
class’s Start() method. It kind of makes sense, don’t you think?

I think it’s about time to look at some code. Take a look at the example of a program that creates
two threads in Listing 16-1. The first thread executes a static method of a class, and the second thread
executes a member class that passes a parameter.

Listing 16-1. Starting Two Simple Threads

using namespace System;
using namespace System::Threading;

ref class MyThread
{
public:
 static void StaticThread();
 void NonStaticThread(Object ^name);
};

void MyThread::StaticThread()
{
 for (int i = 0; i < 50000001; i++)
 {
 if (i % 10000000 == 0)
 Console::WriteLine("Static Thread {0}", i.ToString());
 }
}

void MyThread::NonStaticThread(Object ^name)
{
 for (int i = 0; i < 50000001; i++)
 {

Fraser_640-4C16.fm Page 667 Thursday, November 3, 2005 5:00 PM

668 C H A P T E R 1 6 ■ M U L T I T H R E A D E D P R O G R A M M I N G

 if (i % 10000000 == 0)
 Console::WriteLine("Member {0} Thread {1}",
 name, // Parameter passed
 i.ToString());
 }
}

void main()
{
 Console::WriteLine("Main Program Starts");

 // Creating a thread start delegate for a static method
 ThreadStart ^thrStart = gcnew ThreadStart(&MyThread::StaticThread);
 // Use the ThreadStart to create a Thread handle Object
 Thread ^thr1 = gcnew Thread(thrStart);

 MyThread ^myThr = gcnew MyThread();
 // Creating a Thread reference object in one line from a member method
 Thread ^thr2 = gcnew Thread(
 gcnew ParameterizedThreadStart(myThr, &MyThread::NonStaticThread));

// Uncomment for background vs foreground exploration
// thr1->IsBackground = true;
// thr2->IsBackground = true;

 // Actually starting the threads
 thr1->Start();
 thr2->Start("Parameterized");

 Console::WriteLine("Main Program Ends");
}

The first thing of note is the difference between creating an instance of a delegate from a static
method and creating an instance of a delegate from a member method:

gcnew ThreadStart(MyThread::StaticThread)
gcnew ThreadStart(myThr, &MyThread::MemberThread)

gcnew ParameterizedThreadStart(MyThread::StaticThread)
gcnew ParameterizedThreadStart(myThr, &MyThread::MemberThread)

The first parameter is a handle to the class that contains the delegate method. For a static
method, there is no class handle, so the first parameter is not passed. The second parameter is a fully
qualified method.

The second thing of note is that I had to use really big loops for this example to show the threading
in process. For smaller loops, the first thread finished before the second thread even started. (Wow,
computers are fast!)

Okay, execute StartingThreads.exe by pressing Ctrl-F5. This will compile the program and start
it without the debugger. If no error results, you should get something like Figure 16-2.

Fraser_640-4C16.fm Page 668 Thursday, November 3, 2005 5:00 PM

C H A P T E R 1 6 ■ M U L T I T H R E A D E D P R O G R A M M I N G 669

Figure 16-2. The StartingThreads program in action

Take a look at the top of your output. Your main program started and ended before the threads
even executed their first loop. As you can see, foreground threads (which these are) continue to run
even after the main thread ends.

If you were to uncomment these two lines, before the start method calls, with the lines

 thr1->IsBackground = true;
 thr2->IsBackground = true;

then you would find that the threads stop abruptly without completing when the main thread ends,
just as you would expect. Something you might not expect, though, is that if you set only one of the
threads to the background, it doesn’t end when the main thread ends but instead continues until the
second “foreground” thread completes.

Getting a Thread to Sleep
When you develop your thread, you may find that you don’t need it to continually run or you might
want to delay the thread while some other thread runs. To handle this, you could place a delay loop
like a “do nothing” for loop. However, doing this wastes CPU cycles. What you should do instead is
temporarily stop the thread or put it to sleep.

Doing this couldn’t be easier. Simply add the following static Thread method:

 Thread::Sleep(timeToSleepInMilliseconds);

This line causes the current thread to go to sleep for the interval specified either in milliseconds
or using the TimeSpan structure. The TimeSpan structure specifies a time interval and is created using
multiple overloaded constructors:

TimeSpan(Int64 ticks);
TimeSpan(Int32 hours,Int32 minutes,Int32 seconds);
TimeSpan(Int32 days,Int32 hours,Int32 minutes,Int32 seconds);
TimeSpan(Int32 days,Int32 hours,Int32 minutes,Int32 seconds,Int32 milliseconds);

The Sleep() method also takes two special values: Infinite, which means sleep forever, and 0,
which means give up the rest of the thread’s current CPU time slice.

A neat thing to notice is that main() and WinMain() are also threads. This means you can use
Thread::Sleep() to make any application sleep. In Listing 16-2, both worker threads and the main
thread are all put to sleep temporarily.

Fraser_640-4C16.fm Page 669 Thursday, November 3, 2005 5:00 PM

670 C H A P T E R 1 6 ■ M U L T I T H R E A D E D P R O G R A M M I N G

Listing 16-2. Making a Thread Sleep

using namespace System;
using namespace System::Threading;

ref class MyThread
{
public:
 static void ThreadFunc(Object ^Name);
};

void MyThread::ThreadFunc(Object ^Name)
{
 for (int i = 0; i < 101; i++)
 {
 if (i % 10 == 0)
 Console::WriteLine("{0} {1}", Name, i.ToString());
 Thread::Sleep(10);
 }
}

void main()
{
 Console::WriteLine("Main Program Starts");

 Thread ^thr1 =
 gcnew Thread(gcnew ParameterizedThreadStart(&MyThread::ThreadFunc));
 Thread ^thr2 =
 gcnew Thread(gcnew ParameterizedThreadStart(&MyThread::ThreadFunc));

 thr1->Start("Thread1");
 thr2->Start("Thread2");

 int iHour = 0;
 int iMin = 0;
 int iSec = 1;
 Thread::Sleep(TimeSpan(iHour, iMin, iSec));

 Console::WriteLine("Main Program Ends");
}

Listing 16-2 has a couple of additional bits of bonus logic. First, it shows how to get a handle to
the current thread using the Thread class’s CurrentThread property:

 Thread ^thr = Thread::CurrentThread;

Second, it shows how to assign a name to a thread using the Thread class’s Name property, which
you can retrieve later within the thread:

// When creating thread add
thr1->Name = "Thread1";
// Then later in thread itself
String ^threadName = Thread::CurrentThread->Name;

Fraser_640-4C16.fm Page 670 Thursday, November 3, 2005 5:00 PM

C H A P T E R 1 6 ■ M U L T I T H R E A D E D P R O G R A M M I N G 671

The results of SleepingThreads.exe are shown in Figure 16-3.

Figure 16-3. The SleepingThreads program in action

Notice that the main thread ends in the middle of the thread execution, instead of before it
starts, like in the previous example. The reason is the main thread is put to sleep while the worker
threads run, and then it wakes up just before the other threads end.

Aborting Threads
You might, on occasion, require that a thread be terminated within another thread before it runs
through to its normal end. In such a case, you would call the Abort() method. This method will,
normally, permanently stop the execution of a specified thread.

Notice that I used the term “normally.” What actually happens when a thread is requested to stop
with the Abort() method is that a ThreadAbortException exception is thrown within the thread. This
exception, like any other, can be caught but, unlike most other exceptions, ThreadAbortException is
special as it gets rethrown at the end of the catch block unless the aborting thread’s ResetAbort()
method is called. Calling the ResetAbort() method cancels the abort, which in turn prevents
ThreadAbortException from stopping the thread.

■Caution Something that you must be aware of is that an aborted thread can’t be restarted. If you attempt to do
so, a ThreadStateException exception is thrown instead.

Listing 16-3 shows the Abort() method in action. First it creates two threads, and then it aborts
them. Just for grins and giggles, I then try to restart an aborted thread, which promptly throws an
exception.

Fraser_640-4C16.fm Page 671 Thursday, November 3, 2005 5:00 PM

672 C H A P T E R 1 6 ■ M U L T I T H R E A D E D P R O G R A M M I N G

Listing 16-3. Aborting a Thread

using namespace System;
using namespace System::Threading;

ref class MyThread
{
public:
 static void ThreadFunc(Object ^Name);
};

void MyThread::ThreadFunc(Object ^Name)
{
 Thread ^thr = Thread::CurrentThread;
 try
 {
 for (int i = 0; i < 100; i++)
 {
 Console::WriteLine("{0} {1}", Name, i.ToString());
 Thread::Sleep(1);
 }
 return;
 }
 catch (ThreadAbortException^)
 {
 Console::WriteLine("{0} Aborted", Name);
 // Reset the abort so that the method will continue processing
 // thr->ResetAbort();
 }
}

void main()
{
 Console::WriteLine("Main Program Starts");

 Thread ^thr1 =
 gcnew Thread(gcnew ParameterizedThreadStart(&MyThread::ThreadFunc));
 Thread ^thr2 =
 gcnew Thread(gcnew ParameterizedThreadStart(&MyThread::ThreadFunc));

 thr1->Start("Thread1");
 thr2->Start("Thread2");

 Thread::Sleep(20);
 thr1->Abort();
 Thread::Sleep(40);
 thr2->Abort();

Fraser_640-4C16.fm Page 672 Thursday, November 3, 2005 5:00 PM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 1 6 ■ M U L T I T H R E A D E D P R O G R A M M I N G 673

 try
 {
 thr1->Start();
 }
 catch (ThreadStateException ^tse)
 {
 Console::WriteLine(tse->ToString());
 }
 Console::WriteLine("Main Program Ends");
}

In the exception of the Thread method, I’ve added (but commented out) the code required to
reset the abort so that the thread continues instead of ending.

Figure 16-4 shows AbortingThreads.exe in action. As you can see, even though I catch the
ThreadAbortException exception in the thread, the thread still aborts after leaving the catch block.
As expected, when I try to restart a thread, a ThreadStateException exception is thrown.

Figure 16-4. The AbortingThreads program in action

Joining Threads
Back in the first example in this chapter, you saw that after you created your threads and started
them, the main program then proceeded to terminate. In the case of the first example this is fine, but
what if you want to execute something after the threads finish? Or, more generally, how do you
handle the scenario where one thread needs to wait for another thread to complete before continuing?

What you need to do is join the threads using the Thread class’s Join() method. You can join
threads in three different ways by using one of the three overloaded Join() methods. The first over-
loaded method takes no parameters and waits until the thread completes, and the second takes an
int parameter and then waits the parameter’s specified number of milliseconds or for the thread to
terminate, whichever is shorter. The third overload takes a TimeSpan struct and functions the same
as the previous overload.

The simple example in Listing 16-4 joins the main thread to the first worker thread and then
waits for the worker thread to complete before starting the second worker thread.

Fraser_640-4C16.fm Page 673 Thursday, November 3, 2005 5:00 PM

674 C H A P T E R 1 6 ■ M U L T I T H R E A D E D P R O G R A M M I N G

Listing 16-4. Joining Threads

using namespace System;
using namespace System::Threading;

ref class MyThread
{
public:
 static void ThreadFunc(Object ^Name);
};

void MyThread::ThreadFunc(Object ^Name)
{
 for (int i = 0; i < 5; i++)
 {
 Console::WriteLine("{0} {1}", Name, i.ToString());
 Thread::Sleep(1);
 }
}

void main()
{
 Console::WriteLine("Before starting thread");

 Thread ^thr1 =
 gcnew Thread(gcnew ParameterizedThreadStart(&MyThread::ThreadFunc));
 Thread ^thr2 =
 gcnew Thread(gcnew ParameterizedThreadStart(&MyThread::ThreadFunc));

 thr1->Start("Thread1");
 thr1->Join();

 thr2->Start("Thread2");

 Console::WriteLine("End of Main");
}

Figure 16-5 shows JoiningThreads.exe in action. Notice that the main thread terminates again
after both threads are started, but this time the main thread waited for the first worker thread to end
before starting the second thread.

Figure 16-5. The JoiningThreads program in action

Fraser_640-4C16.fm Page 674 Thursday, November 3, 2005 5:00 PM

C H A P T E R 1 6 ■ M U L T I T H R E A D E D P R O G R A M M I N G 675

Interrupting, Suspending, and Resuming Threads
It is completely possible to take a worker thread and place it in a tight loop, waiting for some event
to occur. Doing this would be a big waste of CPU cycles. It would be better to let the worker thread
sleep and then be woken up when the event occurs. You can do exactly that using a combination of
Sleep() and Interrupt() methods, in conjunction with the
System::Threaded::ThreadInterruptedException exception.

The basic idea is to put the worker thread to sleep using the static Sleep() method, and then
interrupt (the sleep of) the worker thread when the required event occurs using the Interrupt()
member method. Simple enough, I think, except that the Interrupt() method throws a
ThreadInterruptedException exception instead of just terminating the Sleep() method. Thus, you
need to place the Sleep() method in the try of a try/catch block, and then have the worker thread
continue execution in the catch.

Here’s the worker thread:

try
{
 // Wait for event to occur
 Thread::Sleep(Timeout::Infinite);
}
catch(ThreadInterruptedException^)
{
 /*continue processing*/
}

Here’s some other thread:

WorkerThread->Interrupt();

The preceding scenario will work if the worker thread knows when to go to sleep. It may also be
necessary to allow another thread to temporarily stop a different thread and then restart it again
later.

For example, a worker thread could be doing some intense number crunching when along
comes another thread that needs to put a large graphic up on the monitor as soon as possible (the
user interface should almost always get priority).

You can resolve this scenario in at least three ways. First, you could do nothing special and let
the multithreading engine slowly display the graphic. Second, you could raise the priority of the
graphic display thread (or lower the priority of the worker thread), thus giving the graphic display
more cycles. Or third, you could suspend the worker thread, then draw the graphic and, finally,
resume the worker thread. Doing it this way requires two methods and would be done like this:

WorkerThread->Suspend();
// Do stuff
WorkerThread->Resume();

■Caution Choosing either the second or third methods mentioned previously can have some negative side
effects. Changing priorities could lead to sluggish interface response time because the interface thread is now a
lower priority. Suspending a thread could lead to thread deadlocking or starvation as the suspended thread might
hold resources needed by other threads.

For example, the worker thread from the preceding example may hold a lock on a database that the drawing thread
uses to draw the display. Since the worker thread is suspended, it will never relinquish its hold on the database, and
the drawing thread will wait forever for the hold on the database to be released.

Fraser_640-4C16.fm Page 675 Thursday, November 3, 2005 5:00 PM

676 C H A P T E R 1 6 ■ M U L T I T H R E A D E D P R O G R A M M I N G

■Note The Suspend() and Resume() methods have been marked as obsolete in version 2.0 of the .NET Frame-
work and will probably disappear in future releases. The reason is they are so deadlock-prone that using them in all
but the simplest cases is problematic. Microsoft suggests using the Monitor, Mutex, Event, or Semaphore instead,
which I cover later in the chapter (except for Event, as I covered that way back in Chapter 4). I am leaving this section
(from the previous version of the book) in the book for those of you who have used these methods in the past, but
I suggest that you refrain from implementing anything new using them.

Listing 16-5 shows how to implement both of the Thread class’s sleep/interrupt and suspend/
resume functionalities.

Listing 16-5. Sleeping/Interrupting and Suspending/Resuming a Thread

using namespace System;
using namespace System::Threading;

ref class MyThread
{
public:
 static void ThreadFunc1();
 static void ThreadFunc2();
};

void MyThread::ThreadFunc1()
{
 Console::WriteLine("Before long sleep");
 try
 {
 Thread::Sleep(Timeout::Infinite);
 }
 catch(ThreadInterruptedException^){/*continue processing*/}
 Console::WriteLine("After long sleep");
}

void MyThread::ThreadFunc2()
{
 for (int i = 0; i < 5; i++)
 {
 Console::WriteLine("Thread {0}",i.ToString());
 Thread::Sleep(2);
 }
}

void main()
{
 Thread ^thr1 = gcnew Thread(gcnew ThreadStart(&MyThread::ThreadFunc1));
 Thread ^thr2 = gcnew Thread(gcnew ThreadStart(&MyThread::ThreadFunc2));

 Console::WriteLine("Sleep/interrupt thread");
 thr1->Start();

Fraser_640-4C16.fm Page 676 Thursday, November 3, 2005 5:00 PM

C H A P T E R 1 6 ■ M U L T I T H R E A D E D P R O G R A M M I N G 677

 Thread::Sleep(4);
 for (int i = 0; i < 4; i++)
 {
 Console::WriteLine("**Main2 {0}", i.ToString());
 Thread::Sleep(2);
 }
 thr1->Interrupt();
 thr1->Join();

 Console::WriteLine("\nSuspend/resume thread");
 thr2->Start();

 Thread::Sleep(8);
 thr2->Suspend();

 for (int i = 0; i < 4; i++)
 {
 Console::WriteLine("**Main1 {0}", i.ToString());
 Thread::Sleep(2);
 }
 thr2->Resume();
}

You can see the results of ISRingThreads.exe in Figure 16-6.

Figure 16-6. The ISRingThreads program in action

Notice how both provide a similar flow through their threads. The major difference between
sleep/interrupt and suspend/resume is which thread initiates the temporary stopping of the worker
thread.

Using ThreadPools
As the name of the class suggests, System::Threading::ThreadPool provides a system-managed pool
of threads on which to run your application’s threads. Being managed by the system, your multi-
threaded application loses control of how threads are created, managed, and cleaned up. But, in
many cases, your application has no real need to manage threads, as aborting, joining, interrupting,
suspending, and resuming a thread in an application is not always needed.

Fraser_640-4C16.fm Page 677 Thursday, November 3, 2005 5:00 PM

678 C H A P T E R 1 6 ■ M U L T I T H R E A D E D P R O G R A M M I N G

What you lose in control you get back in ease of use. Plus, it simplifies multithreaded programming,
especially if your application is made up of numerous threads. With thread pooling, you’re able to focus
on developing your business logic without getting bogged down with thread management.

For those of you who are interested, this is, at a high level, how a thread pool works. Basically, a
thread pool is created the first time ThreadPool is called. Thread pools use a queuing system that
places a work item (a thread request) on an available thread pool thread. If no thread pool thread is
available, then a new one is created up to a default maximum of 25 threads per available processor.
(You can change this maximum using CorSetMaxThreads, defined in the mscoree.h file.) If the maximum
number of threads is reached, then the work item remains on a queue until a thread pool thread
becomes available. There is no limit to the number of work items that can be queued. (Well, that’s
not quite true. You are restricted to available memory.)

Each thread pool thread runs at the default priority and can’t be cancelled.

■Note Thread pool threads are background threads. As such, you need the main program thread or some other
foreground thread to remain alive the entire life of the application.

You add a work item to the thread pool queue by calling the ThreadPool class’s static
QueueUserWorkItem() method. The QueueUserWorkItem() method takes a WaitCallback delegate
as a parameter and an Object handle parameter to allow you to pass information to the generated
thread. (The method is overloaded so that you don’t have to pass an Object parameter if none is
required.) The WaitCallback delegate has the following signature:

public delegate void WaitCallback(Object^ state);

The Object^ state parameter will contain the Object handle that was passed as the second
parameter to the QueueUserWorkItem() method. The QueueUserWorkItem() method returns true if the
method successfully queues the work item; otherwise, it returns false.

The example in Listing 16-6 shows how simple it is to create two ThreadPool threads.

Listing 16-6. Using Thread Pools

using namespace System;
using namespace System::Threading;

ref class MyThread
{
public:
 void ThreadFunc(Object^ stateInfo);
};

void MyThread::ThreadFunc(Object^ stateInfo)
{
 for (int i = 0; i < 10; i++)
 {
 Console::WriteLine("{0} {1}", stateInfo, i.ToString());
 Thread::Sleep(100);
 }
}

Fraser_640-4C16.fm Page 678 Thursday, November 3, 2005 5:00 PM

C H A P T E R 1 6 ■ M U L T I T H R E A D E D P R O G R A M M I N G 679

void main()
{
 Console::WriteLine("Main Program Starts");

 MyThread ^myThr1 = gcnew MyThread();

 ThreadPool::QueueUserWorkItem(
 gcnew WaitCallback(myThr1, &MyThread::ThreadFunc), "Thread1");
 ThreadPool::QueueUserWorkItem(
 gcnew WaitCallback(myThr1, &MyThread::ThreadFunc), "Thread2");

 Thread::Sleep(2000);
 Console::WriteLine("Main Program Ends");
}

There are only a couple of things of note in the preceding example. The first is the second
parameter in the call to the QueueUserWorkItem() method. This parameter is actually extremely flex-
ible, as you can pass it any managed data type supported by the .NET Framework. In the preceding
example, I passed a String, but you could pass it an instance to an extremely large and complex class
if you want.

The second thing of note is the Sleep() method used to keep the main thread alive. Once the
main thread dies, so do all the threads in the ThreadPool, no matter what they are doing.

You can see the results of ThreadPooling.exe in Figure 16-7.

Figure 16-7. The ThreadPooling program in action

Synchronization
As threads become more complex, you will find that they more than likely start to share resources
between themselves. The problem with shared resources is that only one thread can safely update
them at any one time. Multiple threads that attempt to change a shared resource at the same time
will eventually have subtle errors start to occur in themselves.

These errors revolve around the fact that Windows uses preemptive mode multithreading and
that C++/CLI commands are not atomic or, in other words, require multiple commands to complete.
This combination means that it is possible for a single C++/CLI operation to be interrupted partway

Fraser_640-4C16.fm Page 679 Thursday, November 3, 2005 5:00 PM

cafac74dd2d083cbec0906b66fcd56b1

680 C H A P T E R 1 6 ■ M U L T I T H R E A D E D P R O G R A M M I N G

through its execution. This, in turn, can lead to a problem if this interruption happens to occur when
updating a shared resource.

For example, say two threads are sharing the responsibility of updating a collection of objects
based on some shared integer index. As both threads update the collection using the shared index,
most of the time everything will be fine, but every once in a while something strange will happen due
to the bad timing of the preemptive switch between threads. What happens is that when thread 1 is in
the process of incrementing the shared integer index and just as it is about to store the newly incre-
mented index into the shared integer, thread 2 takes control. This thread then proceeds to increment
the shared value itself and updates the collection object associated with the index. When thread 1
gets control back, it completes its increment command by storing its increment value in the stored
index, overwriting the already incremented value (from thread 2) with the same value. This will
cause thread 1 to update the same collection object that thread 2 has already completed. Depending
on what updates are being done to the collection, this repeated update could be nasty. For example,
maybe the collection was dispersing $1 million to each object in the collection and now that account
in question has been dispersed $2 million.

The ThreadStatic Attribute
Sometimes your synchronizing problem is the result of the threads trying to synchronize in the first
place. What I mean is you have static class scope variables that store values within a single threaded
environment correctly but, when the static variables are migrated to a multithreaded environment,
they go haywire.

The problem is that static variables are not only shared by the class, they are also shared between
threads. This may be what you want, but there are times when you only want the static variables to be
unique between threads.

To solve this, you need to use the System::Threading::ThreadStaticAttribute class. A static
variable with an attribute of [ThreadStatic] is not shared between threads. Each thread has its own
separate instance of the static variable, which is independently updated. This means that each
thread will have a different value in the static variable.

■Caution You can’t use the class’s static constructor to initialize a [ThreadStatic] variable because the call
to the constructor only initializes the main thread’s instance of the variable. Remember, each thread has its own
instance of the [ThreadStatic] variable and that includes the main thread.

Listing 16-7 shows how to create a thread static class variable. It involves nothing more than
placing the attribute [ThreadStatic] in front of the variable that you want to make thread static. I added
a little wrinkle to this example by making the static variable a handle to an integer. Because the variable
is a handle, you need to create an instance of it. Normally, you would do that in the static constructor,
but for a thread static variable this doesn’t work, as then only the main thread’s version of the variable
has been allocated. To fix this, you need to allocate the static variable within the thread’s execution.

Listing 16-7. Synchronizing Using the ThreadStatic Attribute

using namespace System;
using namespace System::Threading;

ref class MyThread
{
public:

 [ThreadStatic]

Fraser_640-4C16.fm Page 680 Thursday, November 3, 2005 5:00 PM

C H A P T E R 1 6 ■ M U L T I T H R E A D E D P R O G R A M M I N G 681

 static int ^iVal;

public:
 static MyThread()
 {
 iVal = gcnew int;
 }

 void ThreadFunc();
 void SubThreadFunc();
};

void MyThread::ThreadFunc()
{
 iVal = gcnew int;
 iVal = 7;

 SubThreadFunc();
}

void MyThread::SubThreadFunc()
{
 int max = *iVal + 5;

 while (*iVal < max)
 {
 Thread ^thr = Thread::CurrentThread;
 Console::WriteLine("{0} {1}", thr->Name, iVal->ToString());
 Thread::Sleep(1);
 (*iVal)++;
 }
}

void main()
{
 Console::WriteLine("Before starting thread");

 MyThread ^myThr1 = gcnew MyThread();

 Thread ^thr1 =
 gcnew Thread(gcnew ThreadStart(myThr1, &MyThread::ThreadFunc));
 Thread ^thr2 =
 gcnew Thread(gcnew ThreadStart(myThr1, &MyThread::ThreadFunc));

 Thread::CurrentThread->Name = "Main";
 thr1->Name = "Thread1";
 thr2->Name = "Thread2";

 thr1->Start();
 thr2->Start();

 myThr1->iVal = 5;
 myThr1->SubThreadFunc();
}

Fraser_640-4C16.fm Page 681 Thursday, November 3, 2005 5:00 PM

682 C H A P T E R 1 6 ■ M U L T I T H R E A D E D P R O G R A M M I N G

■Unsafe Code Referencing a member variable by address is classified as unsafe, so to get this example to
compile, you need to use the /clr:pure or just plain /clr option.

First off, when you comment out the [ThreadStatic] attribute and run the ThreadStaticVars.exe
program, you get the output shown in Figure 16-8. Notice how the value is initialized three times and
then gets incremented without regard to the thread that is running. Maybe this is what you want, but
normally it isn’t.

Figure 16-8. The attribute commented-out ThreadStaticVars program in action

Okay, uncomment the [ThreadStatic] attribute and run ThreadStaticVars.exe again. This time
you’ll get the output shown in Figure 16-9. Notice now that each thread (including the main thread)
has its own unique instance of the static variable.

Figure 16-9. The ThreadStaticVars program in action

Notice that the static constructor works as expected for the main thread, whereas for worker
threads you need to create an instance of the variable before you use it. To avoid having the main
thread create a new instance of the static variable, the class separates the logic of initializing the variable
from the main logic that the thread is to perform, thus allowing the main thread to call the application’s
logic without executing the static variable’s gcnew command.

The Interlocked Class
The opposite of the thread static variable is the interlocked variable. In this case, you want the static
variable to be shared across the class and between threads. The Interlocked class provides you with
a thread-safe way of sharing an integer type variable (probably used for an index of some sort)
between threads.

Fraser_640-4C16.fm Page 682 Thursday, November 3, 2005 5:00 PM

C H A P T E R 1 6 ■ M U L T I T H R E A D E D P R O G R A M M I N G 683

For the sharing of an integer to be thread-safe, the operations to the integer must be atomic. In
other words, operations such as incrementing, decrementing, and exchanging variables can’t be
preempted partway through the operation. Thus, the $2 million problem from earlier won’t occur.

Using an interlocked variable is fairly straightforward. Instead of using the increment (++) or
decrement (--) operator, all you need to do is use the corresponding static
System::Threading::Interlocked class method. Notice in the following declarations that you pass a
handle to the variable you want interlocked and not the value:

static Int32 Interlocked::Increment(Int32 ^ival);
static Int64 Interlocked::Decrement(Int64 ^lval);
static Object^ Exchange(&Object^ oval, Object ^oval);

Listing 16-8 shows a thread-safe way of looping using an interlocked variable.

Listing 16-8. Using the Interlocked Class

using namespace System;
using namespace System::Threading;

ref class MyThread
{
 static int iVal;

public:

 static MyThread()
 {
 iVal = 5;
 }

 void ThreadFunc();
};

void MyThread::ThreadFunc()
{
 while (Interlocked::Increment(iVal) < 15)
 {
 Thread ^thr = Thread::CurrentThread;
 Console::WriteLine("{0} {1}", thr->Name, iVal);
 Thread::Sleep(1);
 }
}

void main()
{
 MyThread ^myThr1 = gcnew MyThread();

 Thread ^thr1 =
 gcnew Thread(gcnew ThreadStart(myThr1, &MyThread::ThreadFunc));
 Thread ^thr2 =
 gcnew Thread(gcnew ThreadStart(myThr1, &MyThread::ThreadFunc));

Fraser_640-4C16.fm Page 683 Thursday, November 3, 2005 5:00 PM

684 C H A P T E R 1 6 ■ M U L T I T H R E A D E D P R O G R A M M I N G

 thr1->Name = "Thread1";
 thr2->Name = "Thread2";

 thr1->Start();
 thr2->Start();
}

Notice that unlike the thread static variable, the static constructor works exactly as it should as
there is only one instance of the static variable being shared by all threads.

Figure 16-10 shows InterlockedVars.exe in action, a simple count from 6 to 14, though the count
is incremented by different threads.

Figure 16-10. The InterlockedVars program in action

The Monitor Class
The Monitor class is useful if you want a block of code to be executed as single threaded, even if the
code block is found in a thread that can be multithreaded. The basic idea is that you use the static
methods found in the System::Threading::Monitor class to specify the start and end points of the
code to be executed as a single task.

It is possible to have more than one monitor in an application. Therefore, a unique Object is
needed for each monitor that you want the application to have. To create the Object to set the
Monitor lock on, simply create a standard static Object:

 static Object^ MonitorObject = gcnew Object();

You then use this Object along with one of the following two methods to specify the starting
point that the Monitor will lock for single thread execution:

• Enter() method

• TryEnter() method

The Enter() method is the easier and safer of the two methods to use. It has the following syntax:

static void Enter(Object^ MonitorObject);

Basically, the Enter() method allows a thread to continue executing if no other thread is within
the code area specified by the Monitor. If another thread occupies the Monitor area, then this thread
will sit and wait until the other thread leaves the Monitor area (known as blocking).

The TryEnter() method is a little more complex in that it has three overloads:

static bool TryEnter(Object^ MonitorObject);
static bool TryEnter(Object^ MonitorObject, int wait);
static bool TryEnter(Object^ MonitorObject, TimeSpan wait);

The first parameter is the MonitorObject, just like the Enter() method. The second parameter that
can be added is the amount of time to wait until you can bypass the block and continue. Yes, you read

Fraser_640-4C16.fm Page 684 Thursday, November 3, 2005 5:00 PM

C H A P T E R 1 6 ■ M U L T I T H R E A D E D P R O G R A M M I N G 685

that right. The TryEnter() method will pass through even if some other thread is currently in the Monitor
area. The TryEnter() method will set the start of the Monitor area only if it entered the Monitor when no
other thread was in the Monitor area. When the TryEnter() method enters an unoccupied Monitor area,
then it returns true; otherwise, it returns false.

This doesn’t sound very safe, does it? If this method isn’t used properly, it isn’t safe. Why would
you use this method if it’s so unsafe? It’s designed to allow the programmer the ability to do some-
thing other than sit at a blocked monitor and wait, possibly until the application is stopped or the
machine reboots. The proper way to use the TryEnter() method is to check the Monitor area. If it’s
occupied, wait a specified time for the area to be vacated. If, after that time, it’s still blocked, go do
something other than enter the blocked area:

if (!Monitor::TryEnter(MonitorObject))
{
 Console::WriteLine("Not able to lock");
 return;
}
//...Got lock go ahead

Of course, as you continue into the blocked Monitor area, your code is no longer multithread-safe.
Not a thing to do without a very good reason. If you code the TryEnter() method to continue into the
Monitor area, even if the area is blocked, be prepared for the program to not work properly.

To set the end of the Monitor area, you use the static Exit() method, which has the following
syntax:

static void Exit(Object^ MonitorObject);

Not much to say about this method other than once it’s executed, the Monitor area blocked by
either the Entry() method or the TryEnter() method is opened up again for another thread to enter.

In most cases, using these three methods should be all you need. For those rare occasions, the
Monitor provides three additional methods that allow another thread to enter a Monitor area even if
it’s currently occupied. The first method is the Wait() method, which releases the lock on a Monitor
area and blocks the current thread until it reacquires the lock. To reacquire a lock, the block thread
must wait for another thread to call a Pulse() or PulseAll() method from within the Monitor area.
The main difference between the Pulse() and PulseAll() methods is that Pulse() notifies the next
thread waiting that it’s ready to release the Monitor area, whereas PulseAll() notifies all waiting threads.

Listing 16-9 shows how to code threads for a Monitor. The example is composed of three threads.
The first two call synchronized Wait() and Pulse() methods, and the last thread calls a TryEnter()
method, which it purposely blocks to show how to use the method correctly.

Listing 16-9. Synchronizing Using the Monitor Class

using namespace System;
using namespace System::Threading;

ref class MyThread
{
 static Object^ MonitorObject = gcnew Object();

public:
 void TFuncOne();
 void TFuncTwo();
 void TFuncThree();
};

Fraser_640-4C16.fm Page 685 Thursday, November 3, 2005 5:00 PM

686 C H A P T E R 1 6 ■ M U L T I T H R E A D E D P R O G R A M M I N G

void MyThread::TFuncOne()
{
 Console::WriteLine("TFuncOne enters monitor");
 Monitor::Enter(MonitorObject);
 for (Int32 i = 0; i < 3; i++)
 {
 Console::WriteLine("TFuncOne Waits {0}", i.ToString());
 Monitor::Wait(MonitorObject);
 Console::WriteLine("TFuncOne Pulses {0}", i.ToString());
 Monitor::Pulse(MonitorObject);
 Thread::Sleep(1);
 }
 Monitor::Exit(MonitorObject);
 Console::WriteLine("TFuncOne exits monitor");
}

void MyThread::TFuncTwo()
{
 Console::WriteLine("TFuncTwo enters monitor");
 Monitor::Enter(MonitorObject);
 for (Int32 i = 0; i < 3; i++)
 {
 Console::WriteLine("TFuncTwo Pulses {0}", i.ToString());
 Monitor::Pulse(MonitorObject);
 Thread::Sleep(1);
 Console::WriteLine("TFuncTwo Waits {0}", i.ToString());
 Monitor::Wait(MonitorObject);
 }
 Monitor::Exit(MonitorObject);
 Console::WriteLine("TFuncTwo exits monitor");
}

void MyThread::TFuncThree()
{
 if (!Monitor::TryEnter(MonitorObject))
 {
 Console::WriteLine("TFuncThree was not able to lock");
 return;
 }
 Console::WriteLine("TFuncThree got a lock");

 Monitor::Exit(MonitorObject);
 Console::WriteLine("TFuncThree exits monitor");
}

void main()
{
 MyThread ^myThr1 = gcnew MyThread();

 (gcnew Thread(gcnew ThreadStart(myThr1, &MyThread::TFuncOne)))->Start();
 Thread::Sleep(2);

Fraser_640-4C16.fm Page 686 Thursday, November 3, 2005 5:00 PM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 1 6 ■ M U L T I T H R E A D E D P R O G R A M M I N G 687

 (gcnew Thread(gcnew ThreadStart(myThr1, &MyThread::TFuncTwo)))->Start();
 Thread::Sleep(2);

 for (int i = 0; i < 2; i++)
 {
 (gcnew Thread(
 gcnew ThreadStart(myThr1, &MyThread::TFuncThree)))->Start();
 Thread::Sleep(50);
 }
}

Notice that a Monitor area need not be a single block of code but, instead, can be multiple
blocks spread out all over the process. In fact, it’s not apparent due to the simplicity of the example,
but the Monitor object can be in another class, and the Monitor areas can spread across multiple
classes so long as the Monitor object is accessible to all Monitor area classes and the Monitor areas fall
within the same process.

The Wait() and Pulse() methods can be tricky to synchronize and, if you fail to call a Pulse()
method for a Wait() method, the Wait() method will block until the process is killed or the machine
is rebooted. You can add timers to the Wait() method in the same fashion as you do the TryEnter()
method, to avoid an infinite wait state. Personally, I think you should avoid using the Wait() and
Pulse() methods unless you have no other choice.

Figure 16-11 shows SyncByMonitor.exe in action.

Figure 16-11. The SyncByMonitor program in action

The Mutex Class
The Mutex class is very similar to the Monitor class in the way it synchronizes between threads. You
define regions of code that must be single threaded or MUTually EXclusive, and then, when a thread
runs, it can only enter the region if no other thread is in the region. What makes the Mutex class special is
that it can define regions across processes. In other words, a thread will be blocked in process 1 if
some thread in process 2 is in the same name Mutex region.

Before I go into detail about Mutex, let’s sidetrack a little and see how you can have the .NET
Framework start one process within another. Creating a process inside another process is fairly easy
to do, but within the .NET Framework it’s far from intuitive because the methods to create a process
are found within the System::Diagnostic namespace.

The procedure for creating a process is similar to that of a thread in that you create a process
and then start it. The actual steps involved in creating a process, though, are a little more involved.
To create a process, you simply create an instance using the default constructor:

Fraser_640-4C16.fm Page 687 Thursday, November 3, 2005 5:00 PM

688 C H A P T E R 1 6 ■ M U L T I T H R E A D E D P R O G R A M M I N G

Process^ proc = gcnew Process();

Next, you need to populate several properties found in the StartInfo property. These proper-
ties will tell the CLR where the process is, what parameters to pass, whether to start the process in its
own shell, and whether to redirect standard input. There are several other properties as well, but
these are the most important:

proc->StartInfo->FileName = "../debug/SyncByMutex.exe";
proc->StartInfo->Arguments = "1";
proc->StartInfo->UseShellExecute = false;
proc->StartInfo->RedirectStandardInput = true;

Finally, once the process is defined, you start it:

proc->Start();

Listing 16-10 shows how to start two copies of the Mutex process that you will build next in
this chapter.

Listing 16-10. Creating Subprocesses

using namespace System;
using namespace System::Diagnostics;
using namespace System::Threading;

void main()
{
 Process^ proc1 = gcnew Process();
 proc1->StartInfo->FileName = "../debug/SyncByMutex.exe";
 proc1->StartInfo->Arguments = "1";
 proc1->StartInfo->UseShellExecute = false;
 proc1->StartInfo->RedirectStandardInput = true;
 proc1->Start();

 Process^ proc2 = gcnew Process();
 proc2->StartInfo->FileName = "../debug/SyncByMutex.exe";
 proc2->StartInfo->Arguments = "2";
 proc2->StartInfo->UseShellExecute = false;
 proc2->StartInfo->RedirectStandardInput = true;
 proc2->Start();

 Thread::Sleep(5000); // Added just to clean up console display
}

You don’t need to use MutexSpawn.exe to run the following Mutex example, but it makes things
easier when you’re trying to test multiple processes running at the same time.

Okay, let’s move on to actually looking at the Mutex class. In general, you’ll use only three methods
on a regular basis within the Mutex class:

• The constructor

• WaitOne()

• ReleaseMutex()

Fraser_640-4C16.fm Page 688 Thursday, November 3, 2005 5:00 PM

C H A P T E R 1 6 ■ M U L T I T H R E A D E D P R O G R A M M I N G 689

Unlike the Monitor class, in which you use a static member, the Mutex class requires you to
create an instance and then access its member methods. Like any other class, to create an instance
of Mutex requires you call its constructor. The Mutex constructor provides five overloads:

Mutex();
Mutex(Boolean owner);
Mutex(Boolean owner, String^ name);
Mutex(Boolean owner, String^ name, &Boolean createdNew);
Mutex(Boolean owner, String^ name, &Boolean createdNew,
 MutexSecurity^ mutexSecurity);

When you create the Mutex object, you specify whether you want it to have ownership of the
Mutex or, in other words, block the other threads trying to enter the region. Be careful, though, that
the constructor doesn’t cause a thread to block. This requires the use of the WaitOne() method, which
you’ll see later in the chapter.

You can create either a named or unnamed instance of a Mutex object but, to share a Mutex across
processes, you need to give it a name. When you provide a Mutex with a name, the Mutex constructor
will look for another Mutex with the same name. If it does find one, then they will synchronize blocks
of code together.

The third constructor adds an output parameter that will have a value of true if this call was the
first constructor to build a Mutex of the specified name; otherwise, the name already exists and will
have the value of false.

The last constructor adds access control security to be applied to the named Mutex. This form of
the constructor is beyond the scope of this book, but basically it allows the addition of access right
rules to the named Mutex.

Once a Mutex object exists, you then must tell it to wait for the region to be unoccupied before
entering. You do this using the Mutex class’s WaitOne() member method:

bool WaitOne();
bool WaitOne(int milliseconds, bool exitContext);
bool WaitOne(TimeSpan span, bool exitContext);

The WaitOne() method is similar to a combination of the Monitor class’s Enter() and TryEnter()
methods, in that the WaitOne() method will wait indefinitely like the Monitor::Enter() method if
you pass it no parameters. If you pass it parameters, though, it blocks for the specified time and then
passes through like the Monitor::TryEnter() method. Just like the TryEnter() method, you should
not, normally, let the thread execute the code within the Mutex region, as that will make the region
not thread-safe.

■Note The exitContext parameter you will probably ignore and set to false, as it is an advanced feature of
Mutex where the WaitOne() method is called from inside a nondefault managed context. This can happen if your
thread is inside a call to an instance of a class derived from ContextBoundObject. (Probably something that you
won’t do unless you are performing some rather advanced C++/CLI coding.)

To specify the end of the Mutex region, you use the Mutex class’s ReleaseMutex() member method.
Just like Monitor’s Enter() and Exit() method combination, you need to match WaitOne() calls with
ReleaseMutex() calls.

Listing 16-11 shows how to code a multithreaded single process. There is nothing special about
it. In fact, I would normally just use a Monitor. Where this example really shines is when it is used in
conjunction with MutexSpawn.exe, as it shows the Mutex class’s real power of handling mutually
exclusive regions of code across processes.

Fraser_640-4C16.fm Page 689 Thursday, November 3, 2005 5:00 PM

690 C H A P T E R 1 6 ■ M U L T I T H R E A D E D P R O G R A M M I N G

Listing 16-11. Synchronizing Using the Mutex Class

using namespace System;
using namespace System::Threading;

ref class MyThread
{
 static Mutex ^m = gcnew Mutex(false, "SyncByMutex");
public:
 static void ThreadFunc();
};

void MyThread::ThreadFunc()
{
 Random^ Rand = gcnew Random;

 Thread ^thr = Thread::CurrentThread;

 for (int i = 0; i < 4; i++)
 {
 m->WaitOne();

 Console::WriteLine("{0} Enter - {1}", thr->Name, i);
 Thread::Sleep(Rand->Next(20, 100)); // Simulate Work
 Console::WriteLine("{0} Exit - {1}", thr->Name, i);
 m->ReleaseMutex();

 Thread::Sleep(Rand->Next(20, 100));
 }
}

int main(int argc, char *argv[])
{
 MyThread ^myThr = gcnew MyThread();

 Thread ^thr1 = gcnew Thread(gcnew ThreadStart(&MyThread::ThreadFunc));
 Thread ^thr2 = gcnew Thread(gcnew ThreadStart(&MyThread::ThreadFunc));

 thr1->Name =
 String::Format("Process {0} - Thread 1", gcnew String(argv[1]));
 thr2->Name =
 String::Format("Process {0} - Thread 2", gcnew String(argv[1]));

 thr1->Start();
 Thread::Sleep(50);
 thr2->Start();
}

Because you’ve already seen how to use the Monitor, the preceding example should be quite
straightforward. The only real difference (other than the names of the methods being different, of
course) is that the Mutex uses an instance object and member method calls, and the Monitor uses
static method calls.

Figure 16-12 shows SyncByMutex.exe in action. Notice that threads in both processes are blocked
and get access to the named Mutex region. Also notice that every enter line has a corresponding exit
line printed before a new thread takes over the Mutex region.

Fraser_640-4C16.fm Page 690 Thursday, November 3, 2005 5:00 PM

C H A P T E R 1 6 ■ M U L T I T H R E A D E D P R O G R A M M I N G 691

■Unsafe Code Passing arguments to the main() function is unsafe code as it uses pointers to pass the values.
You need to use the /clr compiler option.

Figure 16-12. A pair of SyncByMutex programs in action

The ReaderWriterLock Class
The System::Threading::ReaderWriterLock class is a little different from the previous two types of
synchronization in that it uses a multiple-reader/single-writer mechanism instead of the all-or-
nothing approach. What this means is that the ReaderWriterLock class allows any number of threads
to be in a block of synchronized code so long as they are only reading the shared resource within it.
On the other hand, if a thread needs to change the shared resource, then all threads must vacate the
region and give the updating thread exclusive access to it.

This type of synchronization makes sense because if a thread isn’t changing anything, then it
can’t affect other threads. So, why not give the thread access to the shared resource?

The ReaderWriterLock class is very similar to both the Monitor class and the Mutex class. You
specify a region to be synchronized and then have the threads block or pass into this area based on
whether an update is happening in the region.

Like the Mutex class, you create an instance of the ReaderWriterLock class and work with its
member method. To create an instance of the ReaderWriterLock object, you call its default constructor:

ReaderWriterLock();

Once you have a ReaderWriterLock object, you need to determine whether the region of code
you want to block will do only reading of the shared resource or if it will change the shared resource.

If the region will only read the shared resource, then use the following code to set the region as
read-only:

void AcquireReaderLock(int milliseconds);
void AcquireReaderLock(TimeSpan span);

Fraser_640-4C16.fm Page 691 Thursday, November 3, 2005 5:00 PM

692 C H A P T E R 1 6 ■ M U L T I T H R E A D E D P R O G R A M M I N G

You pass both of these overloaded methods a parameter, so specify the length of time you’re
willing to wait before entering the region. Due to the nature of this synchronization method, you
can be sure of one thing: If you’re blocked by this method call, then some other thread is currently
updating the shared resource within. The reason you know some other thread is writing to the region is
because the thread doesn’t block if other threads in the region are only reading the shared resource.

Because you know that some thread is writing in the region, you should make the time you wait
longer than the time needed to complete the write process. Unlike any of the other synchronization
methods you’ve seen in this chapter, when this method times out, it throws an
ApplicationException exception. So if you specify anything other than an infinite wait, you should
catch the exception. The reason these methods throw an exception is that the only reason the wait
time should expire is due to a thread deadlock condition. Deadlock is when two threads wait forever
for each other to complete.

To specify the end of a synchronized read-only region, you need to release the region:

void ReleaseReaderLock();

If the region will require updating of the shared resource within the region, then you need to
acquire a different lock:

void AcquireWriterLock(int milliseconds);
void AcquireWriterLock(TimeSpan span);

Like the reader, these methods pass parameters to avoid the deadlock situation. Unlike the
reader lock, though, these methods block no matter what type of thread falls within the region,
because they allow only one thread to have access. If you were to use only writer locks, then you
would, in effect, be coding a Monitor or a Mutex.

As you would expect, once you’re finished with the writer region, you need to release it:

void ReleaseWriterLock();

Listing 16-12 shows how to implement a multithread application using ReaderWriterLock. Also,
just for grins and giggles, I added an Interlocked::Decrement() method to show you how that works
as well.

Listing 16-12. Synchronizing Using the ReaderWriterLock Class

using namespace System;
using namespace System::Threading;

ref class MyThread
{
 static ReaderWriterLock ^RWLock = gcnew ReaderWriterLock();
 static int iVal = 4;

public:
 static void ReaderThread();
 static void WriterThread();
};

void MyThread::ReaderThread()
{
 String ^thrName = Thread::CurrentThread->Name;
 while (true)
 {
 try
 {

Fraser_640-4C16.fm Page 692 Thursday, November 3, 2005 5:00 PM

C H A P T E R 1 6 ■ M U L T I T H R E A D E D P R O G R A M M I N G 693

 RWLock->AcquireReaderLock(2);

 Console::WriteLine("Reading in {0}. iVal is {1}",
 thrName, iVal);

 RWLock->ReleaseReaderLock();
 Thread::Sleep(4);
 }
 catch (ApplicationException^)
 {
 Console::WriteLine("Reading in {0}. Timed out", thrName);
 }
 }
}

void MyThread::WriterThread()
{
 while (iVal > 0)
 {
 RWLock->AcquireWriterLock(-1);

 Interlocked::Decrement(iVal);
 Console::WriteLine("Writing iVal to {0}", iVal);
 Thread::Sleep(20);

 RWLock->ReleaseWriterLock();
 }
}

void main()
{
 Thread ^thr1 = gcnew Thread(gcnew ThreadStart(&MyThread::ReaderThread));
 Thread ^thr2 = gcnew Thread(gcnew ThreadStart(&MyThread::ReaderThread));
 Thread ^thr3 = gcnew Thread(gcnew ThreadStart(&MyThread::WriterThread));

 thr1->Name = "Thread1";
 thr2->Name = "Thread2";

 thr1->IsBackground = true;
 thr2->IsBackground = true;

 thr1->Start();
 thr2->Start();
 thr3->Start();

 thr3->Join();
 Thread::Sleep(2);
}

In actuality, the preceding code shouldn’t need to use Interlock because the region is already
locked for synchronization. Notice that I created infinite loops for my reader threads. To get these
threads to exit at the completion of the program, I made the background threads.

Figure 16-13 shows SyncByRWLock.exe in action. Notice that I purposely don’t specify a long-
enough wait for the writing process to complete so that the exception is thrown.

Fraser_640-4C16.fm Page 693 Thursday, November 3, 2005 5:00 PM

cafac74dd2d083cbec0906b66fcd56b1

694 C H A P T E R 1 6 ■ M U L T I T H R E A D E D P R O G R A M M I N G

Figure 16-13. The SyncByRWLock program in action

Summary
In this chapter, you examined multithreaded programming within the .NET Framework. You started
by learning the basics of multithreaded programming. Next, you moved on and explored the two
ways of creating threads: Thread and ThreadPool. You finished off the chapter by covering the weighty
topic of thread synchronization.

This is a rather complex topic, and I have barely scratched the surface of it. In fact, most of the
text in this chapter relates to how to implement multithreaded programming using the .NET Framework
and not the theory behind it. If you find this topic interesting, there are many books and articles available
on the proper implementation of multithreaded programming.

Now that you know how to write multithreaded code (which you’ll need for the next chapter)
you can move on to the next chapter and take a look at a third way of working over a network. This
time, you will take complete control and code at the socket level.

Fraser_640-4C16.fm Page 694 Thursday, November 3, 2005 5:00 PM

695

■ ■ ■

C H A P T E R 1 7

Network Programming

You have looked at using C++/CLI to create Web services, but what if you want to go a level deeper
and create your own network-enabled applications? Maybe you are one of the thousands dreaming
of making the next greatest multiplayer game (or possibly massively multiplayer game). Well, the
.NET Framework will not disappoint you in that regard as it has taken good old socket programming
and made it into a much easier and (I think) more powerful interface to work with.

Network programming is an extremely meaty topic, and many books have been written about it.
Apress has a great book on the topic by Andrew Krowczyk, Vinod Kumar, Nauman Laghari, Ajit Mungale,
Christian Nagel, Tim Parker, Alexandru Serban, and Srinivasa Sivakumar called Pro .NET 1.1 Network
Programming, Second Edition. (A .NET 2.0 version is planned for summer 2006.) Like other books
I’ve mentioned, this one is for C# developers, but you should be able to get the basics from it without
any problems. If you are new to network development I recommend that you learn the basics first
from a book like this before you read this chapter. I am going to assume you know about sockets,
ports, packets, TCP, UDP, and the plethora of other concepts, features, and technologies associated
with network programming. Because the topic is so large, what I will be covering instead is how to
use C++/CLI and .NET Framework 2.0 to develop network-enabled applications.

More specifically, this chapter will examine .NET Framework socket coding in C++/CLI for both
connected (TCP) and connectionless (UDP) sockets in both synchronous and asynchronous
approaches. Along the way I will also cover some of the more commonly used helper classes provided
by the .NET Framework.

I had originally thought I’d put this chapter after the one on Web services, but as this chapter
developed I found that a chapter on threads was needed before I could cover the network program-
ming concepts found in this chapter. So if you skipped the previous chapter on multithreaded
programming, you might want to go back and give it a read.

The Network Namespaces
Both connected-oriented and connectionless networks use the same namespaces, System::Net and
System::Net::Socket, to provide their functionality. Most protocol-related classes are found in
System::Net, while System::Net::Socket contains a managed implementation of the Windows
Sockets (Winsock) interface.

Therefore, you will probably find that all of your network-related code will include

using namespace System::Net;
using namespace System::Net::Sockets;

at the top of the class implementation files. Fortunately, because of their frequent use in the .NET
Framework, the actual assembly containing the network functionality is system.dll, which is always
included for you so you don’t have to manually reference anything.

Fraser_640-4C17.fm Page 695 Thursday, November 10, 2005 6:10 PM

696 C H A P T E R 1 7 ■ N E T W O R K P R O G R A M M I N G

Connection-Oriented Sockets
I’m not sure I understand why some programmers try to present an aura of mystery around connection-
oriented sockets, better known by its implementation method: TCP (Transmission Control Protocol).
In its simplest form, you have two parties, a client and a server, that want to communicate with each
other. To accomplish this, the server opens up a socket and then the client connects to it. Once the
connection is made, messages, or more accurately data packets, are sent back and forth between
them, and finally the connection between the two is closed.

Okay, you can complicate things by making elaborate message protocols between the client
and server, but that is not always necessary. In fact, I would argue that if it is extremely complex, then
maybe you might want to sit down and think your protocol through again.

The TCP Server
There are (at least) two parties involved in setting up a TCP connection: the client (or clients) and the
server. Let’s start with the server as it is in charge of providing a location to which the client(s) connect.

Four tasks must be performed by the server to create a location and establish a connection to
a client:

1. Create a socket.

2. Bind the socket to an IPEndPoint. (An IPEndPoint is a combination of an IP address and a
port.)

3. Set the socket to listening mode.

4. Accept the connection from the client in the socket.

Once the connection is established, then nearly any type of data can be sent from the server or
received from the client. Usually communication between the client and server is transactional: One
side sends a message and the other responds. But that is not always the case. It is perfectly all right
for only one side to do all the sending, or to send multiple messages and then periodically receive a
message. Basically, the sky’s the limit. By the way, this sending and receiving of messages describes
what is called a protocol, and as you can see, the complexity of the protocol can range from very
simple to extremely complex.

In network programming, setting up the connection, sending and receiving messages, and
closing the connection is the easy part. (Okay, under the covers, magic is happening but most
programmers don’t have to worry about that.) I think it’s so easy that I’m going to jump ahead and
show you one way to make a connection that can receive multiple clients. There are many methods
of doing this, but I think the one I’m presenting here is the most straightforward (if you read the last
chapter on multithreading, that is). Another reason for jumping ahead is because you are seldom
going to write a server that connects to only a single client.

The process of creating a multiconnection server involves the same four steps mentioned
earlier plus a fifth, which puts the accepted connection on its own thread to run stand-alone.

Create a Socket
Before you can do any TCP communication, you need to create a socket through which the messages
will flow. For a TCP connection there is only one constructor that you have to worry about:

Socket^ socket = gcnew Socket(AddressFamily::InterNetwork,
 SocketType::Stream,
 ProtocolType::Tcp);

Fraser_640-4C17.fm Page 696 Thursday, November 10, 2005 6:10 PM

C H A P T E R 1 7 ■ N E T W O R K P R O G R A M M I N G 697

You may have to change the socket’s name, but the rest of this code will pretty much stay the
same until the new and improved version 6 IP addresses become more prevalent. At that time, the
standard address family will most likely become InterNetworkV6 with a fallback to InterNetwork, if
InterNetworkV6 isn’t available.

The constructor shown here creates a socket to a version 4 IP address, which supports reliable,
two-way, connection-based byte streams without duplication of data and without preservation of
boundaries using the TCP protocol. (Now that is a mouthful!) We’ll come back to this later as it has
one potential gotcha for the unwary.

Bind the Socket to an IPEndPoint
Now that you have a socket sitting out there in the ether, it’s time to bind it to a physical (sort of)
address on your server machine. There are several ways of creating an IP endpoint address, but for
the server you will probably use one of two ways, depending on the number of network interface
cards (NICs) you have on your machine and how restrictive you want to make the connection to
your server machine.

If you have only one NIC on your machine or you don’t care which IP address the client
connects on, then you use the following:

IPEndPoint^ iped = gcnew IPEndPoint(IPAddress::Any, portnumber);

This method says: listen on any IP address available on the machine or allow the client to connect on
any IP address available on the machine. If on the other hand you want to restrict the client to a
single IP address (most useful when you have more than one NIC), then you use something more
like this:

IPEndPoint^ iped = gcnew IPEndPoint(IPAddress::Parse("127.0.0.1"), portnumber);

or any of the other available methods that resolve the IPAddress parameter to a single IP address.
(There is a multitude of ways to get an IP address, but these two are the only ways I have needed for
configuring a server.)

The port number can be any number from 0 to 65535, but to avoid conflicting with the well-
known ports you should start at 1024 instead of 0. Also, you might find that another application is
using your chosen port and then the system will not let you use it. To avoid this possibility, you
should not hard-code the port within your code but instead make it an app.config, web.config, or
Registry entry. (Of course, I’m not going to listen to my own advice and hard-code them but this is
just to simplify the examples.)

By the way, to bind to a socket you simply call the following code:

socket->Bind(iped);

Set the Socket to Listening Mode
There isn’t much to setting a socket to listening mode. You just call the Listen() method of the
Socket class:

socket->Listen(10);

As you can see, it’s hardly what I would call rocket science.
The Listen() method shown here takes a parameter of the number of pending connections

allowed to be queued. Normally, you will just leave it at 10 and forget about it. But what happens if
you are getting periodic connection request spikes that cause the pending connections queue to be
exceeded? At this point the clients are told, “Sorry we’re full, call back later…” (or something to that
effect). To alleviate this, it is possible to tell the Listen() method to increase the size of the pending
connection queue by setting the Listen() method’s parameter to a higher value.

Fraser_640-4C17.fm Page 697 Thursday, November 10, 2005 6:10 PM

698 C H A P T E R 1 7 ■ N E T W O R K P R O G R A M M I N G

One possible problem is that you exceed the maximum pending connection queue size that the
machine supports. To stop this from happening, you must make sure that the value you pass is less
than or equal to SocketOptionName::MaxConnections. Here is the code to set the maximum pending
connection queue size:

socket->Listen((int)SocketOptionName::MaxConnections);

■Caution Even though SocketOptionName::MaxConnections appears to be a value that you would get
or set using the GetSocketOption() or SetSocketOption() method, you actually just use it like a constant.
I cover socket options later in the chapter.

Accept the Connection
The accepting of a connection is not any more difficult than any of the preceding steps; it’s just one
line of code:

Socket^ client = socket->Accept();

As you can see, you don’t have much in the way of options. But believe it or not, how this command
is processed is crucial in determining whether the server processes one or multiple clients. The reason
is that the Accept() method blocks. That is to say, it waits until it gets a connection from a client. What
this means to the program is that, without more than one thread of execution, the program will stop
cold on this method, waiting for a connection.

So how do you get around this? There are multiple ways people have implemented their code to
address this. I will show you the easiest method here (at least I think it’s the easiest).

Place the Accepted Connection on Its Own Thread
Here is the simplest approach: Put the Accept() method in an infinite where loop and then create
threads for each accepted client:

while(true)
{
 Console::WriteLine("Waiting for client connection.");
 Socket^ client = tcpListener->Accept();

 Thread ^thr = gcnew Thread(
 gcnew ParameterizedThreadStart(server, &TcpServer::ProcessThread));
 thr->Start(client);
}

With the addition of the ParameterizedThreadStart delegate in version 2.0 of the .NET Framework,
things have gotten so easy. Just create a thread and pass on the newly accepted client socket. (Prior to
version 2.0 you had to figure out some method of passing the client socket to the thread.)

You might want to review Chapter 16 if the above code looks strange to you, as I covered threads
and ParameterizedThreadStart in quite a bit of detail in that chapter.

Now that there is an accepted client-server socket all set and ready, this is where things can get
more complicated because now developers actually get a chance to do their own thing.

Send a Message
There are two ways of sending a message: either synchronously or asynchronously. I’ll cover asyn-
chronous in detail later in the chapter, but here is the basic difference: Synchronous sending blocks

Fraser_640-4C17.fm Page 698 Thursday, November 10, 2005 6:10 PM

C H A P T E R 1 7 ■ N E T W O R K P R O G R A M M I N G 699

until the message is sent, whereas asynchronous sending does not block and continues execution of
the code without stopping for the send to complete.

To send a message synchronously, you use one of the following overloaded Send() methods:

• Socket.Send (array<unsigned char>^)

• Socket.Send (array<unsigned char>^, SocketFlags)

• Socket.Send (array<unsigned char>^, int length, SocketFlags)

• Socket.Send (array<unsigned char>^, int start, int length, SocketFlags)

As you can see, each just expands upon the parameters from the other. The first parameter is
the unsigned byte array of the message being sent. The first added parameter is SocketFlags (for a
server it will most likely be None). Next is the length of the message being sent, and finally comes the
start point within the unsigned char array (use this if you want to start sending from someplace other
than the actual start of the message array).

With version 2.0 of the .NET Framework, two additional Send() methods were added, both
allowing for the sending of unsigned char data within Generic ILists:

• Socket.Send (Generic IList)

• Socket.Send (Generic IList, SocketFlags)

When sending a message from a server, I usually use

array<unsigned char>^ message =
 Encoding::ASCII->GetBytes("Successful connection");
client->Send(message);

when the message buffer length matches the length of the data being sent (as shown here), or I use

client->Send(message, messagelength, SocketFlags::None);

when the message buffer length does not match the length of the data being sent—for example,
when a generic length buffer is populated by a variable-length message.

Receive a Message
Just as when you’re sending a message, you have two ways of receiving a message: synchronous or
asynchronous. I’ll cover asynchronous receive in detail later in the chapter, but the basic difference
is as follows: Synchronous receiving blocks until the message is received, whereas asynchronous
receiving sets up an event that waits for the message to be received and then continues on without
stopping. Then when the message is finally received, the previously set up event is triggered.

The Receive() method overloads are exactly the same as the sends:

• int Socket.Receive (array<unsigned char>^)

• int Socket.Receive (array<unsigned char>^, SocketFlags)

• int Socket.Receive (array<unsigned char>^, int length, SocketFlags)

• int Socket.Receive (array<unsigned char>^, int start, int length, SocketFlags)

The first parameter is the received unsigned byte array of the message. The next parameter is
SocketFlags—for a server most likely None or Peek (Peek allows you to look into the buffer without
actually taking it out). Next is the length of the message to extract from the receive stream, and finally
comes the start point within the receiving unsigned char array (use this if you want to place the
incoming message someplace other than the actual start of the message array).

Fraser_640-4C17.fm Page 699 Thursday, November 10, 2005 6:10 PM

700 C H A P T E R 1 7 ■ N E T W O R K P R O G R A M M I N G

With version 2.0 of the .NET Framework, two additional Receive() methods were added, both
allowing for the receiving of unsigned char data within Generic ILists:

• Socket.Receive (Generic IList)

• Socket.Receive (Generic IList, SocketFlags)

All receive methods return the number of unsigned char received or zero [0] if the connection
was closed by the client. I use the zero [0] return value to my advantage as I use it to break out of my
data input loops for each instance of a socket connection.

In the following simple example, since the number of unsigned chars being received is unknown
(and also irrelevant), I use the following code to receive data:

if ((rcv = client->Receive(message)) == 0)
 break;

Normally, with more advanced servers you place the length of the following received message,
formatted as an int, in the unsigned char array buf:

if (client->Receive(buf, 4, SocketFlags::Peek) > 0)
{
 int length = BitConverter::ToInt32(buf, 0);
 buf = gcnew array<Byte>(length);

Then to actually receive the message you use a while loop:

int total = 0;
int recv;
int dataLeft = length;
while (total < length) // TCP has an unprotected Message boundary
{
 if ((recv = client->Receive(buf, total, dataLeft, SocketFlags::None)) == 0)
 {
 client->Close();
 break;
 }
 total += recv;
 dataLeft -= recv;
}

Why is all of this code needed? Remember earlier I mentioned a gotcha? TCP simply sends a
stream of data. There is a guarantee that the data will get to its destination and in order, but there is
no guarantee that it will all get there at the same time. It is perfectly possible that half the sent
message will get to the receiver process at the time the Receive() method is called. With the previous
code, the Receive() method will read the rest of the message when it finally arrives. Likewise, it is
possible that two messages will be received at one time. Thus, this process will allow the two messages to
be split and processed separately (assuming that in your sent message you prefix the sent data with
the number of bytes of data sent).

Example TCP Server
Okay, now that we have reviewed all the pieces, let’s see a complete TCP server example. Listing 17-1
is the de facto “Hello World” of network software development: the echo server. It takes in a stream
of data from a client (which we will cover next), dumps it to the server console, and then sends the
same message back to the client. Unlike most introductory versions of the echo, which show a server
that can handle only one client at a time, I skipped ahead and have shown how to write the server so
that it can process any number of concurrent (at the same time) clients.

Fraser_640-4C17.fm Page 700 Thursday, November 10, 2005 6:10 PM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 1 7 ■ N E T W O R K P R O G R A M M I N G 701

Listing 17-1. A TCP Server That Accepts Multiple Concurrent Clients

using namespace System;
using namespace System::Net;
using namespace System::Net::Sockets;
using namespace System::Threading;
using namespace System::Text;

ref class TcpServer
{
public:
 void ProcessThread(Object ^clientObj);
};

void TcpServer::ProcessThread(Object ^clientObj)
{
 Socket^ client = (Socket^)clientObj;
 IPEndPoint^ clientEP = (IPEndPoint^)client->RemoteEndPoint;

 Console::WriteLine("Connected on IP: {0} Port: {1}",
 clientEP->Address, clientEP->Port);

 array<unsigned char>^ msg = Encoding::ASCII->GetBytes(
 String::Format("Successful connection to the server on port {0}",
 clientEP->Port));
 client->Send(msg);

 int rcv;
 while (true)
 {
 msg = gcnew array<unsigned char>(1024);

 if ((rcv = client->Receive(msg)) == 0)
 break;

 Console::WriteLine("Port[{0}] {1}",
 clientEP->Port, Encoding::ASCII->GetString(msg, 0, rcv));

 client->Send(msg, rcv, SocketFlags::None);
 }
 client->Close();
 Console::WriteLine("Connection to IP: {0} Port {1} closed.",
 clientEP->Address, clientEP->Port);
}

void main()
{
 TcpServer^ server = gcnew TcpServer();

 Socket^ tcpListener = gcnew Socket(AddressFamily::InterNetwork,
 SocketType::Stream, ProtocolType::Tcp);

Fraser_640-4C17.fm Page 701 Thursday, November 10, 2005 6:10 PM

702 C H A P T E R 1 7 ■ N E T W O R K P R O G R A M M I N G

 IPEndPoint^ iped = gcnew IPEndPoint(IPAddress::Any, 12345);
 tcpListener->Bind(iped);

 tcpListener->Listen((int)SocketOptionName::MaxConnections);

 while(true)
 {
 Console::WriteLine("Waiting for client connection.");
 Socket^ client = tcpListener->Accept();

 Thread ^thr = gcnew Thread(
 gcnew ParameterizedThreadStart(server, &TcpServer::ProcessThread));
 thr->Start(client);
 }
}

I’ve already covered every bit of this code, but I would like to point out that this code has no way
of exiting unless you kill the console (or press Ctrl-C). I did this so as so as not to add add any additional
complexity to the network code in the example. There are many solutions to this problem, most
involving event handling of keystrokes received on the server machine, but for this example, killing
the window just suited it fine. When you run TcpServer.exe, you should get something like Figure 17-1.

Figure 17-1. The TCP server in action

The TCP Client
A TCP client is simpler than a TCP server, at least when it comes to establishing a connection. The
code for processing a message, on the other hand, is just as simple or complex as that of the server,
since they are mirror images of each other. In other words, when the server sends a message, the
client receives it, and vice versa.

Only two tasks need to be performed by the client to establish a connection to a client:

1. Create a socket.

2. Connect to a server IPEndPoint.

The process of creating a TCP client socket is the same as that for a TCP server socket:

Socket^ socket = gcnew Socket(AddressFamily::InterNetwork,
 SocketType::Stream,
 ProtocolType::Tcp);

Also just like a TCP server, this constructor creates a socket to a version 4 IP address that supports
reliable, two-way, connection-based byte streams without duplication of data and without preservation
of boundaries using the TCP protocol.

Since there is nothing new here, let’s move on.

Fraser_640-4C17.fm Page 702 Thursday, November 10, 2005 6:10 PM

C H A P T E R 1 7 ■ N E T W O R K P R O G R A M M I N G 703

Connect to a Server IPEndPoint
Connecting to a TCP server’s IPEndPoint starts with the creation of an IPEndPoint that points to the
server. Just as you do with the server, you will probably create the IPEndPoint using

IPEndPoint^ iped = gcnew IPEndPoint(IPAddress::Parse("127.0.0.1"), port);

But there is nothing stopping you from using any of the myriad of other ways available to you.
Look carefully at the code. It looks the same as that for the server, but there is a difference. Instead

of the IP address pointing to the local machine where the socket resides, it points to the IP address
of the remote machine where you want the connection to be made.

Once you have an IPEndPoint that points to the server, all it takes to make a connection to the
server is this:

try
{
 server->Connect(iped);
}
catch (SocketException^ se)
{
 Console::WriteLine("Connection to server failed with error: {0}",
 se->Message);
 return;
}

Notice that I made the call to the Connect() method within a try/catch block. The reason is that
if the connection attempt fails, then a SocketException is thrown. In the previous example I imme-
diately give up, but in your code more than likely you will capture the exception, note it somehow,
and then try again.

Example TCP Client
I’m going to move on to the TCP client example as there is no new code to explore when it comes to
sending and receiving messages.

Listing 17-2 is just a simple program that connects to a TCP server, receives a connection
message from the server, and then proceeds to send messages (which you type in from the console)
to the server. After the message is sent, the program waits for the server to send (echo) it back.

Listing 17-2. A TCP Client

using namespace System;
using namespace System::Net;
using namespace System::Net::Sockets;
using namespace System::Threading;
using namespace System::Text;

void main()
{
 Socket^ server = gcnew Socket(AddressFamily::InterNetwork,
 SocketType::Stream, ProtocolType::Tcp);
 try
 {
 IPEndPoint^ iped =
 gcnew IPEndPoint(IPAddress::Parse("127.0.0.1"), 12345);
 server->Connect(iped);
 }

Fraser_640-4C17.fm Page 703 Thursday, November 10, 2005 6:10 PM

704 C H A P T E R 1 7 ■ N E T W O R K P R O G R A M M I N G

 catch (SocketException^ se)
 {
 Console::WriteLine("Connection Failed with error: {0}", se->Message);
 return;
 }

 array<unsigned char>^ msg = gcnew array<unsigned char>(1024);
 int rcv = server->Receive(msg);

 Console::WriteLine(Encoding::ASCII->GetString(msg, 0, rcv));

 while (true)
 {
 Console::Write("Message ('q' to quit): ");
 String^ input = Console::ReadLine();

 if (input->ToLower()->Equals("q"))
 break;

 msg = Encoding::ASCII->GetBytes(input);
 server->Send(msg, msg->Length, SocketFlags::None);

 msg = gcnew array<unsigned char>(1024);
 rcv = server->Receive(msg);
 Console::WriteLine(Encoding::ASCII->GetString(msg, 0, rcv));
 }
 Console::WriteLine("Ended connection with server.");
 server->Shutdown(SocketShutdown::Both);
 server->Close();
}

Notice this time that unlike the server, the client does have a way of exiting cleanly.

Closing the Connection
Without a close process, a clean break between the server and the client is not possible, as once a
connection is made the only clean way of closing the connection is by the client (as in this case) or
the server executing a Close() method on the Socket.

What happens if you don’t call the Close() method and just exit the client? The answer is that
the next time the server tries to do a read it throws a SocketException. Okay, you could just capture
the exception, but that is not the cleanest way of shutting down the connection.

It is the Close() method that causes the Receive() method to receive a zero byte stream (along
with some complicated hidden connection cleanup stuff that we don’t have to worry about).

This leaves the unexplained Shutdown() method. This method is designed to make the shutdown
process cleaner as it disables the sender, receiver, or both sockets. Thus, it stops extraneous messages
from being sent during the disconnection process.

Disconnecting from a Socket
What happens if you want to change the server being connected to partway through the process?
You could close the connection and create a new one from scratch, or you can disconnect from the
current socket using the Disconnect() method and then reconnect it to a new server.

Fraser_640-4C17.fm Page 704 Thursday, November 10, 2005 6:10 PM

C H A P T E R 1 7 ■ N E T W O R K P R O G R A M M I N G 705

The Disconnect() method takes one parameter, a Boolean value that when set to true allows the
socket to be reused. When the parameter is set to false the Disconnect() method acts like a Close()
method. Here is a snippet of code showing the Disconnect() method in action:

client->Shutdown(SocketShutdown::Both);
client->Disconnect(true);

if (client->Connected)
{
 Console::WriteLine("Not good I'm still connnected!");
}
else
{
 try
 {
 IPEndPoint^ iped =
 gcnew IPEndPoint(IPAddress::Parse("127.0.0.1"), 12345);
 server->Connect(iped);
 }
 catch (SocketException^ se)
 {
 Console::WriteLine("Connection Failed with error: {0}", se->Message);
 return;
 }
}

In this code I also show the Connected property that, as you can see, indicates whether a socket
is currently connected.

Okay, now that you are dangerous when it comes to TCP, let’s move on and take a look at
connectionless sockets and UDP (User Datagram Protocol), its most common method of being
implemented.

When you run TcpClient.exe, you should get something like Figure 17-2.

Figure 17-2. The TCP client in action

Connectionless Sockets
Developing connectionless sockets code is still primarily based on the client-server architecture.
However, a client-server architecture need not be as strictly enforced as it is with TCP, as once a
socket is open it can send to and receive from many different sockets during the course of the socket’s
lifetime.

Developing connectionless sockets code using UDP takes a different mind-set than developing
connected socket code with TCP. There are primarily four reasons why this is so:

Fraser_640-4C17.fm Page 705 Thursday, November 10, 2005 6:10 PM

706 C H A P T E R 1 7 ■ N E T W O R K P R O G R A M M I N G

• Data is sent in self-contained packages instead of a stream of data.

• Network messages are not guaranteed to arrive in the same order as they were sent.

• There is no guarantee that duplicated messages won’t arrive.

• Network messages are not guaranteed to arrive at the destination.

So how does this change your mind-set? First off, since data comes in packages you don’t have
to worry about the boundaries of the message being sent. In other words, when you read a UDP
package, you know you have all the data that was sent for that particular package. That is a major
plus in my book, as much of the code to implement TCP involves extracting data out of a stream.

But I guess there has to be a little bad with the good, because you are not guaranteed that messages
will arrive in the order sent or, even worse, that messages will arrive at all. Many approaches have been
developed to address these issues. Most of them involve a sequence number and either a positive or
negative acknowledgment.

Personally, I have a simple approach to UDP coding. I read packages, and if the sequence
number is greater than the last, I keep it and throw away the rest. How can I do this? I use UDP in
only one scenario: computer games where messages come in fast and furious and if you miss one it
doesn’t really matter since the next will fill you in on what you missed. For every other scenario, I use
TCP. I have developed a simple implementation based on positive acknowledgments that allows a
client to re-send specific messages if they did not arrive at the destination (but this is well out of the
scope of this book).

What does this all mean to you? Use TCP unless order and missed packages are not significant
(or you are really good at coding in UDP, in which case you are probably not reading this book).

UDP Server
There really isn’t much difference between the server and the client except that the server is waiting
for packages from someplace, and a client is initiating the conversation and expecting some type of
action from the server (though not necessarily a response package).

Only two tasks need to be performed by the server to create a location for a client to connect to:

1. Create a socket.

2. Bind the socket to an IPEndPoint.

The code for both of these is very similar to that for TCP.

Create a Socket
Just like with TCP, before you can do any UDP communication you need to create a socket through
which the messages will flow. For a UDP connection there is only one constructor that you have to
worry about:

Socket^ socket = gcnew Socket(AddressFamily::InterNetwork,
 SocketType::Dgram,
 ProtocolType::Udp);

This constructor creates a socket to a version 4 IP address that supports connectionless, unreli-
able messages (messages might be lost or duplicated, or arrive out of order) of a fixed (usually small)
maximum length using the UDP protocol.

Fraser_640-4C17.fm Page 706 Thursday, November 10, 2005 6:10 PM

C H A P T E R 1 7 ■ N E T W O R K P R O G R A M M I N G 707

Bind the Socket to an IPEndPoint
There is no difference in creating an IPEndPoint for either TCP or UDP. Because of the nature of
UDP, you will probably use the IPEndPoint frequently. The reason is that you need an EndPoint class
to send and receive data, and one of the easiest ways to create an EndPoint is to create an IPEndPoint
and then typecast it to the EndPoint.

As you’ll recall from our earlier discussion, you will most likely use one of the following methods
to create an IPEndPoint:

• IPEndPoint^ iped = gcnew IPEndPoint(IPAddress::Any, portnumber);

• IPEndPoint^ iped = gcnew IPEndPoint(IPAddress::Parse("127.0.0.1"), portnumber);

TCP and UDP have different purposes for binding to a socket. For TCP, you are creating one
endpoint of a corridor between two specific endpoints. For UDP, on the other hand, you are creating
a two-way door into your system from which you can communicate with any other system and any
other system can communicate with your system.

All you need to know to send a package with another system is that system’s IPEndPoint and the
communication protocol used by that system. The reverse is also true; for another system to commu-
nicate with your system, all it needs to know is your system’s IPEndPoint and your system’s
communication protocol.

The communication protocol can be simple as the echo system (what I get, I will send back),
as extremely complex as a multiplayer gaming system (passwords, multiple packet formats, system
states, etc.), or anything in between.

By the way, to bind to a socket in UDP you simply call the following code:

socket->Bind(iped);

Receive a Message
One of the best aspects of UDP is that when you receive a message packet, it is the complete package.
(You just have to remember that the order, the number, and even whether you get all the sent messages
are always in question.)

Another good feature of the UDP receive method is that you are not restricted to only one source
of messages but instead can receive a message from any UDP sender, as long as the sender knows
the receiver’s IPEndPoint. Because of this, there is no need to spawn threads to handle all connections
to the server. An IPEndPoint, and therefore a single thread, can handle all incoming messages from
all clients.

The actual code for the ReceiveFrom() method that is used to receive messages using UDP is a
bit more involved than that of the connected Receive() method, for two reasons.

First, you need to allocate a buffer to be populated by the ReceiveFrom() method. Be aware that
if you specify a buffer that is too small, then the ReceiveFrom() method will fill as much data as it can
in the buffer, discard all the extra unread data of the packet, and then throw a SocketException.

Second, due to the fact that the ReceiveFrom() method can get messages from any client, the
method needs some way of providing the origin of the message. To accomplish this, an EndPoint is
created and passed as a parameter to the ReceiveFrom() method. Then, when the ReceiveFrom()
method is executed, the passed EndPoint receives the IPEndPoint of the sending client.

This may sound complex, but as you can see from the following code, it is anything but:

array<unsigned char>^ message = gcnew array<unsigned char>(1024);
EndPoint^ Remote = (EndPoint^) gcnew IPEndPoint(IPAddress::Any, 0);
int recv = socket->ReceiveFrom(message, Remote);

Fraser_640-4C17.fm Page 707 Thursday, November 10, 2005 6:10 PM

cafac74dd2d083cbec0906b66fcd56b1

708 C H A P T E R 1 7 ■ N E T W O R K P R O G R A M M I N G

Notice that I use the IPEndPoint constructor to create an EndPoint. You must do this as the
EndPoint class is abstract and you cannot directly create an instance of it.

To receive a message, you use one of the following overloaded ReceiveFrom() methods:

• Socket.ReceiveFrom(array<unsigned char>^, EndPoint)

• Socket.ReceiveFrom(array<unsigned char>^, SocketFlags, EndPoint)

• Socket.ReceiveFrom(array<unsigned char>^, int, SocketFlags, EndPoint)

• Socket.ReceiveFrom(array<unsigned char>^, int, int, SocketFlags, EndPoint)

Again, each just expands upon the other. The first parameter is the unsigned char array of the
message being received, and the last parameter is the EndPoint of the sender. The first added param-
eter is SocketFlags (most likely None); next is the size of the message to be received; and finally we
have the start point within the unsigned char array (use this if you want to place the received message
someplace other than the actual start of the message array).

Just like the connected Receive() method, the ReceiveFrom() method returns the number of
bytes received. But unlike the connected Receive() method, the unconnected ReceiveFrom() method
does not receive any message when a client closes its IPEndPoint. Since this is the case, if you need
your server (or client) to be aware of the demise of its opposite IPEndPoint, you must send some type
of message to notify the server or client of this fact.

Send a Message
Just as when receiving a message, to send a message you need an EndPoint. To acquire an EndPoint,
you will most likely use one created from scratch using an IPEndPoint constructor:

EndPoint^ Remote = gcnew IPEndPoint(IPAddress::Parse("127.0.0.1"), 54321);
array<unsigned char>^ message = Encoding::ASCII->GetBytes("Message");
socket->SendTo(message, Remote);

or use an EndPoint received from a ReceiveFrom() method:

socket->ReceiveFrom(inMessage, Remote);
array<unsigned char>^ outMessage = Encoding::ASCII->GetBytes("Message");
socket->SendTo(outMessage, Remote);

Kind of convenient, don’t you think?
One cool thing about the UDP SendTo() method is that you can send it to many different

EndPoints. Thus, you can use the same block of code to send the same message to multiple clients (or
servers).

The SendTo() method overloads are exactly the same as with the ReceiveFrom() method:

• Socket.SendTo(array<unsigned char>^, EndPoint)

• Socket.SendTo(array<unsigned char>^, SocketFlags, EndPoint)

• Socket.SendTo(array<unsigned char>^, int, SocketFlags, EndPoint)

• Socket.SendTo(array<unsigned char>^, int, int, SocketFlags, EndPoint)

Once again, each just extends from the other. The first parameter is the unsigned char array of
the message being received; the last parameter is the EndPoint of the destination of the message. The
first added parameter is SocketFlags (most likely None); next is the size of the message to be sent; and
next is the start point within the unsigned char array (use this if you want to start sending from
someplace other than the actual start of the message array).

Fraser_640-4C17.fm Page 708 Thursday, November 10, 2005 6:10 PM

C H A P T E R 1 7 ■ N E T W O R K P R O G R A M M I N G 709

Example UDP Server
Now that we have all the pieces, let’s take a look at Listing 17-3, another example of an echo server
but this time using connectionless UDP.

Listing 17-3. A UDP Server That Accepts Multiple Concurrent Clients

using namespace System;
using namespace System::Net;
using namespace System::Net::Sockets;
using namespace System::Text;

void main()
{
 Socket^ socket = gcnew Socket(AddressFamily::InterNetwork,
 SocketType::Dgram, ProtocolType::Udp);
 IPEndPoint^ ipep = gcnew IPEndPoint(IPAddress::Any, 54321);

 socket->Bind(ipep);

 Console::WriteLine("Waiting for client connection.");

 while(true)
 {
 array<unsigned char>^ message = gcnew array<unsigned char>(1024);
 EndPoint^ Remote = (EndPoint^) gcnew IPEndPoint(IPAddress::Any, 0);

 int recv = socket->ReceiveFrom(message, Remote);

 Console::WriteLine("[{0}] {1}",
 Remote->ToString(), Encoding::ASCII->GetString(message, 0, recv));

 socket->SendTo(message, recv, SocketFlags::None, Remote);
 }
}

The first thing you’ll probably notice is that the code contains no special logic to handle multiple
concurrent clients. The second thing you’ll notice is that there is no logic to handle missing, duplicate,
or wrong-order messages. As I mentioned earlier, I usually ignore the problems since I don’t use
UDP when message reliability is needed. If it is, I use TCP.

Also note that there is no way to exit the main loop other than killing the application or pressing
Ctrl-C on the console. This is also by design (and to make the example simple) as killing the app
works fine for me as a way to kill the server.

When you run UdpServer.exe, you should get something like Figure 17-3.

Figure 17-3. The UDP server in action

Fraser_640-4C17.fm Page 709 Thursday, November 10, 2005 6:10 PM

710 C H A P T E R 1 7 ■ N E T W O R K P R O G R A M M I N G

UDP Client Example
No new code is required to create a UDP client, so I’ll just dive directly into the Echo client console
application shown in Listing 17-4.

Listing 17-4. A UDP Client

using namespace System;
using namespace System::Net;
using namespace System::Net::Sockets;
using namespace System::Text;

void main()
{
 Socket^ socket = gcnew Socket(AddressFamily::InterNetwork,
 SocketType::Dgram, ProtocolType::Udp);

// IPEndPoint^ ipep = gcnew IPEndPoint(IPAddress::Any, 54322);
// socket->Bind(ipep);

 EndPoint^ Remote = gcnew IPEndPoint(IPAddress::Parse("127.0.0.1"),
 54321);

 while (true)
 {
 Console::Write("Message ('q' to quit): ");
 String^ input = Console::ReadLine();

 if (input->ToLower()->Equals("q"))
 break;

 array<unsigned char>^ message = Encoding::ASCII->GetBytes(input);
 socket->SendTo(message, Remote);

 message = gcnew array<unsigned char>(1024);
 int recv = socket->ReceiveFrom(message, Remote);
 Console::WriteLine("[{0}] {1}",
 Remote->ToString(), Encoding::ASCII->GetString(message, 0, recv));
 }
}

The first thing that should jump out at you from this code is that there is no bind to an IPEndPoint.
In the example, there is no need since the first method call used by the socket class is the SendTo()
method. This method has a handy built-in feature: It does the bind for you. Once you call the
SendTo() method, all subsequent sends and receives will come through the randomly generated
IPEndPoint assigned by that SendTo() method.

There is nothing stopping you from binding the socket yourself. Well, actually, I take that back.
There is. You cannot bind twice to the same IPEndPoint. So you must use a unique IP address (or
port) for each client and server. Either method is easy if clients and servers are on different machines.
On the same machine, I recommend just using unique ports as things get a little trickier for IP
addresses, especially if you have only one NIC, because you need to use specific IP addresses like
192.168.1.102 for the one IP and 127.0.0.1 for the other.

Fraser_640-4C17.fm Page 710 Thursday, November 10, 2005 6:10 PM

C H A P T E R 1 7 ■ N E T W O R K P R O G R A M M I N G 711

Another thing that should stand out in the previous program is that the client must know the
specific IPEndPoint, bound by the server, that it is connecting with. Without this, the client cannot
connect to the server.

Using Connect() with UDP
What if you are always sending and receiving from the same EndPoint? It seems a little redundant to
continually send and receive the same address over and over. Well, you are in luck; UDP provides the
ability to “sort of” connect to an EndPoint using a socket class Connect() method:

EndPoint^ Remote = gcnew IPEndPoint(IPAddress::Parse("127.0.0.1"), 54321);
socket->Connect(Remote);

The Connect() method does not cause a true connection but instead allows you to use the
Send() and Receive() methods, which don’t require the repeated use of an EndPoint. The syntax of
the Send() and Receive() methods is the same as what is shown here in connection-oriented sockets.

Listing 17-5 shows a connected UDP client echo application.

Listing 17-5. A UDP Client Using Connect()

using namespace System;
using namespace System::Net;
using namespace System::Net::Sockets;
using namespace System::Text;

void main()
{
 Socket^ socket = gcnew Socket(AddressFamily::InterNetwork,
 SocketType::Dgram, ProtocolType::Udp);

 EndPoint^ Remote = gcnew IPEndPoint(IPAddress::Parse("127.0.0.1"),
 54321);
 socket->Connect(Remote);

 while (true)
 {
 Console::Write("Message ('q' to quit): ");
 String^ input = Console::ReadLine();

 if (input->ToLower()->Equals("q"))
 break;

 array<unsigned char>^ message = Encoding::ASCII->GetBytes(input);
 socket->Send(message);

 message = gcnew array<unsigned char>(1024);
 int recv = socket->Receive(message);

 Console::WriteLine("[{0}] {1}",
 Remote->ToString(), Encoding::ASCII->GetString(message, 0, recv));
 }
}

Fraser_640-4C17.fm Page 711 Thursday, November 10, 2005 6:10 PM

712 C H A P T E R 1 7 ■ N E T W O R K P R O G R A M M I N G

As you can see, the code in Listing 17-4 is functionally equivalent to that in Listing 17-5; both
can send to and receive messages from the same server. The only difference is that using the Connect()
method in Listing 17-5 has allowed us to use the simplified Send()/Receive() method syntax instead
of the (slightly more complex) SendTo()/ReceiveFrom() method syntax, at the expense of the socket
being able to talk to only a single preset EndPoint.

When you run UdpClient.exe, you should get something like Figure 17-4.

Figure 17-4. The UDP client in action

Socket Helper Classes and Methods
Okay, I’ve shown you the hard way to create connection-oriented and connectionless network code.
Let’s see if there is an easier way of doing the same thing—maybe at the expense of a little (usually
unneeded) control.

TcpListener
Since the code to establish a TCP server connection is almost always the same no matter the imple-
mentation, the .NET Framework has provided TcpListener, a class that simplifies the whole process.

The TcpListener constructor has two overloads (there is a third but it is marked as obsolete),
each providing a different way of determining the IPEndPoint that the TCP connection will be estab-
lished on:

• TcpListener(IPAddress^ address, int port)

• TcpListener(IPEndPoint^ ipep)

The first overload allows you to pass the IP address and the port on which you want to make the
connection. The second constructor allows you to build the IPEndPoint yourself and pass it into the
TcpListener class.

Once you have an instance to a TcpListener object, you must start the listener up with the aptly
named Start() method.

Now you are ready to accept socket connections on the IPEndPoint using the AcceptSocket()
method. Listing 17-6 is the main method of a simplified version of Listing 17-1 using the TcpListener
helper class. I did not include the TcpServer class’s code as it is identical to that of Listing 17-1.

Listing 17-6. A TCP Server’s Main Method Using TcpListener

using namespace System;
using namespace System::Net;
using namespace System::Net::Sockets;
using namespace System::Threading;
using namespace System::Text;

Fraser_640-4C17.fm Page 712 Thursday, November 10, 2005 6:10 PM

C H A P T E R 1 7 ■ N E T W O R K P R O G R A M M I N G 713

//... TcpServer class

void main()
{
 TcpServer^ server = gcnew TcpServer();

 TcpListener^ socket = gcnew TcpListener(IPAddress::Any, 12345);
 socket->Start();

 while(true)
 {
 Console::WriteLine("Waiting for client connection.");
 Socket^ client = socket->AcceptSocket();

 Thread ^thr = gcnew Thread(
 gcnew ParameterizedThreadStart(server, &TcpServer::ProcessThread));
 thr->Start(client);
 }
}

Cleans up the code nicely, doesn’t it? But we’re not done with the simplifications.

TcpClient
TCP communication is via a stream, right? So why not allow sending and receiving of messages to be
handled as a stream instead of using the TCP Send() and Receive() methods? The TcpClient provides
this functionality by providing a stream interface to TCP messages.

Just to confuse things, you can (and probably will) use the TcpClient on both the client and the
server, as the code to set up the connection as a stream works equally well in both instances. The
only real difference is that on a server you will accept a TcpClient using the AcceptTcpClient()
method instead of the AcceptSocket() method like this:

TcpClient^ client = socket->AcceptTcpClient();

While on the client, you will create your own instance of it.
While creating an instance of TcpClient, you have the option of just using the constructor to

connect to the server or using the Connect() method later on. The overloads to both are nearly the
same; the main difference I see is that the Connect() method allows you to make the connection at a
different time than when creating the instance of TcpClient.

• TcpClient()

• TcpClient(AddressFamily^)

• TcpClient(IPEndPoint^)

• TcpClient(String^ hostname, Int32 port)

The first two constructors don’t provide the ability to immediately connect to a server for the
obvious reason that the server’s address has not been specified. The difference between these two
constructors is that the second constructor allows TcpClient to use version 6 IP addresses by passing
an address family of InterNetworkV6.

The second and third constructors will automatically attempt to connect to the server specified
by the passed parameter. You have already seen the IPEndPoint, so let’s move on to the last constructor.
This neat little constructor allows you to pass either the IP address or the DNS host name (sweet! if
you ask me), and the port to connect on. A DNS host name is the more human-friendly name you

Fraser_640-4C17.fm Page 713 Thursday, November 10, 2005 6:10 PM

714 C H A P T E R 1 7 ■ N E T W O R K P R O G R A M M I N G

type in when you are using Internet Explorer, Firefox, or whatever browser you prefer—for example,
www.managedcpp.net or www.procppcli.net (just a little plug for my C++/CLI Web site).

As I said earlier, the Connect() method takes very similar parameters:

• Connect(IPEndPoint^)

• Connect(IPAddress^ addr, Int32 port)

• Connect(array<IPAddress^>^ addrs, Int32 port)

• Connect(String^ hostname, Int32 port)

All the parameters passed to the Connect() method should be familiar to you except the third
overload. With this overload, Connect() is expecting an array of IPAddresses. Why is this overload
needed, you might ask? The reason is it works perfectly with the static
Dns::ResolveToAddresses(String^ hostname) method, which returns an array of IPAddresses. This
static method is helpful in that it allows you to give it a DNS host name and it spits out all IP addresses
associated with it.

Okay, now that you are connected, you can use the TcpClient class’s GetStream() method (why
not a property?) to provide a Stream object from which you can access the TCP port as a stream of data:

TcpClient^ client = gcnew TcpClient();
client->Connect("www.procppcli.net", 12345);
NetworkStream^ ns = client->GetStream();

TCP Helper Class Example
Listing 17-7 and Listing 17-8 show how you can use TCPListener and TcpClient to communicate in
a client-server fashion using strictly streams of String objects.

Listing 17-7. A TCP Server Implementing Helper Classes

using namespace System;
using namespace System::IO;
using namespace System::Net;
using namespace System::Net::Sockets;
using namespace System::Threading;

ref class TcpServer
{
public:
 void ProcessThread(Object ^clientObj);
};

void TcpServer::ProcessThread(Object ^clientObj)
{
 TcpClient^ client = (TcpClient^)clientObj;

 IPEndPoint^ clientEP = (IPEndPoint^)client->Client->RemoteEndPoint;

 Console::WriteLine("Connected on IP: {0} Port: {1}",
 clientEP->Address, clientEP->Port);

 StreamWriter^ writer = gcnew StreamWriter(client->GetStream());
 StreamReader^ reader = gcnew StreamReader(client->GetStream());

Fraser_640-4C17.fm Page 714 Thursday, November 10, 2005 6:10 PM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 1 7 ■ N E T W O R K P R O G R A M M I N G 715

 writer->WriteLine("Successful connection to the server on port {0}",
 clientEP->Port);
 writer->Flush();

 String^ msg;
 while (true)
 {
 try
 {
 msg = reader->ReadLine();
 Console::WriteLine("Port[{0}] {1}", clientEP->Port, msg);

 writer->WriteLine(msg);
 writer->Flush();
 }
 catch (IOException^)
 {
 break; // connection lost
 }
 }
 client->Close();

 Console::WriteLine("Connection to IP: {0} Port {1} closed.",
 clientEP->Address, clientEP->Port);
}

void main()
{
 TcpServer^ server = gcnew TcpServer();

 TcpListener^ socket = gcnew TcpListener(IPAddress::Any, 12345);
 socket->Start();

 while(true)
 {
 Console::WriteLine("Waiting for client connection.");
 TcpClient^ client = socket->AcceptTcpClient();

 Thread ^thr = gcnew Thread(
 gcnew ParameterizedThreadStart(server, &TcpServer::ProcessThread));
 thr->Start(client);
 }
}

As you can see from the code, all sending and receiving of data is of type String. What’s more
interesting is that I am able to use standard WriteLine() and ReadLine() methods to handle commu-
nication over the Internet! The following two lines make this possible:

• StreamWriter^ writer = gcnew StreamWriter(client->GetStream());

• StreamReader^ reader = gcnew StreamReader(client->GetStream());

These lines create a StreamWriter and StreamReader object (which I covered in Chapter 8) from
the NetworkStream object returned by the TcpClient class’s GetStream() method.

Fraser_640-4C17.fm Page 715 Thursday, November 10, 2005 6:10 PM

716 C H A P T E R 1 7 ■ N E T W O R K P R O G R A M M I N G

All that socket stuff is now (almost) completely hidden. There are only two catches: First, you
need to flush the messages manually using the Flush() method, or the messages stay in the stream’s
buffer until the buffer is full. Second, you need to catch an IOException from the ReadLine() and
WriteLine() methods. When this exception happens, you can assume that the network connection
has been closed and you can go ahead and close things up.

Listing 17-8. A TCP Client Implementing Helper Classes

using namespace System;
using namespace System::IO;
using namespace System::Net;
using namespace System::Net::Sockets;

void main()
{
 TcpClient^ server;
 StreamWriter^ writer;
 StreamReader^ reader;
 String^ msg;

 try
 {
 server = gcnew TcpClient("127.0.0.1", 12345);

 writer = gcnew StreamWriter(server->GetStream());
 reader = gcnew StreamReader(server->GetStream());
 }
 catch (SocketException^ se)
 {
 Console::WriteLine("Connection to server failed with error: {0}",
 se->Message);
 return;
 }

 msg = reader->ReadLine();
 Console::WriteLine(msg);

 while (true)
 {
 Console::Write("Message ('q' to quit): ");
 msg = Console::ReadLine();

 if (msg->ToLower()->Equals("q"))
 break;

 try
 {
 writer->WriteLine(msg);
 writer->Flush();

 msg = reader->ReadLine();
 Console::WriteLine(msg);
 }

Fraser_640-4C17.fm Page 716 Thursday, November 10, 2005 6:10 PM

C H A P T E R 1 7 ■ N E T W O R K P R O G R A M M I N G 717

 catch (IOException^)
 {
 break; // connection lost
 }
 }
 Console::WriteLine("Ended connection with server.");
 server->Close();
}

Okay, I sort of fibbed. There is a third catch. To simplify the client, you should also use a
StreamWriter and StreamReader, as shown in Listing 17-8.

Notice that the client also places the WriteLine() and ReadLine() methods within a try/catch
block. In most cases, a server should not come down with clients attached, but there are no rules
saying it can’t. Thus, if the WriteLine() or ReadLine() method throws an IOException, you can
assume that the server has severed its connection and that you need to close the client connection.
One bonus of TcpClient is that it shuts down gracefully on its own and therefore doesn’t even provide
a Shutdown() method like the Socket class does.

UdpClient
Since there is a TcpClient, you must be thinking that there has to be a UdpClient (and you’d be right).
The UdpClient simplifies the already simple UDP socket in two ways, though there already isn’t
much left to simplify.

One area that is made easier is that you don’t need to worry about binding; the myriad of
UdpClient constructors handles it for you. Here is a list of the constructors available to you:

• UdpClient()

• UdpClient(AddressFamily^)

• UdpClient(Int32 port)

• UdpClient(IPEndPoint^)

• UdpClient(Int32 port, AddressFamily^)

• UdpClient(String^ hostname, Int32 port)

We have examined all these parameters already in some form in the constructor already
covered, but I’ll recap them so you don’t have to go searching for them. The AddressFamily can be
either InterNetwork (version 4 IP address) or InterNetworkV6 (version 6 IP address). The port param-
eter is an integer from 0 to 65535, but you should not use 0–1024 as these numbers are reserved as
well-known ports. IPEndPoint is a combination of the IP address and the port. Finally, hostname is the
human-friendly(ish) name you give to an IP address, like the one you type into Internet Explorer.

The other benefit of using UdpClient is that you no longer have to worry about not receiving the
whole message package by allocating too small a buffer. With UdpClient the Receive() method
returns the buffer; all you have to do is provide a handle to return it to.

Listings 17-9 and 17-10 contain all the basic code needed for a UDP client-server application
using UdpClient.

Listing 17-9. A UDP Server That Accepts Multiple Concurrent Clients Using UdpClient

using namespace System;
using namespace System::Net;
using namespace System::Net::Sockets;
using namespace System::Text;

Fraser_640-4C17.fm Page 717 Thursday, November 10, 2005 6:10 PM

718 C H A P T E R 1 7 ■ N E T W O R K P R O G R A M M I N G

void main()
{
 IPEndPoint^ ipep = gcnew IPEndPoint(IPAddress::Any, 54321);
 UdpClient^ server = gcnew UdpClient(ipep);

 Console::WriteLine("Waiting for client connection.");

 array<unsigned char>^ message;

 while(true)
 {
 IPEndPoint^ Remote = gcnew IPEndPoint(IPAddress::Any, 0);
 message = server->Receive(Remote);

 Console::WriteLine("[{0}] [{1}]",
 Remote->ToString(), Encoding::ASCII->GetString(message, 0,
 message->Length));

 server->Send(message, message->Length, Remote);
 }
}

Listing 17-10. A UDP Client Using UdpClient

using namespace System;
using namespace System::Net;
using namespace System::Net::Sockets;
using namespace System::Text;

void main()
{
 UdpClient^ client = gcnew UdpClient();

 IPEndPoint^ Remote =
 gcnew IPEndPoint(IPAddress::Parse("127.0.0.1"), 54321);

 while (true)
 {
 Console::Write("Message ('q' to quit): ");
 String^ input = Console::ReadLine();

 if (input->ToLower()->Equals("q"))
 break;

 array<unsigned char>^ message = Encoding::ASCII->GetBytes(input);
 client->Send(message, message->Length, Remote);

 message = client->Receive(Remote);
 Console::WriteLine("[{0}] {1}",
 Remote->ToString(),
 Encoding::ASCII->GetString(message, 0, message->Length));
 }
}

Fraser_640-4C17.fm Page 718 Thursday, November 10, 2005 6:10 PM

C H A P T E R 1 7 ■ N E T W O R K P R O G R A M M I N G 719

There is not much difference between client and server, is there? In Listing 17-10, I threw in
the UdpClient class’s Send() method’s ability to auto-bind to a port, but you could have just as easily
used a UdpClient constructor with more information so that the constructor itself would bind to the
port. Just remember that if you do this, the client and IP address and the port pairs must be different.

Changing Socket Options
I guess I’m kind of obligated to cover socket options here, as I did mention them in the caution way
up near the start of the chapter. In most programs you write, you will not normally have to worry
about the options on a socket. In fact, nearly all of the options are beyond the scope of this book. But,
on those occasions that the defaults need to be tweaked or retrieved, the Socket class provides you
with the aptly named methods SetSocketOption() and GetSocketOption().

The SetSocketOption() method has four different overloads. The reason is that different
options require different data types to be set. Thus, each overload provides one of these data types:

• void SetSocketOption(SocketOptionLevel, SocketOptionName, Boolean)

• void SetSocketOption(SocketOptionLevel, SocketOptionName, array<Byte>^)

• void SetSocketOption(SocketOptionLevel, SocketOptionName, Int32)

• void SetSocketOption(SocketOptionLevel, SocketOptionName, Object^)

As you can see, each of these methods has two parameters in common: SocketOptionLevel, which
specifies what level of socket to apply the set to (IP, IPv6, Socket, Tcp, or Udp), and SocketOptionName,
which specifies which option to set. There are quite a few options that you can tweak, if you feel
adventurous. Personally, I only recall using Linger, which keeps the socket open if unsent data
exists, and ReceiveTimeout, which specifies how long to wait on a receive command before giving up
and throwing an exception.

The GetSocketOption() method is also overloaded but only three times:

• object GetSocketOption(SocketOptionLevel, SocketOptionName)

• void GetSocketOption(SocketOptionLevel, SocketOptionName, array<Byte>^ value)

• array<Byte>^ Socket::GetSocketOption(SocketOptionLevel, SocketOptionName, Int32)

Just like the SetSocketOption() method, the first two parameters are SocketOptionLevel and
SocketOptionName. In most cases, you use the first version of the GetSocketOption() method, but for
those options that deal in byte arrays the other two versions are also available.

Listing 17-11 is an example of using the ReceiveTimeout option with UDP. You might find this
option helpful if you want a simple way to help check that a package was sent successfully, by way of
having the receiver of the package immediately send back an acknowledgment package. Since you
have a timeout set on the ReceiveFrom() method, if the acknowledgment package doesn’t come back
in a timely fashion you know one of two things: The package was never received or the acknowledg-
ment package was lost. (I never said it would check that the package was sent successfully, but only
that it would help in checking.)

Listing 17-11. A UDP Client with a Timeout

using namespace System;
using namespace System::Net;
using namespace System::Net::Sockets;
using namespace System::Text;

void main()
{
 Socket^ socket = gcnew Socket(AddressFamily::InterNetwork,
 SocketType::Dgram, ProtocolType::Udp);

Fraser_640-4C17.fm Page 719 Thursday, November 10, 2005 6:10 PM

Katie Stence
Highlight
Caution

720 C H A P T E R 1 7 ■ N E T W O R K P R O G R A M M I N G

 EndPoint^ Remote = gcnew IPEndPoint(IPAddress::Parse("127.0.0.1"),
 54321);

 if ((int)socket->GetSocketOption(SocketOptionLevel::Socket,
 SocketOptionName::ReceiveTimeout) < 5000)
 {
 socket->SetSocketOption(SocketOptionLevel::Socket,
 SocketOptionName::ReceiveTimeout, 5000);
 }

 while (true)
 {
 Console::Write("Message ('q' to quit): ");
 String^ input = Console::ReadLine();

 if (input->ToLower()->Equals("q"))
 break;

 array<unsigned char>^ message = Encoding::ASCII->GetBytes(input);
 socket->SendTo(message, Remote);

 message = gcnew array<unsigned char>(1024);
 try
 {
 int recv = socket->ReceiveFrom(message, Remote);
 Console::WriteLine("[{0}] {1}",
 Remote->ToString(), Encoding::ASCII->GetString(message, 0, recv));
 }
 catch (SocketException^)
 {
 Console::WriteLine("Receive failed with a time out.");
 Console::WriteLine("Make sure server is running.");
 }
 }
}

In the code, the use of GetSocketOption() is redundant as the default value is 0, but I wanted to
show an example of it being used.

One thing that threw me is that the ReceiveFrom() method throws a SocketException if no
socket is bound to the IPEndPoint it is expecting to receive data from. I first thought that the timeout
was working, but when I extended the timeout value, the SocketException still happened immediately.
It wasn’t until I had the server bind to the socket that the timeout started working properly.

Asynchronous Sockets
It is time to change gears and look at another way of coding network programs. In all of the previous
examples when the program called a network function, the program blocked (stopped/suspended)
until the network function returned or timed out. In many programs this is just fine, and with multi-
threading that’s usually all you need.

But there will come a time when you will need the program to not stop/suspend when it encoun-
ters a network function, and in those cases you will use asynchronous network functions. (In previous
versions of .NET, you would refer to this as asynchronous socket functions, but with version 2 of the
.NET Framework TcpListener, TcpClient, and UdpClient were expanded to support asynchronous

Fraser_640-4C17.fm Page 720 Thursday, November 10, 2005 6:10 PM

C H A P T E R 1 7 ■ N E T W O R K P R O G R A M M I N G 721

functionality. Yeah, I know down in their depths these three are socket code as well, so if you want to
be picky I guess you can use the term asynchronous socket function and be completely correct.)

Asynchronous functions cause the execution of the code to be broken into two threads. When
an asynchronous function is called, the processing of the network functionality breaks off and runs
in another thread, while the application continues to run on the original thread. Then when the
network functionality thread completes, you process any results in a callback function.

There really isn’t anything that special about writing asynchronous network code; once you
figure out how to do it for one asynchronous method, then you know how to do it for them all. The
reason is that you code all asynchronous methods in almost exactly the same way.

Asynchronous methods are basically synchronous methods divided into two parts: the BeginXxx()
method, which specifies the callback method and causes the thread to split, and the EndXxx() method,
which processes the callback method when the network functionality completes.

Accepting Connections
As with synchronous connection-oriented code, you need to set up a Socket or TcpListener so that
it can accept connections. There is no asynchronous method for the process of creating a socket or
TcpListener; therefore, you use the same code as you did for your synchronous code. This makes
sense because this code is not dependent on a remote client.

The first step, in which a server starts to communicate with a client (an extensive wait may
occur while this communication process occurs), is the accept stage. You have three options when
accepting connections:

• The Socket class’s BeginAccept() method

• The TcpListener class’s BeginAcceptSocket() method

• The TcpListener class’s BeginAcceptTcpClient() method

All three of these methods have overloaded parameter sets similar to their synchronous equiv-
alent, with the addition of two more parameters: a handle to the AsyncCallback method, which gets
executed when the accept completes, and a handle to an Object class to hold information to pass
from the Begin method to the End method. In addition, all three methods also return a handle to an
IAsyncResult class. (You probably will not need to use this return value.)

To invoke the BeginAccept() method, you must first create a socket and the AsyncCallback
method to handle the results of the accept operation. You have seen the steps to create a socket
earlier (in our discussion of connection-oriented sockets), so I won’t repeat myself here. Creating an
AsyncCallback, on the other hand, is new. The AsyncCallback has two constructors. Which you use
depends on whether the actual callback method is a static method:

AsyncCallback^ method = gcnew AsyncCallback(&TcpServer::AcceptCB);

or a member method:

AsyncCallback^ method = gcnew AsyncCallback(server, &TcpServer::AcceptCB);

Normally, you will just embed this code directly in the BeginAccept() method call like this:

socket->BeginAcceptSocket(gcnew AsyncCallback(&TcpServer::AcceptCB), socket);

The actual callback method (AcceptCB in this case) looks like this:

void TcpServer::AcceptCB(IAsyncResult^ iar)
{
 //...
}

Fraser_640-4C17.fm Page 721 Thursday, November 10, 2005 6:10 PM

cafac74dd2d083cbec0906b66fcd56b1

722 C H A P T E R 1 7 ■ N E T W O R K P R O G R A M M I N G

where AcceptCB is declared as one of the following:

public:
 void AcceptCB(IAsyncResult^ iar);

or

public:
 static void AcceptCB(IAsyncResult^ iar);

When the BeginAccept() method is called, it creates a new thread to wait on the completion of
a socket accept and then lets the original thread continue on its merry way. When the socket accept
finally completes, the program now has two threads running concurrently: the original thread, plus
the socket’s accept thread, which starts to execute (as far as you are concerned anyway) from the
beginning of the callback method.

The first thing you would normally do in the callback method is get back the socket that the
original BeginAccept() method was run on. You get this from the AsyncState property on the
IAsyncResult parameter of the callback method. This value is there because you passed it as a
parameter of the BeginAccept() method.

TcpListener^ tcpListener = (TcpListener^)iar->AsyncState;

Now that you have the original socket you can call the EndAccept() method to get the accepted
socket and finish off the accept operation:

Socket^ client = tcpListener->EndAccept(iar);

Now comes the tricky part. Remember you have two threads running, but unlike synchronous
sockets the main thread has no knowledge of the newly accepted client; therefore, the main thread
cannot handle the socket sends or receives without jumping through some hoops (I’ve never explored
how to do this but you are free to explore on your own).

What I do instead is use the new thread to handle the sends and receives and basically let the
original thread do whatever it was doing. What ultimately happens is that a callback method throws
off a chain of calls to other callbacks and then exits gracefully. However, the number of threads
spawned can get large, and in the case of an error, you have to figure out what thread went wrong.

Connecting to a Connection
A client using asynchronous code must connect to a server just like its synchronous counterpart.
The difference as I’m sure you suspect is that you will use the BeginConnect()/EndConnect() method
pair instead of the Connect() method. Also, just like the server, there is no asynchronous method for
the process of creating a socket or TcpClient; therefore, you use the same code as you did for your
synchronous code.

The first step, in which a client starts to communicate with a server (again, an extensive wait
may occur while this communication process occurs), is the connection stage. You have two options
when connecting:

• The Socket class’s BeginConnect() method

• The TcpClient class’s BeginConnect() method

As I said in the beginning of this section, once you know how to use one asynchronous method
you know how to use them all. Just like the BeginAccept() method, the BeginConnect() method has
overloaded parameter sets similar to their synchronous equivalent with the addition of two more
parameters: a handle to the AsyncCallback method and a handle to an Object class (in which you
should place the socket handle). Both methods also return a handle to a c. For example:

Fraser_640-4C17.fm Page 722 Thursday, November 10, 2005 6:10 PM

C H A P T E R 1 7 ■ N E T W O R K P R O G R A M M I N G 723

IAsyncResult^ ret =
 socket->BeginConnect(iep, gcnew AsyncCallback(&TcpClient::ConnectCB), socket);

When the connection operation completes, the callback method is executed (on its own thread):

void TcpClient::ConnectCB(IAsyncResult^ iar)
{
 //...
}

The first thing you do is get the Socket that was used to call the BeginConnect() method. You get
this from the AsyncState property on the IAsyncResult parameter of the callback method:

Socket^ socket = (Socket^)iar->AsyncState;

Next, you execute the EndConnect() method, usually in a try/catch block, to complete the
connection process:

try
{
 socket->EndConnect(iar);
}
catch (SocketException^ se)
{
 Console::WriteLine("Connection failed with error {0}", se->Message);
}

Disconnecting from a Connection
Your client applications have available to them only one asynchronous disconnect method pair
from which you can reconnect to other servers. As with all asynchronous methods, you initiate the
disconnect with the Begin method, in this case BeginDisconnect(). The BeginDisconnect() takes
three parameters—the Boolean value that you specify if the socket will be reused, a handle to the
AsyncCallback method, and a handle to an Object class—and returns an IAsyncResult. (The last two
methods and the return value should, by now, look fairly familiar.)

IAsyncResult^ ret =
 socket->BeginDisconnect(true, gcnew AsyncCallback(&TcpClient::DisconnectCB),
 socket);

When the disconnect operation completes, the callback method is executed (on its own thread):

void TcpClient::DisconnectCB(IAsyncResult^ iar)
{
 //...
}

The first thing you do (like with any other asynchronous callback) is get the Socket that was
used to call the BeginDisconnect() method. You get this from the AsyncState property on the
IAsyncResult parameter of the callback method:

Socket^ socket = (Socket^)iar->AsyncState;

Next, you execute the EndDisconnect() method, thus completing the disconnect process:

socket->EndDisconnect(iar);

Fraser_640-4C17.fm Page 723 Thursday, November 10, 2005 6:10 PM

724 C H A P T E R 1 7 ■ N E T W O R K P R O G R A M M I N G

Sending a Message
You have three options when it comes to sending messages asynchronously:

• The Socket class’s BeginSend() method

• The Socket class’s BeginSendTo() method

• The UDPClient class’s BeginSend() method

All three of these methods have overloaded parameter sets similar to their synchronous equivalent,
with the addition of two more parameters: a handle to the AsyncCallback method and a handle to an
Object class. All three methods also return a handle to an IAsyncResult class. Here’s an example:

IAsyncResult^ ret =
 client->BeginSend(msg, 0, msg->Length, SocketFlags::None,
 gcnew AsyncCallback(&TcpServer::SendCB), client);

When the send operation completes, the callback is executed. Within the callback you will get
the socket and then execute the EndSend() method:

void TcpServer::SendCB(IAsyncResult^ iar)
{
 Socket^ client = (Socket^)iar->AsyncState;
 client->EndSend(iar);
}

Receiving a Message
Like the asynchronous send, the receive has three options:

• The Socket class’s BeginReceive() method

• The Socket class’s BeginReceiveFrom() method

• The UDPClient class’s BeginReceive() method

All three of these methods have overloaded parameter sets similar to their synchronous equiv-
alent, along with two more parameters: a handle to the AsyncCallback method and a handle to an
Object class. All three methods also return a handle to an IAsyncResult class.

One thing that is different about asynchronous receive is that you should not pass the socket in
the final parameter of the Socket class asynchronous methods. (Send the socket in the UdpClient
version as you would normally.) Instead, you send a custom class that is made up of a handle to the
socket and a handle to the message buffer to receive the message. Here is an example:

ref class StateObject
{
public:
 property int bufSize;
 property Socket ^workSocket;
 property array<unsigned char>^ message;

 StateObject(Socket^ sock, int bufsize)
 {
 workSocket = sock;
 bufSize = bufsize;
 message = gcnew array<unsigned char>(bufsize);
 }
};

Fraser_640-4C17.fm Page 724 Thursday, November 10, 2005 6:10 PM

C H A P T E R 1 7 ■ N E T W O R K P R O G R A M M I N G 725

The reason for this is that the receive callback method needs both of these handles to run
correctly. Here’s how you would call the BeginReceive() method:

StateObject^ so = gcnew StateObject(client, 1024);
client->BeginReceive(so->message, 0, so->bufSize, SocketFlags::None,
 gcnew AsyncCallback(&TcpServer::ReceiveCB), so);

Now, when the receive operation completes, the callback is executed just like any other asyn-
chronous callback, but this time, instead of just grabbing the socket from the AsyncState property on
the IAsyncResult parameter, you grab the StateObject and then get the socket and the message
buffer from it:

void TcpServer::ReceiveCB(IAsyncResult^ iar)
{
 StateObject^ so = (StateObject^)iar->AsyncState;
 Socket^ client = so->workSocket;

 int rcv;
 if ((rcv = client->EndReceive(iar)) > 0) // get message
 {

 //... the received data is in: so->message
 }
 else // connection closed
 {
 client->Close();
 }
}

Asynchronous TCP Server
Okay, let’s take one last look at the TCP server in Listing 17-12. This time I’ve rewritten it so that it
uses asynchronous methods. The functionality is exactly the same as the synchronous version. In
fact, you can use the TCP clients that you wrote earlier to connect to it.

Personally, I find following the logic of asynchronous code a little more complex than that of
synchronous and prefer not to use it. The only benefit I see of this version over my original is that you
don’t have to maintain the threads of the program yourself.

The example program relies heavily on asynchronous callback chaining. Here is the basic outline
of how the program runs:

1. The main program calls accept, then waits for a return key to end the program.

2. Accept calls send, receive, and then recalls accept. Finally the program exits and ends the thread.

3. Send ends without calling anything, thus ending the thread.

4. Receive either calls send and then recalls receive, or it closes the connection. Finally, the
method ends, ending the thread.

What ultimately results is a threaded loop that accepts new clients and multiple threaded loops
that receive messages for each client.

Listing 17-12. A TCP Server Asynchronous Style

using namespace System;
using namespace System::Net;
using namespace System::Net::Sockets;
using namespace System::Threading;

Fraser_640-4C17.fm Page 725 Thursday, November 10, 2005 6:10 PM

726 C H A P T E R 1 7 ■ N E T W O R K P R O G R A M M I N G

using namespace System::Text;

ref class StateObject
{
public:
 property int bufSize;
 property Socket ^workSocket;
 property array<unsigned char>^ message;

 StateObject(Socket^ sock, int bufsize)
 {
 workSocket = sock;
 bufSize = bufsize;
 message = gcnew array<unsigned char>(bufsize);
 }
};

ref class TcpServer
{
public:
 static void AcceptCB(IAsyncResult^ iar);
 static void SendCB(IAsyncResult^ iar);
 static void ReceiveCB(IAsyncResult^ iar);
};

void TcpServer::AcceptCB(IAsyncResult^ iar)
{
 TcpListener^ tcpListener = (TcpListener^)iar->AsyncState;
 Socket^ client = tcpListener->EndAcceptSocket(iar);

 IPEndPoint^ clientEP = (IPEndPoint^)client->RemoteEndPoint;

 Console::WriteLine("Connected on IP: {0} Port: {1}",
 clientEP->Address, clientEP->Port);

 // Send socket successful connection message
 array<unsigned char>^ msg = Encoding::ASCII->GetBytes(
 String::Format("Successful connection to the server on port {0}",
 clientEP->Port));
 client->BeginSend(msg, 0, msg->Length, SocketFlags::None,
 gcnew AsyncCallback(&TcpServer::SendCB), client);

 // Get message from client
 StateObject^ so = gcnew StateObject(client, 1024);
 client->BeginReceive(so->message, 0, so->bufSize,
 SocketFlags::None, gcnew AsyncCallback(&TcpServer::ReceiveCB), so);

 // Get the next socket connection
 Console::WriteLine("Waiting for client connections. [Return to Exit]");
 tcpListener->BeginAcceptSocket(gcnew AsyncCallback(&TcpServer::AcceptCB),
 tcpListener);
}

Fraser_640-4C17.fm Page 726 Thursday, November 10, 2005 6:10 PM

C H A P T E R 1 7 ■ N E T W O R K P R O G R A M M I N G 727

void TcpServer::SendCB(IAsyncResult^ iar)
{
 Socket^ client = (Socket^)iar->AsyncState;
 client->EndSend(iar);
}

void TcpServer::ReceiveCB(IAsyncResult^ iar)
{
 StateObject^ so = (StateObject^)iar->AsyncState;
 Socket^ client = so->workSocket;
 IPEndPoint^ clientEP = (IPEndPoint^)client->RemoteEndPoint;

 int rcv;
 if ((rcv = client->EndReceive(iar)) > 0) // get message
 {
 Console::WriteLine("Port[{0}] {1}",
 clientEP->Port, Encoding::ASCII->GetString(so->message, 0, rcv));

 // echo message
 client->BeginSend(so->message, 0, rcv, SocketFlags::None,
 gcnew AsyncCallback(&TcpServer::SendCB), client);

 // set up for next receive
 so = gcnew StateObject(client, 1024);
 client->BeginReceive(so->message, 0, so->bufSize,
 SocketFlags::None, gcnew AsyncCallback(&TcpServer::ReceiveCB), so);
 }
 else // connection closed
 {
 client->Close();
 Console::WriteLine("Connection to IP: {0} Port {1} closed.",
 clientEP->Address, clientEP->Port);
 }
}

void main()
{
 TcpListener^ socket = gcnew TcpListener(IPAddress::Any, 12345);
 socket->Start();

 Console::WriteLine("Waiting for client connections. [Return to Exit]");
 socket->BeginAcceptSocket(gcnew AsyncCallback(&TcpServer::AcceptCB),
 socket);

 // Exit on return key
 Console::ReadLine();
}

I added comments to the code to help you walk through. As you can see, asynchronous network
programming can get complex fast.

When you run TcpServer_Async.exe, you should get something like Figure 17-5.

Fraser_640-4C17.fm Page 727 Thursday, November 10, 2005 6:10 PM

728 C H A P T E R 1 7 ■ N E T W O R K P R O G R A M M I N G

Figure 17-5. The asynchronous TCP server in action

Summary
In this chapter you got a fairly high level look at the weighty topic of network programming. I started
out looking at connection-oriented client-server sockets, in particular a TCP server and client. I then
looked at connectionless client-server sockets or, more specifically, a UDP server and client. Next,
I looked at some of the helper functions provided by the .NET Framework to simplify network
programming. Finally, I covered asynchronous network programming.

In the next chapter of this book, you’ll cover assembly programming and how you can augment
your assemblies with resources, localization, attributes, and type reflection.

Fraser_640-4C17.fm Page 728 Thursday, November 10, 2005 6:10 PM

cafac74dd2d083cbec0906b66fcd56b1

729

■ ■ ■

C H A P T E R 1 8

Assembly Programming

Before you roll your eyes and mumble under your breath, “Not another chapter on assemblies,”
read the chapter title again. This chapter is about programming an assembly, and not about the
assembly. By now I’m assuming you know what an assembly is, its structure, how it eliminates DLL
Hell, and so forth. Instead, this chapter focuses on programmatically playing with the assembly.

As I’ve pointed out a few times in this book, the assembly is the cornerstone of .NET Framework
deployment. To paraphrase, all roads lead to the assembly. Because this is the case, it only makes
sense that the .NET Framework provides the programmer many programmatic tools to interact
directly with the assembly.

In this chapter, you’ll look at some of these programming tools. Most of these tools are for the
more advanced C++/CLI programmer. In most cases, you won’t have to use them for most of your
programs. On the other hand, knowing these tools will provide you with powerful weapons in your
.NET software development arsenal and, inevitably, sometime in your coding career you’ll need to
use each of these tools.

The first tool, reflection, gives you the ability to look inside an assembly to see how it works.
You’ve used system-defined attributes on several occasions in this book. In this chapter you’ll have
the opportunity to create some of your own attributes. Up until now, you’ve worked only with
private assemblies, but it’s also possible to share them. Most of the time, you’ll take versioning (the
second tool) for granted, but you can take a much more active role. Assemblies need not be just
metadata and MSIL code. They can house almost any resource that your program needs to run. The
last tool—but definitely not the least—is globalization and localization. Your culture may be central
to your life, but there are many other cultures out there. Why not make your programs work with
these cultures as well?

Reflection
Reflection is the ability to retrieve and examine at runtime the metadata that describes the contents
of assemblies, i.e., classes, enums, methods, variables, etc. Then, for example, using the retrieved
information, you can turn around and create dynamically an instance of one of these described
classes, and invoke its methods or access its properties or member variables.

The System::Reflection namespace, which the .NET Framework uses to support reflection, is
made up of more than 40 classes. Most of these classes you will probably not use directly, if at all.
Several of the more common classes you will use are listed in Table 18-1.

Fraser_640-4C18.fm Page 729 Monday, November 14, 2005 11:57 AM

730 C H A P T E R 1 8 ■ A S S E M B LY P R O G R A M M I N G

Just to make things a little confusing, the key to .NET Framework reflection is the System::Type
class which, as you can see, isn’t even found within the Reflection namespace. My guess for its not
being placed in the Reflection namespace is because it’s used frequently, and the designers of the
Framework didn’t want to force the import of the Reflection namespace.

Examining Objects
A key feature of reflection is the ability to examine metadata using the System::Type class. The basic
idea is to get a Type reference of the class you want to examine and then use the Type class’s members
to get access to the metadata information about the type, such as the constructors, methods, fields,
and properties.

Getting the Type Reference
In most cases, you will get the Type reference to the class by one of four methods:

• Using the typeid keyword

• Calling the class’s GetType() method

• Calling the Type class’s static GetType() method, passing it the name of the class to be examined
as a String

• Iterating through a collection of all types within an assembly retrieved by the Assembly class’s
GetTypes() method

Table 18-1. Common System::Reflection Namespace Classes

Class Name Description

Assembly Defines an assembly

AssemblyName Provides access to all the parts of an assembly’s name

ConstructorInfo Provides access to the constructor’s attributes and metadata

CustomAttributeData Provides access to custom attribute data for assemblies, modules,
types, members, and parameters

EventInfo Provides access to the event’s attributes and metadata

FieldInfo Provides access to the field’s attributes and metadata

MemberInfo Provides access to the member’s attributes and metadata

MethodInfo Provides access to the method’s attributes and metadata

Module Defines a module

ParameterInfo Provides access to the parameter’s attributes and metadata

PropertyInfo Provides access to the property’s attributes and metadata

TypeDelegator Provides a wrapper for an object and then delegates all methods to
that object

Fraser_640-4C18.fm Page 730 Monday, November 14, 2005 11:57 AM

C H A P T E R 1 8 ■ A S S E M B L Y P R O G R A M M I N G 731

The first method, typeid, is the easiest of the four ways to get a Type reference, but it must be
able to be evaluated at compile time. The typeid keyword returns a Type of the specified type:

System::Type ^myClassType = MyClass::typeid;

To use the second method, you need to already have an instance of the managed object you
want to examine, and with this instance you call its GetType() method. The key to the second method
is the fact that all ref classes and value types inherit from the Object class and the Object class has a
GetType() method. For example, here is how you would get the Type reference to the myClass class:

ref class myClass
{
 // members
};
MyClass ^myClass = gcnew MyClass();
Type ^myClassType = myClass->GetType();

The third method is kind of cool in that you pass the string equivalent of the type you want to
reference to the Type class’s static GetType() method. You might want to note that Type is an abstract
class, so you can’t create an instance of it but, as you can see here, you can still call its static methods:

Type ^myClassRef = Type::GetType("MyClass");

■Tip Since Type::GetType() takes a string as a parameter, you can use this function to create nearly any type
you want at runtime. In fact, in my current project, I use a database of class names (the actual classes all derived
from a common interface) to populate this method. Then I use the polymorphic abilities of C++/CLI to provide the
appropriate functionality of the class selected from the database.

One thing all the preceding methods have in common is that you need to have something of the
type you want to reference at runtime—either the data type and instance of the type, or the name of
the type. The fourth method allows you to get a Type reference without any knowledge of the object
beforehand. Instead, you retrieve it out of a collection of Types with an assembly:

Assembly^ assembly = Assembly::LoadFrom("MyAssembly.dll");
array<Type^>^ types = assembly->GetTypes();
for each (Type ^type in types)
{
 Type ^myClassType = type;
}

Getting the Metadata
Getting the metadata out of a Type reference is the same no matter what method you use to attain the
Type reference. The Type class contains numerous methods, many of which allow you to access
metadata associated with the type. Table 18-2 lists of some of the more common methods available
to you for retrieving metadata.

Fraser_640-4C18.fm Page 731 Monday, November 14, 2005 11:57 AM

732 C H A P T E R 1 8 ■ A S S E M B LY P R O G R A M M I N G

Along with the “Get” methods, the Type class also has a number of “Is” properties (see Table 18-3),
which you use to see if the current type “is” something.

Table 18-2. Common Type Metadata Retrieval Methods

Method Description

GetConstructor() Gets a ConstructorInfo object for a specific constructor of the
current Type

GetConstructors() Gets a collection of ConstructorInfo objects for all the constructors for
the current Type

GetEvent() Gets an EventInfo object for a specific event declared or inherited from
the current Type

GetEvents() Gets a collection of EventInfo objects for all the events declared or
inherited from the current Type

GetField() Gets a FieldInfo object for a specific member variable from the
current Type

GetFields() Gets a collection of FieldInfo objects for all the member variables from
the current Type

GetInterface() Gets a Type object for a specific interface implemented or inherited
from the current Type

GetInterfaces() Gets a collection of Type objects for all the interfaces implemented or
inherited from the current Type

GetMember() Gets a MemberInfo object for a specific member from the current Type

GetMembers() Gets a collection of MemberInfo objects for all the members from the
current Type

GetMethod() Gets a MethodInfo object for a specific member method from the
current Type

GetMethods() Gets a collection of MethodInfo objects for all the member methods
from the current Type

GetProperty() Gets a PropertyInfo object for a specific property from the current Type

GetProperties() Gets a collection of PropertyInfo objects for all the properties from the
current Type

Table 18-3. Common “Is” Properties

“Is” Property Description

IsAbstract Is a Boolean that represents whether the Type is abstract

IsArray Is a Boolean that represents whether the Type is a managed array

IsClass Is a Boolean that represents whether the Type is a ref class

IsEnum Is a Boolean that represents whether the Type is an enumeration

IsImport Is a Boolean that represents whether the Type is an interface

Fraser_640-4C18.fm Page 732 Monday, November 14, 2005 11:57 AM

C H A P T E R 1 8 ■ A S S E M B L Y P R O G R A M M I N G 733

Listing 18-1 shows how to build a handy little tool that displays the member methods, properties,
and variables of the classes found in the six most commonly referenced assemblies in the .NET
Framework using reflection.

■Note To save space and because it isn’t directly relevant, all the code examples in this chapter don’t include the auto-
generated Windows Form GUI code. (See Chapters 9 and 10 for more information on Windows Form development.)

Listing 18-1. Referencing the Class Members of the .NET Framework

namespace Reflecting
{
 //...Standard Usings
 using namespace System::Reflection;

 public ref class Form1 : public System::Windows::Forms::Form
 {
 //...Auto-generated GUI interface code

 private: array<Type^>^ types;
 private: static array<String^>^ assemblies =
 {
 "System",
 "System.Drawing",
 "System.Xml",
 "System.Windows.Forms",
 "System.Data",
 "mscorlib"
 };

 private:
 System::Void Form1_Load(System::Object^ sender, System::EventArgs^ e)
 {

IsNotPublic Is a Boolean that represents whether the Type is not public

IsPrimitive Is a Boolean that represents whether the Type is a .NET primitive (Int32,
Single, Char, and so on)

IsPublic Is a Boolean that represents whether the Type is public

IsSealed Is a Boolean that represents whether the Type is sealed

IsSerializable Is a Boolean that represents whether the Type is serializable

IsValueType Is a Boolean that represents whether the Type is a value type

Table 18-3. Common “Is” Properties

“Is” Property Description

Fraser_640-4C18.fm Page 733 Monday, November 14, 2005 11:57 AM

734 C H A P T E R 1 8 ■ A S S E M B LY P R O G R A M M I N G

 for each (String ^assembly in assemblies)
 {
 cbAssemblies->Items->Add(assembly);
 }
 cbAssemblies->SelectedIndex = 0;
 }

 private:
 System::Void cbAssemblies_SelectedIndexChanged(System::Object^ sender,
 System::EventArgs^ e)
 {
 Assembly^ assembly = Assembly::LoadWithPartialName(
 assemblies[cbAssemblies->SelectedIndex]);

 types = assembly->GetTypes();

 cbDataTypes->Items->Clear();

 for (int i = 0; i < types->Length; i++)
 {
 cbDataTypes->Items->Add(types[i]->ToString());
 }
 cbDataTypes->SelectedIndex = 0;
 }

 private:
 System::Void cbDataTypes_SelectedIndexChanged(System::Object^ sender,
 System::EventArgs^ e)
 {
 Type ^type = types[cbDataTypes->SelectedIndex];

 array <MemberInfo^>^ methods = type->GetMethods();
 lbMethods->Items->Clear();
 for (int i = 0; i < methods->Length; i++)
 {
 lbMethods->Items->Add(methods[i]->ToString());
 }

 array <PropertyInfo^>^ properties = type->GetProperties();
 lbProperties->Items->Clear();
 for (int i = 0; i < properties->Length; i++)
 {
 lbProperties->Items->Add(properties[i]->ToString());
 }

 array <MemberInfo^>^ variables = type->GetFields();
 lbVariables->Items->Clear();
 for (int i = 0; i < variables->Length; i++)
 {
 lbVariables->Items->Add(variables[i]->ToString());
 }
 }
 };
}

Fraser_640-4C18.fm Page 734 Monday, November 14, 2005 11:57 AM

C H A P T E R 1 8 ■ A S S E M B L Y P R O G R A M M I N G 735

As you can see from the code in the preceding example, reflection can be fairly easy to work
with. Simply “Get” the metadata needed and then loop through the metadata. Admittedly, the example
is not the most elaborate, but it still shows the potential power it has in making the metadata infor-
mation within an assembly available.

Most of the preceding code is simply to load the appropriate GUI controls, but one thing new in
the preceding example that hasn’t been covered before is the use of the
System::Reflection::Assembly class. The Assembly class is a core building block of all .NET Framework
applications, though normally, even as a .NET developer, you seldom have to know of its existence.

When it comes to reflection, the Assembly class contains the starting point for retrieving any
public metadata information you want about the current active assembly or one that you load using
one of the many different loading methods. The only reason I see that there are multiple load methods
(each has multiple overload) is due to the duplicated method signature required to support the
myriad ways available to load an assembly. Essentially, all load methods do the same thing—load
the assembly—with the only differences relating to the amount of information known about the
assembly being loaded and the source of the assembly.

The LoadWithPartialName() method requires the least amount of information—simply the name of
an assembly. It does not care about version, culture, and so on. It is also the method that the .NET
Framework frowns upon using for that exact reason. In fact, Microsoft has gone and made it obso-
lete in version 2 of the .NET Framework. But in the case of this example, it works just fine.

Figure 18-1 shows Reflecting.exe in action. As you can see, it’s made up of two ComboBoxes and
three ListBoxes. The first ComboBox provides a way of selecting the assembly, and the second allows
you to select the type. The results of these two selections are the methods, properties, and variables
displayed in the ListBoxes.

Figure 18-1. The Reflecting program in action

Dynamically Invoking or Late-Binding Objects
Reflection provides you with the rather powerful feature known as late binding.Late binding is the
ability for different methods or objects to be invoked at runtime. These methods and objects are not
statically known at compile time.

A cool thing about reflection is that once you have a reference to the method you want to invoke
(which I showed how to do previously), it is not a large step to execute that method in a dynamic

Fraser_640-4C18.fm Page 735 Monday, November 14, 2005 11:57 AM

cafac74dd2d083cbec0906b66fcd56b1

736 C H A P T E R 1 8 ■ A S S E M B LY P R O G R A M M I N G

fashion. In fact, all you have to do is invoke the method using the (you guessed it) MethodInfo::Invoke()
method.

The trickiest part of invoking methods using reflection is realizing that there are two types of
methods: static and instance. Static methods are the easiest to handle, as you don’t need to create an
instance of the method’s class to invoke it. Simply find the Method reference type and then use the
Invoke() method:

MethodInfo ^method = type->GetMethod();
method->Invoke(nullptr, nullptr);

Notice that in the preceding example the Invoke() method has two parameters. The first is the
instance of the class for which you are invoking the method. The second is an array of parameters
that will be passed to the method. As you can now tell, the preceding example is not only a static
method. It also takes no parameters.

If the method you want to invoke is an instance method, it is not quite as easy because you need
to create an instance of the type for that method. The .NET Framework provides you help in the way
of the System::Activator class, which contains the static CreateInstance() method to create objects:

Type ^type = assembly->GetType("MyType");
Object ^typeInstance = Activator::CreateInstance(type);

Now that you have an instance of the method class, all you have to do is pass it as the first
parameter:

method->Invoke(typeInstance, nullptr);

To pass parameters to the Invoke() method, simply create an array of them and assign the array
to the second parameter:

array<Object^>^ args = gcnew array<Object^>(2);
args[0] = parameterOne;
args[1] = parameterTwo;

That’s really all there is to late binding.

■Note This is a second Invoke() method, but I have yet to use it as it is much more involved. If you are inter-
ested, it can be found in the .NET Framework documentation.

Listing 18-2 shows how to execute both a static and an instance method using reflection. The
first thing the example does is create an array using reflection of all the static color properties of the
Color structure. It then displays the color as the background of a label by invoking the property’s
getter method. Next, the example dynamically invokes a method from one of two different classes to
display the color name in the label. (There are much easier ways to do this without reflection, obviously.)

Listing 18-2. Using Reflection to Change the Properties of a Label

namespace Invoking
{
 //... Standard Usings
 using namespace System::Reflection;

 public ref class Form1 : public System::Windows::Forms::Form
 {
 // Auto-generated GUI Interface code

Fraser_640-4C18.fm Page 736 Monday, November 14, 2005 11:57 AM

C H A P T E R 1 8 ■ A S S E M B L Y P R O G R A M M I N G 737

 private:
 array <PropertyInfo^>^ colors;

 private:
 System::Void Form1_Load(System::Object^ sender, System::EventArgs^ e)
 {
 Type^ colorType = Color::typeid;
 colors = colorType->GetProperties();

 for (int i = 0; i < colors->Length; i++)
 {
 if (colors[i]->ToString()->IndexOf("System.Drawing.Color") >= 0)
 cbColor->Items->Add(colors[i]->ToString());
 }
 cbColor->SelectedIndex = 0;
 }

 System::Void comboBox1_SelectedIndexChanged(System::Object^ sender,
 System::EventArgs^ e)
 {
 static bool alternateWrite = true;
 PropertyInfo ^ColorProp = colors[cbColor->SelectedIndex];

 MethodInfo ^PropMethod = ColorProp->GetGetMethod();

 lbColor->BackColor = (Color)PropMethod->Invoke(nullptr,nullptr);

 Assembly ^assembly = Assembly::Load("Invoking");

 Type ^type;
 if (alternateWrite)
 type = assembly->GetType("Invoking.Writer1");
 else
 type = assembly->GetType("Invoking.Writer2");

 alternateWrite = !alternateWrite;

 MethodInfo ^ColorMethod = type->GetMethod("aColor");

 Object ^writerInst = Activator::CreateInstance(type);

 array <Object^>^ args = gcnew array <Object^>(1);
 args[0] = PropMethod->Invoke(nullptr,nullptr);

 lbColor->Text = (String^)ColorMethod->Invoke(writerInst, args);
 }
 };

Fraser_640-4C18.fm Page 737 Monday, November 14, 2005 11:57 AM

738 C H A P T E R 1 8 ■ A S S E M B LY P R O G R A M M I N G

 ref class Writer1
 {
 public:
 String ^aColor(Color ^col)
 {
 return String::Format("[Writer 1] {0}", col->ToString());
 }
 };

 ref class Writer2
 {
 public:
 String ^aColor(Color ^col)
 {
 return String::Format("[Writer 2] {0}", col->ToString());
 }
 };
}

■Note The GetType() method uses C# syntax when looking at the type within the assembly. Therefore, it uses
a period (.) in place of a double colon (::).

As you can see from the preceding example, there is quite a bit of overhead involved in reflection
and late binding, so you should use these techniques sparingly.

Figure 18-2 shows Invoking.exe in action. Pay attention to the text that prefixes the color displayed
in the label as it alternates from “[Writer 1]” to “[Writer 2]”.

Figure 18-2. The Invoking program in action

Attributes
You have seen .NET Framework–defined attributes used a few times already in this book. For example:

• In Chapter 8, you used the Serializable attribute to enable serialization for a ref class.

• In Chapter 15, you used the WebService and WebMethod attributes to enable a class and a
method to be Web services.

• In Chapter 16, you used the ThreadStatic attribute to make a static variable unique in
each thread.

The overriding theme in every .NET Framework attribute is that it provides additional informa-
tion to the class, enum, method, etc., for which it is associated. Basically, you can think of attributes

Fraser_640-4C18.fm Page 738 Monday, November 14, 2005 11:57 AM

C H A P T E R 1 8 ■ A S S E M B L Y P R O G R A M M I N G 739

as declarative tags that are written to an assembly at compile time to annotate or mark up a class
and/or its members so that class and/or its members can be later extracted at runtime, possibly to
change its normal behavior.

To add an attribute to a class or its members, you add code in front of the element you want to
annotate with the following syntax:

[AttributeName(ConstructorArguments, optionalpropertyname=value)]

If you want to add more than one attribute, you simply add more than one attribute within the
square brackets, delimited by commas:

[Attribute1(), Attribute2()]

An important feature to you (other than the changed behavior caused by the .NET Framework
attributes) is that you can access attributes using reflection. A more important feature is that you can
create your own custom attributes.

Creating a Custom Attribute
According to the Microsoft documentation, a custom attribute is just a class that is derived from the
System::Attribute class with a few minor additional criteria.

The additional criteria are as follows:

• The custom attribute class needs to be public.

• By convention, the attribute name should end in “Attribute”. A neat thing is that when you
implement the attribute, you don’t have to add the trailing “Attribute”, as it’s automatically
added. In other words, as you saw in Chapter 15, WebMethod and WebMethodAttribute are the
same.

• There’s an additional AttributeUsageAttribute that you can apply to your custom attribute.

• All properties that will be written to the metadata need to be public.

• The properties available to be written to the metadata are restricted to Integer type (Byte,
Int32, and so on), floating point (Single or Double), Char, String, Boolean, or Enum. Note that
this means the very common DateTime data type isn’t supported. (I show you how to get
around this limitation later in this chapter.)

Of all the additional criteria, the only one you need to look at in more detail is the
AttributeUsageAttribute attribute. This attribute controls the manner in which the custom attribute
is used. To be more accurate, it defines three behaviors: which data types the custom attribute is valid
on, if the custom attribute is inherited, and whether more than one of the custom attributes can be
applied to a single data type.

You can specify that the custom attribute can be applied to any assembly entity (see Table 18-4) by
giving the AttributeUsageAttribute attribute an AttributeTargets::All value. On the other hand, if
you want to restrict the custom attribute to a specific type or a combination of types, then you would
specify one or a combination (by ORing) of the AttributeTargets enumerations in Table 18-4.

Table 18-4. AttributeTargets Enumeration

All Assembly Class Constructor Delegate

Enum Event Field Interface Method

Module Parameter Property ReturnValue Struct

Fraser_640-4C18.fm Page 739 Monday, November 14, 2005 11:57 AM

740 C H A P T E R 1 8 ■ A S S E M B LY P R O G R A M M I N G

The second parameter of the AttributeUsageAttribute attribute specifies whether any class
that inherits from a class that implements the custom attribute inherits that custom attribute. The
default is that a class does inherit the custom attribute.

The final parameter allows a custom attribute to be applied more than one time to a single type.
The default is that only a single custom attribute can be applied.

There are three ways that you can have data passed into the attribute when implementing. The
first is by the custom attribute’s construction. The second is by a public property. The third is by a
public member variable.

Listing 18-3 and Listing 18-4 show the creation of two custom documentation attributes. The
first is the description of the element within the class, and the second is a change history. By nature
you should be able to apply both of these attributes to any type within a class and you should also
have the attributes inherited. These attributes mostly differ in that a description can be applied only
once to an element in a class, whereas the change history will be used repeatedly.

Listing 18-3. Documentation Custom Attributes Definition

using namespace System::Reflection;

namespace Documentation
{
 [AttributeUsage(AttributeTargets::All, Inherited=true, AllowMultiple=false)]
 public ref class DescriptionAttribute : public Attribute
 {
 String ^mAuthor;
 DateTime mCompileDate;
 String ^mDescription;

 public:
 DescriptionAttribute(String ^Author, String ^Description);

 property String^ Author { String^ get(); }
 property String^ Description { String^ get(); }
 property String^ CompileDate { String^ get(); }
 };

 [AttributeUsage(AttributeTargets::All, Inherited=true, AllowMultiple=true)]
 public ref class HistoryAttribute : public Attribute
 {
 String ^mAuthor;
 DateTime mModifyDate;
 String ^mDescription;

 public:
 HistoryAttribute(String ^Author, String ^Description);

 property String^ Author { String^ get(); }
 property String^ Description { String^ get(); }
 property String^ ModifyDate
 {
 String^ get();
 void set(String^ value);
 }
 };
}

Fraser_640-4C18.fm Page 740 Monday, November 14, 2005 11:57 AM

C H A P T E R 1 8 ■ A S S E M B L Y P R O G R A M M I N G 741

Listing 18-4. Documentation Custom Attributes Implemenation

#include "Documentation.h"

namespace Documentation
{
 // ------------- DescriptionAttribute -------------------

 DescriptionAttribute::DescriptionAttribute(String ^Author,
 String ^Description)
 {
 mAuthor = Author;
 mDescription = Description;
 mCompileDate = DateTime::Now;
 }

 String^ DescriptionAttribute::Author::get()
 {
 return mAuthor;
 }

 String^ DescriptionAttribute::Description::get()
 {
 return mDescription;
 }

 String^ DescriptionAttribute::CompileDate::get()
 {
 return mCompileDate.ToShortDateString();
 }

 // ------------- HistoryAttribute -------------------

 HistoryAttribute::HistoryAttribute(String ^Author, String ^Description)
 {
 mAuthor = Author;
 mDescription = Description;
 mModifyDate = DateTime::Now;
 }

 String^ HistoryAttribute::Author::get()
 {
 return mAuthor;
 }

 String^ HistoryAttribute::Description::get()
 {
 return mDescription;
 }

 String^ HistoryAttribute::ModifyDate::get()
 {
 return mModifyDate.ToShortDateString();
 }

Fraser_640-4C18.fm Page 741 Monday, November 14, 2005 11:57 AM

742 C H A P T E R 1 8 ■ A S S E M B LY P R O G R A M M I N G

 void HistoryAttribute::ModifyDate::set(String ^value)
 {
 mModifyDate = Convert::ToDateTime(value);
 }
}

As you can see by the code, other than the [AttributeUsage] attribute (which is inherited from
System::Attribute), there is nothing special about these classes. They are simply classes with a
constructor and a few public properties and private member variables.

The only thing to note is the passing of dates in the form of a string, which are then converted to
DateTime structure. Attributes are not allowed to pass the DateTime structure as pointed out previously,
so this simple trick fixes this problem.

Implementing a Custom Attribute
As you can see in the example shown in Listing 18-5, you implement custom attributes in the same
way as you do .NET Framework attributes. In this example, the DescriptionAttribute attribute you
created earlier is applied to two classes, a constructor, a member method, and a property. Also, the
HistoryAttribute attribute is applied twice to the first class and then later to the property.

Listing 18-5. Implementing the Description and History Attributes

using namespace System;
using namespace Documentation;

namespace DocTestLib
{
 [Description("Stephen Fraser",
 "This is TestClass1 to test the documentation Attribute.")]
 [History("Stephen Fraser", "Original Version.", ModifyDate="11/27/02")]
 [History("Stephen Fraser", "Added DoesNothing Method to do nothing.")]
 public ref class TestClass1
 {
 public:
 [Description("Stephen Fraser",
 "This is default constructor for TextClass1.")]
 TestClass1() {}

 [Description("Stephen Fraser",
 "This is method does nothing for TestClass1.")]
 void DoesNothing() {}

 [Description("Stephen Fraser", "Added Variable property.")]
 [History("Stephen Fraser", "Removed extra CodeDoc Attribute")]
 property String^ Variable;
 };

 [Description("Stephen Fraser",
 "This is TestClass2 to test the documentation Attribute.")]
 public ref class TestClass2
 {
 };
}

Fraser_640-4C18.fm Page 742 Monday, November 14, 2005 11:57 AM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 1 8 ■ A S S E M B L Y P R O G R A M M I N G 743

Notice in Listing 18-5 that “Attribute” is stripped off the end of the attributes. This is optional,
and it is perfectly legal to keep “Attribute” on the attribute name.

Another thing that you might want to note is how to implement a named property to an attribute.
This is done in the first use of the History attribute where I specify the date that the change was made:

[History("Stephen Fraser", "Original Version.", ModifyDate="11/27/02")]

The modified date is also a string and not a DateTime as you would expect. This is because (as I
pointed out previously) it is not legal to pass a DateTime to an attribute.

Using a Custom Attribute
You looked at how to use custom attributes when you learned about reflection. Custom attributes
are just placed as metadata onto the assembly and, as you learned in reflection, it is possible to
examine an assembly’s metadata.

The only new thing about assembly reflection and custom attributes is that you need to call the
GetCustomAttribute() method to get a specific custom attribute or the GetCustomAttributes()
method to get all custom attributes for a specific type.

The tricky part with either of these two methods is that you have to typecast them to their
appropriate type, as both return an Object type. What makes this tricky is that you need to use the
full name of the attribute or, in other words, unlike when you implemented it, you need the “Attribute”
suffix added. If you created a custom attribute that doesn’t end in “Attribute” (which is perfectly
legal, I might add), then this won’t be an issue.

Both of these methods have a few overloads, but they basically break down to one of three
syntaxes. To get all custom attributes:

public: Object ^GetCustomAttributes(Boolean useInhertiance);
// For example:
array <Object^>^ CustAttr = info->GetCustomAttributes(true);

To get all of a specific type of custom attribute:

public: Object ^GetCustomAttributes(Type ^type, Boolean useInhertiance);
// For example:
array <Object^>^CustAttr = info->GetCustomAttributes(HistoryAttribute::typeid,
 true);

Or to get a specific attribute for a specific type reference:

public: static Attribute^ GetCustomAttribute(ReflectionReference^, Type^);
// For Example
Attribute ^attribute =
 Attribute::GetCustomAttribute(methodInfo, DescriptionAttribute::typeid);

■Caution If the type allows multiple custom attributes of a single type to be added to itself, then the
GetCustomAttribute() method returns an Array and not an Attribute.

Listing 18-6 is really nothing more than another example of assembly reflection, except this
time it uses an additional GetCustomAttribute() and GetCustomAttributes() method. The example
simply walks through an assembly that you passed to it and displays information about any class,
constructor, method, or property that is found within it. Plus, it shows any custom Description or
History attributes that you may have added.

Fraser_640-4C18.fm Page 743 Monday, November 14, 2005 11:57 AM

744 C H A P T E R 1 8 ■ A S S E M B LY P R O G R A M M I N G

Listing 18-6. Using Custom Attributes to Document Classes

using namespace System;
using namespace Reflection;
using namespace Documentation;

void DisplayDescription(Attribute ^attr)
{
 if (attr != nullptr)
 {
 DescriptionAttribute ^cd = (DescriptionAttribute^)attr;
 Console::WriteLine(" Author: {0} -- Compiled: {1}",
 cd->Author, cd->CompileDate);
 Console::WriteLine(" Description: {0}", cd->Description);
 Console::WriteLine(" ---- Change History ----");
 }
 else
 Console::WriteLine(" No Documentation");
}

void DisplayHistory(array<Object^>^ attr)
{
 if (attr->Length > 0)
 {
 for each (HistoryAttribute^ cd in attr)
 {
 Console::WriteLine(" Author: {0} -- Modified: {1}",
 cd->Author, cd->ModifyDate);
 Console::WriteLine(" Description: {0}", cd->Description);
 }
 }
 else
 Console::WriteLine(" No changes");
}

void DisplayAttributes(MemberInfo ^info)
{
 DisplayDescription(Attribute::GetCustomAttribute(info,
 DescriptionAttribute::typeid));
 DisplayHistory(info->GetCustomAttributes(HistoryAttribute::typeid, true));
}

void PrintClassInfo(Type ^type)
{
 Console::WriteLine("Class: {0}", type->ToString());
 DisplayAttributes(type);

 array<ConstructorInfo^>^ constructors = type->GetConstructors();
 for (int i = 0; i < constructors->Length; i++)
 {
 Console::WriteLine("Constructor: {0}", constructors[i]->ToString());
 DisplayAttributes(constructors[i]);
 }

Fraser_640-4C18.fm Page 744 Monday, November 14, 2005 11:57 AM

C H A P T E R 1 8 ■ A S S E M B L Y P R O G R A M M I N G 745

 array <MethodInfo^>^ methods = type->GetMethods((BindingFlags)
 (BindingFlags::Public|BindingFlags::Instance|BindingFlags::DeclaredOnly));
 for (int i = 0; i < methods->Length; i++)
 {
 Console::WriteLine("Method: {0}", methods[i]->ToString());
 DisplayAttributes(methods[i]);
 }

 array<PropertyInfo^>^ properties = type->GetProperties((BindingFlags)
 (BindingFlags::Public|BindingFlags::Instance|BindingFlags::DeclaredOnly));
 for (int i = 0; i < properties->Length; i++)
 {
 Console::WriteLine("Property: {0}", properties[i]->ToString());
 DisplayAttributes(properties[i]);
 }
}

void main(array<System::String ^> ^args)
{
 try
 {
 Assembly ^assembly = Assembly::LoadFrom(args[0]);

 array<Type^>^ types = assembly->GetTypes();

 for (int i = 0; i < types->Length; i++)
 {
 PrintClassInfo(types[i]);
 Console::WriteLine();
 }
 }
 catch(System::IO::FileNotFoundException^)
 {
 Console::WriteLine("Can't find assembly: {0}\n", args[0]);
 }
}

One thing that this example has that the previous reflection example doesn’t is the use of
the BindingFlags enumeration. The BindingFlags enum specifies the way in which the search for
members and types within an assembly is managed by reflection. In the preceding example I used
the following flags:

BindingFlags::Public | BindingFlags::Instance | BindingFlags::DeclaredOnly

This combination of flags specified that only public instance members that have only been
declared at the current level (in other words, not inherited) will be considered in the search.

Also notice that even though the DisplayAttributes() method is called with a parameter of
type Type, ConstructorInfo, MethodInfo, or PropertyInfo, it is declared using a parameter of type
MemberInfo. The reason this is possible is because all the previously mentioned classes inherit from
the MemberInfo class.

Figure 18-3 shows DocumentationWriter.exe in action. The dates in Figure 18-3 are based on
when I compiled the assembly and most likely will differ from your results.

Fraser_640-4C18.fm Page 745 Monday, November 14, 2005 11:57 AM

746 C H A P T E R 1 8 ■ A S S E M B LY P R O G R A M M I N G

Figure 18-3. The DocumentationWriter program in action

Shared Assemblies
Up until now you have been developing only private assemblies. In other words, you have been
developing assemblies that are local to the application and that can be accessed only by the application.
In most cases, private assemblies will be all you really need to develop. But what happens if you have
multiple applications that share a common assembly? You could make a copy of the assembly and copy
it to each application’s directory. Or you could use the second type of assembly, a shared assembly.

Shared assemblies are accessible to any program that is run on the same machine where the
assembly resides. By the way, you work with shared assemblies whenever you use any of the classes
or any other data type of the .NET Framework. This seems logical, as every .NET application shares
these assemblies.

The Global Assembly Cache
Unlike private assemblies, shared assemblies are placed in a common directory structure known as
the global assembly cache (GAC). If and when you go looking for the GAC, you will find it off of your
<WINDIR> (Windows or Windows NT) directory, in a subdirectory aptly called assembly.

When you open the assembly directory in Windows Explorer, it has the appearance of being one
big directory made up of many different assemblies (see Figure 18-4). In reality, the assembly direc-
tory has a complex directory structure that gets hidden (thankfully) by Windows Explorer.

Fraser_640-4C18.fm Page 746 Monday, November 14, 2005 11:57 AM

C H A P T E R 1 8 ■ A S S E M B L Y P R O G R A M M I N G 747

Figure 18-4. The GAC

In fact, the assembly directory itself only contains subdirectories. One subdirectory is called
GAC, which in turn contains subdirectories for each assembly. Each of these subdirectories contains
one or more subdirectories, one for each version of the assembly in the GAC. This directory finally
contains the assembly’s .dll file that your own assemblies reference.

Off of the <WINDIR>\assembly directory you will also find other subdirectories. You will find
directories for each version of natively compiled code used by your system (i.e., any code that is
precompiled in the machine language of the host machine). Normally, you work with MSIL code,
but because this needs the additional step of compiling to machine code, the .NET Framework
precompiles some of its more frequently used assemblies to save the time of performing this compile
step. You will find that the native code directory structure is similar to that of the GAC.

There is also the possibility of finding another directory structure off of <WinDIR>\assembly.
This one contains assemblies downloaded by ASP.NET, so that they can be used by Web Forms.

■Note You can see the real structure of the GAC by accessing it via the command line. (Believe me... it isn’t pretty.)

Adding Assemblies to the GAC
Fortunately, you can and probably should have remained ignorant of the complex nature of the
GAC. (But I’m pretty sure most of you at one point or another will look into the GAC, so I decided to

Fraser_640-4C18.fm Page 747 Monday, November 14, 2005 11:57 AM

748 C H A P T E R 1 8 ■ A S S E M B LY P R O G R A M M I N G

give you a heads-up.) The reason you can be ignorant is because adding an assembly to the GAC
requires you to simply drag it from your development directory and drop it on the Windows Explorer
assembly directory. If you want to perform this process in a batch routine, you can use a utility called
gacutil.exe to install and uninstall your assembly. To install your assembly, use

> gacutil /i <assembly name>.dll

To uninstall the assembly, use

> gacutil /u <assembly name>.dll, Version=<version number>

It is even easier to install assemblies using a setup project because the copying to the GAC is
handled for you.

The Shared Assembly’s Strong Name
There is a catch to global assemblies. They require that they be signed by what is called a strong
name. A strong name provides three necessary enhancements to assemblies:

• It makes the name of the assembly globally unique.

• It makes it so that no one else can steal and use the name (generally known as spoofing).

• It provides a means to verify that an assembly has not been tampered with.

The strong name provides these enhancements by adding three things to the assembly: a simple
text name, a public key, and a digital signature. The combination of the simple text name and the
public key guarantees the name is globally unique, as the public key is unique to the party creating
the assembly, and it is assumed that the party will make the simple text assembly name unique
within their own development environment.

The combination of the public key and the digital signature verifies that no spoofing or tampering
occurred. It does this by adding public/private key encryption to the assembly.

■Note Public/private key encryption uses two keys as its name suggests. The private key is used to encrypt
something, and the public key is used to decrypt it. What makes this combination secure is that only a corre-
sponding public key can be used to decrypt something encrypted by the private key.

So how does public/private key encryption apply to global assemblies? Before you get all excited,
you should know that an assembly is not encrypted. Instead, at compile time the compiler creates a
hash signature based on the contents of the assembly and then uses the private key (of public/private
encryption) to encrypt the hash signature into a digital signature. Finally, the digital signature is
added to the assembly. Later, when the assembly is loaded by the CLR, the digital signature is decrypted
using the public key back into the hash signature, and the hash signature is verified to make sure that
the assembly is unchanged.

The reason this all works is that only the owner of the private key can create a valid digital signa-
ture that can be decrypted by the public key.

Like most things in .NET application development, what actually happens is a lot more complex
than what you need to do to get it the happen. In this case, to add a strong name to an assembly
requires two very simple steps. First, you create a strong name key file by typing the following state-
ment at the command prompt:

> sn -k StrongNameFileName.snk

Fraser_640-4C18.fm Page 748 Monday, November 14, 2005 11:57 AM

C H A P T E R 1 8 ■ A S S E M B L Y P R O G R A M M I N G 749

Then you update [AssemblyKeyFileAttribute] in the AssemblyInfo.cpp file, which incidentally
is created by all C++/CLI templates:

[assembly:AssemblyKeyFileAttribute("StrongNameFileName.snk")];

You can place the key in the project directory as the preceding example shows, or you can place
it anywhere on your computer and provide a full path to the attribute.

Re-signing an Assembly
If you are security conscious, you may have seen a big problem in the preceding strong name system.
If you are developing software in a team environment, everyone who needs to update the assembly
must have access to the private key so that the assembly can be accessed using the same public key.
This means there are a lot of potential areas for security leaks.

To remedy this, the strong name utility sn.exe has an additional option. It provides the capa-
bility for an assembly to be re-signed. This allows privileged developers a chance to sign the assembly
with the company’s private key before releasing it to the public. The command you need to type at the
command line is

> sn -R <assembly name> <strong key file name>

Notice this time instead of the –k option you use the –R option, stating you want to replace the
key instead of create one. You also provide the utility a completed assembly and a previously created
strong key file.

Signcoded Digital Signature
Nowhere in the preceding strong name process is the user of the assembly guaranteed that the
creator of the strong key is a trusted source, only that it is unchanged from the time it was created.

To remedy this, you need to execute the signcode.exe wizard on your assembly to add an authentic
digital certificate created by a third party. Once you have done this, the user of the assembly can find
out who created the assembly and decide whether he or she wants to trust it.

■Caution You need to compile the assembly with the “final” strong name before you signcode it. The signcode.exe
wizard only works with strong named assemblies. Also, re-signing a signcoded assembly invalidates its authentic
digital certificate.

Versioning
Anyone who has worked with Windows for any length of time will probably be hit at least once with
DLL Hell, the reason being that versioning was not very well supported in previous Windows devel-
oping environments. It was possible to swap different versions of .dlls in and out of the registry,
which caused all sorts of compatibility issues. Well, with .NET this is no longer the case, as versioning is
well supported.

That being said, a word of caution: The CLR ignores versioning in private assemblies. If you
include a private assembly in your application’s directory structure, the CLR assumes you know
what you are doing and will use that version, even if the correct version, based on version number,
is in the GAC.

The .NET Framework supports a four-part version: major, minor, build, and revision. You will
most frequently see version numbers written out like this: 1.2.3.4. On occasion, however, you will see
them like this: 1:2:3:4. By convention, a change in the major and minor numbers means that an

Fraser_640-4C18.fm Page 749 Monday, November 14, 2005 11:57 AM

cafac74dd2d083cbec0906b66fcd56b1

750 C H A P T E R 1 8 ■ A S S E M B LY P R O G R A M M I N G

incompatibility has been introduced, whereas a change in the build and revision numbers means
compatibility has been retained. How you actually use version numbers, on the other hand, is up to you.

Here is how the .NET Framework handles versioning in a nutshell: Only the global assembly
version that was referenced at compile time will work in the application. That is, all four version
parts need to match. (Well, that is not quite true. You will see a way to overrule which version number
to use later in this chapter.) This should not cause a problem even if there is more than one version of
a shared assembly available, because multiple versions of a shared assembly can be placed without
conflict into the GAC (see Figure 18-5). Okay, there might be a problem if the shared assembly with
the corresponding version number is not in the GAC, as this throws a
System::IO::FileNotFoundException exception.

Figure 18-5. Multiple versions of an assembly in the GAC

Setting the Version Number
Version numbers are stored as metadata within the assembly, and to set the version number requires
that you update the AssemblyVersionAttribute attribute. To make things easier for you, the Visual
Studio 2005 project template wizard automatically provides a default AssemblyVersionAttribute
attribute within the AssemblyInfo.cpp file.

You set the version number by simply changing the dummy value

[assembly:AssemblyVersionAttribute("1.0.*")];

to a value that makes sense in your development environment, for example:

[assembly:AssemblyVersionAttribute("3.1.2.45")];

Notice the asterisk (*) in the default version number value provided by Visual Studio 2005. This
asterisk signifies that the compiler will automatically create the build and revision numbers for you.
When the compiler does this, it places the number of days since January 1, 2000, in the build and the
number of seconds since midnight divided by two in the revision.

Personally, I think it’s a mistake to use the auto-generated method, as the version numbers then
provide no meaning. Plus, using auto-generated numbers forces you to recompile the application
referencing the assembly every time you recompile the shared assembly. Auto-generated numbers
aren’t so bad if the application and the shared reference share into the same solution, but they aren’t
so good if the application and the shared reference share into different solutions, and even worse if
different developers are developing the application and shared assembly.

Fraser_640-4C18.fm Page 750 Monday, November 14, 2005 11:57 AM

C H A P T E R 1 8 ■ A S S E M B L Y P R O G R A M M I N G 751

Getting the Version Number
It took me a while to figure out how to get the version number out of the assembly (but that might
just be me). As I found out, though, it’s really easy to do, because it’s just a property of the name of
the assembly. I think the code is easier to understand than the explanation:

Assembly ^assembly = Assembly::GetExecutingAssembly();
Version ^version = assembly->GetName()->Version;

The only tricky part is getting the currently executing assembly, which isn’t too tricky because
the .NET Framework provides you with a static member to retrieve it for you.

No DLL Hell Example
Now that you’ve covered everything you need to create a shared assembly, you’ll create one. Listing 18-7
shows the source code of a very simple class library assembly containing one class and one property.
The property contains the version of the assembly.

Listing 18-7. A Shared Assembly That Knows Its Version

using namespace System;
using namespace System::Reflection;

namespace SharedAssembly
{
 public ref class SharedClass
 {
 public:
 property System::Version^ Version()
 {
 System::Version^ get()
 {
 Assembly ^assembly = Assembly::GetExecutingAssembly();
 return assembly->GetName()->Version;
 }
 }
 };
}

The code is short, sweet, and offers no surprises. Listing 18-8 contains a filled-in AssemblyInfo.cpp
file. To save space, all the comments have been removed.

Listing 18-8. A Standard AssemblyInfo.cpp File

using namespace System::Reflection;
using namespace System::Runtime::CompilerServices;

[assembly:AssemblyTitleAttribute("A Shared Assembly")];
[assembly:AssemblyDescriptionAttribute("An assembly that knows its version")];
[assembly:AssemblyConfigurationAttribute("Release Version")];
[assembly:AssemblyCompanyAttribute("ProCppCLI")];
[assembly:AssemblyProductAttribute("Pro C++/CLI Series")];
[assembly:AssemblyCopyrightAttribute("Copyright (C) by Stephen Fraser 2005")];
[assembly:AssemblyTrademarkAttribute("ProCppCLI is a Trademark of blah")];
[assembly:AssemblyCultureAttribute("")];

Fraser_640-4C18.fm Page 751 Monday, November 14, 2005 11:57 AM

752 C H A P T E R 1 8 ■ A S S E M B LY P R O G R A M M I N G

[assembly:AssemblyVersionAttribute("1.0.0.0")];

[assembly:AssemblyDelaySignAttribute(false)];
[assembly:AssemblyKeyFileAttribute("SharedAssembly.snk")];
[assembly:AssemblyKeyNameAttribute("")];

You saw most of the important code earlier in this chapter, so I won’t go over this in detail. I also
think that most of the rest of the code is self-explanatory. Only the AssemblyCultureAttribute
attribute needs to be explained, and I do that a little later in this chapter.

Of all the attributes in the preceding source file, only two attributes need to be filled in to enable
an assembly to be a shared one. The first attribute is AssemblyVersionAttribute. It already has a
default value but I changed it to give it more meaning to me.

The second attribute is AssemblyKeyFileAttribute, in which you place the strong key. Remember,
you can either pass a full path to the attribute or use a key in the project source directory. Because
I’m using a strong key file in the project source, I have to copy my key file SharedAssembly.snk into
the project’s source directory.

Before you compile the project, change the project’s output directory to be local to the project
and not the solution. In other words, change the project’s configuration properties’ output directory
to read only $(ConfigurationName) and not the default $(SolutionDir)$(ConfigurationName). The
reason you want to do this is that you don’t want a copy of SharedAssembly.dll in the same directory
as the application assembly referencing it, because otherwise it will be used instead of the copy in
the GAC.

Now, when you compile the project, an assembly called SharedAssembly.dll is generated in the
project’s Debug or Release directory, depending on which environment you’re doing the build in.
This file needs to be copied to the GAC either by dragging and dropping it there or via gacutil.exe.
Figure 18-6 shows what the entry in the Windows Explorer GAC display looks like.

Figure 18-6. SharedAssembly in the GAC

Now you’ll create an application assembly to reference the shared assembly (see Listing 18-9).
All this application does is write out the version number of the shared assembly.

Listing 18-9. Referencing a Shared Assembly

using namespace System;
using namespace SharedAssembly;

void main()
{
 SharedClass ^sa = gcnew SharedClass();
 Console::WriteLine(sa->Version);
}

The code is not new, but to get this to work you need to reference the assembly SharedAssembly.dll.
It is important to understand that the assembly you reference during the compile does not need to
be the same as the one that you actually execute at runtime. They just have to have the same name,

Fraser_640-4C18.fm Page 752 Monday, November 14, 2005 11:57 AM

C H A P T E R 1 8 ■ A S S E M B L Y P R O G R A M M I N G 753

version, and public key token. Therefore, even though you are going to use the assembly within the
GAC, you reference the assembly within the solution to get the definition of the SharedClass class
and the Version property.

To reference SharedAssembly.dll, you need to perform the following steps:

1. Open the Properties window.

2. Select the References folder.

3. Click the Add New Reference button. This will bring up the Add Reference dialog box.

4. Select the Projects tab.

5. Select the shared assembly from the list.

Or, if the shared assembly is in a different solution, click Browse, navigate to the location of
the assembly, and then select the assembly.

6. Click OK.

7. In Build Properties, set Local copy to False (see Figure 18-7).

Figure 18-7. The Add Reference dialog box

The most important step of the preceding sequence is step 7. This step causes the build process
not to make a local copy of the assembly and instead causes the GAC to be used as the source of the
assembly.

■Caution Don’t miss step 7. If you do, then you are not using a shared assembly, just a local copy of the
assembly that gets moved to the application’s root directory during the compile process.

Fraser_640-4C18.fm Page 753 Monday, November 14, 2005 11:57 AM

754 C H A P T E R 1 8 ■ A S S E M B LY P R O G R A M M I N G

Run ReferenceSharedAssembly.exe. You should get something similar to what is shown in
Figure 18-8.

Figure 18-8. The result of executing ReferenceSharedAssembly

Now let’s see what happens if you change your shared assembly and give it a new version
number like this:

[assembly:AssemblyVersionAttribute("1.1.0.0")];

Recompile only the SharedAssembly project and then move the new assembly SharedAssembly.dll
to the GAC. First off, notice that now there are two SharedAssembly entries in the GAC that differ by
version number.

Run ReferenceSharedAssembly.exe again. (Important: Do not recompile when asked.) Nothing
has changed, has it? You still get the same output. This is versioning in action. Why do you get the
original version of the shared assembly? Because when you compiled the application program, you
tightly bound it to version 1.0.0.0 of the shared assembly. Thus, when it executes, it can only load
version 1.0.0.0.

Just for grins and giggle, delete version 1.0.0.0 from the GAC and run ReferenceSharedAssembly.exe
a third time. Nice abort don’t you think? The reason the program aborts is because even though there is
a copy of SharedAssembly in the GAC, it is the wrong version (1.1.0.0). ReferenceSharedAssembly.exe is
tightly bound to version 1.0.0.0.

■Tip If you are like me and have your compile environment automatically compile all changed modules before
executing, then the easiest way to test this is to compile only SharedAssembly and then go to the command line and
run ReferenceSharedAssembly.exe from there.

Application Configuration Files
An alarm might be going off in your head right now. Does this mean that whenever you change a
shared assembly, you have to keep the same version number or you have to recompile every appli-
cation that uses shared assembly so that it can be accessed? How do you release a fix to a shared
assembly?

The .NET Framework provides a solution to this problem by adding a configuration file to
the application that specifies which assembly you want to load instead of the bound version.
The application configuration file has the same name as the executable plus a suffix of .config.
Therefore, for the preceding example, the application configuration file would be called
ReferenceSharedAssembly.exe.config. Yes, the .exe is still in the name.

The application configuration file will look something like Listing 18-10.

Fraser_640-4C18.fm Page 754 Monday, November 14, 2005 11:57 AM

C H A P T E R 1 8 ■ A S S E M B L Y P R O G R A M M I N G 755

Listing 18-10. An Application Configuration File

<configuration>
 <runtime>
 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
 <dependentAssembly>
 <assemblyIdentity name="SharedAssembly"
 publicKeyToken="332a33ed1547b4e6" />
 <bindingRedirect oldVersion="1.0.0.0"
 newVersion="1.1.0.0" />
 </dependentAssembly>
 </assemblyBinding>
 </runtime>
</configuration>

The only two elements you have to worry about in the file are <assemblyIdentity> and
<bindingRedirect>. <assemblyIdentity> contains the identity of the shared assembly that you want
to use a different version with. Notice that all the information you need to identify the shared assembly
can be found in the Windows Explorer GAC view.

Next is the key to assigning a different version to the <bindingRedirect> element. This element
specifies the old version, or the version that the application assembly currently references, and then
the new version that you want it to access instead. A cool feature is that the oldVersion tag can take
a range:

<bindingRedirect oldVersion="1.0-1.1" newVersion="1.1.0.0" />

Now that you have the file created, place it in the same directory as the executable and run
ReferenceSharedAssembly.exe again. (Important: Do not recompile when asked.) This time you will
get the output shown in Figure 18-9.

Figure 18-9. The result of executing ReferenceSharedAssembly with an application configuration file

As a final note to application configuration files, you can also set the newVersion tag to a prior
version of the assembly:

<bindingRedirect oldVersion="1.1.0.0" newVersion="1.0.0.0" />

This comes in handy when the new version is found to not be compatible and you need to fall
back to a previous version.

Resources
When you finally get to the point of running your software, usually there are other things needed for
it to run besides the executable. For example, you might find that you need images, icons, cursors,
or, if you are going to globalize the application, a culture’s set of strings. You could fill your applica-
tion directory full of a bunch of files containing these “resources.” But if you did, you would run the

Fraser_640-4C18.fm Page 755 Monday, November 14, 2005 11:57 AM

756 C H A P T E R 1 8 ■ A S S E M B LY P R O G R A M M I N G

risk of forgetting something when you deployed your application. I think a better solution is to group
common resources into .resources files. Then, optionally, embed the .resources files into the assembly
that uses the contents of the .resources files. My thought is that with fewer files floating around,
fewer things can get lost.

You have three ways to work with grouped resources in the .NET Framework:

• You can place the grouped resources in .resources files and then work with them as separate
entities. This allows you to switch and swap the .resources files as needed. It also allows you
to work with the resources within the .resources files in a dynamic fashion.

• You can embed the resources directly into the assembly that uses them. This method has the
least flexibility, but you can be secure in the knowledge that everything you need to run the
assembly is available.

• You can combine the two previous methods and create what the .NET Framework calls satellite
assemblies. These are assemblies containing only resources, but at the same time, they
directly link to the assembly that uses the resources within them. You will see this use of resources
when you look at globalization and localization later in this chapter.

Creating Resources
The .NET Framework provides you with two text formats for creating .resources files: a text file made up
of name/value pairs and an XML-formatted file called a .resx file. Of the two, the name/value-formatted
file is much easier to use, but it has the drawback of supporting only string resources. On the other hand,
.resx files support almost any kind of resource, but unfortunately they are extremely hard to hand code.
Most likely, because .resx files are so complex, you will choose a third way, which is to write a simple
program to add nontext-formatted resources to a .resources file. I show you how to write the program
later in this section.

Because .resx files are so complex, why are they included? They are what Visual Studio 2005 uses
to handle resources. In fact, you will use them quite extensively when you look at globalization and
localization later in this chapter, but you will probably not even be aware that you are.

Building Text Name/Value Pair Resource Files
The simplest type of resource that you can create is the string table. You will probably want to create
this type of resource using name/value pair files, as the format of the name/value pair file maps
quite nicely to a string table. Basically, the name/value pair file is made up of many lines of name
and value pairs separated by equal signs (=). Here is an example:

Name = Stephen Fraser
Email Address = stephen.fraser@apress.com
Phone Number = (502) 555-1234
Favorite Equation = E=mc2

As you can see, spaces are allowed for both the name and the value. Also, the equal sign can be
used in the value (but not the name), as the first equal sign is used to delimit the name and the value.

■Caution Don’t try to line up the equal signs, because the spaces will become part of the name. As you’ll see
later in the chapter, doing this will make it harder to code the resource accessing method.

Fraser_640-4C18.fm Page 756 Monday, November 14, 2005 11:57 AM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 1 8 ■ A S S E M B L Y P R O G R A M M I N G 757

ResGen
The text file you created previously is only an intermediate file. You might think of it as a source file
just like a .cpp or .h file. You need to convert it to a .resources file so that your program will be able
to process it as a resource. (By the way, you could process the file as a standard string file, but then
you would lose many of the resource features provided by the .NET Framework.) To convert your
text file, use the .NET Framework’s ResGen.exe utility. There is not much to running the utility:

> ResGen filename.txt

When you run the preceding code, assuming that the text file consists of valid name/value
pairs, you get an output file of filename.resources in the directory where you ran the utility. You can
work with these files as separate entities, or you can embed them into your assembly. You will see
how to do that later in this chapter.

One more thing, if you are a glutton for punishment and write resource files using .resx files,
then you would use the ResGen utility to convert them into .resources files as well.

ResourceWriter
As I stated previously, adding nontext resources is not possible using name/value pair files, and the
.resx file is a bear to work with. So what are you to do if you simply need to create nontext resources
(e.g., an image table)?

You can use the System::Resources::ResourceWriter class, because this class has the capability
to place almost any type of data within a .resources file, so long as the total combined size of the file
does not exceed 2GB. In fact, this class is what ResGen.exe uses to generate its .resources file. Why
they didn’t make ResGen.exe more robust and allow other types of data types escapes me.

Using the ResourceWriter class requires you to perform only three steps:

1. Open up a .resources file using the ResourceWriter class’s constructor.

2. Add resources to the .resources file using the AddResources() method.

3. Close the .resources file using the Close() method.

Listing 18-11 presents all the code you need to add an image to a .resources file from a .jpg file.

Listing 18-11. Adding an Image to a .resources File

#using <System.Drawing.dll> // Add the reference as it's not a default

using namespace System;
using namespace System::Resources;
using namespace System::Drawing;

void main()
{
 ResourceWriter ^rwriter = gcnew ResourceWriter("filename.resources");
 rwriter->AddResource("ImageName", Images::FromFile("Imagefile.jpg"));
 rwriter->Close();
}

Fraser_640-4C18.fm Page 757 Monday, November 14, 2005 11:57 AM

758 C H A P T E R 1 8 ■ A S S E M B LY P R O G R A M M I N G

Embedding Resources
One way to make sure that everything that you need to execute an assembly is available is to put
everything in the assembly itself. This way, executing an assembly is as easy as double-clicking the
assembly’s .exe file.

To embed resources from the command line, you use the assembly generation tool, al.exe,
passing it the /embed option along with the name of the .resources file.

If you are using Visual Studio 2005, embedding resources is also fairly straightforward. In fact, if
you are using .resx files as the source of your resources, you have to do nothing, because Visual
Studio 2005 will automatically handle everything for you. To embed resources using name/value
pair files and prebuilt .resources files is not much more difficult.

I think the easiest way to explain how to embed resources is to actually walk through the
process. In the following example, you will embed Animal.resx, Color.txt (name/value pair file), and
Fruit.resources into an assembly called EmbeddingResources.exe.

The first step, as with any other .NET application project, is to use the project template wizard
to build the basic structure of your project. In this case, you will build a standard Console Application
(.NET) project and name it EmbeddingResources. To complete this project, perform the following steps:

1. Add a new item of type Assembly Resource File (.resx) and name it Animal. Then add some
name/value pairs, as shown in Figure 18-10.

Figure 18-10. The Animal resource file

2. Add a new item of type Text File (.txt) and name it Color. Then add the following name/value
pairs:

Color1 = Blue
Color2 = Red
Color3 = Yellow
Color4 = Green

3. Add an existing item called Fruit.resources. You will need to create this file at the command
line using the ResGen tool on the name/value pair file containing the following entries:

Fruit1 = Apple
Fruit2 = Orange
Fruit3 = Grape
Fruit4 = Lemon

Fraser_640-4C18.fm Page 758 Monday, November 14, 2005 11:57 AM

C H A P T E R 1 8 ■ A S S E M B L Y P R O G R A M M I N G 759

Now that you have all the resources ready, go ahead and embed them into the assembly. As I
said previously, you don’t have to do anything to embed a .resx file. Personally, though, I don’t like
the name that Visual Studio 2005 gives the resource when it’s embedded, so let’s change it:

1. Right-click Animal.resx in Solution Explorer and select the Properties menu item.

2. Select All Configurations from the Configuration drop-down list.

3. Change the Resource File Name entry in Managed Resources ➤ General to
$(IntDir)\$(RootNamespace).Animal.resources (see Figure 18-11). This will give the
resource the name EmbeddingResources.Animal. I think this is better than the default
EmbeddingResources.ResourceFiles.

Figure 18-11. Changing the generated resource name

4. Click OK.

To embed an already-created .resources file requires that you add it as an input to the assembly
linker. (By the way, you don’t have to add the .resources file to Solution Explorer to get this to work—
it just has to be in the project directory. I put the .resources file there so I remember that, in fact, I am
embedding it.) The steps this time are a little different:

1. Right-click the EmbeddingResources project in Solution Explorer and select the Properties
menu item. This will bring up a dialog box similar to the one in Figure 18-12.

Fraser_640-4C18.fm Page 759 Monday, November 14, 2005 11:57 AM

760 C H A P T E R 1 8 ■ A S S E M B LY P R O G R A M M I N G

Figure 18-12. Adding embedded resources

2. In the Linker folder, select Input.

3. Enter fruit.resources in the Embed Managed Resource File text box.

4. Click OK.

To embed the name/value pairs file Color.txt requires a combination of the steps used to add
Animal.resx and fruit.resources, plus one additional step: First you change the name of the generated
resource file to $(IntDir)\$(RootNamespace).Color.resources. Next, you have to change the build
tool from Custom Build Tool to Managed Resource Compiler. You make this change also in the file’s
properties, but this time change the Tool entry in the Configuration Properties ➤ General page (see
Figure 18-13).

Finally, you add the resource to the Linker inputs using the exact same name you used previously,
in this case: $(IntDir)\$(RootNamespace).Color.resources (see Figure 18-14).

When you compile the project, you will have three resources embedded into the application
assembly. If you want proof, look in the assemblies manifest and you will find the following three
entries:

.mresource public fruit.resources
{
}
.mresource public EmbeddingResources.Color.resources
{
}
.mresource public EmbeddingResources.Animal.resources
{
}

Fraser_640-4C18.fm Page 760 Monday, November 14, 2005 11:57 AM

C H A P T E R 1 8 ■ A S S E M B L Y P R O G R A M M I N G 761

Figure 18-13. Changing the tool to Managed Resource Compiler

Figure 18-14. Adding embedded .txt resources

Fraser_640-4C18.fm Page 761 Monday, November 14, 2005 11:57 AM

762 C H A P T E R 1 8 ■ A S S E M B LY P R O G R A M M I N G

Accessing Resources
You’ve looked at creating resources and then embedding resources. Both are kind of neat, but by
themselves are quite useless unless you have some way of accessing these resources within your
application. Obviously, the .NET Framework provides a class to get access to the resources. In fact,
depending on where the resource is stored, it may provide two ways: the ResourceReader class and
the ResourceManager class.

ResourceReader Class
The ResourceReader class is the counterpart of the ResourceWriter class. It enables you to iterate
through a .resources file, treating it as though it were a simple file. Just like the ResourceWriter class,
the ResourceReader class is very easy to implement:

1. Open the .resources file using the ResourceReader constructor.

2. Get IDictionaryEnumerator from the ResourceReader class’s GetEnumerator() method.

3. Use the MoveNext() method to process all the entries in the .resources file.

4. Close the ResourceReader class with the Close() method.

Here is all the code you need to implement ResourceReader:

 ResourceReader ^rreader = gcnew ResourceReader("filename.resources");
 IDictionaryEnumerator ^denum = rreader->GetEnumerator();
 while (denum->MoveNext())
 {
 Console::WriteLine("{0} = {1}", denum->Key, denum->Value);
 }
 rreader->Close();

■Caution The order in which the key/value pairs are retrieved from the assembly may not match the order in
which they were written.

ResourceManager Class
Although the ResourceReader class is restricted to .resources files, the ResourceManager class gives
you access to either .resources files or embedded resources. Another feature of the ResourceManager
class that you will see later in this chapter is that it can access the resources in a culture-specific
manner.

To create an instance of a ResourceManager class, you need to pass the name of the resource and
the assembly that the resource is embedded into:

ResourceManager^ rmgr = gcnew ResourceManager("resourceName", assembly);

Along with embedded resources, it is also possible to open an instance of the ResourceManager
from a .resources file using the CreateFileBasedResourceManager() static method. This method
takes three parameters: the name of the .resources file without the .resources suffix, the path to the
.resources file, and the culture to mask output with. The result of this method is a pointer to a
ResourceManager:

ResourceManager^ rmgr =
 ResourceManager::CreateFileBasedResourceManager("resourceFilename", "",
 nullptr);

Fraser_640-4C18.fm Page 762 Monday, November 14, 2005 11:57 AM

C H A P T E R 1 8 ■ A S S E M B L Y P R O G R A M M I N G 763

Once you have the instance of the ResourceManager, all you have to do is pass the name of the
resource item you want to either the GetString() or GetObject() method to return the value of
the following:

String ^Value = rmgr->GetString("Name");
Object ^Value = rmgr->GetObject("Name");

Listing 18-12 expands on the previous section’s project, EmbeddingResources. This example
displays the Fruit.resources file using both the ResourceReader and ResourceManager and then
continues on to display the embedded version of the Fruit resource using ResourceManager again.

Listing 18-12. EmbeddedResources Display Function

using namespace System;
using namespace System::Collections;
using namespace System::Reflection;
using namespace System::Resources;

void main()
{
 Console::WriteLine("*** ResourceReader ***");
 ResourceReader ^rreader = gcnew ResourceReader("Fruit.resources");
 IDictionaryEnumerator ^denum = rreader->GetEnumerator();
 while (denum->MoveNext())
 {
 Console::WriteLine("{0} = {1}", denum->Key, denum->Value);
 }
 rreader->Close();

 ResourceManager ^rmgr;

 Console::WriteLine("\n*** ResourceManager From File ***");
 rmgr = ResourceManager::CreateFileBasedResourceManager("Fruit", "",
 nullptr);
 Console::WriteLine(rmgr->GetString("Fruit1"));
 Console::WriteLine(rmgr->GetString("Fruit2"));
 Console::WriteLine(rmgr->GetString("Fruit3"));
 Console::WriteLine(rmgr->GetString("Fruit4"));

 Console::WriteLine("\n*** ResourceManager From Assembly ***");
 Assembly ^assembly = Assembly::GetExecutingAssembly();
 rmgr = gcnew ResourceManager("Fruit", assembly);
 Console::WriteLine(rmgr->GetObject("Fruit1"));
 Console::WriteLine(rmgr->GetObject("Fruit2"));
 Console::WriteLine(rmgr->GetObject("Fruit3"));
 Console::WriteLine(rmgr->GetObject("Fruit4"));
}

Notice that you can use either GetString() or GetObject() to extract a String resource item.
If, on the other hand, you were extracting an Image type resource item, you would need to use the
GetObject() method and then typecast it back to an Image:

Image ^img = (Image^)rmgr->GetObject("ImageName");

Figure 18-15 shows EmbeddedResources.exe in action.

Fraser_640-4C18.fm Page 763 Monday, November 14, 2005 11:57 AM

cafac74dd2d083cbec0906b66fcd56b1

764 C H A P T E R 1 8 ■ A S S E M B LY P R O G R A M M I N G

Figure 18-15. The result of executing the EmbeddedResources program

Globalization and Localization
The terms “globalization” and “localization” are frequently confused. Often people choose one of
the terms to mean both when, in fact, each has a specific meaning:

• Globalization refers to designing and developing software that supports localized user interfaces
and regional data for users of multiple cultures.

• Localization refers to the translation of the application’s resources into localized versions for
each culture supported by the application.

As you can see, you need both globalization and localization for an application to support
multiple cultures. Basically, globalization is the underlying architecture, and localization is the
actual translation. This is why the .NET Framework provides a System::Globalization namespace
and not a localization one.

To globalize an application, you need to be able to specify cultural differences in things such as
numbers, dates, and calendars. For example, Table 18-5 shows some number formats based on culture.

Notice in Table 18-5 that there are two different ways of displaying numbers for a German
culture. The Swiss have what is known as a subculture (but don’t tell the Swiss that!). This points
out that to support globalization, an application must also support subcultures. Seems to me things
are starting to get complex. Okay, let’s throw Chinese and Japanese character sets into the mix—now
you’re talking complex!

Table 18-5. Number Formats Based on Culture

Culture Number Format

France (French) 123 456 789,01

Germany (German) 123.456.789,01

Switzerland (German) 123’456’789.01

U.S. (English) 123,456,789.01

Fraser_640-4C18.fm Page 764 Monday, November 14, 2005 11:57 AM

C H A P T E R 1 8 ■ A S S E M B L Y P R O G R A M M I N G 765

Fortunately, the .NET Framework has a few things up its sleeve to help support all these complex-
ities. Don’t get me wrong: Writing globalization code isn’t for the faint of heart. It’s tough! This section
will only show you where to begin in globalizing your application. Please consult the many books
that have been written on the subject for further information; for example, Internationalization and
Localization Using Microsoft .NET by Nick Symmonds (Apress, 2002). (Like other books suggested
earlier, this one is for C#, but you should have no problem working your way through it.)

The Globalization Tools
The first line of attack for handling globalization by the .NET Framework is that it uses Unicode to
support the various culture-specific encoding types you may use in your applications. Unicode
allows you to support complex character sets such as Chinese and Japanese, as well as the generic
ASCII character set.

The next thing the .NET Framework does is provide intelligence in its classes and structures to
support multiple cultures. For example, the DateTime and String objects generate appropriate
culture-specific information. To add this intelligence, the .NET Framework relies on the System::
Globalization namespace (see Table 18-6) to provide support.

The final thing that the .NET Framework does to help support globalization was hinted at previously
when I covered resources. The .NET Framework supports culture-specific resources using the
ResourceManager class.

Culture
A culture in computer terms is a set of display preferences based on the language, beliefs, social
norms, and so on (i.e., culture) of the user. How a computer processes the actual program internally
does not differ based on culture. Culture only changes how the information is finally displayed. For
example, adding two Int32s together using the German culture will not differ from how it is done
using the French culture—the difference lies in how the final outcome is displayed.

The .NET Framework uses culture names based on RFC1766. If that means nothing to you,
don’t worry. It just means the .NET Framework uses a two-letter language and a two-letter country/
region code separated by a hyphen (-) to specify a culture. It’s possible to only specify a two-letter
language if the country/region isn’t significant.

Table 18-6. Common System::Globalization Namespace Classes

Class Name Description

Calendar Specifies how to divide time into pieces (e.g., weeks, months, and years)

CultureInfo Provides specific information about a culture

DateTimeFormatInfo Specifies how dates and times are formatted

NumberFormatInfo Specifies how numbers are formatted

RegionInfo Provides information about the country and region

TextInfo Specifies the properties and behaviors of the writing system

Fraser_640-4C18.fm Page 765 Monday, November 14, 2005 11:57 AM

766 C H A P T E R 1 8 ■ A S S E M B LY P R O G R A M M I N G

Table 18-7 lists a very small subset of the many cultures available to you.

You use the System::Globalization::CultureInfo class to convert one of the codes in Table 18-7
into something that the .NET Framework understands:

CultureInfo ^cinfo = gcnew CultureInfo("en-ca");

Setting the Culture
To get globalization to work within the CLR, you need to do one of two things:

• Use a special version of the ToString() method that takes the culture as a parameter.

• Set the culture you wish to use in the thread of execution.

The first method enables you to restrict globalization only to areas of your application that you
specify. The second method of changing the CultureInfo in the CurrentThread changes the culture
everywhere.

For example, if you want to display a date in multiple cultural styles, you could code it as shown
in Listing 18-13.

Listing 18-13. Multicultural Dates

using namespace System;
using namespace System::Globalization;

void main()
{
 DateTime dt = DateTime::Now;

 Console::WriteLine("en-us {0}",dt.ToString("D",gcnew CultureInfo("en-us")));
 Console::WriteLine("en-gb {0}",dt.ToString("D",gcnew CultureInfo("en-gb")));
 Console::WriteLine("fr-fr {0}",dt.ToString("D",gcnew CultureInfo("fr-fr")));
 Console::WriteLine("de-de {0}",dt.ToString("D",gcnew CultureInfo("de-de")));
}

Table 18-7. Computer Cultures

Name Code

English en

English (Canada) en-ca

English (United Kingdom) en-gb

English (United States) en-us

French fr

French (Canada) fr-ca

French (France) fr-fr

German de

German (Germany) de-de

German (Switzerland) de-ch

Fraser_640-4C18.fm Page 766 Monday, November 14, 2005 11:57 AM

C H A P T E R 1 8 ■ A S S E M B L Y P R O G R A M M I N G 767

Figure 18-16 shows MulticulturalDates.exe run on December 4, 2002.

Figure 18-16. The result of executing the MulticulturalDates program

Now here comes a tricky part. There are two cultures you can set in the CurrentThread. The first
is CurrentCulture, which is used by the Globalization namespace to handle culture-specific format-
ting. The second is CurrentUICulture, which is used by the ResourceManager to handle culture-specific
resources. You may need to set one or both depending on what you are doing. Here is how you can
set both to the French (France) culture:

Thread::CurrentThread->CurrentCulture = gcnew CultureInfo("fr-fr");
Thread::CurrentThread->CurrentUICulture = Thread::CurrentThread->CurrentCulture;

The Localization Tools
Once you have an application designed and coded for multiple cultures, you then have to go through
the long process of localizing it for each culture you want to support. Fortunately, Visual Studio 2005
provides much of the functionality you need to localize your application if you happen to be building
a Windows application. It also supplies much of the localization functionality for a console applica-
tion, providing you use a minor trick.

The way in which localization works is actually very elegant. First, you create a default version
of all of your display elements, placing each in a resource file. Then for every other culture, you create
a satellite resource file. Within that satellite resource file are replacement elements for the default
view. Thus, when the culture is changed, the ResourceManager looks into the satellite resource of that
culture first for display elements. If it finds the element it wants there, then it uses it. If it doesn’t find
the element it wants there, then it takes the default value.

Building a Multicultural Windows Application
The addition of localization to a Windows application is quite impressive. You really don’t see how
impressive it is until you try it yourself. Let’s start off by creating a very simple Windows Form
containing a single label that looks like the one in Figure 18-17.

Figure 18-17. A very simple Windows Form

When you look at the auto-generated code in the InitializeComponent() method, as shown in
Listing 18-14, you see pretty standard and unimpressive code.

Fraser_640-4C18.fm Page 767 Monday, November 14, 2005 11:57 AM

768 C H A P T E R 1 8 ■ A S S E M B LY P R O G R A M M I N G

Listing 18-14. Very Simple Windows Form Code

void InitializeComponent(void)
{
 this->lbHello = (gcnew System::Windows::Forms::Label());
 this->SuspendLayout();
 //
 // lbHello
 //
 this->lbHello->Font =
 (gcnew System::Drawing::Font(L"Microsoft Sans Serif", 12,
 System::Drawing::FontStyle::Bold,
 System::Drawing::GraphicsUnit::Point,
 static_cast<System::Byte>(0)));
 this->lbHello->Location = System::Drawing::Point(12, 9);
 this->lbHello->Name = L"lbHello";
 this->lbHello->Size = System::Drawing::Size(364, 23);
 this->lbHello->TabIndex = 0;
 this->lbHello->Text = L"Hello, my name is Stephen";
 //
 // Form1
 //
 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(390, 48);
 this->Controls->Add(this->lbHello);
 this->Name = L"Form1";
 this->Text = L"English";
 this->ResumeLayout(false);
}

Okay, now let’s take this same code and make it localizable. To do this, simply set the Form’s
Localizable property to true (see Figure 18-18).

Figure 18-18. Setting the Localizable flag to true

Now take a look at the code in the InitializeComponent() method (see Listing 18-15).

Fraser_640-4C18.fm Page 768 Monday, November 14, 2005 11:57 AM

C H A P T E R 1 8 ■ A S S E M B L Y P R O G R A M M I N G 769

Listing 18-15. Localizable Simple Application

void InitializeComponent(void)
{
 System::ComponentModel::ComponentResourceManager^ resources =
 (gcnew System::ComponentModel::ComponentResourceManager(Form1::typeid));
 this->lbHello = (gcnew System::Windows::Forms::Label());
 this->SuspendLayout();
 //
 // lbHello
 //
 resources->ApplyResources(this->lbHello, L"lbHello");
 this->lbHello->Name = L"lbHello";
 //
 // Form1
 //
 resources->ApplyResources(this, L"$this");
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->Controls->Add(this->lbHello);
 this->Name = L"Form1";
 this->ResumeLayout(false);
}

Where did all the code go? Don’t panic, every aspect of the label has now become a resource. As
such, it can take on any look and feel you want based on the values you place within the resource file
that populates this label. At this point, all the information about the label and the form is stored in a
resource file called Form1.resx. Now, instead of hard coding everything, the application at runtime
dynamically applies the look and feel using the ApplyResources() method of the
ComponentResourceManager class.

Currently, the resource file only contains all the default information about the Windows Form,
as I pointed out as the first part of localization.

Now you’ll add a new culture, French (France), to the form. To do this you set the form’s Language
property to French (France). Scrolling up and down in the Language property’s selection displays
quite a few cultures, don’t you think?

Notice any difference in the Windows Form design? Nope, me neither. Here’s the fun part: Go
wild and change any property of the label, but just don’t delete it. Now toggle between the default
language and the French (France) language. Notice that they retain the information specific to each
culture. (Well, apparently you can’t go too wild there, as it seems a few of the properties aren’t stored
in the resource file automatically. Border and background color are two that surprised me by not
working.)

Go ahead and do the same for the German (Germany) culture. Notice how everything reverts to
the default culture look and feel again (if you were in the French language version anyway). When-
ever you start a new culture, Visual Studio 2005 reverts back to the default so that you will always
have a consistent starting point to make your culture-specific changes.

Anyway, now that you’ve created a French (France) culture and German (Germany) culture,
notice there’s now a Form1.fr-fr.resx and a Form1.de-DE.resx resource file added to your Solution
Explorer.

Now let’s see what happens when you compile the Windows Form application. After you
compile the application, go ahead and open Windows Explorer and navigate to the directory structure
where the application runs. There are now two directories, one for each culture using the culture’s
RFC1766 code as a name. Also, in each directory is a file called [ApplicationName].resources.dll, as
shown in Figure 18-19. These two new .dll files are your satellite assemblies.

Fraser_640-4C18.fm Page 769 Monday, November 14, 2005 11:57 AM

770 C H A P T E R 1 8 ■ A S S E M B LY P R O G R A M M I N G

Figure 18-19. The Windows Explorer view of satellite assemblies

Run your new multicultured application. You see none of your French or German stuff, right? That
is because your native culture is not French (France) or German (Germany), so the ResourceManager took
the default resource values and not the French or German one. (Oh, of course, if you are reading this
book in France or Germany and your machine is configured for French or German, then you would
see the French or German. French or German readers might try some other culture for this example.)

As I stated previously, you need to change the CurrentThread class’s CurrentUICulture to the
satellite assembly’s culture you want to access. Do this by adding the following lines before you call
the InitializeComponent() method:

Thread::CurrentThread->CurrentCulture = gcnew CultureInfo("fr-fr");
Thread::CurrentThread->CurrentUICulture = Thread::CurrentThread->CurrentCulture;

Figure 18-20 shows MultiCulturalApp.exe French (France) culture in action.

Figure 18-20. The result of executing the MultiCulturalApp program

Building a Multicultural Console Application
When you build an assembly that isn’t a Windows application, things aren’t quite as easy. But it
doesn’t take much to fool Visual Studio 2005 into believing it’s building Windows-like satellite
assemblies.

Let’s create a simple little program called MulticultureConsole (see Listing 18-16) that writes
four colors stored in a resource string table.

Listing 18-16. Writing Out Four Colors from a Resource

using namespace System;
using namespace System::Reflection;
using namespace System::Resources;
using namespace System::Threading;
using namespace System::Globalization;

Fraser_640-4C18.fm Page 770 Monday, November 14, 2005 11:57 AM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 1 8 ■ A S S E M B L Y P R O G R A M M I N G 771

void main()
{
 Assembly ^assembly = Assembly::GetExecutingAssembly();
 ResourceManager ^rmgr =
 gcnew ResourceManager("MulticultureConsole.Colors", assembly);

 Console::WriteLine(rmgr->GetObject("Color1"));
 Console::WriteLine(rmgr->GetObject("Color2"));
 Console::WriteLine(rmgr->GetObject("Color3"));
 Console::WriteLine(rmgr->GetObject("Color4"));
}

Add a new item of type Assembly Resource File (.resx) and name it Colors. Then add the string
resources as shown in Figure 18-21. Finally, rename the generated resource file as $(IntDir)/
$(RootNamespace).Colors.resources.

Figure 18-21. The Colors assembly resource file

When you run MulticultureConsole.exe, you should get something like Figure 18-22. There is
nothing new so far.

Figure 18-22. The first result of MulticultureConsole

Now let’s make the program multicultural. The first step is to add the code to the application so
that it will display based on another culture or, in other words, you globalize the application. You do
this by setting the CurrentThread CurrentUICulture to something else. Let’s change it to “fr-fr” or
French (France), as shown in Listing 18-17.

Fraser_640-4C18.fm Page 771 Monday, November 14, 2005 11:57 AM

772 C H A P T E R 1 8 ■ A S S E M B LY P R O G R A M M I N G

Listing 18-17. Writing Out Four Colors from a Resource Multiculturally

using namespace System;
using namespace System::Reflection;
using namespace System::Resources;
using namespace System::Threading;
using namespace System::Globalization;

void main()
{
 Assembly ^assembly = Assembly::GetExecutingAssembly();
 ResourceManager ^rmgr =
 gcnew ResourceManager("MulticultureConsole.Colors", assembly);

 Console::WriteLine(rmgr->GetObject("Color1"));
 Console::WriteLine(rmgr->GetObject("Color2"));
 Console::WriteLine(rmgr->GetObject("Color3"));
 Console::WriteLine(rmgr->GetObject("Color4"));

 Thread::CurrentThread->CurrentUICulture = gcnew CultureInfo("fr-fr");

 Console::WriteLine(rmgr->GetObject("Color1"));
 Console::WriteLine(rmgr->GetObject("Color2"));
 Console::WriteLine(rmgr->GetObject("Color3"));
 Console::WriteLine(rmgr->GetObject("Color4"));
}

The only new thing you did was change the CurrentUICulture. I just cut and pasted the four
lines that display the colors.

Now it’s time to fool Visual Studio 2005. When Visual Studio 2005 created its resource files
(which later became satellite assemblies) for the multiculture example, it did so in a very specific
manner. The fortunate thing is that if you create your resource files in the same way, even in a
console application, you will also get correctly built satellite assemblies.

Basically, here is how you do it. Create an assembly resource file (.resx) named WhatYouWant.resx
that contains all the resource items for the default language. Also rename the auto-generated resource
file as $(IntDir)/$(RootNamespace).WhatYouWant.resources. Notice that this is the same proce-
dure you followed earlier when you embedded the standard resource file.

Now here’s the trick to add, let’s say, a French culture. Create a new assembly resource file (.resx)
and name it WhatYouWant.fr-fr.resx. Add all the replacement values that you want for that
culture. Then rename the auto-generated resource file as $(IntDir)/$(RootNamespace).
WhatYouWant.fr-fr.resources. That’s it! Placing the culture just before the .resx and .resources files
is enough to trick Visual Studio 2005 into creating a culture-specific satellite assembly.

So for the previous MulticultureConsole example, create an assembly resource file (.resx) named
Colors.fr-fr.resx. Then add the string resources as shown in Figure 18-23.

As you can see, once you change the culture to French, the ResourceManager looks first in the
French satellite assembly for the value. Because there is no Color2, the English (default) value is
written.

Fraser_640-4C18.fm Page 772 Monday, November 14, 2005 11:57 AM

C H A P T E R 1 8 ■ A S S E M B L Y P R O G R A M M I N G 773

Figure 18-23. French Colors assembly resource file

Notice that it is important that the names of the name/value pairs match between the
default and the French resource files. Finally, rename the generated resource file as $(IntDir)/
$(RootNamespace).fr-fr.Colors.resources.

When you run the revised MulticultureConsole.exe, you should get something like Figure 18-24.
There is nothing new so far.

Figure 18-24. Revised result of MulticultureConsole

Summary
In this chapter, you looked at several ways to programmatically play with the .NET Framework
assembly. You started by exploring reflection and then its counterpart, attributes. You moved on to
look at shared assemblies. Next, you learned how to add more to assemblies than just code using
resources. You finished off the chapter by looking at globalization and localization.

Programming with assemblies, like many of the other topics covered in this book, is a weighty
topic. I feel the only way to really learn how to program the assembly is to do so yourself. This chapter
should have opened up many doors on how to do this.

The programming world has gone security crazy—unfortunately, justifiably so. In the next
chapter, we will look at what C++/CLI and the .NET Framework have to help secure your code.

Fraser_640-4C18.fm Page 773 Monday, November 14, 2005 11:57 AM

Fraser_640-4C18.fm Page 774 Monday, November 14, 2005 11:57 AM

775

■ ■ ■

C H A P T E R 1 9

Security

Even though this is the last chapter specifically addressing managed code, it is hardly the least
important. In fact, to many developers it is one of the more important ones. The only reason it is
placed here, instead of earlier, is that it is easier to understand security if you already have a good
knowledge of both managed code and the .NET Framework—which you should have by now.

Another reason I placed the chapter here is because this is the last chapter that deals solely with
managed code. To put it simply, .NET Security works only with managed code (and, as you’ll see in
this chapter, managed data). So what you will be learning in the chapters following this one will not
be bound by what is covered in this chapter. (Okay, that is not quite accurate. The code to access or
call unsafe code still falls under the .NET security umbrella, but the unsafe code itself does not.)

In general, .NET security focuses on code that has an origin other than your local hard drive, or
what is often called mobile code. Normally, code that originates on your local hard drive has authority
to do anything on your computer that the operating system security allows. You can change this, but
in most cases there is no need.

Security in .NET is a problematic topic when it comes to C++/CLI as you have the ability to very
easily step outside the safe .NET sandbox if you are not paying attention. You may find that code that
works just fine when run from your local hard drive continually throws exceptions when run as
mobile code. The most probable reason for these exceptions is because of the code’s or the user’s
lack of permission to execute a particular functionality or access a specific resource.

Understanding the reason for these exceptions and providing methods for solving them is the
goal of this chapter.

■Note If parts of your code are unsafe, it causes the common language runtime (CLR) to get upset and throw an
exception tantrum. There is an easy way to combat accidentally introducing unsafe code: Always compile code that
you want to be secure with the /clr:safe option. This option never compiles successfully if unsafe code is present.
I discuss unsafe code in some detail in the last two chapters of this book.

This chapter will look at the two forms of security provided by .NET: role-based and code access
security. I’ll start off with role-based security as I feel it is the easier of the two security types. Then
I’ll move on to the more involved (though not much more complex) code access security.

The Security Namespaces
The .NET Framework breaks security functionality into two large namespaces:
System::Web::Security for the ASP.NET and Web services worlds and System::Security for
the Windows application, console, and Windows services worlds. Since the functionality of
System::Security is so complex, the .NET Framework also breaks it up into the following:

Fraser_640-4C19.fm Page 775 Monday, November 14, 2005 11:59 AM

776 C H A P T E R 1 9 ■ S E C U R I T Y

• System::Security is the primary namespace that provides the underlying structure of the
.NET security system.

• System::Security::AccessControl provides security access information on objects like
Active Directory, files, the Registry, mutex, and Semaphores.

• System::Security::Authentication contains a set of enumerations that describe the security
of a connection.

• System::Security::Cryptography provides cryptographic services, including secure encoding
and decoding of data.

• System::Security::Permissions provides classes that control access to operations and
resources based on policy.

• System::Security::Policy contains code groups, membership conditions, and evidence.

• System::Security::Principal defines a principal object that represents the security context
under which code is running. In other words, it is a user, machine, or server that can be positively
identified via authentication.

Which combination of namespaces you use depends mainly on the type of security your appli-
cation is performing. For the most part, with role-based security you will use System::Security,
System::Security::Principal, and System::Security::Permissions, and for code access security
you will use System::Security, System::Security::Policy, and System::Security::Permissions.

Role-Based Security
When someone traditionally thinks of securing their computer system, role-based is usually what
they are thinking about. It is the process of specifying and then allowing a user to access specific
resources and functionalities of your system based on the role that the user performs. Common
roles are administrator, user, and guest. Each of these roles has a set of resources that the user can
access and functionalities that they may perform. Roles are not mutually exclusive; in fact, it is a
common practice to combine roles into a hierarchy where the top of the hierarchy provides unlimited
access and functionality and as you navigate down the hierarchy the role’s rights become more restric-
tive. Of course, you can also build security in a haphazard way where roles have no interdependencies
(though nearly always there is an administrative role that has the rights and privileges of all other roles).

.NET’s role-based security works well in conjunction with Windows’ user accounts and Active
Directory (AD) users, but you are not restricted to either of these, since you can create roles dynam-
ically at runtime that are neither a Windows user account nor an AD user.

To implement role-based security in .NET, you need two pieces: the user and the roles that the
user belongs to. In .NET-speak, the user is represented by the identity object and the roles that the
identity object belongs to are represented by the principal object. (I would have been quite happy
with simply the user object and roles object, but hey, I didn’t write the .NET Framework.)

Identities
The .NET Framework provides two identity objects: WindowsIdentity and GenericIdentity. The
WindowsIdentity object consists of Windows users that you maintain using the Computer Manage-
ment administrative tool, as shown in Figure 19-1.

Fraser_640-4C19.fm Page 776 Monday, November 14, 2005 11:59 AM

C H A P T E R 1 9 ■ S E C U R I T Y 777

Figure 19-1. Users in the Computer Management administrative tool

The GenericIdentity, on the other hand, consists of users that you create dynamically at runtime.
Both WindowsIdentity and GenericIdentity share the interface IIdentity, which makes things easier as
methods need only use the interface to handle both types of identity.

■Note You can create your own custom identities using the IIdentity interface, though personally I have found
that GenericIdentity has provided all the functionality I’ve needed.

The IIdentity interface exposes three simple properties:

• AuthenticationType is a string that indicates the type of authentication used by the identity
object. When you are working with Windows, this value will be either Basic, Forms, Kerberos,
NTLM, or Passport. (You will most likely find this value is NTLM as it is used by Windows for
logon authentication on stand-alone systems.)

• IsAuthenticated is a Boolean value that represents whether the identity object has been
authenticated.

• Name is, well, you know… the name associated with the identity object.

Principal
Like the identity, the .NET Framework provides two principal objects: WindowsPrincipal and
GenericPrincipal. The WindowsPrincipal object more or less maps to the Windows group and is also
maintained by the Computer Management tool, as shown in Figure 19-2. (Group, principal, and role
are all basically the same thing when it comes to role-based security… hmmm, let’s just make things
confusing, shall we?)

Fraser_640-4C19.fm Page 777 Monday, November 14, 2005 11:59 AM

cafac74dd2d083cbec0906b66fcd56b1

778 C H A P T E R 1 9 ■ S E C U R I T Y

Figure 19-2. Groups in the Computer Management tool

The GenericPrincipal is an object that contains the roles of an identity that you create dynamically
at runtime. Both WindowsPrincipal and GenericPrincipal share the interface IPrincipal, which
again makes things easier since methods need only use the interface to handle both types of principal.

■Note Just as with identities, you can create your own custom principals using the IPrincipal interface,
though I have found that GenericPrincipal has provided all the functionality I’ve needed.

The IPrincipal interface exposes one property and one method:

• Identity is a property that contains a handle to the identity associated with the principal.

• IsInRole() takes as its parameter a role and returns a Boolean specifying if the principal has
that role.

Working with Identities and Principals
Since the principal and identity objects contain very few properties and methods, they are rather
easy to code. There are only a couple of things that you might find tricky.

The first thing you need to know about principals is how to get access to them. You find them
using the static property CurrentPrincipal on the Thread object. Since this property returns an
IPrincipal, you normally typecast it to either the WindowsPrincipal or the GenericPrincipal like this:

WindowsPrincipal ^wPrinc = (WindowsPrincipal^)Thread::CurrentPrincipal;
GenericPrincipal ^gPrinc = (GenericPrincipal^)Thread::CurrentPrincipal;

The other issue you need to be aware of is that you have to specify how principal and identity objects
should be created for the application domain in which the thread is running. You do this by invoking
the AppDomain::CurrentDomain->SetPrincipalPolicy() method using as its parameter the appropriate
PrincipalPolicy enumeration. The default is PrincipalPolicy::UnauthenticatedPrincipal, which

Fraser_640-4C19.fm Page 778 Monday, November 14, 2005 11:59 AM

C H A P T E R 1 9 ■ S E C U R I T Y 779

means that the principal has its Name property set to an empty string ("") and its IsAuthenticated
property set to false. What you need to set it to is PrincipalPolicy::WindowsPrincipal, which will
return the current user associated with the thread along with all the groups it is in as roles. There is also
PrincipalPolicy::NoPrincipal, which will cause a nullptr to be returned (not that you will need this
when doing role-based security). Here is how you would code it:

AppDomain::CurrentDomain->SetPrincipalPolicy(PrincipalPolicy::WindowsPrincipal);

Why is PrincipalPolicy::UnauthenticatedPrincipal the default? I’m not sure, as it is not normally
what you are looking for. Oh, and one final gotcha. You need to set PrincipalPolicy before you call
the Thread::CurrentPrincipal method because the SetPrincipalPolicy() method does not change
the principal’s type once it’s been created.

Listing 19-1 is a simple example that first gets the Thread’s current WindowsPrincipal and
WindowsIdentity and displays their information, and then resets the CurrentThread so that it contains
a dynamically created GenericPrincipal and GenericIdentity.

Listing 19-1. Getting and Setting Principals and Identities

using namespace System;
using namespace System::Security;
using namespace System::Security::Principal;
using namespace System::Threading;

void main()
{
 // set policy from UnauthenticatedPrincipal to WindowsPrincipal
 AppDomain::CurrentDomain->SetPrincipalPolicy(
 PrincipalPolicy::WindowsPrincipal);
 // --
 // Get Windows Principal and Identity
 // --
 Console::WriteLine("Windows Principal & Identity");
 Console::WriteLine("----------------------------");

 WindowsPrincipal ^wPrinc = (WindowsPrincipal^)Thread::CurrentPrincipal;

 Console::WriteLine("Is an Administrator?: {0}",
 wPrinc->IsInRole(WindowsBuiltInRole::Administrator));
 Console::WriteLine("Is a Hacker?: {0}", wPrinc->IsInRole("Hacker"));

 WindowsIdentity ^wIdent = (WindowsIdentity^)wPrinc->Identity;

 Console::WriteLine("\nWindows Login Name: {0}", wIdent->Name);
 Console::WriteLine("Authentication Type: {0}", wIdent->AuthenticationType);
 Console::WriteLine("Is Authenticated: {0}", wIdent->IsAuthenticated);
 Console::WriteLine("Is System Account: {0}", wIdent->IsSystem);
 // --
 // Create (Hacker) Principal and Identity
 // --
 Console::WriteLine("\n\nGeneric Principal & Identity");
 Console::WriteLine("----------------------------");

 array<String^>^ rolesArray = {"Hacker"};

Fraser_640-4C19.fm Page 779 Monday, November 14, 2005 11:59 AM

780 C H A P T E R 1 9 ■ S E C U R I T Y

 // Set the principal to a new generic principal.
 Thread::CurrentPrincipal =
 gcnew GenericPrincipal(gcnew GenericIdentity("John Doe"), rolesArray);

 GenericPrincipal ^gPrinc = (GenericPrincipal^)Thread::CurrentPrincipal;

 Console::WriteLine("Is an Administrator?: {0}",
 gPrinc->IsInRole("BUILTIN\\Administrator"));
 Console::WriteLine("Is a Hacker?: {0}", gPrinc->IsInRole("Hacker"));

 GenericIdentity ^gIdent = (GenericIdentity^)gPrinc->Identity;

 Console::WriteLine("\nUser Name: {0}", gIdent->Name);
 Console::WriteLine("Is Authenticated: {0}\n", gIdent->IsAuthenticated);
}

One thing you should note from Listing 19-1 is how you create a GenericPrincipal. First, you
create a GenericIdentity using its constructor and then pass it along with an array of string-formatted
roles to the GenericPrincipal constructor. Very simple and, I think, elegant.

Figure 19-3 shows the result of PrincipalIdentity.exe in action. Notice that my account has
administrative rights. Yours, on the other hand, may not.

Figure 19-3. The results of PrincipalIdentity.exe

You may be wondering, when would I ever need to create a GenericPrincipal? Why not just use
the WindowsPrincipal? Well, you’d want to use the GenericPrincipal when you want roles not bound
to Windows groups. Basically, you use them when you want roles to be authorized based on a set
defined by your application and not by Windows or Active Directory groups.

Securing Your Code Using Roles
Okay, having principals and identities is all very nice, but how does that secure your code? The simple
answer is that it doesn’t. You still have to add code to your program that provides this security. There
are three techniques of doing this.

The first technique you have already seen (though you may not have been aware of it). You
surround the code that you want restricted to specific roles with the IsInRole() method, like this:

if (wPrinc->IsInRole(WindowsBuiltInRole::Administrator))
{
 // do administrative stuff
}

Fraser_640-4C19.fm Page 780 Monday, November 14, 2005 11:59 AM

C H A P T E R 1 9 ■ S E C U R I T Y 781

Easy enough, but to use this technique you need to get the principal of the executing thread—
though as you have already seen, getting Thread::CurrentPrincipal is not difficult.

The second technique of securing your code by role is by using what is known as declarative
role-based security. With this technique you declare a method with the additional attribute
PrincipalPermissionAttribute that specifies which roles areallowed to execute it. (I cover other
PermissionAttributes later in the chapter, and I will go into greater detail at that time.) Basically,
you demand that a principal have a specified role like this:

[PrincipalPermissionAttribute(SecurityAction::Demand,
 Role="BUILTIN\\Administrator")]
void DeclarativeSecurity()
{
 // do administrative stuff
}

The third technique is a kind of a mix of the prior two techniques, called imperative role-based
security. With this technique, you demand that a principal have a specific role but you make the
demand (normally) just before the secured code. This technique requires that you create an instance
of a PrincipalPermission and then execute its Demand() method. I usually do this in one line like this:

(gcnew PrincipalPermission(nullptr, "BUILTIN\\Administrator"))->Demand();

But you can break it up into its parts and it works just the same.
Notice the first parameter of the PrincipalPermission is a nullptr. This parameter allows

you to specify a specific principal’s name as well as a role. By passing nullptr you tell the
PrincipalPermission to use any user principal with this role. If you were to specify a principal name,
then only that specific principal/role pair would be used—which means you are no longer using
role-based security and instead are using principal-based (user-based) security.

One major difference between technique 1 (the IsInRole) and technique 2 (declarative) and 3
(imperative) is that if the demand fails on techniques 2 and 3 a SecurityException is thrown. In the
case of technique 1, only a false condition occurs.

Listing 19-2 shows how you can implement declarative and imperative role-based security. It
also changes principal and identity midstream so that you can see that both methods react a different
way depending on whether the role is found on the principal.

Listing 19-2. Implementing Role-Based Security

using namespace System;
using namespace System::Security;
using namespace System::Security::Principal;
using namespace System::Security::Permissions;
using namespace System::Threading;

[PrincipalPermissionAttribute(SecurityAction::Demand, Role = "NotAHacker")]
void DeclarativeSecurity()
{
 Console::WriteLine("I'm in the Declarative Security Function");
}

void DemandSecurity()
{
 (gcnew PrincipalPermission(nullptr, "NotAHacker"))->Demand();

 Console::WriteLine("I'm in the Demand Security Function\n");
}

Fraser_640-4C19.fm Page 781 Monday, November 14, 2005 11:59 AM

782 C H A P T E R 1 9 ■ S E C U R I T Y

void main()
{
 try
 {
 DeclarativeSecurity();
 }
 catch (SecurityException^)
 {
 Console::WriteLine("SECURITY ERROR in Declarative Security Function");
 }

 try
 {
 DemandSecurity();
 }
 catch (SecurityException^)
 {
 Console::WriteLine("SECURITY ERROR in Demand Security Function\n");
 }

 Console::WriteLine("Set CurrentPrincipal to John with role of NotAHacker");
 array<String^>^ rolesArray = {"NotAHacker"};
 Thread::CurrentPrincipal = gcnew GenericPrincipal(
 gcnew GenericIdentity("John"),
 rolesArray);
 try
 {
 DeclarativeSecurity();
 }
 catch (SecurityException^)
 {
 Console::WriteLine("SECURITY ERROR in Declarative Security Function");
 }

 try
 {
 DemandSecurity();
 }
 catch (SecurityException^)
 {
 Console::WriteLine("SECURITY ERROR in Demand Security Function");
 }
}

Notice the liberal use of try/catch blocks. These are needed so that the code can continue when
a demand fails. If you don’t use these try/catch blocks, then you will get an exception like what is
shown in Figure 19-4. Normally when you code, you want a more gracious exit to your programs, but
there is nothing stopping you from letting your programs die, then and there, when a principal doesn’t
have the roles needed to execute.

Fraser_640-4C19.fm Page 782 Monday, November 14, 2005 11:59 AM

C H A P T E R 1 9 ■ S E C U R I T Y 783

Figure 19-4. An ugly SecurityException if try/catch is not used

Figure 19-5 shows the result of RoleBasedSecurity.exe in action. Unless you actually have a
Windows group of “NotAHacker” your results will be the same.

Figure 19-5. The results of RoleBasedSecurity.exe

Code Access Security
When I first started working with .NET security, I was totally baffled by code access security (some-
times known by its acronym, CAS), but as I started working with it, I realized that conceptually it
doesn’t differ much from role-based security. I find it easier to think of code access security as a form
of evidence-based security. Basically, instead of using roles to determine what code can be run, you
use evidence. Evidence means things like site or URL of origin and strong name.

Okay, it’s a little more complicated than that, but thinking of it this way makes things easier, at
least for me.

Code-based security is based on four concepts: permissions, policy, code groups, and evidence.
Let’s take a look at each.

Permissions
Permissions, as you can probably guess, represent the right to access or deny access to resources and
functionalities. The .NET Framework provides many permission classes, such as FileIOPermission
(permission to access files) and UIPermission (permission to access the user interface).

Fraser_640-4C19.fm Page 783 Monday, November 14, 2005 11:59 AM

784 C H A P T E R 1 9 ■ S E C U R I T Y

Normally, when working with code access security, you don’t deal with a single permission but
instead work with permission sets. Permission sets allow you to group permissions together that
simplify your coding since you don’t have to deal with each of the permissions individually.

The .NET Framework provides you with several preconfigured permission sets. The following
five are the ones you will most likely come in contact with:

• FullTrust grants full access to all protected resources.

• LocalIntranet is the default permission set suitable for running code from within an enterprise.

• Internet is the default permission set suitable for running code from an unknown source.

• Execution gives permission to run but no rights to access protected resources.

• Nothing means no permissions (cannot run).

It is also fairly easy to create your own permission sets. You can do it using the Microsoft .NET
Framework 2.0 Configuration tool or the command-line tool caspol.exe, but since this is a book
about C++/CLI, I’ll show you how to code the creation of the permission sets directly in C++/CLI.
(There are many books and Web sites that cover creating permission sets, if you insist on doing it
that way. But I’m pretty sure once you see how you do it in code you’ll not have much trouble doing
it with either of the aforementioned tools.)

The first step, quite logically, is to create a permission set:

PermissionSet^ permSet = gcnew PermissionSet(PermissionState::None);

Since this is a custom permission set, you start it off empty by assigning it a
PermissionState::None. If you were to assign it a PermissionState::Unrestricted, then you would in
effect be giving the permission set FullTrust. You can also pass an predefined permission set, to
which you can add more permissions.

Now that you have an empty permission set, all you have to do is add the permission you want
to it using its AddPermission() method:

permSet->AddPermission(gcnew SecurityPermission(PermissionState::Unrestricted));
permSet->AddPermission(gcnew UIPermission(PermissionState::Unrestricted));
permSet->AddPermission(gcnew FileIOPermission(FileIOPermissionAccess::Read,
 "C:\\"));

There is a minor gotcha that you have to address when starting a permission set from scratch.
You need to give the permission set the rights to execute your code. You do this by adding an instance
of the SecurityPermission object. You also have to allow the permission set the ability to show the
user interface. This is done with the addition of an instance of the UIPermission object. You want to
give both of these objects unrestricted permissions.

Now that you have the required permissions added, you will want to add the permission you
specifically want to give to the permission set. In the previous code, I allow only file IO read access
to the C:\ directory by adding an instance of the FileIOPermission object.

Numerous permissions are available to you. If you need to look them up, you can use the MSDN
documentation. They are found in the System::Security::Permissions namespace.

Policy Statement
A policy statement is a set of rules that the CLR follows to determine what is granted permission to
execute. There are four policies that you can apply policy statements to in code access security:
Enterprise, Machine, User, and Application Domain. These policies are organized in a hierarchy
as follows:

Fraser_640-4C19.fm Page 784 Monday, November 14, 2005 11:59 AM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 1 9 ■ S E C U R I T Y 785

• Enterprise, or all managed code in the enterprise

• Machine, or all managed code on the machine

• User, or all managed code in processes owned by current user

• Application Domain, or all managed code within the application domain

Each level of the hierarchy is more restrictive, so for example an Enterprise’s policy statement
can overrule all other policy statements, while a Machine’s policy statement can overrule a User’s
and an Application Domain’s policy statement. What this boils down to is that what is granted
permission to execute is determined by an intersection of all the policy statements within the four
code access security policies, as depicted in Figure 19-6.

Figure 19-6. Intersection of policies determining code to execute

There are two constructors available for creating a policy statement. The simpler one just takes
a permission set. Continuing with our example, the constructor would look like this:

PolicyStatement^ policy = gcnew PolicyStatement(permSet);

The second constructor provides you with a little more power as it allows you to override the
default method of determining what is granted permission to be executed. This constructor takes an
additional parameter of type PolicyStatementAttribute:

PolicyStatement^ policy =
 gcnew PolicyStatement(permSet, PolicyStatementAttribute.LevelFinal);

There are two attributes that you might want to set with this constructor:

• Exclusive means that only this policy statement (at this hierarchical level) will be used in
determining what gets granted permission to execute.

• LevelFinal causes policy levels below this one to be ignored, effectively allowing a policy level
to override its lower levels.

Code Groups
A code group is a logical grouping of code by means of one and only one common membership
condition. That isn’t to say that the same logical grouping of code can’t be a member of more than
one code group. In fact, code groups are organized in a hierarchy from “all code” to very (possibly)
specific conditions. (Doesn’t this sound familiar? Hint: a roles hierarchy.) Thus, if a logical group of

Fraser_640-4C19.fm Page 785 Monday, November 14, 2005 11:59 AM

786 C H A P T E R 1 9 ■ S E C U R I T Y

code has evidence to support that it is a member of the lowest level of the hierarchy, then it is also a
member by default of all parent code groups.

The .NET Framework provides several membership conditions for preconfigured code groups:

• All code: All code meets this condition.

• Application directory: Code in the directory or a child directory of the running application.

• Custom: Code matching a user-specified condition.

• GAC: Code that resides in the global assembly cache (GAC).

• Hash: Code with a hash that matches the given hash.

• Publisher: Code digitally signed with a specified certificate.

• Site: Code downloaded from a specified site.

• Strong Name: Code with a specified strong name and public key.

• URL: Code downloaded from a specified URL.

• Zone: Code that originates from one of five specified zones: My Computer, Internet, Local
Intranet, Trusted Sites, and Untrusted Sites. (These zones are maintained within the security
options of Internet Explorer.)

The process of coding membership condition is pretty easy; you just have to create an instance
of it using the appropriate .NET Framework constructor. Conveniently there happens to be a class
and simple constructor for each of the preconfigured code group membership conditions listed here
in the System::Security::Policy namespace.

For example, if you want to create a URL membership condition you would create an instance
of the UrlMembershipCondition class like this:

IMembershipCondition^ membership =
 gcnew UrlMembershipCondition("http://192.168.1.102/Chapter19/*");

Now that you have both a policy and a membership condition, you can create a code group, or
more accurately add to the union the current code group’s policy statement, with the policy state-
ment of all its matching child code groups. This is done with the UnionCodeGroup class.

CodeGroup^ codeGroup = gcnew UnionCodeGroup(membership, policy);

Notice that I am creating an instance of a CodeGroup, not a UnionCodeGroup. The CodeGroup class
is an abstract base class and you can’t create it directly.

The CodeGroup has a few properties and members. The few I most commonly use are shown in
Table 19-1.

Table 19-1. Commonly Used CodeGroup Properties and Methods

Member Description

AddChild() Method to add a child code group to the current code group.

Children An ordered list of all child code groups.

Description The description of the code group. This is what gets displayed in the
Microsoft .NET Framework 2.0 Configuration tool.

Name Name of the code group. You will use this to dynamically delete the
code group.

RemoveChild() Method to remove a child code group from the current code group.

Fraser_640-4C19.fm Page 786 Monday, November 14, 2005 11:59 AM

C H A P T E R 1 9 ■ S E C U R I T Y 787

Mostly I just use Description and Name like this:

codeGroup->Description = "C:\\ ReadOnly permissions in for Application URL";
codeGroup->Name = "ReadOnly Secure Group";

But if I am building a code group hierarchy dynamically, then I would also use the child-related
property and methods. You will also see the child-related members in use in a later example that
shows how to remove a code group from a policy.

Okay, you now have all the parts needed to programmatically update your system’s security
policy. Let’s take a look at the complete example (see Listing 19-3) and fill in the couple of holes.

Listing 19-3. Adding Your Own ReadOnly Code Group

using namespace System;
using namespace System::Security;
using namespace System::Security::Permissions;
using namespace System::Security::Policy;

void main()
{
 // Create a new permission set
 PermissionSet^ permSet = gcnew PermissionSet(PermissionState::None);

 // Add permissions to the permission set.
 permSet->AddPermission(
 gcnew SecurityPermission(PermissionState::Unrestricted));
 permSet->AddPermission(gcnew UIPermission(PermissionState::Unrestricted));
 permSet->AddPermission(gcnew FileIOPermission(FileIOPermissionAccess::Read,
 "C:\\"));

 // Create Policy Statement
 PolicyStatement^ policy = gcnew PolicyStatement(permSet);

 // Create Membership condition
 IMembershipCondition^ membership =
 gcnew UrlMembershipCondition("http://192.168.1.102/Chapter19/*");

 // Create Code group
 CodeGroup^ codeGroup = gcnew UnionCodeGroup(membership, policy);
 codeGroup->Description = "C:\\ ReadOnly permission for Application URL";
 codeGroup->Name = "ReadOnly Secure Group";

 // Find the machine policy level
 System::Collections::IEnumerator^ ph = SecurityManager::PolicyHierarchy();

 while(ph->MoveNext())
 {
 PolicyLevel^ pl = (PolicyLevel^)ph->Current;
 if(pl->Label == "Machine")
 {
 // Add code group to Machine policy
 pl->RootCodeGroup->AddChild(codeGroup);
 break;
 }
 }

Fraser_640-4C19.fm Page 787 Monday, November 14, 2005 11:59 AM

788 C H A P T E R 1 9 ■ S E C U R I T Y

 // Save changes
 SecurityManager::SavePolicy();

 Console::WriteLine("Added C:\\ ReadOnly Secure Group");
}

You’ve seen most of the code in Listing 19-3 before. What you haven’t seen is how to add the
newly created code group as a child to the code group hierarchy. In the listing, I added it to the
Machine policy code group. There is nothing really tricky about it. All you do is iterate through the
enumeration of all policy levels looking for the Machine policy level and then simply add the new
code group as a child of the Machine code group hierarchy.

Finding the enumerator for the Policy hierarchy is less obvious. As you can see, see, I found the
SecurityManager class’s static method PolicyHierarchy().

Oh… and you have to save your work with the SecurityManager class’s static method SavePolicy.

■Note I use my IP address 192.168.1.102 as the membership condition. This probably will not be the same as
yours. Replace the above code with your IP. You can get it by running IPConfig.exe from the command line.

The results of the above example can be seen using the Microsoft .NET Framework 2.0 Config-
uration application (see Figure 19-7), which you access from your Administration tools.

Figure 19-7. Results shown in the Microsoft .NET Framework 2.0 Configuration application

Just to complete the circle, I might as well show you how to remove the code group you just
added. Listing 19-4 shows how you might do it.

Fraser_640-4C19.fm Page 788 Monday, November 14, 2005 11:59 AM

C H A P T E R 1 9 ■ S E C U R I T Y 789

Listing 19-4. Removing Your Own ReadOnly Code Group

using namespace System;
using namespace System::Security;
using namespace System::Security::Permissions;
using namespace System::Security::Policy;

void main()
{
 CodeGroup^ machine;

 // Iterate through policy hierarchy to get Machine Code group
 System::Collections::IEnumerator^ ph = SecurityManager::PolicyHierarchy();
 while(ph->MoveNext())
 {
 PolicyLevel^ machinePolicyLevel = (PolicyLevel^)ph->Current;
 if (machinePolicyLevel->Label == "Machine")
 {
 machine = machinePolicyLevel->RootCodeGroup;
 break;
 }
 }

 // Iterate backwards removing all instances of "ReadOnly Secure Group"
 for (int i = machine->Children->Count - 1; i >= 0; i--)
 {
 if(((CodeGroup^)machine->Children[i])->Name == "ReadOnly Secure Group")
 {
 machine->RemoveChild(((CodeGroup^)machine->Children[i]));
 }
 }

 // Save changes
 SecurityManager::SavePolicy();

 Console::WriteLine("Removed C:\\ File ReadOnly Secure Group");
}

I think the comments in Listing 19-4 pretty well explain what is happening. First you iterate
through the Policy hierarchy until you come to the Machine policy. At this point, grab the Machine
policy’s code group hierarchy.

The only unusual part is that you next have to iterate backward through the children of Machine’s
code group during the child removal process. You need to do it backward because as you remove
children the machine->Children->Count gets reduced by one as well. Because of this, you will miss
one iteration through the hierarchy. This is not an issue in this example since there is only one
“ReadOnly Secure Group.” However, if you happen to be removing multiple code groups that, for
instance, start with “ReadOnly Secure Group,” then if the last code group is one you are supposed to
delete, it will be missed.

Once you find the code group you want to remove (using the name you so conveniently added
during the add process), you call the RemoveChild() method. Incidentally, this will also prune off any
grandchildren.

Fraser_640-4C19.fm Page 789 Monday, November 14, 2005 11:59 AM

790 C H A P T E R 1 9 ■ S E C U R I T Y

Evidence
Now that you have all the code groups set up, code access security uses an evidence-based method
of ultimately determining if a section of code executes.

Evidence is accumulated at the assembly level; therefore, for an assembly to be a part of a code
group it must have evidence to support that it adheres to the code group’s common membership
characteristic or condition. Or in other words, does the assembly originate from a specific site, URL,
or zone? Does it have a matching strong name, hash, or publisher? Does it reside in the GAC or Appli-
cation directory?

The confusing part is that it is still possible for an assembly to run even if it doesn’t have the
evidence to support that it belongs to a required code group. The catch is that it only runs the code
within the assembly that it has the permissions to run. In other words, your assembly may be able to
display a UI but the functionality behind the buttons of the interface may require special permissions
to run.

Listings 19-5 and 19-6 show this in action. We’ve shown a simple Windows application that has
two buttons: one to read a file and one to write a file.

Listing 19-5. CAS Example .cpp File

#include "Form1.h"

using namespace CASSecurity;

[STAThreadAttribute]
int main(array<System::String ^> ^args)
{
 // Enabling Windows XP visual effects before any controls are created
 Application::EnableVisualStyles();
 // Create the main window and run it
 Application::Run(gcnew Form1());
 return 0;
}

Listing 19-6. CAS Example .h File

namespace CASSecurity
{
 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::IO;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;

 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();
 }

Fraser_640-4C19.fm Page 790 Monday, November 14, 2005 11:59 AM

C H A P T E R 1 9 ■ S E C U R I T Y 791

 protected:
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }
 private:
 System::Windows::Forms::Label^ lbOutput;
 System::Windows::Forms::Button^ bnWriteFile;
 System::Windows::Forms::Button^ bnReadFile;
 System::ComponentModel::Container ^components;

#pragma region Windows Form Designer generated code

 void InitializeComponent(void)
 {
 this->lbOutput = (gcnew System::Windows::Forms::Label());
 this->bnWriteFile = (gcnew System::Windows::Forms::Button());
 this->bnReadFile = (gcnew System::Windows::Forms::Button());
 this->SuspendLayout();
 //
 // lbOutput
 //
 this->lbOutput->AutoSize = true;
 this->lbOutput->Location = System::Drawing::Point(68, 71);
 this->lbOutput->Name = L"lbOutput";
 this->lbOutput->Size = System::Drawing::Size(0, 13);
 this->lbOutput->TabIndex = 5;
 //
 // bnWriteFile
 //
 this->bnWriteFile->Location = System::Drawing::Point(170, 30);
 this->bnWriteFile->Name = L"bnWriteFile";
 this->bnWriteFile->Size = System::Drawing::Size(75, 23);
 this->bnWriteFile->TabIndex = 4;
 this->bnWriteFile->Text = L"Write File";
 this->bnWriteFile->UseVisualStyleBackColor = true;
 this->bnWriteFile->Click +=
 gcnew System::EventHandler(this, &Form1::bnWriteFile_Click);
 //
 // bnReadFile
 //
 this->bnReadFile->Location = System::Drawing::Point(48, 30);
 this->bnReadFile->Name = L"bnReadFile";
 this->bnReadFile->Size = System::Drawing::Size(75, 23);
 this->bnReadFile->TabIndex = 3;
 this->bnReadFile->Text = L"Read File";
 this->bnReadFile->UseVisualStyleBackColor = true;
 this->bnReadFile->Click +=
 gcnew System::EventHandler(this, &Form1::bnReadFile_Click);
 //
 // Form1

Fraser_640-4C19.fm Page 791 Monday, November 14, 2005 11:59 AM

cafac74dd2d083cbec0906b66fcd56b1

792 C H A P T E R 1 9 ■ S E C U R I T Y

 //
 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(292, 110);
 this->Controls->Add(this->lbOutput);
 this->Controls->Add(this->bnWriteFile);
 this->Controls->Add(this->bnReadFile);
 this->Name = L"Form1";
 this->Text = L"CAS Security Test";
 this->ResumeLayout(false);
 this->PerformLayout();

 }
#pragma endregion

 private:
 System::Void bnReadFile_Click(System::Object^ sender,
 System::EventArgs^ e)
 {
 StreamReader ^sr = File::OpenText("C:\\TestFile.txt");
 String ^s = sr->ReadLine();
 sr->Close();
 lbOutput->Text = s;
 }

 private:
 System::Void bnWriteFile_Click(System::Object^ sender,
 System::EventArgs^ e)
 {
 StreamWriter ^sw = File::CreateText("C:\\TestFile.txt");
 sw->WriteLine("This is a test. This is only a test.");
 sw->Close();
 lbOutput->Text = "Wrote text to file.";
 }
 };
}

If you have read Chapters 9 and 10, then there should be nothing new here. Just make sure you
compile using /clr:safe as it is the only way that you can get code access security to work.

When you run this application from your local machine, it works without any problems.
Figure 19-8 shows the normal expected results.

Figure 19-8. CASSecurity run from the local machine

Fraser_640-4C19.fm Page 792 Monday, November 14, 2005 11:59 AM

C H A P T E R 1 9 ■ S E C U R I T Y 793

On the other hand, if you run it as mobile code via Internet Explorer it loads the interface but
the buttons when clicked throw permission exceptions.

■Caution Make sure you delete the code group generated with SetSecurity.exe (Listing 19-3) using
RemoveSecurity.exe (Listing 19-4) before starting this section, or your results will not be the same.

Running this example from Internet Explorer requires a bit of prep work:

1. In Windows Explorer, right-click the directory that contains the CASSecurity.exe file and
select Properties.

2. In the Properties dialog box, select the Web Sharing tab, as shown in Figure 19-9.

Figure 19-9. The Web Sharing tab in the Properties dialog box

3. Select the Share this folder radio button to bring up the Edit Alias dialog box, as shown in
Figure 19-10.

4. Type Chapter19 in the Alias text box.

5. Select the Directory browsing check box (optional).

6. Click OK twice.

Fraser_640-4C19.fm Page 793 Monday, November 14, 2005 11:59 AM

794 C H A P T E R 1 9 ■ S E C U R I T Y

Figure 19-10. The Edit Alias dialog box

Now you can run the application from Internet Explorer. To do this, just type in IE’s address line
http://192.168.1.102/Chapter19/CASSecurity.exe, substituting my IP address for your own. If you
completed step 5 you can simply type in the address line http://192.168.1.102/Chapter19 and click
the link to CASSecurity.exe. When you do, you’ll see the message in Figure 19-11.

Figure 19-11. Permission warning

If you ignore the warning and continue, clicking either button will result in a permission excep-
tion, as shown in Figure 19-12. Hmmm, not quite what you’re expecting, right?

Figure 19-12. Permission exception

All is not lost, thanks to all the work you have already done in creating a code group with a URL
membership condition of your IP and permissions to allow reading of files off C:\.

Fraser_640-4C19.fm Page 794 Monday, November 14, 2005 11:59 AM

C H A P T E R 1 9 ■ S E C U R I T Y 795

Run SetSecurity.exe to add the code group you created earlier. Now when you run CASSecurity.exe
from Internet Explorer, the Read File button works but the Write File button still throws an exception.
Why is that?

First, the assembly CASSecurity.exe provided evidence that it originates at the URL 192.168.1.102.
This satisfies the code group I wrote and the CLR allows the assembly to become a member. Now
that it is a member, it has the security permissions of the code group—in this case the right to
execute, show a UI, and read files from C:\. Since the code group does not have the permissions to
write to C:\, the CLR stops the assembly up short when it tries to do this and throws the permissions
exception.

Cool, no?

Securing Your Code Using CAS
One nice thing about the .NET Framework is that it is already configured to work with code access
security. Thus, once you have set up your code groups and permission sets, you are basically done,
unless you want to secure the resources and functionalities you have written yourself with code
access security.

Integrating code access security within your code is done in the same way as with role-based
security: using declarative- and imperative-style security. The only real difference between CAS and
role-based security is that you use a declarative attribute or imperative class related to the resource
or functionality you want to access instead of one related to principal permissions. For example, to
declaratively secure the Registry you would use something like this:

[RegistryPermissionAttribute(SecurityAction.Demand, Unrestricted=true)]
public class NeedsUnrestrictedRegistrtAccessClass
{
};

and to imperatively secure the Registry you would use

(gcnew RegistryPermission(PermissionState.Unrestricted))->Demand();

The main difference between these two styles is that declarative is evaluated during JIT compiling
while imperative is evaluated at runtime.

So far you have only been implementing permission demands, but the demand is only one of
the nine actions that can be taken with permissions. Here are all nine:

• Demand

• LinkDemand

• InheritanceDemand

• RequestMinumum

• RequestOptional

• RequestRefuse

• Assert

• Deny

• PermitOnly

Let’s take a look at each.

Fraser_640-4C19.fm Page 795 Monday, November 14, 2005 11:59 AM

796 C H A P T E R 1 9 ■ S E C U R I T Y

■Note Code access security works in conjunction with Windows user account security. Therefore, when your
application has permission according to CAS to access a protected resource, if your Windows user account does not
have the privilege then the application will throw a permission exception.

Demands
The most common security request type is the Demand type. They also, I think, make the most sense
when implementing. Basically, the code protected by the declarative or imperative statement is
demanding that the accessing code group have the permissions specified. When the code group has
the permissions, the program continues to execute; if not, the CLR throws an exception.

There are three types of demands; each addresses a different process for determining whether
or not the demand is successful.

Demand

You have already seen this type in action. You might not know that this form of demand ensures not
only that the current code group has the demanded permission but also that all code groups down
that call stack also have the required permission.

This means that all assemblies in the call stack below the current call must also have the
permissions demanded, not just the one currently executing.

Be aware that the demand occurs every time the protected area is accessed because the stack
might contain a different call stack. Therefore, if you call a declaratively protected method repeatedly or
execute the imperative Demand method, a security check occurs each time.

One unique implementation of imperative Demand syntax is to enable and disable controls in the
UI so that a user does not have the ability to click on a control that he has no privileges for. You need
to add the following to the CASSecurity.exe example to implement this:

try
{
 (gcnew FileIOPermission(FileIOPermissionAccess::Read, "C:\\"))->Demand();
}
catch(Exception^)
{
 bnReadFile->Enabled = false;
}

try
{
 (gcnew FileIOPermission(FileIOPermissionAccess::Write, "C:\\"))->Demand();
}
catch(Exception^)
{
 bnWriteFile->Enabled = false;
}

I placed these lines in the Form1 constructor, but you can place them anywhere as long as they
are executed before the controls are displayed. The results are shown in Figure 19-13.

Fraser_640-4C19.fm Page 796 Monday, November 14, 2005 11:59 AM

C H A P T E R 1 9 ■ S E C U R I T Y 797

Figure 19-13. Disabling controls due to lack of permissions

LinkDemand

The LinkDemand does not have the overhead that the Demand has. It only checks the immediate call to
the permission secured area; once the check passes, no subsequent checks are made. In other words,
no stack walk occurs and the check is done only once no matter how many times the call is made.

The code to implement LinkDemand is virtually the same as Demand:

[ReflectionPermissionAttribute(SecurityAction::LinkDemand, Unrestricted=true)]
void LinkDemandReflectionOperation()
{
}

You need to be careful when using LinkDemand, because even though the call is faster, any code
that passes the test and thus can reference your code can potentially break security by allowing malicious
code to call using the authorized code.

I don’t feel the speed gain is worth this possible security problem, so I always use Demand. On the
other hand, if you have complete control of the call stack then LinkDemand might work well for you.

■Note LinkDemand can only be applied to a method declaratively.

InheritanceDemand

There are two forms of InheritanceDemand. The first is as a class attribute. When used in this form, all
classes that inherit from this declaratively secured class must also have the specified permissions.

[ZoneIdentityPermissionAttribute(SecurityAction::InheritanceDemand,
 Zone=SecurityZone::Internet)]
public ref class InheritanceDemandZoneIdentityClass
{
}

The second form is an attribute on the virtual method. In this scenario, a class must have the
specified permissions of the virtual method to be able to override the virtual method.

public ref class InheritanceDemandClass
{
 public:
 [ZoneIdentityPermissionAttribute(SecurityAction::InheritanceDemand,
 Zone=SecurityZone::Internet)]
 virtual void InheritanceDemandZoneIdentityMethod()
 {
 }
}

Fraser_640-4C19.fm Page 797 Monday, November 14, 2005 11:59 AM

798 C H A P T E R 1 9 ■ S E C U R I T Y

■Note InheritanceDemand can only be applied declaratively.

Requests
Requesting permissions is a different approach to handling permission in code access security.
Instead of letting the code run up to the point where the permission is demanded, request permissions
don’t even let the assembly load into memory.

You apply requests using declarative syntax on the assembly. That way, the CLR can check at
the time when the assembly is loading to see if the appropriate permissions are satisfied. If the
permissions requested are not satisfied by the evidence, then the assembly itself does not load.

RequestMinimum

The RequestMinimum is an all-or-nothing proposition for an assembly. It is the permission that the
code must have to run. The failure to have the permissions causes the CLR to not load the assembly.

using namespace System;
using namespace System::IO;
using namespace System::Security;
using namespace System::Security::Permissions;

[assembly:FileIOPermission(SecurityAction::RequestMinimum, Write="C:\\")];

namespace MustWriteTOCRoot
{
}

RequestOptional

The RequestOptional allows you to request a set of permissions while refusing all other permissions
the CLR might otherwise have given. The RequestOptional does not indicate that all the permissions
specified are needed. Instead, it says these are the permissions it is going to let your code have when
this assembly runs.

Note that if your code tries to implement a permission not granted by RequestOptional then a
SecurityException will be thrown. You might also note that if your code tries to use a permission
granted by RequestOptional but not granted to the executing assembly, then the CLR is going to
throw an exception just like it would have if you hadn’t used any RequestOptional permissions.

To get CASSecurity.exe to run with RequestOptional permissions, you need the following four
lines because all of these permissions are required for the application to run successfully:

[assembly:FileIOPermission(SecurityAction::RequestOptional, Read="C:\\")];
[assembly:FileIOPermission(SecurityAction::RequestOptional, Write="C:\\")];
[assembly:UIPermission(SecurityAction::RequestOptional,Unrestricted=true)];
[assembly:SecurityPermission(SecurityAction::RequestOptional,
 Unrestricted=true)];

RequestRefuse

RequestRefuse is basically the opposite of RequestOptional. With RequestRefuse you specify which
permissions the assembly will refuse. Any other permission that you don’t list is allowed.

Fraser_640-4C19.fm Page 798 Monday, November 14, 2005 11:59 AM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 1 9 ■ S E C U R I T Y 799

I normally use RequestOptional instead of RequestRefuse as I feel it provides a more secure
environment—you know exactly which permissions you are allowing. The only time I would
use RequestRefuse is when I want a very specific set of permissions to be refused. If I were to use
RequestRefuse instead of RequestOptional in the CASSecurity.exe example, I would have to include
refusals for all the permissions available in .NET except the four lines listed earlier.

The following line shows what you would need to code to refuse an assembly any access to the
Registry:

[assembly:RegistryPermission(SecurityAction::RequestRefuse,Unrestricted=true)];

Overrides
There will come a time where you will find that your application has FullTrust and yet your assembly
still throws permission errors. This can’t happen, so you must have coded something incorrectly,
right? Well, actually you may have coded everything correctly. What most likely happened is one of
the assemblies down the stack walk did not have FullTrust or a permission was overridden.

It is with these last three actions on permissions that we override the standard stack walk.

Assert/RevertAssert

The Assert override is probably one of the most dangerous features of code access security and must
be used carefully. The reason is that with Assert you can accidentally add permissions that the stack
walk would normally have denied. This is because the Assert stops the stack walk at the stack frame
where the Assert is made. For those of you more visually inclined, Figure 19-14 might help.

Figure 19-14. Possible Assert problem

■Caution Microsoft warns that “because calling Assert removes the requirement that all code in the call chain
must be granted permission to access the specified resource, it can open up security vulnerabilities if used incor-
rectly or inappropriately. Therefore, it should be used with great caution.”

Fraser_640-4C19.fm Page 799 Monday, November 14, 2005 11:59 AM

800 C H A P T E R 1 9 ■ S E C U R I T Y

Personally, I only use Assert when I have complete control of the call stack that is being walked.
Keep in mind that Assert does not grant permission to a demand. The demand works as it

normally would for that stack frame, so if that frame would normally have denied the permission the
Assert point would also be denied permission.

The actual code involved in an Assert is fairly simple:

CodeAccessPermission ^permission =
 gcnew FileIOPermission(FileIOPermissionAccess::Read, "C:\\");

permission->Assert();
// Do stuff
permission->RevertAssert();

Since only one Assert is allowed to be in effect at a time for a frame, you should make sure that
you call the RevertAssert() method when you are done with your Assert. This basically turns off
your Assert.

Deny/RevertDeny

As I’m sure you suspect, this form of override causes the current stack frame to be denied for the
resource type specified. Using this override enables you to disable permissions for accessing resources
even though the application is running under a code group that has a permission set with the appro-
priate permissions.

CodeAccessPermission ^permissionRead =
 gcnew FileIOPermission(FileIOPermissionAccess::Read, "C:\\");

permissionRead->Deny();
// Do stuff
permissionRead->RevertDeny();

The RevertDeny is used to restore the previous permissions to the specified resource. Note that
if the resource was denied permissions before the Deny was called, then the resource continues to
not have permission.

PermitOnly/RevertPermitOnly

If you want to be specific with which resources are available on a stack walk, then the PermitOnly
may be what you want. This override identifies the only resources that will have permissions on the
call stack from the time the PermitOnly is specified to its corresponding RevertPermitOnly.

CodeAccessPermission ^permissionWrite =
 gcnew FileIOPermission(FileIOPermissionAccess::Write, "C:\\");

permissionWrite->PermitOnly();
// Do Stuff
permissionWrite->RevertPermitOnly();

Overrides can be a bit difficult to understand without an example. Listing 19-7 shows how you
can use Deny and PermitOnly on the call stack and then have Assert overrule them.

Fraser_640-4C19.fm Page 800 Monday, November 14, 2005 11:59 AM

C H A P T E R 1 9 ■ S E C U R I T Y 801

Listing 19-7. Assert, Deny, and PermitOnly

#include "stdafx.h"

using namespace System;
using namespace System::IO;
using namespace System::Security;
using namespace System::Security::Permissions;

void AssertRead()
{
 CodeAccessPermission ^permission =
 gcnew FileIOPermission(FileIOPermissionAccess::Read, "C:\\");

 permission->Assert();
 StreamReader ^sr = File::OpenText("C:\\TestFile.txt");
 String ^s = sr->ReadLine();
 sr->Close();
 permission->RevertAssert();
 Console::WriteLine("Successful Read");
}

void NoAssertRead()
{
 StreamReader ^sr = File::OpenText("C:\\TestFile.txt");
 String ^s = sr->ReadLine();
 sr->Close();
 Console::WriteLine("Successful Read");
}

void main()
{
 // Deny Reading C:
 CodeAccessPermission ^permissionRead =
 gcnew FileIOPermission(FileIOPermissionAccess::Read, "C:\\");

 permissionRead->Deny();
 try
 {
 AssertRead();
 NoAssertRead();
 }
 catch(SecurityException^)
 {
 Console::WriteLine("Failed To Read");
 }
 permissionRead->RevertDeny();

 // Only allow Writing to C:
 CodeAccessPermission ^permissionWrite =
 gcnew FileIOPermission(FileIOPermissionAccess::Write, "C:\\");

Fraser_640-4C19.fm Page 801 Monday, November 14, 2005 11:59 AM

802 C H A P T E R 1 9 ■ S E C U R I T Y

 permissionWrite->PermitOnly();
 try
 {
 AssertRead();
 NoAssertRead();
 }
 catch(SecurityException^)
 {
 Console::WriteLine("Failed To Read");
 }
 permissionWrite->RevertPermitOnly();
}

When you run this example, you do it from the console and thus it has all the rights of the Windows
account running it—in my case administrative rights.. Notice that even though I have administrative
rights I lose permissions with the Deny and PermitOnly. I only get them back with the Assert.

Figure 19-15 shows AssertDenyPermit.exe in action.

Figure 19-15. Results of AssertDenyPermit.exe

Summary
In this chapter you covered .NET security with a specific focus on how to implement it using C++/CLI.
You started off with the easier of the two major types of security provided by .NET, role-based security,
in particular the identity, principal, and permissions. Next you looked at code access security. You
examined permissions, permission sets, policies, code groups, and evidence. Finally, with the basics
of CAS covered, you learned how to secure your own code using demands, requests, and overrides.

Now that you have examined safe and managed code, in the next chapter you’ll change gears
and look at coding with unsafe and unmanaged code.

Fraser_640-4C19.fm Page 802 Monday, November 14, 2005 11:59 AM

■ ■ ■

■ ■ ■

P A R T 3

Unsafe/Unmanaged
C++/CLI

Fraser_640-4C20.fm Page 803 Monday, November 14, 2005 11:59 AM

Fraser_640-4C20.fm Page 804 Monday, November 14, 2005 11:59 AM

805

■ ■ ■

C H A P T E R 2 0

Unsafe C++ .NET Programming

Well, I think that’s enough about safe/managed code. Let’s take a look at another major area of
C++/CLI: the ability to create unsafe/unmanaged code. Sounds kind of scary, doesn’t it?

I’m not sure I understand why C++ .NET books spend so much time on this area of C++
programming as it is (usually) rather simple. It’s what C++ programmers have been doing for years,
and there are literally hundreds of books on the topic. The only real differences to a C++/CLI code
developer are a few extra classes and attributes.

If there really is any complexity, it is on the side of the unsafe/unmanaged code and not the
safe/managed code that it interfaces with. Most of this complexity revolves around forcing safe/
managed code to be executed within a block of unsafe/unmanaged code, which is really the opposite of
what you should normally be doing. Safe/managed code should be the new code being developed,
and it should be referencing only when really necessary the old unsafe/unmanaged code.

One nice simplifying feature and a big time saver is that Visual Studio 2005 even auto-generates
a lot of the interfacing code for you—most notably in the area of COM development, but I’ll get to
that in the next chapter.

In this chapter, I will look at some of the more basic areas of unsafe/unmanaged C++/CLI
programming. One thing about these more basic areas is that, when used, they are the most common
reason you end up not being able to compile your code with the /clr:safe option. Once you finish
this chapter, you should be able to figure out what needs to be changed in your code to make it
safe/managed.

After we have the basics down in this chapter, I’ll then take a look at some of the more advanced
topics like interfacing save/managed code with unsafe/unmanaged DLLs and COM objects in the
next chapter.

If you are new to unmanaged C++, you might want to consult Beginning ANSI C++: The Complete
Language, Third Edition by Ivor Horton (Apress, 2004).

■Note Basically, unmanaged C++ syntax == ANSI C++ syntax.

What Is Unsafe Code?
I’ve kind of glossed over it in all the proceeding chapters of the book, but the ability to create safe
code is probably the biggest enhancement made to C++/CLI over Managed Extensions for C++.
Before C++/CLI, you could only create unsafe C++ code. Yes, Managed Extensions for C++ code
enabled memory to be maintained by the CLR, but there was no such thing as safe C++ .NET code,
at least not in the sense that it could be verified by the CLR. Of course, you could code C++ in a safe
manner, but the user who executed your code was given no guarantee that it was actually safe.

Fraser_640-4C20.fm Page 805 Monday, November 14, 2005 11:59 AM

cafac74dd2d083cbec0906b66fcd56b1

806 C H A P T E R 2 0 ■ U N S A F E C + + . N E T P R O G R A M M I N G

That has all changed in .NET version 2.0 and the C++/CLI compiler, as the /clr:safe switch
generates verifiable code that the CLR can provide trust levels to, just like it can with C# or Visual
Basic .NET.

■Note You may have noticed in the examples I provided for download that I almost always use the /clr:safe
option. Personally, I think it should be the default, as I like the idea of the code being safe. I usually only resort to
using the /clr option when I’m forced to work with unsafe/unmanaged code.

Unsafe, unmanaged, and native code are all terms that many writers seem to throw around as
if they were interchangeable. But actually they are all different things.

When you speak of unsafe code, you are talking about the compiler’s inability to create verifiable
code, which is thus unsafe in regards to security. Unsafe code, when allowed to run by the CLR, has
as much control of the computer as you do. If you are, like me (and probably most other developers),
an administrator, then the unsafe code has complete control of your computer. Now that is a scary
thought.

Unmanaged code is unsafe by its very nature. This type of code has the ability to access and
create instances of objects outside of the CLR sandbox. In most cases when you use pointers in your
code, you are dealing with unmanaged code. You will see that this is not always true, as C++/CLI
provides something called the interior pointer that, if handled correctly, can be verified and thus be
compiled as safe.

Native code is code that is compiled outside of the C++/CLI world and cannot be verified in any
way. Native code is usually in the form of machine language, but again, in theory, it need not be.
Native code is usually found in DLLs and COM objects. Native code is generated using a non-.NET
compiler or without any type of /clr switch if generated with a .NET compiler.

To confuse or simplify things (depending on how you look at it), Microsoft added the ability to
place native code within your safe/managed code using the #pragma unmanaged directive. Personally,
I think it should be called the native directive, because it would reflect more accurately what it is
doing and because unmanaged code does not need to be native code.

What does this all mean? Unsafe code is code that contains embedded unmanaged code. Notice
I added the word “embedded.” The reason for this is it is still possible to have safe code that accesses
or runs unmanaged code, so long as the correct interfaces are implemented. What these interfaces
do is allow the CLR to know when unsafe code is about to be used and then to use code access security
(which I covered in the previous chapter) to determine whether the unsafe code can be executed.

Why Do We Still Need Unsafe Code?
The funny thing is one of the major reasons why unsafe code will continue to exist is due to unsafe
code’s ability to do things that safe code can’t do simply because of its unsafe nature. One of the
more obvious of these unsafe features is pointer arithmetic, or the ability to access memory frequently
outside of the CLR sandbox and then manipulate the addresses of this memory directly.

Another reason, more obviously, is because there are millions of lines of unsafe code out there
already (much of it C++), and it will take an awfully long time to convert to safe code. And, in most
cases, there is really no need to do the conversion in the first place, as the code works just fine as it is.

You might think that most of the unsafe code in the case of C++ could simply be recompiled
with the /clr:safe option and be made safe, but unfortunately in most cases it is not that simple, as
pointers and pointer arithmetic are the main means of handling memory in C++ prior to C++/CLI,
and as I noted previously, pointers are are in nearly all cases not verifiable, and pointer arithmetic is
never verifiable.

Fraser_640-4C20.fm Page 806 Monday, November 14, 2005 11:59 AM

C H A P T E R 2 0 ■ U N S A F E C + + . N E T P R O G R A M M I N G 807

Unsafe code is usually needed for interfacing with computer hardware. Most hardware drivers
are written in C++, C, or some form of assembly. In most cases, the code relies heavily on pointers to
access the hardware, and these pointers point outside of the CLR sandbox.

Another issue about unsafe code is not all of it is in computer languages that can readily be
converted to a safe version, as no mainstream .NET compiler is available. (With the growing number
of .NET languages, this argument is losing its weight.) Interestingly, the resulting libraries generated
by these languages are frequently wrapped by C++, if the function provided by this nonstandard
coding language needs to be accessed by third parties. Unfortunately, in most cases the wrapper
methods themselves rely heavily on pointers, which even make the interfacing wrapper method
unsafe. Now, if you want to generate verifiable code for the main application calling this code, you
have the requirement of building a safe wrapper around the unsafe wrapper. Can you say yuck?

Creating Unsafe Code
As I noted earlier, unsafe code is normally created by adding native code to your managed code. It is
also possible to create unsafe code with only MSIL code by using unsafe operations or objects.

There are several ways of coding C++/CLI so that it is unsafe. The following are four of the more
common ways of making your assembly unsafe. There are others, but these are the methods I’ve
frequently come across in my travels.

• Managed and unmanaged #pragma directives

• Unmanaged arrays

• Unmanaged classes/structs

• Pointers and pointer arithmetic

The Managed and Unmanaged #pragma Directives
The most basic way of creating unsafe code is by mixing managed and unmanaged code together
with the directives #pragma managed and #pragma unmanaged. When encountered by the compiler,
these directives tell the compiler to generate MSIL (managed) code or native (unmanaged) code.
The compiler continues to generate the specified type of code until it encounters a directive to
switch the type of code generated.

Listing 20-1 shows a very simple example of using the #pragma managed and #pragma unmanaged
directives.

Listing 20-1. The Managed and Unmanaged #pragma Directives

using namespace System;

#pragma unmanaged

int UMadd(int a, int b)
{
 return a + b;
}

#pragma managed

Fraser_640-4C20.fm Page 807 Monday, November 14, 2005 11:59 AM

808 C H A P T E R 2 0 ■ U N S A F E C + + . N E T P R O G R A M M I N G

int Madd(int a, int b)
{
 return a + b;
}

void main()
{
 Console::WriteLine("Unmanaged Add 2 + 2: {0}", UMadd(2, 2));
 Console::WriteLine("Managed Add 3 + 3: {0}", Madd(3, 3));
}

By looking at the UMadd() and Madd() methods’ code, you will not see much difference. Both are
simply standard C++/CLI code. Notice you even call the methods the same way, as long as they are
being called within a managed code block.

If you try to call managed code within a native code block, you get the compile time error C3821
'function': managed type or function cannot be used in an unmanaged function. This makes
sense as native code does not use the CLR to run, while managed code does, so there is no way for
the managed code to be executed within the native code.

Another thing you need to be careful about with these directives is thatthey are only allowed at
the global scope, as shown in Listing 20-1, or at the namespace scope. This means you can’t change
a method or class partway through. In other words, the whole function or class can be managed or
native, but not a combination.

■Caution The following code is invalid due to invalid placement of the #pragma directives:

int ErrorFunction(int a, int b)
{
#pragma unmanaged
 // Some unmanaged code
#pragma managed
 // Some managed code
}

■Unsafe Code Since the #pragma unmanaged directive causes unsafe code to be generated, you need to
compile it with the /clr option. If you try to compile it with the /clr:safe option, you will get a whole bunch of
errors.

So what is the difference between Madd() and UMadd()? To see this, you need to use the ildasm tool,
which disassembles an assembly. Figure 20-1 shows Madd() (what little you see of it) and Figure 20-2
shows UMadd().

Fraser_640-4C20.fm Page 808 Monday, November 14, 2005 11:59 AM

C H A P T E R 2 0 ■ U N S A F E C + + . N E T P R O G R A M M I N G 809

Figure 20-1. The disassembled Madd()

Figure 20-2. The disassembled UMadd()

The disassembled version of the Madd() function shows all the MSIL required to execute
the function, while the UMadd() function only shows the function declaration and the attribute
SuppressUnmanagedCodeSecurityAttribute. What you don’t see is the native code that will be
invoked when this function is called (if the CLR allows unmanaged code or in this case native code
to be run). In a nutshell, behind the scenes the compiler generates MSIL for Madd() and native code
for UMadd().

You might be thinking, as I did originally, why is this code unsafe? The CLR has the attributes
needed to find out what is unsafe and can allow code access security to do its thing. But, if you think
about it, it does sort of make sense. Since the whole assembly is loaded into memory, it might still be
possible for someone to access the parts of the assembly that are unsafe. (Don’t ask me how, but I’m
sure some hacker out there has it figured out.) Therefore, to safeguard against this possibility, the
current version of the .NET runtime defines unsafe code at an assembly level, so having any unsafe
code in an assembly makes the entire assembly unsafe.

Fraser_640-4C20.fm Page 809 Monday, November 14, 2005 11:59 AM

810 C H A P T E R 2 0 ■ U N S A F E C + + . N E T P R O G R A M M I N G

Unmanaged Arrays
One of the first things a C++ developer learns is arrays. Having coded them so long, it is easy to forget
that .NET does it differently, when you want your code to be safe. (The usual culprit as to why I have
unmanaged arrays in my code is that I cut and paste them in from legacy code and then forget to
convert them, until I get all the errors when I try to compile with the /clr:safe option.)

The unmanaged arrays compile and work fine if you don’t use the /clr:safe option. When you
examine the MSIL code generated, everything looks just fine. So why is an unmanaged array unsafe?
If you have coded C++ for a while, I’m sure you know. It is very easy to overflow the stack by looping
through an array too many times. (I’ve done it so many times, I’ve lost count.) There is nothing stopping
a program from doing this with an unmanaged array. A managed array, on the other hand, does not
allow you to go beyond the end of the array. If you try, you get a nice big exception.

■Unsafe Code Unmanaged arrays, though a legal construct in C++/CLI (so long as they contain fundamental
and unmanaged data types) are unsafe. If you want both arrays and safe code, you need to use managed arrays.

Listing 20-2 shows the use of unmanaged arrays within managed code.

Listing 20-2. The Unmanaged Array in Managed Code

using namespace System;

void main()
{
 int UMarray[5] = {2, 3, 5, 7, 11};

 for (int i = 0; i < 5; i++)
 {
 Console::Write("{0} ", UMarray[i]);
 }
 Console::WriteLine(" -- End of array");
}

There is nothing terribly special about the preceding code. But there are specific criteria about
what can be contained within an unmanaged array. Personally, I think it’s easier to remember what
can’t be put into them—basically managed data or anything that requires the gcnew command when
creating an instance.

One thing of note, as shown in Figure 20-3, is that the code generated by the compiler is MSIL
and not native code. Thus, showing unsafe code does not always mean that the code contains native
code. (Though you might argue this, as a whole bunch of native code is added to the assembly when
/clr or /clr:pure options are used.)

Fraser_640-4C20.fm Page 810 Monday, November 14, 2005 11:59 AM

C H A P T E R 2 0 ■ U N S A F E C + + . N E T P R O G R A M M I N G 811

Figure 20-3. MSIL generated by UMArray.exe

Unmanaged Classes/Structs
The next major constructs that a C++ developer learns after the array are the class and the struct.
Though similar in many ways to C++/CLI’s ref class (which I covered way back in Chapter 3),
unmanaged classes have a few major differences that cause them to be unsafe. The most obvious
difference, since they are unmanaged, is that they are placed in the CRT heap and not the Managed
heap when instantiated. Thus, their memory is not maintained by the .NET garbage collector.

Fraser_640-4C20.fm Page 811 Monday, November 14, 2005 11:59 AM

812 C H A P T E R 2 0 ■ U N S A F E C + + . N E T P R O G R A M M I N G

The actual coding of an unmanaged class/struct exactly matches the coding of the traditional
(pre-.NET) C++ class/struct, due to the reason that unmanaged C++ code and traditional C++ code
are one and the same. So, if you know how to code a C++ class or struct in a non-.NET environment,
then you know how to code an unmanaged class or struct.

With .NET version 1.1 and Managed Extensions for C++, the class and struct were given the
ability to be managed. With .NET version 2.0 and C++/CLI, the class has been augmented again this
time with the ability to be safe as well. The funny thing (at least to me, but I do have a weird sense of
humor, just ask my wife) is unmanaged classes and structs remain the default. You have to do
specific things to create managed classes, but we covered all that stuff way back in Chapter 3, so let’s
move on.

Prior to C++/CLI, Managed Extensions for C++ used the exact same syntax for managed and
unmanaged classes and structs, except for prefixing managed classes and structs with __gc. From
there on, syntax for the two were virtually the same. I know I got confused a few times (but that might
be just me) and thus tried to always only use managed classes (and data types, as you may have noted
if you have the previous version of this book), as it simplified my life immensely.

C++/CLI has vastly improved the readability of the code over Managed Extensions for C++. Yes,
the declaration of managed and unmanaged classes and structs is still very similar (Table 20-1
shows some of the major differences), but the syntax of creating managed classes now is consider-
ably different because of the use of handles [^] and the gcnew command for managed classes instead
of pointers [*] and the new command for unmanaged classes. Though this change was primarily to
make managed coding easier, it also made life easier when coding unmanaged classes, as now there
is no confusing the two.

So what does the comparison of unmanaged and managed classes add up to? I created the
nonsense program shown in Listing 20-3, which tries to show the information in Table 20-1 in a
different way. I threw in the value class to round out the example, as the value class is sort of an
unmanaged managed class. I also did not include friends in the example, as only unmanaged
classes support them.

Table 20-1. Unmanaged vs. Managed Classes

Unmanaged class/struct Managed class/struct

No prefix ref

Accessed via pointer or reference on the CRT
heap or directly within a value type variable

Accessed via handle on the Managed heap or
directly within a value type variable

When no explicit base class specified, then
class is an independent root

When no explicit base class specified, then
class inherits from System::Object

Supports multiple inheritance Does not support multiple inheritance

Supports friends Does not support friends

Can only inherit from unmanaged types Can only inherit from managed types

Can contain data members of type pointer to
unmanaged classes but cannot contain a handle
to managed classes

Can contain data members of type pointer to
unmanaged classes and a handle to managed
classes

Fraser_640-4C20.fm Page 812 Monday, November 14, 2005 11:59 AM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 2 0 ■ U N S A F E C + + . N E T P R O G R A M M I N G 813

Listing 20-3. Mixing Managed and Unmanaged Classes

using namespace System;

class ClassMember {};
ref class RefClassMember {};
value class ValueClassMember {};

class Class
{
public:
// RefClassMember rc; // Can't embed instance ref class
// RefClassMember ^hrc; // Can't embed handle to ref class
 ValueClassMember vc;
// ValueClassMember ^hvc; // Can't embed managed value class
 ValueClassMember *pvc;
 ClassMember c;
 ClassMember *pc;

 int x;
 void write() { Console::WriteLine("Class x: {0}", x); }
};

ref class RefClass
{
public:
 RefClassMember rc;
 RefClassMember ^hrc;
 ValueClassMember vc;
 ValueClassMember ^hvc;
 ValueClassMember *pvc;
// ClassMember c; // Can't embed instance of class
 ClassMember *pc;

 int x;
 void write() { Console::WriteLine("RefClass x: {0}", x); }
};

value class ValueClass
{
public:
// RefClassMember rc; // Can't embed instance ref class
 RefClassMember ^hrc;
 ValueClassMember vc;
 ValueClassMember ^hvc;
 ValueClassMember *pvc;
// ClassMember c; // Can't embed instance of class
 ClassMember *pc;

 int x;
 void write() { Console::WriteLine("ValueClass x: {0}", x); }
};

Fraser_640-4C20.fm Page 813 Monday, November 14, 2005 11:59 AM

814 C H A P T E R 2 0 ■ U N S A F E C + + . N E T P R O G R A M M I N G

class ClassChildClassParent : public Class {}; // OK
//class ClassChildRefClassParent : public RefClass {}; // Error
//class ClassChildValueClassParent : public ValueClass {}; // Error

//ref class RefClassChildClassParent : public Class {}; // Error
ref class RefClassChildRefClassParent : public RefClass {}; // OK
//ref class RefClassChildValueClassParent : public ValueClass {}; // Error

//value class ValueClassChildClassParent : public Class {}; // Error
//value class ValueClassChildRefClassParent : public RefClass {}; // Error
//value class ValueClassChildValueClassParent : public ValueClass {}; // Error

void main()
{
 // Stack
 Class _class;
 RefClass refclass; // Not really on the stack
 ValueClass valueclass;

 // Handle
// Class ^hclass = gcnew Class(); // Not allowed
 RefClass ^hrefclass = gcnew RefClass();
 ValueClass ^hvalueclass = gcnew ValueClass();

 // Pointer
 Class *pclass = new Class();
// RefClass *prefclass = new RefClass(); // Not allowed
 ValueClass *pvalueclass = & valueclass;

 // Reference
 Class &rfclass = *new Class();
// RefClass &rfrefclass = *gcnew RefClass(); // Not allowed
 ValueClass &rfvalueclass = valueclass;

 _class.x = 1;
 refclass.x = 2;
 valueclass.x = 3;
 hrefclass->x = 4;
 hvalueclass->x = 5;
 pclass->x = 6;
 pvalueclass->x = 7;
 rfclass.x = 8;
 rfvalueclass.x = 9;

 _class.write(); // prints 1
 refclass.write(); // prints 2
 valueclass.write(); // prints 9
 hrefclass->write(); // prints 4
 hvalueclass->write(); // prints 5
 pclass->write(); // prints 6
 pvalueclass->write(); // prints 9
 rfclass.write(); // prints 8
 rfvalueclass.write(); // prints 9
}

Fraser_640-4C20.fm Page 814 Monday, November 14, 2005 11:59 AM

C H A P T E R 2 0 ■ U N S A F E C + + . N E T P R O G R A M M I N G 815

Pointers
If you have spent any time writing C++ code in the past, I’m sure you have come to realize that pointers
are essential to C++ development, but also a necessary evil. Basically, it’s a “you can’t live with them,
can’t live without them” relationship. Some of the greatest code has been developed using pointers,
but also some of the nastiest bugs.

Unmanaged C++ data types can be placed in one of two places, the stack or the heap. When you
are dealing with pointers, you are generally dealing with heap data. But pointers can point to almost
anything (if the program has the rights), so a pointer can also point to an element of the runtime
stack or possibly locations directly within the Windows O/S, though usually that is not allowed. Pointers
can be created in a number of ways:

• Placing the address directly into the pointer

• Arithmetically calculated from another pointer

• Copied from an existing object

• Using the new command

Just looking at the preceding list should make it obvious why pointers are not safe. In fact, the
first two methods of creating pointers should make you cringe. Think what a field day hackers could
have with these methods and thus why they are not supported by handles.

■Unsafe Code Pointer arithmetic is probably one of the most powerful and at the same time unsafe operations
available to a C++ programmer.

Copying a pointer from an existing object seems harmless enough. But even this has a problem
if the object is derived from a managed type. The location of the object pointed to in the managed
heap memory can move during the garbage collection process, because not only does the garbage
collector delete unused objects in managed heap memory, it also compacts it. Thus, it is possible
that a pointer may point to the wrong location after the compacting process. Fortunately, C++/CLI
provides two ways of solving pointer movement: the interior pointer and the pinned pointer. I’ll
cover both in more detail later in the chapter.

Not even using the new command is safe, as the memory allocated is on the CRT heap and is not
maintained by the CLR. Using the new command requires you to maintain the allocated memory
yourself and when done call the delete command. I know this sounds okay, but I’m afraid very few
of us are perfect when it comes to writing code, and I’m pretty sure one day you will forget to deallocate
memory, deallocate it too soon, overwrite it, or do any of the other nasty mistakes revolving around
pointers.

Interior Pointer
As I harped previously, pointers are extremely powerful, and it would be a great loss to the C++ to
lose this aspect of the language. C++/CLI realizes this and has added what it calls interior pointers.
Interior pointers are fundamentally pointers to managed objects.

I hope your alarms went off with the last sentence. Remember, managed objects can move. So
let’s be a little more accurate. An interior pointer is a superset of the native pointer and can do anything
that can be done by the native pointer. But not only does it point to a managed object, when the
garbage collector moves the object, the interior pointer changes its address to continue to point to it.

Fraser_640-4C20.fm Page 815 Monday, November 14, 2005 11:59 AM

816 C H A P T E R 2 0 ■ U N S A F E C + + . N E T P R O G R A M M I N G

By the way, interior pointers are safe! Well, I better qualify that. You can use the pointers as you
see fit, and they are safe. Just don’t change the value of the pointers or manipulate them using
pointer arithmetic. Listing 20-4 is a somewhat complicated example showing a safe program using
interior pointers.

Listing 20-4. Safe Interior Pointers

using namespace System;

ref class Point
{
public:
 int X;
};

void main()
{
 Point ^p = gcnew Point();

 interior_ptr<Point^> ip1 = &p; // Interior pointer to Point

 (*ip1)->X = 1; // Assign 1 to the member variable X

 Console::WriteLine("(&ip1)={0:X}\tp->X={1}\t(*ip1)->X={2}",
 (int)&ip1, p->X, (*ip1)->X);

 interior_ptr<int> ip2 = &p->X; // Pointer to Member variable X

 *ip2 += (*ip1)->X; // Add X to an interior pointer of itself

 Console::WriteLine("(&ip2)={0:X}\t*ip2={1}", (int)&ip2, *ip2);
}

Notice I can assign numbers to the value of the interior pointer. I just can’t change the address
that the pointer is pointing to. Well, actually, I can, but then the code is no longer safe.

Figure 20-4 shows the results of this little program.

Figure 20-4. Results of IntPtr.exe

I’ve been writing about pointer arithmetic long enough. Let’s look at Listing 20-5 and see an
example. This example adds the first eight prime numbers together. It does this by adding the value
of the same pointer eight times, but each time the value is added the address of the pointer has
advanced the size of an int. This example really doesn’t need an interior pointer and can be written
many other (safe) ways.

Fraser_640-4C20.fm Page 816 Monday, November 14, 2005 11:59 AM

C H A P T E R 2 0 ■ U N S A F E C + + . N E T P R O G R A M M I N G 817

Listing 20-5. Interior Pointer and Pointer Arithmetic and Comparision

using namespace System;

void main()
{
 array<int>^ primes = gcnew array<int> {1,2,3,5,7,11,13,17};

 interior_ptr<int> ip = &primes[0]; // Create the interior pointer

 int total = 0;
 while(ip != &primes[0] + primes->Length) // Comparing pointers
 {
 total += *ip;
 ip++; // Add size of int to ip not 1
 }

 Console::WriteLine("Sum of the first 8 prime numbers is {0}", total);
}

Figure 20-5 shows the results of this little program.

Figure 20-5. Results of IntPtrArth.exe

Pinning Pointers
If you are a seasoned traditional C++ programmer, you probably saw immediately a problem with
the handle’s ability to change addresses. There is no fixed pointer address to access the object in
memory. In prior versions of C++/CLI (Managed Extensions for C++), the same syntax was used for
addressing managed and unmanaged data. Not only did this lead to confusion, but it also did not
make it apparent that the pointer was managed and thus could change. With the new handle syntax,
it is far less confusing and readily apparent that the object is managed.

Unfortunately, the volatility of the handle address also leads to the problem that passing a
handle to a managed object, as a parameter to an unmanaged function call, will fail. To solve this
problem, C++/CLI has added the pin_ptr<> keyword, which stops the CLR from changing its location
during the compacting phase of garbage collection. The pointer remains pinned so long as the pinned
pointer stays in scope or until the pointer is assigned the value of nullptr.

■Unsafe Code The pin_ptr<>, since it deals with providing specific address locations into memory, is an
unsafe operation.

The pin_ptr<> uses template syntax where you place the type of object you want to pin within
the angle [<>] brackets. For example:

pin_ptr<int>

I covered templates in Chapter 4.

Fraser_640-4C20.fm Page 817 Monday, November 14, 2005 11:59 AM

818 C H A P T E R 2 0 ■ U N S A F E C + + . N E T P R O G R A M M I N G

A pinned pointer can point to a reference handle, a value type, and an element of a managed
array. It cannot pin a reference type, but it can pin the members of a reference type. A pinned pointer
has all the abilities of a native pointer, the most notable being pointer comparison and arithmetic.
Listing 20-6 shows the pin_ptr<> keyword in action.

Listing 20-6. pin_ptr in Action

#include <stdio.h>

using namespace System;

ref class RTest
{
public:
 int i;
 RTest()
 {
 i = 0;
 }
};

value class VTest
{
public:
 int i;
};

#pragma unmanaged

void incr (int *i)
{
 (*i) += 10;
}

#pragma managed

void incr (VTest *t)
{
 t->i += 20;
}

void main ()
{
 RTest ^rtest = gcnew RTest(); // rtest is a reference type

 pin_ptr<int> i = &(rtest->i); // i is a pinned int pointer

 incr(i); // Pointer to managed data passed as
 // parameter of unmanaged function call

Fraser_640-4C20.fm Page 818 Monday, November 14, 2005 11:59 AM

C H A P T E R 2 0 ■ U N S A F E C + + . N E T P R O G R A M M I N G 819

 Console::WriteLine (rtest->i);

 VTest ^vtest = gcnew VTest; // vtest is a boxed value type
 vtest->i = 0;

 pin_ptr<VTest> ptest = &*vtest; // ptest is a pinned value type.
 // The &* says give the address of the
 // indirection of vtest

 incr(ptest); // Pointer to value type passed as
 // parameter of unmanaged function call

 Console::WriteLine (vtest->i);

 array<Byte>^ arr = gcnew array<Byte> {'M', 'C', '+', '+'};

 pin_ptr<Byte> p = &arr[1]; // ENTIRE array is pinned
 unsigned char *cp = p;
 printf("%s\n", --cp); // cp bytes will not move during call
 // notice the negative pointer arithmetic
 // into the array.
}

Figure 20-6 shows the results of this little program.

Figure 20-6. Results of Pinned.exe

One thing that you might want to be aware of is that, as you can see in the preceding code
example, there is no problem including standard include files like stdio.h, but if you do you are going
to need to use the /clr switch, as these headers usually cause unmanaged code to be generated.

Pinning Interior Pointers
A major difference between pinned pointers and interior pointers is that pinned pointers cast to
native pointers, while interior pointers cannot, due to their ability to change as memory is compacted.
Because of this, even though the interior pointer has all the functionality of a native pointer, it still
cannot be passed to an unmanaged/native function that is expecting a native pointer.

Fortunately, there is nothing stopping you from pinning an interior pointer as you can see in
Listing 20-7.

Fraser_640-4C20.fm Page 819 Monday, November 14, 2005 11:59 AM

cafac74dd2d083cbec0906b66fcd56b1

820 C H A P T E R 2 0 ■ U N S A F E C + + . N E T P R O G R A M M I N G

Listing 20-7. Pinning an Interior Pointer

using namespace System;

value class Test
{
public:
 int i;
};

#pragma unmanaged

void incr (int *i)
{
 (*i) += 10;
}

#pragma managed

void main ()
{
 Test ^test = gcnew Test();
 interior_ptr<int> ip = &test->i;
 (*ip) = 5;

// incr(ip); // Invalid

 pin_ptr<int> i = ip; // i is a pinned interior pointer

 incr(i); // Pinned pointer to interior pointer passed to a
 // native function call expecting a native pointer

 Console::WriteLine (test->i);
}

Including the vcclr.h File
Okay, now that we have all the pieces, let’s look at one last thing before we move on to the advanced
features in the next chapter.

You have seen that there is no problem placing unmanaged class pointers within a managed class,
but you are not able to do the opposite (place an managed class handle into an unmanaged class)
due to the garbage collector’s inability to maintain member handles in unmanaged classes. (Actually,
unmanaged classes don’t even understand the handle syntax in the first place, so the garbage collector’s
inabilities are sort of a mute point.)

class ClassMember {};
ref class RefClassMember {};

class Class
{
public:
 RefClassMember ^hrc; // Big fat ERROR
};

Fraser_640-4C20.fm Page 820 Monday, November 14, 2005 11:59 AM

C H A P T E R 2 0 ■ U N S A F E C + + . N E T P R O G R A M M I N G 821

ref class RefClass
{
public:
 ClassMember *pc; // No problemo
};

Well, let’s not give up prematurely here... it is not entirely accurate that you can’t place a managed
class in an unmanaged class. What you can’t do is place a handle to a managed class into the unman-
aged class. What you use instead of the handle are interior pointers and on occasion pinned pointers.
Oh, and you also need to use the .NET Framework class
System::Runtime::InteropServices::GCHandle or the much easier template gcroot<T>. I use gcroot<T>,
but feel free to explore GCHandle (if you are a glutton for punishment).

You can find the gcroot<T> template in gcroot.h, but the preferred method of accessing it is via
the vcclr.h, as this header file will contain an assortment of utilities. (It only currently contains one
utility, but it is still a good practice to follow what Microsoft suggests.)

Essentially, gcroot<T> provides you with the ability to place an interior pointer into your managed
class instead of a handle. Listing 20-8 shows a simple example of using gcroot<T>.

Listing 20-8. Pinning an Interior Pointer

#include "stdio.h"
#include "vcclr.h"

using namespace System;

ref class MClass
{
public:
 int x;
 ~MClass() { Console::WriteLine("MClass disposed"); }
protected:
 !MClass() { Console::WriteLine("MClass finalized"); }
};

#pragma unmanaged // Works with or without this line

class UMClass
{
public:
 gcroot<MClass^> mclass;

 ~UMClass() { printf("UMClass deleted\n"); }
};

#pragma managed

void main()
{
 UMClass *umc = new UMClass();
 umc->mclass = gcnew MClass();

Fraser_640-4C20.fm Page 821 Monday, November 14, 2005 11:59 AM

822 C H A P T E R 2 0 ■ U N S A F E C + + . N E T P R O G R A M M I N G

 umc->mclass->x = 4;
 Console::WriteLine("Managed Print {0}", umc->mclass->x);
 printf("Unmanaged Print %d\n", umc->mclass->x);

 delete umc;
}

Figure 20-7 shows the results of this little program.

Figure 20-7. Results of VcclrEx.exe

I added to the managed class its two destructors (dispose and finalize) to make sure that finalize
is being called. This means the garbage collector is doing its job. And, as you can see from Figure 20-7, all
is as it should be.

I hinted earlier that vcclr.h also contains one utility function called PtrToStringChars(). This
utility function converts a managed string into a const interior pointer of type wchar_t. This handy
little utility allows you to be more efficient and use the internally stored Char data directly instead of
copying it to an unmanaged wchar_t array.

There is one minor catch. Remember, unmanaged functions that are expecting native pointers
cannot use interior pointers. Thus, functions like wprintf() will require you to pin the pointer first
before you use it.

Listing 20-9 is another “Hello World!” program, this time mixing managed and unmanaged
code as well as using the PtrToStringChars() function.

Listing 20-9. Hello World PtrToStringChars() Function Style

#include "stdio.h"
#include "vcclr.h"

using namespace System;

void main()
{
 String ^hstr = "Hello World!";

 pin_ptr<const wchar_t> pstr = PtrToStringChars(hstr);

 wprintf(pstr);
}

Fraser_640-4C20.fm Page 822 Monday, November 14, 2005 11:59 AM

C H A P T E R 2 0 ■ U N S A F E C + + . N E T P R O G R A M M I N G 823

Summary
This chapter explored the basics of unsafe, unmanaged, and native code. You started off by examining
what unsafe code is and how it differs from unmanaged and native code. You then discovered some of
the major reasons why you might want to include unsafe code in your applications. Next, you examined
some of the ways to make your code unsafe by mixing managed code and unmanaged/native code,
unmanaged arrays, unmanaged classes, and pointers. Finally, you took a look at gcroot<T> and the
PtrToStringChars() function, which simplify managed code within unmanaged code.

Now with the basics down, I’m going to move on to the final chapter of the book and examine
the more advanced mixing of safe/managed code with unmanaged/native DLLs and COM objects.

Fraser_640-4C20.fm Page 823 Monday, November 14, 2005 11:59 AM

Fraser_640-4C20.fm Page 824 Monday, November 14, 2005 11:59 AM

825

■ ■ ■

C H A P T E R 2 1

Advanced Unsafe or Unmanaged
C++ .NET Programming

In the previous chapter, you dealt for the most part with the mixing of unsafe (or unmanaged) code
directly into your safe (or managed) code. This approach only works if you have access to all the
source code. Unfortunately, that is not a luxury that we developers always have. This chapter will
address this issue by covering how C++/CLI interfaces with code that

• You don’t have access to.

• Accesses objects outside of .NET sandbox and can’t be accessed with a .NET language.

• Is written in a language not supported by .NET.

• Has a perfectly acceptable non-.NET implementation; rewriting would be a waste of time,
money and/or resources.

There will be other situations where your code interfaces with some external non-.NET code
that will not be implemented in .NET.

Basically, this chapter is about interfacing .NET applications with third-party DLLs or COM
components. While each requires a different method to perform this interface, neither method is
that difficult.

I think it funny (read: waste of time) how some books allocate a large portion of their text
covering these interfaces explaining in great detail the internal flow of data and numerous other
aspects. Personally, I don’t see the point. Just tell me how to do it. That’s my approach to this
chapter. If you want all the other stuff, there are literally hundreds of Web sites that provide this
information.

This chapter will start by examining how to interface with standard unmanaged DLLs using
simple data types, and then show how to interface with more complex data types using data marshaling.
Finally, I’ll move on to interfacing your .NET code with COM components.

P/Invoke
Making calls out of the .NET managed environment to unmanaged DLLs is handled by a mechanism
in .NET called P/Invoke (short for Platform Invoke). The basic idea behind P/Invoke is that it finds
the DLL and loads it into memory, marshals its arguments (converts from managed format to native
format) so that the DLL can understand the call, makes the call to the DLL’s function, and then
marshals the return value (converts from native format to managed format) so that the managed
code understands the results.

Fraser_640-4C21.fm Page 825 Monday, November 14, 2005 12:00 PM

826 C H A P T E R 2 1 ■ A D V A N C E D U N S A F E O R U N M A N A G E D C + + . N E T P R O G R A M M I N G

Marshaling is a topic all to its own so I cover it a little later. But if you are dealing with primitive
types (char, wchar_t, short, int, float, double, etc.), you don’t need to do anything special in the way
of marshaling anyway.

Calling DLLs without P/Invoke
But before I cover P/Invoke, you should know that you don’t need P/Invoke if you are willing to
sacrifice safe code, nonprimitive data types, and any language but C or C++. All you have to do is
develop the .NET application as you did before .NET existed. If you don’t have pre-.NET experience,
here is what I mean.

One of the powerful features of C++/CLI is that you can mix and match managed and unman-
aged C++ code, in most cases, almost effortlessly. Listing 21-1 shows an example of a .NET console
application that uses a third-party DLL (written by me) and a call to the User32.dll’s MessageBox.

Listing 21-1. Mixing Managed and Unmanaged Code Without P/Invoke

#include "stdafx.h"
#include "windows.h"

extern "C" __declspec(dllimport) long square(long value);

using namespace System;

int main(array<System::String ^> ^args)
{
 long Squareof4 = square(4);

 Console::WriteLine(L"The square of 4 is {0}", Squareof4);

 MessageBox(0, L"Hello World!", L"A Message Box", 0);

 return 0;
}

As you can see, this code is just some unmanaged and managed C++ code mixed together willy-
nilly. If not for the array<> or Console::WriteLine statements, you probably wouldn’t even have
known that this is a .NET application.

If you have worked with C++ before .NET, you should have no problem with this code. To get
access to the MessageBox function, you need to include windows.h, just as you would in any other
Windows application without .NET. To access the square function, which resides in a DLL, a dllimport
function prototype is needed.

I created the square function within a DLL so that you can see that nothing special is being done
behind the scenes with MessageBox. Be careful, though, when you create NativeCode.dll (shown in
Listing 21-2). Do not select any of the CLR type projects. Instead, make sure you select the Win32
Project and select DLL in the application settings. Or, if you are compiling the example from the
command line, then use the /LD option like this:

cl /LD NativeCode.cpp

Fraser_640-4C21.fm Page 826 Monday, November 14, 2005 12:00 PM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 2 1 ■ A D V A N C E D U N S A F E O R U N M A NA G E D C + + . N E T P R O G R A M M I N G 827

Listing 21-2. A Very Simple Native Code DLL

#include "stdafx.h"
#include "string.h"

extern "C" __declspec(dllexport) long square(long value)
{
 return value * value;
}

To get Listing 21-1 to compile, you need to change the program’s properties so that the Linker
knows where the User32.lib and NativeCode.lib files are located. To do this, you just replace
$(NoInherit) with the path to NativeCode.lib, as seen in Figure 21-1. This kills two birds with one
stone. Removing $(NoInherit) causes User32.lib to be added to the link, while replacing it with the
path to NativeCode.lib does the same for NativeCode.lib. These .lib files in turn provide information
to the compiler on how to interface with their corresponding .dll files.

Figure 21-1. Updating Linker properties

Once you successfully compile the console application and the DLL, you can now execute the
example. You should get something similar to Figure 21-2.

Fraser_640-4C21.fm Page 827 Monday, November 14, 2005 12:00 PM

828 C H A P T E R 2 1 ■ A D V A N C E D U N S A F E O R U N M A N A G E D C + + . N E T P R O G R A M M I N G

Figure 21-2. DllOldWay.exe in action

■Caution If when executing DllOldWay.exe you get the error saying “can’t find NativeCode.dll”, then move
NativeCode.dll someplace that the CLR can find it. I moved it to the same directory as DllOldway.exe.

So if you don’t need P/Invoke, why I am I even covering it? Whoa there! Remember those
restrictions I mentioned earlier? You cannot compile the previous example using /clr:safe, so you
can’t generate safe code. Things become far from trivial when dealing with factors like ref classes or
String objects. And you can probably completely forget about interfacing with Visual Basic, Pascal,
or other languages since they do things like change the order in which tasks are done when calling a
function and use a different format of the basic data types.

Using P/Invoke
What if you are not willing to sacrifice safe code, nonprimitive data types, or multilanguage develop-
ment when interfacing with your DLLs? Well, then you need to use P/Invoke.

The code to implement P/Invoke is rather easy. Selecting the correct arguments to use when
implementing P/Invoke, on the other hand, can get a bit tricky, but usually the complication revolves
around marshaling, which I’m discussing a bit later. Let’s take a look at the P/Invoke equivalent to
Listing 21-1, shown in Listing 21-3.

Listing 21-3. A Simple P/Invoke Console Application

#include "stdafx.h"

using namespace System;
using namespace System::Runtime::InteropServices;

[DllImportAttribute("..\\Debug\\NativeCode.dll",
 CallingConvention=CallingConvention::StdCall)]
extern "C" long square(long value);

Fraser_640-4C21.fm Page 828 Monday, November 14, 2005 12:00 PM

C H A P T E R 2 1 ■ A D V A N C E D U N S A F E O R U N M A NA G E D C + + . N E T P R O G R A M M I N G 829

[DllImport("User32.dll", CharSet=CharSet::Auto,
 CallingConvention=CallingConvention::StdCall)]
extern "C" int MessageBox(int hWnd, String^ text, String^ caption,
 unsigned int type);

int main(array<System::String ^> ^args)
{
 long Squareof4 = square(4);

 Console::WriteLine(L"The square of 4 is {0}", Squareof4);

 MessageBox(0, L"Hello World!", L"A Message Box", 0);

 return 0;
}

One nice thing about P/Invoke is that you don’t have to go into the project’s properties and
change settings. Instead, all the information needed to compile and link is included in the source
code. Therefore, you can simply compile the previous code and when you execute it you get the
same result as shown in Figure 21-3.

Figure 21-3. SimplePInvoke.exe in action

It looks the same as Figure 21-2, doesn’t it?
Okay, let’s look at the code. Since the code within the main() function is identical to that of

Listing 21-1, let’s skip that for now (but I will come back to it a little later).
The first thing of interest is the use of the System::Runtime::InteropServices namespace. This

namespace contains numerous classes, interfaces, structures, and enumerations used to support
platform invoke services and COM Interop (which I’ll cover later in the chapter). Though many of
these members have been made obsolete for one reason or another, still well over 100 exist—way too
many to cover in this chapter. Fortunately (for me anyway), nearly all of these members are for special
situations and thus out of the scope of this chapter.

In the previous example, I only need to use three of the namespace members: the
DllImportAttribute class, and the CharSet and CallingConvention enumerations. For many of
your P/Invoked functions, these will be all you need. In fact, normally you don’t have to include
CallingConvention enumeration as StdCall is the default. If you are not using String objects, you

Fraser_640-4C21.fm Page 829 Monday, November 14, 2005 12:00 PM

830 C H A P T E R 2 1 ■ A D V A N C E D U N S A F E O R U N M A N A G E D C + + . N E T P R O G R A M M I N G

don’t need to use CharSet enumeration, either. So what this boils down to is that you frequently will
only use DllImportAttribute.

■Note If you feel like saving your fingertips, you can use DllImport instead of DllImportAttribute as they
are the same. By the way, you can do this for all attribute classes.

DllImportAttribute
The idea behind P/Invoke is that you create a prototype of the DLL’s unmanaged function that you
want to call using the DllImportAttribute class. You can declare these prototypes in one of two
ways: as global functions or as static methods within a class. You implement these global functions
and/or static methods just as you would any other function or method. Of course, you have to use
the syntax defined by your prototype.

As the class name suggests, DllImportAttribute is an attribute and is implemented with the
special square bracket syntax that is covered in Chapter 18. The DllImportAttribute when compiled
generates metadata but no code. This metadata helps the CLR’s P/Invoke process figure out where
the DLL is and the calling convention to interface with this DLL.

The first and only mandatory positional parameter passed to DllImportAttribute is the name of
the DLL that houses the function to be prototyped. Part of the P/Invoke process is to find and load this
DLL. If the name alone does not provide enough information for the CLR to find the current location
of the DLL, you will get a runtime error stating that the DLL cannot be found (see Figure 21-4). If this
occurs, you need to do one of two things. Move the DLL to someplace that the CLR can find it (I usually
put it in the same directory as the .exe file or the System32 directory) or, instead of passing just the
name of the DLL, provide a full or relative path to the DLL. I show the relative path technique in the
previous example.

Figure 21-4. Cannot find DLL error

■Caution Using a full path in the position parameter of the DllImportAttribute can be dangerous as not
everyone has their directory structure set up the same as you do. Using a relative path is a little safer as long as the
relative path is controlled by your installation process.

Following the DLL’s name are six optional named parameters, which further help the CLR P/Invoke
process access the DLL and implement the unmanaged function. The named parameters are as follows.

Fraser_640-4C21.fm Page 830 Monday, November 14, 2005 12:00 PM

C H A P T E R 2 1 ■ A D V A N C E D U N S A F E O R U N M A NA G E D C + + . N E T P R O G R A M M I N G 831

CallingConvention

CallingConvention is an enumeration that defines the calling convention used when passing arguments
to the unmanaged function.

The default is StdCall, where the callee cleans the stack.
Other valid values are

• Cdecl, where the caller cleans the stack

• ThisCall, where the first parameter is the this pointer and is stored in the register ECX and
other parameters are pushed on the stack

• winapi, where the default platform calling convention is used

• FastCall, which is not currently supported

CharSet

CharSet is an enumeration that defines how strings and characters are marshaled (handled).
The default is Ansi. Other values are Unicode and Auto, which use the format appropriate for the

platform. Normally, you should use Auto.
Another feature of CharSet is it can be used to modify the name of the unmanaged function

before it is looked up in the export list of the DLL.
A number of Windows methods add an “A” for ANSI version and “W” for Unicode version to the

end of the function name; for example, MessageBoxA and MessageBoxW. When you add the CharSet
named parameter to the DllImportAttribute, the CLR’s P/Invoke process appends the appropriate
value for you. You saw this in action in Listing 21-3 and it explains why you used MessageBox and not
MessageBoxA or MessageBoxW.

EntryPoint

The EntryPoint string value allows you to specify the name or ordinal number of the function within
the DLL for which you create the prototype. When you don’t specify an EntryPoint, then the CLR’s
P/Invoke process will use the name specified in the unmanaged function prototype.

When you specify an EntryPoint value that differs from the unmanaged function prototype
name, the EntryPoint takes precedence as the entry point into the DLL. This gives you the ability to
rename the unmanaged function. For example, if you wanted the NativeCode.dll’s square method to
be renamed as Sqr then you would code like this:

[DllImportAttribute("NativeCode.dll", EntryPoint="square")]
extern "C" long Sqr(long value);

ExactSpelling

I told you earlier that the CharSet enumeration can modify the name of the unmanaged function. I
said can because this functionality only occurs when ExactSpelling is set to false. The value false
happens to be the default value of ExactSpelling, so you don’t have to add the ExactSpelling named
parameter when you want this functionality to occur. On the other hand, if you only want, let’s say,
the Unicode version of the unmanaged function to be used, then you would need to set ExactSpelling
to true and then specify an EntryPoint or prototype name with the “W” suffix, something like this:

[DllImport("user32", CharSet=CharSet::Unicode, ExactSpelling=true)]
extern "C" int MessageBoxW(int hWnd, String^ text, String^ caption,
 unsigned int type);

Fraser_640-4C21.fm Page 831 Monday, November 14, 2005 12:00 PM

832 C H A P T E R 2 1 ■ A D V A N C E D U N S A F E O R U N M A N A G E D C + + . N E T P R O G R A M M I N G

PreserveSig

The purpose of PreserveSig is to override the default behavior of the unmanaged function’s return
value. When PreserveSig is set to true (which is the default), the return value works just as you
would expect.

On the other hand, if PreserveSig is false the return value takes on a whole different process.
The first thing you need to be aware of is that the unmanaged function needs to return a HRESULT and
have a parameter of type [out, retval]. With this combination the PreserveSig when set to false
causes the [out, retval] parameter to be the actual value returned if the HRESULT is equal to S_OK.
But if the HRESULT is something else, then an exception is thrown and the [out, retval] parameter
is discarded.

You usually don’t have to include the PreserveSig named parameter with a P/Invoked unman-
aged function, as it is designed more for COM objects, but this doesn’t mean you can’t still use it if
you are accessing a standard DDL function that uses the HRESULT as a return type and has a [out, retval]
parameter.

SetLastError

When SetLastError is set to true, this indicates that the unmanaged function will call SetLastError
and the CLR P/Invoke process will call GetLastError to save the error value, preventing any other API
function from overwriting this error value as the API stack is walked. You can then get the error using
the Marshal::GetLastWinError() within your program. The default value of SetLastError is false.

Static Method in a Class
In the first example, you saw the more common usage of P/Invoke: as a global function. It is also
possible to declare a P/Invoke unmanaged function as a static method in a class. There really isn’t
anything special about it—just a minor syntax change in the prototype declaration, plus you need to
call the method just like any other static member method.

Listing 21-4 shows an example of P/Invoke as a static method of the class SimpleClass. The
result is identical to the other two previous programs in this chapter, so I won’t waste space showing
the same figure a third time.

Listing 21-4. A Simple P/Invoke as a Static Method

#include "stdafx.h"

using namespace System;
using namespace System::Runtime::InteropServices;

ref class SimpleClass
{
public:
 [DllImport("NativeCode")]
 static long square(long value);

 [DllImport("User32", CharSet=CharSet::Auto)]
 static int MessageBox(int hWnd, String^ text, String^ caption,
 unsigned int type);
};

Fraser_640-4C21.fm Page 832 Monday, November 14, 2005 12:00 PM

C H A P T E R 2 1 ■ A D V A N C E D U N S A F E O R U N M A NA G E D C + + . N E T P R O G R A M M I N G 833

int main(array<System::String ^> ^args)
{
 long Squareof4 = SimpleClass::square(4);

 Console::WriteLine(L"The square of 4 is {0}", Squareof4);

 SimpleClass::MessageBox(0, L"Hello World!", L"A Message Box", 0);

 return 0;
}

Notice the only change to the code is that the two methods are called within a ref class and you
replace extern "C" with static. Oh, and you have to call the static methods prefixed with the class
name.

Data Marshaling
Okay, let’s take a closer look at the main method of the previous example with and without P/Invoke:

int main(array<System::String ^> ^args)
{
 long Squareof4 = square(4);

 Console::WriteLine(L"The square of 4 is {0}", Squareof4);

 MessageBox(0, L"Hello World!", L"A Message Box", 0);

 return 0;
}

The code for calling the square method was fairly safe because it only deals with the primitive
data type long. On the other hand, I had to be careful when it came to coding the call to the MessageBox()
function especially for the non-P/Invoke example because the second and third parameters are
pointers to null-terminated wchar_t arrays, which an L “string” happens to be.

If you use the more common System::String type in the non-P/Invoked version, you get an ugly
compile time error due to data type incompatibility. To get it to work, you have to pin the string’s handle
first before calling the function. Here are a couple of ways of doing that:

String^ s = L"Hello World";
String^ t = L"A Message Box";

pin_ptr<const wchar_t>ss = &(s->ToCharArray()[0]);
pin_ptr<const wchar_t>tt = PtrToStringChars(t); // requires vcclr.h
MessageBox(0, ss, tt, 0);

In a nutshell, you have to do your own data marshaling.

MarshalAsAttribute
Typically when using P/Invoke with C++/CLI you don’t have to worry about marshaling since in most
cases the managed and unmanaged formats of the data types are the same. There are exceptions to this;
the most common are the String type and classes. Consequently, in most situations there is no need to
do anything special when passing and returning simple data types to and from unmanaged DLLs.

Fraser_640-4C21.fm Page 833 Monday, November 14, 2005 12:00 PM

cafac74dd2d083cbec0906b66fcd56b1

834 C H A P T E R 2 1 ■ A D V A N C E D U N S A F E O R U N M A N A G E D C + + . N E T P R O G R A M M I N G

That being said, there is nothing stopping you from explicitly defining how parameters are to be
marshaled. To do this, you use the attribute System::Runtime::InteropServices::MarshalAsAttribute.
The MarshalAsAttribute is a rather easy attribute to work with; it takes one positional enumeration
parameter of type System::Runtime::InteropServices::UnmanagedType and is coded like this:

[DllImportAttribute("NativeCode.dll")]
extern "C" long square([MarshalAs(UnmanagedType::I4)] long value);

The CLR in this example really doesn’t need the MarshalAs attribute to help it marshal the value
parameter during the P/Invoke process because long and UnmanagedType::I4 are binary equivalent.
Some of the more common enumeration values available are shown in Table 21-1.

Table 21-1. Some Common UnmanagedType Values

Enumeration C++/CLI Equivalent Description

AnsiBStr String Length-prefixed ANSI character string

Bool bool Win32 BOOL type

BStr String Length-prefixed Unicode character string

Currency Decimal Decimal is .NET only so marshal as Currency

FunctionPtr Delegate C-style function pointer

I1 char 1-byte signed integer

I2 short 2-byte signed integer

I4 int or long 4-byte signed integer

I8 __int64 8-byte signed integer

LPStr String or StringBuilder Null-terminated ANSI character string

LPTStr String or StringBuilder Null-terminated platform-dependent
character string

LPWStr String or StringBuilder Null-terminated Unicode character string

R4 float 4-byte floating-point number

R8 double 8-byte floating-point number

TBStr String Length-prefixed platform-dependent
character string

U1 unsigned char 1-byte unsigned integer

U2 unsigned short 2-byte unsigned integer

U4 unsigned int or unsigned long 4-byte unsigned integer

U8 unsigned __int64 8-byte unsigned integer

Fraser_640-4C21.fm Page 834 Monday, November 14, 2005 12:00 PM

C H A P T E R 2 1 ■ A D V A N C E D U N S A F E O R U N M A NA G E D C + + . N E T P R O G R A M M I N G 835

Marshaling Strings
Marshaling Strings with P/Invoke as you saw with the MessageBox function earlier is fairly straight-
forward. In most cases, as long as you specify the CharSet you don’t have to do anything special in
the prototype. Personally, I like to add the MarshalAs attribute when passing String parameters, but
doing so is up to you.

There is a gotcha, though, due to the fact that .NET Strings are immutable and thus are passed
by value. This is normally not an issue, but what happens if you are using the parameter as an in/out
value like in the case of the strcpy() function? This function takes one of its string parameters and
returns a new string from it. If you use a String type as the in/out parameter, the resulting value
returned in the parameter does not get changed. To solve this problem, you use a
System::Text::StringBuilder instead of a String, as shown in Listing 21-5.

Listing 21-5. Marshaling With an In/Out String

using namespace System;
using namespace System::Text;
using namespace System::Runtime::InteropServices;

[DllImport("msvcr70", CharSet=CharSet::Ansi)]
extern "C" int strcpy([MarshalAs(UnmanagedType::LPStr)] StringBuilder^ dest,
 [MarshalAs(UnmanagedType::LPStr)] String^ source);

void main()
{
 StringBuilder^ dest = gcnew StringBuilder();
 String^ source = "Hello";

 strcpy(dest, source);
 Console::WriteLine(dest);
}

Marshaling Ref and Value Classes
One really cool feature of the built-in marshaling functionality of .NET is its ability to marshal
between ref (or value) classes and unmanaged classes (or structs) with very little additional code on
your part. This might not sound like much, but you have to remember that in .NET memory can
move around quite a bit and there is no guarantee that data, though coded to look like it falls sequen-
tially in memory, actually is stored sequentially.

As Listing 21-6 (a snippet of code that I added to NativeCode.cpp) shows, it is possible to pass a
class or struct parameter either by pointer or by value in an unmanaged DLL.

Listing 21-6. Native Passing Parameters by Reference and Value

extern "C"
{
 struct Rec
 {
 int width;
 int height;
 };

Fraser_640-4C21.fm Page 835 Monday, November 14, 2005 12:00 PM

836 C H A P T E R 2 1 ■ A D V A N C E D U N S A F E O R U N M A N A G E D C + + . N E T P R O G R A M M I N G

 // By reference
 __declspec(dllexport) bool rIsSquare(Rec *rec)
 {
 return rec->width == rec->height;
 }

 // By value
 __declspec(dllexport) bool vIsSquare(Rec rec)
 {
 return rec.width == rec.height;
 }
}

When you are dealing with passing structs orclasses as parameters by value, you need to use a
value class. When dealing with passing pointers to structs or classes as parameters, you use a ref
class.

One problem is that you can’t simply use a standard ref or value class as a parameter in the
prototype as there is no guarantee that the class’s data members will be sequential in memory. In
fact, there isn’t any guarantee that the order of the members in physical memory will even match
since .NET has free reign on how it lays out memory. Instead, you need to add a
StructLayoutAttribute of type LayoutKind::Sequential to the class like this:

[StructLayout(LayoutKind::Sequential)]
value class vRec
{
};

or

[StructLayout(LayoutKind::Sequential)]
ref class rRec
{
};

Both of these ensure that the class is laid out sequentially, in the order in which the data
members appear when exported to unmanaged memory.

One interesting feature of ref or value classes when passing them as a parameter to a P/Invoked
function is that you can add member methods to them without impacting anything. Because only
the data members are passed, you can safely add constructors, destructors, and any other member
methods.

Listing 21-7 shows how to implement passing a ref class and a value class as parameters to a
P/Invoked function.

Listing 21-7. Ref and Value Classes As P/Invoked Parameters

using namespace System;
using namespace System::Runtime::InteropServices;

[StructLayout(LayoutKind::Sequential)]
value class vRec
{
public:
 int width;
 int height;

Fraser_640-4C21.fm Page 836 Monday, November 14, 2005 12:00 PM

C H A P T E R 2 1 ■ A D V A N C E D U N S A F E O R U N M A NA G E D C + + . N E T P R O G R A M M I N G 837

 vRec(int iwidth, int iheight)
 {
 width = iwidth;
 height = iheight;
 }
};

[StructLayout(LayoutKind::Sequential)]
ref class rRec
{
public:
 int width;
 int height;

 rRec(int iwidth, int iheight)
 {
 width = iwidth;
 height = iheight;
 }
};

// By value
[DllImportAttribute("NativeCode.dll")]
extern "C" bool vIsSquare(vRec rec);

// by reference
[DllImportAttribute("NativeCode.dll")]
extern "C" bool rIsSquare(rRec^ rec);

void main()
{
 // By Value
 vRec vrec(2,3);
 Console::WriteLine("value rec a square? {0}", vIsSquare(vrec));

 // By Reference
 rRec ^rrec = gcnew rRec(2,3);
 Console::WriteLine("ref rec a square? {0}", rIsSquare(rrec));
}

Accessing COM Components from .NET
As a programmer I like the idea of chucking old code and rewriting it. Call me funny, but I think
coding is fun and enjoy improving old code. Unfortunately, I don’t have all the time or resources in
the world, and there comes a time when I have to reuse some old code simply because it just makes
more sense to do so. COM and all its derivatives usually fall into this category.

I know I’m going to get some angry letters regarding this statement, but I think COM is a some-
what dated and in most cases obsolete technology. Unfortunately, there is a heck of a lot of it out
there and it works just fine, and therefore rewriting it would be a big waste of time. Microsoft saw this
and made sure that the .NET/COM interface, better known as COM Interop, was nearly seamless. In
fact, in most cases you don’t have to write any of the COM Interop code yourself, since Visual Studio
2005 will generate the code for you. For those of you without Visual Studio 2005, you can also manually

Fraser_640-4C21.fm Page 837 Monday, November 14, 2005 12:00 PM

838 C H A P T E R 2 1 ■ A D V A N C E D U N S A F E O R U N M A N A G E D C + + . N E T P R O G R A M M I N G

generate the COM Interop code from the command line. There is no big difference between using
Visual Studio 2005 or the command line when it comes to creating the COM Interop code—the
results are virtually the same.

■Note This chapter assumes that you know how to code, register, etc., your own COM objects and will not cover
those topics.

I am including (just for completeness) Listing 21-8, the COM component that I use for all of the
examples to follow. As you can see, it is simply a COM-ification of NativeCode.dll from Listing 21-2.

Listing 21-8. The Chapter’s Test COM Component TestCOM

// Compile from command line using
// cl /LD TestCOM.cpp
// regsvr32 TestCOM.dll

#define _ATL_ATTRIBUTES
#include <atlbase.h>
#include <atlcom.h>

[module(name="TestCOM",type="dll")];

// ITestCOM interface with Square method
[dual]
__interface ITestCOM : IDispatch
{
 [id(0x01)] HRESULT Square([in]LONG Value, [out,retval]LONG* Result);
};

// coclass CTestCOM implements the ITestCOM interface
[coclass, threading="both"]
class CTestCOM : public ITestCOM
{
 HRESULT Square(LONG Value, LONG* Result)
 {
 if (Value > 0x0ffff)
 {
 *Result = -1;
 return E_INVALIDARG;
 }
 else
 {
 *Result = Value * Value;
 return S_OK;
 }
 }
};

Fraser_640-4C21.fm Page 838 Monday, November 14, 2005 12:00 PM

C H A P T E R 2 1 ■ A D V A N C E D U N S A F E O R U N M A NA G E D C + + . N E T P R O G R A M M I N G 839

Interop Assembly
To put it bluntly, COM objects and .NET objects are quite different and I’m impressed by the magic
invoked by Microsoft to get these square pegs into round holes. This magic is the Interop Assembly.
Best of all, you don’t have to write a single line of code to create an Interop Assembly!

An Interop Assembly is usually known as a runtime callable wrapper (RCW) because of the
functionality it provides. As this name suggests, a RCW is a managed wrapper assembly that enables
.NET to understand a COM object at runtime. In other words, not only does it provide marshaling
code for parameters and return values, it also does all the prep work required to get the COM object
up and running, manages the lifetime of the COM object (I know I don’t miss trying to keep the
AddRef() and Release() method calls in sync!), identifies and provides interfaces to the members of
the COM object, and allows .NET to access these COM object members via dynamic references
instead of raw fixed pointers.

■Caution With an RCW, you do not have control of when its COM object is garbage collected. On the other hand,
you may have heard of the static method System::Runtime::InteropServices::Marshal::
ReleaseComObject(), which you can use to immediately release your RCW. It is true that this method exists, but
you must use it with extreme caution (and I mean extreme) as you are removing yourself from the safety net that
.NET provides. The ReleaseComObject() method is a very complex topic and I will not cover it further, but if you
insist on using the method, make sure you understand completely how it works (there are many Web pages about
it) and then test thoroughly.

Creating the Interop Assembly
Since there are two methods of creating the Interop Assembly, let’s look at both of them; that way
you can make your own decision on which you want to use. (If you don’t have Visual Studio 2005,
then the choice has already been made for you.)

Type Library Importer
Because not everyone who develops with .NET uses Visual Studio 2005, the .NET Framework
provides the developer with a command-line tool called the Type Library Importer (tlbimp) to
convert a COM type library into an Interop Assembly. In other words, this command line converts
your .tlb file into an RCW.

The default command to run is quite simple:

tlbimp.exe <type_library_name>.tlb

An example would be the conversion of the .tlb file created from compiling the COM type
library TestCOM shown earlier in Listing 21-8:

Tlbimp.exe _TestCom.tlb

When you use the default command line you get an assembly called TestCom.dll, which
contains all the wrapper classes for the COM type library.

■Tip When you compile a COM object using only the /LD option, your .tlb file is named vc80.tlb. Before I run
tlbimp on this file, I rename and move it to its own directory so I don’t accidentally overwrite the actual COM type
library DLL file—the default result of running tlbimp is a DLL file with the same name and extension as the origi-
nating COM type library.

Fraser_640-4C21.fm Page 839 Monday, November 14, 2005 12:00 PM

840 C H A P T E R 2 1 ■ A D V A N C E D U N S A F E O R U N M A N A G E D C + + . N E T P R O G R A M M I N G

If you need more specific information generated within the assembly, tlbimp provides a number
of optional parameters. Some of the more commonly used parameters are shown in Table 21-2.

Now that you have an Interop Assembly, all that is required for a .NET application to reference
its members is to add the following to the top of the code:

#using <TestCom.dll>

And just like you would with any other .NET DLL, make sure that the CLR can reference it by
placing it either in the path of the application or in the GAC.

Visual Studio 2005 Generated COM Interop Assembly
If you have Visual Studio 2005, you can let it do all the work. The process is nearly the same as adding
a .NET reference to a project, except instead of selecting from the .NET tab you select from the COM
tab. Here are the relevant steps:

Table 21-2. Common tlbimp Options

Option Description

/asmversion:number Allows you to specify your own version number for the assembly
being generated.

/help Displays help information in the command window.

/keyfile:filename The filename of the strong name key file that you want to sign the
assembly with. You use this parameter along with the /asmversion
option to make the generated assembly into a shared assembly that
you can place in the GAC. You can create the file using the tool
sn.exe covered in Chapter 18.

/namespace:name Allows you to overrule the default namespace (the name of the type
library) with a value of your own choice.

/out:filename Allows you to specify the output filename. The default value generated
is the name of the type library with the extension .dll.

/primary Creates a primary Interop Assembly containing information about
the publisher of the type library. The assembly must be signed with a
strong name and have a version number.

/reference:filename Specifies the name of a file that contains a reference to types defined
outside the current type library.

/sysarray Specifies that COM SafeArrays should be mapped to .NET’s
System::array.

/unsafe Creates an interface without .NET security checks. I personally don’t
recommend you use this since it introduces security risks, but it is
available if you absolutely need it.

Fraser_640-4C21.fm Page 840 Monday, November 14, 2005 12:00 PM

cafac74dd2d083cbec0906b66fcd56b1

C H A P T E R 2 1 ■ A D V A N C E D U N S A F E O R U N M A NA G E D C + + . N E T P R O G R A M M I N G 841

1. Right-click on the project in the Solution Explorer.

2. Select the Properties menu item.

3. Select Common Properties and then References from the properties navigation tree.

4. Click the Add New Reference button.

5. Select the COM tab in the Add References dialog box.

6. Navigate to and select the COM component you want to add to your project, as shown in
Figure 21-5.

Figure 21-5. Adding a COM object reference

7. Click OK twice.

Once you complete these steps, Visual Studio 2005 adds an Interop Assembly called
Interop.TestCOM.1.0 to your project.

Invoking the Interop Assembly
If you look at the resulting DLL, created via tlbimp on the command line or Visual Studio 2005 using
isdasm.exe (see Figure 21-6), you will see that they are nearly identical.

Fraser_640-4C21.fm Page 841 Monday, November 14, 2005 12:00 PM

842 C H A P T E R 2 1 ■ A D V A N C E D U N S A F E O R U N M A N A G E D C + + . N E T P R O G R A M M I N G

Figure 21-6. An ildasm view of the TestCOM Interop Assembly

This makes things easy as it allows the implementation of the code to be the same no matter
which method you used to create the Interop Assembly.

The first thing you are going to need is the namespace and the name of the class within the
Interop Assembly that you will be using to interface with your COM object. There are three easy ways
to obtain this.

The first is to use ildasm. Looking back at Figure 21-6, you’ll notice the blue shield icon with a
red top. This is the namespace you need to use. Next, navigate down into the namespace branch of
the tree. You’ll find three class icons. Two of the icons have an “I” in the center of them; these are
interfaces. You can use them if you want, but I prefer to use the real class: the one without the “I.”
This is the RCW created by either tlbimp or VS .NET.

The second method is to use the Object Browser in Visual Studio 2005. The first step is to add a
reference to the COM object as I described earlier. This will make the Interop Assembly available to
the Object Browser. Next, open the Object Browser by choosing View ➤ Object Browser. This will
open a docked window, as shown in Figure 21-7.

Select the COM Object Interop Assembly that you referenced. The namespace you will need to
use will be the one next to the curly brackets icon. Expand this icon and you will see three more
icons: two interfaces and a class. Again I use the class, but you can use the interface if you prefer.

The third method is a last resort and requires that you know the COM coclass. The namespace
will be the name of the Interop Assembly minus any suffixes or prefixes, and the RCW class will be
the coclass with a “C” in front and “Class” on the end.

Here is the result of all three methods for the TestCOM assembly:

• Namespace of TestCOM

• RCW of CTestCOMClass

Now all you need to do to use the COM object in your code is to create an instance of the RCW
and then call the methods you want, as shown in Listing 21-9.

Fraser_640-4C21.fm Page 842 Monday, November 14, 2005 12:00 PM

C H A P T E R 2 1 ■ A D V A N C E D U N S A F E O R U N M A NA G E D C + + . N E T P R O G R A M M I N G 843

Figure 21-7. Object Browser

Listing 21-9. Invoking the COM Component TestCOM

// #using <TestCom.dll> // Add if you are not referencing using VS .NET

using namespace System;
using namespace TestCOM;

int main(array<System::String ^> ^args)
{
 CTestCOMClass^ test = gcnew CTestCOMClass();

 long ret = test->Square(4);

 Console::WriteLine("The Square of 4 is {0}", ret);
 return 0;
}

As you can see, there is no difference between using an RCW and a standard .NET class. Even
IntelliSense works. Like I said, Microsoft performed some major league magic.

Handling COM Object Errors
How return values and errors are handled is hidden in the auto-generated RCW code. All COM methods
return a 32-bit HRESULT value and not the nicely marshaled values that .NET presents to the developer.
Here is the snippet of the TestCOM code that shows the Square method call:

HRESULT Square(LONG Value, LONG* Result)
{
 if (Value > 0x0ffff)
 {
 *Result = -1;
 return E_INVALIDARG;
 }

Fraser_640-4C21.fm Page 843 Monday, November 14, 2005 12:00 PM

844 C H A P T E R 2 1 ■ A D V A N C E D U N S A F E O R U N M A N A G E D C + + . N E T P R O G R A M M I N G

 else
 {
 *Result = Value * Value;
 return S_OK;
 }
}

And here is the call you make in your .NET application:

long ret = test->Square(4);

They don’t match! What is happening is that the PreserveSig is being set to false, which causes
the method to return the [out, retval] parameter if the HRESULT is not an error; otherwise, an exception
is thrown.

So, to handle a COM object method error just add a try block around the method call and a
catch block to handle the error like this:

try
{
 long ret = test->Square(0x10000);
}
catch (Exception^ ex)
{
 Console::WriteLine("Oops an exception occurred: {0}", ex->Message);
}

Clean and simple, don’t you think?

Late Binding a COM Object
When implementing a COM object with an Interop Assembly, you are performing early binding. In
other words, the COM object is connected to the calling application at compile time. In the absence
of an Interop Assembly, it is still possible to connect to a COM object as long as the COM object
implements IDispatch. This form of connection, which is done at runtime, is called late binding.

To perform late binding on a COM object, you have to know the COM progID, the Registry entry
associated with the COM object. Then with the COM progID, you use reflection (see Chapter 18 for a
refresher on reflection) to invoke the COM object’s methods.

Implementing late binding using reflection for COM objects is very similar to using reflection
with assemblies. The big difference is that you use the static method Type::GetTypeFromProgID() to
get the Type object (which represents the coclass) instead of the Type::GetType() method.

To help you understand how to code late binding of a COM object, let’s look at the full example
first and then walk through it step by step. Listing 21-10 provides the same functionality as the early
binding example.

Listing 21-10. Invoking the COM Using Late Binding

using namespace System;
using namespace System::Reflection;

int main(array<System::String ^> ^args)
{
 Type ^typeTestCom = Type::GetTypeFromProgID(L"CTestCOM.CTestCOM");

Fraser_640-4C21.fm Page 844 Monday, November 14, 2005 12:00 PM

C H A P T E R 2 1 ■ A D V A N C E D U N S A F E O R U N M A NA G E D C + + . N E T P R O G R A M M I N G 845

 if (typeTestCom == nullptr)
 {
 Console::WriteLine("Getting CTestCOM.CTestCOM failed");
 return -1;
 }

 try
 {
 Object ^TestComLBnd = Activator::CreateInstance(typeTestCom);

 array<Object^>^ param = gcnew array<Object^> { 4 };

 Object ^ret = typeTestCom->InvokeMember(
 L"Square",
 Reflection::BindingFlags::InvokeMethod,
 nullptr,
 TestComLBnd,
 param);

 Console::WriteLine("Square of 4 is {0}", ret);
 }
 catch (Exception ^ex)
 {
 Console::WriteLine("Error when invoking Square method: {0}",
 ex->Message);
 }
 return 0;
}

First you get a reference to the Type for which you will invoke members. To do this, you pass the
progID to the GetTypeFromProgID() method, which returns a Type object that represents the coclass
of the COM object. If the progID cannot be found in the Registry or some other error occurs, the
GetTypeFromProgID() method returns a nullptr. Therefore, after I try to get the coclass Type object,
I check to see if the value is nullptr and if it is, I quit.

Now that I have the coclass Type, I need to create an instance of it with the static method
Activator::CreateInstance(). The CreateInstance() method returns a number of exceptions so I
enclose it in a try/catch block, but under normal operations these exceptions should not occur
since I have already retrieved a valid coclass Type using the method GetTypeFromProgID().

All that is left is to invoke the member using the aptly named Type member method
InvokeMember(). This method takes five parameters:

• The name of the method to invoke.

• The type of operation to perform as a BindingFlag enumeration. In this case, it will normally
be InvokeMethod.

• A reference to a binder object (which you can safely ignore so just pass nullptr).

• The reference to an instance of the coclass Type that the operation will be invoked on.

• An array of Objects that you want to pass as arguments.

Just before you call the InvokeMember() method, you need to create the array of Objects you
want to pass to the invoked COM object method. If the method doesn’t have any parameters, then
pass nullptr.

Fraser_640-4C21.fm Page 845 Monday, November 14, 2005 12:00 PM

846 C H A P T E R 2 1 ■ A D V A N C E D U N S A F E O R U N M A N A G E D C + + . N E T P R O G R A M M I N G

Finally, the InvokeMember() method returns an Object type, so you need to typecast it to the type
you want. In the example, WriteLine() handles the typecast for me.

■Caution Late binding is less efficient than early binding.

Summary
In this chapter you looked at interfacing with unmanaged DLLs and COM objects. You started off
looking at P/Invoke using simple data types. You then moved on to data marshaling with more
complex data types. Finally, you looked at interfacing with COM objects using Interop Assemblies
using either early binding with RCW or late binding directly with the COM object itself.

Because there is no next chapter to describe, I would like to instead thank you for reading my
book. I hope you got as much enjoyment out of reading it as I did writing it.

Fraser_640-4C21.fm Page 846 Monday, November 14, 2005 12:00 PM

847

Index

■Symbols
-> (arrow) operator, 96, 97
- operator

Point/PointF structures, 463
Size/SizeF structures, 464

!= operator
Point/PointF structures, 463
Rectangle/RectangleF structures, 465
Size/SizeF structures, 464

masking character, 346
symbol

see preprocessor directives

$ masking character, 347
& masking character, 346
* (asterisk) character, 30
+ operator

Point/PointF structures, 463
Size/SizeF structures, 464

, (comma) masking character, 346
= operator

see assignment (=) operator

= = (equal to) operator
Point/PointF structures, 463

Rectangle/RectangleF structures, 465
Size/SizeF structures, 464

? masking character, 346
^ (carat) character, 30
| (pipe) masking character, 347
: (colon) masking character, 347
:: operator

see scope resolution (::) operator

; (semicolon) character, 29
< (less than) masking character, 347
> (greater than) masking character, 347
\ (backslash) masking character, 347
/ (forward slash) masking character, 347
~ (ones compliment) operator, 63, 64

■Numerics
0 masking character, 346
9 masking character, 346

■A
A masking character, 346
a masking character, 346
A property, Color class, 480
Abort method

Thread class, 666, 671

Abort type DialogResult, 435
Aborted/AbortRequest states

multithreaded programming, 665

abstract keyword, 133
abstract ref classes, 133–134
Accept method, Socket class, 698
AcceptButton property, 436
AcceptChanges method

DataSet class, 546
committing/rolling back rows, 554

developing with DataGridView control, 557

AcceptReturn property
TextBox control, 345
TextBoxBase class, 347

AcceptSocket method
TcpListener class, 712, 713

AcceptsTab property
TextBoxBase class, 344, 347

AcceptTcpClient method
TcpListener class, 713

AccessControl namespace, 212, 776
AcquireReaderLock method

ReaderWriterLock class, 691

AcquireWriterLock method
ReaderWriterLock class, 692

Action<T> delegate
List<T> collection, 265

ForEach method, 266
using, 266

Activation namespace, 210
Activation property

ListView control, 379

Activator class, 736
CreateInstance method, 736, 845

Fraser_640-4Index.fm Page 847 Thursday, November 17, 2005 4:27 PM

cafac74dd2d083cbec0906b66fcd56b1

848 ■I N D E X

Active Directory, 200
Adapter service, 607
Add method

caution: unique/duplicate keys, 258
Dictionary<K,V> collections, 273
Hashtable collection, 252
ListDictionary collection, 258
NameValueCollection collection, 261
SortedList collection, 252

Add New Item dialog box, 434, 555
Add Table dialog box, 523
Add Web Reference dialog box, 648, 649
add_<delegate-name> method, 185
AddChild method

CodeGroup class, 786

AddPermission method
Permission class, 784

AddRange method
RadioButton control, 336

AddResources method
ResourceWriter class, 757

address of operator (&), 66
AddXyz methods

LinkedList<T>, 270

Administrative Tools Services application, 606
ADO.NET, 515–558

assemblies containing classes, 516
building database with Visual Studio 2005,

517–526
building stored procedures, 525–526
creating database tables, 519–520
creating database views, 522–524
creating new database, 518
creating relationships between tables,

520–522
classes, 197
connected ADO.NET, 527–543

nontransactional database access,
527–539

transactional database access, 539–543
using simple connected ADO.NET, 527

creating table manually in code, 548
disconnected ADO.NET, 544–558

Constraint classes, 548
core classes, 544
DataAdapter classes, 545
DataColumn class, 547
DataRelation class, 548
DataRelationCollection class, 547

DataRow class, 547
DataSet class, 546
DataTable class, 546
DataTableCollection class, 546

Insert/Update/Delete commands, 536–537
introduction, 515
managed providers, 526–527
namespaces, 516
querying database, 532–535
returning single value from query, 538–539
using connected ADO.NET with

transactions, 539–543
using try clause for commands, 531
XML and ADO.NET, 601–603

AfterXyz events, TreeView control, 388
alignment

CheckAlign property, 330
ImageAlign property, 324
LineAlignment property, 474
SetIconAlignment method, 426
TextAlign property, 345

Alignment property
StringFormat class, 474
TabControl control, 394

AllKeys property
NameValueCollection, 262

AllowColumnReorder property
ListView control, 379

AllowItemReorder property
ToolStrip control, 404

AllowMerge property
ToolStrip control, 404

alpha component
A property, 480
colors, 480

ampersand (&) character, 346
Anchor property

RichTextBox control, 357

AND (&&) operator, 62
AnnuallyBoldedDates property

MonthCalendar control, 423

Ansi value
CharSet enumeration, 831

ANSI version
adding A to Windows functions, 831

AnsiBStr value
UnmanagedType enumeration, 834

apartment state, 311

Fraser_640-4Index.fm Page 848 Thursday, November 17, 2005 4:27 PM

849■I N D E X

APIs (application programming interfaces)
.NET Framework advantages, 6

AppDomain class
SetPrincipalPolicy method, 778, 779

Appearance property
CheckBox control, 330
TabControl control, 394

Append value
FileMode enumeration, 289

AppendChild method
XmlNode class, 584

AppendText method
File/FileInfo classes, 288
TextBoxBase class, 344

Application class, 214
methods/properties, 311

application configuration files, 754, 755
application development

.NET Framework, 21–23

.NET Framework hierarchy, 5
console applications, 21
Web applications, 22
Web services, 22
Windows applications, 21
Windows services, 22

Application Domain statements, 785
ApplicationActivationAttribute, 202
ApplicationDeployment class, 198
ApplicationException, 170

.NET Framework exception types, 168
rethrowing exception, 172
throwing, 170

ApplyResources method
ComponentResourceManager class, 769

Archive attribute, files, 286
ARGB value

FromArgb method, 480
ToArgb method, 480

argument lists
CLS and, 20

arguments
passing by reference, 77
passing to functions, 76–77
passing to main function, 80–82

arithmetic operators, 61–62
binary operator overloading, 115
precedence, 62

ArrangeIcons method
ListView control, 380

arranging
AutoArrange property, 380

Array class
GetLength method, 46
IndexOf method, 372
Length property, 46
Reverse method, 48
Sort method, 48

array properties
member properties, ref class, 123

ArrayList collection, 245–248
accessing, 246
BinarySearch method, 247
caution: accessing nonexistent element, 247
caution: increasing capacity of, 246
Contains method, 247
creating from another collection, 246
default Capacity, 245
default index property index start number, 247
description, 241
List<T> collection and, 265
loading, 246
namespace, 196
Reverse method, 247
setting initial capacity, 246
Sort method, 247

arrays, 46
accessing elements of arrays, 48
ArrayList collection, 245
BitArray collection, 248–251
caution: jagged arrays, 48
CLS and, 20
CompoundArray property, 482, 485
CTS data types, 18
declaring, 47
IsArray property, 732
multidimensional arrays, 47

arrays, .NET
LinkedList<T> compared, 269
ref class benefits, 92

arrow (->) operator
accessing ref class members, 97
accessing reference object handle, 96

ASCII character set, 40

Fraser_640-4Index.fm Page 849 Thursday, November 17, 2005 4:27 PM

850 ■I N D E X

ASP.NET Web Service template
creating Web service, 638
designer code, 640
FindZipCodeClass ref class, 641
FindZipCodeClass.asmx file, 639
FindZipCodeClass.h file, 639
redundant namespace qualifying, 640
WebServiceBinding attribute, 640

assemblies
.NET Framework class library, 194
.NET Framework elements, 7–11
assembly metadata/manifest, 8
assembly referencing, 154–155
building from multifile libraries, 149–154
building library assembly from command

line, 154
global assembly cache (GAC), 7
header files, 149
IntelliSense using metadata, 9
Microsoft intermediate language, 10
private assemblies, 7
resources, 11
self description, 8
shared assemblies, 7
structure of, 7
templates and, 156
type metadata, 9
versioning, 9

Assembly class, 207, 730, 735
GetTypes method, 730

assembly programming, 729–772
attributes, 738–745
globalization/localization, 764–772
reflection, 729–738
resources, 755–763
shared assemblies, 746–755

assembly tag
NDoc generated documentation, 221

AssemblyCultureAttribute attribute, 752
assemblyIdentity element, 755
AssemblyKeyFileAttribute attribute, 752
AssemblyName class, 207, 730
AssemblyNameProxy class, 207
AssemblyVersionAttribute attribute, 750
assignment (=) operator, 65–66

binary operator overloading, 115
caution: equal to (= =)operator, 62

asterisk (*) character
pointer data type, 30

AsyncCallback class, 721, 724
asynchronous sockets, 720, 721

accepting connections, 721, 722
asynchronous TCP server, 725–727
connecting to connections, 722, 723
disconnecting from connections, 723
receiving message, 724, 725
sending message, 724

AsyncState property
IAsyncResult class, 723, 725

Attribute class, 742
GetCustomAttribute method, 743
GetCustomAttributes method, 743
System namespace, 739

Attribute node type, XML, 564
AttributeCount property

XmlReader class, 562

attributes, 738, 739
common language runtime (CLR), 14
creating custom attribute, 739–742
GetAttribute method, 563, 593
HasAttributes property, 562, 593
implementing custom attribute, 742, 743
MoveToAttribute method, 563, 593
MoveToFirstAttribute method, 563, 593
MoveToNextAttribute method, 563, 594
NewLineOnAttribute property, 574
ReadAttributeValue method, 563
using custom attribute, 743, 745
WriteAttributes method, 575
WriteAttributeString method, 575
WriteEndAttribute method, 575
WriteEndDocument method, 575
WriteStartAttribute method, 575
XML documents, 560

Attributes property
FileSystemInfo class, 280
XmlNode class, 583

AttributeTargets enumeration, 739, 740
AttributeUsageAttribute attribute, 739, 740
Authentication namespace, 212, 776
AuthenticationType property

IIdentity interface, 777

Authors table
column descriptions, 519
entering data, 524

Fraser_640-4Index.fm Page 850 Thursday, November 17, 2005 4:27 PM

851■I N D E X

auto modifier
data types, C++/CLI, 52

Auto value
CharSet enumeration, 831

AutoArrange property
ListView control, 380

AutoIncrement property
DataColumn class, 547

AutoLog property
ServiceBase class, 614

AutoResetEvent class, 662
AutoScroll property

Form class, 315

AutoScrollMinSize property
Form class, 494

AutoScrollPosition property
Form class

optimizing GDI+, 499
scrollable windows, GDI+, 496

AutoSize mode
PictureBox control, 420

AutoToolTip property
ToolStrip control, 405

■B
B property, Color class, 480
BackColor property, Label control, 324
Background state

multithreaded programming, 665

backslash (\) character, 347
escape sequences, 58

BackwardDiagonal enumeration
HatchStyle enumeration, 486

base classes
.NET Framework hierarchy, 5
parent classes, 93

Base64
WriteBase64 method, 575

BeepOnError property
MaskedTextBox control, 345

BeforeExpand event
TreeView control, 392

BeforeXyz events
TreeView control, 388

BeginAccept method
Socket class, 721, 722

BeginAcceptSocket method
TcpListener class, 721

BeginAcceptTcpClient method
TcpListener class, 721

BeginConnect method
Socket class, 722
TcpClient class, 722

BeginDisconnect method
Socket class, 723

BeginReceive method
Socket class, 724
UdpClient class, 724, 725

BeginReceiveFrom method
Socket class, 724

BeginSend method
Socket class, 724
UdpClient class, 724

BeginSendTo method
Socket class, 724

BeginTransaction method
SqlConnection class, 543

binary
overloading binary operators, 114
WriteBinHex method, 575

BinaryFormatter class, 211
serialization using, 304–306
SoapFormatter class compared, 304

BinaryReader class, 203
drawback using, 300
ReadXyz methods, 300
using, 299–302

BinarySearch method
ArrayList collection, 247

BinaryWriter class, 203
methods, 300
using, 299–302

Binder class, 207
BindingFlag enumeration, 845
bindingRedirect element, 755
BitArray collection, 248–251

description, 241
namespace, 196
NOT method, 249
SetAll method, 249

Bitmap class
double buffering, 503
namespace, 446

Fraser_640-4Index.fm Page 851 Thursday, November 17, 2005 4:27 PM

852 ■I N D E X

bitmaps
FromHbitmap method, 490

BitVector32 collection
description, 241
namespace, 196

bitwise operators
AND (&) operator, 63
OR (|) operator, 63
precedence, 64
XOR (^) operator, 63, 64

BlinkRate/BlinkStyle properties
ErrorProvider control, 426

blue component
B property, 480

Bold property, Font class, 476
BoldedDates property

MonthCalendar control, 423

bool alias, Boolean data type, 38
Bool value

UnmanagedType enumeration, 834

Boolean data type, 38–39
Boolean literals, 57

ToString method, 57

borders
FormBorder property, 315

BorderStyle property
PictureBox control, 420

Bottom property
Rectangle/RectangleF structures, 465

bounds
GetBounds method, 469, 490

boxed value types
CTS data types, 18

boxes
CheckBox control, 214, 330–333
CheckBoxes property, 387
CheckedListBox control, 368–372
CheckListBox class, 214
ComboBox control, 214, 364–368
dialog boxes, 434–444
GroupBox control, 336–340
ListBox control, 359–364
ListBoxItem method, 552
MaskedTextBox control, 345–352
MaximizeBox property, 315
MessageBox function, 826
MinimizeBox property, 315

PictureBox control, 420–422
RichTextBox control, 215, 352–358
TextBox control, 215, 345, 347
TextBoxBase class, 344
ThreeDCheckBoxes property, 368
ToolStripComboBox, 404, 414, 415
ToolStripTextBox, 404, 414

boxing data types, 51–52
caution: modifying boxed object, 52

break statement
looping, C++/CLI, 75
switch statement, 71

brightness
GetBrightness method, 480

Brush class, 446, 486
TranslateTransform method, 487

Brushes class, 446
brushes, GDI+, 486–489

HatchBrush class, 486
SolidBrush class, 486
SolidBrushes class, 447
start point for filling, 487
SystemBrushes, 447, 486
TextureBrush class, 447, 487–489

BStr value
UnmanagedType enumeration, 834

buffering, GDI+
double buffering, 501–508
single buffering, 501

build version, 749
BuildRadios method, 340
built in value types

CTS data types, 19

bulleted lists
integrated XML documentation, 231
SelectionBullet property, 353

BulletIndent property
RichTextBox control, 353

Button control, 214, 327–329
InitializeComponent method, 329
static/dynamic control, 327
way too many buttons, 329

button controls, 327–343
Button property

MouseEventArgs class, 319

ButtonBase class, 327

Fraser_640-4Index.fm Page 852 Thursday, November 17, 2005 4:27 PM

853■I N D E X

buttons
AcceptButton property, 436
CancelButton property, 436
OverflowButton property, 405
RadioButton control, 215, 334–336
ToolStripButton, 404
ToolStripDropDownButton, 404
ToolStripSplitButton, 404

Byte integer data type, 33

■C
C masking character, 346
c tag

example using, 238
integrated XML documentation, 229

C++
unsafe code, 825

accessing COM components from .NET,
837–846

creating, 807
data marshalling, 833–837
including vcclr.h file, 820, 821, 822
introduction, 805, 806
managed/unmanaged #pragma

directives, 807, 808, 809
neccessity of, 806, 807
P/Invoke, 825–833
pointers, 815–820
unmanaged arrays, 810
unmanaged classes/struts, 811–815

unsafe programming, 805

C++/CLI
comments, 60–61
CRT/managed heaps, 92
flow control constructs, 69–71
functions, 76–82
Hello World program, 27–28
literals, 55–60
looping constructs, 71–75
object-oriented programming, 89–137
operators, 61–69
programming basics, 27–83
statements, 29
support for Web services, 638
variables/data types, 29–55

Cache namespace, 206
Caching namespace, 213
Calendar class, 202, 765

CalendarDimensions property
MonthCalendar control, 423

calendars
MonthCalendar control, 423–425

CallingConvention enumeration, 829
values, 831

CallingConvention field
DllImportAttribute class, 831

Cancel property
CancelEventArgs argument, 352

Cancel type DialogResult, 435
CancelButton property

dialog boxes, 436

CancelEventArgs argument
Cancel property, 352

CanHandlePowerEvent property
ServiceBase class, 614

CanHandleSessionChangeEvent property
ServiceBase class, 614

CanOverflow property
ToolStrip control, 404

CanPauseAndContinue property
ServiceBase class, 614
ServiceController class, 628

CanRead property
Stream class, 292

CanRedo property
RichTextBox control, 353

CanSeek property
Stream class, 292

CanShutDown property
ServiceBase class, 614
ServiceController class, 628

CanStop property
ServiceBase class, 614
ServiceController class, 628

CanUndo property
TextBoxBase class, 344

CanWrite property
Stream class, 292

Capacity property
ArrayList collection, 245, 246

caution: setting less than Count, 246
Hashtable collection, 252
MemoryStream class, 295
SortedList collection, 252

Fraser_640-4Index.fm Page 853 Thursday, November 17, 2005 4:27 PM

854 ■I N D E X

carat (^) character
handle data type, 30

case
CharacterCasing property, 345

case sensitivity
CLS and, 20, 193

case statement, 70–71
casting

explicit cast, 53
safe_cast, 54
type conversions, 53–54

catch blocks
catching multiple exceptions, 173
catching previously uncaught exceptions, 176
exception handling described, 167
order of system exception inheritance, 174
rethrowing exception, 172
unsafe code, 176

CDATA section
CreateCDataSection method, 584
XmlCDataSection class, 582

Cdecl value
CallingConvention enumeration, 831

Ceiling method
Point/PointF structures, 463
Rectangle/RectangleF structures, 465
Size/SizeF structures, 464

CenterImage mode
PictureBox control, 420

chaining

multicast chaining, 179

ChangeExtension method
Path class, 282

Channels namespace, 210
Char (16-bit) data type, 39, 58
char (8-bit) data type, 34, 58
char alias, integer data type, 33
char entity

WriteCharEntity method, 575

character data type, 39–40
character literals

Char (16-bit) types, 58
char (8-bit) types, 58
escape sequences, 58
literals, C++/CLI, 58–59

CharacterCasing property
TextBox control, 345

characters
IndentChars property, 574
PasswordChar property, 345
PtrToStringChars function, 822
WriteChars method, 575
XmlCharacterData class, 582

CharSet enumeration
ExactSpelling value, 831
namespace, 829
values, 831

CharSet field
DllImportAttribute class, 831

CheckAlign property
CheckBox control, 330

CheckBox control, 214, 330–333
properties, 330
uncheckable control, 333

CheckBoxes property
TreeView control, 387

Checked property
CheckBox control, 330
ToolStripMenuItem control, 415
TreeNode class, 389

CheckedChanged event
RadioButton control, 336

CheckedIndices property
CheckedListBox control, 368, 369

CheckedItems property
CheckedListBox control, 368, 369

CheckedListBox control, 368–372
checking box within control, 372
events, 372
getting checked items, 369
methods, 368
properties, 368
selected vs. checked items, 368, 369
splitting CheckedListBox, 369

CheckListBox class, 214
CheckOnClick property

CheckedListBox control, 368
ToolStripMenuItem control, 415

CheckState property
CheckBox control, 330
ToolStripMenuItem control, 415

child classes
ref class inheritance, 93

Fraser_640-4Index.fm Page 854 Thursday, November 17, 2005 4:27 PM

cafac74dd2d083cbec0906b66fcd56b1

855■I N D E X

ChildNodes property
XmlNode class, 583

children
AddChild method, 786
AppendChild method, 584
FirstChild property, 583, 586
HasChildNodes property, 583
LastChild property, 583
PrependChild method, 584
RemoveChild method, 584, 786, 789
ReplaceChild method, 584
SelectChildren method, 594

Children property
CodeGroup class, 786

Clamp enumeration
WrapModes enumeration, 487

clamping, 487
class library

see also NET (.NET) Framework class library
.NET Framework, 23–24, 193–216
accessing resources, 11

class templates, 158–159
caution: definition/implementation of, 159
template parameters, 160–162

class types
CLS and, 20, 193
type casting between, 131

classes, 50
see also unmanaged classes/struts
.NET generic collection classes, 242
.NET standard collection classes, 241
creating event source class, 184
declaring ref classes, 89
default to CRT heaps, 92
defining before using, 441
nested ref classes, 128
ref keyword, 92
setting up classes for serialization, 302–304

ClassInterfaceAttribute class, 208
Clear method

Graphics class, 454
Hashtable collection, 252
Queue collection, 256
SortedList collection, 252
Stack collection, 256
TextBoxBase class, 344

ClearSelected method
ListBox control, 359

ClearUndo method
TextBoxBase class, 344

clicking
CheckOnClick property, 368, 415

Clicks property
MouseEventArgs class, 319

ClientSize property
Form class, 315

Clipboard class, 214
CloneNode method

XmlNode class, 584

Close method
BinaryWriter class, 300
Connection classes, 531
ResourceReader class, 762
ResourceWriter class, 757
ServiceController class, 628
Socket class, 704
Stream class, 292, 293
StreamReader class, 297
StreamWriter class, 298
XmlReader class, 563

placing in finally clause, 567
XmlWriter class, 575

CLR (common language runtime)
.NET Framework elements, 11–17
.NET Framework hierarchy, 5
attributes, 14

CLR start-up process flow, 12
code access verification, 14
code verification, 14
command-line switches (/CLR:), 13
garbage collection, 14
instantiating ref class objects, 96
JIT (just-in-time) compilation, 17
language support for CTS types, 19
managed code, 13
managed data, 13
multiple language support, 15
multiple platform support, 16
reflection, 15
roles of, 11
services, 13
versioning in private assemblies, 749

Fraser_640-4Index.fm Page 855 Thursday, November 17, 2005 4:27 PM

856 ■I N D E X

CLS (common language specification), 20
coclass, COM, 842
code

managed code, 13
native code, 13
safe/unsafe code, 13

code access security, 211, 783
code groups, 785, 786, 787, 788, 789
evidence, 790–795
permissions, 783, 784
policy statements, 784, 785
securing code, 795

Assert/RevertAssert, 799, 800
Demand, 796
Demands, 796
Deny/RevertDeny, 800
InheritanceDemand, 797
LinkDemand, 797
Overrides, 799
PermitOnly/RevertPermitOnly, 800, 802
RequestMinimum, 798
RequestOptional, 798
RequestRefuse, 798
Requests, 798

code access verification
common language runtime, 14

code groups
code access security, 785, 786, 787, 788, 789

code tag
example using, 238
integrated XML documentation, 230

code verification
common language runtime, 14

Codebehind attribute
C++/CLI support for Web services, 638

CodeGroup class
adding readonly CodeGroup, 787
properties/methods, 786
RemoveChild method, 789

coding membership conditions, 786
collection classes, 546
Collection<T> class, 197, 242, 278
CollectionBase collection, 241
Collections namespace, 23, 195, 196, 197,

257, 264
Collections::Generic namespace, 23, 264
Collections::Specialized namespace, 257

collections, .NET
collection classes

ArrayList, 241, 245–248
BitArray, 241, 248–251
BitVector32, 241
CollectionBase, 241
Collection<T>, 242, 278
DataRelationCollection, 198, 544, 547
DataTableCollection, 546
DictionaryBase, 241
Dictionary<K,V>, 242, 273–277
Hashtable, 241, 251–255
HybridDictionary, 241, 258
ICollection interface, 243
KeyCollection, 274
KeyedCollection<K,V>, 242, 278
LinkedList<T>, 242, 269–271
ListDictionary, 242, 257–259
List<T>, 242, 265–268
NameValueCollection, 242, 261–263
PropertyDataCollection, 205
QualifierDataCollection, 205
Queue, 242, 255–257
Queue<T>, 242, 271–272
ReadOnlyCollection<T>, 242, 278
SortedDictionary<K,V>, 242, 273–277
SortedList, 242, 251–255
Stack, 242, 255–257
Stack<T>, 242, 271–272
StringCollection, 242, 259–260
StringDictionary, 242, 260–261
ValueCollection, 274

generic collection classes, 242
properties/methods not supported, 264
thread safety, 264

generic collection interfaces, 243
main sets of .NET collections, 241
namespaces and inheritance, 241
other sets of collections, 241
ref class benefits, 92
standard collection classes, 241
standard collection interfaces, 243

colon (:) character, 347
Color class

constructor, 480
creating named colors, 481
FromXyz methods, 480
methods, 480

Fraser_640-4Index.fm Page 856 Thursday, November 17, 2005 4:27 PM

857■I N D E X

placing color information into Color
structure, 480

predefined colors, 481
properties, 480

Color property, Pen class, 482
Color structure

creating array of static color properties, 736
Drawing namespace, 446

ColorDepth property
ImageList component, 378

ColorDialog dialog box, 442
calling, 442

colors
alpha component, 480
BackColor property, 324
building custom colors, 481
ForeColor property, 324
FromKnownColor method, 480, 481
GDI+, 480–481
IsKnownColor method, 480
IsNamedColor method, 480
IsSystemColor method, 480
predefined colors, 481
SelectionColor property, 353
SystemColors class, 447
ToKnownColor method, 480
TransparentColor property, 378

columns
AllowColumnReorder property, 379
DataColumn class, 547
MultiColumn property, 359

Columns property
DataTable class, 546
ListView control, 380

COM coclass
invoking Interop Assembly, 842

COM components, accessing from .NET
Interop Assembly, 839

creating, 839–841
introduction, 837, 839

COM interoperability
Runtime::InteropServices namespace, 208

COM objects
errors, 843, 844
late binding, 844, 845

Combine method, delegates, 181, 185
combo boxes

ToolStripComboBox, 404, 414

ComboBox control, 214, 364–368
current value, 368
DropDownStyles, 364
methods, 365
properties, 364
synchronizing style controls, 365

ComboBoxStyle list
ComboBox control, 364

ComDefaultInterfaceAttribute class, 208
COM/COM+

.NET Framework advantages, 6

comma (,) character, 346
comma operator, 65
Command classes

Insert/Update/Delete commands, 536–537
querying database, 532–535
returning single value from query, 538–539

Command properties
DataAdaptor class, 545

command-line switches
managed code, C++/CLI, 13

COMMANDLINE_DEBUG symbol
debugging Windows services, 632

CommandText property
SqlCommand class, 532, 534

CommandType property
SqlCommand class, 532, 534

Comment node type, XML, 564
comments, 60–61

see also documentation

embedded comment problem, 61
IgnoreComments property, 571
multiline comments, 60
single-line comments, 60
triple slash comments

see triple slash (///) comments
WriteComment method, 575
XML documents, 560

Commit method
SqlTransaction class, 543

common language runtime
see CLR

common language specification (CLS), 20
Common namespace, 516
common type system

see CTS

communication protocols
Web services, 636–637

Fraser_640-4Index.fm Page 857 Thursday, November 17, 2005 4:27 PM

858 ■I N D E X

ComparePosition method
XPathNavigator class, 593

comparison operators, 62
precedence, 63

Compile method
XPathNavigator class, 593

Complement method
Region class, 469

ComponentResourceManager class
ApplyResources method, 769

Component classes
control inheritance, 323

components
ImageList component, 377–379
Timer component, 373–376

CompoundArray property
Pen class, 482, 485

Computer Management tool
Groups, 777

ComRegisterFunctionAttribute class, 208
ComSourceInterfacesAttribute class, 208
ComUnregisterFunctionAttribute class, 208
conditional operator, 64
Configuration namespace, 638

System::Net, 206
System::Web, 213

ConformsTo property
WebServiceBinding attribute using, 640

Connect method
Socket class, 703, 711, 712
TcpClient class, 713, 714

connected ADO.NET, 527–543
Connected property

Socket class, 705

Connection classes
connecting/opening/closing database, 529
nontransactional database access, 529

connection oriented sockets, 696
TCP client, 702

closing connection, 704
connecting to server IPEndPoint, 703
disconnecting from socket, 704, 705
example, 703, 704

TCP server, 696
accepting connection, 698
binding socket to IPEndPoint, 697
creating socket, 696
example, 700, 702

placing accepted connection on its own
thread, 698

receiving message, 699, 700
sending message, 698, 699
setting socket to listening mode, 697

connection strings
managed providers, 530

ODBC/OLE DB/Oracle, 531
SQL Server, 531

connectionless sockets, 705, 706
UDP client example, 710, 711
UDP server, 706

binding socket to IPEndPoint, 707
creating, 706
example, 709
receiving message, 707, 708
sending message, 708

using Connect with UDP, 711, 712

connections
BeginConnect method, 722
BeginDisconnect method, 723
EndConnect method, 723
EndDisconnect method, 723
managed providers, 526–527
MaxConnections value, 698

console applications
application development, 21

console Web services client application, 649
Console::WriteLine statements, 826
const operator

unary operator overloading, 114

const qualifier
data types, C++/CLI, 52

constants
enums/consts compared, 42

Constraint class, 198
ADO.NET, 548

constructor initialization
declaring variables, 30

ConstructorInfo class, 207, 730
retrieving, 732

constructors
ref class constructors, 101

constructor methods, 101
copy constructor, 102
initializer list, 101
static ref class constructors, 103

unmanaged class constructors, 101

Fraser_640-4Index.fm Page 858 Thursday, November 17, 2005 4:27 PM

859■I N D E X

container controls, 394–402
GroupBox control, 336–340
Panel control, 340–343
SplitContainer control, 398–402
TabControl control, 394–398
ToolStrip control, 404

“contains a” relationship, 128
Contains method

ArrayList collection, 247
Rectangle/RectangleF structures, 465, 466

ContainsKey method
Hashtable/SortedList collections, 253

ContainsValue method
Hashtable/SortedList collections, 253

content nodes
MoveToContent method, 563
ReadContentAs method, 563
ReadElementContentAs method, 563
XML document elements, 559

Content table
column descriptions, 520
entering data, 524

ContentPanel property
ToolStripContainer control, 403

ContextMenu property
NotifyIcon control, 430

ContextMenuStrip control, 414–420
Contexts namespace, 210
context-sensitive keywords

variable naming restrictions, 32

ContextUtil class, 202
Continue method

ServiceController class, 628

continue statement
looping, C++/CLI, 75

Control class, 214
control inheritance, 323
OnPaint method, 450
Validating event, 352

controls, 323
AccessControl namespace, 212, 776
button controls, 327–343
container controls, 394–402
event for updating controls, 449
HtmlControls namespace, 214
ListControl class, 358
selection controls, 358–372

strip controls, 402–420
text controls, 343–358
view controls, 379–393
WebControls namespace, 214

controls, list of
Button, 327–329
CheckBox, 330–333
CheckedListBox, 368–372
ComboBox, 364–368
ContextMenuStrip, 414–420
DataGridView, 556–558
ErrorProvider, 426–430
GroupBox, 336–340
ImageList, 377–379
Label, 324–326
ListBox, 359–364
ListView, 379–386
MaskedTextBox, 345–352
MenuStrip, 414–420
MonthCalendar, 423–425
NotifyIcon, 430–433
Panel, 340–343
PictureBox, 420–422
ProgressBar, 374
RadioButton, 334–336
RichTextBox, 352–358
SplitContainer, 398–402
StatusStrip, 410–413
TabControl, 394–398
TextBox, 345
Timer, 373–376
ToolStrip, 404–409
ToolStripContainer, 402–403
ToolStripManager, 403–404
ToolStripPanel, 402–403
TreeView, 387–393

coordinate systems, GDI+, 459–462
changing unit of measure and origin, 462
correctly rendered coordinate strings, 459
default GDI coordinate system, 460
disappearing coordinates, 457
GDI+ GraphicsUnits, 460
GraphicsUnits supported, 460
moving origin, 460

copy constructor
ref class constructors, 102

Copy method
TextBoxBase class, 344

Fraser_640-4Index.fm Page 859 Thursday, November 17, 2005 4:27 PM

860 ■I N D E X

Count property
ArrayList collection, 245, 246

Create method
File/FileInfo classes, 288
XmlReader class, 562, 563
XmlWriter class, 575, 577

Create New SQL Server Database dialog box,
518

Create value
FileMode enumeration, 289

CreateAttribute method
XmlDocument class, 584

CreateCDataSection method
XmlDocument class, 584

CreateComment method
XmlDocument class, 584

CreateDocumentFragment method
XmlDocument class, 584

CreateDocumentType method
XmlDocument class, 584

CreateElement method
XmlDocument class, 584

creating nodes dynamically, 592
CreateEntityReference method

XmlDataDocument class, 601
XmlDocument class, 584

CreateGraphics method
Graphics class, 455

CreateInstance method
Activator class, 736, 845

CreateNavigator method
XmlNode class, 584
XPathNavigator class, 595

CreateNew value
FileMode enumeration, 289

CreateNode method
XmlDocument class, 584

CreateText method
File/FileInfo classes, 288

CreateTextNode method
XmlDocument class, 584

CreateXmlDeclaration method
XmlDocument class, 585

CreationTime property
FileSystemInfo class, 280

Cross enumeration
HatchStyle enumeration, 486

CRT heap
pointers and unsafe code, 30

cryptography
security, 211

Cryptography namespace, 212, 776
CTS (common type system)

.NET Framework elements, 17–20
CTS data types, 18
hierarchy illustrated, 18
language keywords for data types, 19
language support for, 19

Cube ref class, 94
culture, 765, 766

setting culture, 766, 767

CultureInfo class, 202, 765, 766
changing in CurrentThread property, 766

curly brackets
statements, 29

Currency value
UnmanagedType enumeration, 834

CurrentCulture class, 767
CurrentPrincipal property

Thread class, 778, 779, 781

CurrentThread class
CurrentUICulture property, 770

CurrentThread property
Thread class, 666, 670, 766

CurrentUICulture class, 767, 772
CurrentUICulture property

CurrentThread class, 770

Cursor class, 215
Cursor property

Form class, 315

custom dialog boxes, 434–442
implementing, 439

CustomAttributeData class, 730
CustomEndCap property

Pen class, 482

CustomStartCap property
Pen class, 482

Cut method
TextBoxBase class, 344

Fraser_640-4Index.fm Page 860 Thursday, November 17, 2005 4:27 PM

861■I N D E X

■D
DashXyz properties, Pen class, 482
data

CustomAttributeData class, 730
managed data, 13
PropertyData class, 205
PropertyDataCollection class, 205
QualifierData class, 205
QualifierDataCollection class, 205

data diagrams
DCV_DB data diagram, 519

data marshalling, 833
MarshalAsAttribute class, 833
marshalling ref/value classes, 835, 836, 837
marshalling strings with P/Invoke, 835

Data namespaces, 23, 197, 198, 516, 527
data providers

System::Data namespace, 197

Data Source clause
connection strings, 530

data types, 29–55
arrays type, 46
Boolean type, 38–39
boxing/unboxing, 51–52
character type, 39–40
class templates, 158
CLS primitive types, 20
common type system (CTS), 17
Decimal type, 36–38
declaring/accessing in libraries, 145

Double type, 35
enums/enum classes/enum structs, 42
floating-point types, 35–36
function templates, 157
fundamental types, 32, 33–40
handle data type, 30
integer types, 33–35
namespaces, 54–55
Object type, 41
operator overloading, 117
partial template specialization, 159
pointer types, 17, 30
predefined data types, 32–42
ref class initialization value, 101
reference types, 17, 32, 40–42, 46–51
Single type, 35
String type, 41–42

template specialization, 159
type conversions, 53–54
type modifiers/qualifiers, 52–53
typedef operator, 166
user defined data types, 42–51
using old data types, 29
value struct/value class types, 44
value types, 17, 42–45

data validation
text controls, 352

Data::OleDb namespace, 23
Data::SqlClient namespace, 23
DataAdapter classes, 545

see also DataSet class; SqlDataAdaptor class
building DataAdaptor, 549–551
DeleteCommand property, 551
disconnected class interaction, 544
InsertCommand property, 550
managed providers, 526
SelectCommand property, 550
UpdateCommand property, 550

database access
connected ADO.NET, 527–543
disconnected ADO.NET, 544–558
managed providers, 526–527

database connections
managed providers, 526–527

databases
building stored procedures, 525–526
building with Visual Studio 2005, 517–526
connecting/opening/closing, 529
creating new database, 518
creating relationships between tables, 520–522
creating tables, 519–520
creating views, 522–524
data diagram, 519
Insert/Update/Delete commands, 536–537
querying database, 532–535
which database to install, 517

DataColumn class, 547
disconnected class interaction, 544
System::Data namespace, 198

DataGridView control
developing with disconnected ADO.NET,

556–558

DataRelation class, 548
disconnected class interaction, 544
namespace, 198

Fraser_640-4Index.fm Page 861 Thursday, November 17, 2005 4:27 PM

cafac74dd2d083cbec0906b66fcd56b1

862 ■I N D E X

DataRelationCollection class, 547
disconnected class interaction, 544
namespace, 198

DataRow class, 547
caution: first index number, 547
disconnected class interaction, 544
namespace, 198

DataSet class, 546
see also DataAdapter class
committing/rolling back changed rows, 554
deleting rows from data source, 551, 553
disconnected class interaction, 544
inserting rows into data source, 550, 552
namespace, 198
passing data using Web service, 653, 654, 655
populating DataSet, 550
relationships between tables, 546
selecting records from, 551
Typed DataSet, 554–556
updating rows in data source, 550, 553

DataSet property
XmlDataDocument class, 601

DataSource property
ListControl class, 358

DataTable class, 546
creating table manually in code, 548
disconnected class interaction, 544
namespace, 198
properties/methods, 547
selecting records from DataSet, 552

DataTableCollection class, 546
caution: first index number, 546
collection class functions, 546
disconnected class interaction, 544
namespace, 198

DataView class, 198
dates

AnnuallyBoldedDates property, 423
BoldedDates property, 423
MaxDate property, 423
MinDate property, 423
MonthlyBoldedDates property, 423
ShowToday property, 423
ShowTodayCircle property, 423
ShowWeekNumbers property, 423
TodayDate property, 423
TodayDateSet property, 423

DateTime classes
BinaryReader/Writer classes handling, 300
value type structure, 425

DateTimeFormatInfo class, 202, 765
DCV_DB data diagram, 519
deadlocks

multithreaded programming, 692

Debug/Debugger classes, 199
debugging

self-descriptive variable naming, 32
System::Diagnostics namespace, 199
Web services, 650–651

client and Web service scenarios, 651
Windows services, 630–633

Decimal data type
GetBits method, 37
loading number with 15+ significant

digits, 37

Decimal data type, 36–38
decimal numbers, 56
declarative role-based security, 781
declaring variables, 29–31
Decrement method

Interlocked class, 692

decrement operator, 61
default

IsDefault property, 327

default keyword
default indexed property, 126

DefaultPageSettings property
PrintDocument class, 509

DefaultTraceListener class, 199
define (#define) directive, 140–142, 156
defined/!defined preprocessor operators, 143
delegate keyword

creating delegates, 180

delegates, 51, 179–183
see also events
.NET Framework support, 179
building event receiver classes, 186
caution: comparing to nullptr, 186
constructors, 181
creating, 179, 180
creating event receiver class, 319
creating method to be delegated, 180
creating/delegating event handlers, 320
CTS data types, 19

Fraser_640-4Index.fm Page 862 Thursday, November 17, 2005 4:27 PM

863■I N D E X

events and, 184
handling, Win Forms, 319–323
invoking, 182
multicast delegates, 179, 181
naming conventions, 184
placing method on delegate, 181

delete command, 815
garbage collection, 14

Delete method
deleting rows from data source, 553
FileSystemInfo class, 280

delete operator
IDisposable interface, 105
memory management destructors, 104
ref class drawbacks, 93

DeleteCommand property
DataAdapter classes, 551

Delta property
MouseEventArgs class, 319

Demand method
PrincipalPermission class, 781

DependentServices property
ServiceController class, 628

deployment, software, 6
Deployment namespace, 198
depth

ColorDepth property, 378

Depth property
XmlReader class, 562, 567

Dequeue method
Queue collection, 256

dereferenced value
modifying, 68

Description namespace, 638
Description property

CodeGroup class, 786

description services
Web services, 636
WSDL, 637

deserialization, 211, 302
Deserialize method

BinaryFormatter class, 305

designer code
ASP.NET Web Service template, 640

destructors
Finalize destructor method, 105
memory management destructors, 104

ref class objects, 104
resource management destructors, 105

Details mode
View property, ListView control, 379

deterministic cleanup, 104
Graphics objects, 455

development, software, 6
CLR and MSIL, 15
using OOP, 87

Diagnostics namespace, 24, 198, 199, 687
DiagonalBrick enumeration

HatchStyle enumeration, 486

dialog boxes, 434–444
AcceptButton property, 436
assigning default buttons, 436
CancelButton property, 436
changing style, 435
common dialog boxes, 442–444
custom dialog boxes, 434–442
DialogResults, 435

returning DialogResult value, 436
implementing custom dialog boxes, 439
passing/getting information, 435
Show/ShowDialog modes, 441

DialogResults
dialog boxes, 435
returning DialogResult value, 436

dictionary collections
HybridDictionary collection, 258
ListDictionary collection, 257–259

SortedDictionary<K,V> collection, 197, 242,
260–261

Dictionary<K,V> collection, 197, 242, 273–277
Add method, 273
constructors, 273
interfaces, 273
Key/ValueCollection classes, 274
KeyValuePair<K,V> element type, 274
properties accessing keys/values, 274
Remove method, 274

DictionaryBase collection, 241
dimensions

CalendarDimensions property, 423
PhysicalDimensions property, 490

directives
preprocessor directives, 139

Fraser_640-4Index.fm Page 863 Thursday, November 17, 2005 4:27 PM

864 ■I N D E X

directories
common activities with, 282
examining details of directory, 281
file system I/O, 279
listing files/directories, 281
maintaining directory structure, 280

Directory attribute, files, 286
Directory class, 203

examining details of directory, 281
managing file system, 280
methods, 281

DirectoryEntry class, 200
DirectoryInfo class, 203

examining details of directory, 281
managing file system, 280
methods, 281
using, 282

DirectorySearcher class, 200
DirectoryServices namespace, 24, 200
DISCO (Web Services Discovery tool), 637
Disconnect method

Socket class, 705

disconnected data access, 544–558
benefits of, 544
classes assisting, 544
developing with, 549–558

building DataAdaptor, 549–551
committing/rolling back changed rows, 554
DataGridView, 556–558
deleting rows, 553–554
effortless development, 554–558
inserting rows, 552
selecting rows, 551–552
Typed DataSet, 554–556
updating rows, 553

Discovery namespace, 638
discovery services

Web Services, 637
Web services, 636

DispIdAttribute class, 208
Display units

GDI+ GraphicsUnits, 460

DisplayName property
ServiceController class, 628

DisplayStyle property
ToolStrip control, 405

Dispose method
IDisposable interface, 105

distributed applications
.NET Framework advantages, 6
Web services, 635–659

Divots enumeration
HatchStyle enumeration, 486

DLL's
calling without P/Invoke, 826, 827, 828

dllimport function, 826
DllImportAttribute class, 208, 209, 829, 830

adding CharSet named parameter, 831
CallingConvention field, 831
CharSet field, 831
EntryPoint field, 831
ExactSpelling field, 831
PreserveSig field, 832
SetLastError field, 832

do while loop, 72–73
continue statement, 75

dock property
SplitContainer control, 398

DOCTYPE declarations
WriteDocType method, 575

Document node type, XML, 564
Document Object Model

see DOM

Document units
GDI+ GraphicsUnits, 460

documentation
see also comments
danger of omitting, 217

how much documentation, 217, 218
integrated XML documentation

see integrated XML documentation
setting standards, 218

documentation tags
see under integrated XML documentation

DocumentElement property
XmlDocument class, 584

reading XML documents, 586
documents

CreateDocumentFragment method, 584
CreateDocumentType method, 584
OwnerDocument property, 583
PrintDocument class, 508, 509, 511
XmlDocumentFragment class, 582
XmlDocumentType class, 582

DocumentFragment node type, XML, 564

Fraser_640-4Index.fm Page 864 Thursday, November 17, 2005 4:27 PM

865■I N D E X

DocumentName property
PrintDocument class, 509

DocumentType node type, XML, 564
DocumentType property

XmlDocument class, 584

dollar ($) character, 347
DOM (Document Object Model), 581
DOM trees

advantages, 581
disadvantages, 581
querying, 584
reading, 585–587
reading recursively, 585
storing in memory, 590
updating, 588–589
working with, 581–592
writing XmlNodes in, 590–592
XmlNode class, 582
XPath expressions accessing, 596

dot (.) character, 346
dot (.) operator, 96

accessing ref class members, 97

double alias, floating-point data types, 35
double buffering, GDI+, 501–508

Happy Face example, 503–508

Double data type, 35
double-word keywords

variable naming restrictions, 31

DrawArc method, 454
DrawClosedCurve method, 454

DrawCurve method, 454
DrawEllipse method, 454
DrawIcon method, 454
DrawImage method, 454

rendering existing images, 490
stretching image, 490

DrawImageUnscaled method, 454
rendering existing images, 489, 490

drawing
optimizing GDI+, 498

Drawing namespaces, 24, 200, 201, 446
DrawLine(s) methods, 454
DrawPie method, 454
DrawPolygon method, 454
DrawRectangle(s) methods, 454
DrawString method, 449, 454, 472–475

parameters, 472
StringFormat parameter, 473

drop down lists
MaxDropDownItems property, 365
ToolStripDropDownButton, 404

DropDown value
ComboBoxStyle list, 364

DropDownItems property
ToolStripMenuItem control, 415

DropDownList value
ComboBoxStyle list, 364

DropDownStyle options
ComboBox control, 364

DroppedDown property
ComboBox control, 365

DTD (document type definition)
caution: validation using, 571
ProhibitDtd property, 571
validating XML file, 569, 570

dynamic_cast operator
type casting between class types, 131
verifying, 131

■E
editing

LabelEdit property, 380, 387

Elapse handler
Timer component, 616

Element node type, XML, 564
processing node types, 568

elements
CreateElement method, 584, 592
DocumentElement property, 584
EndElement node type, XML, 564
GetElementById method, 585, 601
GetElementFromRow method, 601
GetElementsByTagName method, 585
GetRowFromElement method, 601
IsEmptyElement property, 562, 593
IsStartElement method, 563
MoveToElement method, 563
ReadElementContentAs method, 563
ReadElementString method, 563
ReadEndElement method, 563
ReadStartElement method, 563
WriteElementString method, 575
WriteEndDocument method, 575
WriteEndElement method, 575
WriteFullEndElement method, 575
WriteStartElement method, 575

Fraser_640-4Index.fm Page 865 Thursday, November 17, 2005 4:27 PM

866 ■I N D E X

XML documents, 559
XmlElement class, 582

elif (#elif) preprocessor directive, 142
else (#else) preprocessor directive, 142
else constructs, if statement, 69
EmitConformanceClaims property

WebServiceBinding attribute using, 640

empty
IsEmpty method, 469
MakeEmpty method, 469

Enable property
Panel control, 340

Enabled property
Timer component, 373
ToolStripMenuItem control, 415

EnableVisualStyles method
Application class, 311

encapsulation, OOP, 85
inheritance and, 93
member properties, ref class, 118
software development using objects, 87

Encoding property
XmlWriterSettings class, 574

Encrypted attribute, files, 286
end caps

CustomEndCap property, 482

end tag
XML document elements, 559

EndAccept method
Socket class, 722

EndCap property
Pen class, 482

EndConnect method
Socket class, 723

EndDisconnect method
Socket class, 723

EndElement node type, XML, 564
EndEntity node type, XML, 564
EndPoint class

creating from IPEndPoint constructor, 708
providing origin of messages, 707

Enqueue method
Queue collection, 256

EnsureVisible method
ListView control, 380

Enter method
Monitor class, 684

Enterprise policy statements, 785
EnterpriseServices namespace, 201, 202
entities

CreateEntityReference method, 584, 601
EndEntity node type, XML, 564
XmlEntity class, 582
XmlEntityReference class, 582

Entity node type, XML, 564
EntityReference node type, XML, 564

WriteEntityRef method, 575

EntryPoint field
DllImportAttribute class, 831

EntryPoint string value, 831
EntryWrittenEventHandler class, 199
enum class

displaying String name, 586

Enum value
AttributeTargets enumeration, 739, 740

enumerations
see also GetEnumerator method
CTS data types, 19

enums/enum classes/enum structs, 42
CLI enums, 43
declaring enums, 43
enums/consts compared, 42
native enum, 43
ToString method, 43

EOF property
XmlReader class, 562

equal to (= =)/not equal to (!=) operators, 62
caution: assignment (=) operator, 62

equals
ReferenceEquals method, 41

Equals method, Object data type, 41
updating DOM trees, 589

error (#error) preprocessor directive, 140
error handling

see also exceptions
code verification, 14

ErrorProvider control, 426–430
methods/properties, 426

errors
BeepOnError property, 345
GetLastWinError method, 832
SetError method, 426
SetLastError field, 832

Fraser_640-4Index.fm Page 866 Thursday, November 17, 2005 4:27 PM

867■I N D E X

escape sequences
character literals, 58
string literals, 59
table of special escape sequences, 58

Evaluate method
XPathNavigator class, 593

event handling
creating/delegating event handlers, 320
delegating event handler, XML, 573
properties view of, 320
TooMany_Click method, 329
Win Forms, 319–323

event keyword
creating events, 184

event log files
System::Diagnostics namespace, 199

event receiver class, 319
event source class

creating, 184

EventClassAttribute, 202
EventInfo class, 207, 730

retrieving, 732

EventLog control, 199
customizing Windows services, 615

EventQuery class, 205
events, 51, 184–189

see also delegates
add_<delegate-name> method, 185
AutoResetEvent class, 662
building event receiver classes, 186
CancelEventArgs argument, 352
CanHandleSessionChangeEvent property, 614
caution: comparing to nullptr, 186
checking SelectedItem for nullptr, 363
classes and events, 184
creating event source class, 184
delegates and, 184
EntryWrittenEventHandler class, 199
event handler accepting Tick events, 373
GetEvent(s) methods, 732
implementing, 187
introduction, 179
ManualResetEvent class, 663
MouseEventArgs class, 319
MouseEventHandler delegate, 319
naming conventions, 184
PaintEventArgs class, 449

PaintEventHandler event handler, 449,
450–453

raise_<delegate-name> method, 185
remove_<delegate-name> method, 185
scheduling events, 373
TreeViewCancelEventHandler, 392
triggering, 185
TypeValidationEventArgs argument, 346
ValidationEventHandler, 573

evidence
code access security, 790–795

ExactSpelling field
DllImportAttribute class, 831

ExactSpelling value
CharSet enumeration, 831

example tag
example using, 237, 238
integrated XML documentation, 226

Exception class
.NET Framework, 168
ApplicationException, 168, 170
catching previously uncaught exceptions,

176
exception types, 168
properties, 168
SystemException, 168, 169

exception tag
example using, 238
integrated XML documentation, 228

exceptions, 166–178
.NET Framework exception types, 168
ADO.NET, 531
ApplicationException, 168

throwing ApplicationExceptions, 170
catching multiple exceptions, 173
catching previously uncaught exceptions, 176
code access verification, 14
code verification, 14
exception handling described, 166
executing code regardless of, 177
order of system exception inheritance, 174
rethrowing exception, 172
SystemException, 168, 169
ThreadAbortException, 671, 673
ThreadStateException, 671, 673

Exclude method
Region class, 469

Fraser_640-4Index.fm Page 867 Thursday, November 17, 2005 4:27 PM

868 ■I N D E X

Exclusive attribute
PolicyStatementAttribute class, 785

ExecuteCommand method
ServiceController class, 628, 629, 630

ExecuteNonQuery method
SqlCommand class, 529

Insert/Update/Delete commands, 536–537
ExecuteReader method

SqlCommand class, 529
querying database, 532–535

ExecuteScalar method
SqlCommand class, 529

returning single value from query, 538–539
Execution permission, 784
Exists method, List<T> collection

using Predicate<T>, 266

Exists property
FileSystemInfo class, 280

Exit method, Monitor class, 685
exitContext parameter

WaitOne method, Mutex class, 689

explicit (named) virtual overriding, 107
explicit cast, 53
exponential numbers, 56
Extension property

FileSystemInfo class, 280

extern modifier
data types, C++/CLI, 52

■F
FastCall value

CallingConvention enumeration, 831

FieldInfo class, 207, 730
File class, 203

file access classes, 279
managing file system, 285
methods, 286
methods for opening files, 288
Open method, 289–290
opening files using, 288

file system
input/output, 279–302
managing, 280–288

Directory/DirectoryInfo classes, 280
File/FileInfo classes, 285
FileSystemInfo class, 280

FileAccess enumeration, 289
FileInfo class, 203

file access classes, 279
managing file system, 285
methods, 286
methods for opening files, 288
Open method, 289–290
opening files using, 288
using, 286

FileIOPermission class, 783, 784
FileMode enumeration, 289
FileNotFoundException class, 203, 750
files

common activities with, 286
common attributes, 286
file system I/O, 279
FromFile method, 490
GetFileName method, 282
GetFiles method, 281
I/O manipulation, 291–302
listing files/directories, 281
LoadFile method, 352, 353
opening, 288–290

standard open configurations, 290
SaveFile method, 354

FileShare enumeration, 290
FileStream class, 203, 292–294

opening FileStream, 292
reading/writing to streams, 292

FileSystemDriver service, 607
FileSystemInfo class

managing file system, 280
properties/methods, 280

FileSystemWatcher class, 203
Fill method

DataAdaptor classes, 546

FillClosedCurve method, 454
FillEllipse method, 454
filling

brush start point for, 487
optimizing GDI+, 498

FillPie method, 454
FillPolygon method, 454
FillRectangle(s) methods, 454
FillRegion method, 471
Finalize destructor method, 105

Fraser_640-4Index.fm Page 868 Thursday, November 17, 2005 4:27 PM

cafac74dd2d083cbec0906b66fcd56b1

869■I N D E X

finally block
ADO.NET exceptions, 531
exception handling described, 167
executing code regardless of exceptions,

177, 178
placing Close method in, 567

Find method
LinkedList<T>, 270
List<T> collection, 266
RichTextBox control, 353

FindAll method, List<T> collection
using Predicate<T>, 266, 267

FindIndex method, List<T> collection
using Predicate<T>, 267

FindLastIndex method, List<T> collection
using Predicate<T>, 267

FindList method
LinkedList<T>, 270

FindList method, List<T> collection
using Predicate<T>, 267

FindString method
ListBox control, 359

FindStringExact method
ListBox control, 359

FindZipCode web page, 642
FindZipCode Web service

accessing using getzip.html, 647
accessing using HTTP POST, 646
accessing using SOAP, 647–650
HTTP POST request, 645
HTTP POST response, 645
remote copy available at, 648
Request SOAP wrapper, 644
Response SOAP wrapper, 645
WSDL, 642

FindZipCodeClass ref class
ASP.NET Web Service template, 641
GetZip method, 641

FindZipCodeClass.asmx file
creating ASP.NET Web service, 639

FindZipCodeClass.cpp
creating Web service, 641

FindZipCodeClass.h file
creating ASP.NET Web service, 639

FirstChild property
XmlDocument class, 586
XmlNode class, 583

first-in-first-out (FIFO) collection
see Queue collection

FirstNode property
TreeNode class, 389

FixedPanel property
SplitContainer control, 398

flags
FormatFlags property, 474

FlatStyle property
ButtonBase class, 327

flickering
double buffering, 501

flips
RotateFlip method, 490

float alias, floating-point data types, 35
floating point data types, C++/CLI, 35–36
flow control, C++/CLI, 69–71

if statement, 69–70
switch statement, 70–71

Flush method
Stream class, 292, 293
StreamWriter class, 298
XmlWriter class, 575

FocusItem property
ListView control, 380

FolderBrowserDialog dialog box, 442
Font class, 446, 476
Font property

Label control, 324

FontDialog dialog box, 442
FontFamily class, 446, 476
FontFamily property

Font class, 476

fonts
building font, 476
GDI+, 476, 479
generating random fonts, 477
InstalledFontCollection class, 479
SelectionFont property, 353
SystemFonts class, 447
using less common fonts, 476

for each loop, 74–75
continue statement, 75
iterating through collections, 244

for loop, 73–74
continue statement, 75

ForEach method
List<T> collection, 266

Fraser_640-4Index.fm Page 869 Thursday, November 17, 2005 4:27 PM

870 ■I N D E X

ForeColor property
Label control, 324

Foreign Key Relationships property page, 521
ForeignKeyConstraint

Constraint classes, ADO.NET, 548

Form class, 215, 314–316
adding member variables, 326
AutoScrollMinSize property, 494
AutoScrollPosition property, 496
Control class relationship, 449
customizing, 316–318
InitializeComponent method, 315
Language property, 769
properties, 315
TabPage compared, 395

form validation
ErrorProvider control, 426

FormatFlags property
StringFormat class, 474

Formatter class, 211
FormatterServices class, 211
formatting

BinaryFormatter class, 211, 304
SoapFormatter class, 211, 304
StringFormat class, 447, 473, 474

formatting tags
integrated XML documentation, 229–233

FormBorder property
Form class, 315

Forms namespace, 24, 214
forward only access, XML, 561–580
forward slash (/) character, 347
friends

ref class drawbacks, 93

FromArgb method
Color class, 480, 481

FromFile method
Image class, 490

FromHbitmap method
Image class, 490

FromKnownColor method
Color class, 480, 481

FromName method
Color class, 480

FromStream method
Image class, 490

FullName property
FileSystemInfo class, 280

FullPath property
TreeNode class, 389

FullRowSelect property
ListView control, 380

FullTrust permission, 784
function templates, 156–158
functional notation

declaring variables, 30

functionality tags
integrated XML documentation, 223–228

FunctionPtr value
UnmanagedType enumeration, 834

functions, C++/CLI, 76–82
description, 28
naming restrictions, 76
overloading, 80
parameters, 76
passing arguments, 76–77

passing arguments by reference, 77
passing by reference, 76
passing handle by value, 76
to main function, 80–82

prototypes, 79
return statement, 77
return type, 76
returning values from, 77–79

returning handles, 78
returning references, 78

fundamental data types, 32, 33–40

■G
G property, Color class, 480
GAC (global assembly cache), 746, 747

adding assemblies to, 747, 748
assembly structure, 7
assembly versioning, 9
shared assemblies strong name, 748

garbage collection
.NET Framework advantages, 6
common language runtime (CLR), 14
deterministic cleanup Graphics objects, 455
GC class, 195
multithreading, 212
ref class benefits, 92
ref keyword, 14

GC class, 195
GCHandle class, 821

Fraser_640-4Index.fm Page 870 Thursday, November 17, 2005 4:27 PM

871■I N D E X

gcnew operator
cleaning up unmanaged resoutces, 105
instantiating ref class objects, 96
ref class constructors, 101
ref class drawbacks, 93
reference data types, 46

gcroot<T> template, 821
GDI (Graphical Device Interface), 200
GDI+, 200, 445–513

brushes, 486–489
colors, 480–481
coordinate systems, 459–462
double buffering, 501–508
drawing custom shapes/lines, 492–494
drawing strings, 472–475
Font class, 476
FontFamily class, 476
fonts, 476–479
Graphics class, 454–459
Hello World program, 447–449
Invalidate method, 459
namespaces, 446–447
OnPaint method vs. PaintEventHandler,

450–453
optimizing, 498–501
pens, 481–485
printing, 508–512
referencing assembly (#using), 447
rendering existing images, 489–492
scrollable windows, 494–497

GDI+ classes
Bitmap class, 503
Brush class, 486
Color class, 480
Font class, 476
FontFamily class, 476
Graphics class, 449, 454–459
HatchBrush class, 486
Image class, 490
Pen class, 481
PrintDocument class, 509
Region class, 462, 469–471
SolidBrush class, 486
StringFormat class, 474
System::Drawing classes, 446
TextureBrush class, 487

GDI+ structures
common utility structures, 462–471
int/float versions, 463
Point/PointF, 462, 463–464
Rectangle/RectangleF, 462, 465–468
Size/SizeF, 462, 464–465
System::Drawing structures, 446

Generate XML Documentation Files property
integrated XML documentation, 220

generic class, 195
generic collection classes, .NET, 242, 264
generic collection interfaces, .NET, 243
Generic namespace, 23, 195, 196, 197, 264
GenericDefault property

StringFormat class, 474

GenericIdentity object, 776, 779
GenericPrincipal object, 777, 778, 779, 780
generics, 163–165

templates compared, 163, 164

GenericTypographic property
StringFormat class, 474

Get method
array properties, ref class, 123
indexed properties, ref class, 124
member properties, ref class, 118
NameValueCollection collection, 262
scalar properties, ref class, 119
static properties, ref class, 121

GetAttribute method
XmlReader class, 563

XPathNavigator class, 593

GetAttributes method, File class, 285
GetBits method

Decimal data type, 37

GetBounds method
Image class, 490
Region class, 469

GetBrightness method
Color class, 480

GetBuffer method
MemoryStream class, 295

GetByIndex method
SortedList collection, 251, 253

GetConstructor(s) methods
Type class, 732

Fraser_640-4Index.fm Page 871 Thursday, November 17, 2005 4:27 PM

872 ■I N D E X

GetCreationTime method
Directory class, 281
File class, 285

GetCurrentDirectory method
Directory class, 281

GetCustomAttribute(s) methods
Attribute class, 743

GetDirectories method
Directory/DirectoryInfo classes, 281

GetDirectoryName method
Path class, 282

GetElementById method
XmlDataDocument class, 601
XmlDocument class, 585

GetElementFromRow method
XmlDataDocument class, 601

GetElementsByTagName method
XmlDocument class, 585

GetEnumerator method
Hashtable collection, 252
IEnumerable interface, 243
ResourceReader class, 762
SortedList collection, 252

GetEvent(s) methods
Type class, 732

GetExtension method
Path class, 282

GetField(s) methods
Type class, 732

GetFileName method

Path class, 282

GetFileNameWithoutExtension method
Path class, 282

GetFiles method
Directory/DirectoryInfo classes, 281

GetFileSystemEntries method
Directory class, 281

GetFileSystemInfos method
DirectoryInfo class, 281

GetFullPath method, Path class, 282
GetHashCode method

Object data type, 41

GetHue method, Color class, 480
GetInt32 method

processing record set, 535

GetInterface method, Type class, 732
GetItemAt method

ListView control, 380

GetItemChecked method
CheckedListBox control, 368, 369

GetItemCheckState method
CheckedListBox control, 368, 369

GetKey method
NameValueCollection collection, 262

GetLastAccessTime method
Directory class, 281
File class, 285

GetLastWinError method
Marshal class, 832

GetLastWriteTime method
Directory class, 281
File class, 285

GetLength method, Array class, 46
GetLogicalDrives method

Directory class, 281

GetMember(s) methods
Type class, 732

GetMethod(s) methods
Type class, 732

GetObject method
ResourceManager class, 763

GetProperties method
Type class, 732

GetProperty method
Type class, 732

GetRowFromElement method
XmlDataDocument class, 601

GetSaturation method
Color class, 480

GetSelected method
ListBox control, 360

GetServices method
ServiceController class, 628

GetSocketOption method
Socket class, 719, 720

GetStream method
TcpClient class, 714

GetString method
ResourceManager class, 763

processing record set, 535

Fraser_640-4Index.fm Page 872 Thursday, November 17, 2005 4:27 PM

873■I N D E X

GetType method
Object class, 731
Object data type, 41
Type class, 730, 731, 844

GetTypeFromProgID method
Type class, 844, 845

GetTypes method
Assembly class, 730

GetValues method
NameValueCollection collection, 262

GetZip method
FindZipCodeClass class, 641

getzip.html
accessing FindZipCode Web service

using, 647

global assembly cache
see GAC

global functions
CLS rules, 193

global methods
CLS and, 20

global scope, 54
global variables

CLS and, 20
CLS rules, 193

globalization, 764, 765
Globalization namespace, 202, 764, 765, 766
globalization tools, 765
granularity

GDI+ structures, 463

graphics
GDI+, 445–513

Graphics class, 201, 446, 454–459
Color structure, 480
CreateGraphics method, 455
deterministic cleanup of objects, 455
drawing custom shapes/lines, 492
Drawing methods, 480
DrawString method, 449, 472–475
extracting from bitmap, 503
instantiating, 455
rendering methods, 454–455
rendering outside Paint event, 455
TranslateTransform method, 460

GraphicsUnits, GDI+, 460
greater than (>) character, 347
greater than (>) operator, 62

green component
G property, 480

GridLines property
ListView control, 380

GripStyle property
ToolStrip control, 404

GroupBox control, 336–340
groups of radio buttons, 340
RadioButton control and, 336

GuidAttribute class, 209

■H
handle data type, 30

CTS data types, 19

handlers
Windows services, 607

handles
accessing reference object handle, 96
GCHandle class, 821
instantiating ref class objects, 95

reference data types, 96
passing handle by value to function, 76
pointers compared, 40
returning handles from functions, 78
String data type, 41
WaitHandle class, 663

Happy Face drawing
double buffering, GDI+, 503–508
drawing custom shapes/lines, 492
optimizing GDI+, 499
printing, 509
single buffering, 501

HasAttributes property
XmlReader class, 562
XPathNavigator class, 593

HasChildNodes property
XmlNode class, 583

HasChildren property
XPathNavigator class, 593

hash (#) character, 346
hash (#) symbol

see preprocessor directives

Hashtable collection, 251–255
Add method, 252
Capacity property, 252
Clear method, 252
ContainsKey method, 253

Fraser_640-4Index.fm Page 873 Thursday, November 17, 2005 4:27 PM

874 ■I N D E X

ContainsValue method, 253
description, 241
GetEnumerator method, 252
key/value pairs, 252, 253
load factor, 252
namespace, 196
Remove method, 252
SortedList compared, 251

HasValue property
XmlReader class, 562

HatchBrush class, 486
constructor, 487

HatchStyle enumerations, 486
header declaration

XML documents, 560

header files
assemblies, 149
“Hello World” Win Forms style, 311
libraries, 145, 146

HeaderStyle property
ListView control, 380

heaps
CRT/managed heaps, default, 92

Height property
Font class, 476
Image class, 490
Rectangle/RectangleF structures, 465
Size/SizeF structures, 464

Hello World program, 27–28
GDI+ style, 447–449
Win Forms style, 310–314

Helplink property
Exception class, 168

hexadecimal numbers, 56
Hidden attribute, files, 286
hidden virtual overriding, 107
Horizontal enumeration

HatchStyle enumeration, 486

HorizontalResolution property
Image class, 490

Hosting namespace, 213
HotTrack property

TabControl control, 395

HoverSelection property
ListView control, 380

HResult
error handling, 166

HtmlControls namespace, 214
HTTP GET

caution: not using HTTP GET, 636

Http namespace, 210
HTTP POST

accessing Web service using, 646–647
caution: not using HTTP GET, 636
FindZipCode’s HTTP POST request, 645
FindZipCode’s HTTP POST response, 645
Web services communication protocols, 636

HTTP request SOAP wrapper, 644
HTTP response SOAP wrapper, 644
hue

GetHue method, 480

Hungarian notation, 32
HybridDictionary collection, 258

Collections::Specialized namespace, 196
description, 241

■I
I1/I2/I4/I8 values

UnmanagedType enumeration, 834

IAsyncResult class, 721, 722, 724
AsyncState property, 723, 725

ICollection interface, 243
ICollection<T> interface, 243
IComparable<K> interface

Dictionary<K,V> collections, 273

IComparer interface, 243
IComparer<K> interface

Dictionary<K,V> collections, 273

IComparer<T> interface, 243
Icon class, 446
Icon property

ErrorProvider control, 426
Form class, 315
NotifyIcon control, 430

icons
ArrangeIcons method, 380
changing/matching icon sizes, 433
DrawIcon method, 454
LargeIcon mode, 379
NotifyIcon control, 430–433
SetIconAlignment method, 426
SetIconIconPadding method, 426
SmallIcon mode, 379
SystemIcons class, 447

Fraser_640-4Index.fm Page 874 Thursday, November 17, 2005 4:27 PM

875■I N D E X

identifiers
see context-sensitive keywords

Identity property
IPrincipal interface, 778

IDictionary interface, 243
IDictionary<K,V> interface, 243
IDictionaryEnumerator interface, 243, 762
IDispatchImplAttribute class, 209
IDisposable interface

delete operator, 105
releasing unmanaged memory, 104
resource management destructors, 105

IEnumerable interface, 243–244
description, 243
GetEnumerator method, 243

IEnumerable<T> interface, 243
GetEnumerator method, 243

IEnumerator interface, 243–244
MoveNext method, 244
Reset method, 244

IEnumerator<T> interface, 243
MoveNext method, 244
Reset method, 244

if (#if) directive, 142–143
description, 140

if statement, 69–70
if-else statement, 69
if-else-if-else construct, 69

ifdef (#ifdef) directive
database connection strings, 531

debugging Windows services, 632

I/O
file system, 279–302

I/O manipulation, 291–302
class hierarchy for, 291
using BinaryReader/BinaryWriter, 299–302
using StreamReaders/StreamWriters, 297–299
using streams, 291–297

Ignore type DialogResult, 436
IgnoreComments property

XmlReaderSettings class, 571

IgnoreWhiteSpace property
XmlReaderSettings class, 571

IHashCodeProvider interface, 243
IIdentity interface, 777
ildasm tool

invoking Interop Assembly, 842
seeing differences Madd/UMadd, 808

IList interface, 243
selection controls, 358

IList<T> interface, 243
Image class

manipulating images, 490
members, 490
namespace, 446
rendering existing images, 490
unit of measurement used, 490

Image property
ButtonBase class, 327
Label control, 324
PictureBox control, 420
ToolStripMenuItem control, 415

ImageAlign property
Label control, 324

ImageIndex property
TabPage class, 395
ToolStrip control, 405
TreeNode class, 389
TreeView control, 387

ImageList component, 377–379
creating, 377
inheritance, 377
properties, 378

ImageList property
TabControl control, 395
ToolStrip control, 405
TreeView control, 387

images
CenterImage mode, 420
displaying different image file types, 420
doubling image’s size, 492
DrawImage method, 454, 490
DrawImageUnscaled method, 454, 489, 490
LargeImageList property, 380
loading different image file types, 492
rendering existing images, 489–492
SelectedImageIndex property, 387, 389
SmallImageList property, 380
StretchImage mode, 420
stretching image, 490
TextImageRelation property, 405
TextureBrush using, 487

Images Collection Editor dialog box, 378
ImageScaling property

ToolStrip control, 405

Fraser_640-4Index.fm Page 875 Thursday, November 17, 2005 4:27 PM

cafac74dd2d083cbec0906b66fcd56b1

876 ■I N D E X

ImageSize property
ImageList component, 378

Imaging namespace, 24, 200, 201
System::Drawing, 446
System::Web::UI, 214

immutability
String data type, 41

imperative role-based security, 781
implicit virtual overriding, 107
import (#import) directive, 140
ImportNode method

XmlDocument class, 585

InAttribute class, 209
Inch units

GDI+ GraphicsUnits, 460

include (#include) directive, 143–144
description, 140
syntax search methods, 144

INCLUDE environment variable
support for, 144

include tag
example using, 239
integrated XML documentation, 233

IncludeLiteral property
MaskedTextBox control, 346

IncludePrompt property
MaskedTextBox control, 346

increment operator, 61
Indent property

TreeView control, 387
XmlWriterSettings class, 574

IndentChars property
XmlWriterSettings class, 574

indents
BulletIndent property, 353
SelectionHangingIndent property, 353
SelectionIndent property, 353
SelectionRightIndent property, 353

Index property
TreeNode class, 389

indexed properties
default indexed property, 126
member properties, ref class, 124

IndexOf method
Array class, 372

IndexOfKey method
SortedList collection, 253

IndexOfValue method
SortedList collection, 253

indices
CheckedIndices property, 368
FindIndex method, List<T> collection, 267
FindLastIndex method, List<T> collection, 267
GetByIndex method, 251, 253
ImageIndex property, 387, 389, 395, 405
SelectedImageIndex property, 387, 389
SelectedIndex/SelectedIndices properties, 359

indirection operator (*), 66, 67
infinity

IsInfinite method, 469
MakeInfinite method, 469

inheritance
CLS rules, 193
collection namespaces, 241
controls, 323
ImageList component, 377
namespace hierarchy, 194

inheritance, OOP, 86
Cube ref class, 94
protected: access modifier, 91
ref class benefits, 92
ref class drawbacks, 93
ref classes, 93
sealed ref class, 95
software development using objects, 88
unmanaged classes, 93

Initial Catalog clause
connection strings, 530

InitializeComponent method
Button control, 329

InitializeComponent method, 767, 768, 770
caution: making changes to, 316
Form class, 315

initializer list
ref class constructors, 101

InnerException property
Exception class, 168

InnerText property
XmlNode class, 583

InnerXml property
XmlNode class, 583

InputText property
MaskedTextBox control, 346

Fraser_640-4Index.fm Page 876 Thursday, November 17, 2005 4:27 PM

877■I N D E X

InsertAfter method
XmlNode class, 584

writing XmlNodes in DOM trees, 591
InsertAuthor stored procedure, 526
InsertBefore method

XmlNode class, 584
writing XmlNodes in DOM trees, 591

InsertCommand property
DataAdapter classes, 550

InstalledFontCollection class, 479
InstallUtil command, 612, 613
Int16/Int32/Int64 data types, 33, 34
integer data types, C++/CLI, 33–35
integer numbers, 56
Integrated Security clause

connection strings, 530

integrated XML documentation, 217–240
autogenerated documentation, 229
avoiding less than (<) symbol, 223
creating bulleted list, 231
creating definition of term, 232
creating numbered list, 232
creating table, 232
describing functionality of

type/member/field, 223–228
documentation tags, 223–236

c tag, 229
code tag, 230
example tag, 226
exception tag, 228
include tag, 233
list tag, 231
para tag, 230
param tag, 224
paramref tag, 235
permission tag, 228
remarks tag, 226
returns tag, 225
see tag, 235
seealso tag, 236
summary tag, 224
value tag, 225

documenting exceptions thrown by
methods, 228

documenting method access permissions, 228
documenting method parameters, 224, 235
documenting methods, 225
documenting object information, 226
documenting property values, 225

example using documentation tags, 236–239
external XML file information, 233
formatting tags, 229–233
functionality tags, 223–228
Generate XML Documentation Files

property, 220
generated XML documentation, 221
mandatory tag, 224
NDoc generated documentation, 221
nesting of tags, 223
non repeatable tags, 224
providing formatting to tags, 229–233
reference tags, 233–236
referencing other documentation sources,

233–236
splitting into multiple paragraphs, 230
supplying code examples, 226, 230
triple slash (///) comments, 218–219

adding to code, 219–220
generating files from, 220–222

types of tags, 223
viewing in IntelliSense, 222–223
white space, 219, 229

<code> tag, 230
<c> tag, 229
<para> tag, 230

IntelliSense
using assembly metadata, 9
viewing integrated XML documentation in,

222–223
caution: deleting XML documentation

file, 222
InteractiveProcess service, 607
interface class keywords

interfaces, C++/CLI, 135

interface types
CTS data types, 19

interfaces, C++/CLI, 51, 135–137
.NET collection interfaces

ICollection interface, 243
IComparer interface, 243
IDictionary interface, 243
IDictionaryEnumerator interface, 243
IEnumerable interface, 243–244
IEnumerator interface, 243–244
IHashCodeProvider interface, 243
IList interface, 243

.NET generic collection interfaces, 243

.NET standard collection interfaces, 243

Fraser_640-4Index.fm Page 877 Thursday, November 17, 2005 4:27 PM

878 ■I N D E X

access, 135
creating, 135
defining properties within, 135
instantiating object from, 135
pure virtual methods, 135
ref class benefits, 92

InterfaceTypeAttribute class, 209
interior pointers, 815, 816, 817
Interlocked class, 212, 662, 682–684

Decrement method, 692

interlocked variable
multithreaded programming using, 682–684

Internet permission, 784
Interop Assembly, 839

creating, 839
tlbimp tool, 839, 840

generating in Visual Studio .NET, 840, 841
invoking, 841, 843

InteropServices namespace, 24, 208, 821,
829, 834

Interrupt method
Thread class, 666, 675

Intersect method
Region class, 469

Intersection method
Rectangle/RectangleF structures, 465, 466

Interval property
Timer component, 374

Invalidate method, 459
stopping form from clearing itself, 507

Invoke method
invoking delegates, 182, 185
MethodInfo class, 736

InvokeMember method
Type class, 845

IO namespaces, 24, 203, 204, 750
IOException class, 203, 716
Ipc namespace, 210
IPEndPoint class

assigning by SendTo method, 710
binding socket to, 707
communicating with other systems, 707
creating EndPoint from constructor, 708
incoming messages, 707
no bind to, 710

IPrincipal interface, 778
IsInRole method, 780
members, 778

“is a” relationship, 128
IsAbstract property

Type class, 732

IsArray property
Type class, 732

IsAuthenticated property
IIdentity interface, 777

IsBackground property
Thread class, 665, 666

IsClass property
Type class, 732

IsDefault property
ButtonBase class, 327

IsDescendant method
XPathNavigator class, 593

IsEmpty method
Region class, 469

IsEmpty property
Point/PointF structures, 463
Rectangle/RectangleF structures, 465
Size/SizeF structures, 464

IsEmptyElement property
XmlReader class, 562
XPathNavigator class, 593

IsEnum property
Type class, 732

IsImport property
Type class, 732

IsInfinite method
Region class, 469

IsInRole method
IPrincipal interface, 778, 780

IsKnownColor method
Color class, 480

IsNamedColor method
Color class, 480

IsNotPublic property
Type class, 733

IsPrimitive property
Type class, 733

IsPublic property
Type class, 733

IsReadOnly property
XmlNode class, 583

IsSamePosition method
XPathNavigator class, 593

Fraser_640-4Index.fm Page 878 Thursday, November 17, 2005 4:27 PM

879■I N D E X

IsSealed property
Type class, 733

IsSerializable property
Type class, 733

IsStartElement method
XmlReader class, 563

IsSynchronized property
generic collection classes, 264

IsSystemColor method
Color class, 480

IsValidInput property
TypeValidationEventArgs argument, 346

IsValueType property
Type class, 733

Italic property
Font class, 476

Item property
XmlNode class, 583
XmlReader class, 563

Items Collection Editor dialog box, 409
Items property

ListBox control, 359

■J
JIT (just-in-time) compilation

common language runtime, 17

Join method
Thread class, 666, 673

JustInTimeActivationAttribute, 202

■K
KernelDriver service, 607
KeyCollection class

Dictionary<K,V> collections, 274

KeyedCollection<K,V> class, 197, 242, 278
keys

AllKeys property, 262
AssemblyKeyFileAttribute attribute, 752
ContainsKey method, 253
ForeignKeyConstraint, 548
GetKey method, 262
IndexOfKey method, 253
RegistryKey class, 216
ShortcutKeys property, 415
ShowShortcutKeys property
ToolStripMenuItem control, 415
SortKey class, 203

key/value pairs
Hashtable collection, 252, 253
ListDictionary collection, 258
SortedList collection, 252, 253

KeyValuePair<K,V> element type
Dictionary<K,V> collections, 274

keywords
reserved double-word keywords, 31
variable naming restrictions, 31

■L
L masking character, 346
Label control, 324–326

MightyLabel example, 326
namespace, 215
properties, 324, 325

LabelEdit property
ListView control, 380
TreeView control, 387

labels
ToolStripLabel, 404

LabelWrap property
ListView control, 380

Language attribute
C++/CLI support for Web services, 638

Language property
Form class, 769

languages
see programming languages

LargeIcon mode

View property, ListView control, 379

LargeImageList property
ListView control, 380

LastAccessTime property
FileSystemInfo class, 280

LastChild property
XmlNode class, 583

last-in-first-out (LIFO) collection
see Stack collection

LastNode property
TreeNode class, 389

LastWriteTime property
FileSystemInfo class, 280

late binding
COM objects, 844, 845

LayoutKind::Sequential arrangement
StructLayoutAttribute class, 836

Fraser_640-4Index.fm Page 879 Thursday, November 17, 2005 4:27 PM

880 ■I N D E X

Left property
Rectangle/RectangleF structures, 465

left shift (<<) operator, 63, 64
length

MaxLength property, 344, 365
SelectionLength property, 344, 365

Length property
Array object, 46
Stream class, 292

less than (<) character, 347
avoiding in integrated XML

documentation, 223

less than (<) operator, 62
LevelFinal attribute

PolicyStatementAttribute class, 785

libraries
.NET Framework class library, 193–216
adding namespaces to, 147–149
building library assembly from command

line, 154
declaring/accessing data types, 145
header files, 145, 146
multifile libraries, 145–154

building assemblies from, 149–154
source files, 145, 147
splitting into file types, 145

Lifetime namespace, 210
line (#line) directive, 140
LineAlignment property

StringFormat class, 474

LineJoin property
Pen class, 482

lines
drawing custom shapes/lines, 492–494
Multiline property, 344, 395
ShowLines property, 387
ShowRootLines property, 388

LinkedList<T> collection, 269–271
AddXyz methods, 270
arrays compared, 269
constructors, 269
description, 242
Find method, 270
FindList method, 270
LinkedListNode<T> properties, 270
namespace, 197
RemoveXyz methods, 270

LinkedListNode<T> collection
navigation using, 270
Next property, 270
Previous property, 270
properties, 270

LinkLabel class, 215
List mode

View property, ListView control, 379

list tag
example using, 238
integrated XML documentation, 231

creating bulleted list, 231
creating definition of term, 232
creating numbered list, 232
creating table, 232

List<T> collection, 265–268
Action<T> delegate, 265, 266
ArrayList collection and, 265
constructors, 265
description, 242
Exists method, 266
Find method, 266
FindAll method, 266, 267
FindIndex method, 267
FindLastIndex method, 267
FindList method, 267
ForEach method, 266
namespace, 197
Predicate<T> delegate, 265, 266
TrueForAll method, 267

ListBox control, 359–364

CheckedListBox control, 368–372
handling double-click event, 363
methods, 359
modes controlling number of selections, 359
namespace, 215
properties, 359
SelectionMode property, 359
transferring selected items between lists, 360

ListBoxItem method
selecting records from DataSet, 552

ListControl class, 358
ListDictionary collection, 257–259

Add method, 258
description, 242
key/value pairs, 258
namespace, 196

Fraser_640-4Index.fm Page 880 Thursday, November 17, 2005 4:27 PM

881■I N D E X

Listen method
Socket class, 697

lists
ArrayList collection, 245–248
CheckedListBox control, 368–372
CheckListBox class, 214
DropDownList value, 364
FindList method, List<T> collection, 267, 270
IList interface, 243, 358
ImageList component, 377–379
ImageList property, 387, 395, 405
LargeImageList property, 380
LinkedList<T> collection, 269–271
SmallImageList property, 380
SortedList collection, 251–255
XmlNodeList, 584

ListView control, 379–386
adding list items to view, 386
creating/configuring, 385
creating headers for ListView items, 386
methods, 380
properties, 379
View property, 379

literals, C++/CLI, 55–60
Boolean literals, 57
character literals, 58–59
numeric literals, 55–56
string literals, 59–60

load factor
Hashtable collection, 252

Load method
XmlDataDocument class, 601
XmlDocument class, 585

loading XML documents, 586
LoadFile method

RichTextBox control, 352, 353

LoadWithPartialName method, 735
LoadXml method

XmlDocument class, 585

local instances/objects, 96
instantiating ref class objects, 96

local scope/variables, 54
caution: multiple namespaces, 55
caution: returning handle to variable of, 78
caution: returning reference to variable of, 79
namespaces, 55

LocalIntranet permission, 784

localization, 764, 765
building multicultural console application,

770, 771, 772, 773
building multicultural Windows application,

767, 768, 769, 770

localization tools, 767
LocalName property

XmlNode class, 583
XmlReader class, 563
XPathNavigator class, 593

LocalService context
Windows services, 608

LocalSystem context
Windows services, 608, 609

Location property
Rectangle/RectangleF structures, 465

locks
AcquireReaderLock method, 691
AcquireWriterLock method, 692
deadlocks, 692
ReaderWriterLock class, 213, 663, 691–693
ReleaseReaderLock method, 692
ReleaseWriterLock method, 692

logical operators, 62
binary operator overloading, 115
precedence, 63

long alias, integer data type, 33
long long alias, integer data type, 33
looping, C++/CLI, 71–75

break statement, 75
continue statement, 75
do while loop, 72–73
for each loop, 74–75
for loop, 73–74
skipping iterations, 75
while loop, 71–72

LPStr/LPTStr/LPWStr values
UnmanagedType enumeration, 834

■M
Machine policy statements, 785
MachineName property

ServiceController class, 628

Madd
comparing to UMadd, 808

Mail namespace, 24
System::Net, 206
System::Web, 213

Fraser_640-4Index.fm Page 881 Thursday, November 17, 2005 4:27 PM

882 ■I N D E X

main function
C++/CLI programs, 28
debugging Windows services, 632–633
new main function, 82
passing arguments to, 80–82
standard main function, 81
unsafe code, 81
void parameter, 28
WinMain function, 28

major version, 749
MakeEmpty method

Region class, 469

MakeInfinite method
Region class, 469

managed and unmanaged #pragma directives,
807, 808, 809

Managed C++, 14
managed classes

declarations compared to unmamaged
classes, 812

mixing with unmamaged classes, 812

managed code
.NET Framework advantages, 6
C++/CLI compiler, 13
command-line switches, 13
common language runtime, 13

managed data
common language runtime, 13

Managed Extensions for C++, 812
managed heap

default to CRT heaps, 92

instantiating ref class objects, 96
pointers/unsafe code, 30
String data type, 41

managed heap declaration
template parameters, 160

managed objects
serialization, 302–307
setting up classes for serialization, 302–304

managed providers
ADO.NET, 526–527
connection strings, 530

managed types
generic collection classes, 264

Management namespace, 204, 205
ManagementClass class, 205
ManagementEventWatcher class, 205

ManagementNamedValueCollection class, 205
ManagementObject class, 205
ManagementObjectCollection class, 205
ManagementObjectSearcher class, 205
ManagementPath class, 205
ManagementQuery class, 205
manifest

assembly metadata/manifest, 8

ManualResetEvent class, 663
margins

RightMargin property, 353
ShowSelectionMargin property, 353

Marshal class
GetLastWinError method, 832
ReleaseComObject method, 839

Marshal class, 209
MarshalAsAttribute class, 833, 833
MaskCompleted property

MaskedTextBox control, 345

MaskedTextBox control, 345–352
events, 345
example illustrating, 347
masking characters, 346
properties, 345, 346
TypeValidationCompleted event, 346
ValidatingType property, 345

MaskFull property
MaskedTextBox control, 345

masking characters
MaskedTextBox control, 346

MaskInputRejected event
MaskedTextBox control, 345

Matches method
XPathNavigator class, 593

Math class, 195
MaxConnections value

SocketOptionName enumeration, 698

MaxDate property
MonthCalendar control, 423

MaxDropDownItems property
ComboBox control, 365

MaximizeBox property
Form class, 315

MaxLength property
ComboBox control, 365
TextBoxBase class, 344

Fraser_640-4Index.fm Page 882 Thursday, November 17, 2005 4:27 PM

cafac74dd2d083cbec0906b66fcd56b1

883■I N D E X

MaxSelectionCount property
MonthCalendar control, 423

member access operator
dot (.) operator, 96, 97

member methods, ref class, 98–118
constructors, 101
destructors, 104
method overloading, 111
operator overloading, 112
static member methods, 100
static ref class constructors, 103
virtual methods, 106

member properties, ref class, 118–128
array properties, 123
indexed properties, 124

default indexed property, 126
naming restrictions, 119
scalar properties, 119
static properties, 121
trivial properties, 118

member variables, 97
defining, 97
initializing variables, 97
public/protected/private, 98
static member variables, 98

MemberInfo class, 207, 730
retrieving, 732

members tag
NDoc generated documentation, 221

memory management

destructors, 104
garbage collection, 14
pointers/unsafe code, 30

MemoryStream class, 204, 294–297
properties/methods, 295

Menu class, 215
Menu property

Form class, 315

menus
ContextMenu property, 430
ContextMenuStrip control, 414–420
ToolStripMenuItem, 414

MenuStrip control, 414–420
building menu, 414
creation of MenuStrip, 415
ToolStripComboBox, 414, 415
ToolStripItems, 414

Merge method
ToolStripManager class, 404

merging
AllowMerge property, 404

Message property
Exception class, 168

MessageBox function, 826
Messaging namespace, 210
metadata

assembly metadata/manifest, 8
assembly type metadata, 9
“Hello World” Win Forms style, 311
IntelliSense using, 9
reflection, 15

Metadata namespace, 210
MetadataServices namespace, 210
method declarations

virtual keyword, 106

method overloading, 111
method overriding, 111
method signature

Web services description service, 637

MethodInfo class, 207, 730
Invoke method, 736
retrieving, 732

methods
CLS rule for parameter lists, 193
creating method to be delegated, 180
member methods, ref class, 98
placing method on delegate, 181
virtual methods, 106

Microsoft Foundation Classes (MFC)
MFC library, 21
Win Forms and, 309

Microsoft intermediate language (MSIL), 10
Microsoft::Win32 namespace, 23, 216
Millimeter units

GDI+ GraphicsUnits, 460

Mime namespace, 206
MinDate property

MonthCalendar control, 423

MinimizeBox property
Form class, 315

minor version, 749
minus

ShowPlusMinus property, 388

Fraser_640-4Index.fm Page 883 Thursday, November 17, 2005 4:27 PM

884 ■I N D E X

modes
FileMode enumeration, 289
RenderMode property, 404, 405
SelectionMode property, 359
SizeMode property, 420
WrapMode parameter, 487
WrapModes enumeration, 487

Modified property
TextBoxBase class, 344

modifiers
auto modifier, 52
data types, C++/CLI, 52–53
extern modifier, 52
static modifier, 53

Module class, 207, 730
Module value

AttributeTargets enumeration, 739, 740

modulus operator, 61
Monitor class, 212, 663, 684–687

Enter method, 684
Exit method, 685
locking for single thread execution, 684
Pulse method, 685, 687
PulseAll method, 685
TryEnter method, 684, 685
Wait method, 685, 687

MonthCalendar control, 423–425
properties, 423
selecting dates at random intervals, 423

MonthlyBoldedDates property

MonthCalendar control, 423

MouseDown event
creating event receiver class, 319

MouseEventArgs class
properties, 319

MouseEventHandler delegate
handling Win Form delegates/events, 319

Move method, File class
caution: destination a directory, 286

MoveNext method
IEnumerator interface, 244
ResourceReader class, 762

MoveTo method, FileInfo class
caution: destination a directory, 286

MoveToRoot method
XPathNavigator class, 595

MoveToXyz methods
XPathNavigator class, 593, 594
XmlReader class, 563

MSIL (Microsoft intermediate language), 10
multicast chain, 179

combining/removing delegates from, 181

multicast delegates, 179
events and, 184

MultiColumn property
ListBox control, 359

multicultural console application, 770, 771,
772, 773

multicultural Windows application, 767, 768,
769, 770

multidimensional arrays, 47
MultiExtended list

transferring selected items between lists, 360

MultiExtended value
SelectionMode property, 359

multifile libraries, 145–154
multiline comments, 60
Multiline property

TabControl control, 395
TextBoxBase class, 344

multiple language support
common language runtime, 15

multiple platform support
common language runtime, 16

MultiSimple list
transferring selected items between lists, 360

MultiSimple value

SelectionMode property, 359

multithreading, 212, 661–694
see also threading
aborting threads, 671–673
command types threads are executing, 662
creating Thread instance, 666
defining regions across processes, 687, 689
description, 661–662
executing block of code as single threaded,

684–687
getting thread to sleep, 669–671
interrupting/suspending/resuming threads,

675–677
introduction, 661
joining threads, 673–674
multitasking, 661, 662

Fraser_640-4Index.fm Page 884 Thursday, November 17, 2005 4:27 PM

885■I N D E X

MUTually EXclusive (MUTEX) code, 687–691
resolving competing threads, 675–677

caution: changing priorities, 675
obsolete methods, 676

shared resources problem, 679
sharing static variable problem, 682
starting threads, 666–669

delegate from member/static method, 668
static variables problem, 680
synchronization, 679–693

Interlocked class, 682–684
Monitor class, 684–687
Mutex class, 687–691
ReaderWriterLock class, 691–693
ThreadStaticAttribute class, 680–682

System::Threading namespace, 662–663
thread deadlock condition, 692
thread priorities, 665
thread state, 663–665

execution states of thread, 664
threads reading shared resource, 691
using on single CPU, 662
using ThreadPools, 677–679
using threads, 666–677

Mutex class, 212, 663, 687–691
constructors, 689
ReleaseMutex method, 689
WaitOne method, 689

■N
Name property

CodeGroup class, 786
Color class, 480
FileSystemInfo class, 280
Font class, 476
IIdentity interface, 777
Thread class, 666, 670
XmlNode class, 583
XmlReader class, 563
XPathNavigator class, 593

named pens, GDI+, 482
named virtual overriding, 107
names

AssemblyName class, 207, 730
AssemblyNameProxy class, 207
DocumentName property, 509
DisplayName property, 628

FromName method, 480
FullName property, 280
IsNamedColor method, 480
LocalName property, 563, 593
MachineName property, 628
ServiceName property, 628
WriteName method, 575

namespaces
see also System::Xyz namespaces, 23
adding to libraries, 147–149
ADO.NET, 516
caution: making classes public, 148
data types, C++/CLI, 54–55
GDI+, 446–447
implementing member methods, 148
inheritance and namespace hierarchy, 194
local scope, 55
public keyword, 148

NameValueCollection collection, 261–263
Add method, 261
AllKeys property, 262
description, 242
Get method, 262
GetKey method, 262
GetValues method, 262
namespace, 196
Remove method, 262
Set method, 261, 262

naming conventions
delegates/events, 184

naming restrictions
functions, C++/CLI, 76
member properties, ref class, 119
variables, C++/CLI, 31–32

native classes
see unmanaged classes

native code, 13, 806
navigation

XPathNavigator class, 593–601

NDoc generated documentation, 221
nested ref classes, 128

accessing, 128
public members, 131

NET (.NET)
explained, 3–4

Fraser_640-4Index.fm Page 885 Thursday, November 17, 2005 4:27 PM

886 ■I N D E X

NET (.NET) Framework
ADO.NET, 515–558
advantages for programming, 5–6
application development, 21–23
assemblies, 7–11
class library, 23–24

namespaces, table of, 23
common language runtime, 11–17
common language specification, 20
common type system, 17–20
console applications, 21
controls, 323
elements of, 6
Exception class, 168
exception types, 168
explained, 4–5
hierarchy illustrated, 4
language compatibility with, 20
ports, 6
versioning, 750
Web applications, 22
Web services, 22
Windows applications, 21
Windows services, 22
XML implementations, 560–561

NET (.NET) Framework class library, 193–216
assemblies, 194
dialog boxes, 442–444
GDI+ namespaces, 446–447
managing file system, 280–288
Microsoft::Win32 namespace, 216

opening files, 288–290
organizational structure, 193
processing XML data, 560–561

forward-only access, 561–580
working with DOM trees, 560, 581–592

System namespaces, 194
Collections, 195
Data, 197
Deployment, 198
Diagnostics, 198
DirectoryServices, 200
Drawing, 200
EnterpriseServices, 201
Globalization, 202
IO, 203
IO::Ports, 204
Management, 204

Net, 205
Reflection, 206
Resources, 207
Runtime::InteropServices, 208
Runtime::Remoting, 209
Runtime::Serialization, 211
Security, 211
System, 194
Threading, 212
Web, 213
Windows::Forms, 214
Xml, 215

Net namespaces, 24, 205, 206, 695
network programming, 695

asynchronous sockets, 720, 721
accepting connections, 721, 722
asynchronous TCP server, 725–727
connecting to connections, 722, 723
disconnecting from connections, 723
receiving message, 724, 725
sending message, 724

connectionless sockets, 705, 706
UDP client example, 710, 711
UDP server, 706–709
using Connect with UDP, 711, 712

connection-oriented sockets, 696
TCP client, 702–705
TCP server, 696–702

namespaces, 695
socket helper classes/methods, 712

changing socket options, 719, 720
TcpClient, 713, 714
TcpHelper, 714, 715, 716, 717
TcpListener, 712, 713
UdpClient, 717, 719

NetworkInformation namespace, 206
NetworkService context

Windows services, 608, 609

new command, 815
new operator

gcnew operator, 46

NewLineXyz properties
XmlWriterSettings class, 574

NewRow method
DataTable class, 547

Next property
LinkedListNode<T> collection, 270

NextNode property
TreeNode class, 389

Fraser_640-4Index.fm Page 886 Thursday, November 17, 2005 4:27 PM

887■I N D E X

NextSibling property
XmlNode class, 583

No type DialogResult, 436
nodes

ChildNodes property, 583
CloneNode method, 584
CreateNode method, 584
CreateTextNode method, 584
FirstNode property, 389
HasChildNodes property, 583
ImportNode method, 585
LastNode property, 389
LinkedListNode<T> collection, 270
MoveToContent method, 563
MoveToRoot method, 594
NextNode property, 389
ParentNode property, 583
PrevNode property, 389
processing node types, 568
ReadContentAs method, 563
ReadElementContentAs method, 563
ReadNode method, 585
SelectedNode property, 387
SelectNodes method, 584
SelectSingleNode method, 584
tokens, XML, 564
TreeNode class, 388–393
valid XML, 569
WriteNode method, 575
XML document elements, 559
XML node types, 564
XmlLinkedNode class, 582
XmlNode class, 582
XmlNodeList, 584

Nodes property
TreeNode class, 389, 393
TreeView control, 387

NodeType property
XmlNode class, 583
XmlReader class, 563
XPathNavigator class, 593

None node type, XML, 564
None type DialogResult, 436
None value

FileShare enumeration, 290
PermissionState enumeration, 784

nontransactional database access
connected ADO.NET, 527–539

NoPrincipal value
PrincipalPolicy enumeration, 779

Normal attribute, files, 286
NOT (!) operator, 62
Not method

BitArray collection, 249

Nothing permission, 784
NotifyIcon control, 430–433

properties, 430

nullptr command, 779
number formats based on culture, 764
number sign (#) symbol

see preprocessor directives

numbered lists
integrated XML documentation, 232

NumberFormatInfo class, 202
numeric literals

decimal numbers, 56
exponential numbers, 56
hexadecimal numbers, 56
integer numbers, 56
literals, C++/CLI, 55–56
octal numbers, 55
ToString method, 56

■O
Object class, 194

GetType method, 731

Object data type
methods, 41

object initialization
ref class constructors, 101

object model
.NET Framework advantages, 6

object oriented programming
see OOP

Object method
Object data type, 41

objects
destructors, 104
handles to, 96
instantiating ref class objects, 95

octal numbers, 55
ODBC managed provider, 526

connection strings, 531

Odbc namespace
ADO.NET namespaces, 516, 527

Fraser_640-4Index.fm Page 887 Thursday, November 17, 2005 4:27 PM

888 ■I N D E X

OdbcXyz classes
see equivalent SqlXyz classes

Offset method
Point/PointF structures, 463, 464
Rectangle/RectangleF structures, 465

offsetof operator
ref class drawbacks, 93

OK type DialogResult, 436
OLE DB managed provider, 526

connection strings, 531

OleDb namespace, 23, 516, 527
OleDbXyz classes

see equivalent SqlXyz classes

OmitXmlDeclaration property
XmlWriterSettings class, 574

OnClick event
CheckOnClick property, 368, 415

OnContinue event handler, 613
customizing Windows services, 618

OnCustomCommand event handler, 613
Windows services, 630

ones compliment (~) operator, 63, 64
OnPaint method, Control class

PaintEventHandler compared, 450–453
prepackaged PaintEventHandler, 451

OnPause event handler, 613
customizing Windows services, 618

OnShutdown event handler
Windows services, 613

OnStart event handler, 613

customizing Windows services, 615–617
debugging Windows services, 633

OnStop event handler, 613
customizing Windows services, 617
debugging Windows services, 633

OOP (object-oriented programming)
abstract ref classes, 133–134
C++/CLI, 89–137
concepts in OOP, 85–89
encapsulation, 85
inheritance, 86
instantiating ref class objects, 95
interfaces, 135–137
introduction, 85
polymorphism, 86
ref classes/structs, 89–132
software development using, 87

Open method
Connection classes, 531
File/FileInfo classes, 288, 289–290

Open value
FileMode enumeration, 289

OpenFileDialog dialog box, 442
OpenOrCreate value

FileMode enumeration, 289

OpenXyz methods
File/FileInfo classes, 288

OperatingSystem class, 195
operator overloading, 112

binary operators, 114
managed operator overloads, 115
supported managed operators, 113
unary operators, 114

operators, C++/CLI, 61–69
address of operator, 66
arithmetic operators, 61–62
assignment operators, 65–66
binary operators

overloading, 114
bitwise operators, 63–64
comma operator, 65
comparison operators, 62
conditional operator, 64
dot operator, 96
gcnew operator, 96
indirection operator, 66, 67
logical operators, 62
managed operator overloading, 112
precedence, 68
preprocessor operators, 142
reference operator, 66
scope resolution (::) operator, 101
type casting between class types, 131
typedef operator, 165–166
unary operators

overloading, 114
optimization

optimizing GDI+, 498–501

OR (||) operator, 62
Oracle managed provider, 526

connection strings, 531

Oracle namespace, 516, 527
OracleXyz classes

see equivalent SqlXyz classes

Fraser_640-4Index.fm Page 888 Thursday, November 17, 2005 4:27 PM

889■I N D E X

ORDER BY clause, 522
Orientation property

SplitContainer control, 398

OutAttribute class, 209
OuterXml property

XmlNode class, 583

OutputText property
MaskedTextBox control, 346

overflow
CanOverflow property, 404

OverflowButton property
ToolStrip control, 405

overloading
functions, C++/CLI, 80
method overloading, 111

overriding
explicit (named) virtual overriding, 107
hiding virtual overriding, 107
implicit virtual overriding, 107
method overriding, 111

OwnerDocument property
XmlNode class, 583

■P
P/Invoke

DllImportAttribute class, 830
CallingConvention field, 831
CharSet field, 831
EntryPoint field, 831
ExactSpelling field, 831
PreserveSig field, 832
SetLastError field, 832

unsafe code, 825
using, 828, 829
using as static method in class, 832, 833

padding
SetIconIconPadding method, 426

pages
DefaultPageSettings property, 509
PrintPage event handler, 512
TabPage control, 398
TabPages property, 395

PageSetupDialog dialog box, 442
PageUnit property, Graphics class

GDI+ GraphicsUnits, 460
PageUnit property for form, 462
rendering to new unit of measure, 462
utility structures, 463

Paint event, Control class, 449
Graphics class rendering outside, 455
Hello World GDI+ style, 449

Paint event handler
optimizing GDI+, 498
scrollable windows, GDI+, 495

Paint events
manually triggering, 459
OnPaint method vs. PaintEventHandler,

450–453

PaintEventArgs class
Hello World GDI+ style, 449

PaintEventHandler event handler
Hello World GDI+ style, 449
OnPaint method compared, 450–453
parameters, 449

Panel control, 340–343
disabling/hiding panels, 343
Enable property, 340
Visible property, 340

Panel1/Panel1Collapsed properties
SplitContainer control, 398

Panel2/Panel2Collapsed properties
SplitContainer control, 398

panels
ContentPanel property, 403
FixedPanel property, 398
ToolStripPanel control, 402–403

para tag
example using, 238
integrated XML documentation, 230

param tag
example using, 237
integrated XML documentation, 224

parameter lists
CLS rules, 193

ParameterInfo class, 207, 730
ParameterizedThreadStart delegate, 698
parameters

functions, C++/CLI, 76
SqlParameters class, 534, 535

stored procedure using, 535
template parameters, 160–162

paramref tag
example using, 239
integrated XML documentation, 235

Fraser_640-4Index.fm Page 889 Thursday, November 17, 2005 4:27 PM

cafac74dd2d083cbec0906b66fcd56b1

890 ■I N D E X

parent classes
ref class drawbacks, 93
ref class inheritance, 93

Parent property
TreeNode class, 389

ParentNode property
XmlNode class, 583

updating DOM trees, 589
partial specialization, templates, 159
Password clause

connection strings, 531

PasswordChar property
TextBox control, 345

Paste method
TextBoxBase class, 344

Path class, 204
manipulating directory strings, 282
methods, 282

paths
FullPath property, 389
GetFullPath method, 282
ManagementPath class, 205
Xpath class, 216
XPath namespace, 561
XPathNavigator class, 593–601

Pause method
ServiceController class, 628

pauses
CanPauseAndContinue property, 614, 628
OnPause event handler, 613, 618

Peek method
Queue collection, 256
Stack collection, 256
StreamReader class, 297

Pen class
CompoundArray property, 482

system pens, 485
constructors, 482
namespace, 446
properties, 482

Pens class, 446
SystemPens class, 447

pens, GDI+, 481–485
based on pen color, 482
based on pen style, 483
custom pens, 482
named pens, 482

namespaces, 484
system pens, 483–485

PenType property
Pen class, 482

performance
throwing ApplicationExceptions, 170

performance counters, 199
PerformanceCounter class, 199
PerformanceCounterCategory class, 199
period (.)

see dot (.)

Permission class
AddPermission method, 784

permission tag
example using, 238
integrated XML documentation, 228

permissions
code access security, 783, 784
code access verification, 14

Permissions namespace, 212, 776, 784
PermissionState enumeration, 784
Persist Security Info clause, 530
PhysicalDimensions property

Image class, 490

PictureBox control, 215, 420–422
AutoSize mode, 420
CenterImage mode, 420
displaying different image file types, 420
properties, 420
StretchImage mode, 420

pin_ptr <> keyword, 817
garbage collection, 14

pinning interior pointers, 819, 820
pinning pointers, 817, 818, 819
pipe (|) character, 347
Pixel units

GDI+ GraphicsUnits, 460

Plaid enumeration
HatchStyle enumeration, 486

platform independence
.NET Framework advantages, 6
C++/CLI programmers, 16
MSIL and, 11

platforms
multiple platform support, 16

PlayCards application
assembly referencing, 155
building library assembly, 151

Fraser_640-4Index.fm Page 890 Thursday, November 17, 2005 4:27 PM

891■I N D E X

plus
ShowPlusMinus property, 388

Point structure, 447, 462
Point units

GDI+ GraphicsUnits, 460

Point2D class template
template parameters, 160

pointer arithmetic
ref class drawbacks, 93
reference object handles and, 96
subscripting and, 48

Pointer class, 207
pointer types, 17, 30
pointers, 815

CLS and, 20
CLS rules, 193
handles compared, 40
interior pointers, 815, 816, 817
pinning interior pointers, 819, 820
pinning pointers, 817, 818, 819
pointer to unmanaged data type, 98
ref class benefits, 92
unsafe code, 30

pointers within ref classes, 93
Point/PointF structures, 462, 463–464

casting to Size/SizeF, 465
changing between Point/PointF, 463
members, 463
namespace, 447
Offset method, 463, 464
Round method, 463
Size/SizeF compared, 464
Truncate method, 463

points
EndPoint class, 708, 707
EntryPoint field, 831
EntryPoint string value, 831
IPEndPoint class, 707, 708, 710
SizeInPoints property, 476

Policy namespace, 212, 776, 786
policy statements

code access security, 784, 785

PolicyHierarchy method
SecurityManager class, 788

PolicyStatementAttribute class
Exclusive attribute, 785
LevelFinal attribute, 785

polymorphism
virtual methods, 106

polymorphism, OOP, 86
software development using objects, 88

Pop method
Stack collection, 256

ports
.NET Framework, 6

Ports namespace, 204
Position property, Stream class, 292

reading/writing to streams, 293

pound (#) symbol
see preprocessor directives

pragma (#pragma) directive, 140
mixing managed/unmanaged code, 807,

808, 809

precedence
arithmetic operators, 62
bitwise operators, 64
comparison/logical operators, 63
operators, C++/CLI, 68

predefined colors
creating named colors, 481

predefined data types, 32–42
Predicate<T> delegate

List<T> collection, 265, 266
Exists method, 266
Find method, 266
FindAll method, 266, 267
FindIndex method, 267
FindLastIndex method, 267
FindList method, 267
TrueForAll method, 267
using, 266

prefixes
XmlReader class, 563

PrependChild method
XmlNode class, 584

preprocessor directives, 139
C++/CLI, table of, 140
conditional directives, 142–143
defining directives, 140–142
include (#include), 143
using (#using), 144

preprocessor operators, 142
defined/!defined, 143

PreserveSig field
DllImportAttribute class, 832

Fraser_640-4Index.fm Page 891 Thursday, November 17, 2005 4:27 PM

892 ■I N D E X

PreserveWhitespace property
XmlDocument class, 584

Pressed property
ToolStrip control, 405

Previous property
LinkedListNode<T> collection, 270

PreviousSibling property
XmlNode class, 583

PrevNode property
TreeNode class, 389

primitive types
CLS and, 20, 193
primitive value types, 19

Principal namespace, 212, 776
PrincipalPermission class

Demand method, 781

PrincipalPermissionAttribute class, 781
PrincipalPolicy enumeration

nullptr as first parameter, 781
UnauthenticatedPrincipal value, 778, 779

Print method
PrintDocument class, 509

PrintController property
PrintDocument class, 509

PrintDialog control
drawing Happy Face, 511, 512

PrintDialog dialog box, 442
PrintDocument class, 508

drawing Happy Face, 511
members, 509
Print method, 509

PrinterSettings property
PrintDocument class, 509

printing
GDI+, 508–512

Printing namespace, 24, 200, 201, 446
PrintPage event handler

drawing Happy Face, 512

Priority property
Thread class, 665, 666

private access modifier
adding to ref classes, 91
ref classes, 94
summarized, 91
unmanaged classes, 94

private assemblies, 7

private inheritance
ref classes, 93

private members
ref class inheritance, 94

private methods
member methods, ref class, 99

Process class, 199
StartInfo property, 688

processes
creating one within another, 687

ProcessModule class, 199
ProcessStartInfo class, 199
ProcessThread class, 199
ProgIdAttribute class, 209
programming languages

.NET Framework advantages, 5
language keywords for CTS types, 19
MSIL language neutrality, 10
multiple language support, 15

ProgressBar control, 374, 376
ProhibitDtd property

XmlReaderSettings class, 571

properties
member properties, ref class, 118
ref class benefits, 92

PropertyData class, 205
PropertyDataCollection class, 205
PropertyInfo class, 207, 730

retrieving, 732

protected access modifier

ref classes, 91, 94
summarized, 91
unmanaged classes, 94

protected inheritance
ref classes, 93

protected methods
member methods, ref class, 99

Protocols namespace, 638
prototypes

functions, C++/CLI, 79

providers
ErrorProvider control, 426–430
IHashCodeProvider interface, 243

Proxies namespace, 210
PtrToStringChars function, 822

Fraser_640-4Index.fm Page 892 Thursday, November 17, 2005 4:27 PM

893■I N D E X

public access modifier
adding to ref classes, 90
summarized, 91
unmanaged classes, 94

public inheritance
ref class drawbacks, 93

public keyword
adding namespaces to libraries, 148

public members
accessing nested ref classes, 131

public methods
member methods, ref class, 99

Pulse method
Monitor class, 685, 687

PulseAll method
Monitor class, 685

pure virtual methods, 111
class deriving from abstract class, 133
interfaces, C++/CLI, 135

Push method
Stack collection, 256

■Q
QualifierData class, 205
QualifierDataCollection class, 205
qualifiers

const qualifier, 52
data types, C++/CLI, 52–53

queries
EventQuery class, 205

ExecuteNonQuery method, 536
ExecuteReader method, 532
ExecuteScalar method, 538
getting data from two tables, 522
ManagementQuery class, 205
returning single value from query, 538–539

question mark (?) character, 346
Queue collection, 255–257

Clear method, 256
Dequeue method, 256
description, 242
Enqueue method, 256
namespace, 196
Peek method, 256

Queue<T> collection, 271–272
description, 242
namespace, 197

QueueUserWorkItem method
ThreadPool class, 678, 679

■R
R property

Color class, 480

R4/R8 values
UnmanagedType enumeration, 834

RadioButton control, 215, 334–336
AddRange method, 336
array of radio buttons, 336
CheckedChanged event, 336
GroupBox control and, 336
groups of radio buttons, 340
selecting more than one, 337

raise_<delegate-name> method, 185
Random class, 195
range

AddRange method, 336
SelectionRange property, 423

RCW (runtime callable wrapper)
Interop Assembly as, 839

Read method
SqlDataReader class, 535
Stream class, 292
StreamReader class, 297
XmlReader class, 563

Read value
FileAccess enumeration, 289
FileShare enumeration, 290

ReadAttributeValue method
XmlReader class, 563

ReadBlock method
StreamReader class, 297

ReadByte method
Stream class, 292

ReadCommitted transaction isolation levels, 543
ReadContentAs method

XmlReader class, 563

ReadElementContentAs method
XmlReader class, 563

ReadElementString method
XmlReader class, 563

ReadEndElement method
XmlReader class, 563

Fraser_640-4Index.fm Page 893 Thursday, November 17, 2005 4:27 PM

894 ■I N D E X

ReaderWriterLock class, 213, 663, 691–693
AcquireReaderLock method, 691
AcquireWriterLock method, 692
constructors, 691
ReleaseReaderLock method, 692
ReleaseWriterLock method, 692
thread deadlock condition, 692

ReadLine method
StreamReader class, 297, 298

ReadNode method
XmlDocument class, 585

ReadOnly attribute, files, 286
ReadOnly property

TextBoxBase class, 344

ReadOnlyCollection<T> class, 197, 242, 278
ReadStartElement method

XmlReader class, 563

ReadState property
XmlReader class, 563

ReadString method
XmlReader class, 563

ReadToEnd method
StreamReader class, 297, 298

ReadUncommitted transaction isolation
levels, 543

ReadWrite value
FileAccess enumeration, 289
FileShare enumeration, 290

ReadXyz methods
BinaryReader class, 300

Receive method
Socket class, 699, 704, 711, 712
UdpClient class, 717

ReceiveFrom method
Socket class, 708, 719, 720

ReceiveTimeout option
UDP client, 719

RecognizerDriver service, 607
record set

processing, 535

Rectangle/RectangleF structures, 447, 462,
465–468

Contains method, 465, 466
Intersection method, 465, 466
members, 465
Union method, 466

red component
R property, 480

redo
CanRedo property, 353

Redo method
RichTextBox control, 354

RedoActionName property
RichTextBox control, 353

ref classes
abstract ref classes, 133–134
access modifier, adding private, 91
access modifier, adding public, 90
accessing reference object handle, 96
caution: accessing unmanaged resources, 96
constructors, 101

copy constructor, 102
initialization values, 101
static ref class constructors, 103

Cube ref class, 94
declaring, 89
default member access, 89, 90
delegates, 179
destructors, 104

memory management destructors, 104
resource management destructors, 105

difference between ref class/struct, 89
drawbacks, 93
inheritance, 93
initializer list, 101
initializing variables, 97
instantiating objects, 95
introduction, 89
member methods, 98–118
member properties, 118–128
member variables, 97
method overloading, 111
method overriding, 107, 111
methods, 95
nested ref classes, 128
operator overloading, 112
private access modifier, 94
private inheritance, 93
protected access modifier, 94
protected inheritance, 93
reference data types, 96
sealed ref class, 95
Square ref class, 90

Fraser_640-4Index.fm Page 894 Thursday, November 17, 2005 4:27 PM

895■I N D E X

static member methods, 100
static member variables, 98
type casting, 131
using, 95–97
virtual methods, 106

explicit (named) virtual overriding, 107
hiding virtual overriding, 107
implicit virtual overriding, 107
pure virtual method, 111

ref keyword, 92–93
garbage collection, 14

ref structs, 89
see also ref classes

reference class types
CTS data types, 19

reference data types, 32, 40–42, 46–51
gcnew operator, 46
ref class objects, 96

reference operator (%), 66
reference tags

integrated XML documentation, 233–236

reference types
common type system, 17
language keywords for data types, 19
passing arguments by, 76

ReferenceEquals method
Object data type, 41

references
returning references from functions, 78

referencing
assembly referencing, 154–155

reflection, 729
common language runtime, 15
dynamically invoking or late-binding

objects, 735, 736, 738
examining objects, 730

getting metadata, 731, 733, 735
getting Type reference, 730, 731

metadata, 15

Reflection namespace, 24, 206, 207, 729, 730,
735

Refresh method
ServiceController class, 628, 629

Region class
brief description, 462
building, 471
displaying Region, 470

GDI+, 469–471
methods, 469

code illustrating, 470
methods returning void, 471
namespace, 447
Xor method, 469, 471

RegionInfo class, 203, 765
regions

FillRegion method, 471

RegistrationServices class, 209
Registry class, 216
registry executable objects

Windows services, 607

RegistryKey class, 216
RejectChanges method

DataSet class, 546
committing/rolling back rows, 554

developing with DataGridView control, 557

relationships
“contains a” relationship, 128
creating relationships between tables, 520–522
DataRelation class, 548
DataRelationCollection class, 547
Foreign Key Relationships property page, 521
“is a” relationship, 128
TextImageRelation property, 405
XmlDataDocument class, 601

ReleaseComObject method
Marshal class, 839

ReleaseMutex method
Mutex class, 689

ReleaseReaderLock method
ReaderWriterLock class, 692

ReleaseWriterLock method
ReaderWriterLock class, 692

remarks tag
example using, 237
integrated XML documentation, 226
non repeatable tags, 224

Remoting namespace, 24, 209, 210
Remove method

delegates, 185
Dictionary<K,V> collections, 274
Hashtable collection, 252
NameValueCollection collection, 262
removing delegates from multicast chain, 181
SortedList collection, 252

Fraser_640-4Index.fm Page 895 Thursday, November 17, 2005 4:27 PM

896 ■I N D E X

remove_<delegate-name> method, 185
RemoveAll method

XmlNode class, 584

RemoveAt method
SortedList collection, 252

RemoveChild method
CodeGroup class, 786, 789
XmlNode class, 584

RemoveXyz methods
LinkedList<T>, 270

Renderer property
ToolStripManager class, 404

rendering
compatibility with .NET 1.1, 311
double buffering, 501–508
rendering existing images, 489–492

rendering methods
Graphics class, 454–455

RenderMode property
ToolStrip control, 405
ToolStripManager class, 404

reordering
AllowColumnReorder property, 379
AllowItemReorder property, 404

RepeatableRead transaction isolation levels, 543
ReplaceChild method

XmlNode class, 584

reserved keywords
variable naming restrictions, 31

Reset method
IEnumerator interface, 244
XmlReaderSettings class, 571

ResetAbort method
Thread class, 671

ResGen utility, 757, 758
resgen.exe

resources in .NET, 11

resigning assembly, 749
resolution

HorizontalResolution property, 490
VerticalResolution property, 490

resource management destructors, 105
ResourceManager class, 208, 762, 763

GetObject method, 763
GetString method, 763
localization tools, 767
supporting culture-specific resources, 765

ResourceReader class, 208, 762, 763
Close method, 762
GetEnumerator method, 762
MoveNext method, 762

resources
accessing resources, 762

ResourceManager class, 762, 763
ResourceReader class, 762

AddResources method, 757
ApplyResources method, 769
assemblies, 11
building text name/value pair resource

files, 756
ComponentResourceManager class, 769
creating, 756
embedding resources, 758, 759, 760
introduction, 755, 756
ResGen utility, 11, 757
ResourceWriter class, 757

Resources namespace, 24, 207, 208, 757
ResourceWriter class, 208

AddResources method, 757
Close method, 757

Resume method
Thread class, 666, 676

Retry type DialogResult, 436
return statement, 77
return type

functions, C++/CLI, 76

returning values from functions, 77–79
returns

AcceptReturn property, 345, 347

returns tag
example using, 237
integrated XML documentation, 225
non repeatable tags, 224

Reverse method
Array object, 48
ArrayList collection, 247

revision version, 749
RichTextBox control, 215, 352–358

Anchor property, 357
assigning text to, 352
formatting features, 352
implementing functionality, 357
implementing simple RTF editor, 354
properties, 353

Fraser_640-4Index.fm Page 896 Thursday, November 17, 2005 4:27 PM

cafac74dd2d083cbec0906b66fcd56b1

897■I N D E X

resizing parent window, 357
updating properties, 357

Right property
Rectangle/RectangleF structures, 466

right shift (>>) operator, 63, 64
RightMargin property

RichTextBox control, 353

role-based security, 211, 776
identities, 776, 777
principal objects, 777
securing code using roles, 780, 781, 782, 783
working with identities/principals, 778, 779,

780

Rollback method
SqlTransaction class, 543

rolling back, 539
root node

MoveToRoot method, 594

roots
gcroot<T> template, 821
MoveToRoot method, 595
ShowRootLines property, 388
SyncRoot property, 264

RotateFlip method
Image class, 490

Round method
Point/PointF structures, 463
Rectangle/RectangleF structures, 466
Size/SizeF structures, 464

rows
committing/rolling back changed rows, 554
DataRow class, 547
deleting from data source, 553
FullRowSelect property, 380
GetElementFromRow method, 601
GetRowFromElement method, 601
GetRowFromElement method, 601
inserting into data source, 552
selecting from DataSet, 551
updating in data source, 553

RTF (Rich Text Format)
implementing simple RTF editor, 354
SelectedRtf property, 353

Rtf property
RichTextBox control, 353

Run method
Application class, 311
ServiceBase class, 613

Running state
multithreaded programming, 664

runtime callable wrapper (RCW), 839
Runtime namespaces, 24, 208, 209, 210, 211,

821, 829, 834
runtimes

common language runtime, 11

■S
safe code

automatically generated Windows services,
612, 613

safe_cast operator, 54
exception handling described, 167
type casting between class types, 131
verifying, 131

safe/unsafe code, 13
saturation

GetSaturation method, 480

Save method
Image class, 490
XmlDocument class, 585

SaveFile method
RichTextBox control, 354

SaveFileDialog dialog box, 442
SavePolicy method

SecurityManager class, 788

SAX (Simple API for XML)
XML forward only access compared, 561

SByte integer data type, 33
scalability

common language runtime, 13

scalar properties, 119
scaling

ImageScaling property, 405

Schema class, 216
Schema namespace, 561
Schemas property

XmlReaderSettings class, 571

scope
global scope, 54
local variables, 54
variables, C++/CLI, 54

scope resolution (::) operator
accessing static member method, 101
accessing static property, 122
implementing member methods in

namespaces, 148

Fraser_640-4Index.fm Page 897 Thursday, November 17, 2005 4:27 PM

898 ■I N D E X

scrollable windows, GDI+, 494–497
AutoScrollMinSize property, 494
enabling automatic scroll bars, 494

ScrollBar class, 215
Scrollbars property

RichTextBox control, 353

scrolling
AutoScroll property, 315
AutoScrollMinSize property, 494
AutoScrollPosition property, 496
Panel control, 340
scrollable windows, GDI+, 494–497

sealed ref class, 95
security, 775

code access security, 211, 783
code groups, 785, 786, 787, 788, 789
evidence, 790–795
permissions, 783, 784
policy statements, 784, 785
securing code, 795–802

cryptography, 211
Integrated Security clause, 530
MSIL and metadata, 11
namespaces, 775
Password clause, 531
Persist Security Info clause, 530
role-based security, 211, 776

identities, 776, 777
principal objects, 777
securing code using roles, 780, 781, 782, 783
working with identities/principals, 778,

779, 780
SQL Server, 518

security contexts
Windows services, 608

Security namespaces, 24, 211, 212, 776, 784, 786
System::Net, 206
System::Web, 213

SecurityIdentity class, 202
SecurityManager class

PolicyHierarchy method, 788
SavePolicy method, 788

SecurityPermission class, 784
SecurityRoleAttribute, 202
see tag

example using, 239
integrated XML documentation, 235

seealso tag
example using, 239
integrated XML documentation, 236

Seek method, Stream class, 292
reading/writing to streams, 293

Select method
ComboBox control, 365
DataTable class, 547
TextBoxBase class, 344
XPathNavigator class, 594

SelectAll method
ComboBox control, 365
TextBoxBase class, 345

SelectAncestor method
XPathNavigator class, 594

SelectChildren method
XPathNavigator class, 594

SelectCommand property
DataAdapter classes, 546, 550

SelectDescendants method
XPathNavigator class, 594

selected items
ClearSelected method, 359
GetSelected method, 360
SetSelected method, 360

Selected property
ToolStrip control, 405

SelectedImageIndex property
TreeNode class, 389
TreeView control, 387

SelectedIndex/SelectedIndices properties
ListControl class, 359

SelectedItem property
ComboBox control, 368

SelectedItems property
ListBox control, 359

checking for nullptr, 363
removing items from list using, 364

SelectedNode property
TreeView control, 387

SelectedRtf property
RichTextBox control, 353

SelectedTab property
TabControl control, 395

SelectedText property
TextBoxBase class, 344

Fraser_640-4Index.fm Page 898 Thursday, November 17, 2005 4:27 PM

899■I N D E X

SelectedValue property
ListControl class, 359

selecting
FullRowSelect property, 380
HoverSelection property, 380
MaxSelectionCount property, 423
ShowSelectionMargin property, 353

selection controls, 358–372
IList interface, 358
list size suggestions, 358
ListControl class, 358

SelectionBullet property
RichTextBox control, 353

SelectionColor property
RichTextBox control, 353

SelectionEnd property
MonthCalendar control, 423

SelectionFont property
RichTextBox control, 352, 353

SelectionHangingIndent property
RichTextBox control, 353

SelectionIndent property
RichTextBox control, 353

SelectionLength property
ComboBox control, 365
TextBoxBase class, 344

SelectionMode property
ListBox control, 359

SelectionRange property
MonthCalendar control, 423

SelectionRightIndent property
RichTextBox control, 353

SelectionStart property
ComboBox control, 365
MonthCalendar control, 423
TextBoxBase class, 344

SelectionTabs property
RichTextBox control, 353

SelectNodes method
XmlNode class, 584

SelectSingleNode method
XmlNode class, 584

self description
assemblies, 8

Semaphore class, 663
semicolon (;) character

ending statements, 29

Send method
Socket class, 711, 712
UdpClient class, 719

SendTo method
Socket class, 710

separators
ToolStripSeparator, 404, 414

Serializable attribute, 738
setting up classes for serialization, 302–304

Serializable transaction isolation levels, 543
serialization

description, 211, 279, 302
managed objects, 302–307
setting up classes for, 302–304
using BinaryFormatter class, 304–306
using SoapFormatter class, 306–307

Serialization class, 216
Serialization namespace, 211, 561
SerializationInfo class, 211
Serialize method

BinaryFormatter class, 305

SerialPort class, 204
service application

ServiceBase class, 609
Windows services, 607

service configuration application
ServiceInstaller class, 609
ServiceProcessInstaller class, 609
Windows services, 607, 608–609

service control application
ServiceController class, 609
Windows services, 607, 608

Service Control Manager (SCM)
customizing Windows services, 615
Windows services, 607, 608
Windows services event handling, 613

service processes
see Windows services

service providers
Active Directory, 200

ServiceBase class
creating Windows services, 609–621
customizing Windows services, 615
description, 609
properties, 614
Run method, 613

Fraser_640-4Index.fm Page 899 Thursday, November 17, 2005 4:27 PM

900 ■I N D E X

ServiceController class
description, 609
ExecuteCommand method, 628, 629, 630
managing Windows services, 630
methods, 628
properties, 628
Refresh method, 628, 629
ServiceType property, 607
Start method, 628, 629
Status property, 628, 629

ServicedComponent class, 202
ServiceInstaller class

description, 609
properties, 609
Windows services, 621–624

ServiceName property
ServiceBase class, 614
ServiceController class, 628

ServiceProcess namespace, 609
ServiceProcessInstaller class

description, 609
properties, 609
Windows services, 621–624

Services application
custom service control application, 626–630
properties dialog box, 626
Windows services, 625–626

Services namespace, 24, 638
System::Runtime::Remoting, 210
System::Web, 213

ServiceType property
ServiceController class, 607

SessionState namespace, 213
Set method

array properties, ref class, 123
indexed properties, ref class, 124
member properties, ref class, 118
NameValueCollection collection, 261

caution: overwriting keys, 262
scalar properties, ref class, 119
static properties, ref class, 121

SET NOCOUNT ON option
stored procedures, 526

SetAll method
BitArray collection, 249

SetCompatibleTextRenderingDefault method
Application class, 311

SetCurrentDirectory method
Directory class, 281

SetError method
ErrorProvider control, 426

SetIconAlignment method
ErrorProvider control, 426

SetIconIconPadding method
ErrorProvider control, 426

SetItemChecked method
CheckedListBox control, 368

SetItemCheckState method
CheckedListBox control, 368

SetLastError field
DllImportAttribute class, 832

SetLength method
Stream class, 292

SetPrincipalPolicy method
AppDomain class, 778, 779

SetSelected method
ListBox control, 360

SetSocketOption method
Socket class, 719

Settings property
XmlWriter class, 575

shapes
drawing custom shapes/lines, 492–494

shared assemblies, 7, 746
application configuration files, 754, 755
GAC, 746, 747

adding assemblies to, 747, 748
shared assemblies strong name, 748

No DLL Hell example, 751, 752, 753, 754
resigning assembly, 749
signcoded digital signatures, 749
versioning, 749, 750

getting version number, 751
setting version number, 750

shared resources problem
multithreaded programming, 679

SharedProperty class, 202
SharedPropertyGroup class, 202
SharedPropertyGroupManager class, 202
short alias, integer data type, 33
shortcut keys

ShowShortcutKeys property, 415

ShortcutKeys property
ToolStripMenuItem control, 415

Fraser_640-4Index.fm Page 900 Thursday, November 17, 2005 4:27 PM

901■I N D E X

Show mode
dialog boxes, 441

ShowDialog mode
dialog boxes, 441

ShowItemToolTips property
ToolStrip control, 405

ShowLines property
TreeView control, 387

ShowPlusMinus property
TreeView control, 388

ShowRootLines property
TreeView control, 388

ShowSelectionMargin property
RichTextBox control, 353

ShowShortcutKeys property
ToolStripMenuItem control, 415

ShowToday property
MonthCalendar control, 423

ShowTodayCircle property
MonthCalendar control, 423

ShowToolTips property
TabControl control, 395

ShowWeekNumbers property
MonthCalendar control, 423

Shutdown method
Socket class, 704, 717

signcoded digital signatures, 749
significance

XmlSignificantWhitespace class, 582

significant digits
loading number with 15+, 37

SignificantWhitespace node type, XML, 564
Simple value

ComboBoxStyle list, 364

SimpleWinService code
autogenerated, 613
converted for safe code, 612
customized, 619
template generated, 611

single buffering, GDI+, 501
Single data type, 35
single line comments, 60
size

AutoScrollMinSize property, 494
AutoSize mode, 420
ClientSize property, 315
ImageSize property, 378

Size property
Font class, 476
Form class, 315
Image class, 490
PictureBox control, 420
Rectangle/RectangleF structures, 466

Size/SizeF structures, 447, 464–465
brief description, 462
casting Point/PointF to, 465
members, 464
Point/PointF compared, 464

SizeGrip property
StatusStrip control, 410

SizeInPoints property
Font class, 476

SizeMode property
PictureBox control, 420

sizeof operator
ref class drawbacks, 93

Skip method
XmlReader class, 563

Sleep method
Thread class, 666, 669, 675

SmallConfetti enumeration
HatchStyle enumeration, 486

SmallIcon mode
View property, ListView control, 379

SmallImageList property
ListView control, 380

SOAP (Simple Object Access Protocol)
accessing Web service using, 647–650
HTTP request SOAP wrapper, 644
HTTP response SOAP wrapper, 644, 645
Web services and, 23
Web services communication protocols, 637

SoapFormatter class, 211
BinaryFormatter class compared, 304
serialization using, 306–307

Socket class
Accept method, 698
BeginAccept method, 721, 722
BeginConnect method, 722
BeginDisconnect method, 723
BeginReceive method, 724
BeginReceiveFrom method, 724
BeginSend method, 724
BeginSendTo method, 724

Fraser_640-4Index.fm Page 901 Thursday, November 17, 2005 4:27 PM

902 ■I N D E X

Close method, 704
Connect method, 703, 711, 712
Connected property, 705
Disconnect method, 705
EndAccept method, 722
EndConnect method, 723
EndDisconnect method, 723
GetSocketOption method, 698, 719, 720
Listen method, 697
Receive method, 699, 704, 711, 712
ReceiveFrom method, 708, 719, 720
Send method, 699, 711, 712
SendTo method, 710
SetSocketOption method, 698, 719
Shutdown method, 704, 717

socket helper classes/methods, 712
changing socket options, 719, 720
Tcp Helper class example, 714–717
TcpClient, 713, 714
TcpListener, 712, 713
UdpClient, 717, 719

socket options, changing, 719, 720
SocketException class, 703, 704, 720
SocketOptionName enumeration

MaxConnections value, 698

Sockets namespace, 206, 695
software deployment, 6
software development, 6

using OOP, 87

SolidBrush class, 486
SolidBrushes class, 447
Sort method

Array object, 48
ArrayList collection, 247
ListBox control, 360

Sorted property
ListBox control, 359

SortedDictionary<K,V> collection
see also Dictionary<K,V> collection
description, 242
namespace, 197

SortedList collection, 251–255
Add method, 252
Capacity property, 252
Clear method, 252
ContainsKey method, 253
ContainsValue method, 253

description, 242
GetByIndex method, 251, 253
GetEnumerator method, 252
Hashtable compared, 251
IndexOfKey method, 253
IndexOfValue method, 253
key/value pairs, 252, 253
Remove method, 252
RemoveAt method, 252
System::Collections namespace, 196

SortKey class, 203
source files, libraries, 145, 147
Source property, Exception class, 169
Specialized namespace, 195, 196, 257
Sphere enumeration

HatchStyle enumeration, 487

SplitContainer control, 398–402
dock property, 398
Orientation property, 398
properties, 398
simple pair of, 402

Splitter control
SplitContainer compared, 398

SplitterDistance property
SplitContainer control, 399

SplitterWidth property
SplitContainer control, 399

Spring property
StatusStrip control, 410

SQL Server
connection strings, 530, 531
managed provider, 526
security, 518

SqlClient namespace, 23, 516, 527
SqlCommand class

CommandText property, 532, 534
CommandType property, 532, 534
ExecuteNonQuery method, 529

Insert/Update/Delete commands, 536
ExecuteReader method, 529

querying database, 532, 534
ExecuteScalar method, 529

returning single value from query, 538
Insert/Update/Delete commands, 536–537
querying database, 532–535
returning single value from query, 538–539
statement execution methods, 529
Transaction property, 543

Fraser_640-4Index.fm Page 902 Thursday, November 17, 2005 4:27 PM

903■I N D E X

SqlConnection class
Close method, 531
connecting/opening/closing database, 529
constructor, 530
nontransactional database access, 528, 529
Open method, 531
passing data using Web service, 652

SqlDataAdaptor class, 545
see also DataAdapter classes
building DataAdaptor, 549–551
creating, 550
deleting rows from data source, 551
inserting rows into data source, 550
populating DataSet, 550
updating rows in data source, 550

SqlDataReader class
Read method, 535

SqlParameters class, 534, 535
stored procedure using parameters, 535

SqlTransaction class
Commit method, 543
Rollback method, 543
using connected ADO.NET with

transactions, 543

SqlTypes namespace, 516
Square ref class, 90

instantiating ref class objects, 95

Stack collection, 255–257
description, 242
Clear method, 256
namespace, 196
Peek method, 256
Pop method, 256
Push method, 256

Stack<T> collection, 271–272
namespace, 197

stack instances/objects, 96
StackTrace property

Exception class, 169

standard collection classes, .NET, 241
standard collection interfaces, .NET, 243
Start method

ServiceController class, 628, 629
Thread class, 666, 667
Timer component, 374

start tag
XML document elements, 559

Start method
TcpListener class, 712

StartCap property
Pen class, 482

StartInfo property
Process class, 688

starting
CustomStartCap property, 482
IsStartElement method, 563
OnStart event handler, 613, 615–617, 633
ProcessStartInfo class, 199
SelectionStart property, 344, 365, 423

state
AsyncState property, 723, 725
CheckState property, 330, 415
GetItemCheckState method, 368
PermissionState enumeration, 784
PolicyStatementAttribute class, 785
ReadState property, 563
SessionState namespace, 213
SetItemCheckState method, 368
ThreadState property, 666
ThreadStateException exception, 671, 673
ThreeState property, 330
WindowState property, 315
WriteState property, 575

statements, 29
curly brackets, 29
ending statement, 29
functions, C++/CLI, 28
using statement, 28

StateObject class, 725
static keyword, 100, 121
static member methods, 100
static member variables, 98
static modifier, 53
static properties, 121, 122
static ref class constructors, 103
static variables

multithreaded programming, 680

static_cast operator, 131
status

WaitForStatus method, 628

status bar
see StatusStrip control

Status property
ServiceController class, 628, 629

Fraser_640-4Index.fm Page 903 Thursday, November 17, 2005 4:27 PM

cafac74dd2d083cbec0906b66fcd56b1

904 ■I N D E X

StatusBar class, 215
StatusStrip control, 410–413

SizeGrip property, 410
Spring property, 410
three panel status bar, 410, 414

StdCall calling convention, 829
StdCall value

CallingConvention enumeration, 831

stdcli::language namespace
declaring arrays, 47

Stop method
ServiceController class, 628
Timer component, 374

stopping
CanStop property, 614, 628
OnStop event handler, 613, 617, 633

stored procedures
building stored procedures, 525–526
default stored procedures code, 525
InsertAuthor stored procedure, 526
SET NOCOUNT ON option, 526
setting parameters, 525

Stream class
properties/methods, 292
GetStream method, TcpClient class, 714

StreamReader class
creating from NetStream object, 715
simplifying client, 717

StreamReader class, 204
creating StreamReader, 298
methods, 297, 298
using, 297–299

streams
FileStream class, 292–294
FromStream method, 490
GetStream method, 714
I/O manipulation, 291–297
MemoryStream class, 294–297
reading/writing to streams, 292

StreamWriter class, 204
creating StreamWriter, 298

from NetStream object, 715
methods, 298
simplifying client, 717
using, 297–299

StretchImage mode
PictureBox control, 420

Strikeout property
Font class, 477

String class, 833
String data type, 41–42
string literals

escape sequences, 59
literals, C++/CLI, 59–60

StringBuilder class
marshalling strings, 835

StringCollection collection, 259–260
description, 196, 242

StringDictionary collection, 260–261
description, 196, 242

StringFormat class
DrawString method parameter, 473
properties, 474
namespace, 447

StringReader class, 204
strings

drawing strings, 472–475
downward in rectangle, 474
Font/FontFamily classes, 476
text in rectangle, 472, 473

DrawString method, 449, 454, 472–475
FindString method, 359
FindStringExact method, 359
GetString method, 535, 763
ReadElementString method, 563
ReadString method, 563
ToString method, 41, 56, 57

WriteString method, 575

StringWriter class, 204
strip controls, 402–420

ContextMenuStrip, 414–420
MenuStrip, 414–420
StatusStrip, 410–413
ToolStrip, 404–409
ToolStripContainer, 402–403
ToolStripManager, 403–404
ToolStripMenuItem, 414, 415
ToolStripPanel, 402–403

strong names
shared assemblies, 748

struct types
type casting between, 131

StructLayoutAttribute class
Value property, 836

Fraser_640-4Index.fm Page 904 Thursday, November 17, 2005 4:27 PM

905■I N D E X

structs
declaring ref structs, 89

struts
unmanaged classes/struts, 811–815

style
BlinkStyle property, 426
BorderStyle property, 420, 426
ComboBoxStyle list, 364
DisplayStyle property, 405
DropDownStyle options, 364
EnableVisualStyles method, 311
FlatStyle property, 327
GripStyle property, 404
HatchStyle enumerations, 486
HeaderStyle property, 380
VisualStylesEnabled property, 404

Style property
Font class, 477

subscripting
pointer arithmetic and, 48

summary tag
example using, 237
integrated XML documentation, 219, 224
non repeatable tags, 224

SuppressUnmanagedCodeSecurityAttribute, 809
Suspend method

Thread class, 666, 676

Suspended/SuspendRequest states
multithreaded programming, 665

switch statement, 70–71
break statement, 71

switches
command-line switches, 13

synchronization
multithreaded programming, 679–693

Interlocked class, 682–684
Monitor class, 684–687
Mutex class, 687–691
ReaderWriterLock class, 691
ThreadStaticAttribute class, 680–682

using ThreadStatic attribute, 680–682

Synchronized method
generic collection classes, 264

SyncRoot property
generic collection classes, 264

System attribute, files, 286

System namespace, 23, 194
Activator class, 736
Attribute class, 739
GC class, 195
Math class, 195
Object class, 194
OperatingSystem class, 195
Random class, 195
String class, 833
Type class, 730
Version class, 195

system pens, GDI+, 483–485
System::Collections namespace, 23, 195, 196
System::Collections::Generic namespace, 23,

195, 196, 197, 264
System::Collections::Specialized namespace,

195, 196, 257
System::Data namespace, 23, 197, 198, 516
System::Data::Common namespace, 516
System::Data::Odbc namespace, 516, 527
System::Data::OleDb namespace, 23, 516, 527
System::Data::Oracle namespace, 516, 527
System::Data::SqlClient namespace, 23, 516, 527
System::Data::SqlTypes namespace, 516
System::Deployment namespace, 198
System::Diagnostics namespace, 24, 198, 199, 687
System::DirectoryServices namespace, 24, 200
System::Drawing namespace, 24, 200, 201, 446
System::Drawing::Drawing2D namespace, 24,

200, 201, 446
System::Drawing::Imaging namespace, 24, 200,

201, 446
System::Drawing::Printing namespace, 24, 200,

201, 446
System::Drawing::Text namespace, 200, 201,

446, 835
System::EnterpriseServices namespace, 201, 202
System::Globalization namespace, 202, 764,

765, 766
System::IO namespace, 24, 203, 750
System::IO::Ports namespace, 204
System::Management namespace, 204, 205
System::Net namespace, 24, 205, 206, 695
System::Net::Sockets namespace, 695
System::Reflection namespace, 24, 206, 207,

729, 730, 735
System::Resources namespace, 24, 207, 208, 757
System::Runtime::InteropServices namespace,

24, 208, 821, 829, 834

Fraser_640-4Index.fm Page 905 Thursday, November 17, 2005 4:27 PM

906 ■I N D E X

System::Runtime::Remoting namespace, 24,
209, 210

System::Runtime::Serialization namespace, 211
System::Security namespace, 24, 211, 212, 776
System::Security::AccessControl namespace, 776
System::Security::Authentication namespace, 776
System::Security::Cryptography namespace, 776
System::Security::Permissions namespace,

776, 784
System::Security::Policy namespace, 212, 776, 786
System::Security::Principal namespace, 212, 776
System::Text namespace, 200, 201, 446, 835
System::Threading namespace, 24, 212,

662–663, 680–693
System::Web namespace, 24, 213
System::Web::Mail namespace, 24, 213
System::Web::Security namespace, 24, 213, 775
System::Web::Services namespace, 24, 213, 638
System::Web::Services::Configuration

namespace, 213, 638
System::Web::Services::Description

namespace, 638
System::Web::Services::Discovery

namespace, 638
System::Web::Services::Protocols namespace, 638
System::Web::UI namespace, 24, 214
System::Windows::Forms namespace, 24, 214
System::Xml namespace, 24, 215, 216, 561
System:Xml::Schema namespace, 561
System::Xml::Serialization namespace, 211, 561
System::Xml::XPath namespace, 561
System::Xml::Xsl namespace, 561

SystemBrushes class, 447
SystemColors class, 447
SystemException, 169

.NET Framework exception types, 168
order of system exception inheritance, 174

SystemFonts class, 447
SystemIcons class, 447
SystemPens class, 447

■T
Tab key

AcceptsTab property, 344, 347

TabControl control, 394–398
properties, 394
simple TabControl, 395
TabPage class, 394
TabPage control, 398

TabCount property
TabControl control, 395

tables
Authors table, 519
Content table, 520
creating database tables, 519–520
creating relationships between tables,

520–522
creating table manually in code, 548
DataTable class, 546
DataTableCollection class, 546
getting data from two tables, 522
Hashtable collection, 251–255
integrated XML documentation, 232

Tables and Columns property page, 521
TabPage control, 398

Form compared, 395
properties, 395
TabControl control, 394

TabPages property
TabControl control, 395

tabs
AcceptsTab property, 344, 347
SelectedTab property, 395
SelectionTabs property, 353

TargetSite property
Exception class, 169

TBStr value
UnmanagedType enumeration, 834

TCP client, 702

closing connection, 704
connecting to server IPEndPoint, 703
disconnecting from socket, 704, 705
example, 703, 704

Tcp Helper class example, 714, 715, 716, 717
Tcp namespace, 210
TCP server

accepting connection, 698
placing connection on own thread, 698

binding socket to IPEndPoint, 697
creating socket, 696
example, 700, 702
receiving messages, 699, 700
sending messages, 698, 699
setting socket to listening mode, 697

TcpClient class, 713
asynchronous functionality, 721
BeginConnect method, 722

Fraser_640-4Index.fm Page 906 Thursday, November 17, 2005 4:27 PM

907■I N D E X

closing, 717
Connect method, 713, 714
GetStream method, 714

TcpListener class, 712, 713
AcceptSocket method, 712, 713
AcceptTcpClient method, 713
asynchronous functionality, 721
BeginAcceptSocket method, 721
BeginAcceptTcpClient method, 721
Start method, 712

templates, 156–162
class templates, 158–159
description, 156
function templates, 156–158
generics compared, 163, 164
partial specialization, 159
template parameters, 160–162
template specialization, 159

terms, definition of
integrated XML documentation, 232

ternary operator, 64
text

AppendText method, 288, 344
CommandText property, 532, 534
CreateText method, 288
CreateTextNode method, 584
InnerText property, 583
InputText property, 346
MaskedTextBox control, 345–352
OutputText property, 346
RichTextBox control, 215, 352–358
SelectedText property, 344
ToolStripTextBox, 404, 414
ToolTipText property, 405
XmlText class, 582
XmlTextReader class, 562
XmlTextWriter class, 574

text controls, 343–358
data validation, 352
font styles required, 344
formatted sequence of characters

required, 344
TextBoxBase class, 344

Text namespace, 200, 201, 446, 835
Text node type, XML, 564
text nodes

XML document elements, 559

Text property
ButtonBase class, 327
Label control, 324
ListBox control, 359
MaskedTextBox control, 346
NotifyIcon control, 430
RichTextBox control, 352
TabPage class, 395
TextBoxBase class, 344
ToolStrip control, 405
ToolStripMenuItem control, 415
TreeNode class, 389

TextAlign property
Label control, 324
TextBox control, 345

TextBox control, 215, 345
example illustrating, 347
properties, 345

TextBoxBase class, 344
methods/properties, 344

textboxes
ToolStripTextBox, 414

TextImageRelation property
ToolStrip control, 405

TextInfo class, 203, 765
TextReader class, 204
TextureBrush class, 447, 487–489

clamping, 487
constructor, 487
tiling, 487

tiling using TileFlipXY, 488
using images, 487
WrapMode parameter, 487
WrapModes enumeration, 487

TextWriter class, 204
themes

VisualStylesEnabled property, 404

ThisCall value
CallingConvention enumeration, 831

Thread class, 213, 663
Abort method, 666, 671
constructors, 666

caution: maxStackSize, 667
CurrentPrincipal property, 778, 779, 781
CurrentThread property, 666, 670, 766
Interrupt method, 666, 675
IsBackground property, 665, 666

Fraser_640-4Index.fm Page 907 Thursday, November 17, 2005 4:27 PM

908 ■I N D E X

Join method, 666, 673
Name property, 666, 670
obsolete methods, 676
Priority property, 665, 666
ResetAbort method, 671
Resume method, 666, 676
Sleep method, 666, 669, 675
sleep/interrupt functionality, 676
Start method, 666, 667
Suspend method, 666, 676
suspend/resume functionality, 676

thread deadlock condition
multithreaded programming, 692

ThreadAbortException exception, 671, 673
threading

see also multithreaded programming
aborting threads, 671–673
apartment state, 311
CurrentThread class, 770
CurrentThread property, 666, 670, 766
generic collection classes, 264
getting thread to sleep, 669–671
how thread pool works, 678
interrupting/suspending/resuming threads,

675–677
joining threads, 673–674
multithreading, 212
ParameterizedThreadStart delegate, 698
ProcessThread class, 199
starting threads, 666–669
synchronization, 679–693
System::Threading namespace, 662–663
thread priorities, 665
thread state, 663–665
using ThreadPools, 677–679
using threads, 666–677
Windows services, 615

Threading namespace, 24, 212, 662–663, 680–693
ThreadPool class, 213, 663

how thread pool works, 678
keeping main thread alive, 679
QueueUserWorkItem method, 678, 679
using ThreadPools, 677–679

threads
see threading

ThreadStart delegate, 666
ThreadState property

Thread class, 666

ThreadStateException exception, 671, 673
ThreadStatic attribute, 738
ThreadStaticAttribute class, 680–682
ThreeDCheckBoxes property

CheckedListBox control, 368

ThreeState property
CheckBox control, 330

throw statement
throwing ApplicationExceptions, 170

Tick events
event handler accepting, 373

Tile enumeration
WrapModes enumeration, 487

TileFlipX/TileFlipY enumerations
WrapModes enumeration, 487

TileFlipXY enumeration
tiling using, 488
WrapModes enumeration, 487

tiling, 487
time

CreationTime property, 280
DateTime classes, 300, 425
DateTimeFormatInfo class, 202, 765
GetCreationTime method, 281, 285
GetLastAccessTime method, 281, 285
GetLastWriteTime method, 281, 285
LastAccessTime property, 280
LastWriteTime property, 280
ReceiveTimeout option, 719

Timer class, 213
Timer component, 373–376

Elapse handler, 616
event handler accepting, 373
event handler accepting Tick events, 373
methods, 374
single buffering, GDI+, 501
Windows services, 616

timers
ProgressBar control, 374

TimeSpan structure, 669
tlbimp tool, 839

common options, 840

ToArgb method
Color class, 480

TodayDate/TodayDateSet properties
MonthCalendar control, 423

Fraser_640-4Index.fm Page 908 Thursday, November 17, 2005 4:27 PM

909■I N D E X

tokens, XML, 564
see also nodes

ToKnownColor method
Color class, 480

tool tips
AutoToolTip property, 405
ShowItemToolTips property, 405
ShowToolTips property, 395

ToolBar control, 215
ToolStrip compared, 404

toolbars
ToolStrip control, 404–409

Toolbox
adding controls to Win Forms, 324

ToolStrip control, 404–409
creating within Visual Studio 2005, 409
properties configuring tool strip, 404
properties configuring tool strip items, 405
ToolBar compared, 404
ToolStripItems, 404

ToolStripButton
ToolStrip control, 404

ToolStripComboBox
MenuStrip control, 414, 415
ToolStrip control, 404

ToolStripContainer control, 402–403
adding strip controls, 403
adding to Win Form, 403
aligning ToolStripPanels, 403
ContentPanel property, 403

ToolStripDropDownButton
ToolStrip control, 404

ToolStripItems
ToolStrip control, 404

ToolStripLabel
ToolStrip control, 404

ToolStripManager class, 403–404
Merge method, 404
merging two strip controls, 404
properties, 403

ToolStripMenuItem control
building menu, 414
menu development, 415
MenuStrip control, 414
properties, 415

ToolStripPanel control, 402–403
display multiple strip controls, 403

ToolStripSeparator
MenuStrip control, 414
ToolStrip control, 404

ToolStripSplitButton
ToolStrip control, 404

ToolStripTextBox
MenuStrip control, 414
ToolStrip control, 404

ToolTip property
TabPage class, 395

ToolTipText property
ToolStrip control, 405

TooMany_Click event handler method
Button control, 329

Top property
Rectangle/RectangleF structures, 466

ToString method
boolean literals, 57
numeric literals, 56
Object data type, 41

Trace class, 199
tracing

System::Diagnostics namespace, 199

Transaction property
SqlCommand class, 543

transactional database access
connected ADO.NET, 539–543

TransactionAttribute, 202
transactions

BeginTransaction method, 543
DataSet class, 546
rolling back, 539
SqlTransaction class, 543
transaction IsolationLevels, 543
using connected ADO.NET with

transactions, 539–543

Transform method
Region class, 469

Translate method
Region class, 469

TranslateTransform method
Brush class, 487
double buffering example, 508
Graphics class, 460

scrollable windows, GDI+, 496
single buffering, GDI+, 501

Fraser_640-4Index.fm Page 909 Thursday, November 17, 2005 4:27 PM

910 ■I N D E X

transparency
alpha component, colors, 480

TransparentColor property
ImageList component, 378

TreeNode class
adding nodes to TreeView, 393
constructors, 388

using images, 389
Nodes property, 389, 393
properties, 389
TreeView control, 388–393

TreeView control, 215, 387–393
adding TreeNodes, 393
BeforeExpand event, 392
creating, 392
events, 388
properties, 387
replacing holder TreeNode, 393
TreeViewCancelEventHandler, 392

TreeView property
TreeNode class, 389

TreeViewCancelEventHandler
TreeView control, 392

triggers
implementing events, 187
triggering events, 185

Trimming property
StringFormat class, 474

triple slash (///) comments, 218–219
adding to code, 219–220
caution: using in code declaration, 218
caution: using outside of classes, 218
caution: well-formed XML, 219
caution: white space ignored, 219
example using documentation tags, 236–239
generating XML documentation files from,

220–222
stretching over multiple lines, 219
viewing integrated XML documentation in

IntelliSense, 222

trivial properties
member properties, ref class, 118

TrueForAll method, List<T> collection
using Predicate<T>, 267

Truncate method
Point/PointF structures, 463
Rectangle/RectangleF structures, 466
Size/SizeF structures, 464

Truncate value
FileMode enumeration, 289

trust
FullTrust permission, 784

try block
catching SystemExceptions, 170
exception handling described, 167
exceptions, ADO.NET, 531
nested try blocks, 172
processing XML documents within, 586
rethrowing exception, 172
throwing ApplicationExceptions, 171

TryEnter method
Monitor class, 684, 685

try/catch block
XmlException class, 567

type casting
ref classes, 131

Type class
examining metadata, 730
GetType method, 730, 731, 844
GetTypeFromProgID method, 844, 845
InvokeMember method, 845
Is properties, 732
namespace, 730
retrieving metadata, 731

type conversions
data types, C++/CLI, 53–54

Type Library Importer
see tlbimp tool

type metadata
assemblies, 9

Typed DataSet
developing with disconnected ADO.NET,

554–556

typedef operator, 165–166
TypeDelegator class, 207, 730
typeid key, 730
types

see data types

TypeValidationCompleted event
MaskedTextBox control, 346

TypeValidationEventArgs argument
IsValidInput property, 346

typography
GenericTypographic property, 474

Fraser_640-4Index.fm Page 910 Thursday, November 17, 2005 4:27 PM

cafac74dd2d083cbec0906b66fcd56b1

911■I N D E X

■U
U1/U2/U4/U8 values

UnmanagedType enumeration, 834

UDDI (Universal Description, Discovery, and
Integration)

Web Services discovery services, 637

UDP client
example, 710, 711
ReceiveTimeout option, 719

UDP server, 706
binding socket to IPEndPoint, 707
creating, 706
example, 709
receiving message, 707, 708
sending message, 708
using Connect, 711, 712

UdpClient class, 717, 719
asynchronous functionality, 721
BeginReceive method, 724, 725
BeginSend method, 724
Receive method, 717
Send method, 719

UI namespace, 24, 214
UInt16/UInt32/UInt64 integer data types, 33, 34

caution using UInt64, 20

UIPermission class, 784
UMadd

comparing to Madd, 808

unary operators
overloading, 114

UnauthenticatedPrincipal value
PrincipalPolicy enumeration, 778, 779

unboxing
data types, C++/CLI, 51–52

undef (#undef) directive, 141
Underline property

Font class, 477

underscores
variable naming restrictions, 31

undo
CanUndo property, 344
ClearUndo method, 344

Undo method
RichTextBox control, 354
TextBoxBase class, 345

UndoActionName property
RichTextBox control, 353

Unicode character literal
creating from char (8-bit) type, 58

Unicode character set, 40
Unicode value

CharSet enumeration, 831

Unicode version
adding W to Windows functions, 831

Union method
Rectangle/RectangleF structures, 466
Region class, 469

UnionCodeGroup class, 786
UniqueConstraint

Constraint classes, ADO.NET, 548

Unit property
Font class, 477

Universal Description, Discovery, and
Integration (UDDI), 637

unmanaged arrays, 810
unmanaged classes

access modifiers, 94
declarations compared to managed classes,

812
mixing with managed classes, 812
unsafe code, 94

unmanaged classes/struts, 811–815
unmanaged code, 806
unmanaged resources

cleaning up, 105

UnmanagedType enumeration
common values, 834

Unrestricted value

PermissionState enumeration, 784

unsafe classes
see unmanaged classes

unsafe code, 13, 825
accessing COM components from .NET,

837–846
arrays data type, 47
catch block, 176
class/struct data types, 44
creating, 807
data marshalling, 833–837
including vcclr.h file, 820, 821, 822
introduction, 805, 806
managed/unmanaged #pragma directives,

807, 808, 809
modifying dereferenced value, 68

Fraser_640-4Index.fm Page 911 Thursday, November 17, 2005 4:27 PM

912 ■I N D E X

neccessity of, 806, 807
new operator, 46
P/Invoke, 825–833
pointer to unmanaged data type, 98
pointers, 30, 815

interior pointers, 815, 816, 817
pinning interior pointers, 819, 820
pinning pointers, 817, 818, 819
within ref classes, 93

standard main function, 81
static_cast operator, 131
unmanaged arrays, 810
unmanaged classes, 94
unmanaged classes/struts, 811–815

unsafe programming, 805
unsigned integer data types, 33
Unstarted state

multithreaded programming, 664

Update method
committing/rolling back changed rows, 554
DataAdaptor classes, 546
deleting rows from data source, 553
inserting rows into data source, 552
updating rows in data source, 553

UpdateCommand property
DataAdapter classes, 550

UrlMembershipCondition class, 786
UseMnemonic property

Label control, 325

User context
Windows services, 608

user defined data types, 42–51
user defined value types

CTS data types, 19

User ID clause
connection strings, 531

User policy statements, 785
using (#using) directive, 144

assembly referencing, 155, 194
caution: CLR finding, 145
description, 140

using keyword, 145
using statement, 28
utility structures, GDI+, 462–471

■V
Validating event

Control class, 352

ValidatingType property
MaskedTextBox control, 345

validation
validating XML file, 569–574

ValidationEventHandler
delegating event handler, 573
handling invalid XML, 573

ValidationType property
XmlReaderSettings class, 571

validation using DTD, 571
value data types, 42–45
Value property

StructLayoutAttribute class, 836
XmlNode class, 584
XmlReader class, 563
XPathNavigator class, 593, 596

value struct/value class data types, 44
difference between, 44
inheritance, 45

value tag
example using, 237
integrated XML documentation, 225

value types
common type system, 17
language keywords for data types, 19

ValueAs method
XPathNavigator class, 594

ValueAs property
XPathNavigator class, 593

ValueCollection class
Dictionary<K,V> collections, 274

ValueMember property
ListControl class, 359

values
ContainsValue method, 253, 261–263
GetValues method, 262
HasValue property, 562
IndexOfValue method, 253
IsValueType property, 733
KeyValuePair<K,V> element type, 274
NameValueCollection, 261–263
ReadAttributeValue method, 563
returning values from functions, 77–79

Fraser_640-4Index.fm Page 912 Thursday, November 17, 2005 4:27 PM

913■I N D E X

SelectedValue property, 359
WriteValue method, 575

variables, C++/CLI, 29–55
declaring variables, 29–31

constructor initialization, 30
functional notation, 30
initializing within declaration statement,

30, 31
multiple variable declarations, 30
uninitialized variables warning, 31

Hungarian naming notation, 32
naming restrictions, 31–32

context-sensitive keywords, 32
reserved keywords, 31
underscores, 31

scope, 54
self-descriptive naming, 32

vcclr.h file, 820, 821, 822
verification

code access verification, 14

Version class, 195
versioning, 749, 750

assemblies, 9
getting version number, 751
setting version number, 750

Vertical enumeration
HatchStyle enumeration, 487

VerticalResolution property
Image class, 490

view controls, 379–393
ListView control, 379–386
TreeView control, 387–393

View Design window, 523
View property

ListView control, 379

views
creating database views, 522–524
DataGridView control, 556–558
DataView class, 198
ListView control, 379–386
TreeView property, 389
TreeViewCancelEventHandler, 392

virtual keyword
method declarations, 106

virtual member methods
static member methods and, 100

virtual methods
explicit (named) virtual overriding, 107
hiding pure virtual methods, 111
hiding virtual overriding, 107
implicit virtual overriding, 107
method overriding, 111
polymorphism, 106
pure virtual method, 111
sealing, 133

visibility
EnsureVisible method, 380

Visibility property
CheckBox control, 330

Visible property
NotifyIcon control, 430
Panel control, 340

Visual Studio .NET
generating COM Interop Assembly, 840, 841

Visual Studio 2005
building database with, 517–526

Visual Studio. NET
invoking Interop Assembly, 842

VisualStylesEnabled property
ToolStripManager class, 404

void parameter
main function, 28

■W
W3cXsd2001 namespace, 210
Wait method

Monitor class, 685, 687

WaitForStatus method
ServiceController class, 628

WaitHandle class, 663
WaitOne method

Mutex class, 689

WaitSleepJoin state
multithreaded programming, 664

wchar_t alias, Char data type, 39
Web applications

application development, 22

Web namespaces, 24, 213, 638, 775
Web Service GUI Designer tool

passing data using, 652–653

Fraser_640-4Index.fm Page 913 Thursday, November 17, 2005 4:27 PM

914 ■I N D E X

Web services, 635–659
accessing using HTTP POST, 646–647
accessing using SOAP, 647–650
application development, 22
ASP.NET Web Service template, 638
C++/CLI support, 638
communication protocols, 636–637

HTTP POST, 636
SOAP, 637

components of, 636–637
console Web services client application, 649
creating Web service, 638–645
debugging, 650–651

client and Web service scenarios, 651
debugging Web service error, 650

description service, 636
discovery service, 636, 637
guaranteeing unique namespace, 641
making members accessible, 641
namespaces, 638
passing data using, 651–659

DataSet processing Web Service client,
655–659

inserting/updating/deleting rows in
DataSet, 654–655

returning DataSet, 653–654
Web Service GUI Designer tool, 652–653

Resource can’t be found error, 642
Unable to load DLL ‘msvcm80d.dll’ error, 642
Web Services Description Language, 637
WebMethod attribute, 641

WebMethodAttribute, 638
WebService attribute, 640
WebService class, 638
WebServiceAttribute, 638

Web Services Description Language (WSDL)
EmitConformanceClaims property, 640
FindZipCode’s WSDL, 642

Web Services Discovery tool (DISCO), 637
Web Services Interoperability (WSI)

ConformsTo property specifying, 640

Web::Mail namespace, 24
Web::Security namespace, 24
Web::Services namespace, 24
Web::UI namespace, 24
WebControls namespace, 214
WebMethod attribute, 641, 642, 738

WebMethodAttribute
Web services, 638

WebService attribute, 640, 642, 738
WebService class, 638
WebServiceAttribute, 638
WebServiceBinding attribute

ASP.NET Web Service template, 640

well formed XML
verifying, 569

while loop, 71–72
continue statement, 75
do while loop, 72–73

white space
<code> formatting tag, 230
<c> formatting tag, 229
IgnoreWhiteSpace property, 571
integrated XML documentation, 219, 229
<para> formatting tag, 230
PreserveWhitespace property, 584
SetIconIconPadding method, 426
SignificantWhitespace node type, XML, 564
WriteWhitespace method, 575
XmlSignificantWhitespace class, 582
XmlWhitespace class, 582

Whitespace node type, XML, 564
width

SplitterWidth property, 399

Width property
Image class, 490
Pen class, 482

Rectangle/RectangleF structures, 466
Size/SizeF structures, 464

Windows namespace, 24, 214
Win Forms

.NET application development, 21
adding controls, 323
container controls, 394–402
controls, 323
developing with disconnected ADO.NET,

549–558
dialog boxes, 434–444
ErrorProvider control, 426
handling delegates/events, 319–323
Hello World program, 310–314
ImageList component, 377
Microsoft Foundation Classes and, 309
MonthCalendar control, 423

Fraser_640-4Index.fm Page 914 Thursday, November 17, 2005 4:27 PM

915■I N D E X

NotifyIcon control, 430
PictureBox control, 420
strip controls, 402–420
view controls, 379–393

Win32 namespace, 23, 216
Win32OwnProcess service, 606, 607
Win32ShareProcess service, 606, 607
winapi value

CallingConvention enumeration, 831

windows
scrollable windows, 494–497

Windows applications
application development, 21

Windows Forms
see Win Forms

Windows services, 605–634
application development, 22
architecture of, 607–609
automatically generated, 610, 612

conversion for safe code, 612, 613
SimpleWinService.cpp code, 611
SimpleWinService.cpp for safe code, 612
SimpleWinService.h code, 613

confusing name, 605
creating, 609–621
customizing, 615–621

SimpleWinService.h code, 619
debugging, 630–633

attaching debugger to Windows Service,
631–632

special main function, 632–633
description, 605–607
event handler trigger methods, 629
handlers, 607
installed as, 606
installers, 610
installing/uninstalling, 621–624
interface to outside world, 607
managing, 624–630
multiple services, 606
OnContinue event handler, 613, 618
OnCustomCommand event handler, 613, 630
OnPause event handler, 613, 618
OnShutdown event handler, 613
OnStart event handler, 613, 615–617
OnStop event handler, 613, 617
operating system communication, 607

operating systems, 605
path to, 606
querying/retrieving properties of, 608
registry executable object, 607
running, 605
security contexts, 608
service application, 607
service configuration application, 607, 608–609
service control application, 607, 608
Service Control Manager (SCM), 607
ServiceController class, 626–630
service processes, 605
ServiceBase class, 609–621
ServiceController class, 609, 626–630
ServiceInstaller class, 609, 621–624
ServiceProcess namespace, 609
ServiceProcessInstaller class, 609, 621–624
Services application, 625–626

custom service control application, 626–630
single service, 606
starting/stopping, 608
starting manually, 608
template, 610
threads, 615
type of service being accessed, 607
types, 607
user interface, 605

Windows::Forms namespace, 24, 214
WindowsIdentity object, 776, 779
WindowsPrincipal object, 777, 778, 779, 780
WindowState property

Form class, 315

WinMain function, 28
WordWrap property

TextBoxBase class, 344

wprintf function, 822
WrapMode parameter

TextureBrush class, 487

WrapModes enumeration
TextureBrush class, 487

wrapping
LabelWrap property, 380
WordWrap property, 344

Write method
BinaryWriter class, 300
Stream class, 292
StreamWriter class, 298

Fraser_640-4Index.fm Page 915 Thursday, November 17, 2005 4:27 PM

916 ■I N D E X

Write value
FileAccess enumeration, 289
FileShare enumeration, 290

WriteByte method, Stream class, 292
WriteContentTo method

XmlNode class, 584

WriteLine method
Console class, 28
StreamWriter class, 298

WriteState property
XmlWriter class, 575

WriteTo method
MemoryStream class, 295
XmlNode class, 584

WriteXyz methods
XmlWriter class, 575

WSDL (Web Services Description Language), 637

■X
X property

MouseEventArgs class, 319
Point/PointF structures, 463
Rectangle/RectangleF structures, 466

X value
TileFlipX enumeration, 487

XML
.NET Framework XML implementations,

560–561
ADO.NET and XML, 601–603
definition, 559

forward only access, 561–580
delegating event handler, 573
reading from XML file, 562–568
SAX compared, 561
updating existing XML file, 578–580
validating XML file, 569–574
writing new XML stream, 574–578

handling invalid XML, 573
introduction, 559–560
navigating with XPathNavigator, 593–601
verifying well formed, 569
working with DOM trees, 581–592

XML documents, 559
attributes, 560
comments, 560
components, 559
DOM storing and manipulating, 581

elements, 559
header declaration, 560
integrated XML documentation

see integrated XML documentation
loading and saving, 584
loading into XmlDocument, 586
processing within exception try block, 586
WriteStartDocument method, 575
XmlReader processing, 564

XML namespace, 24, 215, 216, 561
XML namespaces, table of, 561
XmlAttribute class, 582
XmlCDataSection class, 582
XmlCharacterData class, 582
XmlComment class, 582
XmlDataDocument class, 582, 601

DataSet property, 601
methods, 601

XmlDeclaration class, 582
XmlDeclaration node type, XML, 564

CreateXmlDeclaration method, 585

XmlDocument class, 584
classes derived from XmlNode, 582
constructor, 586
creating nodes dynamically, 592
methods, 584
properties, 584

XmlDocumentFragment class, 582
XmlDocumentType class, 582
XmlElement class, 582

XmlEntity class, 582
XmlEntityReference class, 582
XmlException class, 567
XmlLinkedNode class, 582
XmlNode class

classes derived from, 582
creating nodes dynamically, 592
DOM trees and, 582
methods, 584
properties, 583
writing XmlNodes in DOM trees, 590–592

XmlNodeList, 584
XmlNodeReader class, 562
XmlNotation class, 582
XmlProcessingInstruction class, 582

Fraser_640-4Index.fm Page 916 Thursday, November 17, 2005 4:27 PM

917■I N D E X

XmlReader class
Create method, 562
creating, 562
Depth property, 562, 567
difference when validated, 572
handling invalid XML, 573
implementing, 564
introduction, 562
methods, 563
prefixes, 563
processing XML document, 564
properties, 562
reading from XML file, 562–568
updating existing XML file, 578–580

XmlReaderSettings class, 569
creating XmlReader class, 562
properties, 571
Reset method, 571
validating XML file, 571

XmlSignificantWhitespace class, 582
XmlText class, 582
XmlTextReader class, 562
XmlTextWriter class, 574
XmlWhitespace class, 582
XmlWriter class

Create method, 575, 577
introduction, 574
methods, 575
properties, 574
updating existing XML file, 578–580
writing new XML stream, 574–578
writing XML file, 576

XmlWriterSettings class
adding XML header, 577
indenting output, 577
introduction, 574
properties, 574
putting attribute on new lines, 577
writing XML document, 577

Xor method
Region class, 469, 471

XPath
operators, 600

XPath class, 216
XPath expressions

accessing DOM tree, 596
accessing named parent nodes, 597
accessing parent nodes at specified depth, 598
accessing unnamed parent nodes, 598
conditional expressions, 598
logical operators, 599
making numeric comparisons, 599
matching attributes, 599
specifying path or file, 597
XPathNavigator using, 596–601

XPath namespace, 561
XPathNavigator class

CreateNavigator method, 584, 595
methods, 593
MoveToRoot method, 595
moving around DOM tree, 594–596
properties, 593
using recursion, 595
using XPath expressions, 596–601
Value property, 593, 596
XML navigation with, 593–601

XSD (XML schema definition)
validating XML file, 569, 570

Xsl class, 216
Xsl namespace, 561

■Y
Y property

MouseEventArgs class, 319
Point/PointF structures, 463
Rectangle/RectangleF structures, 466

Y value
TileFlipY enumeration, 487

Yes type DialogResult, 436

■Z
ZigZag enumeration

HatchStyle enumeration, 487

Fraser_640-4Index.fm Page 917 Thursday, November 17, 2005 4:27 PM

cafac74dd2d083cbec0906b66fcd56b1

forums.apress.com
FOR PROFESSIONALS BY PROFESSIONALS™

JOIN THE APRESS FORUMS AND BE PART OF OUR COMMUNITY. You’ll find discussions that cover topics

of interest to IT professionals, programmers, and enthusiasts just like you. If you post a query to one of our

forums, you can expect that some of the best minds in the business—especially Apress authors, who all write

with The Expert’s Voice™—will chime in to help you. Why not aim to become one of our most valuable partic-

ipants (MVPs) and win cool stuff? Here’s a sampling of what you’ll find:

DATABASES

Data drives everything.

Share information, exchange ideas, and discuss any database
programming or administration issues.

INTERNET TECHNOLOGIES AND NETWORKING

Try living without plumbing (and eventually IPv6).

Talk about networking topics including protocols, design,
administration, wireless, wired, storage, backup, certifications,
trends, and new technologies.

JAVA

We’ve come a long way from the old Oak tree.

Hang out and discuss Java in whatever flavor you choose:
J2SE, J2EE, J2ME, Jakarta, and so on.

MAC OS X

All about the Zen of OS X.

OS X is both the present and the future for Mac apps. Make
suggestions, offer up ideas, or boast about your new hardware.

OPEN SOURCE

Source code is good; understanding (open) source is better.

Discuss open source technologies and related topics such as
PHP, MySQL, Linux, Perl, Apache, Python, and more.

PROGRAMMING/BUSINESS

Unfortunately, it is.

Talk about the Apress line of books that cover software
methodology, best practices, and how programmers interact with
the “suits.”

WEB DEVELOPMENT/DESIGN

Ugly doesn’t cut it anymore, and CGI is absurd.

Help is in sight for your site. Find design solutions for your
projects and get ideas for building an interactive Web site.

SECURITY

Lots of bad guys out there—the good guys need help.

Discuss computer and network security issues here. Just don’t let
anyone else know the answers!

TECHNOLOGY IN ACTION

Cool things. Fun things.

It’s after hours. It’s time to play. Whether you’re into LEGO®

MINDSTORMS™ or turning an old PC into a DVR, this is where
technology turns into fun.

WINDOWS

No defenestration here.

Ask questions about all aspects of Windows programming, get
help on Microsoft technologies covered in Apress books, or
provide feedback on any Apress Windows book.

HOW TO PARTICIPATE:

Go to the Apress Forums site at http://forums.apress.com/.

Click the New User link.

BOB_Forums_7x9.25.qxd 8/18/03

Fraser_640-4Index.fm Page 918 Thursday, November 17, 2005 4:27 PM

	Pro Visual C++/CLI and the .NET 2.0 Platform
	Table of Content
	PART 1 The C++/CLI Language
	Chapter 1 Overview of the .NET Framework
	Chapter 2 C++/CLI Basics
	Chapter 3 Object-Oriented C++/CLI
	Chapter 4 Advanced C++/CLI

	PART 2 .NET Framework Development in C++/CLI
	Chapter 5 The .NET Framework Class Library
	Chapter 6 Integrated XML Documentation
	Chapter 7 Collections
	Chapter 8 Input, Output, and Serialization
	Chapter 9 Basic Windows Forms Applications
	Chapter 10 Advanced Windows Forms Applications
	Chapter 11 Graphics Using GDI+
	Chapter 12 ADO.NET and Database Development
	Chapter 13 XML
	Chapter 14 Windows Services
	Chapter 15 Web Services
	Chapter 16 Multithreaded Programming
	Chapter 17 Network Programming
	Chapter 18 Assembly Programming
	Chapter 19 Security

	PART 3 Unsafe/Unmanaged C++/CLI
	Chapter 20 Unsafe C++ .NET Programming
	Chapter 21 Advanced Unsafe or Unmanaged C++ .NET Programming

	Index

