

Professional
ASP.NET 2.0 Security,
Membership, and Role

Management

Stefan Schackow

01_596985 ffirs.qxp 12/14/05 7:45 PM Page i

Professional
ASP.NET 2.0 Security,
Membership, and Role

Management

Stefan Schackow

01_596985 ffirs.qxp 12/14/05 7:45 PM Page i

Professional ASP.NET 2.0 Security, Membership, and
Role Management
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2006 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN-13: 978-0-7645-9698-8
ISBN-10: 0-7645-9698-5

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1MA/QV/QR/QW/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis-
sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests
to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc.,
10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at http://
www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND
STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING
LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT.
NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HERE-
FROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A
CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT
THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR
WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE
AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Department
within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United
States and other countries, and may not be used without written permission. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

01_596985 ffirs.qxp 12/14/05 7:45 PM Page ii

www.wiley.com

Credits
Senior Acquisitions Editor
Jim Minatel

Development Editor
Sydney Jones

Technical Editors
Jeffrey Palermo
Scott Spradin

Production Editor
Pamela Hanley

Copy Editor
Foxxe Editorial Services

Editorial Manager
Mary Beth Wakefield

Vice President & Executive Group Publisher
Richard Swadley

Vice President and Publisher
Joseph B. Wikert

Graphics and Production Specialists
Denny Hager
Alicia B. South

Quality Control Technicians
Amanda Briggs
John Greenough
Joe Niesen

Proofreading and Indexing
TECHBOOKS Production Services

01_596985 ffirs.qxp 12/14/05 7:45 PM Page iii

01_596985 ffirs.qxp 12/14/05 7:45 PM Page iv

To the ASP.NET group that gave me the opportunity to work
on a great product with a great team!

01_596985 ffirs.qxp 12/14/05 7:45 PM Page v

01_596985 ffirs.qxp 12/14/05 7:45 PM Page vi

About the Author
Stefan Schackow currently works as a program manager at Microsoft on the ASP.NET product team.
He has worked extensively with the new application services delivered in ASP.NET 2.0, including
Membership and Role Manager. Currently he is working on future directions for extending these fea-
tures via Web Services and the Windows Communication Foundation. Prior to joining the ASP.NET
product team, he worked in Microsoft’s consulting services designing web and database applications
for various enterprise clients.

01_596985 ffirs.qxp 12/14/05 7:45 PM Page vii

01_596985 ffirs.qxp 12/14/05 7:45 PM Page viii

Acknowledgments

I started out writing this book with the intent of setting down in words a brain dump of some of the
more esoteric areas of features I either “own” or work on in conjunction with other folks. However, as
the book took shape I found myself diving into areas that were important from a security perspective
but that dealt with aspects of features that very few people really understood (myself included). I would
like to thank the following folks for answering my sometimes off-the-wall security questions: Pat, Shai,
Erik, Mike, Simon, Adam, Manu, Helen, Mark, Laura, Dmitry, Ting, DaveM, Sudheer, Richa, Smitha, and
DavidE. Now that it’s all written down I promise to stop pestering you, maybe. . . .

I would also like to thank Jim Minatel for walking up to me at a DevConnections conference in 2004 and
broaching the idea of writing a security book. Without his suggestion and support this project never
would have occurred!

01_596985 ffirs.qxp 12/14/05 7:45 PM Page ix

01_596985 ffirs.qxp 12/14/05 7:45 PM Page x

Contents

Acknowledgments ix
Introduction xix
Who Is This Book For? xix
What Does This Book Cover? xix
What You Need to Run the Examples xxi
Conventions xxii
Customer Support xxiii

How to Download the Sample Code for the Book xxiii
Errata xxiii
Email Support xxiii
p2p.wrox.com xxiv

Chapter 1: Initial Phases of a Web Request 1

IIS Request Handling 2
Http.sys 3
aspnet_filter.dll 5
Processing Headers 6
Blocking Restricted Directories 8

Dynamic versus Static Content 9
MIME Type Mappings 9
ISAPI Extension Mappings 10
Wildcard Application Mappings 13

aspnet_isapi.dll 14
Starting Up an Application Domain 15
First Request Initialization 23

Summary 28

Chapter 2: Security Processing for Each Request 31

IIS Per-Request Security 32
ASP.NET Per-Request Security 33

Where Is the Security Identity for a Request? 34
Establishing the Operating System Thread Identity 38
The ASP.NET Processing Pipeline 41
Thread Identity and Asynchronous Pipeline Events 43
AuthenticateRequest 48

02_596985 ftoc.qxp 12/14/05 7:45 PM Page xi

xii

Contents

DefaultAuthentication and Thread.CurrentPrincipal 54
PostAuthenticateRequest 57
AuthorizeRequest 58
PostAuthorizeRequest through PreRequestHandlerExecute 65
Blocking Requests during Handler Execution 66
Identity during Asynchronous Page Execution 69
EndRequest 74

Summary 75

Chapter 3: A Matter of Trust 77

What Is an ASP.NET Trust Level? 78
Configuring Trust Levels 80
Anatomy of a Trust Level 83
A Second Look at a Trust Level in Action 91
Creating a Custom Trust Level 96
Additional Trust Level Customizations 99
The Default Security Permissions Defined by ASP.NET 105
Advanced Topics on Partial Trust 118

Summary 141

Chapter 4: Configuration System Security 143

Using the <location /> Element 143
The Path Attribute 145
The AllowOverride Attribute 146

Using the lock Attributes 146
Locking Attributes 147
Locking Elements 149
Locking Provider Definitions 151

Reading and Writing Configuration 153
Permissions Required for Reading Local Configuration 155
Permissions Required for Writing Local Configuration 157
Permissions Required for Remote Editing 159

Using Configuration in Partial Trust 161
The requirePermission Attribute 163
Demanding Permissions from a Configuration Class 165
FileIOPermission and the Design-Time API 166

Protected Configuration 166
What Can’t You Protect? 168
Selecting a Protected Configuration Provider 169
Defining Protected Configuration Providers 172
DpapiProtectedConfigurationProvider 172

02_596985 ftoc.qxp 12/14/05 7:45 PM Page xii

xiii

Contents

RsaProtectedConfigurationProvider 175
Aspnet_regiis Options 181
Using Protected Configuration Providers in Partial Trust 182
Redirecting Configuration with a Custom Provider 184

Summary 190

Chapter 5: Forms Authentication 191

Quick Recap on Forms Authentication 192
Understanding Persistent Tickets 192

How Forms Authentication Enforces Expiration 194
Securing the Ticket on the Wire 198

How Secure Are Signed Tickets? 198
New Encryption Options in ASP.NET 2.0 201

Setting Cookie-Specific Security Options 204
requireSSL 204
HttpOnly Cookies 206
slidingExpiration 208

Using Cookieless Forms Authentication 208
Cookieless Options 210
Replay Attacks with Cookieless Tickets 215
The Cookieless Ticket and Other URLs in Pages 216
Payload Size with Cookieless Tickets 218
Unexpected Redirect Behavior 221

Sharing Tickets between 1.1 and 2.0 222
Leveraging the UserData Property 224
Passing Tickets across Applications 226

Cookie Domain 226
Cross-Application Sharing of Ticket 227

Enforcing Single Logons and Logouts 247
Enforcing a Single Logon 248
Enforcing a Logout 255

Summary 257

Chapter 6: Integrating ASP.NET Security with Classic ASP 259

IIS5 ISAPI Extension Behavior 260
IIS6 Wildcard Mappings 261

Configuring a Wildcard Mapping 261
The Verify That File Exists Setting 268

DefaultHttpHandler 268
Using the DefaultHttpHandler 270
Authenticating Classic ASP with ASP.NET 272

02_596985 ftoc.qxp 12/14/05 7:45 PM Page xiii

xiv

Contents

Will Cookieless Forms Authentication Work? 273
Passing Data to ASP from ASP.NET 274
Passing Username to ASP 276

Authorizing Classic ASP with ASP.NET 276
Passing User Roles to Classic ASP 277
Safely Passing Sensitive Data to Classic ASP 278
Full Code Listing of the Hash Helper 284

Summary 285

Chapter 7: Session State 287

Does Session State Equal Logon Session? 287
Session Data Partitioning 290
Cookie-Based Sessions 291

Cookie Sharing across Applications 292
Protecting Session Cookies 293
Session ID Reuse 294

Cookieless Sessions 294
Session ID Reuse and Expired Sessions 296
Session Denial of Service Attacks 297
Trust Levels and Session State 300

Serialization and Deserialization Requirements 302
Database Security for SQL Session State 304
Security Options for the OOP State Server 306
Summary 307

Chapter 8: Security for Pages and Compilation 309

Request Validation and Viewstate Protection 309
Request Validation 310
Securing viewstate 311

Page Compilation 314
Fraudulent Postbacks 318
Site Navigation Security 322
Summary 327

Chapter 9: The Provider Model 329

Why Have Providers? 329
Patterns Found in the Provider Model 332

The Strategy Pattern 332
Factory Method 334
The Singleton Pattern 339

02_596985 ftoc.qxp 12/14/05 7:45 PM Page xiv

xv

Contents

Façade 341
Core Provider Classes 342

System.Configuration.Provider Classes 342
System.Web.Configuration Classes 346
System.Configuration Classes 347

Building a Provider-Based Feature 351
Summary 366

Chapter 10: Membership 367

The Membership Class 368
The MembershipUser Class 371

Extending MembershipUser 373
MembershipUser State after Updates 375
Why Are Only Certain Properties Updatable? 379
DateTime Assumptions 380

The MembershipProvider Base Class 382
Basic Configuration 383
User Creation and User Updates 384
Retrieving Data for a Single User 387
Retrieving and Searching for Multiple Users 387
Validating User Credentials 388
Supporting Self-Service Password Reset or Retrieval 390
Tracking Online Users 392
General Error Handling Approaches 393

The “Primary Key” for Membership 394
Supported Environments 396
Using Custom Hash Algorithms 399
Summary 402

Chapter 11: SqlMembershipProvider 403

Understanding the Common Database Schema 404
Storing Application Name 404
The Common Users Table 405
Versioning Provider Schemas 408
Querying Common Tables with Views 410
Linking Custom Features to User Records 410
Why Are There Calls to the LOWER Function? 414

The Membership Database Schema 415
SQL Server–Specific Provider Configuration Options 418

Working with SQL Server Express 419

02_596985 ftoc.qxp 12/14/05 7:45 PM Page xv

xvi

Contents

Sharing Issues with SSE 424
Changing the SSE Connection String 425

Database Security 426
Database Schemas and the DBO User 428
Changing Password Formats 430
Custom Password Generation 432
Implementing Custom Encryption 435
Enforcing Custom Password Strength Rules 437

Hooking the ValidatePassword Event 439
Implementing Password History 440

Account Lockouts 451
Implementing Automatic Unlocking 454
Supporting Dynamic Applications 458
Summary 463

Chapter 12: ActiveDirectoryMembershipProvider 465

Supported Directory Architectures 465
Provider Configuration 468

Directory Connection Settings 468
Directory Schema Mappings 471
Provider Settings for Search 474
Membership Provider Settings 475

Unique Aspects of Provider Functionality 477
ActiveDirectoryMembershipUser 480

IsApproved and IsLockedOut 481
Using the ProviderUserKey Property 482

Working with Active Directory 482
UPNs and SAM Account Names 484
Container Nesting 486
Securing Containers 487
Configuring Self-Service Password Reset 494

Using ADAM 503
Installing ADAM with an Application Partition 504
Using the Application Partition 510

Using the Provider in Partial Trust 512
Summary 515

Chapter 13: Role Manager 517

The Roles Class 517
The RolePrincipal Class 521
The RoleManagerModule 531

02_596985 ftoc.qxp 12/14/05 7:45 PM Page xvi

xvii

Contents

PostAuthenticateRequest 531
EndRequest 534
Role Cache Cookie Settings and Behavior 535
Working with Multiple Providers during GetRoles 537

RoleProvider 542
Basic Configuration 544
Authorization Methods 544
Managing Roles and Role Associations 544

WindowsTokenRoleProvider 546
Summary 551

Chapter 14: SqlRoleProvider 553

SqlRoleProvider Database Schema 553
SQL Server–Specific Provider Configuration Options 555
Transaction Behavior 556

Provider Security 556
Trust-Level Requirements and Configuration 557
Database Security 563

Working with Windows Authentication 563
Running with a Limited Set of Roles 565
Authorizing with Roles in the Data Layer 570
Supporting Dynamic Applications 571
Summary 572

Chapter 15: AuthorizationStoreRoleProvider 573

Provider Design 573
Supported Functionality 576
Using a File-Based Policy Store 578
Using a Directory-Based Policy Store 580
Working in Partial Trust 589
Using Membership and Role Manager Together 592
Summary 594

Index 595

02_596985 ftoc.qxp 12/14/05 7:45 PM Page xvii

02_596985 ftoc.qxp 12/14/05 7:45 PM Page xviii

Introduction

This book covers security topics on a wide range of areas in ASP.NET 2.0. It starts with detailed coverage
of how security is applied when an ASP.NET application starts up and when a request is processed. The
book then branches out to cover security information for features such as trust levels, forms authentica-
tion, session state, page security, and configuration system security. You will also see how you can inte-
grate ASP.NET security with legacy ASP applications. Over the course of these topics, you will gain a
solid understanding of many of the less publicized security features in ASP.NET 2.0.

The book switches gears in Chapter 9 and addresses two new security services in ASP.NET 2.0:
Membership and Role Manager. You start out learning about the provider model that underlies both
of these features. Then you will get a detailed look at the internals of both features, as well as the SQL-
and Active Directory–based providers that are included with them. After reading through these topics,
you will have a thorough background on how you can work with the new providers and how you can
extend them in your applications.

Who Is This Book For?
This book is intended for developers who already have a solid understanding of ASP.NET 1.1 security
concepts in the area of forms authentication, page security, and website authorization. Where the book
addresses new functionality, such as Membership and Role Manager, it assumes that you have already
used these features and have a good understanding of the general functionality provided by both of
them. As a result, this book does not rehash widely available public information on various features or
API reference documentation.

Instead, you will find that the book has been written to “peel back the covers” of various ASP.NET secu-
rity features so that you can gain a much deeper understanding of the security options available to you.
The book also addresses lesser known security functionality such as ASP.NET trust levels and ASP.NET-
to-ASP integration so that you can take advantage of these approaches in your own applications.

If you are looking for a deep dive on general ASP.NET 2.0 security, then you will find Chapters 1–8 very
useful. If your initial focus is on the new Membership and Role Manager features, then Chapters 9–15
will be immediately useful to you. After you have read through these topics, you will definitely have a
thorough understanding of why ASP.NET security works the way it does, and you will have insights
into just how far you can “stretch” ASP.NET 2.0 to match your application’s security requirements.

What Does This Book Cover?
The subject of ASP.NET security can refer to a lot of different concepts: security features, best coding
practices, lockdown procedures, and so on. This book addresses ASP.NET security features from the
developer’s point of view. It gives you detailed information on every major area of ASP.NET security

03_596985 flast.qxp 12/14/05 7:45 PM Page xix

xx

Introduction

you will encounter while developing web applications. And it shows you how you can extend or modify
these features.

❑ Chapter 1 walks you through the internal processing ASP.NET performs when it starts up an
application domain. You will see how control passes from IIS to ASP.NET, and you will learn
about the special processing ASP.NET performs during the very first request to an app domain.

❑ Chapter 2 gives you a detailed walk through of the security processing ASP.NET performs in
its pipeline for each HTTP request. You will see how the default authentication and authoriza-
tion modules work, as well as how ASP.NET blocks access to content with special handlers.
This chapter also describes subtleties in how request identity works with ASP.NET 2.0’s asyn-
chronous pipeline events and asynchronous page model.

❑ Chapter 3 describes what an ASP.NET trust level is and how ASP.NET trust levels work to pro-
vide more secure environments for running web applications. The chapter goes into detail on
how you can customize trust levels and how to write privileged code that works in partial trust
applications.

❑ Chapter 4 covers the new security features in the 2.0 Framework’s configuration system. It dis-
cusses new configuration options for locking down configuration sections as well as protecting
configuration sections from prying eyes. It also discusses how ASP.NET trust levels and config-
uration system security work together.

❑ Chapter 5 explains new ASP.NET 2.0 features for forms authentication. You will learn about the
new integrated cookieless support and the new support forms authentication has for passing
authentication tickets across web applications. The chapter also presents an extensive example
of implementing a lightweight single sign-on solution using forms authentication, as well as
how to enforce a single login using a combination of forms authentication and Membership.

❑ Chapter 6 demonstrates using IIS6 wildcard mappings and ASP.NET 2.0’s support for wildcard
mappings to share authentication and authorization information with classic ASP applications.
The sample code in the chapter also shows you how you can use these features to integrate
Membership and Role Manager with classic ASP.

❑ Chapter 7 covers security features and guidance for session state. New session state security fea-
tures introduced in ASP.NET 2.0 are covered, as well as security options for out-of-process state
and the effect ASP.NET trust levels have on the session state feature.

❑ Chapter 8 describes some lesser known page security features from ASP.NET 1.1. It also
describes new ASP.NET 2.0 options for securing viewstate and postback events. Chapter 8
also covers how the new dynamic compilation model can be used with code access security.

❑ Chapter 9 gives you an architectural overview of the new provider model introduced in
ASP.NET 2.0. The chapter covers the various Framework classes that are “the provider model”
along with sample code showing you how to write your own custom provider-based features.

❑ Chapter 10 talks about the new Membership feature. The chapter goes into detail about the core
classes of the Membership feature as well as how you can extend the feature with custom hash
algorithms.

❑ Chapter 11 delves into both the SqlMembershipProvider as well as general database design
assumptions that are baked into all of ASP.NET 2.0’s new SQL-based features. You will learn
how you can extend the provider to support automatically unlocking user accounts. The sample
code also covers custom password encryption, storing password histories, and extending the
provider to work in portal environments.

03_596985 flast.qxp 12/14/05 7:45 PM Page xx

xxi

Introduction

❑ Chapter 12 covers the other membership provider that ships in ASP.NET 2.0: the
ActiveDirectoryMembershipProvider. You will learn about how this provider maps
its functionality onto Active Directory, and you will see how to set up both Active Directory
and Active Directory Application Mode servers to work with the provider.

❑ Chapter 13 describes the new Role Manager feature that provides built-in authorization support
for ASP.NET 2.0. You will learn about the core classes in Role Manager. The chapter also details
how the RoleManagerModule is able to automatically set up a principle for downstream autho-
rization and how the module and Role Manager’s caching work hand in hand. Chapter 13 also
covers the WindowsTokenRoleProvider, which is one of the providers that ships with Role
Manager.

❑ Chapter 14 discusses the SqlRoleProvider and its underlying SQL schema. You will learn
about using the provider in conjunction with Windows authentication, extending the provider
to support custom authorization logic, and how you can use its database schema for data layer
authorization logic. Although not specific to just SqlRoleProvider, the chapter covers how to
get the provider working in a partial trust non-ASP.NET environment.

❑ Chapter 15 covers the AuthorizationStoreRoleProvider— a provider that maps Role
Manager functionality to the Authorization Manager feature that first shipped in Windows Server
2003. You will learn how to set up and use both file-based and directory-based policy stores with
the provider. The chapter covers special Authorization Manager functionality that is supported
by the provider, as well as how to use both the ActiveDirectoryMembershipProvider and
AuthorizationStoreRoleProvider to provide Active Directory based authentication and
authorization in your web applications.

What You Need to Run the Examples
This book was written using various Beta 2 and RC releases of the 2.0 Framework on Windows Server
2003 SP1. The sample code in the book has been verified to work with late RC builds of the 2.0
Framework. To run all of the samples in the book, you will need the following:

❑ Windows Server 2003 SP1

❑ Visual Studio 2005 RTM

❑ Either SQL Server 2000 or SQL Server 2005

❑ A Windows Server 2003 domain running at Windows Server 2003 functional level

Most of the samples should also work when using Windows XP. Note that the information in most of the
book refers to security credential configuration using IIS6 application pools as opposed to the older
<processModel /> approach used in Windows XP and IIS 5.1.

The book covers topics in Chapter 6 that require IIS6 features to work.

Chapters 11 and 14 use the SQL-based providers. You should have either SQL Server 2000 or SQL Server
2005 set up to use these samples. Scattered throughout the book are other samples that rely on the
Membership feature — these samples also require either SQL Server 2000 or SQL Server 2005.

03_596985 flast.qxp 12/14/05 7:45 PM Page xxi

xxii

Introduction

To run the samples in Chapter 12, you will need either a Windows Server 2003 domain controller,
or a machine running Active Directory Application Mode (ADAM). Chapter 12 addresses using the
ActiveDirectoryMembershipProvider in both environments.

The sample code in Chapter 15 uses the Authorization Manager functionality in Windows Server
2003 (both setting up policies as well as consuming them). As a result, to run most of the samples you
will need a Windows Server 2003 domain controller that has been set up to work with Authorization
Manager. For file-based policy stores, you do not need your own domain controller if you just want to
try out file-based policy stores with AuthorizationStoreRoleProvider.

Conventions
Code has several styles. If I am talking about a word in the text—for example, when discussing a
For . . . Next loop — it’s in this font. If it’s a block of code that can be typed as a program and
run, then it’s also in a gray box:

Private Sub mnuHelpAbout_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles mnuHelpAbout.Click

Dim objAbout As New About
objAbout.ShowDialog(Me)
objAbout = Nothing

End Sub

Configuration information and the results from running code use a similar font, but do not have a back-
ground color:

<connectionStrings>
<add name=”myDatabase” connectionString=”some connection string”/>

</connectionStrings>

Sometimes you’ll see code in a mixture of styles, like this:

Private Sub mnuHelpAbout_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles mnuHelpAbout.Click

Dim objAbout As New About
objAbout.ShowDialog(Me)
objAbout.Dispose()
objAbout = Nothing

End Sub

In cases like this, the code with the gray background is code you are already familiar with; the line in the
bolded font is a new addition to the code.

03_596985 flast.qxp 12/14/05 7:45 PM Page xxii

xxiii

Introduction

Customer Support
We always value hearing from our readers, and we want to know what you think about this book: what
you liked, what you didn’t like, and what you think we can do better next time. You can send us your
comments either by returning the reply card in the back of the book or by email to feedback@wrox.com.
Please be sure to mention the book’s title in your message.

How to Download the Sample Code for the Book
When you visit the Wrox site (wrox.com) simply locate the title through our Search facility or by clicking
the Download Code link at the top of the main page, then find the book in the title list. Click the HTTP
or FTP link for the book to download the code.

The files that are available for download from our site have been archived using WinZip. When you
have saved the attachments to a folder on your hard drive, you need to extract the files using a decom-
pression program such as WinZip or PKUnzip. When you extract the files, the code is usually extracted
into chapter folders. When you start the extraction process, ensure that your software (WinZip or
PKUnzip) is set to use folder names.

Errata
We’ve made every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect and mistakes do occur. If you find an error in one of our books, such as a spelling mistake or a
faulty piece of code, we would be very grateful for feedback. By sending in errata, you may save another
reader hours of frustration, and, of course, you will be helping us provide even higher-quality informa-
tion. Simply email the information to support@wrox.com; your information will be checked and, if cor-
rect, posted to the errata page for that title, or used in subsequent editions of the book.

To find errata on the Web site, go to wrox.com and simply locate the title through our Advanced Search
or title list or by going to the Help Center using the link at the bottom of the main page. Click the View
Errata link, which is to the right of the book’s title.

Email Support
If you wish to directly query a problem in the book with an expert who knows the book in detail, then
email support@wrox.com with the title of the book and the last four numbers of the ISBN in the subject
field of the email. A typical email should include the following things:

❑ The title of the book, the last four digits of the ISBN (8000), and the page number of the problem
in the Subject field

❑ Your name, contact information, and the problem in the body of the message

We won’t send you junk mail. We need the details to save your time and ours. When you send an email
message, it will go through the following chain of support:

❑ Customer Support — Your message is delivered to our customer support staff, who are the first
people to read it. They have files on most frequently asked questions and will answer anything
general about the book or the Web site immediately.

03_596985 flast.qxp 12/14/05 7:45 PM Page xxiii

xxiv

Introduction

❑ Editorial — Deeper queries are forwarded to the technical editor responsible for that book.
They have experience with the programming language or particular product, and is able to
answer detailed technical questions on the subject.

❑ The Authors — Finally, in the unlikely event that the editor cannot answer your problem, he or
she will forward the request to the author. We do try to protect authors from any distractions
to their writing; however, we are quite happy to forward specific requests to them. All Wrox
authors help with the support on their books. They will email the customer and the editor with
their response, and again all readers should benefit.

The Wrox support process can offer support only for issues that are directly pertinent to the content of
our published title. Support for questions that fall outside the normal scope of a book’s support is pro-
vided via the community lists of our http://p2p.wrox.com forum.

p2p.wrox.com
For author and peer discussion, join the P2P forums. Our unique system provides programmer-to-
programmer contact on mailing lists, forums, and newsgroups, all in addition to our one-to-one email
support system. If you post a query to P2P, you can be confident that it is being examined by the many
Wrox authors and other industry experts who are present on our mailing lists. At p2p.wrox.com, you
will find a number of different lists that will help you, not only while you read this book, but also as you
develop your own applications. Particularly appropriate to this book are the Visual Basic and VBA
forums, the Database forums, and the DotNet forums.

To subscribe to a forum, just follow these steps:

1. Go to http://p2p.wrox.com.

2. Register using the Register link from the left menu bar or log in if you are already a member.

3. Navigate to the appropriate forum.

4. Click the Subscribe to This Forum link for the forum you wish to join.

Why This System Offers the Best Support
You can choose to join the mailing lists, or you can receive them as a weekly digest. If you don’t have
the time, or facility, to receive the mailing list, you can search our online archives. Junk and spam mail is
deleted, and your own e-mail address is protected by the unique Lyris system. Queries about joining or
leaving lists, and any other general queries about lists, should be sent to listsupport@p2p.wrox.com.

03_596985 flast.qxp 12/14/05 7:45 PM Page xxiv

Professional
ASP.NET 2.0 Security,
Membership, and Role

Management

03_596985 flast.qxp 12/14/05 7:45 PM Page xxv

03_596985 flast.qxp 12/14/05 7:45 PM Page xxvi

Initial Phases of a
Web Request

Before the first line of code you write for an .aspx page executes, both Internet Information Services
(IIS) and ASP.NET have performed a fair amount of logic to establish the execution context for a
HyperText Transfer Protocol (HTTP) request. IIS may have negotiated security credentials with your
browser. IIS will have determined that ASP.NET should process the request and will perform a hand-
off of the request to ASP.NET. At that point, ASP.NET performs various one-time initializations as
well as per-request initializations.

This chapter will describe the initial phases of a Web request and will drill into the various security
operations that occur during these phases. In this chapter, you will learn about the following steps
that IIS carries out for a request:

❑ The initial request handling and processing performed both by the operating system layer
and the ASP.NET Internet Server Application Programming Interface (ISAPI) filter

❑ How IIS handles static content requests versus dynamic ASP.NET content requests

❑ How the ASP.NET ISAPI filter transitions the request from the world of IIS into the
ASP.NET world

Having an understanding of the more granular portions of request processing also sets the stage
for future chapters that expand on some of the more important security processing that occurs
during an ASP.NET request as well as the extensibility points available to you for modifying
ASP.NET’s security behavior.

This book describes security behavior primarily for Windows Server 2003 running IIS6 and
ASP.NET. Due to differences in capabilities between IIS5/5.1 and IIS6, some of what is described
is not available or applicable when running on Windows 2000/XP. Differences in behavior
between versions of IIS are noted in some cases.

04_596985 ch01.qxp 12/14/05 7:46 PM Page 1

IIS Request Handling
The initial processing of an HTTP request on Windows Server 2003 occurs within both IIS and a support-
ing protocol driver. As a result, depending on the configuration for IIS, a request may never make it far
enough to be processed by ASP.NET. The diagram in Figure 1-1 shows the salient portions of IIS and
Windows Server 2003 that participate in request processing.

Figure 1-1

A request must first make it past the restrictions enforced by the kernel mode HTTP driver: http.sys. The
request is handed off to a worker process where it then flows through a combination of the internal
request processing provided by IIS and several ISAPI filters and extensions. Ultimately, the request is
routed to the appropriate content handler, which for ASP.NET pages is the ASP.NET runtime’s ISAPI
extension.

static content aspnet_isapi.dll

Worker process
w3wp.exe

aspnet_filter.dll

ISAPI filters

http.sysRequest for
default.aspx

asp.dll

2

Chapter 1

04_596985 ch01.qxp 12/14/05 7:46 PM Page 2

Http.sys
When an HTTP request is first received by Windows Server 2003, the initial handling is actually performed
by the kernel-mode HTTP driver: http.sys. The kernel mode driver has several Registry switches that
control the amount of information allowed in a request URL. By default the combined size of the request
URL and associated headers — any query string information on the URL, and individual headers sent
along with the request, such as cookie headers — must not exceed 16KB.

Furthermore, no individual header may exceed 16KB. So, for example, a user agent could not attempt to
send a cookie that is larger than 16KB (although for other reasons, a 16KB cookie would be rejected by
ASP.NET anyway). Under normal circumstances the restrictions on headers and on the total combined
size of the request URL and headers is not a problem for ASP.NET applications. However, if your appli-
cation depends on placing large amounts of information in the URL — perhaps for HTTP-based .asmx
Web Services — then the length limit enforced by http.sys may come into play.

Any application that depends on excessively long request URLs or request headers should, if at all possi-
ble, have its logic changed to transmit the information through other mechanisms. For a Web Service,
this means using Simple Object Access Protocol (SOAP) headers to encapsulate additional request data.
For a website, information needs to be sent using a POST verb, rather than a GET verb.

The kernel mode driver restricts the number of path segments in a URL and the maximum length for
any individual path segment. Examine the following URL:

http://yoursite/application1/subdirectory2/resource.aspx

The values application1, subdirectory2, and resource.aspx represent individual path segments. By
default, http.sys disallows URLs that have more than 255 path segments and URLs where the length of any
single path segment exceeds 260 characters. These constraints are actually pretty generous, because in prac-
tice developers normally do not need large number of path segments, even for applications with a fair
amount of directory nesting. The requested page in the previous example, resource.aspx, is considered a
path segment and is subject to the same length restrictions as any portion of the URL. However, if there
were query string variables after resource.aspx, the length of the query string variables would apply
only against the overall 16KB size restriction on the combined size of URL plus headers. As a result, you
can have query string variables with values that are greater than 260 characters in length.

One reason for these size limits is that a number of hack attacks against web servers involve encoding
the URL with different character representations. For example, an attacker may attempt to bypass direc-
tory traversal restrictions by encoding periods like this:

http://yoursite/somevirtualdirectory/%2E%2E/%2E%2E/%2E%2E/boot.ini

As you can see, encoding characters bloats the size of the URL, so it is reasonable to assume that exces-
sively long URLs are likely due to hacker attempts.

To give you a concrete example of http.sys blocking a URL, consider a request of the following form:

http://localhost/123456789012345678901234567890etc.../foo.htm

3

Initial Phases of a Web Request

04_596985 ch01.qxp 12/14/05 7:46 PM Page 3

The sequence 1234567890 is repeated 26 times in the URL. Because the path segment is exactly 260
characters though, http.sys does not reject the request. Instead, this URL results in a 404 from IIS
because there is no foo.htm file on the system.

However, if you add one more character to this sequence, thus making the path segment 261 characters
long, an HTTP 400 - Bad Request error message is returned. In this case, the request never makes it far
enough for IIS to attempt to find a file called foo.htm. Instead, http.sys rejects the URL and additional
IIS processing never occurs. This type of URL restriction reduces the load on IIS6, because IIS6 does not
have to waste processor cycles attempting to parse and process a bogus URL.

This raises the question of how a web server administrator can track URL requests are being rejected.
The http.sys driver will log all errors (not just security-related errors) to a special HTTP error log file.
On Windows Server 2003, inside of the %windir%\system32\LogFiles directory, there is an HTTPERR
subdirectory. Inside of the directory one or more log files contain errors that were trapped by http.sys.
In the case of the rejected URLs, a log entry looks like:

2005-03-13 22:09:50 127.0.0.1 1302 127.0.0.1 80 HTTP/1.1 GET /1234567890....htm 400
- URL

For brevity the remainder of the GET URL has been snipped in the previous example; however, the log
file will contain the first 4096 bytes of the requested URL. In this example, the value URL at the end of the
log entry indicates that parsing of the URL failed because one of the path segment restrictions was
exceeded.

If the URL is larger than 16KB, the log entry ends with URL_Length, indicating that the allowable URL
length had been exceeded. An example of such a log entry is:

2005-03-13 23:02:53 127.0.0.1 1086 127.0.0.1 80 HTTP/0.0 GET - 414 -
URL_Length

For brevity, the URL that caused this is not included because a 16KB long URL would not be particularly
interesting to slog through. Remember that form posts and file uploads also include a message body that
usually contains the vast majority of the content being sent to the web server. Because http.sys only
checks the URL and associated headers, it does not perform any validation on the size of the message
body. Instead it is ASP.NET that is responsible for limiting the size of raw form post data or file uploads.

A subtle point about the previous discussion is that some of the restrictions http.sys enforces are based
on number of characters, while other restrictions are based on byte size. In the case of path segments, the
restrictions are based on number of characters, regardless of the underlying character set. However, for
the 16KB size restrictions, the actual URL or header allowed depends heavily on the characters in the
URL or headers. If a URL or header contains only standard ASCII characters, a 16KB size limit equates to
16384 characters. However, if a URL or header contains characters other than standard ASCII characters,
converting from byte size to character length becomes a bit murkier.

Because http.sys processes URLs as UTF-8 by default, and UTF-8 characters consume between 1 and 3
bytes in memory, an allowable URL length could be anywhere from roughly 5461 characters to 16384
characters. A general rule of thumb when using non-ASCII characters though is to assume 2 bytes per
character if there is extensive use of Unicode characters, which equates to a maximum URL length
(including query string variables) of 8192 characters.

4

Chapter 1

04_596985 ch01.qxp 12/14/05 7:46 PM Page 4

The character length and byte size restrictions enforced by http.sys can be modified by adding DWORD
values underneath the following Registry key:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\HTTP\Parameters

The specific Registry settings that govern the behavior just discussed are listed in the following table.
Also, a server reboot is required after you change any of the following settings.

Registry Setting Value Name Description

MaxFieldLength By default, an individual header can be up to 16KB in size.
Change this setting to limit the size of any individual HTTP
header. A request URL, including query string information, is
also restricted in size by this setting. The allowed range of
values is 64–65534 bytes.

MaxRequestBytes By default, the combined size of the request URL, including
query string, plus its associated HTTP headers cannot exceed
16KB. The allowed range of values is 256–16777216 bytes.

UrlSegmentMaxCount By default, no more than 255 path segments are allowed in a
URL. The allowed range of values is 0–16383 segments.

UrlSegmentMaxLength By default, an individual path segment cannot be longer than
260 characters. The slashes that delimit each path segment
are not included when computing a path segment’s character
length. The allowed range of values is 0–32766 characters.

In earlier versions of IIS, the URLScan security tool (available by searching microsoft.com/tech-
net) provides similar protections for restricting URLs. Most of the security functionality of URLScan
was incorporated into http.sys and IIS6. There are a few small features that are only available with
URLScan though, the most interesting one being URLScan’s ability to remove the server identification
header that IIS sends back in HTTP responses.

aspnet_filter.dll
After http.sys is satisfied that the request is potentially valid, it passes the request to the appropriate
worker process. In IIS6 multiple application pools can be running simultaneously, with each application
essentially acting as a self-contained world running inside of an executable (w3wp.exe). Within each
worker process, IIS carries out a number of processing steps based on the ISAPI extensibility mecha-
nism. Even though ASP.NET is a managed code execution environment, it still depends on the ISAPI
mechanism for some initial processing.

When ASP.NET is installed on a web server, it registers an ISAPI filter with IIS. This filter (aspnet_
filter.dll) is responsible for two primary tasks:

❑ Managing cookieless tickets by converting them into HTTP headers

❑ Preventing access over the Web to protected ASP.NET directories

5

Initial Phases of a Web Request

04_596985 ch01.qxp 12/14/05 7:46 PM Page 5

You can see the set of all ISAPI filters that are registered in IIS by using the IIS MMC, right-clicking the
Web Sites node, and then clicking on the ISAPI Filters tab in the dialog box that opens. In Figure 1-2, you
can see that there is currently only one ISAPI filter registered by default — the ASP.NET filter.
Depending on your machine, you may see additional filters that provide services such as compression or
that support Front Page extensions.

Figure 1-2

By default ASP.NET registers the filter with a Low priority, which means that other filters with higher
priorities will have the opportunity to inspect and potentially modify each incoming request. This makes
sense because if, for example, you are running a filter that decompresses incoming HTTP content, you
would want this type of operation to occur prior to ASP.NET carrying out security logic based on the
request’s contents.

The ASP.NET filter handles two ISAPI filter notifications: SF_NOTIFY_PREPROC_HEADERS and
SF_NOTIFY_URL_MAP. This means the filter has the opportunity to manipulate the request prior to IIS
attempting to do anything with the HTTP headers, and the filter has the opportunity to perform some
extra processing while IIS is converting the incoming HTTP request into a request for a resource located
at a specific physical path on disk.

Processing Headers
The ASP.NET filter inspects the request URL, looking for any cookieless tickets. In ASP.NET 2.0, cookieless
tickets are supported for session state (this was also available in 1.1), forms authentication (previously
available as part of the mobile support in ASP.NET) and anonymous identification (new in ASP.NET 2.0).
A sample URL with a cookieless session state ticket is shown here:

http://localhost/inproc/(S(tuucni55xfzj2xqx1mnqdg55))/Default.aspx

6

Chapter 1

04_596985 ch01.qxp 12/14/05 7:46 PM Page 6

ASP.NET reserves the path segment immediately after the application’s virtual root as the location on the
URL where cookieless tickets are stored. In this example, the application was called inproc, so the next
path segment is where ASP.NET stored the cookieless tickets. All cookieless tickets are stored within an
outer pair of parentheses. Within these, there can be a number of cookieless tickets, each starting with a
single letter indicating the feature that consumes the ticket, followed by a pair of parentheses that contain
the cookieless ticket. Currently, the following three identifiers are used:

❑ S — Cookieless ticket for session state

❑ A — Cookieless ticket for anonymous identification

❑ F — Cookieless ticket for forms authentication

However, the ASP.NET filter does not actually understand any of these three indentifiers. Instead, the
filter searches for the character sequences described earlier. Each time it finds such a character sequence,
it removes the cookieless ticket, the feature identifier and the containing parentheses from the URL and
internally builds up a string that represents the set of cookieless tickets that it found. The end result is
that all cookieless tickets are removed from the URL before IIS attempts to convert the URL into a physi-
cal path on disk. Therefore, IIS doesn’t return a 404 error even though there clearly is no directory on
disk that starts with (S).

After the filter removes the tickets from the URL, it still needs some way to pass the information on to
the ASP.NET runtime. This is accomplished by setting a custom HTTP header called ASPFILTERSES-
SIONID. The name is somewhat misleading because it is a holdover from ASP.NET 1.1 when the only
cookieless ticket that was supported (excluding mobile controls and the cookieless forms authentication
support that was part of the mobile controls) was for session state. With ASP.NET 2.0, though, there are
obviously a few more cookieless features integrated into the product. Because the underlying logic
already existed in the ISAPI filter, the old header name was simply retained.

You can actually see the effect of this header manipulation if you dump the raw server variables associated
with an ASP.NET request. As an example, for an application that uses both cookieless session state and
cookieless forms authentication, the URL after login may look as follows:

http://localhost/inproc/(S(sfeisy55occclkmlkcwtjz55)F(jbZ....guo1))/Default.aspx

For brevity the majority of the forms authentication ticket has been removed. However, the example
shows cookieless tickets for session state and forms authentication in the URL. If you were to dump out
the server variables on a page, you would see the following header:

HTTP_ASPFILTERSESSIONID=S(sfeisy55occclkmlkcwtjz55)F(jbZ....guo1)

Hopefully, this sample makes it clearer how the unmanaged ISAPI ASP.NET filter transfers cookieless tickets
over to the ASP.NET runtime. Within the ASP.NET runtime, the HTTP modules that depend on these tickets
have special logic that explicitly looks for this HTTP header and parses out the ticket information for further
processing (for example, setting up the session, validating forms authentication credentials, and so on).

7

Initial Phases of a Web Request

04_596985 ch01.qxp 12/14/05 7:46 PM Page 7

Blocking Restricted Directories
After the filter processes any cookieless tickets, the filter has IIS normalize the request URL’s representa-
tion. This is necessary because the filter enforces the restriction that browser users cannot request any
type of content from the protected directories in ASP.NET 2.0. Because ASP.NET 2.0 introduced new
“content” that in reality consists of code, data, resources, and other pieces of information, it is necessary
to prevent access to this information via a browser. The filter prevents access by scanning the normalized
URL, looking for one of the following paths:

❑ /bin — Compiled assemblies referenced by the application

❑ /app_code — Source code files with classes referenced elsewhere in an application

❑ /app_data — Data files such as .xml, .mdb, or .mdf files

❑ /app_globalresources — Resources that are globally accessible throughout an application

❑ /app_localresources — Resources that are applicable to a specific directory

❑ /app_webreferences — WSDL files and compiled artifacts for Web Services

❑ /app_browsers — Browser capability files for determining browser functionality

If the filter finds a path segment with one of these paths, the filter returns an error to IIS, which is converted
into a 404 response and returned to the browser. For example, if a web server has a directory immediately
under wwwroot called app_data with an HTML file called foo.htm, requesting the following URL still
result in a 404 even though the file does exist on the file system.

http://localhost/app_data/foo.htm

There had been some discussion at one point around having the filter perform a broad blocking of any
URLs that contained the characters /app_ at the beginning of a path segment. However, this decision was
avoided because some developers may have already been using such a naming prefix in their directory
structures. If at all possible, it is recommended that developers move away from naming any directories
with the /app_ prefix. In a future release of ASP.NET, the filter may support blocking any paths that
start with these characters — not just the specific set of reserved directories in ASP.NET 2.0.

If you have valid reasons for creating directory structures on disk with any of the reserved names noted
earlier, you can disable the filter’s directory blocking behavior (although for security reasons this is
clearly not recommended). Registry settings to control the directory blocking behavior can be added as
DWORD values underneath the following Registry key:

HKEY_LOCAL_MACHINE\Software\Microsoft\ASP.NET

After changing any of the settings shown in the following table, run iisreset to recycle the worker
processes. This forces aspnet_filter.dll to read the new Registry settings when the filter is initialized
in a new worker process.

8

Chapter 1

04_596985 ch01.qxp 12/14/05 7:46 PM Page 8

Registry Setting Value Name Description

StopBinFiltering Set this value to 1 to stop the filter from blocking
requests to paths that include /bin. This setting
will affect all ASP.NET 1.1 and 2.0 applications on
the server.

StopProtectedDirectoryFiltering Set this value to 1 to stop the filter from blocking
requests to reserved ASP.NET directories that
include a path starting with /app_. Because this
setting is new to ASP.NET 2.0, it will only affect all
ASP.NET 2.0 applications on the server.

Setting either one of these Registry settings will affect all of your websites. There is no mechanism to
selectively turn off directory blocking for only specific applications or specific websites.

Dynamic versus Static Content
After a request has flowed through all of the ISAPI filters configured for a website, IIS decides whether
the requested resource is considered static content or dynamic content. This decision really depends on
whether a custom ISAPI extension has been configured and associated with the file extension of the
requested resource. For example, if you were to request http://localhost/foo.htm, in the default
configuration of IIS, the .htm extension is registered as a type of static content server directly by IIS.

The configuration of static versus dynamic content is determined by a combination of settings in IIS6:

❑ MIME type mappings

❑ File extension to ISAPI extension mappings

❑ The presence of wildcard application mappings (if any)

MIME Type Mappings
IIS6 is configured with several well known static file extensions in its list of Multipurpose Internet Mail
Extensions (MIME) type mappings. The reason that MIME type mappings are so important in IIS6 is that
without a MIME type mapping, an HTTP request for a file results in a 404 error, even if the file does exist
on the file system. For example, if a text file, foo.xyz, exists at the root of a website, requesting
http://localhost/foo.xyz results in a 404.

However, the web server’s allowable MIME types can be edited to allow IIS6 to recognize .xyz as a
valid file extension. In Figure 1-3, the IIS6 MMC is shown being used to register .xyz as a valid file
extension.

9

Initial Phases of a Web Request

04_596985 ch01.qxp 12/14/05 7:46 PM Page 9

Figure 1- 3

Right clicking the computer node and selecting Properties pulls up a dialog box that allows you to
configure MIME types. Click the MIME Types button to access the Mime Types dialog box, where you
can click the New button to add a new MIME type. For this example, the .xyz file extension was added
as a being a text type.

You need to iisreset for the changes to take affect. When the web server is running again, a request for
http://localhost/foo.xyz works, and IIS6 returns the file’s contents.

ISAPI Extension Mappings
Because a web server that serves only static files would be pretty useless in today’s web, ISAPI extension
mappings are available for serving dynamically generated content. However, ISAPI extensions can also
be used to carry out server-side processing on static file content. For example, there are ISAPI extensions
for processing server-side include files. In practice though, ISAPI extensions are typically used for asso-
ciating file extensions with Dynamic Link Libraries (DLLs) that carry out the necessary logic for execut-
ing code and script to dynamically generate page output.

10

Chapter 1

04_596985 ch01.qxp 12/14/05 7:46 PM Page 10

You can see the list of ISAPI extensions that are mapped to a website with the following steps:

1. Right-click the application’s icon in the IIS6 MMC.

2. Select properties.

3. In the Directory tab of the dialog box that pops up, click the Configuration button.

4. In the Mappings tab of the dialog box that pops up, a list box shows all application extensions
currently mapped for the web application.

In Figure 1-4, the current application has mapped the .aspx file extension to a rather lengthy path that
lives somewhere in the framework installation directory.

Figure 1-4

The path is too long to see without scrolling around, but it points at the following directory location:

%windir%\Microsoft.NET\Framework\v2.0.50727\aspnet_isapi.dll

Depending on where you installed the operating system on your machine, the location of %windir%
will vary.

11

Initial Phases of a Web Request

04_596985 ch01.qxp 12/14/05 7:46 PM Page 11

When IIS receives a request for a file, if the file extension for that request is mapped to an ISAPI exten-
sion, IIS routes the request to the mapped ISAPI extension instead of consulting the list of MIME types
and serving the file as static content. In the case of the .aspx file extension, the request is routed to
aspnet_isapi.dll, which contains the code that bootstraps the ASP.NET runtime and allows ASP.NET
pages to run.

If you scroll around a bit through the various application extensions, you can see that there are a large
number of mapped extensions. Clicking the Executable Path column sorts the extensions and makes it
easier to see which file extensions are currently mapped to the ASP.NET ISAPI extension. Most of the
extensions that start with the letter a should be familiar to varying degrees (everyone who writes HTTP
handlers raise your hand!). Several other file extensions are probably familiar to you from working with
tools like Visual Studio or SQL Server, but it may not make sense why these file extensions are now
mapped to the ASP.NET ISAPI extension.

For example, the various Visual Studio project extensions (.csproj, .vbproj) are mapped to
aspnet_isapi.dll. Simiarly, SQL Server database extensions (.ldf and .mdf) are mapped to
aspnet_isapi.dll. From experience though, you know that your ASP.NET web servers have not been
processing project files or opening database files and pretending to be a database engine.

This leads to another approach of using ISAPI extensions. Not only do ISAPI extensions parse and pro-
cess files that are mapped to them, but ISAPI extensions can also be configured to handle other file types
for specific purposes. When ASP.NET is installed, file extensions for files that commonly occur within a
developer’s ASP.NET project are mapped to the ASP.NET ISAPI extension. Because XCOPY deployment
is an easy way to move an ASP.NET application from a developer’s desktop onto a web server, there can
be a number of files within the structure of an ASP.NET project that the developer does not want served
to the Internet at large. By mapping these file extensions to aspnet_isapi.dll, IIS will pass requests
for these file types to the ASP.NET runtime. Because ASP.NET has a parallel configuration system that
maps file extensions to specific processing logic (.aspx pages are executed by the ASP.NET page han-
dler), ASP.NET can choose to do something other than executing the requested file. In the case of file
extensions like .csproj or .mdf, ASP.NET has a special handler that will deny access to files of this type
and return an error to that effect. This technique will be revisited later in the chapter when the default
handler mappings for ASP.NET are discussed.

Throughout this discussion there has been the implicit assumption that after a mapping between a file
extension and an ISAPI extension is established, dynamic content will start working. Although this was
the case for IIS5 and IIS5.1, IIS6 introduced an extra layer of protection around ISAPI extensions. On
IIS6, an administrator must take some kind of explicit action to allow an ISAPI extension to operate. If
IIS6 is installed on a Windows Server 2003 machine in its most basic configuration, even though
ASP.NET bits exist on the machine, requests to .aspx pages will always fail with a 404 error.

The reason for this is that IIS6 has the ability to enable and disable individual ISAPI extension DLLs. If
you use the Manage Your Server Wizard in Windows Server 2003, it will automatically reenable the
ASP.NET1.1 ISAPI extension for you when you configure the server in the Application Server role. As a
result, when the 2.0 version of the framework is installed on top of it, the ASP.NET 2.0 ISAPI extension
will be enabled as well.

However, if you install the 2.0 version of the framework but are still receiving 404 errors, you need to
enable the ASP.NET ISAPI extension. Figure 1-5 shows the Web Service Extensions configuration win-
dow in the IIS MMC. Right-click the ASP.NET extension to access the option to enable the extension.

12

Chapter 1

04_596985 ch01.qxp 12/14/05 7:46 PM Page 12

Figure 1-5

Aside from causing premature gray hair for developers and administrators wondering why a perfectly
good ASP.NET application is dead in the water, the ISAPI extension lockdown capability does serve two
useful purposes:

❑ If the web server is not intended to ever serve dynamic ASP.NET content, disabling ISAPI exten-
sions is an easy and effective way to lock down the server.

❑ With the release of ASP.NET 2.0, you can use this feature to disable the ASP.NET 1.1 ISAPI
extension. For example, if you want to ensure that only ASP.NET 2.0 applications are deployed
onto a specific web server, you can disable the ASP.NET 1.1 extension on that server.

Wildcard Application Mappings
IIS6 introduced the concept of wildcard application mappings. With IIS5/5.1, customers were asking for the
ability to map all requests for content to a specific ISAPI extension. However, the only way to accomplish
this prior to IIS6 was to laboriously map each and every file extension to the desired ISAPI extension. Also,
after the request was routed to the ISAPI extension, the ISAPI extension was responsible for completing the
request. There was no mechanism for passing the request to other ISAPI extensions or back to IIS.

13

Initial Phases of a Web Request

04_596985 ch01.qxp 12/14/05 7:46 PM Page 13

With IIS6, it is now possible to set up rules (aka wildcard application maps) that route all HTTP requests
to one or more ISAPI extensions. The set of wildcard application mappings can be prioritized, so it is
possible to have a chain of wildcard mappings. IIS6 also includes a new API for ISAPI extensions to
route a request out of an extension and back to IIS6. The net result is that with IIS6 and ASP.NET 2.0, it is
possible to have a request for a static file flow through the first portion of the ASP.NET pipeline, and
then have the request returned to IIS6, which subsequently serves the file from the file system.

Out of the box though, ASP.NET 2.0 does not configure or use any wildcard application mappings.
ASP.NET 2.0 does include though the necessary internal changes required to flow a request back out to
IIS6. As a result, ASP.NET 2.0 has this latent ability to integrate with and use wildcard application map-
pings for some very interesting scenarios. As mentioned earlier, it is possible for an ISAPI extension to
perform some processing for a requested file without actually understanding the requested file format.
An interesting new avenue for integrating ASP.NET 2.0 with static files and legacy ASP code is discussed
later in this book in Chapter 6, “Integrating ASP.NET Security with Classic ASP,” The techniques in that
chapter depend on the wildcard application mapping functionality of IIS6.

aspnet_isapi.dll
After a request reaches aspnet_isapi.dll ASP.NET takes over responsibility for the request. IIS6 itself
knows nothing about managed code or the .NET Framework. On the other hand, the core processing
classes in ASP.NET (HttpApplication and the specific handlers that run .aspx pages, .asmx Web
Services, and so on) do not possess the ability to reach out and directly consume an HTTP request.
Although the vast majority of ASP.NET is managed code, the ISAPI extension plays a critical role in
bridging the native and managed code worlds.

The responsibilities of the ISAPI extension fall into two broad areas:

❑ Starting up an application domain so that managed code associated with an application can run

❑ Setting up the security context for each request and then passing control over to the managed
portion of ASP.NET

Understanding some of the important portions of application domain startup is important for later dis-
cussions on trust levels and configuration. Information about the per-request initializations and handoff
will be covered in Chapter 2.

ASP.NET includes several classes in the System.Web.Hosting namespace that can be used by applica-
tions that want to host ASP.NET. If you use the file-based web project option in Visual Studio 2005, you
are using a standalone executable (WebDev.WebServer.exe located in the framework install directory)
to host ASP.NET. Also, if you search on the Internet several articles and sources demonstrate how to
write console and Winforms applications to host ASP.NET. However, most ASP.NET developers are writ-
ing web applications and expect their applications to be hosted on a web server. As a result, you can
think of aspnet_isapi.dll and its supporting managed classes as the default implementation of an
ASP.NET host.

14

Chapter 1

04_596985 ch01.qxp 12/14/05 7:46 PM Page 14

Starting Up an Application Domain
All managed code in the .NET Framework needs to run within an application domain. Before ASP.NET
can start the HTTP pipeline and run a page, the ISAPI extension must ensure that an application domain
has been instantiated and initialized. In ASP.NET, each application, as configured in the IIS MMC, maps
to a separate application domain in the managed world. Figure 1-6 shows a web server with a default
website, and one IIS application configured beneath the root of the default website.

Figure 1-6

The ASP.NET ISAPI extension will ensure that an application domain is created for ASP.NET during the
first request for a page in the default website. If another request were received for a page within the web
application called inproc, aspnet_isapi.dll would create a second application domain because inproc
is configured as a separate application. Overall, this means that within a single IIS6 worker process, any
number of configured IIS applications, and thus independent application domains, can be running. It is the
responsibility of the ISAPI extension to route each incoming HTTP request to the appropriate application
domain. Isolating the different applications into separate application domains gives ASP.NET the flexibility
to perform some of the following tasks:

❑ Maintain separate security configurations for each application domain

❑ Enforce different trust level restrictions in each application domain

❑ Monitor and if necessary recycle application domains without affecting other application
domains

Starting up an application domain involves several processing steps. After a new application domain
has been created, the ISAPI extension carries out the following steps, listed in order of their occurrence:

1. Establish the identity for application domain initialization.

2. Verify directory access/existence and initializing directory information.

3. Set the trust level for the application domain.

4. Set the locations of assemblies.

5. Obtain the auto-generated machine key.

6. Initialize the ASP.NET compilation system.

15

Initial Phases of a Web Request

04_596985 ch01.qxp 12/14/05 7:46 PM Page 15

Establishing Identity
Prior to the ISAPI extension performing any other initialization work, it ensures that the correct security
identity is established. The identity used for initialization is one of the following:

1. If the application is running from a local disk, and there is no <identity /> tag with an appli-
cation impersonation identity, then the identity of the worker process is used. Under IIS6 this
would be NT AUTHORITY\NETWORK SERVICE. On older versions of IIS, the identity would the
local ASPNET machine account. Even if the current thread is running with other security cre-
dentials established by IIS, the ISAPI extension will temporarily revert to using the process
identity.

2. If the application has an <identity /> tag that enables impersonation, and there is an explicit
username and password configured (usually referred to as application impersonation), then ini-
tialization will run as the application impersonation identity. ASP.NET will attempt to create a
security token for this identity, calling LogonUser in sequence for each of the following logon
types until a logon succeeds: BATCH, SERVICE, INTERACTIVE, NETWORK_CLEARTEXT, and
NETWORK.

3. If the application was configured to run off of a UNC share, and there is no application imper-
sonation identity, initialization will run with the configured UNC credentials.

Initializing Directory Information
An ASP.NET application depends on a number of directories for the application to execute properly.
The extension will first ensure that the physical application directory exists. If the application directory
does not actually exist, or if the current security identity does not have read access to the application
directory, the extension returns an error stating that the server could not access the application directory.

Next, ASP.NET initializes the application-relative data directory information. In the v2.0 of the Framework,
ADO.NET supports the ability for applications to set application-relative path information to a data file.
This allows applications, such as ASP.NET applications, to deploy SQL Server files in an application-rela-
tive location (the App_Data directory). The application can then reference the database using a standard
connection string syntax that does not change even when the underlying file structure is moved. For all of
this magic to work though, ASP.NET must set an application domain variable, DataDirectory, with the
proper physical path information so that ADO.NET can correctly resolve relative directories in connection
strings. As part of application domain startup, ASP.NET determines the full physical path to the data direc-
tory and stores it in the DataDirectory application domain variable.

Any code can query an application domain and retrieve this application domain variable just by calling
AppDomain.CurrentDomain.GetData(“DataDirectory”). Because storing physical paths could lead
to an information disclosure, ASP.NET also tells the framework to demand FileIOPermissionAccess
.PathDiscovery from any callers. In practice, this means any ASP.NET application running at Low
trust or higher can inspect this variable (trust levels and how they work are covered in Chapter3, “A
Matter of Trust.”)

The last major piece of directory related initialization involves the code generation directories used by
ASP.NET. Most ASP.NET applications cannot generate page output based solely on .aspx pages that are
deployed to a web server. ASP.NET usually has to take additional steps to auto-generate classes (page
classes, user control classes, and so on) that are derived from the classes a developer works with in code-
behind files. In ASP.NET 2.0 there is a wide array of other auto-generated and auto-compiled artifacts

16

Chapter 1

04_596985 ch01.qxp 12/14/05 7:46 PM Page 16

beyond just page classes. For example, ASP.NET 2.0 dynamically generates a class definition based on
the <profile /> configuration element and then compiles the resulting class definition. For all these
types of activities, ASP.NET needs a default location for generated code as well as the compiled results
of the auto-generated code.

By default, during application domain initialization, ASP.NET will attempt to create an application
specific code-generation (or codegen for short) directory structure at the following location:

%windir%\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\appname

As noted earlier, your Windows path will vary, and the final shipping version of the framework will
have a different version number. The final portion of this directory path will reflect the name of the
ASP.NET application.

By default, when the framework is installed, the local machine group IIS_WPG, the local machine
account ASPNET, and the NT AUTHORITY\NETWORK SERVICE accounts are granted read and write
access (in addition to other security rights) to this temporary directory. As a result, the current security
identity normally has rights to create an application specific code-generation directory. If the current
security identity does not have read and write access to the Temporary ASP.NET Files directory, then
ASP.NET will return an exception to that effect.

If you are running ASP.NET as an interactive user, ASP.NET will fall back and use the operating system’s
temporary directory as the root beneath which it will create code-generation directories. On Windows
Server 2003, the temporary directory structure is rooted at %windir%\TEMP. You will likely encounter
this situation if a developer uses a file-based web while developing in Visual Studio 2005. File-based
webs use the standalone Cassini web server for running ASP.NET applications and Cassini runs as the
current interactive user. If the interactive user does not have read and write access to the Temporary
ASP.NET Files directory (for example the interactive user is not a machine administrator or a member of
Power Users), then the operating system’s temporary directory structure would be used instead. Again
though, this fallback behavior is limited to only the case where the ASP.NET host is running as an inter-
active user. On most production web servers, this will never be the case.

Setting the Trust Level
As a quick recap of code access security (CAS) concepts, remember that the .NET Framework can use
four levels of code access security policies:

1. Enterprise

2. Machine

3. User

4. Application domain

The first three levels of CAS policy can be configured and maintained by administrators to ensure a
consistent set of CAS restrictions. However, an administrator normally has no ability to configure or
enforce application domain CAS restrictions.

ASP.NET 1.1 introduced the concept of trust levels and exposed a configuration element (<trust />) as
well as Extensible Markup Language (XML) text files that contain the actual definitions of various
ASP.NET trust levels. Later in the book in Chapter 3 the specifics of the ASP.NET trust level settings will

17

Initial Phases of a Web Request

04_596985 ch01.qxp 12/14/05 7:46 PM Page 17

be discussed in more detail. However, trust levels are introduced at this point of the discussion because
application domain initialization is where ASP.NET loads and applies the appropriate trust level infor-
mation. After you understand how ASP.NET trust levels work, the knowledge that an ASP.NET trust
level is converted into and applied as an application domain policy very early in the lifetime of an appli-
cation domain helps to explain some of the more obscure security errors customers may encounter.

In practice, many folks are probably unaware of ASP.NET’s ability to apply an application domain policy,
and instead their websites run in full trust. Partly this is due to the fact that both ASP.NET 1.1 and
ASP.NET 2.0 set the ASP.NET trust level to full by default. Full trust means that the .NET Framework
allows user-authored code the freedom to call any API without any security restrictions.

After ensuring that the required directories are available, ASP.NET checks the trust level setting in
configuration that is found in the <trust /> configuration section. Based on the configured trust level,
ASP.NET loads the appropriate trust policy configuration file from the following directory:

%windir%\Microsoft.NET\Framework\v2.0.50727\CONFIG

The contents of the trust policy file are modified in memory to replace some of the string replacement
tokens that are present in the physical policy files. The end result of this processing is a reference to a
System.Security.Policy.PolicyLevel instance that represents the desired application domain
security policy. ASP.NET then applies the policy level to the application domain by calling
System.AppDomain.CurrentDomain.SetAppDomainPolicy.

This processing is one of the most critical steps taken during application domain initialization because
prior to setting the application domain’s security policy, any actions taken by ASP.NET are running in
full trust. Because a full trust execution environment effectively allows managed code to call any API
(both managed APIs and native APIs), ASP.NET intentionally limits the initialization work it performs
prior to setting the application domain’s security policy. Looking back over the initialization work that is
completed prior to this step, you can see that ASP.NET has not actually called any user-supplied code up
to this point. All of the initializations are internal-only checks and involve only framework code.

With the application domain’s permission policy established though, any subsequent initialization work
(and of course all per-request processing) that calls into user-supplied code will be restricted by the
application domain policy that ASP.NET has applied based on the contents of a specific ASP.NET trust
policy configuration file.

An important side effect from establishing the trust level is that any calls into the configuration system
from this point onwards are subject to the security restrictions defined by the trust level. Configuration
section handlers are defined in machine.config as well as web.config within the <configSections
/> configuration element. By default a number of configuration section handlers are registered in the
configuration files.

Because ASP.NET establishes the bin directory as one of the locations for resolving assemblies, it is possible
to author configuration section handlers that reside within assemblies deployed to the bin directory. Because
the application domain CAS policy has been set, any initialization logic that a user-authored configuration
section handler executes when it loads is restricted to only those operations defined in the associated
ASP.NET trust policy file. For example, in an ASP.NET application that runs at anything other than full trust,
user code cannot call into Win32 APIs. As a result, in a partially trusted ASP.NET application, a web server

18

Chapter 1

04_596985 ch01.qxp 12/14/05 7:46 PM Page 18

administrator is guaranteed that a malicious configuration section handler cannot make calls into Win32
APIs that attempt to reformat the hard drive (granted this is an extreme example, but you get the idea).

In Chapter 4 “Configuration System Security” the effects of ASP.NET trust levels on configuration will
be discussed in more detail.

Establishing Assembly Locations
With the application domain policy set, ASP.NET performs some housekeeping that allows the .NET
Framework assembly resolution to be aware of the bin directory. This allows the .NET Framework
assembly resolution logic to probe the bin directory and resolve types from assemblies located within
the “bin” directory. Remember that earlier ASP.NET performed some work to set up the code-generation
directory structure. A side effect of this setup is that ASP.NET and the .NET Framework also have the
ability to resolve types located in the application-specific code-generation directory.

ASP.NET also attempts to enable shadow copying of assemblies from the bin directory. Assuming that
shadow copying is enabled, the .NET Framework will make private copies of these assemblies as neces-
sary within the code-generation directory structure for the application. When the .NET Framework
needs to reference types and code from assemblies in the bin directory, the framework will instead load
information from the shadow copied versions. Shadow copying the bin assemblies allows you to copy
new versions of assemblies into the bin directory without requiring the web application to be stopped.
Because multiple web applications may be simultaneously running within a single worker process, the
shadow copying behavior is important; it preserves the ability to maintain uptime for other web applica-
tions. If each application domain maintained a file lock on the assemblies located in the bin directory,
XCOPY deployment of an ASP.NET application would be difficult. An administrator would have to
cycle the entire worker process to release the file locks. With shadow copying, you can copy just new
binaries to the server and ASP.NET will automatically handle shutting down the affected application
domain and restarting it to pick up changes to the bin directory.

ASP.NET 2.0 introduces a new configuration element — <hostingEnvironment />— that administra-
tors can used to disable shadow copying. The following configuration when placed within
<system.web /> will disabled shadow copying:

<hostingEnvironment shadowCopyBinAssemblies=”false”/>

You may want to disable shadow copying if an administrator explicitly disallows overwriting assem-
blies on a production server. Disabling shadow copying would prevent someone from randomly updat-
ing an application’s binaries when the application is already up and running. Also some assemblies
expect that other files exist on the file system in the same directory structure as the assembly. In these
cases, shadow copying causes the assembly to be shadow copied to a completely different directory
structure, thus breaking the assembly’s assumptions about relative file locations.

Obtaining the Auto-Generated Machine Key
If you have ever used viewstate or issued a forms authentication ticket, it is likely that you depended on

an auto-generated machine key to provide security. The default <machineKey /> configuration for an
ASP.NET application sets both the validationKey and decryptionKey attributes to
AutoGenerate,IsolateApps. During application domain initialization, ASP.NET ensures that the
auto-generated machine key is available so that ASP.NET applications that depend on automatically
generated keys will have the necessary key material.

19

Initial Phases of a Web Request

04_596985 ch01.qxp 12/14/05 7:46 PM Page 19

The actual logic for generating and confirming the existence of the auto-generated machine key has
changed over various versions of ASP.NET and with the different process models for hosting ASP.NET
inside of IIS. Originally, when only Windows 2000 was available, the ASP.NET ISAPI extension would
always run as SYSTEM because in IIS5 (and for that matter IIS 5.1), ISAPI filters and extensions always
ran with the security credentials of the inetinfo.exe process. As a result, for IIS 5 and IIS 5.1, the
ISAPI extension checks for the existence of the machine-generated key inside of the Local Security
Authority (LSA). Because SYSTEM is such a highly privileged account, the ISAPI extension could safely
generate and store the auto-generated machine key in the LSA.

However, with the process model in IIS6, ISAPI filters and extensions execute in a specific worker pro-
cess. By default, the w3wp.exe worker process runs as NETWORK SERVICE, which has much fewer
privileges than SYSTEM. As a result, the approach of storing items in LSA no longer works because
NETWORK SERVICE does not have permission to read and write the LSA. Trust me when I say that this
is a good thing (the idea of having your web server happily stuffing secret keys into the LSA is a little bit
odd to say the least).

In IIS6, when running as NETWORK SERVICE the ASP.NET2.0 ISAPI extension will store and retrieve
the auto-generated machine key from the following location in the Registry:

HKU\SID\Software\Microsoft\ASP.NET\2.0.50727.0

The value for the security identifier (SID) will vary depending on the identity of the worker process
account. By default though when an IIS6 worker process runs as NETWORK SERVICE the SID will be
S-1-5-20. Underneath this key are three values:

❑ AutoGenKey — This is the auto-generated machine key that is used for encryption and valida-
tion by forms authentication and for viewstate.

❑ AutoGenKeyCreationTime — An encoded representation of the file time when the key was
generated.

❑ AutoGenKeyFormat — Indicates whether the auto-generated machine key was stored in an
encrypted form (1) or as cleartext (2).

The very first time the ISAPI extension attempts to retrieve the auto-generated machine key, ASP.NET
creates a random value, encrypts it using DPAPI (the extension uses the DPAPI user store), and stores
the resultant information under the HKCU key mentioned earlier. In Figure 1-7, the auto-generated
machine key information is stored in the user hive for NETWORK SERVICE. The SID S-1-5-20 is the
common SID representation for NETWORK SERVICE.

However, the question arises as to how the ISAPI extension can obtain an auto-generated machine key if
the ASP.NET application is running as an account other than NETWORK SERVICE. For example, in IIS6
administrators commonly change the worker process identity to that of a local machine account or a
domain account. Also, some web applications will use the <identity /> element to configure a specific
application impersonation identity.

20

Chapter 1

04_596985 ch01.qxp 12/14/05 7:46 PM Page 20

Figure 1-7

Although NETWORK SERVICE can store and retrieve the auto-generated machine key inside of the
HKEY_USERS (HKU) area of the Registry, this technique will not work for local or domain accounts
because accessing HKU requires that a user profile be loaded. Loading a user profile includes loading
the portion of the Registry hive that is unique to a specific user. However, with IIS6 and ASP.NET, the
user profile is loaded under only the following scenarios:

❑ The worker process is running as either NETWORK SERVICE or as LOCAL SERVICE.

❑ IIS6 is running in IIS5 isolation mode, in which case the user profile for the local ASPNET
machine account will be loaded.

Other local and domain accounts will not have a user profile loaded on their behalf. As a result, ASP.NET
needs some other location for storing the auto-generated machine key. If you choose to run ASP.NET
with either a local or domain machine account, always make sure to run the following command line
from the framework installation directory:

aspnet_regiis -ga DOMAIN\USERNAME

21

Initial Phases of a Web Request

04_596985 ch01.qxp 12/14/05 7:46 PM Page 21

Running aspnet_regiis with the ga switch ensures that the ACLs for a variety of ASP.NET directories
(remember the Temporary ASP.NET Files directory discussed earlier?) as well as ACLs in the IIS
metabase are configured properly to grant access to the desired user account. Another side effect of
using the ga switch though is that ASP.NET will create an AutoGenKeys Registry key at the following
Registry location:

HKLM\SOFTWARE\Microsoft\ASP.NET\2.0.50727.0\AutoGenKeys

Underneath the AutoGenKeys key, the utility creates an additional key for the SID that corresponds to
the user account that is currently being configured with the ga switch. This additional key will grant
read and write access to the user account. As an example, Figure 1-8 shows the Registry location where
AutoGenKeys has already been created. The only SIDs currently displayed in Figure 1-8 correspond to
LOCAL SERVICE and NETWORK SERVICE and respectively. However, because the user profiles can be
loaded for both of these accounts, no key information has been stored in the Registry.

Figure 1-8

22

Chapter 1

04_596985 ch01.qxp 12/14/05 7:46 PM Page 22

Assuming aspnet_regiis -ga has been used, when the ISAPI extension is initializing the application
domain and is running as either a local or domain account, it will use neither LSA nor HKU and will
instead create and access the auto-generated machine key information underneath:

HKLM\SOFTWARE\Microsoft\ASP.NET\2.0.50727.0\AutoGenKeys\SID

From all of this discussion, it should also be a bit clearer why using an auto-generated machine key in a
web farm doesn’t work. Regardless of which account is used for an ASP.NET application, the auto-gener-
ated machine key is local to a specific machine and furthermore to a specific user identity. As a result,
applications running in a web farm (or in the case of forms authentication, applications running under
different identities that need to recognize a common forms authentication ticket) must use explicit values
for the validationKey and decryptionKey attributes in the <machineKey /> configuration element.
Explicit key values are the only way in ASP.NET 2.0 to ensure that the same keys are deployed on differ-
ent machines. The DPAPI feature does not support exporting key material from one machine to another,
so you don’t have the option in a web farm of using the AutoGenerate setting. Realistically, configuring
either of these attributes with AutoGenerate is only useful for smaller applications that can afford to
run as standalone black boxes.

Initializing the Compilation System
During the last steps of application domain initialization, ASP.NET 2.0 initializes various aspects of its
compilation system.

ASP.NET registers a custom assembly resolver to handle type load failures that arise when the .NET
Framework cannot load a type that was defined in the App_Code directory. Code in the App_Code directory
is compiled into in an auto-generated assembly that is assigned a random name. Each time a developer
changes a piece of code that lives within the App_Code directory, ASP.NET will recompile the App_Code
directory, which results in one or more new assemblies with different names (there can be subdirectories in
App_Code that in turn give rise to multiple assemblies). As a result any operations that depended on the
assembly name for a class located in App_Code (binary serialization for instance will write out the name of
the assembly containing the serialized type) would fail without the ASP.NET custom assembly resolver. The
resolver redirects requests for types from App_Code related assemblies to the most current versions of these
auto-generated assemblies.

The ASP.NET runtime then ensures that various globally referenced assemblies are compiled and avail-
able. This includes ensuring the auto-compiled output for App_Code, the global and local resource
directories, the app_webreferences directory and global.asax are up to date. As part of this process-
ing, ASP.NET also starts file monitoring on global.asax. If any changes subsequently occur to
global.asax, the changes cause the application domain to recycle.

First Request Initialization
With the application domain up and running, ASP.NET performs some initializations that occur only
during the first request to the application domain. In general, these one-time tasks include the following:

❑ Caching the impersonation information so that ASP.NET knows the impersonation mode that is
in effect for the application, as well as caching security tokens if application impersonation is
being used or if the application is running on a UNC share.

❑ Configuration settings from <httpRuntime />, <globalization />, and <processModel
/> are loaded. The interesting point here is that you can use the <httpRuntime /> element to
turn off a website.

23

Initial Phases of a Web Request

04_596985 ch01.qxp 12/14/05 7:46 PM Page 23

❑ A check is made to see if App_Offline.htm exists in the root of the website. If it does exist,
requests are not served by the website

❑ The internal thread pools used by ASP.NET are set up based upon either the settings in configu-
ration or using an heuristic if auto-configuration of thread settings was selected.

❑ Diagnostic and health related features are initialized. For example, ASP.NET initializes the coun-
ters for tracking the maximum number of queued requests as well as detecting that a response
has deadlocked or hung. Part of this initialization also includes initializing tracing (as config-
ured in <trace />) as well as starting the Health Monitoring feature (as configured in
<healthMonitoring />).

❑ The compiled type for global.asax is loaded, and if Application_Start is defined in
global.asax, it is called.

As you can see from this list, much of the work that occurs is internal and focused around initializing the
internal workings of the ASP.NET runtime. However, a few steps are of interest from a security perspec-
tive and are discussed in more detail in the following sections.

Disabling a Website with the HttpRuntime Section
In ASP.NET 2.0, the <httpRuntime /> configuration section has an enable attribute \”. By default it is
set to true, but you can set the attribute to false as shown here:

<httpRuntime enable=”false” />

Doing so causes ASP.NET to reject all requests made to the ASP.NET application. Instead of running the
requested page (or handler), ASP.NET instead returns a 404 error indicating that the requested resource
is not available. This setting is a pretty handy way to force an ASP.NET site to act as if it is offline while
an administrator uploads new content or is making other modifications to a production web server.

Note that if you change this configuration setting on a live web server, the underlying application
domain will restart because the configuration file changed.

Disabling a Website with App_Offline.htm
This is an alternative technique for indicating that an ASP.NET application is unavailable. If a file called
App_Offline.htm is placed in the root of your website, all requests to the site return the contents of
App_Offline.htm instead of running the requested page. Because it is an HTML file, you can place any
static content you want into the file, and ASP.NET will stream it back to the browser. The one restriction
is that the amount of content cannot exceed one megabyte. Of course, it is pretty unlikely that a devel-
oper would ever want to stuff that much content onto a page indicating that the site is unavailable.

As with the enable attribute of <httpRuntime />, placing App_Offline.htm into the root of your
website causes the application domain to recycle. Additionally, when you remove the file from the root
of your website, the application domain will recycle a second time. ASP.NET always has a file change
monitor listening for this file so that it knows to recycle the application domain when the file’s presence
changes. The application domain recycling occurs only when the existence of App_Offline.htm
changes. For example, after the file exists, there is an application domain up and running with the sole
purpose of returning back the contents of the file. The application domain won’t recycle again until the
App_Offline.htm file is removed (or edited).

24

Chapter 1

04_596985 ch01.qxp 12/14/05 7:46 PM Page 24

The advantage of using App_Offline.htm over the <httpRuntime /> section though is twofold:

❑ It is trivial to automate usage of App_Offline.htm. Because it is just a file, administrative batch
jobs or administrative tools do not need to write code to bring an ASP.NET application offline
and then back online. As long as your administrative tools for your production servers can copy
files, you can use the App_Offline.htm technique.

❑ You have easy control over the content that is sent back to your website users. With
<httpRuntime />, the default content is generated by ASP.NET. In the case that your website
disables remote error information with <customErrors />, you may have some control over
error content assuming that you configured a custom error page for 404 errors. However, even if
you use custom error pages, there is no way to distinguish between a 404 triggered by nonexis-
tent website content, versus the 404 that ASP.NET generates when the application is offline.
With App_Offline.htm you can create content for display to your users knowing that the
information will be displayed only when the ASP.NET application has been taken offline.

Calling Application_Start in global.asax
Probably the most relevant startup activity for ASP.NET developers is the Application_Start event
that can be authored in global.asax. Probably most developers that use Application_Start just
breeze through writing the necessary code without worrying about the security context of this event.
However, ASP.NET carefully manages the security context that is used to execute Application_Start.

Because the Application_Start event is written with user code, and the trust level has been previ-
ously established for the application domain, any code in the Application_Start event will be
restricted based on the ASP.NET trust policy that was loaded for the application. Because the application
domain initialization process also establishes a specific security identity, ASP.NET explicitly chooses an
identity prior to running any code in the Application_Start event.

25

Initial Phases of a Web Request

The Origins of App_Offline.htm
If you are wondering where the idea for App_Offline.htm originated, the idea was
actually developed to handle a problem having nothing to do with security or website
operations. SQL Server 2005 Express ships with the various versions of Visual Studio
and includes a special mode of operation called user instancing. A side effect of user
instancing is that SQL Server will hold a lock on your MDF database files while an
ASP.NET application is accessing them. In production, of course, this isn’t a problem.
However, if you are developing against IIS using Visual Studio, and you frequently use
Alt+Tab to switch between the website and the development tool, you would quickly
run into problems trying to edit data in your database using Visual Studio. Hence the
idea for App_Offline.htm.

Now when a developer attempts to edit data in the Visual Studio data designers, Visual
Studio will first drop an App_Offline.htm file into the ASP.NET application’s direc-
tory root. This has the effect of shutting down the ASP.NET application which in turn
causes all outstanding ADO.NET connections to SQL Server Express 2005 to be released.
As a result of the released connections, SQL Server Express 2005 detaches the MDF files
thus making them available to be re-attached by the Visual Studio design time.

04_596985 ch01.qxp 12/14/05 7:46 PM Page 25

For example, one question that arises when running global.asax is what happens if client imperson-
ation is in effect? To help frame this security problem, first a few terms should be discussed because
using the shorthand for security contexts in ASP.NET is a lot faster than always calling out the <iden-
tity /> element and its settings.

Client impersonation means that all of the following are true:

❑ Integrated Windows Authentication, Digest Authentication, Basic Authentication or some type
of Certificate Mapping is configured for the ASP.NET application.

❑ The ASP.NET application’s <authentication /> element has the mode attribute set to
Windows.

❑ The ASP.NET application’s <identity /> element has the impersonate attribute set to true.

❑ The ASP.NET application’s <identity /> element does not have the username or password
attributes set.

An example of configuration settings that correspond to client impersonation is:

<identity impersonate=”true” />
<authentication mode=”Windows”/>

Application impersonation means that all of the following are true:

❑ The ASP.NET application’s <identity /> element has the impersonate attribute set to true.

❑ The ASP.NET application’s <identity /> element explicitly sets the values for the username
and password attributes.

The value of <authentication /> does not have any bearing on whether application impersonation
is in effect. Within ASP.NET, code paths that look for the application impersonation identity will ignore
any client credentials when an explicit application impersonation identity has been configured.

An example of configuration settings that correspond to application impersonation is:

<identity impersonate=”true” userName=”appimpersonation@corsair.com”
password=”pass!word1”/>

UNC identity means that the ASP.NET application content is deployed remotely on a UNC share. When
you configure an application to run on a UNC share in IIS, the IIS MMC prompts you to specify the way
to handle credentials for the UNC share. In most web server environments an administrator supplies a
unique username and password that have been granted read access to the remote share.

So, how does this all affect Application_Start? The underlying thread identity that ASP.NET uses
when running Application_Start can only be that of the process identity, application impersonation
identity, or the UNC identity. If client impersonation has been configured for an application, it is ignored
while the Application_Start event is executing. This makes sense because if client impersonation
were honored during Application_Start, you would end up with completely random behavior for
any security-dependent operations running inside of the event. For example, if the client credentials
were honored and a domain administrator just happened to be the first user that triggered application
domain startup, everything might work properly. Yet if the website was recycled in the middle of the

26

Chapter 1

04_596985 ch01.qxp 12/14/05 7:46 PM Page 26

day and the first person in afterwards had lower network privileges, then code inside of Application
_Start would mysteriously fail. Limiting the security decision to one of process, application imperson-
ation, or UNC identity guarantees stable security credentials each and every time the application starts up.

To highlight this behavior, use a simple ASP.NET application that stores the thread identity when
Application_Start is running and then compares it to the thread identity that is used during a nor-
mal page request.

The sample application here uses the following code in global.asax to store the name of the authenti-
cated identity that is used when Application_Start is called:

void Application_Start(Object sender, EventArgs e) {
Application[“WindowsIdentity”] =

System.Security.Principal.WindowsIdentity.GetCurrent().Name;
}

You can then see the differences between the Application_Start identity and the actual identity that
is running for a page request with the following code:

protected void Page_Load(object sender, EventArgs e)
{

Response.Write(“The operating system thread in Application_Start ran as: “
+ Application[“WindowsIdentity”] + “
”);

Response.Write(“The current operating system thread identity is: “ +
System.Security.Principal.WindowsIdentity.GetCurrent().Name);

}

To see the effects of this, the code was run using a local ASP.NET application as well as a separate copy
running remotely from a UNC share. The values for <identity /> were varied as well, although in
all cases Windows authentication was enabled for the application. The results of running the sample
application in various configurations are shown in the following table:

Configured Running on
Impersonation UNC Share Application_Start Thread Identity

None No NT AUTHORITY\NETWORK SERVICE

Client No NT AUTHORITY\NETWORK SERVICE

Application No The username as configured in <identity />

None Yes The UNC identity as configured in the IIS MMC

Client Yes The UNC identity as configured in the IIS MMC

Application Yes The username as configured in <identity />

The results for the non-UNC application make sense: Either the process identity or the application
impersonation identity is used. The UNC case is a little bit trickier, because using application imperson-
ation with a UNC share means that two sets of explicit credentials are floating around and being used by
ASP.NET. When running as the application impersonation identity, some additional rights are needed
for the application to run properly. The special security configurations need to fully enable UNC support
as shown in the following table:

27

Initial Phases of a Web Request

04_596985 ch01.qxp 12/14/05 7:46 PM Page 27

Configured Impersonation Extra Security Configuration

None or Client Because application initialization runs as the configured
UNC identity, the UNC identity requires Modify access to
the Temporary ASP.NET Files directory.
However, it is also highly recommended that you configure
the UNC identity with aspnet_regiis -ga <UNC iden-
tity>.

Application Even though the application is on a UNC share, it is the
application impersonation identity that is used to monitor
change notifications for content files such as global.asax
(recall the earlier discussion that described which identity is
in effect during application domain initialization). As a
result, the application impersonation identity requires read
permissions on the UNC share (both share permissions and
NTFS permissions).

If you plan to use code in Application_Start that depends on the security credentials associated with
the operating system thread, you need to ensure that depending on how your application is configured
the correct identity has rights to your backend data stores. For example, if you are planning on connect-
ing to a database to fetch a dataset inside Application_Start, and you use Integrated Security with
SQL Server; then the process identity, application impersonation identity, or the configured UNC iden-
tity need the appropriate rights on your SQL Server. The first two credentials make sense, but the UNC
identity probably would catch some folks by surprise, especially if an application that was working fine
when running from a local hard drive on a web server was moved to a UNC share on a production
server. The moral of the story is that when running with a UNC identity, be careful and to test your
application in an environment that closely mirrors the UNC structure you use in production.

Although the previous discussion centered on the Application_Start event, the same rules and
rationale for determining security credentials are used when the Application_End event executes.

Summary
In this chapter, you walked through many of the behind-the-scenes steps that occur when an application
domain is started, as well as when the first request to the application domain is processed. Before a
request is “seen” by the ASP.NET runtime though, the following hurdles must be cleared:

1. http.sys must consider the request to be well formed prior to passing it on to IIS

2. The ISAPI filter aspnet_filter.dll disallows any requests to special ASP.NET directories
(/bin, App_Data, sand so on).

3. IIS determines whether the request is for static content or dynamic content. If IIS recognizes that
the file extension for the requested resource is one that is mapped to ASP.NET, IIS forwards the
request to ASP.NET’s ISAPI extension

4. The ASP.NET ISAPI extension must complete a long series of steps that ultimately result in an
application domain being spun up in-memory and prepared for executing ASP.NET requests

28

Chapter 1

04_596985 ch01.qxp 12/14/05 7:46 PM Page 28

After the application domain is up and running, ASP.NET performs a few last steps for the very first
request that is made to an application.

If you choose to run ASP.NET using local or domain accounts, make sure to run the aspnet_regiis
utility with the -ga switch. Doing so will ensure that the necessary security rights have been granted
and other setup tasks performed for these accounts to work properly.

Throughout all of the ASP.NET processing, the two most important security concepts to keep in mind are:

❑ ASP.NET configures and enforces an application domain CAS policy very early in the applica-
tion domain’s lifecycle. This means any code you write and deploy will be subject to the restric-
tions defined in an ASP.NET trust policy.

❑ The security credential that is used during application domain startup and during the early
parts of the first request is one of the following: process identity, application impersonation
identity, or UNC identity. Developers should understand which one is selected because code
that runs during Application_Start uses one of these three identities.

The next chapter continues this discussion with a look at how the security context is set up for each indi-
vidual request, as well as how the default handler mappings in ASP.NET provide security.

29

Initial Phases of a Web Request

04_596985 ch01.qxp 12/14/05 7:46 PM Page 29

04_596985 ch01.qxp 12/14/05 7:46 PM Page 30

Security Processing for
Each Request

The previous chapter discussed the work that occurs before an ASP.NET request starts processing.
This chapter describes security related processing that occurs each time ASP.NET processes a
request. As with starting up an application, per-request processing involves a handoff of security
information from IIS to ASP.NET. A combination of the application’s configuration in IIS and the
ASP.NET configuration for the application determines the security context that is initialized for
each request.

After a request is running through the ASP.NET pipeline, the authentication and authorization
options that have been configured for the application take affect. If a request passes authentication
and authorization checks, there is still one last hurdle to clear: the HttpHandler that is assigned to
process the request. Again, depending on the ASP.NET application’s configuration, a request may
be rejected by the handler that serves the request.

In this chapter, you will learn about:

❑ How the security identity in ASP.NET is set based on security information negotiated by IIS

❑ Security issues around the ASP.NET asynchronous programming model

❑ Authentication steps that occur in the HTTP pipeline

❑ Authorization processing in the HTTP pipeline

❑ How HTTP handlers control access to files

05_596985 ch02.qxp 12/14/05 7:46 PM Page 31

IIS Per-Request Security
In many ways, the security processing that occurs within IIS6 is something of a black box. You can
choose the specific security that should be enforced for an application or for a virtual directory. Once
configured, IIS6 performs the necessary work to set up security information for each request. From an
ASP.NET perspective, the security choices in IIS boil down to the following:

❑ Does the ASP.NET application require a WindowsPrincipal for each user that authenticates
with the website?

❑ Will ASP.NET handle authentication using forms-based authentication, or some other custom
authentication strategy?

❑ Will the ASP.NET site run from a remote file share (that is, a share defined with a Universal
Naming Convention [UNC] name)? This question is orthogonal to the previous two considera-
tions because using a UNC share is primarily a deployment decision, but one that does has
ramifications for security.

From a technical perspective, IIS6 sets up security information for a request by initializing an Extension
Control Block (ECB) structure and passing this structure to the ISAPI extension responsible for serving
dynamic content. In the previous chapter, the difference between static and dynamic content handling
was discussed. If static content is being served (as opposed to an ASP.NET page or a resource mapped to
the ASP.NET ISAPI extension), IIS6 internally handles all of the security processing for static content.

Any ISAPI extension has the ability to use the ECB to call a support function within IIS that returns the
impersonation token for the current request. Depending on whether anonymous access or authenticated
access has been configured for an application in IIS, IIS returns an authenticated user token or a default
anonymous access token from the support function. In IIS, the following directory security options are
available:

❑ Authenticated access using Integrated Security (either NTLM- or Kerberos-based), Basic
Authentication, Digest Authentication

❑ Authenticated access using certificate mapping

❑ Anonymous access

The first two security configurations result in a security token that represents a specific user from either
the local machine’s security database or a domain. The token that is returned varies from request to
request, depending on which user is currently making a request to IIS. The last option also results in a
security token representing a specific user; however, on every request made to IIS, the same security
token is returned because IIS uses a fixed identity to represent an anonymous user.

Keep in mind that IIS has determined the impersonation token for a request before ASP.NET is ever
involved! A frequent (and understandable) request from customers is around configuring both Windows
and forms authentication in ASP.NET for the same ASP.NET application. Although some complicated
hacks get this scenario to work, ASP.NET (including ASP.NET 2.0) has, to date, never tackled the problem
because doing so requires a complicated dance between the front-end request processing in IIS and the
subsequent processing that occurs both in the ASP.NET ISAPI extension and the managed portion of the
ASP.NET runtime. Because IIS has already set up an impersonation token before ASP.NET ever comes into
the picture, solving this problem has always been deemed too awkward.

32

Chapter 2

05_596985 ch02.qxp 12/14/05 7:46 PM Page 32

For requests processed by the ASP.NET ISAPI extension, it is up to ASP.NET to decide what to do with
the impersonation token from IIS. It is this interplay between IIS’s initial security processing and
ASP.NET’s downstream security processing that leads to confusion over how to configure ASP.NET and
IIS in such a way that you get the desired security context when an ASP.NET page executes.

In the previous chapter, you saw that at certain points in an application domain’s lifecycle ASP.NET may use
the token that is passed to it from IIS, and may explicitly impersonate the token for certain tasks. Specifically,
you saw that the security context for the Application_Start and Application_End events is one of the
following: process identity, application impersonation identity, or explicit UNC credentials. However, an
application developer also needs to know what security context will be available on each request. The fol-
lowing sections discuss what happens to the IIS impersonation token for each ASP.NET request.

ASP.NET Per-Request Security
When ASP.NET processes a request, it maintains a handle back to the IIS context for the request through a
reference to an implementation of HttpWorkerRequest. In the case of ASP.NET running inside of IIS, the
internal implementation of HttpWorkerRequest used includes various pieces of information passed to it
by the ASP.NET ISAPI extension. Of course, part of this information includes the impersonation token.

However, just because an impersonation token is available to ASP.NET does not mean that the security
credentials negotiated by IIS will be used by ASP.NET. Instead, the security context for each request is
dependent on the following settings and information:

❑ The identity of the operating system thread

❑ The impersonation token from IIS

❑ The value of the impersonate attribute in the <identity /> configuration element

33

Security Processing for Each Request

Running Both Windows and Forms Authentication

One solution for attempting to allow some type of integrated authentication to a web-
site as well as the option for forms authentication is to author a custom ISAPI filter (not
an extension) that supports negotiating a secure connection with Internet Explorer as
well as a fallback mode that redirects a user to a forms-based login. From the point of
view of ASP.NET, though, a solution that included a custom ISAPI filter, login logic
running in the managed world, and then additional logic to set up different
IPrincipal-based user objects on an HttpContext gets complicated quickly. For
example, how do you author an application where a person may either auto-magically
authenticate against Active Directory, or explicitly log in with an account stored in a
SQL-based Membership database? Technically, it is possible to accomplish this, but
security-related code can be very awkward. With all that said though, extranet cus-
tomers are especially interested in this type of solution and both third-party vendors
Microsoft supply solutions to this problem today. Also, future versions of IIS and
ASP.NET will eliminate the somewhat artificial division between IIS request processing
and ASP.NET request processing. When this division is finally eliminated, it will
become possible to more easily author sites that support mixed authentication modes.

05_596985 ch02.qxp 12/14/05 7:46 PM Page 33

❑ The value of the username and password attributes in the <identity /> configuration element

❑ Whether the mode attribute of the <authentication /> configuration element has been set to
Windows

Before diving into how these settings interact with each other, a review of where security information
can be stored is necessary.

Where Is the Security Identity for a Request?
In reality, no single location in ASP.NET defines the identity for a request. This is a case where the differences
between the older Win32-oriented programming model and the managed world sort of collide.

Before the .NET Framework was implemented, the question of security identity always rested with the
currently executing operating system thread. An operating system thread always has a security token
associated with it representing either a local (potentially a built-in identity) or a domain account. Win32
programmers have always had the ability to create new security tokens and use these to change the
security context of an operating system thread. This behavior includes reverting the identity of a thread
and explicitly impersonating a security identity.

The impersonation token from IIS mentioned earlier is a piece of information that IIS creates based on
the directory security settings for an application. ISAPI extensions, such as aspnet_isapi.dll, can get
a handle to this token through the ISAPI support functions. The impersonation token can be passed to
various Win32 APIs such as ImpersonateLoggedOnUser and SetThreadToken. For example, ASP.NET
will call SetThreadToken in various places, while the application domain is initializing and during the
processing of the very first request.

With the introduction of the .NET Framework, a managed representation of a thread is available from the
System.Threading.Thread class. The Thread class has a CurrentPrincipal property that represents
the security identity of the managed thread. It is entirely possible for the security identity of the operating
system thread (obtainable by calling System.Security.Principal.WindowsIdentity.GetCurrent())
to differ in type and in value from the managed IPrincipal reference available from instance of
Thread.CurrentPrincipal.

As if that weren’t complicated enough, ASP.NET introduced the concept of an HttpContext associated
with each request flowing through ASP.NET. The HttpContext instance for a request has a User property
that also contains a reference to an IPrincipal implementation. This additional reference to a security
identity opened up the possibility of having a third set of security credentials available to a developer that
differed from the information associated with the operating system thread and the managed thread.

Figure 2-1 highlights the differences between a managed and operating system thread as well as where
the HttpContext fits into the picture.

To demonstrate, the following example is a simple application that displays three different identities.
The sample code stores the operating system’s security identity and the managed thread identity as they
exist during the Application_BeginRequest event, and when a page is running. The value for the
User property on the HttpContext is also stored.

34

Chapter 2

05_596985 ch02.qxp 12/14/05 7:46 PM Page 34

Figure 2-1

The initial identity information is collected in global.asax:

<%@ Import Namespace=”System.Security.Principal” %>
<%@ Import Namespace=”System.Threading” %>

void Application_BeginRequest (Object sender, EventArgs e)
{

HttpContext current = HttpContext.Current;

current.Items[“OperatingSystem_ThreadIdentity_BeginRequest”] =
WindowsIdentity.GetCurrent().Name;

if (String.IsNullOrEmpty(Thread.CurrentPrincipal.Identity.Name))
{

current.Items[“ManagedThread_ThreadIdentity_BeginRequest”] =
“[null or empty]”;

current.Items[“ManagedThread_IsGenericPrincipal”] =
(Thread.CurrentPrincipal is GenericPrincipal);

}
else

Impersonation
token available to
ISAPI extensions

O
perating system

thread running w
ith its ow

n identity

IPrincipal IPrincipal

M
anaged Thread (S

ystem
, Th reading, Thread)

AS
P.N

ET R
equest C

ontext (S
ystem

.W
eb.H

ttpC
ontext)

35

Security Processing for Each Request

05_596985 ch02.qxp 12/14/05 7:46 PM Page 35

current.Items[“ManagedThread_ThreadIdentity_BeginRequest”] =
Thread.CurrentPrincipal.Identity.Name;

if (current.User == null)
current.Items[“HttpContext_User_BeginRequest”] = “[null]”;

else
current.Items[“HttpContext_User_BeginRequest”] =

current.User.Identity.Name;
}

This code contains checks for null or empty strings because Application_BeginRequest occurs as the
first event that a developer can hook in ASP.NET’s processing pipeline. As a result, much of the security
setup and synchronization that ASP.NET performs on your behalf has not occurred yet. Specifically,
ASP.NET has not attempted to associate an IPrincipal with the current HttpContext. Additionally,
ASP.NET has not synchronized user information on the HttpContext to the current managed thread. The
managed thread principal is instead associated with an instance of a System.Security.Principal
.GenericPrincipal with a username set to the empty string. The value of the User property on the
HttpContext though is not even initialized, and returns a null value instead.

The values for this information are displayed in a page load event using the following code:

using System.Security.Principal;
using System.Threading;
...
protected void Page_Load(object sender, EventArgs e)
{

Response.Write(“The OS thread identity during BeginRequest is: “ +
Context.Items[“OperatingSystem_ThreadIdentity_BeginRequest”] + “
”);

Response.Write(“The managed thread identity during BeginRequest is: “ +
Context.Items[“ManagedThread_ThreadIdentity_BeginRequest”] + “
”);

Response.Write(“The managed thread identity during BeginRequest is “ +
“a GenericPrincipal: “ +
Context.Items[“ManagedThread_IsGenericPrincipal”] + “
”);

Response.Write(“The user on the HttpContext during BeginRequest is: “ +
Context.Items[“HttpContext_User_BeginRequest”] + “
”);

Response.Write(“<hr />”);

Response.Write(“The OS thread identity when the page executes is: “ +
WindowsIdentity.GetCurrent().Name + “
”);

if (String.IsNullOrEmpty(Thread.CurrentPrincipal.Identity.Name))
Response.Write(“The managed thread identity when the page executes is: “ +

“[null or empty]” + “
”);
else

Response.Write(“The managed thread identity when the page executes is: “ +
Thread.CurrentPrincipal.Identity.Name + “
”);

Response.Write(“The managed thread identity is of type: “ +
Thread.CurrentPrincipal.ToString() + “
”);

if (String.IsNullOrEmpty(User.Identity.Name))

36

Chapter 2

05_596985 ch02.qxp 12/14/05 7:46 PM Page 36

Response.Write(“The user on the HttpContext when the page executes is: “ +
“[null or empty]” + “
”);

else
Response.Write(“The user on the HttpContext when the page executes is: “ +

User.Identity.Name + “
”);

Response.Write(“The user on the HttpContext is of type: “ +
User.ToString() + “
”);

Response.Write(“The user on the HttpContext and the “ +
“thread principal point at the same object: “ +

(Thread.CurrentPrincipal == User) + “
”);
}

The information is displayed running on an ASP.NET 2.0 application with the following characteristics:

❑ The site is running locally on the web server (that is, not on a UNC share).

❑ IIS has Anonymous and Integrated Authentication enabled.

❑ ASP.NET is using the default mode of Windows for authentication.

❑ The <identity /> element’s impersonate attribute is set to false.

The page output is shown here:

The OS thread identity during BeginRequest is: NT AUTHORITY\NETWORK SERVICE
The managed thread identity during BeginRequest is: [null or empty]
The managed thread identity during BeginRequest is a GenericPrincipal: True
The user on the HttpContext during BeginRequest is: [null]

--
The OS thread identity when the page executes is: NT AUTHORITY\NETWORK SERVICE
The managed thread identity when the page executes is: [null or empty]
The managed thread identity is of type: System.Security.Principal.WindowsPrincipal
The user on the HttpContext when the page executes is: [null or empty]
The user on the HttpContext is of type: System.Security.Principal.WindowsPrincipal
The user on the HttpContext and the thread principal point at the same object: True

The operating system thread identity makes sense because this is the identity of the underlying IIS6
worker process. The ASP.NET runtime is not impersonating any identity, so the security context of the
thread is not reset by ASP.NET. As mentioned earlier, during BeginRequest neither the HttpContext
nor the Thread object have had any security information explicitly set by ASP.NET.

The security information during page execution is a bit more interesting. The operating system thread
identity has not changed. However, the IPrincipal associated with the current thread, and the
IPrincipal associated with HttpContext is a reference to a WindowsPrincipal. Furthermore, the
managed thread and HttpContext are referencing the same object instance. Clearly something occurred
after Application_BeginRequest that caused a WindowsPrincipal to come into the picture.

At this point, the important thing to keep in mind is that before the AuthenticateRequest event in the
ASP.NET pipeline occurs, neither the thread principal nor the User property of HttpContext should be
relied on for identifying the current. The operating system identity though has been established.
However, this identity can be affected by a number of factors, as you will see in the next section.

37

Security Processing for Each Request

05_596985 ch02.qxp 12/14/05 7:46 PM Page 37

Establishing the Operating System Thread Identity
Both ASP.NET and IIS have a “say” in the identity of the underlying operating system thread that is
used for request processing. By default, the identity is set to that of the IIS6 worker process: NT AUTHOR-
ITY\NETWORK SERVICE. However, developers and administrators have the option to use the IIS6 MMC
to change the identity of the IIS6 application pool (that is, the worker process) to a different domain or
machine account.

In earlier versions of ASP.NET, determining the actual impersonation token passed to ASP.NET was dif-
ficult because the technique involved some rather esoteric code. However, it is easy to get a reference to
the impersonation token that IIS passes to ASP.NET in ASP.NET 2.0. The following line of code gets a ref-
erence to the identity associated with the IIS impersonation token:

WindowsIdentity wi = Request.LogonUserIdentity;

With this information, it is much simpler to see the impersonation token without the sometimes confus-
ing effects of other authentication and configuration settings. For example, with the sample application
used in the previous section (anonymous access allowed in IIS, Windows authentication enabled in
ASP.NET, no impersonation), some of the security information for a page request is:

The OS thread identity during BeginRequest is: NT AUTHORITY\NETWORK SERVICE
The OS thread identity when the page executes is: NT AUTHORITY\NETWORK SERVICE
The impersonation token from IIS is: DEMOTEST\IUSR_DEMOTEST

Getting confused yet? From this listing it appears that yet another security identity has appeared! In this
case the output shows the default anonymous credentials for the IIS installation on my machine. The
reason for this behavior is that the impersonation token that IIS hands off to ISAPI extensions is based
on the security settings for the application in IIS.

If the IIS application is deployed on a UNC share with explicit UNC credentials, the security token that
IIS makes available to the ASP.NET ISAPI extension corresponds to the explicit UNC credentials.
Technically, IIS6 also supports UNC access whereby IIS6 can use the credentials of the browser user to
access the UNC share (pass-through authentication to the UNC share). However, this mode of UNC
access has not been tested with ASP.NET 2.0 and should not be used for ASP.NET applications.

The following table shows the various IIS security options and the resulting impersonation token that IIS
will hand off to ASP.NET:

IIS Authentication Type Impersonation Token Handed Off to ASP.NET

Integrated, Basic, Digest, Token corresponding to the authenticated
or Certificate Mapping (or mapped) browser user

Anonymous The default identity configured in IIS for anony-
mous access. Usually an account of the form
IUSR_MACHINENAME

Running on a UNC share The configured UNC identity. This identity is
with explicit credentials passed regardless of the IIS authentication type.

38

Chapter 2

05_596985 ch02.qxp 12/14/05 7:46 PM Page 38

After the thread of execution enters the ASP.NET ISAPI extension and starts running the ASP.NET
pipeline, the setting of the impersonate attribute on the <identity /> element will affect the operating
system thread identity. Prior to starting execution of the HTTP pipeline, ASP.NET will initialize the iden-
tity of the operating system thread based on a combination of the settings in the <identity /> attribute
and the impersonation token available from IIS.

If the impersonate attribute of the <identity /> element is set to true, then ASP.NET will change the
operating system thread’s identity using the token that IIS passed to ASP.NET. However, if ASP.NET
does not explicitly set the thread token, the operating system thread will run with the credentials config-
ured for the worker process in IIS.

Continuing with previous sample, if the following configuration change is made to the application:

<identity impersonate=”true” />

Then ASP.NET explicitly impersonates using the supplied impersonation token. Now, the security infor-
mation for the request changes to reflect the default anonymous user configured in IIS (at this point the
sample application is not requiring IIS to authenticate the browser user):

The OS thread identity during BeginRequest is: DEMOTEST\IUSR_DEMOTEST
The OS thread identity when the page executes is: DEMOTEST\IUSR_DEMOTEST
The impersonation token from IIS is: DEMOTEST\IUSR_DEMOTEST

Changing the settings in IIS to instead allow only Integrated authentication causes IIS to hand off an
impersonation token representing an authenticated user. Because ASP.NET impersonates this token, the
thread identity will reflect the authenticated user identity:

The OS thread identity during BeginRequest is: CORSAIR\demouser
The OS thread identity when the page executes is: CORSAIR\demouser
The impersonation token from IIS is: CORSAIR\demouser

If the configuration for <identity /> includes an explicit value for the username and password
attributes then ASP.NET ignores the impersonation token that is provided by IIS, and ASP.NET instead
explicitly sets the operating system’s thread token based on the credentials in the <identity /> ele-
ment. For example, if the sample application is switched back to allow Anonymous access in IIS and the
configuration is changed to use the following:

<identity impersonate=”true” userName=”appimpersonation@corsair.com”
password=”pass!word1”/>

Then the security information reflects the application impersonation identity:

The OS thread identity during BeginRequest is: CORSAIR\appimpersonation
The OS thread identity when the page executes is: CORSAIR\appimpersonation
The impersonation token from IIS is: DEMOTEST\IUSR_DEMOTEST

Another variation with application impersonation follows. This time the sample application in IIS is con-
figured to require Integrated authentication. Notice how ASP.NET still sets the thread identity to the
configured application impersonation account. The credentials negotiated with the browser are only
available by looking at the impersonation token supplied by IIS.

39

Security Processing for Each Request

05_596985 ch02.qxp 12/14/05 7:46 PM Page 39

The OS thread identity during BeginRequest is: CORSAIR\appimpersonation
The OS thread identity when the page executes is: CORSAIR\appimpersonation
The impersonation token from IIS is: CORSAIR\demouser

Throughout the previous samples, the sample application was running locally on the web server. If
instead the sample application is placed on a UNC share configured with explicit UNC credentials, the
only security identities used for the operating system thread are either the UNC credentials or the appli-
cation impersonation credentials. This is due in part because IIS always set the impersonation token to
the explicit UNC identity, regardless of whether or not the application in IIS is configured to require
some type of authentication with the browser.

When running the sample application on a UNC share without impersonation enabled, the security
information looks like:

The OS thread identity during BeginRequest is: CORSAIR\uncidentity
The OS thread identity when the page executes is: CORSAIR\uncidentity
The impersonation token from IIS is: CORSAIR\uncidentity

This highlights an important piece of ASP.NET security behavior. ASP.NET always ignores the true/false
state of the impersonate attribute when running on a UNC share. Instead, ASP.NET will impersonate the
UNC identity. Running on a UNC share with client impersonation enabled (<identity impersonate
=”true” />), the security information is exactly the same because of this behavior:

The OS thread identity during BeginRequest is: CORSAIR\uncidentity
The OS thread identity when the page executes is: CORSAIR\uncidentity
The impersonation token from IIS is: CORSAIR\uncidentity

However, if application impersonation is configured for an application (that is, the username and pass-
word attributes of the <identity /> element are set), then ASP.NET will ignore the impersonation
token from IIS and will instead set the operating system thread identity to the values specified in the
<identity /> element. Notice in the following output that the UNC identity is only available from the
impersonation token passed by IIS:

The OS thread identity during BeginRequest is: CORSAIR\appimpersonation
The OS thread identity when the page executes is: CORSAIR\appimpersonation
The impersonation token from IIS is: CORSAIR\uncidentity

To summarize all this information (what? — you don’t have it memorized yet!), the following table lists
the combinations of impersonation tokens from IIS and operating system thread identities based on vari-
ous configuration settings when running on IIS6. Remember that client impersonation means <identity
impersonate=”true”/>, whereas application impersonation means an explicit username and password
were configured in the <identity /> element. In the following table, when running on a UNC share is
yes, this means that the application in IIS has an explicit set of UNC credentials configured for accessing
the share. I noted earlier that “officially” ASP.NET 2.0 is not supported running on a UNC share that uses
pass-through authentication.

40

Chapter 2

05_596985 ch02.qxp 12/14/05 7:46 PM Page 40

On UNC ASP.NET Operating System Impersonation
Share? IIS Authentication Impersonation Thread Identity Token

No Anonymous None NETWORK IUSR_
allowed SERVICE MACHINE

NAMENAME

No Anonymous Client IUSR_ IUSR_
allowed MACHINE MACHINE

NAMENAME NAMENAME

No Anonymous Application The application IUSR_
allowed impersonation MACHINE

credentials NAMENAME

No Authenticated None NETWORK The credentials
access required SERVICE of the browser

user

No Authenticated Client The credentials The credentials
access required of the browser user of the browser

user

No Authenticated Application The application The credentials of
access required impersonation the browser user

credentials

Yes Anonymous
allowed None The configured The configured

UNC identity UNC identity

Yes Anonymous Client The configured The configured
allowed UNC identity UNC identity

Yes Anonymous Application The application The configured
allowed impersonation UNC identity

credentials

Yes Authenticated None The configured The configured
access required UNC identity UNC identity

Yes Authenticated Client The configured The configured
access required UNC identity UNC identity

Yes Authenticated Application The application The configured
access required impersonation UNC identity

credentials

The ASP.NET Processing Pipeline
And now for a brief interlude to review the processing pipeline in ASP.NET 2.0: a basic understanding of
the pipeline is useful for knowing when authentication and authorization occur within the lifecycle of an
ASP.NET request and, thus, when other security credentials are established in ASP.NET and how these
credentials are used later on in the ASP.NET pipeline.

41

Security Processing for Each Request

05_596985 ch02.qxp 12/14/05 7:46 PM Page 41

Developers who have worked with the ASP.NET pipeline are usually familiar with the synchronous
events that can be hooked. ASP.NET 2.0 expands on the original pipeline by adding a number of Post
events to make it easier for developers to cleanly separate pipeline processing.

The current ASP.NET 2.0 synchronous pipeline events are listed in the order that they occur:

1. BeginRequest

2. AuthenticateRequest

3. PostAuthenticateRequest

4. AuthorizeRequest

5. PostAuthorizeRequest

6. ResolveRequestCache

7. PostResolveRequestCache

8. PostMapRequestHandler

9. AcquireRequestState

10. PostAcquireRequestState

11. PreRequestHandlerExecute

12. At this stage, the selected handler executes the current request. The most familiar handler is the
Page handler.

13. PostRequestHandlerExecute

14. ReleaseRequestState

15. PostReleaseRequestState

16. UpdateRequestCache

17. PostUpdateRequestCache

18. EndRequest

I discuss what happens during AuthenticateRequest, PostAuthenticateRequest, and
AuthorizeRequest in more detail shortly. Suffice it to say that prior to the completion of
AuthenticateRequest and PostAuthenticateRequest, only the operating system thread identity
should be used. Other identities have not been completely initialized until these two events complete.

For most developers, the operating system thread identity that is established prior to BeginRequest
remains stable for the duration of the entire pipeline. Similarly, after authentication has occurred during
AuthenticateRequest and PostAuthenticateRequest, the values of HttpContext.Current.User
as well as Thread.CurrentPrincipal remain constant for the remainder of the pipeline.

ASP.NET 2.0 introduces a lot of new functionality for asynchronous processing in the pipeline as well.
For example, each of the synchronous events in the previous list also has a corresponding asynchronous
event that developers can hook. Asynchronous pipeline processing makes it possible for developers to
author long-running tasks without tying up ASP.NET worker threads. Instead, in ASP.NET 2.0 develop-
ers can start long running tasks in a way that quickly returns control to the current ASP.NET 2.0 worker
thread. Then at a later point the ASP.NET runtime will be notified of the completion of the asynchronous
work, and a worker thread is scheduled to continue running the pipeline again.

42

Chapter 2

05_596985 ch02.qxp 12/14/05 7:46 PM Page 42

Thread Identity and Asynchronous Pipeline Events
Because of the support for asynchronous processing in ASP.NET 2.0, developers need to be cognizant of
the security values available at different phases of asynchronous processing. In general, asynchronous
pipeline events are handled in the following manner:

1. The developer subscribes to an asynchronous pipeline event in global.asax or with an
HttpModule. Subscribing involves supplying a Begin and an End event handler for the asyn-
chronous pipeline event.

2. ASP.NET runs the Begin event handler. The developer’s code within the Begin event handler
kicks off an asynchronous task and returns the IAsyncResult handle to ASP.NET.

3. The asynchronous work actually occurs on a framework thread pool thread. This is a critical distinction
because when the actual work occurs, ASP.NET is not involved. No security information from the
ASP.NET world will be auto-magically initialized. As a result, it is the responsibility of the developer
to ensure that any required security identity information is explicitly passed to the asynchronous
task. Furthermore, if the asynchronous task expects to be running under a specific identity, the task is
responsible for impersonating prior to performing any work as well as reverting impersonation
when the work is completed.

4. Once the asynchronous work is done, the thread pool thread will call back to ASP.NET to notify
it that the work has completed.

5. As part of the callback processing, ASP.NET will call the developer’s End event handler.
Normally in the End event handler, the developer uses the IAsyncResult handle from step 2 to
call EndInvoke and process the results.

6. ASP.NET starts up processing the page request again using a different ASP.NET worker thread.
Before ASP.NET resumes running the request, it reinitializes the ASP.NET worker thread to
ensure that the correct security context and security identities are being used.

To make this all a bit clearer, let’s walk through a variation of the identity sample used earlier. The asyn-
chronous sample hooks the asynchronous version of BeginRequest with an HttpModule. The module
is registered as follows:

<httpModules>
<add name=”AsyncEventModule” type=”AsyncEventsModule”/>

</httpModules>

The module’s Init method is where the asynchronous event registration actually occurs. Notice that
both a Begin and an End event handler are registered.

using System.Collections;
using System.Security.Principal;
using System.Threading;
...
public class AsyncEventsModule : IHttpModule
{
...
public void Dispose()
{
//do nothing

43

Security Processing for Each Request

05_596985 ch02.qxp 12/14/05 7:46 PM Page 43

}

public void Init(HttpApplication context)
{
context.AddOnBeginRequestAsync(

new BeginEventHandler(this.BeginRequest_BeginEventHandler),
new EndEventHandler(this.BeginRequest_EndEventHandler)
);

}
...
//Implementations of being and end event handlers shown later

}

Within the same ASP.NET application, there is a class called Sleep that will sleep for one second when
one of its methods is called. The Sleep class simulates a class that would perform some type of lengthy
work that is best executed in the background. The constructor for the Sleep class accepts a reference to
an IDictionary. This will be used to initialize the Sleep class with a reference to the HttpContext’s
Items collection. Using the Items collection, an instance of the Sleep class can log the operating system
thread identity, both during asynchronous execution and after completion of asynchronous processing.

using System.Collections;
using System.Security.Principal;
using System.Threading;
...
public class Sleep
{

private IDictionary state;

public Sleep(IDictionary appState)
{

state = appState;
}

public void DoWork()
{

state[“AsyncWorkerClass_OperatingSystemThreadIdentity”] =
WindowsIdentity.GetCurrent().Name;

Thread.Sleep(1000);
}

public void StoreAsyncEndID()
{

state[“AsyncWorkerClass_EndEvent_OperatingSystemThreadIdentity”] =
WindowsIdentity.GetCurrent().Name;

}
}

The Begin event handler for BeginRequest will use a delegate to trigger an asynchronous call to the
DoWork method. The module defines a delegate that is used to wrap the DoWork method on the Sleep
class as follows:

public delegate void AsyncSleepDelegate();

44

Chapter 2

05_596985 ch02.qxp 12/14/05 7:46 PM Page 44

For simplicity, the Begin and End pipeline event handlers are also implemented as part of the same
HttpModule. The Begin event handler (which follows), first obtains a reference to the HttpContext
associated with the current request by casting the sender parameter to an instance of HttpApplication.
Using the context, the module stores the operating system thread identity. Then the module creates an
instance of the class that will perform the actual asynchronous work. After wrapping the DoWork method
with an AsyncSleepDelegate, the module calls BeginInvoke. The code passes the AsyncCallback
reference supplied by ASP.NET as one of the parameters to BeginInvoke. This is necessary because it is
the ASP.NET runtime that is called back by the .NET Framework thread pool thread carrying out the
asynchronous work. Without hooking up the callback, there would be no way for the flow of execution to
return back to ASP.NET after an asynchronous piece of work was completed. The second parameter passed
to BeginInvoke is a reference to the very AsyncSleepDelegate being called. As a result, the delegate
reference will be available when asynchronous processing is completed and EndInvoke is called on the
delegate.

The return value from any call made to a BeginInvoke method is a reference to an IAsyncResult. The
BeginInvoke method is auto-generated by the .NET Framework to support asynchronous method calls
without developers needing to explicitly author asynchronous class definitions. Returning an
IAsyncResult allows ASP.NET to pass the reference back to the developer’s End event later on when
asynchronous processing is complete.

private IAsyncResult BeginRequest_BeginEventHandler(
object sender, EventArgs e, AsyncCallback cb, object extraData)

{
HttpApplication a = (HttpApplication)sender;
a.Context.Items[“BeginRequestAsync_OperatingSystemThreadID”] =

WindowsIdentity.GetCurrent().Name;

Sleep s = new Sleep(a.Context.Items);
AsyncSleepDelegate asd = new AsyncSleepDelegate(s.DoWork);
IAsyncResult ar = asd.BeginInvoke(cb, asd);

return ar;
}

When asynchronous work has completed, the .NET Framework calls back to ASP.NET using the callback
reference that was supplied earlier to the BeginInvoke call. As part of the callback processing, ASP.NET
calls the End event (which follws) that was registered, passing it the IAsyncResult that was returned
from the BeginInvoke call. This allows the End event to cast the AsyncState property available from
IAsyncResult back to a reference to the AsyncSleepDelegate. The End event can now call
EndInvoke against the AsyncSleepDelegate to gather the results of the asynchronous processing. In
the sample application, there is no return value, but in practice any asynchronous processing would
probably return a reference to a query or some other set of results.

Because the End event now has a reference to the AsyncSleepDelegate, it can use the Target property of
the delegate to get back to the original instance of Sleep that was used. The End event then logs the current
operating system thread identity as it exists during the End event using the StoreAsyncEndID method on
the Sleep instance. At this point, having the Sleep instance log the thread identity is acceptable because
this method call is synchronous and thus executes on the same thread running the End event handler.

private void BeginRequest_EndEventHandler(IAsyncResult ar)
{

AsyncSleepDelegate asd = (AsyncSleepDelegate)ar.AsyncState;

45

Security Processing for Each Request

05_596985 ch02.qxp 12/14/05 7:46 PM Page 45

asd.EndInvoke(ar);

Sleep s = (Sleep)asd.Target;
s.StoreAsyncEndID();

}

You can run the sample with a variety of different settings for <identity /> in web.config as well as
the directory security settings in IIS. Using the sample code earlier, the following extra lines of code
show the asynchronous identity information.

Response.Write(“The OS thread identity during BeginRequest_BeginEventHandler is: “
+ Context.Items[“BeginRequestAsync_OperatingSystemThreadID”] + “
”);

Response.Write(“The OS thread identity during the actual async work is: “ +
Context.Items[“AsyncWorkerClass_OperatingSystemThreadIdentity”] + “
”);

Response.Write(“The OS thread identity during BeginRequest_EndEventHandler is: “ +
Context.Items[“AsyncWorkerClass_EndEvent_OperatingSystemThreadIdentity”] +
“
”);

The following results show the identity information with Anonymous access allowed in IIS and the
<identity /> configured for application impersonation:

The OS thread identity during BeginRequest is: CORSAIR\appimpersonation
The OS thread identity during BeginRequest_BeginEventHandler is:
CORSAIR\appimpersonation
The OS thread identity during the actual async work is: NT AUTHORITY\NETWORK
SERVICE
The OS thread identity during BeginRequest_EndEventHandler is: NT AUTHORITY\NETWORK
SERVICE
The OS thread identity when the page executes is: CORSAIR\appimpersonation
The impersonation token from IIS is: DEMOTEST\IUSR_DEMOTEST

The initial stages of processing, including the Begin event handler, use the application impersonation
account for the operating system thread identity. However, during the asynchronous work in the Sleep
instance, a thread from the .NET Framework thread pool was used. Because the application is running in
an IIS6 worker process, the default identity for any operating system threads is the identity of the worker
process. In this case, the worker process is using the default identity of NT AUTHORITY\NETWORK
SERVICE.

The End event handler also executes on a thread pool thread, and as a result the operating system thread
identity is also NT AUTHORITY\NETWORK SERVICE. However, because the work that occurs in the
End event handler is usually limited to just retrieving the results from the asynchronous call, the identity
of the thread at this point should not be an issue. Note that just from an architectural perspective you
should not be performing any “heavy” processing at this point. The general assumption is that the End
event handler is used for any last pieces of work after asynchronous processing is completed.

This highlights the fact that if a developer depends on the thread identity during asynchronous work
(for example, a call is made to SQL Server using integrated security), the developer is responsible for
impersonating and reverting identities during the asynchronous call. Because you own the work of
safely manipulating the thread identity at this point, you may need to carefully wrap all work in a
try/finally block to ensure that the thread pool’s thread identity is always reset to its original state.

46

Chapter 2

05_596985 ch02.qxp 12/14/05 7:46 PM Page 46

Although some tricks can be used to marshal an appropriate security token over to an asynchronous
worker class, performing work that requires specific credentials will always be a bit complicated.

For example, the sample intentionally used application impersonation to show that the application imper-
sonation identity is not available during asynchronous processing. If an application required this identity
to perform a piece of asynchronous work, you would need to first get a copy of the operating system
thread token in the Begin event (there is a Token property on WindowsIdentity), and then pass the token
to the asynchronous worker class. If the Sleep class is modified to accept a token in its constructor, it can
impersonate the necessary identity in the DoWork method when asynchronous work is performed:

//the Sleep class is now constructed with:
Sleep s = new Sleep(a.Context.Items,WindowsIdentity.GetCurrent().Token);

public class Sleep
{

private IDictionary state;
private IntPtr aspnetThreadToken;

public Sleep(IDictionary appState, IntPtr token)
{

state = appState;
aspnetThreadToken = token;

}

public void DoWork()
{

WindowsIdentity wi = new WindowsIdentity(aspnetThreadToken);
WindowsImpersonationContext wic = null;
try
{

wic = wi.Impersonate();

state[“AsyncWorkerClass_OperatingSystemThreadIdentity”] =
WindowsIdentity.GetCurrent().Name;

Thread.Sleep(1000);
}
finally
{

if (wic != null)
wic.Undo();

}
}

//StoreAsyncEndID snipped for brevity

}

The result of impersonating the identity during the asynchronous work shows that now the application
impersonation identity is available:

The OS thread identity during BeginRequest_BeginEventHandler is:
CORSAIR\appimpersonation
The OS thread identity during the actual async work is: CORSAIR\appimpersonation
The OS thread identity during BeginRequest_EndEventHandler is: NT AUTHORITY\NETWORK
SERVICE

47

Security Processing for Each Request

05_596985 ch02.qxp 12/14/05 7:46 PM Page 47

Overall, the moral of the story here is that when planning for asynchronous pipeline events, the question
of the identity needed to carry out the background work needs to be considered early on. If using the
worker process identity is not an option, for simplicity using a fixed set of identity information that can be
loaded from configuration or encapsulated in a worker class may be a better choice than trying to “hop”
the ASP.NET thread’s security identity over the wall to the asynchronous worker class. Although the
modifications shown earlier were pretty simple, the actual identity that is used will vary depending on IIS
and ASP.NET security settings. Trying to debug why a background task is failing will be much more diffi-
cult if the task depends on an identity that can be easily changed with a few misconfigurations.

Although it isn’t shown here, if the security information required by your asynchronous task is instead
just the IPrincipal from either HttpContext.Current.User or Thread.CurrentPrincipal, you
can pass the IPrincipal reference to your asynchronous worker class. In the case of HttpContext
.Current.User, it is even easier because you can just pass an HttpContext reference to your worker
class (the sample passed the Items collection from the current HttpContext). You may need the
IPrincipal for example if you pass user information to your middle tier for authorization or auditing
purposes.

Also, note that in some cases the value of Thread.CurrentPrincipal may appear to be retained across
the main ASP.NET request, and your asynchronous task. However, this behavior should not be relied on
because it is entirely dependent on which managed thread is selected from the framework’s thread pool
to execute asynchronous tasks.

One last piece of information about managing security for asynchronous tasks is in order. The sample
we looked at used a separate class to carry out the asynchronous work. However, a number of .NET
Framework classes provide methods that return an IAsyncResult reference. For example, both the
System.IO.FileStream and the System.Data.SqlClient.SqlCommand classes support asyn-
chronous reads. As another example, the System.Net.HttpWebRequest class also supports making
asynchronous requests to HTTP endpoints. In cases like these, you need to look at the class signatures
and determine if they have any built-in support for passing a security identity along to their asyn-
chronous processing. In the case of System.Net.HttpWebRequest, there is a Credentials property
that you can explicitly set. When the HttpWebRequest class asynchronously makes a request, it will use
the security information that you set in the Credentials property. A similar ability to automatically
pass along the correct credentials exists when using the SqlCommand and SqlConnection classes.

AuthenticateRequest
The AuthenticateRequest event is the point in the HTTP pipeline where you can have code examine
the current security information for a request and based upon it, create an IPrincipal implementation
and attach it to the current ASP.NET request. The end result of AuthenticateRequest is that both the
managed thread’s identity (available from Thread.CurrentPrincipal) and the User property of the
current HttpContext will be initialized to an IPrincipal that can be used by downstream code.

Be default, ASP.NET ships with a number of HttpModules that hook the AuthenticateRequest event.
You can see this list (and modify it) in the root web.config file that is available in the following location:

%windir%\Microsoft.NET\Framework\v2.0.50727\CONFIG

The web.config file in the framework’s CONFIG directory is a new concept in ASP.NET 2.0. The devel-
opment teams at Microsoft decided to separate web-specific configuration out of machine.config to
speed up load times for non-web applications. As a result, non-ASP.NET applications do not have to
chug through configuration sections for features unsupported outside of a web environment.

48

Chapter 2

05_596985 ch02.qxp 12/14/05 7:46 PM Page 48

Looking at the <httpModules /> configuration element in the root web.config file, the following
entries are for modules that hook AuthenticateRequest:

<add name=”WindowsAuthentication”
type=”System.Web.Security.WindowsAuthenticationModule” />

<add name=”FormsAuthentication”
type=”System.Web.Security.FormsAuthenticationModule” />

<add name=”PassportAuthentication”
type=”System.Web.Security.PassportAuthenticationModule” />

Of the three default modules, we will only take a closer look at the WindowsAuthenticationModule
and FormsAuthenticationModule.

WindowsAuthenticationModule
The WindowsAuthenticationModule is the only authentication module that depends on the imperson-
ation token available from IIS. Its purpose is to construct a WindowsPrincipal based on the imperson-
ation token from IIS when a web.config contains the setting <authentication mode=”Windows”/>.
The resultant WindowsPrincipal is set as the value of the User property for the current HttpContext.
If a different authentication mode has been configured, the WindowsAuthenticationModule immedi-
ately returns whenever it is called during the AuthenticateRequest event. Note that the module does
not look at or use the security identity of the underlying operating system thread when creating a
WindowsPrincipal. As a result, the settings in the <identity /> element have no effect on the output
from the WindowsAuthenticationModule.

The name of the module WindowsAuthenticationModule is a little misleading because in reality this
module does not actually authenticate a user. Authentication usually implies some kind of challenge
(username and password), a response and a resultant representation of the success or failure of the chal-
lenge/response. However, this module is not involved in any challenge/response sequence.

Instead, all this occurs up front in IIS. If IIS is configured to require some type of authenticated access to
an application (Integrated using NTLM or Kerberos, Basic, Digest, or Certificate Mapping), then it is IIS
that challenges the browser for credentials according to the enabled authentication types. If the response
succeeds (and in some cases the response involves multiple network round trips to complete all of the
security negotiations), then it is IIS that creates the data that represents a successfully authenticated user
by doing all of the following:

❑ Creating an impersonation token that represents the authenticated user and making this token
available to all ISAPI extensions, including ASP.NET

❑ Setting the values of the LOGON_USER and AUTH_TYPE server variables to reflect the authenti-
cated user and the authentication type that was used

WindowsAuthenticationModule just consumes the results of the security negotiations with IIS and
makes the results of these negotiations available as a WindowsPrincipal.

The very first time the module is called, it caches the value of WindowsIdentity.GetAnonymous().
This anonymous identity has the following characteristics:

❑ The value of Name is the empty string.

❑ The value of AuthenticationType is the empty string.

❑ IsAnonymous is set to true.

❑ IsAuthenticated is set to false. 49

Security Processing for Each Request

05_596985 ch02.qxp 12/14/05 7:46 PM Page 49

Assuming Windows authentication is enabled for an application, WindowsAuthenticationModule
inspects the LOGON_USER and AUTH_TYPE server variables for the current request. If the module deter-
mines that no browser user was authenticated for the request, it ignores the impersonation token from
IIS, and instead it constructs a WindowsPrincipal containing the anonymous WindowsIdentity that it
cached when the module first started up.

Because the module looks at the server variables to determine whether an authenticated browser user
exists, it is possible for the module to ignore the impersonation token from IIS. Remember earlier that
you saw a sample application with the IUSR_MACHINENAME identity in the impersonation token. Part of
the output from the sample application when anonymous access was allowed in IIS, but Windows
authentication was configured in web.config looked like:

The managed thread identity when the page executes is: [null or empty]
The managed thread identity is of type: System.Security.Principal.WindowsPrincipal
The impersonation token from IIS is: DEMOTEST\IUSR_DEMOTEST
The user on the HttpContext when the page executes is: [null or empty]
The user on the HttpContext is of type: System.Security.Principal.WindowsPrincipal

Now you know why the IPrincipal attached to both the context and the thread is a WindowsPrincipal
with a username of empty string. This is the anonymous WindowsIdentity that the module cached dur-
ing its initial startup for use on all requests with an unauthenticated browser user.

On the other hand, if an authenticated browser user is detected (i.e. LOGON_USER and AUTH_TYPE are not
empty strings), WindowsAuthenticationModule looks at the impersonation token from IIS and creates
a WindowsIdentity with the token.

After the module creates a WindowsIdentity (either an authenticated or an anonymous identity),
it raises the Authenticate event. A developer can choose to hook the Authenticate event from
WindowsAuthenticationModule. The WindowsIdentity that the module created is passed as part
of the event argument of type WindowsAuthenticationEventArgs. A developer can choose to create a
custom principal in their event handler by setting the User property on the WindowsAuthentication
EventArgs event argument. The thing that is a little weird about this event is that a developer can actu-
ally do some pretty strange things with it. For example:

❑ A developer could technically ignore the WindowsIdentity supplied by the module and create
a custom IIdentity wrapped in a custom IPrincipal implementation and then set this cus-
tom IPrincipal on the WindowsAuthenticationEventArgs User property.

❑ Alternatively, a developer could obtain a completely different WindowsIdentity (in essence
ignoring the impersonation token from IIS) and then wrap it in a WindowsPrincipal and set it
on the event argument’s User property.

In general though, there isn’t a compelling usage of the Authenticate event for most applications. The
Authenticate event was originally placed on this module (and others) to make it easier for developers
to figure out how to attach custom IPrincipal implementations to an HttpContext without needing
to create an HttpModule or hook events in global.asax. Architecturally though, it makes more sense
to just let WindowsAuthenticationModule carry out its work, and not hook the Authenticate event.
If a web application needs to implement a custom authentication mechanism, it should use a custom
HttpModule that itself hooks the AuthenticateRequest pipeline event. With ASP.NET 2.0, this
approach is even easier because you can author the module with a class file inside of the App_Code
directory and just reference the type (without all of the other assembly identification information) inside
of the <httpModules /> configuration section of web.config.

50

Chapter 2

05_596985 ch02.qxp 12/14/05 7:46 PM Page 50

Once the Authenticate event returns, WindowsAuthenticationModule looks at the User property on
the WindowsAuthenticationEventArgs that was passed to the event. If an IPrincipal was set, the
module sets the value of HttpContext.Current.User to the IPrincipal reference. If the User prop-
erty on the event arguments is null though (the normal case), the module wraps the WindowsIdentity
it determined earlier (either an anonymous WindowsIdentity, or a WindowsIdentity corresponding
to the IIS impersonation token) in a WindowsPrincipal, and sets this principal on HttpContext
.Current.User.

Using the sample application shown earlier in the chapter, look at a few variations of IIS security set-
tings and UNC locations while using Windows authentication. Earlier, you saw the results of running
with Anonymous allowed in IIS for a local web application. If instead some type of authenticated access
is required in IIS (Integrated, Digest, Basic, or Certificate Mapping), the output changes to reflect the
authenticated browser user.

The OS thread identity when the page executes is: CORSAIR\appimpersonation
The managed thread identity when the page executes is: CORSAIR\demouser
The managed thread identity is of type: System.Security.Principal.WindowsPrincipal
The user on the HttpContext when the page executes is: CORSAIR\demouser
The user on the HttpContext is of type: System.Security.Principal.WindowsPrincipal

Regardless of whether impersonation is in effect (in this case, I enabled application impersonation), the
value of Thread.CurrentPrincipal and HttpContext.Current.User will always reflect the authen-
ticated browser user (and hence the IIS impersonation token) when some type of browser authentication
is required.

If the application is running on a UNC share using explicit UNC credentials, then the usefulness of
Windows authentication as an ASP.NET authentication mode is pretty minimal. Remember that in ear-
lier UNC examples you saw that the impersonation token from IIS always reflected the explicit UNC
credentials. Because WindowsAuthenticationModule creates a WindowsPrincipal that is either an
anonymous identity, or an identity matching the impersonation token from IIS, this means that in the
UNC case there will only ever be one of two possible WindowsPrincipal objects attached to the thread
and the context: an anonymous WindowsIdentity, or an identity matching the UNC identity.

The following output is for the same application using application impersonation and running on a
UNC share with anonymous access allowed:

The OS thread identity when the page executes is: CORSAIR\appimpersonation
The managed thread identity when the page executes is: [null or empty]
The managed thread identity is of type: System.Security.Principal.WindowsPrincipal
The user on the HttpContext when the page executes is: [null or empty]
The user on the HttpContext is of type: System.Security.Principal.WindowsPrincipal

When authenticated access to the application is required, the only change is that the identity on the
thread and the context change to reflect the explicit UNC identity configured in IIS.

The OS thread identity when the page executes is: CORSAIR\appimpersonation
The managed thread identity when the page executes is: CORSAIR\uncidentity
The managed thread identity is of type: System.Security.Principal.WindowsPrincipal
The user on the HttpContext when the page executes is: CORSAIR\uncidentity
The user on the HttpContext is of type: System.Security.Principal.WindowsPrincipal

Chances are that most developers will find that being limited to only two possible identities in the UNC
case doesn’t make for a very useful authentication story.

51

Security Processing for Each Request

05_596985 ch02.qxp 12/14/05 7:46 PM Page 51

The following table summarizes the type of WindowsIdentity that is set on the HttpContext for vari-
ous settings:

Running on a UNC Share? Authenticated Access WindowsIdentity set
Required in IIS? on the HttpContext

No No The value of WindowsIdentity
.GetAnonymous()

No Yes A WindowsIdentity corresponding to
the authenticated browser user

Yes No The value of WindowsIdentity
.GetAnonymous()

Yes Yes A WindowsIdentity corresponding
to the explicit UNC credentials
configured in IIS

FormsAuthenticationModule
FormsAuthenticationModule inspects the cookies and the URL of the incoming request, looking for a
forms authentication ticket (an encrypted representation of a FormsAuthenticationTicket instance).
If the authentication mode is set to forms (<authentication mode=”Forms” />, the module will use
a valid ticket to create a GenericPrincipal containing a FormsIdentity, and set the principal on
HttpContext.Current.User. If a different authentication mode has been configured, then the module
immediately exits during the AuthenticateRequest event.

Before the module attempts to extract a forms authentication ticket, it raises an Authenticate event.
This event is similar in behavior to the Authenticate event raised by WindowsAuthenticationModule.
Developers can choose to hook the Authenticate event on the FormsAuthenticationModule, and
supply a custom IPrincipal implementation by setting the User property on the
FormsAuthenticationEventArgs parameter that is passed to the event. After the event fires, if an
IPrincipal was set on the event argument, FormsAuthenticationModule sets the value of
HttpContext.Current.User to the same value, and then exits.

In forms authentication the Authenticate event is a bit more useful, because conceptually “forms” authen-
tication implies some type of logon form that gathers credentials from a user. Hooking the Authenticate
event can be useful if developers programmatically create a FormsAuthenticationTicket, but then
need to manage how the ticket is issued and processed on each subsequent request. As with the
WindowsAuthenticationModule, the Authenticate event can be used as just a convenient way to author
a completely custom authentication scheme without needing to author and then register an HttpModule.

If you do not hook the event, then the normal processing of FormsAuthenticationModule occurs. In
Chapter 5, on forms authentication, you learn more about the options available for handling forms
authentication tickets. Briefly though, the sequence of steps the module goes through to arrive at a
FormsIdentity are:

52

Chapter 2

05_596985 ch02.qxp 12/14/05 7:46 PM Page 52

1. The module first gets the encrypted ticket that may have been sent as part of the request. The
ticket could be in a cookie, in a custom HTTP header (remember from Chapter 1 that the
ASP.NET ISAPI filter automatically removes information embedded in the request URL and
converts it to a customer HTTP header called HTTP_ASPFILTERSESSIONID), in a query-string
variable or in a posted form variable.

2. After the module has the ticket, it attempts to decrypt it. If decryption succeeds, the module
now has a reference to an instance of FormAuthenticationTicket. Some other validations
occur including confirming that the ticket has not expired, and that if SSL is required for cookie-
based tickets that the current request is running under SSL.

3. If decryption or any of the subsequent validations fail, then the ticket is invalid and the
FormsAuthenticationModule explicitly clears the ticket by either issuing an outdated cookie
or clearing the cookieless representation from the HTTP_ASPFILTERSESSIONID header. At this
point the module exits, which means no IPrincipal is created or attached to the context.

4. If a valid ticket was found, but the ticket was in a query-string variable or was part of a posted
form variable, then the module will transfer the ticket into either a cookie or the cookieless
representation of a forms authentication ticket. A side effect of this is that the module will
trigger a redirect if transferring the ticket to a cookieless representation.

5. The module then creates an instance of a GenericPrincipal. Because forms authentication has
no concept of roles, and requires no custom properties or methods on the principal, it uses a
GenericPrincipal. The custom representation for forms authentication is the FormsIdentity
class. By this point, the module has a reference to a FormsAuthenticationTicket instance as
a side effect of the earlier decryption step. It constructs a FormsIdentity, passing in the
FormsAuthenticationTicket reference to the constructor. The FormsIdentity instance is
then used to construct a GenericPrincipal.

6. GenericPrincipal is set as the value of the User property on the current HttpContext.

7. The module may update the expiration date for the ticket if sliding expirations have been
enabled for forms authentication. As with step 4, when working with cookieless tickets,
automatically updating the expiration date will trigger a redirect.

8. FormsAuthenticationModule sets the public SkipAuthorization property on the current
HttpContext. Note that even though the module sets this property, it does not actually use it.
Instead downstream authorization modules can inspect this property when authorizing a
request. The module will set the property to true if either the configured forms authentication
login page is being requested (it wouldn’t make any sense to deny access to the application’s
login page), or if the current request is for the ASP.NET assembly resource handler (webre-
source.axd) and the resource handler has been configured in the <httpHandlers /> section.
The reason for the extra check for webresource.axd is that it is possible to remove the handler
definition from configuration, in which case ASP.NET no longer considers webresource.axd to
be a special request that should skip authorization.

Unlike WindowsAuthenticationModule, FormsAuthenticationModule sets up security information
that is divorced from any information about the operating system thread identity. In some ways, forms
authentication is a much easier authentication model to use because developers do not have to wrestle
with the intricacies of IIS authentication, UNC shares and ASP.NET’s impersonation settings.

53

Security Processing for Each Request

05_596985 ch02.qxp 12/14/05 7:46 PM Page 53

Tweaking some of the earlier samples to require forms authentication, the following output shows the
results of running an application with Anonymous access allowed in IIS (requiring authenticated access
in IIS with forms authentication in ASP.NET is sort of pointless) and application impersonation enabled
in ASP.NET.

The OS thread identity when the page executes is: CORSAIR\appimpersonation
The managed thread identity when the page executes is: testuser
The managed thread identity is of type: System.Security.Principal.GenericPrincipal
The user on the HttpContext when the page executes is: testuser
The user on the HttpContext is of type: System.Security.Principal.GenericPrincipal
The impersonation token from IIS is: DEMOTEST\IUSR_DEMOTEST

As you can see, HttpContext and the current thread reflect the GenericPrincipal that is created by
FormsAuthenticationModule. The fact that application impersonation is being used is ignored, as is
the value of the impersonation token available from IIS.

When developing with forms authentication, you probably should still be aware of the operating system
thread identity because it is this identity that will be used when using some type of integrated security
with back-end resources such as SQL Server. However, from a downstream authorization perspective,
using forms authentication means that only the GenericPrincipal (and the contained
FormsIdentity) are relevant when making authorization decisions.

DefaultAuthentication and Thread.CurrentPrincipal
Most of the sample output has included information about the identity of Thread.CurrentPrincipal
and the identity on HttpContext.Current.User. However, in the previous discussions on
WindowsAuthenticationModule and FormsAuthenticationModule, you saw that these modules
only set the value of the User property for the current context.

How then did the same IPrincipal reference make it onto the CurrentPrincipal property of the cur-
rent thread? The answer lies within the ASP.NET runtime. Since ASP.NET 1.0, there has been a “hidden”
pipeline event called DefaultAuthentication. This event is not publicly exposed, so as a module
author you cannot directly hook the event. However, there is an ASP.NET authentication module that
runs during the DefaultAuthentication event called DefaultAuthenticationModule. As a devel-
oper, you never explicitly configure this module. Instead when the ASP.NET runtime is initializing an
application and is hooking up all of the HttpModules registered in the <httpModules /> configuration
section, it also automatically registers the DefaultAuthenticationModule. As a result, this module is
always running in every ASP.NET application. There is no way to “turn off” or unregister the
DefaultAuthenticationModule.

This module provides a number of services for an ASP.NET application:

1. It exposes a public Authenticate event (like the other authentication modules) that a devel-
oper can hook.

2. It provides a default behavior for failed authentication attempts.

3. The module ensures that if the User property has not been set yet, a GenericPrincipal is cre-
ated and set on the current context’s User property.

4. The module explicitly sets the CurrentPrincipal property of the current thread to the same
value as the current context’s User property.

54

Chapter 2

05_596985 ch02.qxp 12/14/05 7:46 PM Page 54

Initially, DefaultAuthenticationModule looks at the value of Response.StatusCode, and if the sta-
tus code is set to a value greater than 200, then the module routes the current request directly to the
EndRequest pipeline event. This effectively bypasses all other stages of the ASP.NET processing
pipeline except for any cleanup or residual processing that can occur during the EndRequest event.
Normally, unless a piece of code explicitly changes the value of Response.StatusCode, it defaults to
200 when the Response object is initially created. As a side effect of DefaultAuthenticationModule
checking the StatusCode, if DefaultAuthenticationModule detects that Response.StatusCode
was set to 401 (indicating an Access Denied error has occurred), the module writes out a custom 401
error message to Response prior to handing off the request to the EndRequest event.

Note that neither WindowsAuthenticationModule nor FormsAuthenticationModule sets the
StatusCode property. So, the behavior in DefaultAuthenticationModule around status codes is only
useful for developers who write custom authentication mechanisms that explicitly set the StatusCode
for failed authentication attempts.

To see this behavior, look at a simple application with an HttpModule that hooks the AuthenticateRequest
event. The module just sets the StatusCode property on the response to 401. The application is config-
ured in IIS to allow only Anonymous access (this prevents an IIS credentials prompt from occurring in the
sample). In ASP.NET, the application has its authentication mode set to None, because the normal scenario
for depending on the 401 behavior of DefaultAuthenticationModule makes sense only when you
write a custom authentication mechanism:

<!-- registering the HttpModule in web.config -->
<httpModules>

<add name=”Fake401” type=”ModuleThatForces401”/>
</httpModules>

<!-- Authentication mode in web.config is set to None --->
<authentication mode=”None”/>

public class ModuleThatForces401 : IHttpModule
{
//Default implementation details left out...

private void FakeA401(Object source, EventArgs e)
{

HttpContext.Current.Response.StatusCode = 401;
}

public void Init(HttpApplication context)
{

context.AuthenticateRequest += new EventHandler(this.FakeA401);
}

}

Running a website with this module results in a custom error page containing an “Access is denied”
error message generated by DefaultAuthenticationModule.

If the StatusCode is currently set to 200 or less, DefaultAuthenticationModule will raise the
Authenticate event. Instead of writing an HttpModule, a developer can choose to hook this event and
use it as a convenient place to perform custom authentication. Custom authentication code running in
this event should create an IPrincipal and set it on the current context’s User property if the custom

55

Security Processing for Each Request

05_596985 ch02.qxp 12/14/05 7:46 PM Page 55

authentication succeeds. Optionally, you can set StatusCode to 401 (or some other error code depend-
ing on the type of failure). DefaultAuthenticationModule will look at the StatusCode again after
the Authenticate event completes, and will output custom error information if a 401 is in the
StatusCode. Also, any StatusCode greater than 200 will cause the module to short-circuit the request
and reroute it to the EndRequest pipeline event.

Modifying the previous sample to use the Authenticate request event rather than an HttpModule to
set the StatusCode, results in the same behavior with an error page displaying “Access Denied.”

//In global.asax
void DefaultAuthentication_Authenticate(

Object sender, DefaultAuthenticationEventArgs e)
{

e.Context.Response.StatusCode = 401;
}

If StatusCode is still set to 200 or lower and any custom authentication in the Authenticate event
succeeds, the DefaultAuthenticationModule checks the current context’s User property. If the User
property is still null (remember that the property defaults to null back when BeginRequest occurs),
the module constructs a GenericPrincipal containing a GenericIdentity with the following charac-
teristics:

❑ The username is set to the empty string.

❑ The authentication type is set to the empty string.

❑ A zero-length string array is assigned as the set of roles associated with the principal.

❑ The IsAuthenticated property in the identity returns false.

The reason the module creates the GenericPrincipal is that most downstream authorization code
expects some kind of IPrincipal to exist on the current HttpContext. If the module did not place at
least a default IPrincipal implementation on the User property, developers would probably be
plagued with null reference exceptions when various pieces of authorization code attempted to perform
IsInRole checks.

After ensuring that default principal exists, the module sets Thread.CurrentPrincipal to the same
value as HttpContext.Current.User. It is this behavior that automatically ensures the thread principal
and the context’s principal are properly synchronized. Remember earlier in the chapter the diagram
showing the various locations where identity information could be stored. The fact that ASP.NET has
an HttpContext with a property for holding an IPrincipal creates the potential for an identity mis-
match with the .NET Framework’s convention of storing an IPrincipal on the current thread. Having
the DefaultAuthenticationModule synchronize the two values ensures that developers can use either
the ASP.NET coding convention (HttpContext.Current.User) or the .NET Framework’s coding
convention (Thread.CurrentPrinicpal) for referencing the current IPrincipal, and both coding
styles will reference the same identity and result in the same security decisions. Another nice side
effect of this synchronization is that developers using the declarative syntax for making access checks
([PrincipalPermission(SecurityAction.Demand, Role=”Administrators”]) will also get the
same behavior because PrincipalPermission internally performs an access check against
Thread.CurrentPrincipal (not HttpContext.Current.User).

56

Chapter 2

05_596985 ch02.qxp 12/14/05 7:46 PM Page 56

PostAuthenticateRequest
This event is new to ASP.NET 2.0, along with most of the other Post* events in the pipeline. The two
ASP.NET modules that hook this event are AnonymousIdentificationModule and RoleManagerModule.
Of the two, only RoleManagerModule is actually involved in security-related work. The
AnonymousIdentificationModule hooks PostAuthenticateRequest because it is early enough in
the pipeline for it to issue an anonymous identifier for use with the Profile feature, but it is late enough
in the pipeline that it can determine if the current user is authenticated, and thus an anonymous identi-
fier would not be needed in that case.

Because RoleManagerModule, and the role manager feature, is covered in much more detail later on in
the book, I will simply say at this point that the purpose of the RoleManagerModule is to create a
RolePrincipal class and set it as the value for both HttpContext.Current.User and Thread
.CurrentPrincipal. The RolePrincipal class fulfills IsInRole access checks with user-to-role map-
pings stored using the Role Manager feature.

It is important for developers to understand that because the PostAuthenticateRequest event occurs
after the DefaultAuthenticationModule has run, any changes made to either HttpContext
.Current.User or Thread.CurrentPrincipal will not be automatically synchronized. For example,
this is why RoleManagerModule has to set both the context and the thread’s principals. If the module
did not perform this extra work, developers would be left with two different principals and two differ-
ent sets of results from calling IPrincipal.IsInRole.

A simple application that hooks PostAuthenticateRequest illustrates this subtle problem. The appli-
cation uses forms authentication, which initially results in same GenericPrincipal on both the con-
text’s User property the current principal of the thread. However, the sample application changes the
principal on HttpContext.Current.User to a completely different value during the
PostAuthenticateRequest event.

//Hook PostAuthenticateRequest inside of global.asax
void Application_PostAuthenticateRequest(Object sender, EventArgs e)
{

IPrincipal p = HttpContext.Current.User;

//Only reset the principal after having logged in with
//forms authentication.
if (p.Identity.IsAuthenticated)
{

GenericIdentity gi =
new GenericIdentity(“CompletelyDifferentUser”, “”);

string[] roles = new string[0];

HttpContext.Current.User =
new GenericPrincipal(gi, roles);

//Ooops - forgot to sync up with Thread.CurrentPrincipal!!
}

}

57

Security Processing for Each Request

05_596985 ch02.qxp 12/14/05 7:46 PM Page 57

The resulting output shows the mismatch between the thread principal and the context’s principal. The
testuser account is the identity that was logged in with forms authentication.

The managed thread identity when the page executes is: testuser
The managed thread identity is of type: System.Security.Principal.GenericPrincipal
The user on the HttpContext when the page executes is: CompletelyDifferentUser
The user on the HttpContext is of type: System.Security.Principal.GenericPrincipal
The user on the HttpContext and the thread principal point at the same object:
False

Now in practice you wouldn’t create a new identity during PostAuthenticateRequest. However, you
may have a custom mechanism for populating roles, much like the Role Manager feature, whereby the
roles for a user are established after an IIdentity implementation has been created for a user. Hooking
PostAuthenticateRequest is a logical choice because by this point you are guaranteed to have some
type of IIdentity implementation available off of the context. But as shown previously, if you reset the
principal during PostAuthenticateRequest, it is your responsibility to also set the value on
Thread.CurrentPrincipal to prevent mismatches later on in the pipeline.

AuthorizeRequest
Now you will turn your attention to the portion of the pipeline that authorizes users to content and
pages. As the name of the pipeline event implies, decisions on whether the current user is allowed to
continue are made during this pipeline event.

ASP.NET ships with two HttpModules configured in the <httpModules /> section that enforce
authorization:

❑ FileAuthorizationModule

❑ UrlAuthorizationModule

Developers can hook this event and provide their own custom authorization implementations as well.
By the time the AuthorizeRequest event occurs, the IPrincipal references for the current context and
the current thread have been set and should be stable for the remainder of the request. Although it is
technically possible to change either of these identities during this event (or any other event later in the
pipeline), this is not a practice you want to adopt!

FileAuthorizationModule
FileAuthorizationModule authorizes access to content by checking the ACLs on the underlying
requested file and confirming that the current user has either read, or read/write access (more on what
defines the “current user” in a bit). For HEAD, GET, and POST requests, the module checks for read access.
For all other verbs, the module checks for both read and write access.

Because ACL checks only make sense when working with a WindowsIdentity,
FileAuthorizationModule is really only useful if all the following are true:

❑ The ASP.NET application uses Windows authentication.

❑ The ASP.NET application is not running on a UNC share.

58

Chapter 2

05_596985 ch02.qxp 12/14/05 7:46 PM Page 58

If an ASP.NET application is running on a UNC share, FileAuthorizationModule does not attempt any
file ACL checks. Instead it just immediately exits. The module has this behavior because UNC based
ASP.NET applications run with the explicit UNC credentials. If these credentials did not have access to all
of the files on the UNC share, the application would fail in IIS anyway. As a result, performing a file ACL
check is redundant (the app made it far enough to start running in ASP.NET; therefore, the UNC identity
has access to the share). Although configuring FileAuthorizationModule in web.config for these
types of applications is innocuous, developers should probably remove FileAuthorizationModule
from their configuration files because it serves no purpose in the UNC case.

Because FileAuthorizationModule performs file ACL checks, it requires that a WindowsIdentity be
available on HttpContext.Current.User. If some other type of IIdentity implementation is on the
User property, the module automatically grants access and immediately exits. This means file ACLs are
not checked when the authentication mode is set to Forms or None.

Assuming that you are using Windows authentication in ASP.NET, the question arises on how to use file
ACL checks when anonymous access is allowed in IIS. If your site has a mixture of public and private
content, you can set more restrictive ACLs on the private content. If an unauthenticated browser user
attempts to access the private content, then FileAuthorizationModule will force the browser to
authenticate itself (more on this later). If an authenticated user is allowed access to the file, then he or
she will be able to access the private content.

The user token that the FileAuthorizationModule uses for making the access check is the imperson-
ation token supplied from IIS. From earlier topics, you know that in non-UNC scenarios, the impersonation
token is either IUSR_MACHINENAME or the token associated with an authenticated browser user. This
means that if you want to grant access to anonymous users, what you really need to do is set the NTFS
ACLs on the filesystem to allow read (or read/write access depending the HTTP verbs being used) access
to the IUSR_MACHINENAME account. If you happened to change the default anonymous user account in the
IIS MMC, you would grant access to whatever anonymous user account is currently configured for the
application in IIS.

You can see this behavior pretty easily by explicitly denying access for IUSR_MACHINENAME when you
set up the ACLs for a file. In IIS, set the application to only allow Anonymous access; this prevents IIS
from attempting to negotiate an authenticated identity with the browser. Now when you try to browse
to the file, FileAuthorizationModule will return a 401 status code and write out some custom error
information stating that access is denied. If you then grant access on the file to IUSR_MACHINENAME
again, you will be able to successfully browse to the file.

Because it is the impersonation token that is used for file ACL checks by the module, other security identi-
ties are ignored by FileAuthorizationModule. For example, if you are using application impersonation,
the operating system thread identity will be running as the application impersonation identity. Although
technically nothing prevents you from using application impersonation with file authorization, application
impersonation does not affect the impersonation token from IIS. Because FileAuthorizationModule
does not use the operating system thread identity for its access checks, it ignores the effects of application
impersonation and instead the access checks will always be made against the anonymous or authenticated
user account from IIS.

The concept to always remember when using FileAuthorizationModule is that only the anonymous
user account from IIS or the authenticated browser user will be used for the access checks. This also
means that an application needs to run with client impersonation (that is, <identity
impersonate=”true” /> for file authorization checks to really make any sense.

59

Security Processing for Each Request

05_596985 ch02.qxp 12/14/05 7:46 PM Page 59

When FileAuthorizationModule determines that the identity represented by the IIS impersonation
token does not have read (or read/write access depending on the HTTP verb used), it sets Response
.StatusCode to 401, writes custom error information indicating that access is denied, and reroutes the
request to the EndRequest event in the pipeline.

If the application is configured in IIS to allow authenticated access as part of the security options, when the
401 result is detected by IIS, it will attempt to negotiate an authenticated connection with the browser after
the 401 occurs. If this negotiation succeeds, the next request to ASP.NET will be made as an authenticated
browser identity. Of course, if the authenticated browser identity also lacks the appropriate file access, the
subsequent 401 error results in the custom error information from the ASP.NET module, and no additional
authentication negotiation with the browser occurs.

UrlAuthorizationModule
Because an authorization strategy tightly tied to Windows security identities is not always useful for
Internet-facing applications, a more generic authorization mechanism is implemented in
UrlAuthorizationModule. Based on the URL authorization rules defined in configuration, the module
uses the IPrincipal on the User property of the current context to compare against the users and roles
that are defined in the authorization rules. Because URL authorization works only against the User
property and the configuration-based authorization rules, it can be used with any type of authentication
that sets an IPrincipal on the current context’s User property. For example, if you use Windows
authentication with UrlAuthorizationModule, the module uses the WindowsIdentity in the context’s
User property in a generic fashion. The module does not “know” the extra security semantics available
from Windows authenticated users. Instead, the module performs its access checks based solely off of the
value of the Name property on the associated IIdentity and the results of calling IPrincipal
.IsInRole.

As with file authorization, URL authorization also does not depend on the operating system thread iden-
tity. However, URL authorization can be used in conjunction with file authorization. Remember from pre-
vious topics though that the security identity represented by the IIS impersonation token will not
necessarily match the IPrincipal in the User property on the current context. In the case of unauthenti-
cated browser users and Windows authentication, the User property will contain a dummy principal
(username set to empty string) while the impersonation token represents the anonymous access account
configured in IIS. Because of this, be careful when mixing file and URL authorization, and keep in mind
the different identities that each authorization module depends on.

Before attempting any type of authorization, UrlAuthorizationModule first checks to see if the value
of HttpContext.Current.SkipAuthorization is set to true. Authentication modules have the
option of setting this property to true as a hint to UrlAuthorizationModule. As mentioned earlier, one
example of this is FormsAuthenticationModule, which indicates that authorization should be skipped
when a user requests the forms authentication login page. If SkipAuthorization is set to true,
UrlAuthorizationModule immediately exits, and no further work is performed.

The module delegates the actual work of authorizing the current User to the AuthorizationSection
configuration class. This class is the root of the portion of the configuration hierarchy that defines the
<authorization /> configuration element and all of the nested authorization rules. Because <autho-
rization /> definitions can be made at the level of the machine, website, application or an individual
subdirectory, the AuthorizationSection class merges the rules from the hierarchy of applicable

60

Chapter 2

05_596985 ch02.qxp 12/14/05 7:46 PM Page 60

configuration files to determine the set of rules that apply for the given page. Note that because of the
merge behavior, the authorization rules defined in configuration files at the most granular configuration
level take precedence. For example, this means authorization rules defined in a subdirectory are evaluated
before authorization rules defined at the application level.

The default authorization rules that ship with ASP.NET are defined in the root web.config file located at:

%windir%\Microsoft.NET\Framework\v2.0.50727\CONFIG\web.config

The default rules just grant access to everyone:

<authorization>
<allow users=”*” />

</authorization>

However, rules can either allow or deny access, and can do so based on a combination of username,
roles, and HTTP verbs. For example:

<allow verbs=”GET” users=”John Doe”, role=”Browser Users” />
<deny verbs=”POST” />

After the merged set of rules have been determined, each authorization rule (defined with <allow /> or
<deny /> elements) is iterated over sequentially. The result from the first authorization rule that matches
either the name (User.Identity.Name) or one of the roles (User.IsInRole) is used as the authorization
decision. The sequential nature of the authorization processing has two implications:

1. It is up to you to order the authorization rules in configuration so that they are evaluated in the
correct order. For example, having a rule that allows access to a user based on a role precede a
rule that denies access to the same user based on name results in the user always being granted
access. ASP.NET does not perform any automatic rule reordering.

2. A URL authorization check is a linear walk of all authorization rules. From a performance per-
spective, for a specific resource or directory you should place the most commonly applicable
rules at the top of the <authorization /> section. For example, if you need to deny access on
a resource for most users, but you allow access to only a small subset of these users, it makes
sense to put the <deny /> element first because that is the most common case.

Using a simple application with a few pages, subdirectories, and authorization rules, we can get a better
idea of the merge behavior and rule ordering behavior for URL authorization. The directory structure for
the sample application is show in Figure 2-2.

61

Security Processing for Each Request

05_596985 ch02.qxp 12/14/05 7:46 PM Page 61

Figure 2-2

There is an .aspx page located in the application root, as well as in each of the two subdirectories. The
application uses forms authentication, with three fixed users defined in configuration:

<authentication mode=”Forms” >
<forms>

<credentials passwordFormat=”Clear”>
<user name=”Admin” password=”password”/>
<user name=”DirectoryAUser” password=”password”/>
<user name=”DirectoryBUser” password=”password”/>

</credentials>
</forms>

</authentication>

The web.config located in the root of the application initially defines authorization rules as:

<authorization>
<allow users=”Admin”/>
<deny users=”*” />

</authorization>

62

Chapter 2

05_596985 ch02.qxp 12/14/05 7:46 PM Page 62

When attempting to browse to any page in the application, you must log in as the Admin user to
successfully reach the page. However, let’s add a web.config file into Directory A with the following
authorization rule:

<authorization>
<allow users=”DirectoryAUser” />

</authorization>

Now both the Admin user and the DirectoryAUser can access the web page located in DirectoryA. The
reason for this is that, as mentioned earlier, AuthorizationSection merges authorization rules from
the bottom up. The result of defining rules in a web.config located in a subdirectory as well as in the
application’s web.config is the following evaluation order:

1. First rules from DirectoryA are evaluated.

2. If no match is found based on the combination of verbs, users and roles, then the rules from the
application’s web.config are evaluated.

3. If no match was found using the application’s web.config, then the root web.config located
in the framework CONFIG directory is evaluated. Remember that the default authorization con-
figuration grants access to all users.

With this evaluation order, DirectoryAUser matches the rule defined in the web.config file located in
DirectoryA. However, for the Admin user, no rules matched, so instead the rules in the application’s
web.config are consulted.

Now add a third web.config file, this time dropping it into DirectoryB. This configuration file defines
the following authorization rule:

<authorization>
<allow users=”DirectoryBUser” />

</authorization>

Because the evaluation order for accessing pages in DirectoryB will first reference the web.config file
from DirectoryB, the DirectoryBUser has access to files in the directory. If you log in though with
DirectoryAUser, you will find that you can still access the files in DirectoryB. The reason is that when
there is a rule evaluation miss from the web.config file in DirectoryB, ASP.NET moves up the configu-
ration hierarchy to next available web.config file — in this case, the one located in DirectoryA. Because
that web.config grants access to DirectoryAUser, that user can also access all resources in DirectoryB.
The same affect of hierarchal configuration evaluation allows the Admin user access to the all resources
in DirectoryB because the application’s web.config file grants access to Admin.

You can also get the same effect, and still centralize authorization rules in a single configuration file, by
using <location /> configuration elements. Using <location /> tags, the authorization rules for the
subdirectories are instead defined in the application’s main web.config:

<system.web>
<authorization>

<allow users=”Admin”/>
<deny users=”*” />

</authorization>

63

Security Processing for Each Request

05_596985 ch02.qxp 12/14/05 7:46 PM Page 63

</system.web>

<location path=”Directory_A”>
<system.web>
<authorization>

<allow users=”DirectoryAUser” />
</authorization>

</system.web>
</location>

<location path=”Directory_A/Directory_B”>
<system.web>
<authorization>

<allow users=”DirectoryBUser” />
</authorization>

</system.web>
</location>

You will have the exact the same login behavior as described earlier when using separate web.config
files. The configuration system treats each <location /> tag as a logically separate “configuration”
file. The end result is that even though the authorization rules are defined in the same physical
web.config file, the <location /> tags preserve the hierarchal nature of the configuration definitions.

Developers sometimes want to control configuration in a central configuration file for an entire web
server but are unsure of the value to use for the “path” attribute when referencing individual web appli-
cations. For example, if you want to centrally define configuration for an application called “Test”
located in the Default Web Site in IIS, you can use the following <location /> definition:

<location path=”Default Web Site/Test” />

So far, the sample application has demonstrated the hierarchal merge behavior of different configuration
files and different <location /> elements. If the authorization rule for the Admin user is reversed with
the deny rule:

<authorization>
<deny users=”*” />
<allow users=”Admin”/>

</authorization>

The Admin user can no longer access any of the pages. The behavior for DirectoryBUser and
DirectoryAUser remains the same because the other <location /> elements grant these users access.
But when the last set of authorization rules are evaluated, the blanket <deny /> is evaluated first. As a
result, any authorization evaluation that reaches this <authorization /> element always results in
access being denied.

Note that even though the previous samples relied on authorizing based on the user’s name, the same
logic applies when authorizing based on verb or based on a set of one or more roles.

Of course what can’t be shown here (but you will see the behavior if you download and try out the sam-
ple) is the behavior when UrlAuthorizationModule denies access to a user. When the module denies
access, it sets Response.StatusCode to 401, writes out some custom error text in the response, and

64

Chapter 2

05_596985 ch02.qxp 12/14/05 7:46 PM Page 64

then short circuits the request by rerouting it to the EndRequest event (basically, the same behavior as
the FileAuthorizationModule). However, for those of you that have used URL authorization before,
you know that typically you don’t see an access denied error page. Instead, in the case of forms authenti-
cation, the browser user is redirected to the login page configured for forms authentication. If an applica-
tion is using Windows authentication, the 401 is a signal to IIS to attempt to negotiate credentials with
the browser based on the application’s security settings in IIS. In a few more pages, you will look at
how the EndRequest event is handled for security related tasks, and this should give you a clearer pic-
ture of the redirect and credential negotiation behavior.

How Character Sets Affect URL Authorization
The character set used to populate the IPrincipal on the context’s User property plays an important
role when authorizing access with UrlAuthorizationModule. When performing an access check based
on the users attribute defined for an authorization rule, UrlAuthorizationModule performs a case-
insensitive string comparison with the value from HttpContext.Current.User.Name. Furthermore,
the comparison is made using the casing rules for the invariant culture and ordering rules based on ordi-
nal sort ordering.

Because of this, there may be subtle mismatches in character comparisons due to a different character set
being used for the value of a username. For example, the Membership feature in ASP.NET 2.0 stores
usernames in a SQL Server database by default. If a website selects a different collation order than the
default Latin collation, the character comparison rules that are applied at user creation time will not be
the same as the comparison rules UrlAuthorizationModule applies when comparing usernames.

Overall though, there are two simple approaches to avoid any problems caused by using different char-
acter sets for user creation and user authorization:

❑ Don’t authorize based on usernames. Instead only authorize based on roles because the likeli-
hood of any organization creating two role names that differ only in characters with culture-
specific semantics is extremely low.

❑ Use a character set/collation order in your back-end user store that is a close match with the
invariant culture. For SQL Server, the default Latin collation is a pretty close approximation of
the invariant culture. If you are authorizing against WindowsIdentity instances, then you
won’t encounter a problem because usernames in Active Directory are just plain Unicode
strings without culture-specific character handling.

PostAuthorizeRequest through PreRequestHandlerExecute
After the AuthorizeRequest event, developers can hook the PostAuthorizeRequest event if there is
custom authorization work that needs to be performed. ASP.NET does not ship with any HttpModules
that hook this event though. After PostAuthorizeRequest, there are no other pipeline events intended
for authentication or authorization related processing. Although many of the subsequent pipeline events
may use the identity of the current user, the pipeline events up through PreRequestHandlerExecute
are intended for setting up and initializing other information such as session state data or cached infor-
mation used by output and fragment caching.

Technically, you could manipulate the operating system thread identity, the current thread principal, or
the current context’s User property during any subsequent pipeline event. However, there is an implicit
assumption that after PostAuthenticateRequest the security information for the request is stable, and

65

Security Processing for Each Request

05_596985 ch02.qxp 12/14/05 7:46 PM Page 65

that after PostAuthorizeRequest no additional authorization is necessary. Because the pipeline
events after PostAuthorizeRequest are involved in retrieving data tied to a user identity (state and
cached data), it is important that any custom authentication or authorization mechanism honors these
assumptions.

Blocking Requests during Handler Execution
After the PreRequestHandlerExecute event, ASP.NET passes the request to an implementation of
IHttpHandler. HTTP handlers are responsible for executing the resource requested by the browser. The
most frequently used and recognized HTTP handler is the Page handler. However, ASP.NET ships with
a number of different handlers depending on the file extension of the requested resource. From a secu-
rity perspective though, handler execution is another opportunity to block access to specific resources.

ASP.NET 2.0 ships with four internal HTTP handlers; the classes themselves are defined with the “inter-
nal” keyword and, thus, are not directly accessible in code. However, you can still make use of these
handlers by defining mappings to them in the <httpHandlers /> configuration section. The
<httpHandlers /> section defines mappings between IHttpHandler implementations and file exten-
sions as well as HTTP verbs. For example, the Page handler is routed all requests that end in .aspx
because of the following handler registration:

<add path=”*.aspx” verb=”*” type=”System.Web.UI.PageHandlerFactory”
validate=”True” />

The default handler mappings are in the root web.config file located in the framework’s CONFIG
subdirectory.

The four internal HTTP handlers available for blocking access to file types and HTTP verbs are:

❑ System.Web.HttpNotFoundHandler

❑ System.Web.HttpForbiddenHandler

❑ System.Web.HttpNotImplementedHandler

❑ System.Web.HttpMethodNotAllowedHandler

ASP.NET only uses three of the handlers in the default handler mappings (the
HttpNotImplementedHandler is not mapped to anything). For example, the following handler map-
pings exist in the root web.config file (note this is not an exhaustive list, just a subset of what is defined):

<add path=”*.axd” verb=”*” type=”System.Web.HttpNotFoundHandler” validate=”True” />
<add path=”*.mdf” verb=”*” type=”System.Web.HttpForbiddenHandler”

validate=”True” />
<add path=”*” verb=”*” type=”System.Web.HttpMethodNotAllowedHandler”

validate=”True” />

ASP.NET determines which handler should process a given request by evaluating the handler mappings
from top to bottom in configuration. The sample mappings shown above have the following affects:

66

Chapter 2

05_596985 ch02.qxp 12/14/05 7:46 PM Page 66

1. Attempts to access files ending in .axd are prevented.

2. Files ending in .mdf cannot be retrieved from a browser. Both .mdf and .ldf are file extensions
for SQL Server data and log files.

3. The last handler mapping shown also happens to be the very last handler registration in the
default configuration for ASP.NET. This mapping ensures that if ASP.NET could not find any
other handler for a request, then the HttpMethodNotAllowedHandler is used.

In all cases, the four internal handlers supplied by ASP.NET have the same end result; a request for a
resource that is mapped to one of these four handlers will fail. The only difference between the four
handlers is their general intent. As the handler names imply, each of them returns a different HTTP
status code, which in turn results in different error information being sent back to the browser.

❑ System.Web.HttpNotFoundHandler— The handler terminates further processing in the
pipeline (except for the EndRequest event) and returns a 404 error stating that the resource
could not be found.

❑ System.Web.HttpForbiddenHandler— The handler terminates further processing in the
pipeline (except for the EndRequest event) and returns a 403 error stating that the type of the
requested resource is not allowed.

❑ System.Web.HttpNotImplementedHandler— The handler terminates further processing in
the pipeline (except for the EndRequest event) and returns a 501 error stating that the requested
resource is not implemented

❑ System.Web.HttpMethodNotAllowedHandler— The handler terminates further processing
in the pipeline (except for the EndRequest event) and returns a 405 error stating that the
requested HTTP verb is not allowed.

Because all of these handlers result in specific HTTP status codes, you can also use the <customErrors
/> configuration to reroute these errors to friendlier looking pages.

One of the reasons why it is possible to XCOPY an ASP.NET application, including its code and related
project files is that ASP.NET explicitly blocks access to source code on the server with handler registra-
tions such as the following:

<add path=”*.cs” verb=”*” type=”System.Web.HttpForbiddenHandler” validate=”True” />
<add path=”*.csproj” verb=”*” type=”System.Web.HttpForbiddenHandler”

validate=”True” />
<add path=”*.vb” verb=”*” type=”System.Web.HttpForbiddenHandler” validate=”True” />
<add path=”*.vbproj” verb=”*” type=”System.Web.HttpForbiddenHandler”

validate=”True” />

Using the exact same approach, you can configure handler mappings to provide an additional level of
security for your ASP.NET applications.

Blocking Access to non-ASP.NET File Extensions
Your application may have custom data files that need to reside on the file system, but that you do not
want to be retrievable from a browser. For example, all of your data files may end with .xml. If you create
only the following handler registration:

<add path=”*.xml” verb=”*” type=”System.Web.HttpForbiddenHandler”
validate=”True” />

67

Security Processing for Each Request

05_596985 ch02.qxp 12/14/05 7:46 PM Page 67

You will find that XML files are still retrievable in the browser. Think back to the previous chapter,
where the distinction between static and dynamic files was discussed. For any of the four ASP.NET han-
dlers to successfully block access to specific file types, the file extensions must be registered in IIS so that
the request actually makes it over to ASP.NET in the first place.

I specifically chose the .xml file extension because it has a default MIME type mapping in IIS, which
means in the absence of any additional configuration on your part, IIS will happily return XML files
back to the browser. Remember that without a MIME type mapping, IIS will not serve a static file.

To rectify this problem, you need to register the .xml file in IIS by associating the .xml file extension
with the ASP.NET ISAPI extension. Figure 2-3 shows .xml mapped to the ASP.NET 2.0 ISAPI extension
for a sample application.

Figure 2-3

Now that IIS is configured to pass all requests for .xml files over to ASP.NET, the handler registration
mapping XML files to .Web.HttpForbiddenHandler takes effect, and a 403 error occurs instead.

Because ASP.NET 2.0 also has the concept of protected directories, for scenarios like XML files contain-
ing data, a better choice would be to move all data-related XML files into the App_Data directory.
Placing files in ASP.NET 2.0 protected directories automatically protects against attempts to retrieve
any file types located in these directories.

68

Chapter 2

05_596985 ch02.qxp 12/14/05 7:46 PM Page 68

Identity during Asynchronous Page Execution
Earlier in the chapter, I discussed issues with flowing security identities through asynchronous pipeline
event handlers. The Page handler in ASP.NET 2.0 also supports the concept of asynchronous execution,
and as a result developers using this functionality should be aware of the security identities for this case.

Things can be a little confusing with asynchronous pages because the Page class supports two different
patterns for carrying out asynchronous tasks. Both approaches, along with the flow of security informa-
tion, are discussed in the next two sections.

Asynchronous PreRender Processing
A developer can request asynchronous support in a page by including the Async attribute in the page
directive:

<%@ Page Language=”C#” Async=”true” %>

To leverage this asynchronous page model, you need to register a begin and an end event handler for
your asynchronous task. This approach is exactly the same model as discussed earlier for asynchronous
pipeline events. You typically hook up the async begin and end event handlers inside of a page or con-
trol event where a long-running task would normally occur. For example, instead of making a call to a
high-latency Web Service from inside of a button click event handler, you would instead register your
asynchronous event handlers in the click event handler. Furthermore, you can hook up multiple begin
and end event handlers, and ASP.NET will call each pair of asynchronous event handlers in sequence.

ASP.NET calls into your async begin event handler after the PreRender phase of the page lifecycle. The
idea is that high-latency work can be safely deferred until the PreRender phase because the results of
any processing are not needed until the subsequent Render phase of a Page. Inside of your async begin
event handler you collect whatever data you need to pass to your asynchronous task (page variables,
context data, and so on), and then you invoke the asynchronous task. As with asynchronous pipeline
events, the asynchronous task that is called during asynchronous page processing runs on a .NET
thread-pool thread. This means it is your responsibility to gather any necessary security information and
“throw it over the wall” to the asynchronous task.

After some indeterminate amount of time has passed, the asynchronous task completes and the
ASP.NET runtime is signaled via a callback. Just as you saw with asynchronous pipeline events, the
async end event for pages executes on a thread-pool thread. The operating system thread identity at this
point will not reflect the security settings you have set in IIS and ASP.NET. Note though that if you
implement your async begin and end event handlers as part of the page’s code-behind class, you can
always get back to the HttpContext associated with the page (that is, this.Context is available). This
at least gives you access to the IPrincipal associated with the request from inside of both the async
begin and end event handlers.

After the end event handler runs, ASP.NET reschedules the page for execution, at which point ASP.NET
reinitializes the operating system thread identity, managed thread identity, and the HttpContext
(including its associated IPrincipal) for the current managed thread.

To demonstrate the security identity handling during asynchronous page execution, you can create an
application with a single asynchronous page that registers for asynchronous PreRender handling. The
page has a single button on it, and the application registers the async begin and event handlers in its
click event.

69

Security Processing for Each Request

05_596985 ch02.qxp 12/14/05 7:46 PM Page 69

protected void Button1_Click(object sender, EventArgs e)
{

//Hook up the async begin and end events
BeginEventHandler bh = new BeginEventHandler(this.BeginAsyncPageProcessing);
EndEventHandler eh = new EndEventHandler(this.EndAsyncPageProcessing);

AddOnPreRenderCompleteAsync(bh, eh);
}

Notice that the event handler delegates are of the exact same type used with asynchronous pipeline
events. The async begin handler is responsible for triggering the asynchronous work and returns the
IAsyncResult reference to ASP.NET.

//defined as part of the page class
public delegate void AsyncSleepDelegate();

private IAsyncResult BeginAsyncPageProcessing(
object sender, EventArgs e, AsyncCallback cb, object extraData)

{
//Output the security information
//.. code snipped out for brevity ...

//Do the actual asynchronous work
Sleep s = new Sleep(this.Context.Items);
AsyncSleepDelegate asd = new AsyncSleepDelegate(s.DoWork);
return asd.BeginInvoke(cb, asd);

}

The async end event handler in the sample application just outputs more security identity information.
In a real application, you would gather the results of the asynchronous work and probably set the values
of various controls on the page or perhaps data-bind the results to one of the data controls.

private void EndAsyncPageProcessing(IAsyncResult ar)
{

//Normally you would harvest the results of async processing here
AsyncSleepDelegate asd = (AsyncSleepDelegate)ar.AsyncState;
asd.EndInvoke(ar);

//Output security information
//.. code snipped out for brevity ...

}

As with the asynchronous pipeline event sample, the asynchronous page uses a simple class that sleeps
for one second to simulate a long-running task. A reference to the current HttpContext is passed in the
constructor so that the class can log the operating system thread identity.

public class Sleep
{

private IDictionary state;

public Sleep(IDictionary appState)
{

70

Chapter 2

05_596985 ch02.qxp 12/14/05 7:46 PM Page 70

state = appState;
}

public void DoWork()
{

state[“AsyncWorkerClass_OperatingSystemThreadIdentity”] =
WindowsIdentity.GetCurrent().Name;

Thread.Sleep(1000);
}

}

I ran the sample application with the following IIS and ASP.NET configuration settings:

1. The application ran locally on the web server.

2. Authenticated access was required in IIS.

3. An explicit application impersonation identity was used for ASP.NET.

The results of running the application with this configuration are shown here:

The OS thread identity during the beginning of page async processing is:
CORSAIR\appimpersonation
The OS thread identity in the async worker class is: NT AUTHORITY\NETWORK SERVICE
The OS thread identity during the end of page async processing is: NT
AUTHORITY\NETWORK SERVICE
The OS thread identity in Render is: CORSAIR\appimpersonation

You can see that the background work and the end event run with the default credentials of the process,
despite the fact that the ASP.NET application is configured with application impersonation. Once the
page starts running again in the Render event though, ASP.NET has reinitialized all of the security infor-
mation, and the application impersonation identity is once again used for the operating system thread
identity. The exact same approaches for flowing credentials discussed earlier in the section “Thread
Identity and Asynchronous Pipeline Events” also apply to the asynchronous PreRender processing.

Asynchronous Page Using PageAsyncTask
An alternative approach to attributing a page as being is the concept of asynchronous page tasks. This
second approach has many similarities to the previous discussion. As a developer, you still need to dele-
gate your high-latency work as a piece of asynchronous processing. Additionally, you hook into the
PageAsyncTask-based processing with a pair of begin and end event handlers.

However, there are some important differences in the PageAsyncTask approach. You can create one or
more asynchronous units of work, wrap each piece of work with individual PageAsyncTask instances
and then hand all of the work off as a single “package” to the page. With the PreRender-based
approach, handling multiple asynchronous tasks is a little more awkward because you either have to
coalesce all of the work yourself inside of a custom class, or you have to carefully hook up a chain of
begin and end event handlers.

Also, when you are wrapping your asynchronous work, you can pass a timeout handler to the
PageAsyncTask that will execute if your asynchronous work takes too long. The actual timeout that is
honored for each piece of asynchronous work defaults to 45 seconds, though this can be changed by

71

Security Processing for Each Request

05_596985 ch02.qxp 12/14/05 7:46 PM Page 71

setting the AsyncTimeout property on the Page, or by setting an application wide default in the <pages
/> configuration section. There is also an option to allow all or some of the asynchronous work to exe-
cute in parallel. For example, if a web page required three lengthy Web Service calls to fetch data, you
could indicate to ASP.NET that all three asynchronous tasks should be kicked off in parallel on separate
worker threads.

Once you have wrapped your asynchronous task with one or more instances of PageAsyncTask, you
register the instances with the Page using the RegisterAsyncTask method. At this point, you have one
of two options: you can do nothing else, in which case ASP.NET will call your asynchronous work
immediately after the PreRender event. You can also take control of exactly when you want the page to
stop normal processing by explicitly calling the ExecuteRegisteredAsyncTasks method. Personally, I
think it is more intuitive to explicitly trigger asynchronous processing in a click event handler, as
opposed to waiting for the default PreRender processing.

Up to this point, the differences between PageAsycTask-based processing and the default PreRender
processing have all been in the area of programmability and flexibility. The interesting security behavior
around PageAsyncTask-based processing is that ASP.NET will actually reinitialize the operating system
thread identity, managed thread identity, and HttpContext for the end event handler. Note that you are
still responsible for flowing security information to your asynchronous work, but now ASP.NET at least
ensures a balanced set of security information in both the begin and end event handlers.

To highlight this behavior, modify the PreRender example to instead use a PageAsyncTask. The only
difference is that the button click handler has been modified:

protected void Button1_Click(object sender, EventArgs e)
{

//Hook up the async begin and end events
//using the PageAsyncTask pattern
BeginEventHandler bh =

new BeginEventHandler(this.BeginAsyncPageProcessing);
EndEventHandler eh =

new EndEventHandler(this.EndAsyncPageProcessing);

Object someState = new Object();
PageAsyncTask pt = new PageAsyncTask(bh, eh, null, someState);

this.RegisterAsyncTask(pt);

//Explicitly trigger the async page task at this point
//rather than waiting for PreRender to occur
this.ExecuteRegisteredAsyncTasks();

}

Notice that the begin and end event handlers use the same definitions. However, instead of calling
AddOnPreRenderCompleteAsync, the page wraps the event handlers in an instance of PageAsyncTask
(in this case, no timeout event handler is registered) and registers the asynchronous task with the page.
Last, the button click event handler explicitly triggers the execution of the asynchronous work.

Everything else in the sample application remains the same. Running with the same IIS and ASP.NET
configuration as before (local application, application impersonation enabled, authenticated access
required in IIS), the output looks like this:

72

Chapter 2

05_596985 ch02.qxp 12/14/05 7:46 PM Page 72

The OS thread identity during the beginning of page async processing is:
CORSAIR\appimpersonation
The OS thread identity in the async worker class is: NT AUTHORITY\NETWORK SERVICE
The OS thread identity during the end of page async processing is:
CORSAIR\appimpersonation
The OS thread identity in Render is: CORSAIR\appimpersonation

As you can see, the third line of output with the operating system thread identity shows that ASP.NET
has restored the application impersonation identity on the thread. Although it isn’t shown in the output,
the IPrincipal available from both Thread.CurrentPrincipal and the context’s User property
correctly reflect the authenticated user in both the begin and end event handlers. Remember though that
you cannot rely on the value of Thread.CurrentPrincipal in the asynchronous work itself for the
reasons discussed earlier in the asynchronous pipeline section.

Automatically Flowing Identity to Asynchronous Work
Late in the development cycle for ASP.NET 2.0 some low-level changes in the handling of background
thread identities was added. These changes now make it possible to automatically flow the current
operating system thread identity to background threads. By default, this functionality is not enabled in
ASP.NET 2.0. The behavior that you have seen for asynchronous pipeline processing and asynchronous
page processing was left as-is because code written for ASP.NET 1.1 expects that the operating system
thread identity is not auto-magically flowed to background threads. This legacy behavior is controlled
through a relatively unknown ASP.NET configuration file found at:

%windir%\Microsoft.NET\Framework\v2.0.50727\Aspnet.config

This is a special configuration file that controls low-level initialization behavior of the CLR when
ASP.NET spins up appdomains. The default settings in this configuration file are:

<configuration>
<runtime>

<legacyUnhandledExceptionPolicy enabled=”false” />
<legacyImpersonationPolicy enabled=”true”/>
<alwaysFlowImpersonationPolicy enabled=”false”/>
<SymbolReadingPolicy enabled=”1” />

</runtime>
</configuration>

The bolded elements are responsible for stopping the automatic flow of the operating system thread
identity to a background thread. If you instead change these two elements by inverting their values:

<legacyImpersonationPolicy enabled=”false”/>
<alwaysFlowImpersonationPolicy enabled=”true”/>

Then for any asynchronous programming model you use, you will see that the operating system thread
identity is automatically carried over to your background task. After making these changes and running
iisreset to make the changes take effect, you can rerun any of the previous asynchronous identity
samples to see the effect. For example, if you rerun the sample code shown earlier in the “Asynchronous
PreRender Processing” section, the output now looks like this:

73

Security Processing for Each Request

05_596985 ch02.qxp 12/14/05 7:46 PM Page 73

The OS thread identity during the beginning of page async processing is:
CORSAIR\appimpersonation
The OS thread identity in the async worker class is: CORSAIR\appimpersonation
The OS thread identity during the end of page async processing is: NT
CORSAIR\appimpersonation
The OS thread identity in Render is: CORSAIR\appimpersonation

Remember that the two bolded lines of output were earlier reflecting the underlying identity of the
worker process (NETWORK SERVICE). With the configuration changes, the asynchronous work is now
reflecting the operating system thread identity that was set by ASP.NET. In this case, the sample applica-
tion used application impersonation. If you switched over to client impersonation, the asynchronous
work would run with the client credentials that ASP.NET impersonated on the operating system thread.

Another way of understanding the effect from changing Aspnet.config is that in any asynchronous
case where the operating system thread identity was NETWORK SERVICE, it will instead reflect the
identity that ASP.NET stamped onto the operating system thread. For application impersonation this
means that you can force the application impersonation identity to flow through, and for client imper-
sonation you can force the browser’s authenticated identity to flow through to the asynchronous work.
Overall, if you don’t need to support the original ASP.NET 1.1 asynchronous behavior, and you do want
the operating system thread identity to be available in your asynchronous work, you may find it easier
to just change the legacyImpersonationPolicy and alwaysFlowImpersonationPolicy elements in
Aspnet.config.

EndRequest
The EndRequest event is the last event in the ASP.NET pipeline. Once a request starts running in the
pipeline, situations can occur that result in termination of the request. As a result, EndRequest is the
only pipeline event that is guaranteed to occur after BeginRequest. Terminating a request usually
results in bypassing all remaining pipeline events and going directly to EndRequest.

If you remember the discussion of the AuthenticateRequest and AuthorizeRequest events,
DefaultAuthenticationModule, FileAuthorizationModule, and UrlAuthorizationModule all
have the capability to forward a request directly to the EndRequest event. During handler execution,
the special HTTP handlers that ASP.NET supplies for blocking requests to certain types of resources also
resulted in requests being forwarded directly to EndRequest.

Because EndRequest is guaranteed to always run, it is a convenient place in the pipeline to perform
cleanup tasks or final processing that absolutely must run at the completion of a request. Aside from
security-related processing, EndRequest is also used by other ASP.NET code such as the
SessionStateModule to ensure that session teardown and persistence always occur.

For security purposes, the event is used by the following two authentication modules to carry out cus-
tom actions when an unauthenticated user attempts to access a protected resource:

❑ PassportAuthenticationModule

❑ FormsAuthenticationModule

Both modules rely on the value of Response.StatusCode to determine whether any special end
request processing is necessary. Because forms authentication is the most common authentication mode
used for Internet-facing ASP.NET sites, we will concentrate on what the FormsAuthenticationModule
does during this event.

74

Chapter 2

05_596985 ch02.qxp 12/14/05 7:46 PM Page 74

During AuthenticateRequest, the FormsAuthenticationModule is only concerned with verifying
the forms authentication ticket and attaching a FormsIdentity to the current HttpContext. However,
you know that the forms authentication feature supports the ability to automatically redirect unauthenti-
cated user to a login page. FormsAuthenticationModule supports this functionality by checking the
Response.StatusCode property for each request during EndRequest. If it sees that StatusCode is set
to 401 (and, of course, if the authentication mode is set to forms), then the module fetches the currently
configured redirect URL for logins and appends to it a query-string variable called ReturnUrl. This
query-string variable is assigned the value of the currently requested path plus any query string vari-
ables associated with the current request. Then FormsAuthenticationModule issues a redirect to the
browser telling it to navigate to the redirect URL.

Although FormsAuthenticationModule itself never sets a 401 status code, we saw earlier that both
FileAuthorizationModule and UrlAuthorizationModule will set a 401 status code if either module
determines that the user for the current request does not have access to the requested resource.

As an extremely simple example, if you author a page on a site that is configured with forms authentication
and put the following code in the Load event:

Response.StatusCode = 401;

After the page completes, the browser is redirected to the forms authentication login page because of the
401. In a production application though you would use a custom HTTP module or hook one of the
Authenticate events and set the StatusCode there instead.

Summary
On each ASP.NET request, there are four different security identities to be aware of:

❑ The operating system thread identity

❑ The impersonation token from IIS

❑ The IPrincipal available on Thread.CurrentPrincipal

❑ The IPrinicpal available from HttpContext.Current.User

If you are using Windows authentication in your ASP.NET application, then the impersonation token
from IIS is used to create a WindowsIdentity for both the current thread and the current context. If the
current request is an anonymous user, then the WindowsIdentity is just the value of
WindowsIdentity.GetAnonymous. For authenticated users, the WindowsIdentity represents the
authenticated user credentials from the IIS impersonation token. For applications running on a UNC
share, the WindowsIdentity that is created represents either the anonymous user account configured in
IIS or the explicit UNC account configured in IIS. As a result, Windows authentication for applications
running on UNC shares is of limited value.

If you are using forms authentication though, the impersonation token from IIS has no bearing on the
security information set on the thread and the context. Instead, for authenticated users, the
FormsAuthenticationModule will create a GenericPrincipal containing a FormsIdentity and set
this value on the current context’s User property.

75

Security Processing for Each Request

05_596985 ch02.qxp 12/14/05 7:46 PM Page 75

If no authentication module sets an IPrincipal on the current context’s user property, the hidden
DefaultAuthenticationModule will create a GenericPrincipal with a username set to the empty
string and set this value on the current context’s User property. This module is also responsible for syn-
chronizing the value of the User property with Thread.CurrentPrincipal.

The operating system thread identity starts out as the identity of the IIS6 worker process. However, if the
ASP.NET application is running locally and is using client impersonation, then ASP.NET uses the IIS
impersonation token to switch the operating system thread identity. If the application is running on a
UNC share though, then the operating system thread identity is that of the explicit UNC credentials con-
figured in IIS. If application impersonation is used (regardless of running on a UNC share), ASP.NET
switches the operating system thread identity to match the credentials of the application impersonation
account.

After all of the security identity information is established, developers still need to be careful when deal-
ing with asynchronous pipeline events and asynchronous page handling. The main thing to remember is
that you need to pass any required security information over to the asynchronous tasks. Neither
ASP.NET nor the .NET Framework will automatically propagate security identities to asynchronous
tasks, though there are some .NET Framework classes that make it pretty easy to accomplish this.

Once a request makes it to the handler execution phase of the pipeline, developers still have the option
to use one of the built-in ASP.NET HTTP handlers to block access and prevent the request from running.
Remember though that for custom file extensions that are not associated with ASP.NET, you need to
map the custom file extension to the ASP.NET ISAPI extension in the IIS MMC for a request to make it
into ASP.NET the processing pipeline.

76

Chapter 2

05_596985 ch02.qxp 12/14/05 7:46 PM Page 76

A Matter of Trust

So far the previous topics have centered on various pieces of security information — encryption
key material, security identities, authentication and authorization, and so on. They dealt with
security decisions that were tied to some concept of identity. The security identity may have been
that of the browser user, or it may have been the identity of the running process.

A different aspect of ASP.NET security uses the .NET Framework code access security (CAS) func-
tionality to secure the code that runs in an ASP.NET site. Although the concept of code having its
own set of rights has been around since the first version of the .NET Framework, more often than not
the actual use of CAS by developers has been limited. In large part, this has been due to the complex-
ities of understanding just what CAS is as well as how to effectively use CAS with your code.

ASP.NET 1.1 substantially reduced the learning curve with CAS by introducing the concept of
ASP.NET trust levels. In essence, an ASP.NET trust level defines the set of rights that you are will-
ing to grant to an application’s code. This chapter thoroughly reviews the concept of ASP.NET
trust levels, as well as new features in ASP.NET 2.0 around enforcement of trust levels.

You will learn about the following areas of ASP.NET trust levels:

❑ Configuring and working with ASP.NET trust levels

❑ What an ASP.NET trust level looks like

❑ How a trust level definition actually works

❑ Creating your own custom trust levels

❑ Details on frequently asked for trust level customizations

❑ A review of all of the permissions defined in ASP.NET trust policy files

❑ Advanced topics on writing code for partial trust environments

06_596985 ch03.qxp 12/14/05 7:47 PM Page 77

What Is an ASP.NET Trust Level?
Both ASP.NET 1.1 and ASP.NET 2.0 have the concept of trust levels. In a nutshell, a trust level is a declar-
ative representation of security rules that defines the set of .NET Framework classes your ASP.NET code
can call as well as a set of .NET Framework features that your ASP.NET code can use. The declarative
representation of this information is called a trust policy file. Because a trust level is a declarative repre-
sentation, you can view the definitions of trust levels by looking at the trust policy files on disk, and you
can edit these files to suit your needs. When you configure an ASP.NET site with a specific trust level,
the application is said to be running in XYZ trust (where XYZ is specific trust level). Much of the code
that runs in an ASP.NET application and certainly all of the code you write in code-behind files is
restricted by the rules defined for the current trust level. Note that ASP.NET trust levels apply to only
ASP.NET applications. Console applications, NT services, Winforms, and other applications still rely on
a developer understanding the .NET Framework CAS features. Currently no other execution environ-
ments provide a developer-friendly CAS abstraction like ASP.NET trust levels do.

The specific trust levels that ship with both versions of ASP.NET (no new trust levels were added in
ASP.NET 2.0) are listed here from the most permissive to the most restrictive trust level:

❑ Full trust

❑ High trust

❑ Medium trust

❑ Low trust

❑ Minimal trust

When trust levels were introduced in ASP.NET 1.1, the decision was made to default all ASP.NET applica-
tions to Full trust. Because many ASP.NET sites were already written with the 1.0 version of the framework,
it was considered too much of a breaking change to default ASP.NET applications to a more restrictive trust
level. In ASP.NET 2.0 this is also the case, with all ASP.NET 2.0 applications also defaulting to Full trust.

As the name implies, Full trust code can use any class in the .NET Framework and perform any privileged
operation available to managed code. However, I admit that this is a pretty theoretical description of Full
trust. A much simpler way to think of Full trust is that your code can call any arbitrary Win32 API. For
most IT developer shops this may not be a particularly big deal, especially because you could already call
any Win32 API back in ASP days. However, the .NET Framework was supposed to bring a security
sandbox to managed code developers, and arguably being able to call interesting Win32 APIs that do
things like reformat disk drives doesn’t seem like much of a security sandbox. The .NET Framework did
introduce a very robust code access security framework that allowed developers to prevent managed
code from doing things like reformatting hard drives — there was just the “minor” problem that you
needed to get a PhD in what is definitely one of the more esoteric (though incredibly powerful) areas of
the framework. As a result, ASP.NET 1.0 development left CAS usage up to the individual developer, with
the result being that future versions of ASP.NET allow Full trust by default.

Running an ASP.NET application in anything other than Full trust means that the application is running
in partial trust, which simply means any piece of managed code (not just ASP.NET code) that has one or
more CAS restrictions being enforced on it. In the case of ASP.NET, because all trust levels below Full
trust enforce varying degrees of CAS restrictions, running applications in less than Full trust means
these applications are partially trusted by the .NET Framework. As you will see throughout this chapter,
partial trust applications are blocked from certain features of the .NET Framework.

78

Chapter 3

06_596985 ch03.qxp 12/14/05 7:47 PM Page 78

Moving an application from Full trust to High trust is actually a pretty big security move, because run-
ning High trust restricts an ASP.NET application to only the set of rights defined in the High trust policy
file. The specifics of what is allowed for each trust level will be reviewed in detail in the next few sec-
tions, but for now an easy way to think of High trust is that it prevents your ASP.NET code from calling
unmanaged Win32 APIs. If you are unable to apply any of the other information covered in this chapter,
at least try to switch your Internet facing ASP.NET applications from running in Full trust to running in
High trust. Turning off access to unmanaged Win32 APIs reduces the potential for mischief and unex-
pected consequences in your applications.

The next restrictive trust level is Medium trust. Think of Medium trust as the trust level that a shared
hosting company would want to use. The ASP.NET team attempted to model the set of permissions in
Medium trust to match the set of restrictions that an Internet hosting company would probably want
enforced for each of their customers. In addition to the previous restriction on calling Win32 APIs, the
Medium trust level restricts file I/O access for an ASP.NET application to only the files and folders that
are located within the application’s directory structure. In a shared hosting environment with many
customers, each of whom does not trust any of the other customers, the restrictions in Medium trust
prevent a malicious user from attempting to surf around the host machine’s local hard drive.

Low trust is appropriate for a “read-only web server and for web servers running specialized no-code or
low-code applications. The default set of permissions in Low trust allow only read access to the application’s
directory structure. In addition, Low trust does not allow ASP.NET code to reach out across the network. For
example, in Low trust an ASP.NET application cannot call a SQL Server or use the System.Net
.HttpWebRequest class to make HTTP calls to other web servers. Overall, Low trust is appropriate for web
servers with applications that can effectively run in a standalone mode without relying on any other external
servers. It is also the recommended trust level for developers that implement no-code or low-code execution
environments. For example, Sharepoint is an example of an application environment that requires no .aspx
pages or very few .aspx pages on the web server’s file system. Developers usually work within the
Sharepoint environment (which is effectively its own sandbox) and typically do not need to place many
.aspx files directly onto the file system. Sharepoint developers also work within the coding guidelines and
restrictions enforced by the Sharepoint runtime, which in turn sits on top of the ASP.NET runtime.

Sharepoint v2 (the current version) actually uses a modified variation of ASP.NET’s Minimal trust
level. However, in future versions Sharepoint will instead use a modified version of ASP.NET’s Low
trust level.

The last ASP.NET trust level is Minimal trust. As its name implies, this trust level allows only the most
minimal capabilities for an ASP.NET application. Other than running innocuous code (for example a
web-based calculator or basic .aspx pages), ASP.NET code running in Minimal trust cannot call into
classes or attempt operations that could cause any type of security risk. This trust level is suitable for
highly secure applications where 99% of any complex logic lives within compiled binaries that are
deployed in the Global Assembly Cache (GAC). Because deploying a binary in the GAC requires admin-
istrative privileges, locking an ASP.NET web server down to Minimal trust effectively requires adminis-
trator intervention to deploy any code of consequence onto a web server.

To summarize at a high level, the following table shows the ASP.NET trust levels and the general concept
behind each trust level:

79

A Matter of Trust

06_596985 ch03.qxp 12/14/05 7:47 PM Page 79

Trust Level Used For

Full Any and all code is allowed to run. Mainly intended for backwards
compatibility with ASP.NET 1.0 and 1.1 applications that were not
aware of how to use CAS or how to work with ASP.NET trust levels.

High Among other restrictions, ASP.NET code cannot call into unmanaged
Win32 APIs. A good first step for securing Internet-facing ASP.NET
applications.

Medium Intended as the default trust level for shared hosting environments
where multiple untrusted customers use the same machine. Also rec-
ommended for any Internet-facing production applications.

Low A set of permissions suitable for applications such as Sharepoint that
provide their own sandboxed execution environment. Also useful for
read-only applications that don’t require network access to other
backend servers.

Minimal Locked down web servers that allow only the barebones minimum in
your ASP.NET code. You will be able to add two numbers together
and write out the results to a web page, but not much else.

Configuring Trust Levels
Now that you have a general idea of the target audience for each trust level, you need to know how to
configure a trust level for your ASP.NET applications. The default of Full trust is defined in the root
web.config file located in the CONFIG subdirectory of the framework installation directory:

%windir%\Microsoft.NET\Framework\v2.0.50727\CONFIG\web.config

At the top of the root web.config file is a location tag with a trust level definition that looks as follows:

<location allowOverride=”true” >
<system.web>

<!-- security policies snipped for brevity ‡

<trust level=”Full” originUrl=”” />

</system.web>
</location>

Changing the <trust /> configuration element in the root web.config file affects all ASP.NET applica-
tions running on the machine. The <trust /> element is conveniently located inside of a <location
/> element to make it even easier for you to set the trust level for an entire machine, and then prevent
anyone from changing the trust level on other web.config files. For example, if you make the following
change to the location tag:

<location allowOverride=”false”>

80

Chapter 3

06_596985 ch03.qxp 12/14/05 7:47 PM Page 80

. . . the individual applications that attempt to redefine the <trust /> configuration element in their
web.config files will end up with an exception. Because all configuration files located in the CONFIG
directory are ACL’d to only allow the local Adminstrators group and SYSTEM write access, a malicious
developer cannot use an ASP.NET application to make changes to machine.config or the root
web.config file Chapter 4 goes into more detail about how the configuration system in ASP.NET 2.0 can
be used to prevent web sites and web application from changing machine wide settings.

Although making changes to the root web.config file gives a machine administrator a great deal of
leverage over the trust level setting for all applications on the machine, it is also likely that on some
machines you will not be able to enforce a single trust level for all applications.

The <trust /> configuration element can also be defined in the web.config file for individual applica-
tions. This gives you the flexibility to pick and choose the appropriate trust level for different applica-
tions. However, allowing individual applications to change the trust level in their web.config files may
not be something you want to allow for security reasons. As an alternative, you can define multiple
<location /> tags in the root web.config using the syntax shown earlier, but with the addition of a
path attribute that indicates which application the settings apply to. For example, the following sample
config defines the Medium trust level but the setting applies only to a specific application, as opposed to
all applications on the web server:

<location path=”Default Web Site/sampleapp” allowOverride=”false” >
<system.web>

<trust level=”Medium” originUrl=”” />

</system.web>
</location>

Working with Different Trust Levels
To give you a better idea of how trust levels affect an application, let’s use a sample application that
attempts the following operations:

❑ Create an ADO (not ADO.NET) recordset using the primary interop assembly (PIA) that ships
for ADO.

❑ Open Notepad.exe for read access. This file is located in the Windows directory.

❑ Connect to the Pubs database running on a local SQL Server

❑ Open the application’s local web.config file for reading

❑ Add two numbers together and output the results using a label control

The first operation is interesting because it uses the ADODB primary interop assembly (PIA) that pro-
vides a managed type wrapper around the older COM ADO objects. Calling into a PIA (or any managed
code wrapper for a COM object) involves calling unmanaged code. As a result, running the following
code will only work in Full trust.

...
using ADODB;

...
private void CreateRecordset()
{

81

A Matter of Trust

06_596985 ch03.qxp 12/14/05 7:47 PM Page 81

RecordsetClass rc = new RecordsetClass();
int fieldCount = rc.Fields.Count;

}

protected void btnFull_Click(object sender, EventArgs e)
{

try
{

//Need to call a separate method so that the exception
//occurs there, and can then be trapped from the click event.
this.CreateRecordset();

lblResults.Text =
“Successfully created an ADO recordset using the ADO PIA.”;

}
catch (Exception ex)
{

lblResults.Text = ex.Message + “
” +
Server.HtmlEncode(ex.StackTrace);

}
}

This sample code also requires that the website reference the ADO PIA from web.config as follows:

<compilation debug=”false”>
<assemblies>

<add assembly=”ADODB, Version=7.0.3300.0,
Culture=neutral, PublicKeyToken=B03F5F7F11D50A3A”/>

</assemblies>
</compilation>

If you attempt to create an ADO object in less then Full trust, you receive an error message saying,
“assembly does not allow partially trusted callers.” This is .NET Framework shorthand for saying that
the application is running in something other than Full trust, and thus does not have rights to make calls
into the ADO PIA.

You should keep this scenario in mind if you migrate an ASP application to ASP.NET and then attempt
to run the migrated ASP.NET application in anything other than Full trust. Older ASP applications
usually depend on all sorts of COM objects, with ADO just being one of the most prevalent COM
objects. Because calling COM objects from managed code always requires a managed-to-unmanaged
code transition, migrated ASP applications can be a bit problematic to get running in partial trust.
Although I discuss strategies that allow partially trusted applications to call into unmanaged code,
migrated ASP applications are typically so dependent on COM objects that it can be expensive for devel-
opers to go through a converted application and implement workarounds just so the COM interop
wrappers can be used in partial trust.

The second piece of code attempts to open Notepad.exe for read access. Because Notepad.exe is
located in the Windows directory, it clearly lies outside of the file and directory structure of the ASP.NET
application.

string filePath = “c:\\windows\\notepad.exe”;
FileStream fs = File.OpenRead(filePath);
fs.Close();

82

Chapter 3

06_596985 ch03.qxp 12/14/05 7:47 PM Page 82

This code will successfully run in Full and High trust, but at any other trust level it will result in a
SecurityException, indicating that the request for a FileIOPermission failed. If you have applica-
tions that read and write data files located outside the directory structure of an ASP.NET application,
High trust is realistically as low as you can go in terms of tightening trust levels without using the sand-
boxing approach described later in the chapter. You would need to move this type of code to a separate
assembly and assert the necessary permissions in order to be able to read and write files outside the
application’s directory structure in Medium or lower trust levels.

The next piece of code uses System.Data.SqlClient to connect to a local database.

string connString =
“server=(local);user=testdbuser;password=password;database=pubs”;

sqlConn = new SqlConnection(connString);
sqlConn.Open();

At Medium trust or above, the code runs without a problem. However, Low and Minimal trust do not
grant the necessary permissions to application code. As a result, Low or Minimal trust will result in a
SecurityException, indicating that the request for a SqlClientPermission failed. The ability to con-
nect to SQL Server is allowed in Medium trust because it is the trust level recommended for shared host-
ing machines. Because customers at Internet hosters usually want some type of database access,
SqlClientPermission made sense to add to the Medium trust policy file.

Opening files located within an application’s directory structure in read-only mode is allowed at Low
trust or above.

string filePath =
Server.MapPath(“~”) + “\\web.config”;

FileStream fs = File.OpenRead(filePath);
fs.Close();

However, if you lower the trust level to Minimal trust, this code fails with a SecurityException indi-
cating that the request for a FileIOPermission failed. Although these types of exceptions seem a bit
unclear, it is intentional that the exception information and messages do not expose additional informa-
tion. It can be a bit of a pain as a developer to track down what is happening, but the tradeoff is that
additional information, such as specific file paths, or requested access modes, isn’t accidentally exposed
in an error message that my be rendered in the browser.

I won’t show the last piece of sample code, because it isn’t terribly interesting to add two numbers
together and output the results on a page. The point of the last sample code though is to prove that in
Minimal trust you still have the ability to write some code in your ASP.NET pages. Basically, Minimal
trust allows you to write code that depends only on the object instances available on the page and .NET
Framework classes that operate entirely against data located in the application’s memory. However, any
attempt to use .NET Framework classes that read and write files, communicate with databases and
directory stores, reach out across the network, and so on results in some type of SecurityException.

Anatomy of a Trust Level
You have seen the general idea of how a trust level works. In the following sections, you get a better idea
of how a trust level is defined, as well as the meaning of various security restrictions. The intent of the
next few sections is to give you the information you need to be able to interpret the trust level policy

83

A Matter of Trust

06_596985 ch03.qxp 12/14/05 7:47 PM Page 83

files that ship with ASP.NET 2.0. Note though that the discussion intentionally tries to avoid diving too
deep into the esoteric nature of how .NET Framework CAS works. Thankfully, the information you need
to effectively use trust levels is much smaller than the knowledge required to become a CAS guru!

Finding the Trust Policy File
Medium trust is the default level that is recommended for hosters supporting untrusted customers. If
you configure your server or application to run in Medium trust, ASP.NET must first determine just
where the rules for Medium trust are located. Earlier you saw the configuration example for selecting a
trust level, but some other configuration information was removed. The configuration that follows is
what actually ships with the .Net Framework:

<location allowOverride=”true”>
<system.web>

<securityPolicy>
<trustLevel name=”Full” policyFile=”internal” />
<trustLevel name=”High” policyFile=”web_hightrust.config” />
<trustLevel name=”Medium” policyFile=”web_mediumtrust.config” />
<trustLevel name=”Low” policyFile=”web_lowtrust.config” />
<trustLevel name=”Minimal” policyFile=”web_minimaltrust.config” />

<!-- the following is not in the default web.config
<trustLevel name=”CustomLevel” policyFile=”mycustomlevel.config” />

-->

</securityPolicy>
<trust level=”Full” originUrl=”” />

</system.web>
</location>

The <securityPolicy /> element contains the information ASP.NET needs to map a trust level name
to a specific policy file location on disk. Furthermore, you have the option to define additional trust level
names (in essence additional trust levels) by adding your own <trustLevel /> configuration elements
within the <securityPolicy /> section. Any trust level that is defined in this section can be used as a
value for the “level” attribute in the <trust /> element.

All locations defined in the preceding policyFile attributes are assumed to be relative to the following
location:

%windir%\Microsoft.NET\Framework\v2.0.50727\CONFIG

If you create a custom trust level, the associated policy file must be placed in the CONFIG directory for
ASP.NET to be able to use it. When you look in the CONFIG directory, you will actually see two copies of
every policy file. For example the medium trust policy file is defined in web_mediumtrust.config; a
backup copy of the original medium trust policy file is defined in web_mediumtrust.config.default.
Because you can edit the .config files to customize an individual trust policy, and because most of us
will probably also do something wrong the first few times, the .default files are a handy way to get
back to the original policy definitions. Needless to say, don’t edit the .default files, or at the very least,
make a copy of them in a safe place!

84

Chapter 3

06_596985 ch03.qxp 12/14/05 7:47 PM Page 84

String Replacements in Policy Files
After ASP.NET locates the appropriate policy file, it loads it into memory and performs some basic string
replacements inside of it. If you open the medium trust policy file (web_mediumtrust.config) in a text
editor, you will see the following string replacement tokens:

❑ $AppDir$

❑ $AppDirUrl$

❑ $CodeGen$

❑ $OriginHost$

These replacement tokens exist primarily because the dynamic nature of ASP.NET applications makes it
difficult to statically define all of the security information required to effectively use CAS.

As you can probably infer from the first two string replacement tokens, because ASP.NET applications
can be located anywhere on disk, ASP.NET needs a way to define permissions such that physical file
paths can be flexibly defined. Both $AppDir$ and $AppDirUrl$ are representations of the physical file
path for the application root. For example, if you create an application called MyApplication located
within your wwwroot directory, and you are running off of the C drive, the string replacement tokens
will have values of:

❑ $AppDir$ = c:\inetpub\wwwroot\MyApplication

❑ $AppDirUrl$ = file:///c:/inetpub/wwwroot/MyApplication

Because different permission classes require different path representations, ASP.NET supports these two
representations.

The next replacement token, $CodeGen$ is used to represent the physical location on disk where all
compiled code used by ASP.NET is located. As a side note, the term codegen is also shorthand in the
ASP.NET world for any kind of auto-generated code artifacts that ASP.NET emits while running your
application. Remember back in Chapter 1 that some of the application domain initialization tasks
ASP.NET performs include shadow copying assemblies in the bin subdirectory as well setting up and
confirming security rights on the appropriate subdirectory underneath the Temporary ASP.NET Files
directory. Using the MyApplication example again, ASP.NET will create a directory structure that looks
something like the following:

%windir%\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\ MyApplication
\e63333b8

This entire path, including the random hash value at the end (and there may actually be a few levels of
these strange looking hash values) is used to create the value for $CodeGen$. The actual $CodeGen$ value
is a file:/// URL-style representation of this physical path (just like the $AppDirUrl$ used previously).

This location is important from a .NET Framework perspective because most of the executable assem-
blies for an ASP.NET application — both the assemblies you drop into the /bin directory and the ones
ASP.NET auto-generates for pages, controls, and so on — are located somewhere within the directory
tree represented by $CodeGen$. This set of code represents user code — the code that you, as a devel-
oper, have written. When running with any trust level other than Full trust, it is primarily user code that

85

A Matter of Trust

06_596985 ch03.qxp 12/14/05 7:47 PM Page 85

is restricted based on the security settings in the policy file. $CodeGen$ is the way ASP.NET can tell the
.NET Framework where this user code exists.

The last string replacement token, $OriginHost$, does not deal with file locations, but instead is used
to allow developers to define either a specific URL or a URL pattern to be used with classes such as
System.Net.HttpWebRequest. Some of the System.Net classes support CAS restrictions that allow
you to define the set of URL endpoints that can be connected to using these classes. You can supply the
value for $OriginHost$ by putting a value in the originUrl attribute of the <trust /> element, as
shown here:

<trust level=”Medium”
originUrl=”http://www.internalwebserviceendpoint.contoso.com/” />

Defining Sets of Permissions
A central concept to .NET Framework CAS is the idea of a permission set. Because code access security
is all about applying a set of restrictions to one or more pieces of code, a permission set is a convenient
way of grouping multiple restrictions into one logical definition, for example, a permission set. Because
effective CAS usage typically requires varying levels of software restrictions within a single application,
the .NET Framework supports the idea of naming individual permission sets so that developers can
keep track of the intended use of the permission sets.

Inside of the Medium trust policy file ASP.NET defines the following named permission sets.

❑ FullTrust

❑ Nothing

❑ ASP.Net

As the first named permission set implies, it defines a CAS policy that allows any kind of code or behav-
ior in the .NET Framework. The definition for FullTrust in the policy file looks like:

<PermissionSet
class=”NamedPermissionSet”

version=”1”
Unrestricted=”true”
Name=”FullTrust”
Description=”Allows full access to all resources”

/>

<PermissionSet /> elements can contain child elements defining specific permissions. However, the
FullTrust permission set clearly has no child elements. The reason this permission set allows managed
code to pretty much do anything is because of the attribute definition: Unrestricted=”’true”. This
syntax indicates that any code that is granted the FullTrust permission set has unrestricted access to all
functionality (including calling Win32 APIs and native code) in the .NET Framework.

The next permission set, called Nothing, defines absolutely zero permissions, which, given the name, is
what you would expect. The definition for Nothing in the policy file looks like this:

<PermissionSet
class=”NamedPermissionSet”

version=”1”

86

Chapter 3

06_596985 ch03.qxp 12/14/05 7:47 PM Page 86

Name=”Nothing”
Description=”Denies all resources, including the right to execute”

/>

Because the Nothing named permission set has no child elements, and no other attribute values of note,
the permission set effectively defines an empty set of permissions.

The last permission set is the most interesting one, because it is the ASP.Net named permission set that
differs across the various policy files. The FullTrust and Nothing permission set definitions are the same
in all of the policy files. However, it is the varying definitions of the ASP.Net permission set that gives
each trust level its unique behavior. The partial definition for the ASP.Net named permission set is
shown here:

<PermissionSet
class=”NamedPermissionSet”

version=”1”
Name=”ASP.Net”>

<!-- multiple child permissions that will be discussed shortly -->

</PermissionSet>

Because the ASP.Net permission set would be pretty useless without a set of defined permissions, it is the
only named permission set with child elements defining a number of specific security rights for code.

Defining Individual Permissions
An individual permission in a policy file is defined with an <IPermission /> element. The in-memory
representation of many interesting .NET Framework CAS permissions are classes that derive from a
class called CodeAccessPermission. Because the CodeAccessPermission class happens to imple-
ment the IPermission interface, the declarative representation of a CodeAccessPermission is an
<IPermission /> element.

For example, the Medium trust policy file allows user code to make use of the
System.Data.SqlClient classes. The definition of this permission looks like this:

<IPermission
class=”SqlClientPermission”

version=”1”
Unrestricted=”true”

/>

Because the System.Data.SqlClient classes do not support more granular permission definitions, the
System.Data.SqlClient.SqlClientPermission is used to allow all access to the main functionality
in the namespace, or deny access to this functionality. The previous definition sets the Unrestricted
attribute to true, which indicates that user code in the ASP.NET application can use any functionality in
System.Data.SqlClient that may demand this permission.

Some permissions though have more complex representations. Usually, the permissions you will find in
the ASP.NET policy files will support multiple attributes on an <IPermission /> element, with the
attributes corresponding to specific aspects of a customizable permission. For example, remember the
earlier section describing string replacement tokens in policy files. The System.Security.Permissions
.FileIOPermission is defined in the Medium trust policy file as follows:

87

A Matter of Trust

06_596985 ch03.qxp 12/14/05 7:47 PM Page 87

<IPermission
class=”FileIOPermission”

version=”1”
Read=”$AppDir$”
Write=”$AppDir$”
Append=”$AppDir$”
PathDiscovery=”$AppDir$”

/>

This permission supports a more extensive set of attributes for customizing security behavior. In this
definition, the policy file is stating that user code in an ASP.NET application has rights to read and write
files located within the application’s directory structure. Furthermore, user code in an ASP.NET applica-
tion has rights to modify files (the Append attribute) and retrieve path information within the applica-
tion’s directory structure. When ASP.NET first parses the policy file, it replaces $AppDir$ with the
correct rooted path for the application. That way when the <IPermission /> is deserialized by the
.NET Framework into an actual instance of a FileIOPermission, the correct path information is used
to initialize the permission class.

Later in this chapter in the section titled “The Default Security Permissions Defined by ASP.NET,” you
walk through the individual permissions that are used throughout the various policy files so that you
get a better idea of the default CAS permissions.

How Permission Sets Are Matched to Code
At this point, you have a general understanding of permission sets and the individual permissions that
make up a permission set. The next part of a policy file defines the rules that the .NET Framework uses
to determine which permission sets apply to specific pieces of code. Clearly, CAS wouldn’t be very use-
ful if, for example, all of the assemblies in the GAC were accidentally assigned the named permission set
Nothing. So, there must be some way that the framework can associate the correct code with the correct
set of permissions.

The first piece of the puzzle involves the concept of code evidence — information about a piece of running
code that meets the following criteria:

❑ The .NET Framework can discover, either by inferring it or by having the evidence explicitly
associated with the code. Evidence includes things such as where an assembly is located and the
digital signature (if any) of the assembly.

❑ The .NET Framework can interpret evidence and use it when making decisions about assigning
a set of CAS restrictions to a piece of code. This type of logic is called a membership condition
and is represented declaratively with the <IMembershipCondition /> element.

The unit of work that the .NET Framework initially uses as the basis for identifying code is the current
stack frame. Essentially, each method that you write has a stack frame when the code actually runs
(ignore compiler optimizations and such). At runtime, when a security demand occurs and the frame-
work needs to determine the correct set of permissions to check against, the framework looks at the cur-
rent stack frame. Based on the stack frame, the framework can backtrack and determine which assembly
actually contains the code for that stack frame. And then backtracking farther, the framework can look at
that assembly and start inferring various pieces of evidence about that assembly.

88

Chapter 3

06_596985 ch03.qxp 12/14/05 7:47 PM Page 88

Looking through the policy file, you will see a number of <CodeGroup /> elements that make use of
evidence. The <CodeGroup /> elements are declarative representations of evidence-based comparisons
used to associate security restrictions to code. I won’t delve into the inner workings of specific code
group classes because that is a topic suitable to an entire book devoted only to code access security.
Generally speaking though, a code group is associated with two concepts:

❑ A code group is always associated with a named permission set. Thus, the code group definitions
in the ASP.NET policy files are each associated with one of the following named permission sets
discussed earlier: ASP.NET, FullTrust, or Nothing.

❑ A code group defines a set of one or more conditions that must be met for the framework to
consider a piece of code as being restricted to the named permission set associated with the
code group. This is why <IMembershipCondition /> elements are nested within <CodeGroup
/> elements. The definitions of membership conditions rely on the evidence that the framework
determines about an assembly.

The ASP.NET policy files defines several <CodeGroup /> elements, with some code groups nested
inside of others. If you scan down the elements though, a few specific definitions stand out. The very
first definition is shown here:

<CodeGroup
class=”FirstMatchCodeGroup”

version=”1”
PermissionSetName=”Nothing”>
<IMembershipCondition

class=”AllMembershipCondition”
version=”1”

/>

This definition effectively states the following: if no other code group definitions in the policy file hap-
pen to match the currently running code, then associate the code with the named permission set called
“Nothing.” In other words, if some piece of unrecognized code attempts to run, it will fail because the
“Nothing” permission set is empty.

Continuing down the policy file, the next two code group definitions are very important.

<CodeGroup
class=”UnionCodeGroup”

version=”1”
PermissionSetName=”ASP.Net”>

<IMembershipCondition
class=”UrlMembershipCondition”
version=”1”
Url=”$AppDirUrl$/*”

/>
</CodeGroup>
<CodeGroup
class=”UnionCodeGroup”

version=”1”
PermissionSetName=”ASP.Net”>

<IMembershipCondition
class=”UrlMembershipCondition”

89

A Matter of Trust

06_596985 ch03.qxp 12/14/05 7:47 PM Page 89

version=”1”
Url=”$CodeGen$/*”

/>
</CodeGroup>

These two definitions are where the proverbial rubber hits the road when it comes to the ASP.NET trust
feature. The $AppDirUrl$ token in the first membership condition indicates that any code loaded from
the file directory structure of the current ASP.NET application should be restricted to the permissions
defined in the ASP.NET named permission set. Also notice that the “Url” attribute ends with a /* -
which ensures that any code loaded at or below the root of the ASP.NET application will be restricted by
the ASP.NET permission set.

Similarly, the second code group definition restricts any code loaded from the code generation directory
for the ASP.NET application to the permissions defined in the ASP.NET named permission set. As with
the first code group, the membership condition also ends in a /* to ensure that all assemblies loaded
from anywhere within the temporary directory structure used for the application’s codegen will be
restricted to the ASP.NET permission set.

It is this pair of <CodeGroup /> definitions that associates the ASP.NET named permission set to all the
code that you author in your ASP.NET applications. The pair of definitions also restricts any of the code
you drop into the “/bin directory because of course that lies within the directory structure of an
ASP.NET application. These two definitions are also why trust level customizations (discussed a little
later in this chapter) can be easily made to the ASP.NET named permission set without you needing to
worry about any of the other esoteric details necessary to define and enforce CAS.

The remaining <CodeGroup /> elements in the policy files define a number of default rules, with the
most important one being the following definition:

<CodeGroup
class=”UnionCodeGroup”

version=”1”
PermissionSetName=”FullTrust”>

<IMembershipCondition
class=”GacMembershipCondition”
version=”1”

/>
</CodeGroup>

This definition states that any code that is deployed in the GAC is assigned the FullTrust named permis-
sion set. This permission set allows managed code to make use of all the features available in the .NET
Framework. Because you can author code and deploy assemblies in the GAC, you have the ability to cre-
ate an ASP.NET application with two different levels of security restrictions. User code that lives within
the directory structure of the ASP.NET application will be subjected to the ASP.NET permission set, but
any code that you deploy in the GAC will have the freedom to do whatever it needs to. This concept of
full trust GAC assemblies will come up again in the section “Advanced Topics on Partial Trust” where
there is a discussion of strategies for sandboxing privileged code.

Other Places that Define Code Access Security
Although the previous topics focused on how ASP.NET defines the permission set associations using a
trust policy file, the .NET Framework defines a more extensive hierarchy of code access security settings.
Using the .NET Framework 2.0 Configuration MMC (due to some late changes) this MMC tool is no longer

90

Chapter 3

06_596985 ch03.qxp 12/14/05 7:47 PM Page 90

available on the Administrative Tools menu. Instead, you have to use the mscorcfg.msc file located in the
following SDK directory: %Program Files%\Microsoft Visual Studio 8\SDK\v2.0\Bin.; you can
create security policies for any of the following:

❑ Enterprise

❑ Machine

❑ User

This means that you can create declarative representations of permissions, permission sets, and code
groups beyond those defined in the ASP.NET trust policy file.

If your organization defines security policies at any of these levels, it is possible that the permissions
defined in the ASP.NET trust policy file may not exactly match the behavior exhibited by your applica-
tion. This occurs because each successive level of security policy (with the lowest level being the
ASP.NET trust policy) acts sort of like a filter. Only security rights allowed across all of the levels will
ultimately be granted to your code.

With that said, though, in practice many organizations are either unaware of the security configuration
levels, or have considered them too complicated to deal with. That is why ASP.NET trust policies with
their relatively easy-to-understand representations are ideally suited for quickly and easily enforcing
CAS restrictions on all of your web applications.

By default, the .NET Framework defines only restrictive CAS policies for the Machine level. The frame-
work defines a number of different code groups that divvy up code based on where the code was loaded
from. These code group definitions depend on the concept of security zones that you are probably famil-
iar with from Internet Explorer. You might wonder why ASP.NET needs to define its own concept of CAS
with trust levels when zone-based CAS restrictions are already defined and used by the Framework.

ASP.NET cannot really depend on the default Machine level CAS definitions because, for all practical
purposes, ASP.NET code always runs locally. The ASP.NET pages exist on the local hard drive of the web
server, as does the Temporary ASP.NET Files directory. Even in when running from a UNC share, most
of the actual compiled code in an application is either auto-generated by ASP.NET or shadow copied
into the local Temporary ASP.NET Files directory.

As a result, if ASP.NET didn’t use trust levels, all ASP.NET code that you write would fall into the code
group called My_Computer_Zone. The membership condition for this code group is the My Computer zone,
which includes all code installed locally. Because the code group grants full trust to any assemblies that are
installed locally, this means in the absence of ASP.NET trust levels, all ASP.NET code runs at full trust. This is
precisely the outcome in ASP.NET 1.0, which predated the introduction of ASP.NET trust levels.

A Second Look at a Trust Level in Action
Earlier you saw an example of using various pieces of code in different trust levels and the failures that
occurred. Now that you have a more complete picture of what exists inside of a trust policy file, review-
ing how trust levels and CAS all hang together is helpful. In the diagram in Figure 3-1, a number of
important steps are outlined.

91

A Matter of Trust

06_596985 ch03.qxp 12/14/05 7:47 PM Page 91

Figure 3-1

Step 0: Application Domain Policy
As part of ASP.NET’s application domain initialization process, ASP.NET reads configuration to deter-
mine the appropriate trust policy that should be loaded from the CONFIG directory. When the file is
loaded, and the string replacement tokens are processed, ASP.NET calls System.AppDomain
.SetAppDomainPolicy to indicate that permissions defined in the trust level’s policy file are the CAS
rules for the application domain. If your organization also defines CAS rules for the Enterprise,
Machine, or User levels, then the application domain policy is intersected with all of the other prede-
fined CAS rules.

Step 1: User Code Calls into a Protected Framework Class
One of the pieces of code from the sample application shown in the beginning of the chapter attempted
to call into ADO.NET:

(0) Application domain CAS
policy established when the
application domain started

(4b) If check fails

(3) Framework checks
appdomain CAS policy

(4
a)

If c
he

ck
 su

cc
ee

ds

(2
)

Pe
rm

is
si

on
de

m
an

d

(1
) C

alls into

Page code that uses System.Data.SqlClient

SecurityException
is thrown!

User code stack frame

System.Data.SqlClient classes demand
SqlClientPermission

ADO.NET continues and runs the requested method

92

Chapter 3

06_596985 ch03.qxp 12/14/05 7:47 PM Page 92

string connString =
“server=(local);user=testdbuser;password=password;database=pubs”;

sqlConn = new SqlConnection(connString);
sqlConn.Open();

Attempting to open a connection or run a command using the System.Data.SqlClient classes results
in a demand being made in ADO.NET for the SqlClientPermission. ADO.NET makes the demand by
having the framework construct an instance of the SqlClientPermission class and then calling the
Demand method on it.

Step 2: The Demand Flows up the Stack
The technical details of precisely how the Framework checks for a demanded permission are not some-
thing you need to delve into. Conceptually though, demanding a permission causes the Framework to
look up the call stack at all of the code that was running up to the point that the permission demand
occurred. Underneath the hood, the Framework has a whole set of performance optimizations so that in
reality the code that enforces permission demands doesn’t have to riffle through every last byte in what
could potentially be a very lengthy call stack.

Ultimately though, the Framework recognizes the user code from the sample page, and it decides to
check the set of permissions associated with the page.

Step 3: Checking the Current CAS Policy
This is where the effects of the ASP.NET trust policy come into play. Because ASP.NET earlier initialized
a set of permissions — code groups and membership conditions for the application domain — the
Framework now has a set of rules that it can reference. If the user code sits on an ASP.NET page, the
Framework uses the UrlMembershipCondition definitions defined earlier in the trust policy file to
determine the permissions associated with the page code. The page code at this point has actually been
compiled into a page assembly (either automatically or from an earlier precompilation), and this assem-
bly is sitting somewhere in the Temporary ASP.NET Files directory structure for the current application.
Because the permissions for files located in the codegen directory are the ones from the ASP.NET named
permission set, the Framework looks for the existence of SqlClientPermission in that permission set.

Step 4: The Results of the Check
If the ASP.NET application is running at Medium trust or above, the Framework will find the
SqlClientPermission in the permission set associated with user code. In this case, the Framework
determines that the user code passes the security check, and as a result the original ADO.NET call is
allowed to proceed. What isn’t shown in Figure 3-1 is the extended call stack that sits on top of the code
sitting in the .aspx page. When the Framework determines that the user code has the necessary permis-
sions, it continues up the call stack checking every assembly that is participating on the current thread.
In the case of ASP.NET though, all code prior to the button click event handler calling ADO.NET is code
that exists in System.Web.dll or some other .NET Framework assembly. Because all these assemblies
exists in the GAC, and GAC’d assemblies have full trust, all of the other code on the class stack is con-
sidered to implicitly have all possible permissions.

On the other hand, if the ASP.NET application is running in Low or Minimal trust, the .NET Framework
will not find a SqlClientPermission for the page’s code, and the permission demand fails with a
stack that looks roughly like:

93

A Matter of Trust

06_596985 ch03.qxp 12/14/05 7:47 PM Page 93

Request for the permission of type ‘System.Data.SqlClient.SqlClientPermission,
System.Data, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089’
failed.
at System.Security.CodeAccessSecurityEngine.CheckSet(PermissionSet permSet,
StackCrawlMark& stackMark, Int32 checkFrames, Int32 unrestrictedOverride)
at System.Security.CodeAccessSecurityEngine.Check(PermissionSet permSet,
StackCrawlMark& stackMark)
at System.Security.PermissionSet.Demand()
at System.Data.Common.DbConnectionOptions.DemandPermission()
at System.Data.SqlClient.SqlConnection.PermissionDemand()
at System.Data.SqlClient.SqlConnectionFactory.PermissionDemand(DbConnection
outerConnection)
at System.Data.ProviderBase.DbConnectionClosed.OpenConnection(DbConnection
outerConnection, DbConnectionFactory connectionFactory)
at System.Data.SqlClient.SqlConnection.Open()
at _Default.btnMedium_Click(Object sender, EventArgs e)
snip....

The downside of CAS is that when a security exception occurs, it usually results in semi-intelligible
results like those shown previously.

However, when you encounter a security exception (and it is usually an instance of System
.Security.SecurityException that is thrown), with a little probing you can usually pick apart the
call stack to get some idea of what happened. For the previous example, you can see that the bottom of
the call stack is the button click handler; that immediately tells you the user code triggered the call that
eventually failed. Moving up the call stack a bit, System.Data.SqlClient.SqlConnection
.PermissionDemand() gives you an idea of which System.Data.SqlClient class your code is calling.

Moving up the stack a bit more you see various calls into System.Security.CodeAccessSecurityEngine.
This class is part of the internal guts of the CAS enforcement capability in the .NET Framework. Finally, at
the top of the stack trace is the information pertaining to the specific permission request that failed, which
in this case is SqlClientPermission. In this example, the SqlClientPermission is a very simple per-
mission class that represents a binary condition: either code has rights to call into System.Data
.SqlClient, or it doesn’t. As a result, you don’t need additional information to investigate the problem.

So, troubleshooting this problem boils down to figuring out why the code in the button click event
doesn’t have rights to call into various ADO.NET classes. With an understanding of ASP.NET trust levels
in mind, the first thing you would do is determine the current trust level. In this case, I set the applica-
tion to run in Minimal trust. In the policy file for Minimal trust, SqlClientPermission has not been
granted to ASP.NET code.

Troubleshooting More Complex Permissions
Although troubleshooting SqlClientPermission is pretty simple, other more complex permission
types are not so easy. For example, the System.Security.Permissions.FileIOPermission class
supports much more granular permission definitions. As you saw earlier in some snippets from the
ASP.NET trust policy files, you can selectively grant access to read files, create files, modify existing files,
and so on. Using the sample application from the beginning of the chapter again, you can attempt to
read a file that is running in Minimal trust:

string filePath = Server.MapPath(“~”) + “\\web.config”;
FileStream fs = File.OpenRead(filePath);
fs.Close();

94

Chapter 3

06_596985 ch03.qxp 12/14/05 7:47 PM Page 94

This code results in the following stack trace:

Request for the permission of type ‘System.Security.Permissions.FileIOPermission,
mscorlib, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089’
failed.
at System.Security.CodeAccessSecurityEngine.Check(PermissionToken permToken,
CodeAccessPermission demand, StackCrawlMark& stackMark, Int32 checkFrames, Int32
unrestrictedOverride)
at System.Security.CodeAccessSecurityEngine.Check(CodeAccessPermission cap,
StackCrawlMark& stackMark)
at System.Security.CodeAccessPermission.Demand()
at System.Web.HttpRequest.MapPath(String virtualPath, String baseVirtualDir,
Boolean allowCrossAppMapping)
at System.Web.HttpServerUtility.MapPath(String path) at
_Default.btnLow_Click(Object sender, EventArgs e)

Unfortunately from this stack trace, you can glean only that some piece of user code (the click event han-
dler at the bottom of the trace) triggered a call to System.Web.HttpRequest.MapPath and that this call
eventually resulted in a SecurityException because the check for FileIOPermission failed. The
information about the FileIOPermission failure though says absolutely nothing about why it failed.
At this point, about the only thing you can do is sleuth around the rest of the stack trace and attempt to
infer what kind of FileIOPermission check failed (was it read access, write access, or what?)

In this case, the call to MapPath gives you a clue because ASP.NET has a MapPath method on the
HttpServerUtility class. Because the purpose of MapPath is to return the physical file path represen-
tation for a given virtual path, you have a clue that suggests something went wrong when attempting to
discover the physical file path.

Because the application is running at Minimal trust, you know that there are no FileIOPermission
definitions inside of the Minimal trust policy file. With the information about MapPath, you can make a
reasonable guess that if you wanted the code in the click event handler to succeed, you would at least
need to create a declarative <IPermission /> for a FileIOPermission that granted PathDiscovery
to the application’s physical directory structure.

One of the other samples attempts to open a file outside of the directory structure of the application
while running in Medium trust. Doing so still fails with a SecurityException complaining about the
lack of a FileIOPermission. However, this time the stack trace includes the following snippet:

Snip...
at System.Security.CodeAccessPermission.Demand()
at System.IO.FileStream.Init(String path, FileMode mode, FileAccess access, Int32
rights, Boolean useRights, FileShare share, Int32 bufferSize, FileOptions options,
SECURITY_ATTRIBUTES secAttrs, String msgPath, Boolean bFromProxy)
at System.IO.FileStream..ctor(String path, FileMode mode, FileAccess access,
FileShare share)
Snip...

Now the stack trace looks a bit more interesting. The snippet shows that one type of file I/O operation
was attempted and during initialization of the FileStream, a demand occurred. Because the failure
involved FileIOPermission, you have enough information in the stack trace to realize that you need
to look at the code that opened the file stream. Depending on the location of the requested file, as well as
the type of access requested, you can look in the trust policy file (Medium trust in this case) and see

95

A Matter of Trust

06_596985 ch03.qxp 12/14/05 7:47 PM Page 95

which file permissions are granted by default. In this case, because only file I/O permissions within the
scope of the application’s directory structure are granted, and the code is attempting to open a file in the
%windir% directory, you need to grant extra permissions.

Adding the following permission element allows the application to open notepad.exe even though the
application is running in Medium trust:

<IPermission
class=”FileIOPermission”

version=”1”
Read=”c:\\windows\\notepad.exe”
PathDiscovery=”c:\\windows\\notepad.exe”

/>

Troubleshooting permission failures and the need to edit policy files to fix the failures leads us to the
next topic.

Creating a Custom Trust Level
At some point, you may need to edit the permissions in a trust policy file and create a custom trust level.
Creating a custom trust level involves the following tasks:

1. Creating a policy file containing your updated permission definitions

2. Determining the declarative representation of the new permissions

3. Applying the new trust level to your application

Creating a Policy File
Although you can edit the existing policy files located in the CONFIG directory, unless you are making
minor edits for an existing trust level, you should create a separate policy file that represents the new
custom set of permissions you are defining. Start with the policy file that has the closest set of permis-
sions to those you want to define. This discussion starts with the Medium trust policy file. I made a copy
of the Medium trust policy file and called it web_mediumtrust_custom.config.

After you have a separate copy of the policy file, you need to edit some configuration settings so that a
trust level is associated with the policy file. Hooking up the policy file up so that it is available for use
requires editing the root web.config file located in the framework’s CONFIG subdirectory. Remember
earlier that you looked at the <securityPolicy /> configuration element. Creating the following entry
inside of the <securityPolicy /> element makes the custom policy file available for use as a custom
trust level:

<securityPolicy>

<!-- default trust levels -->

<trustLevel name=”Medium_Custom”
policyFile=”web_mediumtrust_custom.config” />

</securityPolicy>

96

Chapter 3

06_596985 ch03.qxp 12/14/05 7:47 PM Page 96

Now ASP.NET applications that need the set of permissions defined inside of web_mediumtrust_
custom.config can simply reference the Medium_Custom trust level.

Determining Declarative Permission Representations
So far you have been looking at preexisting permission definitions. However, these declarative represen-
tations must have come from somewhere and must follow some type of expected schema, otherwise it
would be a free-for-all when class implementers tried to determine the correct <IPermission />
definitions for a permission.

Two pieces of information are necessary for enabling new permissions in a policy file:

❑ The class information for the security permission class

❑ The declarative XML representation of the permission

Determining the class information for a new permission is pretty simple. Usually you know what piece
of code you are attempting to enable in a partial trust application, so you know the calls that are being
made and that are failing.

The first example of creating a new custom permission attempts to enable OleDb for use in Medium
trust. You can determine the permission that is necessary to enable usage of the classes in System
.Data.OleDb by first attempting to run a page that uses OleDb in Medium trust and looking at the
failure information. The following code initially does not work in Medium trust because the policy file
for Medium trust only grants the SqlClientPermission:

OleDbConnection oc =
new OleDbConnection(“Provider=SQLOLEDB;” +

“Data Source=localhost;Initial Catalog=Pubs;” +
“Integrated Security=SSPI;Connect Timeout=30”);

oc.Open();

OleDbCommand ocmd = new OleDbCommand(“select * from authors”, oc);
OleDbDataReader or = ocmd.ExecuteReader();

Running the code results in the following exception information:

[SecurityException: Request for the permission of type
‘System.Data.OleDb.OleDbPermission, System.Data, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089’ failed.]

How convenient! The first piece of information is right there in the exception information. Using
<IPermission /> elements in a trust policy file requires that you first register the type of the permis-
sion class that you are defining. This is necessary because the IPermission interface is a generic repre-
sentation of a code-access permission, but you are attempting to define very specific permissions,
sometimes with additional attributes or nested permissions that are unique to the specific class of per-
mission you are working with.

You can register the OleDbPermission type in your custom policy file by copying the information out
of the exception dump, and into a <SecurityClass /> element as shown here:

97

A Matter of Trust

06_596985 ch03.qxp 12/14/05 7:47 PM Page 97

<SecurityClasses>
<!-- pre-defined security classes snipped for brevity -->

<SecurityClass
Name=”OleDbPermission”
Description=”System.Data.OleDb.OleDbPermission, System.Data,

Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089”/>

</SecurityClasses>

The Name attribute can actually be set to any string value because it is used by individual <IPermission
/> elements to reference the correct permission type. However, you would normally use the class name
without other type or namespace information as the value for the Name attribute. The Description
attribute is set to a type string that the .NET Framework uses to resolve the correct permission type at
runtime. In the previous example, the Descrption attribute has been set to the strong type definition
that is conveniently available from the exception text.

Now that the permission class information has been entered into the policy file, the next step is to
determine the declarative representation of an OleDbPermission. The easiest way to do this in the
absence of any documentation for a XML representation as follows:

using System.Data.OleDb;
using System.Security;
using System.Security.Permissions;
...
protected void Page_Load(object sender, EventArgs e)
{permission, is to write a quick piece of code that instantiates the permission
class and dumps out its

OleDbPermission odp =
new OleDbPermission(PermissionState.Unrestricted);

SecurityElement se = odp.ToXml();

Response.Write(Server.HtmlEncode(se.ToString()));
}

The sample code constructs an instance of the permission class, passing it a value from the System
.Security.Permissions.PermissionState enumeration. The sample code essentially creates a
permission that grants unrestricted permission to the full functionality of the System.Data.OleDb
namespace. The XML representation of the permission is created by calling ToXML() on the permission,
which results in an instance of a System.Security.SecurityElement. A SecurityElement is the
programmatic representation of the XML for a permission. You can get the string representation of the
XML by calling ToString() on the SecurityElement. The end result of running this code is the
declarative representation of an OleDbPermission instance:

<IPermission
class=”System.Data.OleDb.OleDbPermission, System.Data, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089”
version=”1”
Unrestricted=”true”
/>

98

Chapter 3

06_596985 ch03.qxp 12/14/05 7:47 PM Page 98

This representation is almost exactly what you need to drop into your custom policy file with one minor
change. Because you already defined a <SecurityClass /> earlier for the OleDbPermission type, the
lengthy type definition isn’t required. Instead, you want to enter the following XML into your custom
policy file:

<IPermission
class=”OleDbPermission”

version=”1”
Unrestricted=”true”

/>

The class attribute will be interpreted as a reference to a permission class that is keyed by the name
OleDbPermission. Because you created a <SecurityClass /> earlier named OleDbPermission, at
runtime the Framework will correctly infer that the <IPermission /> definition here is for an instance
of the type defined by the OleDbPermission security class.

You can place the <IPermission /> declaration anywhere within the list of <IPermission /> elements
that are nested underneath the <PermissionSet /> element for the ASP.NET named permission set. The
following XML shows where to place the OleDbPermission declaration:

<PermissionSet
class=”NamedPermissionSet”
version=”1”
Name=”ASP.Net”>

<!-- other default IPermission definitions -->
<IPermission
class=”OleDbPermission”

version=”1”
Unrestricted=”true”

/>

</PermissionSet>

At this point, the edits to the policy file are complete, and the only task left is to associate the sample
application with the custom trust level defined by this policy file.

Applying the New Trust Level
Earlier, you defined a new trust level called Medium_Custom for the modified policy file. The sample
ASP.NET application can use this trust level by redefining the trust level in its web.config:

<trust level=”Medium_Custom” />

With the creation of the custom trust policy file and the use of the custom trust level, when you run the
sample code shown earlier, the application is able to open an OleDb connection and make a query
against the pubs database.

Additional Trust Level Customizations
You have seen how to enable unrestricted OleDb permissions for an ASP.NET application. However,
permission classes sometimes allow for more extensive customizations. In this section, you will take a
look at a few of the more common (or more confusing!) permissions classes you may encounter

99

A Matter of Trust

06_596985 ch03.qxp 12/14/05 7:47 PM Page 99

Customizing OleDbPermission
The OleDbPermission class allows more than just a simple binary decision on class usage. For example,
hosters frequently want to enable Access (aka Jet) databases for their customers, but at the same time
they don’t want to throw the doors wide open to any kind of OleDb drivers being used.

For example, let’s say you wanted to allow use of only the System.Data.OleDb classes with the following
restrictions:

❑ Only Access could be used through OleDb. Any other data provider, including OleDb-based
SQL Server access is disallowed.

❑ To prevent any type of extended information from being passed on the connection string, you
allow only customers to set the database location, username, and password.

You can model this set of restrictions in code using the OleDbPermission class as shown here:

OleDbPermission odp =
new OleDbPermission(PermissionState.None);

odp.Add(“Provider=Microsoft.Jet.OLEDB.4.0”,
“data source=;user id=;password=;”,
KeyRestrictionBehavior.AllowOnly);

SecurityElement se = odp.ToXml();
Response.Write(Server.HtmlEncode(se.ToString()));

Unlike the first example of using OleDbPermission, this code uses the Add method to selectively add
the set of allowed connection strings that can be used with System.Data.OleDb. The Add method in the
previous code says that connection strings that reference the Jet provider are allowed. Allowable connec-
tion strings can be further modified with the data source, user id, and password attributes.
Attempts to create an OleDbConnection with a connection string that does not follow these constraints
will result in a SecurityException.

Writing out the XML representation of the permission, and modifying the class attribute as mentioned
earlier, results in the following declarative syntax that can be placed in a custom policy file:

<IPermission class=”OleDbPermission” version=”1” >

<add ConnectionString=”Provider=Microsoft.Jet.OLEDB.4.0”
KeyRestrictions=”data source=;user id=;password=;”
KeyRestrictionBehavior=”AllowOnly”

/>
</IPermission>

Notice how you now have a <IPermission /> element that itself contains nested security information.
Permission classes are free to define whatever XML representation they require and this additional infor-
mation can be nested within <IPermission />. This allows permission classes to manage collections of
security information, rather than being restricted to a single static definition of one security rule. In the
case of OleDbPermission, this enables you to define as many connection string constraints as you need,
although this example defines only the single constraint.

100

Chapter 3

06_596985 ch03.qxp 12/14/05 7:47 PM Page 100

If you run the sample code shown earlier that connects to SQL Server, a security exception is thrown.
However, if instead you attempt to connect to an MDB database, as the following example shows, every-
thing works:

//Using a Sql connection string at this point will result in a SecurityException
OleDbConnection oc =

new OleDbConnection(“Provider=Microsoft.Jet.OLEDB.4.0;” +
“data source=D:\\Inetpub\\wwwroot\\ASPNetdb_Template.mdb;”);

oc.Open();

OleDbCommand ocmd = new OleDbCommand(“select * from aspnet_Applications”, oc);
OleDbDataReader or = ocmd.ExecuteReader();

If a hoster provisioned only a specific database name (or names), you could even go one step further and
define the <IPermission /> in the custom policy file to restrict access to a predefined name:

<IPermission class=”OleDbPermission” version=”1” >

<add ConnectionString=”Provider=Microsoft.Jet.OLEDB.4.0;data
source=$AppDir$\ASPNetdb_Template.mdb”

KeyRestrictions=”user id=;password=;”
KeyRestrictionBehavior=”AllowOnly”

/>

</IPermission>

Notice how the ConnectionString attribute in the <add /> element now also includes the data source
definition. Furthermore, KeyRestrictions no longer allows you to specify a custom value for data
source. Because ASP.NET performs a string search-and-replace for all tokens in a trust policy file, you can
use the replacement token $AppDir$ inside of the ConnectionString attribute. The previous definition
has the net effect of restricting an ASP.NET application to using only an Access database called ASPNetdb
_Template.mdb located in the root of the application’s physical directory structure. Attempting to use
any other Access MDB will result in a SecurityException.

Customizing OdbcPermission
Another data access technology that many folks use in ASP.NET is ODBC. Even though it probably
seems a bit old-fashioned to still be using ODBC (as I like to half-joke: every few years Microsoft needs
to release an entirely new data access technology due to our predilection for reorgs), it is still widely
used due to the prevalence of ODBC drivers that have been around for years. In many cases, database
back ends that are no longer actively supported are accessible only through proprietary APIs or custom
ODBC drivers. Another reason ODBC can be found on ASP.NET servers is that customers using the
open-source mySQL database used to need the mySQL ODBC driver, although recently a .NET driver
for mySQL was released.

If you want to enable ODBC for your ASP.NET applications, you can follow the same process shown
earlier for OleDb. A <SecurityClass /> element needs to be added to the custom policy file that
registers the OdbcPermission class:

<SecurityClass Name=”OdbcPermission”
Description=”System.Data.Odbc.OdbcPermission, System.Data, Version=2.0.0.0,

Culture=neutral, PublicKeyToken=b77a5c561934e089”/>

101

A Matter of Trust

06_596985 ch03.qxp 12/14/05 7:47 PM Page 101

Next, you need to determine what the declarative representation of an OdbcPermission looks like.
Modifying the OleDb sample code used earlier, the following snippet outputs the XML representation of
a permission that allows only the use of the Access provider via the System.Data.Odbc classes:

OdbcPermission odp =
new OdbcPermission(PermissionState.None);

odp.Add(“Driver={Microsoft Access Driver (*.mdb)};”,
“Dbq=;uid=;pwd=;”,
KeyRestrictionBehavior.AllowOnly);

SecurityElement se = odp.ToXml();
Response.Write(Server.HtmlEncode(se.ToString()));

The OdbcPermission class actually has a programming model that is very similar to the
OleDbPermission class. You can add multiple connection string related permissions into a single
instance of OdbcPermission. Running the previous code, and then tweaking the output to use the
shorter reference in the class attribute, results in the following <IPermission /> declaration:

<IPermission class=”OdbcPermission” version=”1” >
<add ConnectionString=”Driver={Microsoft Access Driver (*.mdb)};”

KeyRestrictions=”Dbq=;uid=;pwd=;”
KeyRestrictionBehavior=”AllowOnly”/>

</IPermission>

Although the syntax of the connection string text is a bit different to reflect the ODBC syntax, you can
see that the permission declaration mirrors what was shown earlier for OleDb.

With this permission added to the custom trust policy file, the code that uses Access will run without
triggering any security exceptions.

//The following won’t work when only Access connection strings are allowed in the
//trust policy file.
//OdbcConnection oc =
// new OdbcConnection(“Driver={SQL Server};” +
// “Server=foo;Database=pubs;Uid=sa;Pwd=blank;”);

OdbcConnection oc =
new OdbcConnection(“Driver={Microsoft Access Driver (*.mdb)};” +

“Dbq=D:\\Inetpub\\wwwroot\\TrustLevels\\ASPNetdb_Template.mdb;”);
oc.Open();

OdbcCommand ocmd = new OdbcCommand(“select * from aspnet_Applications”, oc);
OdbcDataReader or = ocmd.ExecuteReader();

However, attempting to create an OdbcConnection with a SQL Server–style connection string results in
a SecurityException because it is disallowed by the permission definition in the trust policy file.

102

Chapter 3

06_596985 ch03.qxp 12/14/05 7:47 PM Page 102

Using the WebPermission
One of the permissions defined in the Medium and High trust files is for the System.Net
.WebPermission. This is probably one of the most confusing permissions for developers to use due to the
interaction between the <trust /> element and the settings for this permission. The default declaration
looks like this:

<IPermission
class=”WebPermission”

version=”1”>
<ConnectAccess>

<URI uri=”$OriginHost$”/>
</ConnectAccess>

</IPermission>

As with some of the other permissions you have looked at, the WebPermission supports multiple sets
of nested information. Although a WebPermission can be used to define both outbound and inbound
connection permissions, normally, you use WebPermission to define one or more network endpoints
that your code can connect to. The default declaration shown previously defines a single connection per-
mission that allows partially trusted code the right to make a connection to the network address defined
by the <URI /> element.

103

A Matter of Trust

Allowing ODBC and OLEDB in ASP.NET
Now that you have seen how to enable ODBC and OleDb inside of partial trust
ASP.NET applications, you should be aware that running either of these technologies
reduces the security for your web applications. Many drivers written for ODBC and
OleDb predate ASP.NET and for that matter predated widespread use of the Internet in
some cases. The designs for these drivers didn’t take into account scenarios such as
shared hosters selling server space to customers on the Internet.

For example, the Jet provider for Access can be used to open Excel files and other
Office data formats in addition to regular MDB files. Because many Office files, includ-
ing Access databases, support scripting languages like VBScript, it is entirely possible
for someone to use an Access database as a tunnel of sorts to the unmanaged code
world. If you lockdown an ASP.NET application to partial trust but still grant selective
access with the OleDbPermission, developers can write code to open an arbitrary
Access database. After that happens, a developer can issue commands against the
database that in turn trigger calls into VBScript or to operating system commands and
of course when that happens, you are basically running the equivalent of an ASP page
with the capability to call arbitrary COM objects.

Because the .NET Framework CAS system does not extend into the code that runs
inside of an Access database, after the OleDbPermission demand occurs, the
Framework is no longer in the picture. In the case of Access, the Jet engine supports
Registry settings that enable a sandboxed mode of operation. The sandbox prevents
arbitrary code from being executed as the side effect from running a query. There may
be additional avenues though for running scripts in Access databases (I admit to hav-
ing little experience in Access — which is probably a good thing!). Overall, the general
advice is to thoroughly research the vagaries of whatever ODBC or OleDb drivers you
are supporting, and as much as possible implement the mitigations suggested by the
various vendors.

06_596985 ch03.qxp 12/14/05 7:47 PM Page 103

However, the definition for this element has the string replacement token: $OriginHost$. This definition
is used conjunction with the <trust /> element, which includes an attribute called originHost and its
value is used as the replacement value for $OriginHost$. For example, if you define the following
<trust /> element:

<trust level=”Medium_Custom” originUrl=”http://www.microsoft.com/”/>

. . . when ASP.NET processes the trust policy file, it will result in a permission that grants connect access
to http://www.microsoft.com/. Although the attribute is called originUrl, the reality is that the
value you put in this attribute does not have to be your web server’s domain name or host name. You
can set a value that corresponds to your web farm’s domain name if, for example, you make Web Service
calls to other machines in your environment. However, you can just as easily use a value that points at
any arbitrary network endpoint as was just shown. One subtle and extremely frustrating behavior to
note here is that you need to have a trailing / at the end of the network address defined in the
originUrl attribute. Also, when you write code that actually uses System.Net classes to connect to
this endpoint, you also need to remember to use a trailing / character.

With the <trust /> level setting shown previously, the following code allows you to make an HTTP
request to the Microsoft home page and process the response:

HttpWebRequest wr = (HttpWebRequest)WebRequest.Create(“http://www.microsoft.com/”);
HttpWebResponse resp = (HttpWebResponse)wr.GetResponse();

Response.Write(resp.Headers.ToString());

Because the WebPermission class also supports regular expression based definitions of network end-
points, you can define originUrl using a regular expression. The reason regular expression based URLs
are useful is that the WebPermission class is very precise in terms of what it allows. Defining a permis-
sion that allows access to only www.microsoft.com means that your code can access only that specific
URL. If you happened to be curious about new games coming out, and created an HttpWebRequest for
www.microsoft.com/games/default.aspx, then a SecurityException occurs.

You can rectify this by instead defining originUrl to allow requests to any arbitrary page located
underneath www.microsoft.com.

<trust level=”Medium_Custom” originUrl=”http://www\.microsoft\.com/.*”/>

Notice the trailing .* at the end of the originUrl attribute. Now the System.Net.WebPermission
class will interpret the URL as a regular expression; the trailing .* allows any characters to occur after the
trailing slash. With that change, the following code will work without throwing any security exceptions:

HttpWebRequest wr =
(HttpWebRequest)WebRequest.Create(“http://www.microsoft.com/games/default.aspx”);

Although the examples shown all exercise the HttpWebRequest class directly, the most likely use you
will find for a custom WebPermission is in partial trust ASP.NET applications that call into Web
Services. Without defining one or more WebPermissions, your Web Service calls will fail with less than
enlightening security errors.

104

Chapter 3

06_596985 ch03.qxp 12/14/05 7:47 PM Page 104

Because your web application may need to connect to multiple Web Service endpoints, potentially
located under different DNS namespaces, you need to define a <IPermission /> element in your
custom policy file with multiple nested <URI /> entries. As an example, the following code gives you
the correct XML representation for a set of two different endpoints:

WebPermission wp = new WebPermission();

Regex r = new Regex(@”http://www\.microsoft\.com/.*”);
wp.AddPermission(NetworkAccess.Connect,r);

r = new Regex(@”http://www\.google\.com/.*”);
wp.AddPermission(NetworkAccess.Connect, r);

SecurityElement se = wp.ToXml();
Response.Write(Server.HtmlEncode(se.ToString()));

The resulting XML, adjusted again for the class attribute, looks like this:

<IPermission class=”WebPermission” version=”1”>
<ConnectAccess>

<URI uri=”http://www\.microsoft\.com/.*”/>
<URI uri=”http://www\.google\.com/.*”/>

</ConnectAccess>
</IPermission>

The $OriginHost$ replacement token is no longer being used. Realistically, after you understand how
to define a WebPermission in your policy file, the originUrl attribute isn’t really needed anymore.
Instead, you can just build up multiple <URI /> elements as needed inside of your policy file. With the
previous changes, you can now write code that connects to any page located underneath
www.microsoft.com or www.google.com.

HttpWebRequest wr =
(HttpWebRequest)WebRequest.Create(“http://www.microsoft.com/games/default.aspx”);
HttpWebResponse resp = (HttpWebResponse)wr.GetResponse();

...
resp.Close();

wr = (HttpWebRequest)WebRequest.Create(“http://www.google.com/microsoft”);
resp = (HttpWebResponse)wr.GetResponse();

Although I won’t cover it here, the companion classes to HttpWebRequest/HttpWebResponse are the
various System.Net.Socket* classes. As with the Http classes, the socket classes have their own
permission: SocketPermission. Just like WebPermission, SocketPermission allows the definition
of network endpoints for both socket connect and socket receive operations.

The Default Security Permissions Defined by ASP.NET
ASP.NET ships with default trust policy files for High, Medium, Low, and Minimal trust. You have
already read about several different permissions that are configured in these files. This section covers all
the permissions that appear in the files in the ASP.NET named permission set, along with information on
the different rights that are granted depending on the trust level.

105

A Matter of Trust

06_596985 ch03.qxp 12/14/05 7:47 PM Page 105

AspNetHostingPermission
To support the trust level model, ASP.NET created a new permission class: System.Web
.AspNetHostingPermission. The permission class is used as the runtime representation of the applica-
tion’s configured trust level. Although you could programmatically determine the trust level of an appli-
cation by looking at the level attribute of the <trust /> element, that programming approach isn’t
consistent with how you would normally use CAS permissions. Because AspNetHostingPermission
inherits CodeAccessPermission, code can instead demand an AspNetHostingPermission just like
any other permissions class. The Framework will perform its stack walk, ensuring that all code in the cur-
rent call stack has the demanded trust level. ASP.NET uses this capability extensively within its runtime to
protect access to pieces of functionality that are not intended for use at lower trust levels.

The permission class has a public property Level that indicates the trust level represented by the per-
mission instance. In the various trust policy files, there is always a definition of
AspNetHostingPermission.

<IPermission
class=”AspNetHostingPermission”

version=”1”
Level=”High”

/>

The usual convention is to set the Level attribute in the <IPermission /> element to the effective trust
level represented by the policy file.

There is nothing to prevent you from setting the Level attribute to a value that is inconsistent with the
overall intent of the trust policy file. For example, you could declare an AspNetHostingPermission with
a Level of High inside of the minimal trust policy file. However, you should normally not do this because
the value of the Level property is used by ASP.NET to protect access to certain pieces of functionality.
Artificially increasing the trust level can result in ASP.NET successfully checking for a specific trust level
and then failing with SecurityException when the runtime attempts a privileged operation that isn’t
allowed based on the other permissions defined in the trust policy file.

The problem also exists with the reverse condition; you could define a lower trust level than what the
permissions in the trust policy file would normally imply. For example, you could copy the policy file
for High trust, and then change the AspNetHostingPermission definition’s Level attribute to Medium.
Even though ASP.NET internally won’t run into unexpected exceptions, you now have the problem that
ASP.NET “thinks” it is running at Medium trust, but the permissions granted to the application are actu-
ally more appropriate for a High trust application.

All of this brings us to a very important point about the AspNetHostingPermission. The intent of the
Level property is to be a broad indicator of the level of trust that you are willing to associate with the appli-
cation. Although the <IPermission /> definitions in the rest of the policy file are a concrete representation
of the trust level, the Level property is used as a surrogate for making other trust related decisions in code.
Whenever possible you should set the Level attribute appropriately based on the level of trust you are will-
ing to grant to the application. Internally ASP.NET needs to make a number of security decisions based on
an application’s trust level. Rather than creating concrete permissions for each and every security decision
(this would result in dozens of new permission classes at a bare minimum), ASP.NET instead looks at the
AspNetHostingPermission for an application and makes security judgments based on it. This is the main
reason why you should ensure that the “Level” attribute is set appropriately for your application.

106

Chapter 3

06_596985 ch03.qxp 12/14/05 7:47 PM Page 106

Trust Level Intent
So, what specifically are the implications behind each trust level? Full trust is easy to understand because
it dispenses with the need for a trust policy file and a definition of AspNetHostingPermission. The
following table lists the conceptual intent behind the other trust levels.

Trust Level Intent

Full The ASP.NET application can call anything it wants.

High The ASP.NET application should be allowed to call most classes within the .NET
Framework without any restrictions. Although the High trust policy file does not
contain an exhaustive list of all possible Framework permissions (the file would
be huge if you attempted this), High trust implies that aside from calling into
unmanaged code (this is disallowed), it is acceptable to use most of the remainder
of the Framework’s functionality. Although sandboxing privileged operations in
GAC’d classes is preferred, adding new permissions directly to the High trust
policy file instead would not be considered “breaking the contract” of High trust.

Medium The ASP.NET application is intended to be constrained in terms of the classes
and Framework functionality it is allowed to use. A Medium trust application
isn’t expected to be able to directly call dangerous or privileged pieces of code.
However, a Medium trust application is expected to be able to read and write
information — it is just that the reading and writing may be constrained, or
require special permissions before it is allowed. If problems arise because of a
lack of permissions, you try to avoid adding the requisite permission classes to
the Medium trust policy file. Instead, if privileged operations require special
permissions, the code should be placed in a separate assembly and installed in
the GAC. Furthermore, if at all possible, this type of assembly should demand
some kind of permission that you would expect the Medium trust application
to possess. For example you could demand the AspNetHostingPermission at
the Medium level to ensure that even less trusted ASP.NET applications cannot
call into your GAC’d assembly.

Low The ASP.NET application is running in an environment where user code should
not trusted with any kind of potentially dangerous operations. Low trust appli-
cations are frequently considered to be read-only applications; this would cover
things like a reporting application. Because this is such a “low” level of trust, you
should question any application running in this trust level that is allowed to
reach out and modify data. For example, in the physical world someone that you
had a low level of trust for is probably not an individual you would trust to
make changes to your bank account balance. As with Medium trust, you should
use GAC’d assemblies to solve permission problems, although you should look
at the operations allowed in your assemblies to see if they are really appropriate
for a Low trust application. Note that Low trust is also appropriate for web
applications like Sharepoint that provide their own hosted environment and thus
their own security model on top of ASP.NET. Applications like Sharepoint lock
down the rights of pages that are just dropped on the web server’s file system.
Developers instead make use of privileged functionality through the Sharepoint
APIs or by following Sharepoint’s security model.

Table continued on following page

107

A Matter of Trust

06_596985 ch03.qxp 12/14/05 7:47 PM Page 107

Trust Level Intent

Minimal A Minimal trust application means that you don’t trust the code in the application
to do much of anything. If permission problems arise, you should not work around
the issue with GAC’d assemblies. Instead, you should question why a minimally
trusted application needs to carry out a protected operation. Realistically, this
means that a Minimal trust application is almost akin to serving out static HTML
files, with the additional capability to use the ASP.NET page model for richer page
development.

ASP.NET Functionality Restricted by Trust Level
ASP.NET makes a number of decisions internally based on the trust level defined by the
AspNetHostingPermission. Because High and Full trust applications imply the ability to use most
Framework functionality, the allowed ASP.NET functionality at these levels isn’t something you need to
worry about.

However, the Medium trust level is the lowest level at which the following pieces of ASP.NET functionality
are allowed. Below Medium trust, the following features and APIs are not allowed:

❑ Asynchronous pages (the Async page attribute)

❑ Transacted pages (the Transaction page attribute)

❑ Using the Culture page attribute

❑ Setting debug=true for a page or the entire application

❑ Sending mail with System.Web.Mail.SmtpMail

❑ Calling Request.LogonUserIdentity

❑ Calling Response.AppendToLog

❑ Explicitly calling HttpRuntime.ProcessRequest

❑ Retrieving the MachineName property from HttpServerUtility

❑ Setting the ScriptTimeout property on HttpServerUtility

❑ Using the System.Web.Compilation.BuildManager class

❑ Displaying a source error and source file for a failing pages

At Low trust, there are a still a few pieces of ASP.NET functionality available that are not allowed when
running at Minimal trust:

❑ Retrieving Request.Params.

❑ Retrieving Request.ServerVariables.

❑ Retrieving HttpRuntime.IsOnUNCShare.

❑ Calling into the provider-based features: Membership, Role Manager, Profile, Web Parts
Personalization, and Site Navigation. Note though that most of the providers for these features will
not work in Low trust because their underlying permissions are not in the Low trust policy file.

108

Chapter 3

06_596985 ch03.qxp 12/14/05 7:47 PM Page 108

Implications of AspNetHostingPermission Outside of ASP.NET
As you may have inferred from the name of the permission, it is primarily intended for use with ASP.NET-
specific code. Most of the time, this means Framework code that has the AspNetHostingPermission
attribute or that internally demands this permission to be called from inside of ASP.NET. In fully trusted
code-execution environments outside of ASP.NET you may not realize this is happening. For example, the
following code runs without a problem in a console application.

Console.WriteLine(HttpUtility.HtmlEncode(“
”));

Notice that this code is using the System.Web.HttpUtility class. Running the console application
from the local hard drive works, even though the HttpUtility class has the following declarative
LinkDemand:

[AspNetHostingPermission(SecurityAction.LinkDemand,
Level=AspNetHostingPermissionLevel.Minimal]

This works by default because applications running from the local hard drive are considered by the
.NET Framework to be running in the My Computer security zone. Any code running from this zone is
fully trusted. As a result, when it evaluates the LinkDemand, the Framework the application is running
in full trust, and thus ignores any permission checks.

However, if you move the compiled executable to a universal naming convention (UNC) share and then
run it, you end up with a SecurityException and the following stack dump information:

System.Security.SecurityException: Request for the permission of type
‘System.Web.AspNetHostingPermission, System, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089’ failed.
....
The assembly or AppDomain that failed was:
UsingAspNetCodeOutsideofAspNet, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=null
The Zone of the assembly that failed was: Internet
The Url of the assembly that failed was:
file://remoteserver/c$/UsingAspNetCodeOutsideofAspNet.exe

Now the Framework considers the application to be running in partial trust. Because the executable was
moved to a UNC share, the Framework applied the security restrictions from the Internet zone. When
LinkDemand occurred for AspNetHostingPermission, the Framework looked for that permission in the
named permission set that the Framework associates with the Internet zone. Of course, it couldn’t find it
because the AspNetHostingPermission is typically found only inside of the ASP.NET trust policy files.

I won’t cover how to fix this security problem in this chapter, because most of the ASP.NET classes are
not intended for use outside of a web application anyway. However, in Chapter 14 “SqlRoleProvider,” I
walk through an example of using a provider-based feature from inside of a partial trust non-ASP.NET
application. Both Membership and Role Manager are examples of ASP.NET classes that were explicitly
tweaked to make them useable outside of a web application. However, the classes for these features
make extensive use of AspNetHostingPermission, so it is necessary to understand how to grant the
AspNetHostingPermission to partial trust non-ASP.NET applications that use these two features.

109

A Matter of Trust

06_596985 ch03.qxp 12/14/05 7:47 PM Page 109

Using AspNetHostingPermission in Your Code
Because AspNetHostingPermission models the conceptual trust that you grant to an application, you
can make use of this permission as a surrogate for creating a permission class from scratch. In fact, one
of the reasons ASP.NET uses AspNetHostingPermission to protect certain features is to reduce the
class explosion that would occur if every protected feature had its own permission class. So, rather than
creating TransactedPagePermission, AsyncPagePermission, SetCultureAttributePermission,
and so on, ASP.NET groups functionality according to the trust level that is appropriate for the feature.

You can follow a similar approach with standalone assemblies that you author. This applies to custom
control assemblies as well as to assemblies that contain middle-tier code or other logic. For example, you
can create a standalone assembly that uses the permission with the following code:

public class SampleBusinessObject
{

public SampleBusinessObject() { }

public string DoSomeWork()
{

AspNetHostingPermission perm =
new AspNetHostingPermission(AspNetHostingPermissionLevel.Medium);

perm.Demand();

//At this point it is safe to perform privileged work
return “Successfully passed the permission check.”;

}
}

Drop the compiled assembly into the /bin folder of an ASP.NET application. Because the assembly
demands Medium trust, the following simple page code in an ASP.NET application works at Medium
trust or above.

SampleBusinessObject obj = new SampleBusinessObject();
Response.Write(obj.DoSomeWork());

However, if you configure the ASP.NET application to run at Low or Minimal trust, the previous code
will fail with a SecurityException stating that the request for the AspNetHostingPermission failed.
Unfortunately though, the exception information will not be specific enough to indicate additional any
extra information; in this case, it would be helpful to know the Level that was requested but failed.

In cases like this where you probably control or have access to the code in the standalone assemblies, you
can determine which security permissions are required by using the tool permcalc located in the .NET
Framework’s SDK directory (this directory is available underneath the Visual Studio install directory if
you chose to install the SDK as part the Visual Studio setup process). I ran permcalc against the sample
assembly with the following command line:

“C:\Program Files\Microsoft Visual Studio 8\SDK\v2.0\Bin\permcalc”
SampleBusinessTier.dll

110

Chapter 3

06_596985 ch03.qxp 12/14/05 7:47 PM Page 110

The tool outputs an XML file containing all declarative and code-based permission demands.
Although declarative permission requirements are the easiest to infer (remember there is also an
AspNetHostingPermission attribute that you can use to adorn a class or a method), the tool does a
pretty good job of inspecting the actual code and pulling out the code-based permission demands. In
the case of the sample assembly, it returned the following snippet of permission information:

<Method Sig=”instance string DoSomeWork()”>
- <Demand>
- <PermissionSet version=”1” class=”System.Security.PermissionSet”>

<IPermission Level=”Medium” version=”1”
class=”System.Web.AspNetHostingPermission, System,
Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089”

/>
</PermissionSet>

</Demand>
...

The <Demand /> element in the permcalc output shows that the tool determined that the DoSomeWork
method is demanding AspNetHostingPermission with the Level at Medium.

DnsPermission
As the name implies, the System.Net.DnsPermission class defines the ability of your code to perform
forward and reverse address lookups with the System.Net.Dns class. The permission is a binary
permission in that it either grants code the right call into the Dns class or it denies the ability to use the
Dns class. An interesting side note is that if you do not add DnsPermission to a trust policy file, but you
have added WebPermission, you can still make use of the HttpWebRequest and related classes.
Internally, System.Net assumes that if you have the necessary WebPermission, it can perform any
required DNS lookups internally on your behalf.

The rights for DnsPermission at the various trust levels are shown in the following table:

Trust Level Granted Permission

Full Unrestricted

High Unrestricted

Medium Unrestricted

Low No rights to use the Dns class

Minimal No rights to use the Dns class

EnvironmentPermission
The System.Security.Permissions.EnvironmentPermission class defines the ability of user code
to access environment variables via the System.Environment class. If you drop to a command line and
run the SET command, all sorts of interesting information is available from the environment variables.
Because this could potentially be used as a backdoor for gathering information about the web server, the
ASP.NET trust policy files restrict access to only a few environment variables in the lower trust levels.

111

A Matter of Trust

06_596985 ch03.qxp 12/14/05 7:47 PM Page 111

The EnvironmentPermission supports defining access levels on a more granular basis, even down to
the level of protecting individual environment variables. As a result, you can control the ability to read
and write individual environment variables. Each security attribute (All, Read, and Write) in the declara-
tive representation of an EnironmentPermission can contain a semicolon delimited list of environment
variables.

The rights for EnvironmentPermission at the various trust levels are shown in the following table:

Trust Level Granted Permission

Full Unrestricted

High Unrestricted

Medium Can only read the following environment variables:
TEMP, TMP, USERNAME, OS, COMPUTERNAME. No
ability to set environment variables.

Low No rights to read or write any environment variables

Minimal No rights to read or write any environment variables

FileIOPermission
I have already covered most of the functionality for the System.Security.Permissions
.FileIOPermission class in other sections. This permission also supports defining different permissions
for different directory and file paths. The thing that is a little odd about this permission class is that it
takes a somewhat nonoptimal approach to declaring multiple permissions. Unlike WebPermission or
SocketPermission, FileIOPermission does not output nested elements within a <IPermission />
element. Instead, it has a fixed set of attributes, but each path-related attribute can contain a semicolon-
delimited list of multiple paths. For example, the declarative syntax of a FileIOPermission with
different permissions for two different directory paths is shown here:

<IPermission class=”FileIOPermission” version=”1”
Read=”d:\temp;d:\somedummylocation”
Write=”d:\somedummylocation”
Append=”d:\temp;d:\somedummylocation”
/>

This permission defines only allowable file I/O operations at the Framework level. This means the per-
mission class is only able to define the ability of user code to perform logical operations (read, write, and
so on based on a set of defined file paths. However, the FileIOPermission does not protect access to
files and directories based on NT file system (NTFS) file ACLs. As a result, it is completely possible that
from a CAS perspective the Framework will allow your code to issue a file I/O operation, but from an
NTFS perspective, your code may not have the necessary security permissions. When performing any
type of file I/O, you also need to ensure that the identity of the operating system thread has been granted
the necessary rights on the file system.

The following table lists the default permissions for the different trust levels.

112

Chapter 3

06_596985 ch03.qxp 12/14/05 7:47 PM Page 112

Trust Level Granted Permission

Full Unrestricted.

High Unrestricted: Remember this means the ability to read and
write files anywhere in the file system.

Medium Read, write, append, and path discovery are all allowed for
directories and paths located within the directory structure
of the web application. Operations outside of the applica-
tion’s directory structure are not allowed.

Low Only read and path discovery are all allowed for directories
and paths located within the directory structure of the web
application. Write operations are not allowed within the
application’s directory structure. Also, operations outside of
the application’s directory structure are not allowed.

Minimal No file I/O rights

IsolatedStorageFilePermission
The System.Security.Permissions.IsolatedStorageFilePermission class controls the allowable
file operations when using the System.IO.IsolatedStorage.IsolatedStorageFile class. I honestly
have never encountered any customers using isolated file storage in an ASP.NET application. Although
you could technically use isolated storage as a way to store information locally on the web server for each
website user, there are probably not any web applications that work this way: A database would be better
choice, especially in web farm environments. However, because IsolatedStoragePermission is also
defined by the Framework in the machine CAS policy, the permission is included in the ASP.NET trust
policy files to ensure that ASP.NET has the final say on what is allowed when using isolated storage.

The following table lists the default permissions for the different trust levels.

Trust Level Granted Permission

Full Unrestricted.

High Unrestricted.

Medium Isolated storage is allowed, but the only storage mode that
can be used isolates data by user identity. The disk quota for
each user is effectively set to infinite.

Low Isolated storage is allowed, but the only storage mode that
can be used isolates data by user identity. The disk quota for
each user is set to 1MB.

Minimal Not allowed.

113

A Matter of Trust

06_596985 ch03.qxp 12/14/05 7:47 PM Page 113

PrintingPermission
Before you double over laughing at why this permission exists in an ASP.NET trust policy file, I’ll state
that the reason is the same as mentioned earlier for the IsolatedStorageFilePermission. The
default machine CAS policy grants System.Drawing.Printing.PrintingPermission to code run-
ning in the various predefined security zones. So, ASP.NET also defines the PrintingPermission in its
trust files to ensure that it has a final say in the level of access granted to user code that works with
printers.

The following table lists the default permissions for the different trust levels.

Trust Level Granted Permission

Full Unrestricted.

High User code can issue commands to print to the default printer
attached to the web server.

Medium User code can issue commands to print to the default printer
attached to the web server.

Low Not allowed.

Minimal Not allowed.

ReflectionPermission
The System.Security.Permissions.ReflectionPermission class defines the types of reflection
operations you can perform with classes in the System.Reflection namespaces. This is a very important
permission for ensuring the safety of partial trust applications because reflecting against code introduces
the potential for calling private/internal methods, and inspecting private/internal variables. As a result, in
the default ASP.NET policy files only High trust code has rights to use some of the reflection APIs. In
practice, you should not grant reflection permission to partially trusted user code due to the potential for
malicious code to deconstruct the code that is running on your server.

The following table lists the default permissions for the different trust levels.

Trust Level Granted Permission

Full Unrestricted.

High User code can use only classes in the System
.Reflection.Emit namespace. These classes can be used
to generate code programmatically as well as a compiled
representation of the generated code. This functionality can
be useful for an application that dynamically generates
assemblies to disk and then references these classes from
page code.

Medium Not allowed.

Low Not allowed.

Minimal Not allowed.

114

Chapter 3

06_596985 ch03.qxp 12/14/05 7:47 PM Page 114

RegistryPermission
The System.Security.Permissions.RegistryPermission defines permissions for creating, reading,
and writing Registry keys and values. Much as with FileIOPermission, you can use this permission
class to define a set of permission rules that vary depending on the Registry path. The various security
attributes on the <IPermission /> element contain a semicolon delimited list of Registry keys to protect.
This permission is enforced whenever you use the Microsoft.Win32.RegistryKey class to manipulate
the registry. Because there usually isn’t a need to directly read and write Registry data in web applications,
ASP.NET by default only defines a RegistryPermission for High trust. If you need access to Registry
information at lower trust levels, you should put Registry access code into a separate GAC’d assembly that
has the necessary permissions. Normally, though, the restrictions on Registry access are not too onerous
because in web applications you use configuration files as opposed to Registry keys for storing application
configuration data.

The following table lists the default permissions for the different trust levels.

Trust Level Granted Permission

Full Unrestricted

High Unrestricted

Medium Not allowed

Low Not allowed

Minimal Not allowed

SecurityPermission
The System.Security.Permissions.SecurityPermission class is a proverbial jack-of-all-trades
permissions class. Instead of defining a narrow set of permissions used by a specific set of classes in the
framework, a SecurityPermission class can define around fifteen permissions that apply to different
privileged operations in the framework. For example, these permissions define the ability to call unman-
aged code and the ability for code to execute. The list of possible permissions that can be granted with a
SecurityPermission can be found in the SecurityPermissionFlag enumeration.

In partial trust applications, ASP.NET allows a subset of the available permissions by defining progressively
more restrictive security permissions for the lower trust levels. The specific permissions that ASP.NET may
grant are listed here:

❑ Assertion — This permission allows code to assert that it has the right to call into other code
that may demand certain permissions. The advanced topics sections of this chapter cover how
to write GAC’d assemblies that use this permission. In partially trusted applications, assertion is
usually not granted because code doesn’t have sufficient rights to assert other arbitrary permis-
sion defined in the Framework.

❑ ControlPrincipal — Allows code to change the IPrincipal reference available from
Thread.CurrentPrincipal. ASP.NET also demands this right if you attempt to set the User
property on an HttpContext. Keep this permission in mind if you write custom authentication
or custom authorization modules. If your modules need to set the thread principal when running

115

A Matter of Trust

06_596985 ch03.qxp 12/14/05 7:47 PM Page 115

in Low trust or below, you need to deploy your modules in the GAC and assert a
SecurityPermission with the ControlPrincipal right.

❑ ControlThread — Grants code the right to perform privileged operations on an instance of
System.Threading.Thread. For example, with this permission code is allowed to call
Thread.Abort, Thread.Suspend, and Thread.Resume.

❑ Execution — Allows .NET Framework code to run. If ASP.NET didn’t define this permission in
the various trust policy files, none of your code would ever be allowed to run. Removing this
permission from any of the ASP.NET trust policy files effectively disables the ability to run
.aspx pages.

❑ RemotingConfiguration — Allows an application to configure and start up a remoting infras-
tructure. Many ASP.NET applications don’t need to expose or call into remotable objects.
However, if you want to run a partial trust ASP.NET application that consumes objects using
.NET Remoting, make sure this permission is defined in the trust policy file. Note that
RemotingConfiguration isn’t needed if your application calls Web Services.

The following table lists the security permissions granted at the different trust levels.

Trust Level Granted Permission

Full Unrestricted

High Assertion, Execution, ControlThread, ControlPrincipal,
RemotingConfiguration

Medium Assertion, Execution, ControlThread, ControlPrincipal,
RemotingConfiguration

Low Execution

Minimal Execution

As you can see from this list, at Low and Minimal trust user code has only the ability execute. Because
ASP.NET restricts the SecurityPermission at Low and Minimal trust, you need to deploy all sensitive
business or security logic in GAC’d assemblies.

Due to the sensitive nature of the Assertion and ControlPrincipal rights, you should look into removing
these if you create a custom trust level. The Assertion right is really intended for trusted code that can
successfully assert some kind of underlying permission. However, partially trusted code by its very
nature lacks many permissions, and thus it is unlikely that user code in a code-behind page could suc-
cessfully assert a permission (if the code already had the necessary permission it wouldn’t need to assert
anything in the first place).

The ControlPrincipal right is a security-sensitive right appropriate only for code that manipulates iden-
tity information for a request. Although it is a little bit more difficult to write a standalone HTTP authen-
tication/authorization module and deploy it in the GAC, it is much more secure to do so and then
remove the ControlPrincipal right in a trust policy file. Doing so ensures that some random piece of
application code can’t arbitrarily change the security information for a request — something that is espe-
cially trivial to accomplish when using forms authentication.

116

Chapter 3

06_596985 ch03.qxp 12/14/05 7:47 PM Page 116

SmtpPermission
In ASP.NET 1.0 and 1.1, the closest thing to a managed mail class was found in System.Web.Mail
.SmtpMail. Internally, SmtpMail is just a wrapper around CDONTS, which itself is unmanaged code.
Because it would be excessive to grant unmanaged code permission to a partially trusted ASP.NET
application, ASP.NET instead protects access to this mail class by using the AspNetHostingPermission
as surrogate permission. At Medium trust or above, you can use SmtpMail, whereas at lower trust levels
you cannot send mail.

With the v2.0 of the Framework though, the System.Web.Mail.SmtpMail class has been deprecated
and is replaced by the classes in the System.Net.Mail namespace. These classes protect access to mail
operations using the System.Net.Mail.SmtpPermission class. To maintain parity with the mail
behavior of earlier ASP.NET release, the trust policy files are defined to allow all mail operations at
Medium trust and above as shown in the following table.

Trust Level Granted Permission

Full Unrestricted

High Unrestricted

Medium Unrestricted

Low Not allowed

Minimal Not allowed

SocketPermission
System.Net.SocketPermission is the companion permission class to the System.Net
.WebPermission class discussed earlier. It supports defining connect and receive access in a granular
fashion segmented by different network endpoints. Because of the potential for mischief when using the
socket classes, ASP.NET grants access to only High trust applications. If you have web applications that
need to make outbound socket connections (receiving socket connections is unlikely in a web applica-
tion), you can use the same approach described earlier for the WebPermission class to determine the
exact XML syntax necessary to restrict socket connections to specific endpoints.

The following table lists the security permissions granted at the different trust levels.

Trust Level Granted Permission

Full Unrestricted

High Unrestricted

Medium Not allowed

Low Not allowed

Minimal Not allowed

117

A Matter of Trust

06_596985 ch03.qxp 12/14/05 7:47 PM Page 117

SqlClientPermission
The System.Data.SqlClient.SqlClientPermission class is used to allow or disallow use of the
classes in the System.Data.SqlClient namespace. There is no support for granular permissions along
the lines of the SocketPermission or WebPermission classes. Because Medium trust is the recom-
mended default trust level for shared hosters, the permission is available at Medium trust and above.

The following table lists the security permissions granted at the different trust levels.

Trust Level Granted Permission

Full Unrestricted

High Unrestricted

Medium Unrestricted

Low Not allowed

Minimal Not allowed

WebPermission
System.Net.WebPermission is used to define a granular set of connection rules for making HTTP
requests to various network endpoints. Because it is a potentially complex permission with multiple
nested permission elements, you can use the techniques described in the section “Using the
WebPermission” to determine the correct XML.

The following table lists the security permissions granted at the different trust levels.

Trust Level Granted Permission

Full Unrestricted.

High Unrestricted.

Medium Only connect access is granted to a single network endpoint.
This endpoint is defined by the originUrl attribute in the
<trust /> configuration element.

Low Not allowed.

Minimal Not allowed.

Advanced Topics on Partial Trust
There are a few advanced issues on partial trusts that you may encounter while developing your
application:

118

Chapter 3

06_596985 ch03.qxp 12/14/05 7:47 PM Page 118

❑ Exception behavior when dealing with Link demands

❑ Requirements for using the “allow partially trusted callers” attribute (APTCA) attribute when
writing trusted types for use by ASP.NET

❑ Sandboxing access to security sensitive code with GAC’d assemblies

❑ The processRequestInApplicationTrust attribute in the <trust /> element

LinkDemand Exception Behavior
All of the sample code used so far to highlight exception behavior has involved full permission demands
made by different classes in the Framework. However, this type of permission demand can be expensive
because the Framework has to crawl up the current call stack each and every time a full permission
demand occurs. Even if the exact same code is executing on subsequent page requests, the Framework
still has to perform a fair amount of work to reevaluate the results of a demand.

To mitigate the performance hit of full demands, the Framework also includes the concept of a link
demand, also referred to as a LinkDemand. The idea behind a LinkDemand is that the Framework needs to
make a permission check only the first time code from one assembly attempts to call a piece of protected
code in another assembly. After that check is made, the Framework does not perform any additional secu-
rity evaluations on subsequent calls.

The issue you may run into when developing partial trust applications is that LinkDemands are evalu-
ated before your code even starts running. The reason for this is that a LinkDemand occurs when the
Framework is attempting to link the code that you wrote with the compiled code that exists in another
assembly. Establishing this link occurs before the first line of code in your method executes. As a result,
even though you may have try/catch blocks set up to explicitly catch SecurityExceptions, you still
end up with an unhandled exception. To highlight this behavior, let us use one of the sample pieces of
code from the beginning of the chapter to make a call into the ADO PIA.

try
{

//An unhandled exception due to LinkDemands will occur before this code runs
RecordsetClass rc = new RecordsetClass();
int fieldCount = rc.Fields.Count;

Response.Write(“Successfully created an ADO recordset using the ADO PIA.”);
}
catch (Exception ex)
{

Response.Write(ex.Message + “
” +
Server.HtmlEncode(ex.StackTrace));

}

Even though this code is catching almost every exception, when you attempt to run this code in a partial
trust ASP.NET application (I used Medium trust for the test), the page fails with an unhandled excep-
tion. Some of the abbreviated exception information is shown here:

[SecurityException: That assembly does not allow partially trusted callers.]

System.Security.CodeAccessSecurityEngine.ThrowSecurityException(Assembly asm,
PermissionSet granted, PermissionSet refused, RuntimeMethodHandle rmh,
SecurityAction action, Object demand, IPermission permThatFailed) +150
LinkDemand.Button1_Click(Object sender, EventArgs e) in
d:\Inetpub\wwwroot\Chapter3\WorkingWithTrustLevels\LinkDemand.aspx.cs:44

119

A Matter of Trust

06_596985 ch03.qxp 12/14/05 7:47 PM Page 119

The call stack shows the code appears to have transitioned from the button click handler immediately
into the internals of the .NET Framework security system. The reason is that the ADO primary interop
assembly (PIA) is installed in the GAC, and thus the Framework requires that any calling code itself be
fully trusted. The security check immediately failed when it detected that the calling code was partially
trusted. In fact, one of the most common symptoms of a failed LinkDemand is the exception text stating
that some assembly doesn’t allow partially trusted callers.

The way around the unhandled exception problem is to place code that may encounter LinkDemand
failures inside of a separate method or function. Then have your main code path call the helper method,
wrapping the call in an exception handler. For example, you can change the sample code to use a private
method for calling ADO:

private void CreateRecordset()
{

//This code will never run due to a LinkDemand failure
RecordsetClass rc = new RecordsetClass();
int fieldCount = rc.Fields.Count;

}

protected void Button1_Click(object sender, EventArgs e)
{

try
{

//The LinkDemand failure from the private method will bubble up as a
//catch-able exception
this.CreateRecordset();

Response.Write(“Successfully created an ADO recordset using the ADO PIA.”);
}
catch (Exception ex)
{

Response.Write(ex.Message + “
” +
Server.HtmlEncode(ex.StackTrace));

}
}

Now the LinkDemand failure occurs when the Framework attempts to link the code in CreateRecordset
to the code inside of the ADO PIA. The resulting SecurityException is successfully caught inside of the
button click handler, and you can react appropriately to the error.

Although this example demonstrates the problem with a LinkDemand requiring a full trust caller, any
LinkDemand-induced failure will exhibit this behavior. As a developer, you should be aware of this and
code defensively when you know you are using classes that implement LinkDemands.

LinkDemand Handling When Using Reflection
Because LinkDemands are intended to protect an assembly when another assembly links to it, there is a
potential problem when using reflection to call into a protected assembly. With reflection, the immediate
caller into a protected assembly is the .NET Framework code for the System.Reflection namespace.
Because Framework code all lives in the GAC, any LinkDemand would appear to immediately pass the
security checks. However, if this were really the case, any partial trust application with the appropriate
ReflectionPermission could subvert the intent of a LinkDemand.

120

Chapter 3

06_596985 ch03.qxp 12/14/05 7:47 PM Page 120

To prevent this kind of “end run” around security, the Framework first checks the security of the true
caller rather than the code running System.Reflection. Additionally, the Framework converts the
LinkDemand into a full demand. If the previous example used a GAC’d assembly to call the ADO PIA
via reflection on behalf of the ASP.NET page, the following would occur:

1. The reflection code sees the LinkDemand for full trust.

2. The Framework enforces the LinkDemand against the assembly in the GAC because it is the
GAC’d assembly that is really making the method call.

3. The Framework converts the LinkDemand into a full demand because reflection is being used.

4. The Framework walks up the call stack, inspecting each assembly involved in the current call
stack to see if it is fully trusted.

5. When the stack crawl reaches the partial trust page code the security check fails and a
SecurityException is thrown.

Keep this behavior in mind if you write a GAC’d wrapper assembly that calls a protected assembly on
behalf of a partial trust ASP.NET application. The section on sandboxing titled “Sandboxing with
Strongly Named Assemblies” will cover how a GAC’d assembly can ensure that it always has the neces-
sary rights to call protected code, regardless of whether the call is made directly or via reflection.

Working with the AllowPartiallyTrustedCallers Attribute
You would be in a real quandary if there was no way to call protected code from a partial trust ASP.NET
application. If you think about it though, ASP.NET code is calling into what would technically be consid-
ered “protected code” all the time. Whenever you write a line of code that uses the Request or Response
objects, you are accessing classes that live inside of SystemWeb.dll, which itself is installed in the GAC.
However, in all the previous examples where sample code was writing information out using Response,
there weren’t any unexpected security exceptions.

The reason for this behavior is the AllowPartiallyTrustedCallersAttribute class located in the
System.Security namespace. If an assembly author includes this attribute as part of the assembly’s
metadata, when the .NET Framework sees a call being made from partially trusted code to the
assembly, it does not trigger a LinkDemand for full trust. The System.Web.dll assembly uses
AllowPartiallyTrustedCallersAttribute to allow partial trust code to call into its classes. You can
see this if you run the ildasm utility (available in the SDK subdirectory inside of the Visual Studio install
directory if you chose to install the SDK) against the System.Web.dll file located in the framework’s
installation directory. You will see a line of metadata like the following if you look at the assembly’s
manifest inside of ildasm.

[mscorlib]System.Security.AllowPartiallyTrustedCallersAttribute::.ctor()

If you are using assemblies that you don’t directly control or own, and you are wondering whether the
assemblies can even be used in a partially trusted web application, you should ildasm them and look for
the AllowPartiallyTrustedCallersAttribute. If the assemblies lack the attribute, then without
additional work on your part (sandboxing the assemblies which is discussed later), you will not be able
to install the code in the GAC and consume it directly from a partially trusted ASP.NET application.

121

A Matter of Trust

06_596985 ch03.qxp 12/14/05 7:47 PM Page 121

A few technical details about using AllowPartiallyTrustedCallersAttribute are listed here:

❑ Although you can add this attribute to any assembly, it makes sense to use it only with an
assembly that is strongly named.

❑ Strongly named assemblies require a signing key and an extra step in the assembly’s build
process to create the digital signature for the assembly’s code. You can set this all up in Visual
Studio 2005 so the work is done automatically for you.

❑ In ASP.NET 2.0, you can deploy strongly named assemblies either in the GAC or in the /bin
directory of your application. Deploying a strongly named assembly in the /bin directory has
some extra implications in partial trust ASP.NET applications.

In the interest of brevity, folks frequently refer to the AllowPartiallyTrustedCallersAttribute
as APTCA, or “app-ka” when talking about it. Trust me — it’s a lot faster to talk about APTCA rather
than the full name of the attribute!

To demonstrate using the attribute, create a really basic standalone assembly that is strongly named. The
assembly exposes a dummy worker method just so there is something that you can call.

public class SampleClass
{

public string DoSomething()
{

return “I did something”;
}

}

Initially, the assembly will be strongly named, but won’t have APTCA in its metadata. If you are
wondering how to get Visual Studio to strongly name the assembly, just use the following steps:

1. Right-click the Project node in the Solution Explorer.

2. Select the Signing tab in the Property page that is displayed.

3. Check the Sign the assembly check box on the Signing property page.

4. If you are just creating a key file for a sample application like I am, choose New from the
Choose a strong name key file drop-down list. In a secure development environment though,
you should delay sign the assembly and manage the private key information separately.

5. Type the key file name in the dialog box that pops up, and optionally choose to protect the file
with a username and password.

The end result is that when you build the standalone assembly, Visual Studio signs it for you. You can
confirm this by running ildasm against the assembly. You will see the public key token, albeit with a
different value, when you look at the assembly’s manifest:

.publickey = (00 24 00 00 04 80 00 00 94 00 00 00 06 02 00 00
...
)

122

Chapter 3

06_596985 ch03.qxp 12/14/05 7:47 PM Page 122

Now you have a strongly named assembly and can start working with it from a partial trust ASP.NET
application. First, install the assembly into the GAC using the gacutil tool: This tool is also available
from the SDK directory. Run the following command to install the assembly into the GAC:

“D:\..path..to..VS\SDK\v2.0\Bin\gacutil” -i SampleAPTCAAssembly.dll

Next, you can try instantiating and calling the assembly from ASP.NET. Because I keep the standalone
assembly in a separate project, I can’t use the project reference feature in Visual Studio. In a case like this,
you can manually hook up a reference to any assembly located in the GAC by doing the following:

1. Navigate to %windir%\assembly to view the GAC.

2. Find your registered assembly in the list, and note the version number, culture and public key
token information.

3. Using that information, manually register the GAC’d assembly using the <assemblies /> ele-
ment in web.config.

For the sample application, I added the following GAC reference into web.config:

<compilation debug=”true”>
<assemblies>
<add assembly=”SampleAPTCAAssembly, Version=1.0.0.0, Culture=neutral,

PublicKeyToken=ffd374f46df42d28”/>
</assemblies>

</compilation>

With this reference in the configuration, the sample application can reference the namespace from the
assembly and use the sample class.

using SampleAPTCAAssembly;
...

protected void Page_Load(object sender, EventArgs e)
{

SampleClass sc = new SampleClass();
Response.Write(sc.DoSomething());

}

Because the sample web application is set to run at Medium trust, running the sample page results in the
following now familiar SecurityException:

System.Security.SecurityException: That assembly does not allow partially trusted
callers.

However, armed with the information that the standalone assembly requires APTCA to be successfully
called, this problem can quickly be rectified. Going back to the standalone assembly project, the APTCA
attribute is added to the assembly by placing the attribute definition inside of the project’s Assembly
Info.cs file. This file can be found by expanding the Properties node for the project inside of Solution
Explorer.

123

A Matter of Trust

06_596985 ch03.qxp 12/14/05 7:47 PM Page 123

using System.Security;
...
//Allow partially trusted callers
[assembly: AllowPartiallyTrustedCallers()]

Recompiling the application and reinstalling the new assembly into the GAC gives you an assembly that
will now allow a partial trust web application to call into it. Running the sample’s ASP.NET page in
Medium trust succeeds, and the text from the standalone assembly is written out without triggering any
exceptions.

At least on Beta 2 builds, changing GAC’d assemblies does not seem to always take immediate effect. If
you are sure that you have updated a GAC’d assembly with APTCA, and it still isn’t working, try
closing down Visual Studio and running iisreset.

Strong Named Assemblies, APTCA, and the Bin Directory
One variation on the issue with APTCA and partial trust callers deals with the issue of deploying
strongly named assemblies in /bin and then attempting to use them. You might think that you could
create a strong named assembly for versioning purposes but then deploy it into the /bin directory of a
web application for convenience. However, if you attempt to do this, the .NET Framework still enforces
a LinkDemand when a partially trusted caller attempts to use a strong named assembly.

You can see this if you take the standalone assembly used earlier and recompile it without APTCA. Drop
it into the /bin directory of the web application (make sure to remove the old assembly from the GAC)
and remove the GAC reference from web.config. Now when you run the sample web page it once
again fails with a SecurityException.

This behavior may take you by surprise if you have ASP.NET applications that formerly ran in full trust
and that you are now attempting to tweak to get running in High trust or lower. If you have strongly
named assemblies sitting in /bin (which admittedly in ASP.NET 1.1 you might have avoided because
there were problems with loading strong named assemblies from bin), and if those assemblies never
had APTCA applied to them, then your ASP.NET application will suddenly start throwing the familiar
SecurityException complaining about partially trusted callers.

This boils down to a simple rule: If you are creating strongly named assemblies, you should make the
decision up front on whether the assemblies are intended to support partial trust environments like
ASP.NET. If so, you should review the code to ensure that partially trusted applications are not allowed
to call dangerous code (for example, a strong named assembly shouldn’t be just a proxy for directly call-
ing random Win32 APIs), and then add the APTCA attribute to the assembly. For some developers who
have large numbers of middle tier assemblies, quite a few assemblies may require this type of security
review and the application of APTCA prior to being useable in a partial trust application.

Another area where APTCA is enforced is for any type that ASP.NET dynamically loads on your behalf.
Because you can create custom configuration section handlers, custom HttpModules, custom providers,
and so on, ASP.NET is responsible for dynamically loading the assemblies that contain these custom
extensions.

124

Chapter 3

06_596985 ch03.qxp 12/14/05 7:47 PM Page 124

Consider the following scenario:

1. An ASP.NET application runs in Medium trust.

2. You write a custom Membership provider in a strongly named standalone assembly.

3. The assembly isn’t attributed with APTCA.

4. For ease of deployment, you place the assembly in /bin.

What happens? From a .NET Framework perspective, it triggers a LinkDemand for full trust when
ASP.NET attempts to load the custom provider. Because it is ASP.NET that is loading the provider, the
initial LinkDemand check succeeds. The provider loader code is buried somewhere in System.Web.dll,
which itself sits in the GAC. So, from a .NET Framework perspective everything is just fine with the
immediate caller. Because ASP.NET dynamically loads providers with the System.Activator type
though, the Framework will continue to demand Full trust from all other code sitting in the calls stack.
Because it is probably user code in a page that is making use of Membership in this scenario, the full
stack walk to check for Full trust will end up failing.

To give an example of this, you can use the standalone assembly from the earlier APTCA discussion, and
add a simple Membership provider to it.

public class DummyMembershipProvider : SqlMembershipProvider {}

The assembly is again deployed into the /bin directory of the ASP.NET application. Because this is a
Membership provider, the Membership feature must be configured to use the custom provider. A full
strong type definition isn’t necessary, because the containing assembly is in /bin:

<membership>
<providers>
<add name=”DummyProvider”

type=”SampleAPTCAAssembly.DummyMembershipProvider, SampleAPTCAAssembly” />
</providers>

</membership>

A sample page that forces the Membership feature to initialize, and thus load all configured providers, is
shown here:

protected void Page_Load(object sender, EventArgs e)
{

Response.Write(Membership.ApplicationName);
}

Running this page at Medium trust results in a page failure:

Description: An error occurred during the processing of a configuration file
required to service this request. Please review the specific error details below
and modify your configuration file appropriately.

Parser Error Message: That assembly does not allow partially trusted callers.

125

A Matter of Trust

06_596985 ch03.qxp 12/14/05 7:47 PM Page 125

Depending on which piece of ASP.NET code is actually responsible for loading custom types, you will
get different error messages. In this case, because loading custom Membership providers is considered
part of the configuration for Membership, the error information is returned as an instance of System
.Configuration.ConfigurationErrorsException. Again, this kind of failure can be solved by
attributing the assembly with APTCA. After the assembly is updated with APTCA and redeployed to
the /bin directory, the Medium trust application is able to load the custom provider.

Now say that you instead make use of the GAC for a custom provider. The scenario looks like:

1. An ASP.NET application runs in Medium trust.

2. You write a custom Membership provider in a strongly named standalone assembly.

3. The assembly isn’t attributed with APTCA.

4. You deploy the provider in the GAC.

In this case, ASP.NET adds an extra layer of enforcement. Before even attempting to spin up the provider with
System.Activator, ASP.NET first checks to see of the provider’s assembly is attributed with APTCA. If
ASP.NET cannot find the APTCA attribute, it immediately fails with a ConfigurationErrorsException—
though in this case the text of the error will be a bit different because it is ASP.NET’s APTCA check that is fail-
ing as opposed to the Framework’s APTCA enforcement. Although the provider case would still fail even if
ASP.NET did not make this check (the page code in a partial trust web application would still be on the stack),
there are other cases where ASP.NET dynamically loads code (for example, custom handlers and modules),
and thus no user code exists on the stack. This is the main reason why ASP.NET adds its own additional
APTCA check for dynamically loaded types that exist in GAC’d assemblies. All of this should serve to rein-
force the fundamental tenet of strongly named assemblies: determine whether the strongly named assembly
is intended for use in any type of partial trust scenario, and if so perform a security review and attribute with
APTCA. Do not assume that you can “fake out” ASP.NET or the .NET Framework by using some level of
indirection to get a reference to a strongly named type. Reflection won’t help, because the Framework con-
verts LinkDemands into full demands. In the case of ASP.NET, code that loads types from the GAC based on
information in configuration explicitly looks for APTCA on an assembly before loading it on behalf of a
partially trusted ASP.NET application.

Sandboxing with Strongly Named Assemblies
With an understanding of APTCA, the GAC, and partial trust callers under your belt, you can put the
pieces together for wrapping code in a sandbox of sorts such that partially trusted callers can use more
privileged code. The idea behind the sandbox is that a partial trust web application doesn’t require
access to every possible API in the .NET Framework.

For example, if you are developing a Medium trust web application that communicates with a database,
chances are that the web application doesn’t really need to use every class in System.Data.SqlClient.
Furthermore, it is likely that the web application does not require the ability to issue any arbitrary query.

126

Chapter 3

06_596985 ch03.qxp 12/14/05 7:47 PM Page 126

Instead, your web application probably has a very specific set of requirements — a specific set of tables
and stored procedures that it should interact with. As a result, you could encapsulate this restricted
functionality inside of an assembly (or assemblies) that exposes methods performing only the required
query operations. With such an approach you have effectively created a sandbox within which your
partial trust application can issue a limited set of SQL queries.

Creating a sandbox assembly for use by a partial trust application requires the following:

1. A clear understanding of the specific functionality that needs to be publicly available to the
partial trust application

2. Knowledge of the security expectations that the sandbox assembly can realistically demand
from the partial trust code

3. Knowledge of the security requirements of lower level code that the sandboxed assembly itself
relies on

Of the these three items, you can pretty easily scope out the requirements for point 1 because you would
normally do this anyway in the course of designing and developing your web application. However,
point 2 is something that you may not have given consideration to before.

If you work on development team where everyone knows who writes specific pieces of code, then you
may not need to give too much though to the security expectations the sandbox assembly demands. You
could instead author a sandbox assembly, install it on one or more web servers, and be done with it.
However, if you write a sandboxed assembly for use by anonymous or unknown customers, then you
should definitely enforce 2.

If you think about it, System.Web.dll could be considered a really, really big sandbox assembly. On behalf
of millions of developers not personally known by the ASP.NET development team, the ASP.NET runtime is
allowing partial trust web applications to do all sorts of interesting things. AspNetHostingPermission,
which was covered earlier, is the programmatic representation of a security requirement that ASP.NET
demands from all partial trust applications. In the absence of a “personal trust” relationship, ASP.NET
instead uses the custom permission to establish an understanding of the level of trust granted to a web
application. As you saw, based upon that level of trust, ASP.NET will turn on and off various features.

If you are planning on authoring a strongly named assembly, regardless of whether it goes in the GAC,
you need to consider what types of permissions you expect (.demand) from calling code. Of course,
another reason for doing this is that some code that calls into your assembly may be malicious code that
is attempting to use your sandboxed assembly to subvert other security restrictions on the web server.

In Figure 3-2, the general pattern of a sandboxed assembly requesting some type of permission from its
caller is shown.

127

A Matter of Trust

06_596985 ch03.qxp 12/14/05 7:47 PM Page 127

Figure 3-2

For example, say that your strongly named assembly internally makes a request for a bank account balance
lookup from some mainframe. The assembly exposes a public method for making this request that hides all
of the internals necessary for setting up a call to a mainframe, parsing the response, authenticating the web
server to the mainframe, and so on. In normal circumstances, your assembly is deployed on a web server,
probably in the GAC, and the following call flow occurs:

(2
)

S
ho

ul
d

re
qu

es
t

so
m

et
hi

ng
 in

 r
et

ur
n

(3
) C

alls a privileged operation only if
(2

) succeeded

Partially trusted caller

(1
) C

alls a public
m

ethod

Your strongly named assembly

Some lower level privileged operation

128

Chapter 3

06_596985 ch03.qxp 12/14/05 7:47 PM Page 128

1. The partially trusted web application calls a public method on your assembly, requesting the
bank account balance lookup.

2. Rather than just blindly trusting the caller, your assembly requires that the web application has
a custom permission defined by your company. It makes this check by constructing an instance
of the custom permission and then programmatically demanding it.

3. Assuming that the web application has the required permission, your assembly makes the
necessary calls into other privileged code to retrieve the bank account balance.

Because of step 2, your sandboxed assembly is safer for use in partial trust applications and by any random
and anonymous set of developers. Because your assembly requires a custom permission, the logical place
to assign the permission to an ASP.NET application is in a custom trust policy file. Remember from earlier
all of the permission classes that were registered with <SecurityClass /> elements in a trust policy file?
You could author your own permission that derives from System.Security.CodeAccessPermission
and then configure it in the trust policy file and grant it in with <IPermission /> element.

Now a malicious user who obtains your sandboxed assembly and attempts to call it would need to over-
come the following hurdles:

❑ They would need to obtain the assembly with the definition of the custom permission you are
demanding.

❑ The custom permission would need to be installed in the GAC, but this requires machine
administrator privileges.

❑ The trust policy file for the web application would need to be changed. Again though, creating
or editing trust policy files requires machine administrator privileges.

Because the likelihood of compromising someone with machine administrator privileges is pretty low (if
someone with machine admin privileges on your Internet facing web farms has malicious intent, it’s all
over!), any attempt by a partial trust web application to use your sandboxed assembly immediately fails
when your assembly demands a custom permission.

Always demand some kind of permission in your sandbox assemblies when you don’t know who is
writing the partially trusted code that calls into your assembly.

The last point mentioned earlier (step 3) noted that you also have to have an understanding of the
security requirements of the code that your sandboxed assembly will call. This is necessary because it is

likely that some of the classes you call also have their own demands. For example, if you were wrapping
calls to System.Data.SqlClient, you know that the various classes in that namespace will demand
SqlClientPermission. Even though your assembly is strongly named, and may be in the GAC, it
doesn’t change the fact that the demand for SqliClientPermission will flow right up the call stack,
and when the demand hits a partially trusted web application, the demand will fail.

So, the third thing a sandboxed assembly may need to do is assert one or more permissions. When calling
System.Data.SqlClient, your sandboxed assembly needs to assert SqliClientPermission. Doing so
has the effect of stopping the stack walk for SqlClientPermission when your assembly is reached.
Figure 3-3 shows this.

129

A Matter of Trust

06_596985 ch03.qxp 12/14/05 7:47 PM Page 129

Figure 3-3

(2
)

D
em

an
d

a
pe

rm
is

si
on

 in
 r

et
ur

n

(4
)

S
ql

C
on

ne
ct

io
n

de
m

an
ds

S
ql

C
lie

nt
Pe

rm
is

si
on

Partially trusted caller

(3
) C

alls S
qlC

onnection

(5
) The Assert satisfies the dem

and

(1
) C

alls a public
m

ethod

Your strongly named assembly

Asserts SqlClientPermission

System.Data.SqlClient

130

Chapter 3

06_596985 ch03.qxp 12/14/05 7:47 PM Page 130

Walking through the steps that occur:

1. The partial trust web application calls into the sandboxed assembly.

2. The sandboxed assembly demands a permission from the partial trust web application rather
than just immediately executing code on its behalf.

3. Assuming that the permission demand succeeds, the sandboxed assembly makes a call into
ADO.NET.

4. ADO.NET demands SqlClientPermission, which starts a stack walk to check that all assem-
blies in the current call stack have this permission.

5. When the stack walk “sees” that the sandboxed assembly asserted SqlClientPermission, the
stack walk stops.

6. Control returns back to ADO.NET, and the appropriate method is allowed to execute.

The need to demand some type of permission from the calling code is, hopefully, a little clearer now.
Because sandbox assemblies may very well assert one or more permissions, it makes good sense to
require some type of permission in return from the calling code. Think of this as the equivalent of giving
your car keys to your teenager on the weekend (you are effectively asserting that you trust he or she
won’t do anything wrong with the car), but in return you expect (demand) your teenager to drive
responsibly.

There is one thing to keep in mind with the concept of asserting permissions. Even though any code can
new() up a permission class and call the Assert method, this doesn’t necessarily mean that Assert will
succeed. The reason a sandboxed assembly in the GAC can successfully call Assert for any permission
class lies in the way the .NET Framework evaluates the Assert. When a piece of code calls Assert, the
Framework looks at the assembly that contains the code making the assertion. Based on the evidence for
that assembly (where is the assembly physically located, what is its digital signature, and so on), the
Framework matches the assembly to the appropriate portion of the security policy currently in effect for
that application domain. The Framework then looks for the asserted permission in the security policy; if
the permission is found then the assertion succeeds. If the assertion fails, a SecurityException occurs.

When assemblies are deployed in the GAC, code always has full trust, which means that GAC’d code
can call any other code and use any of the functionality in the Framework. As a result, GAC’d code
that calls Assert always succeeds. I won’t go into it here, but it is possible to structure the membership
conditions for the .NET Framework’s security to allow code in other locations to also be assigned full
trust. For most folks though, installation in the GAC is the most straightforward way of obtaining
full trust and, thus, being able to assert permissions.

Sandboxed Access to ADODB
Earlier in the section “Working with Different Trust Levels” a few samples attempted to use the old ADO
data access technology from a partial trust web application. In this scenario, you can move the ADO data
access code into its own sandbox assembly and then enable the assembly for use in partial trust.

The sandbox assembly contains code that attempts to create a new recordset:

public int CreateRecordset()
{

AspNetHostingPermission asp =
new AspNetHostingPermission(AspNetHostingPermissionLevel.Medium);

131

A Matter of Trust

06_596985 ch03.qxp 12/14/05 7:47 PM Page 131

asp.Demand();

RecordsetClass rc = new RecordsetClass();
int fieldCount = rc.Fields.Count;
return fieldCount;

}

The assembly is attributed with APTCA to allow partially trusted callers. The class also demands Medium
trust from its callers. Because this method is working with ADO, which is effectively the precursor to
ADO.NET, and ASP.NET grants SqlClientPermission at Medium trust, the CreateRecordset
method works with ADO on behalf of any partially trusted caller running at Medium trust or higher.

After installing the assembly into the GAC, the web application is updated so that it has a reference to
the GAC’d assembly.

<add assembly=”SampleAPTCAAssembly, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=ffd374f46df42d28”/>

The web page that uses the GAC’d assembly is shown here:

using SampleAPTCAAssembly;
...
protected void Page_Load(object sender, EventArgs e)
{

ADODBWrapper wrapper = new ADODBWrapper();
Response.Write(wrapper.CreateRecordset().ToString());

}

At this point the page still won’t work because the COM interop layer for ADO is demanding
FileIOPermission. However, because calling into a PIA means that you are calling into unmanaged
code, the sandbox assembly also needs SecurityPermission to grant unmanaged code assert permis-
sion. It isn’t uncommon for sandbox assemblies to need to assert permissions to prevent demands in the
underlying code from flowing up the call stack. To rectify the problem when calling the ADO PIA, the
assembly asserts file IO permission and unmanaged code permission as shown here:

//If we get this far, we trust the caller and are willing to assert
//permissions on its behalf.
PermissionSet ps = new PermissionSet(null);
try
{

FileIOPermission fp = new FileIOPermission(PermissionState.Unrestricted);
SecurityPermission sp =

new SecurityPermission(SecurityPermissionFlag.UnmanagedCode);

ps.AddPermission(fp);
ps.AddPermission(sp);

ps.Assert();

RecordsetClass rc = new RecordsetClass();
int fieldCount = rc.Fields.Count;

132

Chapter 3

06_596985 ch03.qxp 12/14/05 7:47 PM Page 132

return fieldCount;
}
finally
{

CodeAccessPermission.RevertAssert();
}

In this example, two permissions were asserted: FileIOPermission and a SecurityPermission.
However, you cannot create individual permission classes, and then call Assert on each instance. When
you call Assert, the Framework temporarily changes the security information associated with the current
stack frame. At that point, you cannot Assert a second permission unless you tear down the first Assert.
To get around this, use the class System.Security.PermissionSet to add one or more permissions to a
permission set. You can then call Assert on the PermissionSet, and all the individual permissions that
were added to the set are associated with the current stack frame. In the sample code, the PermissionSet
allows the code to assert the file IO permission and the unmanaged code permission.

When you need to assert permissions, you should try to assert only the specific permissions your code
needs. The sample asserts unrestricted FileIOPermission, which technically states that the wrapper
code may attempt any file IO operation anywhere on the file system. In this case, I don’t know specifi-
cally what file path (or paths) the COM interop layer is looking at, so I used PermissionState
.Unrestricted. However, if the wrapper assembly is calling another piece of code that works with
only a specific file or directory, it would be a better to assert FileIOPermission for only the required
file or directory.

All the example code is wrapped in a try/finally exception block. I did this to demonstrate how to call
the static method CodeAccessPermission.RevertAssert. This isn’t strictly necessary when your
code exits a method shortly after asserting permissions and doing some work (which is the case in the
sample). However, if you have methods that need to briefly assert one or more permissions to call some
other code, but your method then continues with other work, you should call RevertAssert to remove
the extra security rights from the current stack frame. This call ensures that the remainder of the code in
your method doesn’t inadvertently run with an elevated set of CAS permissions.

At this point, if you run the sample ASP.NET page, everything finally works. To summarize, the following
work is necessary to enable calling ADO from a Medium trust application:

1. Create a strongly named wrapper assembly.

2. Assign the APTCA attribute to the assembly to allow partial trust code like the web application
to call into it.

3. Install the assembly in the GAC, thus allowing the assembly to assert any permission that it
needs because GAC code is always fully trusted.

4. In the assembly, assert FileIOPermission and a SecurityPermission for unmanaged code
to prevent the underlying COM interop demands from flowing up the call stack.

Sandboxed Access to System.Data.SqlClient
Access to some type of relational database is a common requirement for web applications, so this section
describes what is involved in running queries against SQL Server for an application running in Low
trust. Remember that the default trust policy file for Low trust doesn’t include the
SqlClientPermission.

133

A Matter of Trust

06_596985 ch03.qxp 12/14/05 7:47 PM Page 133

Here, I reuse the assembly from the ADODB example because it already gets installed in the GAC and
has the APTCA attribute applied to it. Because the new class in this assembly needs to prevent the
demand for SqlClientPermission from making it to the user code running in the page, the new class
needs to assert SqlClientPermission. As a basic protection though, the wrapper class requires at least
Low trust from its callers. The code to do all of this is:

public class PubsDatabaseHelper
{

public DataSet RetrieveAuthorsTable()
{

//This class is only intended for use at Low trust or above
(new AspNetHostingPermission(AspNetHostingPermissionLevel.Low)).Demand();

try
{

//Prevent SqlClientPermission demand from flowing up the call stack.
SqlClientPermission scp =

new SqlClientPermission(PermissionState.Unrestricted);
scp.Assert();

string connectionString =
“server=.;integrated security=false;” +
“user id=testdbuser;password=password;database=pubs”;

using (SqlConnection conn =
new SqlConnection(connectionString))

{
SqlCommand cmd

= new SqlCommand(“select * from authors”, conn);
SqlDataAdapter da = new SqlDataAdapter(cmd);

DataSet ds = new DataSet(“authors”);
da.Fill(ds);

return ds;
}

}
finally
{

CodeAccessPermission.RevertAssert();
}

}
}

In the sample ASP.NET application, the trust level is reduced to Low. The page that uses the
PubsDatabaseHelper has a GridView control on it, and some code in the page load event to program-
matically data-bind the dataset returned from the PubsDatabaseHelper.

using SampleAPTCAAssembly;
...

protected void Page_Load(object sender, EventArgs e)
{

134

Chapter 3

06_596985 ch03.qxp 12/14/05 7:47 PM Page 134

PubsDatabaseHelper ph = new PubsDatabaseHelper();

grdView.DataSource = ph.RetrieveAuthorsTable();
grdView.DataBind();

}

When you run the sample page, it successfully calls the GAC’d sandbox assembly and populates the
GridView control with the returned DataSet.

This basic example of sandboxing ADO.NET access shows how the same techniques can be used for any
arbitrary middle tier. Sandboxed assemblies are yet another reason why an architecturally sound middle
tier is so important to web applications. Even if you are running all of your ASP.NET applications today
in full trust, if you have a well-designed middle tier you’ve already taken the most important step
towards enabling your web application for partial trust. The extra steps of security review, adding the
APTCA attribute, and selectively asserting permissions are comparatively easy when there is already a
clean separation of presentation layer and business layer code.

ProcessRequestInApplicationTrust
The last advanced topic that I want to cover is a new security feature in ASP.NET 2.0. There is a new
attribute on the <trust /> element called processRequestInApplicationTrust. By default, this
attribute is set to true in the default trust level configuration:

<location allowOverride=”true”>
<system.web>

<!-- security policy definition snipped for brevity -->

<trust level=”Medium” processRequestInApplicationTrust=”true”
originUrl=”” />

</system.web>
</location>

If you look at the root web.config file, you won’t see the new attribute because the trust level configu-
ration class internally defaults the attribute’s value to true. Because this attribute deals with trust-related
security in ASP.NET, the attribute was added to the <trust /> element. So, along with the ability to
globally define the trust level for all applications on the machine, you can also globally control the value
of the new attribute. However, unlike trust levels where there are valid reasons why you would want
different trust levels for different applications, the setting for processRequestInApplicationTrust
should be left alone at its default value of true.

The attribute was introduced primarily to handle backwards compatibility issues when moving from
ASP.NET 1.1 to 2.0. Because ASP.NET 2.0 tightens its enforcement of trust levels, some earlier applications
and controls may fail with security exceptions when they run on ASP.NET 2.0. As a result, set the new
attribute to false only when you encounter this kind of problem and even then after the applications or
controls are tweaked to work in ASP.NET 2.0, you should revert to the default value of true for the
attribute.

The Interaction between Trust and ASP.NET Internal Code
To get a better understanding of what the processRequestInApplicationTrust attribute really
addresses, you need to understand a potential security issue for partial trust web applications. In several
scenarios in ASP.NET, only trusted code is running on the stack. Probably the easiest example to explain
is the new no-compile page in ASP.NET 2.0.

135

A Matter of Trust

06_596985 ch03.qxp 12/14/05 7:47 PM Page 135

A no-compile page has no user code in a code-behind file. Instead, the only code is the declarative
markup in an .aspx. For example, the following page definition is an example of a no-compile page.

<%@ Page Language=”C#” CompilationMode=”Never” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head id=”Head1” runat=”server”>

<title>Untitled Page</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:SqlDataSource ID=”SqlDataSource1” runat=”server”
ConnectionString=”<%$ ConnectionStrings: pubsConnectionString %>”
ProviderName=”<%$ ConnectionStrings: pubsConnectionString.ProviderName %>”

SelectCommand=”SELECT [au_id], [au_lname], [au_fname], [phone] FROM [authors]”>
</asp:SqlDataSource>

</div>
<asp:GridView ID=”GridView1” runat=”server”

AutoGenerateColumns=”False” DataKeyNames=”au_id”
DataSourceID=”SqlDataSource1”>
<Columns>

<asp:BoundField DataField=”au_id” HeaderText=”au_id”
ReadOnly=”True” SortExpression=”au_id” />

<asp:BoundField DataField=”au_lname” HeaderText=”au_lname”
SortExpression=”au_lname” />

<asp:BoundField DataField=”au_fname” HeaderText=”au_fname”
SortExpression=”au_fname” />

<asp:BoundField DataField=”phone” HeaderText=”phone”
SortExpression=”phone” />

</Columns>
</asp:GridView>

</form>
</body>
</html>

The page contains only a declarative representation of a GridView control bound to a SqlDataSource
control. Furthermore, the page directive explicitly disallows compilation by specifying
CompilationMode=’Never’. If you run this page and then look in the Temporary ASP.NET Files direc-
tory, you will see that there is no auto-generated page assembly. When the page runs, ASP.NET effec-
tively acts like a parsing engine, using the control declarations to decide which ASP.NET control classes
to instantiate and then calling various methods on the instantiated controls.

There is a potential security issue here because the call stack at the time the GridView is data-bound
contains only ASP.NET code, and because all the ASP.NET code exists in the GAC, technically all of the
code is running in full trust. The rough call stack at the time DataBind is called is listed as follows —
notice that every class involved in the call is fully trusted:

136

Chapter 3

06_596985 ch03.qxp 12/14/05 7:47 PM Page 136

1. SqlDataSource — located in System.Web.dll.

2. GridView — located in System.Web.dll.

3. Page — located in System.Web.dll.

4. HttpRuntime — located in System.Web.dll.

5. HostingEnvironment — located in System.Web.dll.

6. ISAPIRuntime — located in System.Web.dll.

7. Unmanaged code — located in aspnet_isapi.dll.

Clearly, if the only security check for no-compile pages was the demand for SqlClientPermission that
comes from SqlDataSource calling into ADO.NET, a no-compile page would always succeed in calling
into SQL Server. However, if you run the sample page in a Low trust application (because Low trust
doesn’t have SqlClientPermission), you get a security related exception.

You can’t take advantage of no-compile pages to call privileged code because ASP.NET restricts the page
by forcing it to execute with the restrictions of the application’s current trust level. This is where the
phrase “process request in application trust” comes from. Internally, when ASP.NET runs a no-compile
page, it temporarily restricts the executing thread to the application’s trust level by calling PermitOnly
on the NamedPermissionSet that was declared for the ASP.NET permission set in the trust policy file.
So, not only does the trust policy file result in an application domain security policy, it also results in a
reference to a NamedPermissionSet that ASP.NET can use. Calling PermitOnly tells the Framework
that all subsequent method calls made on that thread should have CAS demands evaluated against only
the permissions defined by the named permission set. As a result, on no-compile pages ASP.NET is
effectively telling the Framework that ASP.NET’s GAC’d code should be treated as if it were regular user
code that you wrote in a code-behind file.

This behavior is all well and good for no-compile pages, and in fact there is no way for you to turn this
behavior off for no-compile pages. Because no-compile pages are new to ASP.NET 2.0, there can’t be any
backward-compatibility issues around trust level enforcement. However, in ASP.NET 1.1 you can write
your own custom web controls, and if you choose you can sign them and deploy them in the GAC. Even
though an ASP.NET 1.1 page auto-generates an assembly that is restricted by the application’s trust
level, a GAC’d web control still has the freedom to run in full trust. That means in ASP.NET 1.1 it is
possible to author a web control that asserts permissions and then calls into other protected assemblies
despite the web control being placed on a page in a partially trusted web application. The reason for this
loophole is that there are places when a Page is running where only ASP.NET code is on the stack —
even for pages with code-behind and auto-generated page assemblies. The various internal lifecycle
events (Init, Load, and so on.) execute as part of the Page class, which is a GAC’d class. If the Page class
constructs or initializes a control that in turn exists in the GAC, you have the problem where only fully
trusted code sitting on the stack.

ASP.NET 2.0 tightens enforcement of trust levels by calling PermitOnly on the trust level’s
PermissionSet just prior to starting the page lifecycle. The net result is that all activities that occur as a
consequence of running a page, including management of each individual control’s lifecycle, are con-
strained to only those CAS permissions explicitly granted in the trust policy file. This enforcement
occurs because the processRequestInApplicationTrust attribute on the <trust /> configuration
element is set to true by default. Hopefully, you now have a better understanding of why this setting
should normally not be changed.

137

A Matter of Trust

06_596985 ch03.qxp 12/14/05 7:47 PM Page 137

However, if processRequestInApplicationTrust is set to false, then for compiled pages ASP.NET 2.0
will not call PermitOnly, and the loophole whereby GAC’d controls can avoid the application trust level
still exists. Figure 3-4 shows two different call paths involving a GAC’d web control: one call path is the nor-
mal one; the other call path shows what occurs if “processRequestInApplicationTrust” is set to false.

Figure 3-4

(0) Application domain CAS
policy established when the
application domain started

(0) Application located in GAC
run at full thrust

(4d) If check fails

(4b)
Fra

mew
ork

 ch
ec

ks

ap
pd

om
ain

 CAS
 po

lic
y

(4
c)

 If
 c

he
ck

 s
uc

ce
ed

s

(2
)

Pe
rm

is
si

on
de

m
an

d

(1
) C

alls into

ASP.NET pipeline code that runs before the Page
handler

SecurityException
is thrown!

(4
a)

 P
er

m
is

si
on

 d
em

an
d

“s
ee

s”
 t

he
 P

er
m

itO
nl

y

(5
a)

 If
 P

er
m

itO
nl

y
is

 b
yp

as
se

d

(5
c)

Pe
rm

is
si

on

de
m

an
d

(5d) Check GAC
CAS policy

(3) Check GACCAS policy

(5e) GAC’d code

always has Full thrust

(5b) Check GAC
CAS policy

System.Data.SqlClient classes demand
SqlClientPermission

ADO.NET continues and runs the requested method

NamePermissionSet.PermitOnly occurs if
processRequestInApplicationTrust = true

Webcontrol that uses System.Data.SqlClient

Internal Page class logic processes controls in the
declarative markup

138

Chapter 3

06_596985 ch03.qxp 12/14/05 7:47 PM Page 138

0. When the application domain is initialized, the permissions in the trust policy file are applied as
the application domain CAS policy.

1. A request for a page that contains a GAC’d web control occurs. When the web control’s Render
method is called, it internally calls into System.Data.SqlClient classes.

2. This triggers a demand for SqlClientPermission.

3. The Framework first checks to see that the GAC’d web control has the necessary permission.
Because the control is in the GAC, and thus running in full trust, the check succeeds.

4a. If processRequestInApplicationTrust is true, then when the permission demand flows
up the call stack, it encounters the security restriction put in place by the Page class’s call to
PermitOnly.

4b. The Framework now checks the set of permissions that were defined in the trust policy file,
looking for SqlClientPermission.

4c. If the application is running in Medium or higher trust, the check succeeds, and the ADO.NET
call eventually continues.

4d. If the application is running in Low or Minimal trust, the check fails, and a
SecurityException is thrown.

5a. If processRequestInApplicationTrust is false, the permission demand continues to flow
up the call stack.

5b. The demand passes through various internal Page methods involved in instantiating the web
control. Because the Page class is in the GAC, it runs at full trust and the demand succeeds.

5c. The demand eventually makes it to the top of the managed call stack. All code at this level is
GAC’d ASP.NET code that was initially responsible for receiving the call from the ISAPI exten-
sion and starting up the HTTP pipeline. So again, the demand succeeds.

5d. Because only fully trusted code is in the current call stack, the demand succeeds, and the
ADO.NET call eventually continues.

To demonstrate how this actually works in code, you can create a simple web control that retrieves data
from the pubs database in SQL Server and renders it on the page.

public class MyCustomControl : WebControl
{

protected override void Render(System.Web.UI.HtmlTextWriter writer)
{

string connectionString =
“server=.;database=pubs;user id=testdbuser;password=password”;

SqlConnection conn = new SqlConnection(connectionString);

SqlCommand cmd = new SqlCommand(“select * from authors”, conn);
DataSet ds = new DataSet(“foo”);
SqlDataAdapter da = new SqlDataAdapter(cmd);

da.Fill(ds);

writer.Write(HttpUtility.HtmlEncode(ds.GetXml()));
}

}

139

A Matter of Trust

06_596985 ch03.qxp 12/14/05 7:47 PM Page 139

The assembly is attributed with APTCA, signed with a signing key, and then installed in the GAC. In the
web application, a reference is established to the GAC’d assembly.

<add assembly=”GacdWebControl, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=8d9c3421c2f25fff” />

Notice that this GAC’d class doesn’t assert SqlClientPermission. A page is created that uses the web
control in the declarative markup of the page.

<%@ Register
TagPrefix=”GCW” Namespace=”GacdWebControl” Assembly=”GacdWebControl” %>

.. other HTML snipped ...

<form id=”form1” runat=”server”>
<div>

<GCW:MyCustomControl runat=”server” ID=”customControl” />
</div>
</form>

If you first run the page in Low trust, you receive a SecurityException due to the failed
SqlClientPermission demand. The call stack that follows shows only trusted code on the stack
because the code in the GAC’d web control is called as part of the Render processing for a Page.

[SecurityException: Request failed.]
..snip..
System.Data.Common.DbConnectionOptions.DemandPermission()
...
System.Data.Common.DbDataAdapter.Fill(DataSet dataSet)
GacdWebControl.MyCustomControl.Render(HtmlTextWriter writer)
...
System.Web.UI.Control.RenderControl(HtmlTextWriter writer)
System.Web.UI.Page.ProcessRequestMain(Boolean includeStagesBeforeAsyncPoint,
Boolean includeStagesAfterAsyncPoint)
...
System.Web.UI.Page.ProcessRequest(HttpContext context)
...

Because PermitOnly occurs inside of the initial call to Page.ProcessRequest, when the
SqlClientPermission demand reaches that point in the call stack it fails, and the GAC’d web control
is not allowed to issue a command against SQL Server.

Now change the <trust /> level element, either in the root web.config or by overriding it in the
application’s web.config, to the following:

<trust level=”Low” processRequestInApplicationTrust=”false”/>

When you rerun the page there is no longer a PermitOnly call restricting the permissions on the Page.
Instead the SqlClientPermission demand flows up a call stack that consists of nothing but trusted
code, and so the permission demand succeeds and the page successfully renders the dataset XML gener-
ated by the GAC’d web control.

140

Chapter 3

06_596985 ch03.qxp 12/14/05 7:47 PM Page 140

The best advice for the processRequestInApplicationTrust attribute on <trust /> is to leave it at
its default setting of true, and if at all possible also set the allowOverride attribute on the enclosing
<location /> tag to false. This prevents enterprising developers from attempting an end run around
the application trust level by way of a GAC’d control. However, if you do encounter applications being
moved from ASP.NET 1.1 that run into problems with the new trust level enforcement in the Page class,
you can temporarily set processRequestInApplicationTrust to false, but only for the specific appli-
cation that requires the workaround. You should never disable the Page’s trust level enforcement for all
applications on a machine, even though it is a little bit of a hassle, use application-specific <location />
elements or the application’s web.config instead to tweak the behavior for the offending applications.
After you track down the problematic code and fix it (usually there are a few asserts necessary and a
quick security review to make sure the asserts are appropriate), you can remove the <trust /> level
workaround for the application and revert to the intended ASP.NET 2.0 behavior.

Summary
In this chapter, you took a comprehensive look at the concept of code access security (CAS) in ASP.NET.
Although the .NET Framework has a rich set of classes and configuration information for enforcing code
access security, ASP.NET simplifies CAS by introducing the concept of a trust level. A trust level is
represented as a piece of XML in a trust policy file that defines the set of .NET Framework permissions
granted to an ASP.NET application. You can choose permissions for your application by using the
<trust /> configuration element and setting it to one of the following trust levels:

❑ Full — The web application can call any code in the Framework as well as Win32 APIs.

❑ High — The web application cannot call into Win32 APIs. Also, a default set of restricted
permissions is defined by ASP.NET that gives your web application access to a reasonably large
set of the Framework.

❑ Medium — The recommended trust level for hosting machines. Also recommended for any
Internet facing web server.

❑ Low — This trust level has a very limited set of CAS permissions. It is appropriate for applica-
tions that perform only local read-only operations. It is also used for applications that provide
their own sandboxed execution model on top of ASP.NET such as Sharepoint.

❑ Minimal — The lowest trust level available. It allows you to write only code that deals with
in-memory data. Your web application can’t touch the file system or the network.

Make your web applications more secure by at least moving from Full to High trust. Although doing
so will likely require a few tweaks in your web applications and your business tiers, changing your appli-
cations so that they are only partially trusted is a major step in restricting the capabilities of malicious code.
You can choose to customize the default trust levels by editing the policy files that ship with ASP.NET 2.0,
or creating new custom trust levels and registering them inside a <securityPolicy /> element.

If you are writing an application in which you want to strictly limit the kind of code that can be called
from the presentation layer, use a trust level (such as Low or Minimal) that grants very few permissions
to application code. You can instead deploy your business logic inside of sandboxed assemblies that are
deployed in the GAC and that expose only public APIs for a limited functionality set. Internally, your
sandboxed assemblies need to assert various CAS permissions when calling other protected assemblies.
Ideally, sandboxed assemblies should also demand some kind of permission from partially trusted
applications prior to calling privileged code on behalf of the web application.

141

A Matter of Trust

06_596985 ch03.qxp 12/14/05 7:47 PM Page 141

06_596985 ch03.qxp 12/14/05 7:47 PM Page 142

Configuration
System Security

Many .NET Framework features depend on initialization information stored in various configuration
files. ASP.NET especially is heavily dependent on configuration sections for defining the behavior of
many aspects of the ASP.NET runtime. As a result the configuration information frequently contains
sensitive information (usernames, passwords, connections strings, and so on). Configuration infor-
mation can also directly affect the security settings enforced by certain features. As a result, configu-
ration security is an important aspect of ensuring that a web application works as expected.

This chapter covers the following aspects of securing configuration information:

❑ Using the <location /> element

❑ Implementing granular inheritance control using the new “lock” attributes

❑ Setting access rights to read and modify configuration

❑ Implementing partial trust restrictions when using configuration

❑ Using the new protected configuration feature

Using the <location /> Element
The <location /> element has existed since ASP.NET 1.0 as a convenient way to define configura-
tion inheritance without the need to create and deploy multiple separate configuration files.
Because web applications always have some type of hierarchy, and thus the concept of configura-
tion inheritance, you commonly need to define configuration settings at different levels of the
ASP.NET inheritance hierarchy. The following list shows the ASP.NET 2.0 inheritance chain:

07_596985 ch04.qxp 12/14/05 7:47 PM Page 143

1. Settings defined in machine.config— In ASP.NET 2.0 many of the default ASP.NET settings
have been moved out of machine.config to minimize startup time of non-web applications.

2. Settings defined in the root web.config— This new configuration file exists in
%windir%\Microsoft.NET\Framework\v2.0.50727\CONFIG. Most of the ASP.NET-specific
default settings are now defined in the root web.config file.

3. Settings defined in the web.config file located in the root folder of a website — For the
Default Web Site this would be a folder resembling c:\inetpub\wwwroot.

4. Settings defined in the root directory of the application — This is the web.config file that you
normally work with in your applications. If the application is the website (meaning the applica-
tion exists at “/”), the website configuration file and the application’s configuration file are one
and the same.

5. Settings defined in a configuration file located in a subdirectory of a web application —
Settings that can be changed on a per-directory basis can be placed in a web.config file in a
directory. For example you can define <authorization /> elements in web.config files that
apply only to a specific virtual directory.

Usually, you set some global defaults once in the machine.config and root web.config files, and
spend most of your time editing the application’s web.config file.

The contents of the <location /> element are the same configuration sections that you would nor-
mally set up inside of the various configuration files. Using the URL authorization section as an exam-
ple, you could place the following into the web.config located at the root of a website (for example at
c:\inetpub\wwwroot\yourwebsite\web.config) as follows:

<location path=”Virtual Path A”>
<system.web>
<authorization>

<allow roles=”Secured, Administrators” />
<deny users=”*” />

</authorization>
</system.web>

</location>

The <location /> element is interpreted as the beginning of a new virtual configuration file, meaning
the element (or elements) that are nested immediately beneath the <location /> element must be top-
level elements allowed in a normal configuration file. Thus, in the example just shown, the <system
.web> declaration is needed. You cannot place the <authorization /> element inside a <location
/> element because it wouldn’t be allowed as a top-level element in a web.config file.

The thing that becomes awkward with configuration inheritance is that you can quickly end up with a
proliferation of .config files. For example, the URL authorization section (<authorization />) often
requires many configuration files because the <authorization /> section can be applied down to the
level of a specific web page. Developers who need to lock individual folders can drop a web.config file
into each separate folder containing the folder-specific authorization rules. You saw an example of this
back in Chapter 2 when URL authorization was covered.

You can determine how far down the inheritance chain a configuration section can be defined by looking
at the section definitions. Most section definitions can be found within <section /> elements up in
machine.config (Configuration section definitions are typically global to a machine so it makes sense
to define them up in machine.config.) In a section definition like the following one:

144

Chapter 4

07_596985 ch04.qxp 12/14/05 7:47 PM Page 144

<section name=”healthMonitoring”
type=”...”
allowDefinition=”MachineToApplication” />

the attribute allowDefinition indicates that the health monitoring configuration section can be
defined all the way down to the web.config file for an application. So, you aren’t going to run into a
problem with needing health-monitoring definitions for each your application’s subfolders.

As a counterpoint, the URL authorization configuration section definition is:

<section name=”authorization” type=”...” />

The lack of the allowDefinition attribute for this configuration section is an indication that the autho-
rization configuration can be redefined to any level of folder nesting. As a result, this configuration
section is a good candidate for centralizing in an application’s web.config to prevent the number of
folder-specific web.config files from growing out of control.

Just looking at the section definition in machine.config is not always going to tell you whether the
configuration makes sense at nested configuration levels. For example, the browser capabilities section
can also be redefined at any level of the configuration hierarchy. Most likely though, you wouldn’t
redefine this section beneath the level of the application’s web.config.

The Path Attribute
The <location /> element is a way to control the number of .config files deployed for an application.
The path attribute within the <location> element tells the configuration system where in the configura-
tion inheritance chain the information contained within the <location /> element should be applied.
You can place a <location /> element inside of any configuration file within the inheritance chain —
from machine.config all the way down to a configuration file in a subfolder of a web application — and
then use the path attribute to indicate where the enclosed configuration information applies.

Probably the most confusing aspect though of the <location /> element are the potential values for
the path attribute. You can place the following values inside of the path attribute:

❑ A specific page (that is, default.aspx)

❑ A specific folder (that is, “subfolder”)

❑ A combined path (that is, “subfolder/default.aspx” or “subfolderA/subfolderB”*. The
name of a website as defined in IIS (that is, “Default Web Site”)

❑ The combination of a website name and nested path information (that is, “Default Web
Site/subfolderA”)

With the path attribute, you can centralize configurations settings into a single physical configuration while
still having the flexibility to define configuration settings for different applications, folders, pages, and so on.

Your decision about how to centralize configuration settings should be based on the relationship
between the desired configuration information and the location of the configuration file. The root
web.config file is an appropriate location for defining configuration information applicable to all web
applications on a server. For example, this is the reason that the trust level configuration exists within a
<location /> element in the root web.config file.

145

Configuration System Security

07_596985 ch04.qxp 12/14/05 7:47 PM Page 145

The web.config file that can be placed at the root of an IIS website is probably used as an application
configuration file by most developers. When you have no applications running at /, the website’s
configuration file is an appropriate location for defining configuration information applicable to all
applications running beneath the website’s root.

Each application’s web.config file can be used for centralizing configuration information applicable to
the application’s subfolders. Although you can spread out configuration information into configuration
files in subfolders (as was shown in the URL authorization discussion in Chapter 2), it can be confusing
to debug application problems. Unless someone who knows the application intimately realizes that
configuration files are located in subfolders, you may end up scratching your head wondering why an
application is behaving in a specific manner. Centralizing configuration information using <location
/> tags in the application’s web.config file makes it easier for you to know exactly which configuration
settings are in effect in different parts of the application.

The AllowOverride Attribute
An additional level of security is available with the <location /> element through the allowOverride
attribute. Commonly, a web server administrator defines some ASP.NET settings in machine.config.
However, this wouldn’t be very useful if in each web application the developer simply redefined the con-
figuration sections. The solution is to set the allowOverride attribute to false. After this is done, any
attempt to redefine the configuration information contained within the <location /> element results in
a configuration exception.

If you globally define the trust level in machine.config as follows:

<location allowOverride=”false”>
<system.web>

<trust level=”Medium” />
</system.web>

</location>

. . . attempting to redefine this in your application’s web.config file results in an error page telling you that
the parser encountered an error because the section has been locked down in a higher-level configuration
file (in this case, machine.config). The amount of leverage the <location /> element plus the
allowOverride attribute gives you is the reason security sensitive configuration sections should be defined
in either machine.config or the new root web.config file. Both of these files are also ACL’d on the file
system to allow only write access by machine administrators so individual application developers can’t sub-
vert the settings. Setting allowOverride to false guarantees the person who can change a locked configu-
ration section is a member of the machine’s Administrator group.

Using the lock Attributes
Around the time that Beta 1 was worked on the development team came up with the idea of allowing
the session state feature to lock portions of its configuration. The idea was to allow developers using
session state to configure application-specific behavior such as the session timeout, while allowing
machine administrators to define more global settings such as the session state mode and connection
string. As part of this work, the team realized that the existing 1.0/1.1 <location /> based lock-
down approach was too restrictive.

146

Chapter 4

07_596985 ch04.qxp 12/14/05 7:47 PM Page 146

For instance, if an administrator wanted to enforce just connection string used by all applications with
SQL Server session state, an administrator would also have to drag in enforced settings for session time-
out, cookieless support, and so on. On some web servers, this constraint might be reasonable, but in
corporate hosting environments the likelihood is rather high that different internal corporate customers
want different application-specific behavior.

Rather than taking the early work for session state and limiting it to that feature, the concept of locking
down individual configuration attributes as well as nested configuration elements was expanded and
made available to any arbitrary configuration section. The following list describes the set of common
attributes:

❑ lockAttributes — You can specify specific attributes on a configuration element that cannot be
redefined lower down in the configuration hierarchy.

❑ lockElements — You can specify nested elements for a given configuration element that should
not be redefined in child configuration files. This attribute is applicable only to complex config-
uration sections that contain nested elements.

❑ lockAllAttributesExcept — This is the companion attribute to lockAttributes. Depending on
how many attributes you are locking down, it may be faster to lock all attributes except for a
select few, rather than listing specific locked attributes with lockAttributes.

❑ lockAllElementsExcept — The companion attribute to lockElements. For complex configuration
sections, it may be easier to define the nested elements that can be redefined, rather than list the
locked elements with lockElements.

Locking Attributes
You can define the configuration for a feature in a higher level configuration file and then selectively
choose which attributes are allowed to be redefined in child configuration files. The lockAttributes
and lockAllAttributesExcept attributes can be placed inside of any configuration element to limit
the attributes that can be redefined in child configuration files.

Take the Membership feature as an example of how you can lock individual attributes of a configuration ele-
ment. The <membership /> element has three attributes: defaultProvider, userIsOnlineTimeWindow,
and hashAlgorithmType. Of the three attributes, perhaps as an administrator you would like to ensure that
any providers configured to use hashing should always use a stronger hashing variant, specifically SHA256.

To test the effect of locking the hashAlgorithmType attribute, you can write a sample application that
defines the <membership /> element in its web.config:

<membership defaultProvider=”FirstProviderDefinition”
hashAlgorithmType=”SHA1”
userIsOnlineTimeWindow=”15” >

The membership feature comes preconfigured in machine.config with just an empty <membership
/> element. However, for testing the attribute-based configuration lockdown, machine.config can be
modified to look as follows:

<membership hashAlgorithmType=”SHA256”> ...

147

Configuration System Security

07_596985 ch04.qxp 12/14/05 7:47 PM Page 147

You can see the hash algorithm that has been configured for the Membership feature by just outputting
the setting on a web page in the sample application:

Response.Write(Membership.HashAlgorithmType);

The first time you run the sample application the redefined configuration in the application takes effect,
and thus the output on the web page is “SHA1”. Now lock the settings in machine.config to prevent
redefinition of the hashAlgorithmType attribute:

<membership hashAlgorithmType=”SHA256” lockAttributes=”hashAlgorithmType”>

Now when you attempt to run the sample application you get a configuration error stating that the
hashAlgorithmType attribute has been locked in a higher-level configuration file. If you remove the
hashAlgorithmType attribute from the application’s web.config file, the application runs successfully
and the new hash algorithm is SHA256. Just for the heck of it, you can extend the attribute lock in
machine.config to include the userIsOnlineTimeWindow and defaultProvider attributes as well:

<membership hashAlgorithmType=”SHA256”
lockAttributes=”hashAlgorithmType;userIsOnlineTimeWindow;defaultProvider”>

Use a comma or a semicolon to delimit the individual attributes defined in lockAttributes and
lockAllAttributesExcept.

This basic example with the <membership /> element shows that lockAttributes gets pretty ver-
bose. Locking something like the <sessionState /> element with its 14 different attributes results in a
lengthy definition for lockAttributes. Taking the <membership /> section again as an example, to
allow the userIsOnlineTimeWindow attribute to be changed in child configuration files, you could use
the following more succinct machine.config definition:

<membership hashAlgorithmType=”SHA256”
lockAllAttributesExcept=”userIsOnlineTimeWindow” >

This construct allows you to redefine just a subset of the <membership /> element in the application’s
web.config file:

<membership userIsOnlineTimeWindow=”15” >

As with the lockAttributes element, you can specify multiple attributes within
lockAllAttributesExcept. The comma and semicolon characters are also used as delimiters.

A shorthand for locking all attributes on a configuration element is to use an asterisk for the value of
lockAttributes. The following example shows how to prevent the redefinition of any attribute on the
<membership /> element:

<membership ... lockAttributes=”*” />

148

Chapter 4

07_596985 ch04.qxp 12/14/05 7:47 PM Page 148

Locking Elements
Because many configuration sections have nested elements, the configuration system provides the abil-
ity to lock elements within a configuration section. The lockElements and lockAllElementsExcept
attributes control this behavior for any configuration section.

For example, the <membership /> section enables you to define providers using the <providers />
element and <add />, <remove />, and <clear /> elements nested with the <providers /> element.
You could allow application developers to change attributes on the <membership /> element but disal-
low them from changing any of the providers with the following configuration in machine.config:

<membership lockElements=”providers”>

Attempting to make any changes to the <providers /> element for <membership /> in a child
web.config file results in an error because the providers element has been locked in higher-level con-
figuration file.

To allow an individual application to add new providers, but disallow individual applications from
removing or clearing providers defined in parent configuration files, your configuration in
machine.config could look like the following:

149

Configuration System Security

Finding Out Which Elements Are Available for Lockdown
To find out which elements are available for lockdown for a specific configuration ele-
ment, you can create a bogus lockAttributes value. For example, with the following
configuration definition (this is in machine.config, but the technique works in any
configuration file):

<membership hashAlgorithmType=”SHA256”

lockAllAttributesExcept=”this doesn’t exist” >

The error that is returned from ASP.NET is

The attribute ‘this doesn’t exist’ is not valid in the locked list
for this section. The following attributes can be locked:
‘defaultProvider’, ‘userIsOnlineTimeWindow’, ‘hashAlgorithmType’.
Multiple attributes may be listed separated by commas.

Self-documenting errors are a good thing in this case!

Although locking specific attribute configuration is a powerful feature of the new
configuration system, bear in mind that just because a lockdown is technically pos-
sible it may not always make much sense in practice. For example, the previous
examples showing how to lock down the hash algorithm for the <membership />
feature wouldn’t be useful if all membership providers used by an application were
configured with reversible encryption instead. In this case, the configuration sys-
tem happily enforces the attribute lockdown, but the end result would have no
effect at runtime. This means attribute lockdowns (and element lockdowns dis-
cussed in the next section) still require you to look at the final runtime effect to
determine whether the locked down configuration really makes sense.

07_596985 ch04.qxp 12/14/05 7:47 PM Page 149

<membership>
<providers lockAllElementsExcept=”add”>

<!-- provider definitions here -->
</providers>

</membership>

In this example, the “lockAllElementsExcept attribute is used as a shortcut for allowing only child
web.config files to use the <add /> element within the membership provider definition.

A shorthand for locking all elements nested within a configuration element is to use an asterisk for the
value of lockElements. The following example shows how to prevent the redefinition of any providers
for the membership feature:

<membership>
<providers lockElements=”*”>

<!-- provider definitions here -->
</providers>

</membership>

The utility of element-based lockdown in Add-Remove-Clear (ARC) collections such as the membership
provider collection is somewhat open to question. Locking <membership /> by preventing changes to
the <providers /> element is for all practical purposes locking the configuration of the entire
Membership feature. Because providers are central to the feature, using a <location /> based lock
would achieve about the same result. About the only benefit you gain from using lockElements with a
feature like <membership /> is that you could still allow individual applications to customize the
online time window setting. A machine.config definition that allowed this would look as follows:

<membership lockElements=”providers”
lockAttributes=”defaultProvider,hashAlgorithmType”>

However, some provider-based features like the health-monitoring benefit from the use of the element-
based lock. For example as an administrator you could prevent removal or clearing of health monitoring
providers with the following configuration definition:

<healthMonitoring>
<providers lockElements=”remove,clear”>

<add name=”admin configured provider goes here” ... />
</provider>

</healthMonitoring>

With this definition, you can add additional providers to individual web applications. However, you
cannot remove any providers defined in machine.config. This approach allows a box administrator to
ensure that specific providers are always configured and in use on the machine for centralized web
event collection, regardless of whatever other providers may be added by individual applications.

The following list describes the combinations of element-based locks that make sense for any Add-
Remove-Clear collection (provider definitions, the Profile properties definition, and so on):

❑ Lock all ARC elements to prevent child modifications by locking the parent collection element.
This means putting a lockElements=’*’ definition in the parent element as was shown earlier
(for example the <providers /> element, the <properties /> element for a feature like
Profile, and so on).

150

Chapter 4

07_596985 ch04.qxp 12/14/05 7:47 PM Page 150

❑ Allow individual applications to add elements to an ARC collection, but disallow changing any
inherited collection elements. This means using a lock definition such as
“lockAllElementsExcept=’add’ in the parent collection element.

❑ Allow individual applications to remove elements from an ARC collection, but disallow addi-
tions. This can be accomplished with a definition such as lockElements=’add’ in the parent
collection element. This approach can be useful if you configure multiple providers on a
machine, but leave it up to the individual applications to choose the specific ones to use.
Individual applications can then remove the providers they don’t want to use.

Although you can technically do other things, such as disallow<remove /> but not <clear />, or vice
versa, these types of locks are ineffective. The <clear /> and <remove /> elements are basically inter-
changeable. You can simulate a <clear /> with a series of <remove /> elements, so preventing a child
configuration file from using <clear /> but not <remove /> is pointless. Similarly, preventing the use
of <remove /> but not <clear /> is questionable because <clear /> is just a fast way of removing all
previously defined items in a configuration collection.

Locking Provider Definitions
Because a good chunk of this book is about Membership and Role Manager, you may be wondering how
the attribute lock feature works with provider-based features. You may be thinking that with the
attribute-based lock feature, you can customize portions of your provider definitions and restrict the
redefinition of many of the provider attributes.

To see which attributes in a provider <add /> element are lockable by default you can use the trick men-
tioned earlier. Take the sample application and create the following membership provider <add /> element:

<add lockAttributes=”foo”
name=”AspNetSqlMembershipProvider”
type=”...”
connectionStringName=”LocalSqlServer”
enablePasswordRetrieval=”false”
enablePasswordReset=”false”
requiresQuestionAndAnswer=”false”
applicationName=”ConfigurationSample”
requiresUniqueEmail=”true”
passwordFormat=”Hashed”
description=”some description here” />

The following error statement returns:

The following attributes can be locked: ‘name’, ‘type’, ‘connectionStringName’,
‘enablePasswordRetrieval’, ‘enablePasswordReset’, ‘requiresQuestionAndAnswer’,
‘applicationName’, ‘requiresUniqueEmail’, ‘passwordFormat’, ‘description’.

All provider definitions use the same underlying strongly typed configuration class (this is covered
extensively in Chapter 9 on the Provider Model). The strongly typed provider configuration class
defines only “name” and “type” as common provider attributes. Clearly though, each provider-based
feature has a rich set of feature-specific provider attributes, and the error message shown previously is
lists much more than the “name” and “type” attributes as available for lock.

151

Configuration System Security

07_596985 ch04.qxp 12/14/05 7:47 PM Page 151

This behavior occurs because the strongly typed configuration class for the <add /> element includes a
collection used to contain feature-specific provider attributes. When you place a lockAttributes or
lockAllAttributesExcept attribute on a provider <add /> element, the configuration system consid-
ers the feature-specific provider attributes lockable along with the “name” and “type” attributes. (These
two attributes are required on a provider <add /> definition, so they are always lockable).

This still leaves the question as to how you actually lock a specific provider definition. Provider configu-
ration always uses Add-Remove-Clear (ARC) collections, meaning that the provider definitions are built
up through a series of <add /> elements, with optional <remove /> and <clear /> elements in child
configuration sections. However, there is no such thing as a <modify /> element. Without a modifica-
tion element, what use are the locking attributes?

If you define a provider with an <add /> element and then subsequently use <remove > and then add
the provider in another configuration file, the configuration system remembers the original set of locked
attributes from the first <add /> definition. It enforces the attribute lock when the provider is redefined.
To see an example of this, you can define a membership provider in machine.config as follows:

<membership>
<providers>

<add lockAttributes=”passwordFormat”
name=”AspNetSqlMembershipProvider”
.../>

</providers>
</membership>

Then in the web.config for an application, you can redefine the provider as follows:

<membership>
<providers>

<remove name=”AspNetSqlMembershipProvider” />
<add name=”AspNetSqlMembershipProvider”

passwordFormat=”Encrypted”
.../>

</providers>
</membership>

If you attempt to run any pages in the sample application at this point, you end up with an error saying
that the passwordFormat attribute was already defined and locked in a parent configuration file.
Unfortunately, you can easily “fake out” the configuration system by using a <clear /> element instead.
If you substitute a <clear /> element for the <remove /> element, the web application will run without a
problem. Basically in ASP.NET 2.0 the configuration system lacks the “smarts” to retain attribute lock
information when a <clear /> element is used.

Hopefully, in a future release of ASP.NET, this problem will be resolved. For ASP.NET 2.0 though, this
means that you can only lockdown provider definitions with the following approaches:

❑ Use a <location /> tag to lock the entire provider-based feature. For example, configure the
<membership /> section in a parent configuration file and disallow any type of redefinition in
child configuration files.

152

Chapter 4

07_596985 ch04.qxp 12/14/05 7:47 PM Page 152

❑ Use the lockElements and lockAllElementsExcept attributes to control whether child con-
figuration files are allowed to use the <add />, <remove />, and <clear /> elements. You
might allow for child configuration files to add new provider definitions or you might allow
child configuration files to remove previously defined providers.

❑ Use the lockElements=’providers’ attribute to prevent any kind of changes to the
<provider /> element, while still allowing child configuration files the leeway to change
attributes on the feature’s configuration element (for example, allow edits to the attribute con-
tained in <membership /> or <roles />).

Reading and Writing Configuration
Before diving into specifics on ACL requirements for reading and writing configuration, a quick primer
on using the strongly typed configuration API is useful. Even though a detailed discussion of the new
strongly typed configuration API is out of the scope of this book, it is helpful for you to understand the
basic coding approaches for manipulating configuration before you see the various security require-
ments that are enforced when using these APIs.

You may never end up using the strongly typed configuration API. For example, if you use the Membership
feature, almost all of the configuration information about the feature itself (the <membership /> configura-
tion element) and the individual providers (the various <add /> elements) are available from the
Membership and various MembershipProvider-derived classes. Other features like Forms Authentication
follow a similar approach.

However, some features, such as session state, don’t mirror every configuration setting via a property
from a well-known feature class. Also for administrative-style applications, it makes sense to deal with
configuration information using the configuration APIs as opposed to using different feature classes that
are potentially scattered through different namespaces.

Reading configuration for a web application can be accomplished in two different ways. If you want to
use the configuration APIs that are available to all Framework applications, you use the
ConfigurationManager class as shown here:

...
using System.Web.Configuration;
using System.Configuration;
...
protected void Page_Load(object sender, EventArgs e)
{
SessionStateSection sts =

(SessionStateSection)
ConfigurationManager.GetSection(“system.web/sessionState”);

Response.Write(“The session state mode is: “ + sts.Mode.ToString() + “
”);
}

The ConfigurationManager class has a static GetSection method that you can use to obtain a refer-
ence to a strongly typed configuration class representing a configuration section. You tell the
ConfigurationManager which section you want by specifying an XPath-like syntax to the configura-
tion section you want. Because in this case the sample is showing how to access the configuration

153

Configuration System Security

07_596985 ch04.qxp 12/14/05 7:47 PM Page 153

information for the session state configuration information, and this configuration section is nested
within the <system.web> configuration section, the path that you pass is system.web/sessionState.
The path information is case-sensitive because configuration files are XML files.

After ConfigurationManager finds the section, you cast the returned object to the correct type.
ASP.NET includes several strongly typed configuration section classes within the System.Web
.Configuration namespace. In the sample code you cast to an instance of SessionStateSection,
which is the strongly typed configuration class used for the Session State feature. With the reference to
SessionStateSection in hand, you can access any properties exposed by the class — the sample uses
the Mode property to write the session state mode for the current application.

The ConfigurationManager class is scoped only to the current application though, so it isn’t flexible
enough for applications that need to edit arbitrary configuration files for different web applications. As a
result, there is a companion configuration class called WebConfigurationManager, which includes
additional overloads for its methods to allow loading of arbitrary web application configuration files.

...
using System.Web.Configuration;
using System.Configuration;
...
protected void Page_Load(object sender, EventArgs e)
{

MembershipSection ms =
MembershipSection)
WebConfigurationManager.GetSection(“system.web/membership”, “~/web.config”);

Response.Write(“The default provider as set in config is: “ +
ms.DefaultProvider + “
”);}

}

In this sample, the GetSection method includes a second parameter specifying the virtual path to the
current application’s web.config file. You can change the value of this parameter to point at other web
application configuration files, or at configuration files located in subdirectories within a web applica-
tion. Various overloads let you use physical file paths as well as virtual file paths when referencing
configuration files.

Writing to configuration requires that you actually open the entire configuration file, as opposed to just
getting a reference to an individual configuration section. This returns a reference to an instance of the
System.Configuration.Configuration class. (It’s not a typo; the class that represents a configuration
file is really called Configuration within the System.Configuration namespace.) As with read
operations, you can use the ConfigurationManager or the WebConfigurationManager to accomplish
this. However, the available methods on the ConfigurationManager are not intuitive from the perspec-
tive of a web application developer because the various overloads refer to variations of configuration files
for client executables. As a result, you will probably find the WebConfigurationManager makes more
sense when you edit web.config for your web applications.

After you programmatically open a configuration file, you get a reference to the specific configuration
section you want to edit from the Configuration instance. You can set various properties on the
strongly typed configuration section as well as manipulate any writable collections exposed on the con-
figuration class. After all the edits are made you call the Save method on the Configuration instance
to commit the changes to disk. The following code demonstrates using the WebConfigurationManager
to load and update a <membership /> configuration section.

154

Chapter 4

07_596985 ch04.qxp 12/14/05 7:47 PM Page 154

...
using System.Web.Configuration;
...
protected void Page_Load(object sender, EventArgs e)
{

Configuration config = WebConfigurationManager.OpenWebConfiguration(“~”);

MembershipSection ms =
(MembershipSection)config.GetSection(“system.web/membership”);

ms.DefaultProvider = “someOtherProvider”;

config.Save();
}

Several overloads to the OpenWebConfiguration method allow you to specify the exact configuration
file you want to open for editing. As shown in the sample, the “~” shorthand can be used for loading the
current application’s web.config file.

The configuration system does not enforce any kind of concurrency or locking if multiple threads
attempt to update the same configuration file. For this reason, you should ensure that any code that edits
configuration files serializes access to the configuration file, or is written to handle the exception that is
returned from the configuration system if it detects that changes occurred to the underlying configura-
tion file. If you write console applications for editing configuration files, you probably won’t run into
this issue. However, an administrative website that allows editing of any web.config file located on a
web server should be written with concurrency in mind.

Permissions Required for Reading Local Configuration
The most common scenario is reading configuration information for a web application that is located on
the same server as the code that performing the read operation. For example, each time a web application
starts up, ASP.NET is reading configuration information down the entire inheritance chain of configuration
files. Furthermore, as you use various features, such as Membership, Role Manager, Session State, and so
on, your code triggers additional reads to occur from the various configuration files.

As mentioned in Chapter 1, when an application domain first starts up, the identity that is used is either
the process identity or the application impersonation identity. So under normal conditions the Read ACL
on web directories that is granted to IIS_WPG allows the default process identity to read configuration
information.

Looking up the configuration inheritance chain, the default ACLs on the various configuration files are:

❑ The web application’s directory grants Read access to IIS_WPG, so IIS_WPG has Read access to
the application’s web.config file.

❑ The root web.config file located at %windir%\Microsoft.NET\Framework\v2.0.XYZ\
CONFIG\web.config grants Read access to IIS_WPG.

❑ The machine.config located in the same CONFIG subdirectory also grants Read access to
IIS_WPG.

155

Configuration System Security

07_596985 ch04.qxp 12/14/05 7:47 PM Page 155

This set of ACLs allows the configuration system to merge configuration sections up the inheritance
chain. If you remove these Read ACLs from any one of these configuration files, ASP.NET would be
unable to read configuration during application startup so your web application will fail to start.

Either the process identity or the application impersonation identity is also used when reading configu-
ration information during normal runtime processing, specifically when using the GetSection method
on WebConfigurationManager or ConfigurationManager. For example, if you use Windows authen-
tication in a web application and enable client impersonation, even if the impersonated account does not
have access to read the application’s web.config file, the web application still runs and configuration
information is still successfully read.

If you think about it, this behavior makes sense. It would be a pretty onerous security requirement if
every possible Windows user of an application with client impersonation turned on was required to
have Read access up the configuration inheritance chain. Although the default ACLs on the CONFIG
subdirectory do grant Read access to the local Users group (and hence any authenticated user on the
machine has read access), it is not uncommon to remove this ACL on hardened servers.

The GetSection call succeeds because GetSection is considered to be a “runtime” configuration API.
When you call GetSection the configuration system accesses cached configuration information that
was previously loaded while running as either the process identity or the application impersonation
identity. From a runtime perspective, loading configuration information is a service that the configura-
tion system provides to running code.

This behavior becomes clearer when you compare the difference between the runtime configuration API
and the design-time configuration API. Earlier you saw that an alternative approach for getting a
configuration section was to use a method such as WebConfigurationManager.OpenWebConfiguration
or ConfigurationManager.OpenExeConfiguration. These Open* methods are considered “design-
time” configuration APIs, and as a result they have different security semantics when accessing configu-
ration information.

When you call an Open* method the configuration system attempts to open one or more physical config-
uration files on disk. For example, if you attempt to open a web application’s configuration, a file open
attempt will occur up the entire inheritance chain of configuration files. These file open operations are
like any other call to the File.Open method. The security token on the operating system thread must
have Read access to one or more configuration files.

If you have a web application using Windows authentication with client impersonation enabled, and
you write the following line of code:

Configuration config = WebConfigurationManager.OpenWebConfiguration(“~”);

. . . the open attempt will fail unless the impersonated client identity has Read access to the application’s
web.config as well as the root web.config and machine.config files located in the Framework’s
CONFIG subdirectory. You can see this behavior if you add an explicit Deny ACE to the application’s
web.config that disallows Read access to the application’s web.config. The call to
OpenWebConfiguration will fail with an Access Denied error. You will have the same failure if you add
a Deny ACE on the root web.config or on machine.config. However, if you change your code to call
WebConfigurationManager.GetSection, your code will run without a problem.

156

Chapter 4

07_596985 ch04.qxp 12/14/05 7:47 PM Page 156

The following list summarizes the security requirements for the runtime and design-time configuration APIs:

❑ GetSection— Regardless of whether this is called from WebConfigurationManager or
ConfigurationManager, the process identity or the application impersonation identity (if
application impersonation is being used) required Read access to the application’s web.config
file, the root web.config file and the machine.config file. If you are attempting to read con-
figuration at a path below the level of the root of a web application, Read access is also required
on the lower-level configuration files. This level of access will normally exist because without it
the web application would fail to startup.

❑ GetWebApplicationSection— This is just another variation of GetSection available on
WebConfigurationManager. It has the same security requirements as GetSection.

❑ OpenWebConfiguration — This method is available only on WebConfigurationManager. The
operating system thread identity at the time the call is made requires Read access to the applica-
tion’s web.config file, the root web.config file and the machine.config file. If you are
attempting to read configuration at a path below the level of the root of a web application, the
operating system thread identity also requires Read access to the lower level configuration files.

❑ Other Open* methods — Both WebConfigurationManager and ConfigurationManager have
a variety of methods starting with Open that provide different overloads for opening configura-
tion files at different levels of the inheritance chain (that is, open just machine.config) as well
as different ways for referencing virtual directories in a web application. No matter which Open*
method you use, the operating system thread identity requires Read access to all configuration
files that contribute to the configuration for the desired application or virtual path. When only
machine.config is being opened, Read access is required only on machine.config because
the lower level configuration files will not be opened (for example root web.config and
application-specific configuration files have no effect on determining machine level configuration
information).

Permissions Required for Writing Local Configuration
Writing configuration is not something that a web application would normally attempt. Hence, the
default ACLs up the configuration hierarchy don’t grant any Write access to commonly used ASP.NET
accounts. Looking up the configuration inheritance chain, the Write ACLs on the various configuration
files are as follows:

❑ Only the local Administrators group and SYSTEM have write access to files (including web
.config files) located beneath inetpub\wwwroot.

❑ The root web.config file located at %windir%\Microsoft.NET\Framework\v2.0.XYZ\
CONFIG\web.config grants Write access only to the local Administrators group as well as
SYSTEM.

❑ The machine.config located in the same CONFIG subdirectory also grants Write access only to
the local Administrators group as well as SYSTEM.

This set of ACLs shows that the default privileges pretty much expect only interactive editing of configu-
ration files by a machine administrator using Notepad.

157

Configuration System Security

07_596985 ch04.qxp 12/14/05 7:47 PM Page 157

However, Write access alone is not sufficient for editing configuration files using the configuration API.
Updating configuration information results in the following file operations:

1. A temporary file is created in the appropriate directory where the updated configuration file
will be written. For example, if you are updating a configuration section in a web application’s
configuration file, the configuration system will create a temporary file with a random file name
in the web application’s root directory.

2. The original configuration file is deleted.

3. The temporary file is renamed to either web.config or machine.config, depending on which
type of configuration file is being edited.

From this list it is pretty obvious that editing and updating configuration files requires very powerful
privileges.

Because of the creation and deletion of configuration files, the operating system thread identity that is
updating configuration effectively requires Full Control to the directory containing the configuration
file that will ultimately be rewritten (technically, you can get away with just Write and Modify access
on the directory — but realistically there isn’t much difference between Full control and Write+Modify).
Although you could go out of your way and attempt to grant Full Control on a directory but restrict
the rights on all files except the configuration file located within a directory, such a security lockdown
doesn’t buy you much. Full Control on a directory gives an account wide latitude to make changes in it,
and arguably the ability to change the configuration file means an account also has broad privileges to
change the behavior of an application.

An important side note here is that because local administrators do have Full Control to directories, a
website with Windows authentication and client impersonation enabled could “accidentally” write to
any of these configuration files. If a user account that was a member of the local Administrators group
happened to surf to a web application that included malicious code that attempted to rewrite configura-
tion, the malicious code would succeed. This type of subtle attack vector is another reason users with
elevated privileges in a domain should never perform routine day-to-day work logged in with “super”
privileges; its far too easy for someone to slip a piece of interesting code into an unsuspecting web
application that maliciously makes use of such elevated privileges.

Unlike the read-oriented methods in configuration that are split between a set of runtime and design-
time APIs, write operations are considered design-time APIs. There is no equivalent to GetSection for
writing configuration. In fact, if you obtain a configuration section via GetSection, although you can
call the property setters on the strongly typed configuration section that is returned, no methods are
available to commit the changes to the underlying configuration file.

Instead, you commit changes to disk with a call to the Save or SaveAs method available on System
.Configuration.Configuration. The Configuration instance can be obtained via a call to one of
the Open* methods available on ConfigurationManager or WebConfigurationManager. Remember
that the operating system thread identity requires Read access to successfully load a configuration file
(or files) from disk; loading these files is always the first step whenever you want to edit configuration.
After a call to WebConfigurationManager.OpenWebConfiguration, you have a Configuration
object that is a reference to an in-memory representation of the loaded configuration file.

Subsequently calling Configuration.Save or Configuration.SaveAs results in the file creation and
deletion operations listed earlier. The following code snippet loads a web application’s configuration,
modifies the configuration information in memory, and then writes the results to disk:

158

Chapter 4

07_596985 ch04.qxp 12/14/05 7:47 PM Page 158

Configuration config =
WebConfigurationManager.OpenWebConfiguration(“~”);

MembershipSection ms =
(MembershipSection)config.GetSection(“system.web/membership”);

ms.DefaultProvider = “someOtherProvider”;

config.Save();

In the sample code, the configuration information being edited is the web.config file for a web applica-
tion; thus, Full Control is required only on the root of the web application’s directory. The configuration
information represented by the Configuration instance is loaded by reading all the configuration files
up the configuration inheritance chain. In an application using Windows authentication and client
impersonation, the resulting operating system thread identity needs Read access on each of these config-
uration files. However, because the web application’s configuration was loaded (as opposed to the root
web.config or the machine.config), Full Control is needed only on the web application’s root direc-
tory when the call to Save is made.

The requirements for Full Control raise the question of exactly when it makes sense to use the design-
time APIs. The safest approach would be to never deploy code to a production web server that calls
Configuration.Save. The design-time aspect of configuration makes a lot of sense to use in a
development environment or in an automated build process. However, after you have programmatically
generated the desired configuration file, you would copy it to a production server.

If the need to edit the configuration files used in production arises, it still makes sense to have the code
that performs the configuration updates run on some type of staging or test server. After you verify that
the updated configuration works, the updated configuration file can be staged and copied to production.
I think having code that writes to configuration sitting on a production server, along with a set of file
permissions granting Full Control, is simply a hacker attack waiting to happen.

There is no escaping the fact that you need Full Control to save configuration changes to disk. The idea
of having Full Control ACLs for anything other than local Administrators placed on the directories of
various application folders is pretty scary. Although there will surely be many elegant and powerful
configuration editing UIs created for ASP.NET 2.0 (IIS7 for that matter also will have such tools), such
tools should be tightly controlled. Setting up a website or a Web Service that allows for remote editing of
configuration files on a production server is just a security incident waiting to happen.

Permissions Required for Remote Editing
The configuration system for ASP.NET includes the ability to have code on one machine remotely bind
to ASP.NET configuration data on a remote server and read or write that configuration information. For
security reasons, this capability is not enabled by default. A DCOM object can be enabled on your web
server to allow remote machines to connect to the web server and carry out configuration operations.

To enable remote reading and writing of a web server’s configuration information, you use the
aspnet_regiis tool:

%windir%\Microsoft.NET\Framework\v2.0.5727\aspnet_regiis –config+

The config+ switch causes the Framework to register a DCOM endpoint with the following PROGID:

System.Web.Configuration.RemoteWebConfigurationHostServer_32 159

Configuration System Security

07_596985 ch04.qxp 12/14/05 7:47 PM Page 159

If you use the DCOMCNFG tool (which is now an MMC console showing both COM+ and standard
DCOM information) after running aspnet_regiis –config+, you can open the DCOM configuration
node to see the newly registered DCOM endpoint, as shown in Figure 4-1.

Figure 4-1

You can subsequently disable remote editing of configuration by using aspnet_regiis -config-.

You run the aspnet_regiis tool on the web servers that you want to manage. However, it isn’t neces-
sary to run the tool on the machine that will be running the configuration code. Within the web configu-
ration code, whenever you attempt to open configuration information on a remote server, the
configuration code attempts to create an instance of the DCOM object on the remote server. This requires
that DCOM calls are able to flow across the network between the machine running the configuration
editing code, and the remote server.

Due the sensitive nature of allowing code to remotely manipulate a server’s configuration information,
the DCOM object on the remote web server has its launch permissions restricted to only members of the
remote server’s local Administrators group. Remember that this is the same security requirement
needed by default for editing local configuration information. This means that even if you call one of
the Open* methods with the intent of only reading configuration information from a remote server, the
operating system thread identity making the calls still needs to be a member of the remote server’s
Administrators group. The more stringent security requirement is necessary because you don’t want
random machines on your network trolling through your servers attempting to remotely read configura-
tion information.

The utility of allowing remote editing of configuration is suspect due to the security risks involved. With
the additional requirement of configuring DCOM to work through firewalls if you are attempting to
manage web servers in a DMZ, remote configuration editing in ASP.NET is most useful for web servers

160

Chapter 4

07_596985 ch04.qxp 12/14/05 7:47 PM Page 160

running inside of a corporate network. Even then you should use additional security such as IPSEC
restrictions to prevent random machines on your network from attempting to launch the DCOM server
on your web machines.

For additional security, you should change the access permissions on the DCOM object. Although the
launch permissions are locked to the local Administrators group, after the DCOM server is launched the
default DCOM access permissions control which identities can invoke methods on the DCOM server.
Creating a custom set of access permissions for the configuration DCOM object ensures that only
selected users or groups can invoke methods on the DCOM server after it is already started.

Using Configuration in Partial Trust
The configuration examples you have seen so far all depended implicitly on one additional security
setting in order to work: the trust level for the sample application. The sample applications have all been
running in Full trust when calling into the configuration system. If you attempt to use the strongly typed
configuration API, you can only do so by default when running in either Full or High trust. At lower
trust levels, the strongly typed configuration API will fail.

For example, say you attempt to read the Membership configuration with code like the following:

MembershipSection ms =
(MembershipSection)ConfigurationManager.GetSection(“system.web/membership”);

If your application is running in Medium trust or below, you get an exception with the following information:

Request for the permission of type ‘System.Configuration.ConfigurationPermission,
System.Configuration, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a’ failed.

Stack Trace:
[SecurityException: Request for the permission of type
‘System.Configuration.ConfigurationPermission, System.Configuration, ...’ failed.]
System.Security.CodeAccessSecurityEngine.Check(PermissionToken permToken,
CodeAccessPermission demand, StackCrawlMark& stackMark, Int32 checkFrames, Int32
unrestrictedOverride)
System.Security.CodeAccessSecurityEngine.Check(CodeAccessPermission cap,
StackCrawlMark& stackMark)
System.Security.CodeAccessPermission.Demand()
System.Configuration.BaseConfigurationRecord.CheckPermissionAllowed(SectionRecord
sectionRecord

Chapter 3 explained that when you encounter permission-related exceptions, the exception information and
stack trace can sometimes give you a clue as to what happened. In this case, it looks like the configuration sys-
tem made a check for a permission, specifically the System.Configuration.ConfigurationPermission.
The configuration system always demands the ConfigurationPermission whenever an attempt is made
to retrieve a configuration object with a call to GetSection.

If you look in the policy file for High trust, you can see that the ConfigurationPermission is explicitly
granted:

161

Configuration System Security

07_596985 ch04.qxp 12/14/05 7:47 PM Page 161

<SecurityClasses>
<!--other classes snipped for brevity -->
<SecurityClass
Name=”ConfigurationPermission”
Description=”System.Configuration.ConfigurationPermission,

System.Configuration, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a”/>

</SecurityClasses>

<NamedPermissionSets>
<PermissionSet class=”NamedPermissionSet”

version=”1” Name=”ASP.Net”>
<!-- other permissions snipped for brevity -->

<IPermission
class=”ConfigurationPermission” version=”1”
Unrestricted=”true” />

</PermissionSet>

</NamedPermissionSets>

The High trust policy file defines the necessary security class for ConfigurationPermission and
then grants unrestricted permission on ConfigurationPermission to any ASP.NET application
running in High trust. When running at Full trust (the default for all ASP.NET applications), the
demand for ConfigurationPermission always succeeds. If you look in the trust policy files for
Medium, Low, and Minimal trust, you will see that these policy files do not define a <SecurityClass
/> for ConfigurationPermission and thus do not grant this permission in the ASP.NET
NamedPermissionSet.

With this behavior, you might be wondering how any of the ASP.NET 2.0 features that depend on config-
uration even work in lower trust levels. For example, the Membership feature clearly depends heavily on
a variety of configuration information. You can definitely use the Membership feature in Medium trust
without any SecurityExceptions being thrown, so what is going on to make this work? ASP.NET 2.0
features that retrieve their configuration sections use an internal helper class that asserts unrestricted
ConfigurationPermission. Because the core of ASP.NET 2.0 lives in the GAC’d System.Web.dll
assembly, the assertion is allowed. At runtime when various ASP.NET features retrieve their configuration
information, the ConfigurationPermission demand from the configuration system succeeds when the
demand encounters the assertion during the stack crawl.

The combination of the configuration system’s demand and the assertion within ASP.NET is why in
many places in this book I note that strongly typed configuration information is not something that can
be depended on when running in partial trust (Medium trust or lower to be specific). This is also why
most of the ASP.NET features mirror their configuration information through some portion of their API.
For example almost all of the configuration attributes found on the <membership /> configuration
element and its provider <add /> elements can be found on read-only properties, either read-only
properties on the static Membership class or exposed as read-only properties from
MembershipProvider.

The design approach of echoing back configuration properties on a feature class is one you should keep
in mind when designing configuration driven features. If you design a feature intending that aspects of
its configuration be available to developers, then you can do the following:

162

Chapter 4

07_596985 ch04.qxp 12/14/05 7:47 PM Page 162

1. Author the feature to live in the GAC. Follow the design guidelines in Chapter 3 for writing a
sandboxed GAC-resident assembly.

2. Within your feature code, assert the ConfigurationPermission when your feature reads its
configuration information.

3. Create one or more read-only properties on your feature classes that echo back the appropriate
portions of your configuration information.

Of course, there is one flaw with this approach: You may not be allowed to deploy your feature into the
GAC. Especially if you write code for use by customers running on shared hosting servers, it is likely
that your customers will be unable to deploy your feature’s assembly into the GAC. There is a
workaround for this scenario though.

The requirePermission Attribute
The <section /> configuration element in the 2.0 Framework supports a new attribute
requirePermission. By default this attribute is set to true, which triggers the configuration system to
demand the ConfigurationPermission. However, if you set it to false, the configuration system
bypasses the permission demand. For example if you tweak the definition of the <membership /> con-
figuration section to look like the following:

<section name=”membership”
type=”System.Web.Configuration.MembershipSection, System.Web, ...”
allowDefinition=”MachineToApplication”
requirePermission=”false” />

the sample shown earlier using GetSection will work when running Medium trust or below. However,
even though you can add the requirePermission attribute, it is not a recommended approach for the
built-in ASP.NET features.

The ConfigurationPermission is intended to close the following loophole. Because the configuration
system is fully trusted (it lives in the various GAC’d assemblies), and the configuration system is usually
invoked initially without any user code on the stack, the configuration system ends up loading configu-
ration data that is potentially sensitive. The theory is that the configuration data should be treated in
such a way that only fully trusted code is allowed read and write access to it. If the configuration system
allowed partially trusted code (that is, partial trust ASP.NET pages) to read and write configuration data,
then the configuration system theoretically opens itself to a luring attack. Partially trusted code would
be able to gain access to some configuration data that it normally would not be able to read.

Of course, one quirk with this theory is that even in Medium and Low trust you can write code in your
pages that opens up the application’s web.config as a raw text file, at which point you can parse
through it and find the configuration information. However, configuration information is hierarchical, so
it is likely that some of your application’s configuration information lives in the parent configuration
files. Using simple file I/O you won’t be able to discover the settings stored in either the root web
.config or in machine.config when running in Medium trust or below.

The use of the ConfigurationPermission is a code access security (CAS)-based approach to ensuring
that partial trust code can’t use the configuration system to gain access to these parent configuration files
when a simple file I/O based approach would fail. The ConfiguartionPermission is granted to High

163

Configuration System Security

07_596985 ch04.qxp 12/14/05 7:47 PM Page 163

trust because High trust applications also have the necessary FileIOPermission to read the root
web.config and machine.config files. So, the default High trust policy file ensures that the configura-
tion system and the permissions for performing raw file I/O are in sync. Of course as with all security
policies defined using trust policy files you can create a trust policy file that breaks this; you could for
example grant ConfigurationPermission in the Medium trust policy file, although this isn’t some-
thing you should do.

So, when should you use the requirePermission attribute to override the default demand for
ConfigurationPermission? If you author a configuration driven feature that won’t live in the GAC, it
makes sense to include the requirePermission attribute on the <section /> definition for your
custom configuration section. A feature that doesn’t live in the GAC is basically a partially trusted fea-
ture itself; conceptually, it wouldn’t be considered any more sensitive than the partially trusted code that
calls it. Hence, it is reasonable to allow partially trusted code access to the strongly typed configuration
class for such a feature. Of course, if partially trusted code attempts to write changes for the feature back
to the underlying configuration files, it still needs the appropriate FileIOPermission and the appro-
priate NTFS permissions. With these additional security requirements required for updating configura-
tion, setting the requirePermission attribute on your custom configuration sections for non-GAC’d
features doesn’t open any security holes.

The behavior of the requirePermission attribute suggests that you should ensure that all GAC’d fea-
tures have <section /> definitions in machine.config or web.config because after a <section />
is defined in a configuration file, child configuration files cannot override the definition. Even if a child
configuration file like an application web.config attempts to add the requirePermission=’false’
attribute, the configuration system disallows this redefinition of the configuration section.

When setting up the configuration section for a feature, you should do one of the following:

❑ For GAC based features, define <section /> in machine.config or the root web.config file.

❑ For non-GAC’d features running in shared hosting environments, define the <section /> in
the application’s web.config file, and set requirePermission to false. This also means that
you will only be able to include the feature’s configuration section in the application’s web.
config file. If you place the feature’s configuration in a higher level configuration file you get
an exception because the <section /> has not been defined yet.

❑ For non-GAC’d features running in some type of trusted environment (such as an internal
corporate web server), you can define the <section /> wherever it makes sense for manage-
ability. You may define your <section /> in machine.config or root web.config to allow
multiple web applications to take advantage of the feature. This is one case where it is
reasonable for a non-GAC’d feature to have its <section /> definition in a parent configura-
tion file while still setting requirePermission to false.

There are two configurations sections defined in machine.config that set “equirePermission to
false: <connectionStrings /> and <appSettings />. Because these configuration sections are
typically used directly by application code, locking them down for partial trust applications does not
make sense. As a result, these two configuration sections are the exception to the rule that GAC’d config-
uration sections disallow strongly typed configuration access to partial trust applications.

164

Chapter 4

07_596985 ch04.qxp 12/14/05 7:47 PM Page 164

Demanding Permissions from a Configuration Class
There is little known capability in the configuration system that you can use for supporting partial trust
applications. You can use a custom configuration class as a kind of gatekeeper to a feature and prevent
the feature from being used in a partial trust application. If you remember back to the Chapter 3 on trust
levels, and the discussion on the “processRequestInApplicationTrust” attribute, there is a subtle
issue with features and code being called when only trusted code is on the stack.

Custom configuration classes are part of this issue because when configuration is being loaded, it isn’t
guaranteed that there will be any user code on the stack. More importantly, the feature that carries out
work and that consumes the configuration information may itself always be called with trusted code on
the stack. Scenarios like GAC’d classes that are HttpModules have this problem. An HttpModule only
has the ASP.NET pipeline code sitting above it, so any demands a custom HttpModule located in the
GAC makes always succeed.

A feature can indirectly work around this problem by taking advantage of the fact that the configuration
system calls PermitOnly on the named permission set for the current trust level. This behavior is the
same approach that the page handler takes when it calls PermitOnly prior to running a page. The
configuration system makes this call just before attempting to deserialize a configuration section. As a
result, a custom configuration class that overrides ConfigurationSection.PostDeserialize can
demand an appropriate permission in an override of this method.

using System;
using System.Data.SqlClient;
using System.Security.Permissions;
using System.Configuration;

public class SampleConfigClass : ConfigurationSection
{
public SkeletalConfigClass() {}

protected override void PostDeserialize()
{

SqlClientPermission scp =
new SqlClientPermission(PermissionState.Unrestricted);

scp.Demand();
}

//the rest of the configuration class...
}

The previous configuration class demands the SqlClientPermission. Because the configuration sys-
tem restricts the set of allowed permissions to whatever is defined for the application’s current trust
level prior to the deserialization process, the sample configuration class is usable only if the current trust
level grants the SqlClientPermission. If a feature living in the GAC attempts to read its configuration
information and the current trust level doesn’t grant this permission, the feature initialization fails
because any attempt to read its configuration always fails with a SecurityException.

Given this capability, when would you actually use it? Should you always demand something from your
custom configuration class? If you know your GAC’d code is going to be called in scenarios where only
trusted code exists on the stack, you should make use of the PostDeserialize method. It is the only
point when you will have a chance to enforce a CAS restriction. Identifying these scenarios can be diffi-
cult though. If your feature includes a GAC’d HttpModule, this is one obvious case. A custom handler

165

Configuration System Security

07_596985 ch04.qxp 12/14/05 7:47 PM Page 165

that is deployed in the GAC would be another example where using PostDeserialize as a surrogate
trust enforcement mechanism makes sense.

However, it may impossible to make an intelligent demand in PostDeserialize if you depend on the
code that consumes your feature to supply dynamic information. For example, if your feature reads and
writes to the file system, you may not know which path to demand permission against until after some
consumer code sets some properties on your feature. As a result the PostDeserialize method is appro-
priate only for demanding permissions that always need to be statically configured in a trust policy file.

FileIOPermission and the Design-Time API
Unlike the runtime portion of the configuration API (for example GetSection), the design-time API
always results in physical file I/O operations occurring up the chain of parent configuration files. Because
in Medium trust an ASP.NET application only has rights to read and write files within the application’s
directory structure, partial trust code doesn’t have rights to open files outside the application. For this rea-
son, the design-time API is basically useless when running in Medium trust or below. Although you could
theoretically tweak the lower trust levels’ policy files to get the design-time API working, it is better to con-
sider the design-time API suitable only for full trust or High trust applications.

If you attempt to use one of the design-time APIs such as
WebConfigurationManager.OpenWebConfiguration in partial trust, you will run into an exception
like the following:

SecurityException: Request for the permission of type
‘System.Security.Permissions.FileIOPermission, ...’ failed.]
...snip...
System.Security.CodeAccessPermission.Demand()
System.IO.FileStream.Init(String path, FileMode mode, FileAccess access, Int32
rights, Boolean useRights, FileShare share, Int32 bufferSize, FileOptions options,
SECURITY_ATTRIBUTES secAttrs, String msgPath, Boolean bFromProxy)
System.IO.FileStream..ctor(String path, FileMode mode, FileAccess access, FileShare
share)
...snip...
System.Configuration.UpdateConfigHost.OpenStreamForRead(String streamName)
System.Configuration.BaseConfigurationRecord.InitConfigFromFile()

This stack trace shows that the open attempt eventually results in the use of the FileStream object.
Attempting to open a FileStream on top of a file always results in a demand for a FileIOPermission.
So, long before the configuration system ever gets around to demanding ConfigurationPermission, the
file I/O that occurs during a call to OpenWebConfiguration in a partial trust application will fail. This
behavior is another reason the design-time APIs are useful only in High and Full trust web applications.

Protected Configuration
Since ASP.NET 1.0 a common request has been for a way to safely store sensitive configuration informa-
tion and shield it from prying eyes. The most common information that developers want to protect are
connection strings because these frequently contain username-password pairs. But sorts of interesting
information beyond connection strings is contained within ASP.NET configuration files. If you use the

166

Chapter 4

07_596985 ch04.qxp 12/14/05 7:47 PM Page 166

<identity /> section, you again have credentials stored in configuration. If you use classes in the
System.Net namespace, you may have configuration elements listing out SMTP servers or other
network endpoints, and so on.

The 2.0 Framework introduces a new feature to deal with this problem called protected configuration.
Protected configuration is a way to take selected pieces of any configuration file and store the configuration
information instead in a secure and encrypted format. The great thing about the protected configuration
feature is that it can be used with just about any configuration section — both ASP.NET and non-ASP.NET
configuration sections. As with other features in ASP.NET, protected configuration is provider-based, so you
can buy or write alternative protected configuration providers instead of using the built-in providers.

Out of the box, the .NET Framework ships with two protected configuration providers:

❑ System.Configuration.DPAPIProtectedConfigurationProvider

❑ System.Configuration.RsaProtectedConfigurationProvider

As the class names suggest, the first provider uses the data protection API (DPAPI) functionality in
Windows to encrypt and decrypt configuration sections. The second provider uses the public-key RSA
algorithm for performing the same functionality.

The basic idea behind protected configuration is that you use the aspnet_regiis command-line tool, or
the configuration API (the SectionInformation.ProtectSection and SectionInformation
.UnprotectSection methods to be precise) to encrypt selected pieces of your configuration informa-
tion prior to putting an application into production. Then at runtime the configuration system decrypts
the protected configuration information just prior to handing the configuration information back to the
requesting code. The important thing is that protecting a configuration section is transparent to the
features that rely on the configuration section. No feature code has to change just because an underlying
configuration section has been encrypted.

When you use protected configuration you start with some configuration section that might look like the
following:

<machineKey
validationKey=”123456789012345678901234567890123456789012345678”
decryptionKey=”123456789012345678901234567890123456789012345678” />

This is a perfect example of the type of section you probably would like to protect. You would rather not
have any random person with read access to your web.config walking away with the signing and vali-
dation keys for your application.

You can encrypt this configuration section from the command line using the aspnet_regiis tool:

aspnet_regiis -pe system.web/machineKey -app /Chapter4/ConfigurationSample
-prov DataProtectionConfigurationProvider

After you use the protected configuration feature, the <machineKey /> section looks something like the
following:

<machineKey configProtectionProvider=”DataProtectionConfigurationProvider”>
<EncryptedData>

167

Configuration System Security

07_596985 ch04.qxp 12/14/05 7:47 PM Page 167

<CipherData>
<CipherValue>encrypted data here</CipherValue>

</CipherData>
</EncryptedData>

</machineKey>

Of course, instead of the text “encrypted data here,” the actual result has about five lines of text containing
the base-64 encoded representation of the encrypted blob for the <machineKey /> section. When you run
the application everything still works normally though because internally the configuration system trans-
parently decrypts the section using the extra information added to the <machineKey /> element.

Depending on whether you use the RSA- or the DPAPI-based provider, different information will show
up within the <machineKey /> element. In the previous example, the configuration system added the
configProtectionProvider attribute to the <machineKey/> element. This is a pointer to one of the
protected configuration providers defined in machine.config. At runtime, the configuration system
instantiates the specified provider and asks it to decrypt the contents of the <EncryptedData /> ele-
ment. This means that custom protected configuration providers can place additional information within
the <EncryptedData /> element containing any extra information required by the provider to success-
fully decrypt the section. In the case of the DPAPI provider, no additional information behind the
encrypted blob that is necessary.

What Can’t You Protect?
Protected configuration sounds like the final answer to the age-old problem of encrypting connection
strings. However, due to the interaction between app-domain startup and configuration you cannot
blindly encrypt every single configuration section in your configuration files. In some cases, you have a
“chicken-and-egg” effect where ASP.NET or the Framework needs to read configuration information to
bootstrap itself, but it has to do this prior to having read the configuration information that defines the
protected configuration providers.

The following list names some configuration sections (this is not an exhaustive list) that you may have in
your various configuration files that can’t be encrypted with protected configuration:

❑ processModel — ASP.NET needs to be able to read this just as it is starting up. Furthermore, for
IIS5 and IIS 5.1 it controls the identity of the worker process, so you would be in a Catch-22 situ-
ation if you needed the correct worker process identity in order to read protected configuration.

❑ startup and runtime — These configuration sections are used by the Framework to determine
things such as which version of the Framework to load as well as information on assembly
redirection.

❑ cryptographySettings — This configuration section defines the actual cryptography classes
used by the framework. Because protected configuration depends on some of these classes, you
can’t encrypt the configuration section that contains information about the algorithms used by
the protected configuration feature.

❑ configProtectedData — This is the configuration section that contains the definition of the pro-
tected configuration providers on the machine. This would also be a Catch-22 if the section were
encrypted because the configuration system needs to be able to read this section to get the
appropriate provider for decrypting other configuration sections.

168

Chapter 4

07_596985 ch04.qxp 12/14/05 7:47 PM Page 168

Selecting a Protected Configuration Provider
Now that you know you have at least two different options for encrypting configuration information, you
need to make a decision about which one to use. Additionally, you need to determine how you want to use
each provider. The criteria for selecting and then configuring a provider revolve around two questions:

❑ Do you need to share configuration files across machines?

❑ Do you need to isolate encrypted configuration data between applications?

The first question is relevant for those of you that need to deploy an application across multiple
machines in a web farm. Obviously in a load-balanced web farm, you want an application that is
deployed on multiple machines to use the same set of configuration data. You can use either the DPAPI
provider or the RSA provider for this scenario.

Both providers require some degree of setup to work properly in a web farm. Of the two providers, the
RSA provider is definitely the more natural fit. With the DPAPI provider, you would need to do the
following to deploy a web.config file across multiple machines:

1. Deploy the unencrypted configuration file to each web server.

2. On each web server, run aspnet_regiis to encrypt the desired configuration sections.

The reason for this is that the DPAPI provider relies on machine-specific information, and this information it
not portable across machines. Although you can make the DPAPI provider work in a web farm, you will
probably get tired of constantly reencrypting configuration sections each time you push a new configuration
file to a web farm.

The RSA provider depends on key containers that contain the actual key material for encrypting and
decrypting configuration sections. For a web farm, you would perform a one-time setup to synchronize
a key container across all the machines in a web farm. After you create a common key container across
all machines in the farm, you can encrypt a configuration file once on one of the machines — perhaps
even using a utility machine that is not part of the web farm itself but that still has the common key
container. When you push the encrypted configuration file to all machines in the web farm, each web
server is able to decrypt the protected configuration information because each machine has access to a
common set of keys.

The second question around isolation of encryption information deals with how the encryption keys are
protected from other web applications. Both the DPAPI and the RSA providers can use keys that are
accessible machine-wide, or use keys that are accessible to only a specific user identity. RSA has the
additional functionality of using machine-wide keys that only grant access to specific user accounts.

Currently, the recommendation is that if you want to isolate key material by user account, you should
separate your web applications into different application pools in IIS6, and you should use the RSA
provider. This allows you to specify a different user account for each worker process. Then when you
configure the RSA protected configuration providers, you take some extra steps to ensure that encryp-
tion succeeds only while running as a specific user account. At runtime, this means that even if one
application can somehow gain access to another application’s configuration data, the application will
not be able to decrypt it because the required key material is associated with a different identity.

169

Configuration System Security

07_596985 ch04.qxp 12/14/05 7:47 PM Page 169

Both the DPAPI and RSA have per-user modes of operation that can store encryption material directly
associated with a specific user account. However, both of these technologies have the limitation that the
Windows user profile for the process identity needs to be loaded into memory before it can access the
necessary keys. Loading of the Windows user profile does not happen on IIS6 (it will occur though for
other reasons in IIS5/5.1). As a result the per-user modes for the DPAPI and RSA providers really aren’t
useful for web applications.

There is another aspect to isolating encryption data for the DPAPI provider because the provider supports
specifying an optional entropy value to use during encryption and decryption. The entropy value is essen-
tially like a second piece of key material. Two different applications using different entropy values with
DPAPI will be unable to read each other’s data. However, using entropy is probably more suitable when
you want the convenience of using the machine-wide store in DPAPI, but you still want some isolation
between applications.

The following table summarizes the provider options that you should consider before setting up pro-
tected configuration for use in ASP.NET:

Need to Support Multiple Machines Only Deploy on a Single Machine

Sharing key RSA provider. Either the RSA or the DPAPI
material is acceptable provider will work

Use the default machine-wide Use the machine-wide options
key container, and grant Read for either provider.
access to all accounts. Can optionally use key entropy

with DPAPI provider
Can optionally use RSA key
containers with different ACLs.

Key material should RSA provider. RSA provider.
be isolated

Use machine-wide RSA key Use machine-wide RSA key
containers, but ACL different key containers, but ACL different key
containers to different user identities. containers to different identities.

DPAPI per-user key containers
require a loaded user profile and
thus should not be used.

RSA per-user key containers also
require a loaded user profile and
thus should not be used.

170

Chapter 4

07_596985 ch04.qxp 12/14/05 7:47 PM Page 170

171

Configuration System Security

Caveat When Using Stores That Depend on User Identity
If you choose to use either provider with their per-user mode of operation or if you use
machine-wide RSA key containers that are ACL’d to specific users, you need to be
aware of an issue with using protected configuration. The sequence in which ASP.NET
reads and then deserializes configuration sections is not fixed. Although ASP.NET
internally obtains configuration sections in a certain sequence during app-domain
startup, this sequence may very well change in the future.

One very important configuration section that is read early on during app-domain
startup is the <identity /> section. You can use <identity /> to configure applica-
tion impersonation for ASP.NET. However, if you use RSA key containers for example
that depend on specific user identities you can end up in a situation where ASP.NET
starts initially running as a specific process identity (NETWORK SERVICE by default
on IIS6), and then after reading the <identity /> section it switches to running as the
defined application impersonation identity.

This can lead to a situation where you have granted permission on an RSA key con-
tainer to an IIS6 worker process account, and suddenly other configuration sections are
no longer decrypting properly because they are being decrypted after ASP.NET
switches over to the application impersonation account. As a result, you should always
configure and ACL key stores on the basis of a known process identity.

For IIS6 this means setting up protected configuration based on the identity that will be
used for an individual worker process. If your applications need to run as different
identities, instead of using application impersonation on IIS6 you should separate the
applications into different application pools (aka worker processes). This guarantees
that at runtime ASP.NET will always be running with a stable identity, and thus
regardless of the order in which ASP.NET reads configuration sections during app-
domain startup, protected configuration sections will always be capable of being
decrypted using the same identity.

For older versions like IIS5 and IIS 5.1, you can choose a different process identity
using the <processModel /> element. However, application impersonation is really
the only way to isolate applications by identity on these older versions of IIS. Although
you could play around with different configuration sections to determine which ones
are being read with the identity defined in <processModel /> and which ones are
read using the application impersonation identity in <identity />, you could very
well end up with a future service pack subtly changing the order in which configura-
tion sections are deserialized.

As a result, the recommendation for IIS5/5.1 is to upgrade to IIS6 if you want to use a
feature like RSA key containers with user-specific ACLs. Granted that this may sound a
bit arbitrary, but using key storage that depends on specific identities with protected
configuration gets somewhat complicated as you will see in a bit. Attempting to keep
track of the order of configuration section deserialization adds to this complexity and if
depended on would result in a rather brittle approach to securing configuration sec-
tions. Separating applications with IIS6 worker processes is simply a much cleaner and
more maintainable approach over the long term.

07_596985 ch04.qxp 12/14/05 7:47 PM Page 171

Defining Protected Configuration Providers
The default protected configuration providers are defined in machine.config:

<configProtectedData defaultProvider=”RsaProtectedConfigurationProvider”>
<providers>

<add name=”RsaProtectedConfigurationProvider”
type=”System.Configuration.RsaProtectedConfigurationProvider, ... “
description=”Uses RsaCryptoServiceProvider to encrypt and decrypt”
keyContainerName=”NetFrameworkConfigurationKey”
cspProviderName=””
useMachineContainer=”true”
useOAEP=”false” />

<add name=”DataProtectionConfigurationProvider”
type=”System.Configuration.DpapiProtectedConfigurationProvider,...”
description=”Uses CryptProtectData and CryptUnProtectData... “
useMachineProtection=”true”
keyEntropy=”” />

</providers>
</configProtectedData>

If you author or purchase a custom provider, you would configure it in the <configProtectedData />
section and assign it a name so that tools like aspnet_regiis can make use of it. Other than the “name”
and “type” attributes, all of the information you see on the provider <add /> elements is unique to each
specific provider. Custom providers can support their own set of configuration properties that you can
then define when you configure them with the <add /> element.

As with most other provider-based features, you can define as many protected configuration providers
as you want. Then when using a tool like apnet_regiis, writing code with the ProtectSetion
method, or creating web.config files, you can reference one of the protected configuration providers
from <configProtectedData /> by name. For example, the -prov command-line switch you saw ear-
lier on aspnet_regiis refers to a named provider within <configProtectedData/>. In these scenar-
ios, if you do not explicitly select a provider, then the value of defaultProvider on the
<configProtectedData /> element is used. This means that by default the RSA provider is used for
protected configuration.

DpapiProtectedConfigurationProvider
This protected configuration provider uses the data protection API (DPAPI) that is part of Windows.
This functionality will probably be familiar to those of you who used the aspnet_setreg tool back in
ASP.NET 1.1 or who wrote a managed DPAPI wrapper for use in applications. The nice thing about the
DPAPI provider is that it is very easy to use. Configuring the provider is quite simple because you need
to consider only two provider-specific options:

❑ keyEntropy— This is a string value containing some random information that will be used
during the encryption process. If you use a different keyEntropy value for each application,
applications that share the same set of DPAPI encryption keys still cannot read each other’s pro-
tected configuration data.

172

Chapter 4

07_596985 ch04.qxp 12/14/05 7:47 PM Page 172

❑ useMachineProtection— Because DPAPI has the concept of a machine store and a per-user
store, this configuration attribute indicates which one to use. If you set this attribute to true (the
default), all applications can decrypt each other’s protected configuration data. If you set this
attribute to false, then only applications running under the same credentials will be able to
decrypt each other’s protected configuration data.

The DPAPI provider should really be used only for single-machine applications. Although you can go
through a manual step whereby you always reencrypt your configuration files after they have been
deployed to a machine, this is inconvenient. Furthermore, it opens up the possibility of someone forget-
ting to encrypt a configuration file (and remember you may need to encrypt multiple configuration files
up the configuration inheritance hierarchy).

keyEntropy
The keyEntropy option is only useful for giving a modicum of protection against two different applica-
tions reading each other’s configuration data when useMachineProtection is set to true. With the
machine-wide DPAPI key store technically anyone who can get code onto the machine will be able to
successfully decrypt your protected configuration data. Specifying an entropy value gives you a
lightweight approach to protecting the encrypted data. You can use keyEntropy with the per-user mode
of operation for DPAPI as an additional layer of protection although the per-user mode for the DPAPI
provider is not suitable for use with web applications.

If each web application uses a different keyEntropy parameter in its configuration, only code with
knowledge of that value will be able to read the configuration data. Of course, the management problem
with using keyEntropy is that you need a separate provider definition for each different keyEntropy
value. If you have a fair number of applications to protect on a server, and you want to isolate the
encrypted data between each application, you can easily end up with dozens of provider definitions just
so that you can use a different keyEntropy value for each application.

There is also the related issue that you need to ACL the appropriate configuration files so that random
users cannot open them and read the configuration. Placing the different provider definitions in
machine.config or the root web.config prevents applications running at Medium trust or lower from
being able to use the strongly typed configuration classes to read the raw provider definitions (note that
the actual provider class DpapiProtectedConfigurationProvider doesn’t expose the keyEntropy
value as a property).

However High and Full trust applications have the ability to open any file on the file system (ACLs
permitting). For these types of applications, you need to run each application in a separate application
pool with each application pool being assigned a different user identity. With this approach, you can
then place each application’s provider definition within the application’s web.config file, and the ACLs
prevent one worker process from reading the configuration file from another application. If you were to
leave the application-specific provider definition in machine.config or web.config, Full and High
trust applications would be able to open these files and read the keyEntropy attribute.

Using keyEntropy is pretty basic: You just define another instance of the DPAPI provider and put any
value you want as a value for this attribute:

<configProtectedData>
<providers>
<add name=”AppSpecificDPAPIProvider”

type=”System.Configuration.DpapiProtectedConfigurationProvider...”

173

Configuration System Security

07_596985 ch04.qxp 12/14/05 7:47 PM Page 173

useMachineProtection=”true”
keyEntropy=”AD50GC20FKQ43%dj!@4F” />

</providers>
</configProtectedData>

You should set the keyEntropy value to something that cannot be easily guessed. In this case, I just
used a random string of characters. Any long string of random values will work; there are no restrictions
on the length of the keyEntropy configuration attribute. If another application attempts to decrypt a
protected configuration section and uses a different entropy value, it receives an error message stating
that the data in the configuration section is invalid.

useMachineProtection
The default DPAPI configuration uses the machine-wide DPAPI key store; if you configure the DPAPI
provider and fail to set the useMachineProtection attribute, internally the provider will also default
to using the machine-wide store. If you are running in a trusted environment and it doesn’t really matter
if applications can read each other’s configuration data, this setting is reasonable.

However, if you are on a machine that hosts applications from development groups that don’t trust each
other, or if you have a business requirement that different applications should not be able to read each
other’s configuration data, setting useMachineProtection to false is an option. If you set this
attribute to false the identity of the application needs to be switched to a different user account (see the
earlier section on using per-user key stores). Of course, after you change your application to run as a
different identity, you already have the option of using file ACLs as a protection mechanism for prevent-
ing other applications from reading your configuration data. In a sense, using the per-user mode of the
DPAPI provider is an additional layer of protection above and beyond what you gain just by changing
applications to run as different user identities.

As mentioned earlier though, there is a pretty severe limitation if you set useMachineProtection to
false. Due to the way DPAPI works, it needs access to the user profile for the process identity to access
the key material. On IIS6 the user profile for a worker process account (specifically machine or domain
accounts other than LOCAL SERVICE or NETWORK SERVICE) is never loaded by IIS. If you follow the
steps outlined in this section everything will work until you reboot the machine and the side effects of
the runas command window are lost. If you really, really want to get per-user DPAPI working, you
need a hack such as launching runas from a scheduled task or having an NT service that forcibly loads
the profile for a user identity. Realistically though, I would never depend on such workarounds for a
production application, and hence the machine store for the DPAPI protected configuration provider is
the only really viable option for web applications. Non-ASP.NET applications don’t have the limitation
with the Windows user profile though, so you may be interested in using DPAPI user stores for securing
configuration information used by a fat client application.

To set up the provider for per-user DPAPI just change the useMachineProtection attribute to false:

<configProtectedData>
<providers>
<add name=”AppSpecificDPAPIProvider”

type=”System.Configuration.DpapiProtectedConfigurationProvider...”
useMachineProtection=”false”

</providers>
</configProtectedData>

174

Chapter 4

07_596985 ch04.qxp 12/14/05 7:47 PM Page 174

If you use DPAPI with per-user keys you must run interactive tools like aspnet_regiis with the process
credentials that will be used at runtime. The simplest way to do this is with the runas command to
spawn a separate command window. Of course, this also implies that you should choose a local or
domain user account for your process identity because you aren’t going to know the password for the
built-in NETWORK SERVICE account.

After you spawn a command window running as the proper credentials, you can use the aspnet_regiis
command to encrypt the desired configuration section. Because encrypting a configuration file requires
writing a temporary file, replacing the original configuration file, and then cleaning up afterward, the iden-
tity you are running as will temporarily need Read, Write, and Modify access to the application’s directory.
After the encryption operation is done, you can remove the Write and Modify privileges from the directory.

After the configuration file has been encrypted, try moving the web application into an IIS6 application
pool running with the same credentials that were used to run aspnet_regiis in the spawned command
window. Now when you run your web application, the encrypted sections will be transparently decrypted
using the DPAPI key associated with the worker process identity. If you assign your application to a differ-
ent application pool, for example the default application pool running as NETWORK SERVICE, you will
see the effect of the per-user DPAPI key. Running as NETWORK SERVICE instead returns an error message
that the key is not valid for the specified state, meaning that you are attempting to decrypt the data with an
invalid key.

However, if you reboot your machine after the previous steps, your web application will stop working —
even with everything setup properly — due to the dependence DPAPI has on the Windows user profile.
As a result I wouldn’t recommend trying to get the per-user mode working for IIS6. Also be aware that if
you are running IIS5 on a production machine, you can get the per-user mode of DPAPI to work because
ASP.NET loads the user profile of the account specified in the <processModel /> element. However, if
you move the application to an IIS6 machine, it will fail because of the lack of a loaded Windows user pro-
file for IIS6.

RsaProtectedConfigurationProvider
As the name suggests this protected configuration provider uses the RSA public-key encryption algorithm
for encrypting configuration sections. To be precise, the provider encrypts configuration sections using
3DES, but it then encrypts the symmetric 3DES key using the asymmetric RSA algorithm.

Of the two providers included in the Framework, this is definitely the preferred provider for a variety of
reasons:

❑ It works well in multimachine environments.

❑ It supports per-user key container ACLing without any awkward dependence on user profiles.

❑ As a result of its use of RSA, you can use other Windows cryptographic service providers for the
RSA algorithm.

Because the provider internally uses the RSA classes in the framework, it is able to support exporting
and importing key material. This means there is a viable approach for synchronizing key material across
multiple machines in a web farm.

175

Configuration System Security

07_596985 ch04.qxp 12/14/05 7:47 PM Page 175

The concept of securing key containers to specific users does not depend on a Windows user profile;
instead it relies on having ACLs set up that grant access to specific user accounts that need to open and
read key containers. As a result, using machine-wide containers with specific user ACLs is the preferred
approach for isolating the encrypted configuration information for multiple applications.

Because the provider uses RSA, and internally the Framework RSA classes rely on the Windows crypto-
graphic API (CAPI), you get the added benefit of being able to use RSA key containers other than the
default software-based Microsoft implementation. Although this last point is probably relevant for a
small percentage of developers, if you happen to work in a bank or in the defense industry you are prob-
ably familiar with hardware cryptographic service providers (CSPs) for CAPI. If your organization uses
Active Directory as a certificate store you also may be using hardware-based CSPs. With the
RsaProtectedConfigurationProvider, you have the option of configuring the protected configura-
tion provider to use a custom CSP instead of the default software-based CSP.

The configuration options of the RSA provider are a bit more extensive than those of the DAPI provider.
Aside from the standard “name,” “type,” and “description” attributes, you can configure the following:

❑ useMachineContainer— As with the DPAPI provider you can use per-user key containers
instead of machine-wide key containers. Like DPAPI, per-user key containers require a loaded
Windows profile. Unlike DPAPI, machine-wide RSA key containers can be ACL’d to specific users.

❑ keyContainerName— The RSA provider always accesses keys from a software abstraction
called a key container. From a manageability and security perspective, it makes it easier to sepa-
rate different applications through the use of different key containers that are locked down to
specific users.

❑ useOAEP— This option tells the providers to use Optional Asymmetric Encryption and Padding
(OAEP) when encrypting and decrypting. Windows 2000 does not support this, so the default
for this setting in configuration and inside of the provider is false. If you are running on
Windows Server 2003 or XP, you can use this option because these operating systems support
OAEP with RSA.

❑ cspProviderName— Assuming that you have registered a custom CSP for use with CAPI, you
can tell the RSA configuration provider to use it by specifying the CSP’s name with this parameter.

Of the various parameters listed here, I will only drill into the useMachineContainer and
keyContainerName attributes because these settings are the ones you will most commonly worry
about. For IIS6 on Windows Server 2003, you can optionally set useOAEP to true. For the
cspProviderName attribute, if you already have a custom CSP configured on your web servers you will
already know the string name for using it with your applications. Beyond that there isn’t anything else
special that you need to do from the perspective of protected configuration.

keyContainerName
Regardless of whether you use a machine key container or a user-specific key container, the RSA
protected configuration provider needs to be pointed at the appropriate container. Unlike the DPAPI
provider, the RSA provider doesn’t have some central pool where keys are held. Instead, key material is
always segmented into specific containers. The following default RSA provider configuration uses a
default container name of NetFrameworkConfigurationKey:

<add name=”RsaProtectedConfigurationProvider”
type=”System.Configuration.RsaProtectedConfigurationProvider,...”
keyContainerName=”NetFrameworkConfigurationKey”

176

Chapter 4

07_596985 ch04.qxp 12/14/05 7:47 PM Page 176

cspProviderName=””
useMachineContainer=”true”
useOAEP=”false” />

Encrypting a configuration section with aspnet_regiis using the RSA provider looks like the following:

aspnet_regiis -pe system.web/machineKey -app /Chapter4/ConfigurationSample

In this case, the -prov option was not used, meaning the default provider for protected configuration
will be used, which is the RSA-based provider. Contrasted with the output from the DPAPI provider, the
output from the RSA provider is substantially more verbose:

<machineKey configProtectionProvider=”AppSpecificRSAProvider”>
<EncryptedData Type=”http://www.w3.org/2001/04/xmlenc#Element”

xmlns=”http://www.w3.org/2001/04/xmlenc#”>
<EncryptionMethod Algorithm=”http://www.w3.org/2001/04/xmlenc#tripledes-cbc” />
<KeyInfo xmlns=”http://www.w3.org/2000/09/xmldsig#”>
<EncryptedKey xmlns=”http://www.w3.org/2001/04/xmlenc#”>
<EncryptionMethod Algorithm=”http://www.w3.org/2001/04/xmlenc#rsa-1_5” />
<KeyInfo xmlns=”http://www.w3.org/2000/09/xmldsig#”>
<KeyName>Rsa Key</KeyName>

</KeyInfo>
<CipherData>
<CipherValue>encrypted 3DES key goes here</CipherValue>

</CipherData>
</EncryptedKey>

</KeyInfo>
<CipherData>
<CipherValue>encrypted machine key section here</CipherValue>

</CipherData>
</EncryptedData>

</machineKey>

The format for the RSA and DPAPI providers is based on the W3C XML Encryption Recommendation.
However, the RSA provider output really needs the expressiveness of this format due to all of the infor-
mation it needs to output.

There are actually two separate <CipherValue /> elements. The first <CipherValue /> element contains
an encrypted version of a 3DES key. The idea behind the RSA provider is that for each configuration section
that is encrypted, the provider creates a new random symmetric key for 3DES. However, you don’t want to
communicate that signing key in the clear. So, the symmetric key is encrypted using an asymmetric RSA
public-private key pair.

The end result of the asymmetric RSA encryption is placed within the first occurrence of the <CipherValue
/> element. The only way that someone can actually decrypt the 3DES encryption key is to have the same
public-private key pair in the appropriate RSA container on their system. The <EncryptionMethod /> ele-
ment that ends in rsa-1_5 tells the configuration system (or more precisely the XML Encryption support in
the Framework) to use the RSA algorithm to decrypt the 3DES encryption key. Internally, the protected con-
figuration provider will hand the Framework an instance of a System.Security.Cryptography
.RSACryptoServiceProvider that has already been initialized with the appropriate RSA key container
based on the configuration provider’s settings.

177

Configuration System Security

07_596985 ch04.qxp 12/14/05 7:47 PM Page 177

The second <CipherValue /> element contains the actual results of encrypting the configuration sec-
tion using 3DES. At runtime, the protected configuration provider will use the results of the RSA decryp-
tion for the 3DES key to in turn decrypt the second <CipherValue /> section into the cleartext version
of a configuration section.

Although a bit counterintuitive, if you rush out and use aspnet_regiis to encrypt a configuration section
with the RSA provider, when you then run your ASP.NET application, it will fail with an error stating that
the RSA key container cannot be opened. This is because although the Framework ensures that an RSA
container called NetFrameworkConfigurationKey is created on the machine, by default the process
account for your web application does not have rights to retrieve key material from the key container.

You have to first grant read access on the key container using aspnet_regiis. For ASP.NET, you need
to grant read access on the container to only the appropriate process account. Although aspnet_regiis
supports granting Full access to a key container, you don’t want the identity of a web application to have
rights to write to or delete containers. As a result for the default provider configuration the process
account for your web application needs only Read access. The following aspnet_regiis command
grants read access to the default RSA key container used by protected configuration:

aspnet_regiis -pa “NetFrameworkConfigurationKey” “NT AUTHORITY\NETWORK SER
VICE”

After you do this, your web applications will be able to decrypt configuration sections using the default
machine-wide container.

Now that you understand the basics of using the default key container, the next question is when would
you use alternate key containers? The combination of using machine-wide containers (for example, the
useMachineContainer attribute is set to true) with key containers is compelling. You can log on to a
web server as local machine administrator and create a machine-wide RSA key pair in a new container
using the aspnet_regiis tool. You can then selectively grant Read access on the container to certain
accounts.

This means you can segment your applications into different worker processes running with different user
accounts, and grant each user account Read access to a specific key container. Unlike DPAPI, just because
an RSA key container is available machine-wide, it doesn’t mean that any arbitrary account can access it.
The required step of granting Read access makes this approach secure and effective. It is reasonably simple
to set up, and it allows you to isolate configuration data between applications. As you will see in the next
section on useMachineContainer, RSA key containers that are useable machine-wide are really the only
viable mechanism for providing configuration isolation to ASP.NET applications.

Creating a RSA key container can be accomplished with the following command line:

aspnet_regiis -pc “Application_A_Container”

This command creates a new RSA key container called Application_A_Container that is accessible
machine-wide assuming the appropriate access control lists (ACLs) are granted. As an aside, the -pc
option supports an additional -size option that allows you to specify how large you want the RSA key
to be. By default, the tool will create 1024-bit keys, but the RSA standard supports keys as large as 16,384
bits if necessary.

You grant access to the newly created container using the -pa switch, as shown a little bit earlier. For this
to make sense though, you must separate your applications into separate worker processes running as
something other than NETWORK SERVICE. Obviously, granting key container access to NETWORK

178

Chapter 4

07_596985 ch04.qxp 12/14/05 7:47 PM Page 178

SERVICE is pointless if your intent is to isolate access by worker process identity. Assuming that you use
a different identity for each of your worker processes, you can use the -pa switch to grant access in such
a way that each new key container is accessible by only a specific worker process account.

This approach does have a similar manageability issue to using keyEntropy with the DPAPI provider.
Using a different key container per process identity means that you have to create a different RSA
provider definition for each separate key container. However, you don’t have to worry about where you
place the different RSA provider definitions. Even if applications are able to physically read protected
configuration definitions for other applications, the key container ACLs will prevent applications run-
ning with different identities from successfully decrypting other application’s configuration sections.

useMachineContainer
As with the DPAPI provider, the RSA provider allows you to use a per-user mode of operation. The pre-
vious discussions on the RSA provider have been using key containers that are visible machine-wide.
For an additional level of security, you might think that you could create key containers that are only
“visible” to specific user accounts. This approach is dependent on Windows user profiles as you will see
in a bit.

The first step is to define a protected configuration provider to use a user-specific key container.
Something like the following:

<add name=”AppSpecificRSAProvider”
type=”System.Configuration.RsaProtectedConfigurationProvider,...”
keyContainerName=”UserSpecificContainer”
useMachineContainer=”false” />

After you have a provider defined, the general sequence of steps enables you to use user-specific containers:

1. Open a command window running as the user account that will “own” the key container. You
can log in interactively as the account or use the runas command.

2. Use the aspnet_regiis -pc -pku command to create a key container.

3. Use aspnet_regiis -pe to encrypt the desired configuration sections. You need to perform
the encryption while running as the specific user account; otherwise, the configuration system
isn’t going to be using the correct user-specific key container. Make sure to use the -prov option
so that the tool knows to use the appropriate provider definition.

4. Log off or close the spawned command window.

5. Change the identity of your web application’s application pool to the same identity that was
used to create the key container and encrypt the configuration sections.

Now when you run your web application it will be able to decrypt the encrypted configuration sections
using the key pair located in the user-specific key container.

Unfortunately, this entire process suffers from the same dependency on Windows user profiles as DPAPI. If
you reboot the machine, causing the user profile that was loaded in step 1 to go away, your web application
can no longer decrypt the configuration section. As with DPAPI the per-user key containers are not really
usable in ASP.NET applications; you need to stick with machine-wide containers and selectively ACL the
RSA key containers to get configuration isolation across applications.

179

Configuration System Security

07_596985 ch04.qxp 12/14/05 7:47 PM Page 179

Synchronizing Key Containers across Machines
The biggest advantage of the RSA provider over the DPAPI provider is that RSA provides a viable
approach for synchronizing the contents of a key container across a web farm. Unlike DPAPI, RSA key
pairs are exportable. The most important thing you need to do to ensure that you can synchronize keys
is create your key containers so that they are exportable. The following command uses the -exp option
to create a machine-wide key container with exportable keys. If you forget the “exp option the resultant
key container won’t be exportable. Note that for this discussion only machine-wide key containers are
used because per-user key containers aren’t really suitable for ASP.NET.

aspnet_regiis -pc ExportableContainer -size 2048 -exp

The next step is to export the key material so that it can be physically transported. The aspnet_regiis
command line for export is shown here:

aspnet_regiis -pri -px ExportableContainer c:\exportedkey.xml

The -px option tells the tools that the key information in the container should be exported to the file name
shown on the command line. The bold -pri option is important because it also tells the tool to ensure that
the private half of the RSA key pair is exported as well. If you forget to export the private key, when you
import the result on another server it will be useless because you need the private half of the key pair to be
able to decrypt the 3DES encryption key from the XML in the protected configuration section.

With the export file in hand, you can go to each machine that needs to share the key material and import
the key container with the following command:

aspnet_regiis -pi ExportableContainer c:\exportedkey.xml

The -pi command tells the tool to import the contents of the XML file into the specified RSA key container.
After you import the file on any given machine, you should immediately delete it and wipe the directory
that contained it. It would be a major security breach if the XML export file is left lying around for someone
to copy and walk away with. The same holds true for the machine where the original export occurred; you
should also ensure that the original export file is not lying around on disk waiting for someone to snoop.

As a last step, because this approach creates a new key container upon import, you need to use a
spnet_regiis with the -pa switch on each web server to grant Read access on the key container to the
appropriate worker process accounts.

At this point you have a key container called ExportableContainer on one or more machines. In a
really secure web environment you can perform the encryption of your configuration sections using a
system that is not directly connected to the internet. After you create a config file with all of the appro-
priate encrypted configuration sections, you copy the result to all of the machines in your web farm. The
previous steps of importing containers and ACLing the containers are one-time setup tasks. After they
have been accomplished, you only need to copy encrypted configuration files to all of your web servers.

This is a much cleaner approach than using DPAPI, where you would need to perform in-place encryption
on each of your production web servers. In-place encryption is not only error-prone, but it also means the
web server administrator always gets to see the before image of the configuration data. With the RSA
provider, you can go so far as having a security group responsible for encrypting your production configura-
tion files; the security group members could be the only ones that know sensitive information such as
connection string passwords. Then when the security group is done with the encryption process they could
hand the results back to your development team for deployment onto a production farm. In this way, only a
small set of individuals actually knows the sensitive pieces of cleartext configuration information.

180

Chapter 4

07_596985 ch04.qxp 12/14/05 7:47 PM Page 180

Aspnet_regiis Options
Several different command-line options have been thrown around for aspnet_regiis. The following
table briefly summarizes the main options that have been used for the various samples. Each of these
options usually has additional suboptions for things like per-user RSA containers, more specific virtual
path information, and so on. However, the table shows only the most common options that you are
likely to need:

Command line option Description

-pc Container_Name -exp -size 4096 Creates a new RSA key container that is available
to any account assuming Read access is granted.

If you plan to export the key container you need to
include the -exp option.

The -size option lets you specify the size of the
RSA key that will be created in the container.

-pa Container_Name “DOMAIN\user” Grants Read access on an RSA key container to the
specified user account

-pri -px Container_Name file name Exports an RSA key container to the specified file.
The export file includes the private RSA key infor-
mation as well.

-pi Container_Name file name Imports an RSA key container

-pe config_section_path -app / Encrypts the configuration section identified by the
app_path -prov provider_name configuration section path — this path looks some-

thing like system.web/membership.

The application path specified by -app denotes a
virtual path within the default web site unless you
specify a site with the -site option.

The encryption uses the provider specified by -
prov. This provider must have been defined in the
<configProtectedData /> section. If you want
to use the default protected configuration provider,
then -prov”is not necessary.

-pd config_section_path -app / Decrypts the configuration section identified by
app_path the configuration section path — this path looks

something like system.web/membership.

The application path specified by “-app denotes a
virtual path within the default web site unless you
specify a site with the “-site” option.

181

Configuration System Security

07_596985 ch04.qxp 12/14/05 7:47 PM Page 181

The aspnet_regiis tool really has only two modes of operation when working with protected configu-
ration providers:

❑ The tool has rich support for the RSA based provider that ships in the framework. Aspnet_
regiis includes many configuration switches to carry out various operations that are specific
to the RSA-based provider.

❑ The tool can invoke any arbitrary provider, but it cannot support any special behavior that may
required by the provider. You can see that the command line (the -pe and -pd options) does not
include any special switches beyond the basics that are required to identify a specific configura-
tion section to protect.

This means that if you use a different protected configuration provider, and if you need to support
special operations related to that provider (for example, the key container setup that is required when
using RSA), you will need to write your own code to carry out these types of provider-specific tasks.

Using Protected Configuration Providers in Partial Trust
You have seen how protected configuration works transparently with the features that depend on the
underlying configuration data. However, because protected configuration relies on providers, and these
providers are public, there isn’t anything preventing you from just creating an instance of either the RSA
or the DPAPI provider and calling the methods on these providers directly. The Decrypt method on a
ProtectedConfigurationProvider accepts a System.Xml.XmlNode as an input parameter and
returns the decrypted version as another XmlNode instance.

Combining the simplicity of this method with the fact that most ASP.NET trust levels allow some read
access to the file system means that malicious developers could potentially attempt the following steps:

1. Open the application’s web.config file as a text file or through a class like System.Xml
.XmlTextReader.

2. Get a reference to the appropriate DPAPI or RSA provider based on the provider name in the
configProtectionProvider attribute that is on the configuration element being protected.

3. Pass the contents of the <EncryptedData /> element for a protected configuration section to
the Decrypt method of the protected configuration provider obtained in the previous step.

In some scenarios, you don’t want any piece of code to be able to accomplish this. Even in High trust
where your code has access to read the machine.config and root web.config files, you probably don’t
want this loophole to exist.

If a feature is written to mirror configuration properties in a public API, then that is where developers
should access the values. In some cases, if you author a feature so that certain pieces of configuration
information are read, but are never exposed from a feature API, then you don’t want random code that
out flanks your feature and decrypts sensitive data directly from configuration.

To prevent this, the DPAPI and the RSA providers include the following class-level demand on their
class signatures:

[PermissionSet(SecurityAction.Demand, Name=”FullTrust”)]

182

Chapter 4

07_596985 ch04.qxp 12/14/05 7:47 PM Page 182

This declarative demand requires that all callers up the call stack must be running in full trust. The
FullTrust value for the Name property is actually a reference to one of the built-in .NET Framework
permission sets that you can see if you use a tool like the .NET Framework Configuration MMC. As a
result all, code in the call stack needs to be running in the GAC or the entire ASP.NET application needs
to be running in the ASP.NET Full trust level. For a partial trust application, any attempt to directly call
the providers will fail with a SecurityExpcetion.

You can see how this works by writing some sample code to load an application’s web.config file,
extract an encrypted section out of it, and then pass it to the correct provider.

using System.Configuration;
using System.Xml;
...
protected void Page_Load(object sender, EventArgs e)
{

XmlDocument xd = new XmlDocument();
xd.Load(Server.MapPath(“~/web.config”));

XmlNamespaceManager ns = new XmlNamespaceManager(xd.NameTable);
ns.AddNamespace(“u”, “http://schemas.microsoft.com/.NetConfiguration/v2.0”);
XmlNode ec =

xd.SelectSingleNode(“//u:configuration/u:system.web/u:machineKey”,ns);

RsaProtectedConfigurationProvider rp =
(RsaProtectedConfigurationProvider)

ProtectedConfiguration.Providers[“AppSpecificRSAProvider”];
XmlNode dc = rp.Decrypt(ec);

}

The sample code uses an XPath query to extract get an XmlNode reference to the encrypted <machineKey
/> section. It then uses the ProtectedConfiguration class to get a reference to the correct provider for
decryption. If you run this code in a Full trust ASP.NET application it will work. However, if you drop the
trust level to High or lower, a SecurityException occurs when the call to Decrypt occurs.

Even though the protected configuration providers demand full trust, you can still protect your own custom
configuration sections in partial trust applications when using either the DPAPI or the RSA providers. At run-
time when a call is made to GetSection from ConfigurationManager or WebConfigurationManager,
internally the configuration system asserts full trust on your behalf prior to decrypting the contents of your
custom configuration section. This behavior makes sense because the assumption is that if a piece of code
can successfully call GetSection (for example, if ConfigurationPermission has been granted to the par-
tial trust application, or requirePermission has been set to false, or your code is running in the GAC
and asserts ConfigurationPermission), there is no reason why access to configuration via a strongly
typed configuration class should fail even if the underlying data requires decryption.

If you have a sample application running in High trust (High trust is necessary for this sample because
the “runtime” configuration APIs fail by default when called below High trust), you can attempt to open
the protected <machineKey /> section with the following code:

MachineKeySection mk =
(MachineKeySection)WebConfigurationManager.GetSection(“system.web/machineKey”);

183

Configuration System Security

07_596985 ch04.qxp 12/14/05 7:47 PM Page 183

The preceding code will work in both High and Full trust. In High trust, the code succeeds because it
makes it over the hurdle of the two following security checks:

❑ The application is running in High trust, so the configuration system demand for
ConfigurationPermission succeeds.

❑ The configuration system internally asserts full trust when deserializing the configuration section,
so the declarative security demand from the protected configuration provider passes as well.

However, if you use the design-time configuration API as follows in High trust, the same logical opera-
tion fails:

//This will fail in High trust or below with a protected config section
Configuration config = WebConfigurationManager.OpenWebConfiguration(“~”);
MachineKeySection mk =

(MachineKeySection)config.GetSection(“system.web/machineKey”);

In this scenario, three security checks occur, and the last one fails:

❑ The configuration system opens the file using file I/O, which generates a FileIOPermission
demand. The demand passes because High trust has rights to read all configuration files in the
inheritance chain.

❑ The NTFS ACLs on machine.config, root web.config, and the application’s web.config
also allow read access.

❑ The protected configuration provider demands full trust. The demand fails because the sample
code is running in the Page_Load method of a partial trust ASP.NET application. Internally, the
configuration does not assert full trust on your behalf when calling the Open* methods.

The interaction of trust levels with protected configuration can be a bit mind-numbing to decipher.
Excluding intervention on your part with configuration files or sandboxed GAC assemblies, the following
list summarizes the behavior of the RSA and DPAPI protected configuration providers:

❑ Protected configuration providers work in partial trust applications that load configuration using
the GetSection method. This method is the normal way a custom feature that you author
would load configuration.

❑ Protected configuration providers fail in partial trust when using the design-time configuration
APIs (that is, the various Open* methods). Normally, you won’t call these methods from any-
thing other than administrative applications or command-line configuration tools.

Redirecting Configuration with a Custom Provider
So far, all of the discussion on protected configuration has revolved around the idea of encrypting and
decrypting configuration sections. Given the feature’s heritage with the old aspnet_setreg.exe tool, this is
understandable. Traditionally, when customers asked for a way to secure sensitive pieces of configuration
data, they were looking for a way to encrypt the information. However, there is no reason that the concept
of “protection” can’t be interpreted differently.

A common problem some of you probably have with your web applications is with promoting an applica-
tion through various environments. Aside from development environments you may have test servers,
staging servers, live production servers, and potentially warm backup servers. Encrypting your configura-

184

Chapter 4

07_596985 ch04.qxp 12/14/05 7:47 PM Page 184

tion data does make it safer, but it also increases your management overhead in attempting to synchronize
configuration data properly in each of these environments. This overhead is even more onerous if you
work in a security sensitive environment where only a limited number of personnel are allowed to encrypt
the final configuration information prior to pushing it into production.

Protected configuration is probably manageable with manual intervention for a few servers and is tolerable
with the help of automated scripts in environments that deal with dozens if not hundreds of servers.
However, you can kill two birds with one stone if you think about “protected” actually being a problem of
getting important configuration data physically off your web servers. If you store selected configuration
sections in a central location (such as a central file share or a central configuration database), you have a
more manageable solution and, depending on how you implement this, a more secure solution as well.

You can write a custom protected configuration provider that determines information about the current
server and the currently running application. Because a protected configuration provider controls the
format of the data that is written into a protected configuration section, you can store any additional
information you need in this format. For example, you could have a custom XML format that includes
hints to your provider so that it knows if a configuration section for machine.config, the root
web.config, or an application web.config is requesting. Even though the DPAPI and RSA providers
use the W3C XML Encryption Recommendation, this is not a hard requirement for the format of
encrypted data that is used by a custom provider.

A custom provider can then reach out to a central repository of configuration information and return the
appropriate information. Depending on how stringent your security needs are you can layer extra protec-
tion in the form of transport layer security (such as an SSL connection to a SQL Server machine as well as
IPSEC connection rules) and encrypt the configuration data prior to storing it in a central location. When
you have a select group of individuals who manage the configuration data for live production servers, it is
probably much easier to have such a group manage updates to a single database as opposed to encrypting
a file and then having to worry about getting the synchronization of said file correct across multiple
machines.

Implementing a custom protected configuration provider requires you to derive from the System
.Configuration.ProtectedConfigurationProvider class. As you can see, the class signature is
very basic:

public abstract class ProtectedConfigurationProvider : ProviderBase
{

public abstract XmlNode Encrypt(XmlNode node);
public abstract XmlNode Decrypt(XmlNode encryptedNode);

}

For a sample provider that demonstrates redirecting configuration to a database, you implement only
the Decrypt method because this is the method used at runtime to return configuration data to caller. If
you store more complex data inside your protected configuration format, implementing the Encrypt
method will make life easier when storing configuration sections in a custom data store.

First look at what a “protected” configuration section in a web.config file will look like using the custom
provider:

<membership configProtectionProvider=”CustomDatabaseProvider”>
<EncryptedData>

<sectionInfo name=”membership” />
</EncryptedData>

</membership>
185

Configuration System Security

07_596985 ch04.qxp 12/14/05 7:47 PM Page 185

As with previous snippets of protected configuration, the <membership /> section references a protected
configuration provider. Instead of the actual definition of the <membership /> section though, the
<EncryptedData /> element is common to all protected configuration sections. However, what is
enclosed within this element is determined by each provider. In this case, to keep the sample provider
very simple, the protected data consists of only a single element: a <sectionInfo /> element.

Unlike protected configuration providers that blindly encrypt and decrypt data, this provider needs to
know the actual configuration section that is being requested. The RSA and DPAPI providers actually
have no idea what they are operating against. Both providers work against a fixed schema and consider
the encrypted blob data to be opaque from a functionality standpoint. The custom provider, however,
needs to know what section is really being requested because its purpose is to store configuration data in
a database for any arbitrary configuration section. The name attribute within the <sectionInfo />
element gives the custom provider the necessary information. Although this is just a basic example of
what you can place with <EncryptedData />, you can encapsulate any kind of complex data your
provider may need within the XML.

The custom provider will store configuration sections in a database, keying off of a combination of the
application’s virtual path and the configuration section. The database schema that follows shows the
table structure for storing this:

create table ConfigurationData (
ApplicationName nvarchar(256) NOT NULL,
SectionName nvarchar(150) NOT NULL,
SectionData ntext
)
go

alter table ConfigurationData
add constraint PKConfigurationData
PRIMARY KEY (ApplicationName,SectionName)

Go

Retrieving this information will similarly be very basic with just a single stored procedure pulling back
the SectionData column that contains the raw text of the requested configuration section:

create procedure RetrieveConfigurationSection
@pApplicationName nvarchar(256),
@pSectionName nvarchar(256)

as

select SectionData
from ConfigurationData
where ApplicationName = @pApplicationName
and SectionName = @pSectionName
go

Because the custom protected configuration provider needs to connect to a database, a connection string
must be included within the definition of the provider. Writing and configuring custom providers is the
subject of a Chapter 9 — the important point for this sample is that ASP.NET allows you to add arbitrary
information to the configuration element for providers.

186

Chapter 4

07_596985 ch04.qxp 12/14/05 7:47 PM Page 186

<configProtectedData>
<providers>
<add name=”CustomDatabaseProvider”

type=”CustomProviders.DatabaseProtectedConfigProvider,CustomProviders”
connectionStringName=”ConfigurationDatabase”

/>
</providers>

</configProtectedData>

The provider configuration looks similar to the configurations for the RSA and DPAPI providers. In this
case, however, the custom provider requires a connectionStringName element so that it knows which
database and database server to connect to. The value of this attribute is simply a reference to a named
connection string in the <connectionStrings /> section, as shown here:

<connectionStrings>
<add name=”ConfigurationDatabase”

connectionString=”server=.;Integrated _
Security=true;database=CustomProtectedConfiguration”/>

</connectionStrings>

When creating your own custom providers, you have the freedom to place any provider-specific infor-
mation you deem necessary in the <add /> element.

Now that you have seen the data structure and configuration related information, take a look at the code
for the custom provider. Because a protected configuration provider ultimately derives from
System.Configuration.Provider.ProviderBase, the custom provider can override portions of
ProviderBase as well as ProtectedConfigurationProvider. Chapter 9 goes into more detail on
ProviderBase— for now though the custom provider will override ProviderBase.Initialize so
that the provider can retrieve the connection string from configuration:

using System;
using System.Data;
using System.Data.SqlClient;
using System.Configuration;
using System.Configuration.Provider;
using System.Web;
using System.Web.Hosting;
using System.Web.Configuration;
using System.Xml;

namespace CustomProviders
{

public class DatabaseProtectedConfigProvider : ProtectedConfigurationProvider
{

private string connectionString;

public DatabaseProtectedConfigProvider() { }

public override void Initialize(string name,
System.Collections.Specialized.NameValueCollection config)

{
string connectionStringName = config[“connectionStringName”];
if (String.IsNullOrEmpty(connectionStringName))

throw new ProviderException(“You must specify “ +

187

Configuration System Security

07_596985 ch04.qxp 12/14/05 7:47 PM Page 187

“connectionStringName in the provider configuration”);

connectionString =
WebConfigurationManager.ConnectionStrings[connectionStringName] _

.ConnectionString;
if (String.IsNullOrEmpty(connectionString))

throw new ProviderException(“The connection string “ +
“could not be found in <connectionString />.”);

config.Remove(“connectionStringName”);

base.Initialize(name, config);
}

//Remainder of provider implementation
}

}

The processing inside of the Initialize method performs a few sanity checks to ensure that the
connectionStringName attribute was specified in the provider’s <add /> element, and that furthermore
the name actually points at a valid connection string. After the connection string is obtained from the
ConnectionStrings collection, it is cached internally in a private variable.

Of course, the interesting part of the provider is its implementation of the Decrypt method:

public override XmlNode Decrypt(XmlNode encryptedNode)
{

//Application name
string applicationName = HostingEnvironment.ApplicationVirtualPath;
XmlNode xn = encryptedNode.SelectSingleNode(“/EncryptedData/sectionInfo”);
//Configuration section to retrieve from the database
string sectionName = xn.Attributes[“name”].Value;

using (SqlConnection conn = new SqlConnection(connectionString))
{

SqlCommand cmd =
new SqlCommand(“RetrieveConfigurationSection”, conn);

cmd.CommandType = CommandType.StoredProcedure;
SqlParameter p1 = new SqlParameter(“@pApplicationName”, applicationName);
SqlParameter p2 = new SqlParameter(“@pSectionName”, sectionName);

cmd.Parameters.AddRange(new SqlParameter[] { p1, p2 });

conn.Open();
string rawConfigText = (string)cmd.ExecuteScalar();
conn.Close();

//Convert string from the database into an XmlNode
XmlDocument xd = new XmlDocument();
xd.LoadXml(rawConfigText);

return xd.DocumentElement;
}

}

188

Chapter 4

07_596985 ch04.qxp 12/14/05 7:47 PM Page 188

The Decrypt method’s purpose is take information about the current application and information available
from the <sectionInfo /> element and use it to retrieve the correct configuration data from the database.

The provider determines the correct application name by using the System.Web.Hosting
.HostingEnvironment class to determine the current application’s virtual path. The name of the config-
uration section to retrieve is determined by parsing the <EncryptedData /> section to get to the name
attribute of the custom <sectionInfo /> element. With these pieces of data the provider connects to the
database using the connection string supplied by the provider’s configuration section.

The configuration data stored in the database is just the raw XML fragment for a given configuration
section. For this example, which stores a <membership /> section in the database, the database table
just contains the text of the section’s definition taken from machine.config stored in an ntext field in
SQL Server. Because protected configuration providers work in terms of XmlNode instances, and not raw
strings, the provider converts the raw text in the database back into an XmlDocument, which can then be
subsequently returned as an XmlNode instance. Because the data in the database is well-formed XML,
the provider can just return the DocumentElement for the XmlDocument.

The provider’s implementation of the Encrypt method is just stubbed out. For your own custom
providers, you could implement the inverse of the logic shown in the Decrypt method that would
scoop the configuration section out of the config file and stored in the database.

public override XmlNode Encrypt(XmlNode node)
{

throw new NotImplementedException(“This method is not implemented.”);
}

What is really powerful about custom protected configuration providers is that you can go back to some
of the sample configuration code used earlier in the chapter and run it, with the one change being that
you use the “protected” configuration section for <membership />.

MembershipSection ms =
(MembershipSection)ConfigurationManager.GetSection(“system.web/membership”);

This code works unchanged after you swap in the new <membership /> section using the custom
protected configuration provider. This is exactly what you would want from protected configuration.
Nothing in the application code needs to change despite the fact that now the configuration section is
stored remotely in a database as opposed to locally on the file system.

Clearly, the sample provider is pretty basic in terms of what it supports. However, with a modicum of
work you could extend this provider to support features like the following:

❑ Machine-specific configuration

❑ Environment specific configuration — separating data by terms like TEST, DEV, PROD, and so on

❑ Encrypting the actual data inside of the database so that database administrators can’t see what
is stored in the tables

Nothing requires you to store configuration data in a traditional data store like a database or on the file
system. You could author a custom provider that uses a Web Service call or socket call to a configuration
system as opposed to looking up data in a database.

189

Configuration System Security

07_596985 ch04.qxp 12/14/05 7:47 PM Page 189

One caveat to keep in mind with custom protected configuration providers is that after the data is physically
stored outside of a configuration file, ASP.NET is no longer able to automatically trigger an app-domain
restart whenever the configuration data changes. With the built-in RSA and DPAPI providers, this isn’t an
issue because the encrypted text is still stored in web.config and machine.config files. ASP.NET listens
for change notifications and triggers an app-domain restart in the event any of these files change.

However, ASP.NET does not have a facility to trigger changes based on protected configuration data
stored in other locations. For this reason, if you do write a custom provider along the lines of the sample
provider, you need to incorporate operational procedures that force app-domains to recycle whenever
you update configuration data stored in locations other than the standard file-based configuration files.

Summary
Configuration security in ASP.NET 2.0 includes quite a number of improvements. While the original
<location /> based locking approach is still supported (and is definitely still useful), ASP.NET 2.0’s
configuration system now gives you the ability to enforce more granular control over individual sec-
tions. The lockAttributes attribute restricts the ability of child configuration files to override selected
attributes defined on the parent. The lockElements attribute prevents entire configuration elements
from being redefined in child configuration files. Both of these attributes support an alternate syntax to
make it easier to configure fine-grained security when many attributes or many nested configuration ele-
ments need to be controlled.

Because configuration data exists within physical files, NTFS permissions come into play when reading
or writing configuration data. Under normal conditions, configuration data only needs to be read;
although it has to be read up the entire inheritance chain from the most derived web.config file all the
way up to the root web.config and web.config files. Because ASP.NET reads runtime configuration
data using the process account or application impersonation identity, reading configuration usually suc-
ceeds assuming the file ACLs have been set up properly. Physically writing configuration data is some-
thing that should be reserved only for administrative-style applications or command-line tools due to
the need for Full Control on these files. ASP.NET also supports remote editing of configuration files,
although for security reasons this functionality is turned off by default.

Because ASP.NET supports running in partial trust, the configuration system makes use of the
Framework’s CAS support to limit what can be done in partial trust. Access to strongly typed configura-
tion sections is allowed only in High and Full trust. If you need to access the configuration classes
directly in Medium trust or lower, you will need to use the requirePermission attribute. For the built-
in configuration sections, you should avoid doing so because most ASP.NET features expose public APIs
that already give access to most of the configuration data you need.

Customers have long asked for the ability to secure configuration data so that prying eyes cannot see sensi-
tive information such as database connection strings. The new protected configuration feature in the
Framework allows you to encrypt configuration sections using either DPAPI or RSA. Because the protected
configuration feature is based on the provider model, you also have the option to write or purchase custom
protected configuration providers. This gives you the freedom to implement different encryption strategies
or, as seen with the sample provider, different storage locations for your configuration data.

190

Chapter 4

07_596985 ch04.qxp 12/14/05 7:47 PM Page 190

Forms Authentication

Forms authentication is the most widely used authentication mechanism for Internet facing
ASP.NET sites. The appeal of forms authentication is that sites with only a few pages and simple
authentication requirements can make use of forms authentication, and complex sites can still rely
on forms authentication for the basic handling of authenticating users. In ASP.NET 2.0, the core
functionality of forms authentication remains the same, but some new security scenarios have
been enabled and some security features have been added.

This chapter covers the following topics on ASP.NET 2.0 forms authentication:

❑ Reviewing how forms authentication works in the HTTP pipeline (most of this was
covered in Chapter 2)

❑ Making changes to the behavior of persistent forms authentication tickets

❑ Securing the forms authentication payload

❑ Securing forms authentication cookies with HttpOnly and requireSSL

❑ Using Cookieless support in forms authentication

❑ Using forms authentication across ASP.NET 1.1 and ASP.NET 2.0

❑ Leveraging the UserData property of FormsAuthenticationTicket

❑ Passing forms authentication tickets between applications

❑ Enforcing a single login and preventing replayed tickets after logout

08_596985 ch05.qxp 12/14/05 7:48 PM Page 191

Quick Recap on Forms Authentication
In Chapter 2, the sections on AuthenticateRequest, AuthorizeRequest and EndRequest described
how forms authentication works throughout the HTTP pipeline. In summary, forms authentication
performs the following tasks:

1. During AuthenticateRequest, the FormsAuthenticationModule checks the validity of the
forms authentication ticket (carried in a cookie or in a cookieless format on the URL) if one
exists. If a valid ticket is found, this results in a GenericPrincipal referencing a
FormsIdentity as the value for HttpContext.Current.User. The actual information in the
ticket is available as an instance of a FormsAuthenticationTicket off of the FormsIdentity.

2. During AuthorizeRequest, other modules and logic such as the UrlAuthorizationModule
attempt to authorize access to the currently requested URL. If an authenticated user was not cre-
ated earlier by the FormAuthenticationModule, any URL that requires some type of authenti-
cated user will fail authorization. However, even if forms authentication created a user,
authorization rules that require roles can still fail unless you have written custom logic to asso-
ciate a FormsIdentity with a set of roles or used a feature like Role Manager that performs this
association automatically.

3. If authorization fails during AuthorizeRequest, the current request is short-circuited and
immediately forwarded to the EndRequest phase of the pipeline. The
FormsAuthenticationModule runs during EndRequest and if it detects that
Response.StatusCode is set to 401, the module automatically redirects the current request to
the login page that is configured for forms authentication (login.aspx by default).

This basic summary of forms authentication demonstrates that the forms authentication ticket is the
piece of persistent authentication information around which the forms authentication feature revolves.
The next few sections delve into more details about how the forms authentication ticket is protected,
persisted and passed around applications. For all practical purposes, developers use the terms “forms
authentication ticket” and “forms authentication cookie” interchangeably.

Understanding Persistent Tickets
Since ASP.NET 1.0, the forms authentication feature has supported persistent and nonpersistent tickets.
In ASP.NET 1.0 and 1.1 the forms authentication ticket was always stored in a cookie (again excluding
the Mobile Internet Toolkit which most developers probably have not used). So, the decision between
using a persistent versus nonpersistent ticket is a choice between using persistent or session-based cook-
ies. The lifetime of a session-based cookie is the duration of the interactive browser session; when you
shut down the browser, any session based cookies that were held in memory are gone. The forms
authentication feature included the option for persistent cookies to enable lower-security applications
(message boards, personal websites with minimal security requirements, and so on) to store a represen-
tation of the authenticated user without constantly requiring users to log in again.

Clearly for some sites where users infrequently access the application (and hence are always forgetting
their credentials), persistent cookies are a great usability enhancement. The one “small” problem is that
on ASP.NET 1.0 and ASP.NET 1.1 sites, persistent cookies are given a 50-year lifetime. Now I am all for
making certain types of websites easier to use (like everybody else I have an idiotic number of user-
name-password combinations to deal with), but I think 50 years is pushing it a bit! You can see this for

192

Chapter 5

08_596985 ch05.qxp 12/14/05 7:48 PM Page 192

older ASP.NET sites that issue cookies if you take a look at the expiration date for their forms authentica-
tion tickets. For example the following code issues a persistent ticket:

FormsAuthentication.RedirectFromLoginPage(“testuser”, true);

The resulting expiration date on the cookie when I was writing this was “5/9/2055 7:52PM.” The net
result is that a digitally encrypted and digitally signed forms authentication ticket is left lying around a
user’s computer until by happenstance the cookie is deleted. On one hand, if you regularly delete cook-
ies, then 50-year lifetimes are probably not a big deal. On the other hand, as a website developer you
definitely can bet that some percentage of your user population is accruing cookies ad infinitum. From a
security perspective the 50-year lifetime is really, really bad. Although the default security for forms
authentication cookies encrypts and signs the cookies, it is likely that sometime in the next 50 years com-
puting power will have reached a point that the present-day forms authentication ticket can be cracked
in a reasonably short time. It’s unlikely that anybody will ever have their original computer from 50
years ago (where would you put that old UNIVAC today?). But some website users will still be on the
same machine 5 to 7 years later, and if they regularly visit the same site, the forms authentication ticket
issued years earlier will still be lying around waiting to be hijacked and cracked.

As a result of this type of security concern with excessively long-lived forms authentication tickets, in
ASP.NET 2.0 persistent cookies now set their expiration based upon the value of the cookie timeout set
in configuration. Taking the same code shown earlier, and running it on ASP.NET 2.0 with the default
cookie timeout of 30 minutes, results in a persistent cookie that expires 30 minutes later (you can see this
if you view the files in your browser cache and look for the cookie file). This change may take a number
of developers by surprise, and their first inkling of the new behavior may be complaints from website
users suddenly being forced to login.

However, even though the ASP.NET 2.0 behavior changes the cookie expiration for new cookies issued
using forms authentication, the new behavior has no effect on preexisting cookies. If you upgrade an
ASP.NET 1.1 application to ASP.NET 2.0, any users with 50-year cookies floating around will continue to
retain these cookies. Even if you use sliding expiration for your forms authentication tickets, because
ASP.NET hasn’t been around for 25 years, none of the preexisting persistent cookies will be reissued due
to time passing for sliding expirations (forms authentication attempts to reissue a cookie when 50% or
more of the configured cookie timeout has elapsed).

This raises the question of whether developers should take explicit steps to reissue their persistent cookies
with more reasonable timeouts. I agree that a little more security is better than 50-year cookie lifetimes
and recommend that developers using persistent forms authentication cookies add some logic to their
applications after upgrade. First, developers should determine a reasonable persistent cookie timeout.
This may be a few weeks or months, although I wouldn’t recommend going beyond one year. Even for
sites that don’t care too much about security, it doesn’t seem unreasonable to ask people to reauthenticate
themselves once a year.

ASP.NET 2.0 has only one cookie timeout setting (the timeout attribute in the <forms /> configuration
element). If your site needs to issue a mixture of persistent and session-based cookies, both types of
cookies will use the timeout set in configuration; however, expiration enforcement happens through
different mechanisms. In these situations it makes sense to ask why a website (or perhaps a set of websites)
mixes the comparatively insecure persistent cookie option with session-based forms authentication
tickets. Websites that are cookie-based should use one type of cookie persistence for all website users,
and stick with a single persistence model.

193

Forms Authentication

08_596985 ch05.qxp 12/14/05 7:48 PM Page 193

After you have determined a new value for timeout, the next step is to add some code to your site that
automatically swaps out the old persistent cookie for a new one with an updated expiration.
PostAuthenticateRequest is a convenient point to perform this work. The following code for
global.asax shows how this can be accomplished.

void Application_PostAuthenticateRequest(Object sender, EventArgs e)
{

if (User.Identity is FormsIdentity)
{

if (((FormsIdentity)User.Identity).Ticket.Expiration >
(DateTime.Now.Add(new TimeSpan(0,40320,0))))

{
FormsAuthentication.RedirectFromLoginPage(User.Identity.Name, true);

}
}

}

The code first checks to see whether an authenticated FormsIdentity exists on the current context. If
one exists, the IIdentity that is available from the User property on the context is cast to a
FormsIdentity so that you can get access to the FormsAuthenticationTicket available off of the
Ticket property. The FormsAuthenticationTicket conveniently exposes its expiration with the
Expiration property. In the sample code, if the ticket expires more than 40320 minutes (roughly one
month) from now, the credentials are reissued as a persistent ticket.

Running this code on ASP.NET 2.0 results in a forms authentication cookie being reissued but with the
updated behavior for computing cookie expiration based on the timeout attribute in configuration. One
thing to note is that the forms authentication API does not expose the value of the timeout attribute in a
convenient manner. Although you could technically use the new strongly typed configuration classes in
ASP.NET 2.0 to get the correct value, you can’t really depend on that approach if you plan to run in
partial trust (more on issues with strongly typed configuration classes and partial trust in Chapter 4). As
a result, the somewhat simplistic workaround is to duplicate the expiration value either by hard-coding
it as in the sample code or, for better maintenance, by storing it as a value in a place like the
<appSettings /> section in configuration.

How Forms Authentication Enforces Expiration
The timeout attribute on the <forms > configuration element controls the expiration of the forms
authentication ticket. However, in the case of session based cookies the Expires property of the cookie
created by forms authentication is never set. Furthermore, with the introduction of cookieless support in
ASP.NET 2.0, there may not even be a cookie created for the forms authentication ticket.

Forms authentication computes the expiration time for a forms authentication ticket by adding the value
of the timeout attribute to DateTime.Now. This value is passed as one of the parameters to the
FormsAuthenticationTicket constructor. After a FormsAuthenticationTicket is created, it is con-
verted to a hex-string representation using some custom internal serialization logic. This means the expi-
ration date is packaged within the custom serialized representation of the ticket, regardless of whether
the ticket is subsequently issued as a cookie or is instead placed on the URL for the cookieless case.

Each time a forms authentication ticket arrives back at the web server, FormsAuthenticationModule
opens either the cookie or the cookieless value on the URL, and converts the enclosed hex-string to an
instance of FormsAuthenticationTicket. With a fully inflated ticket, the module checks the

194

Chapter 5

08_596985 ch05.qxp 12/14/05 7:48 PM Page 194

Expiration property to determine whether the ticket is still valid. This means that when a ticket is car-
ried inside a cookie, FormsAuthenticationModule ignores any implied statement about expiration.
Technically, if a cookie is sent to the web server, the browser agent that sent the cookie must consider the
cookie to still be valid, meaning that the cookie has not expired yet.

However, from a security perspective, it is trivial for a malicious user to generate a cookie and send it to
the web server. As a result, forms authentication never depends on the expiration mechanism supported
by HTTP cookies. It always consults the expiration date contained within the serialized ticket when
determining whether the ticket is valid. If a cookie arrives at the web server, but the expiration date con-
tained within the serialized ticket indicates that the ticket has expired, FormsAuthenticationModule
recognizes this and doesn’t create a FormsIdentity based on the ticket. Furthermore, it removes the
expired cookie from the Request.Cookies collection to prevent any downstream logic from making
incorrect decisions based on the presence of the expired ticket.

This approach also has the side benefit of forms authentication performing date comparisons based on the
web server’s time. Although clock-skew probably exists between the current time on the web server and
the current time on a client’s machine, as long as the cookie gets sent to the web server, the expiration date
comparison is made using the server’s time.

One question that arises from time to time is whether the expiration date of the ticket is maintained in
Universal Coordinate Time (UTC). Unfortunately, when forms authentication was first implemented, it
used the local date-time representation for the expiration date. In ASP.NET 2.0, the team considered
changing this behavior through a configuration setting, but ultimately decided against it due to the
following problems:

❑ Changing to a UTC-based expiration would break authentication in mixed ASP.NET 1.1 and
ASP.NET 2.0 environments. The ASP.NET 1.1 servers would think the expiration date was in
local time, when in reality the time was offset by many hours from the local time (assuming that
your web server wasn’t sitting in the GMT time zone of course!).

❑ Although a configuration switch for ASP.NET 2.0 was a possibility, this would introduce a fair
amount of confusion around when to turn it on or off. If the UTC time handling was turned on,
and then later an ASP.NET 1.1 application was introduced into your web farm, ASP.NET 2.0
would have to be switched back to the original behavior.

In two scenarios, local times potentially introduce problems for computing expiration times.

❑ In the United States, twice during the year clocks are reset forward or backward by one hour.
When a forms authentication ticket that was issued before the clock reset is sent back to the web
server, the forms authentication feature incorrectly interprets the local time in that ticket. This
means that one of two things happens: an extra one hour is added to the ticket’s expiration, or
one hour is subtracted from the ticket’s expiration. However, because this occurs at 1 AM local
time (this for the United States time adjustments), there probably is not a lot of traffic on your
website that will encounter this oddity.

❑ If a website user browses across servers located in different physical time zones, and if the
servers in each time zone are not set to use the same time zone internally, servers will incor-
rectly interpret the expiration date. For example, if a website load balances some of its users
across servers on the West Coast and the East Coast of the United States, there is a three-hour
time difference between the two coasts. If a forms authentication ticket is initially issued on the
West coast at 10 AM local time, when the ticket is sent to a server on the East Coast, that server
is going to compare the 10AM issuance against the fact that it is now 1 PM in the afternoon. This
kind of discrepancy can lead to a user being forced to log in again.

195

Forms Authentication

08_596985 ch05.qxp 12/14/05 7:48 PM Page 195

Because of these potential discrepancies developers should be aware of the limitations of the local date
time value stored in the forms authentication ticket. In the case of the clocks being reset twice a year, the
current behavior is likely limited to only a few night owls.

However, if your websites use geographic load balancing, keep in mind the forms authentication behavior.
You could ensure that when a user has accessed a server in one geographic region, the user is routed back
to the same geographic region on all subsequent requests. Alternatively, you could have a standard time
zone that all servers use regardless of the time zone for the physical region that the servers are deployed
in. On the other hand, if all of your geographically dispersed servers lie in the same time zone (maybe
you have servers in New York City and others in Miami), you won’t run into the forms authentication
expiration issue.

Working with the DateTime Issue with Clock Resets
You don’t need to read this section unless you are really, really curious about what happens when the
server clock is reset! After struggling with this problem during the ASP.NET 2.0 design cycle, I figured I
would share the code snippets and results.

The following code is for a simple console application that simulates the problem with date time com-
parisons when the clock resets.

static void Main(string[] args)
{

DateTime dtNow = DateTime.Now;
Console.WriteLine(“Use a 30 minute timeout just like forms authentication.”);

Console.WriteLine(“The date value for now is: “ +
dtNow.ToShortTimeString());

Console.WriteLine(“Has the time expired: “ +
(dtNow.Add(new TimeSpan(0, 30, 0)) < DateTime.Now));

string breakHere = “Manually reset the clock “;

DateTime dtNow2 = DateTime.Now;
Console.WriteLine(“The date value for now after the clock reset is: “ +

dtNow2.ToShortTimeString());
Console.WriteLine(“Has the time expired: “ +

(dtNow.Add(new TimeSpan(0, 30, 0)) < DateTime.Now));

Console.ReadLine();

}

Running this inside of the debugger with a breakpoint in the dummy string assignment in the middle
allows you to set the clock forward or backward prior to the next date comparison. The comparison
against DateTime.Now is the same the comparison that FormsAuthenticationTicket makes when
you check the Expired property. Running the sample code, and setting the clock back one hour during
the breakpoint results in the following output:

Use a 30 minute timeout just like forms authentication.
The date value for now is: 10:27 AM
Has the time expired: False
The date value for now after the clock reset is: 9:27 AM
Has the time expired: False

196

Chapter 5

08_596985 ch05.qxp 12/14/05 7:48 PM Page 196

The net result is that after the clock was set back one hour (just as is done during the last Sunday of
October in most of the United States), an expiration time based on a 30-minute timeout will be valid
until 10:57 AM. However, with the clock reset back to 9:27 AM, the lifetime of a ticket with this
expiration is accidentally extended to 90 minutes.

Running the same code, but this time setting the clock forwards one hour results in the following output:

Use a 30 minute timeout just like forms authentication.
The date value for now is: 10:33 AM
Has the time expired: False
The date value for now after the clock reset is: 11:33 AM
Has the time expired: True

Now the original expiration of 11:03 AM (10:33 AM issuance plus a 30-minute lifetime) is considered
expired after the clock was set forward one hour (just as is done during the first Sunday in April). This
occurs because after the clock is reset, the original expiration time of 11:03 AM (which is considered a
local time) is compared against the newly updated local time of 11:33 AM and is considered to have
immediately expired.

The underlying technical reason for this similar behavior with forms authentication tickets is twofold:

❑ The serialization of the forms authentication ticket’s DateTime expiration uses a local time
conversion (DateTime.ToFileTime and DateTime.FromFileTime). As a result, whenever a
forms authentication ticket is deserialized on a web server, the .NET Framework hands back a
DateTime instance that contains a local time value.

❑ The Expired property on FormsAuthenticationTicket is always compared against
DateTime.Now. For the ticket to have been UTC capable, you really need the ticket to be
compared against DateTime.UtcNow.

There isn’t an easy workaround to this whole issue. Aside from physical deployment steps, you can take
to prevent part of the problem, the only ironclad way to ensure handling for all of these scenarios is for
you to take over much of the management and verification of the forms authentication ticket, including
the following:

❑ Manually construct the ticket and storing the UTC expiration date inside of the UserData property
of the FormsAuthenticationTicket.

❑ Manually issue the ticket.

❑ Hook a pipeline event prior to AuthenticateRequest (for example, BeginRequest), or hook the
Authenticate event on the FormsAuthenticationModule directly. Then manually crack open
and verify the ticket based on the UTC date previously stored in the UserData property of the
FormsAuthenticationTicket. If you detect a discrepancy between the UTC-based comparison,
and the value of FormsAuthenticationTicket.Expired, you could force a redirect to reissue
an updated cookie that contained an adjusted local time for the Expiration property.

Whether this effort is worth it depends on the specific kind of application you are trying to secure. I
suspect that for all but the most sensitive sites (for example, financial sites), the extra effort to deal with
time mismatches that occur twice a year will probably not warrant the investment in time and effort.

197

Forms Authentication

08_596985 ch05.qxp 12/14/05 7:48 PM Page 197

Securing the Ticket on the Wire
By default, the forms authentication ticket is digitally encrypted and signed using a keyed hash. This
security has been available since ASP.NET 1.0, and ASP.NET 2.0 uses the same security for the ticket.
However, there have been some new questions over hash security and support for new encryption
options in ASP.NET 2.0.

How Secure Are Signed Tickets?
Since ASP.NET 1.0, forms authentication tickets have been digitally signed using a keyed hash that uses
the SHA1 algorithm. When SHA1 was originally chosen years ago, it was considered a very secure
hashing algorithm with no likelihood of being cryptographically weakened. In 2005, there were reports
that SHA1 had been “broken” — in the cryptographic community someone reported a theoretical
collision-based attack on SHA1 hashes.

In summary, some researchers proposed a way to reduce the chance of inducing a hash collision in SHA1
to only 2^69 attempts. Normally, you would expect to take around 2^80 attempts to create a collision in
SHA1 (SHA1 hashes are 160 bits in length, so you can figure that on average you only need to flip half as
many possible bits to eventually find a piece of text that results in a matching SHA1 hash).

So, this new attack against SHA1 theoretically reduces the number of attempts by a pretty hefty
1208335523804270469054464 iterations (after notepad, I think calc.exe is the most frequently entered
command from the Run option in Windows). Suffice it say that that the current estimate of 2^69
attempts to find a SHA1 collision would still entail enormous computing resources. Depending on who
you believe, it takes a few million years with commodity hardware or a few years with specialized
cracking computers backed by the resources of the NSA. Regardless, it all boils down to the fact that
“breaking” SHA1 is still incredibly difficult and time-consuming and realistically isn’t feasible with
2005-class hardware.

However, in the cryptography community, weaknesses with hashing or encryption algorithms are like
snowballs rolling down a steep hill. Weaknesses start out small, but as time passes and attacks are better
understood, the combination of increased mathematical focus on these algorithms combined with ever
increasing computing power eventually leads to present-day algorithms being susceptible to viable
attacks.

Given the news about the SHA1 attack, there has been concern in the cryptography community around
the long-term viability of SHA1 as a hashing algorithm. Some companies will probably start moving to
SHA256 as a preemptive measure. There had been discussion on the ASP.NET team about whether one of
the stronger SHA variants should have been added to <machineKey /> (remember that <machineKey
/> defines the encryption and signing options for forms authentication among other things). However,
the team decided to stick with SHA1 because technically speaking, forms authentication really uses
HMACSHA1 (frequently referred to as a “keyed hash”), not just plain SHA1. In the case of <machineKey
/>, and thus forms authentication tickets, sticking with HMACSHA1 is a reasonable choice for the current
ASP.NET 2.0 product.

The transient nature of nonpersistent forms authentication tickets means that in future framework
releases, support for stronger SHA variants like SHA256 and SHA512 can be easily added. Such a
change would impact applications that persistently store forms authentication tickets. Any application
that truly needs security though should not be using persistent forms authentication tickets. The most
likely future impact for developers would be around edge cases dependent on the total length of the

198

Chapter 5

08_596985 ch05.qxp 12/14/05 7:48 PM Page 198

characters in a forms authentication cookie. The stronger SHA variants contain more bits, and thus
require more hex characters when converted to a string representation. This is normally more of a
concern for cookieless tickets where ticket lengths are constrained. I cover issues with cookieless forms
authentication tickets, including effective length restrictions, later in this chapter.

Another reason for sticking with SHA1 as the hashing algorithm for forms authentication is that, as men-
tioned earlier, ASP.NET really uses HMACSHA1 (specifically the System.Security.Cryptography
.HMACSHA1 class). This means that the value of the validationKey attribute in <machineKey /> is used
as part of the input to generate a SHA1 hash. As a result, for any attacker to force a hashing collision not
only does an attacker have to force a collision with the SHA1 result, an attacker also has to guess the key
that was used with HMACSHA1. Just brute forcing SHA1 isn’t sufficient, because an attacker needs to
know the validationKey that was provided as input to the HMACSHA1 algorithm.

You can set the validationKey attribute of <machineKey /> to a maximum length of 128 characters,
which represents a 64-byte key value. The minimum allowable length for valdationKey is 40 charac-
ters, which represents a 20-byte value. That means if you take advantage of the maximum allowable
length, you have a 512 bit random value being used as the key, and an attacker has to somehow guess
this value to create a viable hashing collision. I admit that I am definitely not a crypto-guru, so I can’t
state how much stronger keying with HMACSHA1 is versus the plain SHA1 algorithm. However, with
the added requirement of dealing with an unknown 512-bit key, the number of iterations necessary to
force a collision with HMACSHA1 far exceeds either 2^69 or 2^80 iterations.

One final note: developers may use a little-known method in the forms authentication API —
FormsAuthentication.HashPasswordForStoringInConfigFile. In ASP.NET 1.1, this was a conve-
nient way to obtain a hex-string representation of a hashed password using MD5 or SHA1. Although
originally intended for making it easier to securely populate the <credentials /> section contained
within <forms /> (since superseded by the more powerful and secure Membership feature in ASP.NET
2.0), customers have found this method handy as an easy-to-use interface to the hash algorithms. The
problem today though is that with MD5’s strength in question, and now SHA1 potentially declining in
strength, developers should really think about moving to SHA256 or SHA512 instead. However, the
HashPasswordForStoringInConfigFile was not updated in ASP.NET 2.0 to support any of the other
hash algorithms in the framework.

Instead, you will need to write code to accomplish what this method used to do (and I strongly encour-
age moving to other hashing algorithms over time even though it will take a little more work). To make
the transition a bit easier, the following console sample below shows how to perform the equivalent
functionality but with the extra option of specifying the desired hashing algorithm.

using System;
using System.Security.Cryptography;
using System.Collections.Generic;
using System.Text;

namespace HashPassword
{

class Program
{

static void Main(string[] args)
{

if ((args.Length < 2) || (args.Length > 2))
{

Console.WriteLine(“Usage: hashpassword password hashalgorithm”);

199

Forms Authentication

08_596985 ch05.qxp 12/14/05 7:48 PM Page 199

return;
}

string password = args[0];
HashAlgorithm hashAlg = HashAlgorithm.Create(args[1]);

//Make sure the hash algorithm actually exists
if (hashAlg == null)
{

Console.WriteLine(“Invalid hash algorithm.”);
return;

}

string result = HashThePassword(password, hashAlg);
Console.WriteLine(“The hashed password is: “ + result);

}

private static string HashThePassword(string password,
HashAlgorithm hashFunction)

{
if (password == null)

throw new ArgumentNullException(“The password cannot be null.”);

byte[] bpassword = Encoding.UTF8.GetBytes(password);
byte[] hashedPassword = hashFunction.ComputeHash(bpassword);

//Transform the byte array back into hex characters
StringBuilder s = new StringBuilder(hashedPassword.Length * 2);
foreach (byte b in hashedPassword)

s.Append(b.ToString(“X2”));

return s.ToString();
}

}
}

The main entry point performs a few validations, the important one being the confirmation of the hash
algorithm. You can indicate the hash algorithm using any of the string representations defined in the
documentation for HashAlgorithm.Create method. As you would expect, you can use strings such as
SHA1, SHA256, and SHA512. After the hash algorithm has been validated and created using the
HashAlgorithm.Create method, the actual work is performed by the private HashThePassword
method.

The password is converted to a byte representation because the hash algorithms operate off of byte
arrays rather than strings. Calling ComputeHash on the hash object results in the new hashed value.
Because you are probably hashing these values with the intent of storing them somewhere and retriev-
ing the values later, the hashed value is converted back into a string where two hex characters are used
to represent each byte value.

200

Chapter 5

08_596985 ch05.qxp 12/14/05 7:48 PM Page 200

I have included a few sample results from running this utility:

D:\HashPassword\bin\Debug>HashPassword pass!word MD5
The hashed password is: 0033A636A8B61F9EE199AE8FA8185F2C

D:\HashPassword\bin\Debug>HashPassword pass!word SHA1
The hashed password is: 24151F57F8F9C408380A00CC4427EADD4DDEBFC6

D:\HashPassword\bin\Debug>HashPassword pass!word SHA256
The hashed password is:
DE98DD461F166808461A3CA721C41200A7982B7EB12F32C57C62572C6F2E5509

D:\HashPassword\bin\Debug>HashPassword pass!word SHA512
The hashed password is:
E84C057E3B6271ACC5EF6A8A81C55F2AB8506B7F464929417387BDC603E49BC0278DFAF063066A98EE0
74B15A956624B840DADBA65EDCF896521167C5DDE61CE

As you would expect, the strong SHA variants result in substantially longer hash values. The simplicity
of the sample code shows how easy it is to start using stronger hash algorithms in your code. Because
the utility generates hashed values, you can validate user-entered passwords later with similar code; just
convert a user-entered password into either the hex string representation or byte representation of the
hash value, and compare it against the hash value that was previously generated with the sample code.
Also note that the sample code uses unkeyed hash algorithms. As a result, you will get the same hash
values for a given piece of input text regardless of the machine you the utility on. This is because
unkeyed hash algorithms apply the hash algorithm against the values you provide and do not inject any
additional key material as is done with an algorithm like HMACSHA1.

New Encryption Options in ASP.NET 2.0
In ASP.NET 1.0 and 1.1, you could encrypt the forms authentication ticket with either DES or 3DES.
Normally, most developers use 3DES because DES has already been cracked. 3DES, however, is considered
to be an old encryption algorithm circa 2005. In 2001, the National Institute of Standards and Technology
(NIST) published the details for a new common encryption standard called the Advanced Encryption
Standard (AES). AES is the replacement for 3DES, and over time most application developers and compa-
nies will shift away from 3DES and start using AES.

ASP.NET 2.0 added support for AES so that developers can easily take advantage of the new encryption
standard. AES has the benefit of supporting much longer keys than 3DES does. 3DES uses a 168-bit key
(essentially three 56-bit keys), whereas AES supports key lengths of 128, 192, and 256 bits. To support the
new encryption algorithm, ASP.NET 2.0 introduces a new configuration attribute in the <machineKey>
section:

<machineKey ... decryption=[Auto|DES|3DES|AES] />

By default, the decryption attribute of <machineKey /> is set to Auto. In this case, ASP.NET 2.0 will
look at the value in the decryptionKey attribute of <machineKey /> to determine the appropriate
encryption algorithm. If a 16-character value is used for decryptionKey, ASP.NET 2.0 chooses DES as the
encryption algorithm (16 hex characters equate to an 8-byte value, which is the number of bytes needed
for a DES key). If a longer string of characters is set in decryptionKey, ASP.NET 2.0 chooses AES.

201

Forms Authentication

08_596985 ch05.qxp 12/14/05 7:48 PM Page 201

In the .NET Framework, if you look for a class called “AES” or “Advanced Encryption Standard” you
will not find one. Instead, there is a class in the System.Security.Cryptography namespace
called RijndaelManaged. Because the AES encryption standard uses the Rijndael encryption
algorithm, ASP.NET used the RijndealManaged class when you choose AES.

If an application’s decryptionKey attribute is at the default setting of Autogenerate, IsolateApps,
ASP.NET will automatically use the randomly generated 24-byte (192-bit) value that was created for the
current process or application identity (Chapter 1 covered how auto-generated keys are stored). This
also results in ASP.NET automatically selecting AES as the encryption option.

You can see from this the symmetry in byte sizes for keys between 3DES and AES. In 3DES, the three 56-
bit keys need to be packaged into three 64-bit values (8 bits in each value are unused as key material by
3DES), which works out to a 192-bit value. The same auto-generated key though can be used with AES
because AES supports 192-bit key lengths as well.

If you choose to explicitly specify a value for decryptionKey (and I would highly recommend this
because explicit keys are consistent values that you can depend on), then you should ensure that the text
value you enter in the <machineKey /> section is one of the following shown in the following table.

Desired AES Key Length in Bits Number of Hex Characters Required for decryptionKey

128 32

192 48

256 64

If you are working on anything other than hobby or personal website always do the following with
<machineKey>:

1. Explicitly set the decryptionKey and validationKey attributes. Avoid using the auto-generated
options.

2. Explicitly set the new decryption attribute to the desired encryption algorithm. Choose either
3DES for backward compatibility (more on this in later) or AES.

3. Explicitly set the validation attribute. Choose SHA1, 3DES, or AES (remember that this setting is
overloaded for viewstate encryption handling hence the oddity of 3DES or AES specified for a
validation algorithm). MD5 is not recommended because it isn’t as strong as SHA1. And of
course, just to add to the confusion, choosing SHA1 here really means that forms authentication
uses the keyed version: HMACSHA1.

Depending on the auto-generated keys is fraught with peril. For a personal site or a hobbyist site that
lives on a single machine, the auto-generated keys are convenient and easy to use. However, any website
that needs to run on more than two machines has to use explicit keys because auto-generated keys by
definition vary from machine to machine.

There is another subtle reason why you should avoid auto-generated keys. Each time you run
aspnet_regiis with the ga option for different user accounts, the next time ASP.NET starts up in a
worker process that uses these new credentials, a new set of auto-generated keys is generated! This
means if you persistently store any encrypted information (maybe persisted forms authentication tickets
for example) that depends on stable values for the key material, you are only one command-line invoca-

202

Chapter 5

08_596985 ch05.qxp 12/14/05 7:48 PM Page 202

tion of aspnet_regiis away from accidentally changing the key material. Also when you upgrade an
ASP.NET 1.1 site to ASP.NET 2.0, the auto-generated keys have all been regenerated with new values. I
cover the implications of this in the section about upgrade implications from ASP.NET 1.1 to 2.0.

Generating Keys Programmatically
Encouraging developers to use explicit keys isn’t very useful if there isn’t a way to generate the necessary
keys in the first place. Following is a simple console application that outputs the hex representation of a
cryptographically strong random key given the number of desired hex characters. If you create similar
code on your machine, make sure that the project includes System.Security in the project references.

using System;
using System.Security.Cryptography;
using System.Collections.Generic;
using System.Text;

namespace GenKeys
{
class Program
{
static void Main(string[] args)
{

if ((args.Length == 0) || (args.Length > 1))
{

Console.WriteLine(“Usage: genkeys numcharacters”);
return;

}

int numHexCharacters;
if (!Int32.TryParse(args[0], out numHexCharacters))
{

Console.WriteLine(“Usage: genkeys numcharacters”);
return;

}

if ((numHexCharacters % 2) != 0)
{

Console.WriteLine(“The number of characters must be a multiple of 2.”);
return;

}
//Two hex characters are needed to represent one byte
byte[] keyValue = new byte[numHexCharacters / 2];

//Use the crypto support in the framework to generate the random value
RNGCryptoServiceProvider r = new RNGCryptoServiceProvider();
r.GetNonZeroBytes(keyValue);

//Transform the random byte values back into hex characters
StringBuilder s = new StringBuilder(numHexCharacters);
foreach (byte b in keyValue)

s.Append(b.ToString(“X2”));
Console.WriteLine(“Key value: “ + s.ToString());

}
}
}

203

Forms Authentication

08_596985 ch05.qxp 12/14/05 7:48 PM Page 203

After some basic validations, the program determines the number of bytes that are needed based on the
requested number of hexadecimal characters: Because it takes two hex characters to represent a single
byte value, you simply divide the command line parameter by two. To create the actual random value,
call the RNGCryptoServiceProvider class in the System.Security.Cryptography namespace. In
this example, I requested that the result not include any byte values of zero.

Converting the byte array back into a hex string is also pretty trivial. The code simply iterates through
the byte array of random values, converting each byte into its string equivalent. The “X2” string format
indicates that each byte value should be converted to hexadecimal format, and that an extra “0” charac-
ter should be included where necessary to ensure that each byte is represented by exactly two characters.
If you don’t do this, byte values from zero to fifteen require only a single hex character.

The following example of using the tool is generating a 64-character (256-bit) value suitable for use with
the AES encryption option.

D:\GenKeys\bin\Debug>genkeys 64
Key value: 7D6E97C7B0685041B5EA562B087C7A6A0718947325E677C10817432020BEA6BF

Setting Cookie-Specific Security Options
Most developers probably use forms authentication in cookie mode. In fact, unless you happened to use
the Microsoft Mobile Internet Toolkit (MMIT) in ASP.NET 1.1, ASP.NET could not automatically issue
and manage tickets in a cookieless format.

In ASP.NET 1.1 the requireSSL attribute on the <forms /> element enabled developers to require SSL
when handling forms authentication tickets carried in a cookie. The slidingExpiration attribute on
<forms /> allowed you to enforce whether forms authentication tickets would be automatically
renewed as long as a website user stayed active on the site. In addition to these options, ASP.NET 2.0
introduces a new security feature for the forms authentication ticket by always setting the HttpOnly
property on the cookie to true.

requireSSL
The HttpCookie class has a property called Secure. When this property is set to true, it includes the
string secure in the Set-Cookie command that is sent back to the browser. Browsers that recognize
and honor this cookie setting, send the cookie back to the web server only if the connection is secured
with SSL. For any high-security site, the requireSSL attrbitue should always be set to true to maxi-
mize the likelihood that the cookie is only communicated over a secure connection.

However, depending on client-side behavior is always problematic. The browser may not support secure
cookies (unlikely but still possible with older browsers). Additionally, not every user on a website is a
person sitting in a chair using a browser. You may have users that are really programs making HTTP
calls to your site, in which case it is highly likely that such programs don’t bother looking at or honoring
any of the extended cookie settings like the secure attribute. In these cases, it becomes possible for the
forms authentication cookie to be sent back to the web server over an insecure connection.

The forms authentication feature protects against this by explicitly checking the state of the connection
before it starts processing a forms authentication cookie. If the FormsAuthenticationModule receives
a valid cookie (meaning, the cookie decrypts successfully, the signature is valid, and the cookie has not

204

Chapter 5

08_596985 ch05.qxp 12/14/05 7:48 PM Page 204

expired yet), the module ignores it and clears the cookie from the Request collection if the requireSSL
attribute in the <forms /> configuration section was set to true and ASP.NET detects that the connec-
tion is not secure. From a user perspective the cookie will not be used to create a FormsIdentity, and
as a result no authenticated identity is set on the context’s User property. As a result, the user will be
redirected to the login page. Programmatically, the check is easy to do and looks similar to the following:

if (FormsAuthentication.RequireSSL && (!Request.IsSecureConnection))

Both the requireSSL setting and the secured state of the current HTTP connection are available from
public APIs.

As a quick example, you can configure an application to use forms authentication but not require an SSL
connection, as shown here:

<authentication mode=”Forms”>
<forms requireSSL=”false” />

</authentication>

Run the application and login so that a valid forms authentication ticket is issued. Then change the
configuration for <forms /> to require SSL:

<forms requireSSL=”true” />

Now when you refresh the page in your browser, you’re redirected to the login page. If you attempt to
log in again, the FormsAuthentication class will throw an HttpException when the code attempts to
issue a ticket. For example, with code like the following:

FormsAuthentication.RedirectFromLoginPage(“testuser”, false);

you encounter the HttpException if you attempt this when the connection is insecure. Although you
would probably think this is unlikely to occur (if you set requireSSL to true in configuration, you
probably have SSL on your site), it is possible to run into this behavior when testing or developing an
application in an environment that doesn’t have SSL. Because returning unhandled exceptions to the
browser is a bad thing, you should defensively code for this scenario with something like the following:

protected void Button1_Click(object sender, EventArgs e)
{

if (FormsAuthentication.RequireSSL && (!Request.IsSecureConnection))
{

lblErrorText.Text = “You can only login over an SSL connection.”;
txtPassword.Text = String.Empty;
txtUsername.Text = String.Empty;
return;

}
else
{

//Authenticate the credentials here and then...
FormsAuthentication.RedirectFromLoginPage(txtUsername.Text, false);

}
}

205

Forms Authentication

08_596985 ch05.qxp 12/14/05 7:48 PM Page 205

The check for the security setting and the current connection security duplicate the similar check that is
made internally in a number of places in forms authentication. However, by explicitly checking for this,
you avoid the problem of the forms authentication feature throwing any unexpected exceptions. It also
gives you the chance to tell the browsers users to use an HTTPS connection to log in. This type of check
should be used when calling any forms authentication APIs that may issue cookies such as
RedirectFromLoginPage, and SetAuthCookie.

The requireSSL attribute applies mainly to forms authentication tickets issued in cookies. If an
application uses cookieless tickets, or if it has the potential to issue a mixture of cookie-based and cookie-
less tickets, it is possible to send cookieless tickets over a non-SSL connection. Although ASP.NET still
disallows you from issuing cookieless tickets over insecure connections, ASP.NET accepts and processes
cookieless tickets received over non-SSL connections. Keep this behavior in mind if you set
requireSSL to true and still support cookieless tickets.

HttpOnly Cookies
HttpOnly cookies are a Microsoft-specific security extension for reducing the likelihood of obtaining
cookies through client script. In ASP.NET, the System.Web.HttpCookie class adds the HttpOnly
property. If you create a cookie and set this property to true, ASP.NET includes the HttpOnly string in
the Set-Cookie header returned to the browser. This is a Microsoft-specific extension to the cookie
header. I am only aware of it being supported on IE6 SP1 or higher, although there are discussions on the
Internet about building in support for it on other browsers. Most other browsers just ignore the
HttpOnly option in the cookie header, so setting HttpOnly for a cookie is usually innocuous. However
there are some cases of browsers that will drop a cookie with the HttpOnly option (for example, Internet
Explorer 5 being one of them). ASP.NET’s cookie writing logic will not emit the HttpOnly option for
these cases.

Technically the way HttpOnly cookies work is that if a piece of client-side script attempts to retrieve the
cookie, Internet Explorer honors the HttpOnly setting and won’t return a cookie object. In ASP.NET 2.0
the decision was made to enforce HttpOnly cookies all the time for forms authentication. This means
that all forms authentication tickets contained in cookies issued by the FormsAuthentication API (for
example, RedirectFromLoginPage and SetAuthCookie) will always have the HttpOnly setting
appended to them.

There was a fair amount of discussion about this internally because the change has the potential to be a
pain for some customers. However, given the fact that many developers are not aware of the HttpOnly
option (its original introduction was buried somewhere in IE6 SP1) having a configuration option to
change this behavior didn’t seem like a great idea. If few people know about a certain capability, adding
a configuration option to turn the capability on doesn’t really do anything to get the word out about it.

Of course, ASP.NET 2.0 could still have added support for HttpOnly cookies by defaulting to turning
the behavior on and then exposing a configuration setting to turn it back off again. The counterpoint to
this option is that doing so gives developers a really easy way to open themselves up to cross-site script-
ing attacks that harvest and hijack client-side cookies. The reality is that if developers need a way to grab
the forms authentication cookie client-side, the forms authentication APIs can still be pretty easily used
to manually create the necessary cookie, but without the HttpOnly option turned on.

Lest folks think that the pain around the decision to enforce HttpOnly for forms authentication tickets is
limited to the developer community at large, the ASP.NET team has actually pushed back a number of
times when internal groups asked for HttpOnly to be turned off. Repeatedly, theASP.NET team has seen
that architectures that depend on retrieving the forms authentication ticket client-side are flawed from a

206

Chapter 5

08_596985 ch05.qxp 12/14/05 7:48 PM Page 206

security perspective. If you really need the forms authentication ticket to be available from a client appli-
cation, using the browser’s cookie cache as a surrogate storage mechanism is a bad idea. In fact, scenar-
ios that require passing a forms authentication ticket around on the client-side frequently also depend on
the need for persistent tickets (if the ticket were session-based, there would be no guarantee that the
cookie would still be around for some other client application). So, now you start going down the road
of persistent cookies that are retrievable with a few lines of basic JavaScript, which isn’t a big deal for
low security sites, but definitely something to avoid in any site that cares about security.

To see how the new behavior affects forms authentication in ASP.NET 2.0, you can write client-side
JavaScript like the sample shown here.

<html>
<head><title>You were logged in!</title></head>
<body>
<script language=javascript>
function ShowAllCookies()
{

var c = document.cookie;
alert(c);

}
</script>

<form id=”form1” >
<input type=button onclick=”ShowAllCookies();” value=”Click to see cookies.” />

</form>
</body>
</html>

If you run this code on an ASP.NET 1.1 site that requires forms authentication, you get a dialog box that
conveniently displays your credentials such as the one shown in Figure 5-1:

Figure 5-1

If you run same client-side script in an ASP.NET 2.0 application after logging in, you won’t get anything
back. Figure 5-2 shows the results on ASP.NET 2.0:

Figure 5-2

207

Forms Authentication

08_596985 ch05.qxp 12/14/05 7:48 PM Page 207

As mentioned earlier, if you really need client-side access to the forms authentication cookie, you need to
manually issue the cookie and to manage reissuance of the authentication cookie in case you want to
support sliding expirations. (With sliding expirations, FormsAuthenticationModule may reissue the
cookie on your behalf.)

Although HttpOnly cookies make it much harder to obtain cookies through a client-side attack, it is still
possible to trick a web server into sending back a page (including cookies) in a way that bypasses the pro-
tections within Internet Explorer. There are a number of discussions on the Internet about using the
TRACE/TRACK command to carry out what is called a cross-site tracing attack. In essence, these commands
tell a web server to send a dump of a web request back to the browser, and with sufficient client-side code,
you can parse this information and extract the forms authentication cookie. Luckily, this loophole can be
closed by explicitly disabling the TRACE/TRACK command on your web servers and/or firewalls.

slidingExpiration
You may not think of the sliding expiration feature as much of a security feature, but this setting does
have a large effect on the length of time that a forms authentication cookie is considered valid. By default
in ASP.NET 2.0 sliding expiration is enabled (the slidingExpiration attribute is set to true in <forms
/>). As long a website user sends a valid forms authentication cookie back to the web server before the
ticket expires (30-minute expiration by default), the FormsAuthenticationModule periodically refreshes
the expiration date of the cookie. The FormsAuthentication.RenewTicketIfOld method is used to
create an updated ticket if more than 50 percent of the ticket’s lifetime has elapsed.

The security issue is that with sliding expirations a website user could potentially remain logged on to a
site forever. Even with the 30 minute default, as long as something or someone sends a valid ticket back
to the server every 29 minutes and 59 seconds, the ticket will continue to be valid. On private computers
or computers that are not in public areas, this really isn’t an issue. However, for computers in public
areas like kiosks or public libraries, if a user logs into a site and doesn’t logout, the potential exists for
anyone to come along and reuse the original login session.

You can’t control the behavior of your customers. (Even with a logout button on a website, only a small
percentage of users actually use it.) You do, however, have the option to disable sliding expirations.
When slidingExpiration is set to false, regardless of how active a user is on the website, when the
expiration interval passes the forms authentication ticket is considered invalid and the website user is
forced to log in again. Of course, this leads to the problem of determining an appropriate value for the
timeout attribute. Setting this to an excessively low interval annoys users, whereas setting it to a long
interval leaves a larger window of opportunity for someone’s forms authentication ticket to be reused.

Using Cookieless Forms Authentication
ASP.NET 2.0 introduces automatic support for issuing and managing forms authentication tickets in a
cookieless manner. In Chapter 1, you learned that earlier versions of ASP.NET had a mechanism for man-
aging the session state identifier in a cookieless manner. ASP.NET 2.0 piggybacks on this mechanism to
support cookieless representations of forms authentication tickets, as well as anonymous identifiers (this
second piece of information is only used with the Profile feature). You can enable cookieless forms authen-
tication simply by setting the new cookieless attribute to in the <forms /> configuration section:

<forms ... cookieless=”UseUri” />

208

Chapter 5

08_596985 ch05.qxp 12/14/05 7:48 PM Page 208

The following table lists the options for the cookielessattribute.

Cookieless Attribute Value Descrption

UseUri Always issues the forms authentication ticket so
that it shows up as part of the URL. Cookies are
never issued.

UseCookies Always issues the forms authentication ticket in a
cookie.

AutoDetect Detects whether the browser supports cookies
through various heuristics. If the browser does
appear to support cookies, issues the ticket on the
URL instead.

UseDeviceProfile Finds a device profile for the current browser
agent, and based upon the information in the
profile, uses cookies if the profile indicates they are
supported. This is the default setting in ASP.NET
2.0. Information for the device profiles is stored in
the Browsers subdirectory of the framework’s CON-
FIG directory. ASP.NET ships with a set of browser
information, including cookie support, for widely
used browsers. You can edit the files in this direc-
tory, or add additional setting files, and then make
the changes take effect with the aspnet_reg-
browsers.exe tool.

The default setting for the cookieless attribute is UseDeviceProfile. This means that your site will
issue a mixture of cookie-based and URL-based forms authentication tickets, depending on the type of
browser agent accessing your website. If you don’t want to deal with some of the edge cases that occur
when using cookieless tickets, you should set the cookieless attribute to UseCookies.

The nice thing about cookieless support in ASP.NET 2.0 is that other than changing a single configuration
attribute, forms authentication continues to work. As a very basic example, issuing a cookieless forms
authentication ticket on a login page with the familiar FormsAuthentication.RedirectFromLoginPage
method results in a URL that looks something like the following (the URL is wrapped because the cookie-
less representation bloats the URL size):

http://localhost/Chapter5/cookieless/(F(fEyM7SWsyey0thapoZubKAefgscwcjg_ycZgHjS9kPF
1Z0FduNGYQARyDiB4e5UmfSm6llaQ9o-5hUpLVdx4oIYrqg8vecM15Yvi-bD3Xb41))/Default.aspx

The bold portion of the URL is, of course, the forms authentication ticket. Behind the scenes, as was
described in Chapter 1, aspnet_filter.dll manages the hoisting of the cookieless values out of the
URL and converting it into a custom HTTP header. Internally, cookieless features such as forms authenti-
cation rely on internal helper classes to move data from the custom HTTP header into feature specific
classes, such as FormsAuthenticationTicket. If you dump the HTTP headers for the page in the pre-
vious URL, you will see the end result of the work performed by aspnet_filter.dll:

HTTP_ASPFILTERSESSIONID=F(fEyM7SWsyey0thapoZubKAefgscwcjg_ycZgHjS9kPF1Z0FduNGYQARyD
iB4e5UmfSm6llaQ9o-5hUpLVdx4oIYrqg8vecM15Yvi-bD3Xb41)

209

Forms Authentication

08_596985 ch05.qxp 12/14/05 7:48 PM Page 209

Unfortunately, in ASP.NET 2.0, the general-purpose class used internally for parsing the cookieless head-
ers is not available as a public API. So, unlike the HttpCookie class, which gives developers the flexibil-
ity to create their own custom cookie-based mechanisms, cookieless data in ASP.NET 2.0 is supported
only for the few features like forms authentication that have baked the support into their APIs.

Cookieless Options
You have seen the various cookie options that you can set on the cookieless attributes. Of the four
options, UseCookies and UseUri are self-explanatory. However, I want to drill in a bit more on the
other two options: AutoDetect and UseDeviceProfile.

AutoDetect
The AutoDetect option comes into play when forms authentication needs to determine whether a
forms authentication ticket should be placed on the URL. ASP.NET 2.0 will go through several checks to
see whether the browser supports cookies. Although going through this evaluation means that the initial
ticket issuance takes a little longer, it does mean that for each and every new user on your website, you
have a very high likelihood of being able to issue the forms authentication ticket in a way that can be
received by the user’s browser. If new browsers are introduced, and the device profile information is not
available yet on your server (an extremely common case in the mobile world where there seems to be a
new device/browser/. . . every day), the AutoDetect option is very handy.

When a browser first accesses a site, it is requesting one of three possible types of pages:

❑ Pages that allow anonymous users and, thus, do not require authentication.

❑ The forms authentication login page for the site.

❑ A secured page that requires some type of authenticated user. In this case, authorization will
eventually fail and force a redirect back to the login page.

Phase 1 of Auto-Detection
In the first case, forms authentication lies dormant and the auto-detect setting has no effect. After a
browser accesses the types of pages indicated by the second and third bullet points, the
FormsAuthenticationModule starts the process to detect whether or not the browser supports cookies.
Depending on whether the browser is accessing the login page or a secured page, the internal path lead-
ing to auto-detection is a bit different. However, from a functionality perspective the browser experi-
ences the same behavior.

The detection process goes through the following steps in sequence:

1. A check is made using the browser capabilities object available from Request.Browser. The
information returned by this object is based on an extensive set of browser profiles stored on
disk in the Browsers directory. If the browser capabilities definitively indicate that cookies are
not supported, there is no additional detection needed. Short-circuiting the auto-detection pro-
cess at this point saves time and unnecessary redirects. For classes of devices that simply do not
support cookies, there isn’t any point in probing further in an attempt to send cookies.

2. If the browser capabilities for the current request indicate that cookies are supported, then a
check is made to see if auto-detection occurred previously. If a previous browse path through
the site already occurred, and if the results of that browsing indicated that cookies weren’t sup-

210

Chapter 5

08_596985 ch05.qxp 12/14/05 7:48 PM Page 210

ported, the URL will already contain extra information indicating that this check occurred.
Normally though, a user browses to the login page or a secured page for the first time, and thus
auto-detection will not already have occurred.

3. A check is made to see if cookies have been sent with the request. For example, your site may
have already issued some other kind of cookies previously when the user was browsing around.
In this case, the mere presence of cookies sent back to the server is an indication that cookies are
supported.

4. If all of the previous checks fail, ASP.NET adds some information to the current response. It
adds a cookie to Response.Cookies called “AspxAutoDetectCookieSupport.” It also appends
a query-string name-value pair to the current request path — the query-string variable is also
called “AspxAutoDetectCookieSupport.” Because the only way to get this query-string variable
onto the path in a way that the browser can replay it, a redirect back to the currently requested
page is then issued.

The net result of this initial detection process is that for the nominal case of a browser first accessing the
login page, or a secured page, a redirect to the login page always occurs. In the case that the user was
attempting to directly access a secured page, the extra query-string and cookie information is just piggy-
backed onto the redirect that normally occurs anyway. On the other hand, if the user navigated to the
login page directly, then ASP.NET forces a redirect back to the login page in order to set the query-string
variable. In the browser’s address bar, the end result looks something like the following:

http://demotest/chapter5/cookieless/login.aspx?AspxAutoDetectCookieSupport=1

At this point if the browser supports cookies, there is also a session cookie held in the browser’s cookie
cache called “AspxAutoDetectCookieSupport.” So, there is potentially both a query-string variable and a
cookie value client-side in the browser waiting to be sent back to the web server. Of course, on browsers
that don’t support cookies, only they query-string variable will exist.

Phase 2 of Auto-Detection
After the user types in credentials and submits that login page back to the server, the auto-detect steps listed
earlier are evaluated again because the FormsAuthenticationModule always triggers these steps for the
login page. However, because the auto-detection process already started, one of two decisions is made:

❑ If the browsers supports cookies, then the auto-detect cookie will exist and the forms authenti-
cation feature will determine that cookies are supported.

❑ If the auto-detect cookie was not sent back by the browser, then a check is made for the auto-
detect query-string variable. Because this query-string variable now exists, ASP.NET will add a
cookieless value to the URL that indicates the browser does not support cookies. A value of
“X(1)” is inserted into the URL and will exist in all subsequent requests that the browser makes
to the site for the duration of the browser session.

Phase 3 of Auto Detection
The code in the login page needs to process the credentials that were posted back to it at this point. If the
credentials are invalid, then the browser remains on the login page, and Phase 2 will repeat itself when the
user attempts another login. If the credentials are valid though, then usually either FormsAuthentication
.RedirectFromLoginPage or FormsAuthentication.SetAuthCookie is called to create the forms
authentication ticket and package it up to send back to the client.

211

Forms Authentication

08_596985 ch05.qxp 12/14/05 7:48 PM Page 211

In the case that the browser supports cookies, the ticket is simply packaged into a cookie and added to the
Response.Cookies collection. However, if the auto-detect process determined that cookies are not sup-
ported then both of these methods will package the hex string representation of the forms authentication
ticket into the URL. The general form of the cookieless ticket in the URL is F(ticket value here).

The sample address bar below shows the results of a successful login on a site that uses auto-detection.
Note how both the “X” and the “F” identifiers exist in the URL — one indicating the cookies are not sup-
ported, and the other containing the cookieless ticket. To make it bit easier to see everything the “X” and
“F” identifiers are bolded.

http://demotest/Chapter5/cookieless/(X(1)F(Tcno7kjNtrYWYXyUPpG1x3Cenve7uFN6qdXVkkSQ
BiyHig-VFOYxM55reX7q3waJL3aDDv-kz_X_YAlkQfjcIA2))/default.aspx

Subsequent Authenticated Access
After logging in, there really aren’t additional phases to the initial auto-detection process. Auto-detection
has occurred, and the results of the process are now indelibly stamped into the URL and maintained on
each and every request. ASP.NET automatically takes care of hoisting the embedded URL values into the
custom header using aspnet_filter.dll, and various downstream components like forms authentica-
tion contain the necessary logic to check for cookieless artifacts (such as the X identifier and the F ticket
in the URL).

How to Simulate This in Internet Explorer
It can be a bit of a pain to actually get auto-detection to slip into cookieless mode using a browser like
Internet Explorer. By default, IE of course supports cookies, so setting “AutoDetect” in config will only
show you the parts of the first two phases of auto-detection before defaulting to using cookies. However,
with a bit of rooting around inside of IE you can force it to reject or prompt for cookies — at which point
you have a way to simulate a cookieless browser.

First, go to Tools ‡ Internet Options and click on the Privacy tab. Clicking the Advanced button pops up
another dialog box as shown in Figure 5-3. In my case, I set the options for cookies to Prompt, though if
you don’t want the hassle of always rejecting cookies you can just set the options to Block.

Figure 5-3

212

Chapter 5

08_596985 ch05.qxp 12/14/05 7:48 PM Page 212

Now you can navigate to your website to test it in cookieless mode. However, you must request your
pages using the machine name of your web server. Looking at the last few URL samples, notice how the
URL starts with a machine name (http://demotest) as opposed to the usual http://localhost. If
you use http://localhost the cookie options you set on the Privacy tab are ignored.

UseDeviceProfile
Device profiles are another mechanism for determining browser cookie support. Although an exhaustive
description of devices profiles is outside the scope of this book (the current browser profiles include
reams of information that mobile developers care about but that aren’t terribly relevant to security or
forms authentication), it is still important to understand where the profiles are located and, in general,
how profile information affects detection of cookie support.

UseDeviceProfile is the default setting of the cookieless attribute in forms authentication. This means
that whenever the forms authentication feature needs to determine whether a browser supports cookies,
it looks only at the values of Request.Browser.Cookies and
Request.Browser.SupportsRedirectWithCookie. If both those values return true, then forms
authentication issues tickets in a cookie — otherwise, it uses the F() identifier in the URL.

The information in the Browser property, which is an instance of
System.Web.HttpBrowserCapabilities, comes from browser information files located at:

%windir%\Microsoft.NET\Framework\v2.0.50727\CONFIG\Browsers

Note that the actual version number for the framework may be slightly different at release. This direc-
tory contains two dozen different files, all ending in .browser. ASP.NET internally parses the informa-
tion in the .browser files, and based on the regula- expression-based matching rules defined in these
files, determines which .browser file applies based on the user agent string for a specific request.

For example, when running Internet Explorer on my machine, the user agent string that IE sends down
to the web server looks like:

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.2; .NET CLR 1.1.4322; .NET CLR
2.0.50309)

If you look in the Browsers subdirectory, and open up the file ie.browser, you will see that the browser
capabilities files define a regular expression matching rule like the following:

<userAgent match=”^Mozilla[^(]*\([C|c]ompatible;\s*MSIE
(?’version’(?’major’\d+)(?’minor’\.\d+)(?’letters’\w*))(?’extra’[^)]*)” />

Just from glancing at the regular expression syntax you can see how a match occurs, anchored around
the Mozilla and MSIE identifiers in the user agent string. When ASP.NET evaluates this regular expres-
sion at runtime, and finds a match, it consults the other information in the ie.browser file and uses it
for the information returned in Request.Browser. For example, if you were to query Request
.Browser.TagWriter, you would get back the string System.Web.UI.HtmlTextWriter. I use the
TagWriter property as an example because without the browser capabilities files, there is no way
ASP.NET could possibly come up with a .NET Framework class name just from the information sent in
the HTTP request headers.

213

Forms Authentication

08_596985 ch05.qxp 12/14/05 7:48 PM Page 213

If you open up ie.browser in Notepad, and scroll down a bit to the <capabilities> section, you see
a number of individual <capability> elements. The one of interest to forms authentication is:

<capability name=”cookies” value=”true” />

Because this capability is set to true, in the default out-of-box ASP.NET configuration, forms authentica-
tion will always assume that IE browsers support cookies. You can verify this behavior by doing the fol-
lowing:

1. Change the value in the capability to false and save the .browser file.

2. Recompile the browser capabilities assembly. You can do this by running the command aspnet
_regbrowsers -I from the framework install directory. This has the effect of reparsing all of
the .browser files and then encapsulating their settings inside of a GAC’d assembly. Note that
if you fail to do this the changes made in step 1 will not have any effect.

3. Within Internet Explorer, make sure you carried out the steps described earlier in the “How To
Simulate This” section.

4. Set the cookieless attribute in web.config to UseDeviceProfile.

Now if you request an authenticated page in the browser, forms authentication will use the device pro-
file information, and thus automatically assume that the browser doesn’t support cookies. No auto-
detection mechanism is necessary. When you log in, forms authentication will place the forms
authentication ticket in the URL inside of the F() characters. Unlike the auto-detect case though, there
will be no X(1) in the URL, because the device profile deterministically indicates that the browser does
not support cookies.

Although editing the IE device profile is a bit contrived, device profiles provide a fixed way for determin-
ing cookie support in a browser. The downside of UseDeviceProfile is that it can’t accommodate new
browser types that have totally new user agent strings — for example, if I created a new browser that sent
back a user agent string My New Browser, this isn’t going to match any of the predefined regular expres-
sions defined in the various browser capabilities files. In this case, ASP.NET will simply fallback to the
settings in the Default.browser file, which may or may not contain correct information. As a side note,
Default.browser indicates that cookies are supported, so any user agent that is not recognized by the
myriad .browser files shipping in ASP.NET 2.0, will automatically be considered to support cookies.

Another limitation of UseDeviceProfile is that device profiles don’t honor the intent of the browser
user. A website user may intentionally disable cookies in any of the major desktop browsers. However,
with UseDeviceProfile the user can never log in to your site because ASP.NET will always assume
that cookies are supported. Each time the user attempts to log in, ASP.NET will send the forms authenti-
cation cookie back, and of course the browser will promptly reject it. Then when the browser redirects to
a secured page, the lack of the cookie will simply dump the browser right back to the login page.

Although you definitely have the option of telling website customers up front that cookies are required
to login, you also have the option of switching to AutoDetect instead. If you have a sizable percentage of
customers that do not want to use cookies (or perhaps you have regulations that mandate support for
cookieless clients), then the AutoDetect option may be a better choice than UseDeviceProfile.
However, make sure to read the topic about security implications of cookieless tickets in a little bit so
that you understand the ramifications of placing the authentication ticket in the URL.

214

Chapter 5

08_596985 ch05.qxp 12/14/05 7:48 PM Page 214

Replay Attacks with Cookieless Tickets
Although both cookie-based and cookieless forms authentication tickets are susceptible to replay attacks,
the ease with which a cookieless ticket can be disseminated makes it especially vulnerable. As an example
of how easy it is to reuse a cookieless ticket, try the following sequence of steps on an ASP.NET site that is
configured to run in cookieless mode.

1. Log in with valid credentials and confirm that the cookieless ticket shows up in the address bar
of the browser.

2. Copy and paste the contents of the address bar into some other location like notepad.

3. Shut down the browser.

At this point, you have your very own forms authentication ticket sitting around and available for
replay for as long as the expiration date inside of the authentication ticket remains valid. If you paste the
URL back into a new instance of your browser, you will successfully navigate to the page indicated in
the URL. If you know the names of other pages in the site, you can edit the pasted URL — the important
and interesting piece of the URL is the forms authentication ticket that is embedded within it.

Probably the most likely potential for security mischief with cookieless tickets in this case is not a
malicious user or hacker. Rather, website users that don’t understand the ramifications of having the
forms authentication ticket in the URL are the most likely candidates for accidentally inflicting a replay
attack on themselves. Imagine the following scenario:

1. A website customer visits an e-commerce site that issues cookieless authentication tickets. The
customer adds some items to a shopping cart and then logs in to start the checkout process.

2. At some part into the checkout process, the customer has a question — maybe about price. So,
the customer copies the URL into an email message. Or for a nontechnical user, just selects File
➪ Send ➪ Link by Email. Now the customer has a URL with a valid forms authentication ticket
sitting in an email message.

3. When the recipient receives the message, the recipient clicks the URL in the email (or the URL
may be packaged as a clickable URL attachment), and surprise! The recipient just “logged in” to
the e-commerce site as the original user.

Given the default of sliding expirations in ASP.NET 2.0 forms authentication, after a cookieless ticket
makes it outside of the boundaries of the browser session where the ticket was originally issued, it can
be reused as long someone uses the ticket before the expiration period is exhausted.

This scenario gives rise to a very specific piece of security guidance when using cookieless forms
authentication:

Never use sliding expirations when there is any chance of issuing cookieless tickets!

I understand many of the arguments that can be made against this advice — chiefly that authentication
tickets with absolute timeouts lead to a poor customer experience. However, I guarantee that if website
customers accidentally email out their forms authentication ticket, their ire over exposing their personal
account will vastly exceed the pain of customers having to periodically log back in again. And don’t
forget that after someone accidentally leaks his or her forms authentication ticket in an email, every
server and network route along the delivery path has the potential of sniffing and stealing a perfectly
valid cookieless ticket.

215

Forms Authentication

08_596985 ch05.qxp 12/14/05 7:48 PM Page 215

Although the scenario I described earlier involves a customer sending a link to a secured page in a site,
the reality is that after the forms authentication ticket is embedded on the URL, it remains there for the
duration of the browser session. This means that if a customer logs in to start a checkout process but
then clicks back to a publicly available page (maybe the customer clicks back out to an items detail page
in a web catalog), the forms authentication ticket is still in the URL. I will grant you that sending an
email link from deep inside a checkout process is probably unlikely — however, accidentally emailing
the forms authentication credentials from a catalog page in an e-commerce site strikes me as a very likely
occurrence.

This leads to a few additional pieces of advice about cookieless tickets:

1. Do not use cookieless tickets for any type of high-security site. For example, do not use cookieless
tickets for an online banking or investment site. The risk of someone accidentally compromising
themselves far outweighs the convenience factor.

2. If you set the requireSSL attribute on your site to true, ask yourself why you are allowing
cookieless tickets. The requireSSL attribute doesn’t protect cookieless tickets — it only works for
cookie-based tickets. Although it is reasonable to set requireSSL to true on sites that support
mixed clients (the theory being that at least the browsers that do support cookies will have a
more secure experience), be aware that for cookieless users the forms authentication ticket can be
issued and received over non-SSL connections.

3. Try to set the timeout attribute on sites that support cookieless clients to as small a value as
possible. I would not recommend setting a timeout greater than 60 minutes — although it is
understandable if you can’t get much shorter than 45 minutes given the usage trends on e-com-
merce sites.

4. If you think your cookieless customer base will accept it, you should reauthenticate the cus-
tomers prior to carrying out any sensitive transaction. This would mean requiring cookieless
customers to reenter their username and password when they attempted to finalize a purchase
or when they attempt to retrieve or update credit card information.

The Cookieless Ticket and Other URLs in Pages
Throughout the discussion, it has been stated that ASP.NET automatically handles maintaining the cook-
ieless ticket in the URL. Although this is true for server-side code, the placement of the cookieless ticket
in the URL also depends on browser behavior with relative URLs. If you look carefully at the sample
URLs shown earlier, you can see that the URL consists of a few pieces. For a page like default.aspx,
the browser considers the current path to the application to be:

http://demotest/Chapter5/cookieless/(X(1)F(BS3d6LKEP5D74Rw6F2Lq1n-
O9Ot6jzkZQpYhhHDW9mN1MS25-YI_MqTBs_DwMhMoJhL2ddITRjY32QQ7E1o8GA2))/

This means that the browser sees the cookieless information as part of the directory structure for the site.
If you embed relative URLs into your page such as:

Click me. I’m a regular A tag.

Then whenever you click these types of links, the browser will prepend it with the current path informa-
tion from the current page. So, this <a /> tag is interpreted by the browser as:

216

Chapter 5

08_596985 ch05.qxp 12/14/05 7:48 PM Page 216

http://demotest/Chapter5/cookieless/(X(1)F(BS3d6LKEP5D74Rw6F2Lq1n-
O9Ot6jzkZQpYhhHDW9mN1MS25-YI_MqTBs_DwMhMoJhL2ddITRjY32QQ7E1o8GA2))/SomeOtherPage.as
px

On the other hand, if you embed absolute hrefs in your pages, then you will lose the forms authentica-
tion ticket when someone clicks on the link. For example, if you accidentally created the <a/> tag as:

Click me. I’m a regular A tag.

The address that your browser will navigate to is:

http://demotest/SomeOtherPage.aspx

With this style of URL, you can see that the forms authentication ticket is lost. Now for a simple applica-
tion, you may not need to use absolute URLs. However, if you have a more complex navigation struc-
ture, perhaps with a common menu or navigation bar on your pages, you may very well have a set of
fixed URLs that users can click. Unfortunately, cookieless forms authentication and absolute URLs do
not mix, so you will need to write extra code to account for this behavior. Although a bit kludgy, an easy
way to maintain a common set of URL endpoints like this is with a redirection page.

Instead of the browser “knowing” the correct endpoint URL that it should navigate to, you can convert
these types of links into GET requests against a common redirection page. For example, you can use the
LinkButton control to postback to ASP.NET:

<asp:LinkButton ID=”linkRedirectMe” runat=”server”
OnClick=”linkRedirectMe_Click”>

SomeOtherPage
</asp:LinkButton>

In the code-behind, the click event looks like:

Response.Redirect(“~/SomeOtherPage.aspx”);

Now when you click the link the browser, the page posts back to ASP.NET, and a server-side redirect is
issued that retains the entire cookieless information in the URL. The reason server-side redirects work is
that Response.Redirect includes extra logic that ensures all of the information in the custom
HTTP_ASPFILTERSESSIONID HTTP header (remember this is where the cookieless information is moved
to on each request by aspnet_filter.dll) is added back into the URL that is sent back to the browser.
When the redirect reaches the browser, it has the full URL including the cookieless tickets.

One last area where URL format matters is in any postback event references in the page. In fact, the
LinkButton example depended on the correct behavior when posting the page back to itself. Because just
about every ASP.NET control depends on postbacks, it would be pretty painful if postbacks did not correctly
retain all cookieless tickets. ASP.NET is able to retain the cookieless tickets by explicitly embedding them in
the “action” tag of the page’s <form /> element. Taking the previous LinkButton example, if you view the
source of the page in the browser, the form element looks like:

<form method=”post” action=”/Chapter5/cookieless/(X(1)F(BS3d6LKEP5D74Rw6F2Lq1n-
O9Ot6jzkZQpYhhHDW9mN1MS25-YI_MqTBs_DwMhMoJhL2ddITRjY32QQ7E1o8GA2))/default.aspx”
id=”form1”>

217

Forms Authentication

08_596985 ch05.qxp 12/14/05 7:48 PM Page 217

Because much of the postback infrastructure depends on calling the JavaScript submit() method of a
form, and the action attribute on the form includes the cookieless information, any attempt to pro-
grammatically submit a form (whether this is ASP.NET code or JavaScript code that you write) will
include the cookieless information.

Overall ASP.NET will, for the most part, correctly retain the cookieless tickets in a transparent manner.
Only if you embed absolute URLs in your pages, or if you use absolute URLs in your code-behind will you
lose the cookieless tickets. You should try to use relative URLs in page markup, and application-relative
URLs in code-behind and for attributes of ASP.NET server controls. Although there are cases in server-side
code where you can write code with URLs that are absolute virtual paths (that is, /myapproot/somepage
.aspx), depending on whether you use this style of URL with Response.Redirect versus in a control
property, you will get different behavior. Coding with application-relative URLs (that is, ~/somepage
.aspx) gives you consistent behavior with cookieless tickets regardless of where you use the application-
relative URL. The following table shows various pieces of code and whether or not cookieless tickets are
preserved.

Code That Uses URLs Are Tickets Retained?

Response.Redirect(“~/SomeOtherPage.aspx”); Yes

Response.Redirect(“SomeOtherPage.aspx”); Yes

Response.Redirect(“/Chapter5/cookieless/ Yes
SomeOtherPage.aspx”);

Response.Redirect(“http://demotest/Chapter5/ No
cookieless/SomeOtherPage.aspx”);

<asp:HyperLink ID=”HyperLink1” runat=”server” Yes
NavigateUrl=”~/SomeOtherPage.aspx”>

<asp:HyperLink ID=”HyperLink2” runat=”server” No
NavigateUrl=”/Chapter5/cookieless/
SomeOtherPage.aspx”>

 Yes

 No

Payload Size with Cookieless Tickets
When you support cookieless tickets with forms authentication, you need to be careful of the size of the
forms authentication ticket in the URL. Although forms authentication in cookie mode technically also
has issues with the size of the ticket, you have roughly 4K of data that you can work with in cookied
mode. However, in cookieless mode there are two factors that work against you and limit the overall
amount of data that you can place in a FormsAuthenticationTicket:

❑ There are other cookieless features in ASP.NET that also may place cookieless identifiers on the
URL. Both session state and anonymous identification can take up space in the URL.

❑ On IIS6, you cannot have more than 260 characters in any individual path segment (assuming
that you don’t change the registry settings that control http.sys).

218

Chapter 5

08_596985 ch05.qxp 12/14/05 7:48 PM Page 218

If you think about it, the 260-character constraint is actually pretty limiting and basically means that little
more than username and expiration date can be effectively shipped around in a cookieless ticket. The
previous sections on cookieless tickets regularly resulted in around 100 or more characters being used on
the URL for the ticket.

You can turn on anonymous identification and session state in web.config, and force them to run in
cookieless mode with the following configuration settings (they use the same values for the cookieless
attribute as forms authentication):

<anonymousIdentification enabled=”true” cookieless=”UseUri”/>

<sessionState cookieless=”UseUri” />

Without even logging in to a sample application with these settings, the URL includes the following
cookieless tickets (assume auto-detection is used for forms authentication for the absolute worst-case
scenario).

(
X(1)
A(AcWPai80EudiMDgzMTVmOC01ZGI4LTRjYjUtYTRlZC1lNDA0ZmQwMTgwOWapA57PN8DjUYXzLE05vMg
q89nYDg2)
S(kabdwb45w2casiv3hlrqdd55)

)

Adding this all up, and ignoring the line breaks because those exist just for formatting in the book, there are:

❑ 2 characters for the beginning and closing parentheses

❑ 4 characters for the auto-detection marker “X”

❑ 90 characters for the anonymous identification ticket “A”

❑ 27 characters for the session state identifier “S”

Without forms authentication even being involved, ASP.NET has already consumed 123 characters on
the URL, which leaves a paltry 137 characters for forms authentication.

The most obvious piece of information that drives variability in the size of the forms authentication ticket is
the username. You may not realize it, but the value of the path configuration attribute could also contribute
to the variable size of the ticket. By default the path is set to /, so this only adds one additional character to
the ticket prior to its encryption. In cookieless mode though, because the ticket is embedded in the URL,
there isn’t really a concept of path information. As a result, in cookieless mode the path is always set to / by
forms authentication, and hence there is always the same overhead in cookieless tickets for the path value.

Other information such as a ticket version number and the issue and expiration date information are
fixed size and doesn’t vary from one website to another. Logging in to a sample application with a
comparatively short username (testuser), adds the following forms authentication ticket to the URL:

F(JUBYnKzy-aTgVpRkDRmQRCU_dlcEF4pnfdxoYl75NEdnl3mjJw8w7fH1XbFGupwrQp7T5jAO-
1qZzp3VG8bguDYDjru1_V9xO0DfqtK0LZA1)

219

Forms Authentication

08_596985 ch05.qxp 12/14/05 7:48 PM Page 219

This adds another whopping 112 characters to the URL for a total size. Now with all cookieless features
enabled there are 235 characters consumed for the various cookieless representations. Playing around
a bit with different usernames on the sample application, the longest username that worked was
testuser123456789012— that is, a 20-character long username. This results in an F ticket that is
132 characters long — resulting in a path segment that is 255 characters long. That is right on the edge
of the 260 character path segment limit enforced by http.sys.

After the username increases to 21 characters, a 400 Bad Request error is returned. If you recall the
discussion about http.sys from Chapter 1, a 400 error is returned by http.sys when one of the path
segments in the request URL is more than 260-characters long.

Going back to the path configuration attribute, you can explicitly set it to match the application’s root:

<forms cookieless=”AutoDetect” path=”/Chapter5/cookieless” />

Logging with just testuser for the username results in a 112-character length for the forms authentica-
tion cookieless ticket (the same as before). And as before, the upper limit on the username is 20 charac-
ters. If you are curious what happened to the path information from configuration, the value of
FormsAuthenticationTicket.CookiePath is hard-coded to /, regardless of the value in configuration.
At one point earlier in the ASP.NET 2.0 development cycle, the full path value from configuration was
included in cookieless tickets. Because this consumed far too much space on the URL (you could come up
with a long enough path that even a zero-length username was too much to fit in the URL), the decision
was made to always use the hard-coded / value. Keep this quirk in mind if for any reason you were
depending on the FormsAuthenticationTicket.CookiePath property anywhere in your code — it
should not be relied upon if your application ever issues cookieless forms authentication tickets.

Of course, the size constraints on the URL are a bit more relaxed if you don’t use other cookieless fea-
tures. Turning off anonymous identification (because that is gobbling up 90 characters), a 40-character
long username results in around a 230-character long URL. Because 40-character usernames are pretty
unlikely, you have breathing room on the URL after anonymous identification is disabled.

If you use cookieless forms authentication tickets, keep the following points in mind:

❑ With all cookieless features turned on, you are limited to around a maximum length of 20
characters for usernames with forms authentication.

❑ With anonymous identification turned off, you will probably not run into any real-world con-
straints on username length, unless of course you allow email addresses for usernames. Because
email addresses can be upwards of 256 characters long, you will need to limit username length
for such applications.

One final point on how cookieless tickets embedded in the URL: even though ASP.NET 2.0 embeds
them all into a single path segment, future releases may choose to split out the cookieless tickets for
various features into separate path segments. If this approach is ever taken, it would free up quite a bit
more space for forms authentication — enough space that even UserData could potentially store limited
amounts of information. For this reason, I would recommend that developers avoid writing code that
explicitly parses the URL format used by ASP.NET 2.0 or that depends on the specific layout of cookie-
less tickets. Continue to manipulate URLs with the built-in ASP.NET APIs and the application-relative
path syntax. Writing code that has an explicit dependency on the ASP.NET 2.0 cookieless format may
lead to the need to rework such code in future releases.

220

Chapter 5

08_596985 ch05.qxp 12/14/05 7:48 PM Page 220

Unexpected Redirect Behavior
Cookieless forms authentication introduces another subtle gotcha due to the reliance on redirects. The
initial set of redirects that occur during autodetection don’t complicate matters because this logic runs
as part of the normal redirection to a login page. In existing ASP.NET 1.1 applications, developers
already have to deal with the possibility of a website user posting data back to a secured page, only to
get redirected to the login page instead — along with the subsequent loss of any posted data.

However a bit of an edge case arises when using cookieless tickets, regardless of the selected cookieless
mode. If you allow sliding expirations with cookieless tickets (and for security reasons this is not
advised), then it is possible that at some point FormsAuthenticationModule may detect that more
than 50% of a ticket’s lifetime has elapsed. The module always calls
FormsAuthentication.RenewTicketIfOld on each request, for both cookied and cookieless modes.
In the case of cookieless modes though, if the module detects that a new forms authentication ticket was
issued with an updated expiration time due to the renewal call, the module needs to ensure that the new
ticket value is embedded on the URL.

The module accomplishes this by repackaging the new FormsAuthenticationTicket into the custom
HTTP_ASPFILTERSESSIONID header and then calling Response.Redirect , specifically the overload of
Response.Redirect that accepts only the redirect path. This means the current request is immediately
short-circuited to the EndRequest phase of the pipeline, and the redirect with the updated URL is sent
back to the browser.

From the user’s perspective, this means that at anytime the user is working in the website (and this can
be on a secured page or a publicly accessible page), enough of the ticket expiration may have elapsed to
trigger a redirect. If by happenstance this redirect occurs when posting back user-entered data, the user
is going to be one unhappy camper. Imagine entering a form full of registration data, hitting submit, and
the net result is that you end up back on the same page with all of the fields showing as empty!

You can simulate this behavior with a simple page that has a few text boxes for entering data. Add a
button that posts the page back to the server. Set the timeout attribute in the <forms /> configuration
element to 2 minutes. Log in to the site, and navigate to the page with the text boxes. Type in some data,
and then wait around 1.5 minutes, long enough for the ticket to need renewal. Now when you post back,
you can see that all of the data you entered has been lost. This behavior is another reason why sliding
expirations should be avoided when using cookieless tickets.

About the only workaround (and an admittedly crude one at that) is for developers to identify pages in
their site where user-entered information is not posted back in a form variable. For example, maybe
viewing a catalog page in a website relies on query-string variables and a GET request, which allows the
query-string variables to be preserved across redirects. You can write some code that runs in the pipeline
(after FormsAuthenticationModule runs) and pro-actively checks the expiration date of the ticket.
Rather than waiting for the ASP.NET default of 50% or more of the ticket lifetime to elapse, you could be
more aggressive and force a ticket to be reissued at shorter intervals. This at least gives you some control
over when the ticket is reissued, and it increases the likelihood that the ticket is reissued at well-defined
points in the website where you can be assured that user-entered data is not lost.

221

Forms Authentication

08_596985 ch05.qxp 12/14/05 7:48 PM Page 221

Of course, there are myriad side effects with this workaround:

❑ Redirection behavior is still hard to test. You have to laboriously test each page in the site where
you may inject a proactive renewal of the forms authentication ticket.

❑ The extra, and potentially unnecessary, redirects make the website seem slower.

❑ The workaround still doesn’t solve the problem of a user entering a checkout process (for exam-
ple), getting up from the computer, and coming back a little later after more than 50% of the
lifetime for his or her current ticket has elapsed. This specific scenario is one where dumping
the user back to the page they were just on, with empty fields, is likely to cause the user to
bailout of the checkout process.

Unfortunately, there isn’t an elegant solution to the unintended redirect problem with cookieless tickets.
The best advice is to turn off sliding expirations, and set the forms authentication ticket lifetime to a
“reasonable” value (say somewhere around 30 to 60 minutes).

Sharing Tickets between 1.1 and 2.0
It is likely that most organizations will need to run ASP.NET 2.0 and ASP.NET 1.1 applications side by
side for a few years. In many cases, if corporate developers integrate custom internal ASP.NET sites with
web-based applications from third-party vendors, they may need to wait for the next upgrade from their
vendors before moving a web application over to ASP.NET 2.0.

Although early on during Beta 1 and before there were incompatibilities between the two versions of
ASP.NET forms authentication, those issues were ironed out. As a result, you can accomplish both of the
following scenarios when running in mixed environments:

❑ You can issue forms authentication tickets from ASP.NET 2.0 applications, and the tickets will
work properly when they are sent to an ASP.NET 1.1 application.

❑ You can issue forms authentication tickets from ASP.NET 1.1 applications, and the tickets will
work properly when they are sent to an ASP.NET 2.0 application.

To interoperate tickets between the two versions, you must ensure the following:

1. ASP.NET 2.0 must be configured to use 3DES for encryption. Remember that by default
ASP.NET 2.0 uses AES for its encryption algorithm.

2. Both ASP.NET 1.1 and ASP.NET 2.0 must share common decryption and validation keys.

The first point was discussed earlier in the section on ticket security. However, the second point may not
be immediately obvious for some types of applications. By default, both the validationKey and
decryptionKey attributes are set to AutoGenerate,IsolateApps. This holds true for both ASP.NET
1.1 and ASP.NET 2.0. If a developer changed the settings to instead be AutoGenerate, that temporarily
solves the problem of sharing the auto-generated key material across multiple ASP.NET applications on
the same machine.

222

Chapter 5

08_596985 ch05.qxp 12/14/05 7:48 PM Page 222

However, when ASP.NET 2.0 is installed on a machine running ASP.NET 1.1 (taht is, aspnet_regiis -I is
run), the auto-generated key material is regenerated for ASP.NET 2.0. This means on a single web server
that has both ASP.NET 1.1 and ASP.NET 2.0 running, setting any of the key attributes in <machineKey
/> to AutoGenerate is not sufficient. If you need to share forms authentication tickets between
ASP.NET 1.1 and ASP.NET 2.0, you must use explicitly generated keys, and you must set the key values
in the encryptionKey”and decryptionKey attributes of <machineKey />. The section earlier on gen-
erating keys programmatically has sample code that makes it easy to generate the necessary values.

To demonstrate these concepts, use two simple applications. Both applications are initially configured as
follows:

<authentication mode=”Forms” />

<authorization>
<deny users=”?”/>

</authorization>

Each application has a login page that simply issues a session based forms authentication cookie after
clicking a button on the page (interoperating 1.1 and 2.0 only works with cookies because there was no
URL-based forms authentication in the base ASP.NET 1.1 product). With this basic web.config, forms
authentication tickets will not work between the two applications because the defaults in <machineKey
/> are being used. If you try logging in against the 1.1 application and then change the address in the
URL to reference a secure page in the 2.0 application, the ASP.NET 2.0 application returns you to the
login page for the ASP.NET 2.0 page.

The reason for this is twofold — the keys are different between the two applications, and ASP.NET 2.0 is
using AES by default. To rectify this, place a <machineKey /> section into both applications with
explicit decryption and validation keys. In the case of ASP.NET 2.0, the <machineKey /> section must
also specify the correct encryption algorithm:

<machineKey
decryptionKey=”A225194E99BCCB0F6B92BC9D82F12C2907BD07CF069BC8B4”
validationKey=”6FA5B7DB89076816248243B8FD7336CCA360DAF8”
decryption=”3DES”

/>

decryptionKey is 48 characters long, which is the recommended length when using 3DES (48 charac-
ters = 24 bytes = three 8 byte keys of which only 56-bits are used for each of the three keys used in
3DES), validationKey is 40-characters long, which is the minimum length supported by this attribute.

With the updated <machineKey /> sections, you can now log in to the ASP.NET 1.1 application, and
then change the URL to reference a 2.0 page without being forced to login again. The reverse scenario
also works properly: you can log in to the 2.0 application and then reference a 1.1 page without being
forced to log in again.

The only slight difference between tickets issued by ASP.NET 1.1 and ASP.NET 2.0 is the version prop-
erty. If the forms authentication ticket is generated by ASP.NET 1.1, the FormsAuthenticationTicket
.Version is set to 1. If the forms authentication ticket is generated by ASP.NET 2.0, then the property
returns 2. Because neither ASP.NET 1.1 nor 2.0 do anything internally with the Version property (aside
from packing and unpacking the value), the different values are innocuous. If for some reason you have
business logic that depends on the value of the Version property be aware that in a mixed ASP.NET
environment there is no guarantee of a stable value.

223

Forms Authentication

08_596985 ch05.qxp 12/14/05 7:48 PM Page 223

Leveraging the UserData Property
I will start out by saying up front that you can only leverage the UserData property for applications that
run in cookie mode. Although the constructor for creating a FormsAuthenticationTicket with user
data is public, there is no publicly available API for setting an instance of a
FormsAuthenticationTicket onto a URL. As a result, the only way that the UserData can be used is
if authentication tickets are sent in cookies.

The nice aspect of the UserData property is that after you get custom data into the forms authentication
ticket, the information is always there and available on all subsequent page requests. The problem in
both ASP.NET 1.1 and ASP.NET 2.0 is that there is no single method that you can call wherein you sup-
ply both custom data for the UserData property and the username of the authenticated user. This over-
sight in ASP.NET 2.0 is somewhat unfortunate because I run across internal and external customers over
and over again that need to store a few extra pieces of identification or personalization information after
a user logs in. Storing this information in the forms authentication ticket is logical, and it can eliminate
the need to cobble together custom caching mechanisms just to solve basic performance problems such
as displaying a friendly first name and last name of a customer on every single web page.

So, how do you store extra information in a forms authentication ticket and then issue the ticket in a way
that all of the other settings (mainly the issue date and expiration date) are set to the correct values?
More importantly, how do you do this without the need to hard-code assumptions into your code
around cookie timeouts? In the FormsAuthentication class in ASP.NET 2.0, there is one glaring omis-
sion, you can’t retrieve the timeout attribute that is set in the <forms /> element in configuration.
Although you can technically retrieve this information with the strongly typed configuration classes in
ASP.NET 2.0 (there is a FormsAuthenticationConfiguration class that provides strongly typed
access to the values set in configuration), as was discussed in Chapter 4, you cannot use the strongly
typed configuration classes when running in partial trust.

The following solution uses a simple workaround to ensure that all of the forms authentication settings
are still used when manually issuing a forms authentication ticket, and it does it in a way that will still
work in partial trust applications.

protected void Button1_Click(object sender, EventArgs e)
{

HttpCookie cookie =
FormsAuthentication.GetAuthCookie(txtUsername.Text, false);

FormsAuthenticationTicket ft =
FormsAuthentication.Decrypt(cookie.Value);

//Cutom user data
string userData = “John Doe”;

FormsAuthenticationTicket newFt =
new FormsAuthenticationTicket(

ft.Version, //version
ft.Name, //username
ft.IssueDate, //Issue date
ft.Expiration, //Expiration date
ft.IsPersistent,
userData,

224

Chapter 5

08_596985 ch05.qxp 12/14/05 7:48 PM Page 224

ft.CookiePath);

//re-encrypt the new forms auth ticket that includes the user data
string encryptedValue = FormsAuthentication.Encrypt(newFt);

//reset the encrypted value of the cookie
cookie.Value = encryptedValue;

//set the authentication cookie and redirect
Response.Cookies.Add(cookie);
Response.Redirect(

FormsAuthentication.GetRedirectUrl(txtUsername.Text, false),false);
}

Because you need to ultimately issue a forms authentication cookie, the first step is to call
FormsAuthentication.GetAuthCookie, passing it the values that you would normally pass directly
to FormsAuthentiction.RedirectFromLoginPage. This results in a cookie that has the correct
settings for items such as cookie domain and cookie path. It also results in an encrypted cookie payload
containing a forms authentication ticket. You can easily extract the FormsAuthenticationTicket by
passing the cookie’s Value to the Decrypt method.

At this point, you have a fully inflated FormsAuthenticationTicket with the correct values of IssueDate
and ExpirationDate already computed for you. You can create a new FormsAuthenticationTicket
instance based on the values of the FormsAuthenticationTicket that was just extracted from the
cookie. The only difference is that for the userData parameter in the constructor, you supply the custom
data that you want to be carried along in the ticket. In the case of the sample, I just store a first name and
last name as an example. Because the user data needs to fit within the limits of a single forms authentication
ticket, there are some constraints on just how much information can be stuffed into this parameter.

Internally, when you call FormsAuthentication.Encrypt, a 4K buffer is allocated to hold some of the
interim results of encrypting the data. The net result is that that you cannot exceed roughly 2000 charac-
ters in the userData parameter if you need to call the Encrypt method. However, because the ultimate
result needs to be stored in a cookie, you really only have 4096 bytes available for storing the entire
ticket in the cookie. By the time the encryption bloat and hex string conversions occur, the realistic upper
bound on userData is around 900–950 characters. This still leaves a pretty hefty amount of space for
placing information into the forms authentication ticket. And it is certainly enough space for common
uses such as storing first name and last name, or storing a few IDs that are needed elsewhere in the
application.

In the sample code shown previously, the new FormsAuthentication instance is encrypted with a call
to FormsAuthentication.Encrypt, and the result is placed in the Value property of the cookie that
we started with. At this point, you now have a valid forms authentication cookie, with an encrypted rep-
resentation of a FormsAuthenticationTicket that includes custom data. Notice that nowhere does the
sample code need to rely on hard-coded values for determining date-time information. Also, the sample
doesn’t call into any configuration APIs to look up any of the configuration values for the forms authen-
tication feature.

The last step in the sample is to add the forms authentication cookie into the response and then issue the
necessary redirect. The Response.Redirect call shown in the sample roughly mirrors what occurs
inside of that last portion of FormsAuthentication.RedirectFromLoginPage. Note that the

225

Forms Authentication

08_596985 ch05.qxp 12/14/05 7:48 PM Page 225

Redirect overload that is used issues a “soft” redirect. The second parameter to the method is passed a
false value, which means the remainder of the page will continue to run. Only when the page is done
executing, and remainder of the HTTP pipeline completes, will ASP.NET send back the redirect to the
browser.

The call to GetRedirectUrl causes the forms authentication feature to find the appropriate value for
the redirect URL based on information in the query-string (the familiar RedirectURL query-string vari-
able you see in the address bar when you are redirected to a login page), or in the form post variables.
Calling GetRedirectUrl eliminates the need for you to write any parsing code for determining the cor-
rect redirect target.

You can run the sample application by attempting to access a simple home page that displays the
UserData property on the ticket.

//Display some user data
FormsAuthenticationTicket ft =

((FormsIdentity)User.Identity).Ticket;

Response.Write(“Hello “ + ft.UserData);

As you can see, after you jump through the hoops necessary to set the UserData in the ticket, it is very
handy and easy to get access to it elsewhere in an application. Hopefully in future releases, ASP.NET
will make it a bit easier to issue tickets with custom data as well as extending this functionality over to
the cookieless case.

Passing Tickets across Applications
Another title for this section could be “how to roll a poor man’s single sign-on (SSO) solution.” In ASP.NET
2.0, forms authentication includes the ability to pass forms authentication tickets across applications.
Although prior to 2.0 you could create a custom solution that passed the forms authentication ticket around
as a string, you had to write extra code to handle hopping the ticket across applications.

ASP.NET 2.0 now supports setting the domain value of the forms authentication cookie from inside of config-
uration. ASP.NET 2.0 also adds explicit support built into the APIs and the FormsAuthenticationModule
for handling tickets that are passed using either query-strings or form posts. As long as you follow the
basic conventions expected by forms authentication, the work of converting information sent in these
alternative locations into a viable forms authentication ticket is automatically done by ASP.NET.

Cookie Domain
The ASP.NET 2.0 forms authentication configuration section adds a new domain attribute. By default
this attribute is set to the empty string, which means that cookies issued by forms authentication APIs
will use the default value of the Domain property for a System.Web.HttpCookie. As a result, the
Domain property of the cookie will be set to the full DNS address for the issuing website. For example, if
a page is located at http://demotest/login.aspx, the resulting cookie has a domain of demotest.
On the other hand, if the full DNS address for the server is used in the URL: http://demotest
.somedomain.com/login.aspx. Then the resulting cookie has its domain set to demotest
.somedomain.com.

226

Chapter 5

08_596985 ch05.qxp 12/14/05 7:48 PM Page 226

In ASP.NET 1.1, this was the only behavior supported by forms authentication, which made it problem-
atic when attempting to share cookies across websites that only shared a portion of the domain name.
For instance, you might need to authenticate users to demotest.somedomain.com as well as
someotherapp.somedomain.com, but the set of users is the same for both applications.

With ASP.NET 2.0 this is easy to accomplish. Add the domain attribute to the <forms /> element and
set its value to the portion of the domain name that is shared across all of your applications.

<forms ... path=”/” domain=”somedomain.com” />

With this setting, each time a cookie is issued by forms authentication the cookie’s domain value will be
set to somedomain.com. As a result, the browser will automatically send the cookie anytime you request
a URL where the network address ends with somedomain.com. Another nice side effect of this new sup-
port in ASP.NET 2.0 is that renewed forms authentication cookies (remember that with sliding expira-
tions enabled, cookies can be renewed as they age) will also pick up the same value for the domain. In
ASP.NET 1.1, if you enabled sliding expirations but you manually issued the forms authentication
cookie with a different domain than the default, it was possible that the cookie would be automatically
renewed by the FormsAuthenticationModule. When that happened in ASP.NET 1.1, it reissued the
cookie and never set the domain attribute on the new cookie.

Cross-Application Sharing of Ticket
The ability to customize the domain of the forms authentication cookie is useful when all of your appli-
cations live under a common DNS namespace. What happens though if your applications are located in
completely different domains? Companies that support multiple web properties, potentially with differ-
ent branding, have to deal with this. The URLs of public websites are frequently chosen so as to be easy
to remember for customers and, thus, are not necessarily chosen for purposes of DNS naming consis-
tency. ASP.NET 2.0 introduces the ability to share forms authentication tickets across arbitrary sites by
passing the forms authentication ticket around in the query-string or in a form post variable. This new
capability allows developers to intelligently flow authentication credentials across disparate ASP.NET
sites without forcing a website user to repeatedly login.

Prior to ASP.NET 2.0 your only options were to manually create some type of workaround for this or to
purchase a third-party vendor’s single sign on (SSO) product. A number of developers though really
don’t need all of the complexities and costs of full-blown SSO products. If the problem that you need to
solve is primarily centered on sharing forms authentication tickets across multiple ASP.NET websites
with different DNS namespaces, then the support for passing forms authentication tickets across appli-
cations in ASP.NET 2.0 will be a good fit.

That leads to the question of when wouldn’t you use the new cross application capabilities in ASP.NET
2.0? There are still valid reasons for using true SSO products, some of which are listed below:

1. You need to share authenticated users across heterogeneous platforms. For example you need to
support logging users in across UNIX-based websites and ASP.NET sites. Clearly forms authen-
tication won’t help here because there is no native support for the forms authentication stack on
other web platforms than ASP.NET.

2. You need to share authenticated users across different untrusted organizations. This is a
scenario where loose “federations” of different organizations need some way for website cus-
tomers to seamlessly interact with different websites, but need to do so in a way that doesn’t
force the customer to constantly login. For example, maybe a company wants the ability for a

227

Forms Authentication

08_596985 ch05.qxp 12/14/05 7:48 PM Page 227

website customer to seamlessly navigate over to a parcel-tracking site to retrieve shipment
information, and then over to a payment site to see the status of purchases and payments.
Because each site is run by a different company, it is very hard to solve this problem today.
There are a number of companies, including Microsoft, working on SSO solutions that can inter-
operate in a way allowing for a seamless authentication experience for this type of problem.

3. You may need to map the credentials of a logged-in user to credentials for other back-end data
stores. For example, after logging in to a website the user may also have credentials in a main-
frame system or a back-end resource planning system. Some SSO products support the ability to
map authentication credentials so that a website user logs in once and then is seamlessly
reauthenticated against these types of systems.

As you can see from this partial list, most of the SSO scenarios involve more complexity in the form of
other companies or other systems that are external to the website. Many extranet and internet sites don’t
need to solve these problems, or can live with comparatively simple solutions for reaching into back-end
data stores. For these types of sites, the cross-application support in forms authentication is a lower cost
and easier solution to the single sign on problem.

How Cross-Application Redirects Work
By default, the “SSO-lite” functionality in ASP.NET 2.0 is not enabled. To turn it on, you need to set the
enableCrossAppRedirects attribute to true:

<forms ... enableCrossAppRedirects= “true “ />

Doing so turns on a few pieces of logic within forms authentication. First, the FormsAuthentication
.RedirectFromLoginPage method has extra logic to automatically place a forms authentication ticket
into a query-string variable when it detects that it will be redirecting outside of the current application.
Second, the FormsAuthenticationModule will look on the query-string and in the form post variables
for a forms authentication ticket if it could not find a valid ticket in the other standard locations (that is,
in a cookie or embedded in the URL for the cookieless case).

Because cookie based tickets automatically flow across applications that share at least a portion of a DNS
namespace, you really only need to set enableCrossAppRedirects to true for the following cases:

❑ You need to send a forms authentication ticket between applications that do not share any portion
of a DNS namespace. In this case, the “domain” attribute isn’t sufficient to solve the problem.

❑ You need to send a cookieless ticket between different applications — regardless of whether or
not the applications share the same DNS namespace. Cookieless tickets by their very nature are
limited to only URLs in the current application.

Cookieless Cross-Application Behavior
Examine the cookieless case first. You can create two sample applications and in configuration set up
forms authentication and the authorization rules as follows:

<authentication mode=”Forms”>
<forms cookieless=”UseUri” />

</authentication>

<authorization>
<deny users=”?”/>

</authorization>

228

Chapter 5

08_596985 ch05.qxp 12/14/05 7:48 PM Page 228

<machineKey
decryptionKey=”A225194E99BCCB0F6B92BC9D82F12C2907BD07CF069BC8B4”
validationKey=”6FA5B7DB89076816248243B8FD7336CCA360DAF8”

/>

With this configuration, both applications are forced to use cookieless tickets. Additionally, both applica-
tions share common key information which ensures that a ticket from one application is consumable by
the other application.

To focus on the cross-application redirect issue, we will keep the rest of the application very simple. Both
applications will have a default.aspx page, and a login page. Both login pages (for now) will simply
issue a forms authentication ticket for a fixed username and then pass the user back to the original
requesting URL:

FormsAuthentication.RedirectFromLoginPage(“testuser”, false);

After you end up on default.aspx, there is a button which you can click to redirect yourself over to
the other application:

Response.Redirect(“/Chapter5/cookielessAppB/default.aspx”);

The preceding code is in the sample application called cookielessAppA, so default.aspx redirects
over to the other sample application: cookielessAppB. If you were to run both sample applications,
and try to seamlessly ping-pong between the two applications, you would find yourself constantly
logging in. The culprit of course is that Response.Redirect that punts you to the other application;
when that redirect is issued, the cookieless credentials embedded in the current URL are lost.

Unfortunately, you can’t just call one API or use some new parameter on the Redirect method to solve this
problem when running in cookieless mode. Although FormsAuthentication.RedirectFromLoginPage
has logic to store a ticket on the query-string, the scenario above is one where you click on a link inside
of one application, and it takes you over to a second application. For this case, you need a wrapper
around Response.Redirect that includes the logic to pass the forms authentication ticket along with
the redirection.

I created a simple query-string wrapper:

public static class RedirectWrapper
{

public static string FormatRedirectUrl(string redirectUrl)
{

HttpContext c = HttpContext.Current;
if (c == null)

throw new InvalidOperationException(“You must have an active context to
perform a redirect”);

//Don’t append the forms auth ticket for unauthenticated users or
//for users authenticated with a different mechanism
if (!c.User.Identity.IsAuthenticated ||

!(c.User.Identity.AuthenticationType == “Forms”))
return redirectUrl;

//Determine if we need to append to an existing query-string or not
string qsSpacer;

229

Forms Authentication

08_596985 ch05.qxp 12/14/05 7:48 PM Page 229

if (redirectUrl.IndexOf(“?”) > 0)
qsSpacer = “&”;

else
qsSpacer = “?”;

//Build the new redirect URL
string newRedirectUrl;
FormsIdentity fi = (FormsIdentity)c.User.Identity;
newRedirectUrl = redirectUrl + qsSpacer +

FormsAuthentication.FormsCookieName + “=” +
FormsAuthentication.Encrypt(fi.Ticket);

return newRedirectUrl;
}

}

Given a query-string, the static method FormatRedirectUrl makes a few validation checks and then
appends a query-string variable with the forms authentication ticket to the URL. If the current request
doesn’t have an authenticated user, or if it’s not using forms authentication, calling the method is a no-op.
Assuming that there is a forms-authenticated user, the method determines whether or not it needs to add
a query-string to the current URL, or if instead it just needs to a append a query-string variable (there may
already be one or more query-strings on the URL, hence the need for check for this condition).

Last, the method reencrypts the current user’s forms authentication ticket back into a string, and it
places it on the query-string. Notice how the value of FormsAuthentication.FormsCookieName is
used as the name of the query-string variable. Even though the code isn’t really sending a cookie, the
FormsCookieName is the identifier used for a forms authentication ticket regardless of whether the
ticket is in the query-string, in a form post variable or contained in a cookie.

To use the new helper method, we can rework the previous redirect logic to look like this:

Response.Redirect(RedirectWrapper.FormatRedirectUrl(“/Chapter5/cookielessAppB/defau
lt.aspx”));

You can update both sample applications to include the new helper class in their App_Code directories.
Also, update the forms authentication configuration to enable cross-application redirects. This is neces-
sary for the forms authentication module to recognize the incoming ticket on the query-string properly.

<forms cookieless=”UseUri” enableCrossAppRedirects=”true” />

Now when you use both applications, you can seamlessly ping-pong between both applications without
being challenged to log in again. Each hop from application A to application B results in a redirect
underneath the hood that includes the ticket on the query-string:

http://localhost/Chapter5/cookielessAppB/default.aspx?.ASPXAUTH=F2CB90DA66DE1044FEE
E4FE676AB6C1226EF04F5FDE104002CEA29448E2CC0CD3AF7BA33E4022C5E786BAD23F98163F708AB21
A528939502ADBCAB5031C918F47AD1A317AC183883

The FormsAuthenticationModule detects this and properly converts the query-string variable back
into a cookieless ticket embedded on a URL. Due to the reliance on redirect behavior, you can’t post any
data from one application to the other. Instead, you have to pass information between applications with
query-string variables. Even if you attempt to use a form post as a mechanism for transferring from one
application to another, you can’t avoid at least one redirect. When the FormsAuthenticationModule in

230

Chapter 5

08_596985 ch05.qxp 12/14/05 7:48 PM Page 230

the second application issues a forms authentication ticket based on the ticket that was carried in the
query-string, the module issues a redirect to embed the new ticket onto the URL. The only way to avoid
a redirect in this case is if you run in cookie mode, which we shall see shortly.

As an aside, there is one slight quirk exists in how this all works. Remember earlier in the discussion on
cookieless tickets where it was mentioned that the requireSSL attribute in the <forms /> element is
ignored when using cookieless tickets? If you enable cross application redirects, the requireSSL
attribute still affects the FormsAuthenticationModule. Under the following conditions, the
FormsAuthenticationModule will ignore any query-string or forms variable containing a ticket:

❑ The requireSSL attribute is set to true.

❑ The module could not find a ticket either in a cookie or embedded in a URL, and hence reverted
to looking in the query-string and forms variable collection.

❑ The current connection is not secured with SSL.

If you think you have cross-application redirects setup properly, and you are still being challenged with
a login prompt, double-check and make sure that you haven’t set requireSSL to true and then
attempted to send the ticket to another application over a non-SSL connection.

Cookied Cross-Application Behavior
You can use a similar application to the cookieless sample to also show cross-application redirects in
the cookied case. Again using two sample applications, both applications need to share a common
configuration:

<forms cookieless=”UseCookies” enableCrossAppRedirects=”true”
path=”/Chapter5/cookiedAppA”/>

<machineKey
decryptionKey=”A225194E99BCCB0F6B92BC9D82F12C2907BD07CF069BC8B4”
validationKey=”6FA5B7DB89076816248243B8FD7336CCA360DAF8”

/>

To simulate isolation of the forms authentication cookies, each application explicitly sets the path
attribute as shown above. Because this sample uses cookies, the path attribute prevents the browser from
sending the forms authentication cookie for one application over to the second application. Remember
that setting the path attribute only takes effect when using cookied modes — for example, setting the
“path” attribute would have no effect on the previous cookieless example. For starters, we will use the
same redirection helper as we did earlier, and pages in both applications will issue a Response
.Redirect to get to the second application.

When you run the sample applications, you get almost the same result as the cookieless applications.
You can bounce around between applications without the need to log in again. However, one noticeable
difference is the lack of a second redirect each time you transition from one application to another. When
the FormsAuthenticationModule converts the query-string variable into a forms authentication ticket
encapsulated inside of a cookie, it does not need to issue a redirect. Instead, it just sets a new cookie in
the response, and the remainder of the request is allowed to execute. As a result, when you transition
from application A to application B, the URL in the browser address bar still retains the query-string
variable used during the redirect:

231

Forms Authentication

08_596985 ch05.qxp 12/14/05 7:48 PM Page 231

http://localhost/Chapter5/cookiedAppB/default.aspx?.ASPXAUTH=23CB12E603239A53830866
D67D38DE6E8AAAA3647A05220FB278A5B6A3A0C0927FC498D3E6ED46AEBD7EF770AC3359CABE08EDC63
385D8C058B58D0C63782A27F948A8A8BFF5DFE9CE2C78463C68E1C0EB390B6C89CB594D21564EF94B28
66CA112AFE132F904FF87FF728B6DD3A48E6

Although it looks a bit strange, this is actually innocuous. After you start navigating around in the
second application, the query-string variable will go away:

1. When the current page posts back to itself, the query-string variable will flow down to the
application.

2. The FormsAuthenticationModule first looks for valid tickets in cookies and embedded in the
URL. Because it finds a valid ticket in a cookie, it never makes it far enough to look at the query-
string variable.

3. The current page runs.

4. Eventually you click on a link or trigger a redirect to some other page in the application. When
this occurs the query-string is not sent along with the request, and as a result other pages in the
application won’t have the ticket sitting in the address bar.

Because the point at which step 4 occurs is probably not deterministic (a website user may be able to
enter into the application from any number of different pages), the query-string variable can end up in
the address bar for any of your entry pages.

As with cookieless cross application redirection, if you happen to set requireSSL to true in your
applications, the hop from one application to another will cause the FormsAuthenticationModule to
check the secured state of the connection. If the module detects that the cross-application redirect
occurred on a non-SSL connection, it will throw an HttpException, just as it would for the cookieless
scenario.

Unlike the cookieless case though, you do have another option for hopping credentials from one
application over to another. You can choose to post the forms authentication ticket from one application
to another because you don’t need to worry about the extra redirect the FormsAuthenticationModule
performs when embedding the ticket into the URL. To show this, create another page in first application:

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Untitled Page</title>
</head>
<body>
<form id=”form1” runat=”server” >
<div>
<asp:TextBox ID=”txtSomeInfo” runat=”server”></asp:TextBox>

<asp:Button ID=”Button1” runat=”server”

PostBackUrl=”/Chapter5/cookiedAppB/ReceivePostFromAnotherApplication.aspx”
Text=”Button” />

</div>
<input id=”Hidden1” type=”hidden” runat=”server” />
</form>
</body>
</html>

232

Chapter 5

08_596985 ch05.qxp 12/14/05 7:48 PM Page 232

This page markup takes advantage of a new feature in ASP.NET 2.0 called cross-page postings. Although
this sample application is not showing the primary purpose of cross-page posting (which is posting
between two different pages within the same application), it turns out that you can use cross-page
posting just as well to make it easier to post form data across applications. The markup above has set the
PostBackUrl property on a standard Button control to a URL located in the second sample application.
By doing so, ASP.NET injects some extra information into the page that causes the page to post back to
the second application.

In addition to using cross-page posting, the code-behind for the page sets some values for the hidden
control that is on the page:

protected void Page_Load(object sender, EventArgs e)
{

this.Hidden1.ID = FormsAuthentication.FormsCookieName;
this.Hidden1.Value =

FormsAuthentication.Encrypt(((FormsIdentity)User.Identity).Ticket);

}

The hidden control has its ID set to the same value as the forms authentication cookie. This is necessary because
when the request flows to the second application, one of the places the FormsAuthenticationModule
will look for a forms authentication ticket is in Request.Form[“name of the forms authentication
cookie”]. The value of the hidden control is set to the encrypted value of the
FormsAuthenticationTicket for the current user. This is the same operation we saw earlier for the
redirection scenarios, with the difference being that in this sample the forms authentication ticket is
being packaged and stored inside of a hidden form variable rather than a query-string variable.

When you request this page from the first application in the browser, viewing the source shows how
everything has been lined up for a successful cross-page post. An abbreviated version of the <form />
element is shown here:

<form method=”post” action=”PostToAnotherApplication.aspx” id=”form1”>

<input type=”hidden” name=”__VIEWSTATE” id=”__VIEWSTATE”
value=”/wEPDwUKMTUyMjMyNTkyOWRk/xqxNcEwAvNgbY4ERISdsKcovBo=” />

<input name=”txtSomeInfo” type=”text” id=”txtSomeInfo” />

<input id=”Button1” type=”submit” name=”Button1” value=”Button”
onclick=”javascript:WebForm_DoPostBackWithOptions(new

WebForm_PostBackOptions(‘Button1’,’’,false,’’,
‘/Chapter5/cookiedAppB/ReceivePostFromAnotherApplication.aspx’,false,false))” />

<input name=”.ASPXAUTH” type=”hidden” id=”.ASPXAUTH”
value=”8CA4D2EB5407E67A6E9950337562ABDEDDBA305644DB3E4B51490F715B4D313A275CE9FB6912
7BE6780462B6570DF8347F282E8FA25E28B1958B13FD710EDF956BD315E40F64B4D44FE3534BA857BA2
F99225E63EA4E65FD40357D995DA1E3F8E4C4D7BAA6E8A4CFC828D357EECEDC27” />

</form>

The forms authentication ticket is packaged up in the hidden form variable. You can also see that the
form’s action is set to PostToAnotherApplication.aspx, which at first glance doesn’t look like a page
in another application. The form will actually post to another application because the button on the form

233

Forms Authentication

08_596985 ch05.qxp 12/14/05 7:48 PM Page 233

has a click handler that calls WebForm_DoPostBackWithOptions. This method is one of the many
ASP.NET client-side JavaScript methods returned from webresource.axd (webresource.axd is the
replacement for the JavaScript files that you used to deploy underneath the aspnet_client subdirec-
tory back in ASP.NET 1.1 and 1.0).

When you press the button on this, page two things occurs:

1. The WebForm_DoPostBackWithOptions client-side method sets the action attribute on the
client-side form to the value /Chapter5/cookiedAppB/
ReceivePostFromAnotherApplication.aspx.

2. The client-side method returns, at which point because the button is of type “submit,” the
client-side form is submitted by the browser, using the “action” that was just set.

As a result of this, you have a form-submit from a page in Application A flowing over to application B.
When the request hits application B, it starts running through the HTTP pipeline. The
FormsAuthenticationModule sees the request, and attempts to find a forms authentication ticket.
Eventually, the module looks in Request.Form[“.ASPXAUTH”] for a forms authentication ticket.
Because there is a hidden field on the form called .ASPXAUTH, the module is able to find the string value
stored there. The module then converts the string value into a forms authentication ticket and sets a
cookie on the response that contains this ticket.

At this point the request continues to run, which in the case of the sample application results in a call on
the page to:

Response.Write(“The posted value was: “ + Request.Form[“txtSomeInfo”]);

If you run the sample application, you will see that the preceding line of code will successfully play back
to you whatever value you typed into the text box back in application A. The other nice thing about this
approach is that not only are posted variables retained across the two applications, when you end up on
the page in the second application there isn’t the somewhat odd (maybe unsettling?) behavior of the
authentication ticket showing up in the address bar of the browser. Additionally, if you view the source
of the second page in the browser, there isn’t any authentication ticket there either. For both of these
reasons, when running sites with cookie-based forms authentication, POST-based transfers of control
between applications are preferred to the approach that relies on calling Response.Redirect.

One last comment on the cross-page posting case: remember that you always need to explicitly set the
keys in the <machineKey /> element for all participating applications. Without this, the forms authenti-
cation ticket in the hidden field will not be decryptable in the second application.

Cookie-based “SSO-Lite”
Now that you have seen the various permutations of passing forms authentication tickets between
applications, let’s tie the concepts together with some sample applications that use a central login form.
This approach is conceptually similar to how Passport works with all tickets being issued from central
login application. Note that this design only works with cookie-based forms authentication because it
relies on issuing forms authentication cookies that can authenticate the browser back to the original
application. Websites that use cookieless forms authentication need more explicit code inside of each
application due to the need to manually create some approach for hopping authentication tickets from
one application to another.

The general design of our “hand-rolled” single sign-on solution is shown in Figure 5-4.

234

Chapter 5

08_596985 ch05.qxp 12/14/05 7:48 PM Page 234

Figure 5-4

Step 1: Attempt to access
secured pages in Application A

Step 4: Central login app sends
back login form.

Step 5: Browser
user posts back
credentials

Step 9: App B
redirects to local
login page

Step 10: Local login
page redirects to
central login app.

Step 11: Central login
app detects user
already logged in.
Issues ticket on query
string and redirects
back to app B.

Step 6: Central login
page redirects to self.

Step 8: User access
another application.

Step 7: Central login page
redirects back to app A with
credentials on the query string

Step 2: App A redirects to local
login page

Step 3: Local login page
redirects to central login app

Local Login.aspxApplication A

Browser User

Central Login.aspx

Local Login.aspx

Application B

Central login
management

235

Forms Authentication

08_596985 ch05.qxp 12/14/05 7:48 PM Page 235

The desired behavior of the solution is described in the following list:

1. A user attempts to access a secured application, in this case Application A. At this point, the
user has not logged in anywhere and thus has no forms authentication tickets available.

2. When the request is reaches application A, it detects that that application allows authenticated
users only. As a result, it redirects the browser to a login page that is local to the application.

3. The local login page does not actually send back a login form to the user at this point. Instead,
the local login form places some information onto the query-string and then redirects to a cen-
tral login application.

4. The central login application detects that the user has never logged in against it, and so it
re.directs the user to a login page in the central login application. This is the only point at which
the browser user ever sees a login UI.

5. At this point the browser user enters credentials into a form and submits the form back to the
central login application.

6. Assuming that the credentials are valid, the login page in the central login application redirects
back to itself. This is because the login page handles both interactive logins and noninteractive
logins.

7. When the login page redirects to itself, it detects that the user already has a valid forms authen-
tication ticket for the central login application. So instead, the login page clones the forms
authentication ticket and sends this new ticket by way of a redirect back to application A. In
Application A, the FormsAuthenticationModule will see the ticket on the query-string, con-
vert it into a cookie, and then start running the original page that the user was attempting to
access back in step 1.

8. Some time later, the user attempts to access a secured page in application B.

9. Because there is no forms authentication ticket for application B, it redirects to the local login
page. As with application A though, the local login page just exists to place information on the
query-string and redirect to the central login application.

10. When the redirect reaches the login page in the central login application, the forms authentica-
tion ticket issued back in step 6 will flow along with the request. As a result, the login page
detects that the user already logged in.

11. Rather than sending back a login form, the login page creates another clone of the forms authen-
tication ticket and places it on a query-string. It then redirects back to application B.

12. The FormsAuthenticationModule in application B converts the forms authentication ticket on
the query-string into a forms authentication cookie. The original page that the user requested
back in step 8 then runs.

You can see that the primary underpinning of the SSO-lite solution in forms authentication is the ability to
pass forms authentication tickets across disparate applications. A website user logs in against a central appli-
cation, which results in a forms authentication cookie being sent to the user’s browser. That forms authenti-
cation ticket becomes the master authentication ticket for all subsequent attempts to access other sites.

Whenever a participating website redirects back into the central login application, the master forms
authentication cookie is sent by the user’s browser to the login page in the central application. The
central login page can then crack open this ticket and extract most of the values in it, and create a new
forms authentication ticket. The new ticket is what is packaged on the query-string and sent back to the
original application by way of a redirect.

236

Chapter 5

08_596985 ch05.qxp 12/14/05 7:48 PM Page 236

The benefit of generating application-specific forms authentication tickets off of the central application’s
forms authentication ticket is that all participating applications receive a forms authentication ticket with
a common set of issue and expiration dates. It is the central login application that defines for how long
the master ticket is valid (and for that matter if sliding expirations are even allowed). The cloned tickets
for all of the participating applications simply reflect these settings as established in the central login
application.

Now that you have reviewed the conceptual design, it’s time to drill into the actual implementation.
There are two important pieces of information that all participating applications need to send over to the
central application:

❑ The URL of the page that was originally requested in the application

❑ The desired cookie path that should be used when creating a forms authentication ticket in the
participating application

The first piece of information is pretty intuitive — because you want your SSO-lite solution to roughly
mirror the standard forms authentication behavior, we need the website user to eventually end up on
the page that was originally requested. However, the second piece of information is very important to
get right because the solution will be issuing forms authentication tickets in one place (the central login
application), but the ticket needs to be converted into a valid cookie in a completely different place (the
FormsAuthenticationModule of the participating application).

It turns out that the login in forms authentication for handling cross-application redirects is dependent on
the CookiePath property of FormsAuthenticationTicket. When a FormsAuthenticationModule
receives a ticket on the query-string, it doesn’t look at the path attribute set in the <forms /> element for
the application. Instead, when the module cracks open the ticket that was sent on the query-string, it uses
the CookiePath that it finds there as the value for the Path property on the resulting forms authentication
HttpCookie.

In our SSO-lite solution, the two necessary pieces of information are passed from participating applications
to the central login application with two query-string variables:

❑ CustomCookiePath— Each participating application sets this value to FormsAuthentication
.CookiePath. That has the effect of ensuring the forms authentication ticket issued inside of
each application actually uses the path as set in each application’s configuration.

❑ CustomReturnUrl— Each participating application sets this value to the original URL that the
website user was attempting to access. The central login application eventually issues a redirect
back to this URL.

For those of you that poke around a bit in the internal workings of forms authentication, you may be
wondering why the solution needs a custom definition of a return URL. Whenever forms authentication
performs its automatic redirect-to-login-page logic, there is a query-string variable called ReturnUrl.
You cannot overload this query-string variable for the purposes of cross-application redirects because
forms authentication only places a server-relative virtual path into this variable. Forms authentication
does not have the ability in ASP.NET 2.0 to add the DNS or servername into the ReturnUrl variable
(that is, forms authentication never prepends http://some.server.address.here/ to this variable).

An SSO-lite solution wouldn’t be very useful though if the only return URLs sent to the central login appli-
cation were to other applications deployed on the same IIS server. In fact, if that were the only problem
you were trying to solve, chances are all you would need to do is set the domain attribute in configuration.

237

Forms Authentication

08_596985 ch05.qxp 12/14/05 7:48 PM Page 237

As a result, the SSO-lite solution uses the CustomReturnUrl variable to hold the fully qualified address
of the original page the website user was attempting to access. This ensures that the central login applica-
tion can exist in a completely different DNS namespace from any of the participating applications.

Sample Participating Application
The web.config for a participating application is defined as shown here:

<configuration xmlns=”http://schemas.microsoft.com/.NetConfiguration/v2.0”>
<appSettings>
<add key=”centralLoginUrl”

value=”http://demotest/Chapter5/CentralLogin/Login.aspx”/>
</appSettings>
<system.web>

<machineKey
decryptionKey=”A225194E99BCCB0F6B92BC9D82F12C2907BD07CF069BC8B4”
validationKey=”6FA5B7DB89076816248243B8FD7336CCA360DAF8”

/>

<authentication mode=”Forms”>
<forms loginUrl=”Login.aspx”

cookieless=”UseCookies” enableCrossAppRedirects=”true”
path=”/Chapter5/AppAUsingCentralLogin” slidingExpiration=”False”

/>
</authentication>

<authorization>
<deny users=”?”/>

</authorization>

</system.web>
</configuration>

The bolded portions of the configuration require some explanation. First, the <appSettings /> vari-
able defines the full URL needed to reach the login page in the central login application. You would need
to set this in the configuration of every participating application so that applications know where to
send the authentication redirect to. The enableCrossAppRedirects setting is necessary so that the
FormsAuthenticationModule inside of the application will look in the query-string or form post vari-
ables for a ticket. With this setting turned on, the participating application can successfully convert tick-
ets send from the central application back into an application-specific forms authentication ticket.

Last, note that slidingExpiration is set to false. Because the central login application issues the
master forms authentication ticket, it is the timeout and slidingExpiration settings of the central
login application that take precedence. You don’t want participating applications to be renewing forms
authentication tickets — rather you want the central login application to do this for you.

Because the configuration above denies access to all anonymous users, any attempt to access a page in the
application results in a redirect to the local login page. The local version of Login.aspx is shown here:

protected void Page_Load(object sender, EventArgs e)
{

Redirector.PerformCentralLogin(this);
}

238

Chapter 5

08_596985 ch05.qxp 12/14/05 7:48 PM Page 238

It is intentionally kept simple because you don’t want to duplicate the redirection login in every single
application. In this case, there is a static helper class called Redirector that has a single helper method
called PerformCentralLogin.

public static class Redirector
{

//snip....
private static string centralLoginUrl;

static Redirector()
{

centralLoginUrl = ConfigurationSettings.AppSettings[“centralLoginUrl”];

//snip...
}

public static void PerformCentralLogin(Page p)
{

string redirectUrl =
FormsAuthentication.GetRedirectUrl(string.Empty, false);

//snip...
string baseServer = p.Request.Url.DnsSafeHost;

string customRedirectUrl = “http://” + baseServer + redirectUrl;

p.Response.Redirect(
centralLoginUrl + “?CustomReturnUrl=” +
p.Server.UrlEncode(customRedirectUrl) +
“&CustomCookiePath=” +
p.Server.UrlEncode(FormsAuthentication.FormsCookiePath));

}
}

For simplicity, I placed the static class definition into the App_Code directory of each participating appli-
cation. In a production application, you would take this one step further and at least compile the code
into a bin-deployable assembly, if not the GAC.

When the Redirector class is first used, the static constructor runs. For now, the code snippet
shows only part of the work in the static constructor where it fetches the central login URL once for
future use. The single parameter to the PerformCentralLogin method is a reference to the current
page. This ensures the helper method has access to any request-specific objects necessary to build up
the redirect information. The PerformCentralLogin method fetches the redirect URL using
FormsAuthentication.GetRedirectUrl. At this point, calling GetRedirectUrl works because it
returns the virtual path to the originally requested page. However, as noted earlier, the path lacks the
server information necessary to allow redirects to work against any arbitrary set of servers and DNS
namespaces.

Ignoring some other functionality for a second, the method fetches the server portion of the current
URL. With both the server’s address, and the virtual path in hand, the method constructs the fully quali-
fied redirect path. The method can now redirect to the central login application’s login page, including
the fully qualified return URL in the CustomReturnUrl query-string variable and the correct cookie
path information for the forms authentication ticket in the CustomCookiePath query-string variable.

239

Forms Authentication

08_596985 ch05.qxp 12/14/05 7:48 PM Page 239

So, the net result of the original call in the Load event of Login.aspx is that the participating applica-
tion silently constructs and issues a redirect into the central login application. No user interface for login
is ever returned by a participating application.

Let’s return the code that was snipped out earlier. The following includes bolded code that shows some
additional logic:

public static class Redirector
{

private static Dictionary<string, string> pages;
private static string centralLoginUrl;

static Redirector()
{

centralLoginUrl = ConfigurationSettings.AppSettings[“centralLoginUrl”];

//Register page mappings to force correct casing for the cookie
//that will eventually be issued.
pages =
new Dictionary<string, string>(StringComparer.InvariantCultureIgnoreCase);

pages.Add(“/Chapter5/AppAUsingCentralLogin/Default.aspx”,
“/Chapter5/AppAUsingCentralLogin/Default.aspx”);

pages.Add(“/Chapter5/AppAUsingCentralLogin/AnotherPage.aspx”,
“/Chapter5/AppAUsingCentralLogin/AnotherPage.aspx”);

}

public static void PerformCentralLogin(Page p)
{

string redirectUrl =
FormsAuthentication.GetRedirectUrl(string.Empty, false);

//Fixup the casing of the redirect URL to prevent problems with new cookies
//being issued for a request with incorrect casing on the URL.
redirectUrl = pages[redirectUrl];
string baseServer = p.Request.Url.DnsSafeHost;

string customRedirectUrl = “http://” + baseServer + redirectUrl;

p.Response.Redirect(
centralLoginUrl + “?CustomReturnUrl=” +
p.Server.UrlEncode(customRedirectUrl) +
“&CustomCookiePath=” +
p.Server.UrlEncode(FormsAuthentication.FormsCookiePath));

}
}

All of the bolded code deals with a quirk in cookie handling. If you depend on setting the Path property
of an HttpCookie, the path information is case-sensitive. For many developers, using forms authentica-
tion this isn’t an issue because forms authentication defaults to a path of /. However, when putting
together this sample, there were some frustrating moments before realizing that some of the test URLs I
was using had incorrect casing compared to the path of the forms authentication cookie.

240

Chapter 5

08_596985 ch05.qxp 12/14/05 7:48 PM Page 240

If you plan to create your own SSO-lite solution, and if you intend to segment forms authentication tick-
ets between applications through the use of a cookie’s path property, you need to very careful about how
URLs are handled in your code. In the case of the sample SSO-lite solution, the bolded code is a simple
workaround for ensuring proper casing. The helper class holds a dictionary containing every URL in the
application. The trick here is that the dictionary uses a case-insensitive string comparer, and it uses the
invariant culture. This means whenever a lookup is made into the dictionary, the key comparison
ignores case, and treats culture-sensitive characters in a neutral manner.

When the PerformCentralLogin method runs, it always takes the redirect URL as returned from forms
authentication and converts it into the correct casing. The theory here is that if this method is called, it is
very likely that is being called due to an end user (like myself) accidentally typing in the wrong casing
for a URL in the IE address bar. By performing a lookup into the static dictionary, the method can con-
vert any arbitrary casing on the redirect URL into a URL with correct casing. Because the SSO-lite solu-
tion does partition forms authentication tickets with paths other than / (from the configuration a few
pages back, the current application we are looking at uses a cookie path of
/Chapter5/AppAUsingCentralLogin), it is important to perform this conversion prior to sending the
redirect URL to the central login application.

Central Login Application
The configuration for the central login application pretty much mirrors that of the participating applications.

<configuration xmlns=”http://schemas.microsoft.com/.NetConfiguration/v2.0”>
<system.web>

<machineKey
decryptionKey=”A225194E99BCCB0F6B92BC9D82F12C2907BD07CF069BC8B4”
validationKey=”6FA5B7DB89076816248243B8FD7336CCA360DAF8”

/>

<authentication mode=”Forms”>
<forms cookieless=”UseCookies” enableCrossAppRedirects=”true”

path=”/Chapter5/CentralLogin” slidingExpiration=”true”
timeout=”30”/>

</authentication>

<authorization>
<deny users=”?”/>

</authorization>

</system.web>
</configuration>

Unlike the participating applications, the central login application does not register any URL in the
<appSettings /> section. In fact, the SSO-lite solution shown here has zero knowledge of any of the
other participating applications.

The bolded attributes in the <forms /> element are of interest because these settings not only define behavior
for the master forms authentication ticket issued by the central login application, the settings also influence the
ticket behavior for the participating application. Of course, enableCrossAppRedirects is set to true because
without that there is no way to hop tickets between applications. The path attribute ensures that the forms
authentication ticket for the central login application stays in the central login application. This is why I refer to
the forms authentication ticket from the central login application as the “master” forms authentication ticket.
After it is issued, the cookie never flows to any other application.

241

Forms Authentication

08_596985 ch05.qxp 12/14/05 7:48 PM Page 241

The slidingExpiration and timeout attributes define the expiration behavior for the master forms
authentication ticket. Because the master ticket is also cloned and used as the source for tickets sent to
other participating applications, this means these attributes also define the expiration behavior for all
other applications. In the case above, the central login application is using the standard timeout of 30
minutes, and it is allowing sliding expirations. Remember, though, that slidingExpiration is always
set to false in all of the participating applications. This point will be expanded on in a little bit when I
cover the login page.

The login page in the central login application normally would have the user interface for collecting cre-
dentials and validating them. However, because this is just a sample that focuses on the mechanics of
passing tickets around, the actual “login” on the page is pretty basic and uses a fixed credential:

protected void Button1_Click(object sender, EventArgs e)
{

FormsAuthentication.SetAuthCookie(“testuser”, false);

string redirectUrl = Request.QueryString[“CustomReturnUrl”];
string cookiePath = Request.QueryString[“CustomCookiePath”];

Response.Redirect(“Login.aspx?CustomReturnUrl=” + redirectUrl +
“&CustomCookiePath=” + cookiePath, true);

}

Rather than calling FormsAuthentication.RedirectFromLoginPage, the button click handler for
login calls SetAuthCookie. Calling SetAuthCookie ensures that the master forms authentication
cookie is set in the Response, but it also allows the login page to do other work and then programmati-
cally issue a redirect.

Because the CustomReturnUrl and CustomCookiePath attributes are still needed, the click event han-
dler simply moves the values from the inbound Request query-string to the query-string variables on
the redirect. The important thing to note about the click event handler is that it will only be called when
an interactive login is required. The very first time website users enter any participating site, they will
end up with the interactive login and their response will flow the click event handler. However, as the
following code shows, the login page also supports noninteractive login:

protected void Page_Load(object sender, EventArgs e)
{

//If the user is already authenticated, then punt them back
//to the original application, but place a new forms authentication
//ticket on the query string.
if (User.Identity.IsAuthenticated == true)
{

//This information comes from the forms authentication cookie for the
//central login site.
FormsIdentity fi = (FormsIdentity)User.Identity;
FormsAuthenticationTicket originalTicket = fi.Ticket;

//For sliding expirations, ensure the ticket is periodically refreshed.
DateTime expirationDate;
if (FormsAuthentication.SlidingExpiration == true)
{

TimeSpan timeout =
originalTicket.Expiration.Subtract(originalTicket.IssueDate);

242

Chapter 5

08_596985 ch05.qxp 12/14/05 7:48 PM Page 242

expirationDate =
originalTicket.IssueDate.Add(new TimeSpan(timeout.Ticks / 2));

expirationDate.AddMinutes(1);
}
else

expirationDate = originalTicket.Expiration;

FormsAuthenticationTicket ft =
new FormsAuthenticationTicket

(originalTicket.Version,
originalTicket.Name,
originalTicket.IssueDate,
expirationDate,
originalTicket.IsPersistent,
originalTicket.UserData,
Request.QueryString[“CustomCookiePath”]
);

string redirectUrl = Request.QueryString[“CustomReturnUrl”];

Response.Redirect(
redirectUrl + “?” +
FormsAuthentication.FormsCookieName + “=” +
FormsAuthentication.Encrypt(ft));

}
}

Actually, what happens when a website used first needs to login against the central login application is
that the Load event handler ran. However, because this event handler falls through for unauthenticated
users, the very first time a user needs to log in he or she instead ends up with the login page being
rendered and can perform an interactive login.

The noninteractive login occurs on most subsequent requests. For example, the button click handler for
the login page redirects back to the same page. When the redirect comes back to the login page, there is
now a master forms authentication ticket sent along with the request (from the SetAuthCookie call in the
button click handler). As a result, when the Load event runs again, it sees that the user is authenticated,
and so no interactive UI is even rendered.

The Load event first gets a reference to the master forms authentication ticket because it needs most of
the information in that ticket to create a forms authentication ticket for the participating site. The Load
event creates a new forms authentication ticket and carries over almost all of the settings from the
master forms authentication ticket. For example, this means a participating site gets the exact same issue
date and expiration date as the master forms authentication ticket. If you build a similar solution, you
could choose to actually store DateTime.Now for the IssueDate of the new ticket. The main point,
though, is that the expiration date for tickets sent to participating sites is based on the expiration date for
the login against the central login application.

If you use absolute ticket expiration in the central login application, the behavior when tickets timeout in
participating applications is pretty clear. When a forms authentication ticket times out in a participating
application, the request is redirected through the local login page, which ends up requesting the central
login page. However, because all tickets use the same timeout values, the master forms authentication
ticket has also timed out. As a result, the redirect to the central login application falls through the Load

243

Forms Authentication

08_596985 ch05.qxp 12/14/05 7:48 PM Page 243

event (the user is no longer considered authenticated), and instead the interactive login is shown. When
the interactive login completes, a new master forms authentication ticket is issued, and the second
execution of the login page results in a redirect with a new ticket and a new expiration date back to the
participating application.

On the other hand, if you use sliding expirations in the central login application, the reauthentication
should be transparent to the website user. The ticket for the participating application is issued with a
modified expiration date. Instead of using the same expiration date as the master forms authentication
ticket, the time to live for the ticket is set to half the TTL for the master forms authentication ticket, plus
one extra minute. Because you know that forms authentication automatically reissues tickets when 50%
or more of the remaining time to live has passed for a ticket, the idea is to create a ticket for the partici-
pating applications that will timeout in a similar manner. The extra one minute is added to account for
clock-skew between the central login application and participating applications.

What happens now is that in the participating applications with absolute expirations, the forms authentica-
tion ticket eventually times out at (IssueDate + 50% of the central login application’s timeout + 1 minute).
This results in a redirect back to the central login page. However, because (ExpirationDate— 50% of the
central login application’s timeout — 1 minute) of time remains on the master forms authentication ticket,
the master ticket is still considered valid. On the other hand though, because the master forms authentica-
tion ticket has less than 50% of its remaining lifetime left, the FormsAuthenticationModule in the central
login application will automatically renew the master forms authentication ticket — which results in a new
IssueDate and a new ExpirationDate.

Because the renewal occurs in the HTTP pipeline before the login page ever runs, by the time the Load
event executes, a new master forms authentication ticket is available. As a result, the ticket that is created
for the participating application contains a new IssueDate and an ExpirationDate roughly equal to
(DateTime.Now + 50% of the central login application’s timeout + 1 minute). When this ticket is sent
back to the participating application, it results in a valid forms authentication ticket, and so the website
user is returned to the originally requested page. Although a few redirects occurred underneath the
hood, there was no interactive login required to renew the cookie.

Another property in the new forms authentication ticket that differs is the CookiePath. Rather than
cloning over the cookie path from the forms authentication ticket, the value from the
CustomCookiePath query-string variable is used instead. This is how the central login application
ensures that the ticket sent back to the participating application has the correct path information. The
FormsAuthenticationModule in the participating application will use the CookiePath value from
this ticket when it constructs and issues the forms authentication cookie.

The CustomReturnUrl query-string variable is used to build the redirect URL. Because this value
includes the full qualified path back to a page in the participating application, the redirect issued by the
central login page can cross servers and domains. You can see the chain that leads up to this point as well:

1. Participating application creates the fully qualified return URL

2. Central login application replays fully qualified return URL when it redirects to itself

3. Central login application uses replayed fully qualified return URL when it redirects back to the
participating application

The actual redirect includes the query-string variable and value with the forms authentication ticket. It
uses the exact same code as you saw earlier when cross-application redirects were first introduced.

244

Chapter 5

08_596985 ch05.qxp 12/14/05 7:48 PM Page 244

The Final Leg of the SSO Login
At this point, a redirect has been issued back to the participating application, to the specific page that the
website user was originally trying to access. The user is able to navigate around the participating appli-
cation because now there is a valid forms authentication cookie. If the cookie eventually times out, the
behavior described earlier around ExpirationDate takes effect, and a new ticket is issued.

If the website user surfs over to another participating application, there is of course no forms authentica-
tion cookie for this third application. However, the exact same logic applies. In the third application:

1. A redirect to the local login page occurs.

2. The local login page redirects to the central login application.

3. Because the master forms authentication ticket exists, the central login application transparently
creates a new ticket and sends it back to the participating application.

4. The participating application converts the ticket in the query-string into a valid forms authenti-
cation cookie, and the originally requested page runs.

Examples of Using the SSO-Lite Solution
Using a sample participating application called AppAUsingCentralLogin, the initial attempt to fetch
default.aspx results in a redirect to the interactive login page in the central login application. The
URL at this point looks like (bolded areas inserted for clarity):

http://demotest/Chapter5/CentralLogin/Login.aspx?CustomReturnUrl=http%3a%2f%2fdemot
est.corsair.com%2fChapter5%2fAppAUsingCentralLogin%2fDefault.aspx&CustomCookiePath=
%2fChapter5%2fAppAUsingCentralLogin

You can see that the URL is pointed at the central login page. The CustomReturnUrl query-string vari-
able contains the URL-encoded representation of a test server as well as the full path to default.aspx.
The CustomCookiePath query-string variable contains the path information that was set in the <forms
/> configuration element of the participating application /Chapter5/AppAUsingCentralLogin.

After successfully logging in, you are redirected back to the originally requested URL. The URL in the
address bar at this point looks like:

http://demotest.corsair.com/Chapter5/AppAUsingCentralLogin/Default.aspx?.ASPXAUTH=C
5338638F07C49516DA6B055BC12474D3266A0688F395C7BDAF29C2254478922507DC996699848AF4E8A
FA793521153C6A4C40FCC7EA602061706FC5DA67F42CDBFA07643349D12DB24020CCAF0F5FD4C618BD1
4BBF9A038116FDDEA9F39196C2AC8CA0CA2B570367D4B72A65C2E3D573EB619E1FF9BF9F648F43889BA
C00BBF51B1B361C2EAC02C

Because the SSO-lite solution relies on cross-application redirects, the very first page that is accessed
after the redirect from the central login application includes the forms authentication ticket sitting in the
query-string. If you navigate around into the site though, this query-string variable goes away:

http://demotest.corsair.com/Chapter5/AppAUsingCentralLogin/AnotherPage.aspx

If you now navigate over to a second participating application:

http://demotest.corsair.com/Chapter5/AppBUsingCentralLogin/Default.aspx

245

Forms Authentication

08_596985 ch05.qxp 12/14/05 7:48 PM Page 245

There is a slight pause while the redirects occur, but you end up on default.aspx, with the address bar
showing the following:

http://demotest.corsair.com/Chapter5/AppBUsingCentralLogin/Default.aspx?.ASPXAUTH=B
22EDE80C1D97F37E2512FCBA2AA0E1734208A6D3971D78E3CFFA8A28AF4D4C16624830AD0FD3BE1DD16
8452415323A226A34E2E86D2E8EE1A5635CDDB8BF47D66B0DB3D773DCFB3BF93A159F03F1D61530966B
2ED9D64AD408E1ED2FFF565862F2C256D9FC3EE5D136FC566B159953ADAF4A80DB632E37A934117F098
F8C2845D99AC2138FA3503

No prompt for login occurs though because the master forms authentication cookie has already been
issued. As with the first participating application, the initial redirect from the central login application
back to application B (in this case), results in the forms authentication ticket showing on the URL. When
you navigate deeper into the site, this will go away.

Although I can’t show it here in a book, if you take the code for the central login application in Visual
Studio and attach to w3wp.exe with the debugger you can see how tickets are renewed in the sliding
expiration case with the following steps:

1. Set the timeout attribute in the central login application to three minutes or more.

2. Access one of the participating applications and go through the login process.

3. Attach the central login application with the debugger and set breakpoints in the Load event of
the login page.

4. Wait for 2.5 minutes (50% of the central application’s timeout plus one minute). This is the time-
out on the ticket sent to the participating application.

5. Access another page in the participating application. At this point, you will see that the break-
points in the central login page are hit and a new forms authentication ticket is issued for the
participating application. If you inspect the new IssueDate and ExpirationDate, you will see
that they have all been updated with new values. Because the master forms authentication
ticket was 2.5 minutes old when the redirect back to the central login application occurred, the
FormsAuthenticationModule in the central login application automatically renewed the mas-
ter ticket as well.

Final Notes on the SSO-Lite Solution
You have seen that with cross-application redirects in ASP.NET 2.0’s forms authentication that it is possi-
ble to sort of cobble together an SSO-like solution. However, now that I have shown how to accomplish
it, there are a number of technical points that you still need to keep in mind.

❑ The solution depends entirely on redirects between different servers and different domains.
There may be the possibility of getting browser security warnings when running under SSL and
a redirect occurs to a completely different application and DNS domain.

❑ Because of the dependency on redirects, you need to be careful in how participating applica-
tions are structured as well as in the ticket timeouts. It is entirely possible that a user working on
a form in an application posts data back to the server and then loses all of the information when
a silent reauthentication with the central login site occurs.

❑ In the case of sliding expirations, the sample depends on very specific behavior around the
renewal of forms authentication tickets. Although this renewal behavior is documented, the
trick with adding a one minute offset is fragile — both due to the potential for changes in the

246

Chapter 5

08_596985 ch05.qxp 12/14/05 7:48 PM Page 246

underlying forms authentication behavior as well as the variability around clock skew between
participating applications and the central login server. A more robust solution could involve a
custom HttpModule installed on each participating site that would optionally renew the ticket
based on information carried in the UserData property of the ticket.

❑ You may want more control over how ticket timeouts are handled in general — both for the master
forms authentication ticket and for the participating sites. For example, you may want configurable
ticket timeouts that vary depending on which participating application is requesting a ticket.

❑ There was no concept of federation or trust shown in the sample SSO solution. For an in-house IT
shop, this probably would not be an issue because developers at least know of other development
organizations sharing server farms and there is an implicit level of trust. However, in the case of
disparate Internet facing sites run by different companies, trust is an incredibly important aspect
of any SSO solution. Attempting to create an SSO solution on top of forms authentication for such
a scenario probably isn’t realistic.

❑ Last, the sample application allows any participating application to make use of it. With the
prevalence of phishing attacks on the Internet these days, you would want to some additional
security in an SSO-lite solution. At a minimum, you would want the central login application to
only accept login attempts from URLs that are “trusted” by the central login application. This
would prevent attacks where a malicious website poses as the login page to a legitimate site,
and then through social engineering attacks (that is, unwary user clicking through a spam
email) harvests a valid forms authentication ticket issued by the central login application. This
specific scenario is why for more complex SSO scenarios you would want to use a commercial
SSO product that incorporates the concept of trust — both trust between participating sites as
well as trust between applications and the website that issues credentials.

Overall, I think these points highlight the fact that cross-application redirects can definitely be used for
solving some of the simpler problems companies run into around single sign-on. However, if you find
that your websites require more than just a basic capability to share tickets across servers and applica-
tions, you will probably need to either write more code to handle your requirements or go with a third-
party SSO solution.

Enforcing Single Logons and Logouts
A question that comes up from time to time is the desire to ensure the following behavior when users
login with forms authentication:

❑ Users should be allowed to login once, and only once. If they attempt to login a second time in
an application the login should be rejected.

❑ If users explicitly log out, the fact that they logged out should in some way be remembered to
prevent replaying previous authentication tickets.

Both of these design questions highlight the fact that forms authentication is a lightweight mechanism for
enforcing authentication. Forms authentication as a feature does not have any back-end data store. As a
result there isn’t an out-of-box solution that automatically keeps track of login sessions and subsequent
logouts. However, with a little bit of coding it is possible to deal with both scenarios in ASP.NET 2.0.

247

Forms Authentication

08_596985 ch05.qxp 12/14/05 7:48 PM Page 247

The solution outlined in this section relies on the Membership feature of ASP.NET 2.0. There is an exten-
sive discussion of extending Membership in Chapters 10, 11, and 12 — however, because this chapter
deals with forms authentication it makes more sense to show the Membership-based solution at this point
rather than deferring it. Because Membership is designed to work hand-in-hand with forms authentica-
tion, it is a logical place to store “interesting” information about the logged-in or logged-out state of a user
account. Of course, you could write your own database solution for the same purposes, or possibly even
use the new Profile feature in ASP.NET 2.0 for similar purposes, but given that Membership is readily
available and is part of the authentication stack in ASP.NET 2.0, it makes sense to leverage it.

Enforcing a Single Logon
For the first scenario of preventing duplicate login attempts, the fact that Membership stores its informa-
tion in a database (or in AD and ADAM if you so choose) makes it very useful in web farms. Any
information stored into the MembershipUser instance for a logged-on user will be available from any
other web server in the farm. In the same vein, because Membership providers can be configured in
multiple applications to point at the same database, it is also possible to use information in a
MembershipUser instance across multiple applications.

The MembershipUser object doesn’t have many places for storing additional information. However the
Comment property on MembershipUser is not used by ASP.NET, so it is a convenient place to store infor-
mation without needing to write derived versions of MembershipUser as well as derived versions of
MembershipProvider(s).

Enforcing the concept of a single logon requires tracking two pieces of information associated with a
successful logon:

❑ The expiration time for the successful logon

❑ Some type of identifier associated with the logon

Knowing when a successful logon expires is important because most website users probably never use
explicit logout mechanisms. Instead, most users navigate through a site, perform whatever required
work there is and then close the browser. In this case, if a user comes back to the site at a later point after
the original logon session has expired, you don’t want to nag the user about preexisting logon sessions
that have since expired. Instead, you want an authentication solution that recognizes the previous logon
has expired and silently cleans up after the fact.

The second piece of information is important to keep track of because you need some concrete represen-
tation of the fact that a user logged in to the website. Just storing an expiration date is not sufficient. An
expiration date indicates when an active logon session expires, but the date alone doesn’t give you
enough information to correlate to the fact that someone logged in to a website. By tracking some type of
session identifier, you can check on each inbound request whether the authentication data is for the
active logon session or for some other logon session.

A logon session identifier also gives the website user the ability forcibly logout another active session.
This scenario is important if, for example, a user logs in to your website on one machine and forgets
about it. Then the user walks down the hallway to another machine and attempts to login again. With
the logon session identifier, you have a way to allow the user to log on using other machines while
ensuring that the previous logon session (or sessions) that are sitting idle on some other machine cannot
be reused when the individual gets back to his or her desk.

248

Chapter 5

08_596985 ch05.qxp 12/14/05 7:48 PM Page 248

So, just from this brief overview of the main problems involved with enforcing a single login you can see
that there is a fair amount of tracking and enforcement necessary to get all this working. The good thing
though is that it is possible to build this type of enforcement using the existing forms authentication and
Membership features.

You will start out building the solution by looking at a sample login page. Since ASP.NET 2.0 conveniently
includes the UI login controls, building the basic UI with logical events during the login process is a snap.
Drop a login control onto a page, and then convert into a template. Converting it into a template allows
you to add UI customizations as needed. In this case, you need to add a check box that allows an end user
to forcibly logout other active logon sessions.

<!-- snip -->
<tr>
<td colspan=”2”>

<asp:CheckBox ID=”ForceLogout” runat=”server”
Text=”Check here to invalidate other logon sessions.” />

</td>
</tr>
<!-- snip -->

So much for the UI aspect of the login control. Switching to the code-behind for the page, there are two
events that you want to handle:

❑ LoggingIn— This event gives you the opportunity to perform some checks before the Login
control attempts to validate credentials using the Membership feature. It is a good place to
check and see whether or not another active logon session is in progress.

❑ LoggedIn— This event occurs after the Login control has successfully validated credentials.
Because enforcing a single login requires some extra work on your part, this is the logical point
to create a FormsAuthenticationTicket with extra information and issue it.

The LoggedIn event is where you store information inside of Membership that indicates the logon
session ID as well the session expiration inside of the forms authentication ticket.

//snip..
protected MembershipUser loginUser;

protected void Login1_LoggedIn(object sender, EventArgs e)
{

if (loginUser == null)
loginUser = Membership.GetUser(Login1.UserName);

//represents the active login “session”
Guid g = System.Guid.NewGuid();

HttpCookie c = Response.Cookies[FormsAuthentication.FormsCookieName];
FormsAuthenticationTicket ft = FormsAuthentication.Decrypt(c.Value);

//Generate a new ticket that includes the login session ID
FormsAuthenticationTicket ftNew =

new FormsAuthenticationTicket(
ft.Version,
ft.Name,

249

Forms Authentication

08_596985 ch05.qxp 12/14/05 7:48 PM Page 249

ft.IssueDate,
ft.Expiration,
ft.IsPersistent,
g.ToString(),
ft.CookiePath);

//Store the expiration date and login session ID in Membership
loginUser.Comment =

“LoginExpiration;” + ft.Expiration.ToString() +
“|LoginSessionID;” + g.ToString();

Membership.UpdateUser(loginUser);

//Re-issue the updated forms authentication ticket
Response.Cookies.Remove(FormsAuthentication.FormsCookieName);

//Basically clone the original cookie except for the payload
HttpCookie newAuthCookie =

new HttpCookie(
FormsAuthentication.FormsCookieName,
FormsAuthentication.Encrypt(ftNew));

//Re-use the cookie settings from forms authentication
newAuthCookie.HttpOnly = c.HttpOnly;
newAuthCookie.Path = c.Path;
newAuthCookie.Secure = c.Secure;
newAuthCookie.Domain = c.Domain;
newAuthCookie.Expires = c.Expires;

//And set it back in the response
Response.Cookies.Add(newAuthCookie);

}

After a successful login, the page first ensures there is a MembershipUser reference available for the
user that is logging in. The GetUser(...) overload that accepts a username must be used because
even though the user’s credentials have been successfully verified at this point, from a forms authentica-
tion viewpoint, the page is still running with an anonymous user on the current HttpContext. It won’t
be until the next page request that the FormsAuthenticationModule has a cookie on the request that it
can convert into a FormsIdentity.

Because the LoggedIn event won’t run unless other preliminary checks ensure that it is alright for the
user to login, there aren’t any other validation checks in this event handler. To reach this event, the cre-
dentials will already have been verified as matching, and the other checks in the LoggingIn event
(shown a little bit later) will also have been passed.

For this sample, a Guid was chosen as the representation of a login session — so the event handler cre-
ates a new Guid to represent a new instance of a login session. As you have seen in other sections,
because the forms authentication APIs don’t expose timeout information, you need to get to it through a
workaround. In this case, because the Login control has already called SetAuthCookie internally, there
is a valid forms authentication cookie sitting in the Response. With this cookie, you can get the
FormsAuthenticationTicket for the user that is logging in.

250

Chapter 5

08_596985 ch05.qxp 12/14/05 7:48 PM Page 250

A new FormsAuthenticationTicket is created that is a clone of the already issued ticket, with one
difference. The UserData information in the ticket is where the Guid login session identifier is stored.
Note that because this sample application relies on the UserData property, enforcing a single logon in
this manner will only work with clients that support cookies. The Expiration and the Guid for the
ticket are also packaged up and stored in the MembershipUser instance for the user that is logging in. In
more complex applications, you could create a custom class that represented this type of information,
run the class through the XmlSerializer, and store the output in the Comment property. For simplicity
though, the sample application stores the information with the following format:

LoginExpiration;expiration_date|LoginSessionID;the_Guid

Each piece of information is a name-value pair, with different name-value pairs delimited with the pipe
character. Within a name-value pair, the two pieces of information are delimited by a semicolon. Once
the Comment field has the new information, Membership.UpdateUser is called to store the changes
back to the database.

The last piece of work during login is to replace the forms authentication cookie issued by the Login
control with the FormsAuthenticationTicket that has the UserData in it. Again, rather than attempt-
ing to hard-code pieces of forms authentication configuration information into the application, the sam-
ple code simply reuses all of the settings from the Login control’s cookie to create a new cookie with all
of the correct settings. The Login control’s original cookie is then removed from the Response, and the
new cookie is added in its place.

At this point, when the login page completes, the user is successfully logged in with the session identi-
fier flowing back and forth between the browser and the web server inside of the forms authentication
ticket. There is also a persistent representation of the expiration time for the login as well as the session
identifier stored in the Membership system. These pieces of information form the basis for checking the
validity of a login on each and every request.

Because the FormsAuthenticationModule runs during the AuthenticateRequest event in the pipeline,
it makes sense to perform additional validations after forms authentication has performed the basic work
of determining whether or not there is a valid forms-authenticated user for the request. A custom
HttpModule is used to enforce that the current request is associated with the current login session.

public class FormsAuthSessionEnforcement : IHttpModule
{

public FormsAuthSessionEnforcement(){}
public void Dispose() {}

public void Init(HttpApplication context)
{

context.PostAuthenticateRequest += new EventHandler(OnPostAuthenticate);
}

private void OnPostAuthenticate(Object sender, EventArgs e)
{

HttpApplication a = (HttpApplication)sender;
HttpContext c = a.Context;

//If the user was authenticated with Forms Authentication
//Then check the session ID.
if (c.User.Identity.IsAuthenticated == true)
{

251

Forms Authentication

08_596985 ch05.qxp 12/14/05 7:48 PM Page 251

FormsAuthenticationTicket ft =
((FormsIdentity)c.User.Identity).Ticket;

Guid g = new Guid(ft.UserData);

MembershipUser loginUser = Membership.GetUser(ft.Name);
string currentSessionString =

loginUser.Comment.Split(“|”.ToCharArray())[1];
Guid currentSession =

new Guid(currentSessionString.Split(“;”.ToCharArray())[1]);

//If the session in the cookie does not match the current session as
// stored in the Membership database, then terminate this request
if (g != currentSession)
{

FormsAuthentication.SignOut();
FormsAuthentication.RedirectToLoginPage();

}
}

}
}

The custom module hooks the PostAuthenticateRequest event so that it can inspect the authenti-
cated credentials after the FormsAuthenticationModule has run. If the current request doesn’t have an
authenticated user, the module exits. On the other hand, if there is an authenticated user, the module
gets a reference to the FormsAuthenticationTicket and extracts the Guid login session identifier. The
login information for the authenticated user is also retrieved from the Membership database.

The module is only concerned with checking the validity of the session identifier so that it doesn’t
bother retrieving the expiration date from the MembershipUser instance because the
FormsAuthenticationModule will already have made this check. The module does check the session
identifier in the ticket against the session identifier stored in the database. If they match, the request is
allowed to proceed. However, if the two identifiers do not match, this is indication that the current
request is not associated with an active and valid login session. In this case, the module calls
FormsAuthentication.SignOut, which has the effect of issuing a cookie that will clear the forms
authentication cookie in the browser. Then the module redirects the current request to the login page for
the application.

Because all of this logic is encapsulated in an HttpModule, the module needs to be registered in each
application that wants to make use of its services. In terms of code deployment, for the sample applica-
tion the code is in the App_Code directory; although again you can instead choose to author it in a sepa-
rate assembly deployed in the bin or the GAC. Depending on how the module is deployed, you will
need to add more information to the type attribute.

<httpModules>
<add name=”FormsAuthSessionEnforcement”

type=”FormsAuthSessionEnforcement”/>
</httpModules>

252

Chapter 5

08_596985 ch05.qxp 12/14/05 7:48 PM Page 252

Note that the sample code shown here only includes checks that make sense in the case of absolute ticket
expirations. The custom module and login page do not handle the case where sliding expirations are
enabled. You would need extra logic to periodically update the expiration data in the Membership
database whenever the FormsAuthenticationModule renewed the ticket. As a result, the configuration
for the sample application only allows absolute expirations.

<forms slidingExpiration=”false” />

When the module exits one of two outcomes has occurred: either the login session is valid and the
request continues, or the session is invalid and the user is prompted to log in again. Assuming that the
user is prompted for a login, this brings us full circle back to the login page. As shown earlier, there is a
check box on the login page that allows a user to clear active login sessions. The setting of this check box,
as well as the logic to prevent duplicate logins, is in the LogginIn event of the Login control.

protected void Login1_LoggingIn(object sender, LoginCancelEventArgs e)
{

if (loginUser == null)
loginUser = Membership.GetUser(Login1.UserName);

//See if the user indicates that they want an existing login session
//to be forcibly terminated
CheckBox cb = (CheckBox)Login1.FindControl(“ForceLogout”);
if (cb.Checked)
{

loginUser.Comment = String.Empty;
Membership.UpdateUser(loginUser);
return;

}

//Only need to check if the user instance already has login information
//stored in the Comment field.
if ((!String.IsNullOrEmpty(loginUser.Comment)) &&

loginUser.Comment.Contains(“LoginExpiration”))
{

string currentExpirationString =
loginUser.Comment.Split(“|”.ToCharArray())[0];

DateTime currentExpiration =
DateTime.Parse((currentExpirationString.Split(“;”.ToCharArray()))[1]);

//The user was logged in at some point previously and the login is
//still valid
if (DateTime.Now <= currentExpiration)
{

e.Cancel = true;
Literal tx = (Literal)Login1.FindControl(“FailureText”);
tx.Text = “You are already logged in.”;

}
}

}

Duplicate login checks always require a MembershipUser to be handy, so the event first ensures that an
instance is available. Because the LoggingIn event is always fired by the Login control before the
LoggedIn event, the check that is made in the LoggedIn event will always find a MembershipUser
instance already available for use.

253

Forms Authentication

08_596985 ch05.qxp 12/14/05 7:48 PM Page 253

If the check box is selected (that is, the website user indicated that they want any active login session to
be invalidated), the session information inside of the MembershipUser instance is cleared and the infor-
mation is saved back to the Membership database. In essence, a setting of String.Empty in the
MembershipUser.Comment field is an indication that the user is not logged in. One side note: to actually
place the check box on the Login control required converting the control into a template. Template edit-
ing mode for the control allows you to add arbitrary controls to the layout. However, there is not a con-
venient strongly typed reference to any controls that you add — hence the need for calling FindControl
to get a reference to the check box.

If there is login information contained in the Comment property, then the expiration date is extracted.
From this, you can see that there are two different points in the application where expiration date and
session identifiers are checked. The login session identifier is checked after the user is logged in. The
expiration date is checked before the user is logged in. If the expiration date from the MembershipUser
instance indicates that there is still a valid login session (that is, there is a session that will expire some-
time in the future), then the remainder of the processing the Login control is halted by setting the
Cancel property on the event arguments to true. A reference to the Literal control that displays error
text is found, and appropriate error information is displayed to the user.

Each time a user logs in there are a few possible decision trees that will occur on the Login page:

1. The user is logging in for the very first time to the application. As a result all of the checks in the
LoggingIn event are bypassed, and a login occurs.

2. The user is logging in after a previous login session already expired. In this case, the expiration
date check in the LoggingIn event detects this, and the user is allowed to log in.

3. The user is logging in, but there is already a valid login session as indicated by the expiration
date information within the Comment field. In this case, the login is not allowed to proceed and
an error is returned.

4. The user is logging in and explicitly states that any previous session should be invalidated. This
is similar to the first point with some extra work performed to clear the Comment field prior to
allowing the login to proceed.

You can try all of this out by stepping through the process of logging in multiple times:

1. If you don’t already have a user, you can quickly create one by using the ASP.NET
Configuration tool inside of Visual Studio (Website ➪ ASP.NET Configuration Tool).

2. Log in with a user to the sample site. If you look in the database, you will see login information
inside of the Comment column of the aspnet_Membership database table. The data looks like:
LoginExpiration;5/22/2005 12:52:51 PM|LoginSessionID;71fa38d5-97f8-4c62-
8bbb-bac4ab2f352b.

3. Open up a second browser window, and type in the address of a secured page in the applica-
tion. This will require you to log in again.

4. Note that when you attempt to log in in the second browser instance, the login fails because of
the checks being made in the LoggingIn event on the login page.

5. Now attempt to login but make sure to click the check box to invalidate other login sessions.
You will be able to log in at this point successfully. If you check the Comment column in the
database, you will see updated information there.

254

Chapter 5

08_596985 ch05.qxp 12/14/05 7:48 PM Page 254

6. Flip back to the first browser window and attempt to continue navigating around the site. You
will instead get redirected back to the login page because of the login session ID check being
made by the custom HttpModule. The module detects the login session in the first browser is
no longer the active login session.

Enforcing a Logout
An issue that is related to the single login scenario is the potential for a user to reenter the site as a
logged-in user after he or she has already logged out. If this sounds a bit strange, the following sequence
of events can lead to this:

1. The user logs in and gets back a valid forms authentication ticket.

2. At some point in the future, the authentication ticket is hijacked or exposed.

3. The user logs out, thus clearing the forms authentication cookie his or her browser.

4. The malicious individual from step 2 replays the ticket back to the site. Assuming that the expi-
ration date in the ticket is still valid, the malicious user can now run as an authenticated user.

In reality, the possibility of step 2 is open to quite a bite of debate. If you run your entire site under SSL
(or at the very least set requireSSL to true in configuration), then hijacking a forms authentication
from a network trace is not possible. Prior to ASP.NET 2.0 though, it was still possible to use some type
of cross-site scripting attack to hijack a cookie using client-side browser code. However, in ASP.Net 2.0
the HttpOnly property of forms authentication cookies is set to true, so this attack vector is quite a bit
harder to accomplish (though as noted earlier is may be possible to use the TRACE/TRACK command,
which if supported on the web server still allow access to the cookie).

Furthermore, there isn’t anything in the steps listed earlier that would prevent this type of replay attack
from occurring with a technically savvy user that sits down at a coworker’s machine and attempts to
physically copy a cookie and email it back to himself (though even this attack would be partially miti-
gated by using only session based cookies). Anyway, the point here is that for high-security sites you
don’t want to allow theoretical vulnerabilities, especially if there are reasonable steps that you can take
to prevent the problem in the first place.

Because you have already seen the solution for preventing multiple logins, it is pretty easy to extend it
one step further. A value of String.Empty in the MembershipUser.Comment field is already treated as
an indicator that there is no active login session. If you add a LoginStatus control to the pages in your
site, you can hook the LoggingOut event and perform some extra cleanup.

protected void LoginStatus1_LoggingOut(object sender, LoginCancelEventArgs e)
{

//Clear the information in Membership that tracks the
//the current login session.
MembershipUser mu = Membership.GetUser();
mu.Comment = String.Empty;
Membership.UpdateUser(mu);

}

Now whenever a website user explicitly logs out of a site, the login information for that user is deleted
from the user record in the Membership database. With this change, there is one extra modification
needed in the custom HttpModule as well.

255

Forms Authentication

08_596985 ch05.qxp 12/14/05 7:48 PM Page 255

private void OnPostAuthenticate(Object sender, EventArgs e)
{

HttpApplication a = (HttpApplication)sender;
HttpContext c = a.Context;

//If the user was authenticated with Forms Authentication
//Then check the session ID.
if (c.User.Identity.IsAuthenticated == true)
{

FormsAuthenticationTicket ft =
((FormsIdentity)c.User.Identity).Ticket;

Guid g = new Guid(ft.UserData);
MembershipUser loginUser = Membership.GetUser(ft.Name);

Guid currentSession;
//If there isn’t any session information in Membership at this point
//then it is likely the user logged out, and an old cookie is
//being replayed.
if (!String.IsNullOrEmpty(loginUser.Comment))
{

string currentSessionString =
loginUser.Comment.Split(“|”.ToCharArray())[1];

currentSession =
new Guid(currentSessionString.Split(“;”.ToCharArray())[1]);

}
else

currentSession = Guid.Empty;

//If the session in the cookie does not match the current session as
// stored in the Membership database, then terminate this request
if (g != currentSession)
{

FormsAuthentication.SignOut();
FormsAuthentication.RedirectToLoginPage();

}

}

The bolded section shows the changes to the module. Instead of just assuming that there will always be
a value in the Comment property for the authenticated user, the module instead checks to see if the
Comment property has any valid information in it. If there is no information in the Comment property,
then the comparison between the session identifier in the forms authentication ticket and the value
Guid.Empty always fails. If a malicious user attempts to replay an otherwise valid forms authentication
cookie, and the true user logged out of the application, then the replayed ticket will never be accepted.

Looking at this code, you can see why for very secure sites, sliding expirations should never be used.
Although you now have sample code that keeps track of the logged-in versus logged-out status of a
user, there really isn’t much you can do to force a user to actually log out. How many of us just close
down the browser when we are done with a site? In cases like this, the only remaining protection is for
the forms authentication ticket to eventually expire. At least with absolute expirations the window of
opportunity for a successful replay attack can be substantially narrowed. With sliding expirations, as
long as a valid ticket is replayed to the site, the ticket will continue to work and will be periodically
updated as well.

256

Chapter 5

08_596985 ch05.qxp 12/14/05 7:48 PM Page 256

Summary
Out of the box, forms authentication in ASP.NET 2.0 adds new protections by including the HttpOnly
attribute on all forms authentication cookies. Used in conjunction with encryption and signing of the
forms authentication ticket, the requireSSL attribute and absolute ticket expirations, you can quickly
restrict the ability of malicious users to gain access to a forms authentication cookie.

ASP.NET 2.0 also introduces a cookieless mode of operation, whereby the forms authentication ticket is
embedded in the URL. This makes it much easier for developers to author sites that work with mobile
browsers as well as standard desktop browsers. In the interests of security though, developers should avoid
cookieless forms authentication tickets for sites that require high degrees of security — it is simply too easy
to “leak” or expose a cookieless forms authentication ticket to someone other than the original user.

Although forms authentication seems pretty simple, with a bit of custom code, you can actually solve
some rather complex authentication problems. The new ability in ASP.NET 2.0 to pass forms authentica-
tion tickets across applications makes it possible to solve some single sign-on issues that previously
required complex third-party SSO applications. Of course, there is also a limit to how far you can stretch
the new cross application capabilities of forms authentication — for many developers commercial SSO
solutions will still make sense.

The combination of forms authentication and Membership finally gives developers the basic plumbing
needed to solve the single-logon problem. Although neither feature includes support for enforcing
single-logons, both features are sufficiently extensible that with a reasonable amount of custom code

you can prevent users from performing multiple logons. You can also provide protection so that when a
user explicitly signs out, cookie replay attacks with a forms authentication cookie are not allowed.

257

Forms Authentication

08_596985 ch05.qxp 12/14/05 7:48 PM Page 257

08_596985 ch05.qxp 12/14/05 7:48 PM Page 258

Integrating ASP.NET Security
with Classic ASP

All of the great security features in ASP.NET don’t really help you when you look at your older classic
ASP applications. Although forms authentication and URL authorization have been around since
ASP.NET 1.0 days, these features haven’t been of any use in the ASP world. With the introduction of
the Membership and Role Manager features in ASP.NET 2.0, you have even more authentication and
authorization functionality built into ASP.NET. But again, it seems like that functionality is orphaned
over in the ASP.NET world and never to made it over to the world of classic ASP.

Why attempt to bring the ASP.NET and classic ASP worlds together? In terms of sheer volume of
code written, the majority of web applications out there are still running on classic ASP. Even if
you surf around Microsoft’s own sites such as the MSDN online library and various links and
subsites of www.microsoft.com, you still encounter a lot of classic ASP pages.

In ASP.NET 2.0 a number of small changes were made in some admittedly esoteric aspects of the
runtime to make it possible to more tightly integrate ASP.NET and classic ASP. These changes also
rely on modifications made earlier to IIS 6 around handling for ISAPI extensions. Both of these
changes taken together make it possible to wrap classic ASP sites inside of ASP.NET

This chapter covers the following topics:

❑ ISAPI extension mapping behavior in IIS 5

❑ Wildcard mappings in IIS 6 and how they work

❑ The DefaultHttpHandler in ASP.NET 2.0

❑ Using the DefaultHttpHandler with ASP.NET and classic ASP

❑ Authenticating classic ASP using ASP.NET

❑ Adding roles from Role Manager for use in classic ASP

09_596985 ch06.qxp 12/14/05 7:48 PM Page 259

IIS5 ISAPI Extension Behavior
Before ASP.NET there was IIS 5, and it was good. You could write classic ASP applications that incorpo-
rated their own authentication and authorization behavior. And you could add other external resources
like images, stylesheets, and so on and reference them from your classic ASP applications. However,
sometimes you wanted to perform some preliminary work prior to passing a request on to ASP. Probably
the most frequently asked for (and unfortunately will still be asked for even with ASP.NET 2.0) capabil-
ity was URL rewriting.

However, in IIS5 the only way to accomplish something like this was by writing an ISAPI filter — a rather
daunting prospect for most us (and believe me I include myself in this classification). The underlying reason
for this restriction is in that in IIS5 the core runtime is only extensible through ISAPI filters and extensions;
that was the extensibility mechanism at the time.

Of course, one nice side effect in IIS5 was that the authentication model for classic ASP was the IIS authenti-
cation model. There was no artificial bifurcation between IIS authentication modes and some other ASP-like
authentication mode. This meant that after you had things configured in IIS, your ASP security just worked
with IIS’s implementation of integrated security. Furthermore, when an ASP application relied on just plain
HTML pages, image files, CSS files, and the like, there wasn’t any need for special security configuration
work to get these to work. ASP, IIS, and static files lived together peacefully.

Then along came ASP.NET 1.0 and 1.1 running on top of IIS 5 — and the security story became a little weird.
ASP.NET security was in its own world, though as you saw back in Chapter 1 a variety of mechanisms were
developed to hop security information from the IIS world into the ASP.NET world. However, one scenario
that was definitely lost was that ASP.NET pages and classic ASP pages were oblivious of one another.

In ASP.NET, you finally had a way to modify parameters of an incoming request prior to having a page
run. But if you were thinking you could shoehorn classic ASP into ASP.NET to take advantage of the
HttpModule extensibility in ASP.NET, you were sorely disappointed. The core technical reason for this is
that in IIS 5, when a request is mapped to an ISAPI extension, that is the end of the road for that request.
After the request is handed off to a specific ISAPI extension, the mapped extension owns the request for
the rest of its lifetime.

There was no concept in IIS5 of being able to route a request to one extension (aspnet_isapi.dll as
discussed in Chapter 1), and then somehow reroute the request to another extension, for example
asp.dll, which is responsible for .asp and .asa files. Of course, you could get a little enterprising and
implement some redirection-based mechanisms that hopped information back and forth between classic
ASP and ASP.NET, but those solutions always end up being a bit awkward. Any customer on a slow
Internet link is also aware of the overhead involved with all these redirects, which usually makes any
such solution chancy at best for those still living in a 56K world.

There was another problem with the ISAPI extension handling in IIS5 when using ASP.NET, and that
was in the area of static file handling. As you saw in Chapter 2 in the section on blocking access to
non-ASP.NET file types, most common static file extensions are already mapped to ISAPI extensions or
to the core IIS runtime itself. As a result, if you wrote an ASP.NET application that needed to protect
access to XML or .htm files, you had to explicitly map each of these file extensions to the ASP.NET ISAPI
extension. If you didn’t carry out this step, IIS5 would happily serve the files directly without any
authentication or authorization by ASP.NET. Of course, if your HTML or XML files happened to include
sensitive data this wasn’t exactly the desired outcome.

260

Chapter 6

09_596985 ch06.qxp 12/14/05 7:48 PM Page 260

What was especially aggravating with IIS5 was that if you had more than one or two static file extensions
to be protected by ASP.NET, you had to go through a fair amount of manual configuration on each of your
web servers to ensure the correct association of static file types to ASP.NET. And of course if you wanted a
mixture of authentication and authorization policies for these files (for example, maybe some images were
viewable by everyone, but others need to be secured) you had two choices:

❑ Have all requests for the static files flow through ASP.NET — in which case you would
encounter slower performance when serving the static files for anonymous users.

❑ Separate the files that were accessible to anonymous users into one directory structure outside of
ASP.NET, so they could take advantage of the faster file-serving performance afforded by IIS 5.

Both of these options had their shortcomings: You could trade off performance for centralized manage-
ment of authentication, or you could get optimal performance but with the overhead of keeping two
different directory structures for anonymous and authenticated users.

IIS6 Wildcard Mappings
IIS6 introduced the concept of wildcard mappings. Wildcard mappings are a way to tell IIS6 that every
incoming request, regardless of file type, should be routed to one or more ISAPI extensions. Since these
extensions are configured in IIS6 to handle any incoming request the term “wildcard” is used to indicate
that request handling is independent of a specific file type. Not only can you configure a single ISAPI
extension with wildcard mappings, but you can also configure multiple ISAPI extensions to act as a
chain of wildcard mappings. IIS6 will walk through the list of configured mappings in sequence, passing
control of the request to each extension in turn.

After the wildcard mapped extensions have completed their processing, IIS6 passes control of the
request to the extension or internal runtime handling appropriate for the file type. The IIS6 ISAPI API
also included additional functionality for extension authors that know their extensions will be used as
part of a wildcard mapping. In the case of ASP.NET 2.0, the DefaultHttpHandler class (covered in the
“DefaultHttpHanlder” section this chapter) includes extra logic that allows ASP.NET to gain control of a
request for non-ASP.NET resources both before and after the default processing for that request occurs.
This enables you to integrate ASP.NET 2.0 in a way that it can perform both preprocessing and postpro-
cessing of a classic ASP request.

Configuring a Wildcard Mapping
To keep things simple initially, let’s take a simple ASP page and a simple ASP.NET application and config-
ure the two to work together using an IIS6 wildcard mapping. After creating the basic folder structure,
and marking the folder as an application in IIS6, the next step is to add a wildcard mapping so that all
requests for resources will first flow through ASP.NET.

After you right-click on the application in the IIS6 MMC and select Properties, the Properties dialog box
shown in Figure 6-1 has a Configuration button that leads to another dialog box.

261

Integrating ASP.NET Security with Classic ASP

09_596985 ch06.qxp 12/14/05 7:48 PM Page 261

Figure 6-1

The Application Configuration dialog box, shown in Figure 6-2, in IIS6 now has two sections: one where
you can adjust one-to-one associations of file types to specific ISAPI extensions and a new section at the
bottom where you can set up one or more wildcard mappings.

Unless you have a photographic memory, you probably don’t remember the full path to the ASP.NET
ISAPI extension. So, before configuring wildcard mappings, it is helpful to select one of the preexisting
mappings (for example, the .aspx mapping) and click the Edit button. The Add/Edit Application
Extension Mapping dialog box, shown in Figure 6-3, conveniently holds the full path to the ASP.NET
ISAPI extension in the Executable text box.

262

Chapter 6

09_596985 ch06.qxp 12/14/05 7:48 PM Page 262

Figure 6-2

Figure 6-3

263

Integrating ASP.NET Security with Classic ASP

09_596985 ch06.qxp 12/14/05 7:48 PM Page 263

Copy the path and then cancel out of the dialog box. Now you can click the Insert button in the bottom
half of the Application Configuration dialog box to open the dialog box for configuring wildcard exten-
sion mappings (Figure 6-4.) Paste in the full path to the ASP.NET ISAPI extension into the Executable
text box.

Figure 6-4

Close out of all of the dialog boxes by clicking OK. You have now configured an application inside of IIS6
that will forward all requests initially to the ASP.NET 2.0 ISAPI extension. Due to the new functionality of
the DefaultHttpHandler inside of ASP.NET 2.0, these requests will handed off to IIS6 for execution by
the appropriate extension or internal runtime logic. After the appropriate extension or IIS6 had completed
its processing, ASP.NET 2.0 will have the chance to perform some postprocessing, after which the request
will complete.

For now just a simple ASP page is used:

<%
Response.Write(“This is text from the classic ASP application” + “
”)
%>

When you access this page (in the sample application this is default.asp), the classic ASP ISAPI extension
(ASP.dll) will eventually get the chance to parse and run the page, resulting in a string being output to the
browser. If you happen to run into a 404 error trying this on IIS6, remember that on IIS6 all known dynamic
content extensions are disabled by default, including classic ASP. If you need to enable classic ASP, use the
IIS MMC, as shown in Figure 6-5, to enable it again.

It’s time to get a little frisky and see if ASP.NET can output some text in addition to the text coming from
the classic ASP application. Try adding the following code to global.asax:

void Application_BeginRequest(Object sender, EventArgs e)
{
HttpContext.Current.Response.Write(“This came from the ASP.NET global.asax event

hander”);
}

264

Chapter 6

09_596985 ch06.qxp 12/14/05 7:48 PM Page 264

Figure 6-5

When you run default.asp, instead of getting back two pieces of text (one from ASP.NET and one
from classic ASP), you instead get an error saying, “This type of page is not served.” Hmmm — what
happened? First everything was working with the wildcard mapping, and now that you add one simple
line of code to ASP.NET and everything breaks!

The reason for this behavior is quite simple. When ASP.NET detects that a response has been modified,
prior to handing the request back to IIS6 it checks to see if the request was either a POST request, or a
request for a classic ASP page. If the request is a POST request or a classic ASP request ASP.NET will
throw an exception rather than hand control back to IIS6. ASP.NET considers a response to have been
modified if any of the following occur:

265

Integrating ASP.NET Security with Classic ASP

09_596985 ch06.qxp 12/14/05 7:48 PM Page 265

❑ One or more HTTP headers in the response have been set or modified (for example setting a
cookie).

❑ Text has been written to the response, regardless of whether this text has been buffered or
already sent to the client.

❑ Code in the ASP.NET application modified the HttpCachePolicy associated with the response.

❑ A Stream was assigned to the Response.Filter property. This is an advanced operation and
is normally used by developers who need to modify the raw contents of the response prior to
sending it back to the browser.

The last two restrictions probably aren’t particularly onerous for developers. However, the first two
restrictions effectively mean that you need to be careful about what an ASP.NET application is doing
when you use it as a wildcard mapping. If you think about it though, these restrictions do make sense;
ASP.NET and classic ASP still live in separate worlds and know nothing about the internal processing
logic of the other’s ISAPI extension.

Without some major surgery to the guts of IIS, ASP, and ASP.NET, it is basically impossible for two ISAPI
extensions to manipulate the data that is sent back in a response. For example, how would you integrate
ASP.NET’s fragment caching with the response written from a classic ASP page? Or how would the
response buffering behavior in classic ASP (the Enable Buffering check box for ASP) coexist with response
buffering in ASP.NET? The simple answer is that both ISAPI extensions have many internal assumptions
about a request lifecycle and around ownership of the actual response data. There isn’t any easy way to
reconcile these assumptions in ASP.NET 2.0 or IIS6.

As a side note: This type of coordination is in large part what IIS7 is all about. With support for an
integrated pipeline in IIS7, different dynamic content processors like ASP.NET and classic ASP will have
a more coherent way of interacting with the request and response data. Though whether either ISAPI
extension will be reworked sufficiently to allow ASP.NET and classic ASP to output request content
remains to be seen.

Now that you understand that ASP.NET cannot touch anything in the response when interacting with
classic ASP, what are some of the things you can safely do in ASP.NET? Any ASP.NET APIs that don’t
touch the response are safe to use. So, for example, you can call any of the following:

❑ Forms authentication APIs that create tickets as well as encrypting and decrypting string repre-
sentations of the tickets. However you cannot call methods like SetAuthCookie or
RedirectFromLoginPage.

❑ Application services that don’t directly interact with the Response object are safe to call. You
could call most of the Membership, Role Manager and Profile APIs without any problems.

❑ You can freely use the Request object to inspect information; you could look at the forms
authentication cookie (if one was sent) or query-string and forms variables.

❑ You can access other application services such as session state or the Cache API.

As a simple example, you can take the sample ASP.NET application used earlier, and instead of touching
the Response, log information about the incoming request to a text file:

266

Chapter 6

09_596985 ch06.qxp 12/14/05 7:48 PM Page 266

void Application_BeginRequest(Object sender, EventArgs e)
{
//HttpContext.Current.Response.Write(“This came from the ASP.NET global.asax

event hander”);

StreamWriter sw = File.CreateText(Server.MapPath(“~/App_Data/logfile.txt”));
sw.WriteLine(“A request was made to: “ + Request.Path);
sw.Flush();
sw.Close();

}

If you access default.asp, everything still works, and the ASP.NET applications App_Data directory
contains the text log file containing information about the request. So, you can safely carry out complex
operations from inside of the ASP.NET application. From a design standpoint, this means you can think
of a wild-carded ASP.NET application as something of a bridge to the managed world for a classic ASP
application.

At this point, you might be thinking there is a sneaky way to start doing interesting “stuff” inside of
ASP.NET and then pass the results off to classic ASP. Obviously, from the previous sample you could
hack up an approach whereby ASP.NET writes information to a file in a common location, and classic
ASP read from it. But that approach is going to fall apart quickly. How about just stuffing information
onto the query string inside of ASP.NET and then picking these values up over in the classic ASP code?

Request.QueryString.Add(“foo”, “It would be nice if this worked.”);

This code is a nice idea, but it isn’t going to work because inside of ASP.NET information such as
Request.QueryString and Request.Form are contained in read-only collections. You could write
code inside of the classic ASP application that would place values on the query-string, and then when a
redirect occurred the ASP.NET application could read these values and do some work, but the problem
that is being addressed in this chapter involves authentication and authorization. In these cases, the flow
of data is in the other direction; you need ASP.NET to communicate the results of an authentication or
authorization decision to the classic ASP application (or at least store the results in a way that protects
the classic ASP application).

Of course, the issue with using all of the ASP.NET capabilities is that the results are still “locked up” as it
were inside of the ASP.NET application. How do you actually throw any of the data over the wall to the
classic ASP application? Prior to ASP.NET 2.0, you would probably pursue options such as:

❑ Write a Web Service that wraps managed code, and then access it using SOAP tools from your
classic ASP applications

❑ Wrap the managed code into a COM component thus making the logic available to the classic
ASP world as well.

Both of these approaches are still valid in the world of ASP.NET 2.0. However, they also tend to be a bit
heavyweight. Writing a Web Service or a COM-callable wrapper to an inventory control API might make
sense, sometimes all you want to accomplish is basic authentication and authorization. Even for these two
aspects of a website, writing a Web Service and making something like forms authentication globally
available as a service can be appealing.

267

Integrating ASP.NET Security with Classic ASP

09_596985 ch06.qxp 12/14/05 7:48 PM Page 267

However, considering that forms authentication and URL authorization are already built into ASP.NET,
it seems like overkill to wrap these features just to make them useful in classic ASP. And there is also the
extra overhead of having to write and maintain the wrappers as well as figure out how to configure
them in production. A much easier approach would be to use these types of ASP.NET features from
inside an ASP.NET code-base and make the results available as necessary to the classic ASP application.

The Verify That File Exists Setting
You might have noticed the dialog box for creating a wildcard mapping had a check box that was
checked on by default. The Verify that File Exists setting tells IIS6 that it should first verify that the
requested resource actually exists on the filesystem, prior to passing the request on to ASP.NET. If you
use wildcard mappings for only basic ASP.NET processing, this may be an acceptable setting.

However, if you look at the default file associations that are mapped to ASP.NET, you will see quite a
few mappings that have this setting turned off. As a result, if you plan to run application running in IIS6
that contains a mixture of ASP.NET and ASP content, you should leave this setting unchecked. The
reason is that a number of “resources” that are requested from an ASP.NET site don’t physically exist on
the filesystem.

The easiest way to demonstrate this is by dropping a TreeView control onto a form and hooking it up to
a sitemap file:

<asp:TreeView ID=”TreeView1” runat=”server” DataSourceID=”SiteMapDataSource1”>
</asp:TreeView>

<asp:SiteMapDataSource ID=”SiteMapDataSource1” runat=”server” />

If you add a web.sitemap file to a project and the ASP.NET application is configured with a wildcard
mapping, when the TreeView renders all collapse icons will be missing. Furthermore, the page will load
with a JavaScript error because the HTML source for the page contains references like:

<img src=”/Chapter6/wildcardmappings/WebResource.axd?d=I-
aujLBtfk80PyahWsZqq5Fvc9CRO5RKez393GBkAZ41&t=632463106712522616” alt=”” />

These types of references point back at webresource.axd, the central content handler in ASP.NET 2.0
for serving up JavaScript and images. If the Verify that File Exists check box is checked, then IIS6 will fail
requests like these because it cannot locate any file called webresource.axd on the filesystem.

Because webresource.axd serves the JavaScript used by validator controls, and it is likely that you will
need the validator controls for any ASP.NET login page that front-ends a classic ASP site, remember that
you must uncheck this setting when setting up a wildcard mapping.

DefaultHttpHandler
All of the previous discussions have lead up to the need for some kind of “glue” that ASP.NET can use
to pass data to classic ASP. The solution to this need is the DefaultHttpHandler class. In the previous
examples, it was the DefaultHttpHandler that was responsible for passing the request back to IIS6
whenever an ASP page was requested. Also, it was the DefaultHttpHandler that performed the vari-
ous checks to ensure that the response had not been modified prior to either processing a POST request
or passing control to classic ASP.

268

Chapter 6

09_596985 ch06.qxp 12/14/05 7:48 PM Page 268

The DefaultHttpHandler runs during the handler execution phase of the ASP.NET HTTP pipeline. In
other words, DefaultHttpHandler runs at the same point in time as the .aspx page handler; although
instead of running an .aspx page, the DefaultHttpHandler deals with handing control to IIS6. This
means that the earlier events in the HTTP pipeline are available, and any of the logic associated with
those events will run (For example, the FormsAuthenticationModule will run during
AuthenticateRequest, and so on)

The DefaultHttpHandler is configured in the root web.config file as shown here:

<add path=”*” verb=”GET,HEAD,POST”
type=”System.Web.DefaultHttpHandler” validate=”True” />

Because this handler mapping is the second to last mapping, it means that any GET, HEAD, or POST request
made to an ASP.NET application for a file type other than ones that are explicitly recognized by ASP.NET,
will be routed to the DefaultHttpHandler. Prior to the configuration for DefaultHttpHandler, the
default root web.config contains a number of obvious mappings (for example, .aspx requests are
mapped to the PageHandlerFactor) and some other not so obvious mappings (for example, SQL Server
.mdf and .ldf files are mapped to the ForbiddenHandler).

If a request is made for an unrecognized file type, but the HTTP verb for the request is not GET, HEAD, or
POST, then the request will bypass the DefaultHttpHandler and fall through to the final handler mapping,
which points at the HttpMethodNotAllowedHandler. Chapter 2 showed number of examples of using
these handler mappings as a way to explicitly block and prevent browser-based access to various file types.

Internally, the DefaultHttpHandler has two code paths: one that eventually hands control back to IIS,
and a separate path that handles the case where the response has already been modified in some manner.
On one hand, when an ASP.NET application modifies the response, if the DefaultHttpHandler deter-
mines that the request is really for a static file, then the DefaultHttpHandler passes the request to
another internal handler called the StaticFileHandler. On the other hand, if the DefaultHttpHandler
determines that the conditions for passing control back to IIS6 have not been violated, the handler passes
control back to IIS6 using the HSE_REQ_EXEC_UNICODE_URL server support function in the ISAPI API.

Normally this means that requests for any kind of non-ASP.NET resource will be automatically routed to
IIS6, at which point IIS6 will either serve the file itself (in the case of static files), or pass the request on to
the appropriate ISAPI extension (in the case of ASP pages). There is a boundary scenario with static files
in that you can programmatically configure an HttpCachePolicy for the Response when a request is
made for a static file (remember this is one of the conditions the DefaultHttpHandler checks for).
Doing so allows you to use some aspects of ASP.NET output caching to explicitly configure the way you
want to cache static file content. Because the cache policy is modified, the DefaultHttpHandler will
never pass the request back out to IIS6; there isn’t any logic in IIS6 that would know what to do with an
ASP.NET HttpCachePolicy. So, instead the internal StaticFileHandler is used to serve the static
content, taking into account the output cache settings set on the Response.Cache property. Because the
StaticFileHandler defaults a number of output cache settings, programmatically modifying the
response’s cache policy in such a way that it plays well with the StaticFileHandler is tricky — it is
also an extensibility scenario that really hasn’t been tested extensively.

269

Integrating ASP.NET Security with Classic ASP

09_596985 ch06.qxp 12/14/05 7:48 PM Page 269

Using the DefaultHttpHandler
The DefaultHttpHandler is a public class with a number of virtual methods that you can override. As
a first step towards integrating ASP.NET authentication and authorization with classic ASP, you can
create a custom HttpHandler that derives from DefaultHttpHandler:

public class CustomHandler : DefaultHttpHandler
{
public CustomHandler() {}

public override string OverrideExecuteUrlPath()
{

//gets called just before control is handed back to IIS6
return null;

}

public override void EndProcessRequest(IAsyncResult result)
{

//gets called when the original ISAPI extension is done processing
//This step is useful for post-processing
base.EndProcessRequest(result);

}
}

This code represents the basic skeleton of a custom HttpHandler. It overrides the two core methods
available on DefaultHttpHandler: OverrideExecuteUrlPath and EndProcessRequest. You want
to override the method OverrideExecuteUrlPath rather than the virtual BeginProcessRequest
method for the following reasons:

❑ Although you could override BeginProcessRequest, (it is virtual) this method contains the
internal logic used by DefaultHttpHandler to determine whether the request can be for-
warded to IIS6, or whether the request needs to be passed to the static file handler (or failed in
the case of a classic ASP request). The logic for making this determination is internal and, thus,
is not accessible to developers.

❑ The OverrideExecuteUrlPath and the OnExecuteUrlPreconditionFailure virtual meth-
ods are intended as the two integration points for custom handlers when the request is being pro-
cessed. Although this chapter deals only with OverrideExecuteUrlPath, you also have the
option to override OnExecuteUrlPreconditionFailure. This second method is called when
the DefaultHttpHandler determines that the current request cannot be passed to IIS6; if you
know that you don’t want the static file handler attempting to process your requests, then you
can override OnExecuteUrlPreconditionFailure and throw some other kind of error instead.

❑ The DefaultHttpHandler will have already populated the protected Context property for
you before calling into OverrideExecuteUrlPath. Without access to a valid HttpContext,
there wouldn’t be much point in writing a custom handler in the first place.

Unlike BeginProcessRequest, you can override EndProcessRequest if needed. For purposes of this
chapter nothing needs to be cleaned up or postprocessed in an override of EndProcessRequest.
However, if you were attempting to integrate session state between ASP.NET and classic ASP, overriding
EndProcessRequest would be the correct place to write session data modified in classic ASP back into
the ASP.NET session state store. (Of course, the whole issue with integrating ASP.NET and classic ASP
session state would warrant at least part of another book.)

270

Chapter 6

09_596985 ch06.qxp 12/14/05 7:48 PM Page 270

The current sample code doesn’t actually do anything inside of the overrides. EndProcessRequest
simply delegates control to the base class. OverrideExecuteUrlPath returns a null value, which in the
case of an ASP.NET application applying authentication and authorization logic to a classic ASP applica-
tion is the correct thing to do. If you return a null value, the currently requested path is the one that IIS6
will continue executing when it regains control of the request.

The secondary idea behind OverrideExecuteUrlPath, and the reason that it returns a string value, is
that developers can choose to modify the actual path that is returned back to IIS6. As a quick side note, if
you were to change the logic inside of OverrideExecuteUrlPath to look as follows:

public override string OverrideExecuteUrlPath()
{

//gets called just before control is handed back to IIS6
return “/Chapter6/wildcardmappings/default2.asp”;

}

. . . when you ran the sample application and request default.asp, the actual classic ASP page that
would run would be default2.asp. This is a pretty powerful extensibility point but again not something
that you need for front-ending a classic ASP application. Some Microsoft development teams, such as
Sharepoint, use this ability to modify the path prior to passing control to the Sharepoint ISAPI extension.

Having had written a custom HttpHandler, you still need to register the handler with ASP.NET so that
it recognizes it.

<httpHandlers>
<add path=”*.asp” verb=”GET,HEAD,POST” type=”CustomHandler” validate=”true” />
</httpHandlers>

You register HTTP handlers inside of the <httpHandlers /> configuration element. In this case,
because the custom handler is intended to work with only classic ASP pages, the path attribute is set to
*.asp. You want the custom handler to work with any of the likely HTTP verbs, so GET, HEAD, and POST
are all specified. The type registration is simply a .NET Framework type string. In the sample applica-
tion the CustomHandler class is located inside the App_Code directory, so only the classname is needed.
Because I didn’t add an explicit namespace definition in the file located in App_Code, the class ends up
in the default namespace and hence does not include a namespace in the type definition. Chances are
that in a real production scenario you would implement the custom handler in a standalone assembly, in
which case the type attribute requires the namespace qualified class name and at least an assembly
reference — something like MyNamespace.CustomHandler, TheHandlerAssembly.

Although the default HTTP handler definitions in the root web.config include a mapping of *.* to the
DefaultHttpHandler, the previous registration is still sufficient. When ASP.NET processes the set of
defined <httpHandlers />, it will see the handlers defined in the application’s web.config file after
the handlers defined in the root web.config file. Because the last matching handler definition takes
precedence, the mapping to *.asp inside of the application’s web.config will always win out over the
more generic mapping defined in the root web.config file.

To see if everything is working at this point, you can set some breakpoints inside of CustomHandler, and
then run the application requesting the default.asp page. The breakpoint in OverrideExecuteUrlPath
is hit first (as expected — this also shows that the DefaultHttpHandler is ready to forward the request to
IIS6). Later the breakpoint in EndProcessRequest is reached as well. And finally the output from the clas-
sic ASP page appears in your browser. So at this point, you have a functioning custom handler and both
ASP.NET and classic ASP are working properly.

271

Integrating ASP.NET Security with Classic ASP

09_596985 ch06.qxp 12/14/05 7:48 PM Page 271

Authenticating Classic ASP with ASP.NET
The next step is to build the functionality inside of the ASP.NET application to support forms authentication
for classic ASP users. The general idea is that with both ASP pages and ASP.NET pages located in same
virtual directory (and, thus, the same application in IIS6), you want unauthenticated users to be forced to
authenticate using ASP.NET’s forms authentication mechanism.

After a user successfully logs in with forms authentication, the user should be redirected to the original
requested page. This should occur regardless of whether the originally requested resource was an
AS.NET page or a classic ASP page. On subsequent requests, again regardless of the type of requested
resource, you want ASP.NET to transparently verify the validity of the forms authentication cookie and
then pass the request along.

For starters, you need to configure the ASP.NET application with the basics necessary to enable forms
authentication and enforce authenticated access:

<authentication mode=”Forms”/>

<authorization>
<deny users=”?”/>
</authorization>

With these settings, anonymous users will be redirected to the forms authentication login page. For now,
just add a basic login page called Login.aspx to the sample application, and place a Login control onto
the web page.

You can’t directly access default.asp at this point. Instead, because the wildcard mapping first routes
the request to ASP.NET, and the ASP.NET configuration denies access to all anonymous users, you are
redirected to the login page. In fact, anonymous requests never even make it to the logic inside of the
CustomHandler class. The UrlAuthorizationModule running during the AuthorizeRequest event
in the HTTP pipeline detects that the user is anonymous and immediately forwards the call to
EndRequest— in effect short-circuiting the request processing and bypassing the custom handler. The
information about the original request to default.asp is still retained:

http://localhost/Chapter6/wildcardmappings/login.aspx?ReturnUrl=%2fChapter6%2fwildc
ardmappings%2fdefault.asp

The next step is to add in a basic user store and authenticate credentials against that user store. I cover
the new Membership feature in detail in Chapter 10, but for now the sample just uses the Membership
feature with only a minor change to its default configuration. Because I happen to be running a local
instance of SQL Server 2000, the connection string for all of the SQL-based providers (including
Membership) needs to be changed:

<connectionStrings>
<remove name=”LocalSqlServer”/>
<add name=”LocalSqlServer”

connectionString=”server=.;Integrated Security=true;database=aspnetdb”/>
</connectionStrings>

272

Chapter 6

09_596985 ch06.qxp 12/14/05 7:48 PM Page 272

All of the provider-based features that have SQL providers use the same connection string
LocalSqlServer. For the sample application the default definition of LocalSqlServer is removed
and is redefined to point at a local SQL Server instance running the aspnetdb database.

The login page for the application is Login.aspx, and again no special behavior is needed here. Just
dropping a Login control onto the page is sufficient because the Login control automatically works
with the Membership feature.

<%@ Page Language=”C#” AutoEventWireup=”true” CodeFile=”Login.aspx.cs”
Inherits=”Login” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Login Page</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:Login ID=”Login1” runat=”server”>
</asp:Login>

</div>
</form>

</body>
</html>

Now if you attempt to navigate to default.asp, you will be redirected to Login.aspx. Type in the some
valid credentials (if you need to create some credentials first just use the ASP.NET Configuration tool from
inside of Visual Studio), and log in. Assuming that the credentials are valid, you will be redirected back to
default.asp, and you will have a valid forms authentication cookie for subsequent pages.

At this point in the sample, the custom handler isn’t really adding anything, though you rectify this shortly.
The main thing to keep in mind is that with nothing more than a wildcard mapping, a slight tweak to a
connection string, the forms authentication feature, and one login page you now have an ASP.NET
application authenticating and logging users in prior to handing the users to classic ASP. Now that you
know the steps involved you can whip up all this up in about five minutes flat! In fact, for many smaller
ASP.NET-to-classic ASP integration problems, this may actually be all you need.

Will Cookieless Forms Authentication Work?
Cookieless forms authentication may not work as an authentication mechanism for classic ASP. For the
heck of it, try adding the following to web.config.

<authentication mode=”Forms”>
<forms cookieless=”UseUri” />

</authentication>

Initially, things will look like they are working, and you will successfully get redirected to default.asp.
The resultant URL looks something like:

http://localhost/Chapter6/wildcardmappings/(F(vDq5hGYX8vci_pIoALoRV4_VoqUh37xIBfsak
KtMk5khYLBT9W18ri5NgyR63wg3IgktUcYD95dsxHZuKPXgY4U5d85qgjrst-
2uLf2lgkM1))/default.asp

273

Integrating ASP.NET Security with Classic ASP

09_596985 ch06.qxp 12/14/05 7:48 PM Page 273

The problem with this URL isn’t the fact that the cookieless forms authentication ticket is embedded in
the URL. That actually won’t impact classic ASP because the ASP.NET ISAPI filter removes the ticket
from the URL long before the request is forwarded to ASP.dll. Problems arise if your classic ASP code
starts constructing redirects from inside of its code-base.

Chapter 5 explained that there were some restrictions on the way in which ASP.NET code could con-
struct URLs and still retain the forms authentication ticket. ASP.NET provides the handy syntax to indi-
cate an application-relative reference. However no such shorthand exists in classic ASP. You might have
code in your classic ASP application that issues redirects with code like the following:

Response.Redirect(“/Chapter6/wildcardmappings/SomeOtherPage.aspx”);

This style of redirect will lose the forms authentication ticket that was embedded on the URL. Given the
limited programming model available in classic ASP there isn’t an easy way to grab the ticket out of the
URL and preserve it when you redirect. If your classic ASP application uses only relative redirects like
the following then you will most likely be able to use cookieless forms authentication with a classic ASP
application.

‘This type of redirect preserves the cookie-less ticket
Response.Redirect(“default2.asp”)

The same approach will work if you have any <a /> tags or other relative URL references in your clas-
sic ASP pages. From the browser’s standpoint relative URL references are always considered relative to
the last path in the URL, which in the case of cookieless forms authentication means relative to the full
URL including the cookieless ticket.

Passing Data to ASP from ASP.NET
Up to this point, you have seen the mechanics of getting forms authentication working with classic ASP.
The next step is to come up with a way to pass the authenticated username over to the classic ASP
application. There probably aren’t many ASP sites out there that require authentication but then throw
away the authenticated username. The problem of getting the authenticated username over to the ASP
application is just a specific example of the more general problem of passing data from ASP.NET over to
a classic ASP application though.

This is where the custom HttpHandler comes in handy. Rather than having to cobble together some
kind of redirection-based mechanism, you can use the HTTP headers for the request as a way to pass
information along from ASP.NET into a classic ASP application. In fact for quite a few years, a variety of
third-party authentication products have relied on manipulating HTTP headers as a platform-neutral
way to pass information between different web applications.

In the case of a custom HttpHandler, you can change the HTTP headers for a request by using the
protected ExecuteUrlHeaders property. You might think that you could just use the Context property
to get to the Request.Headers property and then manipulate the resulting NameValueCollection.
This will not work because Request.Headers is a read-only collection; its intended use in earlier
versions of ASP.NET never included modifying the headers of a request. DefaultHttpHandler gets
around this by storing a copy if the incoming HTTP headers in a separate NameValueCollection and
making this collection available to developers via the ExecuteUrlHeaders property.

274

Chapter 6

09_596985 ch06.qxp 12/14/05 7:48 PM Page 274

As an example, you can try adding an arbitrary header to the incoming request from inside of the custom
handler.

public override string OverrideExecuteUrlPath()
{

this.ExecuteUrlHeaders.Add(“Some Custom Header”, “Some Custom Value”);
return null;

}

Now, the custom HttpHandler inserts a new header value for the request. To verify that this custom
HTTP header made it to the classic ASP page, you can add code to default.asp that dumps out the
request headers.

<%
For Each value In Request.ServerVariables

if (value <> “ALL_HTTP”) AND (value <> “ALL_RAW”) then
%>
<%= value %> = <%= Request.ServerVariables(value) %>
<%

End if
Next
%>

The ASP code intentionally skips over the ALL_HTTP and ALL_RAW variables because these contain a
concatenated dump of all of the headers in a rather unreadable form. If you open a browser and log in to
default.asp, you get nicely formatted output showing all the request headers. At the end of the list,
you will see the following:

HTTP_SOME CUSTOM HEADER = Some Custom Value

You can easily access custom HTTP header values from inside of classic ASP by just indexing into
Request.ServerVariables. With this basic technique, you can pass information from ASP.NET 2.0 to
classic ASP. As long as the information you need to pass can be serialized into a string in ASP.NET, and
your classic ASP code can do something useful with that string value, you have a very easy way to pass
information between the two environments. No need for kludgy redirects or expensive Web Service calls!

Although the samples in this chapter don’t need to move very much information around from ASP.NET
to classic ASP, you might be wondering just how much data can you actually stuff into an HTTP header.
As an experiment, you can try adding large strings into the header. The following code uses a 32KB
string as the value for a custom HTTP header:

public override string OverrideExecuteUrlPath()
{

//gets called just before control is handed back to IIS6
//HttpContext c = this.Context;

this.ExecuteUrlHeaders.Add(“Some Custom Header”, “Some Custom Value”);

StringBuilder largeString = new StringBuilder();
largeString.Append(new String(char.Parse(“a”), 32768));
this.ExecuteUrlHeaders.Add(“A Very Large Header”, largeString.ToString());

return null;
}

275

Integrating ASP.NET Security with Classic ASP

09_596985 ch06.qxp 12/14/05 7:48 PM Page 275

The custom header value “A Very Large Header” was passed to classic ASP without a problem, and
the entire 32KB string showed up on default.asp. Part of the reason such enormous headers are
allowed is that by the time ASP.NET is handing a request back to IIS6, the normal URL length and
header size restrictions enforced by http.sys and ASP.NET have already occurred. Playing around
with this a bit more, it turns out you can send as much as 65,535 bytes in an additional custom header
(that is, 1 byte less than 64KB). Realistically though, for purposes of authentication and authorization,
you aren’t going to need much more than a few kilobytes of space for username and role information.

Passing Username to ASP
Now that you have seen most of the work necessary to move information from ASP.NET over to classic
ASP, the sample application should be extended to pass the authenticated username from ASP.NET
forms authentication over to classic ASP. However, there is one very convenient piece of work that
ASP.NET already performs on your behalf! A side effect of running the request through ASP.NET first is
that the authenticated user information is automatically placed in the appropriate HTTP headers. For
example, if you log in with the account testuser from ASP.NET, the header information that ASP.NET
sets up for classic ASP already includes the following:

AUTH_USER = testuser
LOGON_USER = testuser

For classic ASP code that was already using either of these server variables to identify the user, integrat-
ing forms authentication and ASP couldn’t be easier.

Authorizing Classic ASP with ASP.NET
You have seen that forms authentication is already working with classic ASP application, in part because
there is a URL authorization rule that denies access to anonymous users. In effect, you already have the
basics of authorization working. The sample application though can be modified a bit more to include
more extensive authorization rules.

For example, let’s say there is an administrative folder for the ASP application that should only grant
access to users that are in the “Administrators” role. You can create a URL authorization rule that
protects the ASP subdirectory.

<location path=”ASPAdminPages”>
<system.web>

<authorization>
<allow roles=”Administrators”/>
<deny users=”*”/>

</authorization>
</system.web>

</location>

Now, whenever an attempt is made to access a classic ASP page in the ASPAdminPages subdirectory,
ASP.NET’s URL authorization will enforce this rule. Using the ASP.NET Configuration tool available
from inside of Visual Studio you can enable the Role Manager feature, create a new role called
“Administrators” and add a user to the new role. The only change that occurs in configuration is the
addition of the <roleManager /> element (by default Role Manager is not enabled, hence the need to
turn it on):

276

Chapter 6

09_596985 ch06.qxp 12/14/05 7:48 PM Page 276

<roleManager enabled=”true” />

As with the Membership feature, the default Role Manager provider uses the LocalSqlServer connec-
tion string. Because this was changed earlier, Role Manager will automatically associate role information
in the aspnetdb database with the user account information located in the same database.

At this point, if you try logging to a classic ASP page located within the ASPAdminPages directory, you get
redirected to the login page for the application. If you log in with an account that you added to the
“Administrators” role you can access pages in this subdirectory.

Once again you can see that once wildcard mappings are setup in IIS6, you just go about building
authentication and authorization inside of ASP.NET as you normally would. The only difference is that
the authorization rules also automatically protect access to the classic ASP pages. As with the authentica-
tion setup discussed earlier, even though there is a custom HTTP handler in the ASP.NET application, it
still isn’t needed at this point. You could pull the custom HTTP handler, and everything shown so far
with forms authentication and URL authorization would still function properly.

Passing User Roles to Classic ASP
By this point, you are probably wondering why there even is a custom HTTP handler in the ASP.NET
application. Forms authentication and URL authorization seem to be working just fine; why is this
handler sitting around in the application? Well, you finally made it to the point where the built-in magic
of wildcard mappings runs out of steam. Even though authorizing classic ASP pages is useful, chances
are that some of your ASP applications need the full role information for an authenticated user. Just
protecting individual pages or entire subdirectories is not sufficient.

Solving this problem does require passing data from ASP.NET to classic ASP, and as a result you will need
a custom HTTP handler to hand the role information of to your classic ASP pages. Because the sample
application uses Role Manager, you can modify the custom handler in the application to pack the user’s
roles into a custom header.

public override string OverrideExecuteUrlPath()
{

//gets called just before control is handed back to IIS6
HttpContext c = this.Context;

StringBuilder userRoles = new StringBuilder();
RolePrincipal rp = (RolePrincipal)c.User;

//Move the user roles into a semi-colon delimited string
string rolesHeader;
if ((rp != null) && (rp.GetRoles().Length > 0))
{

foreach (string role in rp.GetRoles())
userRoles.Append(role + “;”);

rolesHeader = userRoles.ToString(0, userRoles.Length - 1);
}
else

rolesHeader = String.Empty;

this.ExecuteUrlHeaders.Add(“Roles”, rolesHeader);
return null;

}

277

Integrating ASP.NET Security with Classic ASP

09_596985 ch06.qxp 12/14/05 7:48 PM Page 277

First the custom HTTP handler gets a reference to the authenticated user on the context. Because the
sample application enabled the Role Manager feature, the RolePrincipal is the object representation of
an authenticated user that is attached to the current context automatically by the RoleManagerModule.
You can then retrieve all the roles that a user belongs to from the RolePrincipal.GetRoles method.

When you run the sample application again, the role information can be seen in the “Roles” custom
header. The original header name is prepended with HTTP_ by ASP which is why the following sample
output has a header called HTTP_ROLES rather than just ROLES.

HTTP_ROLES = Administrators;Regular User;Valued Customer

The classic ASP pages can retrieve this role information in a more useful form by just cracking the
header apart into an array.

<%
Dim arrRoles
arrRoles = split(Request.ServerVariables(“HTTP_ROLES”),”;”)

For Each role In arrRoles
Response.Write(role) + “
”

Next
%>

This ASP page simply converts the string into an array, and then dumps the array out on the page.
Assuming your classic ASP applications have some type of wrapper or common include function for
retrieving roles and checking role access, you simply need to tweak that type of code to fetch the role
information from the custom HTTP header instead.

Safely Passing Sensitive Data to Classic ASP
At this point, it almost looks like the authentication and authorization scenario is solved. Everything works,
and you have a simple but very effective way for passing role information over to classic ASP. There is how-
ever one security problem with the previous code. Because the custom handler is manipulating a custom
HTTP header, there are no special protections enforced for the header’s value. As a result, there isn’t
anything that would prevent a malicious user from logging in, and then attempting to send a forged HTTP
header called Roles that contained some roles that the user really didn’t belong to. This type of attack won’t
work with HTTP headers such as LOGON_USER, because the value of these headers is automatically set in IIS
and by ASP.NET. There isn’t any way that a malicious user could forge their username by sending fake
headers to ASP.NET. However, with the theory that it is better to be safe than sorry, you can add extra pro-
tections into the custom HTTP handler that will make it impossible to create a forged header — regardless of
how ASP.NET handles header merging. Just as forms authentication and other cookie-based features sup-
port digitally signing their payloads, you can also add a hash-based signature to your sensitive custom
HTTP headers.

The sample defines a helper class that encapsulates the work involved in hashing string values as well
as verifying hash values. The creation of a hash value for a custom HTTP header is performed from
inside of the custom HTTP handler, while verification of the hashed header occurs inside of the classic
ASP code. The need to access the same logic in both places means that the hash helper class also needs to
be exposed via COM so that classic ASP can call into it.

278

Chapter 6

09_596985 ch06.qxp 12/14/05 7:48 PM Page 278

Start by just defining the hash helper class and its static constructor:

namespace HashLibrary
{
public class Helper
{

private static string hashKey =
“a 128 character random key goes here”;

private static byte[] bKey;

static Helper()
{

//Cache the byte representation of the signing key
bKey = ConvertStringKeyToByteArray(hashKey);

}

//snip...
}
}

Because the intent of this helper class is for it to create and verify hashes, some common key material must
be shared across all applications that perform these operations. For a production application, you would
use configurable keys, along the lines of <machineKey />, because this allows for flexible definition of
keys and makes it easier to rotate keys. For simplicity though, the sample application hard-codes a 128-
character (that is, a 64-byte) key. You can easily generate one using the GenKeys sample code that was
covered in Chapter 5. Needless to say, in a secure application you should never store key material inside
code. For our purposes though, building a custom configuration section or dragging protected configu-
ration into the mix at this point will simply clutter up the sample.

The hash functions inside the .NET Framework use byte arrays, so the string hash key needs to be
converted. Because the private static variable holds the hash key as a string, it performs a one-time con-
version of they key into a byte array inside of the static constructor. This one-time conversion eliminates
the parsing overhead of having to convert the string hash key into a byte array every time the key is
needed. The ConvertStringKeyToByteArray method is covered later in this chapter, although the
purpose of the method is pretty clear from its name.

The helper class exposes a public static method that hashes a string value and returns the resulting hash
as a string.

public static string HashStringValue(string valueToHash)
{

using (HMACSHA1 hms = new HMACSHA1(bKey))
{

return ConvertByteArrayToString(
hms.ComputeHash(Encoding.Unicode.GetBytes(valueToHash))

);
}

}

279

Integrating ASP.NET Security with Classic ASP

09_596985 ch06.qxp 12/14/05 7:48 PM Page 279

Because you don’t want an external user to be able to forge any of the custom HTTP header values, you
need to use a hash algorithm that cannot be spoofed by other users. As with forms authentication, the
sample code uses the HMACSHA1 algorithm because it relies on a secret key that will only be known by
your application. Given a string value to hash, the HashStringValue method does the following:

1. Creates an instance of the HMACSHA1 algorithm, initializing it with the secret key.

2. Converts the string into a byte array because hash functions operate on byte arrays — not string.

3. Hashes the resulting byte array.

4. Converts the result back into a string using another helper method that will covered a little later.

Now that you have a convenient way to securely sign a string, you need a way to verify the signature.

public static bool ValidateHash(string value, string hash)
{

using (HMACSHA1 hms = new HMACSHA1(bKey))
{

if (HashStringValue(value) != hash)
return false;

else
return true;

}
}

The ValidateHash method is the companion to the HashStringValue method. In ValidateHash, given
a piece of string data (the value parameter), and the digital signature for the data (the hash parameter),
the method uses HMACSHA1 to generate a hash of the string data. Assuming that the piece of code that
initially signed the string data, and thus generated the hash parameter, shares the same signing key, then
hashing the value parameter should yield a hash value that matches the hash parameter.

Because the intent is for classic ASP pages to verify the hash values for custom HTTP headers, the logic
inside of the ValidateHash method must also be made available through a COM interop.

#region COM support
public Helper() { }

public bool ValidateHashCOM(string value, string hash)
{

return Helper.ValidateHash(value, hash);
}

#endregion

There are a few requirements to make a .NET Framework class visible via a COM wrapper. The class needs
a default constructor because there is no concept of parameterized class construction in COM. Additionally,
any methods exposed to COM must have signatures that are compatible with COM types. Because there
isn’t the concept of static methods in COM, it was just easier to add a default constructor to the Helper
class as well as a public instance method that simply wraps the public static ValidateHash method. From
ASP.NET, you would use the static methods on the Helper class. From classic ASP and COM, you first
instantiate an instance of the Helper class, and then call ValidateHashCOM on the instance.

280

Chapter 6

09_596985 ch06.qxp 12/14/05 7:48 PM Page 280

The Helper class also has two methods for converting hex strings to and from byte arrays.

public static byte[] ConvertStringKeyToByteArray(string stringizedKeyValue)
{

byte[] keyBuffer = new byte[64];

if (stringizedKeyValue.Length > 128)
throw new ArgumentException(

“This method is hardcoded to accept only a 128 character string”);

for (int i = 0; i < stringizedKeyValue.Length; i = i + 2)
{
//Convert the string key - every 2 characters represents 1 byte
keyBuffer[i / 2] =
Byte.Parse(
stringizedKeyValue.Substring(i, 2),

System.Globalization.NumberStyles.HexNumber
);

}

return keyBuffer;
}

The ConvertStringKeyToByteArray method is currently hard-coded to work only with 64-byte keys.
Given a 128 character string (which is the hex string representation of a 64-byte value), the method iterates
through the string extracting each set of two hex characters (0–9 and A–F). Each pair of hex characters is
then converted into a byte value with a call to Byte.Parse. The net result is that a 128 character string is
converted into a byte[64].

The reverse operation of converting a byte array into a string is shown here:

public static string ConvertByteArrayToString(byte[] value)
{

StringBuilder sb = new StringBuilder(128);

if (value.Length > 64)
throw new ArgumentException(

“This method is hardcoded to accept only a byte[64].”);

foreach (byte b in value)
{

sb.Append(b.ToString(“X2”));
}
return sb.ToString();

}

As with ConvertStringKeyToByteArray, the ConvertByteArrayToString method assumes 128-
character strings. Converting a byte array to a string is much easier because you can convert each byte
value to a hex-string equivalent by using the string format of X2.

The only other work needed in the hash helper is to attribute the assembly so that the public Helper
class is visible to COM. The assembly is also strongly named and will be deployed in the GAC.

281

Integrating ASP.NET Security with Classic ASP

09_596985 ch06.qxp 12/14/05 7:48 PM Page 281

//from assemblyinfo.cs
[assembly: ComVisible(true)]

// The GUID is for the ID of the typelib if this project is exposed to COM
[assembly: Guid(“5252f41f-a404-43eb-8d55-8fbdeb2011df”)]

[assembly: AssemblyVersion(“1.0.0.0”)]
[assembly: AssemblyFileVersion(“1.0.0.0”)]

[assembly: AllowPartiallyTrustedCallers()]

At this point, you can integrate the Helper class into the custom HTTP handler. Rather than passing the
role information for the user in the clear as a simple string, the custom handler will instead calculate the
signed hash for all of the roles.

ublic override string OverrideExecuteUrlPath()
{

//gets called just before control is handed back to IIS6
HTTPContext c = this.Context;

StringBuilder userRoles = new StringBuilder();
RolePrincipal rp = (RolePrincipal)c.User;

string rolesHeader;
if ((rp != null) && (rp.GetRoles().Length > 0))
{

foreach (string role in rp.GetRoles())
userRoles.Append(role + “;”);

rolesHeader = userRoles.ToString(0, userRoles.Length - 1);
rolesHeader = rolesHeader + “,” +

Helper.HashStringValue(rolesHeader);
}
else

rolesHeader = String.Empty;

this.ExecuteUrlHeaders.Add(“Roles”, rolesHeader);
return null;

}

The extra code appends the HMACSHA1 hash of the role string to the end of the custom header. Now
when you log in to the ASP application, the header looks like:

HTTP_ROLES = Administrators;Regular User;Valued
Customer,5F9AFD42A9ABCE50FE651A39A1F5EB63E5142D21

To use the hash helper from inside of the ASP.NET application, you also need to add an assembly reference
because the helper is deployed in the GAC:

<compilation debug=”true”>
<assemblies>
<add assembly=”HashLibrary, Version=1.0.0.0, Culture=neutral,

PublicKeyToken=729492b6d2638318” />
</assemblies>

</compilation>

282

Chapter 6

09_596985 ch06.qxp 12/14/05 7:48 PM Page 282

The only work left to do at this point is make the hash helper available to the classic ASP application.
Because the helper assembly was already compiled with the necessary attributes to make it visible in
COM, you just need to register the assembly with the regasm.exe utility:

%windir%\Microsoft.NET\Framework\v2.0.50727\regasm HashLibrary.dll

The result of running regasm is that the Helper class is registered as a COM type in the Windows
Registry and is associated with the type library GUID that was defined in the helper project’s
AssemblyInfo.cs file. Because the intent for now is to just call the Helper class from ASP, there wasn’t
any additional information specified in the Helper project to give the Helper class a fixed COM CLSID.
Classic ASP uses late-bound COM calls anyway so the extra work to configure the Helper class with a
fixed class ID isn’t necessary.

You can use the hash helper from ASP as shown here:

<%
Dim objHelper, signedRoles, strRoles, strRolesHash, arrRoles

if (Request.ServerVariables(“HTTP_ROLES”) <> “”) then
signedRoles = split(Request.ServerVariables(“HTTP_ROLES”),”,”)

strRoles = signedRoles(0)
strRolesHash = signedRoles(1)

Set objHelper = Server.CreateObject(“HashLibrary.Helper”)
result = objHelper.ValidateHashCOM(strRoles, strRolesHash)
if (result = true) then

arrRoles = split(strRoles,”;”)
For Each role In arrRoles
Response.Write(role) + “
”

Next
else

Response.Write(“No valid roles were found for the user.”)
end if

else
Response.Write(“No roles were found for the user.”)

end if
%>

Assuming that a custom “Roles” header was sent, this ASP code splits the value into two parts: the
string containing the actual role information and the string containing the digital signature of the role
string. With these two values, the ASP code creates an instance of the Helper class using COM, and then
calls the ValidateHashCOM method to verify the digital signature that was sent in the header. Because
the custom HTTP handler is using the same key material, the Helper class successfully validates that
the signature in the custom header is valid.

You can try testing the negative case by tweaking the custom handler to include bogus data in the signature:

this.ExecuteUrlHeaders.Add(“Roles”, rolesHeader + “1”);

Because the digital signature is the last part of the custom HTTP header, appending an extra character cre-
ates an invalid hash value. Now when you try to run the sample ASP code, the hash verification will fail.

283

Integrating ASP.NET Security with Classic ASP

09_596985 ch06.qxp 12/14/05 7:48 PM Page 283

You have seen how the hash verification is handled, with the signature being created in the handler and
then validated in classic ASP. You can integrate this kind of logic into whatever ASP code you currently
use for authorization. The logic for splitting the custom header and verifying it can easily be wrapped in
a custom include file or function without necessarily affecting any other code in your ASP application
that depends on retrieving and checking role information.

Full Code Listing of the Hash Helper
Since the hash Helper class was shown piecemeal earlier, the Helper class is shown in its entirety here:

using System;
using System.Collections.Generic;
using System.Text;
using System.Security.Cryptography;

namespace HashLibrary
{
public class Helper
{
private static string hashKey =

“179C4AB2765118F23CCB273EF2BB31016154F01033F237F1BC0B04662232D51BE7416119B88D52B5C3
46CA9E03A4EA34875C4D15A976A35315553246494781D5”;

private static byte[] bKey;

static Helper()
{

//Cache the byte representation of the signing key
bKey = ConvertStringKeyToByteArray(hashKey);

}

public static byte[] ConvertStringKeyToByteArray(string stringizedKeyValue)
{

byte[] keyBuffer = new byte[64];

if (stringizedKeyValue.Length > 128)
throw new ArgumentException(

“This method is hardcoded to accept only a 128 character string”);

for (int i = 0; i < stringizedKeyValue.Length; i = i + 2)
{

//Convert the string key - every 2 characters represents 1 byte
keyBuffer[i / 2] =

Byte.Parse(
stringizedKeyValue.Substring(i, 2),
System.Globalization.NumberStyles.HexNumber
);

}

return keyBuffer;
}

public static string ConvertByteArrayToString(byte[] value)

284

Chapter 6

09_596985 ch06.qxp 12/14/05 7:48 PM Page 284

{
StringBuilder sb = new StringBuilder(128);

if (value.Length > 64)
throw new ArgumentException(
“This method is hardcoded to accept only a byte[64].”);

foreach (byte b in value)
{

sb.Append(b.ToString(“X2”));
}
return sb.ToString();

}

public static string HashStringValue(string valueToHash)
{

using (HMACSHA1 hms = new HMACSHA1(bKey))
{

return ConvertByteArrayToString(
hms.ComputeHash(Encoding.Unicode.GetBytes(valueToHash)));

}
}

public static bool ValidateHash(string value, string hash)
{

using (HMACSHA1 hms = new HMACSHA1(bKey))
{

if (HashStringValue(value) != hash)
return false;

else
return true;

}
}

#region COM support
public Helper() { }

public bool ValidateHashCOM(string value, string hash)
{

return Helper.ValidateHash(value, hash);
}

#endregion

}
}

Summary
Prior to ASP.NET 2.0 and IIS6, your options for integrating authentication and authorization rules
between ASP.NET and classic ASP were limited. You could write awkward redirection-based logic that
moved data around on query-strings, or you could invest a fair amount of effort attempting to wrap
ASP.NET functionality inside of a Web Service.

285

Integrating ASP.NET Security with Classic ASP

09_596985 ch06.qxp 12/14/05 7:48 PM Page 285

With IIS6 and ASP.NET 2.0, extra logic was added to the runtimes of both products that finally makes
it easier to integrate the ASP and ASP.NET environments. IIS6 added a new feature called wildcard
mappings that allows arbitrary ISAPI extensions to participate in the request lifecycle of any resource.
This allows you to route all .asp requests to ASP.NET. ASP.NET 2.0 includes the necessary logic to
recognize when wildcard mappings are being used. Unlike earlier versions of ASP.NET, ASP.NET 2.0
will route a request to IIS6 for further processing.

The combination of IIS6 wildcard mappings and ASP.NET 2.0’s DefaultHandler means that you can
now use ASP.NET authentication and authorization in conjunction with a classic ASP site. The basic
steps necessary to enable this integration are:

1. Use wildcard mappings to route all .asp requests to the ASP.NET ISAPI extension.

2. Add some .aspx pages to your classic ASP application. The basic ASP.NET page that you will
need is some kind of login page.

3. Although the ASP and ASP.NET pages all live in the same directory structure, you can still add a
web.config file into this structure for the ASP.NET pages. This web.config file includes
settings to turn on forms authentication, define URL authorization rules, and enable the
Membership and Role Manager features for automatic authentication and authorization support.

4. Optionally, you can author a custom HTTP handler that derives from DefaultHandler. This is
only necessary if you plan to pass information from ASP.NET over to classic ASP. For example,
as was demonstrated in this chapter, a custom handler can pass the role information from Role
Manager over to ASP using a custom HTTP header

After steps 1–3 have been accomplished (and optionally step 4), access to your ASP pages is controlled
by the authentication and authorization mechanisms of ASP.NET. This allows you to migrate the authen-
tication and authorization rules for your mixed application environments exclusively into ASP.NET.

286

Chapter 6

09_596985 ch06.qxp 12/14/05 7:48 PM Page 286

Session State

Session state probably doesn’t strike most people as having much of anything to do with security.
However, some security-related design points are worth touching on when thinking about how
session state is used in an application. In ASP.NET 2.0 some new functionality was added around
securing cookieless sessions as well as locking down behavior in lower trust levels.

This chapter covers the following topics on ASP.NET 2.0 session state:

❑ Session state and the concept of a logon session

❑ How session data is partitioned across applications

❑ Cookie-based session IDs

❑ Cookieless sessions and Session ID regeneration

❑ Protecting against session state denial-of-service attacks

❑ Trust level restrictions when using session state

❑ Database security when using storing session state in SQL Server

❑ Securing the out of process state server

Does Session State Equal Logon Session?
An architectural question that comes up time and time again with session state is whether session
state can be considered equivalent to a logon session. Hopefully after reading this section, you will
agree that the answer to this question is unequivocally no! When developers ask about having the
concept of a logon session object in ASP.NET, not only are they looking for a convenient storage
location associated with a user, but they are also usually looking for a mechanism that prevents
problems such as duplicate logins. (A workaround using forms authentication for this was shown
earlier in Chapter 5.)

10_596985 ch07.qxp 12/14/05 7:49 PM Page 287

However, in ASP.NET session state is a service that is always available on each and every page in an appli-
cation. There is no concept of having to authenticate to obtain a valid session object. More importantly, no
mechanism inside of ASP.NET enforces validity of a session identifier (that is, is the identifier a value that
was originally generated by ASP.NET?). As long a browser is able to send a well-formed session identifier
to ASP.NET, and the session identifier meets some basic syntax checks, the corresponding session data is
available to the application.

Contrast this with something like forms authentication where, in the default configuration, it is next to
impossible to create a forged forms authentication ticket. (You would need to guess an encryption key as
well as the key used for the HMACSHA1 signature.) The problem with depending on session state as an
indicator of a logon session is that unlike forms authentication, it is trivial to create a valid session identifier.

Because a session identifier is nothing more than a 120-bit random number encoded using letters and
numbers (this works out to a 24-character cookie value due to the way session state encodes the random
number), you or I can easily create a perfectly valid session identifier. Of course, if you send such an
identifier to ASP.NET, there probably isn’t going to be any session data associated with it. (You have
2^120 possible combinations to guess if you were actually trying to grab someone else’s session.)
Instead ASP.NET spins up a new session object for you based on the ID.

If your application’s code stored data inside of the Session object that indicated logon information,
potentially even information indicating the logon status, you can quickly see how with a trivial client-side
“attack,” a user already logged on can quickly get into a logged-off state. There is another more subtle
problem with using session state as a kind of logon session service: session identifiers cannot flow across
domains.

The configuration options for session state, unlike forms authentication, don’t include options for setting
a cookie domain or a cookie path. Furthermore, when using the cookieless mode of operation, there is no
facility equivalent to the cross-application redirection capability in forms authentication. For both of
these reasons, attempting to keep track of a logon session across a set of applications running under
different DNS addresses (although at least sharing a common domain suffix for example, mycompany
.com) is simply not possible with cookieless session state. The cookieless identifier that associates a user
to session information will be different across various applications and no functionality is available to
synchronize session state data from multiple applications.

A second flaw with attempting to use session state as a surrogate logon session service is that even if
multiple applications share the same DNS namespace (meaning that all the applications run as virtual
directories underneath www.mycompany.com), the very nature of session state is to segment data by
application. You take a closer look at this in the next section, but in a nutshell the session state from
application A is never available to session state in application B. It doesn’t matter whether you use out-
of-process (OOP) session state in an attempt to make session data available across a web farm; even the
OOP modes of operation segment data from different applications.

A final shortcoming of using session state for tracking logon status is the inability to set the Secure
property of the session state cookie (assuming that you are using cookied mode of course). Unlike forms
authentication, the session state cookie always flows across the network regardless of the state of any
SSL security on the connection. If you think about it, this makes sense for a feature like session state
because many applications would break if the data in session randomly became unavailable when a user
surfed between secure and insecure pages.

288

Chapter 7

10_596985 ch07.qxp 12/14/05 7:49 PM Page 288

This means that session state as implemented in the default providers that ship with ASP.NET 2.0 is not
explicitly associated to a user. Although ASP.NET 2.0 exposes new extensibility hooks that allow you or
a third party to write such functionality, out-of-the-box session state is basically an anonymous data
storage mechanism. As long you have a valid identifier, you can get and set session data. However, this
is exactly the functionality you want to avoid with a logon session; the whole point of a logon session is
that it requires authentication to obtain a session, and once established there is a persistent association
between an authenticated user and the actual session data.

About the only situation where session state could be used is in a single-application scenario. If you are
writing a single application and you never need to flow authentication information to any other applica-
tion, you could potentially turn session state into a surrogate logon session service. Technically, you
could create a login form, and when a user sent valid credentials, instead of issuing a forms authentica-
tion ticket, you could write some information into session state. When the user returned to the site, and
the session state was still active, you could check the session data to determine the logged on status.

Even for this limited scenario, there is another argument against using session state as an indication of
the logged-in status for a user. Session state can potentially live forever; there is no concept of an
absolute expiry for session state data. Instead, as long as a request is periodically made with the session
state expiration time window, the time to live of the session data will be renewed. Unlike forms authen-
tication, there is no way to lock down the lifetime of session data with an absolute expiration. For secure
sites, the last thing you want is for an authenticated user to “live forever” on the website.

The following table compares the important security features of forms authentication against session
state and shows why session state should be used solely as a convenient data storage service, not as a
login mechanism.

Security Feature Forms Authentication SessionState

Control DNS domain of cookie Yes No

Control path of cookie Yes No

Require SSL for cookie Yes No

Information is shareable across applications Yes No

Supports absolute expirations Yes No

A valid Identifier can be easily forged No Yes

Of course, from this discussion you might be wondering if you should use session state at all! The best
way to think about session data is to treat session state as if it were data stored in forms variables on a
page. The one major difference being that you don’t need to move data back and forth in an HTML form
when you use session state. Instead, session state acts as a server-side store for this type of information.
From the point of view of data security, you should treat session state data as if it were being sent back
and forth in a web page.

For example, if you were filling out an online insurance application, you might choose to store each
page’s entries in session state to make the application process run faster. From a security and privacy
standpoint though, this data could just as easily have ended up in hidden fields or in form elements
located on different web pages. As a result, you would want to ensure that any session state data entered

289

Session State

10_596985 ch07.qxp 12/14/05 7:49 PM Page 289

during the application process came from pages that were submitted over an SSL connection. Similarly,
you would want to process or display this information to the user only over an SSL connection. From a
developer standpoint, you would need to be diligent enough to ensure that this type of information was
not accessed from an insecure page such as a non-SSL home page.

Session Data Partitioning
Another question that frequently arises is around data partitioning of session data between applications.
From time to time, someone will have a panic attack because, at first glance, session state looks as if it
would leak data from one application into another. Especially in the case of out-of-process session state,
where all servers and all applications share a central database (or session server), it is understandable
why some developers are a bit leery about accidental data sharing.

The example here starts with the simpler case of in-process session state. When using the in-process mode
of operation (which in ASP.NET 2.0 is now really an in-process session state provider, because Session
state is now a provider-based feature as well), the data storage mechanism that is used is the ASP.NET
Cache object. Because the Cache object manages a chunk of memory inside an application domain, you
automatically gain the benefit of partitioning. There is no remoting capability built into either the Cache
object or the in-process session state provider.

As a result, short of attaching a debugger or using Win32 APIs to poke around in memory, there isn’t
anyway that application A’s session state can accidentally show up inside of application B. Each
ASP.NET application on the web server lives in its own application domain, and there is no mechanism
to reach out and access session data across application domains. Of course, nothing prevents you from
writing some cross-appdomain remoting objects that would give you this capability, but realistically if
you want to go down that road, you would probably want to write a custom ASP.NET session state
provider that runs against a central application domain used for storing common session state data.

Now for the potentially more worrisome scenarios: What happens when you run with one of the out-of-
process session state providers? Is there some way that application A could reach into application B’s
session state data when using the SQL Server-based provider? Clearly this isn’t the case, because if that
were actually happening ASP.NET’s out-of-process session state would have been broken all the way
back in ASP.NET 1.0.

In the case of both the OOP session server, and the OOP provider that uses SQL Server, ASP.NET
includes an application identifier with the session state data. For example, if you take two sample appli-
cations using the same session state configuration:

<sessionState mode=”SQLServer” sqlConnectionString=”server=.;Integrated
Security=true” />

and both applications manipulate session data with the following code (the application name is different
in the other application of course):

Session[“somevariable”] = “Application A: somedata” + DateTime.Now.ToString();

you end up with two different sets of data in the session state SQL database. In the case of the SQL
database, two tables are used: ASPStateTempApplications and ASPStateTempSessions. The temporary
applications table shows information for the two different ASP.NET applications:

290

Chapter 7

10_596985 ch07.qxp 12/14/05 7:49 PM Page 290

AppId AppName
----------- --
145274326 /lm/w3svc/1/root/chapter7/sessionstateappa
145274325 /lm/w3svc/1/root/chapter7/sessionstateappb

ASP.NET uses the Internet Information Services (IIS) metabase path of each application as an identifier
when partitioning session state data. Looking in the table that stores the actual session state data, along
with a number of other columns containing data and lock status, there is a SessionID column:

SessionId

c5eyzd2vqefu3bnvyk03zh5508a8b5d5
c5eyzd2vqefu3bnvyk03zh5508a8b5d6

At first glance, the IDs from the two applications look almost exactly the same. Take a look at the bolded
portion of the session identifier though. This portion of the identifier differs between the two rows of
data because the extra eight characters (padded so there are two hex characters per byte of application
ID) are actually the application identifiers from the ASPStateTempSessions table. The first 24 characters
in the SessionId column are the same because these 24 characters represent that actual session
identifier that is sent back to the browser in the cookie. You will also see this value if you retrieve the
Session.SessionID property.

So, things become quite a bit clearer around data partitioning for the OOP modes of operation. ASP.NET
keeps track of the different applications that have been registered in the OOP session state stores. Whenever
a request comes through to get or set data, the primary key (or the cache lookup key in the case of the ses-
sion state server) for the data includes the client’s session identifier and some extra information identifying
the specific web application that originated the request.

One interesting point is obvious from looking at how the applications are stored in the database. For
applications that are deployed on a web farm, you must ensure that each application installation is made
to the same virtual web server on each web server. If you accidentally mix up the virtual web servers
during installation, one of two things will happen:

❑ One of your application installations will end up with a totally different metabase path, and it
will store session data separately from all of the other application installs.

❑ If you have applications spread out across your web servers, the potential exists that you acciden-
tally install application A in application B’s virtual webserver, and vice versa. If that happens,
you probably will end up with exceptions inside of your web applications when you attempt to
cast session data retrieved from the wrong row of session data back to an incompatible data type.

Cookie-Based Sessions
Storing the session identifier in a cookie is the most common mode of operation for developers — it is
also the default mode of operation for ASP.NET 2.0. Because it follows the programming model as ses-
sion state in Classic ASP, many developers never need to deal with the cookieless mode of operation.
You saw earlier that session state providers ensure that data in the back-end data store is properly parti-
tioned by application. This is important because if you look at the session identifier in use across multi-
ple applications on the same web server, you see that it is the exact same identifier. The application ID
based partitioning is hidden inside of the session state providers.

291

Session State

10_596985 ch07.qxp 12/14/05 7:49 PM Page 291

Cookie Sharing across Applications
If you write other application code that depends on Session.SessionID, the same value is going to
show up in different applications. If your intent is to hook other application logic and data storage off of
SessionID, you may want to use a different identifier such as a combination of authenticated username
and application name. The one thing you definitely don’t want to do is to come up with a solution that
forces creation of a new session identifier in each unique application.

Think about the scenario where you have multiple applications sitting on the same server. The
HttpCookie that the session state feature issues will have the following characteristics:

❑ The Domain property is never set on the HttpCookie so it will default to the domain of the
server.

❑ The Path property will be hardcoded to /.

❑ No explicit expiration date will be set on the cookie.

❑ The value of the cookie is set to the 24-character identifier that you can get from
Session.SessionID.

With this combination of values, anytime the browser user surfs between applications on the same
server (or applications living under the same DNS name in the case of a load-balanced web farm), the
session cookie will be sent to each and every application. This means that, over time, the session state
feature will be accumulating session data for each application. If you were suddenly to send back a fake
cookie that reset the session state cookie from one of your responses, the net result would be that all of
the session state data in all of the other applications would be lost.

Let me state that a different way, because this is central to the way the ASP.NET session state feature
works. For each full DNS hostname, a browser gets one, and only one, session state cookie. That cookie
is shared across all applications, and if the cookie is ever lost or reset, all session data in all applications
that received that cookie will be lost. I want to drive home that point because sometimes developers
wonder whether they should include custom logic in their logout process for session state.

There is a method on the Session object called Abandon. Calling Session.Abandon invalidates the session
state data in the back-end data store (cache entry invalidation for in-process and session state server and
deleting the row of data for SQL-based session data) for the specific application that called the method.
However, calling Session.Abandon doesn’t clear the session cookie. If you called Session.Abandon from
application A, and if ASP.NET then cleared the session cookie, any session data in other applications would
be lost. The fact that the session identifier can be shared between many applications is the reason ASP.NET
invalidates only session data, not the cookie, during a call to Abandon.

If you do want to enforce that session data for a user is eliminated when that user logs out of an applica-
tion, calling Abandon is sufficient. Extending the previous sample applications a bit more, you can add a
page that explicitly calls the Abandon method and see the effect inside of SQL Server. When you first
access the sample site, you get a row of session data as expected:

SessionId Created
-------------------------------- ----------------------------------
cqiyhanqbi2xk2vksixmybi108a8b5d6 2005-05-23 20:24:47.210

292

Chapter 7

10_596985 ch07.qxp 12/14/05 7:49 PM Page 292

When Abandon is called, in the case of the SQL Server based provider, an immediate delete command is
issued and the session data is removed from the database. If you then access another page in the applica-
tion, thus recreating the session data, the same session ID is retained (shown in bold), but a new row in
the database is created with new values for the creation and expiration date.

SessionId Created
-------------------------------- ----------------------------------
cqiyhanqbi2xk2vksixmybi108a8b5d6 2005-05-23 20:50:42.537

If you happen to be developing a standalone application, and thus you don’t need the session identifier
to remain stable across different applications, you can issue a clear cookie from your logout logic.
However, this is the only scenario where explicitly clearing the session cookie can be done, because there
aren’t any other ASP.NET applications relying on the value.

Protecting Session Cookies
As with forms authentication in ASP.NET 2.0, the session state feature explicitly sets the HttpOnly prop-
erty on the cookie to true. Because applications store interesting information inside of session state,
ASP.NET protects the session identifier from client-side cross-site scripting (XSS) attacks (for more details
on XSS attacks and other security features of HttpOnly cookies, see the discussion in Chapter 5 on forms
authentication cookies). The likelihood of an attacker ever guessing a live session cookie is astronomically
low (with 120 bits in the session identifier, that works out to an average of 2^60 guesses required. Come
back in the next millennia when you finally get a match.)

That pretty much leaves cookie hijacking as the most viable option for getting to someone else’s session
data; hence the addition of HttpOnly protection in ASP.NET 2.0. The theory is that few (if any) applica-
tions should harvest the session identifier client-side for other uses. Typically, developers slipstream off
the value of Session.SessionID in their server-side logic and don’t need to pass it around client-side.
As a result of risks of accidentally exposing a session identifier across multiple client-side applications, I
definitely recommend changing that type of logic prior to upgrading to ASP.NET 2.0.

Some developers may wonder why session state doesn’t include at least the encryption and signing
protections found in other cookie-based features such as forms authentication and Role Manager. There
was a fair amount of debate around adding encryption and signing in ASP.NET 2.0 to the session state
cookie. However, because the default session state cookie is a cryptographically strong 120-bit random
number, there didn’t seem to be much point in layering the overhead of encryption and signing on top
of it. Furthermore, not only is the session state identifier a strong random number, because the session
state identifier is stored in a session based cookie, the session ID changes from browser session to
browser session.

Unlike forms authentication (for example), which relies on a fixed encryption key and a fixed validation
key, with session state the only time you can really someone else’s session state is while that user’s
session is still alive. There is no such thing as an offline brute force decryption attack or hash collision
attack with session state. With session state, an attacker must successfully guess (incredibly unlikely) or
hijack (possible but difficult to accomplish) a session identifier while that session is still alive somewhere
in an application. Although an attacker could theoretically stumble across a session identifier associated
with an expired session, this isn’t of any use because an expired session means that the data associated
with that session is no longer available.

293

Session State

10_596985 ch07.qxp 12/14/05 7:49 PM Page 293

Session ID Reuse
This leads to another point around the behavior of cookie-based sessions after the session has expired. If
a browser user accesses an application and sends a session cookie along with the request, but the session
has expired since the last time the application was accessed, the old session data is no longer accessible.
However, when running in cookied mode, the session identifier will be reused to create a new session
for the application.

Because a session identifier may be shared across multiple web applications, the session state feature
will not invalidate the session identifier just because the session has expired. Instead, the session state
feature sets up a new session state object that is associated with the preexisting identifier. By doing so,
session state prevents the problem of one application invalidating a session identifier when there is still
live session data associated with that identifier in other applications.

You can see this pretty easily by using two applications, both with session state enabled. Set the timeout
for session state in one application to one minute, and leave the other application’s timeout at its default.
After accessing both applications at least once, wait for a bit more than one minute. This gives the appli-
cation with the short timeout the opportunity for the session state to expire.

When you access the applications again (using the same browser session), the application with the short
timeout has indeed expired its session data. However, the second application, with the default timeout,
still has an active session, and the data in that session is still retrievable because expiration of cookie-
based sessions doesn’t cause the session identifier to be regenerated.

Put a different way, cookie-based session state always supports Session ID reuse. As long as the
browser sends a well-formed session identifier to the server, that identifier will be reused. Sometimes
developers assume that session state will create a new session identifier when a session expires, and as a
result, developers create application functionality that depends on a new session identifier being created
after a session expires. This assumption is incorrect though, and developers cannot rely on new session
identifier being generated when running in cookied mode.

Cookieless Sessions
ASP.NET 1.1 added support for cookieless session state. As mentioned in earlier chapters, the cookieless
mechanism that was added in ASP.NET 1.1 for session state has been expanded to encompass cookieless
support for forms authentication as well anonymous identification. You can easily enable cookieless
operations with the following configuration:

<sessionState cookieless=”UseUri” />

You can also issue cookieless session identifiers based on the capabilities of a user’s browser with one of
the following options: AutoDetect or UseDeviceProfile. These options use different detection mecha-
nisms to determine whether or not the user’s browser should be sent a cookieless session identifier.
Accessing an application that uses cookieless session state results in the session identifier showing up on
the URL

http://localhost/Chapter7/CookielessSessionState/(S(z0xade23qlr20245h54lkkym))/
Default.aspx

294

Chapter 7

10_596985 ch07.qxp 12/14/05 7:49 PM Page 294

The value in the URL is the same value that is returned from Session.SessionID. If you use the following
line of code on the default.aspx page shown earlier:

Response.Write(Session.SessionID + “
”);

the identifier output on the page matches the value shown in the URL:

z0xade23qlr20245h54lkkym

This behavior should start a few security antennae wiggling! Now anybody who looks at the address
bar in the browser knows their session identifier. A user who understands how ASP.NET works will
recognize this value and a malicious user that understands ASP.NET session state may start thinking
about what can be done with this information.

Especially in cookieless mode, don’t use the session identifier as an indication of an authentication
session. If you have logic that works this way, all a user has to do is come up with a 24-character string,
and suddenly that user would be authenticated.

Of course, the real security issue with cookieless session state is the common weakness that was
discussed earlier with cookieless forms authentication. It is very, very easy for a user to unwittingly leak
the session identifier to other people (email it, save it to disk as an Internet Explorer shortcut, and so on).
On shared machines such as kiosks, the cookieless identifier has a very real likelihood of sticking around
across the browser session of completely different users.

Given the comparative weakness of cookieless session identifiers, when is cookieless session state
appropriate?

❑ For an internal corporate application that needs to be available from a mobile device that
doesn’t support cookies — The likelihood of leaking the identifier is much lower in this scenario.

❑ For Internet facing applications that need to support mobile users — For such an application
you should not store anything sensitive inside of session state: this means no personally identi-
fiable information, and definitely nothing like credit card numbers, Social Security identifiers,
and so on. Furthermore, the session identifier should not be used within the application’s logic
as a key that can lead to any kind of sensitive or personally identifiable information.

I intentionally left out a potential third scenario of an e-commerce site that wants to support cookieless
users. If you need to support these types of customers and you are thinking of using cookieless session
state, exercise caution. A customer using a desktop browser with cookieless session state is at risk for
leaking the session identifier outside of the browser due to the ease with which you can get to an email
application from inside of all popular browsers (for example, Hi Mom — here’s that item I was talking
about on the Web!). If you do choose to support cookieless session state on an e-commerce site, only use
it to hold anonymous information such as shopping cart items. Don’t use session state in a way that a
session identifier could ever be used to get back to information about a specific person. Although
running the entire e-commerce site under SSL is also a way to mitigate the security problem of cookieless
identifiers, for performance reasons most e-commerce sites would probably be unwilling to do this.

295

Session State

10_596985 ch07.qxp 12/14/05 7:49 PM Page 295

The following list contains many of the security limitations of cookieless session identifiers:

❑ The identifier is immediately visible inside the address bar of the browser.

❑ The only way to prevent man-in-the middle attacks is to run the entire site under SSL, although
this is also a limitation of the session state feature as a whole.

❑ The identifier can be easily pasted into an email and shared with other users.

❑ Because the identifier is in the URL, cached URLs with the session identifier can end up in the
browser’s URL history.

❑ Proxy servers and caching servers can end up with URLs in their caches that contain the cookie-
less session identifier.

Session ID Reuse and Expired Sessions
Many of these weaknesses revolve around the ability for a URL with a session identifier to be reused by
someone other than the original intended recipient of the identifier. Because the session state feature
doesn’t have the concept of an absolute expiration, as long as someone (or some user agent) continues to
access a site with a valid session identifier, the underlying data will be kept alive. This behavior is more
of a problem with cookieless session state though.

Any browser, caching server, proxy server, and so on that keeps URLs lying around in a cache results in
potentially long-term storage of URLs with embedded session identifiers. This is a much less likely
problem in the cookied case because most user agents and caching software ignore session-based cookies.
(The browser isn’t going to keep a history of your session-based session cookie for the next 30 days.)

On the other hand, it is almost guaranteed that between the possibility of accidentally leaking session
identifiers and the long-lived storage of URLs through various caching mechanisms, someone will
eventually return to a site and replay a cookieless session identifier. The most likely scenario is one
where the user that was originally issued the identifier comes back to the site through some kind of
shortcut. You only need to use the Internet Explorer history feature to see what I mean. Or a site with
cookieless sessions all URLs with the embedded session identifier in it are sitting there in the browser
history waiting for you to click them.

Unlike cookied mode though, cookieless session state automatically reissues a session identifier under
the following conditions:

❑ A valid (that is, well-formed) session identifier is contained on the request URL.

❑ The session data associated with that identifier has expired.

If both of these conditions are true, then the session state feature will automatically create a new session
identifier when it initializes a new session state object. Note that if you call Session.Abandon from an
application using cookieless sessions, the session ID will also be regenerated the next time you access a
page in the application. In this case, calling Abandon is just another way of ending up in the situation
where you have a valid but expired identifier.

296

Chapter 7

10_596985 ch07.qxp 12/14/05 7:49 PM Page 296

To see the behavior when a session expires, you can take the cookieless URL that was shown earlier:

http://localhost/Chapter7/CookielessSessionState/(S(z0xade23qlr20245h54lkkym))/
Default.aspx

Paste this URL into the browser (assuming of course that 20 minutes have passed, which is the default
session timeout). The page still runs successfully, but the URL that comes back in the browser reflects a
new session identifier:

http://localhost/Chapter7/CookielessSessionState/(S(5e1yfz55otmtfjq1lcqwbje4))/
Default.aspx

The reason for this behavior is that in ASP.NET 2.0, the session state configuration supports a new
attribute: regenerateExpiredSessionId. By default this attribute is set to true, which is why when
expired session identifiers are sent in the URL, ASP.NET automatically issues a new identifier. This
behavior is enabled by default for a few reasons:

❑ It is the best choice from a security standpoint. Given the ease with which cookieless identifiers
can live far beyond their intended life, it makes sense to invalidate the identifiers by default.

❑ Unlike cookied sessions, cookieless session identifiers aren’t shared across multiple applications.
You can see that cookieless session identifiers do not flow across applications by setting up two
applications on the same server and configuring both to use cookieless session state. When you
access each application in turn, you end up with two different identifiers. This intuitively makes
sense because URLs are by their very nature unique to an application; hence values embedded in
the URL would also be application-local.

If for some reason you don’t want session identifiers to be regenerated, you can set
regenerateExpiredSessionId to false. However, if your application depends on retaining stable
session identifiers across browser sessions (this is one possible reason why you wouldn’t want to issue a
new identifier), you should look at why your application is depending on stable session identifiers. If at
all possible move to some other mechanism (perhaps requiring a login at which point you have a user
identifier) that is more secure for tracking specific users across different browser sessions.

Session Denial of Service Attacks
The idea behind a session ID denial of service attack is that a malicious user “poisons” session state by
sending it numerous bogus session identifiers or by forcing the creation of sessions that will never be
used after being initialized. Unlike other poisonings (for example, DNS cache poisoning) that involve
placing incorrect or malicious data into a cache, session ID poisoning is very basic. A malicious user can
spam the web server with session identifiers that are well-formed, but that are not associated with any
active session. Hence the term poisoning because the ASP.NET server ends up with an internal cache that
is polluted with spurious session identifiers.

In a similar manner, a malicious user can access a page in an application that results in the issuance of a
session identifier, but then throw away the cookie that is sent back by the application. In this manner, a
malicious user can force an application to spin up a new session each time the page is accessed — again
resulting in a session state store that is polluted with unused session state data.

297

Session State

10_596985 ch07.qxp 12/14/05 7:49 PM Page 297

A session identifier does take up a little bit of space and processing overhead on the web server each
time a new session is started up. However, because ASP.NET has a number of internal optimizations
around new and uninitialized sessions, sending a spurious identifier in and of itself is harmless. The real
danger of session ID poisoning occurs if the session state object is accessed after the spurious identifier is
sent. This can be code running in the Session_Start event in global.asax, or there can just be code
running on a regular .aspx page that manipulates session state.

After the Session object is accessed, storage is allocated for the session data. This means that memory is
consumed on the web server for the in-process session state case, and rows are allocated in the database for
the SQL OOP scenario. For the session state server, memory is allocated on the OOP session state server.

For the OOP SQL session state, spurious sessions shouldn’t have a big impact because each spurious session
and subsequent use of that session results in a row in the database. An attacker that attempted a denial of
service (DOS) attack against SQL based session state causes some extra CPU and disk overhead on the SQL
Server but not much more, because the lifetime of a spurious session looks roughly as follows:

1. The attacker sends a fake session ID to the server as part of the request or accesses a page that
makes use of session state but then intentionally throws away the a session state identifier.

2. The ASP.NET page accesses the Session object in some manner, which results in a new row
being written to the ASPStateTempSessions table.

3. The attack continues to send other fake session IDs, or continues to request the same page but with
no session state cookie thus resulting in the creation of a new session identifier for each request.

4. At some point the session associated with the identifier from step 2 times out.

5. Every minute (by default) the ASP.NET SQL Server session state cleanup job runs and deletes
expired rows of session data from the database.

As a result of the automatic session cleanup in step 5, a spurious session is only going to take up space in
the SQL Server for an amount of time equal to the timeout setting in configuration (20 minutes by
default). If an attacker uses a standard desktop machine to send 10 spurious session identifiers per sec-
ond (in other words, the attacker adds 10 requests per second (RPS) overall to your site’s load), an attack
can accumulate 600 spurious sessions in a minute, and 12,000 spurious sessions in the default 20 minute
timeout period.

If you have 12,000 spurious sessions in the database, and each session is associated with 5KB of data,
you are looking at roughly 58–59MB of extra data sitting in the session state database. Furthermore, the
SQL Server machine has to chug through and delete 600 rows of bogus session data each time the
cleanup job wakes up on its 60 second interval. Overall, it isn’t good that this type of extra overhead is
being incurred, but on the other hand short of a concentrated attack against a web farm using OOP SQL
Session state, an attacker is going to have a hard time being anything more than a nuisance.

One of the reasons I picked such a low request per second value for describing the issue is that many web-
sites have a variety of real-time security monitors in place: one of them checks on the requests per second
value. If your security monitoring apparatus suddenly sees a spike in traffic — for example, the current
RPS compared to the average RPS during the last 30 minutes — it probably will set off several alarms.
However, slipping in an extra 10 requests per second is trivial for today’s web server hardware; probably
only paranoid security measures would detect such a small increase in the overall traffic of a site.

298

Chapter 7

10_596985 ch07.qxp 12/14/05 7:49 PM Page 298

Although SQL Server–based session state is pretty hard to overrun with a session ID denial of service
attack, the story is a bit different when using in-process session state or the OOP session state server. In
both of these cases, an attacker is causing memory consumption to occur with each and every spurious
session. Unlike SQL Server session state where disk space is relatively cheap (imagine an attacker
attempting to overflow a terabyte of storage on the session state server — good luck!), memory is a
scarce resource on the web server.

Taking the previous scenario with 10 spurious requests per second, and 5KB of spurious data, you end
up permanently losing 58–59MB of memory from your web server due to space wasted storing spurious
session data. Furthermore, you incur the additional overhead of the in-memory items aging out (session
state items are held in the ASP.NET Cache object) and the subsequent overhead of garbage collection
attempting to recompact and reclaim memory caused by session data constantly aging out and being
replaced by other spurious session data.

Although 58–59MB doesn’t seem like a lot of memory, the real risk of a session ID denial of service
attack comes when you have an application that depends on storing larger amounts of data in session
state. For example, if an application stores 50KB of data in session state instead of 5KB of data, you have
a very real problem. An attacker could consume around 570MB of memory over a 20-minute period. On
servers running multiple ASP.NET applications, that is enough memory consumption to probably force
the appdomain of the problematic ASP.NET application to recycle. If you are running on Windows
Server 2003 and IIS 6, and if you have set memory-based process recycling limits, it is possible that the
IIS 6 worker process will also be forced into periodic recycling.

The general guidance here is that if you depend on in-process session state or the OOP session state
server, and if your website is Internet-facing and hence reachable by an attacker, you should do the
following to detect and mitigate session ID denial of service attacks:

❑ Monitor the application specific ASP.NET performance counter for Sessions Active as shown in
Figure 7-1.

Figure 7-1

299

Session State

10_596985 ch07.qxp 12/14/05 7:49 PM Page 299

❑ *Inside of the performance monitor MMC you can get to this counter by selecting ASP.NET
Apps v2.0.x.y for the performance object, and then choosing to monitor all ASP.NET instances,
or just specific ones. After you choose the desired instances the Sessions Active option is
available in the Select Counters from List list box. You need to profile the usage of your applica-
tion to determine an appropriate upper limit. Chances are that most applications could proba-
bly get by with a limit of somewhere between 100 and 500 sessions for an application. Because
the performance monitor supports configuring alerts, you can set up an alert that sends emails
or runs some other program if the number of active sessions exceeds an appropriate limit.

❑ Monitor the overall requests per second on your site. If the RPS at any point in time shows an
abnormal spike relative to the last few minutes (or perhaps hours) of activity, send out an alert
so that someone can investigate and determine what is happening.

❑ Set appropriate memory limits on applications that use session state. This is very easy to accom-
plish in IIS 6 because you can set a memory-based process recycling limit on the Recycling tab
of an application pool. Again, you will need to determine appropriate upper limits for your
applications. Once set though, the side effect of a sustained DOS is that the problematic applica-
tion will periodically recycle as memory is consumed. Other applications in other application
pools will be unaffected though.

❑ The simplest way to mitigate the entire session ID denial of service scenario is to use session
state only on pages that require an authenticated user. As mentioned earlier, just sending a ses-
sion identifier to ASP.NET doesn’t do much of anything. ASP.NET will delay initialization of the
session state object until it is actually needed. As a result, if you access the Session object only
on pages that require an authenticated user, the only way an attacker could perform a DOS is to
log in first. Typically attackers want to remain anonymous and aren’t going to set up a user
account on your site just to launch a DOS.

Trust Levels and Session State
As with just about every other aspect of ASP.NET, the session state feature is affected by the trust level
settings for your machine and your application. For in-process session state, the effect of trust level is
limited to some new restrictions added in ASP.NET 2.0 around serialization and deserialization (a bit
more on that later in this section). However, both SQL Server and the OOP session state server require
applications to run in Medium trust or higher for these features to be used.

You can take any of the previous sample applications that used SQL Server based session state and add a
<trust /> level element as follows:

<trust level=”Low”/>

You get back an error page to the effect that you can’t use session state at that trust level. If you tweak
the trust level to Medium, the application will start working again.

Things get a bit interesting though if you take an additional step and edit the actual trust policy file (for
all the details on trust level and their relationship to trust policy files see Chapter 3). Change the trust
level to use a custom trust level:

<trust level=”Medium_Custom”/>

300

Chapter 7

10_596985 ch07.qxp 12/14/05 7:49 PM Page 300

This custom trust level sets the AspNetHostingPermission.Level to Medium, so effectively the appli-
cation is running a modified version of the Medium trust level. Then in the trust policy file associated
with this trust level, remove the following permission element:

<IPermission
class=”SqlClientPermission”
version=”1”
Unrestricted=”true”

/>

When you rerun the application, session state still works! There are a few reasons for this behavior. Session
state is a heavily used feature by customers, so ASP.NET shouldn’t impose excessive security requirements
just to get session state working. However, in the case of SQL Server–based session state there is obviously
a perfectly good permission class supplied by the framework that models access rights for using SQL
Server. The problem is that if ASP.NET relied on the presence of SqlClientPermission in the trust policy,
it would effectively be allowing any page in the application to use SQL Server.

However, if a developer wants to enable SQL Server session state and doesn’t want random pieces of
page code using ADO.NET and attempting to access SQL Server, having session state condition its
behavior on SqlClientPermission is excessively permissive. The compromise approach for all of this
is why SQL Server session state works in the absence of SqlClientPermission. Instead, ASP.NET
requires that the application be running at Medium trust or above. As long as this condition is met, the
session state feature will call into SQL Server on behalf of the application.

Technically, SQL Server session state works in Medium trust because the entire code stack for session
state is trusted code. For example, if you think about the process by which session data is stored, the call
stack from top to bottom is roughly:

1. The EndRequest event is run by the HTTP pipeline.

2. The SessionStateModule that hooks EndRequest is called.

3. As part of the processing in SessionStateModule, it calls into the internal class that imple-
ments the SQL Server session state provider.

4. That provider calls into ADO.NET.

All of this code though is trusted code that lives in the global assembly cache (GAC). As a result, when
ADO.NET in step 4 triggers a demand for SqlClientPermission, the call stack above that demand
consists entirely of ASP.NET code sitting somewhere inside of System.Web.dll which exists in the
GAC. From the Framework’s standpoint, only trusted code is on the stack, and as a result the call to SQL
Server succeeds. In the case of the out-of-process session state server, a similar situation exists though
the OOP state server uses Win32 sockets instead.

You can see from all of this that whenever significant work is performed by the session state feature, only
trusted ASP.NET code is on the stack. As a result, the session state feature has to be a bit more careful in
terms of what it allows because permission checks and demands will always succeed. The trust level
requirements for the various modes of session state are shown in the following table.

301

Session State

10_596985 ch07.qxp 12/14/05 7:49 PM Page 301

Session State Mode Required CAS Permissions Required Trust Level

In process None Minimal

Sql Server None Medium

State Server None Medium

Custom Depends on custom provider Minimal. Custom
implementation providers can be more

restrictive if desired.

Serialization and Deserialization Requirements
Session state is a lot like no-compile pages in ASP.NET 2.0; both features involve only trusted ASP.NET
code running on the stack, which means that without extra protections, a savvy and malicious developer
could trick ASP.NET into running privileged code. If you think back to the discussion on
processRequestInApplicationTrust in Chapter 3, the solution for no-compile pages (and for that
matter any type of .aspx page) was for ASP.NET to call PermitOnly on the PermissionSet represent-
ing the permissions granted in the application’s trust policy.

Session state also internally checks the value of processRequestInApplicationTrust. If this setting
is true (by default it is true, and unless there is a specific reason for it, you should not change this
setting), session state calls PermitOnly prior to either serializing or deserializing session state data. This
means that any types deployed in the GAC that also implement custom serialization logic are still
restricted to the permission set defined by the application’s trust policy when the types are serialized or
deserialized by the Session state feature. Because session state uses binary serialization, this means any
GAC’d types with custom implementations of ISerializable cannot be lured into performing a
privileged operation through the use of session state in a partial trust application.

This protection closes a potential loophole with storing an instance of a GAC’d type in session state. If
enough was understood about the internals of the GAC’d type, then when either of the out-of-process ses-
sion state providers serialized the GAC’d type prior to saving it, session state would inadvertently trigger
privileged code inside of the GAC’d type’s serialization logic. With the PermitOnly in effect though, a
developer can no longer use session state to make an end-run around the application’s trust policy.

To highlight this, you can create a simple class that attempts to connect to SQL Server:

[Serializable()]
public class SomeObject : ISerializable
{

public SomeObject() { }

protected SomeObject(SerializationInfo info, StreamingContext context)
{

SqlConnection conn =
new SqlConnection(“server=.;database=pubs;Integrated Security=true”);

SqlCommand cmd = new SqlCommand(“select * from authors”, conn);

conn.Open();
SqlDataReader dr = cmd.ExecuteReader();

conn.Close();

302

Chapter 7

10_596985 ch07.qxp 12/14/05 7:49 PM Page 302

}

public void GetObjectData(SerializationInfo info, StreamingContext context)
{

info.AddValue(“foo”, “bar”);

SqlConnection conn =
new SqlConnection(“server=.;database=pubs;Integrated Security=true”);

SqlCommand cmd = new SqlCommand(“select * from authors”, conn);

conn.Open();
SqlDataReader dr = cmd.ExecuteReader();

conn.Close();
}

}

The sample class is marked with the Serializable attribute, indicating that it supports being binary serial-
ized. Inside the ISerializable method associated with serialization, and in the special ISerializable
constructor, the class attempts to execute a command against SQL Server. This operation results in a demand
for SqlClientPermission, which you can use to show the effects of enforcing the application trust policy.

After marking the class’s assembly with the APTCA attribute, signing it with a strong name, and adding it
to the GAC, you can create a sample web application that makes use of this class. The web application
will be configured to run in partial trust and use SQL Server session state.

<trust level=”Medium_Custom”/>

<sessionState mode=”SQLServer” sqlConnectionString=”server=.;Integrated
Security=true” timeout=”30”/>
<compilation debug=”true”>
<assemblies>
<add assembly=”BusinessObjects, Version=1.0.0.0, Culture=neutral,

PublicKeyToken=9cd23ad80158bbfe”/>
</assemblies>
</compilation>

Using SQL Server–based session state means that the session state feature will use binary serialization to
load and store any objects placed inside of session state. A simple page that makes use of the GAC’d
type is shown here.

protected void Page_Load(object sender, EventArgs e)
{

if (Session[“ObjectReference”] != null)
{

object o2 = Session[“ObjectReference”];
}

SomeObject obj = new SomeObject();
Session[“ObjectReference”] = obj;

}

303

Session State

10_596985 ch07.qxp 12/14/05 7:49 PM Page 303

The page stores a reference to the GAC’d type inside of Session[“ObjectReference”]. Because the
page attempts to get a value first, this triggers deserialization of the object instance within the session
state feature. In ASP.NET 2.0, there was a slight optimization added to the out-of-process session state
providers. These providers load only the raw blob data when the AcquireRequestState event occurs
in the HTTP pipeline. However, the session state providers will not attempt to deserialize the blob into
an actual object instance until a piece of code runs and explicitly accesses the session state variable.

Attempting to get an instance of the GAC’d type from session state triggers this lazy deserialization. The
page also creates an instance of the GAC’d type and stores it in session state so that later during either
the ReleaseRequestState or EndRequest phase the session state provider will have to serialize the
object instance.

If you run the page code while the custom trust policy still includes SqlClientPermission, the page
runs without a problem. However, if you remove the SqlClientPermission from the trust policy file,
the next time you run the page it will fail. Depending on whether you run the page for a brand new
session, or run the page after session data already exists in the database, the attempt to retrieve an
instance of SomeObject fails, or the request fails after the page has run when an attempt is made to
serialize the instance of SomeObject.

Overall, the sample highlights the fact that you should not use GAC’d types with out-of-process session
state in partially trusted applications if the trusted type carries out any kind of privileged operation
using custom serialization. Realistically, this scenario probably will not affect most developers because
normally serializable types don’t access external resources from inside of custom serialization logic.
However, you may encounter custom types written by a development organization or third-party
vendor that have this behavior.

If you have an application that was working with OOP session state under full trust, but the application
stops working after you drop to High trust or lower, the new application trust policy enforcement in
ASP.NET 2.0 session state may be the problem. Also note that although the sample shown earlier used
custom serialization with ISerializable, the same issue arises if you implement custom serialization
using the new version tolerant serialization (VTS) mechanism in the 2.0 version of the Framework.
Essentially different methods are involved, but you still have the same effect with ASP.NET 2.0 enforcing
a PermitOnly prior to any VTS-related methods being called.

Database Security for SQL Session State
SQL Server session state is the most common out-of-process session state mode used by developers. As a
result of its popularity, a few quick notes around the database store are in order. The thing to keep in
mind when using SQL Server session state is that the information sitting in the session state database is
effectively a snapshot of various pieces of application data associated with individual users. If you have
sensitive information or privacy related information stored in session, the potential exists for other
malicious code to reach into the SQL Server session state store and retrieve it.

Prior to ASP.NET 2.0, you could store session state inside of tempdb or inside of a specific database
called ASPState. Both of these deployment options open up the potential for session data in one appli-
cation being accessible from another application. The specific risk is that each ASP.NET application that
is pointed either tempdb or ASPState has to be configured with dbo-level credentials. The entire schema
created by the SQL Server-based session state feature is owned by the dbo user. Furthermore, the code
inside of the SQL Server session state provider prepends all of the stored procedure names with dbo.

304

Chapter 7

10_596985 ch07.qxp 12/14/05 7:49 PM Page 304

As a result, if multiple ASP.NET applications are configured to point at one of the common session state
databases, page code inside of these ASP.NET applications can easily issue a select statement directly
against the session state database. Take the following simple command:

Select * from ASPStateTempSessions

If a page in an application issues this command using ADO.NET, it now has a DataSet or SqlDataReader
that contains the raw object data. In ASP.NET 2.0, the SessionItemShort and SessionItemLong
columns contain the serialized representations of session state objects. The blob values in these columns are
not directly usable with the binary formatter; however, with a little snooping around and reverse engineer-
ing, you can pretty easily tease out the basic structure of the data in these fields.

After a malicious user has done this, that user can read selected byte sequences from these columns and
feed them to the BinaryFormatter. For a single application using one of the default session state
databases, this isn’t a security problem because the single application is supposed to be able to manipulate
its own session data. Jumping through hoops to do this through ADO.NET and the BinaryFormatter
doesn’t expose any data. However, chances are that if multiple applications are using SQL Server session
state, development team A did not intend to allow its data to be snooped by the application written by
development team B.

And taking paranoia one step further, in scenarios where multiple applications share the same session
state data store, it is also possible for one application to synthesize the byte representation for serialized
data and inject it into one of the session state rows containing data for another application. For example,
maybe a marketing oriented application uses the same session state database as a web-based loan
application does. The marketing application could be crafted so that a malicious developer could write
code to edit a row of session data associated with the loan application — maybe to do something along
the lines of editing credit information that is temporarily being stored in the session state database for
use by an online approver.

So, what does this really boil down to for developers using ASP.NET 2.0? Fortunately, ASP.NET 2.0
added the ability to deploy session state into any arbitrary database (not just tempdb and ASPState). As
a result, it is very easy for ASP.NET 2.0 applications to segment session state stores and prevent different
applications from peeking into another application’s session data. Locking down session state data in
ASP.NET 2.0 should include the following steps:

1. Install the session state schema in separate databases when applications handling sensitive data
may be storing some of this information temporarily into session state. You can use the
Framework’s aspnet_regsql.exe tool, located in the install directory, to do this using the -
sstype c and -d <database> options.

2. In the configuration for your web applications, add the new attribute allowCustomSqlDatabase
to the <sessionState /> configuration element. Doing so allows you to enter the extra database
information into the sqlConnectionString attribute of the <sessionState /> element. If you
don’t set allowCustomSqlDatabase to true though and you attempt to use a custom database
(something other than tempdb or ASPState), an exception is thrown at runtime.

3. Configure the connection credentials for the custom session state database so that other
ASP.NET applications cannot access it. You can accomplish this by running the ASP.NET appli-
cation in its own worker process with a unique identity, by setting a unique application imper-
sonation identity for the application, or by using a unique set of standard SQL Server
credentials in the connection string.

305

Session State

10_596985 ch07.qxp 12/14/05 7:49 PM Page 305

A sample configuration that would allow you to isolate a session state database to a single ASP.NET
application is shown here:

<sessionState mode=”SQLServer” allowCustomSqlDatabase=”True”
sqlConnectionString=”server=.;Integrated Security=true;database=mycustomdb” />

<identity impersonate=”true” userName=”user” password=”password”/>

This configuration tells the session state feature that is allowable to have a database attribute in the con-
nection string that points at something other than aspnetdb or ASPState. Because application imperson-
ation is also configured, the SQL session state provider will connect to the database using the configured
application impersonation credentials. As long as no other ASP.NET applications use the same set of
application impersonation credentials, the session state data is limited to only one application.

As a side note, in ASP.NET 2.0 the impersonation behavior of the SQL provider was tweaked a bit. The
SQL provider by default always suspends client impersonation prior to communicating with SQL
Server. This means if you have client impersonation configured in your application (for example, you are
using Windows authentication and <identity impersonate=”true” />), the SQL server provider
reverts to the process identity (or application impersonation identity if application impersonation is in
effect) prior to communicating with SQL Server. If for some reason you want to retain the old ASP.NET
1.1 impersonation behavior, you can use the new “useHostingIdentity” attribute on the <sessionState
/> element and set it to false.

So as long as the underlying process identity of the ASP.NET application or the application impersonation
identity has dbo privileges in the SQL Server session state database, you can safely use integrated security
with the session state connection string. This eliminates the need to add all your Active Directory user
accounts to the session state database if you choose to use integrated security with your session state
database (though there were also other bugs in ASP.NET 1.1 that made it difficult to use integrated secu-
rity with session state).

Security Options for the OOP State Server
The out of process session state server runs as an NT service using the aspnet_state.exe executable.
Because the state service itself simply listens on a socket, it doesn’t have any built-in security protections
that prevent arbitrary hosts on the network from connecting to the state server. Unlike SQL Server, the
OOP state server has no concept of integrated security. As a result, server administrators should use
other network security mechanisms such as IP security (IPSEC) rules to prevent random machines from
attempting to connect to the state server.

Beyond network layer security mechanisms, there are two other security options you should be aware of
when using the OOP state server. The first thing you should do is change the default network port that
the state server listens on. By default, the state server listens on port 42424. Because this is a well-known
port for the state server, you can make the state server listen on a different port by finding the following
registry key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\aspnet_state\Parameters

306

Chapter 7

10_596985 ch07.qxp 12/14/05 7:49 PM Page 306

Underneath this key, you can add a new DWORD registry value named Port. Set the actual value to a
different port number that you want the state service to listen on. With this change a malicious network
user now has to perform a port scan in order to find the state service as opposed to just connecting to
port 42424.

Because the OOP state server is usually deployed to support multiple remote web servers, you will
quickly find out that your remote OOP state server doesn’t work out of the box. The reason for this is
that the ASP.NET state service by default only allows connections from localhost. This prevents server
administrators from installing ASP.NET on machines and then unknowingly having state servers sitting
around listening for remote connections on the network. To allow an instance of the ASP.NET state
service to accept remote connections you can add another DWORD registry value under the Parameters
key called AllowRemoteConection. Setting AllowRemoteConnection to “1” enables the state service
to accept remote network connections.

Summary
Although session state is usually considered just a handy item in the developer’s arsenal of ASP.NET
tools, there are a number of subtle security issues to keep in mind. ASP.NET 2.0 introduced cookieless
support for the session state feature. However, as with other features that support cookieless behavior,
the potential to accidentally leak cookieless tickets is a risk. As a result, if you choose cookieless sessions,
do not store any private or privileged information inside session state; this minimizes the impact of
other users accidentally reusing a cookieless session ticket.

Session state has the concept of session ID reuse. In cookied modes, session IDs are shared across all
applications running under a common DNS host name. This means that even if you call Session
.Abandon in one application, the session identifier remains in the cookie and the identifier continues to
be used by all applications. However, in the application where Abandon was called, the session data is
deleted, so you end up with fresh session data the next time the user returns to that specific application.

For applications that use cookieless session identifiers, ASP.NET session state doesn’t reuse session
identifiers by default. Instead, if you call Abandon or access an application with an expired session iden-
tifier, session state detects this and issues a new session identifier. This behavior is intended to minimize
the potential for a user to accidentally or intentionally use a cookieless session identifier that was origi-
nally issued to a different user.

If you use in-process session state or the out-of-process session state server, be aware of the potential for
denial of service (DOS) attacks. DOS attacks can be launched against these types of session states in an
attempt to force an excessive amount of memory consumption on your servers. A simple mitigation is to
start using session state only after a user has logged in; prior to that point, if you never access session
state, ASP.NET does not allocate any space in memory for session state data. Also, attackers usually
want to remain anonymous and thus tend to avoid launching any of type of attack that requires an
identifiable account on the website.

Last, be aware of the potential for exposing session state data in SQL Server to other applications that share
the same back-end session state database. With the new support in ASP.NET 2.0 for custom databases, it is
easy to give each application its own session state database, thus preventing one application from snooping
around in the session data of another application.

307

Session State

10_596985 ch07.qxp 12/14/05 7:49 PM Page 307

10_596985 ch07.qxp 12/14/05 7:49 PM Page 308

Security for Pages
and Compilation

A good deal of writing a secure page depends on often discussed topics like input validation,
handling malicious input, preventing SQL injection attacks, and so on. However, ASP.NET pro-
vides some lesser known configurable security features that add a degree of extra security to your
pages. This chapter will review some security features for pages and compilation that have been
around since ASP.NET 1.1, as well as new security features in 2.0.

The topics that will be covered include:

❑ Request validation and viewstate protection

❑ Options for securing page compilation

❑ Protecting against fraudulent postbacks

❑ Site navigation security

Request Validation and Viewstate
Protection

Two well-known protection mechanisms for ASP.NET pages are request validation and viewstate
protection. Request validation has always been a bit of a mystery to developers, so in this section you
will see exactly how it works in ASP.NET 2.0. Viewstate protections have been around since ASP.NET
1.0, but there have been some new features added for viewstate protection in ASP.NET 2.0.

11_596985 ch08.qxp 12/14/05 7:49 PM Page 309

Request Validation
Request validation is meant to detect strings posted to a web server that may contain suspicious character
sequences. In general, request validation attempts to detect string information, which if subsequently
rendered on a page, could result in a successful cross-site scripting attack. Request validation is not a gen-
eral-purpose input validation mechanism. Constraining input to a valid set of values and preventing data
from containing SQL injection attacks are still tasks the developer must implement.

By default, request validation is turned on. You can change the request validation settings with either the
validateRequest attribute of the <pages /> element or the ValidateRequest attribute of the @Page
directive. In general, you should keep request validation turned on, and turn it off on selected pages
where you are encountering problems. The request validation feature checks the following Request
collections for suspicious strings:

❑ Form variables

❑ Query string variables

❑ The Cookie collection

The actual string checks are pretty straightforward. Request validation looks for character sequences
such as:

❑ < followed by an exclamation point — For example, <! is not allowed.

❑ < followed by the letters a through z — The theory is that a character sequence that starts out
looking like <s could potentially be the beginning of a <script> element for example. So in
general, the request validation feature pessimistically rejects these types of character sequences.

❑ & followed by a pound sign — So, the sequence “{” would be rejected. This prevents
encoding based attacks, where a person attempts to submit script code as a sequence of HTML-
encoded characters in the hope that it will subsequently be accidentally decoded prematurely.

At one point in the ASP.NET 2.0 development cycle, there were many more stringent checks added to
request validation. However, these checks were backed out because for every case that ASP.NET was
protecting against, you could come up with an innocuous reason for submitting the string in a form. For
example, at one point with ASP.NET 2.0 if you submitted text in a form that said “The onclick event
looks like ‘onclick=alert(‘hello world’)’” the server would reject it. Unfortunately, that level of parameter
checking ended up causing early developers to turn off request validation entirely in an attempt to get
their forms working. So instead, request validation was reverted to a simpler set of validation checks —
the idea being that it was better to have everyone benefit from some level of request validation rather
than forcing many developers to turn off the feature.

Even with the basic set of request validations, you can still run into problems if you are writing a control
like a rich text box. Many of the rich text editors allow users to type in basic HTML tags such as . Of
course if you try this with request validation turned on, the page request will promptly fail because
ASP.NET detects the < characters followed by a letter. If you implement rigorous input validation in
your application though, you could safely turn off request validation for this case.

However, a more secure approach to this problem is to pre-encode strings on the client using your own
custom mapping. For example, if you write a rich text editor that supports bold and italic characters, just
before the form is submitted you could convert all instances of to [html bold] and all instances of

310

Chapter 8

11_596985 ch08.qxp 12/14/05 7:49 PM Page 310

<i> to [html italic]. Then on the server side you would search for that string token and convert it
the correct HTML markup. Doing this is a bit laborious because you have to preprocess and postprocess
all of the strings that you care about. But it does have the benefit of allowing request validation to stay in
place. Also, this type of development work will make it very clear to you the specific subset of strings
that you want to allow in your application.

Securing viewstate
The ability to protect viewstate with a hash signature and encryption has been available since ASP.NET
1.0. You are probably very familiar with how it works by now, so rather than rehashing the basics, I will
cover what’s new in ASP.NET 2.0 as well as one dusty corner of viewstate security that some developers
don’t know about.

By default, all pages have their EnableViewStateMac property set to true. Combined with the default
<machineKey /> setting of SHA1 for the validation attribute, this means .aspx pages include a hash
value along with their viewstate data. The only new thing in this regard for ASP.NET 2.0 is the addition
of the AES algorithm to the <machineKey /> section. Although it looks a bit strange, you can now set
the validation attribute in ASP.NET 2.0 to SHA1, MD, 3DES, or AES. Because older versions of
ASP.NET overloaded the validation attribute for viewstate protection and forms authentication protec-
tion, you end up with options for specifying symmetric encryption algorithms in an attribute that theo-
retically references one-way hashing algorithms.

Forms authentication ignores the nonhashing options for the validation attribute — but the Page class
does make use of the encryption options. If you set either 3DES or AES in the validation attribute,
then assuming your .aspx pages have EnableViewStateMac set to true, ASP.NET will first hash the
page’s viewstate data using SHA1 (HMACSHA1 to be precise), and then it will encrypt both the view-
state and the hash value using either 3DES or AES. Unlike the companion decryption attribute in
<machineKey />, for the validation attribute you have to explicitly choose the type of encryption
algorithm you want to use. There is no capability for ASP.NET to auto-select a viewstate encryption
algorithm on your behalf.

There is an extra option that developers can use in their code to make viewstate more secure: the
ViewStateUserKey property. Although this property is not new in ASP.NET 2.0, many developers are
unaware of its existence. When viewstate is being hashed you can add a per-user identifier to the infor-
mation that is used when hashing viewstate. By default, when ASP.NET hashes the viewstate for the
page, it includes extra information derived from the .aspx page as part of the stream of data that is
being hashed. This mechanism ensures that the viewstate from one page can’t be posted to a different
page (excepting the new cross-page posting feature in ASP.NET 2.0).

This default protection though won’t prevent a malicious user from hijacking the viewstate data shown
in one user’s browser and then attempting to submit it in a separate browser. For example if a web
application automatically trusts all of its postback data and doesn’t perform any additional security
checks, it becomes possible for someone to steal the viewstate form variable and then replay it to trigger
actions on the server that a user may normally not have rights to. You have the option of injecting your
own user-specific information into the data stream that is being hashed by setting a value on the
ViewStateUserKey property. Because the intent of the property is to prevent user A from posting user
B’s viewstate back to the server, the logical choice for a ViewStateUserKey value is the value from
User.Identity.Name.

311

Security for Pages and Compilation

11_596985 ch08.qxp 12/14/05 7:49 PM Page 311

protected void Page_Init(object sender, EventArgs e)
{

this.ViewStateUserKey = User.Identity.Name;
}

With this code, even if a malicious user attempts to submit hijacked viewstate information, the postback
will fail because the viewstate hash is now derived in part from the user’s name.

You have to set the ViewStateUserKey property early on in the page lifecycle during the Init event.
Because the property value affects the deserialization and validation of viewstate, ASP.NET has to have
the correct ViewStateUserKey value before it attempts to process the viewstate. Setting
ViewStateUserKey during a page’s Load event is far too late because by that point ASP.NET has
already deserialized viewstate.

ASP.NET 2.0 introduced one new option for determining when viewstate encryption occurs: a new
property on the Page class called ViewStateEncryptionMode. The possible values for this property are
Auto, Never and Always, with the default being Auto. You can set this value globally in configuration
using the viewStateEncryptionMode attribute of the <pages /> configuration section. You can also
customize the value on a per page basis using the ViewStateEncryptionMode attribute of the @Page
directive. Although you can set the property at runtime, either the configuration setting or the page
directive are the normal approaches for setting this value. If you attempt to programmatically set
ViewStateEncryptionMode, you will need to do so in an override of the FrameworkInitialize
method on the page class. This is a new “ultra-early” initialization method where you can set various
page properties that really can’t be set during the normal page initialization phase.

During viewstate serialization, the Page class and the ObjectStateFormatter class look at the
ViewStateEncryptionMode property before looking at the setting for EnableViewStateMac. Clearly,
if the property setting is Never, nothing else happens and the ObjectStateFormatter follows the
ASP.NET 1.1 behavior for hashing and encrypting viewstate. However if ViewStateEncryptionMode is
set to Always, regardless of the page’s current setting for EnableViewStateMac, ASP.NET will always
encrypt viewstate. Furthermore, this encryption will use the encryption algorithm determined by the
decryption attribute on <machineKey />. So by default, this means with a setting of Always, your
page’s viewstate will be encrypted using AES. Two things to keep in mind if you set
ViewStateEncryptionMode to Always:

❑ The encryption options in the validation attribute are ignored. Forcing viewstate encryption
means that the selection of the encryption algorithm follows the rules for forms authentication.

❑ The other validation options in the validation attribute are also ignored. When
ViewStateEncryptionMode forces viewstate encryption, only encryption occurs. No hashing
of the viewstate data stream occurs. However, if you set a value for ViewStateUserKey, it will
be added to the encrypted data stream, so you still gain the extra viewstate protection of this
property.

The last (and the default) option for ViewStateEncryptionMode is Auto. The Auto setting is intended for
use by controls in conjunction with the new Page method RegisterRequiresViewStateEncryption.
Because the default page setting is Auto, various controls in the Framework, or third-party controls, can
proactively turn on viewstate encryption if the controls “know” that they deal with sensitive data. The idea
behind the Auto setting is that individual control developers know the guts of their code much better than
the developers using them do. Rather than forcing developers to slog through lengthy API documents to
determine whether sensitive data is being processed by a control, a control developer can just make that
determination up front.

312

Chapter 8

11_596985 ch08.qxp 12/14/05 7:49 PM Page 312

If a control calls Page.RegisterRequiresViewStateEncryption and the current
ViewStateEncryptionMode is Auto, regardless of the EnableViewStateMac setting, the page’s view-
state will end up being encrypted. Because the default setting of EnableViewStateMac is true, but the
validation attribute in <machineKey /> defaults to SHA1, under normal conditions all of your page’s
viewstate is for all practical purposes being transmitted in the clear. Even though the hidden __VIEWSTATE
is base64 encoded, with the default behavior there is nothing preventing a user from un-encoding the field
and looking at the raw data. The ViewStateEncryptionMode behavior allows a control to increase the
security of the page’s viewstate by forcing this data to be encrypted, even when the page developer may
not realize that sensitive information is being stored in viewstate.

Within ASP.NET, the following controls (all of them are data controls) may call
RegisterRequiresViewStateEncryption:

❑ FormView— If there are any key values in the DataKeyNames property, FormView forces view-
state encryption.

❑ DetailsView— If there are any key values in the DataKeyNames property, the DetailsView
forces viewstate encryption.

❑ GridView— If there are any key values in the DataKeyNames property, and the control is not
auto-generating the columns used in the GridView control, then GridView forces viewstate
encryption.

❑ DataList— If there is a key value stored in the DataKeyField property then the DataList
forces viewstate encryption.

As you can see these are all new data controls in ASP.NET 2.0. You should keep this new behavior in
mind if you port your old ASP.NET 1.1 data control logic over to use the new ASP.NET 2.0 data controls.

If you choose to store the primary key values in these controls (and for some control scenarios you need
to do this), you will end up triggering viewstate encryption. This isn’t a “bad” thing, because chances
are that you don’t want the outside world looking at your database primary keys through reverse engi-
neering client-side viewstate. However if your application works perfectly in development, but fails
when you push it out to your web farm, the ViewStateEncryptionMode behavior might be causing the
problem. Because viewstate encryption uses the encryption key material from <machineKey />, and
<machineKey /> by default sets the decryption key to AutoGenerate, IsolateApps, your data pages
can fail in a multiserver web farm. As with forms authentication there is a simple solution: if you use
any of these four controls and you run in a web farm, explicitly set the decryptionKey attribute in
<machineKey /> and synchronize the value across all of your web servers.

One thing to keep in mind with ViewStateEncryptionMode is that you are not always guaranteed that
encryption will occur. If the page has explicitly turned off ViewStateEncryptionMode by setting it to
Never, regardless of whether a control requests view state encryption, the page is not going to force
encryption. In this case, only the protections specified in the validation attribute of <machineKey />
will apply. The interaction between ViewStateEncryptionMode and a control results in a more secure
page only if the mode is set to Auto and if no other steps have been taken to turn off viewstate encryp-
tion for the page.

313

Security for Pages and Compilation

11_596985 ch08.qxp 12/14/05 7:49 PM Page 313

Page Compilation
The new dynamic page compilation model in ASP.NET 2.0 does away with the monolithic code-behind
assembly from ASP.NET 1.1. Instead, developers can just author their page markup and code-behind
pages, and then deploy all of the content to a web server. Although this model of XCOPY everything
works well inside of a corporate firewall, for Internet-facing applications administrators understandably
may not want the .vb or .cs code-behind files existing on their production servers. To address this
issue, ASP.NET 2.0 introduces the concept of precompilation. A precompiled website is one where
ASP.NET has already converted the page code and markup into multiple assemblies. The output from
precompilation are just a series of .aspx/.ascx files along with compiled code in multiple assemblies
sitting in the /bin directory.

With a precompiled site, the page and user control files that are left in an application’s folder structure
can optionally include the original markup because there are two modes of precompilation: updatable
and non-updatable. If you use updatable precompilation the markup is preserved in the .aspx and .asx
files. Non-updatedable precompilation still generates .aspx files, but these files are just empty stubs. In
either case, you can use precompiled sites to ensure that your assemblies are deployed to a production
server without the need to push any page code.

You can invoke precompilation in two ways. The easiest is to just select Publish Website from the Build
menu option in Visual Studio 2005. (Note: this option does not exist in the Express editions of Visual
Studio 2005.) You can also invoke precompilation using the aspnet_compiler.exe program that is
located in the framework installation directory. The command-line tool is useful if you have an auto-
mated build process that you are currently using for building websites. When you move to ASP.NET 2.0,
you can update your build process to invoke the aspnet_compiler tool instead. A command-line invoca-
tion looks something like this:

aspnet_compiler -m /LM/W3SVC/1/Chapter8/PageSecurity d:\inetpub\wwwroot\somedir

You can also reference your application code using a physical path or a virtual path. The preceding
example uses an IIS metabase path to reference the specific application that should be compiled.

Some developers in ASP.NET 1.1 took advantage of the code-behind assembly by signing it. Then on
their web servers, they had Framework CAS policies that only allowed signed assemblies with a specific
public key to run, or that restricted permissions based on specific public keys. If you want to accomplish
the same thing in ASP.NET 2.0, you must use precompilation. Both the Visual Studio 2005 UI and the
command-line compiler give you the option to sign your precompiled assemblies. You will need to gen-
erate a .snk file with the key material ahead of time. After you have generated the public/private key-
pair you can then use either Visual Studio 2005 or the command-line compiler to generate and sign the
precompiled assemblies. In Figure 8-1, you can see an example of precompiling a website and signing
the precompiled assemblies.

314

Chapter 8

11_596985 ch08.qxp 12/14/05 7:49 PM Page 314

Figure 8-1

Notice that updatable precompilation wasn’t selected. This ensures that all of the code in the site is
compiled ahead of time and that no dynamic generation of page classes will occur at runtime. This also
means that all of your application code, including any inline code on an .aspx page or .ascx control
will be stripped out and compiled into precompiled assemblies. Also note that the Mark assemblies with
APTCA option is checked. This is necessary if you want to run a signed precompiled site in anything
less than Full trust.

315

Security for Pages and Compilation

11_596985 ch08.qxp 12/14/05 7:49 PM Page 315

In Figure 8-2, you can see the result of signing precompiled output in ildasm.

Figure 8-2

The precompiled assembly called App_Web_ho0y5wqc.dll now has a public key embedded in its manifest.

With the signed assembly, you can use the .NET Framework Configuration MMC (Look for
mscorcfg.msc in the directory where you installed the Framework SDK. The tool is no longer installed
as part of the Framework itself) to set up a code group with a public key based membership condition. If
precompilation outputs multiple assemblies (which will normally be the case), you can just choose one
of the assemblies for purposes of setting up the public key based membership condition. Figure 8-3
shows the step in the wizard that walks you through creating a new code group with a strong-name
membership condition.

In this wizard step, the Strong Name condition has been chosen. In the File dialog box, the precompiled
assembly has been selected so that the wizard will extract the public key token from it. Once the token is
extracted, the wizard enables you to choose a permission set to associate with assemblies that match the
membership condition. Although ASP.NET trust policy files are really the de rigueur approach for granting
permissions to web applications, you may be in an environment where permissions are also locked down
using the Framework’s CAS policies. After you set up a new code group, you can use the .NET Framework
Configuration MMC to associate a custom permission set for your precompiled ASP.NET sites.

316

Chapter 8

11_596985 ch08.qxp 12/14/05 7:49 PM Page 316

Figure 8-3

Although it is not new to ASP.NET 2.0, you can change the location of the temporary files used by
ASP.NET at runtime. Normally, any type of temporary per-application file storage for ASP.NET is placed
somewhere in the following directory:

%windir%\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\

One reason you might want to change the location is that you install the framework onto your system
drive, but you want the auto-generated compiler output, spooled data from large requests, and so on to
be located on a separate drive. If you host a large number of applications, it is possible to have a very
large file structure within the Temporary ASP.NET Files location, in which case the system drive may not
be the right place for them.

From a security perspective, the fact that many different applications are sharing the same general direc-
tory structure can also be troublesome. Even though there is no way for code in a partially trusted web
application to reach out into this directory structure, many ASP.NET sites still run in Full trust. A mali-
cious developer could take advantage of a fully trusted application and write code to open and read the
temporary files in this directory structure from other applications. As a side note, this is another reason
why running in Medium trust for untrusted hosting environments is so important; this attack vector
simply isn’t available in Medium trust.

317

Security for Pages and Compilation

11_596985 ch08.qxp 12/14/05 7:49 PM Page 317

If you want you can change the location used by ASP.NET for storing its temporary files with the
tempDirectory attribute of the <compilation /> configuration section. For example, the following
configuration section remaps the temporary file location to a location on the D drive.

<compilation tempDirectory=”D:\Chapter 8\NewTempDirectory” />

Of course, just changing the location of the temporary directory is not sufficient. You also need to ensure
that the process account, or the application impersonation account if you are using application imper-
sonation, has the following directory rights:

❑ Read/Read & Execute/List Folder Contents

❑ Write

❑ Modify

❑ Special Permission: Delete Subfolders and Files

❑ Special Permission: Change Permissions

These are the same set of rights granted to accounts on the Temporary ASP.NET Files directory if you
use the aspnet_regiis -ga option in ASP.NET 2.0 to configure nondefault process accounts. After you
configure the NTFS ACLs appropriately, you will see that your web application uses the new
tempDirectory location for all temporary ASP.NET files.

Fraudulent Postbacks
ASP.NET relies heavily upon postbacks and on the client-side postback logic that the runtime emits.
With ASP.NET 1.1, there is a potential security issue with postbacks because the client-side JavaScript
that triggers postbacks is easy to modify. This security issue is referred to as the fraudulent postback
problem. To illustrate the problem, you can construct a simple page with some ASP.NET controls that
use the client-side postback logic.

<form id=”form1” runat=”server”>
<div>

<asp:LinkButton
ID=”btnSensitive” runat=”server” Visible=false
OnClick=”btnSensitive_Click”>Click Me!</asp:LinkButton>

Trigger fraudulent postback

<asp:LinkButton ID=”LinkButton1” runat=”server”>

Ignore Me!</asp:LinkButton></div>

<script type=”text/javascript”>
function fraudulentPostback()
{

var theForm = document.forms[‘form1’];
theForm.__EVENTTARGET.value = ‘btnSensitive’;

318

Chapter 8

11_596985 ch08.qxp 12/14/05 7:49 PM Page 318

theForm.__EVENTARGUMENT.value = ‘’;
theForm.submit();

}
</script>

</form>

This ASP.NET page has two LinkButton controls: I chose that control type because LinkButton(s) emit
the __doPostBack function and the supporting form variables used by ASP.NET for submitting post-
backs. Note that the same issue can also be triggered with less complex server-side controls such as the
Button control that don’t rely on the __doPostBack method. In the sample page, the first LinkButton
has its Visible property set to false. Many developers use control visibility or the enabled/disabled
state of a control as a kind of surrogate client-side security mechanism. For instance, you might inten-
tionally hide a set of update controls on a page if you know the current user has only view rights to a
piece of data.

The reason for the second LinkButton on the page is simply to force the rendering of the hidden
__EVENTTARGET and __EVENTARGUMENT fields for this example. Most moderately complex
ASP.NET pages will have multiple controls on them that can trigger postbacks, so even if one set of con-
trols is disabled or hidden, the other controls will still trigger the rendering of these hidden fields. The
sample page has an <a> tag that points at a JavaScript function called fraudulentPostback. The code
in the function contains a copy of the JavaScript from the __doPostBack function — with the one modi-
fication being that fraudulentPostback hardcodes the event target as the btnSensitive control. In other
words, the fraudulentPostback function is faking the postback process that would occur if
btnSensitive were visible on the page, and the browser user clicked it.

The server code for this page is very basic: the click event for the hidden link button simply writes
some text:

protected void btnSensitive_Click(object sender, EventArgs e)
{

Response.Write(“Sensitive operation has been carried out.”);
}

The problem in a real application, of course, occurs when the click event for a hidden or disabled control
actually carries out a sensitive operation based solely on the assumption that the postback data can be
trusted.

When you run the page in the browser, the HTML for the form includes only the following control tags:

<form name=”form1” method=”post” action=”FraudulentPostback.aspx” id=”form1”>
...
<input type=”hidden” name=”__EVENTTARGET” id=”__EVENTTARGET” value=”” />
<input type=”hidden” name=”__EVENTARGUMENT” id=”__EVENTARGUMENT” value=”” />
...
Trigger fraudulent postback

Ignore Me!
...

319

Security for Pages and Compilation

11_596985 ch08.qxp 12/14/05 7:49 PM Page 319

Notice that the rendered HTML does not have an <a> tag for the btnSensitive LinkButton control. At
this point though, you can still click on the LinkButton1 link button. ASP.NET is fooled into thinking
that the browser user actually clicked the nonexistent btnSensitive link button, and as a result the code
in btnSensitive_Click runs. In a nutshell, this entire process is the crux of the fraudulent postback
problem. As long as someone can load a page in a browser and have it run JavaScript, it is possible to
run JavaScript code that sends postback data to ASP.NET for controls and actions that don’t actually
exist on the rendered HTML page.

The first line of defense against this problem is simply to use defense-in-depth coding techniques in
your web application. A security-conscious developer would not trust the postback data in a server-side
event. Instead of assuming that just because a server-side event has been fired that the business logic
within it is safe to run, you would perform server-side authorization checks. For example, you could
perform a role-based authorization check in the click event that confirms the current user is in the
appropriate role in before it carries out the requested sensitive work. Alternatively, you could perform
the same type of security check farther down in your middle tier.

Unfortunately, not all developers are diligent about building this level of security into their applications.
If an application relies solely on the presentation tier doing the right thing, then it is rather easy to forge
postbacks as you just saw. ASP.NET 2.0 introduces a new layer of protection called event validation that
specifically addresses the problem of fraudulent postbacks.

By default, event validation is turned on in ASP.NET 2.0. So, if you were to take the code shown earlier
and run it on ASP.NET 2.0, instead of the btnSensitive_Click event running, you get an exception
and stack trace like the following:

[ArgumentException: Invalid postback or callback argument. ...]
System.Web.UI.ClientScriptManager.ValidateEvent(String uniqueId, String argument)
System.Web.UI.Control.ValidateEvent(String uniqueID, String eventArgument)
System.Web.UI.WebControls.LinkButton.RaisePostBackEvent(String eventArgument)
...

Here, the LinkButton control makes use of the new event validation feature in ASP.NET 2.0. When
the postback event is passed to the LinkButton, it in turn uses the ClientScriptManager object to
validate that the current event is actually valid. Because the LinkButton control is actually not visible
on the page, clearly the postback event could not have been triggered by it, and as a result the exception
occurs.

Event validation can be controlled globally in an application with the enableEventValidation attribute
in the <pages /> configuration section. You can also turn validation on or off on a per-page basis with the
EnableEventValidation attribute on the @Page directive. There is a property on the Page class of the
same name that you can set as well, although you can only set the EnableEventValidation property
during FrameworkInitialize. By default, event validation is turned on for all pages in ASP.NET 2.0.

When event validation is enabled, and a control that makes use of event validation is on the page, the
following general steps occur when the page runs:

1. When the control is creating postback event references for a page, it also calls the
RegisterForEventValidation method on the ClientScriptManager object associated with
the page. Internally the ClientScriptManager creates and stores a hash value of the data that is
passed to the RegisterForEventValidation method. A control can choose to hash just a string

320

Chapter 8

11_596985 ch08.qxp 12/14/05 7:49 PM Page 320

that uniquely identifies the control, a combination of both the control’s identifier and the event
arguments, or a hash can be generated from an instance of PostBackOptions. For example, the
Button control generates a validation hash using its PostBackOptions, while the GridView
hashes its UniqueID and the event arguments for the postback reference being created.

2. The ClientScriptManager then takes all of the hash values that it created, and it serializes
them into a hidden input field called __EVENTVALIDATION. The hidden input field is protected
in the same way that the hidden __VIEWSTATE field is protected. By default the serialized repre-
sentation of the event validation hash codes is itself hashed using the <machineKey /> informa-
tion, and this value is included in the __EVENTVALIDATION field. If encryption has been
enabled (or was forced on due to the new ViewStateEncryptionMode settings), the information
will be encrypted.

3. When a postback subsequently occurs, the postback is raised to a specific control on the page.
For example, if a control implements IPostBackEventHandler, then if an event reference
for that control triggered the event, ASP.NET will call the control’s RaisePostBackEvent
implementation. At that point, it is the control’s responsibility to call ClientScriptManager
.ValidateEvent, passing the same set of parameters to ValidateEvent that were originally
passed in to the RegisterEventForValidation method. If you are authoring a control
that registers for event validation with PostBackOptions, you will need to pass the
PostBackOptions.TargetControl.UniqueID and PostBackOptions.Argument properties
to ValidateEvent because there is no ValidateEvent overload that accepts an instance of
PostBackOptions.

4. The ClientScriptManager delay loads the data in the __EVENTVALIDATION field. If no
controls on the page ever call ValidateEvent, then the ClientScriptManager does not need
to deserialize the event validation information, thus saving processing overhead. Only when
ValiateEvent is called for the first time during a postback will the ClientScriptManager
derserialize the event validation information.

5. Inside the ValidateEvent method, the ClientScriptManager looks at the string identifier
and optional arguments that were passed to it. It hashes these values and then checks in the
deserialized event validation information to see if the same hash values exist. If a match is
found, then the postback event and its associated arguments are valid (that is, the postback
event and its arguments were originally rendered on the page). If the hash of the information
that the control passed to ValidateEvent cannot be found, this is an indication that a forged
postback has occurred. In this case, the ClientScriptManager throws the exception that you
saw earlier.

On one hand, the net result of all of this work is that if a control registers for event validation, and the
set of event information that was registered arrives at the server during a subsequent postback, then
the postback will be considered valid. On the other hand, if event data posted back to ASP.NET comes
from an event reference that was never rendered, or a control that was never rendered, when the
ClientScriptManager attempts to find a previous registration for the event or control it fails and
throws an exception.

One thing to note about event validation is that it is not an ironclad guarantee that a postback is valid.
Event validation is only as strong as its weakest link — specifically the hidden __EVENTVALIDATION
field. Just as viewstate from one user can potentially be hijacked and submitted by a second user, the
same attack vector exists for the event validation field. However, because the event validation field is
protected in the same way as viewstate, you can set a ViewStateUserKey that will make the event vali-
dation field unique to each user.

321

Security for Pages and Compilation

11_596985 ch08.qxp 12/14/05 7:49 PM Page 321

Many of the controls in ASP.NET 2.0 (both new and old) make use of event validation. A partial list of
the ASP.NET controls that make use of event validation is:

❑ Button

❑ CatalogZoneBase

❑ Checkbox

❑ DetailsView

❑ FormView

❑ GridView

❑ HiddenField

❑ ImageButton

❑ LinkButton

❑ ListBox

❑ Menu

❑ RadioButton

❑ TextBox

❑ TreeView

❑ WebPartZoneBase

Because the ClientScriptManager APIs for event validation are all public, if you author custom con-
trols (both web controls and user controls), you can also make use of event validation. Just follow the
general registration flow describer earlier. Register your control’s event data for validation when your
control is setting up postback event references. In the methods where your control processes postback
events, first call ValidateEvent to ensure that the postback is valid prior to carrying out the rest of
your control’s event processing.

Also note that even though this discussion has been about event validation for postbacks, the event vali-
dation mechanism in ASP.NET 2.0 also works for callbacks. In fact, ASP.NET controls that support call-
backs like the TreeView control make use of event validation for both postbacks and callbacks.

Site Navigation Security
ASP.NET 2.0 includes a new set of navigation controls such as Menu and TreeView that work with
navigation data. One source of this navigation data is the new Site Navigation feature, which makes use
of SiteMapProvider(s). There is one concrete implementation of a SiteMapProvider included in
ASP.NET called the XmlSiteMapProvider. Its purpose is to parse Xml in a .sitemap file and return
this information as a linked set of SiteMapNode instances that controls like the Menu control can then
render. The interesting aspect of the Site Navigation feature from a security perspective is that you will
likely define navigation data in a .sitemap file that closely mirrors the navigation hierarchy of your
site. A potential security mismatch can occur if your navigation UI renders links to pages that normally
would be inaccessible to a user. Even though an unauthorized user won’t be able to actually run such
pages, you may not want to even display inaccessible links in the first place.

322

Chapter 8

11_596985 ch08.qxp 12/14/05 7:49 PM Page 322

The base SiteMapProvider class has support for a feature called security trimming. If security trim-
ming is turned on for a SiteMapProvider, prior to returning a SiteMapNode from a provider method,
the SiteMapProvider first checks to see if the URL represented by the SiteMapNode is actually accessi-
ble to the current user. You enable security trimming with the securityTrimmingEnabled attribute as
shown in the following sample provider definition:

<siteMap>
<providers>
<clear />
<add name=”AspNetXmlSiteMapProvider”

type=”System.Web.XmlSiteMapProvider, ...”
siteMapFile=”web.sitemap”
securityTrimmingEnabled=”true”

/>
</providers>

</siteMap>

When security trimming is enabled, the XmlSiteMapProvider, its immediate base class
(StaticSiteMapProvider) and the base SiteMapProvider class all call into SiteMapProvider
.IsAccesibleToUser to determine whether a node is considered accessible. If the URL is not accessible
by the current user, then the corresponding SiteMapNode is skipped and is not returned to the user. In
some cases, this means a null value is returned to the calling code; in other cases, it means that the node
is not included in a SiteMapNodeCollection returned to the user, and in some other cases, it means
that node traversal of site map data is halted when an inaccessible node is reached. If you author a cus-
tom SiteMapProvider, you can make use of IsAccessibleToUser as well to perform authorization
checks for your own node instances.

By default, security trimming is not turned on for the default XmlSiteMapProvider configured in the
<sitemap /> configuration element. This means that even if you have authorization rules setup in
web.config for your site, your navigation controls will render links to all of the URLs defined in a
sitemap even if the current user cannot access them. Even though it would technically be more secure to
have turned security trimming on, developers would probably see nodes appearing and disappearing
randomly each time they edited the authorization rules in web.config. Without understanding that Site
Navigation performs security trimming this would lead folks to think the navigation feature was broken.

The logic inside of the IsAccessibleToUser method uses the authorization logic contained in both
UrlAuthorizationModule and FileAuthorizationModule. It also works with optional role informa-
tion defined using the roles attribute of a sitemap node in a .sitemap file. Because the authorization rules
in the <authorization /> configuration element can apply to only pages inside of a web application,
SiteMapNode class allows you to define additional role information about a specific URL. For example, if
your .sitemap file had a node definition that pointed at www.microsoft.com, there is no way for URL
authorization to decide whether a user is authorized to this URL because it lies outside the scope of your
web application. To deal with these types of URLs, or to just define additional role information for an
application’s URLs, you can put a semicolon or comma delimited set of roles in the roles attribute of a
<siteMapNode /> element in a .sitemap file.

<siteMapNode url=”http://www.microsoft.com” title=”External Link”
roles=”Regular Users, Power Users” />

Another reason that the Site Navigation feature allows for defining roles on a <siteMapNode /> is that
not all nodes represent navigable content. For example, if your navigation structure includes menu
headers, these headers are only intended for organizing the display of navigation UI.

323

Security for Pages and Compilation

11_596985 ch08.qxp 12/14/05 7:49 PM Page 323

<siteMapNode title=”Administrative Pages” roles=”Adminstrator” >
<siteMapNode url=”ManageUsers.aspx” title=”Manage Users”

roles=”Adminstrator”/>
<siteMapNode url=”ManageRoles.aspx” title=”Manage Roles”

roles=”Adminstrator”/>
</siteMapNode>

In this example, the first node is just being used to create a menu entry that a user can hover over.
However, the entry is itself not navigable; instead, you would select either Manage Users or Manage
Roles in a pop-up menu to navigate to a specific page. Because no URL is associated with the first node,
the only way to have SiteMapProvider determine if a user should even see the node in navigation UI
is by attributing it with the roles attribute. If you write a custom provider that loads its navigation data
from somewhere else, you can also supply role information for this type of node by supplying a
collection of role strings in the SiteMapNode constructor.

Also note that the role information is repeated in the two child nodes for managing users and roles. The
Site Navigation feature does not have the concept of role inheritance. So, even though a role definition
was added to the Administrative Pages node, you still need to mirror the role information in all of the
child nodes. If you don’t do this, a piece of code that accesses one of the child nodes directly with a call
to FindSiteMapNode would succeed, while node traversal starting at the parent node would fail. As a
result, if you don’t copy the role definitions to the children, you end up with inconsistent results
returned from the provider, depending on what methods you are calling.

This behavior means that the IsAccessibleToUser method potentially has three different sets of autho-
rization information that it can reference when deciding whether a SiteMapNode’s URL is accessible to
the current user. IsAccessibleToUser goes through the following evaluation sequence to determine
whether a user is authorized to the URL of a SiteMapNode:

1. If the roles attribute was defined in the .sitemap file for a <siteMapNode /> element, then
the provider calls HttpContext.Current.User.IsInRole for each and every role in the
roles attribute. If the current user is in at least one of the defined roles, the provider will return
the SiteMapNode. This means that the roles attribute of a <siteMapNode /> expands access
beyond the authorization rules defined in an <authorization /> tag. As long as there is at
least one match between the current user’s roles and the roles in the roles attribute,
SiteMapProvider considers a SiteMapNode to be visible to the user.

2. If the roles attribute is set to * (i.e. roles=”*”), this means all users are allowed to see the
node, and thus the provider returns the node.

3. If the site map node has no URL, and no match was found in the roles attribute for the cur-
rent’s user’s roles, then the current user is considered to not have rights to the node. Depending
on the provider method that was called this means either a null value is returned, or the
provider skips the node and does not include it in the results. This behavior is important to keep
in mind if your sitemap contains spacer or header nodes such as the Administrative Pages node
shown earlier. Without a roles attribute defining at least one piece of role information on these
types of nodes, all users will not have rights to view the node when security trimming is
enabled.

4. If no match is found in the roles attribute or the roles attribute does not exist, and the node
has a URL, the provider will call into FileAuthorizationModule if Windows authentication is
enabled for the website. With Windows authentication enabled, there will be a
WindowsIdentity on the context, and as a result the provider can call an internal method on
the FileAuthorizationModule that performs authorization checks against the physical file

324

Chapter 8

11_596985 ch08.qxp 12/14/05 7:49 PM Page 324

associated with the SiteMapNode. If the authorization check succeeds, then the SiteMapNode is
returned to the caller.

5. If the file authorization check fails, or if Windows authentication is not enabled on the site, the
provider calls an internal method on the UrlAuthorizationModule, passing it the URL from
the SiteMapNode. This authorization check mirrors the behavior you get from the <autho-
rization /> section in your web.config. If the check succeeds, then the SiteMapNode is
returned to the caller.

6. If all of the previous checks fail, the user is considered to not have the rights to view the
SiteMapNode, and either a null value will be returned by the provider or the provider will stop
walking through SiteMapNode(s). On one hand, for example, if FindSiteMapNode was called,
a null would be returned. On the other hand, if GetChildNodes was called and the current
user did not have access to some of the children of the specified node, then those child nodes
would not be included in the returned SiteMapNodeCollection.

One point of confusion about the security trimming behavior that some developers run into is that they
expect the roles attribute to be the exclusive definition of authorization information for their nodes.
You can end up being surprised when you see nodes still being rendered in your UI even though your
roles attributes would seem to indicate that a user should not be seeing a node. What is happening in
this case is that the provider falls through the roles attribute check and continues to the file and URL
authorization checks. And then one of these two authorization checks succeed.

One side effect of all of this processing is that the performance of iterating through a sitemap with secu-
rity trimming turned on is substantially less than when it is turned off. Because file authorization and
URL authorization were really intended for authorization checks for single page, they tend to be rather
inefficient when a feature like Site Navigation comes along and starts asking for hundreds of authoriza-
tion checks on a single page request. You can run a sitemap with 150–300 nodes in it with security trim-
ming turned on, and other than increased CPU utilization you shouldn’t see any effect on your
application performance. However, if you plan to create a sitemap with thousands of nodes in it, the
default security trimming behavior will probably be too expensive for your application.

Another issue you might run into when you turn on security trimming is that all of your navigation UI
may suddenly disappear, depending on the kind of navigation structure you have in your .sitemap.
If your structure has a root node that you don’t ever intend to display (that is, you set up your
SiteMapDataSource to skip this node), you still need to put a roles=”*” attribute in the root node as
shown here:

<?xml version=”1.0” encoding=”utf-8” ?>
<siteMap xmlns=”http://schemas.microsoft.com/AspNet/SiteMap-File-1.0” >

<siteMapNode title=”hidden root” roles=”*”>
<siteMapNode title=”Administrator Pages” roles=”Administrator”>
<siteMapNode url=”ManageUsers.aspx” title=”Manage Users”

roles=”Administrator” />
<siteMapNode url=”ManageRoles.aspx” title=”Manage Roles”

roles=”Administrator” />
</siteMapNode>
<siteMapNode title=”Regular Pages” roles=”*”>
<siteMapNode url=”http://www.microsoft.com” title=”External link”

roles=”*” />
<siteMapNode url=”Default.aspx” title=”Home Page” roles=”*” />

</siteMapNode>
</siteMapNode>

</siteMap>

325

Security for Pages and Compilation

11_596985 ch08.qxp 12/14/05 7:49 PM Page 325

Without the bolded “roles” definition, any attempt to render the full sitemap will result in no nodes
being returned. Because the root node has no URL, the provider only has the roles attribute to go
against for authorization information. As a result, if you leave out the roles attribute, the provider will
think that no one is authorized to that node, and node traversal through the rest of the sitemap will stop.

If you want the XmlSiteMapProvider that ships with ASP.NET 2.0 to rely only on the information
contained in the roles attribute, you can derive from the provider and implement custom logic in an
override of the IsAccessibleToUser method.

public class CustomAuthorization : XmlSiteMapProvider
{

public override bool IsAccessibleToUser(HttpContext context, SiteMapNode node)
{

if (node == null)
{

throw new ArgumentNullException(“You must specify a node.”);
}

if (context == null)
{

throw new ArgumentNullException(“The supplied context cannot be null”);
}

if (!SecurityTrimmingEnabled)
{

return true;
}

if (node.Roles != null && node.Roles.Count > 0)
{

foreach (string role in node.Roles)
{

// Grant access if one of the roles is a “*”.
if (String.Equals(role, “*”,

StringComparison.InvariantCultureIgnoreCase))
{

return true;
}
else if (context.User != null && context.User.IsInRole(role))
{

return true;
}

}
}
//If you make it this far, the user is not authorized
return false;

}
}

This code mirrors the logic inside of SiteMapProvider.IsAccessibleToUser— but instead of
attempting other checks at the end of the method, this custom provider looks only at the information
in the roles attribute. If you use this custom provider in your site, you will see that now the roles
attribute is the only thing controlling whether a SiteMapNode is returned to calling code. A nice

326

Chapter 8

11_596985 ch08.qxp 12/14/05 7:49 PM Page 326

performance benefit of this approach is that bypassing the file and URL authorization checks substan-
tially increases the performance of security trimming. With the preceding code you could realistically
accommodate a 1000 node sitemap.

This custom code brings up a very important security point though. Don’t be fooled into thinking that
security trimming with the previous custom code makes your site secure. The only thing the custom
code does is to give you the ability to precisely control authorization of your sitemap information inde-
pendently of the authorization rules you have defined either in web.config or through NTFS ACLs. Just
because Site Navigation now hides nodes based exclusively on the sitemap’s role information doesn’t
mean that your pages are secure. A user who knows the correct URL for a page can always attempt to
access it by typing it into a browser. As a result, if you use an approach like the custom provider you
must always ensure that you have still correctly secured your pages and directories with URL authoriza-
tion and file authorization.

Summary
Since ASP.NET 1.0, page developers have benefited from the ability to hash and encrypt viewstate.
Although not widely known, you could also make viewstate information unique to a specific user with
the ViewStateUserKey property. With the introduction of the new viewstate encryption mode feature
in ASP.NET 2.0, control developers now have the option of automatically turning on viewstate encryp-
tion when they know their controls store potentially sensitive data in viewstate.

When data is submitted to an ASP.NET page, all input should initially be considered untrusted.
Although the majority of the work involved in scrubbing input data lies with the developer, ASP.NET
does have some protections that work on your behalf. Since ASP.NET 1.1, the runtime validates form
data, query-string values and cookie values for suspicious string sequences. Although this type of check
is not exhaustive, it does cover the most likely forms of malicious input. ASP.NET 2.0 introduces new
logic to protect against fraudulent postbacks. Because postbacks can be easily triggered with a few lines
of JavaScript, it is possible to forge postback data to controls and events that were not rendered on the
page. By default, ASP.NET 2.0 now checks for this situation and will not trigger server-side events for
nonvisible or disabled controls and events that were never rendered on the client.

For more secure sites, the compilation model in ASP.NET whereby dynamically compiled pages are all
placed within the common Temporary ASP.NET Files directory may not be desirable. You can change the
location of this temporary folder on a per-application basis using the <compilation /> element. Secure
sites that signed their code-behind assemblies in ASP.NET 1.1 for use with custom CAS policies can still
follow a similar approach in ASP.NET 2.0. The precompilation feature in ASP.NET 2.0 allows you to
precreate all of the assemblies needed for a site and to then sign these assemblies.

The new Site Navigation feature in ASP.NET 2.0 makes it possible to quickly and easily create rich naviga-
tion UI. However the navigation UI can represent an alternate representation of an application’s directory
and page structure, which can lead to two parallel authorization approaches being used. Because it can be
difficult to keep authorization rules for UI elements in sync with the authorization results enforced for
individual pages, you can enable the security trimming feature for Site Navigation providers. When secu-
rity trimming is turned on, a SiteMapProvider will enforce an application’s file authorization rules and
URL authorization rules against the node data that is returned from the provider.

327

Security for Pages and Compilation

11_596985 ch08.qxp 12/14/05 7:49 PM Page 327

11_596985 ch08.qxp 12/14/05 7:49 PM Page 328

The Provider Model

Many of the new features in ASP.NET 2.0, including the Membership and Role Manager features,
are built using the provider model. The provider model is not just an architectural model limited
to ASP.NET 2.0 features; the base classes are available for you to build your own provider-based
features.

This chapter covers the theory and intent behind the provider model so that you have a good idea of
the patterns used by provider-based features. You will be introduced to the base provider classes, the
services they provide, and the general assumptions around the ASP.NET provider model. Last, you
will see some examples of how you can create your own custom feature using the provider model.

This chapter will cover the following topics:

❑ Why have providers?

❑ Patterns found in the Provider model

❑ Core provider classes

❑ Building a provider-based feature

Why Have Providers?
Traditionally, when a software vendor creates a programming framework or a software platform a
good deal of the framework logic is baked into the actual binaries. If extensibility is required, then a
product like an operating system incorporates a device driver model that allows third parties to
extend it. For something like the .NET Framework, extensibility is usually accomplished by
deriving from certain base classes and implementing the expected functionality.

The device driver model and the derivation model are two ends of the extensibility spectrum.
With device drivers, higher-level functionality, like a word processor, is insulated from the
specifics of how abstract commands are actually carried out. Clearly modern-day word processors

12_596985 ch09.qxp 12/14/05 7:50 PM Page 329

are oblivious to the technical details of how any specific graphics card displays pixels or how any ven-
dor’s printer renders fonts.

Writing software that derives from base classes defined in a framework or software development kit
(SDK) usually implies another piece of code that knows about the custom classes you’re writing. For
example, if you implement a custom collection class, somewhere else you have code that references the
assembly containing your custom collection class and that code also contains explicit references to the
custom collection class.

What happens though if you want to have the best of both worlds? How do you get the separation of
functionality afforded by the device driver model, while still retaining the ability to write custom code
that extends or replaces core functionality in the .NET Framework? The answer in the 2.0 Framework is
the provider model that ASP.NET 2.0 relies heavily upon. The provider model allows you to swap
custom logic into your application in much the same way you would install device drivers for a new
graphics card. And you can swap in this custom logic in such a way that none of your existing code
needs to be touched or recompiled.

Simultaneously though, there are well-defined provider APIs that you can code against to create your
own custom business logic and business rules. If you choose, you can write applications to take a direct
dependency on your custom code — but this is definitely not a requirement. Well-written providers can
literally be transparently “snapped into” an application.

To accomplish this, the 2.0 Framework includes some base classes and helper methods that provide the
basic programming structure for the provider model. Specific features within the Framework extend
these base classes and build feature-specific providers. To make this all a bit more concrete, you can use
the Membership feature as a sort of canonical example of a provider-based feature.

The Membership feature of course deals with the problem of creating user credentials, managing these
credentials, and verifying credentials provided by applications. When the Membership feature was first
designed a number of different design options were available:

❑ Write a set of Membership related classes that contained all of the business logic and data
storage functionality as designed by the ASP.NET team. This option is the “black-box” option;
you would end up with functional APIs, and zero extensibility.

❑ Keep the same set of classes from option 1, but add protected virtual methods and/or event-
based extensibility hooks. This model would be more akin to the control development model in
ASP.NET. With this model you start out with either an ASP.NET control or a third-party control,
and through event hookups or derivations you modify the behavior of a control to better suit
your needs.

❑ Separate the intent of the Membership feature from the actual business logic and data storage
functionality necessary to get a functional Membership feature. This approach involves defining
one set of classes that all developers can use, but having concrete implementations of other
classes (the provider base classes) that contain very specific functionality. Along with this sepa-
ration the design requires the ability to swap out concrete provider implementations without
impacting the common set of classes that all developers rely upon.

Now, of course, because this book isn’t a mystery story; you know the outcome of these various design
decisions. The 2.0 Framework and ASP.NET 2.0 in particular went with the third option: providing a
common set of Membership classes for everyone to use, while compartmentalizing most of the business
logic and data storage rules inside of various Membership providers.

330

Chapter 9

12_596985 ch09.qxp 12/14/05 7:50 PM Page 330

It is pretty clear why you wouldn’t want the first option. Creating useful APIs and great functionality
inside of black boxes is nice until about 60 seconds after the first developer lays eyes on it and determines
that for their needs they require some different logic. The second design option is actually not all that
unreasonable. Clearly ASP.NET developers are comfortable with the event-based extensibility that has
been around since ASP.NET 1.0 (and for that matter all the way back to earlier versions of Visual Basic).

However, event-driven extensibility and protected virtual methods have the shortcoming that if an
application wants different behavior than what is built into the Framework, then some other piece of
code needs to be explicitly linked or referenced. For example, using the second design approach, what
happens if you want to create users somewhere other than the default SQL Server schema that ships in
ASP.NET 2.0? If creating users raised some kind of event where you could create the actual
MembershipUser in a back-end data store, you could hook this event and then return the new object,
probably as a property on an event argument.

The shortcoming here is that now in every application where you want to use your custom data store
you also need to include code that explicitly wires up the event hookups. If the extensibility mechanism
used a protected virtual method instead, then each of your applications would need code that explicitly
created the custom implementations of the various Membership classes. For both cases, you effectively
have a compile-time dependency on your custom code. If you ever want to choose a different custom
implementation of Membership, you have the hassle of recompiling each of your applications to
reference the new code.

The third option — the provider-based design approach — breaks the compilation dependency. With the 2.0
Framework, you can write code against a common set of classes (that is, Membership, MembershipUser,
and MembershipUserCollection). Nowhere in your code-base do you need a compile-time reference to
your custom implementation of a MembershipProvider. If you wake up tomorrow and decide to throw
out your custom MembershipProvider, there is no problem; you drop a different assembly onto your
desktops or servers, tweak a configuration setting, and the rest of your applications continue to work.
Sounds a lot like swapping out graphics cards and device drivers without the “excitement” that such
upgrades usually entail.

Of course, the ability to tweak some settings in configuration requires that the Membership feature use
some kind of dynamic type loading mechanism. Underneath the hood, this mechanism allows a feature to
convert a configuration setting into a reference to a concrete provider class. And, of course, a dynamic type
loading mechanism also requires at least a basic programming contract that defines the type signature that
the Membership feature expects to dynamically load.

So, a provider-based feature in short has the following characteristics:

❑ A well-defined set of public APIs that most application code is expected to code against.

❑ A well-defined set of one or more interfaces or class definitions that define the extensible set of
classes for the feature. In the 2.0 Framework, these are the provider base classes.

❑ A configuration mechanism that can generically associate concrete provider implementations
with each feature.

❑ A type-loading mechanism that can read configuration and create concrete instances of the
providers to hand back to the feature APIs.

331

The Provider Model

12_596985 ch09.qxp 12/14/05 7:50 PM Page 331

Matching up these characteristics, you can see that the Membership feature and the Framework have the
following:

1. Public classes like Membership and MembershipUser that you write most of your code against.

2. A MembershipProvider class that defines the programming contract for all implementations of
business logic and data storage for use with the Membership feature.

3. A provider configuration class that encapsulates the configuration information for any provider.
This configuration class (System.Configuration.ProviderSettings), and the accompany-
ing XML configuration syntax, is used by MembershipProvider(s) to declaratively define type
information (among other things).

4. A System.Web.ConfigurationProvidersHelper class that acts as a class factory mechanism
for returning instances of configured providers to any feature, including Membership.

Patterns Found in the Provider Model
If you have architected a fair number of applications, you invariably have come across design patterns —
both theoretical ones that you considered when writing an application and the actual design patterns that
you adopted in your application. The provider model in the .NET Framework is no different, with various
pieces of the provider development stack mapping to well-known design patterns.

For the classic guide to design patterns, pick up a copy of Design Patterns: Elements of Reusable
Object-Oriented Software” by the Gang of Four: Eric Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Addison-Wesley ISBN:0-201-63361-2.

The new provider-based features in ASP.NET 2.0 are implementations of the following well-known
design patterns:

❑ Strategy

❑ Factory Method

❑ Singleton

❑ Façade

Of the four common design patterns, the Strategy pattern is the core design concept that really makes
the provider model so powerful.

The Strategy Pattern
In a nutshell, the Strategy design pattern is a design approach that encapsulates important pieces of a
feature’s functionality in a manner that allows the functionality to be swapped out with different imple-
mentations. A Strategy design approach allows a feature to define a public-facing definition of common
functionality, while abstracting away the nitty-gritty of the implementation details that underlie the
common functionality.

332

Chapter 9

12_596985 ch09.qxp 12/14/05 7:50 PM Page 332

If you were to design your own feature using the Strategy pattern, you would probably find that the
dividing line between a public API and a specific implementation to be somewhat fuzzy. Strategy-based
approaches work best when there is a common set of well-defined functionality that you expect most
developers will need. However, you also need to be able to implement that functionality in a way that
can be reasonably separated from the public API — otherwise you can’t engineer the ability to swap out
the lower layers of the feature.

For example, say that you wanted to implement a class that could be used to balance your checkbook. The
general operations you perform against a checkbook are well understood: debit, credit, reconcile bal-
ances, and so on. However, the way in which you store the checkbook information is all over the map:
you could store your checkbook in Excel, in a commercially available financial package, and so forth. So,
the checkbook design is one where you could define a public checkbook API for developers to consume,
while still allowing developers the freedom to swap in different storage mechanisms for different data
stores. With this approach you would have a Strategy-based design for storing checkbook data.

However, if you take the checkbook example a bit further, what happens to the non-storage-related
operations for the checkbook? The debit and credit operations involve a few steps: loading/storing data
using a configurable data store and carrying out accounting computations against that data. Does it
make sense for the accounting operations to be swapped out? Are there really multiple ways to add and
subtract values in a checkbook ledger?

It is this kind of design decision where the Strategy approach gets a bit murky. Realistically, you could
argue this decision either way. One on hand, for a consumer application that has a checkbook, it would
probably be overkill to abstract the computations via the Strategy pattern. On the other hand, if you
were authoring an enterprise resource planning (ERP) package, and you needed to accommodate
different accounting rules for various businesses and even different countries, then creating a config-
urable accounting engine would make sense.

If you take a closer look at how some of the provider-based features in the 2.0 Framework approached
these decisions, you will see different degrees of business logic configurability with the Strategy pattern:

❑ Membership — Both the data storage and the business logic are abstracted into the provider
layer. Provider authors are responsible for data storage related tasks and the core business logic
that makes the Membership feature work. For example, if you choose to implement self-service
password resets, your provider not only has to deal with the data storage necessary to support
this feature, it is up to you to write the logic that handles things like a customer entering too
many wrong password answers. Although the class definitions in Membership suggest how you
should go about implementing this kind of logic, as a provider author you have a large amount
of leeway in terms of implementing business logic in your providers.

❑ Role Manager — As with Membership, both data storage and business logic are the responsibil-
ity of the providers. However, the Role Manager API is simple enough that for all practical pur-
poses Role Manager providers are primarily data storage engines.

❑ Profile — The providers for the Profile feature deal only with data storage and serialization.
However, because the Profile feature is essentially a programming abstraction for exposing data
in a consistent manner without forcing the page developer to wrestle with different back-end
data stores, the data-centric nature of Profile providers is expected. The only real “logic” that a
provider implementer would normally deal with is around caching and mapping from a prop-
erty on a customer’s profile to a specific piece of data in some back-end system.

333

The Provider Model

12_596985 ch09.qxp 12/14/05 7:50 PM Page 333

❑ Web Parts Personalization — Personalization providers can actually come in two flavors:
providers that only implement data storage against a different back-end, and providers that
fundamentally change the way in which web parts personalization works (that is, changing the
“business logic” of web parts). However, writing a personalization provider that changes the
core logic of web parts is a nontrivial undertaking to say the least, so the most likely personal-
ization providers will be ones that work against data stores other than SQL Server. If you take a
look at the nonabstract virtual methods on the PersonalizationProvider base class, you will
see methods that deal with web parts security as well as the logic of how web parts work as
opposed to just the data storage aspect of web parts.

❑ Site Navigation — Along the same lines as web parts, the providers in Site Navigation can
either be data-centric, or they can also alter the core logic of the Site Navigation feature. On one
hand, if you author a provider that derives from StaticSiteMapProvider, then most of the
logic around traversing navigation data is already handled for you. You are left to implement
one abstract method that is responsible for loading navigation data and converting it into a
structure that can be consumed by the StaticSiteMapProvider. On the other hand, if you
derive directly from SiteMapProvider, then you not only handle data-storage-related tasks,
you can also be very creative in terms of how you handle the logic for traversing site navigation
data (that is, use XPath queries, use a custom in-memory graph structure, and so on) as well as
the security of individual SiteMapNode instances.

❑ Health Monitoring — Because the nature of the Health Monitoring feature (also referred to as
Web Events) is to store diagnostic data, providers written for this feature only deal with data
storage. Although storing data when a high volume of diagnostic events are being generated
can require some very creative approaches, at the end of the day a Health Monitoring provider
is just a pipe for storing or forwarding diagnostic information.

❑ Session — Session state is a bit of a hybrid when it comes to the provider layer. Session state
providers of course have to deal with loading and storing data. However, the providers are also
responsible for handling some of the logic in session state around concurrent access to session
data. Additionally, you may write a custom session state provider to work in conjunction with
custom session ID generators and custom partition information, in which case a bit more of the
logic for session state is also in your hands. However, even in this case 90% of the purpose of a
session state provider revolves around data storage as opposed to session state logic. Most of
the real logic around session state is bound up inside of the SessionStateModule.

From the previous brief overview of various provider-based features in ASP.NET 2.0, you can see that all
of the providers abstract away data storage details from developers who use a feature. To varying
degrees, some of the providers also abstract away the core logic of the feature.

Factory Method
The Strategy pattern wouldn’t be very useful in the 2.0 Framework if you didn’t have a way to easily
swap out different providers when using different features. Because the Strategy pattern is inherently
about making it easy to choose different implementations of a feature, the Factory Method pattern is a
logical adjunct to it. The idea behind the Factory Method is to separate the creation of certain classes
from the feature that consumes those classes. As long as classes implement a common interface, or
derive from a common class, a feature can encapsulate class creation using a generic mechanism that
does not require any hard compile-time dependencies.

334

Chapter 9

12_596985 ch09.qxp 12/14/05 7:50 PM Page 334

In other words, a feature that makes use of the Factory Method pattern does not hard-code references to
concrete types. Instead a feature references classes via interfaces or base class references, and defers the
actual creation of concrete implementations to some other piece of code. Of course, the magic of the
Factory Method lies within this “other code,” and that leads to the question of how can you actually
write something that generically creates types without hard-coding the type definition at compile time?

Luckily for us, the Framework includes excellent support for reflection, which in turn makes it trivial to take
a string definition of a type and convert it into an actual class. Hence, there is no need for a compile-time
dependency on a concrete type. Following along this design approach, the Framework also has an extensive
configuration system that makes it a pretty convenient place to store information such as string-ized type
references. So, the combination of (configuration + reflection) is what enables the Framework to make use of
the Factory Method pattern for its provider-based features.

If you use any of the existing provider-based features, the Factory Method implementation is transparent to
you. For example, if you use the Membership feature, you just configure one or more providers as follows:

<membership defaultProvider=”AccessMembershipProvider”>
<providers>

<add name=”AccessMembershipProvider”
type=”Samples.AccessMembershipProvider, SampleAccessProviders”
... />

<add name=”AnotherProvider”
type=”SomeOtherNamespace.SomeOtherProvider, AnotherAssembly”
... />

</providers>
</membership>

Then at runtime, all of the configured providers are automatically available for you to use with the
Membership feature. Underneath the hood, the Membership feature uses a helper class (that is, a generic
class factory) to instantiate each provider and hook it up to the feature.

The Framework class that contains the logic for creating arbitrary providers is System.Web
.Configuration.ProvidersHelper. It exposes two static helper methods (InstantiateProvider
and InstantiateProviders) that you can use when creating your own provider based features. As
you would expect, InstantiateProviders is just a helpful wrapper method for creating one or more
providers; internally, it just iterates over the information passed to it and calls InstantiateProvider
multiple times.

The method signature for InstantiateProviders is:

public static void InstantiateProviders(
ProviderSettingsCollection configProviders,
ProviderCollection providers,
Type providerType)

Let’s take a closer look at what each of these parameters represents and how each parameter maps to a
provider configuration section such as the one used for the Membership feature. The first parameter
accepts a collection containing one or more instances of System.Configuration.ProviderSettings.
A ProviderSettings instance is a strongly typed representation of the configuration for a single
provider, although because any feature can define and use an arbitrary set of providers, the actual
“strong” representation is only relevant to the common configuration information you would expect to
find for any provider regardless of its associated feature.

335

The Provider Model

12_596985 ch09.qxp 12/14/05 7:50 PM Page 335

The public properties that are available from a ProviderSettings instance are Name and Type (both
Strings) as well as the Parameters property, which is a NameValueCollection. If you use the
abbreviated Membership provider with the following definition:

<providers>
<add name=”AccessMembershipProvider”

type=”Samples.AccessMembershipProvider, SampleAccessProviders”
connectionStringName = “some connection string”
enablePasswordRetrieval = “false”

... />
</providers>

You can see that the name and type configuration attributes on a provider’s <add/> element are what map to
the Name and Type properties on an instance of ProviderSettings. All of the other configuration attributes
are lumped into the Parameters NameValueCollection containing key-value pairs. It is up to the individ-
ual Framework features to perform further processing on these key-value pairs. This is the underlying reason
why most of the validation of a provider’s configuration needs to be baked into each individual provider as
opposed to having the smarts in the configuration class (more on this design aspect a bit later in the chapter).
If you take a look at the various provider-based features in ASP.NET 2.0, you will see that each feature’s con-
figuration classes deal with providers using the rather generic ProviderSettings class. For example there is
no such thing currently as a “MembershipProviderSettings” versus a “RoleManagerProviderSettings” class.

The second parameter to ProvidersHelper.InstantiateProviders is a ProviderCollection. The
caller to this method is responsible for creating an empty instance of a ProviderCollection. The
ProvidersHelper class will populate the collection with one or more providers. Because every
provider in ASP.NET 2.0 ultimately derives from a common base class (System.Configuration
.ProviderBase), the ProvidersHelper class is able to deal with any arbitrary provider type in a
generic manner.

The last parameter to the InstantiateProviders method is a Type object. A provider-based feature
passes in a Type object that represents the base provider type required by that feature. For example,
when the Membership feature needs to create all of its configured providers, it will pass
“typeof(MembershipProvider)” as the value for this parameter. The resulting Type reference is used
by the ProvidersHelper class to verify that the provider type being instantiated (remember this is
defined by the Type property on a ProviderSettings instance) actually derives from the type passed
in the third parameter. This allows some basic validation to occur at provider instantiation time and it
prevents problems such as accidentally instantiating a RoleProvider-derived class for the Membership
feature.

As noted a little earlier, ProvidersHelper.InstantiateProviders is just a convenient way to con-
vert a set of provider configuration information into multiple provider instances. If for some reason you
had a provider-based feature that only supported a single provider, you could instead call
ProvidersHelper.InstantiateProvider directly. The method signature is:

public static void InstantiateProvider(
ProviderSettings providerSettings,
Type providerType)

336

Chapter 9

12_596985 ch09.qxp 12/14/05 7:50 PM Page 336

As you can see, the parameters closely mirror the parameters for InstantiateProviders, but just for a
single provider. Internally, this method performs a few basic tasks to create a concrete provider type:

1. A Type object representing the provider type as defined in the “type” configuration attribute is
obtained.

2. The helper validates that the Type from step 1 is actually compatible with the providerType
information that was passed to InstantiateProvider. This ensures that the loose type defini-
tion obtained from configuration (represented by ProviderSettings.Type) has been success-
fully translated to a type definition that is compatible with the feature that is calling
ProvidersHelper.

3. Using the System.Activator class, the helper creates a concrete instance of the desired
provider.

4. With the concrete instance in hand, the helper passes the configuration attributes on
ProviderSettings.Parameters to the provider’s Initialize method. This is covered in the
“Core Provider Classes” section later in this chapter, but the ProviderBase class defines a com-
mon Initialize method that must be called for a concrete provider to bootstrap itself. Without
the call to Initialize, an instance of any given provider is sort of in a zombie-like state — it
exists, but it doesn’t have any of the information necessary for it to function.

5. After the provider successfully initializes itself, the helper method returns the provider instance as
a reference to the base type: ProviderBase. It is up to the calling code or feature to then cast the
ProviderBase reference back to the base type used by the feature. However, because the helper
method already validated that the ProviderSettings.Type was compatible with a feature’s
expected type, by this point the feature has the assurance that its type-cast will succeed.

To see all of this working, the following sample code shows a simple example of manually creating a
ProviderSettings instance and then using it to create an instance of the SqlMembershipProvider.

using System;
using System.Configuration;
using System.Configuration.Provider;
using System.Web.Security;
using System.Web.Configuration;
namespace CreateMembershipProvider1
{
class Program
{
static void Main(string[] args)
{
ProviderSettings ps = new ProviderSettings(
“ManuallyCreated”,
“System.Web.Security.SqlMembershipProvider, System.Web, Version=2.0.0.0,

Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”);

//Can add one or more provider-specific configuration attributes here
ps.Parameters.Add(“connectionStringName”, “LocalSqlServer”);

//This is the expected base type of the provider instance
Type t = typeof(MembershipProvider);

//Use the helper class to instantiate the provider

337

The Provider Model

12_596985 ch09.qxp 12/14/05 7:50 PM Page 337

ProviderBase pb = ProvidersHelper.InstantiateProvider(ps, t);

//At this point you can safely cast to either the explicit provider
//type, or to MembershipProvider
SqlMembershipProvider smp = (SqlMembershipProvider)pb;

//Do something with the provider – though for other reasons this
//won’t work!
MembershipCreateStatus status;
smp.CreateUser(“delete_this_user”, “pass^word”, “some@where.org”,
“question”, “answer”, false, null, out status);

}
}

}

This sample console application shows you roughly the same steps that the Membership feature follows
when it creates the membership providers that you define in configuration. The ProviderSettings
class that is created contains the “name” and “type” values that you use when configuring Membership
providers. The sample code then adds a provider-specific configuration attribute — in this case, the
connectionStringName attribute that references a connection string defined somewhere in the
<connectionStrings /> configuration section. Although that is the only attribute defined in this sam-
ple, you could add as many provider-specific configuration attributes as needed at this point.

ProvidersHelper.InstantiateProvider is called, passing in the Type object for MembershipProvider
because the expectation is that the string value for the type parameter used earlier in the sample will actu-
ally resolve to a provider that derives from MembershipProvider. If you run this code in a debugger, you
can successfully cast the return value from InstantiateProvider to a SqlMembershipProvider.
However, as a result of the way many provider-based features work in ASP.NET 2.0, attempting to subse-
quently call CreateUser on the returned provider instance will fail.

This happens because most provider-based features expect to operate in the larger context of their associated
feature. As part of this assumption, there is the expectation that any individual provider can reference the
ProvidersCollection associated with a feature. Because this sample code is creating a provider in a
vacuum, when the CreateUser method eventually leads to some internal Membership validation, you will
get an error to the effect that the provider you just created doesn’t actually exist. When you use any of the
provider-based features in ASP.NET 2.0 though, you won’t run into this issue because the various features
are responsible for instantiating providers and, thus, will maintain a ProvidersCollection with refer-
ences to all the feature providers defined in configuration.

As a second example, you can extend the sample code to instantiate multiple providers by using
ProvidersHelper.InstantiateProviders. Instantiating multiple providers, and storing the resul-
tant collection is the process that most ASP.NET 2.0 provider-based features follow:

static void Main(string[] args)
{

ProviderSettings ps = new ProviderSettings(“ManuallyCreated_1”,
“System.Web.Security.SqlMembershipProvider, System.Web, Version=2.0.0.0,

Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”);

//Add multiple provider-specific configuration attributes here
ps.Parameters.Add(“connectionStringName”, “LocalSqlServer”);

338

Chapter 9

12_596985 ch09.qxp 12/14/05 7:50 PM Page 338

ps.Parameters.Add(“requiresQuestionAndAnswer”, “false”);

//Create another ProviderSettings instance for a second provider
ProviderSettings ps2 = new ProviderSettings(“ManuallyCreated_2”,
“System.Web.Security.SqlMembershipProvider, System.Web, Version=2.0.0.0,

Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”);
ps2.Parameters.Add(“connectionStringName”, “LocalSqlServer”);
ps2.Parameters.Add(“requiresQuestionAndAnswer”, “true”);

Type t = typeof(MembershipProvider);

//Need a collection since in this case you are getting multiple
//providers back from the helper class
ProviderSettingsCollection psc = new ProviderSettingsCollection();
psc.Add(ps);
psc.Add(ps2);

//Call the helper class to spin up each provider
MembershipProviderCollection mp = new MembershipProviderCollection();
ProvidersHelper.InstantiateProviders(psc, mp, t);

//Get a reference to one of the multiple providers that was instantiated
SqlMembershipProvider smp2 = (SqlMembershipProvider)mp[“ManuallyCreated_2”];

}

In the second sample, the call to InstantiateProviders requires an empty ProviderCollection.
The helper class creates and initializes each provider in turn, and then places a reference to each
provider inside of the supplied ProviderCollection object.

If you were to look inside of the code for a static feature class like Membership, you would see that it
actually uses a derived version of ProviderCollection called MembershipProviderCollection.
Additionally, if you look at a static feature class like Membership, you now understand where the value
for the Providers property comes from. Once Membership completes its call to ProvidersHelper
factory method, the MembershipProviderCollection instance becomes the return value for the
Membership.Providers property.

The Singleton Pattern
The Singleton Pattern is used when a developer wants a single instance of class to exist within an applica-
tion. Rather than the standard object-oriented approach of creating objects and destroying them after use,
the Singleton Pattern results in a single object instance being used for the duration of an application’s life-
time. Frequently, the Singleton Pattern is used when object instantiation and destruction of a class is very
expensive, and hence you may only want one instance of the class to ever incur the overhead of object
construction. The Singleton Pattern is also used when you want to mediate access to a specific resource
with a single object instance gating access to the resource, it is possible to implement synchronization
logic within the object instance so that only a single active thread can access the resource at a time.

ASP.NET 2.0 uses the Singleton Pattern for all of the providers that are instantiated by its provider-based
features. However, ASP.NET 2.0 doesn’t require that individual providers be instantiated via a Singleton
Pattern. In reality, nothing prevents you from using the ProvidersHelper (as shown in the previous

339

The Provider Model

12_596985 ch09.qxp 12/14/05 7:50 PM Page 339

section) or from manually creating and initializing a provider yourself. As you saw in the Membership
provider example, if you step outside the boundaries of the feature’s initialization behavior you will
probably run into exceptions down the road.

A more precise statement would be that the provider-based features in ASP.NET implicitly use the Singleton
Pattern as long as you interact with providers by way of the various feature classes (that is, Membership,
ProfileCommon, Roles, and so on). Features will use the ProvidersHelper class to create and initialize
one, and only one, instance of each configured provider. For the duration of the application’s lifetime the
providers stay in memory and are used whenever you write code that makes use of the feature. The
ASP.NET 2.0 features do not new() up providers on each and every page request.

From your perspective as a provider implementer, this means your providers need to be structured to
allow multiple concurrent callers in any of the public methods. If your providers internally have any
shared state, and if you intend to modify that state inside of a method, it is up to you to synchronize
access to that state. The use of the Singleton Pattern suggests the following best practices on your custom
providers:

❑ If at all possible, common provider state should be initialized in the provider’s Initialize
method. For provider instances that are being initialized by a feature, you are guaranteed that
one and only one thread of execution will ever call into the Initialize method. The feature
classes internally serialize access during feature initialization. This means that you can safely
create and set internal state in a provider’s Initialize method without having to synchronize
access to it at this point.

❑ You should not call back into a feature from inside of the Initialize method. For example, in
a custom Membership provider you should not create instances of MembershipUser or call into
the static Membership class. These types of operations will usually cause a feature to attempt to
initialize itself a second time, which in turn triggers initialization of your custom provider a
second time. At which point you have a second instance of your provider that attempts to call
back into the feature, and you end up in an infinite loop of initialization.

❑ If your provider needs to initialize some type of shared state, and if this initialization requires
calling other methods in the feature, you need to separate this logic into internal methods that
are “lazily” called. This means sometime after the provider is initialized, when any of its public
methods are called, you need to check to see whether this secondary initialization has occurred;
if it hasn’t, you need to take some kind of lock and then perform the secondary initialization.
This is the approach used by the XmlSiteMapProvider when it loads its navigation data from
an XML file. The actual parsing of the XML file occurs after the provider has been initialized
when a public method is first called. Internally the XmlSiteMapProvider serializes the initial-
ization process to ensure that if multiple threads are calling into the provider, the secondary ini-
tialization occurs once and only once.

❑ Public instance methods on the provider should be as stateless as possible. If your custom
provider needs only to read some shared state (for example, a connection string that was loaded
earlier during Initialize), you won’t need to worry about thread-safety issues. You can just write
the code in each instance method without introducing any synchronization code. Writing to
shared state should be avoided if at all possible, because providers must expect to have multiple
concurrent requests flowing through their methods at any point in time. If for some reason a
provider needs to write to shared state, it will be less performant because of the need to use
some type of locking to ensure thread-safe operations. As an aside, most of the ASP.NET 2.0

340

Chapter 9

12_596985 ch09.qxp 12/14/05 7:50 PM Page 340

providers don’t have any type of synchronization logic in their methods. For example, the public
instance methods on SqlMembershipProvider never need to lock anything because the only
shared state used by the SqlMembershipProvider is read-only configuration data that was
passed during the call to Initialize.

Façade
A Façade is a design approach for wrapping complex details from multiple subsystems with an easy-to-use
class or programming interface. Another way to look at the Façade Pattern is as a “good enough” API that
exposes the most common functionality needed by a developer without requiring developers to wade
through complex implementations of underlying classes. You could argue that any layered API is effectively
a Façade with each layer of a programming API providing an easier interface to the next level down.

In ASP.NET 2.0, the Façade pattern is evidenced by various entry-point classes that are closely associated
with the related feature. The use of these entry points eliminates the need for many developers to ever
interact directly with individual providers. In other cases, the entry-point classes hide the complexities
involved when mediating the flow of data between providers and other classes that manipulate data.
The general application of the Façade pattern is listed here for a number of the ASP.NET 2.0 features:

❑ Membership — The static Membership class is the main entry point into the feature. Developing
against this class allows you to use the feature without using a MembershipProvider directly.
Internally, the class automatically handles initialization of the feature on your behalf. It also
exposes many static methods that provide multiple options for creating and modifying data;
internally the Membership class maps these methods to the appropriate provider methods. For
example, there is only one CreateUser method defined on MembershipProvider, but the static
Membership class provides four different CreateUser methods that cover the common ways to
create users. Internally, the static Membership class “fills in the blanks” when it calls the provider.

❑ Role Manager — The static Roles class is the main feature entry point. As with the Membership
feature, the Roles class automatically initializes the configured providers for you. It also
exposes a number of overloads for adding and deleting users to and from roles that are a bit
easier to use than the more generic method definitions on RoleProvider.

❑ Profile — The Profile feature actually has two main entry points. For administrative functional-
ity, the static ProfileManager class is used; it performs the same functionality as described for
Membership and Role Manager. However, the more common entry point for most developers is
the ProfileCommon class that is auto-generated by the ASP.NET compiler at runtime (available
from Page.Profile). This class derives from ProfileBase. The net result of these two classes
is that as a developer you have an easy-to-use strongly typed object available from the Profile
property on a Page class. However, underneath the hood, this object hides all of the complexi-
ties of hooking up providers to properties, serializing and deserializing data, as well as the intri-
cacies of triggering the loads and saves of individual property data. More than any other
provider-based feature, the Profile feature is a great example of the Façade pattern. The more
you delve into what actually makes the Profile feature tick, the more you realize the large
amount of functionality that is all tucked away behind the Profile property on the Page class.

❑ Web Parts Personalization — Like Membership and Role Manager, Personalization has a static
management class called PersonalizationAdministration that acts as a façade for the more
generic methods defined on PersonalizationProvider. The WebPartsPersonalization
class acts as a runtime façade for the WebPartManager. While a WebPartManager drives the
page lifecycle for web parts, it uses the API defined on WebPartsPersonalization for

341

The Provider Model

12_596985 ch09.qxp 12/14/05 7:50 PM Page 341

data-related tasks including loading and storing data as well as extracting and applying person-
alization data. You can swap out different pieces of personalization functionality both in Web
PartsPersonalization and lower down in the provider layer, yet the WebPartManager is
unaware of such changes because it interacts only with a WebPartPersonalization instance.

❑ Site Navigation — The static SiteMap class acts as the main entry point for this feature. It will
automatically initialize configured providers on your behalf. In this sense, it is a weak façade
implementation because you typically call SiteMap.CurrentNode, after which you start work-
ing with SiteMapNode and SiteMapProvider instances directly.

❑ Session — You interact with the Session feature through an instance of HttpSessionState,
usually through the Session property on the current context or on a page. From your point of
view the Session State feature is basically a dictionary where you can add and remove objects.
However, the HttpSessionState object and the associated SessionStateModule hide the
large amount of complexity involved in managing session. Tasks such as serialization/deserial-
ization, managing session concurrency, and managing session setup and expiration all happen
automatically with the complexities hidden from view.

Core Provider Classes
You have seen a number of the different support classes that are common to providers. In this section, you
walk through each of the core classes so that you can see in one place the different provider-related classes.

System.Configuration.Provider Classes
The core provider classes that define the base functionality for a provider are found in the System
.Configuration.Provider namespace. These classes are available for use both in ASP.NET and non-
ASP.NET applications.

ProviderBase
Of course, the most important provider class is the base class from which most providers derive:
System.Configuration.Provider.ProviderBase. The class signature is:

public abstract class ProviderBase {

public virtual string Name { get };
public virtual string Description {get };

public virtual void Initialize(string name, NameValueCollection config);
}

Feature-specific provider definitions derive from ProviderBase, and as a developer you write custom
providers that in turn derive from a feature’s provider base class definition. It is unlikely that you would
ever author a provider that directly derives from ProviderBase because ProviderBase exposes very
little functionality.

ProviderBase is abstract because that forces you to derive from it and it also would make little sense to
new() up ProviderBase. However, the functionality that is available on ProviderBase is all virtual
because ProviderBase does supply basic functionality common to all providers. If you have looked at

342

Chapter 9

12_596985 ch09.qxp 12/14/05 7:50 PM Page 342

the configuration sections for ASP.NET 2.0 provider-based features you notice that “name” and “type”
are always present. Although it isn’t immediately obvious, all ASP.NET providers also have a config-
urable “description” attribute as well.

The type attribute is not exposed by ProviderBase, because by the time you have a concrete provider
in hand, you know its type. However, the “name” and “description” attributes are available on
ProviderBase. The read-only Name property is important because this is how you index into provider
collections for various features that support defining multiple providers. The read-only Description
property is mainly intended for administrative applications where you may want to see a list of the
providers currently configured for an application.

By default, the ASP.NET providers contain localized resource strings for the descriptions. This means
that if you query the Description property in a French application, you get back French text for each
provider description; while in an English application you get back an English description. However, if
you explicitly configure the “description” attribute in your web.config, providers always return the
configuration value from the Description property, regardless of locale. The default implementation of
ProviderBase.Description returns the Name property if for some reason a provider implementer
forgot to explicitly initialize the description.

The most important method on ProviderBase is the Initialize method. Normally, this method is
called during a feature’s initialization. As described earlier in the section on the Factory Method pattern,
static feature classes use the ProvidersHelper class to call Initialize on each configured provider.
The name parameter is the value of the name attribute from configuration, while the config parameter is
the Parameters property from the ProviderSettings configuration class: the list of name-value pairs
from the <add /> provider element sans “name” and “type.”

The default implementation of Initialize performs the following work on your behalf:

1. The method checks to see whether the provider has been initialized before. If the provider has
already been initialized, it throws an exception. This means that provider implementers should
always call base.Initialize to gain protection against double-initialization.

2. The name parameter is stored internally and is thus available from the Name property.

3. If a key called “description” is available in the NameValueCollection passed via the config
parameter, the value is stored internally and thus is available from the Description property.
Note that if the “description” key is found, it is removed from the NameValueCollection and
is no longer available from the collection when control passes back to the provider.

The general approach provider implementers should take when using ProviderBase.Initialize is:

1. If a “description” attribute is not available from configuration, add a key called “description” to
the NameValueCollection that is passed to Initialize. For the value you can follow
ASP.NET’s approach and insert a localized value, or for simplicity you can add a hard-coded
description of the provider.

2. Immediately after any logic for “description,” make a call to base.Initialize. This protects
against double-initialization before your provider does anything substantial.

3. After the call to base.Initialize, your provider should carry out feature-specific initializa-
tion tasks.

343

The Provider Model

12_596985 ch09.qxp 12/14/05 7:50 PM Page 343

ProviderException
Sometimes when an error occurs within a provider, the built-in Framework exception classes don’t have
anything that maps nicely to the problem. Furthermore, you may not want to create a plethora of custom
exception classes for comparatively rare or obscure error conditions. The System.Configuration
.Provider.ProviderException class is intended as a convenient exception class for these cases. For
example, the Membership providers throw a ProviderException if the password format is incorrect.
Rather than creating a “PasswordFormatException” that would rarely occur, a ProviderException
was used.

Realistically, whether you use ProviderException is more of a philosophical decision. The ASP.NET
team didn’t want to spam the System.Web namespace with dozens of exception classes for one-off or
rare error conditions. However, there is nothing wrong if you disagree with that approach and instead
create a rich and detailed set of exceptions for your applications.

The class signature for ProviderException is very simple. It just derives from System.Exception:

[Serializable]
public class ProviderException : Exception
{

public ProviderException();

public ProviderException(string message);

public ProviderException(string message, Exception innerException);

protected ProviderException(SerializationInfo info,
StreamingContext context);

}

There is no custom logic inside of ProviderException. Each of the nondefault constructor overloads
simply calls the base constructor implementations in Exception.

ProviderCollection
As you saw in the Factory Method section, provider-based features usually deal with multiple providers.
The approach used by various features is to have a feature-specific provider collection that in turn derives
from System.Configuration.Provider.ProviderCollection. The ProvidersHelper class can
then work with the common ProviderCollection class, while individual features can expose strongly
typed collection classes. From a configuration standpoint, all the <add /> provider elements in your
web.config eventually end up as concrete providers that can be referenced from a
ProviderCollection-derived class.

For example, in the Membership feature the Membership.Providers property returns a reference to a
MembershipProviderCollection containing a reference to every provider defined within the <mem-
bership /> configuration section. The advantage to working with MembershipProviderCollection
as opposed to ProviderCollection is that you know any provider returned from the collection
indexer derives from MembershipProvider. The collection also validates that any providers added to it
derives from MembershipProvider.

The definition for ProviderCollection is simple, and it exposes the common collection based func-
tionality you would expect:

344

Chapter 9

12_596985 ch09.qxp 12/14/05 7:50 PM Page 344

public class ProviderCollection : IEnumerable, ICollection
{

public ProviderCollection();

public virtual void Add(ProviderBase provider);
public void Remove(string name);

public ProviderBase this[string name] { get };

public IEnumerator GetEnumerator();

public void SetReadOnly();
public void Clear();

public int Count { get };
public bool IsSynchronized { get };
public object SyncRoot { get };

public void CopyTo(ProviderBase[] array, int index);
void ICollection.CopyTo(Array array, int index);

}

I won’t cover every method and property, because you are probably already familiar with quite a num-
ber of collection classes. The two pieces of important functionality that ProviderCollection delivers
are validation for read-only collections and a common type for ProvidersHelper to use when it creates
multiple providers inside of the ProvidersHelper.InstantiateProviders method.

Usually after a feature has completed initialization, the feature will call SetReadOnly on its
ProviderCollection. This ensures that the set of providers available through the feature exactly mirrors
the set of providers defined in configuration. After a call to SetReadOnly the ProvidersCollection class
enforces the read-only nature of the collection. Attempts to call Add or Remove will fail with an exception.

The usual implementation model is for a feature-specific provider collection to derive from
ProviderCollection and at least override the Add method. For ease of use, features also commonly imple-
ment a feature-specific indexer that supplements the default indexer on ProviderCollection as well as a
feature-specific implementation of CopyTo. In other words, any portion of the ProviderCollection type
signature that deals with a parameter of type ProviderBase is either overridden or supplemented by fea-
ture-specific provider collections.

You can actually see that ProviderBase itself follows a similar approach because its implementation of
ICollection.CopyTo requires an explicit interface cast. If instead you call CopyTo directly on
ProviderBase, you will be using the method that accepts an array of ProviderBase instances, as
opposed to just an array of object. The general idea is to specialize the portion of the collection that
deals with common types by adding methods or overriding methods so that you can deal with a more
specific type.

A feature-specific provider collection performs type-specific validation in an override of the Add method
(that is, are you adding the correct provider type to the collection?). A feature-specific provider also
performs the necessary type casts inside of its additional CopyTo and default indexer implementations.
For example, if you work with a MembershipProviderCollection and if you use the default indexer,

345

The Provider Model

12_596985 ch09.qxp 12/14/05 7:50 PM Page 345

you know that the return value from its default indexer is already a MembershipProvider. If,
instead, you worked with a MembershipProviderCollection instance as a ProviderCollection
reference, you would have to perform a cast on the return value from the default indexer on
ProviderCollection.

You may be wondering why the provider-based features didn’t simply use the new generics functional-
ity in the 2.0 Framework. Certainly, from an elegance standpoint, you wouldn’t have to muck around
with collection hierarchies and the minutia of which methods to override or reimplement if
ProviderCollection was instead defined as a generic type. The simple answer is that the provider
model was developed very early on in the lifecycle of the 2.0 Framework. A substantial number of
provider-based features were pretty well-fleshed out by the time that Framework generics had stabi-
lized. (Remember that building one piece of the framework that is in turn dependent on another core
piece of the framework gets pretty “interesting” at times!).

Once generics had stabilized though, there hadn’t been a decision yet on whether generics would be
considered CLS-compliant — that is, would a public API that exposed generics be reusable across many
different compilers that targeted the .NET Framework? Eventually, the decision was made in late 2004 to
define generics as being CLS-compliant. By that point though, the development teams were pretty much
in ship mode for Beta 2, which was way too late for folks to rummage through all of the provider-based
features and swap out old-style 1.1 collections for 2.0 generics (sometimes making what would appear to
be a common-sense design change in a large product like the .NET Framework turns out to be akin to
standing a 747 on its wing and pulling a 9G turn; it would be nice if it worked, but it’s more likely that
various pieces will come flying off). Hopefully, in a future release the use of generics for provider
collections will come to pass!

System.Web.Configuration Classes
Because most of the concrete provider implementations in the 2.0 Framework exist within ASP.NET 2.0,
the helper class for creating providers ended up in the System.Web.Configuration namespace. If you
implement a provider-based feature or if you plan to use an existing provider-based feature outside of
ASP.NET 2.0, you can still reference this namespace though and make use of the helper class.

The System.Web.Configuration.ProvidersHelper class provides two convenient helper methods
for instantiating providers. The class is typically used by features during feature initialization as
mentioned earlier, although you can certainly instantiate providers manually using the helper class,
there are usually other feature-specific dependencies that end up breaking when you use such an
approach.

I won’t cover the helper class again here, because the previous section on the Factory Method went into
detail on how to use the class as well how it acts as a provider factory for the Framework. The class
signature is:

public static class ProvidersHelper {

public static ProviderBase InstantiateProvider(
ProviderSettings providerSettings, Type providerType)

public static void InstantiateProviders(
ProviderSettingsCollection configProviders,
ProviderCollection providers, Type providerType)

}

346

Chapter 9

12_596985 ch09.qxp 12/14/05 7:50 PM Page 346

System.Configuration Classes
One of the important points for provider-based features is that you can swap out providers through
configuration. The configuration-driven nature of provider-based features means that you can write
code that uses a feature without hard-coding any compile-time dependencies on a specific provider
implementation.

To support this functionality two configuration classes represent provider configuration data.

ProviderSettings
The System.Configuration.ProviderSettings class is the programmatic representation of a
provider <add /> element in configuration. The ProviderSettings class exposes properties for some
of the common configuration attributes found in a provider <add /> element, while still retaining the
flexibility for feature providers to define their own custom set of configuration (and this runtime)
attributes.

The class signature for ProviderSettings (less configuration class–specific internals) is shown here:

public sealed class ProviderSettings : ConfigurationElement
{

public ProviderSettings();
public ProviderSettings(String name, String type);

//ConfigurationElement specific methods snipped out for brevity

[ConfigurationProperty(“name”, RequiredValue = true, IsCollectionKey=true)]
public String Name { get; set; }

[ConfigurationProperty(“type”, RequiredValue = true)]
public String Type {get; set;}

public NameValueCollection Parameters { get; }

}

As you can see from the type signature, the only configuration attributes that are common across all
providers are the “name” and “type” configuration attributes, which map respectively to the Name and
Type properties. All other provider properties that you see when looking in machine.config or web
.config are considered to be feature-specific provider attributes. The declarative
ConfigurationProperty attributes on the Name and Type properties are interpreted by the configuration
system at runtime. These attributes are what “tell” the configuration system how to translate an Xml
attribute to a property on the ProviderSettings class.

Feature-specific provider attributes are parsed by the configuration system and added as name-value
pairs to the NameValueCollection available from the Parameters property. As a result the process by
which configuration settings in web.config eventually end up in a provider is:

347

The Provider Model

12_596985 ch09.qxp 12/14/05 7:50 PM Page 347

1. At runtime a feature class, such as the static Membership class, makes a call into the configuration
system asking for its configuration section to be parsed and loaded.

2. After the configuration file has been parsed, the values are returned back to the feature class as
one or more configuration objects. In the case of the provider <add /> elements, each config-
ured provider results in an instance of ProviderSettings. All attributes other than “name”
and “type” end up in the ProviderSettings.Parameters property.

3. The feature class calls ProvidersHelper.InstantiateProviders and passes the
ProviderSettings to the helper class (to be precise an instance of ProviderSettings
Collection containing one or more ProviderSettings is passed to the helper class).

4. The ProvidersHelper class uses ProviderSettings.Type to determine the correct type that
needs to be instantiated.

5. Once the provider has been instantiated, the ProviderBase.Initialize method is called. The
name parameter for this method comes from ProviderSettings.Name, whereas the config
parameter comes from ProviderSettings.Parameters.

6. The provider internally calls base.Initialize to set the Name of the provider and optionally
the Description. Feature-specific providers then use the remainder of the name-value pairs
from ProviderSettings.Parameters for feature-specific initialization logic.

If you look in the Framework, you won’t find any feature specific configuration classes that derive from
ProviderSetting; in fact, ProviderSettings is sealed, so in the 2.0 Framework you cannot write fea-
ture-specific ProviderSettings classes even if you wanted to.

As a result, when you are working with configuration files at design time, the IntelliSense in the design
environment is only able to validate the “name” and “type” attributes. If you are configuring a
MembershipProvider, for example, you won’t get any IntelliSense for the SQL or the Active
Directory/Active Directory Application Mode (AD/ADAM) provider properties. Instead, you are left to
the documentation to determine which additional key-value pairs are allowed in the provider <add />
element within the <membership /> configuration element.

For the 2.0 Framework, this behavior was chosen to avoid having to engineer feature-specific settings
classes along with an accompanying XSD schema for IntelliSense validation. The design problem with
having feature-specific ProviderSettings classes is that for many features you cannot completely
define the feature-specific attributes with a single configuration class. For example, within Membership
the allowable attributes on the SQL provider only partially overlap with the allowable attributes on the
AD/ADAM provider. Both the SQL and the AD/ADAM providers have implementation-specific
attributes in addition to common Membership attributes.

This problem is common to all providers because the whole point of providers is to allow you to write
your own custom implementations, which usually results in custom provider attributes. If each feature
had a more strongly typed definition of ProviderSettings, you would still need a property like the
ProviderSettings.Parameters property to allow for extensibility.

There is also an issue with XSD-based IntelliSense validation. It becomes problematic because <add />
was chosen as the common way for configuring a provider. However, because <add /> elements vary
by their attributes, you can’t define an XSD validation rule that says “allow <add /> with the attribute
set A or allow <add /> with the attribute set B, but don’t allow an <add /> element with a mixture of
attribute sets A and B.” Furthermore, the existing <add /> element has a common XSD definition that is

348

Chapter 9

12_596985 ch09.qxp 12/14/05 7:50 PM Page 348

used in every feature-specific configuration section. The same <add /> element is used within <mem-
bership />, <profile />, <sitemap />, and so on To really support strongly-typed provider config-
uration sections and classes, you would need:

❑ A different configuration approach that was element-driven as opposed attribute driven.
Something like a <membershipProvider /> configuration element, a <roleManagerProvider
/> configuration element, and so on. This would allow for feature-specific XSD schemas.

❑ Feature-specific configuration classes that derive from ProviderSettings. This work would at
least be pretty easy to accomplish.

❑ Some type of extensibility mechanism that would allow you to tell the Framework about new
provider types and to supply provider-specific XSD extensions. This would enable IntelliSense
to validate both the core set of feature-specific configuration information as well as your custom
provider configuration information. Again though, this extensibility mechanism would
probably need to be element-based as opposed to attribute-based.

The nice thing about the current design though is that when you author a custom provider, you don’t
have to author a custom configuration section and a related custom configuration class. The existing
ProviderSettings class and the <add /> configuration element are flexible enough that you don’t
need to write any special configuration code to plug in your own custom providers.

ProviderSettingsCollection
Because most provider-based features support configuring multiple providers, the System
.Configuration.ProviderSettingsCollection class is used to hold all of the ProviderSettings
that resulted from parsing a configuration file.

The class definition, less configuration class–specific methods, is shown here:

[ConfigurationCollection(typeof(ProviderSettings))]
public sealed class ProviderSettingsCollection : ConfigurationElementCollection
{
public ProviderSettingsCollection();

public ProviderSettingsCollection Providers { get; }

public void Add(ProviderSettings provider);
public void Remove(String name);
public void Clear();

public ProviderSettings this[object key] { get; }
public ProviderSettings this[int index] { get; set; }

//Other configuration class specific methods removed for brevity

}

The second code sample in the earlier section on the Factory Method showed how you could manually
construct a ProviderSettingsCollection, populate it with multiple ProviderSettings instances,
and then pass the collection to ProvidersHelper.InstantiateProviders. From an application devel-
opment perspective though, you probably won’t ever deal with a ProviderSettingsCollection.
Instead, you may use a ProviderSettingsCollection class for administrative purposes to program-
matically read and modify a configuration file.

349

The Provider Model

12_596985 ch09.qxp 12/14/05 7:50 PM Page 349

If you do author a provider-based feature, and you create a configuration section class for that feature,
the configuration system will automatically convert the provider <add /> elements into an instance of
ProviderSettingsCollection on your configuration section class. You don’t need to manually call
Add, Remove, and similar methods from inside your custom configuration class. Instead, you would
simply add a property on your configuration class of type ProviderSettingsCollection and
attribute it appropriately.

Using the MembershipSection class as an example, it has a public property for its <provider />
section as shown here:

[ConfigurationProperty(“providers”)]
public ProviderSettingsCollection Providers { get; }

So, when the configuration system is parsing a configuration file, and it is processing a <providers />
element like:

<providers>
<add name=”foo” type=”bar” ... />

</providers>

The configuration system knows that the results of parsing everything underneath <providers />
results in a collection of information represented by ProviderSettingsCollection. Because a
ProviderSettingsCollection is as an Add-Remove-Clear (—)collection, the configuration system
also knows to expect the Xml elements <add />, <remove /> and <clear /> underneath the
<providers /> configuration element.

As the configuration system encounters each of these elements, it converts them into a method call to the
Add, Remove and Clear methods on the ProviderSettingsCollection class. Because
ProviderSettingsCollection is attributed with the ConfigurationCollection attribute, and this
attribute indicates that the collection contains instances of ProviderSettings, the configuration system
will look at the declarative attributes on the ProviderSettings class when it processes the contents of
the <providers /> section.

Because ProviderSettings has two properties adorned with the ConfigurationProperty attribute,
the configuration system knows that when it parses a “name” or “type” attribute it needs to assign these
to the Name and Type properties respectively on the ProviderSettings instance. Because the
ConfigurationProperty attribute on ProviderSettings.Name also includes IsCollectionKey =
true, the configuration system will treat the “name” attribute as the key value when calling various
methods on ProviderSettingsCollection. For example, a <remove name=”foo” /> configuration
element is interpreted as a call to ProviderSettingsCollection.Remove with the value foo”being
used as a parameter to the method.

As mentioned earlier, from your perspective all of this complexity is transparent to you. As long as you
have a property of type ProviderSettingsCollection with the requisite ConfigurationProperty
attribute, the configuration system will automatically parse your provider definitions for you.

350

Chapter 9

12_596985 ch09.qxp 12/14/05 7:50 PM Page 350

Building a Provider-Based Feature
Now that you have seen the rationale and architecture behind provider-based features, walking through
the basic steps of writing a simple provider-based feature along with a custom provider will help you tie
together the previous concepts to the provider support classes in the Framework. In this section, you
will walk through the steps of building a provider-based feature, as shown in Figure 9-1

Figure 9-1

Because the intent of this section is to concentrate on creating a provider-based feature, the feature used
for the sample will define and implement only one method that simply requests a string from its default
provider. The sample provider base class definition is:

using System;
using System.Configuration.Provider;

namespace SampleFeature
{

public abstract class SampleFeatureProvider : ProviderBase
{

//Properties
public abstract string Color { get; }
public abstract string Food { get; }

//Methods
public abstract string GetMeAString(string andPutThisOnTheEndOfIt);

}
}

A provider implementation for the sample feature is required to implement the GetMeAString method
as well as the two abstract properties. The general convention for handling feature-specific configuration
settings in a provider-based feature is to define abstract property getters on the provider base class. With
this abstract class definition, the configuration settings for a “color” attribute and a “food” attribute will
be available through their corresponding properties on the feature’s providers. This approach allows
developers to access configuration settings at runtime without having to use any of the configuration
classes.

Because the sample feature will allow you to configure multiple instances of a provider, a corresponding
provider collection class is also defined.

351

The Provider Model

12_596985 ch09.qxp 12/14/05 7:50 PM Page 351

using System;
using System.Configuration.Provider;

namespace SampleFeature
{

public class SampleFeatureProviderCollection : ProviderCollection
{

public override void Add(ProviderBase provider)
{

if (provider == null)
throw new ArgumentNullException(

“You must supply a provider reference”);

if (!(provider is SampleFeatureProvider))
throw new ArgumentException(

“The supplied provider type must derive from SampleFeatureProvider”);

base.Add(provider);
}

new public SampleFeatureProvider this[string name]
{

get { return (SampleFeatureProvider)base[name]; }
}

public void CopyTo(SampleFeatureProvider[] array, int index)
{

base.CopyTo(array, index);
}

}
}

As you can see, a provider collection class is pretty much boilerplate code. The override for the Add
method has some extra validation logic to ensure that only instances of SampleFeatureProvider are
added to the collection. The default indexer and the CopyTo implementations simply cast the provider
reference returned by the underlying ProviderCollection to a SampleFeatureProvider reference.

The public portion of the sample feature is accessible through a static entry class called Sample
FeatureMainEntryPoint. This design mirrors the approach used by many of the ASP.NET 2.0
provider-based features. The class definition below shows the relevant portions used for the public API.

using System;
using System.Configuration;
using System.Configuration.Provider;
using System.Web.Configuration;

namespace SampleFeature
{

public static class SampleFeatureMainEntryPoint
{

//Initialization related variables and logic
//snip...

//Public feature API

352

Chapter 9

12_596985 ch09.qxp 12/14/05 7:50 PM Page 352

private static SampleFeatureProvider defaultProvider;
private static SampleFeatureProviderCollection providerCollection;

public static SampleFeatureProvider Provider
{

get
{

return defaultProvider;
}

}

public static SampleFeatureProviderCollection Providers
{

get
{

return providerCollection;
}

}

public static string GetMeAString(string someString)
{

return Provider.GetMeAString(someString);
}

}
}

The static feature class allows you to access its default provider via the Provider property. If you
configure multiple providers with the feature, you can choose a specific provider with the corresponding
Providers property. Last, the static feature class exposes the functionality that is implemented by way
of a provider. This sample intentionally has a simplistic piece of logic; you can ask the feature for a
string, and it will return a string from the default provider. Complex provider-based features like
Membership have a hefty number of static feature methods providing a variety of overloads that map to
methods in the underlying providers.

A provider-based feature can be considered to go through a lifecycle of sorts:

1. First the feature is in an uninitialized state. Any call to a method on the static feature class
should result in initialization.

2. If initialization succeeds, the feature is considered initialized.

3. If initialization failed, the feature can still be considered initialized, but in a failed state. The fact
that initialization failed needs to be stored somewhere.

So, a side effect of the feature’s initialization should either be a functioning static class, or some persistent
representation of the initialization failure. The sample feature’s private Initialize method is written to
throw an exception if initialization failed. As a result, any attempt to call a public property or method on
the SampleFeatureMainEntryPoint class results in an exception if initialization failed. More specifi-
cally, any attempt to call a public static method or property will fail with an exception stating that the type
initializer failed. If you then drill into the InnerException, you will see the specific details of what
caused the failure.

353

The Provider Model

12_596985 ch09.qxp 12/14/05 7:50 PM Page 353

Because the initialization process for the feature is the place where configuration and providers come
together, let’s take a look at the initialization related code for the static feature class.

public static class SampleFeatureMainEntryPoint
{

//Initialization related variables and logic
private static bool isInitialized = false;
private static Exception initializationException;

private static object initializationLock = new object();

static SampleFeatureMainEntryPoint()
{

Initialize();
}

private static void Initialize()
{

///implementation
}

}

The feature class holds its initialization state inside of two private variables. If the initialization process
has occurred, regardless of its success, then isInitialized will be set to true. If the initialization
process failed, an exception has occurred, and this exception will be cached for the lifetime of the appli-
cation, using the initializationException variable. Both variables are static because the initializa-
tion process itself is triggered by the feature class’s static constructor.

Because the Framework calls the type’s static constructor before running any public properties and
methods call, the very first call to any portion of the public API will cause the Initialize method to
carry out the necessary initialization work. This is the one point where a call to Initialize will actu-
ally result in feature initialization. The actual logic within the Initialize method is shown here:

private static void Initialize()
{

//If for some reason the feature has already initialized
//then exit, or optionally throw if init failed
if (isInitialized)
{

if (initializationException != null)
throw initializationException;

else
return;

}

//Start the initialization
lock (initializationLock)
{
//Need to double-check after the lock was taken
if (isInitialized)
{

if (initializationException != null)
throw initializationException;

else
return;

354

Chapter 9

12_596985 ch09.qxp 12/14/05 7:50 PM Page 354

}
try
{

//Get the feature’s configuration info
SampleFeatureConfigurationSection sc =
(SampleFeatureConfigurationSection)
ConfigurationManager.GetSection(“sampleFeature”);

if (sc.DefaultProvider == null ||
sc.Providers == null || sc.Providers.Count < 1)
throw new ProviderException(“The feature requires that you “ +

“ specify a default “ +
“feature provider as well as at least one “ +
“provider definition.”);

//Instantiate the feature’s providers
providerCollection = new SampleFeatureProviderCollection();
ProvidersHelper.InstantiateProviders(

sc.Providers,
providerCollection,
typeof(SampleFeatureProvider));

providerCollection.SetReadOnly();

defaultProvider = providerCollection[sc.DefaultProvider];
if (defaultProvider == null)
{

throw new ConfigurationErrorsException(
“The default feature provider was not specified.”,
sc.ElementInformation.Properties[“defaultProvider”].Source,
sc.ElementInformation.Properties[“defaultProvider”].LineNumber);

}
}
catch (Exception ex)
{

initializationException = ex;
isInitialized = true;
throw ex;

}

isInitialized = true; //error-free initialization

}//end of lock block
}//end of Initialize method

//Public feature API
//snip...

}
}

The method first attempts to quickly return whether the feature was already initialized; if the initializa-
tion caused an error the exception that caused the failure is thrown instead. Because this sample feature
depends on a static constructor though, this type of check is not actually needed. I show it here so that
you can see how the ASP.NET provider-based features carry out their initialization logic. In the case of

355

The Provider Model

12_596985 ch09.qxp 12/14/05 7:50 PM Page 355

the ASP.NET 2.0 static feature classes, the first if block is what runs 99.9% of the time this type of method
is called, so the overhead of calling into Initialize from the public API is normally just the overhead
of an extra method call.

However, if the Initialize method detects that the feature has not been initialized, the method enters a
synchronization block using the C# lock syntax. Immediately after entering the lock section (now a maxi-
mum of one and only one thread can ever be running inside of the lock block), the method double-checks
the initialization results. This is the classic lock-and-double-check approach to performing common syn-
chronization for a class. Because, theoretically, two threads of execution may have simultaneously entered
the static method, the code makes a second check against the initialization flag to cover the case where a
second thread completed initialization after the first thread checked the Boolean isInitialized variable.

Again this static feature class is written a little bit differently from how ASP.NET provider-based features
are written. For historical reasons, the ASP.NET provider-based features didn’t use static classes until
later in the development cycle. As a result, their initialization processes depended on having a call to a
private initialization method inside of every public method and property. This would be equivalent to
having the sample class above calling Initialize from inside of the Provider and Providers
properties as well as the GetMeAString method. Because the ASP.NET approach didn’t use a static con-
structor, the feature class needed to provide its own synchronization (like that shown previously) during
initialization because it was very likely that there would be multiple threads running inside of the ini-
tialization method. The sample feature class though calls Initialize from its static constructor, so it
isn’t really necessary to use the first if-check or the lock block with the second if-check. Instead
the Framework will ensure thread safety when the Initialize method is called from the static
constructor — and because the method is called from the static constructor it never needs to be called
again from the public properties or methods on the sample feature class.

The try-catch block is where the meat of the feature initialization occurs. Using the
ConfigurationManager class in System.Configuration, the Initialize method gets a strongly
typed reference to the configuration section class for the feature (this class is later in this chapter). The
feature’s configuration section class exposes two important properties: DefaultProvider and
Providers. These properties define the default provider that the static feature class should use as well
as the set of all configured providers for the feature. If the configuration section in the application’s con-
figuration file is wrong, and it lacks definitions of a default provider and at least one feature provider,
the initialization process throws a ProviderException indicating the problem.

With the configuration information now available, the Initialize method creates an empty
SampleFeatureProviderCollection class that will eventually hold a reference to each provider that
was configured for the feature. This collection is also accessible from the static feature class’s Providers
property. The ProvidersHelper class is called to populate this provider collection based on the
providers defined in the application’s configuration file. Assuming that the helper successfully ran to
completion, the provider collection is then marked as read-only. You don’t want application developers
to be able to modify the feature’s provider collection after initialization has occurred.

The Initialize method then attempts to get a reference to the default provider and make it available
from the static feature class’s DefaultProvider property. If there is no provider in the provider collec-
tion with a Name that matches the value of the feature’s “defaultProvider” configuration attribute, then a
ConfigurationErrorsException is thrown. Assuming that the application is running in a high
enough trust level, the error message that is returned from the exception will include the file path to the
configuration file as well as the line number on which the problematic “defaultProvider” attribute for
the feature was defined.

356

Chapter 9

12_596985 ch09.qxp 12/14/05 7:50 PM Page 356

By this point, the Initialize method is able to complete without error, or it catches whatever exception
occurred. For either case the feature marks itself as being initialized. In the error case, it also stores a refer-
ence to the exception that caused initialization to fail. This is another point where the ASP.NET provider-
based features are a little different than the sample feature. The ASP.NET provider-based features need to
store the exception and rethrow it whenever their private initialization methods are called from their pub-
lic properties and methods. However, the sample feature class shown previously instead relies on the
Framework to do the heavy lifting.

Because Initialize was called from the static constructor, the Framework will remember that the
static constructor failed. This means if the Initialize method fails, subsequent attempts to call public
properties or methods on the static feature class result in a System.TypeInitializationException
being thrown. The InnerException property on this exception instance will represent the true excep-
tion that was thrown from inside of the Initialize method. From a programming standpoint either
the ASP.NET approach or the approach shown previously that relies on a static constructor is valid. The
decision is up to you.

Using the static constructor eliminates the need for funky lock logic, but you do need to drill into the
TypeInitializationException to find the root cause of a failure. The ASP.NET approach means that
you will always have the problematic exception being thrown from public APIs and properties. But you
will need to use locking inside of your feature’s initialization logic and have each public property and
method on your feature class call back to your initialization method to cause the initialization exception
to be rethrown.

At this point, let’s take a look at the feature’s configuration section class. You want a configuration class
that provides strongly typed access for a configuration that looks like:

<sampleFeature defaultProvider=”DefaultSampleFeatureProvider”>
<providers>
<add name=”DefaultSampleFeatureProvider”

type=”SampleFeature.SampleFeatureProviderImplementation, SampleFeature”
connectionStringName=”SomeConnectionString”
color=”red”
food=”burgers”
description=”this came from config” />

</providers>
</sampleFeature>

The feature itself has its own configuration section as indicated by the <sampleFeature /> configuration
element. The one allowable attribute on this element is the “defaultProvider” attribute. Nested within a
<sampleFeature /> is a <providers /> section allowing for one or more provider definitions. Aside
from the “name” and “type” attributes, all of the other attributes are feature-specific.

The configuration section class that models this configuration section is shown here:

using System;
using System.Configuration;

namespace SampleFeature
{

public class SampleFeatureConfigurationSection : ConfigurationSection
{

357

The Provider Model

12_596985 ch09.qxp 12/14/05 7:50 PM Page 357

public SampleFeatureConfigurationSection(){}

[ConfigurationProperty(“providers”)]
public ProviderSettingsCollection Providers
{

get
{

return (ProviderSettingsCollection)base[“providers”];
}

}

[ConfigurationProperty(“defaultProvider”,
DefaultValue = “DefaultSampleFeatureProvider”)]

[StringValidator(MinLength = 1)]
public string DefaultProvider {

get
{

return (string)base[“defaultProvider”];
}
set
{

base[“defaultProvider”] = value;
}

}
}

}

Inheriting from ConfigurationSection means that this class represents a configuration section in an
application configuration file. The default constructor is used by the configuration system when it new()’s
up configuration section classes while parsing configuration. The only custom code that you need to write
in the configuration class are the custom properties that represent configuration attributes and nested
configuration sections.

The Providers property represents the nested <providers /> configuration section. The declarative
attribute on the property causes the configuration system to parse the <providers /> section and its
nested elements into an instance of a ProviderSettingsCollection. By using the
ProviderSettingsCollection class, you automatically leverage the built-in behavior of the
<providers /> configuration section without the need to write any additional code.

The DefaultProvider property has two declarative attributes on it. The ConfigurationProperty
attribute indicates that if a “defaultProvider” attribute is found within the <sampleFeature /> element
that its value will be available via the DefaultProvider property. The ConfigurationProperty also has
a default value indicating that the property should be set to “DefaultSampleFeatureProvider” if the
attribute is not found in the configuration file. Last, the StringValidator attribute tells the configuration
system that if the attribute exists in configuration, the attribute must be a non-empty string. This type of
declarative validation rule is automatically enforced when the configuration system attempts to parse the
configuration.

In the SampleFeatureMainEntryPoint.Initialize method, the following code is what triggers the
parsing and loading of the configuration section:

358

Chapter 9

12_596985 ch09.qxp 12/14/05 7:50 PM Page 358

SampleFeatureConfigurationSection sc =
(SampleFeatureConfigurationSection)ConfigurationManager.GetSection(

“sampleFeature”);

The configuration runtime knows to associate the <sampleFeature /> configuration section with the
SampleFeatureConfigurationSection class once you add the following section definition to your
application’s configuration file:

<configSections>
<section name=”sampleFeature”

type=”SampleFeature.SampleFeatureConfigurationSection, SampleFeature”
allowDefinition=”MachineToApplication” />

</configSections>

A <section /> element is used to associate an XML element called sampleFeature to the custom
configuration class you just saw. The type attribute tells the configuration system where to find the
class; in this case the class is located in an unsigned assembly called SampleFeature.dll. Depend-
ing on whether you are defining the custom section for a web application, you can also use the
“allowDefinition” attribute to control the inheritance behavior of the configuration section. Because
provider-based features usually don’t allow redefinition in the level of individual subdirectories, the
“allowDefinition” attribute is set to limit the “sampleFeature” element to only machine.config,
the root web.config or an application’s web.config file.

At this point, the only piece left to implement for the sample feature is a concrete provider. The basic
implementation of a concrete provider (less the initialization step) is:

using System;
using System.Configuration;
using System.Configuration.Provider;

namespace SampleFeature
{

public class SampleFeatureProviderImplementation : SampleFeatureProvider
{

private string color;
private string food;
private String connectionString;

public override string Color
{

get { return color; }
}

public override string Food
{

get { return food; }
}

public override string GetMeAString(string andPutThisOnTheEndOfIt)
{

return “This string came from the “ +
“ SampleFeatureProviderImplementation.\r\n” +
“The provider description is: “ + Description + “\r\n” +
“The provider color is: “ + Color + “\r\n” +

359

The Provider Model

12_596985 ch09.qxp 12/14/05 7:50 PM Page 359

“The provider food is: “ + Food + “\r\n” +
andPutThisOnTheEndOfIt;

}

//Initialize method snipped out for now...
}

}

The concrete provider implementation inherits from SampleFeatureProvider and overrides the two
abstract properties as well as the single abstract method defined on the provider base class. The value of
the public properties is established when the provider is initialized, while the public method simply
plays back the property values as well as some extra strings. Assuming that you configure an instance
of SampleFeatureProviderImplementation as the default provider in configuration, a call to
SampleFeatureMainEntryPoint.GetMeAString is simply forwarded to the method implementation
shown previously. Remember that the forwarding code in the static feature class references the static
Provider property, which contains a reference to the default provider defined in configuration:

public static string GetMeAString(string someString) {
return Provider.GetMeAString(someString); }

This is the same approach used by most of the ASP.NET 2.0 provider-based features and explains why
you can use static classes like Membership and these classes just work because their static methods
internally forward their calls to the default feature provider.

Of course, the concrete provider really can’t accomplish anything unless it is initialized first:

public override void Initialize(string name,
System.Collections.Specialized.NameValueCollection config)

{
if ((config == null) || (config.Count == 0))

throw new ArgumentNullException(
“You must supply a non-null, non-empty value for config.”);

if (string.IsNullOrEmpty(config[“description”]))
{

config.Remove(“description”);
config.Add(“description”,
“This would be where you put a localized description for the provider.”);

}

//Let ProviderBase perform the basic initialization
base.Initialize(name, config);

//Perform feature-specific provider initialization here

//Color
if (string.IsNullOrEmpty(config[“color”]))
{

color = “The default color for the provider”;
}
else
{

color = config[“color”];

360

Chapter 9

12_596985 ch09.qxp 12/14/05 7:50 PM Page 360

}
config.Remove(“color”);

//Food
if (string.IsNullOrEmpty(config[“food”]))
{

food = “The default food for the provider”;
}
else
{

food = config[“food”];
}
config.Remove(“food”);

//Get the connection string
string connectionStringName = config[“connectionStringName”];
if (String.IsNullOrEmpty(connectionStringName))

throw new ProviderException(
“You must specify a connectionStringName attribute for the provider”);

ConnectionStringsSection cs =
(ConnectionStringsSection)ConfigurationManager.GetSection(

“connectionStrings”);
if (cs == null)

throw new ProviderException(
“The <connectionStrings/> configuration section was not defined.”);

if (cs.ConnectionStrings[connectionStringName] == null)
throw new ProviderException(

“The connectionStringName could not be found “ +
“in the <connectionStrings /> configuration section.”);

else
connectionString =

cs.ConnectionStrings[connectionStringName].ConnectionString;

if (String.IsNullOrEmpty(connectionString))
throw new ProviderException(

“The specified connection string has an invalid value.”);
config.Remove(“connectionStringName”);

//Check to see if unexpected attributes were set in configuration
if (config.Count > 0)
{

string extraAttribute = config.GetKey(0);
if (!String.IsNullOrEmpty(extraAttribute))
throw new ProviderException(“The following unrecognized attribute was “ +

“found in the “ + Name + “‘s configuration: ‘“ +
extraAttribute + “‘“);

else
throw new ProviderException(“An unrecognized attribute was “ +

“found in the provider’s configuration.”);
}

}

361

The Provider Model

12_596985 ch09.qxp 12/14/05 7:50 PM Page 361

The name parameter contains the “name” attribute from the provider’s <add /> configuration element,
while the config parameter contains all of the other attributes that the configuration runtime found on
the <add /> provider element. The provider first makes a sanity check to ensure that it was passed a
valid collection of configuration attributes. When a provider is initialized via a static feature provider
that in turn uses a configuration class, this sanity check is redundant. However, as mentioned earlier,
there isn’t anything that prevents a developer from attempting to new() up a provider and manually
initialize it — hence the sanity check.

If a “description” attribute was not supplied in the provider’s <add /> element, or if it was the empty
string, then the provider supplies a default description instead. Although the sample doesn’t show it
here, this is the point at which the ASP.NET 2.0 providers will fallback and return a localized description
for a provider if you did not supply a “description” in configuration. With the “name” and “description”
attributes squared away, the provider calls the Initialize implementation on ProviderBase.
ProviderBase will automatically hook up these two attributes to the Name and Description proper-
ties defined on ProviderBase.

After the base class performs its initialization tasks, the next pieces of code transfer the “color” and
“food” attributes from configuration and hook them up to the provider’s Color and Food properties.
Notice that the provider treats these attributes as optional and automatically supplies default values if
they were not specified in configuration. Because the configuration class for providers treats all
attributes other than “name” and “type” as optional, you need to implement code in your custom
providers to either enforce additional required attributes or supply reasonable defaults, as shown in the
sample provider. Also notice how after each configuration attribute is used, the attribute is removed
from the configuration collection with a call to the Remove method.

The next block of logic deals with handling a connection string attribute. The sample feature obviously
doesn’t use any type of connection string, but I included the code for handling connection strings
because it is pretty likely that many of you writing custom providers will need to deal with connection
strings at some point. The sample provider requires a “connectionStringName” attribute on each
provider <add /> element. If it doesn’t find the attribute in the attribute collection passed to
Initialize, the provider throws an exception.

Assuming that the attribute was defined, the provider goes through the following series of steps to get
the actual connection string:

1. The provider gets a reference to the strongly typed configuration class for the <connection
Strings /> configuration section. Remember that this is a new section in the 2.0 Framework
and is intended to be the place for storing database connection strings (as opposed to
<appSettings />).

2. The provider looks for the connection string defined by “connectionStringName” in the
<connectionStrings /> section. If there is no such connection string with that name, the
provider throws an exception.

3. The provider gets the value of the specified connection string and performs a basic verification
to ensure it was not set to the empty string. If the connection string’s value was set to the empty
string, the provider throws an exception.

4. The provider stores the connection string internally and then removes the
“connectionStringName” attribute from the configuration attribute collection.

362

Chapter 9

12_596985 ch09.qxp 12/14/05 7:50 PM Page 362

By this point, the provider and ProviderBase have processed all of the configuration attributes that are
known to the two classes. As a final verification, the provider checks to see if there are any remaining
attributes in the configuration attribute collection. If there are remaining attributes, the provider throws
an exception because it doesn’t know what to do with them. This is an important design point because
all of the ASP.NET 2.0 providers perform similar processing with their configuration attributes. For
example, if you were to supply additional attributes when configuring a SqlMembershipProvider, the
provider would fail with a similar exception.

One subtle point with the way the Initialize method is coded is that it is possible for the provider to
fail initialization and end up in a sort of “zombie” state; the provider exists in memory, but it hasn’t
completed enough of its initialization to be of any use. Theoretically, if you could get a reference to a
zombie provider, you could call properties and methods on it, and depending on when the provider ini-
tialization failed, you would get different results. It turns out that the ASP.NET 2.0 providers also have
the same small loophole. The ASP.NET providers don’t have extra protections that throw exceptions
from public properties or methods because these protections already exist in the static feature classes.
Assuming that you aren’t trying to create and initialize providers manually, the static feature classes will
fail initialization when one of the configured providers throws an exception from an Initialize call.
This, in turn, means that if you attempt to get a reference to a configured provider via a call to either the
Provider or Providers properties on the static feature class, you will also get an exception.

This behavior holds true for the sample feature as well. If a provider fails initialization, attempting to call
SampleFeatureMainEntryPoint.Provider (or Providers) will return a TypeInitialization
Exception, and you won’t actually be able to get a reference to a “zombie” provider. Of course, you
could still attempt to manually create and initialize a provider, but this approach is outside the intended
usage boundaries of provider-based features. You can certainly implement additional protections in your
providers to cover this case, but because a developer cannot “accidentally” misuse a provider when
going through a static feature class, this design loophole was not addressed in the 2.0 Framework.

Now that you have the end-to-end sample feature coded up (finally!), let’s actually try it out in a few
scenarios. You can compile all of the previous code into a standalone assembly. Then reference the
assembly from a console application that has the following configuration:

<configuration>
<configSections>
<section name=”sampleFeature”

type=”SampleFeature.SampleFeatureConfigurationSection, SampleFeature”
allowDefinition=”MachineToApplication” />

</configSections>

<sampleFeature >
<providers>
<add name=”DefaultSampleFeatureProvider”

type=”SampleFeature.SampleFeatureProviderImplementation, SampleFeature”
connectionStringName=”SomeConnectionString”
color=”red”
food=”burgers”
description=”this came from config” />

<add name=”SecondSampleFeatureProvider”
type=”SampleFeature.SampleFeatureProviderImplementation, SampleFeature”

363

The Provider Model

12_596985 ch09.qxp 12/14/05 7:50 PM Page 363

connectionStringName=”SomeConnectionString”
color=”green”
food=”milk-shake” />

<add name=”ThirdSampleFeatureProvider”
type=”SampleFeature.SampleFeatureProviderImplementation, SampleFeature”
connectionStringName=”SomeConnectionString” />

</providers>
</sampleFeature>

<connectionStrings>
<add name=”SomeConnectionString”

connectionString=”the connection string value” />
</connectionStrings>

</configuration>

The test application’s configuration includes the <section /> that tells the configuration system
how to parse the <sampleFeature /> configuration element. There are three providers defined for
the sample feature. Notice how the “defaultProvider” is not defined on the <sampleFeature />
element while there is a provider <add /> element using the default value for this attribute of
“DefaultSampleFeatureProvider.” The second and third provider definitions do not include a
“description,” whereas the third provider definition defines the bare minimum number of required
attributes (that is, “name,” “type,” and “connectionStringName”). Last, there is a <connection
Strings /> section that all of the provider definitions reference.

You can use the feature with the following sample test console application:

using System;
using SampleFeature;

namespace SampleFeatureConsoleTest
{
class Program
{

static void Main(string[] args)
{

try
{

Console.WriteLine(
SampleFeatureMainEntryPoint.GetMeAString(“console app”));

}
catch(Exception ex) { }

SampleFeatureProvider sp =
SampleFeatureMainEntryPoint.Providers[“SecondSampleFeatureProvider”];

string anotherString = sp.GetMeAString(“Using the second provider.”);
Console.WriteLine(anotherString);

SampleFeatureProvider sp2 =
SampleFeatureMainEntryPoint.Providers[“ThirdSampleFeatureProvider”];

364

Chapter 9

12_596985 ch09.qxp 12/14/05 7:50 PM Page 364

string anotherString2 = sp2.GetMeAString(
“This provider had no config attributes defined.”);

Console.WriteLine(anotherString2);
}

}
}

The sample application works just as you would expect any other provider-based feature to work. With
just the provider definition in configuration, it calls the static feature class to output a string. Internally,
this results in a call to the default provider. The other two code blocks demonstrate accessing the two
nondefault providers and then calling methods directly on them. The sample output is:

This string came from the SampleFeatureProviderImplementation.
The provider description is: this came from config
The provider color is: red
The provider food is: burgers
console app

This string came from the SampleFeatureProviderImplementation.
The provider description is: This would be where you put a localized description
for the provider.
The provider color is: green
The provider food is: milk-shake
Using the second provider.

This string came from the SampleFeatureProviderImplementation.
The provider description is: This would be where you put a localized description
for the provider.
The provider color is: The default color for the provider
The provider food is: The default food for the provider
This provider had no config attributes defined.

You can see how the description varies between the providers, with the second and third providers
relying on the default description defined inside of the provider’s Initialize method. The output
from the third provider also demonstrates how the provider can fallback to reasonable defaults when
option feature-specific attributes are not defined in the provider’s configuration.

If you run the sample console application along with the sample provider code in a debugger, you can
play around with intentionally creating bad configurations. Then you can see how the exception behavior
inside of the static feature class’s Initialize method causes the second and third attempts to call into
the feature to fail (this is why the test app eats all exceptions from the first attempt to use the feature).

Just for grins, you can take the sample feature and drop it into the “/bin” directory of a web application.
Take the configuration section shown for the sample console application and drop it into the web
.config for a sample web application. Then create a test page with roughly the same code as shown
above for the console application and have it write out the results to a web page. You will get the exact
same feature behavior as was demonstrated for the console application.

365

The Provider Model

12_596985 ch09.qxp 12/14/05 7:50 PM Page 365

Summary
The 2.0 Framework introduces a new design concept with provider-based features. Rather than creating
features and services where the internal implementations are “black boxes,” the new provider-based fea-
tures allow you to author custom implementations of business logic and data access logic. You can then
swap these custom implementations into place with a few simple configuration settings.

The core design pattern used by provider-based features is the Strategy pattern. The Strategy pattern is a
design approach that allows you to plug in different implementations for the core logic of a feature. In
the case of the 2.0 Framework and ASP.NET 2.0, the providers are the implementation of the Strategy
design pattern.

A number of support classes exist in System.Configuration, System.Configuration.Providers
and System.Web.Configuration to make it easier to write provider-based features yourself. You can
use the existing provider base class in conjunction with provider-specific configuration classes to build
the basic underpinnings of a provider-based feature.

Overall the sample provider-based feature that was shown had roughly 200 lines for code (and that
includes the braces!). Approximately half of the code is boilerplate implementation of things like the
provider collection and the configuration class. However, with around only 100 lines of actual initialization
code (and again the basics of initialization are the same regardless of feature), you can create a custom
provider-based feature that you can use across the spectrum of fat client and web-based applications.

366

Chapter 9

12_596985 ch09.qxp 12/14/05 7:50 PM Page 366

Membership

One of the unique aspects of ASP.NET 2.0 is that it introduces a number of powerful new application
services that are built using the provider model. Membership is one of the new services and
addresses the common need that websites have for creating and managing users and their creden-
tials. Although the Membership feature ships with a great deal of functionality right out of the box, it
is also flexible enough for you to customize or extend many of the core aspects of the feature.

This chapter discusses the core classes of the Membership feature: The public static Membership class,
the base MembershipProvider class, and the MembershipUser class all include functionality that is
common regardless of the kind of providers used with the feature. You will see the various coding
assumptions baked into the Membership feature for each of these classes. MembershipProvider is
covered in detail so that you get a better idea about what needs to be implemented as well as the gen-
eral behavior that ASP.NET expects from custom providers.

Last, you gain some insight into miscellaneous design concepts and areas of the Membership
feature. The idea of user uniqueness is covered along with guidance about how to create a custom
hash algorithm for use by providers. You also see how you can use the Membership feature in
applications other than ASP.NET websites.

This chapter will cover the following topics:

❑ The Membership class

❑ The MembershipUser Class

❑ The MembershipProvider base class

❑ The “primary key” for membership

❑ Suypported environments

❑ Using custom Hash algorithms

13_596985 ch10.qxp 12/14/05 7:50 PM Page 367

The Membership Class
Probably the first exposure many of you had to the Membership feature was through the similarly
named Membership class. This class is defined as a public static class, and the style of programming you
use with it is meant to parallel other common ASP.NET classes such as Request, Response, and so on.
Rather than having to muddle around trying to figure out how to get up and running with the feature,
the idea is that after developers know of the Membership class, they can quickly access the functionality
of the feature.

As with many provider-based features, the most important task the Membership class provides has
already completed before any of your code does anything substantial with the feature. The previous
chapter, on the provider model, showed how a static feature class is responsible for initializing a feature,
including the instantiation and initialization of all providers associated with the feature. Because the
Membership class is static, it performs initialization only once during the lifetime of an application.
Furthermore, it instantiates only one instance of each configured MembershipProvider. So, if you plan
on writing custom MembershipProviders, you need to follow the guidelines from Chapter 9 to ensure
that your custom providers are thread-safe in all public properties and methods.

Although the Membership class is static, for historical reasons (the Membership feature was implemented
very early on in the development cycle of ASP.NET 2.0) the class doesn’t take advantage of the Framework’s
support for static constructors. Instead, if you were to disassemble the class you would see that is has an
internal initialization method that implements locking semantics to ensure that it initializes the feature only
once. Furthermore, scattered (or perhaps more accurately — liberally spammed) through all of the properties
and methods are internal calls to the initialization method to ensure that the feature has parsed configura-
tion and instantiated providers before attempting to do anything substantial with the feature.

If you look at the public signature of the Membership class, the properties and methods are broken
down into three general areas:

❑ Public properties that mirror data loaded from configuration

❑ Public methods that are just facades on top of the underlying default provider

❑ Utility methods that can be used by providers

Before delving into each of these areas though, you need to be familiar with the difference between the
feature’s providers, and the feature’s default provider. By now, you have probably seen many examples
of the Membership feature’s configuration. The default configuration can always be found up in
machine.config (more on why this is the case a little bit later).

Because you can configure multiple providers for the Membership feature, much of the public API on the
Membership static class may seem a bit redundant. Furthermore, you might wonder how a method like
Membership.CreateUser maps to all the providers you have configured. This is where the concept of
the default provider comes in. The <membership /> configuration element has a defaultProvider
attribute that defines the specific provider that the static Membership class “talks” to for much of its API.

<membership defaultProvider=”SomeProviderDefinition”>
<providers>
<add name=”SomeProviderDefinition” ... />
<add name=”A_Different_Provider_Definition” ... />
</providers>

</membership>

368

Chapter 10

13_596985 ch10.qxp 12/14/05 7:50 PM Page 368

If you have only one provider defined in configuration, using the static Membership class and getting a
reference to the single default provider are pretty much the same thing. The only difference between the
two approaches is that the static Membership class provides several convenient overloads that map to
the method signatures found on a MembershipProvider. For example, several CreateUser overloads
on the static Membership class internally map to the single CreateUser method that is defined on
MembershipProvider.

However, if you have multiple provider references in configuration, it is almost guaranteed that the static
Membership class will be of limited use to you. In fact, I would go so far as to say that other than using
the Membership class for reading global Membership configuration settings, you probably won’t use the
Membership class at all in this scenario. By way of example, even the login controls that rely heavily on
the Membership feature don’t make much use of the static Membership class. Instead, the login controls
get a reference to individual providers via the Membership.Providers property and then invoke various
pieces of functionality directly on the providers with a MembershipProvider reference.

Of all of the properties available on the Membership class, only the following ones are global to the feature:

❑ HashAlgorithmType— This is a string property that echoes back the value of the
hashAlgorithmType attribute from configuration. It is mainly of use to custom provider imple-
menters that need to know which hash algorithm an application expects from its providers.

❑ Provider— Returns a MembershipProvider reference to the provider defined by the
defaultProvider attribute on the <membership /> configuration element. If you have only
one provider, you probably won’t use this property.

❑ Providers— Returns a MembershipProviderCollection containing one reference to each
provider defined within the <providers /> element contained within a <membership /> ele-
ment. If your application needs to use multiple providers, you will become very familiar this
property.

❑ UserIsOnlineTimeWindow— Defines the number of minutes that should be used to determine
whether a user has been considered active on the site.

Several other static public properties are available on the Membership class, but I won’t list them here.
These properties are just part of the Membership façade that maps to the same set of properties on the
default provider. So, if you access the Membership.PasswordStrenthRegularExpression property for
example, you are really retrieving the value of the PasswordStrengthRegularExpression property
from the default Membership provider. There is also a public event definition: the ValidatingPassword
event. If you register an event handler with this property, in reality you are registering your event handler
with the default provider.

Most of the public methods on the Membership class are also facades that just forward their calls inter-
nally to the default provider. The purpose of these façade methods is to make the underlying
MembershipProvider API a little less intimidating. As such the façade methods “fill in the blanks” for
method overloads that have fewer parameters than their counterparts on the MembershipProvider
class. On one hand, for example, administrative methods like Membership.FindUsersByName don’t
require you to supply more advanced parameters such as page index or page size; you can just call the
narrower overloads on the Membership class without having to juggle the extra information. On the
other hand, if you take advantage of this functionality with a 100,000 user data store you will quickly
regret not using the wider overloads that support paging.

369

Membership

13_596985 ch10.qxp 12/14/05 7:50 PM Page 369

This leads to a bit of a philosophical question: to use or not to use the façade methods on the static
Membership class. If you are just writing a small site for yourself and you want to get up and running
with a minimum of hassle, all of the façade methods are reasonable. However, if you plan on having
more than a few hundred users on your site, and definitely if you are working on production-grade line-
of-business or Internet-facing applications, you should look more carefully at the façade methods that
you use. At a minimum, I would recommend using the widest overloads possible because they give you
full access to all of the parameters from the underlying MembershipProvider.

To be absolutely flexible though, and to ensure your applications are maintainable over the long haul,
you should use the Membership.Providers property to get a reference to the desired provider, and
then use the resulting MembershipProvider reference to carry out your tasks. This programming style
will give you the flexibility in the future to use multiple providers in your application — something that
will be somewhat monotonous to retrofit into an application that relied exclusively on the static
Membership class:

//This is OK for simpler applications
MembershipUser mu = Membership.CreateUser(“I_am_new”,”123password@#”);

//This is better to use for larger applications
MembershipProvider mp = Membership.Providers[“Provider_Number_2”];

MembershipCreateStatus status;
MembershipUser mu;
mu = mp.CreateUser(“username”, “12password@#”, “email”,

“passwordquestion”, “passwordanswer”,
true /*isApproved*/, null /*providerUserKey*/, out status);

Obviously, it is a bit more of a hassle to use the provider directly in this case because the CreateUser
overload supports quite a few more parameters. But after you code it this way, it is much easier to swap
out providers later, potentially even adding logic that chooses a different provider on the fly based on
information supplied by the user. It also makes it easier to adjust the code if you choose to turn on or off
features like unique email addresses and self-service password resets.

The third set of methods on the Membership class are utility methods. Currently, there is only one:
GeneratePassword. If you write custom providers that support self-service password reset with auto-
generated passwords this method comes in handy. The method signature is shown here:

public static string GeneratePassword(int length,
int numberOfNonAlphanumericCharacters)

One mode of self-service password reset automatically generates a random password when a user has
forgotten his or her password. Because generating a string random password is a pain to get correct, it is
actually a handy utility to have around.

The method generates a random string of characters based on the length parameter. Furthermore, it will
ensure that at least a number of these characters are considered to be nonalphanumeric characters (for
example, Char.IsLetterOrDigit returns false for a certain number of random characters) based on
the second parameter. Note that the method may generate a password with more nonalphanumberic
characters than specified by the numberOfNonAlphanumericCharacters parameter; you are only
guaranteed that the auto-generated password has at least this many nonalphanumeric characters. Last,
the method ensures that each randomly generated character won’t trigger a false positive from

370

Chapter 10

13_596985 ch10.qxp 12/14/05 7:50 PM Page 370

ASP.NET’s request validation functionality. It would be frustrating to say the least if the system auto-
generated a new password only for the poor website user to always be rejected on the login page
because ASP.NET detected a potentially suspicious character in the submitted password when request
validation was turned on.

The MembershipUser Class
Regardless of whether you code against the static Membership class or directly against Membership
Providers, you will invariable deal with the MembershipUser class. The MembershipUser class is
intended to be a lightweight representation of a user (though in retrospect it is just a tad bit too
lightweight — hopefully basic information such as first name, last name, and/or friendly name will be
tacked on in a future release). The class is not intended to be an exhaustive or comprehensive representa-
tion of everything you would ever want to store about a user.

For ASP.NET 2.0, if you need to store more extensive information about a user, the usual approach is to
leverage the Profile feature by defining the additional properties you need within the <profile />
configuration section. Alternatively, you can author a custom provider (perhaps deriving from an exist-
ing provider type) that works with a derived version of MembershipUser. Using the Profile feature is
definitely the simpler of the two approaches. However, writing a custom provider and custom
MembershipUser class is appropriate if you don’t want to use the Profile feature in your website.

The main purpose of the MembershipUser class is to contain the basic pieces of information relevant to
authenticating a user. Some of the properties are self-explanatory, but I have listed them here with an
explanation for each:

❑ Comment— Intended as the one generic property on MembershipUser that you can use to store
any information you deem appropriate. No part of the Membership feature makes use of this
property, and it is safe to say that future releases of the Membership feature will also leave this
property alone. Although you can go overboard and implement entire universes of functionality
with this property, it comes in handy when you need to store just a few extra pieces of informa-
tion and need a convenient place to put them, perhaps those pesky first name and last name
properties!

❑ Username— This is the username that your website users type when logging in. It is also one
component of the primary key for users in the Membership feature and other related ASP.NET
application services.

❑ CreationDate— The date and time when the user was first created in the back-end data store.
The property returns its value as a local date time, but the expectation is that providers store it
in universal coordinate date time (UTC).

❑ ProviderUserKey— An alternate representation of the primary key for a MembershipUser.
Where Username is considered to be part of the primary key for identifying a user across all
ASP.NET features, the ProviderUserKey is a data-store specific primary key for the user. This
can be useful when retrofitting a custom MembershipProvider onto an existing data store and
you want to integrate it with other features you have written that already rely on a data-store-
specific primary key. Note that because this property is typed as object, it is up to you to make
the correct type casts within your code.

371

Membership

13_596985 ch10.qxp 12/14/05 7:50 PM Page 371

❑ ProviderName— The string name of the provider that manages the MembershipUser instance.
Because the MembershipUser class supports a number of methods that deal with the user
object, each user object needs to know the provider that should be called. In other words, a
MembershipUser’s methods act as a mini-façade on top of the provider that initially was
responsible for creating the MembershipUser. As a side note, the reason that this property is a
string (it was a MembershipProvider reference early on in ASP.NET 2.0) is to make it possible
to serialize a MembershipUser instance. If this property had been left as a reference type, this
would have required all MembershipProvider instances to also be serializable.

❑ Email— An optional email address for the user. This property is very important if you want
to support self-service password resets because without an email address there is no way to
communicate to the users the newly generated password or their old password.

❑ IsApproved— A Boolean property that provides a basic mechanism for indicating whether a
user is actually allowed to login to a site. If you set IsApproved to false for a user, even if the
user supplies the correct username-password credentials at login, the login attempt (that is, the
call to ValidateUser) will fail. With the IsApproved property, you can implement a basic two-
step user creation process where external customers request an account and internal personnel
approve each account. The Web Administration Tool that is accessible inside of the Visual
Studio environment provides a UI for this type of basic two-step creation process.

❑ IsOnline— A Boolean property indicating whether the user has been active on the site with the
last Membership.UserIsOnlineTimeWindow minutes. The actual computation of whether a
user is considered online is made inside of this property by comparing the LastActivityDate
property for the user to the current UTC time on the web server. If you rely on this property,
make sure that your web servers regularly synchronize their time with a common time source.
Note that the IsOnline property is not virtual in this release, so if you want to implement
alternate logic for IsOnline you have to add your own custom property to a derived
implementation of MembershipUser.

❑ IsLockedOut— A Boolean property indicating whether the user account has been locked out
due to a security violation. This property has a distinctly different connotation from the
IsApproved property. While IsApproved simply indicates whether a user should be allowed
to login to a site, IsLockedOut indicates whether an excessive number of bad login attempts
have occurred. If you support self-service password reset or password retrieval using a pass-
word question-and-answer challenge, this property also indicates whether an excessive number
of failed attempts were made to answer the user’s password question.

❑ PasswordQuestion— You can choose to support self-service password resets or self-service
password retrieval on your site. For added protection, you can require that the user answer a
password question before resetting the password or retrieving the current password. This prop-
erty contains the password question that was set for the user. It is up to you whether to allow
each user to type in a unique question, or if you provide a canned list of password questions.
Note that even though you can retrieve the password question for a user, the password answer
is not exposed as a property because it should only be managed internally by providers.

❑ LastActivityDate— The last date and time that the user was considered to be active. Certain
methods defined on MembershipProvider are expected to update this value in the back-end
data store when called. Other companion features, such as Profile, and Web Parts
Personalization, update this value assuming that you use the ASP.NET SQL providers for all of
these features. The property is returned as a local date time, but providers should internally
store the value in UTC time.

372

Chapter 10

13_596985 ch10.qxp 12/14/05 7:50 PM Page 372

❑ LastLoginDate— The last date and time a successful call to ValidateUser occurred. Providers
are expected to update this value after each successful password validation. The property is
returned as a local date time, but providers should internally store the value in UTC time.

❑ LastPasswordChangedDate— The last date and time that the password was changed — either
by the user explicitly updating their password or by having the system create a new auto-gener-
ated password. The property is returned as a local date time, but providers should internally
store the value in UTC time.

❑ LastLockoutDate— The last date and time that the user account was locked out — either due
to an excessive number of bad passwords or because too many bad password answers were
supplied. This value is only expected to be reliable when the account is in a locked out state
(that is, this.IsLockedOut is true). For accounts that are not locked out, this property may
instead return a default value. The property is returned as a local date time, but providers
should internally store the value in UTC time.

Extending MembershipUser
The MembershipUser class is public but it is not sealed, so you can write derived versions of this class.
Most of its public properties are defined virtual for this reason. In fact, the
ActiveDirectoryMembershipProvider takes advantage of this and uses a derived version of
MembershipUser to help optimize the interaction of the provider with an Active Directory or Active
Directory Application Mode data store.

The class definition for MembershipUser is:

public class MembershipUser
{
//Virtual properties
public virtual string UserName{ get; }
public virtual object ProviderUserKey{ get; }
public virtual string Email{ get; set; }
public virtual string PasswordQuestion{ get; }
public virtual string Comment{ get; set; }
public virtual bool IsApproved{ get; set; }
public virtual bool IsLockedOut{ get; }
public virtual DateTime LastLockoutDate{ get; }
public virtual DateTime CreationDate { get; }
public virtual DateTime LastLoginDate { get; set; }
public virtual DateTime LastActivityDate { get; set; }
public virtual DateTime LastPasswordChangedDate { get; }
public override string ToString();
public virtual string ProviderName { get; }

//Non-virtual properties
public bool IsOnline { get; }

//Constructors
public MembershipUser(

string providerName,
string name,
object providerUserKey,
string email,

373

Membership

13_596985 ch10.qxp 12/14/05 7:50 PM Page 373

string passwordQuestion,
string comment,
bool isApproved,
bool isLockedOut,
DateTime creationDate,
DateTime lastLoginDate,
DateTime lastActivityDate,
DateTime lastPasswordChangedDate,
DateTime lastLockoutDate)

protected MembershipUser() { }

//Methods - all are virtual
public virtual string GetPassword()
public virtual string GetPassword(string passwordAnswer)
public virtual bool ChangePassword(string oldPassword, string newPassword)
public virtual bool ChangePasswordQuestionAndAnswer(

string password, string newPasswordQuestion, string newPasswordAnswer)
public virtual string ResetPassword(string passwordAnswer)
public virtual string ResetPassword()
public virtual bool UnlockUser()

}

As mentioned earlier, the IsOnline property cannot be overridden, so you are left with the default
implementation. All of the other properties though can be overridden. The default implementation for
these properties simply returns the property values that were set when the object was first constructed.
As you can see from the lengthy constructor parameter list, the usage model for MembershipUser is:

1. Either a provider or your code new()’s up an instance, passing in all of the relevant data.

2. You subsequently access the properties set in the constructor via the public properties.

3. If you want to then update the MembershipUser object, you pass the modified instance back to
the UpdateUser method implemented either on the static Membership class or on a specific
MembershipProvider.

Note that with this approach updating the user is a little awkward because there is no update method on
the user object itself. Instead, the user object is passed as a piece of state to the UpdateUser method on a
provider.

The capability to override individual properties is somewhat limited though because you don’t have
access to the private variables that back each of these properties. The most likely purpose of an override
would be to throw an exception (for example, NotSupportedException) for properties that may not be
supported by custom providers. For example, if you authored a custom provider that did not support
the concept of account lockouts, you could throw a NotSupportedException from a
LastLockoutDate override.

All of the public methods currently defined on MembershipUser can be overridden. The default imple-
mentations of these methods are just facades that do two things:

❑ Get a reference to the MembershipProvider based on the providerName parameter supplied
in the constructor.

❑ Calls the method on the MembershipProvider reference that corresponds to the public method
on the MembershipUser object — for example the ResetPassword overloads on
MembershipUser call the ResetPassword method on the appropriate provider.

374

Chapter 10

13_596985 ch10.qxp 12/14/05 7:50 PM Page 374

The providerName parameter on the constructor is actually a very important piece of information that
effectively limits any kind of “tricks” involving manual creation of providers. Remember from Chapter 9
that the provider initialization sequence is something that you can accomplish with a few lines of your
own custom code.

However, if you attempt to instantiate MembershipProviders with your own code, and if you need to
manipulate MembershipUser instances, your code will fail. Inside of the MembershipUser constructor a
validation check ensures providerName actually exists in the Membership.Providers collection. If the
provider cannot be found, an exception is thrown. If you wanted to try something like spinning up
dozens or hundreds of provider instances on the fly without first defining the providers in configura-
tion, the basic approach or just instantiating providers manually won’t work.

MembershipUser State after Updates
If you call any of the public methods on MembershipUser that affect the state of the user object (that is,
all methods except for the GetPassword overloads), then the MembershipUser instance calls an internal
method called UpdateSelf. Unfortunately in ASP.NET 2.0 this method is not public or protected, let
alone being defined as virtual, so the behavior of this method is a black box. What happens is that after
the state of the MembershipUser instance is modified, the base class internally triggers a call to
GetUser() on the user object’s associated provider instance. If you look at a SQL trace on the
SqlMembershipProvider, or if you trace method calls on a custom provider, this is why you always
see an extra user retrieval running after most of the methods on MembershipUser are called.

With the MembershipUser instance returned from the GetUser call, the internal UpdateSelf method
transfers the latest property values from the returned MembershipUser instance to the properties on the
original MembershipUser instance. The idea here is that some of the public methods on MembershipUser
cause changes to related properties — for example, calling ResetPassword implicitly changes the
LastPasswordChangedDate. The theory was that it wouldn’t make sense for a method call to change the
state of the MembershipUser instance and then have the instance not reflect the changes. Though arguably
there isn’t anything wrong with a different approach that would have left the original MembershipUser
instance intact despite the changes in the data store. Some developers will probably find it a little odd that
the original MembershipUser instance suddenly changes on them.

Because some of the properties on a MembershipUser instance are public read-only properties, the
behavior of this self-updating gets a little weird. The UpdateSelf method transfers updated values for
read-only properties directly to the private variables of the MembershipUser base class. For properties
that have setters, UpdateSelf transfers property data by calling the public MembershipUser setters
instead. This means that if you have written a derived MembershipUser class, and overridden the
public setters and the constructors, the UpdateSelf behavior may either bypass your custom logic or it
may call your logic too many times.

For example, if a derived MembershipUser class overrides the constructor and performs some manipula-
tions on PasswordQuestion prior to calling the base constructor, then the private variable holding the pass-
word question will reflect this work. If you then subsequently call ChangePasswordQuestionAndAnswer
on the MembershipUser instance, the internal UpdateSelf method will cause the following to occur:

375

Membership

13_596985 ch10.qxp 12/14/05 7:50 PM Page 375

1. A new MembershipUser instance is retrieved from the call to GetUser (assume that you write
a custom provider that returns a derived MembershipUser instance). As a result, this new
instance will have its password question processed in your custom constructor.

2. UpdateSelf then takes the result of MembershipUser.PasswordQuestion and transfers its
value directly to the private variable on the original MembershipUser instance that stores the
question.

With this sequence you are probably OK because the custom processing in your constructor happened
only once and then the result was directly stored in a private variable on the original instance. What
happens though for a property with a public setter — for example the Comment property? Now the
sequence of steps is:

1. A new MembershipUser instance is retrieved from the call to GetUser. The new instance does
something to the Comment in your custom constructor.

2. UpdateSelf takes the result of MembershipUser.Comment and calls the public Comment setter
on the original MembershipUser instance. If you have custom logic in your setter as well, then
it will end up manipulating the Comment property a second time, which will potentially result
in a bogus value.

To demonstrate this, start out with a custom MembershipUser type, as shown below:

using System.Web.Security;
...
public class CustomMembershipUser : MembershipUser
{

public CustomMembershipUser() {}

//Copy constructor
public CustomMembershipUser(MembershipUser mu) :

base(mu.ProviderName, mu.UserName, mu.ProviderUserKey, mu.Email,
mu.PasswordQuestion, mu.Comment, mu.IsApproved, mu.IsLockedOut,
mu.CreationDate, mu.LastLoginDate, mu.LastActivityDate,
mu.LastPasswordChangedDate, mu.LastLockoutDate) { }

public override string Comment
{

get
{ return base.Comment; }
set
{

base.Comment =
value + “ Whoops! Extra modification occurred in property setter”;

}
}

}

Try using this custom type to retrieve a MembershipUser and perform what should be a no-op update:

...
MembershipUser mu = Membership.GetUser(“testuser”);

//Convert the MembershipUser into the custom user type

376

Chapter 10

13_596985 ch10.qxp 12/14/05 7:50 PM Page 376

CustomMembershipUser cu = new CustomMembershipUser(mu);

Response.Write(“Comment before update: “ + cu.Comment + “
”);
Membership.UpdateUser(cu);
Response.Write(“Comment after update: “ + cu.Comment);

When you run this code snippet in a page load event, the output is bit surprising:

Comment before update: This is the original comment
Comment after update: This is the original comment Whoops! Extra modification
occurred in property setter

Even though the code snippet appears to change none of the properties on the MembershipUser
instance, after the update the Comment property has clearly been modified. This is due to the behavior of
the internal UpdateSelf method on MembershipUser— in this case, UpdateSelf was triggered by
code inside of the Membership class implementation of UpdateUser. (Membership.UpdateUser calls
an internal method on MembershipUser which in turn calls UpdateSelf). You will see the same side
effect from calling methods on MembershipUser as well. If you run into this problem, you can avoid the
“stealth” update by calling UpdateUser on a provider directly. Doing so bypasses the refresh logic hid-
den inside of the Membership and MembershipUser classes.

It is likely though that derived versions of MembershipUser probably won’t be changing the data that is
returned inside of property setters. However, developers may author derived classes that implement
custom dirty detection (that is, if the setters weren’t called and an update is attempted, do nothing with
the MembershipUser object) as well as throw exceptions from unsupported properties.

For the case of dirty detection, the only real workaround is to override the methods as well as the properties
on MembershipUser. Then you can write code in the method overrides that does something like:

using System.Web.Security;

public class CustomMembershipUser : MembershipUser
{
//Used by a custom provider to determine if the user object really
//needs to be updated.
internal bool isDirty = false;

...
public override string Comment
{

set
{

base.Comment = value;
isDirty = true;

}
}

public override bool ChangePassword(string oldPassword, string newPassword)
{
//When this call returns, UpdateSelf will have triggered the object’s
//dirty flag by accident.

377

Membership

13_596985 ch10.qxp 12/14/05 7:50 PM Page 377

bool retVal = base.ChangePassword(oldPassword, newPassword);

//reset your private dirty tracking flags to false at this point
isDirty = false;

}
}

On one hand, basically you need to explicitly manage your dirty detection logic and ensure that after
you call the base implementation, your reset your internal dirty detection flags because they may have
been spuriously tripped due to the way UpdateSelf works.

On the other hand, if you throw exceptions from some of your property getters and setters, you may be
wondering if it is even possible to write a derived MembershipUser class. Theoretically, if the second the
internal UpdateSelf method attempts to transfer property data back to the original MembershipUser
instance, your custom class should blow up. In the finest programming tradition (and trust me — I mean
this tongue in cheek), the solution in ASP.NET 2.0 is that the transfer logic inside of UpdateSelf is
wrapped in a series of try-catch blocks. So, the guts of this method look something like:

try
{

Comment = newUserFromGetUser.Comment;
}
catch (NotSupportedException) { }

And here you thought jokes about Microsoft code relying on swallowing exceptions was a joke — however,
ildasm.exe does not lie. Seriously though, the trick to making sure that a derived MembershipUser class
doesn’t fail because of unimplemented properties is to always throw a NotSupportedException (or a
derived version of this exception) from any properties that you don’t want to support. The internal
UpdateSelf will always eat a NotSupportedException when it is transferring property data between
MembershipUser instances. If you use a different exception type though, then you will quickly see that
your derived MembershipUser type fails whenever its public set methods are called. Needless to day,
making UpdateSelf protected virtual is on the list of enhancements for a future release!

The way in which updated property data is transferred back to the original MembershipUser instance is
summarized in the following table:

Property Name Transferred to Private Variable Transferred Using Public Setter

Comment No Yes

CreationDate Yes No

Email No Yes

IsApproved No Yes

IsLockedOut Yes No

LastActivityDate No Yes

LastLockoutDate Yes No

LastLoginDate No Yes

378

Chapter 10

13_596985 ch10.qxp 12/14/05 7:50 PM Page 378

Property Name Transferred to Private Variable Transferred Using Public Setter

LastPasswordChangedDate Yes No

PasswordQuestion Yes No

ProviderUserKey Yes No

Why Are Only Certain Properties Updatable?
Only a subset of the properties on a MembershipUser instance has public setters. The reasons for this
differ depending on the specific property. The different reasons for each read-only property are
described in the following list:

❑ UserName— In this release of the Membership feature, a username is considered part of the pri-
mary key for a MembershipUser. As a result, there is no built-in support for updating the user-
name. There are no public APIs in any of the application services that allow you to make this
change, though of course there is nothing stopping enterprising developers from tweaking things
down in the data layer to make this work. From an API perspective, because username is not
meant to be updated, this property is left as a read-only property.

❑ ProviderUserKey— Because this property is a data-store specific surrogate for UserName, the
same feature restriction applies. The Membership feature doesn’t expect the underlying primary
key for a user to be updatable. Again this may change in a future release.

❑ PasswordQuestion— This piece of user data is updatable, but you need to use the
ChangePasswordQuestionAndAnswer method to effect a change. You cannot just change the
property directly and than call Update on a provider.

❑ IsLockedOut— The value for this property is meant to reflect the side effect of previous login
attempts or attempts to change a password using a question and answer challenge. As a result,
it isn’t intended to be directly updatable through any APIs. Note that you can unlock a user
with the UnlockUser method on MembershipUser.

❑ LastLockoutDate— As with IsLockedOut, the value of this property is a side effect of an
account being locked, or being explicitly unlocked. So, it is never intended to be directly updat-
able though the APIs.

❑ CreationDate— This date/time is determined as a side effect of calling CreateUser. After a
user is created, it doesn’t really make sense to go back and change this date.

❑ LastPasswordChangedDate— As with other read-only properties, the value is changed as a
side effect of calling either ChangePassword or ResetPassword. From a security perspective, it
wouldn’t be a good idea to let arbitrary code change this type of data because then you wouldn’t
have any guarantee of when a user actually triggered a password change.

❑ IsOnline— This is actually a computed property as described earlier, so there is no need for a
setter. You can indirectly influence this property by setting LastActivityDate.

❑ ProviderName— When a MembershipUser instance is created, it must be associated with a
valid provider. After this associated is established though, the Membership feature expects the
same provider to manage the user instance for the duration of its lifetime. If this property were
settable, you could end up with some strange results if you changed the value in between calls
to the other public methods on the MembershipUser class.

379

Membership

13_596985 ch10.qxp 12/14/05 7:50 PM Page 379

Among the properties that are public, Email, Comment, and IsApproved are pretty easy to understand.
Email and Comment are just data fields, while IsApproved can be toggled between true and false—
with a value of false causing ValidateUser to fail even if the correct username and password are
supplied to the method.

LastActivityDate is public so that you can write other features that work with the Membership
online tracking feature. For example, you could implement a custom feature that updates the user’s
LastActivityDate each time user-specific data is retrieved. The ASP.NET SQL providers actually do
this for Profile and Web Parts Personalization. However the ASP.NET SQL providers all use a common
schema, so the Profile and Personalization providers perform the update from inside of the database.
The LastActivityDate property allows for similar behavior but at the level of an object API as
opposed to a data layer.

The last settable property on MembershipUser is the LastLoginDate property. However, leaving
LastLoginDate as setable may seem a bit odd. It means that someone can write code to arbitrarily set
when a user logged in — which of course means audit trails for logins can become suspect. Some develop-
ers though want to integrate the existing Membership providers with their own authentication systems.
For these scenarios, there is the concept of multiple logins, and thus the desire to log a user account into
an external system while having the Membership feature reflect when this external login occurred.

If you want to prevent LastLoginDate from being updatable (currently only the SQL provider even
supports getting and setting this value), you can write a derived MembershipProvider that returns a
derived MembershipUser instance. The derived MembershipUser instance can just throw a
NotSupportedException from the LastLoginDate setter.

DateTime Assumptions
There are quite a number of date related properties on the Membership feature, especially for the
MembershipUser class. For smaller websites the question of how date-time values are handled is proba-
bly moot. In single-server environments, or web farms running in a single data center, server local time
would be sufficient. However, as the feature was being iterated on a few things become pretty clear:

❑ The ActiveDirectoryMembershipProvider relies on AD/ADAM for storage. The Active
Directory store keeps track of significant time related data using UTC time — not server local time.

❑ If in the future the feature is ever extended to officially support database replication with the
SqlMembrshipProvider, then problems with running in multiple time zones will become
an issue.

For both of these reasons, the code within the providers as well as within the core Membership classes was
changed to instead use UTC time internally. Unlike the forms authentication feature that unfortunately has
the quirk with using local times as opposed to UTC times, the desire was to have the Membership feature
always work in UTC time to avoid problems with multiple time-zone support as well as clock adjustments
(that is, daylight savings time).

Although the Membership feature doesn’t support database replication in ASP.NET 2.0 (it has never
been tested), it is theoretically possible in future releases to have a network topology whereby different
slices of Membership data are created in completely different time zones and then cross-replicated
between different data centers. For this kind of scenario, having a common time measure is critical.

380

Chapter 10

13_596985 ch10.qxp 12/14/05 7:50 PM Page 380

On a less theoretical note, it is likely that some websites will do things such as create new users right
around the time server clocks are being adjusted. If information such as CreationDate were stored in
machine local time, you would end up with some bizarre data records indicating that users were being
created in the recent past or the soon-to-arrive future. Especially with security sensitive data this isn’t a
desirable outcome.

Some folks may also have server deployments that span time zones. For example, you may have multi-
ple data centers with web servers running into two different time zones — with each set of web servers
pointed back to a central data center running your database servers. In this kind of scenario, which time
zone do you pick? If you don’t use UTC time, you will always end up with weird date-time behavior
because with this type of physical deployment some set of servers will always be in a different time zone
than the time zone you selected for storing your data.

From a programming perspective, the .NET Framework traditionally returned machine local times from
all public APIs. To handle this behavior while still handling UTC times internally, the Membership fea-
ture assumes that all date-time parameters passed in to public properties and methods to be in local
time. Furthermore, whenever date-time data is returned from public properties and methods, data is
always converted back to machine local time. Internally though, the core Membership classes as well as
the default providers manipulate and store date-time data in UTC time. If you look at the data stored by
the SqlMembershipProvider in a database, you will see that all the date-time-related columns appears
to be wrong (assuming, of course, that you don’t actually live somewhere in the GMT time zone!). The
reason is that by the time any Membership data is stored, the date-time-related variables have been con-
verted to UTC time.

From the standpoint of someone using the Membership feature, this behavior should be mostly trans-
parent to you. You can retrieve instances of MembershipUser objects, set date-related properties, or per-
form date related queries all using the local time your machine. The only potential for confusion occurs
if you perform search queries using other features such as Profile that support date ranges for search
parameters. If your query happens to span a time period when the clocks were reset, you will probably
get slightly different results than if the Membership feature had stored data keyed off of a machine’s
local time.

Within the Membership feature, the way in which UTC times are enforced is:

❑ The various classes always call ToUniversalTime on any date-time parameters passed in to them.

❑ The MembershipUser class calls ToUniversalTime on all date-time parameters for its con-
structor as well as in the setters for any public properties. This means that you can set a
machine-local date time for a property like LastActivityDate, and MembershipUser will still
ensure that it is treated as a UTC time internally. Due to the way the .NET Framework
System.DateTime class works, you can actually pass UTC date-time parameters if you want to
the MembershipUser class (or any class for that matter). This works because the result of calling
ToUniversalTime on a UTC System.DateTime is a no-op.

❑ For public getters, the MembershipUser class calls ToLocalTime on date-time data prior to
returning it. As a result, all data retrieved from the Membership feature will always reflect
machine-local times.

The one thing you should do for your servers, both web servers and whatever back-end servers store
Membership data, is to regularly synchronize your server clocks with a common time source. Although
this recommendation isn’t made specifically because of any inherent problem with using UTC time, the
implementation details for supporting UTC time highlight the need for synchronized clocks.

381

Membership

13_596985 ch10.qxp 12/14/05 7:50 PM Page 381

Especially for the SqlMembershipProvider, date-time values are usually created and compared on the
web server, and then transmitted and stored on a database server. In any web farm with more than one
server, this means that no single master server is responsible for generating date-time values. You could
definitely end up with one web server logging a failed login attempt (and hence updating the date-time
related failure data) and a different server loading this information during the course of processing a sec-
ond login attempt. Excessive amounts of clock skew across a web farm will lead to incorrect time calcu-
lations being made in this type of scenario. A few seconds of time skew isn’t going to be noticeable, but
if your servers are minutes apart, you will probably see intermittent problems with date-time-related
functionality.

If you plan on writing custom providers for the Membership feature, you should keep the “UTC-ness”
of the feature in mind. If at all possible custom providers should follow the same behavior as the built-in
providers, and store all date-time information internally as UTC date-times.

The MembershipProvider Base Class
The central part of the Membership feature is its use of providers that derive from
System.Web.Security.MembershipProvider. Out of the box, the Framework ships with two imple-
mentations of this class: SqlMembershipProvider and ActiveDirectoryMembershipProvider.
Both of these providers are discussed in more detail in succeeding chapters. Because the Membership
feature allows you to configure any type of provider, you can also write your own custom implementa-
tions of this class.

The base class definition that all providers must adhere to is shown below. The class definition falls into
three major areas: abstract properties, abstract and protected methods, and a small number of event-
related definitions.

public abstract class MembershipProvider : ProviderBase
{

//Properties
public abstract bool EnablePasswordRetrieval { get; }
public abstract bool EnablePasswordReset { get; }
public abstract bool RequiresQuestionAndAnswer { get; }
public abstract string ApplicationName { get; set; }
public abstract int MaxInvalidPasswordAttempts { get; }
public abstract int PasswordAttemptWindow { get; }
public abstract bool RequiresUniqueEmail { get; }
public abstract MembershipPasswordFormat PasswordFormat { get; }
public abstract int MinRequiredPasswordLength { get; }
public abstract int MinRequiredNonAlphanumericCharacters { get; }
public abstract string PasswordStrengthRegularExpression { get; }

//Public Methods
public abstract MembershipUser CreateUser(string username,

string password, string email, string passwordQuestion,
string passwordAnswer, bool isApproved, object providerUserKey,
out MembershipCreateStatus status)

public abstract bool ChangePasswordQuestionAndAnswer(string username,
string password, string newPasswordQuestion, string newPasswordAnswer)

public abstract string GetPassword(string username, string answer)

382

Chapter 10

13_596985 ch10.qxp 12/14/05 7:50 PM Page 382

public abstract bool ChangePassword(string username, string oldPassword,
string newPassword)

public abstract string ResetPassword(string username, string answer)
public abstract void UpdateUser(MembershipUser user)
public abstract bool ValidateUser(string username, string password)
public abstract bool UnlockUser(string userName)
public abstract MembershipUser GetUser(object providerUserKey,

bool userIsOnline)

public abstract MembershipUser GetUser(string username, bool userIsOnline)
public abstract string GetUserNameByEmail(string email)
public abstract bool DeleteUser(string username, bool deleteAllRelatedData)
public abstract MembershipUserCollection GetAllUsers(int pageIndex,

int pageSize, out int totalRecords)

public abstract int GetNumberOfUsersOnline()
public abstract MembershipUserCollection FindUsersByName(

string usernameToMatch, int pageIndex, int pageSize,
out int totalRecords)

public abstract MembershipUserCollection FindUsersByEmail(string emailToMatch,
int pageIndex, int pageSize, out int totalRecords)

//Protected helper methods
protected virtual byte[] EncryptPassword(byte[] password)
protected virtual byte[] DecryptPassword(byte[] encodedPassword)

//Events and event related methods
public event MembershipValidatePasswordEventHandler ValidatingPassword
protected virtual void OnValidatingPassword(ValidatePasswordEventArgs e)

}

If you are thinking about writing a custom provider, the extensive abstract class definition may seem a bit
intimidating at first. An important point to keep in mind though is that not only is the Membership feature
pluggable by way of providers — the breadth of functionality you choose to implement in a provider is also
up to you. Although the SQL and AD based providers implement most of the functionality defined by the
abstract class (the SQL provider implements 100% of it and the AD provider implements about 95% of it), it
is a perfectly reasonable design decision to implement only the slice of provider functionality that you care
about. For example, you may not care about exposing search functionality from your provider, in which
case you could ignore many of the Get* and Find* methods.

The way to think about the available functionality exposed by a provider is to break it down into the dif-
ferent areas described in the next few sections. If there are broad pieces of functionality you don’t care
about, you can just stub out the requisite properties and methods for that functionality in your custom
provider by throwing a NotSupportedException.

Basic Configuration
A portion of the MembershipProvider class signature deals directly with configuration information
that is usually expected to be available from any custom provider.

383

Membership

13_596985 ch10.qxp 12/14/05 7:50 PM Page 383

All providers should at least implement the getter for the ApplicationName property. The concept of
separating data by application name is so common to many of the new provider-based features in
ASP.NET 2.0 that the getter should always be implemented. If it turns out that you are mapping
Membership to a data store that doesn’t really have the concept of an “application” (for example, the AD
provider doesn’t support the concept of an application but it does implement the getter), you can have
the setter throw a NotSupportedException. Internally, your custom provider can just ignore the appli-
cation name that it loaded from configuration.

User Creation and User Updates
Most of the functionality on a MembershipProvider isn’t of much use unless users are created in the
first place. You have two approaches to this:

❑ You can write a full-featured provider that implements the create-, delete-, and update-related
methods.

❑ You can stub out all of the create-, delete-, and update-related methods if you have some other
mechanism for populating the data store. For example, your provider may only expose the abil-
ity to validate a username-password pair. The actual user accounts may be created through
some other mechanism. In this scenario, your custom provider could just choose not to
implement the ability to create and update users.

The properties related to user creation and user updates mostly deal with the user’s password.

❑ MinRequiredPasswordLength— On one hand, if a provider supports enforcing password
strengths, it should return the minimum length of passwords allowed when using the provider.
On the other hand, if a provider does not enforce any kind of password strength requirements, it
should just return either zero or one from this property. If a provider doesn’t care about password
lengths, then it can return the number one as a reasonable default. The CreateUserWizard and
the ChangePassword controls both use this property when outputting error information.
However, neither of the controls automatically generates any type of validators based on this
property — they just use the property value for outputting default error information if an invalid
password was entered into the controls.

❑ MinRequiredNonAlphanumericCharacters— A provider that enforces password strength
rules can choose to also require a minimum number of nonalphanumberic characters in pass-
words. A custom provider that either does not enforce password strength or does not have the
additional requirement around nonalphanumeric characters should just return zero from this
property. The CreateUserWizard and the ChangePassword controls both use this property
when outputting error information. However, neither of the controls automatically generates
any type of validators based on this property — they just use the property value for outputting
default error information if an invalid password was entered into the controls.

❑ PasswordStrengthRegularExpression— Because some developers have more complex
password rules, they may use regular expressions instead of (or in addition to) the previous
constraints. A provider that supports custom regular expressions should return the regular
expression that was configured via this property. If a provider does not support enforcing pass-
word strength via a custom regular expression, it should just return an empty string from this
property. You could argue that throwing a NotSupportedException would make sense, but
returning a hard-coded empty string is just as effective and doesn’t result in an unexpected
exception when reading the property. Note that the CreateUserWizard and ChangePassword

384

Chapter 10

13_596985 ch10.qxp 12/14/05 7:50 PM Page 384

controls don’t make use of this property. Both of these controls also support specifying a regular
expression for password validation — however the regular expression on these controls is
intended for use in a client-side regular expression validator (that is, a regular expression that
works in JavaScript) and as a result they do not use the value returned from this property.

❑ ValidatingPassword— This is a public event defined on the base MembershipProvider class.
Because it is not defined as virtual, it’s possible for developers to register custom password
validation handlers even though a custom provider may not support extensible password valida-
tion and, thus, will never fire this event. For now, the best way to inform developers that a
provider doesn’t support extensible password validation is to document the limitation. There is a
related protected virtual method that providers use (OnValidatingPassword) to fire the event.

❑ RequiresUniqueEmail— If you want to ensure that any users created with your custom
membership provider have a unique email return true from this property. If you don’t care
about email uniqueness return false from this property. The CreateUser control in the Login
controls will add a validator that requires a valid email address in the event a provider returns
true from this property.

The methods related to user creation and updates deal with both the MembershipUser object as well
changing just the user’s password.

❑ CreateUser— If your provider supports creating users then you would implement this method.
However, if you have some other mechanism for creating users you should just throw a
NotSupportedException from this method. If your provider requires unique email addresses
(based on the requiresUniqueEmail configuration attribute), then its implementation should
perform the necessary validations to enforce this. If your provider doesn’t support explicitly defin-
ing the data-store-specific primary key with the providerUserKey parameter, it should throw a
NotSupportedException in the event that a non-null value is supplied for this parameter. For
other parameters, your provider should perform validations based on the password strength
enforcement properties and password question and answer configuration properties. If a provider
supports extensible password validation routines, it should raise the ValidatingPassword event
as well. This allows developers to provide custom password validation — with the most likely
place to do this being global.asax. Because the CreateUser method returns a status parameter
of type MembershipCreateStatus, you can set the status to one of the error codes (that is, some-
thing other than MembershipCreateStatus.Success) in the event that a validation check fails.
Normally, the CreateUser method should not return an exception if a parameter validation fails
because there is an extensive set of status codes that can be returned from this method. A
NotSupportedException should only be thrown for cases where a parameter is supplied but the
provider doesn’t support the functionality that would make use of this parameter (that is, attempt-
ing to set the providerUserKey or supplying questions and answers when the provider can’t
store these values or make use of them). The CreateUserWizard internally calls this method on
the provider configured for use with the control.

❑ DeleteUser— The companion to the CreateUser method. If a custom provider supports cre-
ating users, it likely also supports deleting users. Depending on how a custom provider is writ-
ten, other features may depend on the users created with the provider. For example, the
SqlMembershipProvider uses a database schema that integrates with other features such as
Role Manager. If this is the case for a custom provider, it should support the ability to perform a
“clean” delete that can remove related data from other features prior to deleting the member-
ship user data. As with CreateUser, if a provider doesn’t support user deletion it should just
throw a NotSupportedException from this method.

385

Membership

13_596985 ch10.qxp 12/14/05 7:50 PM Page 385

❑ UpdateUser— After a user is created there is a subset of data on MembershipUser that is
updatable. If a custom provider supports updating any user information (Email, Comment,
IsApproved, LastLoginDate, and LastActivityDate), the provider should implement this
method. A custom provider can choose to only allow a subset of these properties to be updatable.
If email addresses can be updated, a custom provider should enforce the uniqueness of the new
value based on the requiresUniqueEmail configuration attribute. The best way to enforce this is
by creating a derived MembershipUser class that goes hand in hand with the custom provider.
The custom MembershipUser class should throw NotSupportExceptions from the property set-
ters for properties that are not updatable. In this way, you prevent a developer from updating
property data that you don’t want to be changed via the provider. The custom provider should
also ignore these properties and not use them when issuing a user update. Additionally, a
custom provider that uses a derived MembershipUser type should ensure that the derived
MembershipUser class is always passed as a parameter to the UpdateUser method — if some
other type is used (for example, the base MembershipUser type), the provider should throw an
ArgumentException to make it clear to developers that only the derived MembershipUser type
is allowed. This is the general approach used by the ActiveDirectoryMembershipProvider.
This provider has a related MembershipUser-derived class that does not allow updates to
LastLoginDate or LastActivityDate; it prevents updates to these properties by throwing a
NotSupportedException from these properties on the ActiveDirectoryMembershipUser
class. However, the AD-based provider skips some performance optimizations in its update
method internally if the wrong MembershipUser type is passed to it. I recommend throwing an
ArgumentException instead for custom providers because it makes it clearer that there is a spe-
cific MembershipUser-derived type that must be used. Of course, if your provider doesn’t sup-
port updating any user data, it should just throw a NotSupportedException instead.

❑ ChangePassword— If your provider supports creating users, you should support the ability for
users to at least change their passwords via this method. Your provider should perform validations
based on the password strength enforcement properties if your provider supports any type of
strength enforcement. Furthermore, if a provider supports extensible password validation routines,
it should raise the ValidatingPassword event as well. Because a user’s old password is required
to change the password, if a provider keeps track of bad passwords, it should include tracking logic
in this method that keeps track of bad password attempts and locks out users as necessary. On one
hand, users who have already been locked out should never be allowed to change their password.
On the other hand, if you create users through some other mechanism, it is possible that you also
have a separate process for allowing users to update their passwords, in which case you should just
throw a NotSupportedException. The ChangePassword control in the Login controls calls this
method on the provider associated with the control.

❑ OnValidatingPassword— This protected virtual method is defined on the base
MembershipProvider class and should be used by custom providers to raise the password
validation event from the CreateUser, ChangePassword, and ResetPassword methods. If the
event argument for this event is returned with an exception object, the provider should throw
the returned exception rather than continuing. If instead the returned event argument just has
the Cancel property set to true, a custom provider should throw a ProviderException stating
that the password validation failed. If a custom provider doesn’t allow for custom password
validation logic to be registered by way of the ValidatingPassword event, there is no great
way to communicate this to developers other than through documentation. Unfortunately, the
internal property that holds the event delegates for this event is not accessible, so a custom
provider has no way to check whether or not events have been registered for it.

386

Chapter 10

13_596985 ch10.qxp 12/14/05 7:50 PM Page 386

Retrieving Data for a Single User
The provider signature supports a number of methods for retrieving single user objects and sets of user
data. If a custom provider supports more than just the ValidateUser method, it should at least support
the ability to fetch a single MembershipUser instance for a given user.

❑ GetUser— There are two GetUser overloads: one that retrieves users by name and one that
retrieves users by way of a data store specific primary key. At a minimum, a custom provider
that supports retrieving users should support fetching a MembershipUser by username. This is
probably the most common approach for many developers because the username is available
off of the HttpContext after a user logs in. If you don’t want to support the concept of retriev-
ing a user with a ProviderUserKey, you can throw a NotSupportedException from this
overload. The ChangePassword and PasswordRecovery controls internally call the GetUser
overload that accepts a username.

❑ GetUserNameByEmail— If your provider supports storing email addresses for users, it should
support the ability to retrieve users by way of their email address. Of course, requiring unique
email addresses is pretty much a requirement if you want this method to return any sensible
data. Although a provider could allow storing users with duplicate email addresses, calling this
method will result in ambiguous data because it can only return a single username. If there are
duplicates, a custom provider can either return the first matching username, or it can throw
some kind of exception. The general convention though is to return the first matching username
if unique emails are not required and to throw a ProviderException if unique emails are
required and more than one matching user record was found. If a provider does not need to
support email-based retrieval, it should just throw a NotSupportedException instead.

Retrieving and Searching for Multiple Users
The ability to search for and retrieve multiple users is considered to be more of an administrative task
than a normal runtime task. Administrative applications have the most need for the ability to search for
users and return arbitrary sets of users. There are no provider properties on MembershipProvider-
related to this functionality, though custom providers may have provider-specific configuration properties
that deal with search functionality. For example, the ActiveDirectoryMembershipProvider has
configuration properties that control how search related methods work. There are number of search-
related methods though that provider implementers can choose to write.

❑ GetAllUsers— As the name implies, a provider should return all users from the underlying data
store. This method is mostly useful for small numbers of users (the low hundreds at most), because
for any large quantity of user records, retrieving every possible user is ungainly. The method on the
provider class includes parameters to support paging. However, paging can sometimes be difficult
to implement, especially for data stores that don’t natively expose any concept of paged results. If
your provider doesn’t support paging, it can just ignore the pageIndex and pageSize parameters;
there isn’t really any good way to communicate the existence or lack of paging based on this
method’s parameter signature. The ASP.NET configuration tool that is available from inside of the
Visual Studio environment makes use of this method. If your provider doesn’t support this type of
search functionality, throw a NotSupportedException.

❑ FindUsersByName— A filtered search method that can retrieve a set of users based on username.
As with GetAllUsers some provider implementers will be able to support paging semantics,
while other custom providers will need to ignore the paging-related parameters. Another aspect

387

Membership

13_596985 ch10.qxp 12/14/05 7:50 PM Page 387

of this search method is support for wildcard characters in the usernameToMatch parameter:
You will need to document the level of support a custom provider has for wildcard characters.
The general expectation is that if the underlying data store (that is, SQL Server) supports
wildcards in its native query language, the provider should allow the same set of wildcard
characters in the usernameToMatch parameter. The ASP.NET configuration tool that is available
from inside of the Visual Studio environment makes use of this method. If your provider doesn’t
support this type of search functionality, throw a NotSupportedException.

❑ FindUsersByEmail— This method has the same functionality and guidance as
FindUsersByName with the one difference being that it instead supports searching by email
address.

Validating User Credentials
When you boil the Membership feature down to its basics, validating passwords is at its core. All other
areas of functionality described in this section are pretty much optional; there are other ways that you
can support functionality like user creation or searching for users. Without the ability to validate user
credentials, though, it would be sort of pointless to write a MembershipProvider. The basic support
expected from all MembershipProviders is the ability to validate a username-password pair.

More advanced, and thus optional, functionality allows for tracking bad password attempts and bad
password answer attempts. If certain configurable thresholds are met or exceeded a provider should
incorporate the ability to lock out user accounts and then subsequently unlock these accounts. If a provider
does support tracking bad password and bad password answer attempts, it needs to keep track of this
whenever ValidateUser, ChangePassword, ChangePasswordQuestionAndAnswer, ResetPassword,
and GetPassword are called. Each of these methods involves a password or a password answer to work
properly, although the password answer functionality in ResetPassword and GetPassword is also
optional (see the next section on self-service password resets and retrieval). Furthermore, in each of these
methods if the correct password or password answer is supplied, then a custom provider should reset its
internal tracking counters (either password counters or password answer counters) to reflect this fact. In
the next chapter, on SqlMembershipProvider, you will see how the SQL provider handles these types of
counters in various MembershipProvider methods.

The properties related to validating user passwords are:

❑ MaxInvalidPasswordAttempts— For more secure providers that support tracking bad pass-
words (and also bad password answers if they support question-and-answer-based password
resets or password retrieval), this setting indicates the maximum number of bad password
attempts. If a provider supports tracking bad password answers, this configuration setting is also
intended to be used as the maximum number of allowable bad password answers. Although the
MembershipProvider could have specified two different properties for tracking bad passwords
versus bad password answers, the decision was made to support the same upper limit for both
pieces of data. There is always a debate over exactly what “maximum” means when tracking bad
attempts; some folks would choose maximum to mean a threshold that can be reached but not
exceeded. A reasonable case can be instead be made that this type of limit should instead be trig-
gered only when it is exceeded. Realistically, either approach is valid; the ASP.NET providers
consider the maximum number of attempts to have occurred when internal tracking counters
exactly equal the value of this configuration setting. This means that if this property is set to five,
then when the fifth bad password is supplied something happens — that is, the user account is
locked out. Custom provider implementers may choose to be slightly different and instead carry

388

Chapter 10

13_596985 ch10.qxp 12/14/05 7:50 PM Page 388

out some action on the sixth attempt. The main thing is to communicate clearly to folks exactly
how this property triggers account lockouts and other behavior. If a custom provider doesn’t
support any type of bad password or bad password answer tracking, it should return an appro-
priately large value instead —Int32.MaxValue for example. Custom providers should avoid
throwing an exception because developers may want to use administrative UI that lists all
providers configured on a system along with their current configuration settings based on the
MembershipProvider properties. Returning a very large value gets across the point that the
provider doesn’t enforce anything without causing the administrative UI to blow up with an
unexpected exception.

❑ PasswordAttemptWindow— If a provider supports tracking bad passwords or bad password
answer attempts, there usually needs to be some finite time window during which the provider
actively keeps track of bad attempts. The value returned from this property indicates the length
of time during which a provider would consider successive failed attempts to be additive; for
example, the provider would increment internal tracking counters that are compared against
MaxInvalidPasswordAttempts. The specifics of how a provider deals with the password
attempt window over time are considered provider-specific. It is up to the provider imple-
menter to document exactly how the PasswordAttemptWindow interacts with the value for
MaxInvalidPasswordAttempts. If a provider doesn’t support the concept of tracking bad
attempts, it can instead return a dummy value such as zero from this property rather than
throwing an exception. A return value of zero implies that the provider considers each new
failed attempt as an isolated event unrelated to prior failed attempts

There are only two methods for credential validation, with ValidateUser being the method that most
developers expect to be implemented by all providers.

❑ ValidateUser— If there is one core method that “is” the Membership feature, this is it. Any
custom provider will be expected to support this property. After a successful login, the user’s
LastLoginDate should be updated. Login controls such as the Login control and the
CreateUserWizard depend on this method. Providers that support tracking bad password
attempts should increment tracking counters in this method and lock out user accounts as nec-
essary. In general, if a user account is already locked out, ValidateUser should always return
false. Similarly, if a custom provider supports the concept of approving a user prior to allow-
ing the user to log on to a site, the provider should also return false if the user’s IsApproved
flag is set to false.

❑ UnlockUser— This is an optional method for providers that are able to lockout user accounts
after an excessive number of bad passwords or bad password answers. If a custom provider
supports this concept, then there needs to be a way to unlock user accounts. There are two gen-
eral approaches to this. A provider can internally support the concept of auto-unlocking user
accounts. Although auto-unlocking is not explicitly supported by the Membership feature, there
isn’t anything to prevent a custom provider implementer from building this type of logic into
any of the methods that deal with passwords and password answers (i.e. ValidateUser,
ChangePassword, and so on). However, if a provider doesn’t support auto-unlocking behavior,
it should support explicitly unlocking a user account via the UnlockUser method. At a mini-
mum an unlocked user account should have its IsLockedOut property set to false. Typically,
internal tracking counters are reset as well, and the LastLockoutDate property for the user can
be reset to a default value. If a provider doesn’t cause users to be locked out, or if some other
mechanism outside of Membership is used to unlock users, a custom provider should throw a
NotSupportedException instead.

389

Membership

13_596985 ch10.qxp 12/14/05 7:50 PM Page 389

Supporting Self-Service Password Reset or Retrieval
Several properties provide information about the self-service password reset and password retrieval
capabilities of Membership. The general idea behind this feature is that website users can retrieve their
password, or have the system reset their password, if they forget the original password. Typically, for
enhanced security the user needs to answer a special password question before the system retrieves or
resets the password.

Although you may author a provider that supports only one of these options (that is, only password
retrieval or only password resets), or none of these options, you should still implement the following
properties so that server controls and administrative tools can determine the level of support that a cus-
tom provider has for password reset and retrieval:

❑ EnablePasswordRetrieval— Indicates whether the provider instance allows passwords to be
retrieved in an unencrypted format. If you author a provider that supports password storage
with reversible encryption, the value of this property may be retrieved from a provider configu-
ration attribute just as it is with the SqlMembershipProvider. If you never plan to support this
functionality just return false. The PasswordRecovery control in Login controls looks at the
value of this property to determine what kind of UI to render.

❑ EnablePasswordReset— Indicates whether the provider allows a user’s password to be reset
to a randomly generated password value. As with the SqlMembershipProvider, you can
derive this value from your provider’s configuration. If you don’t plan on ever supporting this
functionality, you can instead always return false from this property. The PasswordRecovery
control also looks at this property value to determine what kind of UI to render.

❑ RequiresQuestionAndAnswer— If your provider requires that a password question be
successfully answered before performing either a password reset or retrieving a password, then
you would return true from this property. As with the previous two properties this value can
be driven from configuration as the SqlMembershipProvider does. Or if you don’t support
this kind of functionality just return false. The CreateUser control in the Login controls uses
this property to determine whether it should prompt a new user for a password question and
answer. The PasswordRecovery control in the Login controls also looks at this property value
to determine whether or not it should challenge the user before resetting or retrieving a password.

❑ PasswordFormat— Indicates the way in which passwords will be stored in a backend system by
the provider. Providers that are configurable such as the SqlMembershipProvider can derive this
value from configuration. Other providers such as the ActiveDirectoryMembershipProvider
always return a hard-coded value because the underlying data store only supports a single storage
format. None of the Login controls directly depend on this property. However, you may write
Membership-related logic that only makes sense for certain password formats. For example, send-
ing an email with the person’s old password is never going to work unless the provider stores the
password using reversible encryption as opposed to hashing.

The methods related to password resets and password retrieval are described in the following list. In some
cases password reset and retrieval influences only part of the parameter signature of a method. In other
cases, entire methods can be stubbed out if you don’t plan on supporting either piece of functionality.

❑ CreateUser— You can always create a user even if you don’t plan on implementing password
resets and password retrieval. The passwordQuestion and passwordAnswer parameters to
this method will be important to you if your provider returns true from RequiresQuestion
AndAnswer. Developers will probably expect your CreateUser implementation to enforce the

390

Chapter 10

13_596985 ch10.qxp 12/14/05 7:50 PM Page 390

requirement that both parameters be supplied in the event you return true from
RequiresQuestionAndAnswer. Note that if you want to, you can choose not to support pass-
word resets or retrieval and yet still require a question and answer. Though not recommended, this
would give your provider two extra properties for storing user-related data. From a security
perspective, a custom provider should always store the password answer in a secure format.
Because the password answer is essentially a surrogate password, providers should not store
the password answer in cleartext.

❑ ChangePasswordQuestionAndAnswer— This method should be implemented if your provider
returns true from RequiresQuestionAndAnswer. If you don’t implement this method, then
after a new user account is created your users won’t have the ability to ever change their secret
password question and answer. Because this method requires a user’s password in order to
complete successfully, providers that keep track of bad password attempts should increment
their tracking counters in this method and lock out users as necessary. Providers also need to
handle the case where a user is already locked out; locked out users should not be allowed to
change their password question and answer. If your provider doesn’t use password questions
and answers (either you don’t support reset/retrieval or you don’t want to impose the added
security measure of a question-answer challenge), then you should throw a
NotSupportedException from this method.

❑ GetPassword— Implement this method if your provider is able to store passwords with
reversible encryption and you want to give your users the ability to retrieve their old passwords.
On one hand, if a custom provider requires a password answer prior to retrieving a password,
and if the provider also keeps track of bad password answer attempts, it should increment track-
ing counters from inside of this method and lock out users as necessary. Providers need to also
handle the case where a user is already locked out — in which case, locked out users should not
be allowed to retrieve their password even if they have a valid answer. On the other hand, if a
custom provider does not require an answer, then it can just ignore the answer parameter. If your
provider’s underlying data store doesn’t support reversible encryption or if you don’t want this
type of functionality to be available, then throw a NotSupportedException instead. The
PasswordRecovery control in the Login controls will use this method if it detects that the cur-
rent provider supports password retrieval (that is, EnablePasswordRetrieval returns true).
Note that if your provider doesn’t require a valid password answer to a password question (that
is, RequiresQuestionAndAnswer returns false), then your provider should ignore the answer
parameter to this method.

❑ ResetPassword— If your provider allows users to reset their own passwords, then your
provider should implement this method. If a provider supports extensible password validation
routines, it should raise the ValidatingPassword event from this method as well. The
PasswordRecovery control in the Login controls will use this method if your provider returns
true from EnablePasswordReset. If a custom provider requires a password answer prior to
resetting a password, and if the provider also keeps track of bad password answer attempts, it
should increment tracking counters from inside of this method and lock out users as necessary.
Providers also need to handle the case where a user is already locked out — in which case,
locked out users should not be allowed to reset their password even if they have a valid answer.
However, if a custom provider doesn’t require an answer, it can just ignore the answer parame-
ter. If a custom provider doesn’t support password resets, your provider should return a
NotSupportedException from this method. When resetting passwords, a custom provider can
call the Membership.GeneratePassword static helper method. This method can be used to
auto-generate a valid random password that meets minimum length and minimum nonal-
phanumeric character requirements. Note though that this helper method cannot guarantee
a random password that matches a password strength regular expression; attempting to

391

Membership

13_596985 ch10.qxp 12/14/05 7:50 PM Page 391

programmatically reverse engineer a regular expression would have made this helper method
way too complex, and it is doubtful that you could even write to code to successfully accom-
plish this. It is up to the custom provider implementation whether or not it should even try to
validate an auto-generated password against a specified regular expression — by way of com-
parison, neither the SQL nor AD-based ASP.NET provides attempt this.

Tracking Online Users
The Membership feature has the ability to keep track of users who are considered active on a website
(that is, online) versus users who are in the system but have not necessarily been active within a config-
urable time period. The time period in which a user must be active, and thus considered online, is
defined by the Membership.UserIsOnlineTimeWindow property. As discussed earlier, the internal
implementation of MembershipUser.IsOnline uses this configuration property in conjunction with
the user’s LastActivityDate to determine whether a user is considered online.

For this functionality to work, though, a custom provider must update the LastActivityDate inside of
various methods. The MembershipProvider also exposes a method that can be used to get the count of
online users for a website.

❑ GetNumberOfUsersOnline— If a provider stores the LastActivityDate for its users, it should
implement this method. The return value is a count of the number of users whose LastActivityDate
is greater than or equal to the current date time less the UserIsOnlineTimeWindow. Note that an
implementation of this method may result in a very expensive query or aggregation being performed.
Although the ASP.NET SqlMemebershipProvider doesn’t do anything to mitigate this issue, cus-
tom providers may want to implement some kind of internal caching logic so that calls to the
GetNumberOfUsersOnline method do not trigger incessant table scans or other expensive opera-
tions in the underlying data store. If a provider does not support keeping track of when users are
online, it can instead throw a NotSupportedException from this method.

❑ ValidateUser— Each time a user attempts to login, the LastActivityDate should be updated.
There is no strict rule on whether this date should only be updated for successful logins, or for
both successful and failed logins. The SqlMembershipProvider happens to update the date for
both cases, but it is also reasonable to say a user isn’t truly online until after a successful login has
occurred.

❑ GetUser— Both GetUser overloads have a parameter called userIsOnline. If the provider
supports updating a user’s LastActivityDate, and if this parameter is set to true, then each
time a user object is retrieved it should first have its LastActivityDate updated. Providers
that don’t support counting online users can just ignore the userIsOnline parameter. It also
would not be unreasonable for a custom provider to throw a NotSupportedException if
userIsOnline is set to true and the provider doesn’t support tracking online users,

❑ CreateUser— Custom providers can choose to set the LastActivityDate to the creation date
(SqlMembershipProvider does this) or instead set LastActivityDate to a default value. It is
up to you to determine if it makes more sense to say that a newly created user is immediately
online or not. Some developers will probably prefer to not have CreateUser mark a
MembershipUser as online if users are usually created in a batch process of if user accounts are
created by someone other than a live user on a website.

❑ UpdateUser— A provider can support updating a user’s LastActivityDate using the value
on the MembershipUser object passed to this method.

392

Chapter 10

13_596985 ch10.qxp 12/14/05 7:50 PM Page 392

In the SqlMembershipProvider there aren’t any other Membership operations that result in updating a
user’s LastActivityDate. Other methods that update a user’s password or password question and
answer do not cause any changes to LastActivityDate when using the SQL provider. Again, though,
this is a philosophical decision that can be argued either way. There would be nothing wrong with a
custom provider when you feel that these types of operations should result in an update to
LastActivityDate.

General Error Handling Approaches
If you look closely at the MembershipProvider definition, you can see that there is one method with an
out parameter (the status parameter on CreateUser), whereas all of the other methods just handle
input parameters. Furthermore, the default providers typically have different error behavior depending
on whether a Boolean is used as a return value. Unfortunately, there wasn’t enough time in the
ASP.NET 2.0 development cycle to fine-tune error handling and exception behavior for the Membership
feature, so the end result can be a bit confusing at times and less than elegant.

The general rules of thumb are listed here. Both the SQL- and AD-based providers follow these rules:

❑ For all methods, if the provider is asked to do something that it doesn’t support, it should just
throw a NotSupportedException. This can be the case when an entire method is simply not
supported. This can also occur if a method is implemented, but another configuration setting on
the provider indicates that the method should not succeed. For example, the default providers
implement ResetPassword, but if EnablePasswordReset is set to false in configuration,
then the providers throw a NotSupportedException. Another example is when a parameter to
a method was supplied (for example, providerUserKey for CreateUser) but the provider can-
not actually do anything with the parameter.

❑ If a method has an out parameter for communicating a result status, the method should usually
return error conditions via that parameter.

❑ A well-written provider should perform a rigorous set of parameter validations that ensures
method parameters have reasonable values. The ASP.NET providers throw an Argument
Exception for parameter validations that fail for non-null values, and they throw an Argument
NullException for parameter validations that fail because of unexpected null values.

❑ If the return type of a provider method is Boolean, and if the success of the method
depends on a correct password being passed to the method, the method should simply return
false for bad passwords. This means methods like ValidateUser, ChangePassword, and
ChangePasswordQuestionAndAnswer should simply return false if the provider determines
that the user either supplied the wrong password or if the user was already locked out or not
approved. The theory here is that especially for a method like ValidateUser, it makes more
sense to provide a “thumbs-up/thumbs-down” result than to throw an exception for a bad
password.

❑ For the other methods that return a Boolean value (DeleteUser and UnlockUser), the
provider can return a value of false if the operation failed because the user record couldn’t be
found. As you will see shortly, in other methods a nonexistent user record instead causes an
exception with the default ASP.NET providers. Although no Login controls depend on these
two methods currently, it is possible that future Login controls might use these methods, in
which case the controls would expect custom providers to follow the same behavior.

393

Membership

13_596985 ch10.qxp 12/14/05 7:50 PM Page 393

❑ A provider should throw the special MembershipPasswordException type when a bad
password answer is supplied to either ResetPassword or GetPassword. This type allows
developers and the Login controls to recognize that the specific problem is an incorrect pass-
word answer. Unfortunately, this behavior is a perfect example of the somewhat schizophrenic
exception and error-handling behavior in the default providers; it would have been better to
rationalize the behavior of bad passwords and bad password answers in a more consistent
manner.

❑ If a provider performs business-logic related checks in the provider or in the back-end data
store, it can use the ProviderException class to return back the error condition. The kinds of
checks that can fail include not finding the specified user in the system (for example, you
attempt to update a nonexistent user) or attempting to use a mal-formed regular expression for
password validations. This was the approach used by the ASP.NET providers to eliminate the
need to spam the System.Web.Security namespace with many custom exceptions. However,
it is also a reasonable approach for building a rich exception hierarchy that is more expressive
and return. If you intend for a custom provider to work with the various Login controls though,
your custom exceptions should derive from ProviderException. The Login controls will, in
many cases, suppress exceptions in order to perform failure actions or to display failure text
configured for a control. The Login controls can only do this though for exception types that
they recognize, ProviderExceptions and ArgumentExceptions being two of the exception
types that they handle.

❑ Last, the default ASP.NET providers usually don’t handle unexpected exceptions that can arise
from the underlying classes they call into. For example, the SqlMembershipProvider doesn’t
catch and remap SQL Server related exceptions. The ActiveDirectoryMembershipProvider
for the most part also doesn’t suppress or remap exceptions from the System
.DirectoryServices namespace. The assumption is that data-layer exceptions are usually
indicative that something has seriously gone wrong, and as a result these types of exceptions
are not error conditions that the provider knows how to handle.

The “Primary Key” for Membership
I have alluded to the fact that the Membership feature considers a username to be part of the “primary
key” for the Membership feature. Because the feature is provider-based, and all of the ASP.NET 2.0 SQL
providers support an “applicationName” attribute in configuration, the precise statement is that the
Membership feature implicitly considers the combination of applicationName and username to be an
immutable identifier for users. Although a more database-centric definition of a primary key could have
been modeled in Membership and other related features, the intent was to keep the user identifier as
simple and as generic as possible.

Because it is likely that just about any conceivable Membership store ever devised will support a string
type, choosing username and application name seems pretty safe. This also means that it is possible for
developers to write custom features that link to Membership data at an object level in a reliable manner.
For example, if you had an inventory application running off in a corner somewhere that you needed to
integrate with a website running Membership, it is pretty likely that you will at least be able to find a
string-based username in the inventory system that has some mapping and relevance to your website.
Using a database primary key/foreign key relationship probably won’t work if your inventory system is
running on some “interesting” relic that has been repeatedly upgraded over the decades, other systems
that you need to integrate with are black boxes and you can’t just dive down and set up relationships at
the data layer.

394

Chapter 10

13_596985 ch10.qxp 12/14/05 7:50 PM Page 394

In other words, username and application name were chosen as the “primary key” because you can always
pass these values around in a middle-tier object layer without requiring any kind of compatibility between
features lower down in the data layer. In some cases, though there may not be a concept of an application
name for some data stores. The ActiveDirectoryMembershipProvider for example doesn’t do anything
with the applicationName attribute in configuration, whereas the SqlMembershipProvider does use
the application name to create part of the primary key and actually stores the application name in the
database.

However, even in the case of the AD-based provider you could argue that each separate instance of an
AD provider defined in configuration logically correlates to an “application.” So, if you wanted to use
Web Parts Personalization (using the SQL provider) with the AD membership provider, you could still
separate user data in the Web Parts Personalization data store based on which AD provider was actually
used to authenticated a user. It would be up to you to set up the applicationName attribute for your
Web Parts Personalization providers in a way that correlated to the different configured AD membership
providers, but you could do this pretty easily.

Although having a common identifier for objects is useful, it doesn’t perform well. If you know that you
have features that are compatible at the data layer with Membership (for example, maybe you have all of
the tables for your feature and the Membership feature in the same database), it is probably easier and
more natural to pass around database primary keys (for example, GUIDs, integers, and the like). There is
an even bigger issue if you allow changes to usernames. Although the Membership API doesn’t support
this, and none of the other provider-based features support it, it is a common request by developers to
have the ability to change usernames after a user has been created. Because all of the ASP.NET features
key off username, this can be a bit awkward; from a data integrity standpoint primary keys really aren’t
supposed to be updated.

The way most developers deal with this design problem is to create a data-store-specific primary key
value, and then to mark the username as some type of alternate key. The alternate key ensures uniqueness,
while the primary key ensures that data relationships aren’t mucked up each time someone updates a
username. Of course, you may already be thinking what about that ProviderUserKey property we just
saw a while back? That property (and it also shows up as a parameter in a few places in Membership) was
the start of an abortive attempt to provide a more data-layer centric approach to handling Membership
data. However, further integration of this property into the Membership feature and other provider-based
features was halted due to time constraints.

If you don’t care about the portability of the username and application name, you can create and retrieve
users based on the ProviderUserKey. The reason for the name of this property on MembershipUser is
to make it clear that not all providers are necessarily databases. So, rather than calling the property
PrimaryKey, the more generic name of ProviderUserKey was chosen.

The CreateUser method lets you pass in an explicit value for the database primary key, assuming that
the underlying provider allows you to specify the primary key. The GetUser method has an overload
that allows you to retrieve a user based on the data store’s primary key value. Of course, this probably
strikes you as a rather limited offering: What about updating a user based on the ProviderUserKey?
Well you can’t do that. For that matter, other than creating a user and getting a single user instance back,
there is no other support in the Membership feature, or any other feature, for manipulating data based
on the data-store-specific primary key. There may (or may not be) work in a future release to bake the
concept of a primary key more deeply into the Membership feature as well as the related Profile, Role
Manager, and Web Parts Personalization features.

395

Membership

13_596985 ch10.qxp 12/14/05 7:50 PM Page 395

One very important thing to keep in mind though with data-store-specific keys is that after you start
designing provider-based features with a hard dependency on a specific key format, you have poten-
tially limited your interoperability with other features, including features that no one has dreamed up
yet. Although the combination of username and application name can be a bit awkward at times, it does
it make it possible for completely random features to integrate at the level of the various provider-based
object APIs.

For example, although Role Manager is frequently referred to as a companion feature to Membership,
the reality is that you don’t need to use Membership to leverage Role Manager. You can use Role
Manager on an intranet web server with Windows authentication. Because Role Manager keys off of
username and application name, it is very easy to use the domain credentials of the user as the username
value in Role Manager even though no data-layer relationship exists between Role Manager and an
Active Directory environment. The application name in Role Manager can then be set based on the name
of the website that is using the feature, or it can be set based on the AD domain that users authenticate
against prior to using the application.

Supported Environments
Although the Membership feature is technically a part of ASP.NET 2.0 (the feature exists in the System
.Web.Security namespace and is physically located in System.Web.dll), you can use the Membership
feature outside of ASP.NET. This means that you can call any of the functionality in the Membership fea-
ture from console applications, NT service applications, fat client applications (that is, Winforms apps),
and so on. Although you will need to reference the appropriate ASP.NET namespace and assembly,
beyond this requirement nothing special is needed to get Membership working outside of ASP.NET.

The Membership feature always requires at least Low trust to work. For ASP.NET applications, this means
that you must run in Low trust or higher. For a non-ASP.NET application, the AspNetHostingPermission
must be granted to the calling code with a level or Low or higher.

As an example of using the feature outside of ASP.NET, you can write a basic console application that
creates MembershipUser instances. This can come in handy if you need to prepopulate the database for
the SqlMembershipProvider. When you create a non-ASP.NET application, it must reference
System.Web.dll. Figure 10-1 shows the proper reference for a console application set up in Visual
Studio 2005.

Because the Membership feature has default settings defined in machine.config, you don’t necessarily
need to configure the feature for your applications. However, the default applicationName as set in
configuration is /. This value probably won’t make much sense for complex applications, so you may
need to change it for both your web and non-web applications. Additionally, the default Membership
provider in machine.config points at a local SQL Server Express database, which is probably not use-
ful for a lot of corporate applications.

396

Chapter 10

13_596985 ch10.qxp 12/14/05 7:50 PM Page 396

Figure 10-1

In non-ASP.NET applications, you can add an app.config file to the project that contains the desired
<membership /> configuration section. One thing to note is that if you add app.config to a non-
ASP.NET project, it is created without the namespace definition on the <configuration /> element.
This has the effect of disabling IntelliSense within the design environment. Don’t worry though because
the configuration syntax is the same regardless of whether you are working with an ASP.NET applica-
tion or a non-ASP.NET application.

The app.config file for the sample console application is shown here with the type of the provider
snipped for brevity. The connection string shown below also assumes that you have already set up the
aspnetdb database in SQL Server using the aspnet_regsql tool:

<configuration>
<connectionStrings>

<add name=”ConsoleDatabase”
connectionString=”server=.;Integrated Security=true;database=aspnetdb” />

</connectionStrings>
<system.web>
<membership defaultProvider=”ConsoleMembershipProvider”>
<providers>
<clear />
<add name=”ConsoleMembershipProvider”

type=”System.Web.Security.SqlMembershipProvider, System.Web...”
connectionStringName=”ConsoleDatabase”
applicationName=”MyConsoleApplication” />

</providers>
</membership>
</system.web>
</configuration>

Even though it may look a little strange, it is perfectly acceptable to have a <system.web /> configura-
tion section located inside of a configuration file for a non-ASP.NET application. From the Framework’s
point of view, <system.web /> and its nested configuration sections are just another set of information
to parse. There is no dependency on an ASP.NET application host for the Membership-related configura-
tion classes.

397

Membership

13_596985 ch10.qxp 12/14/05 7:50 PM Page 397

The previous sample configuration clears the <providers /> collections. It is usually a good idea to
clear out provider collections if you don’t need any of the inherited definitions. In the case of the sample
console application, you need your own definition to set the applicationName attribute appropriately.
As a result, there is no reason to incur the overhead of instantiating the default provider defined up
in machine.config. Also notice that the configuration file resets the defaultProvider on the <mem-
bership /> element to point at the ConsoleMembershipProvider definition.

At this point, you have done everything necessary from a configuration perspective to get the console
application to work with the Membership feature. The only thing left to do is to write some code.

using System;
using System.Web.Security;

namespace MemConsoleApp
{

class Program
{

static void Main(string[] args)
{

MembershipCreateStatus status;
MembershipUser mu =

Membership.CreateUser(args[0], args[1], args[2],
args[3], args[4], true, out status);

Console.WriteLine(status.ToString());
}

}
}

The sample application uses the static Membership class to create a user. To reference the feature, it
includes a namespace reference at the top of the file to System.Web.Security. It expects the command-
line parameters to be the username, password, email address, password question, and password
answers respectively. For brevity, the application doesn’t include any error checking on the arguments.
You can see how little code is necessary to take advantage of the Membership feature; it probably takes
more time to set the assembly reference and tweak the configuration file that it does to write the actual
code that creates users.

After compiling the application you can invoke it from the command line, and the results of the user
creation will be output to the console. A successful user creation looks like this:

MemConsoleApp.exe testuser pass!word test@nowhere.org Question Answer
Success

Because the console application uses the CreateUser overload that returns a status, if you attempt to
create the same user a second time, you see the following error message.

MemConsoleApp.exe testuser pass!word test@nowhere.org Question Answer
DuplicateUserName

398

Chapter 10

13_596985 ch10.qxp 12/14/05 7:50 PM Page 398

In this case, the error message is just the string version of the returned MembershipCreateStatus.
Although the sample application only shows user creation, the full spectrum of the Membership feature
is available for you to use outside of ASP.NET. You can consume the existing API as well as write custom
providers for use in non-web environments. In future releases, Membership may also be extended
further so that features such as Web Service–callable providers will be available right out of the box.

Using Custom Hash Algorithms
The <membership /> configuration element includes the hashAlgorithmType configuration attribute.
By default the Membership feature (or more specifically the SqlMembershipProvider) uses SHA1
when storing passwords. You can set this attribute to any string that the .NET Framework recognizes as
a valid hashing algorithm, and the SqlMembershipProvider will use that algorithm instead. If you
look at the documentation for the System.Security,Cryptography.HashAlgorithm class’s Create
method, there is a list of the default strings (that is, simple names) that the .NET Framework recognizes
and supports for referring to hash algorithms. Any one of these strings can be used in the hash
AlgorithmType attribute. You can retrieve the name of the hashing algorithm configured for the
Membership feature by getting the value of the Membership.HashAlgorithm property.

Although the hash algorithm is a feature-level setting, it is really more of an opt-in approach for individ-
ual providers. The setting on the <membership /> element would be useless if individual Membership
providers didn’t explicitly read the value from the Membership.HashAlgorithm property and then
internally make use of the correct algorithm. Currently, the hashing functionality for the SqlMembership
Provider calls an internal method on MembershipProvider. This internal method, in turn, creates the
appropriate hash algorithm based on the hashAlgoriothmType attribute and then hashes the password
with a random salt value. In a future release, the internal method that does this may be made public. For
now, though, this means custom provider implementers that support password hashing need to write
code that follows the same approach:

1. Fetch the value of Membership.HashAlgorithm.

2. Call HashAlgorithm.Create, passing it the string from step 1.

3. With the resulting reference to the hash algorithm class, hash the password and optionally other
information such as a random password salt if the provider supports this.

4. Store the hashed value in the back-end data store

Assuming that you can depend on providers to follow these steps, you have the ability to influence a
provider’s hashing processing by configuring different hash algorithms. Using any of the default hash
algorithms in the Framework is very easy; you just set the hashAlgorithmType attribute to something
else such as SHA256, SHA512 and so on.

What happens though if you need to configure a hash algorithm that doesn’t ship in the Framework? In
this case, you have the option of writing your own hash algorithm implementation and registering it
with the .NET Framework. Although you can definitely create your own custom hashing algorithm that
you instantiate and call directly from inside of a web page, because Membership depends on the loosely
typed HashAlgorithm.Create method, you must register your hash algorithm with the .NET
Framework for it to be used by the SqlMembershipProvider or any other providers that follow the
same programming approach.

399

Membership

13_596985 ch10.qxp 12/14/05 7:50 PM Page 399

To see how this works, you can create a basic hash algorithm class like the one shown here:

using System.Security.Cryptography;
using System.Text;

namespace CustomHashAlgorithm
{

public class DummyHashClass : HashAlgorithm
{

protected override void HashCore(byte[] array, int ibStart, int cbSize)
{

return; }

protected override byte[] HashFinal()
{

return Encoding.UTF8.GetBytes(“DUMMYHASHVALUE”); }

public override void Initialize()
{

return; }
}

}

Clearly, you would never use an “algorithm” like this in production, but for showing the
hashAlgorithmType attribute in configuration, it is good enough. Rather than actually hashing
anything, the custom class always returns a hard-coded string. After you compile this class and deploy
the assembly into the /bin folder of an ASP.NET application, the next step is to make the class visible to
the cryptographic infrastructure in the .NET Framework.

You register custom cryptographic algorithms, both hashing and encryption algorithms, using the
<crytpographySettings /> configuration element found within <mscorlib />.

<mscorlib>
<cryptographySettings>
<cryptoNameMapping>
<cryptoClasses>
<cryptoClass
MyDummyHashClass=”CustomHashAlgorithm.DummyHashClass, CustomHashAlgorithm”/>
</cryptoClasses>

<nameEntry name=”TestAlgorithm” class=”MyDummyHashClass”/>

</cryptoNameMapping>
</cryptographySettings>

</mscorlib>

The way this configuration works is:

❑ The <cryptoClass /> element associates a name (in this case MyDummyHashClass) with a
.NET Framework type. In this case, I am using a reference to just a class and an assembly. In
production applications, your custom hash algorithm type would probably be in the GAC and,
thus, you would instead use a strong named reference here. Because the sample is not strong
named, the assembly CustomHashAlgorithm has to be deployed in an ASP.NET application’s
/bin directory for the type to be loaded.

400

Chapter 10

13_596985 ch10.qxp 12/14/05 7:50 PM Page 400

❑ The <nameEntry /> element associates a friendly name with the custom hash algorithm class.
In the sample configuration, this allows TestAlgorithm to be passed to HashAlgorithm
.Create, which will then return a reference to the DummyHashClass type.

A very important note about this configuration: You must place the configuration in machine.config!
If you try to place the configuration section inside of web.config, the cryptography infrastructure will
never see your custom type because the <mscorlib /> cryptography settings are only valid when
defined in machine.config. Although you can place them in other configuration files, they will never
be processed. If you end up banging your head against a wall wondering why your custom hash class is
never being used, it is probably because the configuration for it is not in the right place.

With the sample hash algorithm configured in machine.config, you can create a sample ASP.NET
application that makes use of it. The following configuration element tells the Membership feature to
use the custom type.

<membership hashAlgorithmType=”TestAlgorithm” />

Now if you create a new user with the SqlMembershipProvider, the new user’s password will be
hashed using the custom hash algorithm. You can verify this by looking in the database — you will see
that the password value is RFVNTVlIQVNIVkFMVUU=. This is just the base64-encoded representation of
the byte[] returned by any hash algorithm. If you run the following code snippet to decode this string,
the Membership feature successfully use the custom hash algorithm and end up with a password of
DUMMYHASHVALUE.

byte[] dbResult = Convert.FromBase64String(“RFVNTVlIQVNIVkFMVUU=”);
string dbString = Encoding.UTF8.GetString(dbResult);
Response.Write(“The encoded password is “ + dbString);

Because the registration of custom hash algorithms has to occur in machine.config, you will probably
find custom hash algorithms (that is, non-Framework algorithms) primarily useful when they need to be
used globally for many applications on a server. Although it is possible, it probably doesn’t make much
sense to use Membership in a way where custom hash algorithms are defined on a per-application basis —
that is, dozens of applications on a machine with each application using a completely different custom
hashing implementation. This kind of approach would result in dozens of custom algorithms needing to be
registered up in machine.config.

Summary
For a lot of developers, the Membership feature will be equivalent to using the Login controls and the
public static Membership class. If you never have to deal with multiple providers, or provider-specific
functionality, everything you need to use can be found on the Membership class. However, more
complex sites will probably need to code against the MembershipProvider class — especially if they
need to handle multiple providers.

Because the Membership feature deals with various aspects of a user, the MembershipUser class is
available for carrying out user-oriented functions such as password management and user updates. As
with the MembershipProvider class, you can also choose to implement a custom MembershipUser
class. The usual coding approach is for custom provider implementers to optionally supply a custom
MembershipUser class as well.

401

Membership

13_596985 ch10.qxp 12/14/05 7:50 PM Page 401

For custom provider implementers, it can be helpful to group the functionality of a MembershipProvider
into different areas. Depending on how you plan to use a custom provider, you can choose to implement a
very narrow set of functionality and stub out the remainder of the provider implementation. For each of
the functional areas though, there are usually a few basic expectations that should be met for higher level
applications and controls like the Login controls and the Web Administration Tool.

If you are thinking about integrating the Membership feature with custom providers for other ASP.NET
application services, or with your own features, then understanding the definition of a “user” is very
important. Keep in mind that across the ASP.NET application services, a user is identified by a combination
of username and an application name defined in a provider’s configuration. Although this combination of
identifiers can be a bit cumbersome from a database-centric viewpoint, it does make it much easier to inte-
grate different features written by completely different companies and development teams when there are
no common assumptions on data types and primary keys.

Probably the biggest “stealth” feature of Membership, and other application services, is that the
Membership feature works outside of ASP.NET. This makes it much easier to administrator Membership
data, and it also opens up a number of interesting possibilities for reusing authentication information
across a spectrum of different client front ends.

402

Chapter 10

13_596985 ch10.qxp 12/14/05 7:50 PM Page 402

SqlMembershipProvider

The Membership feature comes with two different providers by default: one that works with SQL
Server and one that works with Active Directory. The subject of this chapter is the SQL-based
provider. This provider is sort of the showcase provider for the Membership feature because it
implements the full range of functionality exposed by the Membership API. It can be used by
applications with only a handful of user accounts as well as very large sites with hundreds of
thousands of user accounts. The provider can be used inside of ASP.NET applications as well as in
non-ASP.NET applications. As with the parent Membership feature, SqlMembershipProvider
can be used with Low trust and above — although when running it with Low trust you need to
explicitly add SqlClientPermission for the provider to work.

This chapter will cover the following aspects of SqlMembershipProvider in detail:

❑ The common database schema used by all SQL-based providers in ASP.NET

❑ The database schema that supports SqlMembershipProvider

❑ Caveats to keep in mind when using SQL Server Express instead of SQL Server

❑ Security for the Membership database

❑ How to change password formats

❑ How to change the way that passwords are automatically generated

❑ How to use custom encryption

❑ How to enforce custom password strength rules

❑ How account lockout works with the provider

❑ How to extend the provider to implement auto-unlock behavior

❑ How to support multiple portal-style applications with a single provider

After covering these topics, you should have a good sense of how the provider works as well as
how you can build extended functionality on top of the SQL provider without needing to write a
custom provider from scratch.

14_596985 ch11.qxp 12/14/05 7:51 PM Page 403

Understanding the Common Database
Schema

All of the default SQL-based providers in ASP.NET 2.0 share a common schema. The common tables and
supporting stored procedures allow ASP.NET to share the same user data across the Membership, Role
Manager, Profile, and Web Parts Personalization features. If you choose to use multiple features, and
you take the extra step of pointing the various features at the same database, the end result is that all
ASP.NET features will share a common set of user and application data. With this scenario, you can
work with data through a feature’s object API or directly against the database. At both levels of pro-
gramming, you will be dealing with the same piece of user data.

This integration isn’t actually required to use any of the features. The integration support is nice to have
if you choose to install all the feature schemas in a single database. However, it’s possible to install each
feature’s database schema into a separate database, potentially on completely different servers. If you do
this, all the features will still work. Because each one depends on a username and the application name
from configuration as the identifying data for a user, each feature’s database will have its own unique
row of data identifying a user. For example, if you install three ASP.NET features into three different
databases, over time the user “foo” will end up with three records: one in each feature database.

This approach leads to object level integration of user data; the only way features “know” they are
dealing with the same user is from the username and application name data that is available from the
various features of the APIs. At the database level, though, there are no foreign key relationships or com-
mon primary keys linking together the same user record across multiple databases or multiple servers.

As a developer or administrator, you don’t ever need to install the common database schema directly.
Instead, each time you choose to install at least one of the SQL-based ASP.NET features, the common
schema elements are also created on your behalf. If you want to see where these common schema
elements are defined though, you can look in the file InstallCommon.sql which exists in the frame-
work’s install directory.

Storing Application Name
You have seen references to the concept of an application name in a number of the previous chapters.
The idea behind an application name is that providers (such as the SQL providers) that work with
relational data can horizontally partition data in a table through the use of a partitioning key. That key
is the application name. The ASP.NET SQL-based providers all use the applicationName configuration
attribute internally when working with the database. For example, when SqlMembershipProvider
attempts to a retrieve a user, foo, from the database, in reality it is looking for a user, foo, who belongs to
application name “bar.” In this way, it becomes possible to host multiple web applications with a single
SQL Server database installation. The horizontal partitioning by application name ensures that each
application works with its own slice of data.

The application names are stored in the common feature schema’s table aspnet_Applications:

CREATE TABLE [dbo].aspnet_Applications (
ApplicationName nvarchar(256) NOT NULL UNIQUE,
LoweredApplicationName nvarchar(256) NOT NULL UNIQUE,
ApplicationId uniqueidentifier PRIMARY KEY NONCLUSTERED

DEFAULT NEWID(),
Description nvarchar(256))

404

Chapter 11

14_596985 ch11.qxp 12/14/05 7:51 PM Page 404

As you can see, there isn’t much stored for an application. In fact, the only portion of the row that is gen-
erated by a provider is the data for the ApplicationName column. Within the stored procedures for
many of the SQL-based features, you will see code like the following:

EXEC dbo.aspnet_Applications_CreateApplication
@ApplicationName, @ApplicationId OUTPUT

Each time a SQL-based provider attempts to create a new row of data, it issues a command like this to
ensure that a row is first created in the aspnet_Applications table. The application data that is
registered corresponds to the value of the applicationName attribute set in the provider’s configuration.
This means that in ASP.NET 2.0, applications are auto-magically registered on behalf of providers. There
is, unfortunately, no public API for accomplishing this.

Other stored procedures that retrieve or update data (as opposed to creating new rows of data), usually
have a stored procedure parameter for application name that is used as a join key into the
aspnet_Applications table.

SELECT ...
FROM dbo.aspnet_Applications a, ...
WHERE LOWER(@ApplicationName) = a.LoweredApplicationName
AND ...

In these cases, the expectation is that the row in the aspnet_Applications table already exists. These
types of stored procedures will not automatically cause creation of a row in the aspnet_Applications
table because without a row in this table, there is no way any data for that application will exist in the
feature’s tables anyway.

The other columns in the table are either filled in by the application creation stored procedure (that is,
LoweredApplicationName and ApplicationId) or are unused in ASP.NET 2.0 (the Description
column will always be null). If a basic object model is built for developers to manipulate these common
tables in a future release, then unused columns like Description will become accessible.

The Common Users Table
The central user table that is common to all feature schemas is aspnet_Users:

CREATE TABLE [dbo].aspnet_Users (
ApplicationId uniqueidentifier NOT NULL FOREIGN KEY REFERENCES

[dbo].aspnet_Applications(ApplicationId),
UserId uniqueidentifier NOT NULL PRIMARY KEY NONCLUSTERED

DEFAULT NEWID(),
UserName nvarchar(256) NOT NULL,
LoweredUserName nvarchar(256) NOT NULL,
MobileAlias nvarchar(16) DEFAULT NULL,
IsAnonymous bit NOT NULL DEFAULT 0,
LastActivityDate DATETIME NOT NULL)

As you can see, this table has a foreign key relationship to the aspnet_Applications table. Because of
this providers can partition their data based on application name. Every time a SQL-based provider
retrieves data from the database, it always includes application name as part of its WHERE clause. The

405

SqlMembershipProvider

14_596985 ch11.qxp 12/14/05 7:51 PM Page 405

result is that the application’s ApplicationId value is used as part of the filter when retrieving data
from aspnet_Users.

The object APIs for the various ASP.NET features and of the stored procedures contain no functionality
for querying tables like aspnet_Users without using an application name. In other words, no API
allows you to query across all the data in the users table. All database operations are always constrained
to just the slice of data relevant to a specific application name.

As with the application table, whenever various ASP.NET features need to create a row of data associ-
ated with a user, they first ensure that a record in the aspnet_Users table exists for that user.

EXEC @ReturnValue = dbo.aspnet_Users_CreateUser @ApplicationId, @UserName, 0,
@CreateDate, @NewUserId

OUTPUT

Here once a feature has the correct ApplicationId (perhaps just newly created from the application
creation stored procedure mentioned in the last section), it usually checks to see if a user record exists
for a given username. If no record exists it creates one in the aspnet_Users table with a call to this stored
procedure.

As with applications, this means in ASP.NET 2.0 that user records in the common aspnet_Users table
are auto-magically created just before they are needed. There is no public API for creating generic user
records in this table. Also note that a user record in the aspnet_Users table doesn’t mean that the user
is registered in the Membership feature. The aspnet_Users table purpose is to map from an application
name and a username to a GUID (that is, uniqueidentifier). This GUID is then used as a key to index into
a feature’s data tables.

Usually a feature accomplishes this mapping with a piece of SQL similar to the following:

SELECT @UserId = u.UserId
FROM dbo.aspnet_Applications a, dbo.aspnet_Users u,
WHERE LOWER(@ApplicationName) = a.LoweredApplicationName
AND u.ApplicationId = a.ApplicationId
AND LOWER(@UserName) = u.LoweredUserName
AND

You can see how a feature first indexes into the aspnet_Applications table to get the GUID key for an
application. The application’s key is then used as a filter when looking in the aspnet_Users table for
the data record corresponding to a specific username. Assuming that the user exists, the end result is the
GUID key that represents a (username, application name) pair. For the SQL providers, there is code all
over the place that translates from this somewhat cumbersome identifier, to the more compact and
database-centric primary key identifier for a user.

If you make use of the ASP.NET provider-based features, and if you choose to install the entire feature
schema in a single database, then the aspnet_Users table is very useful albeit in a mostly silent manner.
With all of the features pointed at the same database, each time one feature needs to create or reference a
row of user data, it will end up pointing at the same row of data in aspnet_Users. For example, if you
register a new user in the Membership feature, when that user personalizes a page with Web Parts
Personalization, the personalization data will be linked to the same row in the aspnet_Users table
assuming that personalization provider is configured with the same application name as the member-
ship provider.

406

Chapter 11

14_596985 ch11.qxp 12/14/05 7:51 PM Page 406

This use of common user data is what enables the Membership.DeleteUser method to clean up data from
other features. Although you could go feature by feature and issue delete commands to clean up user
data, the DeleteUser method takes advantage of the fact that all of the SQL-based features will key off of
the same ApplicationId and the same UserId when running in the same database and all providers are
configured with the same application name. As a result, if you call the DeleteUser method and pass it a
value of true for the deleteAllRelatedData parameter, SqlMembershipProvider will call a stored
procedure that iterates through all of the other user-specific feature tables deleting data based on the
common GUID identifier for a user.

Currently, only the Membership feature exposes the GUID UserId column by way of the
providerUserKey parameter supported on CreateUser and GetUser. If you create a new user, you can
optionally specify the GUID you want to store in the UserId column. You can retrieve a MembershipUser
based on the UserId column with the GetUser overload that accepts a providerUserKey. However,
other than these special methods in Membership, the linking of feature data to the same record in
aspnet_Users and providing a global delete method, there is currently no other public functionality in
ASP.NET that relies on the common users table. Furthermore, it is only the Membership feature that even
provides a public API into the common users table. Future releases may expose the providerUserKey
more broadly in other APIs, which would allow you to work with user data based on the UserId column
as opposed to the somewhat awkward (username, application name) pair.

As with the aspnet_Applications table, the aspnet_Users table includes a number of other
columns that are automatically filled in when a new user is created: LoweredApplicationName and
ApplicationId. The LastActivityDate column is filled in with a UTC date-time that is passed down from
the provider running on the web server. (See Chapter 10 for a discussion on how date-time data is
handled across all of the ASP.Net 2.0 SQL-based providers.) This date is intentionally stored in the
aspnet_Users table rather than a feature-specific table. This allows the different ASP.NET features to
update a common piece of date-time data whenever certain events occur within a feature. Features can
then reference the LastActivityDate column to determine things like whether the user is online
(Membership) or whether a user is considered stale and thus the associated data for that user can safely
be purged from the database (Profile and Web Parts Personalization).

Currently, the LastActivityDate column is periodically updated in the following cases:

❑ Membership updates this column whenever a user logs in. The date is initially set when the
user is created. It can also be optionally updated when retrieving a MembershipUser object.

❑ Role Manager will put the current UTC date-time in this column if it needs to automatically cre-
ate user records prior to assigning the users to roles. For example, this can occur if you use Role
Manager in combination with Windows authentication.

❑ The Profile feature updates this column each time a user’s profile data is retrieved or updated.

❑ The Web Parts Personalization data updates this column each time a user’s personalization data
for any page is retrieved or updated. It also updates this column each time a user’s personaliza-
tion data for any page is reset.

The general idea behind the updates to LastActivityDate is that for an ASP.NET site that makes use of a
number of the SQL-based providers, an active user on a site will probably regularly cause one of the
listed events to occur. Users do log in to sites, view pages with personalized web parts and use other
pieces of functionality that retrieve information from their user profile.

407

SqlMembershipProvider

14_596985 ch11.qxp 12/14/05 7:51 PM Page 407

As a result, it is likely that the LastActivityDate will be a rough indicator of the last time the user did
anything significant. Of course, the activities that update this column aren’t guaranteed to occur on any
kind of regular interval. It would be possible for someone to log in to a site, and then never access a page
with a web part on it. Or a very long period of time could pass between between a user logging in and a
user hitting a page that retrieves data from their user profile. As a result, any feature APIs that depend
on this data work on the “good enough” concept — that is, the value in the LastActivityDate column
is good enough as an indicator of user activity. Especially for APIs that are used for purging stale user
data, you don’t need accuracy down to the second to determine whether a user has been active on a
website in the past three months. However, if you are looking for a very precise and deterministic indi-
cator of user activity on a website you will need to create your own solution.

The IsAnonymous column is set based on whether the provider on the web server is issuing a command
on behalf of an authenticated user or an anonymous user. For ASP.NET 2.0, you will only see a value of
true in this column if you enable the Anonymous Identification feature and then store data with the
Profile feature for anonymous users. The Membership, Role Manager, and Web Parts Personalization
features all exclusively work with authenticated users in ASP.NET 2.0 and, hence, they always store a
value of false in this column.

The MobileAlias column is an orphan in ASP.NET 2.0. It was originally placed in the table early on in
the development of ASP.NET 2.0 when mobile clients were being considered. However, as the mobile
work in ASP.NET 2.0 was scaled back, there wasn’t a driving need to expose this column via the
providers. The original idea was to have an alternate identifier for mobile users who sometimes are
identified by a shorter identifier than a username. For example a mobile user might be identified by a
just one or two characters and a few numbers (for example, JS1234) because it is easier for someone to
tap in a few digits on a handset as opposed to laboriously typing in a text-based username. In a future
release, this column may end up finding a use, though it is equally likely that it remains an orphan
column in future releases. For now, I would recommend that curious developers avoid using the column
for other uses.

Versioning Provider Schemas
Because feature requirements and thus database schemas change over time, the common database
schema includes a version table aspnet_SchemaVersions and related stored procedures. Although the
table is not exposed through any public APIs, the ASP.NET features register their schema versions when
they are installed. At runtime, the SQL-based providers check the schema version in the database to
ensure that the provider and the installed database schema are in sync. Although this table and the
version checks may seem a bit pointless for ASP.NET 2.0 (there isn’t any previous version of the feature
schemas), it is highly likely that the database schemas will change in future major releases.

CREATE TABLE [dbo].aspnet_SchemaVersions (
Feature nvarchar(128) NOT NULL PRIMARY KEY CLUSTERED

(Feature, CompatibleSchemaVersion),
CompatibleSchemaVersion nvarchar(128) NOT NULL,
IsCurrentVersion bit NOT NULL)

Each time a feature installs its database schema into the database, it writes the name of the feature into
the Feature column. It also fills in the current version signature in the CompatibleSchemaVersion
table. If the schema that is being installed is considered the most current version of the feature’s schema,
then the installation script also sets IsCurrentVersion to true. For ASP.NET 2.0 of course there is only
one row in this table for each feature. Each feature currently sets the schema version to the string “1”
and marks IsCurrentVersion as true.

408

Chapter 11

14_596985 ch11.qxp 12/14/05 7:51 PM Page 408

The intended use of this table is that in future versions, service packs, and so on each new version of a feature
schema installs a new row into this table. Furthermore, if a new version of a feature schema is not structured
to support older providers, the older version rows in the database are deleted. For example, the current
Membership feature inserts a row into the table with the values Membership, 1 and true. If a major release
of the Framework results in an entirely new Membership schema in the database, the Membership SQL
installation scripts would probably insert a new set of data with the values Membership, 2 and true.

However, if the new version of Membership doesn’t support the older ASP.NET 2.0
SqlMembershipProvider implementation (meaning that the old stored procedures no longer existed),
when the new Membership script runs, it would delete the old version 1 row from the database. When
an ASP.NET 2.0 SqlMembershipProvider checks for a row in this table for the Membership feature
with a version of “1” it won’t find it. If this happens the provider throws a ProviderException stating
that the provider is pointed at an incompatible database. The version check and exception behaviors just
described are coded into all of the ASP.NET 2.0 providers. These checks come in handy for future
releases where you may be running web servers with different versions of the framework all pointed at a
single database.

Now this previous example is theoretical only; there aren’t any plans to break ASP.NET 2.0 provider-
based sites whenever new versions of the framework come out. In fact, the general idea is to have a
database schema that versions well over time and that supports older and newer stored procedures and
table layouts. In fact, one of the main reasons for the version table is to ensure that in the future if a new
version of ASP.NET providers are pointed at an old database, that the new providers detect this and
inform you of the problem. In an upgrade scenario, it’s likely that after you upgrade a database, you will
have two rows of data per feature in the schema version table:

Membership 1 false
Membership 2 true
Profile 1 false
Profile 2 false
Etc..

When a new provider runs, it expects to find a row of data indicating that the version “2” schema is
installed. However, an older ASP.NET 2.0 provider would see that the database still supports version
“1,” and as a result it too would be able to run successfully. The fact that a newer database schema might
“hollow out” the old stored procedures and map them to new stored procedures is something that
would be entirely transparent to the providers. The IsCurrentVersion column just serves as a
convenient indicator for you to determine the actual schema scripts that were last installed in the
database. With the previous sample rows, this would mean although both ASP.NET 2.0 and newer
providers are supported, the actual table schemas and stored procedures installed in the database are
from the later version of the Framework.

A related piece of flexibility the version table gives ASP.NET is the ability to release out-of-band versions
of the SQL providers for various external or experimental projects. The version table makes it much eas-
ier to play around with these types of releases in a way that ensures the various provider versions are
actually pointed at compatible back ends. Because the version column in the database is just a string, it
makes it easier to store more expressive version information for these types of releases than just a simple
number.

You can see the version checks being performed by providers today if you sniff the network connection to
SQL Server with a tool like SQL Profiler. Each provider will make a call to aspnet_CheckSchemaVersion
to ensure that the provider is running against a database that supports the expected schema version.

409

SqlMembershipProvider

14_596985 ch11.qxp 12/14/05 7:51 PM Page 409

Because it would be expensive to make this check before each and every SQL call, the providers make this
check just before the first SQL command is issued by the provider. Subsequent calls to the database over
the lifetime of an app-domain simply reuse the original and now cached schema check result. This means
that you could intentionally confuse a provider by using it once and then changing the database schema
to an incompatible state. However, in production use making the schema check once during the
provider’s lifetime and then caching the result is sufficient.

Currently, all schema checks are implemented with private code, so the version functionality can be used
by only ASP.NET providers. Although the version table is simple enough to use that you could hack in
your own information, if you author your own SQL-based providers you should include your own
custom mechanism for handling schema versioning over multiple releases.

Querying Common Tables with Views
There is technically one common public API available for use with the aspnet_Applications and
aspnet_Users tables. As with the provider-specific features, the common table schema includes some
SQL Server views for querying the underlying tables. Whenever the common database schema is
installed, it includes two views: vw_aspnet_Applications and vw_aspnet_Users.

As the names suggest, the vw_aspnet_Applications view is simply a view that maps directly to the
all of the columns in the aspnet_Applications table, whereas the vw_aspnet_Users table is a view
that maps to all of the columns in the aspnet_Users table. In both cases, developers are allowed to
write read-only queries against these views because the development team plans to make sure that in
future versions of the database schema the view definitions stay the same. Although nothing prevents
you from writing inserts or updates against the views, the general guidance is that database level
SELECT queries are supported against the views while any kind of data modification needs to go
through a publicly supported provider API. As a result, if you are enterprising and you write inserts or
updates to go against these views, don’t be surprised if they break in a future release.

Linking Custom Features to User Records
Because all of the ASP.NET features take advantage of the aspnet_Users and aspnet_Applications
tables, you might be wondering if you can do so as well. For example, if you author a custom Profile
provider that uses SQL Server, it would be reasonable to link your custom data with these tables. That
way if someone used other ASP.NET SQL-based providers in conjunction with your custom Profile
provider, everybody would be sharing a common set of data.

The “official” guidance is that this level of integration is technically not supported. Technically, the only
way in which custom providers, or custom features, can be integrated with ASP.NET SQL-based
providers is by way of the (username, application name) pair. However, because the existing SQL-based
providers are so tightly integrated with these two tables, it isn’t likely that the product team can easily
change the primary keys for applications or users without causing some major data migration pain in
future releases of the Framework.

With this in mind, it’s reasonably safe for custom provider implementers and feature implementers to
rely on the user and application tables. (Disclaimer: if something goes horribly awry in a future release,
consider yourself warned!) Because SqlMembershipProvider explicitly supports the use of the GUID
primary key via the providerUserKey parameter on various APIs, it isn’t likely that this key will ever
change. You have two general ways to take advantage of this:

410

Chapter 11

14_596985 ch11.qxp 12/14/05 7:51 PM Page 410

❑ You could implement a custom database schema that has a UserId column of type
uniqueidentifier. For safety though, you could always retrieve this key by calling
Membership.GetUser and then storing ProviderUserKey property in your database
tables. However, you would not have any integration at the database level.

❑ You could create your tables with a foreign key dependency to aspnet_Users. Your stored
procedures would work like the ASP.NET stored procedures. You would convert an application
name parameter to an ApplicationId and then you would use ApplicationId and a user-
name to get to a GUID UserId.

Of these two approaches, the second one makes the most sense. The only aspect of the second option
that isn’t officially supported is creating a foreign key on your tables that references aspnet_Users
.UserId. You can perform the application name to ApplicationId resolution using the publicly sup-
ported vw_aspnet_Applicatons view. Similarly, you can then get the UserId by querying the
vw_aspnet_Users view. So, the only risk you run is that a future version of ASP.NET creates a new
users table and deprecates the old one, in which case all you would need to do is to update your foreign
key references after a database upgrade.

Resolving an application name to an ApplicationId can be done with the following code:

create procedure getApplicationId
@pApplicationName nvarchar(256)
as
select ApplicationId
from dbo.vw_aspnet_Applications
where LoweredApplicationName = @pApplicationName

Fetching the UserId after you have the ApplicationId is just as easy:

create procedure getUserId
@pApplicationId uniqueidentifier,
@pUsername nvarchar(256)
as
select UserId
from dbo.vw_aspnet_Users
where LoweredUserName = LOWER(@pUsername)
and ApplicationId = @pApplicationId

And, of course, you can get to the UserId from a (username, application name) pair with just one query
as well:

create procedure getUserId2
@pApplicationName nvarchar(256),
@pUsername nvarchar(256)
as
select UserId
from dbo.vw_aspnet_Users u,

dbo.vw_aspnet_Applications a
where a.LoweredApplicationName = LOWER(@pApplicationName)
and u.LoweredUserName = LOWER(@pUsername)
and u.ApplicationId = a.ApplicationId

411

SqlMembershipProvider

14_596985 ch11.qxp 12/14/05 7:51 PM Page 411

All of these pieces of TSQL use views so they don’t depend on any unsupported functionality. If you
author a custom provider that requires developers to use the existing SqlMembershipProvider to reg-
ister users, then you don’t need to worry about writing any other SQL. If you always create users with
the Membership feature first, the necessary rows of data will already exist in the application and user
tables. In essence, with this approach you are depending on ASP.NET to set things up ahead of time for
you, and the only risk you are taking with your schema is a foreign key directly into an ASP.NET table.

However, what happens if you want to create your own custom Membership provider, but you still
want your data to be integrated with other features such as Profile and Web Parts Personalization? Now
you have the problem of getting a row of data into the user and application tables. If you wanted to, you
could still require that SqlMembershipProvider be used even though someone really uses your custom
provider for user management. You could register a user with SqlMembershipProvider simply to take
advantage of the fact that by doing so you will get user and application rows set up properly.

That approach, though, is admittedly pretty clunky, and customers would wonder why the Membership
user table holds all of this extra data. The better approach would be to insert the common data into
aspnet_Users and aspnet_Applications— but, of course, the Catch-22 here is that ASP.NET 2.0 has
no publicly supported way to do so. Assuming that you are fine with taking the added risk of using
officially undocumented and unsupported stored procedures, you can solve this problem by using the
stored procedures that already exist in the default ASP.NET schemas:

❑ aspnet_Applications_CreateApplication— Other ASP.NET features use this undocu-
mented and unsupported feature to automatically create an application as needed. You pass it
the string value for the application name, and it returns as an output parameter the GUID for
the newly created application.

❑ aspnet_Users_CreateUser— This undocumented and unsupported stored procedure creates
a row in the aspnet_Users table for a new user. You pass it the ApplicationId, username of
the new user, and the settings for IsAnonymous and LastActivityDate. The procedure
returns the GUID for the newly created user.

To at least mitigate the risk of these stored procedures changing or being renamed, you should limit the
places where you call unsupported stored procedures. For example, if you wrote a store procedure for a
custom Membership implementation and you wanted to create a new user, you could write something
like this:

create procedure MyCustomUserCreation
@pApplicationName nvarchar(256),
@pUsername nvarchar(256),
@pUserId uniqueidentifier OUTPUT
as

declare @applicationID uniqueidentifier
declare @retVal int
declare @rightNow datetime

set @rightNow = getutcdate()

--this ensures the row in the application data exists
--if the application already exists, the sproc just performs
--a select

412

Chapter 11

14_596985 ch11.qxp 12/14/05 7:51 PM Page 412

exec dbo.aspnet_Applications_CreateApplication @pApplicationName,
@applicationID OUTPUT

--if for some reason the user record was already registered
--just return it
select @pUserId = UserId
from dbo.vw_aspnet_Users u,

dbo.vw_aspnet_Applications a
where a.LoweredApplicationName = LOWER(@pApplicationName)
and u.LoweredUserName = LOWER(@pUsername)
and u.ApplicationId = a.ApplicationId

if (@pUserId is null)
begin
exec @retVal = dbo.aspnet_Users_CreateUser @applicationID, @pUsername,

0, @rightNow, @pUserId OUTPUT
End

if (@retVal = -1) --other error handling here
return @retVal

--if you make it this far, create the rest of the user
--data in your custom tables

return 0

This stored procedure uses a mix of supported views and the unsupported stored procedures for creating
applications and users. It starts by ensuring that a row in aspnet_Applications already exists by calling
the aspnet_Applications_CreateApplication stored procedure. Internally, this stored procedure first
attempts to return a row of application data if the application already exists. If the application doesn’t exist,
the stored procedure creates it for you. As a result, it is safe to repeatedly call this stored procedure with the
same application name, because only the very first call results in an insert.

The user creation stored procedure then checks to see if the user record was already registered in the
aspnet_Users table. If the user already exists, it just fetches the existing UserId by querying the view.
However, if the user is not already in aspnet_Users, then the stored procedure calls the aspnet
_Users_CreateUser stored procedure to insert a row into the aspnet_Users table. Assuming that no
errors occur by this point, you would then write additional code to perform the necessary inserts into
your custom data tables.

On one hand, wrapping this kind of logic inside of your own stored procedure ensures that if the
ASP.NET procedures change in a future release, you have to edit only this one stored procedure. On the
other hand if you spam your code base with calls to the ASP.NET application creation and user creation
stored procedures, you risk having to implement mass rework each time you upgrade the database with
newer ASP.NET stored procedures. And, of course, in the extreme you could clone and rename the two
ASP.NET stored procedures that are being used — though such an approach is likely to break if the
underlying schemas for the aspnet_Users and aspnet_Applications tables change.

413

SqlMembershipProvider

14_596985 ch11.qxp 12/14/05 7:51 PM Page 413

Why Are There Calls to the LOWER Function?
In a few of the previous samples there is code that looks like LOWER(@pUsername) and
LOWER(@pApplicationName). You might be wondering why not just perform joins directly against the
UserName and ApplicationName columns in the views? If you install your database using a case-insen-
sitive sort order, you don’t need to muck around with the LOWER function. However, because ASP.NET
can’t control the collation orders of customer databases, many of the stored procedures in ASP.NET use
columns whose sole purpose is to store the lowered representation of string data.

For example, the aspnet_Users table has a UserName column and a LoweredUserName column. If you
install this schema in a database that is case-sensitive, you will see that the ASP.NET features still work in
a case-insensitive manner. You could create a new user called “TEST” using SqlMembershipProvider,
and you could still log in by typing in a username of “test”. This means that ASP.NET stored procedures
have to perform extra work during inserts, updates, and selects to ensure that string data is being
queried in a case-insensitive manner regardless of the collation order for the underlying database.

Typically, at insert time (and updates in the case of data like email addresses), various stored procedures
explicitly lower the data prior to inserting it into a Lowered* column. The original casing is preserved in
a separate column. So, when you create a new user, the value TEST goes into the UserName column, but
the lowercased representation of test goes into the LoweredUserName column. Whenever an ASP.NET
feature performs a username based query, it always lowercases the search parameter and then compares
it against the LoweredUserName column. This is why some of the view samples earlier used the syntax
LoweredUserName = LOWER(@pUserName). However, when you get a MembershipUser from the
database, the Username property reflects the original casing used at creation time.

The reason that the ASP.NET stored procedures enforce the lowercasing is that, for the most part, the
string data managed by the various features is intended to be used in a case-insensitive manner.
Usernames and email addresses are typically not expected to be case-sensitive. When you log in to a
Windows desktop, for example, you can type your username in all capitals if you want, and the login
still works. Similarly, you can email yourself using all capital letters, and the email will still reach you. In
general, this behavior means that the following pieces of data are stored using two columns of data and
are treated as case-insensitive for search and data modification purposes:

❑ Application name

❑ Username

❑ Email address

❑ Role names

❑ Virtual paths stored by Web Parts Personalization

If you are an experienced database developer all of this probably raises a second question: Why the
kludgy workaround? You may not realize it, but the database schemas for the provider-based features in
ASP.NET are actually supported on SQL Server 7.0, 2000, and 2005.

Unfortunately, due to the wide range of supported SQL Server versions, there is not a single silver bullet
for enforcing case-insensitivity. Only with SQL Server 2000 or later are you able to explicitly control colla-
tions on a column by column basis. Although the development team could have created a 2000/2005 table
schema that was separate from the 7.0 schema, the workaround for handling lowercased data would still

414

Chapter 11

14_596985 ch11.qxp 12/14/05 7:51 PM Page 414

have been necessary for the 7.0 specific schema. Because supporting SQL Server 7.0 requires a workaround
in all of the stored procedures anyway, it didn’t make much sense to fork the database schemas and then
have to support two subtly different sets of stored procedures and tables going forward.

The Membership Database Schema
The Membership database schema (contained in InstallMembership.sql) deals with storing
Membership-specific data. Where overlaps exist with the common table schema (the username and
application name), the data is stored using the common tables. As a result, only one additional table is
added by Membership — the aspnet_Membership table. There is also a view called vw_aspnet
_MembershipUsers that maps most, though not all, of the columns on this table. The vast majority of
the Membership database schemas that are installed are for stored procedures used by
SqlMembershipProvider.

The aspnet_Membership table is:

CREATE TABLE dbo.aspnet_Membership (
ApplicationId uniqueidentifier NOT NULL

FOREIGN KEY REFERENCES dbo.aspnet_Applications(ApplicationId),
UserId uniqueidentifier NOT NULL

PRIMARY KEY NONCLUSTERED
FOREIGN KEY REFERENCES dbo.aspnet_Users(UserId),

Password nvarchar(128) NOT NULL,
PasswordFormat int NOT NULL DEFAULT 0,
PasswordSalt nvarchar(128) NOT NULL,
MobilePIN nvarchar(16),
Email nvarchar(256),
LoweredEmail nvarchar(256),
PasswordQuestion nvarchar(256),
PasswordAnswer nvarchar(128),
IsApproved bit NOT NULL,
IsLockedOut bit NOT NULL,
CreateDate datetime NOT NULL,
LastLoginDate datetime NOT NULL,
LastPasswordChangedDate datetime NOT NULL,
LastLockoutDate datetime NOT NULL,
FailedPasswordAttemptCount int NOT NULL,
FailedPasswordAttemptWindowStart datetime NOT NULL,
FailedPasswordAnswerAttemptCount int NOT NULL,
FailedPasswordAnswerAttemptWindowStart datetime NOT NULL,
Comment ntext)

Many columns in the table should be familiar to you because they map directly to properties on the
MembershipUser class. A brief summary of each of the column values is listed here:

❑ ApplicationId— This column is included solely as a performance optimization for few stored
procedures. Including the ApplicationId allows these procedures to perform a select directly
against the aspnet_Membership table without first having to join through the aspnet
_Applications table. From a data consistency standpoint though, the column isn’t necessary,
because UserId represents the combination of username and application name.

415

SqlMembershipProvider

14_596985 ch11.qxp 12/14/05 7:51 PM Page 415

❑ UserId— The primary key for the table. You can think of a MembershipUser as being a
“derivation” of the base user record stored in aspnet_Users. The UserId column is used by
SqlMembershipProvider to join back to aspnet_Users to fetch the actual username as well
as the LastActivityDate for a user.

❑ Password— Stores the password for the user in the format configured on
SqlMemershipProvider. As a result, the value of this column can contain a cleartext password,
an encrypted password, or a hashed representation of the password plus the salt value from the
PasswordSalt column.

❑ PasswordFormat— This column is used internally by SqlMembershipProvider when decoding
the value in the Password and PasswordAnswer columns. When you set the password format
on a provider, that format is used to encode the password and password answer. The specific
password format that was used is then stored by the provider in this column. If you subsequently
change the password format for the provider, preexisting passwords and password answers are
still usable. SqlMembershipProvider will continue to decode and encode preexisting passwords
and answers using the format that was originally used when the record was created. The possible
values for this column are: 0 = clear text, 1 = hashed, and 2 = encrypted.

❑ PasswordSalt— If you choose a hashed password format with SqlMembershipProvider, the
provider will automatically generate a random 16-byte salt value and then hash passwords and
password answers using a string that consists of the text and the random salt values. The result
of the hashing operation is stored in the Password column. Because the salt value is always
required to validate the password and password answer, it is stored in this column.

❑ MobilePIN— Another leftover from earlier plans for more extensive support for mobile users.
The idea was that in conjunction with MobileAlias from aspnet_Users, you would be able to
validate a mobile user’s credentials using a custom PIN. Just as a traditional username could be
too unwieldy for mobile users to type in, a traditional password could also be unwieldy.
Instead, the idea was that you could validate a mobile user with just a PIN — much in the way
you use ATM cards today and validate them using just a PIN code. None of this functionality
was implemented in ASP.NET 2.0, but the column was left in the table in case a future release
chooses to implement this.

❑ Email— The email address for a user. SqlMembershipProvider enforces uniqueness of this
value based on the requiresUniqueEmail configuration setting.

❑ LoweredEmail— The result of calling LOWER on the email column. This ensures the provider
can perform case-insensitive lookups based on email address, regardless of the collation order
of the underlying database.

❑ PasswordQuestion— If a provider is configured to use password questions and answers (that
is, requiresPasswordQuestionAndAnswer is set to true in configuration), this is the column
where the question is stored. Note that the question is always stored in cleartext and that, fur-
thermore, the expectation is that the entire question is stored in this column. Some developers
may instead want to have a limited list of common password questions — in which case a
domain lookup table of questions would be more useful. In this case, the functionality of
SqlMembershipProvider would result in the same question text repeatedly showing up in this
column for many users. If you want to use a domain table to limit the number of possible pass-
word questions, you could instead store the string value of the question’s primary key in this
column and write extra code to resolve this value against a lookup table.

416

Chapter 11

14_596985 ch11.qxp 12/14/05 7:51 PM Page 416

❑ PasswordAnswer— The user’s secret answer to a password question is stored in this column.
For security reasons, SqlMembershipProvider actually stores an encoded representation of the
password answer based on the password format that was applied to the user’s password. This
means that if the user’s password was stored as a hash value, a hash of the secret answer is also
stored as opposed to storing the answer in cleartext. If you configure the provider to use hash-
ing or encryption, you will need to test the effective maximum length of password answer that
can be stored. For hashing and encryption, a base64-encoded representation is stored in this
field. Stronger hash algorithms can result in a base64-encoded representation that is too large to
store in this field because the column is an nvarchar(128). Similarly, the encrypted version of
a password answer may also be too large to store in this field after taking into account the
overhead of encryption and base64 encoding.

❑ IsApproved— Stores the value of the MembershipUser.IsApproved property.

❑ IsLockedOut— This column is set to true whenever the provider detects that too many bad
passwords or bad password answers have been supplied. The provider configuration attributes
maxInvalidPasswordAttempts and passwordAttemptWindow control this behavior.

❑ CreateDate— The UTC date-time when SqlMembershipProvider was used to create the user
record in the table. There can be an edge case where a different type of authentication is used
initially on a website with other ASP.NET provider-based features. At a later point, the website
may be switched over to use Membership with SqlMembershipProvider. In this case,
SqlMembershipProvider will only insert a user into the aspnet_Membership table because
the user record already exists in aspnet_Users. For this reason, you may see that for newly cre-
ated users the value of CreateDate in aspnet_Membership is different than the
LastActivityDate column in aspnet_Users.

❑ LastLoginDate—SqlMembershipProvider stores the UTC date-time of a successful login
attempt in this column whenever ValidateUser is called. When a user is first created, the
provider sets this column to the same value as the CreateDate column.

❑ LastPasswordChangedDate— The last UTC date-time when the provider changed the pass-
word stored in the Password column. When a user is first created, the provider sets this column
to the same value as the CreateDate column.

❑ LastLockoutDate— Used in conjunction with the IsLockedOut field. If the user is in a locked
out state, this column contains the UTC date-time when the lockout occurred. For users that are
not locked out, this field instead contains a default value of “01/01/1754.”

❑ FailedPasswordAttemptCount— The provider keeps track of bad password attempts in this
column. Even though determining account lockout for bad passwords and bad password
answers uses the same configuration attributes (maxInvalidPasswordAttempts and
passwordAttemptWindow), the provider keeps track of bad password attempts separately from
bad password answer attempts. Any time that an account is unlocked or any time the correct
password is used for an account, this field is reset to zero.

❑ FailedPasswordAnswerAttemptCount— If the provider is configured to allow question-and-
answer-based password retrieval or password resets (that is, requiresQuestionAndAnswer is
set to true in configuration and either enablePasswordRetrieval or enablePasswordReset
is set to true), then the provider keeps track of failed password answer attempts in this column.
After a user account is unlocked, this counter is reset to zero. Any successful use of a password
(that is, ValidateUser succeeded) or password answer (that is, GetPassword is called using a
password answer) will also reset this column to zero.

417

SqlMembershipProvider

14_596985 ch11.qxp 12/14/05 7:51 PM Page 417

❑ FailedPasswordAttemptWindowStart— When the provider keeps track of bad passwords it
needs to know the start of the time window in UTC time during which it should track bad
attempts. It stores the start of this time window in this column. Any time an account is
unlocked, or any time the correct password is used for an account, this field is reset to a default
value of 01/01/1754.

❑ FailedPasswordAnswerAttemptWindowStart— When the provider keeps track of bad pass-
word answers, it needs to know the start of the time window during which it should track bad
attempts. It stores the start of this time window in UTC time in this column. Notice how the
provider keeps track of bad password answers attempts separately from bad password attempts
by storing the tracking information for each type of event in a different set of columns. Any time
an account is unlocked, or any time the correct password or correct password answer is used for
the account, this field is rest to a default value of 01/01/1754.

❑ Comment— A catch-all column that you can use to store miscellaneous data. Because this is an
ntext column, you can actually store an immense amount of data in this field and then retrieve
it from the MembershipUser.Comment property.

In addition to the single database table, the Membership feature also installs a single view: vw_aspnet_
MembershipUsers. This view maps most of the columns from aspnet_Membership one for one.
However, the Password and PasswordSalt columns aren’t included in the view because the view is
really intended for reporting purposes. From a security standpoint these columns were left out of the
view because they are intended for only internal use by the provider and its stored procedures. The
PasswordAnswer column probably should also have been left out of the view, but because the answer
was actually stored in cleartext for most of the development cycle, it ended up being left in the view.

The view also joins in all of the columns from the aspnet_Users table. This makes the
vw_aspnet_MembershipUsers view easier to use because most reporting queries written against this
view will at the very least need the UserName column from the aspnet_Users table.

SQL Server–Specific Provider Configuration Options
Because SqlMembershipProvider connects to SQL Server, it users two SQL Server–specific configuration
attributes on the provider definition:

❑ connectionStringName— As you would expect, the provider needs to know what database
and server to connect to. The value of this attribute must point at a named connection string
defined up in the <connectionStrings /> section.

❑ commandTimeout— As you work with larger databases, you may find that the default
ADO.NET SqlCommand timeout of 30 seconds is too short for certain operations. For
SqlMembershipProvider the Find* and Get* search methods can result in long-running
queries especially with poor query parameters. You can change the command timeout that the
provider uses with this configuration attribute. You can increase or decrease the amount of time
that ADO.NET will wait for a SqlCommand to complete.

418

Chapter 11

14_596985 ch11.qxp 12/14/05 7:51 PM Page 418

Working with SQL Server Express
Sometimes folks think that there is a separate set of providers for SQL Server 2005 Express different from the
regular SKUs of SQL Server. SqlMembershipProvider as well as all of the other SQL-based providers in
ASP.NET 2.0 work equally well against the Express and non-Express versions of SQL Server 2005. However,
there are some differences in how the database schema is installed when using SQL Server Express.

SQL Server Express (SSE) is the low-end SKU of SQL Server 2005. It normally installs on a machine as a
named instance: SQLEXPRESS. As a result, you can install SSE on machines running SQL Server 2000 or
other versions of SQL Server 2005 without interfering with these installations. There is also a special
mode of operation supported by SSE called user instancing. The internal database code shared across all
of the ASP.NET SQL-based providers includes special logic in the event a provider runs against SSE that
has user instancing enabled.

The idea behind user instancing is that the central SSE named instance (identified in a connection string as
server=.\SQLEXPRESS) can be used to spawn additional instances of the SQL Server worker process.
These spawned instances are referred to as user instances. They are referred to as “user” instances because
the SQLEXPRESS named instance spawns these extra worker processes to run with the account credentials
of a user — specifically the Windows user credentials that opened an ADO.NET connection in the first place.

To make use of SSE user instancing, you use a special form of ADO.NET connection string. You can see
an example of a user instanced connection string by looking at the <connectionStrings /> section in
machine.config:

<connectionStrings>
<add name=”LocalSqlServer”

connectionString=”data source=.\SQLEXPRESS;
Integrated Security=SSPI;
AttachDBFilename=|DataDirectory|aspnetdb.mdf;
User Instance=true”

providerName=”System.Data.SqlClient”/>
</connectionStrings>

The bolded portions of the connection string cause ADO.NET and SSE to handle the initial database con-
nection in a different manner from when connecting to a regular version of SQL Server.

The data source portion of the connection string tells ADO.NET to initially open a connection against
the named SSE instance. The User Instance=true portion of the connection string is a hint to
ADO.NET and SSE that the connection should really be rerouted to a spawned worker process running
with the account credentials currently active on the operating system thread at the time the ADO.NET
connection was opened. The AttachDBFilename portion of the connection string tells SSE that once the
spawned user instance is up and running, it should attach the SQL Server mdf data file at the specified
location as a database in the spawned user instance.

ADO.NET actually preprocesses the AttachDBFilename syntax and substitutes in the full physical path
information in place of |DataDirectory|. This syntax refers to an app-domain-level variable that host
processes fill in. A client application such as a ClickOnce application will place one value inside of this
app-domain variable. You can see what an ASP.NET host process uses with the following code:

Response.Write(System.AppDomain.CurrentDomain.GetData(“DataDirectory”));

419

SqlMembershipProvider

14_596985 ch11.qxp 12/14/05 7:51 PM Page 419

If you run this code in an IIS-based web, you will get back a path that looks something like:

c:\inetpub\wwwroot\Chapter11\SSEUsingIIS\App_Data

After ADO.NET substitutes the value of the DataDirectory app-domain variable in the connection
string, it then passes the information down to SSE. So by the time SSE gets the connection string infor-
mation, it is actually looking at a full physical file path to an .mdf file located somewhere within the
directory structure of the web application.

SSE is able to attach a database in the user instance because within the user instance your code is running
with System Administrator privileges. Because the user instance is spawned with some set of credentials,
and that same set of credentials is sending commands over an ADO.NET connection, from the point of
view of SSE those credentials have SA privileges. This makes sense because the credentials had the right
to spawn a worker process in the first place, so the same credentials might as well have full control over
any database operations within the user instance. Note that by default interactive users on a machine as
well as accounts like NETWORK SERVICE and ASPNET have rights to connect to the default SSE named
instance. As a result, this same set of accounts also has rights to request user instancing, thus elevating
themselves to the System Administrators role within the scope of the spawned user instance.

There is still another set of rights that must be satisfied for SSE user instances to work: NTFS file ACLs.
If you start out designing your application inside of Visual Studio, and if you create an App_Data direc-
tory, then Visual Studio will automatically grant Read and Write ACLs on this directory to ASPNET and
NETWORK SERVICE. As a result, when SSE attempts to read or write data to or from the .mdf file the
calls succeed because the credentials for the user instance have write access to the file.

However, if you just copy a bunch files to a location on the filesystem and then map an application in
IIS to this file location, attempts to use SSE user instancing will probably fail. By default, the ACLs on
inetpub\wwwroot don’t normally grant any Write access to the traditional web process accounts. As a
result, if you rely on the automatic database creation process, you will instead end up with an error to
the effect that SSE does not have write access to the database file. The simplest way to ensure that
everything works properly is to create the web application inside of Visual Studio initially and let the
design environment automatically place the correct ACLs on the App_Data directory for you.

When your website opens a connection with SSE user instancing requested:

1. An instance of sqlservr.exe is running initially as NETWORK SERVICE. This is the named
SSE instance.

2. A new SSE user instance is spawned resulting in a second instance of sqlservr.exe running.
This instance runs with user credentials based on the identity of the operating system thread
that opened the connection.

3. If this is the first time that a user instance with the credentials from step 2 has ever been
launched on the machine, SSE clones the master, msdb, and tempdb databases to support the
user instance. If you look in the Documents and Settings directory on your hard drive, and then
drill down to user name\ Local Settings\Application Data\Microsoft\Microsoft
SQL Server Data\SQLEXPRESS, you will see that these three databases have been created.

4. The special logic contained in ASP.NET’s internal SQL provider code detects whether or not the
.mdf file specified in the connection string even exists at the specified file path. If the .mdf file
does not physically exist, then the providers incur about a 15 second delay while they run all of
the SQL installation files for the application services (that is, everything except for session state

420

Chapter 11

14_596985 ch11.qxp 12/14/05 7:51 PM Page 420

gets installed) against the user instance. The end result of this work is that an .mdf file is
created in the file location specified by the connection string. As the last part of this work, the
provider infrastructure detaches the newly created .mdf file.

5. Within the new user instance, the database file specified by AttachDBFilename is attached to
the instance and registered in the metadata tables in the user instance’s master database. If you
are accustomed to working with databases as a named database in other versions of SQL Server,
this might seem a bit strange. However, using the attach syntax in the connection string causes
the SSE user instance to attach the database on your behalf.

The connection string shown earlier exists in machine.config to allow developers that use Visual
Studio to get up and running “auto-magically” with the application services. Rather than running
aspnet_regsql.exe manually to install the database scripts into a specific database on a database
server, you can write code against a feature like Membership, and the database will automatically be
created for you.

From an ease-of-use perspective, this is actually pretty powerful and makes features like Membership so
straightforward to use that developers potentially don’t need to understand or muck around with
databases. Of course, this rosy scenario actually has a few streaks on the window, as you will shortly see.
The automatic database creation behavior was originally intended for client applications such as
ClickOnce apps. In a client environment, a user instance makes a fair amount of sense because someone
is actually running interactively on a machine with a well-established set of credentials.

Furthermore, while running in a client environment there is likely to be sufficient processing power on
the machine to handle the overhead of user instancing. Just running the named SSE instance plus a user
instance with the ASP.NET database tables in them incurs up to about 45–75MB of memory overhead.
That’s a pretty hefty wallop, but nonetheless manageable on a single desktop machine. When the user
instancing capability was used for the ASP.NET application services, the main scenario was to support
development in Visual Studio — in essence, this is another client application scenario, albeit in this case
the client application is a development environment.

However, the SSE story on a web server starts to break down because of a few constraints with user
instancing. The most obvious one is that user instancing is tied to a specific user identity, which leads to
the potential for multiple user instances floating around on a server. With around a 45MB overhead
when the SQL providers auto-create the database, and around 25MB of overhead once the database
exists, it wouldn’t take long for a shared web server to run out of memory space. If you set up 40
application pools on IIS6 with each application pool running as a different identity, you could slurp up
1GB of memory with SSE user instances in short order.

The next issue with user instancing deals specifically with the operating system thread identity that is
used when making the initial ADO.NET connection. As mentioned earlier, this identity is critical
because SSE needs to ensure that cloned databases like the master database exist for these user accounts.
Additionally, SSE needs the security token of the client to create a new child process running the SQL
Server executable. It turns out though that for SSE to actually know where to create and look for the
cloned versions of master and other databases, a Windows user profile needs to be loaded into memory.

In the scenario with a client application, the dependency on the Windows user profile is a nonissue. The
second you log on to a Windows machine with some credentials, your Windows user profile is loaded.
Hence, any application that you choose to run, including Visual Studio will be able to find data that is
stored in the Windows user profile. What happens though for a noninteractive scenario like IIS6 applica-

421

SqlMembershipProvider

14_596985 ch11.qxp 12/14/05 7:51 PM Page 421

tion pools? It turns out that when you run ASP.NET (any version of ASP.NET for that matter) on IIS6, the
Windows user profile is never loaded for the account identity used for the application pool when the
application pool uses an account other than NETWORK SERVICE.

If you write an ASP.NET application that uses Membership with the default connection string, in some
circumstances the application services database is automatically created for you. The reason this works
is basically by accident. Because the default identity for IIS6 application pools is NETWORK SERVICE,
and NETWORK SERVICE is commonly used for other services on a Windows Server 2003 machine, the
Windows user profile for NETWORK SERVICE gets loaded as a side effect of the operating system start-
ing up. As a result, when you use SSE with the default connection string using the default IIS6 applica-
tion pool identity, the named SSE instance is able to query the Windows user profile for the location of
the Local Settings folder for NETWORK SERVICE.

However, if you attempt to use application impersonation or to change the application pool identity to a
different account, any code you write that uses the default SSE connection string will fail. For all other
application pool identities, there is no Windows user profile available. As a result, if you attempt to use
SSE user instances, you will instead end up with the following exception:

Failed to generate a user instance of SQL Server due to failure in retrieving the
user’s local application data path. Please make sure the user has a local user
profile on the computer. The connection will be closed.

Other information is displayed along with this error, but if you see this error, you aren’t ever going to get
SSE user instancing to work (ignoring any crazy hacks that forcibly load a Windows user profile using
an NT service or schedule batch job).

This behavior basically leaves you wondering when to use the default connection string and when to
change it. If you perform most of your development using file-based, as opposed to IIS-based, websites
on your own machine, then you can leave the SSE connection string as is. File-based webs use the
Cassini web server instead of the IIS6 process model. Cassini runs with your logged-in credentials, so
SSE will always be able to find your Windows user profile. This security model meshes well with SSE’s
assumptions about user instancing.

However, if you are developing websites with IIS6 (some of you probably run Windows Server 2003 for
a development “desktop”), or if you are developing websites that will be deployed to IIS6, then you defi-
nitely should consider changing the SSE style connection string. There are a few reasons for this sugges-
tion:

❑ As noted earlier, unless your IIS6 application pool runs as NETWORK SERVICE, the SSE style
connections are not going to work anyway.

❑ There is a somewhat nonobvious problem with handshaking between an IIS6 website and the
development environment over who has control over the .mdf file (more on this in a bit).

❑ From a security perspective, you should not run with user instancing on any of your production
machines if untrusted applications are deployed on them.

The last point may not be something that many of you run into. Most companies have SQL Server instal-
lations running on separate machines, in which case user instances would never come into the picture.
(You can’t connect to an SSE user instance from across the network; only local connections are accepted

422

Chapter 11

14_596985 ch11.qxp 12/14/05 7:51 PM Page 422

against user instances.) If you happen to be in an environment where SSE is installed locally on your
web servers as a sort of low-cost database, you still should be aware of the security implications of user
instancing.

Imagine a scenario where you have two different application pools on IIS6 both running as NETWORK
SERVICE. If you put applications from two different untrusted clients into the two different application
pools, you may think that you have enforced a reasonable degree of isolation between the two applica-
tions. The idea is that the two clients don’t know or trust each other — perhaps for example this is an
Internet facing shared hosting machine. Because their sites are in different application pools, the applica-
tions can’t reach into each other’s memory spaces and carry out malicious tasks. If you are running in
something like Medium trust, the applications can’t use file I/O to try to read each other’s application
files. So, you might think you are reasonably safe at this point.

However, if these applications use a connection string that specifies SSE user instances you will come to
grief. Because both application pools run as NETWORK SERVICE, SSE will spin up one, and only one,
instance of sqlservr.exe running as NETWORK SERVICE. Both applications will connect to this
single user instance, and both applications as a result will be running with System Administrators
privileges within this single user instance. The end result is that two untrusted applications have access
to each other’s data. And, of course, attempting to switch the application pool identities to something
else immediately breaks SSE user instancing!

There is a scenario though where SSE user instancing is reasonable for IIS6 production machines. If you
are running in a corporate environment (and this can be an intranet, an extranet, or the Internet) and all
of the applications on the machine are from trusted sources, SSE user instancing can probably be left in
place. Because all of the code authors are presumably from the same or trusted organizations, there
probably are not any concerns with snooping each other’s data. Also, corporate developers running local
SQL Server installations on their web servers probably aren’t storing confidential information in these
databases. You may just be storing information such as Web Parts Personalization data — if the worst
happens and someone walks away with everyone’s preferred background color for a web part on page
two of your application, it is not the end of the world.

A cautionary note for this scenario is still needed though. Even if all of the applications on a machine
trust each other, I still wouldn’t store any security sensitive data in an SSE user-instanced database. For
example, I would still recommend storing Membership and Role Manager data at a minimum inside of a
regular SQL Server database that can be protected. And ideally such a database would be running on a
remote machine, not locally on the web server.

Note that although this section is discussing the user instance mode of SSE, you can install SSE on a
machine just as you would normally install any other version of SQL Server. You can then have local and
remote web servers connect to SSE using the more traditional database connection string syntax:

“server=remoteserver\SQLEXPRESS;database=aspnetdb;Integrated Security=true”

This connection string works the same way as connections to named instances of SQL Server 2000 work
today. With this approach you need to manually enable remote network connections to SSE because by
default even the named instance of SSE only allows local connections. Also, you can turn off user
instancing on your machines that are running SSE at install time (There is an advanced option for turn-
ing off support.) Alternatively, you can connect to the SSE named instance using credentials that have
System Administrators privileges. Then using a command line tool like OSQL.exe or SQLCMD.exe you
can run the following SQL commands:

423

SqlMembershipProvider

14_596985 ch11.qxp 12/14/05 7:51 PM Page 423

exec sp_configure ‘show advanced option’, ‘1’
go
reconfigure with override
go
exec sp_configure ‘user instances enabled’, 0
go
reconfigure with override
go

Unless you intend to support user instancing for development purposes or web servers where you trust
all of the users and you aren’t storing sensitive data, you should turn off support for user instances.
Especially in environments such as shared hosting servers that support multiple untrusted clients, you
should always disable SSE user instancing.

Sharing Issues with SSE
If you work with an IIS based web application inside of Visual Studio, you will probably run into cases
with lock contention over the .mdf file containing the application services database. An .mdf file cannot
be opened by more than one instance of sqlservr.exe at a time. If you are developing with file-based
webs you won’t run into this issue because the Visual Studio environment and the Cassini web server run
under the same credentials — the interactive user. Whenever either environment attempts to manipulate
an .mdf both processes are routed to the same SSE user instance, and hence there is no file contention.

With an IIS-based web, you potentially have two different user accounts causing two different SSE user
instances to be spawned. IIS will spawn a user instance running as NETWORK SERVICE, whereas the
Visual Studio design environment will cause a user instance running as the interactive user to be spawned.
You can run into a problem with this environment if you start debugging your application in IIS6, thus
causing the user instance running as NETWORK SERVICE to own the application services .mdf file.

Then if you go back into Visual Studio and try to run the Web Administration Tool (WAT), Visual Studio will
start up a Cassini instance running as you. When you then surf around the WAT and access functionality
that needs to access the .mdf, you may get error like the following:

Unable to open the physical file
“c:\inetpub\wwwroot\Chapter11\SSEUsingIIS\App_Data\aspnetdb.mdf”. Operating system
error 32: “32(The process cannot access the file because it is being used by
another process.)”. An attempt to attach an auto-named database for file
c:\inetpub\wwwroot\Chapter11\SSEUsingIIS\App_Data\aspnetdb.mdf failed. A database
with the same name exists, or specified file cannot be opened, or it is located on
UNC share.

or

Cannot open user default database. Login failed. Login failed for user
‘DOMAIN\user’.

These errors can occur because the SSE user instance for IIS6 is still up and running, and thus the SSE
user instance for WAT in Cassini cannot get open the same .mdf file. Technically, this type of issue is not
supposed to occur in many cases because within Visual Studio there are certain click paths that create an
app_offline.htm file in the root of the IIS6 website. Remember that Chapter 1 pointed out that placing
a file called app_offline.htm in the root of a website immediately caused the app-domain to recycle.

424

Chapter 11

14_596985 ch11.qxp 12/14/05 7:51 PM Page 424

The idea behind Visual Studio placing a temporary app_offline.htm in the root of an IIS-based
website is that when the app-domain recycles, all the ADO.NET connections to the SSE user instance
drop. As a result, the SSE user instance should quickly detect that there are no active connections to the
currently attached database, and therefore the SSE user instance should release any attached .mdf files.
Unfortunately, the SSE auto-detach behavior and Visual Studio handshaking behavior has been flaky
since day one, and therefore the extra work that Visual Studio does to force a detaching of the applica-
tion services database sometimes does not work.

If you end up in this situation, the quickest way to force an app-domain restart in the IIS application is to
touch the web.config. Put a space in the file, or make some trivial edit, and then save the updated
web.config. ASP.NET will detect that web.config has changed, and it will cycle the app-domain,
which in turn will trigger the auto-detach behavior in SSE. If you have problems going in the other
direction (that is, the data designer in Visual Studio or the WAT has grabbed access to the .mdf file), you
have two options. You can rectify the problem by finding the sqlservr.exe instance in Task Manager
that is running with your logged in identity and just kill the process. Or you can right-click on the appli-
cation services database in the Visual Studio Solution Explorer and select Detach. When you then switch
to your IIS6 application, the SSE user instance running as NETWORK SERVICE will be able to grab
access to the .mdf file again.

As you can see from this process of sharing the application services .mdf file between the design envi-
ronment and IIS, this is yet another reason why using SSE for any of the ASP.NET application services is
frequently more trouble than it is worth when developing against IIS6. In general, I would only use SSE
when developing file-based webs where the entire hand-shaking issue never arises.

Changing the SSE Connection String
So, what happens if you don’t want to use SSE user instancing? Does this suddenly mean that you have
to redefine every application provider just to switch over the connection string? Thankfully, the answer
to this is no! All of the ASP.NET providers, regardless of whether they are defined in machine.config
or the root web.config, reference the connection string named LocalSqlServer. Because the
<connectionStrings /> configuration section is a standard add-remove-clear collection, you can just
redefine the LocalSqlServer connection string to point at a different server and database:

<connectionStrings>
<remove name=”LocalSqlServer”/>
<add name=”LocalSqlServer”

connectionString=”data source=.\SQLEXPRESS;
Integrated Security=SSPI;database=aspnetdb”/>

</connectionStrings>

This connection string redefines the common connection string shared by all SQL providers to point at
the default local SSE named instance, but instead specifies connecting to a database called aspnetdb.
This is the more traditional SQL Server connection string that you probably familiar with from SQL
Server 2000. For other server locations, you can change the data source portion of the connection string
to point at the correct server.

With the connection string shown previously, you can use the aspnet_regsql tool to install all of the
application services database schemas in a database called aspnetdb on the local SSE instance. The
aspnet_regsql.exe tool is located in the Framework’s installation directory:

aspnet_regsql -S .\SQLEXPRESS -E -A all -d aspnetdb

425

SqlMembershipProvider

14_596985 ch11.qxp 12/14/05 7:51 PM Page 425

For this to work with a remote SSE instance, you need to use the SQL Server Configuration Manager tool
that comes with SSE and enable either the Named Pipes or TCP/IP protocol for the remote SSE instance.
SSE by default disables these protocols to prevent connections made by remote servers.

After you have installed the application services databases, you still need to grant the appropriate login
rights and permissions in the application services database. These steps aren’t unique to SSE because
you will have to do this for any variation of SQL Server other than user instanced SSE installations. The
subject of database security is the topic for the next section.

Database Security
After the database schema is installed using aspnet_regsql, your applications still aren’t going to be able
to use the database. You need to grant the appropriate account login rights to the SQL Server. And then
you need to grant the appropriate rights in the application services database. The first question that
needs to be answered is which account do the SQL-based providers use when connecting to SQL Server?

Internally all of the SQL providers, including SqlMembershipProvider, will suspend client imperson-
ation if it is in effect. This means that the identity used by the providers for communicating with SQL
Server when using integrated security will be one of the following:

❑ The process identity of the IIS6 worker process. This is NETWORK SERVICE by default, but it
can be different if you have changed the identity of the application pool.

❑ If you configured application impersonation for you application, then the provider connects
using the explicit credentials specified in the <identity /> configuration element.

If you have <identity impersonate=”true” /> and you are using Windows authentication, the
providers always suspend client impersonation. From a security perspective, it’s not a good approach to
grant login and database access to all potential Windows accounts on your website. If your connection
string uses standard SQL security instead of integrated security, then the identity that connects to SQL
Server is pretty easy to identify; it’s simply the standard SQL user account that is specified in the connec-
tion string.

After you have identified the specific identity that will be used when connecting to SQL Server, you
need to first grant login rights on the server to this identity. You can use the graphical management tools
supplied with SQL Server 2000 and the nonexpress SKUs of SQL Server 2005 to do this. If you need to
grant access to the NETWORK SERVICE account without a graphical tool, you can type in “NT
AUTHORITY\NETWORK SERVICE” for the NETWORK SERVICE account of a local machine.

However, if you want to grant access to the NETWORK SERVICE account for a remote web server, you
need to grant access to DOMAIN\MACHINENAME$. This special syntax references the machine account for a
server in a domain. The MACHINENAME$ portion of this account actually references the NETWORK SER-
VICE account for a remote machine. If your website uses some other kind of domain credentials, you
would just type DOMAIN\USERNAME instead.

If you want, you can also grant login rights using plain old TSQL to accomplish this:

exec sp_grantlogin N’CORSAIR\DEMOTEST$’

426

Chapter 11

14_596985 ch11.qxp 12/14/05 7:51 PM Page 426

You use a standard SQL Server login account instead of a domain style name if your connection string
uses standard SQL credentials. If you choose to use a locally installed SSE database, for some strange
reason there is no graphical management tool for this type of operation that is available out of the box
with the SSE installation. Instead, you need to use command-line tools like OSQL.exe or SQLCMD.exe to
run this command. There is nothing quite like forward progress that throws you a decade back in time!

After login rights are granted on the SQL Server, you then need to grant permissions for that login
account to access the application services database. Assuming that you want to grant login rights for a
local NETWORK SERVICE account to a database called aspnetdb, the TSQL for this looks like:

use aspnetdb
go

exec sp_grantdbaccess ‘NT AUTHORITY\NETWORK SERVICE’
go

You just use a different value for the username passed to sp_grantdbaccess, depending on
whether you are granting login rights to a different domain account or to a standard SQL account.
Of course, if you are using any of the graphical management tools, you can also use them to grant
access to the database.

By this point, you have set things up in SQL Server so that the appropriate account can at least connect
to SQL Server and reach the database. The last step is granting rights in the database to the account —
this includes things like rights to query views and execute stored procedures. The ASP.NET schemas
though are installed with a set of SQL Server roles that make this exercise substantially simpler.

Although you could make the application pool identity a dbo in the application services database for
example, this goes against the grain of granting least privilege. Furthermore, if you installed the
ASP.NET schema in a preexisting database, you probably do not want the ASP.NET process identity (or
whatever credentials are being used) to have such broad privileges.

The ASP.NET schema includes a set of roles for each set of application services with the following suffixes:

❑ BasicAccess — Database rights granted to this role are restricted to stored procedures that are
needed for minimal feature functionality. The role does not have execute rights on stored proce-
dures that deal with more advanced feature functionality.

❑ ReportingAccess — This role has rights to stored procedures that deal with read-only opera-
tions and search operations. The role also has rights to perform selects against the SQL Server
views that were created for the feature.

❑ FullAccess — These roles have rights to execute all of the stored procedures associated with the
feature as well as having select rights on all of a feature’s SQL views.

None of the feature-specific roles grant access directly to the SQL tables because the features deal with
data by way of stored procedures and optionally views. As a result, there is no reason for a member of a
feature’s roles to manipulate the tables directly. This also means that in future releases the ASP.NET team
has the freedom to change the underlying table schemas because all access to the data in these tables is
by way of stored procedures or views.

427

SqlMembershipProvider

14_596985 ch11.qxp 12/14/05 7:51 PM Page 427

Technically, the Health Monitoring feature (aka Web Events) is an exception to this rule because it does
not provide any mechanism for querying data from the event table other than through direct SELECT
statements. Other features like Membership though expect you to always go through the object API or
for purposes of running reports, through the SQL Server views.

For the Membership feature, three roles are available to you:

❑ aspnet_Membership_BasicAccess— This role only allows you to call ValidateUser as well
as GetUser and GetUserNameByEmail.

❑ aspnet_Membership_ReportingAccess— This role allows you to call GetUser,
GetUserNameByEmail, GetAllUsers, GetNumberOfUsersOnline, FindUsersByName, and
FindUsersByEmail. Members of this role can also issue select statements against the
Membership views.

❑ aspnet_Membership_FullAccess— This role can call any of the methods defined on
SqlMembershipProvider as well as query any of the Membership views.

Most of the time, you will just add the appropriate account to one of the FullAccess roles. The other
more restrictive roles are there for security sensitive sites that may have separate web applications for
creating users as opposed to logging users in to the website. You can add an account to a role through
any of the SQL Server graphical tools, or you can use TSQL like the following:

exec sp_addrolemember ‘aspnet_Membership_FullAccess’,
‘NT AUTHORITY\NETWORK SERVICE’

After this command runs, whenever a website running as NETWORK SERVICE has a
SqlMembershipProvider that attempts to call a Membership stored procedure in the database, the call
will succeed because NETWORK SERVICE has login rights on the server and belongs to a database role
that grants all of the necessary privileges to execute stored procedures.

Database Schemas and the DBO User
Many of the previous topics assume that you have sufficient privileges to install the application services
schemas on your database server. If you or a database administrator have rights to create databases (that
is, you are in the db_creator server role), or have “dbo” rights in a preexisting database, then you can
just run the aspnet_regsql tool without any worries.

However, there is a very important dependency that the current SQL-based providers have on the con-
cept of the dbo user. If you look at any of the .sql installation scripts in the Framework’s installation
directory, you will see that all of the tables and stored procedures are prepended with dbo:

CREATE TABLE dbo.aspnet_Membership

CREATE PROCEDURE dbo.aspnet_Membership_CreateUser

and so on.

Furthermore, the code inside of all of the stored procedures explicitly references object names (that is,
tables and stored procedures) using the explicit dbo username:”

428

Chapter 11

14_596985 ch11.qxp 12/14/05 7:51 PM Page 428

EXEC dbo.aspnet_Applications_CreateApplication ...

SELECT @NewUserId = UserId FROM dbo.aspnet_Users ...

and so on.

If you disassemble any of the SQL providers with a tool like ildasm, you will also see that the providers
themselves use the dbo owner name when calling stored procedures:

SqlCommand cmd = new SqlCommand(“dbo.aspnet_Membership_GetUserByEmail”,...);

If you install the database schemas as a member of the System Administrators role, or as a member of
the Database Creators role, none of this will affect you because an SA or a database creator are treated as
dbo within a newly created database. In this case, because you are dbo, you can of course create objects
associated with the dbo username.

Problems arise though if you do not have dbo privileges in the database. For example, you can be
running as someone other than dbo and still create tables in a database. Unfortunately, though if you
were to just issue a command like:

CREATE PROCEDURE aspnet_Membership_CreateUser

a table object called your_account_name. aspnet_Membership_CreateUser is created instead. If this were
allowed to happen, a provider like SqlMembershipProvider would never work because the provider
would always be looking for a stored procedure owned by dbo and would never see the user-owned
stored procedure. The reason that all of the providers explicitly look for a dbo-owned object is that at
least on SQL Server 2000 (which is expected to be the main platform for running the application services
databases for the first few years), there is a slight performance drain if you call stored procedures with-
out including the owner name.

From experience, the ASP.NET team found that this slight performance drain was actually so severe
with the SQL Server schema for session state back in ASP.NET 1.1 that they had to QFE the session state
database scripts and Session State server code to always user owner-qualified stored procedure names.
To prevent the same problem with contention over stored procedure compilation locks from occurring
with the new ASP.NET 2.0 database schema, the decision was made to owner-qualify all objects in the
application services schemas.

Of course, that decision created the problem of which owner name to use. Because dbo is a common
owner name that is always available in SQL Server databases, the decision was made to hard-code the
dbo owner name into the schemas and the providers. After Beta 1 shipped, problems arose with shared
hosting companies that sell SQL Server databases for their customers.

Some of these hosters do not grant dbo privileges in the database purchased by the customer. If you
attempt to run the older Beta 1 versions of the database scripts the attempt fails. To work around this,
the new requirement is that you must be one of the following to install the database schemas for the
application services:

❑ You can be dbo in the database.

❑ You must be a member of both the db_ddladmin and db_securityadmin roles in the database.

429

SqlMembershipProvider

14_596985 ch11.qxp 12/14/05 7:51 PM Page 429

If you belong to both the db_ddladmin and db_securityadmin roles in a database, then as long as a
shared hoster or some other entity creates the database for you ahead of time, you can log in to the
database and successfully run any of the SQL installation scripts. You need to be in the db_ddladmin
role to issue commands like CREATE TABLE or CREATE PROCEDURE. Other than db_ddladmin, only
dbo has this right by default. As strange as it may seem, a db_ddladmin member can create database
objects owned by other user accounts. However, just because a db_ddladmin can create such objects
doesn’t mean a member of that role can use those objects.

As a result, you also need to belong to db_securityadmin because at the end of the SQL installation
scripts there are commands that create SQL Server roles and then grant execute rights and select rights on
the stored procedures and views to the various roles. If you aren’t a member of the db_securityadmin
role, the scripts won’t be able to setup the SQL Server roles and associated permissions properly. Although
some hosters or companies might still be reticent to grant db_ddladmin and db_securityadmin rights,
this set of rights is appropriate for most scenarios where all you want to do is prevent handing out dbo
rights to everyone.

A very important point to keep in mind from all of this discussion is that although you need to run with
some kind of elevated privileges to install the database scripts, you don’t need these privileges to use the
database objects. For any SQL based provider to successfully call the stored procedures, you only need to
add the appropriate security accounts to one or more of the predefined SQL Server roles. You don’t have to
grant the security accounts on your web servers dbo privileges or either of the two special security roles
just discussed. In this way, at runtime you can still restrict the rights granted to the web server accounts
and thus maintain the principle of least privilege when using any of the SQL-based providers.

For future Framework releases, the ASP.NET team is considering tweaking the SQL-based providers to
allow for configurable owner names. Implementing the feature would allow you to install the applica-
tion services schema using any arbitrary user account. The account would only need rights to create
tables, views and stored procedures, which is an even lower set of privileges than those available from
db_ddladmin and db_securityadmin. Then the providers would have an extra configuration attribute
for you to specify the correct owner name to be prepended by the providers to all stored procedure calls.

Changing Password Formats
When you configure SqlMembershipProvider you have the option of storing passwords in cleartext,
as hashed values, or as encrypted values. By default, the provider will use SHA1 hashing with a random
16-byte salt value. As mentioned in the Membership chapter, you can change the hashing algorithm by
defining a different algorithm in the hashAlgorithmType configuration attribute on the <membership
/> element. If you choose encrypted passwords, the provider by default uses whatever is configured for
encryption on the <machineKey /> element. The default algorithm for <machineKey /> is AES —
although you can change this to 3DES instead with the new “decryption” attribute.

If you choose to use encrypted passwords with SqlMembershipProvider, then you must explicitly
provide a value for the decryptionKey attribute on <machineKey />, because if you were allowed to
encrypt with the <machineKey /> default of AutoGenerate,IsolateApps your passwords could
become undecryptable. For example, there would be no way to decrypt passwords across a web farm.
Also, whenever the Framework is upgraded or installed on a machine, the auto-generated machine keys
are regenerated. Overall, the danger of leading developers into a dead end with encryption was so great
that the provider now requires you to explicitly supply the decryption key for <machineKey />.

430

Chapter 11

14_596985 ch11.qxp 12/14/05 7:51 PM Page 430

Normally, you set the passwordFormat configuration attribute on the provider just once. However, some
confusion can arise if you change the password format after you create Membership user accounts, thus
storing passwords (and potentially password answers) in the database. When a user account is first
created, and the password is encoded, the format used to encode the password and the password answer
is stored in the database in the PasswordFormat column. After this occurs, the format that was used at
user creation time is used for the lifetime of the record in the database. Even if you switch the password
format configured on the provider, existing user records will continue to use the old password format.

You can see this if you use a basic test site and start out with cleartext passwords:

<membership defaultProvider=”formatTest”>
<providers>

<add
name=”formatTest”
...
passwordFormat=”Clear”
...

</providers>
</membership>

You can create a new user and look in the database to confirm that the password is stored in cleartext. If
you then modify the provider definition to instead use passwordFormat=’Hashed’ and then create a
second user, this user’s password is stored as a base64-encoded hash value along with the random salt.

However, you can still log in with the first user account despite the fact that the password format used
for the first user differs from the current setting on the provider. Additionally, you can use a control like
the ChangePasword control to change the password of the first user. After you change the first user’s
password, the new password is still being stored using cleartext.

There really isn’t a great way to work around this behavior, though it admittedly isn’t likely that this would
ever happen in a production environment. However, you may run into this problem in a development
environment if you start with a set of test accounts using one password format and then later during the
development a final decision is made to use a different password format. In this case, you may not want to
migrate existing accounts into production using the old password format — especially if everything started
out using cleartext.

If you just need to convert existing accounts with cleartext passwords to use a more secure format, you can
query the database directly to extract the original passwords (and if necessary the original password
answers as well). Then you can delete all of the existing users using cleartext passwords and regenerate the
accounts using the cleartext passwords that you stored off to the side. Of course, even this approach will
lead to a problem if you depend on the user’s primary keys for other data — perhaps you linked some of
your own custom tables to the aspnet_Users table and, thus, you don’t want the keys for each of the
users to change. In this case, you can just use the old GUID UserId value as the providerUserKey param-
eter to CreateUser when you recreate the new user accounts.

However, what happens if you want to roll existing users over from encrypted or hashed passwords to a
different format? For this scenario, you are stuck — there is no way to force existing user accounts to use a
new password format. The problem is that to regenerate a password you need to call the ChangePassword
method on the provider. As part of this method, you have to supply the old password, so it isn’t likely that
you can automate this process because you don’t know the original password. You will probably need the
users who know their passwords to log into a site and change their password.

431

SqlMembershipProvider

14_596985 ch11.qxp 12/14/05 7:51 PM Page 431

But even this doesn’t solve the problem because as part of the logic inside of ChangePassword, the
provider first fetches the existing password information, including the password format from the database.
The provider internally validates the oldPassword parameter of this method using the password data and
format retrieved from the database. Assuming that this validation succeeds the provider encodes the
newPassword parameter using the password format that is stored in the database. As a result, there isn’t a
way to get in between the validation of the oldPassword and the encoding of newPassword parameter to
tell the provider to use a new password format.

For this reason, you should avoid situations that require changing the password format for a production
system. If you try to change a production system from using hashed passwords to using encrypted
passwords, you really don’t have any option other than recreating user accounts on the fly when users
log in. With hashed passwords, you can’t automate the change, because there is no way to get back to
the cleartext versions of the passwords.

If you try to change a production system from using encrypted passwords to using hashed passwords,
you can potentially automate this because you at least know the decryption key. However, you will need
to write code that converts from the base64-encoded representations of the password and password
answers into a byte[], at which point you have to write your own code to decrypt the passwords using
the correct algorithm. This method comes with a potential privacy issue because your website customers
probably don’t expect to have their passwords decrypted for any reason other than logging in.

As you can see, neither of these scenarios are optimal — so make sure that the password format you plan
to use is determined well before your website goes into production. After you have live users on your
site, changing your mind about the password format can require you to delete and then regenerate
existing user accounts.

Custom Password Generation
If you use the password reset feature of SqlMembershipProvider, then you will be depending on the
default behavior the provider supplies for automatically generating passwords. The default behavior
uses the Membership.GeneratePassword method to create a password that conforms to the configured
password strength requirements. These are defined by the provider’s minRequiredPasswordLength
and minRequiredNonAlphanumericCharacters configuration attributes. Note that even if you set the
minRequiredNonAlphanumericCharacters attribute to zero, it is likely that the auto-generated
password will still contain nonalphanumeric characters.

The internal implementation of Membership.GeneratePassword randomly selects password charac-
ters from a predefined set of nonalphanumeric characters as well as the standard set of uppercase
and lowercase alphanumeric characters and numbers. As a result the GeneratePassword method only
guarantees that there are at least as many nonalphanumeric characters as required by the
minRequiredNonAlphanumericCharacters. The method does not guarantee creating exactly as
many nonalphanumeric characters as specified in the configuration attribute; instead, it is likely that
GeneratePassword will generate a few more nonalphanumeric characters than specified by
minRequiredNonAlphanumericCharacters.

If you don’t want this behavior, or if you have your own requirements and algorithm for creating ran-
dom passwords, you can choose to override the public virtual GeneratePassword method defined on
SqlMembershipProvider.

public virtual string GeneratePassword();

432

Chapter 11

14_596985 ch11.qxp 12/14/05 7:51 PM Page 432

An override of this virtual method doesn’t take any parameters and is expected to return a string contain-
ing the randomly generated password. You have access to the provider’s configured password strength
requirements via MinRequiredPasswordLength and MinRequiredNonAlphanumericCharacters that
are defined up on MembershipProvider.

As an example of this, you can write a provider that derives from SqlMembershipProvider and that
overrides just the GeneratePassword method. For simplicity, you can implement the derived provider
in the App_Code directory of your website; although if you needed this functionality available across all
of your websites you would instead create a derived provider using a standalone class library.

The following sample code shows a custom password generator that handles the case where zero nonal-
phanumeric characters are required:

using System;
using System.Web.Security;
using System.Security.Cryptography;

public class CustomPasswordGeneration : SqlMembershipProvider
{

private static char[] randChars =
“a0bcde1fghij2klmno3pqrst4uvwxy5zABCD6EFGHI7JKLMN8OPQRS9TUVWXYZ”.ToCharArray();

public override string GeneratePassword()
{

if (MinRequiredNonAlphanumericCharacters == 0)
{

RNGCryptoServiceProvider rcsp = new RNGCryptoServiceProvider();
//Always generate at least 14 characters in the random password
int desiredLength =

MinRequiredPasswordLength < 14 ? 14 : MinRequiredPasswordLength;

byte[] randBytes = new byte[desiredLength];
char[] convertedResult = new char[desiredLength];

//First get some random values
rcsp.GetBytes(randBytes);
//Then convert these values into characters
for (int i = 0; i < desiredLength; i++)
{

int indexOffset = ((int)randBytes[i]) % randChars.Length;
convertedResult[i] = randChars[indexOffset];

}

return new String(convertedResult);

}
else
{

return base.GeneratePassword();
}

}
}

433

SqlMembershipProvider

14_596985 ch11.qxp 12/14/05 7:51 PM Page 433

The sample code overrides just the GeneratePassword method of SqlMembershipProvider. In the
event that the custom provider is configured to not require nonalphanumeric characters, then the
custom password generation logic runs. Otherwise, the override just delegates to the base class. You can
of course extend this to handle cases that require nonzero number of nonalphanumeric characters, and
you want to specify the exact number of nonalphanumeric characters allowed.

The custom password generator follows the same approach as the default Membership providers by
always generating at least a 14-character long random password. In the unlikely event that the provider
is configured to require even more characters, it will honor the longer length instead. The custom
provider first gets the appropriate number of random byte values using RNGCryptoServiceProvider.
This ensures that the values are truly random as opposed to having some hidden dependency on a
known seed.

The byte values are then converted into characters by treating each random byte value as an integer and
then performing a modulus operation on the integer. The resulting value is used as an index into the
fixed character array randChars defined at the start of the class. The custom provider implementation
allows only uppercase and lowercase representations of a–z as well as the numbers 0–9 in a randomly
generated password. Using this approach you can easily change the characters allowed in a random
password by editing the characters in the randChars variable. Because the modulus operation always
runs based on the length of randChars, you can change the length of the array without worrying about
updating constants elsewhere in the code.

After each random byte has been converted into a character, the array of characters is returned as a
string. You can try this code out with the sample configuration shown here:

<add name=”customPasswordGeneration”
type=”CustomPasswordGeneration”
connectionStringName=”LocalSqlServer”
minRequiredNonalphanumericCharacters=”0”

/>

Notice that the type string for the provider contains only the name of the class. This works because the
ASP.NET ProvidersHelper class that you saw earlier in Chapter 9 has extra logic that can resolve
types from special ASP.NET directories, including the App_Code directory. As a result, the assembly
name and optional string name information is not required for this case.

If you run a sample page with code like the following:

CustomPasswordGeneration cgprovider =
(CustomPasswordGeneration)Membership.Providers[“customPasswordGeneration”];

Response.Write(cgprovider.GeneratePassword());

you will get random passwords output like the following strings:

E73iDeRIs68USd
Ws25gpbZU6P2wo
U5EcY4WxissPfY

and so on.

434

Chapter 11

14_596985 ch11.qxp 12/14/05 7:51 PM Page 434

If you change the configuration for the custom provider to require one or more nonalphanumeric
characters, the random password generation reverts to the default behavior implemented by
SqlMembershipProvider.

Implementing Custom Encryption
In the previous chapter, you saw how to implement custom hash algorithms that work with
SqlMembershipProvider. Unlike hash operations, encryption is not something that can be declara-
tively customized using the <membership /> element. While hash operations are pretty straightforward
from an API standpoint (a byte[] goes in, and a different byte[] comes out the other side), encryption
operations are not as simple to make universally configurable.

If you choose encrypted passwords with Membership, by default SqlMembershipProvider will use the
encryption routines buried within the internals of the <machineKey /> configuration section. There had
been consideration at one point of making the encryption capabilities in this configuration section more
generic and more customizable. However, that work was never done because configuring encryption
algorithms can involve quite a number of initialization parameters (initialization vectors, padding
modes, algorithm specific configuration properties, and so on).

Therefore, if you want to use a custom encryption algorithm in conjunction with
SqlMembershipProvider, you will need to write some code. The base class MembershipProvider
exposes the EncryptPassword and DecryptPassword methods as protected virtual. You can
derive from SqlMembershipProvider and override these two methods because internally the SQL
provider encrypts and decrypts data by calling these base class methods. The method signatures for
encryption and decryption are very basic:

protected virtual byte[] DecryptPassword(byte[] encodedPassword)
protected virtual byte[] EncryptPassword(byte[] password)

Your custom encryption implementation needs to take a byte[], either encrypt or decrypt it, and then
return the output as a different byte[]. By the time decryption override is called,
MembershipProvider has already converted the base64-encoded representation of the password in the
database back into a byte[]. Similarly, after your custom encryption routine runs, the provider will con-
vert the resulting byte[] back into a bas64-encoded string for storage in the database.

Remember that SqlMembershipProvider stores passwords and password answers as an nvar-
char(128). Custom encryption routines that cause excessive bloat need to keep this mind. If you suspect
that a custom encryption algorithm may increase the size of the password and password answer (taking
into account the subsequent base64 encoding as well), you should have extra maximum length rules to
prevent this problem. For passwords, you could make sure to hook the ValidatingPassword event or
override password related methods on the provider to enforce a maximum password length. For pass-
word answer maximum length enforcement you always need to derive from SqlMembershipProvider
because this is the only way to validate password answer lengths prior to their encoding.

SqlMembershipProvider gives some protection against excessively long encoded values because it
always validates that the encoded (that is, base64 encoded) representation of passwords and password
answers are less than or equal to 128 characters. If an encoded representation exceeds this length, the
provider throws an exception to that effect. However, proactively checking the maximum lengths of the

435

SqlMembershipProvider

14_596985 ch11.qxp 12/14/05 7:51 PM Page 435

cleartext password and password answer representations makes it easier to communicate to users to
limit the size of these strings. Having some kind of a client-side validation check on the browser for such
lengths means that users won’t be scratching their heads wondering why a perfectly valid password or
password answers keeps failing.

As a simple example for implementing custom encryption, the following code shows a custom provider that
has overridden the encryption and decryption methods to instead preserve the cleartext representations of
the passwords and password answers:

using System;
using System.Web.Security;

//Just replays the password/answer
public class CustomEncryption : SqlMembershipProvider
{

protected override byte[] EncryptPassword(byte[] password)
{ return password; }

protected override byte[] DecryptPassword(byte[] encodedPassword)
{ return encodedPassword; }

}

Obviously, you would never use this kind of code in production — but the sample does make it clear how
simple it is from an implementation perspective to clip in your own custom encryption and decryption
logic. Assuming that you are using a commercial implementation of an encryption algorithm, the byte[]
parameters to the two methods are what you would use with the System.Security.Cryptography
.CryptoStream’s Read and Write methods.

To use this custom provider, configure a sample application with a reference to the provider, making
sure that you explicitly set the passwordFormat attribute for the provider.

<add name=”customEncryptionProvider”
type=”CustomEncryption”
passwordFormat=”Encrypted”
connectionStringName=”LocalSqlServer” />

Now if you create a user with the following lines of code:

CustomEncryption cencprovider =
(CustomEncryption)Membership.Providers[“customEncryptionProvider”];

MembershipCreateStatus status;
cencprovider.CreateUser(“customEncryption1”, “this is the cleartext password”,

“foo@nowhere.org”, “question”,
“this is the cleartext answer”, true, null, out status);

the database contains the base64-encoded representations stored for the password and the password
answer, which are really just 16-byte salt values plus the cleartext strings preserved by the custom
encryption routine. It turns out that when SqlMembershipProvider encrypts passwords and password
answers, it still prepends a 16-byte random salt value to the byte representation of these strings (that is,
password --> unicode byte[16 byte salt, then the byte representation of the password or
answer]). However, I would not recommend taking advantage of this because the existence of the salt

436

Chapter 11

14_596985 ch11.qxp 12/14/05 7:51 PM Page 436

value, even in encrypted passwords and password answers, is an internal implementation detail. The
existence of this value as well as its location could change unexpectedly in future releases. For example,
the password is stored as:

we0UiiaUuwqIdS1dS0M5/nQAaABpAHMAIABpAHMAIAB0AGgAZQAgAGMAbABlAGEAcgB0AGUAeAB0ACAAcAB
hAHMAcwB3AG8AcgBkAA==

If you convert this to a string with the following code:

string result = “base 64 string here”;
byte[] bResult = Convert.FromBase64String(result);
Response.Write(Encoding.Unicode.GetString((Convert.FromBase64String(result))));

the result consists of eight nonsense characters (for the 16-byte random salt value) plus the original pass-
word string of “this is the cleartext password”. The size of the base64-encoded password representation
demonstrates the bloating effect the encoding has on the password. In this case, the original password con-
tained 30 characters; adding the random salt value results in a 38-character password. Each character con-
sumes 2 bytes when converted in a byte array, which results in a byte[76]. However, the base64-encoded
representation contains 104 characters for these 76 byte values, which is around 1.37 encoded characters for
each byte value and roughly 2.7 base64 characters for each original character in the password.

If you use the default of AES encryption with SqlMembershipProvider, the same password results in
108 encoded characters — roughly the same overhead. This tells you that most of the string bloat comes
from the conversion of the Unicode password string into a byte array as well as the overhead from the
base64 encoding — the actual encryption algorithm adds only a small amount to the overall size. As a
general rule of thumb when using encryption with SqlMembershipProvider, you should plan on three
encoded characters being stored in the database for each character in the original password and pass-
word answer strings.

This gives you a safe upper limit of around 42 characters for both of these values when using encryption.
For passwords, this is actually enormous because most human beings (geniuses and savants excluded!)
can’t remember a 42-character long password. For password answers, 42 characters should be sufficient
when using encryption as long as the password questions are such that they result in reasonable answers.
Questions like what is your favorite car or color or mother’s maiden name? probably don’t result in 40+-
character long answers. However, if you allow freeform password questions where the user supplies the
question, the resulting answer could be excessively long. Remember, though, that even with password
answers, the user has to remember the exact password answer to retrieve or reset a password. As a result,
it is unlikely that a website user will create an excessively long answer, because just as with passwords,
folks will have trouble remembering excessively long answers.

Enforcing Custom Password Strength Rules
By default, SqlMembershipProvider enforces password strength using a combination of the
minRequiredPasswordLength, minRequiredNonalphanumericCharacters, and
passwordStrengthRegularExpression provider configuration attributes. The default provider con-
figuration in machine.config causes the provider to require at least seven characters in the password
with at least one of these being a nonalphanumeric character. There is no default password strength reg-
ular expression defined in machine.config.

437

SqlMembershipProvider

14_596985 ch11.qxp 12/14/05 7:51 PM Page 437

If you choose to define a regular expression, the provider enforces all three password constraints: mini-
mum length, minimum number of nonalphanumeric characters, and matching the password against the
configured regular expression. If you want the regular expression to be the exclusive determinant of
password strength, you can set the minRequiredPasswordLength attribute to one and the
minRequiredNonalphanumericCharacters to zero. Although the provider still enforces password
strength with these requirements, your regular expression will expect that passwords have at least one
character in them — so effectively only your regular expression will really be enforcing any kind of sub-
stantive rules.

You can see that just with the provider configuration attributes you can actually enforce a pretty robust
password. However, for security-conscious organizations password strength alone isn’t sufficient. The
classic problem of course is with users and customers “changing” their passwords by simply using an
old password, or by creating a new password that revs one digit or character from the old password. If
you have more extensive password strength requirements, you can enforce them in one of two ways:

❑ Hook the ValidatingPassword event on the provider — This approach doesn’t require you to
derive from the SQL provider and as a result doesn’t require deployment of a custom provider
along with the related configuration changes in web.config. However, you do need some way
to hook up your custom event handler to the provider in every web application that requires
custom enforcement.

❑ Derive from SqlMembershipProvider and override those methods that deal with creating or
changing passwords (CreateUser, ChangePassword and ResetPassword) — You have to ensure
that your custom provider is deployed in such a way that each website can access it, and you also
need to configure websites to use the custom provider. Because you would be overriding methods
anyway, this approach also has the minor advantage of having easy access to other parameters
passed to the overridden methods. With this approach, you won’t have to worry about hooking up
the ValidatingPassword event.

Realistically, either approach is perfectly acceptable. The event handler was added in the first place
because much of the extensibility model in ASP.NET supports event mechanisms and method overrides.
For example, when you author a page, you are usually hooking events on the page and its contained
controls as opposed to overriding methods like OnClick or OnLoad. For developers who have simple
password strength requirements for one or a small number of sites, using the ValidatingPassword
event is the easier approach.

Using the ValidatingPassword event is as simple as hooking the event on an instance of
SqlMembershipProvider. To hook the event for the default provider, you can subscribe to
Membership.ValdatingPassword. To hook the event on one of the nondefault provider instances, you
need to first get a reference on the provider instance and then subscribe to
MembershipProvider.ValidatingPassword. When the event is fired, it passes some information to
its subscribers with an instance of ValidatingPasswordEventArgs.

public sealed class ValidatePasswordEventArgs : EventArgs
{

public ValidatePasswordEventArgs(
string userName,
string password,
bool isNewUser)

public string UserName { get; }

438

Chapter 11

14_596985 ch11.qxp 12/14/05 7:51 PM Page 438

public string Password { get; }
public bool IsNewUser { get; }
public bool Cancel {get; set; }
public Exception FailureInformation {get; set;}
}

An event handler knows the user that the password creation or change applies to from the UserName
property. You know whether the password in the Password parameter is for a new password (that is,
CreateUser was called) or a changed password (that is, ResetPassword or ChangePassword was
called) by looking at the IsNewUser property. If the property is true, then the UserName and Password
are for a new user — otherwise, the event represents information for an existing user who is changing or
resetting a password. The event handler doesn’t know the difference between a password change and a
password reset.

After an event handler has inspected the password using whatever logic it wants to apply, it can indicate
the success of failure of the check via the Cancel property. If the custom password strength validation
fails, then the event handler must set this property to true. If you also want to return some kind of
custom exception information, you can optionally new() up a custom exception type and set it on the
FailureInformation property. Remember that SqlMembershipProvider always returns a status
code of MembershipCreateStatus.InvalidPassword from CreateUser. As a result of this method’s
signature, the provider doesn’t throw an exception when password strength validation fails — instead it
just returns a failure status code.

SqlMemershipProvider will throw an exception if a failure occurs in either ChangePassword or
ResetPassword. It will throw the custom exception from FailureInformation if it is available. If an
event handler only sets Cancel to true, the provider throws ArgumentException from
ChangePassword or ProviderException from ResetPassword. Remember that if you want to play
well with the Login controls, the exception type that you set on FailureInformation should derive
from one of these two exception types.

The reason for the different exception types thrown by SqlMembershipProvider is that in
ChangePassword, the new password being validated is something your user entered, and hence
ArgumentException is appropriate. In the case of ResetPassword though, the new password is auto-
matically generated with a call to GeneratePassword. Because the new password is not something sup-
plied by user input, throwing ArgumentException seemed a bit odd. So instead, ProviderException
is thrown because the provider’s password generation code failed. Unless you use password regular
expressions, you probably won’t run into ProviderException being thrown from ResetPassword.
Because you can’t determine if you are being called from ChangePassword or ResetPassword from
inside of the ValidatingPassword event, it is reasonable to throw either exception type.

Hooking the ValidatePassword Event
When you hook the ValidatingPassword event, SqlMembershipProvider will raise it from inside of
CreateUser, ChangePassword, and ResetPassword. The simplest way to perform the event hookup is
from inside global.asax, with the actual event existing in a class file in the App_Code directory.

A custom event handler needs to have the same signature as the event definition:

public delegate void MembershipValidatePasswordEventHandler(
Object sender, ValidatePasswordEventArgs e);

439

SqlMembershipProvider

14_596985 ch11.qxp 12/14/05 7:51 PM Page 439

The following sample code shows a password strength event handler that enforces a maximum length of 20
characters for a password. If the length is exceeded, it sets an ArgumentException on the event argument:

public class ValidatingPasswordEventHook
{
public static void LimitMaxLength(Object s, ValidatePasswordEventArgs e)
{
if (e.Password.Length > 20)
{
e.Cancel = true;
ArgumentException ae =
new ArgumentException(“The password length cannot exceed 20 characters.”);

e.FailureInformation = ae;
}

}
}

The event handler is written as a static method on the ValidatingPasswordEventHook class. Because
the event may be called at any time within the life of an application, it makes sense to define the event
handler using a static method so that it is always available and doesn’t rely on some other class instance
that was previously instantiated.

The sample event handler is hooked up inside of global.asax using the Application_Start event:

void Application_Start(object sender, EventArgs e)
{
SqlMembershipProvider smp =

(SqlMembershipProvider)Membership.Providers[“sqlPasswordStrength”];

smp.ValidatingPassword +=
new MembershipValidatePasswordEventHandler(

ValidatingPasswordEventHook.LimitMaxLength);
}

In this case, the event hookup is made using a provider reference directly as opposed to hooking up to
the default provider via the Membership.ValidatingPassword event property. Now if you attempt to
create a new user with an excessively long password, you receive InvalidStatus as the output param-
eter. For existing users, if you attempt to change the password with an excessively long password,
ArgumentException set inside of the event handler is thrown instead.

Implementing Password History
A more advanced use of password strength validation is enforcing the rule that previously used pass-
words not be reused for new passwords. Although SqlMembershipProvider doesn’t expose this kind
of functionality, you can write a derived provider that keeps track of old passwords and ensures that
new passwords are not duplicates. The sample provider detailed in this section keeps track of password
history when hashed passwords are used. Hashed passwords are used for this sample because it is a
somewhat more difficult scenario to handle.

Neither SqlMembershipProvider nor the base MembershipProvider class expose the password salts
for hashed passwords. Without this password salt, you need to do some extra work to keep track of
password history in a way that doesn’t rely on any hacks or undocumented provider behavior. The

440

Chapter 11

14_596985 ch11.qxp 12/14/05 7:51 PM Page 440

remainder of this section walks you through an example that extends SqlMembershipProvider by
incorporating password history tracking. The sample provider checks new passwords against the
history whenever ChangePassword is called. It adds items to the password history when a user is first
created with CreateUser, and whenever the password subsequently changes with ChangePassword or
ResetPassword.

As a first step, the custom provider needs a schema for storing the password history:

create table dbo.PasswordHistory (
UserId uniqueidentifier NOT NULL,
Passwordvarchar(128) NOT NULL,
PasswordSalt nvarchar(128) NOT NULL,
CreateDate datetime NOT NULL
)

alter table dbo.PasswordHistory add constraint PKPasswordHistory
PRIMARY KEY (UserId, CreateDate)

alter table dbo.PasswordHistory add constraint FK1PasswordHistory
FOREIGN KEY (UserId) references dbo.aspnet_Users(UserId)

The provider stores one row for each password that has been associated with a user. It indexes the
history on a combination of the UserId as well as the UTC date-time that the password was submitted to
the Membership system. This allows each user to have multiple passwords, and thus multiple entries in
the history. The table also has a foreign key pointing to the aspnet_Users table just to ensure that the
user really exists and that if the user is eventually deleted that the password history rows have to be
cleaned up as well. As noted earlier in the chapter, this foreign key relationship is not officially supported
because it is directly referencing the aspnet_Users table. However, this is the only part of the custom
provider that uses any Membership feature that is considered undocumented.

As you can probably infer from the column names, the intent of the table is to store an encoded password
representation and the password salt that was used to encode the password. Because the custom provider
that uses this table supports hashing, each time a new password history record is generated the custom
provider needs to store the password in a secure manner. It does this by hashing the password with the
same algorithm used to hash the user’s login password. Just like SqlMembershipProvider, the custom
provider will actually hash a combination of the user’s password and a random salt value to make it
much more difficult for someone to reverse engineer the hash value stored in the Password column.
Because of this, the table also has a column where the random salt value is stored — though this salt value
isn’t the same salt the provider uses for hashing the user’s login password.

Whenever a password history row has to be inserted, the following stored procedure will be used:

create procedure dbo.InsertPasswordHistoryRow
@pUserName nvarchar(256),
@pApplicationName nvarchar(256),
@pPassword nvarchar(128),
@pPasswordSalt nvarchar(128)
as

declare @UserId uniqueidentifier
select @UserId = UserId
from dbo.vw_aspnet_Applications a,

441

SqlMembershipProvider

14_596985 ch11.qxp 12/14/05 7:51 PM Page 441

dbo.vw_aspnet_Users u
where a.LoweredApplicationName = LOWER(@pApplicationName)
and a.ApplicationId = u.ApplicationId
and u.LoweredUserName = LOWER(@pUserName)

if not exists (select 1 from dbo.vw_aspnet_MembershipUsers
where UserId = @UserId)

return -1

begin transaction

select 1
from vw_aspnet_MembershipUsers WITH (UPDLOCK)
where UserId = @UserId
if (@@Error <> 0)
goto AnErrorOccurred

insert into dbo.PasswordHistory
values (@UserId,@pPassword,@pPasswordSalt,getutcdate())
if (@@Error <> 0)
goto AnErrorOccurred

--trim away old password records that are no longer needed
delete
from dbo.PasswordHistory
where UserId = @UserId
and CreateDate not in
(

select TOP 10 CreateDate --only 10 passwords are ever maintained in history
from dbo.PasswordHistory
where UserId = @UserId
order by CreateDate DESC

)
if (@@Error <> 0)
goto AnErrorOccurred

commit transaction

return 0

AnErrorOccurred:
rollback transaction
return -1

The parameter signature for the stored procedure expects a username and an application name — the
object-level primary key of any user in Membership. The stored procedure converts these two parameters
into the GUID UserId by querying the application and user table views as shown earlier in the chapter.
The procedure also makes a sanity check to ensure that the UserId actually exists in the Membership
table by querying its associated view. Technically, this should never occur because the custom provider
only calls this stored procedure after the base SqlMembershipProvider has created a user row in the
aspnet_Membership table.

442

Chapter 11

14_596985 ch11.qxp 12/14/05 7:51 PM Page 442

After the procedure knows that the UserId is valid, it starts a transaction and places a lock on the user’s
Membership record. This ensures that, on the off chance that multiple calls are made to the database to
insert a history record for a single user, each call completes its work before another call is allowed to
manipulate the PasswordHistory table. This serialization is needed because after the data from the
procedure’s password and password salt parameter are inserted, the procedure removes old history
records. The procedure needs to complete both steps successfully or roll the work back.

It is at this point in the procedure that you would put in any logic appropriate for determining “old”
passwords for your application. In the case of the sample provider, only the last 10 passwords for a user
are retained. Passwords are sorted according to when the records were created, with the oldest records
being candidates for deletion. When you get to the eleventh and subsequent passwords, the stored pro-
cedure automatically purges the older records. If you don’t have some type of logic like this, over time
the password history tracking will get slower and slower. After the old password purge is completed the
transaction is committed. For the sake of brevity, more extensive error handling is not included inside of
the transaction. Theoretically, something could go wrong after the insert or delete statement, which
would warrant more extensive error handling than that shown in the previous sample.

The companion to the insert stored procedure is a procedure to retrieve the current password history
for a user:

create procedure dbo.GetPasswordHistory
@pUserName nvarchar(256),
@pApplicationName nvarchar(256)
as

select [Password], PasswordSalt, CreateDate
from dbo.PasswordHistory ph,

dbo.vw_aspnet_Applications a,
dbo.vw_aspnet_Users u

where a.LoweredApplicationName = LOWER(@pApplicationName)
and a.ApplicationId = u.ApplicationId
and u.LoweredUserName = LOWER(@pUserName)
and ph.UserId = u.UserId
order by CreateDate DESC

This procedure is pretty basic — it accepts the username and application name and uses these two values
to get to the UserId. At which point, the procedure returns all of the rows from the PasswordHistory
table with the most recent passwords being retrieved first.

The next step in developing the custom provider is to rough out its class signature:

using System;
using System.Configuration;
using System.Configuration.Provider;
using System.Data;
using System.Data.SqlClient;
using System.Security.Cryptography;
using System.Text;
using System.Web.Configuration;
using System.Web.Security;

public class ProviderWithPasswordHistory : SqlMembershipProvider

443

SqlMembershipProvider

14_596985 ch11.qxp 12/14/05 7:51 PM Page 443

{
private string connectionString;

//Overrides of public functionality
public override void Initialize(string name,

System.Collections.Specialized.NameValueCollection config)

public override string ResetPassword(string username, string passwordAnswer)

public override MembershipUser CreateUser(...)

public override bool ChangePassword(string username,
string oldPassword, string newPassword)

//Private methods that provide most of the functionality
private byte[] GetRandomSaltValue()

private void InsertHistoryRow(string username, string password)

private bool PasswordUsedBefore(string username, string password)

The custom provider will perform some extra initialization logic in its Initialize method. Then the
actual enforcement of password histories occurs within ChangePassword and ResetPassword.
CreateUser is overridden because the very first password in the password history is the one used by
the user when initially created. The private methods support functionality that uses the data layer logic
you just saw: the ability to store password history as well as a way to determine whether a password
has ever been used before. The GetRandomSaltValue method is used to generate random salt prior to
storing password history records.

Start out looking at the Initialize method:

public override void Initialize(string name,
System.Collections.Specialized.NameValueCollection config)

{
//We need the connection string later
//So grab it before the SQL provider removes it from the
//configuration collection.
string connectionStringName = config[“connectionStringName”];

base.Initialize(name, config);
if (PasswordFormat != MembershipPasswordFormat.Hashed)

throw new NotSupportedException(
“You can only use this provider with hashed passwords.”);

connectionString =
WebConfigurationManager.ConnectionStrings[connectionStringName].ConnectionString;
}

The override uses the connection string name that was configured on the provider (that is, the provider’s
connectionStringName attribute) to get the connection string from the <connectionStrings />sec-
tion. The provider also performs a basic sanity check to ensure that the password format has been set to
use hashed passwords. If you want you can follow the same approach shown for this sample provider
and extend it to support password histories for encrypted passwords.

444

Chapter 11

14_596985 ch11.qxp 12/14/05 7:51 PM Page 444

The first step in the lifecycle of a user is the initial creation of that user’s data in the Membership tables.
Because the custom provider tracks a user’s password history, it needs to store the very first password
that is created. It does this with the private InsertHistoryRow method. The first part of this private
method sets up the necessary ADO.NET command for calling the insert stored procedure shown earlier:

private void InsertHistoryRow(string username, string password)
{

using (SqlConnection conn = new SqlConnection(connectionString))
{

//Setup the command
string command = “dbo.InsertPasswordHistoryRow”;
SqlCommand cmd = new SqlCommand(command, conn);
cmd.CommandType = System.Data.CommandType.StoredProcedure;

//Setup the parameters
SqlParameter[] arrParams = new SqlParameter[5];
arrParams[0] = new SqlParameter(“pUserName”, SqlDbType.NVarChar, 256);
arrParams[1] = new SqlParameter(“pApplicationName”,

SqlDbType.NVarChar, 256);
arrParams[2] = new SqlParameter(“pPassword”, SqlDbType.NVarChar, 128);
arrParams[3] = new SqlParameter(“pPasswordSalt”, SqlDbType.NVarChar, 128);
arrParams[4] = new SqlParameter(“returnValue”, SqlDbType.Int);

So far, this is all pretty standard ADO.NET coding practices. The next block of code gets interesting,
though, because it is where a password is hashed with a random salt prior to storing it in the database:

//Hash the password again for storage in the history table
byte[] passwordSalt = this.GetRandomSaltValue();
byte[] bytePassword = Encoding.Unicode.GetBytes(password);
byte[] inputBuffer = new byte[bytePassword.Length + 16];

Buffer.BlockCopy(bytePassword, 0, inputBuffer, 0, bytePassword.Length);
Buffer.BlockCopy(passwordSalt, 0, inputBuffer, bytePassword.Length, 16);

HashAlgorithm ha = HashAlgorithm.Create(Membership.HashAlgorithmType);
byte[] bhashedPassword = ha.ComputeHash(inputBuffer);
string hashedPassword = Convert.ToBase64String(bhashedPassword);
string stringizedPasswordSalt = Convert.ToBase64String(passwordSalt);

As a first step, the provider gets a random 16-byte salt value as a byte[]. Because this salt value needs
to be combined with the user’s password, the password is also converted to a byte[]. Then the salt
value and the byte representation of the password are combined using the Buffer object into a single
array of bytes that looks like: byte[password as bytes, 16 byte salt value]. This approach
ensures that the hashed password will be next to impossible to reverse engineer — but it does so without
relying on the internal byte array format used by SqlMembershipProvider when it hashes passwords.
This means more code in the custom provider, but it also means the provider’s approach to securely
storing passwords won’t break if the internal implementation of SqlMembershipProvider changes in a
future release.

With the combined values in the byte array, the provider uses the hash algorithm configured for
Membership to convert the array into a hashed value. At this point, both the resultant hash and the ran-
dom salt that were used are converted in a base64-encoded string for storage back in the database.

445

SqlMembershipProvider

14_596985 ch11.qxp 12/14/05 7:51 PM Page 445

//Put the results into the command object
arrParams[0].Value = username;
arrParams[1].Value = this.ApplicationName;
arrParams[2].Value = hashedPassword;
arrParams[3].Value = stringizedPasswordSalt; //need to remember the salt
arrParams[4].Direction = ParameterDirection.ReturnValue;

cmd.Parameters.AddRange(arrParams);

//Insert the row into the password history table
conn.Open();
cmd.ExecuteNonQuery();

int procResult = (int)arrParams[4].Value;
conn.Close();
if (procResult != 0)

throw new ProviderException(
“An error occurred while inserting the password history row.”);

}
}

The remainder of the InsertHistoryRow method packages up all of the data into SqlCommand
object’s parameters and then inserts them using the InsertPasswordHistoryRow stored procedure.
Because the stored procedure returns a -1 value if it could not find the user in the vw_aspnet
_MembershipUsers view or if an error occurred during the insert, the provider checks for this error
condition and throws an exception if this occurs.

Because this method relies on generating a random 16-byte salt, take a quick look at the private helper
method that creates the salts:

private byte[] GetRandomSaltValue()
{

RNGCryptoServiceProvider rcsp = new RNGCryptoServiceProvider();
byte[] bSalt = new byte[16];
rcsp.GetBytes(bSalt);
return bSalt;

}

This code should look familiar from the earlier topic on custom password generation. In this case, the
random number generator is used to create a fixed length array of random bytes that will be used as a
salt for the provider’s hashing. The use of a salt value makes it substantially more difficult for anyone to
guess a password stored in the password history table using a dictionary-based attack.

The create user method looks like this:

public override MembershipUser CreateUser(
string username, string password, string email, string passwordQuestion,
string passwordAnswer, bool isApproved, object providerUserKey,
out MembershipCreateStatus status)

{
MembershipUser mu;
mu = base.CreateUser(username, password, email,

passwordQuestion, passwordAnswer,

446

Chapter 11

14_596985 ch11.qxp 12/14/05 7:51 PM Page 446

isApproved, providerUserKey,
out status);

if (status != MembershipCreateStatus.Success)
return mu;

//Only insert the password row if the user was created
try {

InsertHistoryRow(username, password);
return mu;

}
catch(Exception ex)
{

//Attempt to cleanup after a creation failure
base.DeleteUser(username,true);
status = MembershipCreateStatus.ProviderError;
return null;

}
}

The custom provider doesn’t attempt to save the password unless the user is successfully created by
SqlMembershipProvider. If the base provider is successful, then the password history is inserted with a
call to the custom provider’s InsertHistoryRow method. If the call is successful (which should always be
the case unless something goes wrong with the database), then the MembershipUser instance returned
from the base provider is returned to the caller. If something does go wrong, the custom provider attempts
to compensate by deleting the newly created user. This is intended to prevent the case where the user is
created in the database, but the password is not properly logged to the password history. In the error case,
the custom provider returns a ProviderError status code to indicate to the caller that the CreateUser
method did not succeed.

At this point, you can test the custom provider with a page that uses the CreateUserWizard control.
Configure the wizard control to use an instance of the custom provider:

In config:
<add name=”passwordHistoryProvider”

type=”ProviderWithPasswordHistory”
connectionStringName=”LocalSqlServer”
applicationName=”passwordHistory”/>

On the page:
<asp:CreateUserWizard ID=”CreateUserWizard1” runat=”server” ...other attributes...

MembershipProvider=”passwordHistoryProvider” />

Now you can use CreateUserWizard to create new users. For each newly created user, the initial pass-
word is logged to the PasswordHistory table:

UserId {A71E13F5-DB58-4E10-BEB4-9825E5A263F2}
Password tJUZ5K1A5JuWcrZoJjF1OMXGM+8=
PasswordSalt B8sbL04yOYwGyYZHT7AADA==
CreateDate 2005-07-27 21:04:10.257

447

SqlMembershipProvider

14_596985 ch11.qxp 12/14/05 7:51 PM Page 447

So far so good — a user is registered in the Membership tables and the initial password is stored in the
history. The next step is to get the custom provider working with the ChangePassword method.
Changing a password requires the provider to retrieve the history of all of the user’s passwords and
then search through the history to see if any of the old passwords match the value of the new password
passed to ChangePassword.

The private method PasswordUsedBefore returns a bool value indicating whether or not a given pass-
word has ever been used before by a user. The first part of the method just uses standard ADO.NET calls
to retrieve the password history using the GetPasswordHistory stored procedure:

private bool PasswordUsedBefore(string username, string password)
{

using (SqlConnection conn = new SqlConnection(connectionString))
{

//Setup the command
string command = “dbo.GetPasswordHistory”;
SqlCommand cmd = new SqlCommand(command, conn);
cmd.CommandType = System.Data.CommandType.StoredProcedure;

//Setup the parameters
SqlParameter[] arrParams = new SqlParameter[2];
arrParams[0] = new SqlParameter(“pUserName”, SqlDbType.NVarChar, 256);
arrParams[1] = new SqlParameter(“pApplicationName”,

SqlDbType.NVarChar, 256);
arrParams[0].Value = username;
arrParams[1].Value = this.ApplicationName;

cmd.Parameters.AddRange(arrParams);

//Fetch the password history from the database
DataSet dsOldPasswords = new DataSet();
SqlDataAdapter da = new SqlDataAdapter(cmd);
da.Fill(dsOldPasswords);

The end result of this code is a DataSet and a DataTable containing one or more rows of old passwords
for the user from the PasswordHistory table. The interesting part of the method involves comparing each
row of old password data in the returned DataSet to the password parameter that was passed to the
method.

HashAlgorithm ha = HashAlgorithm.Create(Membership.HashAlgorithmType);
foreach (DataRow dr in dsOldPasswords.Tables[0].Rows)
{

string oldEncodedPassword = (string)dr[0];
string oldEncodedSalt = (string)dr[1];
byte[] oldSalt = Convert.FromBase64String(oldEncodedSalt);

byte[] bytePassword = Encoding.Unicode.GetBytes(password);
byte[] inputBuffer = new byte[bytePassword.Length + 16];

Buffer.BlockCopy(bytePassword, 0, inputBuffer, 0, bytePassword.Length);
Buffer.BlockCopy(oldSalt, 0, inputBuffer, bytePassword.Length, 16);

byte[] bhashedPassword = ha.ComputeHash(inputBuffer);

448

Chapter 11

14_596985 ch11.qxp 12/14/05 7:51 PM Page 448

string hashedPassword = Convert.ToBase64String(bhashedPassword);

if (hashedPassword == oldEncodedPassword)
return true;

}
}
//No matching passwords were found if you make it this far
return false;

}

Once again, an instance of HashAlgorithm matching hashAlgorithmType for the Membership feature is
used. Each row of password data from the database has the password salt that was used to hash and encode
the result that is stored in the corresponding Password column. Much like the original hashing done inside
of InsertHistoryRow, the PasswordUsedBefore method converts the password parameter into a byte
array and combines it with the byte array representation of the password salt retrieved from the database.
This combination is then hashed using the hashing algorithm created a few lines earlier in the code.

To make it easier to compare the hashed value of the password parameter to the old password from the
database, the result of hashing the password parameter with the old salt value is converted to a base64-
encoded string. As a result, the comparison is as simple as comparing the string from the database (that
is, the Password column) to the base64-encoded representation of the encoded password parameter. If
the two strings match, the method knows that the password parameter has been used before for that
user, and the method returns true. If the method loops through all of the password history records in
the database and never finds a match, the method returns false, indicating that the password parame-
ter has never been used before.

One thing to note about the password history implementation is that each old password is encoded
using a different random salt value. That is why for each row of password history data retrieved from
the database the custom provider must rehash the password parameter for comparison. A second thing
to note about the implementation of the PasswordUsedBefore method is that it does not include any
protections against two different threads of execution both attempting to change the password for the
same user. It is theoretically possible that on two different web servers (or two different threads on the
same server) a change password operation could be occurring at the same time.

However, if this occurs one of two things happens. Both operations could be attempting to change the
user’s password to the same value in which case one of the two password change operations would
effectively end up as a no-op — but the same password would show up twice in the password history
table. In the alternative outcome, one change password successfully completes before the other change
password attempt — in which case the second password change attempt would fail because it would be
using the wrong value for the oldPassword parameter. The net outcome though is that this scenario has
a low likelihood of occurring, and even if it does occur it has little effect on the overall security and accu-
racy of the password history feature.

Now that you have seen how the custom provider can compare a new password against all of the old
passwords in the database, look at how it is used from the ChangePassword method:

public override bool ChangePassword(string username, string oldPassword,
string newPassword)

{
if (PasswordUsedBefore(username, newPassword))

449

SqlMembershipProvider

14_596985 ch11.qxp 12/14/05 7:51 PM Page 449

return false;

bool result = base.ChangePassword(username, oldPassword, newPassword);

if (result == false)
return result;

//Only insert the password row if the password was changed
try
{

InsertHistoryRow(username, newPassword);
return true;

}
catch (Exception ex)
{

//Attempt to cleanup after a failure to log the new password
base.ChangePassword(username, newPassword, oldPassword);
return false;

}
}

First, the ChangePassword override validates the newPassword parameter against the password history.
If the newPassword parameter matches any of the old passwords, then the method immediately returns
false. Remember that because ChangePassword returns a bool, the convention used by the
Membership feature is to return a false value as opposed to throwing an exception.

If no old matching passwords were found, the provider calls into the base provider to perform the pass-
word change operation. If for some reason the base provider fails, a false is also returned. If the base
provider succeeds, though, the custom provider needs to store the new password in the password history
table with a call to InsertHistoryRow. Normally, this operation succeeds, and the caller receives a true
return value indicating that the password was successfully changed.

If the password history was not successfully updated, the custom provider compensates for the failure
by resetting the user’s password to the original value. If you look at the call to the base provider in the
catch block you can see that the two password parameters from the original method call are simply
reversed to cause the user to revert to the original password. And, of course, in the failure case a false
value is again returned to the caller.

You can try the password change functionality with a simple page using the ChangePassword Login
control configured to use the custom provider.

<asp:ChangePassword ID=”ChangePassword1” runat=”server”
MembershipProvider=”passwordHistoryProvider” />

After logging in with an account created using the custom provider, you can navigate to the change
password page and try different variations of new passwords. For each new unique password another
new row shows up in the PasswordHistory table. However, for each new non-unique password the
ChangePassword control displays an error message saying the new password is invalid. Although I
won’t show it here, you can easily write some code that integrates between the custom provider’s
behavior and the ChangePassword control that would allow error messages to be more precise when-
ever duplicate passwords are used.

450

Chapter 11

14_596985 ch11.qxp 12/14/05 7:51 PM Page 450

The last piece of functionality that the custom provider implements is the ResetPassword method:

public override string ResetPassword(string username, string passwordAnswer)
{

string newPassword = base.ResetPassword(username, passwordAnswer);

//No recovery logic at this point
InsertHistoryRow(username, newPassword);

return newPassword;
}

The custom provider delegates to the base provider to reset the password. There isn’t any need to compare
the reset password against the password history because the default reset password logic generates a com-
pletely random new password. Unless you are worried about the one in a billion chance (or so) of repeat-
ing a random password, you can save yourself the performance hit of checking against the password
history for this case. If the password reset succeeds, the override calls InsertHistoryRow to store the
auto-generated password in the PasswordHistory table.

Unlike CreateUser and ChangePassword, the sample code does not attempt to recover from a problem
at this point. A simple try-catch block can’t compensate for errors in the case of resetting passwords.
You could use the new ADO.NET 2.0 TransactionScope class though to wrap both the base provider
SQL calls and the password history SQL code in a single transaction. This approach would also be a
more elegant solution to the compensation logic shown earlier for the CreateUser and
ChangePassword overloads.

Account Lockouts
Membership providers can choose to implement account lockouts as a protection against brute force
guessing attacks against a user’s password and password answer. SqlMembershipProvider imple-
ments protections against both attacks and will lock out accounts for both cases. Deciphering the
provider configuration attributes for account lockouts and trying to understand exactly when accounts
are locked in SQL can be a bit confusing when using the SQL provider.

SqlMembershipProvider keeps track of failed attempts at using a password by storing tracking infor-
mation in the FailedPasswordAttemptCount and FailedPasswordAttemptWindowStart columns
of the aspnet_Memership table. The provider tracks failed attempts at using a password answer sepa-
rately in a different set of columns: FailedPasswordAnswerAttemptCount and
FailedPasswordAnswerAttemptWindowStart. When a user is first created the counter columns are
set to a default value of zero while the date-time columns are set to default values of 01/01/1754.

Each time a provider method is called that accepts a password parameter, the provider internally vali-
dates that the password is correct. ValidateUser is the most common method where this occurs, but
password validation also occurs for ChangePassword (validating the old password) as well as
ChangePasswordQuestionAndAnswer. The first time an incorrect password is supplied, two things
occur:

451

SqlMembershipProvider

14_596985 ch11.qxp 12/14/05 7:51 PM Page 451

❑ The FailedPasswordAttemptCount in the database is incremented by one.

❑ The FailedPasswordAttemptWindowStart column is set to the current UTC date-time.

The next time a method that accepts a password parameter is called, the provider realizes that a bad
password was supplied sometime in the past. Therefore, the provider configuration attributes
passwordAttemptWindow and maxInvalidPasswordAttempts are used.

Assume that a method call is made that requires a password, and that on the second attempt a bad pass-
word again is used. The provider needs to determine whether or not this second bad attempt is a discrete
event, or if it should be considered part of a continuing chain of correlated password attempts. To make this
determination, the provider compares the value of [(current UTC date-time) –
“passwordAttemptWindow”] against the FailedPasswordAttemptWindowStart value in the database.
If the current bad password attempt has occurred within passwordAttemptWindow minutes from
FailedPasswordAttemptWindowStart, then the provider considers the current bad attempt to be related
to previous bad password attempts, and the provider increments FailedPasswordAttemptCount. The
provider also updates FailedPasswordAttemptWindowStart to the current UTC date-time.

For example, if the data indicates a bad password was supplied at 10:00 AM UTC, and the
passwordAttemptWindow is set to 10 (that is, 10 minutes), a subsequent bad password attempt that
occurs anywhere from 10:00AM UTC through 10:10 AM UTC is considered related to the original bad
password attempt. As a result, the bad password attempt counter will be incremented by one, and the
window start will be updated to the current date-time. This last operation is very important to note. You
might think that a passwordAttemptWindow setting of 10 minutes means that all bad passwords within
a fixed 10 minute period are counted. However, this is not how the SQL provider works.

Instead, the tracking window is always rolled forward whenever a bad password attempt occurs within
passwordAttemptWindow minutes from the last bad password attempt. The reason for this behavior is
that if the provider only tracked bad password attempts in a fixed window you could end up with the fol-
lowing sequence of events (assume a lockout on the fifth bad attempt and a 10-minute tracking window):

Bad password attempt #1 at 10:00 AM UTC
Bad password attempt #2 at 10:08 AM UTC
Bad password attempt #3 at 10:09 AM UTC
Bad password attempt #4 at 10:10 AM UTC
Bad password attempt #1 at 10:11 AM UTC <-- what happens here?
Bad password attempt #2 at 10:12 AM UTC
Bad password attempt #3 at 10:13 AM UTC
Bad password attempt #4 at 10:14 AM UTC

If the provider started a fixed tracking window at 10:00 AM UTC in this example and started counting, it
would eventually count four bad attempts by 10:10 AM UTC. But when the next bad password attempt
occurs at 10:11 AM UTC, the provider would throw away all of the old attempts because the first 10-
minute tracking window had expired. You could now continue to rack up more bad password attempts
starting at 10:11 AM UTC. In the example, you could have four more bad password attempts starting at
10:11 AM UTC with no ill effect. The problem with this behavior is that if you look backward in time,
you see that from 10:08 AM UTC through 10:14 AM UTC there have been seven bad password attempts
in a 10-minute period, and yet the provider did not trigger an account lockout.

Of course, this is only a theoretical example because SqlMembershipProvider instead rolls the start of
the tracking time window forward with each bad attempt. If you step through the same sequence of
events with the SQL provider you instead have the following behavior:

452

Chapter 11

14_596985 ch11.qxp 12/14/05 7:51 PM Page 452

FailedPasswordAttemptWindowStart
Bad password attempt #1 at 10:00 AM UTC 10:00 AM UTC
Bad password attempt #2 at 10:08 AM UTC 10:08 AM UTC
Bad password attempt #3 at 10:09 AM UTC 10:09 AM UTC
Bad password attempt #4 at 10:10 AM UTC 10:10 AM UTC
Bad password attempt #5 at 10:11 AM UTC lockout! 10:11 AM UTC
Cannot login due to lockout at 10:11 AM UTC
Cannot login due to lockout at 10:11 AM UTC
Cannot login due to lockout at 10:11 AM UTC
etc...

In this case, with each bad password attempt the provider looks back in time to determine whether or
not the current attempt is correlated to the last bad attempt as stored in the
FailedPasswordAttemptWindowStart column. Because each of the first five attempts all occur less
than 10 minutes apart, each attempt causes the bad password attempt counter to increment and the start
of the tracking window is updated as well. As a result, when the fifth attempt occurs at 10:11AM UTC,
the provider increments the counter and realizes that the maxInvalidPasswordAttempts threshold has
been hit. As a result the provider locks the account out at this point. Any subsequent password attempts
never make it far enough to attempt validating the password because the provider sees that the account
has already been locked out.

Note that SqlMemershipProvider interprets the maxInvalidPasswordAttempts configuration
attribute as a trip wire. If the number of bad password attempts exactly matches the value of this config-
uration setting the account is immediately locked out. So, technically speaking a setting of 5 really
means a user is allowed only four bad passwords — the fifth incorrect password results in a lockout. If
you happen to write a custom provider you can certainly choose to interpret this configuration attribute
differently — for example a custom provider could choose to only lock out the user on the sixth attempt,
in which case the attribute would be considered a threshold rather than a limit that triggers a lockout.

The previous discussion focused on bad password attempts — the exact same logic applies though to
bad password answer attempts. Any methods that accept a password answer (ResetPassword and
GetPassword) cause the provider to keep track of bad answer attempts using the exact same logic and
the exact same provider configuration attributes. The only difference is that the counter and window
start information is stored in a separate set of columns than the tracking information for bad passwords.

This raises an interesting question: What happens if a user enters bad passwords and bad password answers
for an account? Until the limit specified by maxInvalidPasswordAttempts is reached the provider incre-
ments counters and updates the start windows using different columns in the database. For a time this
means that bad password attempts and bad password answer attempts are considered separate occurrences
that have no effect on each other. Assume that the bad password and bad password answer counters both
reach 4 (the default for maxInvalidPasswordAttempts in machine.config is 5).

The next bad attempt that occurs (either password or password answer) within the tracking time window
will trigger an account lockout. So even though bad attempts for passwords and answers have been
tracked independently up to this point, after one of the counters hits the tripwire defined by
maxInvalidPasswordAttempts, the user is locked out. A locked-out user account is no longer allowed to
validate passwords with the provider and a locked out user account can no longer use the password-
answer-related methods. An account lockout triggered by one type of bad information locks everything
out. The provider doesn’t lock out only password-related functionality, only answer-related functionality.

453

SqlMembershipProvider

14_596985 ch11.qxp 12/14/05 7:51 PM Page 453

Of course, after a user account is locked out, you need some way to unlock the account. The SQL
provider does not incorporate the concept of automatic account lockouts (more on this in the next sec-
tion). However, the AD-based provider does support automatic unlocking because the Active Directory
engine natively has this functionality. For the SQL provider, you need to explicitly call the UnlockUser
method to unlock user accounts. When UnlockUser is called the following occurs:

1. The user account is unlocked: IsLockedOut is reset to false.

2. The password counter in the database is reset to zero, and the password window start column is
reset to 01/01/1754.

3. The password answer counter in the database is reset to zero, and the password window start
column is reset to 01/01/1754.

This behavior means that when you inspect a MembershipUser object, the LastLockoutDate property
contains a useful value only when IsLockedOut is set to true. When a user account is not locked out
the LastLockoutDate property contains a bogus default value. Furthermore, the MembershipUser
object does not indicate what caused the lockout (was it bad passwords or bad password answers?). It
only indicates that a lockout has occurred. If you need to determine the specific reason for the lockout,
you can query the vw_aspnet_MembershipUsers view because the view exposes the four columns that
store the password- and password-answer-tracking information.

The tracking information is also reset during the normal course of calling provider methods with valid
passwords and valid password answers. The automatic reset of the tracking information occurs in the
following ways:

❑ When a valid password is used for ValidateUser, ChangePassword or
ChangePasswordQuestionAndAnswer both the password- and password-answer-tracking
columns are reset to their defaults (that is, zero and 01/01/1754).

❑ When a valid password answer is used for ResetPassword or GetPassword only, the password
answer tracking columns are reset to their defaults.

All tracking information is reset when a good password is supplied because the password is considered
the main source of security for a user account. If a user supplies a correct password, that is considered
proof that at a specific point in time the user knows the “master” credential for the account. As a result,
the password answer counters are also reset because the password answer is considered a “secondary”
credential for the account. However, if a correct password answer is supplied to a method, that is only
considered good enough to reset the answer-related-tracking counters. Knowing the password answer is
not considered sufficient proof that a user also knows the “master” credential for the account.

Implementing Automatic Unlocking
One potential issue that folks raise about SqlMembershipProvider is that the current lockout behavior
can lead to a denial of service (DoS) attack. Theoretically, a malicious user could spam a login page with
likely user accounts to force account lockouts for a large number of website users. After the user
accounts are locked out, the users have no way to get back onto the website until an administrator inter-
venes and unlocks the accounts.

454

Chapter 11

14_596985 ch11.qxp 12/14/05 7:51 PM Page 454

Although an auto-unlock feature for accounts is a partial deterrent to this type of DoS attack, you should
be aware that after you have automatic unlocking, the DoS attack can now be turned into a long-running
brute force password attack. Instead of cutting the attack off after a few attempts per-user account, an
auto-unlock feature allows an attacker to iterate through a few passwords, back off for the duration of
the account lockout, and then iterate through some more passwords for each user account. If you don’t
monitor web logs (and potentially add custom auditing on top of the SQL provider) for this type of
activity, you can literally end up with a brute force password attack running for weeks on end.

For example, if you have a 30-minute auto-unlock period after five bad passwords, and an attacker tries
guessing passwords for 4 weeks, the attacker can run 240 bad passwords per account per day for a rough
total of 6720 bad passwords per user account per month on a site. I would highly recommend that if you
add automatic unlock behavior as shown in this section that you also implement additional security mea-
sures to mitigate a long-running password guessing attack. Even if an attacker never successfully guesses
a password because of password strength rules, a long-running password-guessing attack can also look
like a denial of service attack because each user account that is being attacked ends up in a locked-out
state for the vast majority of the time. Other than for a few seconds at the expiration of the auto-unlock
period, accounts end up locked out again when the password-guessing attack sweeps through the same
set of accounts on its next iteration. And, of course, a really savvy attacker will probably only guess (lock-
out limit –1) passwords at a time for a user, thus keeping a long-running password guessing attack below
the radar if you are only looking at rates of account lockouts.

As a result, the best argument for implementing auto-unlocking is as a convenience for sites that are
already partially protected against brute force attacks by other security measures. For example, if you
run your site under SSL, then a brute force attack is less likely due to the increased likelihood that the
spike in SSL processing overhead from an attack would be detected by the site’s administrators. If your
website is only accessible over VPNs or private frame relay networks, the likelihood of a random
attacker getting in and wreaking havoc is lower In these cases, automatic unlock behavior provides a
better user experience and cuts down on password-related support calls.

A custom provider that implements auto-unlock behavior needs a place for users to configure the time-
out beyond which the provider should automatically unlock the user account. For this example, you
want the provider configuration to look like the following:

<add name=”autounlocksample”
type=”AutoUnlockProvider”
connectionStringName=”LocalSqlServer”
autoUnlockTimeout=”30”
applicationName=”passwordHistory”/>

The custom attribute autoUnlockTimeout tells the provider how many minutes after a lockout a user
account should be automatically unlocked. The provider stores this attribute inside of an override of the
Initialize method:

using System;
using System.Configuration.Provider;
using System.Web.Security;

public class AutoUnlockProvider : SqlMembershipProvider
{

private int autoUnlockTimeout = 60; //Default to 60 minutes

public override void Initialize(string name,

455

SqlMembershipProvider

14_596985 ch11.qxp 12/14/05 7:51 PM Page 455

System.Collections.Specialized.NameValueCollection config)
{

string sunlockTimeOut = config[“autoUnlockTimeout”];
if (!String.IsNullOrEmpty(sunlockTimeOut))

autoUnlockTimeout = Int32.Parse(sunlockTimeOut);
config.Remove(“autoUnlockTimeout”);

base.Initialize(name, config);
}

//other overrides
}

Before calling the base class Initialize method, the custom provider looks for the
autoUnlockTimeout attribute in configuration. If it finds the attribute, it stores its value and removes it
from the configuration collection. If the attribute is not supplied in the provider’s configuration, it
defaults to a 60-minute long timeout after which locked accounts can be automatically unlocked.

Because there are a number of different provider methods that should automatically unlock the user, the
core functionality is implemented in a single private method:

private bool AutoUnlockUser(string username)
{

MembershipUser mu = this.GetUser(username,false);
if ((mu != null) &&

(mu.IsLockedOut) &&
(mu.LastLockoutDate.ToUniversalTime().AddMinutes(autoUnlockTimeout)

< DateTime.UtcNow)
)

{
bool retval = mu.UnlockUser();
if (retval)

return true;
else

return false; //something went wrong with the unlock
}
else

return false; //not locked out in the first place
//or still in lockout period

}

For any given username, this method loads the MembershipUser instance for that user. If the
MembershipUser instance indicates that the user is locked out, the provider checks to see how much
time has elapsed since that last lockout. If more than autoUnlockTimeout minutes have elapsed, the
method calls UnlockUser to automatically unlock the account. The return value from the method indi-
cates whether the user account was unlocked. Normally, calling this method for users still within the
autoUnlockTimeout period returns false, whereas calling the method for users who are past the time-
out period results in a true return value.

To demonstrate how this method works with methods that deal with passwords, the following code
shows ValidateUser automatically unlocking users as necessary:

456

Chapter 11

14_596985 ch11.qxp 12/14/05 7:51 PM Page 456

public override bool ValidateUser(string username, string password)
{

bool retval = base.ValidateUser(username, password);

//The account may be locked out at this point
if (retval == false)
{

bool successfulUnlock = AutoUnlockUser(username);
if (successfulUnlock)

//re-attempt the login
return base.ValidateUser(username, password);

else
return false;

}
else

return retval; //first login was successful
}

First, the custom provider lets the base provider attempt to validate the user’s credentials. If the base call
succeeds, no further work is necessary. However, if the initial result is false, the method attempts to
unlock the user. There may be other reasons why ValidateUser fails — for example, the user account
specified by username may not even exist in the Membership database. If the unlock attempt succeeds
though, then custom provider again calls the base class’s ValidateUser. This sequence of calls will usu-
ally result in the second attempt succeeding, assuming, of course, that that password parameter is valid.
If the automatic unlock attempt did not succeed, then the custom provider returns false because there
isn’t any point in calling base.ValidateUser again for a user that is still locked out.

The same implementation pattern can be used with the password-related methods ChangePassword
and ChangePasswordQuestionAndAnswer. The overrides for these methods looks the same as the
ValidateUser override with the one difference being that the calls to the base class use the appropriate
method. With the custom ValidateUser implementation, you can try logging in with an account and
intentionally force a lockout. After autoUnlockTimeout minutes pass, the next call to ValidateUser
will succeed if you supply the correct password. In fact, this functionality also works transparently with
a control like the Login control. This is another example of how provider customization can be com-
pletely transparent to the user interface layer.

The other aspect of automatically unlocking users is in methods that deal with password answers. The
override for ResetPassword is:

public override string ResetPassword(string username, string passwordAnswer)
{

//A MembershipPasswordException could be due to a lockout
try
{

return base.ResetPassword(username, passwordAnswer);
}
catch (MembershipPasswordException me) {}

bool successfulUnlock = AutoUnlockUser(username);
if (successfulUnlock)

457

SqlMembershipProvider

14_596985 ch11.qxp 12/14/05 7:51 PM Page 457

//re-attempt the password reset
return base.ResetPassword(username, passwordAnswer);

else
throw new ProviderException(

“The attempt to auto unlock the user failed during ResetPassword.”);
}

In this case, the ResetPassword method will throw a MemershipPasswordException if the user is
locked out. As a result, the first call to the base class is wrapped in a try-catch block that suppresses
this exception. In the event that the user is locked out, the override calls AutoUnlockUser to attempt to
unlock the user account. If the user account was successfully unlocked, the custom provider attempts to
reset the password again by calling into the base class. However, if the automatic unlock attempt failed
for some reason, it throws a ProviderExpcetion to alert callers to the fact that the reset attempt failed.
You could also choose to rethrow the MembershipPasswordException if you put extra logic into
AutoUnlockUser to determine exactly why the unlock attempt failed.

If you use a sample page that calls ResetPassword, you can intentionally supply five bad password
answers to cause the user account to be locked out. As with ValidateUser, if you now wait
autoUnlockTimeout minutes to pass, the next call to ResetPassword with a valid answer will succeed.
Note though, unlike the Login control, if you use the PasswordRecovery control with this custom
provider the PasswordRecovery control is unable to load the MembershipUser object for a locked-out
user. Therefore, you will need to customize the PasswordRecovery control to work with the automatic
unlock logic in the custom provider. The GetPassword method in the custom provider implements the
same logic shown for ResetPassword. The only difference, of course, is that the GetPassword method
calls base.GetPassword in the appropriate places. Overall though, you can see how straightforward it
is to add automatic unlock logic to SqlMembershipProvider with a little bit of code. The best part is
that you can implement this functionality using publicly available APIs, so you don’t have to worry
about any future changes in the provider breaking your custom code.

Supporting Dynamic Applications
Normally, an instance of SqlMembershipProvider knows which application name to use by looking at
the value of the applicationName configuration attribute. The default configuration in machine.con-
fig sets applicationName to /, so most developers will probably want to explicitly redefine member-
ship providers in their applications to use a more suitable name. Many of the previous examples of
extending SqlMembershipProvider showed configurations that used more appropriate values for
applicationName.

The one constraint on the applicationName attribute though is that it is statically defined. After you set
the value in configuration, the provider remembers that value for the rest of its lifetime. If you look at the
MembershipProvider base class definition, though, you see that the ApplicationName property for the
provider is abstract and that a setter is also defined. Concrete providers like SqlMembershipProvider can
choose to implement the setter so that developers can change the application name at runtime.

This means that you can write code that switches between different application data living in the same
Membership table with code like the following:

458

Chapter 11

14_596985 ch11.qxp 12/14/05 7:51 PM Page 458

(SqlMembershipProvider)p = Membership.Provider; //assume default provider is SQL
p.ValidateUser(“someuser”,”somepassword”);

p.ApplicationName = “A_Different_Value_Than_Configuration”;

p.ValidateUser(“some other user”,”password”);

Supporting the setter for ApplicationName can actually be quite useful for single-threaded applica-
tions. For example, if you used an application like the console application shown in the previous chapter
for creating users, you could easily pass the desired application name as a command-line argument and
then set this value on the provider instance. In this way, the create user console application would have
no hard-coded dependencies on the application name.

The flaw with this approach is that in any kind of multithreaded environment, such as ASP.NET, it is
likely that multiple pages will be running simultaneously. If two pages both have code like that in the
preceding example, which one wins? Remember that each configured provider is instantiated only once
and that the same instance is used by all threads in an ASP.NET application. The answer to this question
for SqlMembershipProvider is that it depends:

❑ At best, no corruption of the internal application name variable occurs, and the two pages run
in just the correct sequence that each page works with the correct application name value.

❑ One page stomps on the application name value that was just set by the other page, and as a
result one of the two pages ends up working with the wrong set of data.

❑ The worst-case scenario is that both pages attempt to update the provider’s private application
name variable, with unknown results. This outcome would probably occur intermittently on a
multiprocessor machine where you not only have threads logically running in parallel, but you
also physically have different threads running simultaneously on different processors. The
“nice” thing about this outcome is that it would probably only occur intermittently under stress,
so you would go nuts trying to reproduce the problem!

The ASP.NET development team had considered at one point adding some locking to the get and set
properties in SqlMembershipProvider’s ApplicationName property. However, the setter for this
property was not really intended to support dynamically switching application names in a high-concur-
rency application like ASP.NET. Even if the locking semantics were added, you would end up with a
“hot” lock. Developers who wrote web applications that constantly set and reset the application name
would find that a fair amount of time was being spent entering and exiting a lock section around the
application name variable.

Even if the team had added locking, it still wouldn’t prevent multiple pages running simultaneously
from overwriting each other’s application name. It is the old problem with the Singleton pattern —
access to shared state not only has to be serialized, but any operations that depend on the shared state
are also liable to cause errors if the intent was that the change to shared state was supposed to be private
to the calling thread.

The solution to this problem in ASP.NET 2.0 was to make the ApplicationName property abstract.
Although SqlMembershipProvider doesn’t take advantage of this fact, you can. If you have an appli-
cation where each page request needs to run in the context of a specific application name, and you want
SqlMembershipProvider to dynamically use the correct application name, then you need to write a
custom provider that overrides the ApplicationName getter. You can leave the setter alone because

459

SqlMembershipProvider

14_596985 ch11.qxp 12/14/05 7:51 PM Page 459

internally SqlMembershipProvider never uses it. Common scenarios that require this type of dynamic
functionality are portal applications where one ASP.NET app-domain may actually be serving up multi-
ple virtual “applications.” In this type of scenario, it would be incredibly unwieldy to have to register a
separate provider instance for each application — and in the case of self-registered “applications,” you
wouldn’t even be able to use a configuration-driven approach.

You have two design choices for the ApplicationName override. You can make the provider directly
aware of contextual information for the request that determines the correct value for application name.
Or you can write some other code (for example, an HttpModule) that processes information from a
request and then stores the resulting application name in a convenient location such as HttpContext.
For this sample, I use the latter approach. From an architectural perspective, you probably don’t want a
custom provider to know all of the details about how an application name is determined. Instead, you
want the provider to look at a central location that holds the code that determines the correct value
neatly factored out into a separate class.

An HttpModule is the logical place to centralize the logic for determining the correct application name:

using System;
using System.Web;

public class PortalApplicationProcessor : IHttpModule
{

public void Dispose()
{ return; }

private void DetermineApplicationName(Object sender, EventArgs e)
{

HttpApplication app = (HttpApplication)sender;
HttpContext context = app.Context;

string qAppName = app.Request.QueryString[“appname”];
if (!String.IsNullOrEmpty(qAppName))

context.Items[“ApplicationName”] = qAppName;
else

context.Items[“ApplicationName”] = “NOTSET”;
}

public void Init(HttpApplication app)
{

app.BeginRequest +=
new EventHandler(this.DetermineApplicationName);

}
}

This module hooks the BeginRequest event to ensure that the application name has been determined
before anything significant, such as authentication, has occurred. The module looks on the query-string
for a variable called appname. If it finds this query-string variable, it stores it in the HttpContext’s
Items collection. If the query-string variable is not found, then a default value is stored in the context
instead. The only link required between HttpModule and a custom provider is a common agreement on
what to call the variable in HttpContext. In this example, the context variable is called
ApplicationName. Although this sample uses a query-string variable, you could certainly determine
the application name from a form variable, a custom HTTP header, and so on.

460

Chapter 11

14_596985 ch11.qxp 12/14/05 7:51 PM Page 460

The next step is to write a custom provider that overrides the ApplicationName property getter:

public class ApplicationProvider : SqlMembershipProvider
{

public override string ApplicationName
{

get
{

string appNameFromContext =
(string)HttpContext.Current.Items[“ApplicationName”];

if (appNameFromContext != “NOTSET”)
return appNameFromContext;

else
return base.ApplicationName;

}
}

}

The code for the custom provider is trivial. The ApplicationName property first looks in the context to
see if a nondefault value for the ApplicationName variable was set. If such a value is found, the
provider returns it. Otherwise, the provider reverts to the application name value stored in the
provider’s configuration.

At this point, all coding necessary to support dynamic application names is complete. You can test the
custom provider by configuring a test application to use the provider as well as the associated
HttpModule.

<httpModules>
<add name =”PortalProcessor” type=”PortalApplicationProcessor”/>

</httpModules>

<membership defaultProvider=”portalAware”>
<providers>

<add name=”portalAware” type=”ApplicationProvider”
connectionStringName=”LocalSqlServer” />

</providers>
</membership>

Now that the sample application knows about the custom HttpModule, you can start authoring pages
that make use of Membership in a dynamic manner. For example, you can drop the CreateUserWizard
control onto a page and then request it with different URLs:

http://localhost/Chapter11/ChangingApplicationName/CreateUser.aspx?appname=fooapp2

— or —

http://localhost/Chapter11/ChangingApplicationName/CreateUser.aspx?appname=barapp

After stepping through the wizard, new users are automatically created in the Membership database
and associated with different application names based on the appname query-string variable. If you use
other controls like the Login control with the query-string variable, you can log in using credentials
from different application names.

461

SqlMembershipProvider

14_596985 ch11.qxp 12/14/05 7:51 PM Page 461

This all works so transparently because internally SqlMembershipProvider always calls the public
ApplicationName getter whenever the provider needs this value. In the stored procedures for
SqlMembershipProvider, almost every single stored procedure needs an application name. When the
SqlMembershipProvider is building its SqlCommand objects, it fills in the application name stored pro-
cedure parameter with the value returned from the ApplicationName getter. Because the custom
provider overrides this getter, the fact that the application name value is changing on each request is
transparent to SqlMembershipProvider.

This approach is also safe from a concurrency perspective because the custom provider is depending on
the HttpContext for the application name value. Because the context is local to each ASP.NET request,
there is no chance that simultaneous page requests will tromp on each other’s application name. Even if
two different page threads are simultaneously calling the ApplicationName getter, each thread will end
up with a different value pulled from that thread’s associated HttpContext.

Although this sample demonstrates how to dynamically set the application name for a web application,
the same technique is applicable to Web Service calls using .asmx files. The .asmx requests also have an
HttpContext associated with the request — so the one difference is where you pull the application
name from. Assuming that your web requests are submitted via HTTP, you could use the query-string,
or you could use custom SOAP headers for storing the application name value. About the only tricky
thing with overriding ApplicationName occurs if you want to use Membership from a “lights-out”
application like an NT service. In this type of scenario, the same architectural approach applies, but
instead of an HttpModule you will need to write code that determines the application name from some
other data (for example, the request data that is queued to the service thread) and then initializes a
shared memory location (for example, thread local storage being the most likely candidate) prior to call-
ing into a custom provider.

If you are working with a portal application that can change its application context on each request, keep
a few security points in mind. Even though it is trivial to make providers pick up a different application
name on each request, remember that other features like forms authentication still work at the level of an
ASP.NET application. If you validate credentials with a custom Membership provider, make sure that
the forms authentication ticket you issue to one portal is not accidentally honored by another portal run-
ning in the same ASP.NET application. Similarly, if you write a custom Role Manager provider that over-
rides ApplicationName, make sure that your different portal applications don’t accidentally honor each
other’s role information. In other words, customizing the ASP.NET providers is only one part of the
broader architectural problem of making ASP.NET applications “act” like hundreds or thousands of vir-
tual applications.

One other architectural solution has been proposed for dealing with dynamically setting the application
name: why not just add applicationName as a parameter to every method on all of the ASP.NET
provider and feature classes? Certainly, this is a technically viable option. There are problems with this
approach though:

❑ Developers would have to explicitly manage the application name throughout their code,
whereas today the value gets set once and you can forget about it.

❑ From a testing perspective, the test cost of having another parameter inside of every provider
and feature method is rather expensive. Although for your own development it doesn’t seem
like much overhead, for the ASP.NET team there is a nonzero cost each time a new method is
added or a method signature widens.

462

Chapter 11

14_596985 ch11.qxp 12/14/05 7:51 PM Page 462

For both of these reasons, it is unlikely that future releases of ASP.NET will add an applicationName
parameter back into the APIs. What is more likely is that the general approach outlined in this section
will get baked into the provider APIs in some future release.

Summary
The provider works in both ASP.NET and non-ASP.NET environments that are running at Low trust or
higher. Remember, though, that the provider needs SqlClientPermission in partial trust environ-
ments and that this permission is not granted by default in Low trust. SqlMembershipProvider imple-
ments all of the security functionality available in the Membership feature. This includes advanced
security features such as question-and-answer-based password resets as well as account lockouts when
bad passwords or bad password answers are used. The provider stores user-related data in a combina-
tion of tables: some of which are common to all SQL-based providers, and some of which are specific to
SqlMembershipProvider. Although there is nothing technically preventing you from using these tables
directly, the expectation is that public APIs like the MembershipProvider class should be used for
inserting and updating data. Only in the case where you need more extensive read-only access to
Membership data should you query the database directly. ASP.NET ships with a number of SQL views
that expose the data from the underlying tables for you to write SELECT queries against.

Although the default database engine used by SqlMembershipProvider is SQL Server 2005 Express,
developers can easily change the LocalSqlServer connection string in machine.config to point the
provider at any database server running SQL Server 7.0, 2000, or 2005. The only special logic that
SqlMembershipProvider supports (and for that matter all of the ASP.NET SQL-based providers) for
SSE is the automatic generation of a database containing the schema for all of the SQL-based features.
Although this integration makes it very easy to develop using file-based webs in Visual Studio, you will
probably be better off using the aspnet_regsql tool to manually install the schema when you develop
against IIS6-based webs.

SqlMembershipProvider can also be extended by developers who want to integrate additional func-
tionality. Because the provider is unsealed, most of the public properties and methods can be overridden
by you. In this chapter, you saw how you could take advantage of this functionality to make simple
changes in custom password generation and custom password encryption. More extensive changes
allow you to extend SqlMembershipProvider with new features such as password history tracking
and automatic unlocking of unlocked accounts. Last, with a just a few lines of code you saw how you
can override the ApplicationName property to make SqlMembershipProvider work with multiple
“applications” in portal environments.

463

SqlMembershipProvider

14_596985 ch11.qxp 12/14/05 7:51 PM Page 463

14_596985 ch11.qxp 12/14/05 7:51 PM Page 464

ActiveDirectoryMembership
Provider

The ActiveDirectoryMembershipProvider supports almost the entire set of functionality
defined by the Membership API. You can create and manage users with either Active Directory
(AD) or the standalone directory product Active Directory Application Mode (ADAM).
Furthermore, you can use the provider in both ASP.NET and non-ASP.NET applications. Because
the ActiveDirectoryMembershipProvider closely mirrors the SqlMembershipProvider in
terms of functionality, the interesting parts of ActiveDirectoryMembershipProvider are how
the provider works with the directory server and how certain Membership operations are mapped
to AD and ADAM.

This chapter will cover the following aspects of ActiveDirectoryMembershipProvider in
detail:

❑ How the provider works with different directory structures

❑ Provider configuration settings

❑ Notes on various pieces of provider functionality

❑ The ActiveDirectoryMembershipUser class

❑ Working with Active Directory

❑ Configuring ADAM to work with the provider

❑ Using the provider in partial trust

Supported Directory Architectures
Because the ActiveDirectoryMembershipProvider uses a directory store, you should understand
the various domain architectures that it supports. The ActiveDirectoryMembershipProvider can

15_596985 ch12.qxp 12/14/05 7:52 PM Page 465

work against either an Active Directory (AD) domain (both Windows 2000 and Windows Server 2003) or
against what is called an application partition deployed in an Active Directory Application Mode (ADAM)
server. Of the two directory server types, AD is the one with more varied options and, thus, requires a little
more preplanning on your part.

The most important thing to keep in mind when using the AD/ADAM-based provider is that the
provider treats AD and ADAM as Lightweight Directory Access Protocol (LDAP) servers. In essence,
the provider is talking to these “databases” using LDAP commands. The provider does not interact
with AD as an NT LAN Manager (NTLM) or Kerberos authentication service. This means that the
provider does not return any kind of authenticated domain principal, and the provider cannot be used
to generate a login token. It simply makes LDAP calls and LDAP binds to a directory server, and it
returns the results of those calls. This behavior is sometimes a point of confusion for folks who think that
ActiveDirectoryMembershipProvider generates security tokens and sets the security context on a
thread. Because the provider is implementing the MembershipProvider base class, and the Membership
API has no concept of returning security tokens or switching security contexts, the provider has no sup-
port for such operations.

The provider always works in the context of a directory container. This means that the provider is
always pointed at the root of some container, and all provider operations occur within that single con-
tainer, or in most cases through the hierarchy of nested child containers. For ADAM, this isn’t particu-
larly surprising because ADAM servers are basically standalone LDAP directories. Even though a single
ADAM server can host multiple application partitions (that is, these are sort of like mini-domains), the
provider always needs to be pointed at a specific application partition when using ADAM. Typically, for
developers working with ADAM, this is common practice — your application knows which application
partition in ADAM it should be using.

However, for AD you can have a forest with multiple domains, and for many customers the forest
infrastructure is very large and complex. If you use the provider in an AD environment, each configured
provider can only be pointed at a single domain or at a specific container within a single domain. The
provider does not support the concept of multidomain operations; realistically, the concept of seamless
support for multiple domains is baked more into the authentication aspect of Active Directory as
opposed to the LDAP aspect of AD.

Even though AD has a global catalog (GC) that can be used for LDAP queries that need to work with
data from many domains, for the most part the ActiveDirectoryMembershipProvider does not
make use of GC functionality. (There are a handful of verification checks where the provider will query
the GC, but this functionality is all internal to the provider.) The provider also does not chase referrals,
so you can’t set up user objects in one domain that are really referrals to objects in another domain and
expect the provider to work. When using AD, you also cannot point the provider at a global catalog (that
is, use GC:// in the connection string). If this were allowed the provider’s search and get methods would
probably work, but all of the data modification methods would fail because GC replicas are read-only.

If you want to use the provider in a multidomain AD environment, you need to configure multiple
provider instances — one for each domain or domain-container that you need to work with. In your
application, you can implement logic that determines which domain it should work with, and your code
can then select the appropriate ActiveDirectoryMembershipProvider instance from the Membership
.Providers collection. In this fashion, you can still effectively work in a multidomain environment
with only a little extra code on your part.

466

Chapter 12

15_596985 ch12.qxp 12/14/05 7:52 PM Page 466

Note though that this means the machine on which the providers are running needs network connectiv-
ity to each of the different domains. For an extranet environment that has only a handful of domains,
this probably isn’t an issue. However, if you have a more complex scenario where you need to access
remote domains from an extranet environment, chances are that a web server in your DMZ is not going
to have network connectivity to reach back into the internal corporate network and then communicate
with some random directory controller. If you are architecting an application that needs to have multiple
provider instances communicating with many different domains, make sure that your network topology
will support this before you go too far down the coding path!

I have been making a number of references to containers for both AD and ADAM. The provider “knows”
the context that it should be using based on the connection string configured for the provider. Just like
the SQL providers, the ActiveDirectoryMembershipProvider uses a connection string, although in
its case the connection string is an LDAP connection string. (You will see many examples of LDAP con-
nection strings later in this chapter.) The connection string tells the provider which domain, directory
server, or application partition it should work against, and the connection string also gives the provider
enough information to know which container within the domain or directory server the provider should
work with.

If you are working with ADAM, you always work explicitly with a container because you need to con-
figure an application partition within which your user data is stored. As a result, the connection string
you have in configuration when using ADAM always includes some container information in it. For AD
this is not necessarily the case. In AD, you can point the provider at a domain, or a specific domain con-
troller, without specifying a container. If you do this, the provider will default to using a combination of
the default naming context for the domain and the “Users” container because this container is com-
monly available in AD domains. (User creation/deletion will occur in the Users container, whereas all
other methods are rooted at the default naming context.) If you want to create your application’s users
within only the Users container, then you can define your connection strings without an explicit con-
tainer in the AD case. Of course, you also have the same ability in AD as you do in ADAM to create
organizational units (OUs) and to specify these OUs as part of the connection string.

If your user data is spread across multiple containers, you have a few options for configuring the
provider. If the user data exists in containers that are peers of one another, and all of the containers have
a common parent, you can point a single provider instance at the parent container. Except for user cre-
ation and user deletion, the provider always performs subtree searches starting with the container deter-
mined from the connection string. For example, if you call GetUser on the provider and the provider is
pointed at a parent container, then the provider will be able to find the user object if it is located in the
parent container, or if it is located in any of the containers nested within the parent — regardless of how
deep the nesting may occur.

If your application needs to create and delete users, then you will need to configure a separate provider
instance for each separate container in which creation and deletion occurs. The reason for the different
behavior is that for user creation and deletion there is no such thing as a subtree operation. When you
create a user object it must be created in a specific location, and as a result the provider limits user cre-
ation and deletion to the container specified (or implicitly determined) on the connection string. For
applications that have a number of OUs, though, it can be awkward to have to always manipulate differ-
ent provider instances for each OU when calling common methods like GetUser or ValidateUser.
Therefore, except for CreateUser and DeleteUser, all of the provider methods use subtree searches.

What happens if your application deals with multiple OUs sharing a common parent and you don’t want
the provider to perform broad search operations across all of the OUs? If you intentionally want to limit

467

ActiveDirectoryMembershipProvider

15_596985 ch12.qxp 12/14/05 7:52 PM Page 467

all provider operations to a single OU, you can configure multiple provider instances and point each
instance at a specific OU as opposed to a parent container. However, if you have a container structure
that nests multiple OUs in a chain, and you want to limit the provider to only a single OU in the nesting
chain, the reality is that any provider pointed at a nonleaf OU will still perform subtree searches down
through all of the remaining OUs. About the only thing you can do for this scenario is to restrict access
on a per-OU basis using different user accounts and then configure the different provider instances with
different sets of credentials.

Provider Configuration
If you configure the provider with the minimum number of required configuration attributes, most of its
functionality will work against existing AD installations. About all you need to get up and running is a
provider definition and a valid connection string:

<connectionStrings>
<add name=”adconnection” connectionString=”LDAP://mydomain.dns.name”/>

</connectionStrings>

<membership defaultProvider=” someprovider “>
<providers>
<clear/>
<add name=”someprovider”

type=”System.Web.Security.ActiveDirectoryMembershipProvider, ...”
connectionStringName=”adconnection” />

</providers>
</membership>

It is pretty much guaranteed that for production applications, though, you will need to delve a little
more deeply into the provider’s configuration. The section “Working with Active Directory” walks you
through a number of the common configuration tasks for setting up the provider.

For now, take a look at the various configuration settings that are available in the <add /> element of
the provider. The available settings fall into the following general groups:

❑ Directory connection settings

❑ Schema mappings

❑ Search-specific settings

❑ Membership provider settings

Directory Connection Settings
As with SQL provider, you need to at least supply a connection string so that the provider knows where
it should read and write data. However, unlike SQL Server connection strings, there is no such thing as
specifying explicit connection credentials inside of the connection string. Also connection security set-
tings cannot be supplied inside of an LDAP connection string. As a result, the provider supports a num-
ber of additional configuration settings.

468

Chapter 12

15_596985 ch12.qxp 12/14/05 7:52 PM Page 468

The connection string that you use for the provider is placed in the <connectionStrings /> section.
The provider references the connection string via the connectionStringName attribute. The connection
string that you create supports a number of different formats, depending on whether you are connecting
to AD or ADAM. For example, if you are running in a domain called foo.org and you have an AD
domain controller called dcserver, the most prevalent forms of the connection string when connecting
to AD look like:

❑ LDAP://foo.org

❑ LDAP://dcserver.foo.org

❑ LDAP://foo.org/OU=SomeOU,DC=foo, DC=org

❑ LDAP://dcserver.foo.org/OU=SomeOU,DC=foo,DC=org

However, if you are connecting to an ADAM server, you always need to have an application partition
defined. Assuming that you have an ADAM server called adambox in the foo.org DNS namespace, you
could use connection strings like:

❑ LDAP://adambox.foo.org/O=myorg,DC=foo,DC=org

❑ LDAP://adambox.foo.org/OU=SomeOU,O=myorg,DC=foo,DC=org

Unlike AD, ADAM servers can be listening on nondefault LDAP ports. If you install ADAM to listen on
other ports, then the connection string can look like:

❑ LDAP://adambox.foo.org:50001/O=myorg,DC=foo,DC=org

❑ LDAP://adambox.foo.org:50001/OU=SomeOU,O=myorg,DC=foo,DC=org

If you do install ADAM on a nondefault port, and you plan on using secure connectivity to the ADAM
server, you must make sure that SSL support has been configured properly on the ADAM server and on
each of the machines that needs to connect to the ADAM server. If you don’t change the default port set-
tings for ADAM, then SSL traffic by default occurs on port 636 (unsecured traffic occurs on port 389 by
default). If your ADAM server uses these default ports, then you don’t need to specify a port number in
the connection string.

Because both AD and ADAM can replicate changes across servers, the type of connection strings that
you use will have an effect on when the provider sees changes made on other machines. For example, if
you use an AD connection string that points only at a domain, it is possible that across a web farm differ-
ent web servers will end up connecting to different domain controllers. This can lead to odd behavior
where changes made to a MembershipUser on one server don’t show up immediately on other servers
in your farm. Unfortunately, there isn’t anything the provider itself can do to mitigate the inherent
latency of AD’s multimaster behavior. However, you can at least use connection strings that explicitly
specify a server — in this case all provider instances that are pointed at the same server will see a consis-
tent set of information.

One very important aspect of connecting to the directory server is connection security. From the sample
connection strings, you saw that there is no indication of the secured state of the connection. You request
security for the connection to the directory server via the connectionProtection provider configura-
tion attribute. This attribute can be set to either None or Secure. By default, if you do not specify the
attribute in your provider’s configuration, the provider will default to Secure.

469

ActiveDirectoryMembershipProvider

15_596985 ch12.qxp 12/14/05 7:52 PM Page 469

The reason that the attribute has only one of two settings is that attempting to expose the vagaries of
negotiating secure connections with a directory server can quickly become very complicated. So rather
than leaving it up to you to get things working, the provider simplifies the issue into a simple binary
decision. Either you want connection security automatically established, or you don’t. Of course, there is
a bit more complexity than that occurring underneath the hood. There are a number of mix-and-match
combinations you can use with connectionProtection and the credentials used by the provider when
connecting to the directory, though only a subset of settings really make sense.

❑ connectionProtection=None for AD — This is not a combination you should ever use. In
AD environments, any operations that set or change passwords must be done over secure con-
nections, so with a setting of None, the provider will always fail when it attempts things like
ChangePassword or ResetPassword. Also, you need to always use explicit connection creden-
tials with this setting. Because AD has built-in support for automatically securing connections
there isn’t much reason for ever using None in an AD environment.

❑ connectionProtection=None for ADAM — You may find yourself using this combination in
a development environment where you don’t have SSL certificates set up for your ADAM
server and client machines. As with AD, you will need to configure the connection credentials
explicitly to use the None setting. Note that for ADAM this means that you will be limited to
using only ADAM user principals for the explicit credentials; domain credentials cannot be
explicitly specified for ADAM when connectionProtection is set to None. Unlike AD,
though, you can manually configure ADAM to allow password changes and resets to occur over
unsecured connections. The section on “Using ADAM” later in the chapter shows you how to
do this. Note though that I would not recommend using None in a production setting with
ADAM; it only makes sense as a convenience early on during a development cycle. Even for
development scenarios, at some point you should get SSL set up so that you are coding in an
environment that more closely matches your deployment environment.

❑ connectionProtection=Secure for AD — This is the default when connecting to an AD
server, and it is the setting that you should use for most cases when working with AD.
Internally, the provider will first make a check to see if SSL is supported on the directory server.
If it is, all LDAP traffic will flow over Active Directory’s SSL port (that is, port 636). If SSL is not
configured for AD, which is normally the case for at least intranet directory servers, then the
provider will fall back and use signing and sealing for all LDAP traffic. If you have configured
SSL in an extranet directory environment for example, then the provider will make use of SSL
in preference to signing and sealing. Because the provider internally makes use of the Active
Directory Services Interface (ADSI) API, it turns out that setting up SSL for AD environments
gives the best performance when using the provider to connect securely to AD. Using SSL
reduces the number of network connections that ADSI will open on behalf of the provider when
making secure connections to AD.

❑ connectionProtection=Secure for ADAM — This is the default when connecting to an
ADAM server. As noted earlier, this setting will not work unless you have explicitly set up SSL
on your ADAM server as well as on all machines that need to communicate with that server.
The reason for this restriction is that unlike when connecting to AD, the provider only supports
the use of SSL for securing network traffic with the ADAM server. Even if the ADAM instance is
running on a server joined to a domain, the provider will not attempt to use signing and sealing.

When you set connectionProtection to Secure, you can find out the actual connection security that
was chosen at runtime by querying the provider’s CurrentConnectionProtection property. This
property returns a value from the System.Web.Security.ActiveDirectoryConnectionProtection
enumeration that will tell you if SSL or signing and sealing were chosen.

470

Chapter 12

15_596985 ch12.qxp 12/14/05 7:52 PM Page 470

The last set of connection information that you can configure in the provider’s <add /> element is explicit
connection credentials. The configuration attributes connectionUsername and connectionPassword
can be used to explicitly specify the username and password to use when connecting to the directory
server. If you don’t explicitly specify values for these settings the provider attempts to connect to the direc-
tory using either the process credentials from the IIS6 worker process, or the application impersonation
credentials if application impersonation is in effect. If you explicitly specify the username and password,
make sure to use protected configuration (discussed in Chapter 4) so that the credentials are not stored in
cleartext on your production servers.

The format of the username differs, depending on whether you are connecting to AD or ADAM:

❑ AD — You can specify the username in any format that is supported by Windows. The two most
common username formats are the NT4-style format of DOMAIN\USERNAME and the user princi-
pal name format of username@domain.name.

❑ ADAM — If you are connecting to an ADAM server with connectionProtection set to Secure,
then you can explicitly specify either an ADAM user principal or a domain user account. For a
protection setting of None though, only an ADAM user principal can be specified. An ADAM
principal looks something like CN=Username,OU=AccountOU,O=MyOrganization,DC=cor-
sair,DC=com. In the section on “Using ADAM,” there is a walkthrough of how to use an
ADAM user principal when connecting to an ADAM server.

Directory Schema Mappings
By default the provider attempts to map the properties of the MembershipUser class to an
appropriate set of default attributes on the user class in AD and ADAM. Some aspects of this
mapping are configurable, whereas other aspects are not. The most important constraint is that
ActiveDirectoryMembershipProvider always binds to objects of type user. Although in Windows
Server 2003 and ADAM the ability to use inetOrgPerson was added, the provider currently only sup-
ports binding to objects of type user.

The following properties on MembershipUser have fixed schema mappings to attributes in the directory:

❑ ProviderUserKey— This value maps to the objectSID attribute on the user object. As a
result, you can get the user’s security identifier (SID) from the ProviderUserKey property and
you can also retrieve MembershipUser instances using the SID as a key.

❑ Comment— Maps to the comment attribute on the user class.

❑ CreationDate— Maps to the whenCreated attribute on the user class.

❑ LastPasswordChangedDate— Maps to the pwdLastSet attribute on the user class.

❑ IsApproved— Maps to the userAccountControl attribute when using AD. Maps to the mDS-
UserAccountDisabled attribute when using ADAM.

❑ IsLockedOut— Maps to msDS-User-Account-Control-Computed attribute when using AD on
Windows Server 2003 or when using ADAM. This property is computed from the lockoutTime
attribute and the directory’s account lockout duration setting when running against Windows
2000 AD (W2K’s schema did not include the msDS-User-Account-Control-Computed
attribute). If you have configured the provider to support question-and-answer-based password
reset, then the provider will also look at the custom tracking information for bad password
answers when determining whether a user is considered locked out.

471

ActiveDirectoryMembershipProvider

15_596985 ch12.qxp 12/14/05 7:52 PM Page 471

❑ LastLockoutDate— Maps to the lockoutTime attribute on the user class. If question-and-
answer-based password reset has been enabled, then the lockout date may also come from the
custom attributes that track bad password answer attempts.

Other properties on MembershipUser are either not mapped by default or have default mappings to
directory attributes that you can change.

❑ Username— By default, the provider maps this property to the userPrincipalName attribute
in the directory. This mapping will work for you if each of your directory users is created with
a user principal name. For older directories, though, you may be using the NT4-style SAM
account names, in which case you will need to change the mapping for this property. You can
change the mapping to the sAMAccountName attribute in this case. Note that if you try to use
the provider with an already populated directory, and you are scratching your head wondering
why you can’t find any users or successfully validate any credentials, it is probably because
your users have SAM account names, but you have not configured the provider to use the
sAMAccountName attribute for MembershipUser.Username.

❑ Email— By default, the provider maps this property to the mail attribute. If you want, you can
change this mapping to any single-valued attribute on the user class that is of type Unicode
String.

❑ PasswordQuestion— This property is not mapped by default to anything in the directory. If
you intend to use question-and-answer-based password resets with the provider, there are actu-
ally five different attributes that need to be mapped on the user class. The section on “Working
with Active Directory” walks you through adding custom attributes to the AD schema and set-
ting up password reset functionality.

Because Active Directory operates in a multimaster environment, some of the properties on
MembershipUser cannot be reliably implemented based on directory attributes.

❑ LastActivityDate— This property has no mapping and is not supported by the provider.
There is no concept in either AD or ADAM of touching the user object every time something
happens. Unlike the SQL providers where different features all update a LastActivityDate
column in the database, attempting to engineer a similar approach for AD wasn’t feasible. First,
there would be no way for other features such as Profile to reach into a user object in a directory
and update an arbitrary field (suddenly you would have System.DirectoryServices code
sitting in the middle of the SQL provider code, which would be a bit strange to say the least).
Another problem is that for this value to make any sense in a multimaster environment you
would have to replicate the field to all of the various domain controllers. Because it isn’t likely
that most customers would want to add a custom attribute and then replicate it across their
domain infrastructure each and every time the attribute was changed, the decision was made
not to support the concept of a last activity date for the provider.

❑ LastLoginDate— Both AD and ADAM store the last logon time for a user using the
lastLogon and lastLogonTimestamp attributes, respectively. However, these attributes aren’t
replicated across domain controllers, and the property is not available from the global catalog.
So, it is very likely that the provider would either get differing values for this property or stale
property values in any domain that had at least two domain controllers. Rather than having the
provider iterate through all domain controllers in a domain attempting to find the latest value
the decision was made to not implement this property.

472

Chapter 12

15_596985 ch12.qxp 12/14/05 7:52 PM Page 472

If you want to change any of the configurable attribute mappings for the provider, you can do so by
using the following configuration attributes in the provider’s <add /> element:

❑ attributeMapUserName— You can use this provider configuration attribute to change which
attribute on the user class the provider uses for identifying a user. You can set this to either
userPrincipalName (the default) or to sAMAccountName.

❑ attributeMapEmail— If you don’t want to store user’s email addresses in the default mail
attribute, you can tell the provider to use a different directory attribute instead. The only restric-
tion is that that the directory attribute must be of type Unicode String.

❑ attributeMapPasswordQuestion— This configuration attribute must be defined for the
provider if you set enablePasswordReset to true. The configuration attribute must reference
a directory attribute of type Unicode String.

❑ attributeMapPasswordAnswer— This configuration attribute must be defined for the provider
if you set enablePasswordReset to true. The configuration attribute must reference a directory
attribute of type Unicode String.

❑ attributeMapFailedPasswordAnswerCount— This configuration attribute must be defined
for the provider if you set enablePasswordReset to true. The configuration attribute must
reference a directory attribute of type Integer.

❑ attributeMapFailedPasswordAnswerTime— This configuration attribute must be defined
for the provider if you set enablePasswordReset to true. The configuration attribute must
reference a directory attribute of type Large Integer/Interval.

❑ attributeMapFailedPasswordAnswerLockoutTime— This configuration attribute must be
defined for the provider if you set enablePasswordReset to true. The configuration attribute
must reference a directory attribute of type Large Integer/Interval.

Later on in the “Working with Active Directory” section I walk you through enabling question-and-
answer-based password reset, including the necessary configuration steps for extending the schema in
the directory.

Along with the directory schema mappings comes a set of default size restrictions on the length of vari-
ous string properties. With the SQL provider, it is pretty easy to determine length restrictions by just
looking in the database at the column definitions. For the AD provider, this is harder to accomplish
unless you can look at the actual directory schema. The default length restrictions for various
MembershipUser-related properties are shown in the following list. Note though that it is possible for
you to edit the AD and ADAM schemas to enforce even shorter size restrictions. If you have done this,
the provider will honor the size restrictions defined in your directory’s schema.

❑ Username— If you mapped username to sAMAccountName then your username cannot be
longer than 20 characters. This is a hard-coded size restriction from NT4 days. If you mapped
username to userPrincipalName, then a username cannot be longer than 64 characters.

❑ Password— As with the SQL provider, the plaintext password for a user cannot be longer than
128 characters.

❑ Comment— The provider only allows comments up to 1024 characters in length. This differs
from the SQL provider, where you could basically store the entire English dictionary if you
wanted in a user’s Comment property.

473

ActiveDirectoryMembershipProvider

15_596985 ch12.qxp 12/14/05 7:52 PM Page 473

❑ Email— A user’s email property cannot be longer than 256 characters.

❑ PasswordQuestion— A user’s password question cannot be longer than 256 characters.

❑ PasswordAnswer— A user’s cleartext password answer cannot be longer than 128 characters.
However, the end result of encrypting the password answer also cannot be longer than 128 charac-
ters. Because the ActiveDirectoryMembershipProvider always encrypts the password answer
using the same encryption method described in Chapter 11 for SqlMembershipProvider, this
limits users to around a 42-character long cleartext password answer.

Provider Settings for Search
There are a handful of other custom configuration attributes supported on the provider that deal specifi-
cally with how the provider interacts with AD and ADAM.

❑ enableSearchMethods— By default, the provider sets this property to false. You can choose to
set it to true to enable the following provider methods: FindUsersByName, FindUsersByEmail,
and GetAllUsers. When you carry out LDAP search operations against AD and ADAM the most
efficient way to query large numbers of users is through the use of stateful search facilities. For
example, if you perform directory searches using the System.DirectoryServices classes you
can perform paged searches to limit the amount of processing the directory server incurs during
any one query operation. This type of search implies that your code hangs on to an object
(the DirectorySearcher) over the course of moving through multiple pages of results.
However, the ActiveDirectoryMembershipProvider is designed for use in stateless web
applications. This means after each call to a provider search method, all of the underlying System
.DirectoryServices objects that were used during the search are released. As a result, the
provider is not able to take advantage of the paged search facilities in AD and ADAM. This means
that if the search methods were allowed by default, it would be possible for a developer to acci-
dentally point the provider at a large directory and then grind the directory servers to a halt by
searching through sets of users. For this reason, the search methods on the provider can be
enabled or disabled — with the default state being disabled.

❑ clientSearchTimeout— By default, the provider does not set this property. You can set this
attribute to the number of seconds you want the provider to wait for a response from any LDAP
query it sends to the server. This configuration attribute is used to set the ClientTimeout prop-
erty on the DirectorySearcher instance that the provider uses internally. Note that this time-
out applies to any LDAP search operation that the provider issues and, thus, also applies to
methods like UpdateUser or GetUser that need to find a single user object as part of their nor-
mal processing.

❑ serverSearchTimeout— By default, the provider does not set this property. You can set this
attribute to the number of seconds the directory server should spend performing a single search
operation. The configuration attribute is used to set the ServerPageTimeLimit property on the
DirectorySearcher instance that the provider uses internally. As with clientSearchTimeout,
the value for this configuration attribute will affect any LDAP query that the provider issues and,
thus, the configuration setting will affect methods like UpdateUser and GetUser.

As you can see, the area of searching users caused some degree of concern with the feature team.
Searching for a specific user wasn’t the problem because that type of operation yields one or no results
and involves searching for a single user object in the directory. But performing broad searches has the
potential to yield a large number of users, and the problem of mapping the provider’s paging semantics
on top of AD’s paging semantics can exacerbate performance issues.

474

Chapter 12

15_596985 ch12.qxp 12/14/05 7:52 PM Page 474

If you have ever used the DirectorySearcher class, you know that the class also supports a PageSize
property that is normally used in conjunction with the timeout properties. However, there is no pro-
vider configuration attribute that exposes a page size. Instead, when you run a provider method like
FindUsersByName the provider requests results from AD and ADAM in fixed page sizes of 512 entries.
Then the provider internally iterates through the results and determines whether any search results in
a 512-entry page also lie within the set of rows that were requested by the calling code. Effectively, the
provider has to map the page size and page index parameters on methods like FindUsersByName to the
underlying set of pages that the provider is retrieving via the DirectorySearcher class.

Because of this behavior, the clientSearchTimeout and serverSearchTimeout attributes really
only apply to each page of 512 search results retrieved by the provider. For example, if you specify a
serverSearchTimeout setting of 10 seconds in configuration, and the provider internally needs to
retrieve 10 different pages of results from the directory server to complete a method call, the provider
can take up to 100 seconds to retrieve all of the data without exceeding the server’s timeout.

The net result of this is that for a single method call to the provider, the provider internally may need to
fetch multiple pages of results from the directory server in order to fulfill the request. For this reason, if
you choose to enable the search methods on the provider, be sure that you do the following:

❑ Do not call GetAllUsers. This method is going to start with the first user in a directory con-
tainer and keep on walking through all of the other users. On a large directory, this will be an
incredibly expensive method to call.

❑ For FindUsersByName, always specify at least a partial value for the usernameToMatch param-
eter. This will at least allow the directory server to narrow the set of results based on either the
userPrincipalName or sAMAccountName attributes.

❑ For FindUsersByEmail always specify at least a partial value for the emailToMatch parame-
ter. This will allow the directory server to narrow the set of results returned based on the “mail”
attribute.

Membership Provider Settings
Because the ActiveDirectoryMembershipProvider inherits from MembershipProvider, it
supports many of the same configuration settings as found on the SqlMembershipProvider.
However, even though many of the settings are the same, in some cases the way the
ActiveDirectoryMembershipProvider uses the settings will differ.

❑ applicationName— Although you can configure this setting on the provider (and you can
retrieve it from the ApplicationName property), it has no effect on the provider’s functionality.
The directory scope within which the provider operates is determined solely by the connection
string. The provider supports configuring applicationName simply for visual consistency with
the SqlMembershipProvider— that is, the configuration looks the same, but that’s about it.

❑ requiresUniqueEmail— If this is set to true, then the provider’s CreateUser and UpdateUser
methods will perform a subtree search rooted at the location specified by the connection string
and look for any other user objects with a matching value in their mail attribute. This means that
the provider is guaranteeing local uniqueness of the email value; the provider does not guarantee
that the email value is globally unique in the domain or the forest. Of course, if your connection
string is pointed at an AD domain (that is, you have no container specified in your connection
string), then the provider will effectively be guaranteeing email uniqueness for that domain
because the search will be rooted at the domain’s default naming context.

475

ActiveDirectoryMembershipProvider

15_596985 ch12.qxp 12/14/05 7:52 PM Page 475

❑ enablePasswordReset— The default setting is false. If you set this attribute to true, then
you must also set requiresQuestionAndAnswer to true, and you must specify the five map-
ping attributes described earlier so the provider knows where to store bad password answer-
tracking information.

❑ requiresQuestionAndAnswer— The default setting is false. You can actually set this attribute
to true without setting enablePasswordReset to true. If requiresQuestionAndAnswer
is set to true, then you must tell the provider the schema mappings in the directory for
the password question and answer by using the attributeMapPasswordQuestion and
attributeMapPasswordAnswer attributes. You might require questions and answers in order to
start having users enter this information when their accounts are being created, and then at a later
point turn on password resets. Alternatively, you could just use the PasswordQuestion property
on the MembershipUser object to store some more information about the user (that is, use it as a
second property like the Comment property).

❑ minRequiredPasswordLength— By default, this property is set to 7. The provider uses this
setting to enforce a minimum password length prior to sending the password down to the
directory server. Note that this property setting only adds a layer of password validation on top
of the directory’s existing password strength enforcement rules. Regardless of the setting you
use for this configuration attribute, a user’s password must always pass the password strength
restrictions defined for the directory server.

❑ minRequiredNonalphanumericCharacters— Defaults to requiring one nonalphanumeric
character. As with minRequiredPasswordLength this restriction is enforced in addition to
whatever password strength restrictions are currently enforced by the directory server.

❑ passwordStrengthRegularExpression— There is no regular expression set by default. If
you do set a regular expression for this attribute, the regex is enforced in addition to the pass-
word strength restrictions currently enforced by the directory server.

❑ maxInvalidPasswordAttempts— By default, this is set to 5. In the case of the
ActiveDirectoryMembershipProvider, the name of this configuration attribute is a little
misleading. In reality, the provider always depends on the directory server for dealing with
bad password attempts. Because AD and ADAM already have extensive support for tracking
bad password attempts and locking out users as a result of too many bad password attempts,
this setting only affects bad password answers. If you have enabled question-and-answer-based
password reset, then the provider will mark the account as locked out when the number of bad
password answer attempts reaches the limit specified in this configuration attribute.

❑ passwordAttemptWindow— Defaults to 10 minutes. The value of this configuration
attribute is used by the provider in conjunction with the maxInvalidPasswordAttempts and
passwordAnswerAttemptLockoutDuration configuration attributes for tracking bad pass-
word answer attempts. Although the name of this attribute is a bit misleading, it has no effect
on what happens when bad passwords are used. The provider always relies on AD and ADAM
to handle tracking bad passwords as well as locking users out when too many bad password
attempts have occurred.

❑ passwordAnswerAttemptLockoutDuration— Because AD and ADAM have the
concept of automatically unlocking a user account after a configurable time period, the
ActiveDirectoryMembershipProvider supports the same capability when tracking bad
password answer attempts. By default, this attribute is set to 30 minutes — which is the same
default setting used by AD and ADAM for auto-unlocking user accounts that had too many

476

Chapter 12

15_596985 ch12.qxp 12/14/05 7:52 PM Page 476

bad password attempts. After 30 minutes have passed, the provider will consider a user account
unlocked in the case that the account was originally locked out because of too many bad pass-
word answer attempts.

Unique Aspects of Provider Functionality
In general, the ActiveDirectoryMembershipProvider’s implementation of MembershipProvider
properties and methods matches the functionality described in earlier chapters for the Membership
API and the SqlMembershipProvider. However, there are some differences in functionality that you
should keep in mind so that you are not surprised when you start working with the provider.

Each of the provider’s methods is listed here with a description of the directory specific functionality
that occurs in each method.

❑ CreateUser— You cannot create users with an explicit value for the providerUserKey
parameter. If you attempt to create a new user with a non-null providerUserKey, the provider
will throw an exception. If the creation was successful the provider returns an instance of
ActiveDirectoryMembershipUser— this custom class is discussed further in the next sec-
tion. If you create a user in AD, and the username is mapped to userPrincipalName (UPN),
the provider will perform a GC lookup to confirm that the UPN is not already in use elsewhere
in the forest. This means that if you use the provider in an extranet environment and you use
UPNs for the username, your web servers will require network connectivity to a global catalog
server to perform this check. Also if you use a UPN for the username the provider will automat-
ically generate a random 20-character value for the sAMAccountName attribute (this will look
something like $A31000-2B7QQ9PMDFOG). Even though the provider never uses this random
value, it must generate a unique value because AD enforces uniqueness of SAM account
names within a domain. On an ADAM server, the provider doesn’t do anything special for
sAMAccountName because this attribute doesn’t exist in the ADAM schema. For both AD and
ADAM, the provider also automatically sets the cn attribute (that is, the common name for the
user object) to the value passed in the username parameter. If requiresUniqueMail is set to
true in the provider’s configuration, then the provider also verifies that the email address is
unique by performing a subtree search for other users with the same email address. The subtree
search is rooted at the container specified by the connection string. Users are always created in
the directory container determined by the connection string. The actual process of creating the
user takes three to four steps: first, the user object is created, then the password is set on the
object (effectively IADsUser::SetPassword is called), and then the disabled status of the user
object is set. In the case of ADAM, the new user account is also added to the Readers security
group for the application partition. If any phase of user creation after the first step fails, the
provider will attempt to clean up after itself by deleting the partially created user object from
the directory. This last step is the reason the identity used by the provider needs the ability to
both create and delete user objects for the CreateUser method to work.

❑ ChangePassword— The provider relies on AD and ADAM to keep track of bad passwords that
may be passed to this method. If enablePasswordReset is set to true, the provider will also
disallow password changes if the user account was already locked out because of bad password
answers. If enablePasswordReset is set to true, the provider resets the password-answer-
tracking fields each time a good password is used with this method. The password change is
effectively being invoked with a call to IADsUser::ChangePassword.

477

ActiveDirectoryMembershipProvider

15_596985 ch12.qxp 12/14/05 7:52 PM Page 477

❑ ChangePasswordQuestionAndAnswer— As with ChangePassword and ValidateUser, the
provider lets AD and ADAM handle tracking of bad passwords. If enablePasswordReset
is set to true, the provider will also disallow changes to the question and answer if the user
account was already locked out because of bad password answers. If enablePasswordReset is
set to true, the provider resets the password-answer-tracking fields each time a good password
is used with this method.

❑ DeleteUser— No directory-specific functionality. Deleting a user is just a straightforward
removal of the user from the container determined by the connection string.

❑ FindUsersByEmail— If the provider configuration attribute enableSearchMethod is not set
to true, this method will throw a NotSupportedException. You can use the LDAP wildcard
character * to perform the equivalent of SQL LIKE queries with this method. See the earlier
“Provider Settings for Search” section for details on how the provider performs broad searches
against a directory. The MembershipUserCollection that is returned contains instances of the
ActiveDirectoryMembershipUser class.

❑ FindUsersByName— If the provider configuration attribute enableSearchMethods is not set
to true, this method will throw a NotSupportedException. You can use the LDAP wildcard
character (*) to perform the equivalent of SQL LIKE queries with this method. See the earlier
“Provider Settings for Search” for details on how the provider performs broad searches against
a directory. The MembershipUserCollection that is returned contains instances of the
ActiveDirectoryMembershipUser class.

❑ GeneratePassword— This method generates a random password using the same logic
used by the SqlMembershipProvider. Internally, this method just calls Membership
.GeneratePassword. The important thing to note here is that the provider’s ResetPassword
method relies on GeneratePassword. However, Membership.GeneratePassword has no
awareness of the password complexity policy set for the domain or ADAM server. As a result,
it is possible that the password generated by this method will not pass the directory’s
password complexity rules. If you encounter this situation, you will need to derive from
ActiveDirectoryMembershipProvider and override this method with custom logic that
generates conforming passwords.

❑ GetAllUsers— If the provider configuration attribute enableSearchMethods is not set
to true, this method will throw a NotSupportedException. See the earlier “Provider
Settings for Search” section for details on how the provider performs broad searches against
a directory. The MembershipUserCollection that is returned contains instances of the
ActiveDirectoryMembershipUser class.

❑ GetNumberOfUsersOnline— This method always throws a NotSupportedException because
the provider does not implement any logic for keeping track of the online state of a user.

❑ GetPassword— This method always throws a NotSupportedException. Even though theo-
retically you can configure your directory to use reversible encryption, this is not a recom-
mended security practice for AD and ADAM. The feature team decided not to support this
functionality because they did not want to encourage the usage of reversible encryption.

❑ GetUser— Both overloads look for the user object using a subtree search rooted at the
container determined from the connection string. In the case of the overload that accepts
the providerUserKey parameter, you can supply an instance of System.Security
.Principal.SecurityIdentifier to the provider, and it will search for a user with a
matching SID in its objectSID attribute. The user object that is returned is an instance of
ActiveDirectoryMembershipUser. Both overloads ignore the userIsOnline parameter
because the provider does not track the online status of users.

478

Chapter 12

15_596985 ch12.qxp 12/14/05 7:52 PM Page 478

❑ GetUserNameByEmail— Performs a subtree search rooted at the container determined by the
connection string for a user with a matching email address. If the requiresUniqueEmail con-
figuration attribute is set to true, and more than one match is found, the provider throws a
ProviderException. Otherwise, the provider returns the username from the first matching
user object that is found.

❑ ResetPassword— if enablePasswordReset is set to false, the provider just throws a
NotSupportedException. The provider disallows password resets for locked-out users,
regardless of whether the user was locked out because of too many bad password attempts or
too many bad password answer attempts. The provider will automatically keep track of bad
password answer attempts using the custom attributes that you configure for the provider. If a
valid password answer is supplied in the passwordAnswer parameter, the provider resets the
bad-password-answer-tracking attributes in the directory to their default values (the counter
and two date-time tracking fields are all set to zero). Assuming that a good password answer is
supplied and the user is not locked out, the provider effectively calls IADsUser::SetPassword
to reset the password to a randomly generated new password value. See the earlier notes on
GeneratePassword for caveats about the randomly generated password and the directory’s
password complexity policy.

❑ UnlockUser— Resets the user to an unlocked state. For bad password attempts, this means that
the user object’s lockoutTime attribute is reset to zero. The bad-password-answer-tracking
attributes (both the counter field and the two date-time fields) are also reset to zero. Note that
unlike SqlMembershipProvider, after a user is locked out in AD the account will automati-
cally become unlocked, assuming that the account lockout policy in AD and ADAM has been
configured to allow this. As noted earlier, if you are also using the question-and-answer-based
password reset, the provider also supports automatically unlocking a user account after a con-
figurable time assuming that the lockout occurred because of too many bad password answers.

❑ UpdateUser— You can pass either a MembershipUser instance or an
ActiveDirectoryMembershipUser instance to this method. If an
ActiveDirectoryMembershipUser instance is provided, the provider will check to see
which updatable properties have changed and will only write the subset of changed properties
back to the directory. The provider supports updating only the Email, Comment, and
IsApproved properties in the UpdateUser method.

❑ ValidateUser— Because the provider always operates within the scope of the container
(or container hierarchy) determined by the connection string, the provider makes an extra check
in this method. If a valid username-password pair is supplied, then the provider checks to see
if the user actually exists within the scope determined from the provider’s connection string.
If the user does not exist within the directory scope, the method still returns false. For exam-
ple, if user foo exists in OU=bar, but the provider is pointed at a peer container called OU=baz,
then even if the foo account supplies the correct password, the method still will return false
because the user account does not exist within OU=bar. The provider relies on the bad password
lockout mechanism provided by AD and ADAM for handling bad password attempts. If a cor-
rect password is supplied and enablePasswordReset is set to true, the provider will auto-
matically reset the bad-password-answer-tracking attributes to zero. Because ValidateUser is
probably the most heavily called method, you should keep in mind the performance overhead
of enabling password resets on this method. If you don’t use password resets, this method per-
forms one directory search to verify the user is located within the provider’s container scope,
and one LDAP bind to actually verify the credentials. If password resets are enabled, then an
additional LDAP call is always made to check the password-answer-tracking attributes. If these
attributes need to be reset, a second call is made to reset the password-answer-tracking
attributes.

479

ActiveDirectoryMembershipProvider

15_596985 ch12.qxp 12/14/05 7:52 PM Page 479

The provider also implements the public properties defined by the MembershipProvider base class as
well as a few extra directory-specific properties. The directory-specific properties and
MembershipProvider properties with special behavior are:

❑ ApplicationName— The getter just returns the value set in the provider’s configuration. Like
SqlMembershipProvider, if this value was not set in configuration it returns either the virtual
path of the current web application or the name of the .exe (sans the .exe extension) that is cur-
rently running. Again, this behavior was done just to make the property somewhat consistent with
the SQL provider’s behavior. Internally, the provider never uses the ApplicationName property,
and thus the trick of overriding the ApplicationName getter to handle dynamic portal-style
applications will not work. The setter for this property throws a NotSupportedException.

❑ CurrentConnectionProtection— This returns the type of connection protection
that the provider ultimately settled on. This property doesn’t return the value of the
connectionProtection attribute in configuration. Remember that when you set the
connectionProtection attribute to Secure in configuration, the provider still needs to
follow its internal heuristics to determine the precise type of connection security it will use.
If you set connectionProtection to None, this property returns the enumeration value
ActiveDirectoryConnectionProtection.None. If you set connectionProtection to
Secure, then this property will return either ActiveDirectoryConnectionProtection.Ssl
or ActiveDirectoryConnectionProtection.SignAndSeal, depending on which type of
connection security the provider settled on.

❑ EnablePasswordRetrieval— Because the provider never supports password retrieval this
property always returns false.

❑ EnableSearchMethods— Returns the value of the enableSearchMethods provider configu-
ration attribute. This allows you to write code that conditionally exposes search logic based on
the provider’s configuration.

❑ PasswordAttemptLockoutDuration— Returns the value of the
passwordAttemptLockoutDuration configuration attribute. If you enabled question-
and-answer-based password resets for the provider, then this property indicates the number
of minutes after which an account that was locked out because of too many bad password
answers will be considered to have automatically unlocked.

❑ PasswordFormat— Regardless of whether the underlying directory server has enabled reversible
encryption for passwords this property always returns the value MembershipPasswordFormat
.Hashed.

ActiveDirectoryMembershipUser
As part of the provider’s implementation, it uses a custom derivation of MembershipUser called
ActiveDirectoryMembershipUser. This custom user type serves the following purposes:

❑ It makes the SecurityIdentifier that is the ProviderUserKey property serializable.
Because the Membership feature expects MembershipUser instances to be serializable, and the
SecurityIdentifier class itself is not serializable, the ActiveDirectoryMembershipUser
has some special logic to translate the ProviderUserKey property into a serializable format.

480

Chapter 12

15_596985 ch12.qxp 12/14/05 7:52 PM Page 480

❑ The LastLoginDate and LastActivityDate properties are overridden to throw
NotSupportedExceptions from both their getters and setters. This ensures that developers
will recognize that user objects returned from AD or ADAM do not support these property
values.

❑ The class implements a constructor that matches the wide constructor overload on the
MembershipUser base class. The ActiveDirectoryMemberhipUser class makes a
validation check inside of its constructor to ensure that if a non-null value is supplied for
the providerUserKey parameter that it is of type System.Security.Principal
.SecurityIdentifier.

❑ The custom class overrides the Email, Comment, and IsApproved properties. Inside of the
setters the ActiveDirectoryMembershipUser class sets internal flags marking each property
value as dirty. This is done as a performance optimization to cut down on the need to update
properties on the directory server if their original values have not changed. The provider
checks the dirty flag for each property inside of its UpdateUser implementation. If the
ActiveDirectoryMembershipUser instance indicates that a property has changed, then
the provider adds it to the set of attributes that will be updated in the directory. Note that the
user class considers a call to a property setter as sufficient indication that the property has
changed. It does not attempt a value comparison to confirm that the value has really changed.
Additionally, the provider does not compare the current value of any of the user properties to
the corresponding values in the directory. The provider assumes that if the user class has
marked as property as dirty, its value should be written back to the directory.

IsApproved and IsLockedOut
Both the IsApproved property and the IsLockedOut properties are computed by
ActiveDirectoryMembershipProvider when a user object is retrieved from the directory. For
the IsApproved property, the provider will compute the value as false if the user object is marked as
disabled in the directory (for example, if you view the user with the AD Users and Computers snap-in,
the Account is Disabled check box is checked). If the user object is enabled in the directory, though, then
the IsApproved property is computed as true. In other words, there is a one-to-one correspondence
between the value of the IsApproved property and the enabled status of the user in AD and ADAM.

However, this is not the case for the IsLockedOut property. If the user was locked because of too many
bad password attempts, then both the IsLockedOut property and the locked out status stored in the
directory will match. However, if you have enabled question-and-answer-based password resets, it
is possible that IsLockedOut will return true because the user had too many bad password answer
attempts. In this case when you look at the user object in the directory (that is, you look at the msDS-
User-Account-Control-Computed attribute in a Windows Server 2003 AD or an ADAM directory),
the account won’t show as being locked out.

This also means that a user could attempt to log in to your website, and have the login fail — yet if that
same user sits down at her desk, she will be able to successfully log on to her machine. If you have man-
agement tools or scripts that query for locked out users, you will need to update them to also look at
the failed password answer lockout time attribute that you have to add to the directory’s user class
when enabling password resets. If the difference between the current UTC time and the lockout
time stored in the directory is less than or equal to the lockout duration specified in the provider’s
passwordAnswerAttemptLockoutDuration configuration attribute, then the user should be consid-
ered in a locked out state.

481

ActiveDirectoryMembershipProvider

15_596985 ch12.qxp 12/14/05 7:52 PM Page 481

Using the ProviderUserKey Property
The ActiveDirectoryMembershipUser class conveniently returns the user’s SID in the
ProviderUserKey property. If you have other code that manipulates users via their SID, you
can use this property — both by reading it for use elsewhere as well as for looking up an
ActiveDirectoryMembershipUser instance by SID.

The following code outputs the string representation of a user’s SID:

using System.Security.Principal;
...
//code to retrieve a MembershipUser in the mu variable
...
SecurityIdentifier sid = (SecurityIdentifier)mu.ProviderUserKey;
Response.Write(“The user’s SID is: “ + sid.ToString());

The output from this looks like:

The user’s SID is: S-1--5-21--2424360418--2194369526--2737752971--1115

This format is the Security Descriptor Definition Language (SDDL) representation of the objectSID
attribute on a user object in the directory. You can use the SDDL representation to create your own
instance of a SecurityIdentifier.

//Load a user instance using the SID
string sddlSID = sid.ToString(); //gets the SDDL form
SecurityIdentifier pkey = new SecurityIdentifier(sddlSID);

ActiveDirectoryMembershipUser admu =
(ActiveDirectoryMembershipUser)Membership.Provider.GetUser(pkey, false);

Response.Write(“The username is: “ + admu.UserName + “
”);
Response.Write(“The user’s SID is: “ +

((SecurityIdentifier)admu.ProviderUserKey).ToString());

This code takes the SecurityIdentifier instance that was returned from the previous sample code and
converts it into the string SDDL syntax. It then constructs a new instance of a SecurityIdentifier pass-
ing the SDDL representation to the constructor. The resultant SecurityIdentifier is then passed to
ActiveDirectoryMembershipProvider as the key for looking up a user in the directory. When you run
this code you see that with the SDDL version of the SID, you can successfully get back to the original user
object:

The username is: testusernestedinpopa@corsair.com
The user’s SID is: S-1-5-21-2424360418-2194369526-2737752971-1115

Working with Active Directory
Out of the box, there is a reasonably high likelihood that you can get the provider to start working with
an AD domain. Because the first hurdle you will face is the question of connectivity to the directory, get-
ting the correct connection string is important. Luckily, if you know what your options are it is also

482

Chapter 12

15_596985 ch12.qxp 12/14/05 7:52 PM Page 482

pretty easy to setup. For starters, you can configure a sample application with the provider that
attempts to retrieve a user object from the Users container that is found on all domains. Because
ActiveDirectoryMembershipProvider is not configured in either machine.config or the root
web.config files, you will need to explicitly configure it in web.config.

<membership defaultProvider=”appprovider”>
<providers>
<clear/>
<add name=”appprovider”

type=”System.Web.Security.ActiveDirectoryMembershipProvider, ...”
connectionStringName=”DirectoryConnection” />

</providers>
</membership>

Because none of the other provider-specific configuration options are used, the provider will connect to
the directory using the underlying process credentials. This is an important point because it means that,
by default, when running on IIS6 the provider will connect to your directory as NETWORK SERVICE
(that is, the machine account from the perspective of the directory server). For now, let’s use a connec-
tion string that looks like:

<connectionStrings>
<add name=”DirectoryConnection” connectionString=”LDAP://corsdc2.corsair.com”/>
</connectionStrings>

This style of connection string tells the provider to explicitly connect to a specific directory server. Note,
though, that there is no other information in the connection string, which means that the provider will
automatically attempt to bind to the Users container. To see whether this configuration works, a simple
test page writes out some of the properties of a user that already exists in the directory:

MembershipUser mu = Membership.GetUser(“demouser@corsair.com”);
Response.Write(“Email address is: “ + mu.Email + “
”);
Response.Write(“Creation date is: “ + mu.CreationDate.ToString() + “
”);

When I ran this sample app against a directory server, the following information was returned:

Email address is: someemailaddress@corsair.com
Creation date is: 3/6/2005 1:12:57 PM

This isn’t exactly earth-shattering information, but if you think about it, with only some standard config-
uration entries and some boilerplate Membership code, you are now accessing a user object in a direc-
tory. No need for kung-fu coding with classes in the System.DirectoryServices namespace let alone
mucking around with the older ADSI programming APIs.

You can make things more interesting by first trying different variations of the connection string. One
variation simply points the application at the domain, as opposed to a domain controller.

<add name=”DirectoryConnection” connectionString=”LDAP://corsair.com”/>

Notice how the connection string no longer points at a specific server. Now the provider is simply lever-
aging the default connectivity behavior supported by AD where you can just supply the DNS name
associated with the domain and the underlying network stack performs the magic of looking up special
directory service entries in DNS to route the request to an actual domain controller.

483

ActiveDirectoryMembershipProvider

15_596985 ch12.qxp 12/14/05 7:52 PM Page 483

Although this type of connection string is interesting to know about, and it can be useful in a develop-
ment environment just to get things up and running, in an extranet environment you need to be careful
with this type of connection string. Because you aren’t guaranteed a connection to any specific directory
controller, you can end up in cases where an operation against a user object occurs against one domain
controller, and then at a later point in time the provider connects to a different controller that has not yet
received the replicated changes. This behavior is not a bad thing; you just need to be aware of whether
your application can tolerate this. The nice thing about a serverless connection string is that your appli-
cation isn’t tied to the uptime of any specific directory server. Instead, the provider will connect to what-
ever is available, and if a DC goes down then the provider will simply be routed to a different server.

Another connection string variation (and probably the most common one you will use) includes the con-
tainer name.

<add name=”DirectoryConnection”
connectionString=”LDAP://corsdc2.corsair.com/CN=Users,DC=corsair,DC=com”/>

With this connection string, the provider will bind to the container specified after the server name. In this
case, the connection string is binding to the Users container. If you have ever used ADSI or System
.DirectoryServices, this should be a familiar syntax to you for binding to the Users container.

If you use the provider in an extranet environment where different user populations are segmented into
different organizational units (that is, OUs), then you would use a connection string like the following:

<add name=”DirectoryConnection”
connectionString=”LDAP://corsdc2.corsair.com/OU=UserPopulation_A,DC=corsair,DC=com”
/>

Now instead of referencing a built in container, the connection string references an OU that was created
in the domain. In this case, the OU is a peer of the Users container. However, you can just as easily bind
to OUs that are nested any number of levels deep.

<add name=”DirectoryConnection”
connectionString=”LDAP://corsdc2.corsair.com/OU=SomeNestedOU,OU=UserPopulation_A,DC
=corsair,DC=com” />

For nested containers, you just build up the second part of the connection string with the walk-up path
from the nested OU to the top of the container hierarchy.

UPNs and SAM Account Names
In the previous examples, the provider was implicitly binding to the directory and looking for user
objects based on the user principal name. In my test directory, I always created a UPN for each new user,
so the provider can find user objects and bind to them. For older directory infrastructures, though, user
principal names may not be in wide use, or they may not even be used at all. The provider supports
binding to user objects using the sAMAccountName attribute instead. However, you need to explicitly
configure this behavior. The configuration for the provider using a SAM account name looks like:

<add name=”appprovider”
type=”System.Web.Security.ActiveDirectoryMembershipProvider, ...”
attributeMapUsername=”sAMAccountName”
connectionStringName=”DirectoryConnection” />

484

Chapter 12

15_596985 ch12.qxp 12/14/05 7:52 PM Page 484

With this configuration, the provider expects that any usernames passed to its methods will be just the
username portion of the NT4-style DOMAIN\USERNAME format. For example, the following code retrieves
the user object for CORSAIR\demouser:

MembershipUser mu = Membership.GetUser(“demouser”);

Notice how the username parameter doesn’t include the domain identifier. This is important because if
you attempt to pass full NT4-style usernames to the provider, the calls will never return anything (that
is, if you pass DOMAIN\USERNAME the provider is literally looking for a user object whose SAM account
name is DOMAIN\USERNAME). Because the provider already knows the domain within which it is operat-
ing, it does not need the domain portion of the username. Remember that the provider is effectively
acting like a database provider — except that the “database” is really an LDAP server. When the
provider looks for objects using a SAM account name, it is performing an LDAP search where the
sAMAccountName attribute on the directory’s user object equals a specific value. As a result, you only
need to supply the username.

If you happen to set up ActiveDirectoryMembershipProvider, and you are unable to retrieve any
existing users, keep in mind the attributeMapUsername attribute. It is likely that if the connection
string works and you are getting back nulls from methods like GetUser that your directory users have
been configured only with SAM account names — and not UPNs. Switching attributeMapUsername
over to sAMAccountName is probably the most common configuration step that developers need to make
to get the provider working with their directory.

However, if you have been creating user accounts in the directory using the
ActiveDirectoryMembershipProvider with its default setting of UPN-style usernames, you may run
into a different problem. When you create users in the Active Directory Users and Computers MMC, the UI
conveniently auto-selects a domain suffix for your UPN. In fact, the UI remembers previous UPN suffixes
that have been used with the tool, and it displays a drop-down list where you can choose any one of them.
However, if you create users directly with the provider, you may find yourself creating users with just a
username and no suffix (for example, “demouser98” as opposed to “demouser98@corsair.com”). This kind
of a UPN will sort of work with Active Directory, but you will find that if you also write code with
System.DirectoryServices there are cases where a UPN without an @ will fail. As a result, you should
always ensure that UPNs have an @ sign and some kind of domain suffix in them. For Internet-facing sites,
it makes sense to create user accounts with some kind of domain suffix — with the user’s email address
being the most likely candidate.

This raises the question of whether you should eventually switch your user population over to UPNs.
Although as far back as Windows 2000, the guidance was to create users with UPNs, the reality is that
many folks still rely on the older NT4-style usernames, especially if their current domain infrastructure
was the result of an NT4 domain upgrade. I certainly wouldn’t recommend reworking your user popu-
lation to use UPNs just because ActiveDirectoryMembershipProvider defaults to UPNs. (That’s
why the username mapping is configurable!) However, it does seem to be a recurring theme that UPNs
are architecturally preferable. For e-commerce sites or extranet sites that rely on Active Directory, UPNs
do make more sense because, typically, you don’t want external users to be aware of AD domain names.
Technically, external sites that do this are leaking a little bit of their security architecture to the public by
requiring a domain name. Also UPNs frequently mirror a person’s email address, so they can be a more
natural username for your website users to grasp.

485

ActiveDirectoryMembershipProvider

15_596985 ch12.qxp 12/14/05 7:52 PM Page 485

Container Nesting
You already saw a simple example where nested OUs were used in a connection string. However, con-
tainer nesting raises some interesting issues when working with the provider. If you have different sets
of users in different OUs, and you want some provider operations to span all of these sets of users, how
do you go about configuring the provider? Remember that data modification operations can occur only
in the container specified by the connection string, whereas search-oriented operations are rooted at the
container specified by the connection string.

Using the sample directory structure, so far there are users are laid out as follows:

Cn=Users
demouser

OU=UserPopulation_A
testuserpopA
OU=SomeNestedOU

Testusernestedinpopa

If you use the following connection string:

<add name=”DirectoryConnection” connectionString=”LDAP://corsdc2.corsair.com”/>

then all search operations are rooted at what is called the default naming context for the domain. What
this means is that all containers and OUs are considered children of the default naming context, so this
type of connection string allows searches to be performed across all available containers. Because the
provider performs its search operations using subtree searches, the following code searches across all
containers, as well as down through the container hierarchy to its lowest nested level:

MembershipUserCollection muc = Membership.GetAllUsers();
foreach (MembershipUser mu in muc)

Response.Write(“Username: “ + mu.UserName + “
”);

The result from running this code is:

Username: appimpersonation@corsair.com
Username: demoadmin@corsair.com
Username: demouser@corsair.com
Username: fradmin@corsair.com
Username: testusernestedinpopa@corsair.com
Username: testuserpopa@corsair.com
Username: uncidentity@corsair.com

The bolded identities are the three accounts used earlier in the chapter. The demouser account as well as
all of the other unbolded user accounts are located in the CN=Users container (some of the accounts
should be a bit familiar from back in Chapters 1 and 2!). The other two testuser* accounts are from
OU=UserPopulation_A and OU=SomeNestedOU.

486

Chapter 12

15_596985 ch12.qxp 12/14/05 7:52 PM Page 486

Similarly, if you perform get operations such as:

MembershipUser mu = Membership.GetUser(“testusernestedinpopa@corsair.com”);

the code will return a valid user object because even though the user account is nested two OUs deep,
the Get* methods on the provider start their search at the default naming context (because the connec-
tion string from earlier doesn’t specify a container) and then work their way down. If you explicitly
specify a container hierarchy in your connection string, then get and search methods will be rooted at
the container you specify and then searches will work their way down through any remaining container
hierarchy.

However, if you attempt to create a new user or delete an existing user, then these operations only
occur in the container specified on the connection string. In the case of the sample connection string that
doesn’t explicitly specify a container, this means that user creation and deletion only occur in the
CN=Users container. There are other provider methods that involve modifying information for a user,
including UpdateUser, ChangePassword, and so on. Although these methods are technically data-modi-
fication operations, all of these methods first bind to a specific user in the directory (a get operation) prior
to making a change. As a result, updates to existing users also have the behavior of being rooted at a spe-
cific point in the directory, and then searching for the user object down through the nested containers.

With this behavior, it is possible to come up with some interesting provider configurations. For example,
if your site supports multiple sets of users, you could allocate each set of users to a different OU. You
could then configure a separate provider instance for each different OU (and hence each provider
instance would have its own unique connection string). These different providers could be used exclu-
sively for create and delete operations. For the rest of your site, you could then configure one more
provider pointed at the default naming context or at a root OU, depending on how you structured your
containers. This last provider would be used for things like calling ValidateUser or for fetching a
MembershipUser object to display information on a page. In this way, you would get the flexibility to
create and delete users in different OUs, while still having the convenience of searching, retrieving, and
modifying users across the OUs with a single provider.

Securing Containers
So far, the sample code has been running with the credentials of the IIS6 worker process. The reason that
the samples have worked so far is that the NETWORK SERVICE account is implicitly considered part of
the Authenticated Users group. If you look at the default security configuration in the directory, you will
see that this group has rights to list objects in a container as well as having some read permissions on
individual object. The concept of read permissions on objects though differs depending on the object in
question.

In the case of the provider, the object type you care about are user objects. The default permissions that any
authenticated user in a domain has on any other user object in the directory are read general information,
read personal information, read web information, and read public information. General information, per-
sonal information, web information, and public information are just property sets that conveniently group
together dozens of different directory attributes so that permissions can be granted to them without having
to spam dozens or hundreds of ACLs on user objects. These default permissions are why the sample pages
running as NETWORK SERVICE were able to find the user object in the first place and then read the vari-
ous directory attributes in order to construct an instance of ActiveDirectoryMembershipUser.

487

ActiveDirectoryMembershipProvider

15_596985 ch12.qxp 12/14/05 7:52 PM Page 487

If you attempt to use the sample configuration shown earlier to update an existing user object or create a
new user object, you will get a System.UnauthorizedAccessException. The exception bubbles up
from the underlying System.DirectoryServices API and is triggered because, for obvious reasons,
authenticated domain users don’t have the right to arbitrarily make data modifications to other objects
or containers in the directory. This behavior is roughly equivalent to the exceptions you get when you
haven’t granted login rights to SQL Server or execute permissions to the Membership stored procedures
and you attempt to use the SqlMembershipProvider.

One obvious solution would be to just add rights in the directory granting NETWORK SERVICE the
required rights. However, in general this is not the correct approach. Each machine in a domain has a
corresponding machine account in the directory. Because the account is comparatively well known,
granting broad rights to it is not something you should do. Additionally, if you are running in a web
farm, each individual server has a different machine account in the directory that locally is known as
NETWORK SERVICE. So if you granted broad rights to the machine account, you would have to repeat
this task for each and every server running in your web farm.

A better approach would be to at least assign your application’s worker process a different domain iden-
tity and then grant this domain identity the necessary rights in the directory depending on what your
code needs to do with the provider. With this approach, if you run multiple machines in a web farm,
each web server can be configured with the same domain account for the worker process. For a lot of
application scenarios, this is actually a reasonable approach. However, if you need to host multiple
applications in a single worker process, with each application having a different set of privileges in the
directory, or if you want to configure multiple providers in a single application with each provider hav-
ing a different set of privileges, then you will need to use explicit provider credentials instead.

The ActiveDirectoryMembershipProvider exposes the connectionUsername and
connectionPassword configuration attributes. With these attributes, you can explicitly set the
domain credentials that the provider will use when connecting to the directory. Even though the default
provider behavior is to revert to either the process credentials, or application impersonation credentials
if application impersonation is being used, when explicit credentials are configured the provider always
uses them in lieu of any other security identity.

The advantage of using explicit credentials in combination with application specific OUs (as opposed to
just using the Users container) is that you have the ability to specify granular permissions for different sets
of application users. With the provider configuration attributes you then have the flexibility to fine-tune
individual providers to allow only certain operations through specific providers. Let’s see how this works
by creating a new admin account to work with the UserPopulation_A container: userpopaadmin. You
want this account to have the ability to create and delete user objects, as well as the ability to reset pass-
words and unlock users.

Remember that for a provider instance to be able to create users, it also needs the ability to delete users
(in the event that the multistep user creation process failed) and to set passwords (because part of the
process of creating the user is setting password). Note that the ability to set passwords for new accounts
as well as reset existing passwords is shown as the Reset Password inside of the security dialogs boxes
shown in the MMC.

488

Chapter 12

15_596985 ch12.qxp 12/14/05 7:52 PM Page 488

The Active Directory Users and Computers MMC has a wizard that steps you through delegating control
over containers like the OUs used here. You can open up the MMC to display all of the containers that are
currently available in a directory. In the test directory, I am running, right-clicking the UserPopulate_
A container and selecting Delegate Control opens the first step of the wizard as shown in Figure 12-1.

In the next wizard step you can select one or more user/group accounts that will all be granted a specific
set of rights over the OU. In Figure 12-2, you can see that I have selected the userpopaadmin account.

Figure 12-1

489

ActiveDirectoryMembershipProvider

15_596985 ch12.qxp 12/14/05 7:52 PM Page 489

Figure 12-2

On the next step of the wizard, you can select multiple rights to grant to the accounts. Because you want
the admin account to have the ability to create/delete users, reset passwords and unlock users, the first
three sets of tasks are selected in the wizard. Figure 12-3 shows these selections.

490

Chapter 12

15_596985 ch12.qxp 12/14/05 7:52 PM Page 490

Figure 12-3

The final step of the wizard (not shown) just asks for confirmation of the selections. When you click the
Finish button on the last wizard step, the security changes take effect. You can see the new set of security
rights if you right-click the UserPopulation_A OU and then drill into the security settings for user-
popaadmin. Figure 12-4 shows the two sets of rights highlighted in the Advanced Security Settings
dialog box.

491

ActiveDirectoryMembershipProvider

15_596985 ch12.qxp 12/14/05 7:52 PM Page 491

Figure 12-4

Notice that the account now has Full Control on any user objects in the container as well as the Create/
Delete User Objects privilege on the container. The account needs to have two different sets of rights
because the intent is for the userpopaadmin account to have a set of specific user object rights within the
container as well as the ability to add and remove user objects in the container. Notice that the account
doesn’t have Full Control on the container itself. This allows other object types that are managed by other
user accounts to be stored in the container.

If you highlight the Full Control row and click the Edit button, you will see the set of permissions that
userpopaadmin now has on any user object located in the container. Specifically, it has Write All
Properties permission as well as the Reset Password and Change Password permissions. These permis-
sions will allow userpopaadmin the ability to set all of the properties on a newly created user object
(including the password property) as well as the ability to reset the password when the ResetPassword
method is called on the provider. These permissions also allow the account to be used when calling the
Update method because this method updates a number of different properties on a user object in the
directory.

With the security configuration for the admin user complete, you can make use of it to connect to the
directory with a connection string which points directly at the OU:

492

Chapter 12

15_596985 ch12.qxp 12/14/05 7:52 PM Page 492

<add name=”DirectoryConnection” connectionString=”LDAP://corsdc2.corsair.com/
OU=UserPopulation_A,DC=corsair,DC=com”/>

In this example, you configure two providers: one for admin operations and one for get/search operations:

<membership defaultProvider=”readonlyprovider”>
<providers>
<clear/>
<add name=”adminprovider”

type=”System.Web.Security.ActiveDirectoryMembershipProvider, ...”
enableSearchMethods=”true”
connectionUsername=”userpopaadmin@corsair.com”
connectionPassword=”pass!word1”
connectionStringName=”DirectoryConnection” />

<add name=”readonlyprovider”
type=”System.Web.Security.ActiveDirectoryMembershipProvider, ...”
enableSearchMethods=”true”
connectionStringName=”DirectoryConnection” />

</providers>
</membership>

The provider named adminprovider uses the explicit credentials with elevated privileges. The second
provider instance named readonlyprovider depends on the default rights that the Authenticated
Users group has to read various attributes on a user object. Note that in a production environment you
should use protected configuration (discussed in Chapter 4) so that the explicit credentials are not stored
as cleartext. You can now create users with the admin provider:

MembershipCreateStatus status;
MembershipProvider mp = Membership.Providers[“adminprovider”];

mp.CreateUser(“demouser103@nowhere.org”, “pass!word1”, “demouser103@nowhere.org”,
null, null, true,null, out status);

Response.Write(status.ToString());

Read operations use the default provider running as NETWORK SERVICE, and thus the default provider
can only search for users and read attributes on the user object. Note that you can take security lock down a
step further by removing the Authenticated Users ACL from the default ACL defined for the user class in
the directory’s schema. Doing so gets into the nitty-gritty of managing Active Directory default ACLs,
which is a bit far afield from the topic of how to use ActiveDirectoryMembershipProvider.

However, if you have changed the default ACL for the user object (you can see the default ACL using the
Active Directory Schema editor, look at the Default Security tab on the Properties dialog box of the user
class) by removing the Authenticated Users group, you can create a read-only user account using the
same approach just shown for the administrative user. Just create a new read-only user account and
with the Delegation of Control Wizard grant read permissions on all user objects in the container to the
account. Because the wizard will end up granting read permissions on all attributes of user objects, you
can right-click the container and use the Security tab to fine-tune the specific sets of user attributes that
you really want the read-only account to have access to. The default set of permissions granted to the
Authenticated Users account as described earlier is a good starting point.

493

ActiveDirectoryMembershipProvider

15_596985 ch12.qxp 12/14/05 7:52 PM Page 493

Configuring Self-Service Password Reset
Self-service password resets are the one piece of provider functionality that is not “auto-magically” sup-
ported without a moderate amount of intervention on your part. Unlike SqlMembershipProvider,
where this functionality is just a matter of setting the enablePasswordReset configuration attribute to
true, ActiveDirectoryMembershipProvider requires schema changes prior to turning on the func-
tionality. Furthermore, after the schema changes are made you need to configure the ACLs appropriately
in the directory so that a provider has rights to read and update these properties.

You could use preexisting directory attributes to store password question-and-answer-related informa-
tion. Although this saves you from having to modify the directory schema, from a long-term perspective
it makes more sense to extend the schema with attributes to support the provider, rather than attempt to
reuse existing directory attributes. This will prevent problems down the road if you overloaded a direc-
tory attribute for use with the provider, but then find out you actually need to “take back” the attribute
for its original purposes.

The attributes that you need to add are those for the following pieces of information:

❑ Password question — A Unicode string attribute to store the user’s password question.

❑ Password answer — A Unicode string attribute to store the user’s password answer.

❑ Failed password answer count — An attribute of type Integer that is the counter for keeping
track of the number of failed password answer attempts.

❑ Failed password answer time — An attribute of type Large Integer/Interval that will store
the beginning of the time tracking window for failed password answer attempts.

❑ Failed password answer lockout time — An attribute of type Large Integer/Interval
that stores the time the account was locked out because of too many failed password answer
attempts.

You can use the Active Directory Schema snap-in to create five new attributes for storing these values.
Before you do so, note that you have to have rights to edit the schema for your domain. This right is nor-
mally reserved for members of the Schema Admins group because of the sensitive nature of schema
edits. Schema edits are a one-way affair; after you add an attribute, you can never actually delete it.
Instead, you can only deactivate attributes. For this reason, enabling self-service password reset for the
provider makes sense only for Internet facing websites that rely on Active Directory. Making irreversible
schema edits to an extranet directory is less of an issue than making schema edits to your core corporate
directories.

Whenever you create a new directory attribute you need to have a name for the attribute as well as an
X.500 OID. If you are an old database developer like me, the need for the OID is sort of weird, but it is
a necessary part of creating any new classes or attributes in Active Directory. If you happen to have the
Windows 2000 Resource Kit lying around it has a handy command-line tool called oidgen.exe that
will automatically generate a base OID for new attributes. I created five new attributes in my directory
as follows:

494

Chapter 12

15_596985 ch12.qxp 12/14/05 7:52 PM Page 494

Attribute Name (Both LDAP and Common) OID

ampPasswordQuestion 1.2.840.113556.1.4.7000.233.28688.28684.8
.311583.60825.551176.463623.1

ampPasswordAnswer 1.2.840.113556.1.4.7000.233.28688.28684.8
.311583.60825.551176.463623.2

ampFailedPasswordAnswerCount 1.2.840.113556.1.4.7000.233.28688.28684.8
.311583.60825.551176.463623.3

ampFailedPasswordAnswerTime 1.2.840.113556.1.4.7000.233.28688.28684.8
.311583.60825.551176.463623.4

ampFailedPasswordAnswerLockoutTime 1.2.840.113556.1.4.7000.233.28688.28684.8
.311583.60825.551176.463623.5

You can see what configuring the new password answer attribute looks like in Figure 12-5:

Figure 12-5

495

ActiveDirectoryMembershipProvider

15_596985 ch12.qxp 12/14/05 7:52 PM Page 495

The configuration for the password question attribute looks exactly the same. Figure 12-6 shows how the
password answer count attribute is configured as an Integer type.

Figure 12-6

The configuration of the failed password answer time attribute is shown in Figure 12-7.

496

Chapter 12

15_596985 ch12.qxp 12/14/05 7:52 PM Page 496

Figure 12-7

Configuring the failed password answer lockout time works the same way, just with a different attribute
name and OID.

With the attribute configuration completed, you can add these attributes to the user class in the directory.
You just right-click the user class in the MMC, select Properties and in the Attributes tab, add the five new
attributes as optional attributes. After you have done this, the Attributes tab will look something like
Figure 12-8.

497

ActiveDirectoryMembershipProvider

15_596985 ch12.qxp 12/14/05 7:52 PM Page 497

Figure 12-8

Now that the user object has been modified to include extra attributes for storing password-reset-related
information, you can configure a provider to make use of the new attributes. Using the administrative
provider shown earlier, you can modify its configuration to allow for question-and-answer-based
password resets.

<add name=”adminprovider”
type=”System.Web.Security.ActiveDirectoryMembershipProvider, ...”
enableSearchMethods=”true”
connectionUsername=”userpopaadmin@corsair.com”
connectionPassword=”pass!word1”
attributeMapPasswordQuestion=”ampPasswordQuestion”
attributeMapPasswordAnswer=”ampPasswordAnswer”
attributeMapFailedPasswordAnswerCount=”ampFailedPasswordAnswerCount”
attributeMapFailedPasswordAnswerTime=”ampFailedPasswordAnswerTime”
attributeMapFailedPasswordAnswerLockoutTime=”ampFailedPasswordAnswerLockoutTime”
enablePasswordReset=”true”
requiresQuestionAndAnswer=”true”
connectionStringName=”DirectoryConnection” />

498

Chapter 12

15_596985 ch12.qxp 12/14/05 7:52 PM Page 498

Because the provider now has to store a password answer, and you don’t want the plaintext password
answer to be easily viewable by arbitrary accounts (such as Authenticated Users), the provider always
encrypts the password answer. Unless you derive from the provider and add in your own custom encryption
routines, this means that the provider encrypts the password answer using the encryption key specified in
machine.config. Just like SqlMembershipProvider though, ActiveDirectoryMembershipProvider
requires you to explicitly set a decryption key. This requirement exists to prevent the problem that would
occur if different machines have completely different auto-generated encryption keys. If this were allowed
the password answer created on one web server would be useless on another server.

The hashing of the password answer is not supported, because there is no mechanism for having Active
Directory hash anything other than a user’s password. Rather than confuse things by adding a
passwordFormat attribute on the provider that would be configurable for password answers and have
no effect on the actual password, the feature team decided to support encryption of password answers
only. In this way, there is no ambiguity around the protections for user passwords (AD hashes them) as
opposed to the protections for password answers (they are always encrypted).

As a result of this requirement, the sample application now explicitly defines a decryption key as follows:

<machineKey
decryptionKey=”A225194E99BCCB0F6B92BC9D82F12C2907BD07CF069BC8B4”
decryption=”AES” />

With the changes to the admin provider and the definition of a fixed decryption key, the sample application
can now create users with question and answers. Because the Login controls work seamlessly with arbi-
trary membership providers, I just dropped a CreateUserWizard onto a form, configured it to use the
admin provider, and started creating test accounts with questions and answers.

After creating a user with CreateUserWizard, you can dump the contents of the user object with a
low-level tool like ldp.exe or the ADSI Edit MMC (you can get these tools if you install the server
support tools included on the Windows Server 2003 CD). Running ldp.exe and looking at the contents
of the newly created user, you can see the following:

1> cn: demouser98@corsair.com;
1> userPrincipalName: demouser98@corsair.com;
1> distinguishedName: CN=
demouser98@corsair.com,OU=UserPopulation_A,DC=corsair,DC=com;
...snip...
1> mail: demouser98@corsair.com;
1> ampPasswordQuestion: question;
1> ampPasswordAnswer: qrwD6QSuoUdaznjvBAe3JPfQmhaJtQVpFgEFARppG3c=;

As you would expect after all of the configuration work, the password question was successfully stored,
as was the encrypted version of the password answer.

If you keep using the adminprovider provider, you can create a test page where you attempt to reset
the password using the PasswordRecovery control. If you intentionally supply the wrong answer a few
times, you will see the tracking information stored in the other attributes of the user object.

1> ampFailedPasswordAnswerCount: 3;
1> ampFailedPasswordAnswerTime: 127692324484470447;

499

ActiveDirectoryMembershipProvider

15_596985 ch12.qxp 12/14/05 7:52 PM Page 499

These attributes are showing that so far three failed password answer attempts have been made. The
weird-looking password answer time is just the integer representation of the UTC date-time that is the
start of the bad password answer tracking window. Because the default number of failed password
answer attempts that can be made is five (the same setting as SqlMembershipProvider), after the fifth
bad password attempt occurs, the tracking information for the user looks like this:

1> ampPasswordQuestion: question;
1> ampPasswordAnswer: qrwD6QSuoUdaznjvBAe3JPfQmhaJtQVpFgEFARppG3c=;
1> ampFailedPasswordAnswerCount: 5;
1> ampFailedPasswordAnswerTime: 127692325545659847;
1> ampFailedPasswordAnswerLockoutTime: 127692325545659847;

Any attempt at this point to log in with the user’s credentials, change his password or reset his pass-
word, will immediately fail because the provider sees that user is now locked out. As with the failed
password answer time, the lockout time is stored as an integer representing the UTC time when the
lockout occurred. Remember that one difference between this provider and the SQL provider is that if
you wait 30 minutes (the default lockout timeout duration if one is configured for the domain), then the
user account auto-unlocks despite the previous failed password answer attempts.

Of course, if you are impatient, you can use the Unlock method on the provider to forcibly unlock the user:

MembershipProvider mp = Membership.Providers[“adminprovider”];
mp.UnlockUser(“demouser98@corsair.com”);

The result of unlocking the user with the admin provider looks like this:

1> ampPasswordQuestion: question;
1> ampPasswordAnswer: qrwD6QSuoUdaznjvBAe3JPfQmhaJtQVpFgEFARppG3c=;
1> ampFailedPasswordAnswerCount: 0;
1> ampFailedPasswordAnswerTime: 0;
1> ampFailedPasswordAnswerLockoutTime: 0;

After an unlocking operation, the provider resets the count to zero and also stores a zero value in the
two time-tracking fields. At this point, if you choose to reset the password, the new password will be
sent to you. As a side note, if you want to get the PasswordRecoveryControl to work on a web server
that has the default SMTP service installed, you will need a configuration entry like the following:

<system.net>
<mailSettings>
<smtp deliveryMethod=”PickupDirectoryFromIis”>
<network host=”localhost” port=”25” defaultCredentials=”true”/>

</smtp>
</mailSettings>

</system.net>

Without this entry, the PasswordRecoveryControl will fail when it attempts to email the password. In
the case of my sample application, because I reset the email address of my test user account to match the
domain address of my web server (that is, the demouser98@corsair.com account now has an email
address of demouser98@demotest.corsair.com and my local SMTP server is running on a machine
with the DNS address of demotest.corsair.com), the PasswordRecoveryControl sent the password
reset email to my local drop directory D:\inetpub\mailroot\drop. The text of the email looks like:

500

Chapter 12

15_596985 ch12.qxp 12/14/05 7:52 PM Page 500

Please return to the site and log in using the following information.
User Name: demouser98@corsair.com
Password: l}5x)$}k!KHp]y

This entire process shows the power of the provider model used in conjunction with
ActiveDirectoryMembershipProvider and the various Login controls. Although the initial schema
edits in the directory are a bit of a hassle, after those are completed you can see that with some edits to
web.config to configure the Membership provider and the mail server, the self-service password reset
process is pretty much automated. Attempting to hand-code a similar solution yourself, especially using
Active Directory (or ADAM for that matter) as the backing store, would be substantially more complex
than the process you just walked through.

Note that I intentionally used the admin provider because that provider was running with security
credentials in the directory necessary to allow it to reset the password of any user in the UserPopulation_A
OU. Clearly, running with the other named provider (readonlyprovider) won’t work for resetting
passwords because the Authenticated Users group doesn’t have the privileges necessary to reset arbi-
trary user passwords.

Within the ActiveDirectoryMembershipProvider methods like ValidateUser, ChangePassword,
ChangePasswordQuestionAndAnswer and GetUser will be able to read the new password answer
tracking fields to determine whether the user is considered locked out. This holds true for the special
administrative account that created earlier, as well the NETWORK SERVICE account that is being used
by the default provider. This is behavior is OK because you want the failed-password-answer-tracking
information to be readable by these methods.

There is a subtle requirement though for the ValidateUser and ChangePassword methods. Both of
these methods will reset the password-answer-tracking information if the following conditions are met:

❑ The user supplies the correct password.

❑ The password-answer-tracking information contains nondefault values due to previously
logged bad password answer attempts.

If both of these conditions are met, then the provider will reset the password answer tracking counters
inside of ValidateUser and ChangePassword. For this reason, if you setup a nonadministrative
account to handle user logins, make sure to grant this account write access to the three bad-password-
answer-tracking attributes.

However, if you feel uncomfortable with running a nonadministrative provider under the default privi-
leges of Authenticated Users, you can lock things further. For example, to prevent a nonadministrative
provider from ever being able to read the encrypted password answer, you can go through the following
steps to lock down access.

1. Create a read-only account that will be used by the nonadministrative provider to access the OU.

2. Configure a nonadministrative provider instance to run with the read-only user account, just as
was done for the administrative provider that we have been using.

3. In the Active Directory Users and Computers MMC, configure the read-only account by denying
specific granular user object property rights.

501

ActiveDirectoryMembershipProvider

15_596985 ch12.qxp 12/14/05 7:52 PM Page 501

Figure 12-9 shows a special read-only user account being configured:

Figure 12-9

Notice how the ability to read and write the encrypted password answer field is being revoked from the
userpopareader account. The password answer field needs to be readable only for accounts that fetch the
answer from the directory for comparison with the answer typed in by a user. For ActiveDirectory
MembershipProvider, this only occurs when calling ResetPassword, so only the administrative
account that was configured earlier needs read access on this attribute. Write access to the password
answer attribute is only necessary for methods that the update this information. The only methods on
ActiveDirectoryMembershipProvider where these updates occur are CreateUser (where the ques-
tion and answer are initially created) and ChangePasswordQuestionAndAnswer (where the question
and answer are updated). For this reason, it makes sense to have a separate provider instance (like the
administrative provider used in the examples in this chapter) configured for creating users, updating
questions and answers and carrying out password resets.

502

Chapter 12

15_596985 ch12.qxp 12/14/05 7:52 PM Page 502

Using ADAM
From the ActiveDirectoryMembershipProvider’s perspective, using ADAM as a backing store is
pretty much the same as using Active Directory as the backing store. ADAM’s schema supports the user
class, and just as with Active Directory, you can extend the schema in ADAM if you choose to enable
self-service password resets. In terms of directory structure, you can use the same general approaches for
both AD and ADAM: using a single container for storing users, or separate user containers for different
applications. The behavior around user creation/deletion as opposed to other operations works the same
way in ADAM as well — that is, creation and deletion always occur in the container pointed at by the
connection string, whereas searches and operations that bind to a user start at the root of the specified
container and then wend their way down through the container hierarchy looking for a match.

The differences you will encounter when using ADAM as a directory store with the provider are:

❑ You can choose to run ADAM on a machine that is not joined to a domain. This will probably
not be common for folks that run a lot of Windows Server machines, but it would be familiar to
UNIX shops that just need to talk to an LDAP server and don’t need the security mechanisms
supported by an AD domain infrastructure.

❑ ADAM can be installed multiple times on a single machine, with separate ADAM installations
running on different ports. Unlike AD, this means you can install ADAM to listen on something
other than port 389 (if using non-SSL connections) or port 636 (if using SSL connections).

❑ For an ADAM server that is part of a domain, you can connect to the ADAM instance using
either a domain principal or an ADAM principal. An ADAM principal is simply a user account
that only exists inside of the ADAM instance and is unknown in the general AD directory.

❑ You need to manually set up ADAM properly to store the data needed by the provider. With
that said, you can go through the GUI installer for ADAM and have it perform 95% of the setup
work for you. If you don’t get the GUI portion of the install correct though, you have to use the
dsmgmt.exe command-line tool that comes with ADAM to manually create an application par-
tition for use by your application.

❑ Quite honestly, security management of ADAM is either much simpler or much more compli-
cated depending on which approach you take to securing your application data. You can take
the simple approach where you use the application identity of your worker process (or applica-
tion impersonation identity if you choose) and make it an administrator in an ADAM partition.
This gives your web servers easy access to read and write data via ActiveDirectory
MembershipProvider. On the other hand, you can follow the lockdown approaches described
in the previous section on Active Directory where you grant specific rights to specific accounts
(for example, admin accounts versus read-only accounts) and then use different provider
instances for different operations. The snag with this approach is that the administrative tool for
modifying ADAM ACLs is quite simply abominable for anyone who isn’t directory savvy (and I
definitely do not fall in the directory guru camp!). You have to use the command-line dsacls
.exe tool that comes with ADAM to manually ACL your application containers. This same pro-
cess with Active Directory can be a little intimidating, but the MMC management tools for AD
help you through the process. No such GUI tool support currently exists for ADAM, although
there is supposed to be an updated version of the ldp.exe tool in Windows Server 2003 R2 that
should have some level of GUI support for editing ACLs in ADAM. With that said, if you feel
comfortable manually ACL’ing containers in ADAM, you can definitely use that approach to
narrow the privileges granted to different accounts.

503

ActiveDirectoryMembershipProvider

15_596985 ch12.qxp 12/14/05 7:52 PM Page 503

❑ Connectivity to the ADAM instance is either in the clear or over an SSL connection. Active
DirectoryMembershipProvider does not support any type of connection security other than
SSL. Of course, you can always use lower-level security measures such as IPSEC, but that level
of network security functions at a lower level and is transparent to both the provider and the
LDAP networking stack.

Because using ADAM has a bit of a different flavor from using Active Directory, you will see some common
steps described in this section so that you get an idea of how to get an application partition installed
properly. After you see how to get to that point, you will look at connecting to the ADAM store and carrying
out basic provider operations against the directory store.

Installing ADAM with an Application Partition
The first thing you need to accomplish is the installation of an ADAM instance that the provider can connect
to. Unlike Active Directory, where you already have a server running with the default Users container,
with ADAM you are starting from scratch. The first step is to download the ADAM installation package and
then run the installer. The installer walks you through a number of wizard steps for setting up an ADAM
instance. The first important step in the installation process is the naming the ADAM instance. This is impor-
tant when you work with ADAM through a tool like the services control panel, but the service name itself
has no impact when using the provider. Figure 12-10 shows the wizard step where you name the ADAM
instance.

Figure 12-10

One of the next wizard steps lets you choose the port numbers for SSL and non-SSL communications. If
this is the only ADAM instance that will be running on the server, and the server is also not an AD
domain controller (in which case AD already owns ports 389 and 636), you can just leave the default port
selections as is.

Later on in the wizard, there is a step where you create an application partition. This is important
because it determines the first part of the distinguished name that you will use in the connection string.
Because ADAM directories are their own little world, you can use any type of distinguished name that

504

Chapter 12

15_596985 ch12.qxp 12/14/05 7:52 PM Page 504

makes sense. However, if you plan to create organizational units within this application partition, you
are limited to specific types of objects in the distinguished name that you choose — the ADAM FAQ on
the web describes the limitations that apply. In Figure 12-11, you can see that I chose a distinguished
name that ends in an organization because organizations in ADAM can contain OUs.

Figure 12-11

As you progress through the wizard, one of the next steps is choosing an administrative user for the appli-
cation partition. This user account will by default be able to use command-line and GUI tools to configure
ADAM further. In Figure 12-12, I left the wizard with the default of the currently logged on user.

Figure 12-12

505

ActiveDirectoryMembershipProvider

15_596985 ch12.qxp 12/14/05 7:52 PM Page 505

One of the last major steps in the wizard that you definitely want to take advantage of is the option to
import an LDIF file. LDIF files are conceptually the same as running .sql files against SQL Server to
install schema elements. In Figure 12-13, I selected the MS-User.ldf file to import because it contains
the definition of the user class that is required by the provider. If you forget to choose anything in this
step, then you have to import the LDIF file from the command-line using a tool like ldifde.exe.

Figure 12-13

With these steps completed, you can finish the wizard, and after a bit of a pause you will have an
ADAM directory server running and available for use by the provider. To connect to the ADAM instance
and the application partition that you just created, you can use the adsiedit MMC tool, which is auto-
matically installed with ADAM on your machine. You will need to set up the connection settings by
choosing Connect To from the ADAM ADSI Edit node in the MMC. You can see how to set up the
connection settings in Figure 12-14.

In this case, I have pointed the MMC at my local machine’s ADAM instance listening on port 389. The
connection settings also point at the application partition O=MyOrganization,DC=corsair,DC=com
that was created with the ADAM install wizard. Because you probably don’t want user objects to be
stored directly at the root of the application partition, you should create a container to store your
application’s user objects. In my case, I created an OU by right-clicking the partition node and
choosing New ➪ Object. In the dialog box that pops up after this selection, I chose an object of type
organizationalUnit and then named it ApplicationUsers. Note that if you don’t see the object type
organizationUnit in the selection list box, it is probably because your application partition used a
container type that cannot be a parent of OU objects.

506

Chapter 12

15_596985 ch12.qxp 12/14/05 7:52 PM Page 506

Figure 12-14

The last step at this point is to configure a domain account with administrative rights in the partition so
that all of the methods on ActiveDirectoryMembershipProvider will work. Unlike AD where a
familiar security UI is used, in ADAM you have to go through a somewhat awkward configuration
process. Using the adsiedit MMC tool, click the CN=Roles node. This displays all of the ADAM groups
(not Active Directory domain groups) that currently exist in the ADAM application partition. In the
right-hand side of the MMC, right-click the CN=Administrators entry and select Properties. This pulls
up a list of all of the attributes on the Administrators object. You need to scroll through this list and find
the member attribute. Highlight that attribute and click the Edit button. This pulls up the clearly named
Multivalued Distinguished Name with Security Principal Editor dialog box. In this box, there are two
buttons: Add Windows Account and Add ADAM Account.

This dialog box allows you to add either domain principals (such as domain users, as well as well-known
accounts like the NETWORK SERVICE account) or ADAM user principals into the Administrators group.
For now, I just added the web server’s NETWORK SERVICE account to the group. You can see what this
all looks like in Figure 12-15.

507

ActiveDirectoryMembershipProvider

15_596985 ch12.qxp 12/14/05 7:52 PM Page 507

Figure 12-15

If you don’t plan on setting up SSL for your ADAM instance, then you will to add some other account
aside from NETWORK SERVICE to the Administrators group. Remember that you can only connect to
ADAM with the ActiveDirectoryMembershipProvider in one of two ways: over SSL or in the clear.
The provider is not able to connect to ADAM over non-SSL connections using either the default process
credentials or explicit domain account credentials. Instead, you always need an ADAM user principal
that can be used as the explicit username configured for the provider.

Because the demo code in the next section uses an ADAM instance that is not configured to use SSL, you
need to add some other security principal to the Administrators group. I created another OU in the
application partition called PartitionUserAccounts, and I added a user to it called Application
UsersAdministrator. The full distinguished name for this new account is:

CN=ApplicationUsersAdministrator,OU=PartitionUserAccounts,O=MyOrganization,DC=corsa
ir,DC=com

508

Chapter 12

15_596985 ch12.qxp 12/14/05 7:52 PM Page 508

You can add this account to the Administrators group using the same process described earlier, though
you will want to click the Add ADAM Account button for this case. Make sure that you have the distin-
guished name of the administrators account handy because you won’t get any nice GUI for selecting
ADAM principals — instead you have to type in the full distinguished name. Figure 12-16 shows the end
result of adding the ADAM user principal to the Administrators group. Notice the highlighted account
in the security principal dialog box.

Figure 12-16

One thing to warn you about — at this point even though you now have an ADAM user principal it is
very likely that you still can’t use it at this point. Unfortunately, the errors you will get back from the
provider or from other tools like ldp.exe won’t tell you the problem. There are two more things you
need to do to get the ADAM user principal working:

1. You need to explicitly set a password on it. You might have noticed that when you created the
ADAM user principal, at no point were you prompted for a password.

2. You need to enable the user account. By default newly created ADAM user principals are created
in a disabled state when running on Windows Server 2003 machines that have any type of pass-
word restrictions in effect. As a result, you need to enable the account after you set the password.

509

ActiveDirectoryMembershipProvider

15_596985 ch12.qxp 12/14/05 7:52 PM Page 509

You can easily set the password for the ADAM user principal by right-clicking the user object in the
adsiedit tool and choosing Reset Password. After you have set the password for the account, right-click
the user object again and choose Properties. Scroll down the list of properties until you find the property
called msDS-UserAccountDisabled. Notice that it is currently set to true. Double-click it, and set the
property to false. With these two steps the ADAM user principal has a password and the account is
now enabled so that you can actually use it for authentication purposes.

At this point you have an ADAM instance, an application partition with an OU for storing users, and
administrative security privileges on the application partition with an ADAM user principal so that the
ActiveDirectoryMembershipProvider can be configured with explicit connection credentials. So
now you are at a point where you can hook up an ASP.NET application to the ADAM instance and start
making use of it.

Using the Application Partition
As with using Active Directory, the first step to getting ActiveDirectoryMembershipProvider to
work is getting the connection string set up properly. Unlike connecting to Active Directory, for ADAM
you must supply a container in the connection string. By now, this restriction should make sense because
in ADAM you saw that you always work in the context of an application partition — so at the very least
you will be creating users starting in this partition. In this case, though, because there is also a user OU,
you use a connection string that points at the OU:

<connectionStrings>
<add name=”adamConnection”

connectionString=
“LDAP://localhost:389/OU=ApplicationUsers,O=MyOrganization,DC=corsair,DC=com”
/>

</connectionStrings>

In this case, I explicitly specified a port number as well. Because the ADAM instance on my machine is
running on the default 389 port, the number is not really required. But if you installed ADAM in a non-
default port, the syntax shown above is what you would use.

Because the sample application will be connecting over a non-SSL connection, the provider configura-
tion needs to use an explicit set of credentials. In the configuration that follows, the provider is config-
ured to use the ADAM user principal that was just created.

<membership defaultProvider=”adamprovider”>
<providers>
<clear/>
<add name=”adamprovider”

type=”System.Web.Security.ActiveDirectoryMembershipProvider...”
connectionProtection=”None”
connectionUsername=

“CN=ApplicationUsersAdministrator,OU=PartitionUserAccounts,O=MyOrganization,DC=cors
air,DC=com”

connectionPassword=”pass!word1”
connectionStringName=”adamConnection” />

</providers>
</membership>

510

Chapter 12

15_596985 ch12.qxp 12/14/05 7:52 PM Page 510

As noted earlier, for a production environment you should use protected configuration so the credentials
are not visible in cleartext. Because the ADAM instance doesn’t support SSL, the connectionProtection
attribute is set to None. This causes the provider to skip looking for an SSL connection to the directory
instance. For the explicit username, the full distinguished name of the user account is needed. This is one
visible case where configuring the provider for ADAM differs from AD. Unlike AD, ADAM doesn’t really
have the concept of binding to a user object by way of a user principal name that is indexed in a global cat-
alog. Instead, when you connect to ADAM with an ADAM user principal you need to supply the distin-
guished name so that ADAM can actually find the user object in the directory.

Because the provider is configured to use a non-SSL connection, one last piece of ADAM configuration is
necessary. For security reasons, ADAM does not allow passwords to be set or changed over non-SSL
connections. You can change this behavior by using the dsmgmt.exe tool included with the ADAM
installation. The following output shows the command-line conversation with dsmgmt that reenables
the ability to set passwords over non-SSL connections:

dsmgmt: ds behavior
ds behavior: connections
server connections: connect to server localhost:389
Binding to localhost:389 ...
Connected to localhost:389 using credentials of locally logged on user.
server connections: quit
ds behavior: allow passwd op on unsecured connection
Successfully modified DS Behavior to reset password over unsecured network.
ds behavior: quit
dsmgmt: quit

This type of configuration is acceptable for a development environment or a test-bed environment.
However, I would not recommend doing this for a production environment unless you are securing the
network traffic with some other mechanism such as IPSEC. Although it requires more hoops to jump
through (you need to obtain the SSL certificate and then follow the ADAM help topics for installing the
certificate on the ADAM server and on all of the clients that will communicate with it), securing ADAM
traffic with SSL in your production environments is definitely the right thing to do.

By this point, I really promise that all of the mucking around with ADAM configuration magic is done.
To test things, you can drop a CreateUserWizard on a page and create a new user account. I created a
new account called testuser@corsair.com. If you look in the adsiedit tool after running the test page
(make sure to refresh the ApplicationUsers OU so that the tool will see the new user), you will see
that a new user object with common name CN=testuser@corsair.com has been created in the OU. A
few things to note about this user object:

❑ Although I typed in testuser@corsair.com for the username in the wizard, the provider auto-
matically set the common name to testuser@corsair.com as well. If you look at the properties
for the user object both the “common name” (aka CN) and the userPrincipalName have been set
to the same value. As a developer using the provider you don’t ever deal with the common name,
but other applications that are more LDAP-aware will depend on the CN as opposed to the
userPrincipalName because in the world of LDAP you constantly reference objects using their
distinguished name. The CN attribute is part of an object’s distinguished name. So in the case of
testuser, its distinguished name is now CN=testuser@corsair.com,OU=ApplicationUsers,
O=MyOrganization,DC=corsair,DC=com.

511

ActiveDirectoryMembershipProvider

15_596985 ch12.qxp 12/14/05 7:52 PM Page 511

❑ Unlike the adsedit tool, the provider automatically set the msDS-UserAccountDisabled
attribute to false for you. Of course, if you call CreateUser with the isApproved parameter
set to false, then the msDS-UserAccountDisabled field will be set to true by the provider.

With the new user created, you can now try logging in using the Login control. Just type in the username
testuser@corsair.com, and you will be logged in successfully. At this point, you can call any of the
other methods on ActiveDirectoryMembershipProvider. Fetching the MembershipUser object and
displaying its information works as expected. If you enable searching you can call the search related
methods as well. If you extend the schema in ADAM with the five attributes necessary for self-service
password resets, you can use the ResetPassword method. Overall, you will see that after you get past
the ADAM-specific configuration work and unique aspects of connecting to ADAM,
ActiveDirectoryMembershipProvider works the same way against ADAM as it does against AD.
There is no difference in terms of supported provider functionality between the two directory stores.

Using the Provider in Partial Trust
All the examples shown so far for Active Directory and for ADAM have been running in full trust.
However, if you attempt to use the provider directly in a partial trust environment it will fail. Within the
provider’s Initialize method, an explicit check is made for Low trust. The provider itself is attributed
with a link demand for System.DirectoryServices.DirectoryServicesPermission. Also, each of
its public methods is attributed with a full demand for the same permission.

[DirectoryServicesPermission(SecurityAction.LinkDemand, Unrestricted=true)]
[DirectoryServicesPermission(SecurityAction.InheritanceDemand, Unrestricted=true)]
public class ActiveDirectoryMembershipProvider : MembershipProvider
{
...
[DirectoryServicesPermission(SecurityAction.Assert, Unrestricted=true)]
[DirectoryServicesPermission(SecurityAction.Demand, Unrestricted=true)]
[DirectoryServicesPermission(SecurityAction.InheritanceDemand, Unrestricted=true)]
public override string ResetPassword(string username, string passwordAnswer)

...
}

In the case of individual public methods, the provider actually asserts DirectoryServices
Permission at the same time it demands it. This cuts down on the overhead of walking the stack each
time code in System.DirectoryServices or System.DirectoryServices.Protocols makes a
demand. Because the declarative demand will already have verified that all of its callers have the neces-
sary privileges, there is no reason to rerun the stack walk when the provider makes calls into classes
from these namespaces.

If you drop the trust level of an ASP.NET application down to High trust, any of the previous examples
will immediately fail with an error like the following:

Request for the permission of type
‘System.DirectoryServices.DirectoryServicesPermission, System.DirectoryServices,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a’ failed.

512

Chapter 12

15_596985 ch12.qxp 12/14/05 7:52 PM Page 512

Thankfully, this error is at least clear enough to give you an idea of the problem, as well as a possible
workaround. There are actually two approaches to getting the provider working again in partial trust:

❑ Add DirectoryServicesPermission to the appropriate ASP.NET trust policy file (or create a
custom trust policy with the permission).

❑ Wrap all calls to the provider in a GAC’d assembly that asserts
DirectoryServicesPermission.

The first approach is definitely the easiest to implement, but it is also less secure. Broadly granting
DirectoryServicesPermission to a partially trusted application means that anyone can write code to
start accessing your directory servers. In essence, it takes away the layer of protection on the web server
and means that you are depending on whatever ACLs you set on your directory servers to protect
against a malicious developer trolling through your data.

If you are running in the High trust bucket though, this is effectively a trust bucket meant to be very
much like Full trust, but without unmanaged code permissions. So, it isn’t unreasonable for a High trust
application to use the first approach. You can modify the High trust policy file with the following:

<SecurityClass
Name=”DirectoryServicesPermission”
Description=”System.DirectoryServices.DirectoryServicesPermission, ... “ />

...

<IPermission
class=”DirectoryServicesPermission”
version=”1”
Unrestricted=”true” />

By now, these types of changes should be pretty familiar. Register DirectoryServicesPermission
with a <SecurityClass /> entry in the <SecurityClasses /> element. Then inside of the XML ele-
ment defining the ASP.NET named permission set, add the <IPermission /> element. With these two
changes, your partial trust ASP.NET application will start working again when using
ActiveDirectoryMembershipProvider.

Using a wrapper assembly involves a little more work, but it is actually pretty simple to accomplish.
Create a new class library project in Visual Studio, making sure to reference the following assemblies:

❑ System.Configuration— Needed because the project will be creating a new provider.

❑ System.Web— Because the custom provider will be deriving from ActiveDirectory
MembershipProvider

❑ System.DirectoryServices— This assembly contains the DirectoryServices
Permission.

You will need to generate a key file and enable strong naming for the project. Because the intent of the
wrapper assembly is to assert DirectoryServicesPermission on behalf of partially trusted applica-
tions, you also need to add the APTCA attribute to AssemblyInfo.cs:

513

ActiveDirectoryMembershipProvider

15_596985 ch12.qxp 12/14/05 7:52 PM Page 513

using System.Security;
...
[assembly: AllowPartiallyTrustedCallers()]

With these basic tasks completed, you can now “write” the wrapper provider. In reality, the wrapper
provider is nothing more than a class definition where DirectoryServicesPermission can be
asserted along with overrides for each of the methods you want available to partial trust applications.

using System;
using System.Configuration.Provider;
using System.Security.Permissions;
using System.Web.Security;
using System.DirectoryServices;

namespace ADProviderWrapper
{

[DirectoryServicesPermission(SecurityAction.Assert, Unrestricted=true)]
public class ADProviderWrapper : ActiveDirectoryMembershipProvider
{

//You must always override Initialize
public override void Initialize(string name,
System.Collections.Specialized.NameValueCollection config)

{
base.Initialize(name, config);

}

public override bool ChangePassword(string username,
string oldPassword, string newPassword)

{
return base.ChangePassword(username, oldPassword, newPassword);

}

public override bool ChangePasswordQuestionAndAnswer(string username,
string password, string newPasswordQuestion, string newPasswordAnswer)

{
return base.ChangePasswordQuestionAndAnswer(username, password,

newPasswordQuestion, newPasswordAnswer);
}

//Additional overrides for methods you want available in partial trust

}
}

Code-wise, there isn’t anything complex going on here. You start out referencing all of the related
namespaces, derive from ActiveDirectoryMembershipProvider and then override the methods that
you care about. The declarative assertion on the class means the common language runtime (CLR) will
automatically assert this permission for any method that the class implements. The only method that
you are required to override is the Initialize method. Because Initialize is always called when the
Membership feature is instantiating providers based on configuration, you have to make sure the
custom provider’s implementation is called first in order to get the permission assertion onto the stack.

514

Chapter 12

15_596985 ch12.qxp 12/14/05 7:52 PM Page 514

Other than the Initialize method, you can override whichever methods you care about exposing to
partial trust applications. If your intent is to use all of the functionality of ActiveDirectory
MembershipProvider from partial trust, then you would override all of the public methods on the
provider. You might think that just adding the assertion for DirectoryServicesPermission would be
sufficient and that you could avoid overriding any individual methods. Because the ActiveDirectory
MembershipProvider has a class level link demand though, any method that is not overridden means
that the Framework will evaluate the link demand against the code that is directly calling it. Of course,
for partial trust applications, this means that your partially trusted page code will be the immediate
caller, and hence without an intervening override from the custom provider sitting on the call stack, the
link demand will fail.

After you compile the custom provider and install it in the GAC, you can modify your partial trust
application to use it:

<trust level=”High” />

<compilation>
<assemblies>

<add assembly=”ADProviderWrapper, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=b95a0989e24f0920”/>

</assemblies>
</compilation>

<membership defaultProvider=”gacdprovider”>
<providers>
<clear/>
<add name=”gacdprovider”

type=”ADProviderWrapper.ADProviderWrapper,ADProviderWrapper,
Version=1.0.0.0, Culture=neutral, PublicKeyToken=b95a0989e24f0920”

enableSearchMethods=”true” connectionStringName=”directoryconnection”/>
</providers>

</membership>

The <assemblies /> directive makes the ASP.NET application aware of the custom provider sitting in the
GAC. The <membership /> section adds the GAC’d provider and indicates that it should be used as the
default provider for the Membership feature. At this point, you can run your partial trust application and
make use of the functionality in ActiveDirectoryMembershipProvider without running into any
security exceptions. From the point of view of the application developer, using the GAC’d provider is no
different than using the base provider. The nice thing about using the GAC’d provider is that you have the
ability to customize the subset of functionality on ActiveDirectoryMembershipProvider that you want
to make available in your partial trust applications. For example, you could create a custom provider that
only asserts permissions for read-oriented methods like ValidateUser, while choosing not to override
more sensitive methods like ChangePassword or ResetPassword.

Summary
ActiveDirectoryMembershipProvider works with both AD and ADAM directory stores. The
provider implements all of the functionality of the Membership API with the following two exceptions:
the provider does not keep track of users that are online, and the provider does not support password

515

ActiveDirectoryMembershipProvider

15_596985 ch12.qxp 12/14/05 7:52 PM Page 515

retrieval. You should probably invest some time planning for deploying and using the provider, espe-
cially in complex domain environments. When running against AD ActiveDirectoryMembership
Provider works in the scope of either a single domain, or a container within a domain. You can still
leverage the provider in multidomain scenarios, but you will need to configure at least one provider
instance per domain that you need to work with. Within the scope of a single domain, you can choose to
point the provider at the root of the domain (that is, the default naming context), or at a specific con-
tainer within the domain. In the case of ADAM, though, you always have an application partition, so for
ADAM the provider will at least always be working in the context of the application partition (which
itself is a container). As with AD, you can also configure containers in ADAM and have the provider
work within the context of these containers.

After you have settled on which domain and/or container you are working with, the next major decision
is the type of username you plan to support. For ADAM, the username in the Membership feature will
always map to the userPrincipalName attribute in the directory. For Active Directory, you can choose to
use either the userPrincipalName or the sAMAccountName attribute. Applications using older directo-
ries that were upgraded from NT4 will likely need to switch the provider to use sAMAccountName. The
provider automatically maps other directory attributes to the various properties on a MembershipUser
instance. A small subset of the MembershipUser properties can have these attribute mappings changed
from their defaults. If you choose to enable password resets for the provider (not enabled by default), then
you will need to edit the directory schema in order to store the question and answer as well as the bad
password answer tracking information.

Although securing AD and ADAM is an entire topic in and of itself, there are two main security decisions
to keep in mind when using ActiveDirectoryMembershipProvider. By default, the provider attempts
to establish a secure connection with AD or ADAM. In the case of AD, this will normally “just work.” For
ADAM, though, you need to explicitly configure SSL support on the ADAM server and on the web servers
for the provider to be able to securely connect to the directory. The other aspect of security to consider is
locking down read and write access to user objects in the directory. If at all possible, you should plan on
storing different user populations in different OUs in your directory, and you should also delegate control
over those OUs to specific accounts. You can then configure different provider instances using different sets
of explicit credentials that only have selected rights in a specific OU.

Although ActiveDirectoryMembershipProvider ships as part of ASP.NET, it has been tested and
is supported for use in non-ASP.NET environments as well. For both ASP.NET and non-ASP.NET
environments, though, the provider will only work in full trust by default. In partial trust ASP.NET envi-
ronments, you do have the option of adding the DirectoryServices permission to a trust policy file.
However, the more secure approach for any partial trust environment is to wrap access to the provider
inside of a GAC’d assembly.

516

Chapter 12

15_596985 ch12.qxp 12/14/05 7:52 PM Page 516

Role Manager

Role Manager is a new feature in ASP.NET 2.0 that provides the basic functionality necessary to create
an IPrincipal-based object associated with roles. The motivation for the Role Manager feature is to
make it easy for developers to associate users with roles and then perform role checks both declara-
tively and in code. The Role Manager feature is sometimes referred to as a companion feature to
Membership because Role Manager can be used to provide authorization for users that have been
authenticated using Membership. However, Role Manager can also be used as a standalone feature
that integrates with other authentication mechanisms, including Windows authentication.

As with the Membership feature, Role Manager can be used in non-ASP.NET environments such
as the Winforms application and console applications, thus making it easier for developers to
share a common set of authenticated users and role information across different client applica-
tions. This chapter will cover:

❑ The Role class

❑ The RolePrincipal class

❑ The RoleManager model

❑ RoleProvider

❑ WindowsTokenRoleProvider

The Roles Class
As with the Membership feature, the Role Manager feature has a static class that can be used as an
easy way to access the functionality of the feature. The Roles class has methods and properties
that cover the following areas:

16_596985 ch13.qxp 12/14/05 7:52 PM Page 517

❑ Public properties that primarily expose the Role Manager data from configuration

❑ Public methods that act as facades on top of the default Role Manager provider

❑ A single utility method that you can use for clearing the Role Manager cookie

Because most ASP.NET provider-based features follow the same general design, I won’t rehash how
default providers work or the concept of façade methods mapping to the default provider. These areas
work the same way in Role Manager as was described earlier in Chapter 10, which discussed
Membership.

Regardless of where Role Manager is used, the feature always requires at least Low trust to work. This
means that either an ASP.NET application must run in Low trust or higher to use the feature or, for a
non-ASP.NET application, the AspNetHostingPermission must be granted to the calling code with a
level or Low or higher.

The public properties on the Roles class for the most part just mirror the configuration settings from
configuration. Some of the properties should be familiar to you because they work the exact same way
on the static Membership class. Properties that are provider-specific or that involve unique behavior to
the Role Manager features are described below.

❑ Provider— Returns a RoleProvider reference to the provider defined by the defaultProvider
attribute on the <roleManager /> configuration element.

❑ Providers— Returns a RoleProviderCollection containing one reference to each provider
defined within the <providers /> element contained within a <roleManager /> element.

❑ ApplicationName— Returns the value of the applicationName provider configuration
attribute for the default provider.

❑ Enabled— Returns true if the Role Manager feature is enabled. The concept of being “enabled”
though is based upon two different factors: the “enabled” attribute from the <roleManager />
configuration element, and the current trust level. Unlike Membership, you can go into configu-
ration and explicitly disable the Role Manager feature (effectively, the Membership feature is
always “on”). In fact, the default configuration of the Role Manager feature is disabled — you
won’t see this in machine.config, but the hard-coded value for the “enabled” attribute in the
RoleManagerSection class is false. Because machine.config does not redefine this
attribute, Role Manager is turned off by default on all machines. Assuming that you explicitly
enable the Role Manager feature by setting the “enabled” attribute to true, you still need to be
running in Low trust or higher. If you are running in Minimal trust, Roles.Enabled will always
return false, regardless of the setting in configuration. This is done because Role Manager (and
for that matter Membership) is not intended for use in Minimal trust applications.

❑ CacheRolesInCookie— By default, this value is set to false. If it is set to true, the
RoleManagerModule attempts to improve the performance of the Role Manager feature by
caching the roles for a user within a cookie and using the cookie during subsequent page hits.
Cookie caching is covered in detail in the section on the RoleManagerModule.

❑ MaxCachedResults— The maximum number of roles that the RoleManagerModule will
attempt to stuff into a cookie, assuming that CacheRolesInCookie is set to true. Because
cookies are usually limited in size to around 4KB, you can use this setting to proactively hint the
module so that it doesn’t waste time attempting to pack enormous numbers of roles into a
cookie.

518

Chapter 13

16_596985 ch13.qxp 12/14/05 7:52 PM Page 518

There are seven more public properties on the Roles class, but I won’t list them here because these addi-
tional properties all deal with the roles cookie. The corresponding configuration attributes are covered a
little later in the section on role cache cookie settings. If you are familiar with the cookie options for
Forms Authentication in ASP.NET 2.0, then the cookie settings available from the Roles class will make
sense. For the most part, they control the same set of functionality (that is, cookie name, path, protection,
and so on) as Forms Authentication. The one minor difference is that, unlike Forms Authentication, the
Role Manager feature only supports the use of cookies for caching roles. There is no such thing as
caching a user’s roles in a cookieless value on the URL. The effective 4KB upper limit is already con-
straining for some Role Manager scenarios — attempting to cram cached roles into a path segment with
an upper limit of 255 characters just wouldn’t work.

Aside from the façade methods that provide easy-to-use method overloads for the default RoleProvider,
there is one other method of interest on the Roles class: DeleteCookie. As the method name suggests,
after you call this method the Roles class sends a clear cookie back to the browser that forces the Role
Manager cookie in the browser to be deleted. Of course, if you never use cookie caching with Role
Manager, you will never have a reason to call this method. However, if you create a logout page for your
users, you should call Roles.DeleteCookie after clearing the authentication information as well:

//Logout page logic
FormsAuthentication.SignOut();
Roles.DeleteCookie();

//Additional logic to prevent forms cookie re-use – see Chapter 5

If you forget to call Roles.DeleteCookie from your logout page it isn’t the end of the world. The
RoleManagerModule responsible for handling the cookie is smart enough to ignore and clear any role
cookies sent by anonymous users. So if you have a role cookie lying around in the browser after a
logout, the next time a user hits your site the RoleManagerModule will automatically call
DeleteCookie.

One thing that developers sometimes look for when they start working with the Role Manager feature
and the Roles class is some kind of role object. For ASP.NET 2.0, a role is just a string value — there is no
rich object model for representing a role or manipulating a role. As a result, when you use the Roles
class, you can see that most of the method parameters are just strings. You associate users (represented
as a string username and an implicit application name) with role names. If ASP.NET ever creates a rich
role object in a future release, it will probably require a substantial overhaul to the Role Manager feature
because the current implementation is so tightly tied to the basic concept of a role as a string.

The façade methods include some extra logic for the case that the Roles class is called when the current
user is represented by a RolePrincipal, and the method calls on the Roles class potentially affects that
user. This allows the Roles class to take advantage of the caching behavior in the RolePrincipal class.
For web applications, the current user is determined by looking at HttpContext.Current.User.
Because the Role Manager feature is also supported for non-ASP.NET applications, the Roles class will
look for the current user object in Thread.CurrentPrincipal for non-web applications.

This means that if you want the full functionality of the Role Manager feature to work consistently out-
side of ASP.NET, you should write some code that initializes Thread.CurrentPrincipal with a
RolePrincipal for the current user of your application. As is described in the next section on
RolePrincipal, you can create a RolePrincipal that wraps a WindowsIdentity. This means that
you can have a fat-client application that requires a logged in Windows user but that fetches application-
specific role information using the Role Manager feature.

519

Role Manager

16_596985 ch13.qxp 12/14/05 7:52 PM Page 519

The interaction between Roles and RolePrincipal is described here for each of the relevant façade
methods:

❑ IsUserInRole— If the current user is a RolePrincipal, and the username parameter to this
method matches the username (that is, IIdentity.Name) for the RolePrincipal, and the
name of the provider associated with this RolePrincipal matches the name of the default Role
Manager provider, the façade method instead calls RolePrincipal.IsInRole. The string com-
parison for username is a case-insensitive ordinal-based comparison. However, if the username
or provider name of the RolePrincipal don’t match the username parameter to the method
or the name of the default provider, then Roles.IsUserInRole calls the default
RoleProvider instead. Note that for the parameterless IsUserInRole overload, the username
is taken from HttpContext.Current.User. So if a RolePrincipal is attached to the context
for this case, the parameterless IsUserInRole overload usually results in a call to
RolePrincipal.IsInRole instead.

❑ GetRolesForUser— This method has the same behavior as IsUserInRole. If the current user
is a RolePrincipal, and all of the other data matches, then the Roles class calls
RolePrincipal.GetRoles. Otherwise, the Roles class calls the GetRolesForUser method on
the default provider.

❑ DeleteRole— This method checks to see whether the current user is a RolePrincipal and if
the RolePrincipal object uses the default provider. If both of these conditions are met, and if
the RolePrincipal instance has cached role information within itself, the method checks to see
whether the user represented by the principal belongs to the role that is being deleted. If this is
the case, the method invalidates the RolePrincipal cache by calling RolePrincipal
.SetDirty. Normally, you see this behavior only if you are in a management application and
you change the role membership for the user that you are currently logged in as.

❑ AddUserToRole, AddUsersToRoles, AddUserToRoles, AddUsersToRole— All of these meth-
ods have logic similar to DeleteRole. If necessary, the current user represented by a
RolePrincipal has its internal cache flushed if that user was added to a role using any of these
methods. As with DeleteRole, you will probably only see this behavior when you are chang-
ing user-to-role assignments for yourself, and you are logged in to an administrative application
as yourself.

❑ RemoveUserFromRole, RemoveUsersFromRoles, RemoveUserFromRoles,
RemoveUsersFromRole— These methods follow the same logic as described in the last two
bullet points. In this case, the RolePrincipal cache is flushed if the current user has been
removed from a role using any of these methods.

Just like the Membership feature, the Role Manager feature also has the concept of a primary key. The
username and the application name from a provider’s configuration are combined and used as the “pri-
mary key” when working with users and roles. See the section “The Primary Key for Membership” in
Chapter 10 for a detailed discussion of how the username and application name are used to reference
users. The only difference between Membership and Role Manager in this respect is that only the
Membership feature went so far as to expose data-store-specific primary keys in its public APIs. The
Role Manager feature doesn’t do this — instead both the Roles class and the RoleProvider base class
reference users with just a string username and roles with just a string role name. (The application name
is implicitly used as well because it is obtained from a provider’s configuration.)

520

Chapter 13

16_596985 ch13.qxp 12/14/05 7:52 PM Page 520

The RolePrincipal Class
Because the Role Manager feature’s main purpose is to supply an IPrincipal based object, it includes
an implementation of this interface with the RolePrincipal class. The RolePrincipal is intended for
use anywhere a Framework application (ASP.NET or non-ASP.NET) expects to find an IPrincipal for
IsInRole calls. RolePrincipal also exposes some additional methods for retrieving all of a user’s
roles as well as for handling some of the work necessary when using cookie caching.

public sealed class RolePrincipal : IPrincipal, ISerializable
{
//Constructors
public RolePrincipal(IIdentity identity, string encryptedTicket)
public RolePrincipal(IIdentity identity)
public RolePrincipal(string providerName, IIdentity identity)
public RolePrincipal(string providerName, IIdentity identity,

string encryptedTicket)

//Cookie caching related methods
public string ToEncryptedTicket()

//Role Manager and IPrincipal related functionality
public string[] GetRoles()
public bool IsInRole(string role)
public void SetDirty()

//Public properties not related to cookie caching
public int Version { get; }
public IIdentity Identity { get; }
public string ProviderName { get }
public bool IsRoleListCached { get; }

//Public properties related to cookie caching
public DateTime ExpireDate { get; }
public DateTime IssueDate { get; }
public bool Expired {get; }
public String CookiePath { get; }
public bool CachedListChanged { get; }

}

The first thing that may leap out at you is that RolePrincipal is sealed! This has important implications
for more complex scenarios such as handling multiple RoleProviders in an application with cookie
caching turned on. It also means that if you want to extend the principal to include custom functionality,
you can’t. Hopefully, in a future release the RolePrincipal class will be unsealed.

As you can see, although the RolePrincipal class implements the IPrincipal interface, it provides
quite a bit more functionality beyond just a simple role check. Take a look at the portion of
RolePrincipal that deals strictly with role information. There are two constructor overloads that can
be used to create a RolePrincipal when you aren’t using cookie caching. One constructor overload
takes a single IIdentity parameter, while the second overload accepts both an IIdentity and the
name of a provider.

521

Role Manager

16_596985 ch13.qxp 12/14/05 7:52 PM Page 521

The IIdentity reference is needed because any class that implements IPrincipal needs to be able to
return the authenticated identity (that is, an IIdentity reference) associated with that principal. You can see
from the constructor signature that the RolePrincipal is not hard-coded to any specific implementation of
an IIdentity. That is why you can enable the Role Manager feature with any type of authentication mecha-
nism available in ASP.NET. Forms Authentication creates a FormsIdentity, Windows Authentication results
in a WindowsIdentity and your own custom authentication mechanisms may use GenericIdentity. For
all of these cases, the RolePrincipal is unaware of the underlying authentication implementation that gen-
erates an IIdentity reference.

One reason that you might use the less-than-obvious combination of Windows Authentication and Role
Manager is that you may not want to clutter your Active Directory with application-specific roles. It may
be a somewhat laborious process to register application-specific groups in your directory if the directory
is tightly managed by a central IT group. For this reason, storing application-specific roles off to the side
using Role Manager can be very convenient. Also, if you develop “quick-hit” web applications that exist
for only a few weeks or months, it’s very easy to stuff application roles into a Role Manager database
that can be deleted when the application has outlived its usefulness.

With that said (and before the Active Directory team comes after me!) with the introduction of Active
Directory Application Mode (aka ADAM), application developers also have the option of storing user-
to-group assignments in application-specific ADAM instances. You can take this approach even further
using the new Authorization Manager (aka AzMan) feature of Windows Server 2003 by deploying an
AzMan policy store in an application-specific ADAM instance. These types of architectural decisions are
beyond the scope of this book, but you should look into them especially for intranet web applications
where you may be considering using Role Manager to get around operational or administrative hassles
of a centrally managed Active Directory.

You now know that all of the ASP.NET-based features key their user records off of a combination of user-
name and an application name usually found in a provider’s configuration. In the case of the
RolePrincipal, when you use the constructors the RolePrincipal “knows” how to look up user
information from the default provider based on the following information:

❑ The username comes from IIdentity.Name.

❑ For the constructor with just a single IIdentity parameter, the application name is the one
used by the default RoleProvider as defined in configuration.

❑ For the constructors that takes an additional providerName parameter, the application name is
the one associated with Roles.Providers[providerName].

In this way, the RolePrincipal can take an arbitrary string representation of a username, and it can
associate the username with role data maintained by any of the configured providers.

Most of the methods on RolePrincipal that are not directly associated with cookie caching are pretty
self-explanatory:

❑ IsInRole— Based on IIdentity.Name and the application name of the associated provider,
the RolePrincipal indicates whether or not IIdentity.Name belongs to the specified role. If
the RolePrincipal has not previously cached role information for the user, then the associated
provider is called to get all of the user’s roles. If this method is called for an IIdentity of an
unauthenticated user (that is, IIdentity.IsAuthenticated returns false), then this method

522

Chapter 13

16_596985 ch13.qxp 12/14/05 7:52 PM Page 522

always returns false. This is because the Role Manager feature is only intended for use with
authenticated users. Because many sites have public and secured pages, the Role Manager fea-
ture can silently run without error for unauthenticated users; it’s just that methods like
IsInRole will always return false.

❑ GetRoles— The RolePrincipal returns a string array containing all of the roles that IIdentity
.Name belongs to. If the RolePrincipal has not previously cached role information for the user,
then the associated provider is called to get all of the user’s roles. As with IsInRole, this method
has special behavior for unauthenticated users. For an unauthenticated user, this method always
returns an empty string array (that is, string[0]).

❑ SetDirty— Tells the RolePrincipal object that it should invalidate any internally cached
data. As a result, the next call to IsInRole or GetRoles will always result in a round trip to the
associated provider.

The noncookie caching properties and their behavior are listed here:

❑ Identity— This property returns the IIdentity that was originally used when the
RolePrincipal was constructed.

❑ ProviderName— The name of the provider associated with the RolePrincipal. This will return
the name of the default provider (if you used the constructor that only accepts an IIdentity) or it
will return the name of one of the providers configured for use with Role Manager. This property
is a string parameter because the RolePrincipal is itself serializable. By storing the associated
provider as a string name, RoleProviders don’t themselves need to be serializable. Note that if
your application does something funky like serializing a principal in one app-domain and deseri-
alizing it in another app-domain, you need to make sure that ProviderName is available in the
Role Manager’s provider collection for the app-domain where deserialization occurs.

❑ IsRoleListCached— This property returns true if RolePrincipal is currently caching the
user’s roles internally. This internal cache is discussed in the next few paragraphs.

❑ Version— Currently, this property will always return 1 for the 2.0 Framework. In future versions
if the internal format or the public functionality of the RolePrincipal changes, the Version
property will be changed as well.

Both the IsInRole and GetRoles methods rely on the RoleProvider associated with the RolePrincipal
to carry out their work. It turns out that the internal implementation of IsInRole results in a call to
RoleProvider.GetRolesForUser as opposed to RoleProvider.IsUserInRole. The reason for this
behavior is that even if you have cookie caching turned off, the RolePrincipal still attempts to optimize
performance of the IsInRole method.

Immediately after you new() up a RolePrincipal there is an empty internal dictionary that is ready
and waiting to cache role information. The first call after object construction to either IsInRole or
GetRoles causes the RolePrincipal to get a reference to its associated provider and retrieve a string
array of the roles associated with the user. This array is then cached within the principal’s internal role
dictionary. Code can verify this is the case because after the role information is cached RolePrincipal
.IsRoleListCached returns true. Now on subsequent calls to IsInRole, RolePrincipal recognizes
that this dictionary contains data. So, instead of making a round trip to the provider again, the principal
just looks for the requested role inside of the dictionary of cached role information. GetRoles has similar
behavior, although in its case the method just returns the internal dictionary as an array because there is
no need to search for a specific role.

523

Role Manager

16_596985 ch13.qxp 12/14/05 7:52 PM Page 523

Of course, at some point you may want to invalidate the cached role information. For example, after 15
minutes have passed, you may want to force the RolePrincipal to “forget” its current role information
and refresh it from the provider. When you call the SetDirty method, it flips the value of RolePrincipal
.IsRoleListCached to false. The next time either IsInRole or GetRoles is called, RolePrincipal
sees that the role information is now considered stale, and so it queries the provider again for all of the
user’s role data. This caching behavior has a few implications that you need to be aware of.

Because GetRolesForUser is called on the provider, users associated with large numbers of roles (that
is, hundreds of roles) will find the RolePrincipal to be slow the first time either IsInRole or
GetRolesForUser is called. In fact, for websites or other applications that need to support hundreds of
roles per user, you should carefully assess the performance of retrieving all of a user’s roles for these
methods. To cut down on the number of round trips made to the back-end data store, you may find that
you need to implement a custom RoleProvider that internally caches a user’s role information.

The second issue is that the IsInRole method compares the role parameter against values in the inter-
nal dictionary with a case-insensitive comparison, using the casing rules for the invariant culture. If you
happen to use a back end like SQL Server and you are running a case-insensitive sort order with the
Latin collation order, the behavior of the RolePrincipal comparison won’t matter to you. The standard
Latin collation order is roughly equivalent to the Framework’s invariant culture. But if you happen to
use a non-Latin character set, you may run into issues where the casing rules in the database don’t
match the casing rules for RolePrincipal. Remember from Chapter 11, on SqlMembershipProvider,
that all of the SQL based ASP.NET providers work in a case-insensitive manner. The SqlRoleProvider
also works in a case-insensitive manner. However, even though the providers for Role Manager work in
a case-insensitive manner, casing rules are still partially determined by the culture as well.

The casing rules for the invariant culture are not the same as the casing rules for Cryllic (as an example). As
a result, you can end up in some edge scenarios where you create role names in your data store that are
considered unique because the data store is using culture-specific casing rules. But when you attempt to use
RolePrincipal it throws an exception because from a culture-invariant standpoint it thinks two role
names are actually the same value. The array of strings returned from RoleProvider.GetRolesForUser
could contain two strings that are considered the same value in the invariant culture. When the
RolePrincipal attempts to add the strings to its internal dictionary (which is an instance of a
HybridDictionary), the dictionary can throw an ArgumentException because it detects duplicate string
values.

Another issue can arise where the result of RolePrincipal.IsInRole does not match the result from
RoleProvider.IsUserInRole. The classic “Turkish I” problem is an example where a mismatch can
occur for role comparisons. In the Turkish character set a capital “I” and a small “i” are actually associ-
ated with two completely different characters. Lowering “I” in Turkish will result in a completely differ-
ent character than the English “i.” This can cause a problem when RolePrincipal.IsInRole is called
by URL authorization because if role names from the database differ only on characters like “I,” then
RolePrincipal.IsInRole may consider a user to belong to more roles than they really do. For exam-
ple, from an invariant culture perspective a user may be considered to belong to both “ThIs role” and
“This role.” So if you had a URL authorization rule like <add roles=”ThIs role” />, and the role in
a database with the Turkish collation was “This role,” the RolePrincipal object would return true
from IsInRole. However, the same comparison made using RoleProvider.IsUserInRole against the
database would treat these two roles as completely different and unique strings. A role check using the
provider directly would succeed only for “This role.” It would fail for the other role because in Turkish
the capital “I” is from a different character pair.

524

Chapter 13

16_596985 ch13.qxp 12/14/05 7:52 PM Page 524

Now granted that this discussion can be a bit mind-numbing, and when the ASP.NET team attempted to
protect against this, the cure was worse than the problem. The main thing to remember is that if you use
Role Manager with data stores that aren’t running in the invariant culture (for example, the Latin1_General
collation is a close enough approximation in SQL Server), make sure that the role names you choose result
in consistent string comparisons in your data store and on servers where you will be calling
RolePrincipal.IsInRole.

At this point, take a look at a simple example of a console application that demonstrates how the internal
caching behavior of RolePrincipal works. Just as Membership works in non-ASP.NET environments,
Role Manager can be used outside of ASP.NET. The sample console application references System.Web.dll
and includes configuration settings in its app.config file to enable the Role Manager feature:

<roleManager enabled=”true”
defaultProvider=”roleprincipalcaching”>

<providers>
<add name=”roleprincipalcaching”

etc... />
</providers>

</roleManager>

The console application performs some initial setup for the example and then exercises the internal
cache logic in RolePrincipal by calling GetRoles after the role assignments have been changed:

using System.Security;
using System.Web.Security;
...
static void Main(string[] args)
{

//initial setup code – snipped for brevity...

GenericIdentity gi = new GenericIdentity(“testuser_rp”);
RolePrincipal rp = new RolePrincipal(gi);

string[] currentRoles = rp.GetRoles();
foreach (string r in currentRoles)

Console.WriteLine(r);

//Now change the user’s role assignments
Roles.AddUserToRole(“testuser_rp”, “role_2”);
Roles.RemoveUserFromRole(“testuser_rp”, “role_3”);

//The RolePrincipal’s roles will not have changed at this point
//Note that the sample code never sets Thread.CurrentPrincipal so
//the RolePrincipal has not been invalidated at this point
currentRoles = rp.GetRoles();
foreach (string r in currentRoles)

Console.WriteLine(r);

//Force the RolePrincipal to flush its internal cache
rp.SetDirty();

//Now the RolePrincipal will reflect the changes

525

Role Manager

16_596985 ch13.qxp 12/14/05 7:52 PM Page 525

currentRoles = rp.GetRoles();
foreach (string r in currentRoles)

Console.WriteLine(r);
}

A GenericIdentity is constructed with a username that has already been associated with three roles
using the default provider. The first call to GetRoles causes this information to be loaded from the
provider:

role_1
role_3
role_5

After dumping out this information, the test application changes the user’s role assignments by adding
the user to a new role, as well as removing the user from an existing role. However, because the first call
to GetRoles caused the RolePrincipal to cache the role information internally, the next call to
GetRoles still uses the cached information.

role_1
role_3
role_5

The RolePrincipal doesn’t reflect the changes to the user’s role assignments at this point. The test
application then forces the RolePrincipal instance to flush the cached information with a call to
SetDirty. Now when the test application calls GetRoles again, the principal goes back to the provider
to reload the role data, and as a result the output reflects the changes that were made.

role_1
role_2
role_5

Keep this behavior in mind if you happen to be working with an administrative application where you
change user-to-role assignments. If you Alt-Tab off to another browser window running as the user you
just edited, and you are wondering why no changes are showing up, it is probably the caching behavior
in RolePrincipal that is preventing your changes from taking effect.

Now that you have an understanding of how the internal cache within RolePrincipal works, you can
explore how cookie caching is supported as an additional caching layer. The Role Manager feature has
the ability to take the internal role cache within a RolePrincipal and store this information inside of a
cookie. The RoleManagerModule is responsible for managing this process, but it is the RolePrincipal
that supports the core functionality that makes this all work.

The method that makes this work is the ToEncryptedTicket method on the principal. This method
serializes a RolePrincipal instance into a string. Internally, the method first runs RolePrincipal
through the binary formatter. Because RolePrincipal implements ISerializable, some custom seri-
alization logic runs at this point to handle the serialization of the principal’s IIdentity.
RolePrincipal doesn’t serialize its associated IIdentity when serialization occurs as a result of a call
to the ToEncryptedTicket method. Note that if you just write some serialization code using the
Framework’s BinaryFormatterdirectly, then the IIdentity reference will be serialized.

526

Chapter 13

16_596985 ch13.qxp 12/14/05 7:52 PM Page 526

Because the intent of ToEncryptedTicket is to convert the RolePrincipal into a payload suitable for
a cookie, it intentionally skips serializing the IIdentity reference. There is no need for it when reconsti-
tuting a RolePrincipal from a cookie because the constructor overloads that accept the stringized
RolePrincipal also require an IIdentity reference. As a side note, RolePrincipal in the RTM
version of the Framework uses binary serialization because theoretically this should make it easier in
future versions to be able to run web farms with different versions of the Framework issuing different
serialized versions of RolePrincipal. Both up-level and down-level versions of the Framework should
be able to work with a serialized RolePrincipal without blowing up due to deserialization exceptions.

After ToEncryptedTicket gets back a byte array representation of the RolePrincipal, it converts the
byte array into a string that can be safely stored in a cookie without triggering ASP.NET request valida-
tion. As part of this conversion, RolePrincipal secures the string using the settings from the
cookieProtection attribute in the <roleManager /> configuration element. By default, the string is
encrypted using AES and signed with HMACSHA1. The algorithms used and the key values used are all
determined from the <machineKey /> section. If you want to change any of this information, you can
change the configuration attributes on <machineKey /> just as you would for controlling the encryption
and signing information for Forms Authentication. Also, as with Forms Authentication, you can change
the cookieProtection attribute on <roleManager /> to None, All, Encryption, or Validation.

At this point, the work of ToEncryptedTicket is done; it doesn’t actually validate if the resulting payload
is too large for storage in a cookie. Furthermore, there isn’t any functionality inside ToEncryptedTicket
specific to ASP.NET. You can literally serialize RolePrincipal into a string, store the string somewhere (on
a disk, in a database table, and so on), and then reconstitute the RolePrincipal from the string at a later
point in time.

//Serialize the RolePrincipal
string stringRP = rp.ToEncryptedTicket();

//Do some other work here...

//Reconstitute the RolePrincipal
RolePrincipal anotherRP = new RolePrincipal(gi, stringRP);
Console.WriteLine(“User is in role_1: “ + anotherRP.IsInRole(“role_1”));
Console.WriteLine(“User is in role_3: “ + anotherRP.IsInRole(“role_3”));
Console.WriteLine(“User is in role_5: “ + anotherRP.IsInRole(“role_5”));

The output from this sample code is:

User is in role_1: True
User is in role_3: True
User is in role_5: True

Using the sample console application from earlier, you can extend it by serializing the RolePrincipal
prior to changing the user’s role assignments (remember the user was removed from role 3 and added to
role 2). If you add this code to the sample application, after creating a new RolePrincipal using the
output from ToEncryptedTicket, the original role information is cached internally by the new
RolePrincipal instance.

What is interesting, though, is if you take the new RolePrincipal and call GetRoles on it:

currentRoles = anotherRP.GetRoles();
foreach (string r in currentRoles)
Console.WriteLine(r);

527

Role Manager

16_596985 ch13.qxp 12/14/05 7:52 PM Page 527

when you dump out the results you will see what might look like a discrepancy:

role_1
role_2
role_5

What happened here? For a second there it looked like the output of ToEncrypedTicket preserved the
set of role assignments at the time serialization occurred. The previous code snippet with a series of
IsInRole checks definitely confirms this behavior. The reason for this apparent schizophrenia of the
RolePrincipal is that the principal handles the internal cache differently when a new RolePrincipal
is initialized from the string output of ToEncryptedTicket.

After you call either of the two constructors that have an encryptedTicket parameter (the two con-
structor overloads are the companions to the two constructor overloads discussed earlier with the one
difference being the extra string parameter for the encrypted ticket), RolePrincipal does a few special
things with the extra string data:

1. The encryptedTicket parameter is decoded back into a byte array, and that array is then dese-
rialized with the BinaryFormatter.

2. The RolePrincipal makes two sanity checks with the resulting data. It confirms that the user-
name that was previously encoded into the encryptedTicket matches the username on the
IIdentity that was passed to the constructor. Then RolePrincipal confirms that the provider
name encoded in the encryptedTicket matches the name of the provider associated with the
current RolePrincipal instance. Both of these comparisons are case-insensitive ordinal com-
parisons. If either of these checks fails, the ticket is discarded and the RolePrincipal instance
functions as if it were constructed without the encrypted ticket.

3. If the expiration date contained in the deserialized ticket indicates that the information has
expired, the ticket is discarded and the RolePrincipal instance functions as if it were con-
structed without the encrypted ticket.

4. RolePrincipal looks at IssueDate and ExpireDate that were extracted from the
encryptedTicket. If you have configured Role Manager to support sliding cookie expirations
(that is, the cookieSlidingExpiration configuration attribute on the <roleManager /> con-
figuration element has been set to true), and if more than 50% of the encrypted ticket’s lifetime
has passed, the principal resets IssueDate to the current date-time and updates ExpireDate
accordingly. As a side effect of this, the state of the principal is considered to have changed so
the principal also marks itself for reserialization when RoleManagerModule runs at the end of a
page request.

These validations ensure that the string-encoded version of the RolePrincipal is not spuriously used
with a different user. It also ensures that whatever machine is responsible for decoding the encrypted
string actually has a named RoleProvider matching the one defined within the encryptedTicket
parameter. These checks imply a few things you need to do if you want cookie caching to work properly
across multiple machines in a web farm.

First, you need to ensure that all of the providers are configured the same way across all of the machines.
This means the same provider names need to be present for the encrypted string representation of a
principal to work. It also implicitly means that providers with the same name in a web farm should be
configured the same way. For example, the RolePrincipal is not going to validate that the application
name for a provider called foo” on one machine is actually the same application name as the provider
foo that was associated with RolePrincipal when it was originally serialized on a different machine. If

528

Chapter 13

16_596985 ch13.qxp 12/14/05 7:52 PM Page 528

for some reason you use the same provider names across a web farm but with different application
names, then it is likely you will end up with inconsistent role information depending on what machine
servers up any given request.

The second assumption is that if a user is initially authenticated as foo when a RolePrincipal is serialized,
then on another machine when a RolePrincipal is being deserialized the same user will be known as foo.
Typically, for custom authentication schemes, or for Forms Authentication, the string value of the authenti-
cated username is fixed after login. For example, the string used at login time against a site using Forms
Authentication is encoded into the forms authentication cookie, and hence will remain the same for the
duration of the login session.

Back to the original problem where the sample code appeared to lose the cached role information passed
via encryptedTicket. Assuming that none of the validations just described failed, you have a
RolePrincipal with its internal dictionary containing all of the roles from encryptedTicket. When
this initialization occurs though, RolePrincipal “remembers” that it was initialized from an encrypted
string, and not from a call to RoleProvider.GetRolesForUser. As long as your code just calls
IsInRole, RolePrincipal will continue to fulfill this request using the internal dictionary of roles.

However, after you call GetRoles as shown in the earlier code snippet, RolePrincipal decides that the
role information from the encrypted string is not sufficiently authoritative to fulfill the request. So
instead, the RolePrincipal flushes its internal cache and then calls GetRolesForUser on the provider.
After GetRolesForUser is called, the RolePrincipal ends up with the latest role information for the
user, which is why in the sample the dump of the user’s roles after the call to GetRolesForUser was
different from the results of the successive IsInRole checks. After GetRolesForUser has been called
on the provider, the RolePrincipal remembers that this has occurred, and now all subsequent calls to
either IsInRole or GetRoles will be served from the principal’s internal cache.

Part of the reason for this discrepancy in behavior is that cookie caching is meant to be used only to speed
up calls to IPrincipal.IsInRole. Hence, the reason for storing the encryptedTicket in a cookie is only
to fulfill role checks. The general idea behind calling GetRoles is that the caller wants to have a reasonably
up-to-date representation of that user’s roles. Even though calling GetRoles more than once results in
the use of cached data, in the normal use of a RolePrincipal on an ASP.NET page request, the page is
running for only a few seconds. So, having GetRoles call the provider the first time ensures that for the
duration of the page request your code has a very up-to-date array of the user’s roles. The subsequent
caching in this case is a minor optimization to ensure that if the page code continues to call GetRoles that
the page doesn’t end up thrashing the underlying data store. If your code actually requires different
GetRoles calls to return different data, you can always manually force the principal to flush its internal
cache through a call to SetDirty.

Aside from the extra constructor overloads and the ToEncryptedTicket method, there are a few properties
on RolePrincipal that deal with cookie caching. These are briefly described in the following list:

❑ CachedListChanged— If the principal calls GetRolesForUser on its associated provider, if
SetDirty is called, or if the RolePrincipal renewed the IssueDate and ExpireDate due to
sliding expirations, the value of this property is set to true. However, if the principal is initial-
ized from an encrypted ticket, the issue and expiration dates were not refreshed, and only
IsInRole is called on the principal, this property returns false. This property is used by the
RoleManagerModule to determine whether it needs to reissue the role cache cookie. If the state
of the principle’s internal cache initialized from an encrypted ticket has not changed and the date
information also has not changed, then the RoleManagerModule can avoid the expensive over-
head of reserializing the RolePrincipal and encrypting the results.

529

Role Manager

16_596985 ch13.qxp 12/14/05 7:52 PM Page 529

❑ IssueDate— Returns the machine local date-time the cached information in an
encryptedTicket was originally created. If the RolePrincipal was not initialized from an
encryptedTicket, this property always returns the current local date-time. Note that inter-
nally this data is stored as a UTC date-time, and the “UTCness” of this value is preserved when
a RolePrincipal is serialized by ToEncryptedTicket.

❑ ExpireDate— Returns the machine local date-time that the cached information in an
encryptedTicket is no longer considered valid. If the RolePrincipal was not initialized
from an encryptedTicket (for example, the first time a RolePrincipal for a user is ever cre-
ated), this value is set to the current local date-time plus the value of the cookieTimeout con-
figuration attribute on the <roleManager /> configuration element. As with IssueDate,
internally this value is maintained as a UTC date-time.

❑ Expired— This property compares the private UTC value of ExpireDate against the current
UTC date-time. If ExpireDate is less than the current UTC date-time, then the property returns
true. This property is checked when the RolePrincipal is deserialized from an
encryptedTicket to determine whether the encrypted information is stale. Note that you can
end up in an edge case where the deserialization check succeeds, but then one millisecond later
the encrypted information expires. In this case, for the duration of the lifetime of the
RolePrincipal, the cached information from the encryptedTicket will still be used. This
behavior is OK for a page request, because a page request is normally completed in a few sec-
onds. However, if you are using the string ticket to initialize a RolePrincipal inside an appli-
cation like a Winforms application, where a RolePrincipal instance may live for a very long
time, then you should ensure that you have code in your application that periodically checks
the Expired property on the principal and generates a new instance if the current
RolePrincipal is expired.

❑ CookiePath— This property simply returns the value of Roles.CookiePath, which in turn
comes from the cookiePath configuration attribute on the <roleManager /> configuration
element. At one point, the path information for a RolePrincipal was actually stored in the
encryptedTicket. However, the path is no longer stored in the serialized string because you
could end up bloating the size of the serialized string for applications that had lengthy URLs.
Note that in a web farm environment all machines must be configured to use the same
cookiePath for Role Manager. Otherwise, the role cache cookie issued by one web server may
never be sent back to other servers in the farm.

In the next section, you will see how the RoleManagerModule works with the RolePrincipal to issue
a cookie that contains the encryptedTicket. Keep in mind ahead of time that it’s possible to create an
encryptedTicket that is too large for the RoleManagerModule to store in a cookie. Because serializing
a RolePrincipal and then encrypting and hashing the result is an expensive operation, you should test
the size of the return value from the ToEncryptedTicket method for users with a large number of
roles. If the resulting string is longer that 4096 characters, then the RoleManagerModule is never going
to issue a roles cookie, and hence you should probably turn of cookie caching.

Because the RolePrincipal uses binary serialization, this adds a few hundred characters of overhead
to the size of the role cache cookie. Roughly speaking, there is about an additional 350-character over-
head due to using binary serialization as opposed to some type of custom serialization mechanism. This
overhead is on top of the bloat caused by encoding the role information for storage in the cookie. For the
earlier sample where the user belonged to just three roles, the encryptedTicket was 492 characters
long — even though the length of the three role names was just 18 characters. Remember though that
this cookie stores not only each role name, but also issue/expiry dates, a version number, the user’s
username, the provider name and a few pieces of internal tracking information. As a result, there is

530

Chapter 13

16_596985 ch13.qxp 12/14/05 7:52 PM Page 530

always some additional character overhead from storing all of this information. From testing the cookie
caching feature with various numbers of roles, the ASP.NET team has been able to successfully store 300
roles (each role name was around seven characters long) in a role cache cookie with a cookie protection
setting of “All.”

The RoleManagerModule
The RoleManagerModule is an HttpModule that is responsible for two main tasks:

❑ Early during the request lifecycle, it places a RolePrincipal instance on HttpContext
.Current.User if the Role Manager feature is enabled. This work occurs during the
PostAuthenticateRequest event.

❑ At the end of a request, the module serializes the RolePrincipal into a cookie if cookie caching
has been enabled for Role Manager. The module does this during the EndRequest event.

The RoleManagerModule also exposes an extensibility point with the GetRoles event. If you want, you
can hook this event and add your own IPrincipal implementation to the context. This event is fired
just before the module performs its regular processing during PostAuthenticateRequest.

PostAuthenticateRequest
The RoleManagerModule subscribes to the PostAuthenticateRequest pipeline event because it needs
to set up a principal after an authenticated identity has been established but before any authorization
occurs. In earlier versions of ASP.NET, doing this was a bit tricky because there were no Post* events. In
ASP.NET 2.0 though, there are Post* events for every major pipeline event, and this makes it very easy for
functionality like Role Manager to inject itself at precisely the right time during the authentication and
authorization process in the HTTP pipeline.

If the Role Manager feature is not enabled, the module immediately exits. This is important because if
you look at the default HttpModule configuration in the root web.config, you will see that the
RoleManagerModule is always registered.

<httpModules>
<add name=”WindowsAuthentication” />
<add name=”FormsAuthentication” ... />
<add name=”RoleManager” type=”System.Web.Security.RoleManagerModule” />
<!--- other modules --->
<add name=”UrlAuthorization” ... />
<add name=”FileAuthorization” ... />
<!--- other modules --->

</httpModules>

So, the module registration is basically a no-op in the case that the Role Manager feature is disabled.
Assuming that the Role Manager feature is enabled though, the first thing the module does is fire the
GetRoles event. The event argument for this event can be used by a custom event handler to communi-
cate back to the module as to whether the event handler attached a user principal to the context. The
framework’s definition of the event argument is:

531

Role Manager

16_596985 ch13.qxp 12/14/05 7:52 PM Page 531

public sealed class RoleManagerEventArgs : EventArgs {
//Constructor
public RoleManagerEventArgs(HttpContext context)
//Properties
public bool RolesPopulated { get; set; }
public HttpContext Context { get; }

}

When an event handler needs to attach a user to the context, it can use the Context property from the
event argument as a convenient way to reference it. Now if an event handler does attach a user to the
context, it needs to indicate that this has occurred by setting the RolesPopulated property of the event
argument to true. When the RoleManagerModule sees that RolesPopulated has been set to true, it
will immediately exit from the PostAuthenticateRequest event. This is an important point because
the normal behavior of the RoleManagerModule is to extract an IIdentity from whatever principal is
on the context and then rewrap this IIdentity inside of a RolePrincipal. As a result, just setting a
principal on the context from inside of the GetRoles event handler is not sufficient if your intent is to
stop the RolManagerModule from any further processing.

One question you may have is why would you hook the GetRoles event? Although you could certainly
use the RolesPopulated event as a way to add your own custom principal to the HttpContext, the
“correct” way to accomplish this is by writing code in global.asax that hooks AuthenticateRequest
or PostAuthenticateRequest. Enabling the Role Manager feature just to hook the GetRoles event is
complete overkill for this scenario. If the RolePrincipal class was not sealed, then GetRoles would
have been a logical place to add a custom RolePrincipal-derived class to the context. But of course
because RolePrincipal is sealed in ASP.NET 2.0, you can’t do this either.

Probably the main use for the GetRoles event in ASP.NET 2.0 is for developers that configure multiple
providers for use with the Role Manager feature. Unless you write extra code, the RoleManagerModule
only works with the default provider. If you look at the Role Manager API, nowhere will you find a way
to configure the RoleManagerModule to automatically choose a nondefault provider when it creates a
RolePrincipal. The GetRoles event is the hook you need to be able to create a RolePrincipal that
works with a nondefault RoleProvider. With some extra code, you can include extra logic that on a
per-user basis selects the appropriate RoleProvider when new()’ing up a RolePrincipal. This
technique is shown a bit later in the chapter.

Assuming that you don’t hook the GetRoles event, the module performs the following:

❑ For anonymous users, any role cache cookie is ignored. In fact for anonymous users, if a role
cache cookie is found, a clear cookie header is sent back to the browser to delete it. Remember
that for anonymous users the RoleManagerModule just creates a RolePrincipal that always
returns false from IsInRole and an empty array from GetRoles.

❑ For authenticated users if the request does not have a role cache cookie, the module creates a
RolePrincipal that is based on the current IIdentity reference that can be extracted from
HttpContext.User.Context. This means that for forms authentication a RolePrincipal that
wraps a FormsIdentity is created. For sites using Windows authentication, a RolePrincipal
that wraps a WindowsIdentity is created. The main idea here is that the current IIdentity of
the authenticated user is preserved, while the outer IPrincipal based object is thrown away
and replaced by a RolePrincipal. As part of this work, the RolePrincipal created is associ-
ated with the default Role Manager provider. As noted earlier, if you want to use a nondefault
provider you must use the GetRoles event and write your own logic for creating a
RolePrincipal.

532

Chapter 13

16_596985 ch13.qxp 12/14/05 7:52 PM Page 532

❑ For authenticated requests that include a role cache cookie, the module creates a
RolePrincipal based on the current IIdentity and the encoded role information stored in
the role cache cookie. This means a RolePrincipal is initialized using the constructor overload
that accepts an IIdentity and a string value for the serialized representation of the
RolePrincipal’s role information. This logic process is similar to that in the previous bullet
point, with the one exception being that now the RolePrincipal has its internal role cache ini-
tialized based on the information from the role cache cookie. This also means that the default
processing in the module associates the RolePrincipal with the Role Manager’s default
provider as well.

There are a few sanity checks that RoleManagerModule will follow when it finds a role cache cookie:

❑ If a role cache cookie is sent in the request, but cookie-based caching is not enabled (that is, the
cacheRolesInCookie configuration attribute is set to false), then the cookie is ignored. In
this case, the RolePrincipal is initialized with just the current IIdentity and the default
provider.

❑ For anonymous users, the cookie is always ignored and cleared as mentioned earlier.

❑ If the cookieRequiresSSL attribute is set to true in configuration, and the current connection
is not an SSL connection, the cookie is ignored and a clear cookie header is sent back to the
browser. This check is intended to handle the case where a user agent does not honor the secure
bit on the cookie, and the agent sends the cookie over an unsecured connection. In this case, the
RoleManagerModule does not “trust” the cookie contents, and so it just drops the cookie and
initializes the RolePrincipal using only the current IIdentity and the default
RoleProvider.

So, one way or another RoleManagerModule eventually ends up with a RolePrincipal (potentially
initialized from the cookie). As a last processing step during PostAuthenticateRequest, the module
sets the RolePrincipal as the new value of HttpContext.Current.User, and it also sets the
RolePrincipal on Thread.CurrentPrincipal.

Explicitly synchronizing HttpContext and Thread with the same principal is necessary because
DefaultAuthenticationModule, discussed in Chapter 2, runs after the AuthenticateRequest pipeline
processing is done. However, the PostAuthenticateRequest event runs after AuthenticateRequest, as
well as after the hidden DefaultAuthenticationModule. If RoleManagerModule did not explicitly syn-
chronize the principal across both HttpContext and the current Thread, then any authorization logic that
used the Thread.CurrentPrincipal property would result in different results than authorization logic
using HttpContext.Current.User. An example of this is declarative role authorizations; the System
.Security.Permissions.PrincipalPermission attribute makes checks using Thread.Current
Principal.

For example, if you had a method in a web page that should only be callable by members of the
Administrators role, you could enforce this one of two ways. The imperative approach would be to write
a line of code like the following:

public void DoSomethingPrivileged()
{

if (User.IsInRole(“Adminstrators”))
{ //do some privileged work }

}

533

Role Manager

16_596985 ch13.qxp 12/14/05 7:52 PM Page 533

However, because RoleManagerModule does the right thing and synchronizes values appropriately,
you can use a declarative approach to security instead:

[PrincipalPermission(SecurityAction.Demand, Role=”Administrators”)]
public void DoSomethingPrivileged()
{ //do something privileged here }

Supporting declarative security with Role Manager also works in non-ASP.NET scenarios, though in
non-ASP.NET hosts the RoleManagerModule never runs. If you want RolePrincipal to work in non-
ASP.NET applications with declarative security demands, you can write code during application initial-
ization that sets the RolePrincipal onto the appropriate thread using Thread.CurrentPrincipal.
With all of this said though, you will most likely use imperative (that is, write code) based authorization
logic because it is substantially easier to write code that strings together complex rules involving OR
logic (that is, if a user belongs to role_A or (role_B and role_C), then carry out some custom logic).

EndRequest
RoleManagerModule also runs during the EndRequest event of the pipeline. The only work the mod-
ule performs during this event is to send the role cache cookie. If caching role information in a cookie is
not enabled, then the module doesn’t perform any work during EndRequest. Assuming that the role
caching is enabled though, the module goes through the following steps to send a role cache cookie.

❑ If the current user is anonymous, the module never sends a role cache cookie. Instead, it just
exits from EndRequest.

❑ If the cookieRequiresSSL attribute is set to true, the current user is authenticated, but the
current connection is not secured with SSL, the module does not send a role cache cookie. In this
way, RoleManagerModule is honoring the intent of the cookieRequiresSSL attribute; not only
should browser agents not send the role cache cookie over unsecured connections, but the mod-
ule itself should never be issuing the cookie in first place over non-SSL connections.

❑ If the user is authenticated, and there are no problems with the SSL state of the connection, then
RoleManagerModule checks to see whether a role cache cookie needs to be issued. It does this
by looking at the value of RolePrincipal.CachedListChanged. This property will always be
set to true after a call to RolePrincipal .GetRoles (remember that for a “fresh”
RolePrincipal the first call to IsInRole triggers a call to the GetRoles method). The prop-
erty can also be set to true if the current RolePrincipal was previously initialized from a role
cache cookie, and the principal determined that less than 50% of the cookie’s TTL remains. In
this case, the RolePrincipal internally refreshes the issue date and expiration date values for
the RolePrincipal if the cookieSlidingExpiration configuration attribute is set to true.
The principal then indicates that these changes have occurred by setting CachedListChanged
to true. If sliding cookie expiration is not enabled though, this auto-refresh of the date informa-
tion will never occur. The only things that change for the date-refresh case are the issuance and
expiration dates; the internal role cache at this point has not changed. Regardless of what ulti-
mately caused CachedListChanged to be set to true, the RoleManagerModule converts the
current RolePrincipal into an encrypted ticket with a call to
RolePrincipal.ToEncryptedTicket.

❑ If RolePrincipal.CachedListChanged is false, then the module exits because there is no
need to update the role cache cookie.

534

Chapter 13

16_596985 ch13.qxp 12/14/05 7:52 PM Page 534

❑ If the resulting string from ToEncryptedTicket is longer than 4096 characters, then the
RoleManagerModule ignores the serialized value and does not send the cookie with the serialized
role information. Instead, the module sends a clear cookie back to the browser. From testing both
Internet Explorer and Mozilla, a role manager cookie with a value that is 4096 characters in length
works with Role Manager. However, as you get above this limit, different versions of these
browsers start exhibiting different behavior around accepting long cookies and sending such long
cookies. For this reason, 4096 characters was chosen as a safe and reasonable upper limit for the
maximum length of the value of the role cache cookie.

❑ If the result of serializing RolePrincipal’s role information is a null, then the module instead
sends a clear cookie back to the browser. This normally will only occur if the current user
belongs to more roles than specified in the maxCachedResults attribute. The reason that
RoleManagerModule sends a clear cookie in this case is to handle the scenario where a user
once belonged to one or more roles and had a role cache cookie issued. Then at a later point in
time the user belonged to a larger number of roles, and the cached role information expired and
was subsequently refreshed from a provider. In this case, the role cache cookie needs to be reis-
sued, but because there are now more roles than can be safely cached in the role cookie, a clear
cookie is sent as the “new” role cache cookie.

If the processing logic makes it past the previous security and length checks, then
RoleManagerModule creates a new HttpCookie, sets the various cookie properties based on
the settings in the <roleManager /> configuration element, and sends it back in the Response.

Role Cache Cookie Settings and Behavior
The previous discussions have alluded to a number of different configuration attributes on
<roleManager /> used to configure caching behavior with Role Manager. The following list summa-
rizes the available settings and the effect they have on role cache cookies.

❑ cacheRolesInCookie— The default value in configuration is false. You need to explicitly
configure <roleManager cacheRolesInCookie=”true” /> in your configuration to enable
the cookie caching behavior of the RoleManagerModule.

❑ createPersistentCookie— By default if role cache cookies are issued, they are sent as
session-based cookies. This means no explicit expiration date is set on the cookie, and instead
the cookie expires when the browser closes. Note though that even for persistent cookies, the
validity of the information in the role cache cookie is determined by the issuance and expiration
date values that are encoded within the serialized role information. The Role Manager feature
never relies on the browser behavior as a determinant of the “freshness” of the role cache
cookie. For performance reasons, you can set this configuration attribute to true, in which case
an explicit expiration date is set on the cookie, which causes the cookie to be persisted to disk by
most browsers. This gives you some capability for cross-browser-session persistence of cached
role information. You should only enable persistent cookies though for sites where security is
not terribly important. A persistent cookie is potentially available to be hijacked and moved to
another machine. It also can result in stale role information being associated with a user even
though an administrator has changed the user-to-role associations in the back-end data store.

❑ cookieTimeout— By default this is set to 30 minutes. This value really drives the expiration date
for the cached role information that you get from calling RolePrincipal.ToEncryptedTicket.
If a RolePrincipal is initialized from an encrypted string, and if after deserialization the role
information indicates that it has expired based on the current time and the expiration date that

535

Role Manager

16_596985 ch13.qxp 12/14/05 7:52 PM Page 535

was determined from cookieTimeout, then RolePrincipal ignores the encrypted ticket and
instead will fetch fresh role information from its associated provider. Because the most likely use
of the ticket is as the value for the role cache cookie, the TTL for the serialized role information is
configured with the cookieTimeout setting even though the setting really applies to the behavior
of the RolePrincipal constructors that accept an encrypted ticket. If persistent cookies are used,
then the timeout setting is also used to set the expiration date for the persistent role cache cookie
sent to the browser.

❑ cookieRequiresSSL— By default this attribute it set to false. If it set to true then any role
cache cookies are issued with an additional setting indicating that the cookie should only be
send back over SSL connections. This means compliant browser agents should not send the role
cache cookie over non-SSL connections. The RoleManagerModule also enforces additional
security measures by rejecting role cache cookies sent over non-SSL connections. The module
will also not issue a role cache cookie over a non-SSL connection in the event that this attribute
is set to true.

❑ cookieSlidingExpiration— Defaults to true, which means that whenever a RolePrincipal
is initialized from an encrypted ticket, it checks the issuance and expiration date values that are
also encoded in the ticket. If the data is still considered valid, but more than 50% of the TTL for the
data has passed, then the RolePrincipal will update its IssueDate to the current UTC time and
the ExpiresDate to the current UTC time plus the value from cookieTimeout. The next time
that RolePrincipal is serialized back into an encrypted ticket, the new date information will also
be serialized into the ticket. If sliding expirations are disabled though, RolePrincipal never
updates it issuance and expiration dates, which means that after cookieTimeout minutes, the
encrypted ticket sent in the role cache cookie will no longer be considered valid. Disabling sliding
expirations is a good way to ensure that every cookieTimeout minutes the role information for
users gets refreshed from a provider.

❑ cookieProtection— By default the serialized representation of the role information returned
by ToEncryptedTicket is digitally signed with an HMACSHA1 hash and the hash and princi-
pal’s serialized data is then encrypted using AES. You can change the hash and encryption algo-
rithms as well as the key material that is used by configuring the <machineKey /> element.
The cookieProtection attribute has the same options as the protection attribute on the
<forms /> configuration element, and the hashing/encryption behavior is the same as it is for
forms authentication (remember the issue with synchronizing keys in a web farm!). Note that
although this attribute is named cookieProtection, it really applies to the security of the seri-
alized role information returned from ToEncryptedTicket. Because the most likely use of this
information is in a cookie, the configuration setting is called cookieProtection as opposed to
something else.

❑ maxCachedResults— The default value is 25. When ToEncryptedTicket is called, if the
number of roles the user belongs to exceeds 25, then ToEncryptedTicket just returns a null
value instead. If your users belong to a large number of roles or if the role names are very long,
you will need to experiment and determine the best setting of maxCachedResults that results
in serialized role representations being less than 4096 characters in length. Alternatively, your
users may regularly belong to more than 25 roles, but the role names may be very short and
thus the role information may still fit within the 4096 character limit — in this case, you will
need to increase the value of maxCachedResults. Of course, if most users belong to so many
roles that their serialized representation cannot fit within a cookie, then you might as well turn
off cookie caching because it won’t accomplish anything for you.

536

Chapter 13

16_596985 ch13.qxp 12/14/05 7:52 PM Page 536

There are a few other cookie configuration options that aren’t listed previously: cookieName,
cookiePath, and domain. These attributes all work the same way as the similarly named attributes
used by forms authentication.

One last note on the role cache cookie: as with forms authentication, RoleManagerModule always sets the
HttpOnly property on the role cache cookie to true. This is not something that you can turn off or ever
change. As a result, if you attempt to access the role cache cookie from a browser using JavaScript, even if
the intent is to only replay the cookie on another request programmatically, you will not be able to access
the role cache cookie. As with forms authentication, the intent of turning on HttpOnly is to minimize the
likelihood of a cross-site scripting attack easily hijacking the role cache cookie. You can review the section
on HttpOnly cookies back in Chapter 5 for more details on how HttpOnly cookies work.

Working with Multiple Providers during GetRoles
If you write complex applications that require the support of multiple Role Manager providers, then you
will also need to write code that works with RoleManagerModule. As mentioned earlier,
RoleManagerModule knows how to initialize a RolePrincipal on your behalf only if the user on the
context should be associated with roles from the default RoleProvider. However, if your application
allows logins against multiple back-end stores (perhaps you have multiple Membership providers con-
figured as well), then chances are that users will need to be associated with roles from different back-end
data stores as well. The extensibility hook you use to deal with this scenario is the GetRoles event
raised by the RoleMangerModule.

Writing the code to handle this scenario properly though can be a bit tricky. The problem is that it is basi-
cally up to you to mirror RoleManagerModule’s behavior in PostAuthenticateRequest. There are a
number of security checks and other work that the module is doing, and you need to faithfully clone this
behavior in a custom GetRoles event handler.

To demonstrate how you can use RoleManagerModule with multiple providers, set up a sample appli-
cation that uses two RoleProviders:

<roleManager enabled=”true” defaultProvider=”roleStore_A”
cacheRolesInCookie=”true”>

<providers>
<clear/>
<add name=”roleStore_A”

applicationName=”RoleStoreA”
connectionStringName=”LocalSqlServer”
type=”System.Web.Security.SqlRoleProvider, ...”/>

<add name=”roleStore_B”
applicationName=”RoleStoreB”
connectionStringName=”LocalSqlServer”
type=”System.Web.Security.SqlRoleProvider, ...”/>

</providers>
</roleManager>

<authentication mode=”Forms”/>
<authorization>

<deny users=”?”/>
</authorization>

537

Role Manager

16_596985 ch13.qxp 12/14/05 7:52 PM Page 537

This configuration defines two providers —roleStore_A and roleStore_B— by using two
SqlRoleProvider instances but with each provider using a different value for applicationName. The
net result is that both providers work with the same database and same set of database tables, but they
partition their data based on the application name. To set up some test data for this application, you can
use the Web Administration Tool inside of Visual Studio to create a default user account. The following
page then sets up some basic roles with each of the two role providers.

//Create a role with the “A” provider
RoleProvider rpA = Roles.Providers[“roleStore_A”];
if (!rpA.RoleExists(“Administrators in store A”))

rpA.CreateRole(“Administrators in store A”);

//Add the test user account to a role in “A” provider’s data store
if (!rpA.IsUserInRole(“testuser”, “Administrators in store A”))

rpA.AddUsersToRoles(
new string[] { “testuser” },
new string[] { “Administrators in store A” });

//Create a role with the “B” provider
RoleProvider rpB = Roles.Providers[“roleStore_B”];
if (!rpB.RoleExists(“Administrators in store B”))

rpB.CreateRole(“Administrators in store B”);

//Add the test user account to a role in “B” provider’s data store
if (!rpB.IsUserInRole(“testuser”, “Administrators in store B”))

rpB.AddUsersToRoles(
new string[] { “testuser” },
new string[] { “Administrators in store B” });

Now you have a test user account that belongs to two roles: one role managed by the first SqlRole
Provider and one role managed by the second SqlRoleProvider. In production use, though, you
would probably have different users associated with different authentication stores (for example, maybe
different SqlMembershipProvider instances), and you would want to align these users with their
corresponding RoleProvider instances. For this application, though, I am just using a single user
account for demonstration purposes.

The sample application hooks up an event subscription for GetRoles in global.asax:

void RoleManager_GetRoles(object sender, RoleManagerEventArgs re)
{

HandlingMultipleRoleProviders.CreatePrincipal(re);
}

This code takes advantage of ASP.NET’s behavior for hooking up event handlers to events exposed on
modules. Internally, the ASP.NET runtime interprets the method signature above to mean: find an event
called GetRoles on the HttpModule called RoleManager or RoleManagerModule and subscribe the
RoleManager_GetRoles method in global.asax to the GetRoles event exposed by the module. I
have the event subscription forward the call to a static method on a class that will do the real work
during this event.

538

Chapter 13

16_596985 ch13.qxp 12/14/05 7:52 PM Page 538

public class HandlingMultipleRoleProviders
{

public static void CreatePrincipal(RoleManagerEventArgs re)
{
//logic goes here

}
}

Because there are a number of different conditions the module needs to handle, the code inside of
CreatePrincipal first determines whether it should just immediately return and defer processing to
the RoleManagerModule instead:

HttpContext c = re.Context;

//Logic to determine if the second provider is used
string flag = c.Request.QueryString[“usenondefault”];
if (String.IsNullOrEmpty(flag) || flag != “true”)

return;

//Use default RoleManagerModule logic for anonymous users
if (!c.User.Identity.IsAuthenticated)

return;

In the sample application, the code decides to use a nondefault provider if a query-string variable called
“usenondefault” exists, and the variable is set to the string “true”. In a production application, you
would instead need a way to look at a logged-in user’s username and determine the correct RoleProvider
to select for that user. You could encode some extra information into the username (that is, set the username
to “username + provider_name”). You could use another approach such as issuing a cookie at login time
that indicates the appropriate RoleProvider to use for the logged in user. In the chapter on forms authenti-
cation, you also saw examples of using the UserData property from FormsIdentity.Ticket when run-
ning in cookied mode; you could use this approach as well to store information that allows you to figure out
the correct RoleProvider for the user.

Regardless of the approach you choose, the main thing is that if a GetRoles event subscription determines
that the default provider should be used, it can just exit and leave RoleManagerModule to do the processing
for the request. The preceding sample code also checks to see if the user for the current request is authenti-
cated; if the user is anonymous the method also immediately returns. Because Role Manager doesn’t support
the concept of associating roles to an anonymous user, there is no need for any custom processing.

At this point, there are two general scenarios the custom GetRoles event handler needs to deal with:

❑ Creating a RolePrincipal when cookie caching is in effect

❑ Creating a RolePrincipal when cookie caching is not enabled

If cookie caching is being used, the event handler mirrors the same security checks and behavior as the
RoleManagerModule.

if (Roles.CacheRolesInCookie)
{

if ((!Roles.CookieRequireSSL || c.Request.IsSecureConnection))
{

539

Role Manager

16_596985 ch13.qxp 12/14/05 7:52 PM Page 539

//more custom logic here to create a RolePrincipal
}
else
{

if (c.Request.Cookies[Roles.CookieName] != null)
Roles.DeleteCookie();

}
}

For an authenticated user, the custom event handler will carry out the necessary work to extract the
encrypted role cache information from the cookie. However, if there is a mismatch between the
cookieRequireSSL configuration attribute, and the current SSL state of the connection, then the cus-
tom event handler instead sets a clear cookie header. This behavior matches what RoleManagerModule
does when it receives a role cache cookie in the clear, but the application configuration indicates that the
role cache cookie should be issued and accepted only over SSL connections.

The logic for handling the encrypted role cache cookie is shown here:

try
{

HttpCookie cookie = c.Request.Cookies[Roles.CookieName];
if (cookie != null)
{

string cookieValue = cookie.Value;
if (cookieValue != null && cookieValue.Length > 4096)

Roles.DeleteCookie();
else
{

//ensure proper casing on some cookie properties
if (!String.IsNullOrEmpty(Roles.CookiePath) &&

Roles.CookiePath != “/”)
cookie.Path = Roles.CookiePath;
cookie.Domain = Roles.Domain;

//create a new principal
c.User = new RolePrincipal(“roleStore_B”,

c.User.Identity,
cookieValue);

}
}

}
catch { /*ignore errors*/ }

The event handler gets a reference to the role cache cookie (Roles.CookieName makes it easy to get to
the correct cookie). It then extracts the cookie’s value because this is the encrypted representation of the
user’s role information. Just as with RoleManagerModule, the custom code makes a quick sanity check to
ensure that it hasn’t been sent an excessively long value. Because you know that RoleManagerModule
will never issue a cookie during EndRequest where the value is longer than 4096 characters, you know
that any inbound cookie with an excessively long value is bogus and, thus, should be ignored. If an exces-
sively long cookie value is present, the custom code also sends back a clear cookie header to prevent the
browser from continuing to send a bogus cookie.

540

Chapter 13

16_596985 ch13.qxp 12/14/05 7:52 PM Page 540

The code just preceding the constructor call is boilerplate code from the ASP.NET RoleManagerModule.
ASP.NET uses this code to ensure that if the casing of any of the cookie settings is wrong that the role
cache cookie has these values reset with the correctly cased values. At one point, ASP.NET code would
read these values back out of the request cookie — hence the logic for ensuring proper casing. Assuming
that the cookie value’s length is acceptable, the custom code creates a new RolePrincipal. Note that in
the preceding custom code, it uses a constructor overload that accepts a provider name as the first param-
eter. This ensures that RolePrincipal internally will use the correct provider reference if it ever needs to
call GetRolesForUser on the provider. For a production application the actual provider name would be
selected (as opposed to being hard-coded) using some algorithm that tells you the correct RoleProvider
to choose based on the username. The newly created RolePrincipal is also set on the HttpContext.

The custom code next has to handle the case where a RolePrincipal has not been created yet. For the
custom code shown so far, this will occur either for authenticated users hitting the application for the first
time (so no role cache cookie exists yet) or for authenticated users running over non-SSL connections where
the role cache cookie was sent but the application’s configuration only allows the role cache cookie to be
processed when sent over an SSL connection.

//Either no role cache cookie, or the cookie was invalid
if (!(c.User is RolePrincipal))

c.User = new RolePrincipal(“roleStore_B”,c.User.Identity);

This code ensures that if a RolePrincipal doesn’t exist yet on the context, that one gets created. The
constructor overload in this case also accepts a provider name, but no encrypted ticket is passed to the
constructor. This means the first time the RolePrincipal is used, it will need to call GetRolesForUser
on the nondefault provider whose name was passed to the constructor.

The only tasks left at this point are to synchronize the principal on the context with the thread object, and
telling RoleManagerModule that it should skip further processing in its PostAuthenticateRequest
handler.

//Sync principal to Thread as well
Thread.CurrentPrincipal = c.User;

//Notify RoleManagerModule to skip its processing
re.RolesPopulated = true;

Remember that if you write your own code to handle the GetRoles event, you must set the
RolesPopulated property on the event argument to true. If you forget to do this, RoleManager
Module will still carry out its default processing and promptly overwrite any principal you created in a
custom event handler.

Now that the sample application has the necessary custom logic to switch between the default provider
and the nondefault RoleProvider, you can try out the custom behavior with a simple page. The test
page allows you to flip between the two different providers by using two different URLs:

<form id=”form1” runat=”server”>
<div>
Click to use second provider

Click to use default provider
</div>
</form>

541

Role Manager

16_596985 ch13.qxp 12/14/05 7:52 PM Page 541

When the page runs, it lists the roles that the current user belongs to:

protected void Page_Load(object sender, EventArgs e)
{

foreach (string role in ((RolePrincipal)User).GetRoles())
Response.Write(“Belongs to: ” + role + “
”);

}

If you login to the sample application initially, the test page lists:

Belongs to: Administrators in store A

If you then click the link that includes the query-string variable with a value of “true,” the custom event
handler creates a RolePrincipal that uses the second configured provider. As a result, the test page
displays:

Belongs to: Administrators in store B

You can seamlessly flip back and forth between using a default provider (and hence the default
RoleManagerModule logic) and the second nondefault provider by clicking on the two links. Aside
from the simple logic in the custom event handler for determining which provider to use, the rest of the
code shown in this section is exactly what you need to effectively use multiple Role Manager providers
in an application.

Because the code manipulates both Thread.CurrentPrincipal and HttpContext.Current.User, the
code must be running in Medium trust or higher. The policy files for Medium trust and above include the
necessary permission to change the principal object. Alternatively, you can factor out the event handler
code into a GAC’d assembly where you can create SecurityPermission(SecurityPermissionFlag
.ControlPrincipal)and then assert it. If you attempt to run the sample code in Low or Minimal trust,
it will instead fail with a SecurityException because these trust levels do not allow user code to manip-
ulate the principal on either context or the thread.

RoleProvider
As with the Membership feature, Role Manager depends heavily on providers. In fact, the major pieces
of functionality within the Role Manager feature are effectively implemented in RoleManagerModule,
RolePrincipal and concrete implementations of the RoleProvider base class. Because Role Manager
does not have an object model for a role, the RoleProvider definition is pretty simple. Roles are just
strings — and the users associated with those roles are also just strings. As a result, the RoleProvider
base class is just an abstract class definition. Unlike MembershipProvider, RoleProvider does not
have any helper methods or private methods implementing base portions of the Role Manager feature.

public abstract class RoleProvider : ProviderBase
{
//Properties
public abstract string ApplicationName { get; set; }

//Authorization related methods
public abstract bool IsUserInRole(string username, string roleName);

//Methods that deal with fetching a user’s role information

542

Chapter 13

16_596985 ch13.qxp 12/14/05 7:52 PM Page 542

public abstract string[] GetRolesForUser(string username);

//Methods for creating, deleting and managing roles
public abstract void CreateRole(string roleName);
public abstract bool DeleteRole(string roleName, bool throwOnPopulatedRole);
public abstract bool RoleExists(string roleName);
public abstract void AddUsersToRoles(string[] usernames, string[] roleNames);
public abstract void RemoveUsersFromRoles(string[] usernames,

string[] roleNames);
public abstract string[] GetUsersInRole(string roleName);
public abstract string[] GetAllRoles();
public abstract string[] FindUsersInRole(string roleName,

string usernameToMatch);
}

Because the RoleProvider treats a role as a string, and some of the providers internally convert array
parameters into comma-delimited strings, roles normally are not allowed to have a comma character. For
example, if you attempt to create a role called “this,is,a,role”, both the Roles class and most of the default
providers will throw an ArgumentException. The reason for this restriction is that not all data stores can
accept an array type. Methods like AddUsersToRoles that accept string arrays may have these arrays
converted into a comma-delimited string of roles that is then passed down to a database for subsequent
parsing and processing. To prevent confusion over whether a comma is a delimiter as opposed to part of a
role name, the Roles class and all of the default role providers, except for WindowsTokenRoleProvider,
disallow the use of a comma when creating roles.

One thing to keep in mind if you are thinking about implementing a custom provider is the relative sim-
plicity of the Role Manager feature. For custom providers implemented against relational data stores, it is a
pretty trivial exercise to write a basic RoleProvider implementation. The core portion of RoleProvider
is the GetRolesForUser method; if a custom provider does not implement this method, then the
RolePrincipal class will not work properly. And of course without the RolePrincipal class there isn’t
much point to using Role Manager. The IsUserInRole method is a logical adjunct to GetRolesForUser.
At one point, providers also needed to implement IsUserInRole for the RolePrincipal to work prop-
erly, but with some of the later changes to the way the role cache cookie works, it turns out that
RolePrinicpal no longer calls IsUserInRole. However, given the nature of authorization checks, it is
reasonable to expect a minimal RoleProvider implementation to also implement IsUserInRole (if your
data store supports getting all roles for a user, then it implicitly supports role checks like IsUserInRole).

The remainder of the methods on the provider base class are optional from a runtime perspective. If you
already create roles and associate users to roles using some other management tool or interface, then you
can stub out the rest of the methods on a custom RoleProvider and just throw a
NotSupportedException from them instead.

Note that the RoleProvider definition does not really expose the concept of nesting roles within roles.
The administrative portion of RoleProvider does not have methods like AddRoleToRole or RemoveRole
FromRole. If you have a custom data store that supports the nesting of roles, you can still expose most of
this functionality from methods like IsUserInRole. There is nothing wrong with a custom provider that
internally has the logic to recurse through a nested hierarchy of roles to perform authorization checks or to
determine membership in a role. If necessary, a custom provider can add a few methods to its implementa-
tion to support the necessary administrative methods for nesting roles within roles.

543

Role Manager

16_596985 ch13.qxp 12/14/05 7:52 PM Page 543

The AuthorizationStoreRoleProvider discussed in Chapter 15 is an example of a RoleProvider
that works against a data store that supports role nesting. Because the AuthorizationStore
RoleProvider uses the Authorization Manager (aka AzMan) functionality that was first available as
part of Windows Server 2003, when you call IsUserInRole on this provider it will properly handle
group nesting. However, this provider does not expose any special methods to administer nested roles;
instead, the expectation is that developers and administrators will use the MMC or management API
available for AzMan policy stores.

Basic Configuration
Just like MembershipProvider, a RoleProvider can partition its data based on an application name
from configuration.

❑ ApplicationName— Custom providers should at least implement the getter for this property. The
concept of separating data by application name is so common to many of the new provider-based
features in ASP.NET 2.0, that the getter should always be implemented. If it turns out that you are
mapping role data to a data store that doesn’t really have the concept of an “application,” you can
have the setter throw a NotSupportedException. In this case, your custom provider can just
ignore the application name that it loaded from configuration.

Authorization Methods
A basic provider implementation should always implement the following two methods:

❑ GetRolesForUser— As mentioned earlier, RolePrincipal always calls this method on a provider
at least once prior to making an authorization check inside RolePrincipal.IsInRole. If the
username parameter doesn’t exist, the usual convention is to return an empty string array.
Similarly, if the user exists in the data store but doesn’t belong to any roles, a provider should
return an empty string array as well.

❑ IsUserInRole— Developers may call this method directly on a provider as opposed to calling
IsInRole on RolePrincipal. For users who belong to a large number of roles where
GetRolesForUser may take an excessive amount of time to run, it will be faster (up to a point) to
call IsUserInRole on a provider. There is a bit of a trade-off when developers need to balance the
up-front cost of making a single round trip to the data store that returns a large result set when call-
ing GetRolesForUser, versus calling the data store multiple times with IsUserInRole, in which
case each individual query in the data store is much faster. For this reason, custom provider imple-
menters should implement IsUserInRole and GetRolesForUser; furthermore, the implementa-
tion of IsUserInRole should ideally be faster than the implementation of GetRolesForUser
(technically, a custom provider could implement IsUserInRole in terms of GetRolesForUser,
but then there is no performance gain for single authorization checks when calling IsUserInRole).
If the user specified by the username parameter doesn’t exist in the data store or if the role specified
by the roleName parameter doesn’t exist, a custom provider should return false. Developers nor-
mally would not expect an authorization check to throw an exception for these cases.

Managing Roles and Role Associations
The remaining methods on RoleProvider are primarily used by administrative tools like the Web
Administration Tool (WAT) available inside of Visual Studio. If you already have other management tools
for your custom role stores, you can stub out these methods and throw a NotSupportedException. If

544

Chapter 13

16_596985 ch13.qxp 12/14/05 7:52 PM Page 544

your intent, though, is for your provider to be useable from administrative tools like the WAT, then you
should implement the following methods.

❑ CreateRole— Creates a new role in the data store. Providers should throw a Provider
Exception if an attempt is made to create a role, and the role already exists.

❑ DeleteRole— Removes a role from the data store. If the parameter throwOnPopulatedRole is
set to true, the provider should throw a ProviderException if an attempt is made to delete a
role and the role still has users associated with it. If throwOnPopulatedRole is set to false,
this is an indication that the caller is all right with deleting the role, and any remaining user-to-
role associations. If an attempt is made to delete a role that doesn’t exist in the data store, a
custom provider should just return false from this method rather than throw an exception. If
the role is found, and the deletion is successful, then a custom provider should return true.

❑ RoleExists— A provider returns true if the roleName exists in the data store; otherwise, a
provider should return false.

❑ AddUsersToRoles— This method allows a developer to add one or more users to each of the roles
specified in the roleNames parameter. A provider should check to see that each user specified in
the usernames parameter exists and that each role specified in the roleNames parameter exists. If
either of these checks fails, the provider should throw ProviderException. Also, if any user in the
usernames parameter already belongs to one of the roles specified in the roleNames parameter,
the provider should throw ProviderException. It is up to custom provider implementers to
determine how the transactional semantics of adding multiple users to roles are handled. For
example, the SqlRoleProvider performs all of the adds in a single transaction, or else it fails the
entire chunk of work. However, not all authorization data stores will be able to use transactions.

❑ RemoveUsersFromRoles— This companion method to AddUsersToRoles enables a developer to
remove each user specified in the usernames parameter from each role specified in the roleNames
parameter. The validation checks noted earlier for AddUsersToRoles should also be implemented
by custom providers for this method. Although in the case of removal, if an attempt is made to
remove a user from a role and the user does not already belong to that role, a ProviderException
should be thrown. (This is the reverse case of the validation that providers should implement in
AddUsersToRoles.) It is also up to a custom provider implementer as to whether any transactional
semantics are enforced. For example, the SqlRoleProvider will either successfully perform all
requested removals, or it will roll the entire chunk of work back.

❑ GetUsersInRole— Returns a string array containing the names of all of the users that are
currently members of the role specified by the roleName parameter. If the role is empty, the
provider should just return an empty string. However, if a request if made to get the users for a
nonexistent role then a ProviderException should be thrown.

❑ GetAllRoles— Returns a string array containing a list of all of the roles currently defined in
the data store. If no roles currently exist, then a provider should return an empty string instead.

❑ FindUsersInRole— Returns a string array containing all of the users whose names match the
search parameter specified by usernameToMatch that are members of the role specified by the
roleName parameter. If no user matches are found, a custom provider should return an empty
string array. However, if an attempt is made to search for users in a nonexistent role, a provider
should throw a ProviderException. If the underlying data store supports wildcard characters
for searches, a custom provider should allow these wildcard characters in the usernameToMatch
parameter and pass the wildcard characters to the data store for further processing.

545

Role Manager

16_596985 ch13.qxp 12/14/05 7:52 PM Page 545

WindowsTokenRoleProvider
Although we will cover the SQL and AzMan providers in their Chapters 14 and 15 respectively,
WindowsTokenRoleProvider has very limited functionality, so one section should suffice for explain-
ing how it works. As the name suggests, the provider works with a Windows security token. Although
the provider can theoretically run in any trust level (IsUserInRole will work in Minimal trust), it is
intended for use at Low trust or above. Unlike other providers, WindowsTokenRoleProvider does not
internally check the trust level during initialization. The reason for this is that if the runtime environ-
ment can get a Windows security token for a user, the provider will work. If the runtime environment
cannot get a token, then the provider fails. So, explicitly checking trust levels at initialization time is not
necessary for this provider.

The token the provider uses is the value from the Token property on a WindowsIdentity object. In an
ASP.NET environment, the provider gets a WindowsIdentity from the User property on the
HttpContext when using Windows authentication. In non-ASP.NET environments, the provider will
get the token from Thread.CurrentPrincipal. For both runtime environments, these are the only two
places the provider will look; there is no facility for passing an arbitrary token to the provider. In other
words, WindowsTokenRoleProvider works only with the credentials of the currently executing user.

The provider supports only the following two methods defined on RoleProvider:

❑ IsUserInRole— There are two overloads for this method — the overload that is defined by the
RoleProvider base class, as well as a special overload that accepts a System.Security
.Principal.WindowsBuildInRole value. Both overloads carry out an access check against
the current WindowsIdentity. There is also no trust level restriction on this method — it will
work in any of the ASP.NET trust levels.

❑ GetRolesForUser— Note that inside of this method, the provider makes an explicit check for
Low trust. Unlike IsUserInRole, if you new() up the provider and manually initialize it in
Minimal trust, GetRolesForUser will still fail. Calling IsUserInRole, however, will succeed
in Minimal trust because there is no explicit trust level check in that method.

The additional overload for IsUserInRole was added to the provider as a convenience. Internally, the
additional overload just takes the current user’s WindowsIdentity, wraps it in a WindowsPrincipal, and
then calls the IsInRole overload on WindowsPrincipal that accepts a WindowsBuiltInRole parameter.
These steps are necessary because when you use WindowsTokenRoleProvider with RoleManager in
ASP.NET, the principal object on the context is a RolePrincipal wrapping a WindowsIdentity (as
opposed to a WindowsPrincipal wrapping a WindowsIdentity which is what happens when you use
Windows authentication with an application and you have not enabled Role Manager).

There are two reasons why you might use WindowsTokenRoleProvider during development:

❑ You may need to start developing an application that will use Role Manager with a different
provider, but you currently are only running Windows authentication in your development
environment. Because Role Manager is provider-based, you can start writing code while using
the WindowsTokenRoleProvider and then later point swap in the provider that will be used in
production.

❑ Your application depends on fetching the group names for each authenticated user and then
performing custom authorization checks and business logic against this set of group names. The
WindowsTokenRoleProvider’s GetRolesForUser method already does this for you, so you
can make use of the provider to easily retrieve a string array of a user’s group membership. The
Framework’s WindowsPrincipal object doesn’t provide this functionality.

546

Chapter 13

16_596985 ch13.qxp 12/14/05 7:52 PM Page 546

If you use WindowsTokenRoleProvider on a site where the current user is considered anonymous (for
example a dummy WindowsPrincipal and WindowsIdentity were initially placed on the
HttpContext), then IsUserInRole will always return false and GetRolesForUser will always
return and empty string array. This behavior is consistent with the same values returned from
RolePrincipal for anonymous users. The extra IsUserInRole overload will also return false
because the WindowsIdentity that ASP.NET sets on the context for anonymous users is just a dummy
WindowsIdentity that doesn’t belong to any built-in roles.

The internal logic of WindowsTokenRoleProvider compares the username parameter for IsUserInRole
and GetRolesForUser to the string username of the current WindowsIdentity. This check is necessary
because at the provider level there are no overloads that implicitly work with the current user. So, there is
nothing preventing a developer from calling the provider’s methods passing in arbitrary usernames in a
domain. However, because the purpose of WindowsTokenRoleProvider is to work with the credentials of
only the currently authenticated user, the provider makes a quick sanity check to ensure that the username
parameter passed to it actually matches the username associated with the currently authenticated user. If a
mismatch exists, IsUserInRole will always return false, and GetRolesForUser always returns an
empty string (that is, the same behavior as the anonymous user case).

Assuming that the current user is authenticated, and no mismatch occurs, the provider uses the security
token of the user to carry out its work. For IsUserInRole, the provider converts the roleName parameter
to a group security identifier (SID) and then checks the user’s security token to see if that group SID exists.
Depending on the value of the roleName parameter (that is, a Windows group name), translating from a
string to a SID with a call to LookupAccountName may be an expensive operation. The GetRolesForUser
method can be even more expensive because, internally, it must perform a SID-to-name translation on each
of the group SIDs contained in the user’s security token. This is a very important point to keep in mind
because it means in complex domain environments a great deal of network traffic may be generated
attempting to convert each user’s group SID into a name. If some of the groups a user belongs to sit in
remote domains, GetRolesForUser can be a very long call.

For this reason, you should experiment with using cookie caching in conjunction with WindowsToken
RoleProvider because after the role information is retrieved with a call to GetRolesForUser, cookie
caching can prevent you from having to resolve groups SIDs to names for the duration of a user’s
browser session. If it turns out that your users belong to so many groups that you can’t fit them into a
cookie, you could disable cookie caching but still increase the maxCachedResult limit so that you can
call ToEncryptedTicket and get back a non-null value. Instead of storing the encrypted string in a
cookie you can use an alternative data store like a database. Although the earlier code sample for
RoleManagerModule showed you how to use the GetRoles event to handle multiple providers, you could
use the same approach to retrieve large encrypted tickets from a database and automatically reconstruct
a RolePrincipal on each request during the GetRoles event.

When you call IsUserInRole, the value of the roleName you pass in must include the appropriate
“domain” value of the role (that is, group) you are checking against. If the role is a well-known group
(that is, a built in group or NT AUTHORITY–based group), then the roleName parameter may need to
include NT AUTHORITY\\ or BUILTIN\\ before the group name: Note that the extra backslash is neces-
sary for escaping this character in C#. If you leave out these specifiers, the IsUserInRole check will
sometimes fail depending on the group you are checking. Always prepending either NT AUTHORITY\\
or BUILTIN\\ to the group name prevents any random problems. For domain groups, you always use
the familiar syntax of “DOMAIN\\GROUPNAME”. If you are calling IsUserInRole for a local machine
group though, you can use either the syntax “MACHINENAME\\GROUPNAME” or just “GROUPNAME”. Either
syntax is interpreted as referencing a group in the local machine’s SAM database.

547

Role Manager

16_596985 ch13.qxp 12/14/05 7:52 PM Page 547

As an example of this, the following code dumps the group membership for a user:

WindowsTokenRoleProvider wp =

(WindowsTokenRoleProvider)Roles.Providers[“AspNetWindowsTokenRoleProvider”];

string[] roles = wp.GetRolesForUser(User.Identity.Name);
foreach (string r in roles)

Response.Write(“You belong to: “ + r + “
”);

Aside from enabling Role Manager in configuration, and disallowing anonymous access to the test site,
this code is all that is needed to start using a WindowsTokenRoleProvider. The reason is that a provider
named AspNetWindowsTokenRoleProvider is defined by default in the machine.config file. As a
result every application, ASP.NET and non-ASP.NET, has access to this provider instance assuming that
the Role Manager feature has been enabled. Running this code results in the following output when I am
logged in:

You belong to: CORSAIR\Domain Users
You belong to: Everyone
You belong to: TestLocalMachineGroup
You belong to: BUILTIN\Administrators
You belong to: BUILTIN\Users
You belong to: NT AUTHORITY\INTERACTIVE
You belong to: NT AUTHORITY\Authenticated Users
You belong to: NT AUTHORITY\This Organization
You belong to: LOCAL

You can see that on my test machine I belong to a variety of groups: one located in the CORSAIR
domain, one that is clearly a local machine group (the TestLocalMachineGroup), and a number of
other default and built-in groups. One thing to note about this output is that when the provider’s
GetRolesForUser method returns the string names of groups located on the local machine, it always
strips off the machine name. That is why the local machine group is shown as
TestLocalMachineGroup instead of MACHINE\TestLocalMachineGroup.

Remember that the return value from GetRolesForUser can be cached internally by a RolePrincipal—
and that the internally cached set of roles in a RolePrincipal is used whenever you call IsInRole
against the principal. From a completeness perspective, it would have been nice to store local machine
groups that a user belongs to in both MACHINENAME\\GROUPNAME and GROUPNAME format. From a
Windows API perspective both of these syntaxes are valid. However, if the provider did so, developers
who depended on the count of roles returned from RolePrincipal.GetRoles would end up with twice
the number of local machine groups because they would be stored twice.

As a compromise, the WindowsTokenRoleProvider strips the machine name off the local machine
groups before returning the groups’ names from GetRolesForUser. The local machine names are not left
prepended to group names because if you need to deploy an application across different staging and
production environments, and you are using Role Manager (and potentially URL authorization), you
probably don’t want to be incessantly changing the machine name string used in all of your authorization
checks. So, it made more sense to strip off the machine name, thus making it easier to write applications
that use local machine groups without needing to reconfigure group names each time the code is moved
to a different machine.

548

Chapter 13

16_596985 ch13.qxp 12/14/05 7:52 PM Page 548

You won’t encounter this behavior if you make authorization checks by calling IsUserInRole directly
on the provider; when calling the provider’s IsUserInRole method directly you can use either syntax
for local machine groups. However, if you depend on RolePrincipal.IsInRole for authorization
checks you may run into this behavior and it may cause some unexpected problems. For example, using
the TestLocalMachineGroup shown in the earlier results, the following URL authorization check when
using Role Manager will fail:

<authorization>
<allow roles=”DEMOTEST\TestLocalMachineGroup”/>
<deny users=”*”/>

</authorization>

This exact same check will succeed if you turn off Role Manager and just use Windows authentication
instead. The WindowsPrincipal class never has to return roles as a string array, so when
WindowsPrincipal.IsInRole is called, internally, it can test local machine groups using alternative
syntaxes. The reason that the preceding check fails when using Role Manager is that RolePrincipal
internally caches the string array returned by WindowsTokenRoleProvider.GetRolesForUser. And
this array has only a string entry of TestLocalMachineGroup, so the string comparison against
DEMOTEST\TestLocalMachineGroup fails. The following configuration though will succeed:

<authorization>
<allow roles=”TestLocalMachineGroup”/>
<deny users=”*”/>

</authorization>

Now that the machine name is no longer part of the role name, the URL authorization check against
RolePrincipal succeeds because there is a string match on just TestLocalMachineGroup. If you hap-
pen to be developing an application, and authorization checks against local machine groups suddenly
fail when you switch from using only Windows authentication to using Windows authentication and
Role Manager with the WindowsTokenRoleProvider, the likely culprits are the group names in your
<authorization /> configuration element.

You can write some sample code that tries different ways of making role checks against the group names
shown earlier that were returned from GetRolesForUser:

Response.Write(“This Organization: “ +
wp.IsUserInRole(User.Identity.Name, “This Organization”));

Response.Write(“This Organization: “ +
wp.IsUserInRole(User.Identity.Name, “NT AUTHORITY\\This Organization”));

This code performs an authorization check against the “This Organization” default group. The first
check does not include “NT AUTHORITY\\” in the roleName parameter, while the second role check
does include it. This code results in the following output:

This Organization: False
This Organization: True

Now clearly the user account belongs to this group, but in the first case, without “NT AUTHORITY\\”
prepended to the roleName parameter, the group name was interpreted as a local machine group and
thus the check failed. If you use a different well-known group that has been around for a while, you get
different behavior:

549

Role Manager

16_596985 ch13.qxp 12/14/05 7:52 PM Page 549

Response.Write(“Local administrators: “ +
wp.IsUserInRole(User.Identity.Name, “Administrators”) + “
”);

Response.Write(“Local administrators: “ +
wp.IsUserInRole(User.Identity.Name, “BUILTIN\\Administrators”) + “
”);

This code uses two different variations for checking to see if the current user belongs to the local
Administrators group. As you can see in the following output, both coding styles result in the same
results:

Local administrators: True
Local administrators: True

Because of the subtle differences in behavior when performing authorization checks with special group
names, it is easier to always prepend either “NT AUTHORITY\\” or “BUILTIN\\”. For local machine
groups, you can be more lax in your coding style when calling IsUserInRole, as the following code
snippet demonstrates:

Response.Write(“A local machine group: “ +
wp.IsUserInRole(User.Identity.Name, “TestLocalMachineGroup”));

Response.Write(“A local machine group: “ +
wp.IsUserInRole(User.Identity.Name, “DEMOTEST\\TestLocalMachineGroup”));

Both of these authorization checks will succeed:

A local machine group: True
A local machine group: True

With either syntax for the roleName parameter, the provider interprets the roleName as a local machine
group. For groups that you create in a domain, though, you must always prepend the group name with
the domain name as the next sample demonstrates:

Response.Write(“The domain Users group: “ +
wp.IsUserInRole(User.Identity.Name, “CORSAIR\\Domain Users”));

Response.Write(“The domain Users group: “ +
wp.IsUserInRole(User.Identity.Name, “Domain Users”));

The first call will succeed because the provider can successfully resolve this to the default “Domain
Users” group that is present in every domain. However, the second check fails because the provider is
looking for a group called “Domain Users” on the local machine.

The domain Users group: True
The domain Users group: False

To summarize all of this, keep the following rules in mind when calling the provider’s IsUserInRole
method:

❑ Always prepend “NT AUTHORITY\\” or “BUILTIN\\” when working with these types of
groups.

❑ Always prepend “DOMAINNAME\\” when working with nonlocal groups located somewhere in
a domain.

550

Chapter 13

16_596985 ch13.qxp 12/14/05 7:52 PM Page 550

❑ Optionally, include “MACHINENAME\\” when working with local groups. See the following
note, though.

If you are using RolePrincipal.IsInRole to make authorization checks against local machine
groups (either in your code or indirectly by using URL authorization), make sure to always leave off the
machine name from any local groups.

Summary
The Role Manager feature gives you an easy way to create roles, assign users to roles, and then carry out
various authorization checks based on these associations. As with the Membership feature, the Role
Manager feature can be used to make authorization checks in both ASP.NET and non-ASP.NET environ-
ments. The static Roles class is used for performing authorization checks if your application only has a
single default provider, though for more complex sites you will probably end up getting references to
specific RoleProvider instances directly instead. If your site uses multiple providers, you will probably
also need to hook the GetRoles event on RoleManagerModule so that your RolePrincipal instances
are associated with the proper provider.

RoleManagerModule is the “magic” that exposes the user-to-role associations stored by providers as a
RolePrincipal instance available from HttpContext.Current.User. You have to explicitly enable
the Role Manager feature (it is off by default in machine.config) — but after you enable the feature
RoleManagerModule automatically handles looking at the current user, and constructing a
RolePrincipal that represents the current user. RolePrincipal can be used for declarative authoriza-
tion checks such as URL authorization as well as code-based authorization checks using
IPrincipal.IsInRole. Because Role Manager has no hard-coded dependencies on a specific type of
authenticated identity, the RolePrincipal can wrap authenticated identities obtained from Windows
authentication, forms authentication, or any custom authentication mechanism you may author.

For performace reasons, RolePrincipal will fetch all of a user’s roles the first time the roles are needed,
and it will then cache that information internally for the duration of a page request. You can optionally
enable caching this information in a cookie so that on subsequent page requests RolePrincipal will initial-
ize its cached role information from the cookie as opposed to calling the provider. The maxCachedResults
configuration setting partially determines how many roles RolePrincipal is willing to stuff into a cookie.
RoleManagerModule also enforces a maximum 4096 character limit on the size of a role cache cookie, so
you will need to experiment with cookie caching in your applications to see if you can use it effectively.

One of the default providers supplied with the Framework is WindowsTokenRoleProvider. This
provider is very basic because it only implements the IsUserInRole and GetRolesForUser methods,
and these methods only work with the currently authenticated user. However, the GetRolesForUser
method can be very handy for developers who want to get all of the roles that a domain user belongs to.

551

Role Manager

16_596985 ch13.qxp 12/14/05 7:52 PM Page 551

16_596985 ch13.qxp 12/14/05 7:52 PM Page 552

SqlRoleProvider

Role Manager ships with a number of different providers in the Framework: WindowsToken
RoleProvider, which was covered at the end of the previous chapter; SqlRoleProvider, which
is the topic of this chapter; and AuthorizationStoreRoleProvider, which is discussed in the
next chapter. SqlRoleProvider is already configured in machine.config as the default provider
for the Role Manager feature. As with SqlMembershipProvider, SqlRoleProvider is the
reference provider for the feature because it implements all of the functionality defined on the
RoleProvider base class.

This chapter will cover the following areas of the SqlRoleProvider:

❑ The database schema used by the SqlRoleProvider

❑ Database security and trust level requirements for the provider, including how to configure
the provider for use in partially trusted non-ASP.NET environments

❑ Using the SqlRoleProvider with Windows-authenticated websites

❑ Extending the provider to support “run-with-limited-roles” scenarios

❑ Leveraging role data for authorization checks in the data layer

❑ Supporting multiple applications with a single provider

SqlRoleProvider Database Schema
The database schema contains tables, views, and stored procedures used by the provider. As with the
Membership feature, SqlRoleProvider’s schema integrates with the common set of tables covered
in Chapter 11. This allows you to use SqlMembershipProvider for authentication and then use
SqlRoleProvider to associate one or more roles with the users already registered in the Membership
feature. Keying off of the common tables also allows SqlRoleProvider to be used in conjunction
with the other SQL-based providers (SqlProfileProvider and SqlPersonalizationProvider)

17_596985 ch14.qxp 12/14/05 7:54 PM Page 553

supplied by ASP.NET. However, there is no requirement that SqlRoleProvider be used on conjunction
with the Membership feature. The integration with the common provider schema is nice if you want to
leverage it, but you can also use Role Manager and SqlRoleProvider as a standalone authorization
feature. You will actually see how this works later on in the chapter, where using SqlRoleProvider with
Windows authentication is described.

Because the concept of a role in Role Manager is very simple, and Role Manager also doesn’t support the
concept of nested roles, the database tables for the SqlRoleProvider are also very simple. The first
table in the database schema is the aspnet_Roles table shown in the following code:

CREATE TABLE dbo.aspnet_Roles (
ApplicationId uniqueidentifier NOT NULL

FOREIGN KEY REFERENCES dbo.aspnet_Applications(ApplicationId),
RoleId uniqueidentifier PRIMARY KEY

NONCLUSTERED DEFAULT NEWID(),
RoleName nvarchar(256) NOT NULL,
LoweredRoleName nvarchar(256) NOT NULL,
Description nvarchar(256)

)

Each of the table’s columns is described here:

❑ ApplicationId— Because multiple provider instances can be configured to point at the same
database, you can horizontally partition each application’s role data using the applicationName
configuration attribute supported in the provider’s configuration. In the database schema, this
attribute’s value is translated to the GUID application ID that is stored in the common
aspnet_Applications table. Whenever a SqlRoleProvider needs to look up role information,
it always does so within the context of a specific application, and thus the provider always
includes the ApplicationId column in the various stored procedures used by the provider.

❑ RoleId— The primary key for the table. Each role that is created using SqlRoleProvider is
uniquely identified by its RoleId. Although the stored procedures perform most of their work
using the RoleId, the public Role Manager API has no way to expose this value. As a result, the
provider always starts its work with a role name.

❑ RoleName— For all practical purposes, this is the role “object” in the Role Manager feature. This
is the value that you supply when creating new roles, and it is the value that you use when
performing authorization checks with a RolePrincipal.

❑ LoweredRoleName— The case insensitive representation of the RoleName column. Although you
write code using the value stored in the RoleName column, internally the SqlRoleProvider
enforces the uniqueness of role names by first lowering the role string and then attempting to store
it in this column. The combination of this column, and the ApplicationId column, acts as an
alternate primary key for the table. Also, whenever you call the IsUserInRole method on the
provider, the provider looks at the value in this column as part of determining whether a specific
user is associated with a role. In this way, the provider is able to enforce case-insensitive string com-
parisons on role names when performing role checks in the database. Note though that the culture
setting (that is, collation order) of the underlying database still has an effect when the stored proce-
dures are performing string comparisons. In the previous chapter, the potential mismatch between
case-insensitive invariant-culture comparisons and case-insensitive culture-specific comparisons
was discussed. You can always deploy the SqlRoleProvider schema in a database using the
Latin1_General collation to roughly mirror the string comparison functionality used inside of
RolePrincipal.

554

Chapter 14

17_596985 ch14.qxp 12/14/05 7:54 PM Page 554

❑ Description— This is an orphan column because it is never used by the SqlRoleProvider.
At one point, there were plans to make a full-fledged role object, but that work could not be fit
into the ASP.NET 2.0 development schedule. Because ASP.NET may introduce a role object
sometime in the future, the column was left in the schema for future use. You should basically
ignore the existence of the column, and you should not store anything in it.

The second table in the SqlRoleProvider database schema stores the mapping of users to roles:

CREATE TABLE dbo.aspnet_UsersInRoles (
UserId uniqueidentifier NOT NULL PRIMARY KEY(UserId, RoleId)

FOREIGN KEY REFERENCES dbo.aspnet_Users (UserId),
RoleId uniqueidentifier NOT NULL

FOREIGN KEY REFERENCES dbo.aspnet_Roles (RoleId)
)

The aspnet_UsersInRoles table is ultimately used by various stored procedures to determine which
users belong to which roles. The table works in a self-explanatory way; however, a brief description of
each column is provided here.

❑ UserId— This is the user identifier from the common aspnet_Users table. For SqlRoleProvider
to perform an authorization check, it must convert a string user name along with the application
name specified on a provider, into a UserId value. Remember that the aspnet_Users table and
aspnet_Applications tables together are used to accomplish this.

❑ RoleId— The role identifier from the aspnet_Roles table. During a database lookup, the
string role name and the application name specified on a provider are converted into a RoleId.
With the UserId and RoleId in hand, a stored procedure can perform a lookup in this table.

In addition to the database tables, two views are supplied with the schema: vw_aspnet_Roles and
vw_aspnet_UsersInRoles. Both of these views map all of the columns in the corresponding tables.
Later on in this chapter, you will see how you can use these views to perform authorization checks
inside of your own stored procedures. Also note that, as with the Membership feature, the views are
intended only for use with read-only queries. Although nothing technically prevents you from writing
data through the views, the intent is that all data modifications flow through the provider API.

SQL Server–Specific Provider Configuration Options
Because the SqlRoleProvider connects to SQL Server, it supports two SQL Server–specific configura-
tion attributes on the provider definition:

❑ connectionStringName— As you would expect, the provider needs to know what database
and server to connect to. The value of this attribute must point at a named connection string
defined up in the <connectionStrings /> section.

❑ commandTimeout— As you work with larger databases, you may find that the default ADO.NET
SqlCommand timeout of 30 seconds is too short for certain operations. For SqlRoleProvider, the
AddUsersToRoles and RemoveUsersFromRoles methods are especially prone to timing out
when working with large sets of role information (for example, the aspnet_UsersInRoles table
contains 100K or more rows). If you run into timeout problems with either of these methods, you
can boost the value of the commandTimeout configuration attribute to give the database server
more time to complete its work. Alternatively, you can reduce the number of user-to-role associa-
tions being modified in a single method call and simply call these methods in a loop with only a
chunk of user and role data being changed in a single iteration.

555

SqlRoleProvider

17_596985 ch14.qxp 12/14/05 7:54 PM Page 555

Transaction Behavior
Not all of the data modification work performed in the provider can be accomplished with single
INSERT or UPDATE commands. The SqlRoleProvider methods AddUsersToRoles and
RemoveUsersFromRoles both explicitly manage transactions within the provider’s code. If you look
inside of the stored procedures used by SqlRoleProvider, you will see that for operations like deleting
or creating a role, all the work is encapsulated within a transaction that is managed within a stored pro-
cedure.

However, the AddUsersToRoles and RemoveUsersFromRoles methods can affect many rows of user-
to-role associations. As a result of limitations in passing parameter data down to a stored procedure,
there isn’t a great way to get all of the parameter data from these methods (an array of users and an
array of roles) passed down to SQL Server. The most elegant approach would have been to use the XML
capability in SQL Server 2000, but this approach would have required forking the code to support SQL
Server 7.0. There are also edge cases where errors can occur in stored procedures without being able to
properly clear up XML documents that have been parsed on the server.

So, the solution to the overall problem was to have SqlRoleProvider explicitly begin a transaction in
the provider code. Then the provider passes chunks of user and role data down to SQL Server, poten-
tially calling the underlying stored procedures multiple times. When all the parameter data has been
chunked and passed to SQL Server, the provider issues an explicit COMMIT TRANSACTION to SQL Server.
If anything fails along the way, all of the work is rolled back by the provider when it issues an explicit
ROLLBACK TRANSACTION.

You should keep this transaction behavior in mind when calling AddUsersToRoles and
RemoveUsersFromRoles. If you pass a large number of users and roles these two methods can take
quite a while to run, and there is the possibility of a failure occurring along the way thus causing a roll-
back (just 100 users and 100 roles will result in 10K rows being inserted or deleted — so it doesn’t take
much to trigger large numbers of inserts or deletes). If you want to smooth out the load on your SQL
Server while performing large numbers of adds or removes, you should call these methods iteratively,
passing only a small number of roles and users on each iteration. In this way, you eliminate the possibil-
ity of SQL Server locking large portions of the aspnet_UsersInRoles table while it grinds through
large data modifications.

The product team has successfully tested performing 100K and 250K inserts and deletes using these
methods. However, these tests were mainly to exercise the commandTimeout provider configuration
attribute. Issuing such a huge number of changes in a single transaction ends up locking most of the
aspnet_UsersInRoles table. In a production application, this type of change would potentially fail if
the system was under load with other connections simultaneously attempting to get roles data from the
same table. For this reason, limiting the number of associations being changed in any one method call to
a small number makes sense for cases where the database needs to remain responsive to other applica-
tions using the same set of Role Manager data.

Provider Security
There are two levels of security enforced by SqlRoleProvider: trust-level checks and database-level
security requirements. You influence the trust-level check by setting the appropriate trust level for your
web application and optionally making other adjustments to the CAS policy on your machine. Database-
level security requirements are managed through the use of SQL Server roles.

556

Chapter 14

17_596985 ch14.qxp 12/14/05 7:54 PM Page 556

Trust-Level Requirements and Configuration
Inside of the provider’s Initialize method a check is made for Low trust. If the current application is
running at Low trust or higher, then the provider will initialize itself. Otherwise, if the application is
running in Minimal trust, the initialization process will fail. Outside of ASP.NET, local applications like
console applications or Winforms application implicitly run in Full trust, so the trust level check in the
Initialize method always succeeds.

For an ASP.NET application running in Low trust, the provider may still fail when you attempt to call
any of its methods because the default Low trust policy file does not include SqlClientPermission. In
this case, the Initialize method completes successfully because the Low trust-level check succeeds.
But then when an individual method attempts to access SQL Server, the System.Data.SqlClient
classes throw a security exception because the web application does not have SqlClientPermission. If
you want to enable the provider for use in Low trust, you should do two things:

1. Create a custom trust policy file for the Low trust bucket, and add SqlClientPermission to
the custom trust policy file.

2. Configure the database security for your application using one of the provider’s SQL Server
roles. Because, conceptually, Low trust applications are not supposed to be modifying sensitive
data, the aspnet_Roles_BasicAccess role makes sense for use with the SqlRoleProvider in a
Low trust environment.

Using Providers in Partially Trusted Non-ASP.NET Applications
If you happen to run partially trusted non-ASP.NET applications, you don’t have the convenience of
using the <trust /> configuration element. For example, if you run an application off of a UNC share,
and you want that application to work with SqlRoleProvider (or for that matter, any other provider-
based feature in ASP.NET, including the Membership and Profile features), you will initially end up with
a rather obscure security exception.

For example, you can create a basic console application that triggers initialization of the feature and the
SqlRoleProvider with the following code:

using System;
using System.Web.Security;

namespace PartialTrustRoleManager
{

class Program
{

static void Main(string[] args)
{

Console.WriteLine(Roles.Provider.ApplicationName);

if (Roles.RoleExists(“some random role name”))
Console.WriteLine(“The random role exists.”);

else
Console.WriteLine(“The random role does not exist”);

}
}

}

557

SqlRoleProvider

17_596985 ch14.qxp 12/14/05 7:54 PM Page 557

Because Role Manager is not enabled by default, the sample application also explicitly enables it in the
application configuration file.

<configuration>
<system.web>
<roleManager enabled=”true” />

</system.web>
</configuration>

If you compile this on your local machine and run it, everything works. However, if you take the com-
piled executable and the configuration file, move them onto a remote UNC share, and then run the exe-
cutable, you get the following exception.

Unhandled Exception: System.Security.SecurityException: Request for the permission
of type ‘System.Web.AspNetHostingPermission, ...’ failed.
<snipped for brevity>

at PartialTrustRoleManager.Program.Main(String[] args)
The action that failed was:
LinkDemand
The type of the first permission that failed was:
System.Web.AspNetHostingPermission
The first permission that failed was:
<IPermission class=”System.Web.AspNetHostingPermission, ...”

version=”1”
Level=”Minimal”/>

Although the exception dump is a bit intimidating, hopefully parts of it look familiar to you from Chapter
3 on trust levels. In this situation, the executable is on a UNC share; it runs with a permission set defined
by the Framework for applications running in LocalIntranet_Zone. You can see the zone membership
and the permissions associated with it using the Microsoft .NET Framework 2.0 Configuration MMC.
Note that this tool used to be available in the Administrative Tools menu in earlier builds of the 2.0
Framework. However you now have to install the Framework SDK and look for mscorcfg.msc in the
SDK’s bin directory. The permission set associated with LocalIntranet_Zone is called LocalIntranet,
and it includes only basic permissions like access to isolated storage, the use of default printers on the
machine, and so forth.

The LocalIntranet permission set lacks AspNetHostingPermission. It also lacks
SqlClientPermission, although the previous exception dump doesn’t show this. The reason that the
application immediately fails when run from a UNC share is that both the static Roles class and the
SqlRoleProvider class are attributed with the following:

[AspNetHostingPermission(SecurityAction.LinkDemand,
Level=AspNetHostingPermissionLevel.Minimal)]

When the console application attempts to call into the Roles class, the declarative link demand immedi-
ately causes a SecurityException because UNC based applications lack any kind of
AspNetHostingPermission.

Because a fair amount of work was invested in making the Membership, Role Manager and Profile fea-
tures ASP.NET-agnostic, it would be unfortunate if these features were limited to only fully trusted non-
ASP.NET applications. Luckily, this is not the case, although as you will see it does require configuration
work on your part to get things working. Because there is no convenient code access security (CAS)

558

Chapter 14

17_596985 ch14.qxp 12/14/05 7:54 PM Page 558

abstraction like trust levels outside of ASP.NET, you need to configure the Framework’s CAS system
directly. The logical starting point is to add both AspNetHostingPermission and SqlClient
Permission to the LocalIntranet permission set.

Because there is a convenient MMC tool that theoretically allows you to do this, you would probably
think of using the tool first. Unfortunately, due to some bugs in the MMC you cannot add the
System.Web.dll assembly as a policy assembly (that is, an assembly that can be used as a source of
permission classes such as AspNetHostingPermission). So instead, you have to drop down to using
the tool caspol.exe, which is located in the framework’s installation directory.

There are a number of things you need to accomplish with caspol:

❑ Add the AspNetHostingPermission to a named permission set. You need to get it into a
named permission set with the Level attribute set to at least “Low.” Even though the link
demand is for Minimal trust, the Roles class will trigger a demand for Low trust while loading
the SqlRoleProvider.

❑ Add the SqlClientPermission to the named permission set because SqlRoleProvider will
trigger a demand for this when it calls into ADO.NET.

❑ It isn’t immediately obvious, but because Role Manager and its providers internally depend on
ASP.NET’s HttpRuntime object, you also need to grant file I/O read and path discovery per-
missions to the installation directory for the framework. The HttpRuntime object depends on
loading DLLs (for example aspnet_isapi.dll has internal support functions that are used
even in non-ASP.NET environments) that exist in this directory, and without the correct
FileIOPermission on the machine, it will fail to initialize.

One of the not-so-nice things about mucking with the Framework’s CAS policy information directly is
that the XML format for a named permission set is not easily discoverable. With a little enterprising
hacking around, you can eventually stitch together the correct representation of a named permission set
that is consumable by the caspol.exe tool. For the demo application, I simply looked for the named
permission set called LocalIntranet inside of the file security.config, which is located in the CON-
FIG subdirectory underneath the framework’s install directory. You can copy the <PermissionSet />
element for LocalIntranet and all of its nested <IPermission /> elements from this file and paste
them into a separate file.

At this point, I admit that I could never get caspol.exe to properly recognize the class names used for
the individual <IPermission /> elements. Luckily, though, you can always use the fully qualified
strong name in its place (the ASP.NET trust policy files use a short name that references
<SecurityClass /> elements at the top of the trust file. (The same approach seems to cause obscure
errors in caspol.exe though). The last step is to pop in the three additional <IPermission /> ele-
ments for the three permissions that were discussed previously. The end result is a file called
CustomSecurity.config with the following XML definition: (Note: the strong names have been
trimmed down for brevity):

<PermissionSet class=”NamedPermissionSet”
version=”1”
Name=”LocalIntranet_MODIFIED”
Description=”Modified local intranet permissions”>

<IPermission
class=”System.Web.AspNetHostingPermission, System, ...”
version=”1”

559

SqlRoleProvider

17_596985 ch14.qxp 12/14/05 7:54 PM Page 559

Level=”Low” />
<IPermission

class=”System.Security.Permissions.FileIOPermission, mscorlib, ...”
version=”1”
Read=”C:\WINNT\Microsoft.NET\Framework\v2.0.50727\”
PathDiscovery=”C:\WINNT\Microsoft.NET\Framework\v2.0.50727\” />

<IPermission class=”System.Security.Permissions.EnvironmentPermission,
mscorlib...”

version=”1”
Read=”USERNAME”/>

<IPermission class=”System.Security.Permissions.FileDialogPermission,
mscorlib...”

version=”1”
Unrestricted=”true”/>

<IPermission class=”System.Security.Permissions.IsolatedStorageFilePermission...”
version=”1”
Allowed=”AssemblyIsolationByUser”
UserQuota=”9223372036854775807”
Expiry=”9223372036854775807”
Permanent=”True”/>

<IPermission class=”System.Security.Permissions.ReflectionPermission,
mscorlib...”

version=”1”
Flags=”ReflectionEmit”/>

<IPermission class=”System.Security.Permissions.SecurityPermission, mscorlib...”
version=”1”
Flags=”Assertion, Execution, BindingRedirects”/>

<IPermission class=”System.Security.Permissions.UIPermission, mscorlib...”
version=”1”
Unrestricted=”true”/>

<IPermission class=”System.Net.DnsPermission, System...”
version=”1”
Unrestricted=”true”/>

<IPermission class=”System.Drawing.Printing.PrintingPermission,
System.Drawing...”

version=”1”
Level=”DefaultPrinting”/>

<IPermission
class=”System.Data.SqlClient.SqlClientPermission, System.Data...”
version=”1”
Unrestricted=”true” />

</PermissionSet>

The three bolded portions of the file indicate the new permissions that you need to add that are above
and beyond the default set of permissions normally granted to applications running in the
LocalIntranet zone. The FileIOPermission includes read and path discovery access for the frame-
work install directory on the machine that will be running the application. You will need to tweak the
physical file path to match the appropriate location on your machine.

With these changes made, you can now import the custom permission set (which is called
LocalIntranet_Modified) using the following command line:

..\caspol.exe -m -ap CustomSecurity.config

560

Chapter 14

17_596985 ch14.qxp 12/14/05 7:54 PM Page 560

In my case, I saved the preceding XML file into a file called CustomSecurity.config located in the
CONFIG subdirectory of the framework install directory. Because the command line was running from
the CONFIG subdirectory, the command uses ..\caspol.exe to reference the utility. The -m command
line option tells caspol.exe that the named permission set in the file should be imported into the local
machine’s set of security information — as opposed to the enterprise- or user-specific security policies.
The -ap switch tells caspol.exe that the file CustomSecurity.config contains a definition of a new
named permission set.

After you run caspol.exe, you can open the Framework’s MMC configuration tool. Expand the
machine policy node so that you can see both configured security zones on the machine as well as the
named permission sets that are available. You can see what this looks like in Figure 14-1:

Figure 14-1

Notice that underneath the Permission Sets node the new custom permission set appears. At this point,
you can right click the LocalIntranet_Zone node that is underneath the Code Groups node and select
Properties. In the resulting dialog box, switch to the Permission Set tab and select LocalIntranet_MODI-
FIED from the drop-down list. You can see what this all looks like in Figure 14-2:

561

SqlRoleProvider

17_596985 ch14.qxp 12/14/05 7:54 PM Page 561

Figure 14-2

After you click the OK button, the Framework will consider all applications running in the LocalIntranet
zone to be associated with the set of custom permissions listed in the XML file. Because applications running
off of UNC shares are considered part of the local intranet zone, when you run the sample application for a
second time from a remote UNC share all of the calls into Role Manager and the SqlRoleProvider suc-
ceed. Note that if you try this on your machine and the console application still fails, the definition for the
Local Intranet zone in Internet Explorer may not include your remote machine. If you modify the Local
Intranet zone definition in Internet Explorer to include a file://your_remote_machine URL, then the
Framework will consider applications running remotely from that machine to be in the Local Intranet zone.

So, although this is a somewhat painful process, the end result is that you can absolutely use Role
Manager inside of a partially trusted non-ASP.NET application. This means that you don’t have to drop
back to granting unmanaged code rights to your non-ASP.NET applications just because of the use of
AspNetHostingPermission and other permissions like SqlClientPermission. After you create a
custom named permission set and associate it with the local intranet zone, you will also be able to use
the two other ASP.NET features that have been tweaked to work in non-ASP.NET environments: the
Membership and the Profile features. Last, note that although this sample cloned the local intranet
zone’s permissions, you can be more creative with your customizations. For example, you could strip
some of the extraneous permissions from the custom permission set (for example, maybe you don’t need
printer access or the ability to display file selection dialog boxes). You could also create custom code
groups with more granular membership conditions than what is defined for the local intranet zone.

562

Chapter 14

17_596985 ch14.qxp 12/14/05 7:54 PM Page 562

Database Security
Chapter 11 discussed the general database security requirements that are common to all of the SQL-
based providers. Assuming that you have followed those steps, and you have a login created or mapped
on your SQL Server machine, there are three database roles that you can use with SqlRoleProvider:

❑ aspnet_Roles_BasicAccess — This role only allows you to call the following methods on
SqlRoleProvider: IsUserInRole and GetRolesForUser. These two methods represent the
bare minimum needed to support the RolePrincipal object and authorization checks made
directly against the provider.

❑ aspnet_Roles_ReportingAccess — This role allows you to call IsUserInRole, GetRolesForUser,
RoleExists, GetUsersInRole, FindUsersInRole, and GetAllRoles. Members of this role can
also issue select statements against the database views.

❑ aspnet_Roles_FullAccess — This role can call any of the methods defined on SqlRoleProvider
as well as query any of the database views. In other words, a SQL Server login added to this role
has the additionally ability to change the role data stored in the database.

As with the SqlMembershipProvider, the simplest way to use these roles is to add the appropriate SQL
Server login account to the aspnet_Roles_FullAccess role. This gives you the full functionality of the feature
without requiring you to run with DBO privileges in the database. The other two SQL Server roles allow
for more granular allocation of security permissions. For example, you might run administrative tools in
one web application (which would use aspnet_Roles_FullAccess), while only performing authorization
checks in your production application (which thus would only need aspnet_Roles_BasicAccess).

Working with Windows Authentication
Although the most likely scenario that folks think of for SqlRoleProvider is to use it in applications
with forms authentication, SqlRoleProvider and the Role Manager feature work perfectly fine in
applications using Windows authentication. Typically, you would use NT groups or more advanced
authorization stores such as Authorization Manager for many intranet production applications.
However, it is not uncommon for developers to create intranet applications in which they do not want or
need the overhead of setting up and maintaining group information in a directory store. This can be the
case for specialized applications that have only a small number of users, and it can also be the case for
“throw-away” intranet applications.

Although I wouldn’t advocate using SqlRoleProvider for long-lived internal applications or for com-
plex line of business applications, knowing that you can use Role Manager for intranet applications adds
another option to your toolbox for quickly building internal websites with reasonable authorization
requirements. In the case of a web application using Windows authentication, SqlRoleProvider will
automatically create a row in the common aspnet_Users table the very first time a Windows user is
associated with a role. The important thing is to use the correct format for the username when adding
users to roles or removing users from roles. The username that is available from HttpContext.Current
.User.Identity.Name is the string that should be used when modifying a user’s role associations.

For example, the following code snippet shows how to add a domain user to two roles stored in a SQL
database with the SqlRoleProvider:

563

SqlRoleProvider

17_596985 ch14.qxp 12/14/05 7:54 PM Page 563

if (!Roles.IsUserInRole(“CORSAIR\\demouser”, “Application Role A”))
Roles.AddUserToRole(“CORSAIR\\demouser”, “Application Role A”);

if (!Roles.IsUserInRole(“CORSAIR\\demouser”, “Application Role C”))
Roles.AddUserToRole(“CORSAIR\\demouser”, “Application Role C”);

Note how the username is supplied using the familiar DOMAIN\USERNAME format. When you use
Windows authentication in ASP.NET, the WindowsIdentity that is placed on the context will return the
Name property using this format. If your web application is configured to use Windows authentication,
when you enable the Role Manager feature, RoleManagerModule will automatically use the default
provider to fetch the roles associated with the Windows authenticated user. The following configuration
snippets show the required configuration to make this work:

<!-- connection string config and other config here -->

<authentication mode=”Windows”/>
<authorization>

<deny users=”?”/>
</authorization>

<roleManager enabled=”true”>
<providers>

<clear/>
<add name=”AspNetSqlRoleProvider”

type=”System.Web.Security.SqlRoleProvider, System.Web... “
connectionStringName=”LocalSqlServer”
applicationName=”WindowsAuthenticationDemo”/>

</providers>
</roleManager>

Now, if you access a Windows authenticated web application as a user who has already been mapped to
one or more roles, the RolePrincipal placed on the context will contain the expected role information.

foreach (string s in ((RolePrincipal)User).GetRoles())
Response.Write(User.Identity.Name + “ belongs to ” + s + “
”);

Running this code sample while logged in as the sample user that was configured earlier results in the
following output:

CORSAIR\demouser belongs to Application Role A
CORSAIR\demouser belongs to Application Role C

The only minor shortcoming that you will encounter getting this to work is that you will have to pro-
grammatically associate Windows users to roles. Although the Web Administration Tool inside of Visual
Studio allows you to create and delete roles, you won’t be able to leverage the tool for managing specific
Windows users. Instead, you will need to use code like the sample shown earlier to add users to roles as
well as removing users from roles.

One other concern you may have is keeping the format of the username stable over time. For the 2.0 ver-
sion of the Framework, the WindowsIdentity class will always return the value from the Name property
using the DOMAIN\USERNAME format. Even if someone accesses your application with a different
username format (for example, your application is configured to use Basic authentication in IIS and some-

564

Chapter 14

17_596985 ch14.qxp 12/14/05 7:54 PM Page 564

one logs in using a UPN formatted username), WindowsIdentity always uses the older NT4-style user-
name. As a result, you don’t need to worry about accruing large amounts of user-to-role associations in a
database only to find out that the username returned from WindowsIdentity suddenly changes on you.

For example, if you are running in a domain environment on Windows Server 2003 (that is, your domain
controllers are Windows Server 2003 machines), you can run the following code sample:

WindowsIdentity wi = new WindowsIdentity(“demouser@corsair.com”);
Response.Write(wi.Name);

Even though the WindowsIdentity is constructed with a user principal name (UPN) format, the value
returned by the Name property is still CORSAIR\demouser.

Running with a Limited Set of Roles
Typically, most of the users on a website are associated with a set of roles that make sense for their given
purpose on the site. A limited number of website users, though, may have super privileges or the ability
to act as an administrator on the site. Sometimes, it is desirable for this type of user to be able to limit the
roles that he or she a part of while performing the normal daily routine on a site. For example, a business
user may also have administrative privileges on a site. During the normal workday though he or she
really doesn’t need to have these privileges available and would rather perform most of the work as a
normal user.

Because RolePrincipal depends on a provider for its role information, you can swap in a custom
provider that supports the concept of a limited subset of roles being active at any given time for a specific
user. As an example, you can create a derived version of SqlRoleProvider that is aware of role restrictions
stored in the database. For convenience, I chose to store the set of role restrictions in the Comments property
associated with a MembershipUser. You could certainly choose to store this type of role restriction in a
different location, but because Membership is already available and has a convenient storage location for
this type of information, the sample provider makes use of it. Because a RolePrincipal works exclusively
with information returned from GetRolesForUser, the custom provider must override this method.
Because a custom role provider should ideally also support at least IsUserInRole, the custom provider
also provides the limited role functionality in an override of this method as well.

public class CustomRoleProvider : SqlRoleProvider
{

public CustomRoleProvider() {}

//overrides of GetRolesForUser and IsUserInRole
}

The custom provider works by looking at the set of restricted roles stored in MembershipUser.Comment.
The string stored in this property is formatted as follows:

first restricted role;second restricted role; etc..

The custom provider converts this string into a string array by splitting the value on the semicolon character.
For protection though, the custom provider always double-checks with SqlRoleProvider to ensure that
the information stored in the Comments property is still considered a valid set of role associations by the

565

SqlRoleProvider

17_596985 ch14.qxp 12/14/05 7:54 PM Page 565

provider. This prevents the problem where a set of restricted roles is stored in the MembershipUser, but
then at a later point in time the user no longer belongs to some of those roles.

public override string[] GetRolesForUser(string username)
{

MembershipUser mu = Membership.GetUser(username);

//Anonymous user case
if (mu == null)

return new string[0];

if (mu.Comment != null)
{

//Make sure user still belongs to the selected roles
string[] currentRoleMembership = base.GetRolesForUser(username);
string[] restrictedRoles = mu.Comment.Split(“;”.ToCharArray());

List<string> confirmedRoles = new List<string>();
foreach (string role in restrictedRoles)
{

if (Array.IndexOf(currentRoleMembership, role) != -1)
confirmedRoles.Add(role);

}

return confirmedRoles.ToArray();
}
else
{

return base.GetRolesForUser(username);
}

}

Just as with the SqlRoleProvider, the custom provider first checks to see if the user is anonymous.
Assuming that you have never stored a MembershipUser object in the database for the username, the
call to GetUser always returns null for anonymous users. If the user is authenticated, and if there is a
set of restricted roles stored in the Comment property, then the custom provider parses the information
from the property. Most of the work is just double-checking with the base provider that the set of roles
the user currently belongs to still grants access to the roles listed in the Comment field. The end result of
this processing is the subset of restricted roles that still apply to the user. Of course, if no restricted role
information is stored in the Comment property, the custom provider defers to the base provider.

public override bool IsUserInRole(string username, string roleName)
{

MembershipUser mu = Membership.GetUser(username);

//Anonymous user case
if (mu == null)

return false;

if (mu.Comment != null)
{

string[] restrictedRoles = mu.Comment.Split(“;”.ToCharArray());

if ((Array.IndexOf(restrictedRoles, roleName) != -1)

566

Chapter 14

17_596985 ch14.qxp 12/14/05 7:54 PM Page 566

&& (base.IsUserInRole(username, roleName)))
return true;

else
return false;

}
else
{

//No restriction is in effect
return base.IsUserInRole(username, roleName);

}
}

The IsUserInRole override follows the same general pattern as GetUserInRole. The only difference is
that in this case only a single role (the roleName parameter) is checked. As with GetUserInRole the
roleName parameter must be found both in the restricted set of roles for the user, as well as in the set of
roles currently associated with the user in the database.

Now that you have a customized version of the SqlRoleProvider, you can try it out in a sample appli-
cation. The configuration for the sample application requires authorization for all pages. It also enables
Role Manager and enables cookie caching as well. When you first try to access the test page in the
sample application, you will be redirected to a login page. After you are logged in, and thus you have
a RolePrincipal attached to the context, the test page allows a user to restrict itself to a subset of the
current role membership.

...
<asp:ListBox ID=”lbxUserInRoles” runat=”server” SelectionMode=”Multiple” />
...
<asp:Button ID=”btnRestrictRole” Runat=”server” Text=”Restrict Role”

OnClick=”btnRestrictRole_Click” />
...
<asp:Button ID=”btnUndoRestriction” Runat=”server” Text=”Undo Role Restriction”

OnClick=”btnUndoRestriction_Click” />
...
<asp:Label ID=”lblStatus” Runat=”server” Text=”” />
...
<asp:Literal ID=”litIsInRoleTests” runat=”server” />
...

A list box is displayed that contains the current set of roles associated with the user. Two buttons are
available: one to restrict the user to the subset of roles that you can choose from the list box, and a second
button that allows you to undo the role restrictions. Toward the bottom of the page, there is a literal control
that contains the results of multiple calls to RolePrincipal.IsInRole.

Displaying the set of roles for the current user is accomplished by calling the Roles class. Remember that
the parameterless version of Roles.GetRolesForUser actually results in a call to the GetRoles
method on the RolePrincipal attached to the context. This means the list of information reflects the set
of role information that RolePrincipal has fetched from the custom provider.

lbxUserInRoles.DataSource = Roles.GetRolesForUser();
lbxUserInRoles.DataBind();

567

SqlRoleProvider

17_596985 ch14.qxp 12/14/05 7:54 PM Page 567

To demonstrate the effect of the overridden IsUserInRole method, the page also dumps the result of
making various authorization checks directly against the provider.

StringBuilder sb = new StringBuilder();

if (Roles.Provider.IsUserInRole(User.Identity.Name,”Role A”))
sb.Append(“User is in Role A
”);

if (Roles.Provider.IsUserInRole(User.Identity.Name,”Role B”))
sb.Append(“User is in Role B
”);

if (Roles.Provider.IsUserInRole(User.Identity.Name,”Role C”))
sb.Append(“User is in Role C
”);

litIsInRoleTests.Text = sb.ToString();

Restricting a user to a subset of his or her available roles occurs when you click on the role restriction button.

protected void btnRestrictRole_Click(object sender, EventArgs e)
{

string restriction = String.Empty;
foreach (ListItem li in lbxUserInRoles.Items)
{

if (li.Selected == true)
restriction += li.Value + “;”;

}

if (!String.IsNullOrEmpty(restriction))
restriction = restriction.Substring(0, restriction.Length - 1);

else
restriction = null;

MembershipUser mu = Membership.GetUser();
mu.Comment = restriction;
Membership.UpdateUser(mu);

((RolePrincipal)User).SetDirty();

Response.Redirect(“~/default.aspx”);
}

Because the list box allows for multiple selections, you can choose one or more roles from the set of roles
currently associated with the user. The code bundles up the selected items into a semicolon delimited
string and then stores this information in MembershipUser.Comment. Note that the page code then calls
SetDirty on the current RolePrincipal. Because the restricted roles have been set, it is necessary to
tell the RolePrincipal that it should ignore any currently cached information, and that instead it
should refresh this information from the provider. The final redirect forces the page to be re-requested by
the browser so that you can see the effect of restricting the roles.

You can undo the role restriction by clicking on the second button:

protected void btnUndoRestriction_Click(object sender, EventArgs e)
{

MembershipUser mu = Membership.GetUser();

568

Chapter 14

17_596985 ch14.qxp 12/14/05 7:54 PM Page 568

mu.Comment = null;
Membership.UpdateUser(mu);

((RolePrincipal)User).SetDirty();

Response.Redirect(“~/default.aspx”);
}

The page code simply nulls the information in MembershipUser.Comment. Because the role information
for the user has changed, this code also tells the RolePrincipal to invalidate its cached information.
After the redirect occurs, you will see that the user has reverted to the original set of role assignments.

If you use the Web Administration Tool (WAT) from Visual Studio, you can configure a test user and set
up some role associations. For example, I created an account called “testuser” that belonged to three
different roles. After you log in, the information displayed on the page looks like:

Listbox contains:
Role A
Role B
Role C

IsUserInRole checks:
User is in Role A
User is in Role B
User is in Role C

So far so good: the user belongs to all of the roles that you would expect, and currently the custom
provider is just delegating the method calls to the base SqlRoleProvider. If you choose a subset of
roles (choose only Role A and Role C), when the page refreshes, it reflects the restricted set of roles that
the user belongs to.

Listbox contains:
Role A
Role C

IsUserInRole checks:
User is in Role A
User is in Role C

Now the user can only accomplish tasks on the site that are allowed to Role A and Role C. Even though in
the database the user is also associated with Role B, from the point of view of the website the user no longer
belongs to that role. You can see how with just the added logic in the derived version of SqlRoleProvider,
the rest of the authorization code in a site is oblivious to the fact that a set of restricted roles is being
enforced. If you click the button to undo the role restrictions, you will see that you return back to belonging
to all of the original roles.

Although the sample just demonstrates the effect of role restrictions when calling RolePrincipal
.GetRoles and Roles.GetRolesForUser, with the changes made in the custom provider any type of
website authorization mechanism that depends on HttpContext.Current.User will be affected. For
example, any URL authorization checks will be transparently made against the restricted set of roles
because URL authorization calls IsInRole on the principal object attached to the context. Similarly, if
you had a site that made calls to IPrincipal.IsInRole, these authorization checks would automati-
cally work with the restricted role functionality of the custom provider.

569

SqlRoleProvider

17_596985 ch14.qxp 12/14/05 7:54 PM Page 569

Authorizing with Roles in the Data Layer
Because all of the user-to-role associations are stored in the database, and the SqlRoleProvider
database schema includes SQL views that map to these tables, you can perform authorization checks in
the database using this information. Depending on how your application is structured, you may find it
to be more efficient to make a series of authorization checks in the database, as opposed to pulling infor-
mation back up to the middle tier and then making a series of authorization checks using Role Manager.
Older applications that have large amounts of their business logic still in stored procedures may need to
keep their authorization logic in the database as well because it may be technically impossible to factor
out the authorization checks to a middle tier.

As with the Membership feature, the first step you need to accomplish is the conversion of a (username,
application name) pair to the GUID user identifier used in the database tables. You will want to store the
result of converting an application name to a GUID identifier because you also need to convert a role
name to its GUID identifier. Because role names are segmented by applications, just as usernames are
partitioned by application, you will always be performing authorization checks in the context of a spe-
cific application name.

SQL Server 2000 conveniently supports user defined functions, so you can encapsulate all of this logic
inside of a custom user-defined function.

create function IsUserInRole (
@pApplicationName nvarchar(256),
@pUsername nvarchar(256),
@pRolename nvarchar(256))
returns bit
as
begin

declare @retval bit

if exists (
select 1
from dbo.vw_aspnet_Users u,

dbo.vw_aspnet_Applications a,
dbo.vw_aspnet_Roles r,
dbo.vw_aspnet_UsersInRoles uir

where a.LoweredApplicationName = LOWER(@pApplicationName)
and u.LoweredUserName = LOWER(@pUsername)
and u.ApplicationId = a.ApplicationId
and r.ApplicationId = a.ApplicationId
and r.LoweredRoleName = LOWER(@pRolename)
and r.RoleId = uir.RoleId
and u.UserId = uir.UserId

)
set @retval = 1

else
set @retval = 0

return @retval
end
go

570

Chapter 14

17_596985 ch14.qxp 12/14/05 7:54 PM Page 570

Much of the code in this function is the same as shown earlier in Chapter 11 in the getUserId stored
procedures. The additional logic joins the @pApplicationName and @pRolename variables into the
vw_aspnet_Roles view to convert from a string role name into the GUID identifier for the role. With
the resulting role identifier, the select query looks in vw_aspnet_UsersInRoles for a row matching the
GUID identifiers that correspond to the user and role name in the requested application. If a row is found,
the function returns a bit value of 1 (that is, true); otherwise, it returns a bit value of 0 (that is, false).

With this function, it is trivial to perform authorization checks in the data layer. The following code snippet
makes an authorization check based on the user and role data that was created for the earlier sample on
restricting a user’s roles:

declare @result bit
select @result = dbo.IsUserInRole(‘LimitingRoles’,’testuser’,’Role B’)

if @result = 1
print ‘User is in Role A’

Although performing authorization checks in the database is probably a rare occurrence given the types
of application architectures in use today, it is still a handy tool to have available if you ever find that you
need to authorize users from inside of your stored procedures.

Supporting Dynamic Applications
The RoleProvider base class defines the abstract property ApplicationName. As a result, you can use
the same approach for supporting multiple applications on the fly with SqlRoleProvider as was
shown earlier for SqlMembershipProvider. After you have a way to set the application name dynami-
cally on a per-request basis, you can write a custom version of SqlRoleProvider that reads the applica-
tion name from a special location. Remember that in Chapter 11 an HttpModule was used that looked
on the query-string for a variable called appname. Depending on the existence of that variable as well as
its value, the module would store the appropriate application name in HttpContext.Items
[“ApplicationName”]. You can use the same module with a custom version of the SqlRoleProvider.

using System;
using System.Web;
using System.Web.Security;

public class CustomRoleProvider : SqlRoleProvider
{

public override string ApplicationName
{

get
{

string appNameFromContext =
(string)HttpContext.Current.Items[“ApplicationName”];

if (appNameFromContext != “NOTSET”)
return appNameFromContext;

else
return base.ApplicationName;

}
}

}

571

SqlRoleProvider

17_596985 ch14.qxp 12/14/05 7:54 PM Page 571

The code for handling the application name in the custom role provider is exactly the same as was used
for writing a custom Membership provider. With this simple change, you can now create roles in different
applications and work with user-to-role associations in different applications simply by changing the
value of the appname query-string variable. This behavior is also completely transparent to the Role
Manager API and the RolePrincipal object. As with Membership though, if you write applications that
depend on dynamically changing application name, you need to prevent accidentally associating autho-
rization information for a user in one application with a similarly named user in a different application.

Summary
The SqlRoleProvider is a complete implementation of the RoleProvider base class with which you
can quickly and easily set up user-to-role associations. The simplicity of the provider should not fool you
though; the product team tested it regularly with 250,000 user-to-role associations and has stressed the
provider with as many as 20 million user-to-role associations. So, even for large sites the provider is
quite capable of scaling well with large numbers of users and roles. Note though that the provider does
not support one often-asked-for feature: role nesting. In large part, this is because the Role Manager fea-
ture itself does not expose the concept of nesting roles within roles.

As with the Membership providers, you can use the SqlRoleProvider both inside of ASP.NET as well
as in non-ASP.NET applications. Within ASP.NET the provider needs to run in Low trust or higher. The
provider works equally well in partially trusted non-ASP.NET applications, although getting these types
of applications to work properly with the provider does require a bit of rather arcane configuration work
in the Framework’s CAS system. With that said though, you can definitely get this scenario to work, and
it is something that the ASP.NET team intentionally worked to enable in the 2.0 Framework.

Although the SqlRoleProvider is a rather simple provider to implement, you can still use it in a number
of interesting ways. You can store authorization information in the database for Windows-authenticated
users, which makes the provider ideal for applications where you don’t need the extra time or hassle of
getting NT groups setup for application authorization purposes. Because the SqlRoleProvider is
unsealed, you can derive from it and add whatever custom authorization logic you want on top of it. In
this chapter, you saw how you could use this approach to easily give power users and administrators the
ability to restrict the set of roles that they act in while working on a site.

Because the provider’s schema exists in SQL Server, and there are supported SQL views for querying this
information, you can create your own custom data layer logic to perform authorization checks using the role
data stored in the database. And just as with the Membership providers, you can write a simple derivation
of SqlRoleProvider that can handle dynamically changing the application name on a per-request basis for
portal-style applications.

572

Chapter 14

17_596985 ch14.qxp 12/14/05 7:54 PM Page 572

AuthorizationStoreRole
Provider

AuthorizationStoreRoleProvider maps the functionality of the Role Manager feature
onto the Authorization Manager (AzMan) authorization store that was first released as part of
Windows Server 2003. The provider supports most of the RoleProvider functionality as well as
handful of AzMan specific settings and behavior. Although AzMan itself has the concept of more
granular permission checks that just role checks, AuthorizationStoreRoleProvider only
exposes the role based functionality of AzMan.

In this chapter, will you will learn about the following aspects of the
AuthorizationStoreRoleProvider:

❑ How the provider interacts with AzMan

❑ Role Manager functionality supported by the provider

❑ Working with a file-based policy store

❑ Working with an Active Directory AzMan policy store

❑ Using the provider in partial trust

❑ Using the ActiveDirectoryMembershipProvider and
AuthorizationStoreRoleProvider together

Provider Design
The AuthorizationStoreRoleProvider is a wrapper around a subset of the functionality avail-
able in Authorization Manager. The provider is supported for use in ASP.NET applications and
non-ASP.NET applications. Although the provider depends on Authorization Manager, you can

18_596985 ch15.qxp 12/14/05 7:54 PM Page 573

use it with Windows authenticated and forms authenticated websites. All of the samples in this chap-
ter use forms authentication and ActiveDirectoryMembershipProvider in conjunction with
AuthorizationStoreRoleProvider.

Authorization Manager is a feature that was first shipped as part of Windows Server 2003, and it sup-
ports role-based and “operation-based” security. There is also a runtime component that you can install
that enables AzMan on Windows 2000 and Windows XP. AzMan supports role-based security because
that has been the most prevalent type of security used by developers. It also introduced the concepts of
tasks and operations that can be used to model more granular “things,” which themselves can be autho-
rized. For example, with AzMan, you could create an operation called UpdateAccountData, and then
within your application you could ask AzMan if the current user has rights to UpdateAccountData.
This is an elegant approach to the common authorization problem of separating authorization adminis-
tration (adding users to roles, assigning users rights to operations) from the security model of “things”
that can be authorized. The fact that you can model very granular operations makes AzMan a power-
ful authorization engine. Because AuthorizationStoreRoleProvider is an implementation of
RoleProvider, the provider only exposes the subset of AzMan that deals specifically with associating
users to roles and making checks to see if a user belongs to a role. The provider does not expose the
AzMan functionality for making operation- and task-based access checks.

AzMan stores authorization information inside of a policy store. This policy store can be deployed in an
Active Directory server, in ADAM, or in a plain XML file. If you place the policy store in a directory, you
can only use ADAM or a Windows Server 2003 domain controller that has been upgraded to run at the
Windows Server 2003 functional level. Note, though, that with the downloadable AzMan runtime you
can still have web servers running Windows 2000 or Windows XP that make use of the policy store in a
Windows Server 2003 domain controller.

AuthorizationStoreRoleProvider works with AzMan through its COM primary interop assembly
(PIA), so from the provider’s standpoint the specific type of store is moot. Some partial trust issues arise
when using different stores, but in Full trust the different types of policy store locations are just different
connection string values to the provider. With Windows Server 2003 SP1, AzMan did add support for
nondomain principals stored in ADAM. This allows developers to use completely standalone ADAM
instances and set up AzMan authorization information using ADAM principals. However, this new
AzMan functionality isn’t supported by AuthorizationStoreRoleProvider. Even though you can
place the policy store in any one of the three locations supported by AzMan, in all cases the users and
groups managed in the policy store must come from a domain.

The provider connects to the policy store specified in a connection string and then gets a reference to an
AzMan application with a call to IAzAuthorizationStore::OpenApplication. Because AzMan also
supports the concept of authorization scopes within an application, AuthorizationStoreRoleProvider
has a configuration option that allows you to point the provider at a scope as well. In this case, the provider
will internally ensure that any provider methods occur within the desired scope, as opposed to operating
at the level of an AzMan application. Because AzMan itself can have multiple applications, as well as
multiple scopes within an application, you can use the provider’s ApplicationName and ScopeName
properties to point at any application or any scope within an AzMan application. In general though, a sin-
gle configured instance of AuthorizationStoreRoleProvider works with only a single AzMan applica-
tion or a single scope in an AzMan application. If you need the provider to work with different AzMan
applications or scopes, you should configure a separate provider instance for each AzMan application or
scope you need to work with.

574

Chapter 15

18_596985 ch15.qxp 12/14/05 7:54 PM Page 574

The other aspect of the provider’s interaction with AzMan is how the provider gets a reference to a client
context that represents a specific user. In AzMan, access checks for operations as well as the information
needed for a role check all come from an application context represented as an IAzApplicationContext
interface. Because the provider supports the IsUserInRole and GetRolesForUser methods, the provider
has a number of different approaches to getting the appropriate client context for a given user:

❑ If an ASP.NET application is configured to use Windows authentication, and the username
parameter to the provider exactly matches the username from HttpContext.Current
.User.Name, then the provider initializes an AzMan client context using the token from the
current principal’s WindowsIdentity. This initialization approach is the fastest and most
efficient way to get the correct client context because it doesn’t incur extra round trips to a
directory server. In the AzMan API, this means the provider makes a call to IAzApplication::
InitializeClientContextFromToken. If you pass the value of HttpContext.Current
.User.Identity.Name as the username parameter to IsUserInRole or GetRolesForUser,
you will be able to have the provider initialize the client context from the Windows token.

❑ For non-ASP.NET applications, the provider follows the same process, but it looks at Thread
.CurrentPrincipal. For non-ASP.NET applications, ensuring that the thread principal is set
up with the correct WindowsPrincipal and WindowsIdentity is the most efficient approach
for using the provider.

❑ If your application doesn’t have a WindowsIdentity available (in ASP.NET this would probably
mean you are using forms authentication), then the provider falls back and initializes the client
context with a call to IAzApplization::InitializeClientContextFromName. This is the
AzMan method that allows Authorization Manager to take just a plain string representation of a
username (e.g. DOMAIN\USERNAME style or the user@domain.com UPN style) and look up
the expansion of that user’s group membership in Active Directory. Although this approach gives
you the flexibility to use forms authentication in your web applications, it is slower than the token-
based approach. Also note that for this approach to work the process identity or the application
impersonation identity needs read privileges on the tokenGroupsGlobalAndUniversal
attribute of any users that will be authorized in the application. By default, read access on this
attribute is granted to members of the built-in domain group Pre-Windows 2000 Compatible
Access. If this group has no members in your domain structure (for example, you may have
locked down your domain by emptying the membership for this group), then the provider will
return an access denied exception from the AzMan layer. You can fix this problem in a number
of ways. The easiest approach is to add the appropriate accounts to a different built-in domain
group called Windows Authorization Access Group. This group has read access to the
tokenGroupsGlobalAndUniversal attribute for all users in the domain. You can also follow
a more granular security approach by granting read access on the attribute at the OU level.
This has the benefit of limiting the access granted to a process or application impersonation
account to only the users in a specific directory container.

After the provider has the user’s client context in hand, it can use it to get the role information needed
by IsUserInRole and GetRolesForUser.

Internally, the provider will call the store’s UpdateCache method to update its cached information after
60 or more minutes have passed. The duration between calls to UpdateCache is configurable, primarily
so you can tune the provider to be more or less sensitive to changes in the underlying policy store.
Because AzMan caches the authorization information it loads from the policy store, changes made to
previously loaded authorization information are not reflected until the next time the provider asks
AzMan to update its cached information.

575

AuthorizationStoreRoleProvider

18_596985 ch15.qxp 12/14/05 7:54 PM Page 575

In terms of unique AzMan functionality that does work with the provider, the following pieces of
AzMan functionality will affect the results returned by the provider:

❑ AzMan supports nesting of Windows users and Windows groups in AzMan application groups,
as well as nesting of AzMan application groups in other AzMan application groups. When you
call the provider’s GetRolesForUser or IsUserInRole methods, the results will reflect these
nesting relationships. As noted in Chapter 13, this is a perfect example of being able to support
nesting relationships for authorization checks even though the Role Manager feature doesn’t
explicitly support this kind of functionality.

❑ AzMan supports groups that have dynamic group membership; these are called LDAP query
groups. The provider is oblivious to LDAP query groups. You can’t create LDAP query groups
via the provider. However, if you have preconfigured LDAP query groups in an AzMan policy
store, the results returned from the provider will reflect a user’s membership (or nonmember-
ship) in the LDAP query groups.

Supported Functionality
AuthorizationStoreRoleProvider implements all of the methods defined on the base
RoleProvider class with the exception of the FindUsersInRole method. The provider throws a
NotImplementedException from this method, which is a bit of a deviation from the normal practice
of throwing a NotSupportedException for such cases. Because the provider is basically a “shim”
that maps RoleProvider method calls to their equivalent for AzMan, and AzMan has no concept of
searching for users in a role, the FindUsersInRole method was not implemented.

If you have ever worked with the AzMan APIs directly, you are probably already getting an idea of how
the provider makes use of AzMan. Internally, each supported RoleProvider method maps directly to a
method call on an AzMan interface or object. The complete mapping is shown in the following list:

❑ AddUsersToRoles—IAzRole::AddMemberName.

❑ CreateRole— Either IAzApplication::CreateRole or IAzScope::CreateRole.

❑ DeleteRole— Either IAzApplication::DeleteRole or IAzScope::DeleteRole.

❑ FindUsersInRole— Not implemented.

❑ GetAllRoles— Iterates through the roles returned by either the IAzApplization::Roles
property or the IAzScope::Roles property.

❑ GetRolesForUser—IAzClientContext::GetRoles.

❑ GetUsersInRole—IAzRole::MembersName.

❑ IsUserInRole— Retrieves roles from IAzClientContext::GetRoles, and then performs
a string comparison between the requested role and the set of roles returned from the AzMan
method. The comparison is case-insensitive and uses ordinal comparisons (that is, a case-
insensitive byte-by-byte string comparison using the invariant culture).

❑ RemoveUsersFromRoles—IAzRole::DeleteMemberName.

❑ RoleExists— Either IAzApplication::OpenRole or IAzScope::OpenRole.

576

Chapter 15

18_596985 ch15.qxp 12/14/05 7:54 PM Page 576

There aren’t any implemented methods that have special or unexpected functionality. Beyond the inter-
nal mappings noted in the preceding list, the AzMan specific aspects of the provider are in the area of a
few properties and AzMan specific handling of some configuration attributes.

The provider properties that directly affect how its works with AzMan are described in the following list:

❑ ApplicationName—AuthorizationStoreRoleProvider uses this attribute as the name
of the AzMan application in the policy store that the provider instance should work with. An
important difference from the SQL providers though is that the trick of overriding this property
will not work. Internally, the provider always looks at a private variable that stores the applica-
tion name; the provider doesn’t call the getter on the public property. The assumption was that
normally you would not have hundreds or thousands of AzMan applications in a policy store,
so supporting the dynamic switching of application context on a per-request basis didn’t really
make sense. Note that this property also has a setter. After changing the application name via a
call to the setter the provider will reinitialize its reference to an AzMan application by calling
IAzAuthorizationStore::OpenApplication again. This can be useful for limited adminis-
trative applications, but because the setter is not thread-safe you need to carefully manage calls
to it. Otherwise two simultaneous requests attempting to set ApplicationName will interfere
with each other. For this reason, you should configure different provider instances for different
AzMan applications needed by your production applications.

❑ ScopeName— This is a custom provider property that allows you to get and set the AzMan
scope used by the provider. Normally, you configure the AzMan scope in configuration and
then the provider operates within the context of the scope for its entire lifetime. As with the
ApplicationName property, ScopeName has a setter that you can use. After calling it, the
provider will internally reinitialize its IAzApplization and IAzScope references. However,
the setter for ScopeName is also not thread-safe, and so it is really only useful for administrative
applications that implement some type of locking to ensure that competing threads don’t tromp
on each other’s scope settings. The general guidance is that you should configure separate
provider instances for each different AzMan application-scope combination needed by your
application.

The AzMan specific configuration properties supported by the provider are:

❑ applicationName— This attribute determines the AzMan application used by the provider.
You must explicitly specify a value for this attribute if you want the provider to work. Although
the provider will use ASP.NET’s default logic for determining an application name if one is not
specified, chances are you don’t have an AzMan application with the same name as your web
application’s virtual directory (or executable name in the case of a non-ASP.NET application).

❑ scopeName— This attribute determines the AzMan scope in the AzMan application that will be
used by the provider. If you specify the scopeName configuration attribute, be sure that the
scope really does exist in the AzMan application pointed at by the applicationName attribute.

❑ cacheRefreshInterval— Controls the interval in minutes between calls to update the cached
representation of authorization information. If this attribute is not specified, the provider will
call UpdateCache on the policy store every 60 minutes. You can lower the value on this setting
if you have frequent changes occurring in your policy store, or you can increase it if your policy
store doesn’t change much. Note though that this setting affects only cached information
derived from the AzMan policy store. For example, if you change the Windows groups that a
user belongs to, adjusting this cache interval will not help because the AzMan cache has nothing
to do with Windows group memberships that are cached in a user’s security token.

577

AuthorizationStoreRoleProvider

18_596985 ch15.qxp 12/14/05 7:54 PM Page 577

Using a File-Based Policy Store
You can configure AzMan’s authorization rules using an XML file as opposed to a directory — in this
case, the XML file is the policy store. AzMan supports a file-specific connection string format for con-
necting to an XML file. AuthorizationStoreRoleProvider is configured with this connection string
in the same way that you would configure a SQL-based provider with an ADO.NET-compliant connec-
tion string. You add the connectionStringName attribute to your provider definition and it references
a connection string in the <connectionStrings /> section. For example, the following connection
string uses a combination of the AzMan connection string syntax and a special syntax that is unique
specifically to AuthorizationStoreRoleProvider:

<add name=”FileBasedPolicyStore”
connectionString=”msxml://~/App_Data/test.xml”/>

The bolded portion of the connection string uses the ASP.NET tilde shorthand. When the provider sees
that the connection string starts with msxml it knows that it will be working with a file-based policy
store. As a result the provider makes an extra check for the tilde syntax. If it finds it, the provider gets
the physical file path to the root of the web application and prepends it to the remainder of the connec-
tion string. In the preceding sample syntax, this means you could also use a connection string such as:

<add name=”FileBasedPolicyStore”
connectionString=
“msxml://D:\Inetpub\wwwroot\Chapter15\UsingAzMan\App_Data\test.xml”/>

For web applications, it makes sense to use the ~/App_Data shorthand because you can just deploy the
web.config file onto a web server without having to fix up the file path for the AzMan policy store. If
you use the provider in a non-ASP.NET application, you can actually use the same tilde syntax. In this
case the provider substitutes the file path to the current executable in place of the tilde character.

Using the provider with a file based policy store is trivial after the authorization store has been set up
and configured. In Figure 15-1 I have added the demouser98@corsair.com account to a role called
Normal Users. There is also another role called Adminstrators defined in the application called
UsingAzMan.

At this point, using the policy store is just an exercise in configuring Role Manager properly, and then
calling the APIs. The abbreviated configuration for a test application is:

<connectionStrings>
<!--special file based syntax supported only by the provider-->
<add name=”FileBasedPolicyStore”

connectionString=”msxml://~/App_Data/test.xml”/>
</connectionStrings>
...
<roleManager enabled=”true” defaultProvider=”fileProvider”>
<providers>
<clear />
<add name=”fileProvider”

type=”System.Web.Security.AuthorizationStoreRoleProvider, ...”
connectionStringName=”FileBasedPolicyStore”
applicationName=”UsingAzMan”/>

</providers>
</roleManager>

578

Chapter 15

18_596985 ch15.qxp 12/14/05 7:54 PM Page 578

Figure 15-1

The provider definition points at a connection string using the tilde shorthand. The applicationName
attribute on the provider definition corresponds to the AzMan application UsingAzMan that you can see
in the policy store from Figure 15-1.

With the configuration steps completed, you can create roles and associate users to roles. If you want
you can use the Web Administration Tool (WAT) to accomplish this. Because the WAT is oblivious to the
type of provider being used, it will allow you to carry out role management against AzMan via the
provider. Because I used the ActiveDirectoryMembershipProvider for my sample application, the
WAT was able to find users and assign them to roles managed by the
AuthorizationStoreRoleProvider. After you have setup some roles and user-to-role assignments,
you can dump out the roles that the user belongs to.

string[] roles = ((RolePrincipal)User).GetRoles();
foreach (string r in roles)

Response.Write(User.Identity.Name + “ is in role “ + r + “
”);

This code snippet shows that the user account belongs to the Normal Users role:

demouser98@corsair.com is in role Normal Users

579

AuthorizationStoreRoleProvider

18_596985 ch15.qxp 12/14/05 7:54 PM Page 579

If you go back into the AzMan MMC and switch the account over to the Administrators role, you can see
the change in role assignment take effect. First though you will need to cycle the web application (touch
web.config or iisreset). This is because after browsing to the test page the first time, AzMan will have
cached the results of the policy lookup. Changing a user’s role membership in the MMC won’t be reflected
in the AzMan runtime until the next cache refresh interval (remember that the provider uses a 60 minute
cache refresh interval by default). After you have cycled the web application, thus dumping the cached
AzMan authorization information, refreshing the page in the browser will show the new role membership.

Note that from AzMan’s point of view, the file is just an XML file, which has security implications for your
web application. For web applications you should always place the XML file (or files if you are configuring
multiple provider instances) inside of the App_Data directory. This prevents malicious users from down-
loading the policy store. If you were to place the XML file somewhere else in your directory structure,
browser users that guessed the name of it would be able to download your entire authorization policy!

Of course, this raises the question of whether you should use file-based policy stores in production
applications. Personally, I would lean away from doing so and limit use of the file-based policy store
to development environments. Even though the policy store will be safe when it resides in App_Data,
it still seems risky to have your authorization policy sitting on your web server’s hard drive, available
for anyone with local server access to browse. Some folks though like to use file-based policy stores in
production because if the policy store is small (“small” is relative but 1MB or smaller is a reasonable
“guesstimate”), using an XML-based store is much faster than using the directory based store. Another
argument against not using a file-based policy store is that in a web farm you now have the hassle of
having to push updates to your authorization policy across multiple machines. Determining whether all
of your servers have the same authorization rules can be a bit difficult. If you store the policy in a direc-
tory, you know that every web server pointed at the directory server is seeing the same consistent set of
authorization information.

Because the policy store exists in a file, you can secure access to the store with NTFS file ACLs. Like
other ASP.NET providers, AuthorizationStoreRoleProvider internally runs with either the process
credentials or application impersonation credentials assuming you have application impersonation
enabled. If these credentials only have read access to the policy store, only the read-oriented methods on
the provider will succeed. If the process or application impersonation credentials have write access to
the file as well, then write-oriented methods (for example, CreateRole) will also work.

The default App_Data credentials set by Visual Studio grant both read and write access to the process
account. As a result, for file-based policy stores, your web application will be able to modify the infor-
mation in the store by default. To restrict policy stores to read-only on your web servers you can simply
revoke Write permission on the XML file from the process account or application impersonation account.

Using a Directory-Based Policy Store
From a programming and configuration standpoint, using a directory-based policy store is no different
than using a file-based policy store aside from the connection string. Instead of configuring the connec-
tion string with an msxml moniker, you use an msldap moniker with a valid LDAP path. Setting up
an AzMan policy store basically involves choosing a location for the store in your directory. Instead of
storing the policy store in a file, the policy store is located in a container somewhere in your directory
structure. I created a policy store in the directory structure that you saw used earlier in Chapter 12 when
you learned about working with ActiveDirectoryMembershipProvider. Figure 15-2 shows a policy
store aptly named “Chapter 15” that contains an application called UsingAzMan.

580

Chapter 15

18_596985 ch15.qxp 12/14/05 7:54 PM Page 580

Figure 15-2

If you look at the containers underneath corsair.com, you will see there is a container titled Chapter15
that is of type msDS-AzAdminManager. This container is the root of the AzMan policy store shown in
Figure 15-2. Note that you won’t see this container unless you enabled the advanced features view in the
Active Directory MMC. Normally though, you work with the AzMan policy store via the AzMan MMC.
Looking at the underlying container location is interesting in order to get an idea of how the abstract
concept of a policy store maps to a physical container within a directory.

With the policy store and AzMan application created, you can connect to it with the following connec-
tion string:

<add name=”DirectoryBasedPolicyStore”
connectionString=
“msldap://corsdc2.corsair.com/CN=Chapter15,DC=corsair,DC=com”/>

Unlike ActiveDirectoryMembershipProvider, where you could also use just a domain name,
AzMan requires a server name and optional port name if you choose to supply this information. If you
want though, you can skip the servername and port name, in which case AzMan will use the default
domain controller selected by the machine. The following connection string shows what this looks like:

581

AuthorizationStoreRoleProvider

18_596985 ch15.qxp 12/14/05 7:54 PM Page 581

<add name=”DirectoryBasedPolicyStore”
connectionString=”msldap://CN=Chapter15,DC=corsair,DC=com”/>

At this point, you might think you could take the sample code from the file-based policy example shown
earlier and just use one of these two connection strings. If you do this, your code will connect to the pol-
icy store and then will promptly fail with an exception stating “Insufficient access rights to perform the
operation.” This is because the identity of your web application doesn’t have any privileges to read or
write information in the directory’s policy store. Unlike the file-based policy store where NTFS ACLs
control rights to the store, in a directory store you must explicitly setup the AzMan “roles” that grant
access to applications and scopes.

I put “roles” in quotes because it can quickly become confusing dealing with AzMan “roles” used for
connection access versus the real role information in the policy store. AzMan defines an Administrator
role and a Reader role that control the kinds of operations a security account can perform in a policy
store or application. As you would expect, a member of the Administrator role can do things like create
applications, scopes, and roles. A member of the Reader role can only query information in the policy
store — it cannot modify it.

Because I need to populate the store with some roles and setup a user-to-role mapping, I initially added
the web server’s machine account (which corresponds to NETWORK SERVICE) to the Administrator
role for the AzMan application called “UsingAzMan”. You can see what this looks like in Figure 15-3.

Figure 15-3

582

Chapter 15

18_596985 ch15.qxp 12/14/05 7:54 PM Page 582

As you can see from the screenshot, only Enterprise Admins are members of this role by default. For a
development environment where you are just loading test data, adding a server account to the
Administrator role is acceptable. However, in a production environment, you clearly should not have
your process accounts or application impersonation accounts in this role. At most you might have a
machine off to the side running an administrative application, where the process or application imper-
sonation credentials for that application are in the Administrator role.

Because the NETWORK SERVICE account was added to a management role associated with an AzMan
application, you also need to add the machine account to the Delegated User role at the store level. You
can see this in Figure 15-4.

This extra step is necessary if you plan to delegate control over different applications, or different scopes
within a single policy store. If you plan to store only a single web application’s authorization informa-
tion in a single policy store, then you can just grant rights at the store level (this would be a model of one
business application mapping to one AzMan policy store). On the other hand, if you plan to store many
different sets of authorization information within a single AzMan policy store, chances are that you
don’t want different web applications accidentally making use of each others authorization rules.

Figure 15-4

583

AuthorizationStoreRoleProvider

18_596985 ch15.qxp 12/14/05 7:54 PM Page 583

In this case, you may allocate an AzMan application for each of your business applications, or you may
allocate an AzMan scope for each business application. For these scenarios you need more granular
access control down to the level of an AzMan application or an AzMan scope. As a result, you start out
adding the appropriate accounts to the store level Delegated User group, and then add the appropriate
accounts (that is, delegate control) to the Administrator or Reader role on a specific application or scope.

With this extra set of security configuration completed, you can now run the sample code from the file-
based sample. The configuration looks almost exactly the same:

<connectionStrings>
<add name=”DirectoryConnection”

connectionString=
“LDAP://corsdc2.corsair.com/OU=UserPopulation_A,DC=corsair,DC=com”/>

<add name=”FileBasedPolicyStore”
connectionString=”msxml://~/App_Data/test.xml”/>

</connectionStrings>
...
<roleManager enabled=”true” defaultProvider=”directoryProvider”>
<providers>
<clear />
<add name=”fileProvider”

type=”System.Web.Security.AuthorizationStoreRoleProvider, ...”
connectionStringName=”FileBasedPolicyStore”
applicationName=”UsingAzMan”/>

<add name=”directoryProvider”
type=”System.Web.Security.AuthorizationStoreRoleProvider, ...”
connectionStringName=”DirectoryBasedPolicyStore”
applicationName=”UsingAzMan”/>

</providers>
</roleManager>

A second provider instance using a directory-based policy store was added to the <roleManager />
definition and was made the default provider for the feature. At this point, you can start creating roles
and assigning users to roles. If you are running as an interactive user with privileges in the AzMan pol-
icy store, you can use the WAT to accomplish this. Alternatively, now that the process account is part of
the application’s Administrator role you can use the standard Role Manager APIs in .aspx pages to cre-
ate roles and populate the roles with users.

Because most developers will probably work with prepopulated policy stores in their production envi-
ronments, you can change the rights that have been delegated to the process account or application
impersonation account. Although the account still needs to be in the Delegated User role at the store
level (assuming that you want to work with many applications in a single policy store), you can instead
add the account to the Reader role for the application. This will allow your application to read autho-
rization information, but it won’t be able to modify it in any way.

As noted earlier, the provider also supports working within the context of an AzMan scope. You can
change the configuration for the provider to include a scope definition like shown below:

<add name=”directoryProvider”
type=”System.Web.Security.AuthorizationStoreRoleProvider, ...”
connectionStringName=”DirectoryBasedPolicyStore”

584

Chapter 15

18_596985 ch15.qxp 12/14/05 7:54 PM Page 584

applicationName=”UsingAzMan”
scopeName=”Scope_A”/>

Now, if you create new roles and assign users to roles, all of the operations will be occurring within the
Scope_A scope nested within the UsingAzMan application. Figure 15-5 shows what this looks like.

The code to create the new roles and populate the roles consists of standard Role Manger API calls:

if (Roles.RoleExists(“Administrators in Scope A”))
Roles.DeleteRole(“Administrators in Scope A”, false);

if (Roles.RoleExists(“Normal Users in Scope A”))
Roles.DeleteRole(“Normal Users in Scope A”, false);

Roles.CreateRole(“Administrators in Scope A”);
Roles.CreateRole(“Normal Users in Scope A”);

if (!Roles.IsUserInRole(“Administrators in Scope A”))
Roles.AddUserToRole(User.Identity.Name, “Administrators in Scope A”);

Figure 15-5

585

AuthorizationStoreRoleProvider

18_596985 ch15.qxp 12/14/05 7:54 PM Page 585

As you can see, from a programming perspective nothing changes. You continue to write Role Manager
code as you normally would, and the provider automatically takes care of working against the correct
application scope.

Another unique aspect of using the AzMan policy store is the ability to nest group memberships. There
are a variety of approaches to nesting:

❑ Add Windows users and Windows groups directly to a role you create in AzMan.

❑ Add Windows users and Windows groups to an AzMan application group. Then add the
AzMan application group to a role you create in AzMan.

❑ Add Windows users and Windows groups to an AzMan application group. Then add the
AzMan application group to a different AzMan application group. Add this second group to a
role you create in AzMan.

So, you have quite a few different options that allow you to accomplish group nesting. Although
AuthorizationStoreRoleProvider can add Windows users only directly to an AzMan role, the
provider will properly handle the necessary group expansion computations when IsUserInRole or
GetRolesForUser is called (or more precisely AzMan does this for you).

To see how this works you can setup some test AzMan application groups. Set up an application group
hierarchy like the following:

Application Group That Contains A
|
|
---> Application Group A

|
|
---> demouser98@corsair.com

You now have an example of a nesting relationship. The demouser98@corsair.com user account in
Active Directory indirectly belongs to the top-level AzMan application group called Application Group
That Contains A. You can add this application group to the Normal Users role that was created earlier as
shown in Figure 15-6.

Now if you dump all the roles that “emouser98@corsair.com belongs to with the following code:

string[] roles = ((RolePrincipal)User).GetRoles();
foreach (string r in roles)

Response.Write(User.Identity.Name + “ is in role “ + r + “
”);

You will see the following output:

demouser98@corsair.com is in role Administrators
demouser98@corsair.com is in role Normal Users

586

Chapter 15

18_596985 ch15.qxp 12/14/05 7:54 PM Page 586

Figure 15-6

Even though the user belongs to Normal Users by way of two intervening application groups, the
provider is properly returning the full expansion of the user’s role membership. If the underlying
call to the provider’s GetRolesForUser method did not properly expand all nested group relation-
ships when computing a user’s AzMan role memberships, the utility of the provider, and for that
matter AzMan itself, would be rather hobbled. Keep this behavior in mind if you plan on using
AuthorizationStoreRoleProvider. Even though you won’t get the benefit of the AzMan access
checks with this provider, the ability to use any type of group nesting in AzMan and still have role
checks work properly gives you a powerful piece of role management that SqlRoleProvider lacks.

One other unique aspect of AzMan that you can leverage with the provider is LDAP query groups. The
AzMan application groups you just saw are called basic groups in AzMan terminology. The companion
group type in AzMan is an LDAP query group. As the name suggests, instead of statically defining the
users and groups that belong to the AzMan application group, membership is determined on the fly
based on an LDAP query. Depending upon what kind of user information you store in your directory,
you can create some very rich user-to-LDAP query group assignments (for example, users that belong
to the West coast region, users that have a specific area code, and so on).

587

AuthorizationStoreRoleProvider

18_596985 ch15.qxp 12/14/05 7:54 PM Page 587

Even though the concept of a MembershipUser in ASP.NET is very limited, this doesn’t constrain the
kinds of LDAP queries you can use in AzMan. This means that if you have some way of populating
attributes for your user objects other than the Membership feature, you can create LDAP queries that
make use of this information. For example, if you set the zip code (that is, the postalCode attribute) on
a user object, you can then construct an LDAP query group that predicates its membership based on this
value. A simple example of such a query definition is shown in Figure 15-7.

You can then add the LDAP query group to one of the AzMan roles that created earlier. Figure 15-8
shows adding the query group to the role called. This is a new role.

I edited the user object for the demouser98@corsair.com user by setting its zip code to 98005. Now if
you rerun the sample code that prints out a user’s roles, you can see that the provider returns the third
AzMan role as well.

demouser98@corsair.com is in role Administrators
demouser98@corsair.com is in role Normal Users
demouser98@corsair.com is in role This is a new role

Figure 15-7

588

Chapter 15

18_596985 ch15.qxp 12/14/05 7:54 PM Page 588

Figure 15-8

Even though this kind of dynamic group functionality is not defined anywhere in the Role Manager fea-
ture, you can still take advantage of it via AuthorizationStoreRoleProvider. As long as you have
set up user attributes and LDAP query groups through some other mechanism, you can take full advan-
tage of the dynamic membership of LDAP query groups with the provider. With some planning around
user attributes and LDAP queries you can structure your AzMan authorization rules to automatically
adjust to the changing information stored for your users.

Working in Partial Trust
Because the provider works with both file-based AzMan policy stores and directory-based AzMan policy
stores, there are two different approaches to getting the provider working in a partially trusted application.
Regardless of the policy store location, the provider always requires AspNetHostingPermission with at
least Low trust (see Chapter 14 on SqlRoleProvider to learn how you can grant this permission in a non-
ASP.NET application) during the initialization process.

589

AuthorizationStoreRoleProvider

18_596985 ch15.qxp 12/14/05 7:54 PM Page 589

The provider always checks for AspNetHostingPermission with a setting of Medium for any write-
oriented methods. Because Low trust is conceptually a read-only trust bucket, while Medium trust is
the conceptual read-write trust bucket, AuthorizationStoreRoleProvider only allows the following
methods to work when running in a web application at Medium trust or above:

❑ CreateRole

❑ DeleteRole

❑ AddUsersToRoles

❑ RemoveUsersFromRoles

You will see this behavior for ASP.NET applications. If you plan to use the provider outside of ASP.NET in
a partial trust application, you effectively need to run at full trust as is discussed a bit later in this section.

If the policy store is located in an XML file, and you are using the provider inside of an ASP.NET applica-
tion, then the provider will also partially rely on the application’s file I/O code access security (CAS)
permissions for read-oriented methods. The idea here is that if you are using a file-based policy store,
then the file I/O CAS permissions of the application are a good indicator of whether a partial trust web
application has rights to use the provider. When the provider is initializing itself, it will check to see if
the web application has read access to the XML file. This effectively means that in High trust you can
point the provider at a policy file that is located anywhere on the file system. In Medium and Low trust
though, due to the FileIOPermission(s) granted at these trust levels, the provider will only work with
a policy file located somewhere within the application’s directory structure. This kind of restriction
makes sense because you probably do not want a Medium or Low trust application to read policy files
located in other applications’ directory structures. Assuming that your application passes these trust
level checks, the provider internally asserts unrestricted security permissions so that it can call into the
AzMan PIA without triggering any security exceptions.

To demonstrate how all of this works you can take a sample application like the one shown earlier for
the file-based policy store, and change the trust level setting. For example, if you drop the trust level
down to Low, and then attempt to create or delete roles you will get an error stating “This API is not
supported at this trust level.” If you bump the trust level up to Medium though, role creation and dele-
tion will work again. However, if you reset the trust level to Low, you will still be able to use read-only
methods like GetRolesForUser. Also, in both Medium and Low trust if you change the connection
string to point a location outside of the web application’s directory structure you will get an exception
like the following:

[HttpException (0x80004005): Access to path ‘test.xml’ was denied. The location
does not exist or is not accessible because of security settings.]
System.Web.HttpRuntime.CheckFilePermission(String path, Boolean writePermissions)
System.Web.Security.AuthorizationStoreRoleProvider.InitApp()
System.Web.Security.AuthorizationStoreRoleProvider.GetClientContext(String
userName)
System.Web.Security.AuthorizationStoreRoleProvider.GetRolesForUserCore(String
username)
System.Web.Security.AuthorizationStoreRoleProvider.GetRolesForUser(String username)
...

From the stack trace you can see that the provider is explicitly checking for FileIOPermission by way
of an internal HttpRuntime helper method and that this check causes the failure.

590

Chapter 15

18_596985 ch15.qxp 12/14/05 7:54 PM Page 590

If you use the provider in a partial trust web application and your policy store is located in a directory
store, your code will simply not work regardless of the configuration steps you take. For example, if you
run an application in High trust and attempt to use the provider, you will instead get error information
like the following:

[SecurityException: Request for the permission of type
‘System.Security.Permissions.SecurityPermission...’ failed.]
...
System.Activator.CreateInstance(Type type, Boolean nonPublic)
System.Activator.CreateInstance(Type type)
System.Web.Security.AuthorizationStoreRoleProvider.InitApp()
System.Web.Security.AuthorizationStoreRoleProvider.GetClientContext(String
userName)
System.Web.Security.AuthorizationStoreRoleProvider.GetRolesForUserCore(String
username)
System.Web.Security.AuthorizationStoreRoleProvider.GetRolesForUser(String username)
System.Web.Security.RolePrincipal.GetRoles() +248
...

In this case, when the provider attempts to open the policy store via the AzMan PIA, the call fails. Like
many CAS-related errors the error information is less than enlightening, and you can’t tell what the
problem is. Futhermore, the stack trace shows the provider calling Activator.CreateInstance, which
probably seems a bit weird. Internally, the provider actually does not have any compile time dependency
on the AzMan PIA. Instead the provider dynamically loads AzMan types through reflection and then
invokes methods on the resulting runtime callable wrappers through reflection as well. I intentionally
chose High trust to demonstrate the error condition because High trust applications do have full reflec-
tion permissions. So, clearly it is not a lack of reflection permissions that is causing the security error.

The reason for the error is that the provider and the rest of the call stack require unmanaged code
permissions to call into the COM PIA. There is no reasonable surrogate permission that can be used
by the provider in return for asserting unmanaged code permission (as is done in the case of a file-based
policy store) when connecting to a directory based policy store. Neither AspNetHostingPermission
nor FileIOPermission make sense to use as surrogate permissions. Theoretically, the development
team could have used DirectoryServicesPermission that you saw in Chapter 12 on
ActiveDirectoryMembershipProvider, but doing so would be a bit awkward. Granting
DirectoryServicesPermission just to get AuhtorizationStoreRoleProvider working would
also mean that any code in your web application could use the System.DirectoryServices class
and start connecting to arbitrary directory stores. That level of access was considered excessive just for
enabling a single provider.

Instead, if you want to use the provider in a partial trust web application with a directory-based policy
store, you will need to wrap the calls to the provider’s methods inside of a trusted GAC’d assembly. The
wrapper assembly will need to assert a SecurityPermission for unmanaged code permissions prior to
calling into the provider because internally the provider uses the AzMan PIA to talk to AzMan through
COM interop. Because COM classes are considered unmanaged classes, a wrapper assembly must assert
unmanaged code permissions.

So, far I have discussed how to use the provider in partial trust web applications. For partial trust non-
ASP.NET applications, you always need unmanaged code permissions. This holds true even for file
based policy stores. This means you need some kind of trusted code on the stack that calls into the
provider. As a result using a GAC’d wrapper assembly that asserts unmanaged code permissions is the
correct approach for using the provider in partially trusted non-ASP.NET applications.

591

AuthorizationStoreRoleProvider

18_596985 ch15.qxp 12/14/05 7:54 PM Page 591

The reason that there is no special FileIOPermission behavior for partially trusted non-ASP.NET
applications is the base requirement for unmanaged code permissions. After an application or a piece of
code has that permission, checking the FileIOPermission is pointless. Unmanaged code permission
means the application can just use Win32 or COM calls to directly manipulate the file system, so check-
ing for FileIOPermission wouldn’t prove anything about the trust level for the application.

Using Membership and Role Manager
Together

The previous samples have been exclusively using a username in a UPN format —demouser98@corsair
.com. Even though the full configuration for the samples was not shown, they were using the
ActiveDirectoryMembershipProvider configuration shown in Chapter 12. This allowed me to first
login with forms authentication against the directory, and then AuthorizationStoreRoleProvider
initialized its client context with the same UPN. The nice thing about the UPN format is that using both
the Membership and Role Manager providers together works.

Logging in with a UPN places that value in the forms authentication ticket. When it comes
time for AuthorizationStoreRoleProvider to fetch role information for the user, it calls
InitializeClientContextFromName to set up the client context. This method accepts and parses
usernames following the same rules defined in the Win32 API method LookupAccountName. UPNs
provide unambiguous identification of a user account, which is why UPN style usernames work well
with both providers.

Problems can arise though if your Membership provider is configured to use the sAMAccountName
attribute. Because ActiveDirectoryMembershipProvider already knows the domain that it oper-
ates in, the provider does not allow the username parameter to include the DOMAIN portion. As a
result, if you validate a forms authentication login with ActiveDirectoryMembershipProvider,
the username that ends up in FormsAuthenticationTicket will lack the domain name. When
AuthorizationStoreRoleProvider subsequently attempts to initialize a context from that username,
it goes through a lengthier process trying to determine the correct user. The problem is that in even
moderately complex domain environments you can have duplicate sAMAccountName(s) in different
domains. For that matter the same username can show up in a machine’s local account SAM and in the
domain. These cases can lead to ambiguity for AzMan and in the worst case can cause the wrong user
account to be selected and used for authorization purposes.

The solution to the SAM account name problem is to layer support for NT4 style account names on
top of ActiveDirectoryMembershipProvider. This allows users to login with the older DOMAIN\
USERNAME syntax, which in turn means AuthorizationStoreRoleProvider will find the correct
user when it looks for it in the directory. The inclusion of the DOMAIN portion of the username
means that in multidomain environments you will be able to use forms authentication with both
ActiveDirectoryMembershipProvider and AuthorizationStoreRoleProvider without having
to worry about duplicate usernames in different domains confusing AzMan.

You can use the familiar approach of just deriving from ActiveDirectoryMembershipProvider to
create a custom provider with the necessary functionality. The custom provider will add in some basic
validation logic that ensures the username parameter supplied to any method has the correct domain

592

Chapter 15

18_596985 ch15.qxp 12/14/05 7:54 PM Page 592

name. You set the domain name that the custom Membership provider expects in the applicationName
configuration attribute. Because this attribute is not used by ActiveDirectoryMembershipProvider,
it is a convenient place to store the expected DOMAIN prefix for a username.

public class NTUsernameProvider : ActiveDirectoryMembershipProvider
{

private string StripOffDomainValue(string username)
{

string[] userParts = username.Split(new char[] {‘\\’});
if (userParts.Length == 1)

throw new ArgumentException(
“You must supply a domain name in the form DOMAIN\\USERNAME.”);

string domain = userParts[0];
string user = userParts[1];

if (String.Compare(domain,this.ApplicationName,
StringComparison.OrdinalIgnoreCase) != 0)

throw new
ArgumentException(“The supplied username is in an incorrect format.”);

return user;
}

public override bool ValidateUser(string username, string password)
{

string user;
try
{

user = StripOffDomainValue(username);
}
catch (ArgumentException ae)
{

return false;
}

return base.ValidateUser(user, password);
}

public override MembershipUser GetUser(string username, bool userIsOnline)
{

string user = StripOffDomainValue(username);
return base.GetUser(user, userIsOnline);

}

//Override additional methods as needed.
}

The code to accomplish this is pretty simple. The private helper method StripOffDomainValue splits
apart a username parameter into the domain name and the plain user name. It then verifies that the
username did contain a domain identifier and that the domain portion of the username matches the
domain name specified in the provider’s applicationName configuration attribute. If these validation
checks succeed, the helper method returns just the username portion of an NT4 style username.

593

AuthorizationStoreRoleProvider

18_596985 ch15.qxp 12/14/05 7:54 PM Page 593

The custom provider uses this helper method in its overrides of ActiveDirectoryMembershipProvider.
Prior to calling into the base class the custom provider strips the domain portion of the username.
This allows the underlying provider to function as it expects when usernames are mapped to the
sAMAccountName attribute. However, from an application perspective, a user is always known by a
full NT4 style username. To use the custom provider, you change the Membership configuration to
point at it:

<add name=”appprovider”
type=”NTUsernameProvider”
attributeMapUsername=”sAMAccountName”
connectionStringName=”DirectoryConnection”
applicationName=”CORSAIR”/>

Notice how the applicationName attribute now contains the old NT4-style name of the domain. With
the Membership feature configured to use the custom provider, you can now log in using NT4-style
credentials like CORSAIR\testuserpopa (this was an account created in Chapter 12). After logging
in with these credentials, you can then retrieve the role information for this user with the usual Role
Manager API calls. These calls will work because the username retrieved from User.Identity.Name
will always be CORSAIR\testuserpopa. Because this username includes the domain of the user, when
AuthorizationStoreRoleProvider initializes a client context, AzMan has all of the information it
needs to correctly identify the domain and the specific user in that domain that it should work with.

Summary
AuthorizationStoreRoleProvider maps most RoleProvider functionality (with the exception of
the FindUsersInRole method) onto the Authorization Manager (AzMan) feature of Windows Server
2003 domains. The provider works with AzMan policy stores located in Active Directory, ADAM or file-
based policy stores. You can use the provider in both ASP.NET and non-ASP.NET applications. If you
want the use the provider in partially trusted applications though, there are a number of restrictions
around using file-based and directory-based policy stores.

Using either a file-based or directory-based AzMan policy store with the provider is straightforward.
After the AzMan policy store has been created and populated, you need to grant access to the store. With
the appropriate access rights (NTFS rights for the file-based policy store and AzMan-specific roles for
directory based policy stores), AuthorizationStoreRoleProvider can then connect to the AzMan
policy store. The provider carries out its operations in the context of either a specific AzMan application
or in the context of an AzMan scope.

Even though the RoleProvider class doesn’t expose the concept of role nesting, if you have structured
your AzMan policy store with any of its nesting features, the GetRolesForUser and IsUserInRole
methods will correctly reflect the results of any these relationships. The advanced LDAP query group
functionality also works with both of these methods. Remember that if you are working in a domain
environment that uses SAM account names for its users and your application is using forms authentica-
tion with ActiveDirectoryMembershipProvider, you will need to write a simple wrapper around
the Membership provider in order to accommodate NT4-style account names. When using SAM account
names, AuthorizationStoreRoleProvider will only work reliably if the full NT4-style username is
available from the HttpContext.

594

Chapter 15

18_596985 ch15.qxp 12/14/05 7:54 PM Page 594

In
de

x

Index

Numerics
3DES, 201

A
account lockouts, 451–454
AcquireRequestState event, 42
Active Directory. See AD (Active Directory)
Active Directory Application Mode. See

ADAM (Active Directory Application
Mode)

ActiveDirectoryMembershipProvider
ActiveDirectoryMembershipUser,

480–482
AD (Active Directory), 482–502
ADAM (Active Directory Application Mode),

503–512
ChangePassword, 477
ChangePasswordQuestionAndAnswer,

478
CreateUser, 477
DeleteUser, 478
FindUsersByEmail, 478
FindUsersByName, 478
functionality of provider, 477–480
GeneratePassword, 478
GetAllUsers, 478
GetNumberOfUsersOnline, 478
GetPassword, 478

GetUser, 478
GetUserNameByEmail, 479
overview, 465
partial trust, 512–515
provider configuration, 468–477
ResetPassword, 479
supported directory architectures, 465–468
UnlockUser, 479
UpdateUser, 479
ValidateUser, 479

ActiveDirectoryMembershipUser
IsApproved, 481
IsLockedOut, 481
overview, 480–481
ProviderUserKey, 482

AD (Active Directory)
container nesting, 486–487
overview, 482–484
SAM account names, 484–485
securing containers, 487–493
self-service password reset, configuring,

494–502
UPN-style usernames, 484–485

ADAM (Active Directory Application Mode)
application partition, using, 510–512
installation with an application partition,

504–510
overview, 503–504

AddUsersToRole method, 520

19_596985 bindex.qxp 12/14/05 7:53 PM Page 595

AddUsersToRoles method, 520, 545
AddUserToRole method, 520
AddUserToRoles method, 520
ADODB access, 131–133
AES (Advanced Encryption Standard),

201–204
allowOverride attribute, 146
AllowPartiallyTrustedCallers

Attribute class
/bin directory and, 125–126
overview, 121–124
strongly named assemblies and, 124

/app_browsers path, 8
/app_code path, 8
/app_data path, 8
$AppDir$, 85
$AppDirUrl$, 85
/app_globalresources path, 8
application domain policy, 92
application domain startup

assembly locations, establishing, 19
auto-generated machine key, obtaining, 19–23
compilation system, initializing, 23
directory information, initializing, 16–17
identity, establishing, 16
overview, 15
trust level, setting, 17–19

application domain trust level, 17
application impersonation, 26
application name, storing, 404–405
application partition, using, 510–512
ApplicationId, 406, 415, 554
ApplicationName, 518, 544, 577
applicationName, 475, 577
Application_Start event, 25–28
/app_localresources path, 8
applying new trust level, 99
App_Offline.htm

disabling a Website with, 24–25
origins of, 25

/app_webreferences path, 8
ASP.NET permission set, 86–87
ASP.NET per-request security

asynchronous pipeline events and thread
identity, 43–48

DefaultAuthentication event, 54–56

DefaultAuthenticationModule, 54–56
HttpContext.Current.User, 48
IPrincipal, 48
operating system thread identity, establishing,

38–41
overview, 33–34
requests, security identity for, 34–37
Thread.CurrentPrincipal, 48, 54–56

aspnet_filter.dll, 5–6
AspNetHostingPermission

code, used in your, 110–111
Full trust, 107
functionality of ASP.NET and trust level of, 108
High trust, 107
implications outside of ASP.NET of, 109
Low trust, 107
Medium trust, 107
Minimal trust, 108
overview, 106
trust levels, 107–108

aspnet_isapi.dll
application domain, starting up an, 15–23
overview, 14

aspnet_regiis, 181–182
aspnet_Roles_BasicAccess, 563
aspnet_Roles_FullAccess, 563
aspnet_Roles_ReportingAccess, 563
assembly locations, establishing, 19
Assertion, 115
asynchronous page execution

asynchronous PreRender processing,
69–71

automatically flowing identity to asynchronous
work, 73–74

identity during, 69–74
overview, 69
PageAsyncTask, 71–73

asynchronous pipeline events and thread
identity, 43–48

asynchronous PreRender processing, 69–71
AuthenticateRequest event
FormsAuthenticatonModule, 52–54
overview, 48–49, 192
WindowsAuthenticatonModule, 49–52

596

AddUsersToRoles method

19_596985 bindex.qxp 12/14/05 7:53 PM Page 596

authenticating classic ASP with ASP.NET
cookieless forms authentication and,

273–274
overview, 272–273
passing data to ASP from ASP.NET, 274–276
passing username to ASP, 276

Authorization Manager (AzMan), 573–576
authorization methods, 544
AuthorizationStoreRoleProvider
ApplicationName, 577
applicationName, 577
Authorization Manager (AzMan), 573–576
cacheRefreshInterval, 577
directory-based policy store, 580–589
file-based policy store, 578–580
Membership, use of Role Manager and,

592–594
overview, 573
partial trusts, 589–592
provider design, 573–576
Role Manager, use of Membership and,

592–594
ScopeName, 577
scopeName, 577
supported functionality, 576–577

AuthorizeRequest event
FileAuthorizationModule, 58–60
overview, 58, 192
UrlAuthorizationModule, 60–65

authorizing classic ASP with ASP.NET
ConvertStringKeyToByteArray method,

281
hash helper, full code listing of, 284–285
HashStringValue method, 280
Helper class, 284–285
overview, 276–277
passing user roles to classic ASP, 277–278
sensitive data to classic ASP, safely passing,

278–284
ValidateHash method, 280

AutoDetect attribute
Internet Explorer, simulating in, 212–213
overview, 209, 210
phase 1, 210–211
phase 2, 211
phase 3, 211–212

subsequent authenticated access, 212
auto-generated machine key
AutoGenKey, 20
AutoGenKeyCreationTime, 20
AutoGenKeyFormat, 20
obtaining, 19–23

AutoGenKey, 20
AutoGenKeyCreationTime, 20
AutoGenKeyFormat, 20
automatic unlocking, implementing, 454–458
automatically flowing identity to

asynchronous work, 73–74
AzMan (Authorization Manager), 573–576

B
basic configuration, 544
BeginRequest event, 42
/bin directory, 125–126
/bin path, 8
blocking restricted directories, 8–9
building a provider-based feature

concrete provider, 359–361
configuration, 357–359
connection string, 362
initialization, 353–357
lifecycle of provider-based feature, 353
overview, 351–353
sample application, 363–365

C
CachedListChanged property, 529
cacheRefreshInterval, 577
CacheRolesInCookie property, 518, 535
CAS policy, checking current, 93–94
case sensitivity, 414–415
central login application, 241–245
ChangePassword method, 386, 477
ChangePasswordQuestionAndAnswer

method, 391, 478
character sets affecting URL authorization, 65
client impersonation, 26
clientSearchTimeout, 474
clock resets, 196–197

597

clock resets

In
de

x

19_596985 bindex.qxp 12/14/05 7:53 PM Page 597

code
access security, places that define, 90–91
AspNetHostingPermission, used in your,

110–111
permission sets matched to, 88–90

$CodeGen$, 85
<CodeGroup /> elements, 89
commandTimeout, 418, 555
Comment property, 371, 418
common database schema
Application Id, 406
application name, storing, 404–405
case sensitivity, 414–415
common users table, 405–408
IsAnonymous, 408
LastActivityDate, 407–408
MobileAlias, 408
overview, 404
user records, linking custom features to,

410–413
versioning provider schema, 408–10
views, querying common tables with, 410

common users table, 405–408
compilation system, initializing, 23
complex permissions, troubleshooting, 94–96
configProtectedData, 168
configuration

IIS6 wildcard mappings, 261–268
MembershipProvider base class,

383–384
configuration class, demanding permissions

from, 165–166
configuration system security. See also

protected configuration
configuration used in partial trust, 161–166
<location /> element, 143–146
lock attributes, 146–153
reading and writing configuration, 153–161

configuration used in partial trust
configuration class, demanding permissions

from, 165–166
design-time API and, 166
FileIOPermission, 166
overview, 161–163
requirePermission attribute, 163–164

ConfigurationManager class, 153–154
connection string, changing, 425–426
connectionProtection, 470
connectionStringName, 418, 555
container nesting, 486–487
ControlPrincipal, 115–116
ControlThread, 116
ConvertStringKeyToByteArray method,

281
cookie domain, 226–227
cookie-based sessions

cross-application cookie sharing, 292–293
overview, 291
protecting session cookies, 293
session ID reuse, 294

cookie-based SSO-lite
behavior of solution, list of desired, 236
central login application, 241–245
examples of, 245–246
overview, 234–238
sample participating application, 238–241
technical tips for, 246–247

cookied cross-application behavior, 231–234
cookieless cross-application behavior,

228–231
cookieless forms authentication

and authenticating classic ASP with ASP.NET,
273–274

AutoDetect attribute, 209, 210–213
overview, 208–210
payload size and, 218–220
replay attacks with cookieless tickets,

215–216
unexpected redirect behavior and, 221–222
URLs in pages and, other, 216–218
UseCookies attribute, 209
UseDeviceProfile attribute, 209,

213–214
UseUri attribute, 209

cookieless sessions, 294–296
CookiePath property, 530
cookieProtection, 536
cookieRequiresSSL, 536
cookieSlidingExpiration, 536

598

code

19_596985 bindex.qxp 12/14/05 7:53 PM Page 598

cookie-specific security options
HttpOnly cookies, 206–208
overview, 204
requireSSL attribute, 204–206
slidingExpiration attribute, 208

cookieTimeout, 535–536
core provider classes
System.Configuration classes,

347–350
System.Configuration.Provider

classes, 342–346
System.Web.Configuration classes,

346
CreateDate, 417
createPersistentCookie, 535
CreateRole, 545
CreateUser method, 385, 390–391, 392,

477
CreationDate property, 371, 379
cross-application cookie sharing, 292–293
cross-application ticket passing. See also

cross-application ticket sharing
cookie domain, 226–227
overview, 226

cross-application ticket sharing. See also
cookie-based SSO-lite

cookied cross-application behavior, 231–234
cookieless cross-application behavior,

228–231
how it works, 228–234
overview, 227–228
single sign on (SSO) products, 227–228

cryptographySettings, 168
custom encryption, 435–437
custom hash algorithms, 399–401
custom password generation, 432–435
custom password strength rules
initialize method, 444
overview, 437–439
password history, implementing, 440–451
ValidatePassword event, 439–440

custom provider, redirecting configuration
with, 184–190

custom trust level
applying new trust level, 99
creating, 96–105
declarative permission representations,

determining, 97–99
OdbcPermission, customizing, 101–103
OleDbPermission, customizing, 100–101
overview, 96
policy file, creating, 96–97
WebPermission, 103–105

D
data layer, authorizing roles in, 570–571
database schema. See also common database

schema
Membership, 415–418
SqlRoleProvider, 553–556

database security, 426–428, 563
DataList data control, 313
date-time values, 380–382
DBO user and database schemas, 428–430
declarative permission representations,

determining, 97–99
default security permissions defined by

ASP.NET
AspNetHostingPermission, 106–111
DnsPermission, 111
EnvironmentPermission, 111–112
FileIOPermission, 112–113
IsolatedStorageFilePermission, 113
overview, 105
PrintingPermission, 114
ReflectionPermission, 114
RegistryPermission, 115
SecurityPermission, 115–116
SmtpPermission, 117
SocketPermission, 117
SqlClientPermission, 118
WebPermission, 118

DefaultAuthentication event, 54–56
DefaultAuthenticationModule, 54–56
DefaultHttpHandler
EndProcessRequest, 270–271
OverrideExecuteUrlPath, 270–271

599

DefaultHttpHandler

In
de

x

19_596985 bindex.qxp 12/14/05 7:53 PM Page 599

DefaultHttpHandler (continued)
overview, 268–269
using, 270–271

defining protected configuration providers,
172

DeleteRole method, 520, 545
DeleteUser method, 385, 478
Denial of Service (DOS) attacks, 297–300
Description, 555
deserialization requirements for session state,

302–304
Design Patterns: Elements of Reusable Object-

Oriented Software (Gamma, Helm,
Johnson & Vlissides), 332

design-time API, 166
DetailsView data control, 313
directory connection settings, 468–471
directory information, initializing, 16–17
directory schema mappings, 471–474
directory-based policy store, 580–589
disabling a Website with App_Offline.htm,

24–25
DLLs (dynamic link libraries), 10
DnsPermission, 111
DOS (Denial of Service) attacks, 297–300
DpapiProtectedConfiguration

Provider
keyEntropy, 173–174
overview, 172–173
useMachineProtection, 174–175

dynamic applications, supporting, 458–463,
571–572

dynamic content
ISAPI extension mappings, 10–13
MIME type mappings, 9–10
overview, 9
static content compared, 9–14
wildcard application mappings, 13–14

dynamic link libraries (DLLs), 10

E
ECB (Extension Control Block), 32
Email property, 372, 416
Enabled property, 518

EnablePasswordReset property, 390, 476
EnablePasswordRetrieval property, 390
enableSearchMethods, 474
EndProcessRequest, 270–271
EndRequest event, 42, 74–75, 192,

534–535
enterprise trust level, 17
EnvironmentPermission, 111–112
error handling, 393–394
Execution, 116
expiration enforced by forms authentication,

194–196
Expired property, 530
ExpireDate property, 530
Extension Control Block (ECB), 32

F
facade methods, 369–370
Facade pattern

Membership, 341
overview, 341
Profile, 341
Role Manager, 341
session state, 342
Site Navigation, 342
Web parts personalization, 341–342

Factory Method, 334–339
FailedPasswordAnswerAttemptCount,

417
FailedPasswordAnswerAttemptWindow

Start, 418
FailedPasswordAttemptCount, 417
FailedPasswordAttemptWindowStart,

418
FileAuthorizationModule, 58–60
file-based policy store, 578–580
FileIOPermission, 112–113, 166
finding the trust policy file, 84
FindUsersByEmail method, 388, 478
FindUsersByName method, 387–388, 478
FindUsersInRole, 545
first request initialization

application impersonation, 26
Application_Start event, 25–28

600

DefaultHttpHandler (continued)

19_596985 bindex.qxp 12/14/05 7:53 PM Page 600

App_Offline.htm, disabling a Website
with, 24–25

client impersonation, 26
HttpRuntime, disabling a Website with, 24
overview, 23–24

forms authentication. See also cross-
application ticket passing

AuthenticateRequest and, 192
AuthorizeRequest and, 192
cookieless forms authentication, 208–222
cookie-specific security options, 204–208
EndRequest and, 192
LoggedIn event, 249
LoggingIn event, 249
Membership and, 247–256
overview, 192
persistent tickets, 192–197
sharing tickets between ASP.NET 1.1 and

ASP.NET 2.0, 222–223
single logons, enforcing, 247–255
single logouts, enforcing, 247–248, 255–256
ticket security, 198–204
UserData property, leveraging, 224–226

FormsAuthenticationModule, 52–54
FormView data control, 313
fraudulent postbacks, 318–322
Full trust, 78, 80, 107
FullTrust permission set, 86
functionality of ASP.NET and trust levels, 108
functionality of provider, 477–480

G
GAC (global assembly cache), 301
Gamma, Eric (Design Patterns: Elements of

Reusable Object-Oriented Software), 332
GeneratePassword, 478
generating keys programmatically, 203–204
GetAllRoles, 545
GetAllUsers method, 387, 478
GetNumberOfUsersOnline method, 392,

478
GetPassword method, 391, 478
GetRoles method

described, 523
working with multiple providers during,

537–542

GetRolesForUser method, 520, 544
GetSection, 157
GetUser method, 387, 392, 478
GetUserNameByEmail method, 387, 479
GetUsersInRole, 545
GetWebApplicationSection, 157
global assembly cache (GAC), 301
GridView data control, 313

H
handler execution, blocking requests during,

66–67
hash helper, full code listing of, 284–285
HashAlgorithmType property, 369
HashStringValue method, 280
headers, processing, 6–7
Helm, Richard (Design Patterns: Elements of

Reusable Object-Oriented Software), 332
Helper class, 284–285
High trust, 79, 80, 107
HTTP handlers, 66–67
HttpContext.Current.User, 48
HttpOnly cookies, 206–208
HttpRuntime, disabling a Website with, 24
http.sys, 3–5

I
identity, establishing, 16
Identity property, 523
<identity /> tag, 16, 171
IIS request handling
aspnet_filter.dll, 5–6
blocking restricted directories, 8–9
headers, processing, 6–7
http.sys, 3–5
overview, 2
registry settings, 5

IIS5 ISAPI extension behavior, 260–261
IIS6 wildcard mappings

configuration, 261–268
overview, 261
Verify that File Exists setting, 268

impersonation token, 41
individual permissions, defining, 87–88

601

individual permissions, defining

In
de

x

19_596985 bindex.qxp 12/14/05 7:53 PM Page 601

initialize method, 444
installation with an application partition,

504–510
integration of ASP.NET security with classic

ASP
authenticating classic ASP with ASP.NET,

272–276
authorizing classic ASP with ASP.NET,

276–285
DefaultHttpHandler, 268–271
IIS5 ISAPI extension behavior, 260–261
IIS6 wildcard mappings, 261–268
overview, 259

Internet Explorer, 212–213
IPrincipal, 48
IsAnonymous, 408
ISAPI extension mappings, 10–13
IsApproved property, 372, 417, 481
IsInRole method, 522–523
IsLockedOut property, 372, 379, 417, 481
IsolatedStorageFilePermission, 113
IsOnline property, 372, 379
IsRoleListCached property, 523
IssueDate property, 530
IsUserInRole method, 520, 544

J
Johnson, Ralph (Design Patterns: Elements of

Reusable Object-Oriented Software), 332

K
keyContainerName, 176–179
keyEntropy, 173–174

L
LastActivityDate property, 372, 407–408
LastLockoutDate property, 373, 379, 417
LastLoginDate property, 373, 417
LastPasswordChangedDate property, 373,

379, 417
limited set of roles, 565–569
LinkDemand, 119–121

<location /> element
allowOverride attribute, 146
overview, 143–145
path attribute, 145–146

lock attributes
lockAllAttributesExcept, 147–148
lockAllElementsExcept, 147, 149–151
lockAttributes, 147–148
lockElements, 147, 149–151
locking provider definitions, 151–153
overview, 146–147

LoggedIn event, 249
LoggingIn event, 249
logon session compared to state session,

287–290
Low trust, 79, 80, 107
LoweredEmail, 416
LoweredRoleName, 554

M
machine trust level, 17
managing roles and role associations,

544–545
MaxCachedResults property, 518, 536
MaxFieldLength registry setting, 5
MaxInvalidPasswordAttempts property,

388–389, 476
MaxRequestBytes registry setting, 5
Medium trust, 79, 80, 107
Membership

custom hash algorithms, use of, 399–401
Facade pattern, 341
and forms authentication, 247–256
Membership class, 368–371
MembershipProvider base class,

382–394
MembershipUser class, 371–382
primary key for, 394–396
Role Manager and, 592–594
Strategy pattern, 333
supported environments, 396–399

Membership class
facade methods, 369–370
HashAlgorithmType property, 369

602

initialize method

19_596985 bindex.qxp 12/14/05 7:53 PM Page 602

overview, 368–371
Provider property, 369
Providers property, 369
UserIsOnlineTimeWindow property, 369
utility methods, 370

Membership database schema
ApplicationId, 415
commandTimeout, 418
Comment, 418
connectionStringName, 418
CreateDate, 417
Email, 416
FailedPasswordAnswerAttemptCount,

417
FailedPasswordAnswerAttemptWindow

Start, 418
FailedPasswordAttemptCount, 417
FailedPasswordAttemptWindowStart,

418
IsApproved, 417
IsLockedOut, 417
LastLockoutDate, 417
LastLoginDate, 417
LastPasswordChangedDate, 417
LoweredEmail, 416
MobilePIN, 416
overview, 415
Password, 416
PasswordAnswer, 417
PasswordFormat, 416
PasswordQuestion, 416
PasswordSalt, 416
UserId, 416

membership provider settings, 475–477
MembershipProvider base class
ChangePassword method, 386
ChangePasswordQuestionAndAnswer

method, 391
configuration, 383–384
CreateUser method, 385, 390–391, 392
DeleteUser method, 385
EnablePasswordReset property, 390
EnablePasswordRetrieval property, 390
error handling, 393–394
FindUsersByEmail method, 388

FindUsersByName method, 387–388
GetAllUsers method, 387
GetNumberOfUsersOnline method, 392
GetPassword method, 391
GetUser method, 387, 392
GetUserNameByEmail method, 387
MaxInvalidPasswordAttempts property,

388–389
MinRequiredNonAlphanumeric

Characters property, 384
MinRequiredPasswordLength property,

384
multiple users, retrieving and searching for,

387–388
online users, tracking, 392–393
OnValidatingPassword method, 386
overview, 382–383
password validation, 388–389
PasswordAttemptWindow property, 389
PasswordFormat property, 390
PasswordStrengthRegularExpression

property, 384–385
RequiresQuestionAndAnswer property,

390
RequiresUniqueEmail property, 385
ResetPassword method, 391–392
single user, retrieving data for, 387
supporting self-service password reset or

retrieval, 390–392
UnlockUser method, 389
UpdateUser method, 386, 392
user creation, 384–386
user updates, 384–386
ValidateUser method, 389, 392
validating user credentials, 388–389
ValidatingPassword property, 385

MembershipUser class
Comment property, 371
CreationDate property, 371, 379
date-time values, 380–382
Email property, 372
extending, 373–375
IsApproved property, 372
IsLockedOut property, 372, 379
IsOnline property, 372, 379

603

MembershipUser class

In
de

x

19_596985 bindex.qxp 12/14/05 7:53 PM Page 603

MembershipUser class (continued)
LastActivityDate property, 372
LastLockoutDate property, 373, 379
LastLoginDate property, 373
LastPasswordChangedDate property,

373, 379
overview, 371–373
PasswordQuestion property, 372, 379
ProviderName property, 372, 379
ProviderUserKey property, 371, 379
updates and state of, 375–380
UserName property, 371, 379
UTC time and, 380–382

MIME type mappings, 9–10
Minimal trust, 79, 80, 108
MinRequiredNonAlphanumeric

Characters property, 384, 476
MinRequiredPasswordLength property,

384, 476
MobileAlias, 408
MobilePIN, 416
multiple users, retrieving and searching for,

387–388

N
.NET Framework Configuration MMC, 316
new encryption options, 201–204
NIST (National Institute of Standards and

Technology), 201
no-compile page, 135–137
non-ASP.NET file extensions, blocking access

to, 67–68
Nothing permission set, 86

O
OdbcPermission, customizing, 101–103
OleDbPermission

allowing, 103
customizing, 100–101

online users, tracking, 392–393
OnValidatingPassword method, 386
OOP state server, security options for,

306–307
OpenWebConfiguration, 157

operating system thread identity, establishing,
38–41

$OriginHost$, 85
OverrideExecuteUrlPath, 270–271

P
page compilation, 314–318
PageAsyncTask, 71–73
partial trusts
ActiveDirectoryMembershipProvider,

512–515
AllowPartiallyTrustedCallers

Attribute class, 121–126
AuthorizationStoreRoleProvider,

589–592
LinkDemand, 119–121
overview, 118–119
ProcessRequestInApplicationTrust, 135–141
sandboxed assembly, 126–135
using protected configuration providers in,

182–184
partially trusted non-ASP.NET applications,

using providers in, 557–562
passing data to ASP from ASP.NET, 274–276
passing user roles to classic ASP, 277–278
passing username to ASP, 276
password. See also custom password strength

rules
formats, changing, 430–432
history, implementing, 440–451
validation, 388–389

Password, 416
PasswordAnswer, 417
passwordAnswerAttemptLockout

Duration, 476–477
PasswordAttemptWindow property, 389,

476
PasswordFormat property, 390, 416
PasswordQuestion property, 372, 379, 416
PasswordSalt, 416
PasswordStrengthRegularExpression

property, 384–385, 476
path attribute, 145–146

604

MembershipUser class (continued)

19_596985 bindex.qxp 12/14/05 7:53 PM Page 604

payload size, 218–220
permissions

demands, 93
reading local configuration, required for,

155–157
remote editing, required for, 159–161
writing local configuration, required for,

157–159
persistent tickets

clock resets, 196–197
expiration enforced by forms authentication,

194–196
overview, 192–194
Universal Coordinate Time (UTC), 195

PIA (primary interop assembly), 81
policy file, creating, 96–97
policyFile attributes, 84
PostAcquireRequestState event, 42
PostAuthenticateRequest event, 42,

57–58, 531–534
PostAuthorizeRequest event, 42, 65–66
PostMapRequestHandler event, 42
PostReleaseRequestState event, 42
PostRequestHandlerExecute event, 42
PostResolveRequestCache event, 42
PostUpdateRequestCache event, 42
PreRequestHandlerExecute event, 42,

65–66
primary interop assembly (PIA), 81
primary key, 394–396
PrintingPermission, 114
processing pipeline
AcquireRequestState event, 42
AuthenticateRequest event, 42, 48–54
AuthorizeRequest event, 42, 58–65
BeginRequest event, 42
EndRequest event, 42, 74–75
overview, 41–42
PostAcquireRequestState event, 42
PostAuthenticateRequest event, 42,

57–58
PostAuthorizeRequest event, 42, 65–66
PostMapRequestHandler event, 42
PostReleaseRequestState event, 42
PostRequestHandlerExecute event, 42

PostResolveRequestCache event, 42
PostUpdateRequestCache event, 42
PreRequestHandlerExecute event, 42,

65–66
ReleaseRequestState event, 42
ResolveRequestCache event, 42
UpdateRequestCache event, 42

processModel, 168
ProcessRequestInApplicationTrust, 135–141
Profile

Facade pattern, 341
Strategy pattern, 333

protected configuration
aspnet_regiis, 181–182
custom provider, redirecting configuration

with a, 184–190
defining protected configuration providers,

172
DpapiProtectedConfiguration

Provider, 172–175
<identity /> section, 171
not protected, list of configuration systems

that are, 168
overview, 166–168
partial trust, using protected configuration

providers in, 182–184
RsaProtectedConfigurationProvider,

175–180
selecting a protected configuration provider,

169–171
System.Configuration.DPAPI

ProtectedConfiguration
Provider, 167

System.Configuration.RsaProtected
ConfigurationProvider, 167

protecting session cookies, 293
provider configuration
applicationName, 475
clientSearchTimeout, 474
connectionProtection, 470
directory connection settings, 468–471
directory schema mappings, 471–474
enablePasswordReset, 476
enableSearchMethods, 474
maxInvalidPasswordAttempts, 476

605

provider configuration

In
de

x

19_596985 bindex.qxp 12/14/05 7:53 PM Page 605

provider configuration (continued)
membership provider settings, 475–477
minRequiredNonalphanumeric

Characters, 476
minRequiredPasswordLength, 476
overview, 468
passwordAnswerAttemptLockout

Duration, 476–477
passwordAttemptWindow, 476
passwordStrengthRegularExpression,

476
provider settings for search, 474–475
requiresQuestionAndAnswer, 476
requiresUniqueEmail, 475
serverSearchTimeout, 474

provider design, 573–576
provider model

building a provider-based feature, 351–365
core provider classes, 342–350
Facade pattern, 341–342
Factory Method, 334–339
patterns found in, 332–342
reasons for providers, 329–332
Singleton Pattern, 339–341
Strategy pattern, 332–334

Provider property, 369, 518
provider security

overview, 556
partially trusted non-ASP.NET applications,

using providers in, 557–562
trust-level requirements and configuration,

557–562
provider settings for search, 474–475
ProviderBase, 342–343
ProviderCollection, 344–346
ProviderException, 344
ProviderName property, 372, 379, 523
Providers property, 369, 518
ProviderSettings, 347–349
ProviderSettingsCollection, 349–350
ProviderUserKey property, 371, 379, 482

R
reading and writing configuration
ConfigurationManager class, 153–154
GetSection, 157
GetWebApplicationSection, 157
OpenWebConfiguration, 157
overview, 153–155
permissions required for reading local

configuration, 155–157
permissions required for remote editing,

159–161
permissions required for writing local

configuration, 157–159
WebConfigurationManager class,

154–155
ReflectionPermission, 114
regenerateExpiredSessionId, 297
registry settings, 5
RegistryPermission, 115
ReleaseRequestState event, 42
RemotingConfiguration, 116
RemoveUserFromRole method, 520
RemoveUserFromRoles method, 520
RemoveUsersFromRole method, 520
RemoveUsersFromRoles method, 520, 545
replay attacks with cookieless tickets,

215–216
request validation, 310–311
requests, security identity for, 34–37
requirePermission attribute, 163–164
RequiresQuestionAndAnswer property,

390, 476
requireSSL attribute, 204–206
RequiresUniqueEmail property, 385, 475
ResetPassword method, 391–392, 479
ResolveRequestCache event, 42
role cache cookie settings and behavior,

535–537
Role Manager

Facade pattern, 341
Membership and, 592–594
overview, 517
RoleManagerModule, 531–542
RolePrincipal class, 521–531

606

provider configuration (continued)

19_596985 bindex.qxp 12/14/05 7:53 PM Page 606

RoleProvider class, 542–545
Roles class, 517–520
Strategy pattern, 333
WindowsTokenRoleProvider, 546–551

RoleExists, 545
RoleId, 554, 555
RoleManagerModule
cacheRolesInCookie, 535
cookieProtection, 536
cookieRequiresSSL, 536
cookieSlidingExpiration, 536
cookieTimeout, 535–536
createPersistentCookie, 535
EndRequest, 534–535
GetRoles, working with multiple providers

during, 537–542
maxCachedResults, 536
overview, 531
PostAuthenticateRequest, 531–534
role cache cookie settings and behavior,

535–537
RoleName, 554
RolePrincipal class
CachedListChanged property, 529
CookiePath property, 530
Expired property, 530
ExpireDate property, 530
GetRoles method, 523
Identity property, 523
IsInRole method, 522–523
IsRoleListCached property, 523
IssueDate property, 530
overview, 521–522
ProviderName property, 523
SetDirty method, 523
Version property, 523

RoleProvider class
AddUsersToRoles, 545
ApplicationName, 544
authorization methods, 544
basic configuration, 544
CreateRole, 545
DeleteRole, 545
FindUsersInRole, 545
GetAllRoles, 545

GetRolesForUser, 544
GetUsersInRole, 545
IsUserInRole, 544
managing roles and role associations,

544–545
overview, 542–544
RemoveUsersFromRoles, 545
RoleExists, 545

Roles class
AddUsersToRole method, 520
AddUsersToRoles method, 520
AddUserToRole method, 520
AddUserToRoles method, 520
ApplicationName property, 518
CacheRolesInCookie property, 518
DeleteRole method, 520
Enabled property, 518
GetRolesForUser method, 520
IsUserInRole method, 520
MaxCachedResults property, 518
overview, 517–518
Provider property, 518
Providers property, 518
RemoveUserFromRole method, 520
RemoveUserFromRoles method, 520
RemoveUsersFromRole method, 520
RemoveUsersFromRoles method, 520

RsaProtectedConfigurationProvider
keyContainerName, 176–179
overview, 175–176
synchronizing key containers across

machines, 180
useMachineContainer, 179

S
SAM account names, 484–485
sample participating application in cookie-

based SSO-lite, 238–241
sandboxed assembly

ADODB access, 131–133
overview, 126–131
SqlClientPermission access, 133–135

ScopeName, 577
scopeName, 577

607

scopeName

In
de

x

19_596985 bindex.qxp 12/14/05 7:53 PM Page 607

securing containers, 487–493
security. See also ASP.NET per-request

security
fraudulent postbacks, 318–322
IIS per-request security, 32–33
impersonation token, 41
page compilation, 314–318
request validation, 310–311
session state, features of, 289
Site Navigation, 322–327
Universal Naming Convention (UNC), 32
viewstate protection, 311–313

SecurityPermission, 115–116
selecting a protected configuration provider,

169–171
self-service password reset, configuring,

494–502
sensitive data to classic ASP, safely passing,

278–284
serialization requirements of session state,

302–304
serverSearchTimeout, 474
session data partitioning, 290–291
session ID reuse

and expired sessions, 296–297
overview, 294

session state
cookie-based sessions, 291–294
cookieless sessions, 294–296
deserialization requirements, 302–304
DOS attacks and, 297–300
Facade pattern, 342
global assembly cache (GAC), 301
logon session compared, 287–290
OOP state server, security options for,

306–307
regenerateExpiredSessionId, 297
security features, 289
serialization requirements, 302–304
session data partitioning, 290–291
session ID reuse and expired sessions,

296–297
SQL Server session state, database security

for, 304–306

Strategy pattern, 334
trust levels and, 300–304

SetDirty method, 523
sets of permissions, defining, 86–87
SHA1, 198–201
sharing tickets between ASP.NET 1.1 and

ASP.NET 2.0, 222–223
signed tickets, security for, 198–201
single logons, enforcing, 247–255
single logouts, enforcing, 247–248, 255–256
single sign on (SSO) products, 227–228
single user, retrieving data for, 387
Singleton Pattern, 339–341
Site Navigation

Facade pattern, 342
security, 322–327
Strategy pattern, 334

slidingExpiration attribute, 208
SmtpPermission, 117
SocketPermission, 117
SQL Server Express

connection string, changing, 425–426
overview, 419–424
sharing issues with, 424–425

SQL Server session state, database security
for, 304–306

SQL server-specific provider configuration
options, 555

SqlClientPermission access, 118,
133–135

SqlMembershipProvider
account lockouts, 451–454
automatic unlocking, implementing, 454–458
custom encryption, 435–437
custom password generation, 432–435
database security, 426–428
DBO user and database schemas, 428–430
dynamic applications, support for, 458–463
enforcing custom password strength rules,

437–451
Membership database schema, 415–418
overview, 403
password formats, changing, 430–432
password history, implementing, 440–451
SQL Server Express, 419–426

608

securing containers

19_596985 bindex.qxp 12/14/05 7:53 PM Page 608

SqlRoleProvider
ApplicationId, 554
aspnet_Roles_BasicAccess, 563
aspnet_Roles_FullAccess, 563
aspnet_Roles_ReportingAccess, 563
commandTimeout, 555
connectionStringName, 555
data layer, authorizing roles in, 570–571
database schema, 553–556
database security, 563
Description, 555
dynamic applications, supporting, 571–572
limited set of roles, 565–569
LoweredRoleName, 554
overview, 553
provider security, 556–563
RoleId, 554, 555
RoleName, 554
SQL server-specific provider configuration

options, 555
transaction behavior, 556
UserId, 555
Windows authentication, 563–565

SSO (single sign on) products, 227–228
stack trace, 94–95
static content

dynamic content compared, 9–14
ISAPI extension mappings, 10–13
MIME type mappings, 9–10
overview, 9
wildcard application mappings, 13–14

StopBinFiltering, 9
StopProtectedDirectoryFiltering, 9
Strategy pattern

Health Monitoring, 334
Membership, 333
overview, 332–333
Profile, 333
Role Manager, 333
session state, 334
Site Navigation, 334
Web parts personalization, 334

string replacements in policy files, 85–86
strongly named assemblies, 124
subsequent authenticated access, 212

supported directory architectures, 465–468
supported environments, 396–399
supported functionality, 576–577
supporting self-service password reset or

retrieval, 390–392
synchronizing key containers across

machines, 180
System.Configuration classes

overview, 347
ProviderSettings, 347–349
ProviderSettingsCollection,

349–350
System.Configuration.DPAPI

ProtectedConfiguration
Provider, 167

System.Configuration.Provider
classes

overview, 342
ProviderBase, 342–343
ProviderCollection, 344–346
ProviderException, 344

System.Configuration.RsaProtected
ConfigurationProvider, 167

System.Web.Configuration classes, 346
System.Web.HttpForbiddenHandler, 67
System.Web.HttpMethodNotAllowed

Handler, 67
System.Web.HttpNotFoundHandler, 67
System.Web.HttpNotImplemented

Handler, 67

T
technical tips for cookie-based SSO-lite,

246–247
Thread.CurrentPrincipal, 48, 54–56
3DES, 201
ticket security

Advanced Encryption Standard (AES),
201–204

generating keys programmatically, 203–204
new encryption options, 201–204
overview, 198
SHA1, 198–201
signed tickets, security for, 198–201

transaction behavior, 556

609

transaction behavior

In
de

x

19_596985 bindex.qxp 12/14/05 7:53 PM Page 609

trust levels
anatomy of, 83–91
$AppDir$, 85
$AppDirUrl$, 85
application domain policy, 92
ASP.Net permission set, 86–87
CAS policy, checking current, 93–94
code, how permission sets are matched to,

88–90
code access security, places that define,

90–91
$CodeGen$, 85
complex permissions, troubleshooting, 94–96
configuring, 80–83
custom trust level, 96–105
default security permissions defined by

ASP.NET, 105–118
different trust levels, working with, 81–83
finding the trust policy file, 84
Full trust, 78, 80
FullTrust permission set, 86
High trust, 79, 80
individual permissions, defining, 87–88
Low trust, 79, 80
Medium trust, 79, 80
Minimal trust, 79, 80
Nothing permission set, 86
$OriginHost$, 85
overview, 78–80
permission demands, 93
policyFile attributes, 84
requirements and configuration, 557–562
and session state, 300–304
sets of permissions, defining, 86–87
setting, 17–19
stack trace, 94–95
steps for, 92–94
string replacements in policy files, 85–86
user code calls into protected framework

class, 92–93
<trust /> tag, 17–18

U
unexpected redirect behavior, 221–222
Universal Coordinate Time (UTC), 195,

380–382
Universal Naming Convention (UNC), 32
UnlockUser method, 389, 479
UpdateRequestCache event, 42
updates, 375–380
UpdateUser method, 386, 392, 479
UPN-style usernames, 484–485
URL authorization, character sets affecting,

65
UrlAuthorizationModule, 60–65
URLs in pages, 216–218
UrlSegmentMaxCount registry setting, 5
UrlSegmentMaxLength registry setting, 5
UseCookies attribute, 209
UseDeviceProfile attribute, 209, 213–214
useMachineContainer, 179
useMachineProtection, 174–175
user code calls into protected framework

class, 92–93
user creation, 384–386
user records, linking custom features to,

410–413
user trust level, 17
user updates, 384–386
UserData property, leveraging, 224–226
UserId, 416, 555
UserIsOnlineTimeWindow property, 369
UserName property, 371, 379
UseUri attribute, 209
UTC (Universal Coordinate Time), 195,

380–382
utility methods, 370

V
ValidatePassword event, 439–440
ValidateUser method, 389, 392, 479
validating user credentials, 388–389
ValidatingPassword property, 385
Verify that File Exists setting, 268
Version property, 523
versioning provider schema, 408–410

610

trust levels

19_596985 bindex.qxp 12/14/05 7:53 PM Page 610

views, querying common tables with, 410
viewstate protection
DataList data control, 313
DetailsView data control, 313
FormView data control, 313
GridView data control, 313
overview, 311–313
ViewStateEncryptionMode attribute,

312–313
Vlissides, John (Design Patterns: Elements of

Reusable Object-Oriented Software), 332

W
Web parts personalization

Facade pattern, 341–342
Strategy pattern, 334

WebConfigurationManager class,
154–155

WebPermission, 103–105, 118
wildcard application mappings, 13–14
Windows authentication, 563–565
WindowsAuthenticationModule, 49–52
WindowsTokenRoleProvider, 546–551

611

WindowsTokenRoleProvider

In
de

x

19_596985 bindex.qxp 12/14/05 7:53 PM Page 611

20_596985 bob.qxp 12/14/05 7:53 PM Page 622

